tal

Intel® Itanium® Processor Family
System Abstraction Layer
Specification

December 2003

Document Number: 245359-007

THIS DOCUMENT IS PROVIDED “AS I1S” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE.

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Intel Itanium architecture processors (e.g., ltanium and Itanium 2 processors) and 1A-32 Intel architecture processors (e.g., Xeon, Pentium 4 and
Pentium Ill processors) may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by
calling1-800-548-4725, or by visiting Intel's website at http://www.intel.com.

Intel, Pentium, Itanium, and Xeon are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

Copyright © 2000-2003, Intel Corporation.

*Other names and brands may be claimed as the property of others.

2 Intel® Itanium® Processor Family System Abstraction Layer Specification

intgl.

Contents

10T [T 1o] o 7
1.1 (O] 0] 1T oa 117 LU PP PRRPPRTURN 7
1.2 FIrMware MOEL.........cooeee e 7
1.3 System Abstraction Layer OVEIVIEWeiiiiieiiieeeeeieeieeieeeeeeeeeve e s 9
1.4 Firmware ENtryPOINTSoooiiiiireieiee s s e e e e e e e e e e e ae e e eeaee e e eeeeareenennneanes 10
15 Related DOCUMENTSccoiiiiiiiiiieiiiiie ettt e e e e e ees 12
1.6 REVISION HISTOIY ... 12
Platform REQUITEIMENTS.ccii ittt e e e e e e e e e st ar e e e e e e e s e s s sannnra e raeeeaeeeas 15
21 FIrmware AAAreSS SPACEcoiiiiiiiiie ettt 15
2.2 PAL/SAL ROM SPACEciiiieiiiee ettt ettt ettt e e e e 15
2.3 Simplified Firmware Address Map........c..ueeiiiiiaiiniiieiieeee e 16
2.4 Example Firmware Organization Using a Protected Boot Blockccceuu.e. 16
25 Firmware Interface Table ... 21
2.6 Resources Required for Legacy Compatibilityccoovvviiiiriereee i, 22
2.7 Chipset and Shadowing ReqUIrEMENLSoiuuiiiiiiiiiie e 24
2.8 Platform Support for Variant Architectural Features...........cccccoevviiiiiiiinieneennn. 24
2.9 Platform Considerations Related to Processor Physical Location 25
2.10 Non-Volatile MeMOry REQUIFEMENTScc.uveveriiiiiiiiiisieseisesseereeeeaeeeeeseeseeeeneanes 25
2.11 Miscellaneous Platform ReqUIrEMENTS........ccoiuuiiiiiiieiie e 26
(2 To o ST =To (1] oo =PRI 27
3.1 Overview of the Code Flow after Hard ReSet..........cccuvviiieiiiiiiiiiiiieneeeeen 27
3.2 SAL RESET ...ttt ittt et e e et e e e e e et e e e e b ae e e e 28
3.3 Itanium®Architecture-Based Operating System Loader Requirements 41
MACKHINE CRECKSttt e st ee e e st ee e enbe e eeesnbbeeeee e e 47
4.1 Y I | = PSR 47
4.2 Corrected Maching ChECKScoiii it 49
4.3 PIALTOIM EITOTS ...ttt ettt e e e e e s e e e bbb e eeaaeaeaaaeas 51
4.4 Polling for Corrected EITOIS.........oouiiiiiiiiiiiecie i er e ee e 52
4.5 (@ 1S V[A SR PRRPPPRR 52
4.6 Procedures used in Machine Check Handlingcccccovivvieiiee e, 54
4.7 Machine Checks in MP Configurationscc.coooiiiin i 56
4.8 OS_MCA Hand-0ff STateuueiiiiiiiiiee e 62
INIALIZALION EVENEeeiiiiieiie ettt et ee e et e e e s sbb e e e s s sabaeee e s e 65
51 Y I | 65
5.2 (@ 1S 1N PR 66
5.3 OS_INIT Hand-off StAteccevvvviiiiiiiiiie e 67
5.4 Return from OS_INIT ProCeAUIE.........vuviiieiicies et 68
55 Y L Ll IS 0T o] o o P TR 68
Platform Management INTEITUPLIONSuvuviiiei e 69
6.1 SALE_PMI OVEIVIEWceiiiiiiiie ettt ettt et ee e e e e et e e e e 69
6.2 SALE_PMI INLIANZAION ...coieiiie et 69
6.3 SALE_PMI PrOCESSING ...cceiitieieeaiiitt ettt ettt ettt nenas 70
6.4 Special Considerations for Multiprocessor Configurations............ccccooecveeeeienenne. 70

Intel® Itanium® Processor Family System Abstraction Layer Specification 3

Figures

Tables

[A-32 SUPPOIt (OPLIONAI) ...t e e e e e e e e e e e 71
7.1 [A-32 SUPPOIt MOAEI ...evieiiicee e e e e e e ae e 71
7.2 [A-32 SUPPOIt REQUIFEMENTS......uiiiiiiiiiiiie ittt sttt ee e e eees 71
(= 11 aTo @10 0 1V7=1 1 1] 1= 75
8.1 SAL Calling CONVENLIONSciiieieiii ittt er e e e e s s areeraaeee e 75
8.2 Software Interface Conventions for SAL Procedures........coccccvveeeevivciinineenneenenn, 79
SAL PrOCEUUIES ...ttt ettt ettt et e e e s e e s bbb e bt e ee e e e e e e s s aannbbbbneneeaeaeens 81
9.1 SAL RUNIME SEIVICES OVEIVIEWeeeieiieiieeieeeieeeeesseeeeeeeeeeeees s s sntnnnnneneeeeeeeeens 81
9.2 SAL Procedures that Invoke PAL Procedurescccoueeeeieeeeeiieeiiiiiiiiieeeeeee e, 83
9.3 SAL Procedure SUMMAIYcoocuiiieiiiiiieieiaiiiee st 84
1] 0 1ST7= 1Y 107
Error RECOIA STIUCLUIES ...ttt e e e e e s et ee e e e e e e e e anas 113
B.1 OVEIVIBW ...ttt ettt ettt e e e e e e s s e bbb e et et e e e e ee s s nnbbnnreeeee s 113
B.2 Error RECOId SIUCIUIEvviiiii ittt 113
1-1 FIrMware MOuieiiiiiii e 8
1-2 Firmware Services MOUEI.......c.uuiiiiiiiiiiiie et 9
1-3 Firmware Entrypoints Logical MOdelcc.uueiiiiiiiiiiiiiiee e 10
2-1 Simplified Firmware AddreSS Mapc.ueeoiiiiiieiiiiie e 17
2-2 Firmware AdAreSS Mapcooouuiiiieiiiiieiee et 18
2-3 Firmware Address Map with Split PAL_A Components.............cccceeevvviivevieennnnns 19
2-4 Firmware Interface Table ... 21
2-5 Firmware Interface Table ENrY.........oceuvvieeiiiiiice e ee e e 21
3-1 Local ID ReQiSter FOMMALcuvvuiiiiiiiiiiei it 29
3-2 Control Flow of Boot Process in a Multiprocessor Configuration 31
3-3 Wake-up Memory Variable FOrmatcccueviiiiiiiiiee e 32
4-1 Overview of Machine Check FIOWcciiiiiiiii e 47
4-2 Machine Check Code FIOWueiiiiiiiiiiiiii e 50
4-3 SAL_CHECK Detailed Flow on the Monarch Processor..........ccccccoveevvvvvvinnennnnn. 55
4-4 Normal SAL RENAEZVOUS FIOWuviiiiiieeiiieciiciiiiieet e en e e e e 57
4-5 Failed SAL ReNAEZVOUS FIOWuuiiiiiiiiie i 58
4-6 Machine Check Handling in a Typical MP Configurationcccccveeiiennnnn. 61
5-1 SAL_INIT CONIOl FIOW ..ttt 66
8-1 Control Flow of the SAL Procedure Interface...........ccccuveeiiiieiiiiiiiiniieieeeeenn 80
9-1 Layout of plat_log_info RetUrN Valueccoooviiiiiiiiiiieiiee e ccccnieeeee e 106
2-1 Firmware AdAreSS SPaCEcoiiii i e e e e e e e e e e e ae e e 15
2-2 I I 1Y/ 01 PRSPPI 22
2-3 1 MB Compatibility Memory AddreSs SPaceccccveeeeiivieeiniiiiiieeniiiee e 23
2-4 [A-32 Compatibility 1/O POIS ... 23
3-1 SAL Actions Based on Processor Self-Test Statecccccccceeeiiiiiiiiiiiiiiieeeeeeen, 27
3-2 OS_BOOT_RENDEZ to SAL System Register Conventions...........ccccceeveeeeennnnn. 36
3-3 SAL System Table Headeruuiuiiiiiiieii e e 38

Intel® Itanium® Processor Family System Abstraction Layer Specification

3-10

SAL System Table ENtry TYPES ...ccoiiieiiiieeiiee ettt e e 39
Entrypoint Descriptor Entry FOrmMat.........cccooovoiiiiiiiiiie e 39
Platform Features DesCriptor ENtrYcoeoieioieieiie e 39
Translation Register DeSCHPtOr ENrYccoococvieiiieiee e 40
Purge Translation Cache Coherence Domain ENtrycccccovvciiiiiiiiiiennnnenn. 40
Coherence Domain INfOrmationc..ueeeiiiiiiiiiiii e 40
Application Processor Wake-up Descriptor ENtrycoooooiiiiiiiiiiiiiiieeeneines 41
DefiNition Of TEIMISeuiiiiie it ee e e e 75
State Requirements fOr PSRuuiiiii e 75
System Register CONVENLIONScuiiiiiiiiiiiiiiiee ettt 76
General Registers — Standard Calling Conventions...........cccccoevveiei e, 77
SAL RETUIN STALUS. ... ceiitietiiiiet ettt e e e e e e e e 80
SAL Procedures INnvoking PAL ProCedUIES..........cooviiiiiiiiieieeaee e 83
SAL PrOCEAUIES ...ttt e e e e e et r e eeeeaeeens 84
GUID FOIMAL......ciiiiieieeeieiie e et e e e e e e s 115
GUID Ordering iN MEMOTYuuuiiiiiiiiiiiie ittt 115
Error Section Error_Recovery_Info Field Definitioncooeciiiiiieennenn, 116
Format of Variable Length INfo Structure............ccoooiiiiiii e, 119
Error Status FIelds ... 124
L (o] g Y/ o 1= PSP 124

Intel® Itanium® Processor Family System Abstraction Layer Specification 5

Intel® Itanium® Processor Family System Abstraction Layer Specification

intel.

Introduction 1

1.1

1.2

Intel® Itanium® Processor Family System Abstraction Layer Specification

Objectives

This document describes the functionality of the System Abstraction Layer (SAL) for
Itanium®architecture-based systems.

This document specifies requirements to devel op platform firmware for Itanium architecture-based
systems. A companion document, the Extensible Firmware I nterface Specification, describes
additional interfaces that must be implemented to access devices on the platform. The Extensible
Firmware Interface Specification is a requirement for Itanium architecture-based firmware.

This document is intended for firmware designers, system designers, and writers of diagnostic and
low level operating system software. Thisdocument isan architectural specification describing the
platform-dependent firmware interfaces needed to support the objectives listed below. It does not
require a specific implementation, nor isit intended to document PC infrastructure specifications.
The primary objectives of Itanium architecture-based firmware are to:

¢ Enable boot of Itanium architecture-based operating systems.

¢ Ensure that the firmware interfaces encapsul ate the platform implementation differences
within the hardware abstraction layers and device driver layers of operating systems.

* Separate the platform abstraction from the processor abstraction.

* Enable platform differentiation, hardware innovation, and optimization of Itanium
architecture-based platforms.

¢ Support the scaling of systems from the low-end to the high-end including servers,
workstations, mainframe alternatives, and supercomputers. Features supported will include
high availability, error logging and recovery, large memory support, multiprocessing, and
broader and deeper 1/0O hierarchies (possibly greater than 100 1/O cards).

* Whileusing Itanium instructionsis preferred, 1A-32 BIOS code can be used in SAL. The
extent of the IA-32 BIOS reuseisimplementation-dependent, but all SAL entrypointsfrom the
Processor Abstraction Layer (PAL) will use the Itanium system environment.

¢ Optionally, enable the use of legacy PC peripherals, option ROMs, and PCI cards with |A-32
Plug-and-Play expansion ROMs.

Firmware Model

As shown in Figure 1-1, Itanium architecture-based firmware has three components:
1. Processor Abstraction Layer
2. System Abstraction Layer
3. Extensible Firmware Interface

Introduction inte|®

Figure 1-1. Firmware Model

Operating System Software
A \ A Y
EFI
Boot
Transfers to S:n dg?f Procedure
OS Entrypoints \ Calls
for Hardware]]
s Events Extensible Firmware
e - Interface (EFI)
OS Boot D »
Selection ~ /7
SAL Procedure | | - >
Calls /"
Instruction
System Abstraction Layer Execution - t
SAL nterrupts,
() Traps and
A A Faults
Access to PAL Procedure /
Platform Calls ‘//
Resources "“\\ \\‘
\ \\:__*
< Transfers to AN
e SAL Entrypoints i S -
-
Processor Abstraction Layer
(PAL)
Processor (Hardware)
A
< Performance Critical
™ Hardware Events,
N e.g. Interrupts
Non-performance Critical N
Hardware Events, e.g. e
Reset, Machine Checks .
4 A
Platform (Hardware)
000950

PAL encapsulates processor implementation-specific features and is required in the Itanium
architecture. PAL is not multiprocessor (MP) aware but is thread-aware for Itanium architecture
processors that support multi-threading. SAL is the platform-specific firmware component that
isolates operating systems and other higher level software from implementation differences in the
platform. EFI provides alegacy free APl interface to the operating system loader.

PAL, SAL, and EFI together provide system initialization and boot, Machine Check Abort (MCA)
handling, Platform Management Interrupt (PM1) handling, and other processor and system
functions which would vary between implementations. The interaction of the various functional
firmware blocksis shown in Figure 1-2.

8 Intel® Itanium® Processor Family System Abstraction Layer Specification

Introduction

intgl.

Figure 1-2. Firmware Services Model

Operating System Software
OS Mechine 5
os Chedd s Irletr
Hander C
[
J A
y A J EFl
Runtine s
Services
A
fm—— Yy __, SAL
| Boat |
| Senices |
| (Transient) |
A L A w
Platfprm Patform Platform Platform Patform
Runtime N
ices Reset BEror Init PM
Er res) Hander Harder Handler Handler
Y A [; A
________ Reset Bvert]
|
I
A | vy v Y PAL
PFFDCEiSnESC Processor Processor Processor Processor
ioos Reset BEror Init PM
®r res) Handler Handler Handler Handler
3
Reset and Mechine Initialization PM
Poner On Check Bvert Bvent
Platform/Processor Hardware
000933

1.3 System Abstraction Layer Overview

SAL provides the following functionality for an Itanium architecture-based platform:

* Initialize, configure, and test the platform hardware. This includes the memory and 1/0
subsystems, the necessary boot devices, and platform-specific hardware.

¢ Select the bootstrap processor (BSP) in aMP platform and set the configurable processor
features. An Itanium architecture processor hasits own PAL firmware for initialization and
test. PAL has no knowledge of the platform, so further platform-specific action is necessary to
integrate the processor with the rest of the system. For example, SAL must configure, test, and
initialize memory before the processor cache to memory interface can be established and
tested.

Intel® Itanium® Processor Family System Abstraction Layer Specification 9

Introduction

1.4

intel.

Optionally encapsulate and provide the environment to run IA-32 BIOS and plug-in cards
containing | A-32 Option ROMs.

Provide low level service routinesto aid EFI and the operating system loader in establishing
the environment necessary for the operating system.

Provide common data structures to the operating system to convey initialization and
configuration information.

Provide the necessary services and common infrastructure to support MP configurations.

Provide runtime service routines to encapsul ate those functions of the platform for EFI and the
operating system while they are running.

Provide the functions to aid in the logging and recovery from Machine Check conditions
(SAL_CHECK and OS_MCA interface).

Provide the functions necessary to aid in the logging and recovery from INIT conditions
(SAL_INIT and OS_INIT interface).

Provide the functions necessary to handle the platform management events (SALE_PMI
interface).

Optionally, provide the functions to aid in the recovery from a corrupted boot ROM.

Optionally, provide a user interface to aid in system configuration, information passing, and
troubleshooting.

Firmware Entrypoints

Figure 1-3. Firmware Entrypoints Logical Model

10

PAL SAL oS
SAL_BOOT_N\g _________ Wake Up
_RENDEZ :
|
Firmware Recovery Application Bootstrap |
Complete (BSP) Processors Processor :
(APs) (BSP)
|

Reset
— 658l PALE_RESET [SALE_ENTRY SAL_RESET EFI Boot OS_LOADER
Power-On Manager
SAL_MC_ ~_Wake Up
RENDEZ

MC Rendezvous Complete ! MC Rendezvous

+ i Interrupt (APs)
Error
— 1 PALE_CHECK » SALE_ENTRY
BSP
INIT
—®1 PALE_INIT SALE_ENTRY

PMI
L

PALE_PMI SALE_PMI

Resume

001075

Intel® Itanium® Processor Family System Abstraction Layer Specification

inte|® Introduction

1.4.1 Processor Abstraction Layer Entrypoints

The following hardware events can trigger the execution of a PAL entrypoint:
* Power-on/reset
* Hardware errors (both correctable and uncorrectable)
* Initialization reguest
* PMlIs

These hardware events trigger the execution of one of the following PAL entrypoints (as shown in
Figure 1-1 and Figure 1-3):

1. PALE_RESET initiaizesthe processor following power-on or reset. This PAL entrypoint calls
the SALE_ENTRY entrypoint in the SAL to test for firmware recovery. SALE_ENTRY, in
turn, calls SAL_RECOVERY_CHECK to perform recovery if the firmware recovery
indication is present on the platform, otherwise it returnsto PAL viaSALE_ENTRY. If
firmware recovery isrequired, the SAL recovery code will accomplish the firmware recovery
function, reset the recovery indication, and then trigger a system wide reset, causing re-entry
into the PALE_RESET. If SAL reportsto PAL that afirmware recovery condition does not
exist, PAL conducts additional processor tests and then branchesto SALE_ENTRY.
SALE_ENTRY then branches to a procedure within SAL called SAL_RESET to initialize the
system.

1. PALE_CHECK savesthe minimal processor state, determinesif errors are processor related,
saves processor-related error information, and corrects errors where possible (for example, by
flushing a corrupted instruction cache line and marking the cache line as unusable).
PALE_CHECK then branchesto the SALE_ENTRY entrypoint. SALE_ENTRY, in turn,
branchesto SAL_CHECK to complete error logging, correction, and reporting.
PALE_CHECK isentered as aresponse to processor or platform errors.

2. PALE_INIT isentered as aresponse to an initialization event. PALE_INIT saves minimal
processor state and branchesto SALE_ENTRY. SALE_ENTRY, in turn, branchesto
SAL_INIT.

3. PALE_PMI isentered as aresponse to a platform management event. PALE_PMI determines
the type of platform management event and branches to SALE_PMI for certain conditions.

1.4.2 System Abstraction Layer Entrypoints

Following are the entrypoints from PAL into SAL:

1. SALE_ENTRY isthe entrypoint PAL branches to after a power-on, reset, machine check, or
initialization event. The code at this entrypoint uses the hand-off value in ageneral register to
jump to SAL for reset, firmware recovery, machine check, and INIT events.

These functions are available from SALE_ENTRY:
e SAL_RESET within SAL is entered for system initialization after PAL hasinitialized the
processor. SAL_RESET functionality is described in Chapter 3.

* SAL_RECOVERY_CHECK within SAL is entered after a power-on reset from PAL to
test if arecovery condition is present. Only SAL has enough knowledge of platform
resources to determine if afirmware recovery condition is present.

e SAL_CHECK within SAL isentered for logging errors and correcting platform related
errors where possible. SAL_CHECK functionality is described in Chapter 4.

e SAL_INIT within SAL is entered for saving the state of the system and performing
additional functions as defined in Chapter 5.

Intel® Itanium® Processor Family System Abstraction Layer Specification 11

Introduction inte|®

2. SALE_PMI isthe entrypoint for handling platform management eventsin an
implementation-dependent manner.

1.4.3 Operating System Handlers

There are several entrypoints from SAL into an operating system (or equivalent software):

* OS LOADER isthe entrypoint the BSP enters from SAL_RESET after the system has been
initialized and the operating system loader image has been |oaded by the EFI component from
the boot device. Refer to the Extensible Firmware Interface Specification for details.

¢ OS BOOT_RENDEZ isthe operating system MP rendezvous handler. It is entered from SAL
when operating system loader on the BSP wakes up the application processors (APs), to
permit synchronization of APsin an MP environment.

* OS MCA isthe operating system MCA handler that is called from SAL_CHECK to alow the
OS to handle the machine checks that are not corrected by hardware, PAL, or SAL.

* OS INIT isthe operating system handler that is called from SAL_INIT to handleavaid INIT
event.

1.5 Related Documents

The following documents contain additional material related to Itanium architecture-based
platforms:

* Advanced Configuration and Power Interface Specification — Intel/Microsoft/Toshiba
¢ BIOS Boot Specification, 1996 — Compag/Phoenix/Intel

¢ BIOS Enhanced Disk Drive Specification, Version 3.0 — Phoenix

¢ Bootable CD-ROM Format Specification, 1994 — Phoenix/IBM

* CBIOSfor IBM Computers and Compatibles— Phoenix

* Extensible Firmware Interface Specification — Intel

* Intelligent Platform Management I nitiative Specification — Intel, NEC, HP, Dell
* Intel® Itanium® Architecture Software Devel oper’s Manual — Intel

* Intel® Itanium® Processor Family Error Handling Guide — Intel

* Itanium® Software Conventions and Runtime Architecture Guide — Intel

* PCI BIOS Specification — PCl SIG

* PCI Local Bus Specification — PCI SIG

¢ Plug and Play ISA Specification, 1994 — Mi crosoft

1.6 Revision History

The revision number of the SAL specification supported by the SAL implementation is specifiedin
the SAL System Table Header (refer to Table 3-3, “SAL System Table Header”).

12 Intel® Itanium® Processor Family System Abstraction Layer Specification

Introduction

Date

Description

December 2003

Removed references to 1A-32 Operating System boot. Clarified OS_BOOT_RENDEZ
usage and handoff requirements. Added SAL_PHYSICAL_ID_INFO call. Added
extensions to SAL procedures to address PCI Express. Added clarifications to address
multithreaded processors. Clarified use of SAL_SET_VECTORS checksum. Added
example of GUID memory ordering. Added additional information on SAL procedure error
return values. Clarified usage of fields in the SAL Error Record Header and Error Section
Header. Included notes on SAL use of Translation Registers (TRs). Added Error Record
alignment requirements. Updated glossary definitions. Clarified memory state on firmware
to OS handoff. Clarified SAL Revision numbering. Incorporated changes from SAL
Specification Update January 2003.

November 2002

Split PAL_A information added. Enhancements and clarifications to
SAL_CACHE_FLUSH, SAL_MC_RENDEZ, and SAL_GET_STATE_INFO calls.
Entrypoint descriptor field and memory attribute aliasing attributes added. IVA
requirements in virtual addressing mode specified, and SAL/PAL flow for PAL
firmware-corrected error modified. Error record revision value update and usage
requirements defined. Clarifications and extensions to the error record and section
headers, memory error section, PCI bus sections and PCI component sections.

July 2001

Platform requirement clarifications, Boot sequence clarifications, Additions to OS
restrictions for boot sequence, Changes to MCA SAL_CHECK, Platform Errors, and
OS_MCA sections, Added SAL procedures callable by OS_INIT, Clarification to Interface
Conventions to SAL Procedures, Added changes regarding re-entrancy of SAL Runtime
Services, Clarifications to SAL procedure definitions, Added terms to the glossary

January 2001

MCA related changes, Platform Error definition.

July 2000

Reflected changes in MCA handling due to PAL MCA changes.

January 2000

Changes to some SAL procedure definitions.

June 1999

Defined hand-off to EFI, Removed NVRAM functionality.

August 1998

Defined NVRAM record formats, changes to SAL procedures.

February 1998

Initial definition.

Intel® Itanium® Processor Family System Abstraction Layer Specification 13

Introduction

14

Intel® Itanium® Processor Family System Abstraction Layer Specification

intel.

Platform Requirements 2

2.1 Firmware Address Space

The firmware address space occupies the 16 MB region below 4 GB (addresses 0xFF00_0000
through OxFFFF_FFFF). This address spaceis shown in Table 2-1.

Table 2-1. Firmware Address Space

OXFFFF_FFFF
PAL/SAL ROM

SAL Resources

0xFFO00_0000

The firmware address space is logically partitioned into two major functional blocks: the ROM
area (shared by the SAL and PAL) and the SAL resources area. The ROM areais placed in the
address space such that its ending address is OXFFFF_FFFF. The SAL resources area occupies the
portion of 16 MB firmware address space not occupied by the ROM area. SAL code can use the
special hardware resources that the platform has implemented in the SAL Resources area. The
hardware resources may include scratch RAM, non-volatile memory (NVRAM), environment
control, and status registers. The location of the hardware resources within the SAL resources area
is platform- dependent.

2.2 PAL/SAL ROM Space

The PAL/SAL ROM space within the firmware address space must contain the PAL and SAL code
areas and atable called the Firmware Interface Table (FIT). See Section 2.5.

PAL code is broken into two subcomponents:

* PAL_A, which isindependent of processor stepping.

* PAL_B, which is processor stepping-dependent.
These two subcomponents are required. The PAL_A block contains alimited subset of PAL
proceduresthat can be invoked by SAL while performing afirmware recovery. (Refer to Volume 2

of the Intel® Itanium® Architecture Software Devel oper’s Manual for details.) The PAL_B block
containsthe PAL procedures that can be invoked by SAL and the operating system.

In asimilar fashion, SAL code can be broken into two subcomponents. Unlike the PAL, the SAL
subcomponents need not be separate components:

e SAL_A whichcontainsthe SALE_ENTRY entrypoint and code needed for firmware recovery.
* SAL_B which contains code to test and initialize the platform.

The PAL_A, PAL_B, SAL, and FIT components are architecturally required.

Intel® Itanium® Processor Family System Abstraction Layer Specification 15

Platform Requirements In'te|®

2.3

2.4

16

PAL_A code can transition to:

* Codeinthe PAL_B using the FIT. First, the beginning address of the PAL_B block is
determined from the FIT. Then, the entrypoints within the PAL_B block (e.g. PAL_RESET)
are determined in a PAL implementation-dependent manner.

* Codein the SAL address space at SALE_ENTRY, which serves as the entrypoint for reset,
recovery, machine check and INIT events.

In order to conserve space in the firmware ROM, portions of the SAL code may be compressed.
SAL codethat is executed out of ROM such as early stages of the Reset sequence and code for
handling Machine check and INIT cannot be compressed.

Simplified Firmware Address Map

A simplified example of the firmware address map that shows the minimum architectural
components is shown in Figure 2-1. Refer to Section 2.4.1 for description of the fields. This layout
cannot be used with a protected boot block.

Example Firmware Organization Using a Protected
Boot Block

This section describes atypical firmware organization using flash ROM that contains a protected
boot block.

A protected boot block refersto ablock of the flash ROM that the hardware protects from
modification. Code in thisblock can contain logic to restore PAL/SAL codein the erasable portion
of the flash part after a previous flash programming attempt has been accidentally aborted.
Firmware using a protected boot block requires some data structures in addition to the minimum
architectural requirements discussed earlier.

There are two primary layouts of the firmware address space that support a protected boot block.
The first layout (shown in Figure 2-2) has one PAL_A component. In thislayout, the PAL_A
component must be within the protected boot block.

The second layout (shown in Figure 2-3) splitsthe PAL_A block into two components. The first
component isreferred to as the generic PAL_A and the second component is the processor-specific
PAL_A. The generic PAL_A residesin the protected boot block and will work across processor
generations for a given platform. The processor-specific PAL_A resides outside the protected boot
block and is particular to processor generation.

In both layouts, the SALE_ENTRY entrypoint and the code needed for firmware recovery (located
in SAL_A) must be located in the protected boot block.

Intel® Itanium® Processor Family System Abstraction Layer Specification

intgl.

Figure 2-1. Simplified Firmware Address Map

Platform Requirements

4GB —>»

4 GB-16 —»
4GB-24 —»
4GB-32 —»
4 GB-48 —»
4 GB-64 —»

(CPU Resel)—PALE_RESET —
(Init_ >—PALEINT —
PALE_CHECK—»

4 GB - (A+B+64) —»

SALE_ENTRY —»

4GB -
(A+B+64+Y+C)

4 GB-16 MB —»

64 bytes

IA-32 Reset Vector (16 bytes)
SAL Entrypoint (SALE_ENTRY) (8 bytes)
Firmware Interface Table Address (8 bytes)
FIT entry for PAL_A (16 bytes)
Reserved (16 bytes)

!

PAL_A Binary Block

(multiple of 16 bytes)

%

A
(PAL_A Size)

y

-

B
PAL_B Binary Block (multiple of 16 bytes) | (PAL_B Size)
y
Firmware Interface Table (FIT) (multiple of 16 bytes) (FIT Size)
-+
SAL_A Binary Block (multiple of 16 bytes)
C
(SAL_A Size)
€ ————— I I
16 MB
(Maximum
ROM)
Available ROM Space
001078

24.1

Firmware Components

The firmware address space is shared by the SAL and the PAL. Some of the SAL/PAL boundaries
are implementation-dependent. The firmware address space contains several regions and locations
as shown in Figure 2-2 and Figure 2-3 below for atypical implementation.

The firmware address space contains the following regions and | ocations:
* The 16 bytesat (4 GB — 16) contains the | A-32 reset vector for legacy compatibility.

Intel® Itanium® Processor Family System Abstraction Layer Specification

17

Platform Requirements

Figure 2-2. Firmware Address Map

4GB > y
1A-32 Reset Vector (16 bytes)
4 GB-16 >
SALE_ENTRY Address (8 bytes) -r———t+———}--—- 1
4 GB-24 —»—
4 GB-32 _ | Firmware Interface Table Address (8 bytes) +———t+———|-—— :— -
i > I
4 OBAS PAL_A FIT Entry (16 bytes) 64 bytes X : |
Reserved (16 bytes) l (Protected | :
I
ACB64 > Bootblock) | :
I
PALE_RESET—» L
- . A [
PALE_| NI T—»| PAL_A Block (multiple of 16 bytes) | pa| A size) N
PALE_CHECK—»- N
I
I
} N
SAL_A Block B I
(Itanium® instructions and (multiple of 16 bytes) | (SAL_A Size) I
optional 1A-32 code) l | !
L
4 GB-X \ P
SALE_ENTRY — A - |
. . Y
I
Firmware Interface Table (FIT) (multiple of 16 bytes) (FIT Size) !
4 GB-(X+Y) B
FIT_BASE - _ - |7 A "
Reserved PAL Space (optional) (multiple of 16 bytes)
16 MB
PAL_B Block (multiple of 16 bytes) (Maximum ROM)
C
(PAL_B Size)
4 GB-(X+Y+C)
PAL_BASE _ ,
Reserved SAL Space (optional) (multiple of 16 bytes)
SAL_B Block (multiple of 16 bytes)
D
(SAL_B Size)
4 GB-(X+Y+C+D) _
SAL_BASE o
Available ROM Space
4 GB-16 MB —» /

000935

18

Intel® Itanium® Processor Family System Abstraction Layer Specification

intgl.

Figure 2-3. Firmware Address Map with Split PAL_A Components

Platform Requirements

4GB

4GB-16 —»
4GB-24 — »

4GB-32 ———

IA-32 Reset vector (16 bytes)
SALE_ENTRY address (8 bytes)
Firmware Interface Table address (8 bytes)
PAL_A FIT entry (16 bytes)

4GB-48

4GB-56 ——
4GB-64 ——»

>

PALE_RESET—=
PALEINT —=
PALE_CHEK—=

4GB-X ———»

4GB-(X+Y) — »
FIT_BASE

Alternate Firmware Interface Table address (optional)(8 bytes)

Reserved (8 bytes)

X
I\ Protected
Generic PAL_A block (multiple of 16 bytes) | (pPAL_A size) oot block)

SAL_A block (multiple of 16 bytes)
(Itanium® instructions and optional IA-32 code)

ﬁ

B
(SAL_A size)

| |

Firmware Interface Table (FIT) (multiple of 16 bytes)

Processor-specific PAL_A (multiple of 16 bytes)

Alternate Firmware Interface Table (multiple of 16 bytes)

I

I

I

I

. I

(FIT size) |
)

(optional)
Y 16MB
” A (Maximum)
Alte!'nate Processor-specific PAL_A (multiple of 16 bytes) | (Processor PAL_A size)
(optional) N -
Reserved PAL space (optional) (multiple of 16 bytes) T
C
PAL_B block (multiple of 16 bytes) (PAL_B size)
4GB-(X+Y+Z+ —» l
C+E+F) Reserved SAL space (optional) (multiple of 16 bytes)
PAL_BASE
D
. (SAL_B size)
SAL_B block (multiple of 16 bytes)
AGB-(X+Y+Z+ -
C+D+E+F)
SAL_BASE Available Space
4GB-16MB ———» A
Intel® Itanium® Processor Family System Abstraction Layer Specification 19

Platform Requirements In'te|®

20

Note:

* The8bytesat (4 GB — 24) contain the address of the SALE_ENTRY entrypoint. Bit 63 of this
address must be set to 1 to specify the uncacheable memory attribute in physical addressing
mode.

* The8bytesat (4 GB — 32) contain the pointer to the FIT. Bit 63 of thisaddress must be set
to 1. The FIT need not be located immediately before the protected boot block. However, the
FIT cannot be moved to adifferent location since its address is contained in the protected boot
block.

* The 16 bytes at (4 GB — 48) describe the characteristics of the PAL_A component (or generic
PAL_A inthesplit PAL_A model) in the ROM: base address, size, version number, type, etc.
Thisisrepresented in the FIT entry format. Bit 63 of the address field within this FIT entry
must be set to 1 and the type field must have a value of OxOF.

* The 8 bytes at OXFFFF_FFC8 (4 GB-56) containsthe physical address of the Alternate FIT.
This pointer isoptional and isonly needed if the firmware contains an alternate FIT table. If no
alternate FIT table is provided, a value of 0x0 should be encoded in this entry.

* The8bytesat (4 GB — 64) are reserved.

* The PAL_A code (also known asthe generic PAL_A codein the split PAL_A model) resides
below the (4GB — 64) address. This variable size area contains the hardware-triggered
entrypoints (PALE_RESET, PALE_INIT, and PALE_CHECK). In the model where PAL_A is
not split, the PAL_A code will perform minimum processor initialization. In the split PAL_A
model, the generic PAL_A will search the FIT table(s) to find the processor-specific PAL_A
code. It will then branch to this code to perform the processor-specific initialization:

— The PAL_A code block must be a multiple of 16 bytesin length. PAL_A usesthe FIT
entry of the PAL_B to reach continuation entrypointsin PAL_B for reset, machine check,
and initialization.

— Thecodein the PAL_A block(s) contains enough capability to initialize the processor,

invoke the SALE_ENTRY procedure for test of the recovery indication, and continue
with normal PAL executioninthe PAL_B code area.

* SAL_A code occupiesthe bottom of the protected boot block. To provide maximum flexibility
and to conserve space in the protected boot block, this areawill primarily contain code for
firmware recovery. When entered for other conditions such as normal reset, machine check, or
initialization, the code in this block will find the continuation entrypoints in the SAL_B block
(using the FIT or other means) and jump to the same. The method by which SALE_ENTRY
code reaches continuation entrypointsin SAL_B for reset, machine check, and initialization is
SAL implementation-dependent.

The sizesof the PAL_A (generic PAL_A in the split PAL_A model) and SAL_A code blocks
shown in Figure 2-2 and Figure 2-3 are not needed during firmware execution but may be needed
by the utility that merges these components to format the protected boot block portion of the flash
ROM.

* Below the protected boot block isthe FIT. It consists of 16-byte entries containing starting
address and size information of the remaining firmware components. Optionally, an aternate
FIT may beincluded in the firmware. The alternate FIT will only be used if the primary FIT
failed its checksum. This feature alows hand-off to the SAL recovery code, even if thereisa
primary FIT checksum failure. Refer to Section 2.5 for FIT details.

* Below the FIT(s) isthe processor-specific PAL_A. This component is only available on
processors that support asplit PAL_A firmware model. One processor-specific PAL_A is
architecturally required in this model. The firmware may optionally contain two or more
processor-specific PAL_A components.

¢ Below the FIT isthe code for the IA-32 BIOS, EFI, SAL_B, and PAL_B components. There
are no ordering requirements for the firmware components within the flash ROM.

Intel® Itanium® Processor Family System Abstraction Layer Specification

2.5

Note:

Platform Requirements

* The PAL_B binary block contains PAL code that is not required for firmware recovery. The
PAL_B code areais amultiple of 16 bytesin length and must be aligned on a 32K-byte
boundary. PAL_B’sFIT entry contains the address and size of the PAL_B binary block.

* Theremainder of the SAL/PAL ROM areaisoccupied by the SAL_B code. SAL_B'sFIT
entry (if present in the FIT) contains the address and size of the SAL_B binary block.

Code within SAL (SAL_A and SAL_B) may include | A-32 code. The location of the SAL_B and
IA-32 BIOS code within the SAL/PAL ROM areaisimplementation- dependent. Some SAL
implementations may separate the code containing Itanium instructions and 1A-32 instructions as
separate firmware blocks with unique FIT entry types. In asimilar fashion, the SAL_B component
may include the EFI component or a separate FIT entry may point to the EFI component.

Firmware Interface Table

The FIT contains starting addresses and sizes for the firmware components that are outside the
protected boot block. Because these code blocks may be compiled at different times and places,
code in one block (such as PAL_A) cannot branch to code in another block (such asPAL_B)
directly. The FIT allows code in one block to find entrypointsin another. Figure 2-4 showsthe FIT
layout.

Figure 2-4. Firmware Interface Table

4GB-X —»
Unused entry (16 bytes)
Unused entry (16 bytes)
Y
Unused entry (16 bytes)
Unused entry (16 bytes)
PAL_B entry (16 bytes)
FIT Header entry (16 bytes)
4 GB-(X+Y)— »

Each active FIT entry contains information for the corresponding firmware component. The first
two entries are used to describe the FIT tableitself and the PAL_B block respectively and these two
entries are architecturally required. FIT entries shall be in ascending order of entry types, otherwise
firmware behavior is unpredictable. The FIT entry format is shown in Figure 2-5.

Figure 2-5. Firmware Interface Table Entry

Start + 16 63 56 55 54 4847 3231 24 23 0
IChecksum |C_V | Type) Reserved .
(Lbyte) |1bit| (7 bits)| Version @bytes)) = "o ol Size (3 bytes)
Start+8 — »

Address (8 bytes)

Start of entry —»

Intel® Itanium® Processor Family System Abstraction Layer Specification 21

Platform Requirements In'te|®

Table 2-2.

2.6

22

Addressisthe base address of the component and it must be aligned on a 16-byte boundary. For the
FIT Header entry, thisfield containsthe ASCII value of *_FIT_<sp><sp> <sp>' where <sp>
represents the space character. For the processor-specific PAL_A and PAL_B entries, bit 63 of the
address field must be set to 1 to indicate the uncacheable memory attribute in physical addressing
mode. The PAL_B component must be aligned on a 32K-byte boundary.

Szeisthe size of the component in paragraphs of 16 bytes.

Version contains the component’s version number. For the FIT Header Entry, thevalue in thisfield
will indicate the revision number of the FIT data structure.

C_Visaone it field that indicates whether the component has avalid checksum. If thisbit is zero,
the value in the Chksum field is not valid.

Type contains the seven-bit type code for the entry. Types are defined in Table 2-2.

FIT Types
Type Meaning
0x00 FIT Header entry
0x01 PAL_B
0x02-0x0D Reserved
Ox0E Processor-specific Pal_A
OxOF PAL_A (also generic PAL_A)
0x10-0x7E OEM-defined
Ox7F Unused

The type code of OxOF is used for PAL_A. Since PAL_A'sbinary imageislocated near the end of
the 4 GB firmware address space (flash ROM organization with protected boot block), its FIT entry
isalso located within the protected boot block (at 4 GB — 48) and not in the FIT table. The OEM
may define unique types for one or more blocks of SAL_B, EFI, IA-32 BIOS, etc., within the
OEM-defined type range of 0x10 to OX7E.

Chksum contains the component’s checksum. The modulo sum of al the bytes in the component
and the value in thisfield (Chksum) must add up to zero. Thisfieldisonly valid if the C_V field is
non-zero. The checksum may be verified by firmware or software prior to its use. If the checksum
optionis selected for the FIT inthe FIT Header entry (FIT type 0), the modulo sum of all the bytes
in the FIT table must add up to zero. The PAL_A FIT entry isnot part of the FIT table and hence
not included in the checksum computation of the FIT.

With this address layout, when one of the firmware components changes, only that component’s
flash portion requires changes. This address layout can also support multiple ROMsfor the
firmware components, and such ROMs are not restricted to reside below 4 GB.

Resources Required for Legacy Compatibility

All platforms shall implement a minimum of 64 MB of memory. The area of memory below 1 MB
is defined as the compatibility area and is used by firmware when initializing and executing |A-32
BIOS (refer to Table 2-3). The requirements specified below need not be implemented on the
platform if legacy compatibility is not required.

Intel® Itanium® Processor Family System Abstraction Layer Specification

In

tel.

Platform Requirements

Table 2-3. 1 MB Compatibility Memory Address Space

0x000F_FFFF Shadowed IA-32 System BIOS
0x000F_0000

O0x000E_FFFF Shadowed IA-32 Extended System BIOS/Option ROM/Memory Area
0x000E_0000

0x000D_FFFF Shadowed IA-32 Option ROM BIOS

0x000C_0000

0x000B_FFFF VGA Frame Buffer

0x000A_0000

0x0009_FFFF Memory

0x0000_0500

0x0000_04FF IA-32 BIOS RAM Data Area
0x0000_0400
0x0000_03FF 1A-32 Interrupt Vector Area

0x0000_0000

Within the 1 MB compatibility memory address space, empty spaces can be mapped to system
memory. For example, a server platform may choose to implement the system console on a seria
port and eliminate the VGA frame buffer and the VGA BIOS components. 1A-32 stack should be
allocated in the memory region (0x0000_0500 to 0x0009_FFFF) for use by the real mode 1A-32
BIOS code.

Itanium architecture-based platforms may optionally use I/O adapter cards containing 1A-32 option
ROM s during the boot process. A portion of the SAL code may also contain |A-32 code. Such
IA-32 code aswell as1A-32 operating systems may rely on the existence of legacy components. If
it is necessary to support such IA-32 code, Itanium architecture-based platforms may implement
the I/O ports specified in the Table 2-4 or alternatively, the SAL can trap someor al 1A-32 1/0
instructions and emulate the 1/0O ports that are not present on the platform. Refer to Section 7.2.4,
“1A-32 Support Environment* for more details.

Table 2-4. |1A-32 Compatibility 1/0 Ports

Port Description
0x20-0x21 Programmable Interrupt Controller (Master)
0x40-0x43 Programmable Interval Timer
0x70-0x71 CMOS NVRAM Address, Data Ports
0xA0-OxAl Programmable Interrupt Controller (Slave)

Intel® Itanium® Processor Family System Abstraction Layer Specification 23

Platform Requirements In'te|®

2.7

2.8

24

Chipset and Shadowing Requirements

Chipset implementations have the following SAL requirements:

* Thefirmware code and data within the firmware address range must be accessible from the
processor without any special system fabric initialization sequence. This impliesthat the
system fabric isimplicitly initialized at power-on for accessing the firmware address space.

* Firmware may copy ROM-based code and data structures to RAM to increase performance
and to allow for updates of ROM based data structures by initialization firmware. Platforms
may implement any write protection for these shadowed areas. Since hardware events such as
reset, machine check and initialization enter architected PAL entrypointsin the ROM around
the 4 GB address, chipsets shall not disable accesses (by aliasing or other means) to the
PAL/SAL ROM area subsequent to the shadowing of firmware code.

Itanium instructions provide the necessary memory management features to prevent writes to
the shadowed RAM areas while executing |A-32 code. The Itanium instruction set provides
instructions to synchronize the instruction and data caches in the presence of self-modifying
code.

¢ Chipsets need not implement in-line shadowing (read cycles going to ROM, write cycles
going to RAM) for copying | A-32 code segments to memory addresses in the range of
0xEO000 to OxFFFFF.

Platform Support for Variant Architectural Features

Platform implementations may vary in the features they implement and remain architecturally
compliant. As an example, some platforms will implement bus lock while other platforms will not.
This has implications for software running on these platforms, and therefore this information must
be communicated to software. SAL firmware is responsible for knowing the architecture
implementation variations and correctly communicating the information to software. How SAL
knows about the architecturd variant isimplementation-dependent. The following lists the features
which fall into this category and describe the method of abstraction to software.

* BusLock: If the processor supports the buslock signal and the platform implements bus lock,
then SAL shall set the Default Control Register Lock Check Enable bit to 0 (DCR.Ic = 0),
otherwise the DCR.Ic shall be set to 1. The operating system shall not alter DCR.Ic bit setting
if itisset to 1. Refer tothe PAL call PAL_BUS_SET_FEATURES in the Intel® Itanium®
Architecture Software Devel oper’s Manual for information on masking bus lock signal and
executing the locked transaction as a series of non-atomic transactions.

* Lowest Priority Interrupt: SAL shall communicate to the operating system, through the SAL
System Table (Table 3-6), whether this feature is supported by the platform.

¢ Address Space Attributes: SAL shall communicate to software the supportable access
attributes for all valid address space mappings. Thisinformation is provided to the operating
system by the EFI component. As an example of this architectural implementation options,
consider two memory controllers where one supports sub-cache line writes to memory and
another which does not. The first case would be described as write-through or write-back
cacheable, whereas the second case would be described as supporting only write-back
cacheable. Similarly, the UCE memory attribute indicates whether the address space permits
the exporting of the fetchadd operation outside the processor. Memory attribute features for
address spaces are fully described in the | ntel® Itanium® Architecture Software Devel oper’s
Manual.

Intel® Itanium® Processor Family System Abstraction Layer Specification

2.10

Platform Requirements

Platform Considerations Related to Processor
Physical Location

Following are the SAL reguirements from the platform pertaining to the physical locations of
processorsin an MP configuration:;

* The platforms shall provide a mechanism to generate unique geographic identifiers for those
physical components that have software visibility. As an example, imagine acomplex MP
implementation that has more than one main system bus to which processors are attached.
Each logical processor returnsitslogical address on the busviaacall to PAL_FIXED_ADDR,
but this PAL call does not reflect the multinode configuration of the platform. It is therefore
required that the platform provide some mechanism for SAL to ascertain which bus a
processor is attached to. SAL will use this value to load the Streamlined Advanced
Programmable Interrupt Controller (SAPIC) EID field in the Local 1D register (CR.LID) of
the processor(s). Thisis necessary for supporting interprocessor interrupts. The above example
is not meant to limit this requirement to processors, as multiple host I/O bridges and multiple
memory controllers, etc. may also have asimilar requirement.

Platforms may implement unique ways of providing the SAPIC EID value. For example, in a
single-node system, SAL may use the hardcoded value of zero for thisfield. Another example
is anode controller that provides different EID values for processors connected to different
busesin the system. It is expected that these mechanisms will be very simple, to facilitate
exchange of interprocessor interrupts between processors (if needed), to determine the BSP
node and the BSP processor in an MP environment. The BSP selection needs to be done very
early in the boot sequence and during firmware recovery. Since multiple processors may be
attempting to read the EID, a scheme that involves writing an index followed by reading the
value from a node controller I/O port or the CMOS NVRAM /O port may be prone to errors.

* A multi-Trand ation L ookaside Buffer (TLB) coherence domain platform must provide a
mechanism for detecting which TLB coherence domain the processor islocated in.

Non-Volatile Memory Requirements

Itanium architecture-based platform hardware must provide a minimum of 32KB of NVRAM to
hold the error log captured during uncorrected machine check events. There may be additional

NV RAM requirements to hold information on the operating systems that can be booted from the
platform, the platform configuration, etc. Refer to the Extensible Firmware I nterface Specification
for requirement details as well as the interfaces to the NVRAM space.

The NVRAM must preserve memory contents when the system power is off. Some possible
NVRAM implementations are battery-backed SRAM and flash memory. The physical address and
size of each NVRAM object in the system will be specified in Table 3-5, “Entrypoint Descriptor
Entry Format” with:

* Memory type classification of Regular Memory and Memory Usage classification of Firmware
Reserved Memory for battery-backed SRAM implementation, and

* Memory type classification of Firmware Address Space when NVRAM isimplemented as part
of the firmware flash ROM.

Intel® Itanium® Processor Family System Abstraction Layer Specification 25

Platform Requirements In'te|®

2.11

26

Miscellaneous Platform Requirements

Following are the additional platform requirements for SAL:

If firmware recovery is supported in SAL, Itanium architecture-based platforms must provide
amechanism for user-requested firmware recovery.

Itanium architecture-based platf orms must support simple hardware or software
implementations for BSP selection, e.g. write once port. This is necessary since only the BSP
is allowed to execute the firmware recovery code.

Itanium architecture-based platforms must provide mechanisms to determine the base
frequency of the platform (clock input to the processor).

Itanium architecture-based platform hardware must provide amechanism for firmware to reset
all components within the platform.

Itanium architecture-based platform hardware must provide a switch or other mechanism that
produces an INIT signal. Thisfeature, generally known as the CrashDump switch, may be
used to effect a crash dump on a“hung system.”

[tanium architecture-based platform hardware must provide user friendly mechanisms for
displaying the progress of the boot and firmware recovery, e.g. LCD display.

Intel® Itanium® Processor Family System Abstraction Layer Specification

intel.

Boot Sequence 3

3.1 Overview of the Code Flow after Hard Reset

This chapter describes the firmware execution sequence from reset to operating system launch.

PALE_RESET isan entry point within the PAL_A code area near 4 GB in the firmware address
space. All processors begin execution at this point on system reset. The exact implementation
PALE_RESET isimplementation dependent. PALE_RESET initializes and tests the processor
using stepping-independent code. 1t will then call SALE_ENTRY with the Recovery Check
function to verify if the user has requested firmware recovery in a platform-dependent manner.

SALE_ENTRY isthe shared SAL_A entrypoint from codeinthe PAL_A and PAL_B blocksfor
reset, recovery, machine check, and initialization events. PAL code obtains the SALE_ENTRY
entrypoint from the 8-byte pointer at Iocatlon 4 GB 24. The state of the processor on entry into
SALE_ENTRY isdescribed in the Intel® Itanium® Architecture Software Devel oper’'s Manual. A
general register (GR20) indicates the event causing entry into SALE_ENTRY - reset, recovery
check, machine check, or initialization. SALE_ENTRY uses this argument to jump to internal
entrypoints within SAL —SAL_RESET, SAL_RECOVERY_CHECK, SAL_CHECK, or

SAL_INIT.

PAL_A passes statusinformation to SALE_ENTRY on the health of the processor and whether the
version of the PAL_B in the firmware is compatible with the processor’s stepping. Table 3-1 shows
the recommended SAL actions based on the self-test state parameter provided by PAL_A.

Table 3-1. SAL Actions Based on Processor Self-Test State

Processor Health

SAL Handling

Catastrophic Failure

None. PAL disables interrupts and Machine Checks, then keeps the processor in a
spin loop in PAL or in a halt state.

Healthy Proceed with SAL Reset.

Performance Proceed with SAL Reset if this is the only processor in the system. Else, try to inform
Restricted the user. The processor may be an attached processor in a MP configuration.
Functionally Try to inform the user. Disable interrupts and Machine Checks, then go into a spin loop.
Restricted Operating systems may not boot successfully if key processor functionality is

unavailable.

The codein SAL_A will initiate recovery and update the firmware if:

¢ The platform indicates a user-requested recovery.

* The PAL_A code reports an authentication failure on the PAL_B component in the firmware.

* ThePAL_A code reports checksum or other errorsin the FIT or the PAL_B component.

* ThePAL_A codereportson all the processors that the version of the PAL_B in the firmwareis
incompatible with the stepping level of the processorsin the system.

3.1.1 Code Flow During Recovery

If firmware recovery is required, the SAL recovery code shall authenticate a new firmware image
using a PAL_A procedure. The SAL code will then accomplish the firmware recovery function,

Intel® Itanium® Processor Family System Abstraction Layer Specification 27

Boot Sequence Inte|®

3.1.2

3.2

28

Note:

reset the recovery indication, and trigger a system wide reset causing re-entry into PALE_RESET.
SAL recovery code contains the logic to update one or more of the firmware components from
OEM supported media.

The firmware recovery code in SAL_A must be independent of processor stepping and must not
invoke codein the PAL_B block.

In amultiprocessing environment, the recovery code will first select aBSP. SAL shall not select a
processor as the Bootstrap processor (BSP) unlessit is reported as healthy or performance
restricted by PAL and the version of PAL_B in the system is compatible with the processor
stepping. The BSP will rendezvous the APs and then proceed with the recovery of firmware. Note
that the processors that are incompatible with the version of PAL_B in the system must not be
woken up until the PAL_B component is updated.

Since PAL_B functionality cannot be invoked during recovery, only alimited set of PAL
proceduresin the PAL_A are available for use by the SAL recovery code. (Refer to the Intel®
Itanium® Architecture Software Developer’s Manual for details.) Furthermore, if SAL_A invokes
the 1A-32 BIOS, the floating-point transcendental instructions listed below cannot be executed
from the |A-32 instruction set:

F2XML, FCOS, FPATAN, FPTAN, FPREM FPREML,
| FSI'N, FSINCCS, FYL2X, FYL2XP1

Boot Flow

If arecovery condition does not exist, SALE_ENTRY shall returnto PALE_RESET on all the
processors that are compatible with the version of PAL_B in the system, using the return address
provided by PALE_RESET to begin the second stage of processor test and initiaization. If SAL_A
did not result in such areturn, the processor may run in a degraded (functionally restricted) mode.
The PAL_PROC address provided to SALE_ENTRY at the time of Recovery Check supports only
asubset of the PAL procedures. (See the Intel® Itanium® Architecture Software Developer’s
Manual for details.)

Onreturn from SALE_ENTRY, the PALE_RESET code obtains the address of the FIT from
location (4 GB — 32) and then usesthe FIT to get the address of the PAL_B component in the
non-recovery portion of the flash ROM. PAL_A code will locate the address of the PAL_RESET in
the PAL_B block and jump to it. The processor stepping-dependent code in the PAL_B block will
then perform the complete processor testing (processor late self-test) and initialization and then
re-enter the SALE_ENTRY with the function value of Normal Reset. Code at SALE_ENTRY will
jump to the code in the SAL_B block to continue the boot sequence and will eventually boot the
machine to the operating system.

SAL_RESET

SAL_RESET isresponsible for performing platform test and initialization and invoking the EFI
environment, which then invokes the operating system loader. SAL_RESET may also be entered
from SAL_INIT if an OS_INIT handler is not registered with SAL. One of the parameters passed
into SAL_RESET (zero value in GR32) indicates that SAL_RESET was entered from

PALE RESET. GR32 must be non-zero if SALE_ENTRY is entered from locations other than
PALE RESET.

SAL_RESET functionality can be subdivided into the following phases:

Intel® Itanium® Processor Family System Abstraction Layer Specification

3.2.1

Boot Sequence

Initialization
BSP identification
Platform initialization

* Operating system boot

Initialization Phase

This phase begins execution at SAL_RESET and is (gerformed on al the processorsin the system.
The Local ID (LID register) isdescribed in the Intel® Itanium® Architecture Software Developer’s
Manual. It isthe SAL’s responsibility to uniquely initialize this register in each logical processor
prior to performing BSP selection and enabling interruptsin an MP system. For uniprocessor (UP)
systems, SAL must initialize this register prior to enabling interrupts. The operating system must
not change the value that SAL stored into this register. Otherwise, routing of interrupts to the
correct processor may not function correctly. The LID register’s format is shown in Figure 3-1.

Figure 3-1. Local ID Register Format

3.2.2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
id ‘ eid reserved ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ignored ‘

SAL must invokethe PAL_PLATFORM_ADDR procedure on all processorsto set the physical
address of the SAPIC Interrupt block memory and the |A-32 1/O port space if the default address
values are not used. The default address for the SAPIC Interrupt block memory is
0x00000000_FEE00000 and the default address for the 1A-32 /O port space isthe 64 MB region
below the highest physical address supported by the processor implementation. SAL will use a
value that does not conflict with other devices on the platform. The operating system shall not
change either of these address values. SAL will set up the IOBA SE register (AR.kO) that provides
the high order bits of the virtual address of the |A-32 1/0O port block, to the same value asits
physical address, to maintain identity mapping.

Bootstrap Processor Identification Phase in a
Multiprocessor Configuration

Bootstrap processor selection is executed on all processors. The PAL_FIXED_ADDR procedure
will be called to obtain a unique address on the bus to which the processor is connected. SAL will
use this address and bus identification information to derive a unique geographical address for the
processor and use the same in the selection of the boot processor. The determination of the unique
geographical address is implementation-dependent. SAL shall not select a processor as the BSP
unlessit isreported as healthy by PAL and the version of PAL_B in the system is compatible with
the processor stepping.

Refer to Figure 3-2 for SAL processing stepsin a MP configuration. The APswill set up
processor-specific resources such as the Interrupt Vector Address (IVA) and wait in the rendezvous
state (Rendezvous_1 in Figure 3-2) until the SAL on the BSP wakes them up for further
processing. Processorsin the rendezvous state will disable external interrupts and poll for the
rendezvous interrupt vector which the BSP will utilize to wake up the sleeping APs. The BSP will
continue with platform initialization. When sufficient memory has been tested, the BSP will wake
the APs with arendezvous interrupt so that they can run late self-test. After the APs have finished
the late self-test, they will return to the rendezvous state (Rendezvous 2).

Intel® Itanium® Processor Family System Abstraction Layer Specification 29

Boot Sequence Inte|®

3.22.1

30

The BSP continues with platform initialization by loading the EFI firmware, which searches for
bootable devices, |oads the operating system loader, and transfers control to it. These steps are
described in later sections of this document and the Extensible Firmware Interface Specification.

Rendezvous Functionality

Rendezvous functionality is required only in MP environments and is utilized in two different
ways:

* To wake up the APs during boot: The APs stay in aloop until woken up by the SAL layer on
the BSP. The BSP wakes up the APs at various stages of booting to conduct processor and
platform tests. Once these tests are completed, the APs return to the wait loop within SAL.
Also, once the operating system kernel takes over, it will wake up the APs based on the wake
up information provided by the SAL (refer to Section 3.2.5 and Table 3-10).

* Tobring the APsto aspin loop during machine check rendezvous and to wake up the APs after
machine check processing is completed: The operating system specifies the external interrupt
vector to be used by SAL to bring the APsto a spin loop aswell as the externa interrupt
vector/memory variable to be used for the wake up. Refer to “SAL_MC_SET_PARAMS’ on
page 9-95 for details.

For the wake up functionality, the mechanism could be an external interrupt vector in the range of
0x10 to OxFF or amemory variable.

If external interrupt mechanism is chosen, APswill disableinterrupts and poll thelocal SAPIC IRR
register for the bit corresponding to the selected rendezvous interrupt to be set. The Task Priority
Register (TPR) must be set such that aread of the I VR register will return the rendezvous interrupt
vector (instead of the spurious interrupt), if oneis pending. On receipt of the interrupt, the AP will
read the IVR register and issue an End of Interrupt (EOI) to the local SAPIC to clear the interrupt
bit. The AP will execute the next phase of SAL code and, if necessary, return to the wait loop.

Intel® Itanium® Processor Family System Abstraction Layer Specification

intgl.

Boot Sequence

Figure 3-2. Control Flow of Boot Process in a Multiprocessor Configuration

Power On

U

v PAL

h 4

Recovery?

PAL_RESET |«

A
SALE_ENTRY

A
SAL_RESET

oL

Optional

Update Firmware,
do System Reset

A 4

BSP Selection

APs

Initialization &
Memory Test

\ 4

PAL Late Self-test

A 4

Wake APs for
PAL Late Self-test

EFI

4

Load OSLoader
from Boot Device

A

Handoff to the
Operating System

'—@ezvous_l

Rendez
Interrupt?

PAL Late Self-test

A\ 4
Rendezvous_2

Rendez
Interrupt?

Handoff to the
Operating System

>

A 4

CALL to OS
BOOT_RENDEZ

L

OS_Loader

h 4

Set Wakeup Entry,
Wakeup APs

Operating System
will wake up the APs.

000937¢c

Intel® Itanium® Processor Family System Abstraction Layer Specification

31

Boot Sequence Inte|®

If amemory variable wake-up mechanism is chosen, the APs will disable interrupts and poll the
memory variable for the unique value that matches the contents of their Local ID Register in bits
16-31 and avalue of OxFFFF in bits 0-15 (refer to Figure 3-3). The BSP will set this value to wake
up one AP at atime. The AP will clear the memory variable to zero, execute the next phase of SAL
code and, if necessary, return to the wait |oop.

Figure 3-3. Wake-up Memory Variable Format

3.2.3

32

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

id ‘ eid value of OXFFFF ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ignored ‘

SAL exports details of the wake-up mechanism to the operating system through the SAL System
Table (refer to Table 3-3) so that the operating system kernel code on the BSP may wake up the
APs when appropriate. While memory variable mechanism may be used by the BSP and APs
during the platform initialization phase, SAL shall indicate only the external interrupt wake-up
mechanism to the operating system. The operating system shall not use the indicated external
interrupt vector until it takes over the IVVA. The operating system on the BSP will invoke the
SAL_SET VECTORS procedure to set the continuation point for the APs within the operating
system kernel (OS_BOOT_RENDEZ) and then trigger the wake up of the APs. SAL will transition
the APsto theregistered OS BOOT_RENDEZ entrypoint.

Platform Initialization Phase

This phaseis primarily executed on the BSP. The APs will execute some of the steps described
below. This phase will perform the following functions, the ordering of which isimplementation-

dependent:

1. Initialize the IVA to point to a 32 KB Interrupt Vector Table (IVT) in the firmware address
space. Some SAL implementations may choose to build the IVT in RAM after finding the first
64 MB of memory. This step must be accomplished on all the processorsin an MP
environment.

2. Initialize the system fabric and chipsets. The method of handling the initialization is
implementati on-dependent.

3. Onacold boot, SAL will initialize at |east the first 4 MB of memory for BSP |ate self-test.
This self-test is done by calling the PAL_TEST_PROC procedure which returns information
on whether the processor is healthy or not. This PAL procedure tests the path from the
processor to the memory through the caches and returns information on whether the processor
isfully functional. This PAL procedure will not return to the SAL if the processor under test
experiences a catastrophic failure. SAL must contain logic to select anew BSP if necessary.
SAL shall shut down the system if there are no healthy or performance-restricted processorsin
the system.

After this point, the memory stack and RSE can be tested and enabled in the Itanium system
environment.

4. |ssue arendezvous interrupt to wake up APs for a late self-test using the PAL_TEST_PROC
procedure. The SAL code on the BSP must contain sufficient logic to detect APs that
experience a catastrophic failure during the late self-test. On completion of late self-test, the
BSP will set the APs back to the rendezvous state (Rendezvous 2 in Figure 3-2). After this
stage, caches have been fully tested.

Note: In multithreaded processors, PAL_TEST _PROC will disable the other thread while
running, for up to several seconds. In addition, the architectural requirement that

Intel® Itanium® Processor Family System Abstraction Layer Specification

Boot Sequence

PAL_TEST_PROC cannot be called with the same memory buffer on multiple
processors also appliesto threads. SAL must not call this procedure with the same buffer
on separate threads at the same time.

Search for consol e using implementation-dependent algorithms. If found, initialize the console
so that the progress of the boot may be displayed.

Map and initialize memory.The memory test isimplementation-dependent. The memory test
includes testing of refresh logic and testing all the address lines for shorts.

7. Initialize the interrupt controllers to all interrupts disabled.

10.

11.

12.

13.

14.

15.

16.
17.

Allocate memory for use by PAL and SAL near the top of physica memory. This area should
be below 4 GB if | A-32 code needs to call the SAL code with Itanium instructions, since
I A-32 code can only address memory up to 4 GB.

Copy the PAL_B into memory using the PAL_COPY _PAL procedure. The PAL codein
memory must be aligned such that the entire PAL space in memory may be covered by one
Instruction Translation Register (ITR). It is recommended to copy PAL code and SAL codeto
contiguous locationsin order that the ogerati ng system may cover the entire space using the
same I TR. Refer to the [Intel® Itanium® Architecture Software Developer’s Manual for PAL's
requirementson ITR/DTR.

Note: Until this step, the following floating-point transcendental instructions from the |A-32
instruction set cannot be executed:

F2XML, FCOS, FPATAN, FPTAN, FPREM FPREML,
FSI'N, FSI NCOS, FYL2X, FYL2XP1

Copy SAL, PMI and 1A-32 code to memory. The | A-32 BIOS code will be copied to the
appropriate addressesin the address of 0x000C_0000 to 0x000F_FFFF. The portion of the
SAL code containing Itanium instructions will be copied to a high memory address which
must be above 1 MB. Copying code to RAM speeds up the boot sequence and additionally
permits some portions of the code to be held in compressed format in the firmware address
space. Firmware code may then be write-protected using the TLB or chipset features.

Set up an IVT in memory aligned on a32 KB boundary and point the IVA register to it. This
step must be accomplished on all the processors in an MP environment.

Register the SAL_PMI entrypoint in RAM with PAL. This step must be accomplished on all
the processorsin an MP environment.

Call the PAL_MC REGISTER_MEM procedure on all the processors and specify PAL
Min-State Save areas. These areas provide sufficient resources for the PAL codeto perform the
necessary machine check or INIT processing. Enable the BERR# and BINIT# sampling and
signaling by invoking the PAL_BUS SET_FEATURES procedure. Set the CMCI, MCA, and
BERR# promotion strategy by invoking the PAL_PROC_SET_FEATURES procedure. These
steps must be accomplished on all the processors in an MP environment.

Process configuration information in NVRAM and perform full chipset configuration. If
NVRAM information isinvalid, initialize NVRAM to default configuration values. Refer to
the Extensible Firmware Interface Specification for details.

Initialize and configure 1/0 buses. Walk all buses, identify all resource requirements and set
necessary range registers of chipsets. At this point, the complete system topology and
addresses of all fabric segments are known.

Construct the ACPI Tables, SAL System Table and other shared data structures.

Execute the option ROMs as needed. If these contain | A-32 code, some of the |A-32
instructions may cause traps into the Itanium instruction set and suitable support needs to be
provided by the trap/fault handler code. These interactions are more fully described in
Volume 2 of the Intel® Itanium® Architecture Software Developer’s Manual, and Chapter 7 of

Intel® Itanium® Processor Family System Abstraction Layer Specification 33

Boot Sequence Inte|®

this specification. Asaside effect of supporting 1A-32 Option ROMs, it is possible to have
some of the SAL code implemented in the IA-32 instruction set.

18. Copy the EFI code into memory and transfer control to it. Branch register BRO shall be set up
to point to the instruction following the cal to the EFI code. The EFI firmware will search for
bootable devices, load the operating system loader image and transfer control to it. EFI may
utilize the underlying SAL and |A-32 BIOS layers for accesses to platform devices. Refer to
the Extensible Firmware Interface Specification for interface description.

3.2.4 Firmware to Operating System Loader Hand-off State
The hand-off from firmware to Itanium architecture-based operating system loaders is fully
described in the Extensible Firmware Interface Specification. Included in the hand-off are;

* The pointer to the SAL System Table (Section 3.2.6).

* The pointer to the Root System Description Pointer as described in theAdvanced
Configuration and Power Interface Specification.

All processor register state at the time of hand-off to the operating system loader is SAL
implementation-dependent, except as follows:

* ARs:

— The backing store shall contain aminimum of 8 KB of available storage space in memory
claimed by SAL.

— RSC will indicate enforced lazy mode, little-endian.
— IOBASE (AR.kO) will contain the virtual address of the 1A-32 /O port block.
Note: Only SAL implementations that execute IA32 BIOS code set IOBASE (AR.kO) to contain the

virtual address of the IA-321/0 port block. The AR.kO virtua addressisidentity-mapped and only
usable by the SAL environment.

* GRs:

— GR12 = Stack pointer with aminimum of 8 KB of available storage space in memory
claimed by SAL.

* PSR
— PSR.ac = 1 (alignment check enabled).

— PSR.ic =1, PSR.i = 0 (interrupt collection on, interrupts off). There may be some pending
interrupts.

— PSR.it, PSR.dt, PSR.rt = O (instruction translation, data trandlation and RSE translation
off).

— PSR.bn = 1 (register bank 1 selected).
— PSR.dfl, PSR.dfh = same values as on entry from PALE_RESET.
— All other bits=0.

* CRs:

— DCR: Buslock setting (DCR.Ic) is platform implementation-dependent, all other bits of
DCR=0.

— IVA = physical address of a SAL implementation-dependent IV T.
— PTA.ve =0 (if the virtual hash page table (VHPT) is disabled).

34 Intel® Itanium® Processor Family System Abstraction Layer Specification

3.25

Boot Sequence

— LID =theuniqueid/eid value for this processor.
¢ Data Breakpoint Registers— DBRs: Same as on entry to SALE_ENTRY.
* Instruction Breakpoint Registers— IBRs: Same as on entry to SALE_ENTRY.

* RRs
Region Register 0 will contain an ID of 0x1000. Other Region Registers will have

implementati on-dependent values except that RRs 1-3, if non-zero, will contain Region 1D
values of 0x1001-0x1003 respectively.

* Protection Key Registers— PKRs, are set to 0.
e TLB:

— TRs: ITR(0) will map an areathat includes the SAL’'sIVT and PAL code. All other TR
entries are invalidated.

— TCs: These are implementation-dependent but will likely contain identity mappings
(virtual address to physical address).

* Caches
Enabled, coherent and consistent with the contents of memory.

OS_BOOT_RENDEZ

OS _BOOT_RENDEZ isthe entrypoint for operating system MP rendezvous code. The operating
system code on the BSP registers this entrypoint by invoking SAL_SET_VECTORS, supplying the
16-byte aligned physical address of the operating system code. SAL exports details of the wake-up
mechanism to the operating system through the SAL System Table (refer to Table 3-10) so that the
operating system kernel code on the BSP may wake up the APs when appropriate. When SAL on
the APs receives the wake-up, it will call theregistered OS_ BOOT_RENDEZ entrypoint. Refer to
Section 3.2.2.1, “Rendezvous Functionality” for additiona details.

The state of the processor registers at the time of hand-off to OS BOOT_RENDEZ isidentical to
that for the BSP, as specified in Section 3.2.4, “Firmware to Operating System L oader Hand-off
State with the following exception:

BRO = Return address into the SAL boot rendezvous routine. If OS BOOT_RENDEZ returnsa
processor to the SAL using the Branch register BRO, SAL will re-enter the spin loop awaiting a
wake-up by the BSP.

When returning aprocessor to SAL boot rendezvous using branch register BRO, the OS must return
the processor system registers to the state specified in Section 3.2.5.1, “OS BOOT_RENDEZ to
SAL Return State®.

SAL must implement the following behavior for processorsin SAL boot rendezvous during boot
time or runtime and upon entry or return to SAL boot rendezvous:

* Processorsin SAL boot rendezvous should not hand off to the OS on MCA or INIT events.
Note: MCA or INIT events may occur in the time the OS returns the processor through BRO to
the time SAL setsitself up to avoid handing off the INIT or MCA events.

¢ |f afatal, non-maskable MCA event is detected (e.g. BINIT), SAL should not hand the
processor to the OS. Possible implementations include:

— Resumeto the interrupted context (BRO for the rendezvoused processor) before clearing
the respective processor error log.

— Spinin atight loop within the SAL MCA handler and wait for a system reset.

Intel® Itanium® Processor Family System Abstraction Layer Specification 35

Boot Sequence Inte|®

* SAL andthe OS should avoid sending any MC Rendezvous or MC Wakeup | PIs to processors
in SAL boot rendezvous.

3.25.1 OS_BOOT_RENDEZ to SAL Return State

The following conventions, compatible with the Itani um® Software Conventions and Runtime
Architecture Guide, govern the transition from OS_BOOT_RENDEZ to SAL using the BRO return
address. From the perspective of the Software Conventions, SAL is considered the caller and

OS BOOT_RENDEZ isthe callee.

Floating-point, Predicate, and Branch Registers use the standard calling convention.

General Registers use the standard calling convention, except that:
* GR1 (gp): Preserved.
* GR12 (sp): Preserved.
* GR13 (tp): Preserved.
* Bank 0 GR16 - GR31: Scratch.

Application Registers use the standard calling convention, except that:
* FPSR:
— trap disable bits. Preserved
— sf0-sf3 control bits: Preserved
— sf0-sf3 flag bits: Scratch
* RNAT: Preserved.

* BSPSTORE: OS BOOT_RENDEZ must restore the backing store to the state described in
Section 3.2.4.

* RSC: OS BOOT_RENDEZ must restore RSC to the state described in Section 3.2.4.
* |TC: Scratch.

* KRO - KR7: Scratch.

¢ All defined ARs not mentioned in the convention (e.g., the IA-32 ARS) are scratch.

The system register conventions are described in Table 3-1.

Table 3-2. OS_BOOT_RENDEZ to SAL System Register Conventions

Name Description Class
PSR Processor Status Register Preserved?®
DCR Default Control Register Preserved
IT™M Interval Timer Match Register Scratch
IVA Interruption Vector Address Preserved
PTA Page Table Address Preserved
GPTA Reserved IA-32 Resource Unchanged
IPSR Interruption Processor Status Register Scratch
ISR Interruption Status Register Scratch
P Interruption Instruction Bundle Pointer Scratch

36 Intel® Itanium® Processor Family System Abstraction Layer Specification

intgl.

Boot Sequence

Table 3-2. OS_BOOT_RENDEZ to SAL System Register Conventions (Continued)

3.2.6

Name Description Class
IFA Interruption Faulting Address Scratch
ITIR Interruption TLB Insertion Register Scratch
1IPA Interruption Instruction Previous Address Scratch
IFS Interruption Function State Scratch
1M Interruption Immediate Register Scratch
IHA Interruption Hash Address Scratch
LID Local Interrupt ID Unchanged
IVR Interrupt Vector Register (Read Only) Scratch
TPR Task Priority Register Scratch
EOI End of Interrupt Scratch
IRRO-IRR3 Interrupt Request Registers 0-3 (Read Only) Scratch
ITV Interval Timer Vector Preserved
PMV Performance Monitoring Vector Preserved
CMCV Corrected Machine Check Vector Preserved
LRRO-LRR1 Local Redirection Registers 0-1 Preserved
RR Region Registers Preserved
PKR Protection Key Registers Preserved?
TR Translation Registers Invalidated®
TC Translation Cache Scratch
IBR/DBR Breakpoint Registers Scratch
PMC Performance Monitor Control Registers Scratch
PMD Performance Monitor Data Registers Scratch

a. As described in Section 3.2.4, when OS_BOOT_RENDEZ is invoked, these registers have known constant values,
so the OS needn't actually preserve the values, but can simply recreate the known values.

b. All TRs must be invalidated, including ITR[0]. SAL must set-up ITR[0] again, before reinvoking OS_BOOT_RENDEZ
on a subsequent rendezvous interrupt.

SAL System Table

SAL usesthe SAL System Table to export a variety of information to the operating system loader.
The pointer to the SAL System Tableis provided by EFI to the operating system loader. Refer to
the Extensible Firmware Interface Specification for hand-off details. If arecovery conditionis
present, the SAL System Tableis not built, and a pointer value of 0 is provided.

The SAL System Table begins with a header which is described in Table 3-3. The SAL System
Table header will be followed by avariable number of variable length entries. The first byte of each
entry will identify the entry type and the entries shall be in ascending order by the entry type. Each
entry type will have aknown fixed length. The total length of thistable depends upon the
configuration of the system. Operating system software must step through each entry until it
reaches the ENTRY _COUNT. The entries are sorted on entry type in ascending order. Table 3-4
describes each entry type. Unless otherwise stated, there is one entry per entry type.

Intel® Itanium® Processor Family System Abstraction Layer Specification 37

Boot Sequence

Table 3-3. SAL System Table Header

Field

Offset
(Bytes)

Length
(Bytes)

Description

SIGNATURE

0

4

The ASCII string representation of “SST_", which confirms the
presence of the table.

TOTAL_TABLE_
LENGTH

The length of the entire table in bytes, starting from offset zero and
including the header and all entries indicated by the
ENTRY_COUNT field.This field aids in calculation of the checksum.

SAL_REV

The revision number of the Itanium® Processor Family System
Abstraction Layer Specification supported by the SAL
implementation in binary coded decimal (BCD) format.

Byte 8 — Minor?

Byte 9 — Major P

SAL revision 3.2 (0x0320)° corresponds to SAL Spec, December
2003.

SAL revision 3.1 corresponds to SAL Spec, November 2002.

SAL Revision 3.0 corresponds to SAL Spec, January 2001 or July
2001.

SAL Revision 2.9 corresponds to SAL Spec, July 2000.
SAL Revision 2.8 corresponds to SAL Spec, January 2000.

ENTRY_COUNT

10

The number of entries in the variable portion of the table. This field
helps software in identifying the end of the table when stepping
through the entries.

CHECKSUM

12

A modulo checksum of the entire table and the entries following this
table. All bytes including the Checksum bytes must add up to zero.

RESERVED

13

Unused, must be zero.

SAL_A_VERSION

20

Version Number of the SAL_A firmware implementation in BCD
format.

Byte 20 — Minor

Byte 21 — Major

SAL_B_VERSION

22

Version Number of the SAL_B firmware implementation in BCD
format.

Byte 22 — Minor

Byte 23 — Major

OEM_ID

24

32

An ASCII identification string which uniquely identifies the
manufacturer of the system hardware. This string can be exactly 32
bytes in length or shorter if null terminated. Compliance with the
SAL specification requires that this string be unique with respect to
all other manufacturers. It is forbidden to use another
manufacturer's identification even if the system is otherwise
identical.

PRODUCT_ID

56

32

An ASCII identification string which uniquely identifies a family of
compatible products from the manufacturer. This string can be
exactly 32 bytes in length or shorter if null terminated.

RESERVED

88

8

Unused, must be zero.

a. An increase in the minor revision value indicates that changes are compatible with software based on earlier revisions. This
includes, but is not limited to, errata, expansion of functionality of existing APIs through the use of reserved fields, and the

addition of new APIs.

b. An increase in the major revision is required when changes may not be compatible with software that is based on the previous
major revisions. For example, modifying the behavior of an API for pre-existing arguments would be a change that is not

compatible.

c. The format 0x1234 conveys the major number encoded in the first two hex digits and the minor in the last two, with a fixed point

38

assumed in between.

Intel® Itanium® Processor Family System Abstraction Layer Specification

intgl.

Boot Sequence

Table 3-4. SAL System Table Entry Types

3.2.6.1

Entry Type? Er(]itr:yBl;fgg)th Description
0 48 Entrypoint Descriptor.
1 32 Memory descriptor (one entry for each contiguous block with similar
attributes).
16 Platform Features Descriptor.
32 Translation Register Descriptor (one entry for each TR used by SAL at
the time of hand-off to the operating system).
16 Purge Translation Cache (PTC) Coherence Descriptor.
5 16 AP Wake-up Descriptor.

a. All other types are reserved.
b. Not required for Itanium® architecture-based operating systems.

Entrypoint Descriptor Entry

The Entrypoint Descriptor Entry (refer to Table 3-5) provides the addresses in memory of
PAL_PROC and SAL_PROC that may be used by the operating system to invoke the procedures
within the PAL and the SAL. When the operating system calls SAL_PROC, the GP register must
contain the physical or virtual address of the SAL’s GP value specified in the Entrypoint Descriptor,
depending on the mode in which the SAL_PROC procedureis called.

Table 3-5. Entrypoint Descriptor Entry Format

3.2.6.2

. Offset _Length Description
(in Bytes) (in Bytes)
0 1 Entry type = 0 denoting Entrypoint Descriptor type.
1 7 Reserved (must be zero).
8 8 Physical address of the PAL_PROC entrypoint in memory.
16 8 Physical address of the SAL_PROC entrypoint in memory.
24 8 Global Data Pointer (physical address value) for SAL procedures.
32 16 Reserved (must be zero).

Platform Features Descriptor Entry

The Platform Features Descriptor Entry (refer to Table 3-6) describes the features implemented on

the platform.

Table 3-6. Platform Features Descriptor Entry

Intel® Itanium® Processor Family System Abstraction Layer Specification

Offset Length Descrintion
(in Bytes) (in Bytes) P

0 1 Entry type = 2 denoting Platform Features type.

1 1 Platform Feature List:
Bit O: 1 if Bus Lock is implemented on the processor as well as the platform.
Bit 1: 1 if the chipset supports redirection hint for interrupt messages originating
from the platform (lowest priority interrupt).
Bit 2: 1 if the chipset supports redirection hint for IPI messages originating from
the processors.
Bits 3-7 = Reserved.

2 14 Reserved.

39

Boot Sequence

3.2.6.3

intel.

Translation Register Descriptor Entry

The Trand ation Register Descriptor entries (refer to Table 3-7) describe the parameters used by the
SAL during insertion of the TRs. These entrieswill be used by the operating system to purge SAL's
TRs after the operating system takes over the IVA. As specified in Section 3.3.2.1, “TLB Resource

Table 3-7.

3.26.4

40

Table 3-8.

Table 3-9.

Partition” SAL isonly allowed to use ITR(0). Thistablewill only contain the I TR(0) mapping.

Translation Register Descriptor Entry
Offset Length -
(in bytes) | in bytes) Description

0 1 Entry type = 3 denoting the Translation Register Descriptor type.

1 1 Type of Translation Register:
0: Instruction Translation Register
1: Data Translation Register
Other values: Reserved

2 1 Translation Register number.

3 5 Reserved.

8 8 Virtual address of the area covered by the Translation Register. Bits 61-63 of
this field indicate the Region Register number.

16 8 Encoded value of the page size covered by the Translation Register. Refer to
the Intel® Itanium® Architecture Software Developer’s Manual, Addressing and
Protection chapter for the format of this field.

24 8 Reserved.

Purge Translation Cache Coherence Domain Entry (Optional)

The purge trandation cache (PTC) Coherence Domain Entry (refer to Table 3-8) describes the
number of coherence domains and the scope of PTC instruction propagation for each domain. This
entry isoptional. It isrequired only for MP systems that have multiple coherence domains.

Purge Translation Cache Coherence Domain Entry
Offset Length o
(in Bytes) (in B)?tes) Description
0 1 Entry type = 4 denoting PTC Coherence Domain Entry type.
1 3 Reserved (must be zero).
4 4 Number of coherence domains for the platform.
8 8 64-bit memory address of the coherence domain information.

Platforms must provide a mechanism for detecting which TLB coherence domain a processor lives
in. SAL capturesthis information in an implementation-dependent manner and passes the same to
the operating system.

The coherence domain information is an array of length of (16 « Number of coherence domains).
Asshown in Table 3-9, for each coherence domain, there will be two information fields:

1. Number of processorsin the TLB coherence domain.

2. 64-bit memory address of alist of Local ID register values for the processors within the TLB
coherence domain. Each logical processor will require two bytes of memory (id field in low
order byte and eid field in high order byte) to represent the Local 1D information.

Coherence Domain Information
Offset Length L
(in Bytes) (in Bytes) Description
0 8 Number of processors in TLB coherence domain #1.

Intel® Itanium® Processor Family System Abstraction Layer Specification

intgl.

Boot Sequence

Table 3-9. Coherence Domain Information (Continued)

3.2.6.5

Table 3-10.

3.3

3.3.1

Offset

Length

(in Bytes) (in Bytes) Description
8 8 64-bit memory address of a list of Local ID register values for the processors
within the TLB coherence domain #1.
16 8 Number of processors in TLB coherence domain #2.
24 8 64-bit memory address of a list of Local ID register values for the processors
within the TLB coherence domain #2.
16+(N-1) 8 Number of processors in TLB coherence domain #N.
8+16+(N-1) 8 64-bit memory address of a list of Local ID register values for the processors

within the TLB coherence domain #N.

Application Processor Wake-Up Descriptor Entry (Optional)

The AP Wake-up Descriptor Entry (refer to Table 3-10) describes the mechanism for waking up
APsin an MP environment. Refer to Section 3.2.2.1, “Rendezvous Functionality” for details on
operating system usage of this entry. Thisentry isrequired for MP configurations.

Application Processor Wake-up Descriptor Entry

Offset
(in bytes)

Length
(in bytes)

Description

0

1

Entry type = 5 denoting AP Wake-up Descriptor Entry type.

1

1

Wake-up Mechanism type:
0: External interrupt
Other values: Reserved

Reserved (must be zero).

External Interrupt vector in the range of 0x10 to OxFF.

ltanium®Architecture-Based Operating System
Loader Requirements

The firmware will jump to the Itanium architecture-based operating system loader with the
hand-off state described in the Extensible Firmware I nterface Specification. Included in this state
information is a pointer to the SAL procedures that the operating system can invoke. These
procedures are described in Chapter 9.

This section describes the requirements on the operating system loader while operating under the
SAL execution environment.

Fault Handling

This section describes the fault-handling guidelines for the operating system loader.

After the operating system is completely loaded?, it will take control of the IVA and replace the

SAL environment with its own memory management. Until then, the operating system shall use

SAL’svirtual memory environment — VA, Interrupt controller mode, TC mappings, etc., and it

Intel® Itanium® Processor Family System Abstraction Layer Specification

41

Boot Sequence

intel.

shall not change any of these resources. The operating system is not permitted to replace the fault
handler entries within the SAL’s Interrupt Vector Table (IVT).

The operating system loader code may be executed in physical mode with interrupts disabled, or in
virtual mode with Instruction, Data and RSE translation on (PSR.it = 1, PSR.dt = 1, PSR.rt = 1).
While executing in virtua mode, the operating system loader codeis permitted to cause TLB faults
for which SAL shall provide the appropriate fault handlers. These TLB faults are;

Alternate Instruction TLB fault: This TLB fault occurs during instruction fetchesif SAL does
not implement the Virtual Hash Page Table (VHPT). If VHPT is not used, the Page Table
Address (PTA) need not be initialized and the SAL will turn off the PTA.ve bit to disable the
processor walking the VHPT. VHPT is an optional feature of the Itanium architecture.
Avoiding VHPT usage also permits the 1A-32 support code to operate out of the firmware
address space.

Alternate Data TLB fault: This TLB fault occurs during data accessesif SAL does not
implement the VHPT. The SAL’sfault handler shall test whether the TLB fault surfaced during
speculative load accesses (LDx.s). Such an accessisindicated if the |SR.sp bit is set. If this bit
is set, the SAL shall return to the faulting instruction with the IPSR.ed bit thereby turning on
the NaT bit of the target register for the load.

VHPT-related faults: VHPT trandation fault, Data TL B fault and Nested TLB fault, if SAL
implements VHPT.

Instruction and Data Access Rights faults: SAL shall install TCswith the page privilege level
set to 0 and execute code with the PSR.cpl value to 0. On processor implementations with
unified TLBs, Access Rights faults may surface if the TC is present but the required page
permissions are not present, e.g. TC is present with RW page access rights but RX page access
rights is needed for instruction execution.

External interrupt: Hardware interrupts will be received by SAL in the [tanium system
environment. This code will read the IVR register. If the vector read is 0, it signifies an
interrupt from the 8259 interrupt controller and SAL must issue aload to the architected
INTA_address (default address OXFEFE_0000) in the processor interrupt delivery block to
issue an interrupt acknowledge (INTA) bus cycle and obtain the interrupt vector from the
8259. SAL will then jump to the appropriate interrupt handler using itsinterna tables. If the
interrupt needs to be reflected to | A-32 code, the address will be derived from the |A-32
Interrupt Descriptor Table. The operating system loader is restricted from sending 1Pl
messages (i.e. causing bitsin the SAPIC IRR registers to be set) with vector values other than
the one specified in the AP Wake-up Descriptor Entry (refer to Table 3-10).

SAL may install TC entries with the Present, Dirty, and Accessed bits on and thereby avoid
Page not present, Data Dirty bit, and Data Access hit faults.

SAL may disable Protection Key checking (PSR.pk = 0) and thereby avoid Instruction Key
miss, Data Key miss, and Key Permission faults.

Speculation fault: Speculation faults are caused by CHK.s, CHK .a, and FCHK instructions.
SAL will provide the transition mechanism to the recovery code.

Unaligned fault: The operating system loader shall not make data referencesto misaligned
data. However, this fault may arise during speculative load accesses. Such an accessis
indicated if the ISR.sp bit isset. If thishit is set, the SAL shall return to the faulting instruction
with the IPSR.ed bit thereby turning on the NaT bit of the target register for the load. A similar
logic must be incorporated in SAL’s Alternate Data TLB fault handler.

SAL shall not use advanced load (LD.a) or check load (LD.c) instructions, hence ALAT
entries created by operating system loader code are preserved across SAL callsand SAL'sfault
handlers.

1. The OSisconsidered loaded at the successful completion of the EFI ExitBootServices() call.

42

Intel® Itanium® Processor Family System Abstraction Layer Specification

inte|® Boot Sequence

* Divideby zero: SAL shall display an error message for the Break interrupts caused by the
run-time checking of integer divide by zero. Refer to the Itanium® Software Conventions and
Runtime Architecture Guide.

The operating system must not rely on any other fault handlersinstalled by SAL. SAL will display
an error message if an unsupported fault is encountered. SAL will not provide support for the
following faults:

* Nested TLB fault: ITR(0) will map the SAL'sIVT and the code areas covering SAL’s fault
handlers. All fault handlersin SAL shall run with PSR.dt, PSR.rt turned off to avoid the nested
TLB fault that can occur while accessing the fault handler’s local variables and data structures.

¢ NaT Consumption fault: NaT Consumption faults are generated by non-speculative operations
(e.g. load, store, control register access, instruction fetch, etc.) that use a source register
containing aNaT value or reference a NaTPage. Properly constructed code should never
generate this fault.

* Genera Exception fault: The operating system loader shall not cause the general exception
fault by executing illegal operations, invoking SAL procedures in physical/virtual mode with
arguments specifying unimplemented data addresses.

* Floating-point faults: The operating system loader shall not disable accesses to the
floating-point register sets by setting PSR.dfl or PSR.dfh bits or cause any floating-point
exceptions.

¢ Other traps/faults: The operating system loader must not cause other traps or faults such as
debug, single step, taken branch, etc. Normally, the operating system kernel provides these
services after it takes over the IVA.

Additional fault handlers to support 1A-32 execution are described in Chapter 7.

3.3.2 Memory Management Resources Usage

This section describes SAL's usage of various memory management resources and provides
guidelines for their use by the operating system loader code.

3.3.21 TLB Resource Partition

SAL will use only TCs and the ITR(0). Use of multiple Translation Registers (TRs) by SAL may
cause problems with booting of Itanium architecture-based operating systems. The operating
system loader is free to use TRs other than ITR(0).

Note: When setting up new TRs, the OS loader must not overlap its own TRs with the ITR[O] set up by
system firmware. In addition, OS loaders should not assume that memory is contiguous when
mapping its TRs.

The advantage of this resource partition isthat hardware interrupts which cause atransition to SAL
will not affect the TRs set up by the operating system loader. 1deally, the operating system loader
will set up the TRsfor its memory mappings and not cause TLB faults. However, should the
operating system loader code cause a TLB miss, the TLB Miss handler in SAL would
automatically install a TC with identity mapping. The restriction on ITR(0) is not relevant after the
operating system takes over the memory management and the IVA.

Use of TCsin SAL code should not cause any performance problems since SAL is not
performance critical. Most of the SAL code will write and read back memory addresses traversing
the entire physical address space. Use of additional TRswill not provide improved performance.
SAL will primarily be limited by memory and 1/0 speeds.

Intel® Itanium® Processor Family System Abstraction Layer Specification 43

Boot Sequence Inte|®

3.3.2.2

3.3.2.3

44

SAL will use TC entries with length of 4KB by default and will try to coal esce contiguous entries
with similar attributesinto larger page sizes.

Identity Mapping Usage

The Itanium processor virtual address range is 85 bits wide and the Itanium processor physical
addressrangeis 63 bitswide. Bits 0 to 60 of the virtual address provide the virtual page number
and offset. Bits 61 to 63 of the virtual address are used as an index into the Region Registers which
suppliesaRegion | D value that can be up to 24 bits wide. Thus the 85-bit virtual address comprises
the low order 61 bits of the virtual address and the 24-bit Region ID. This 85-bit virtual addressis
transformed into a 63-bit physical address by the Itanium processor’s TL B mechanism as described
in the Intel® Itanium® Architecture Software Developer’s Manual.

SAL will use identity mappings in which virtual addresses are equal to physical addresses. The
advantage of identity mapping is that the same pointer can be used to access the same memory
location regardless of the state of the PSR.dt bit.

Unique Region IDs for SAL

The firmware will load the operating system loader and jump to it. The operating system loader
will load the rest of the operating system using the firmware boot services procedures. While SAL
can operate with identity mapping, there may be a need for the operating system loader to use a
non-identity mapping. As an example, there may be an 1/0 device at physical address 2.5 GB for
which SAL would have established an identity mapping with uncacheable memory attribute. The
operating system loader may need to load additional layers of software and fix up address
relocations using virtual addressing. The operating system loader may need to load software at
physical address 0.5 GB mapped to virtual address of 2.5 GB. When operating system refersto the
virtual address 2.5 GB, it isreferring to RAM at 0.5 GB and when SAL refersto 2.5 GB virtua
address, it is referring to the 1/0 device at 2.5 GB physical address. Clearly, the operating system
loader cannot use the TLB mapping set up by SAL for this case.

This problem can be solved by using unique Region registers and Region ID values for the SAL
and the operating system. Differing Region ID values ensure that earlier TC/TR entrieswith a
different Region ID value no longer cause TLB hits.

Since SAL uses 64-bit addressing, if the physical address space is less than or equal to 261 bytes,
SAL will be capable of addressing the entire physical address space using Region Register 0. In
general, the SAL would need only Region Register 0, leaving the other Region Registers for
operating system use. SAL shall set up the Region Register 0 with a Region 1D value of 0x1000, if
physical address space is less than or equal to 21 bytes. If the physical memory is larger, it shall
load the Region Registers 1 to 3 with Region ID values of 0x1001 to 0x1003, respectively.

The operating system loader shall not change the contents of Region Registers that are in use by
SAL. If the value in Region Register 0 is changed, accessto the IVT islost and the system will
crash. Similarly, the operating system loader shall be restricted from using Region 1D values of
0x1000 to 0x1003 until operating system is ready to take over the memory management and the
IVA. If thisrestriction is not followed by the operating system loader, a MCA might result when
SAL attemptstoinsert aTC entry using the ITC.i or ITC.d instruction. Should the operating system
loader set up any of the Region Registers unused by SAL, it shall:

* Setthevebit in the Region Register to 0 to disable the VHPT.
* Set the psbit’s value to indicate preferred page size of 4 KB.

The operating system loader will need to refer to the data structures common to SAL and operating
system in the process of loading the operating system kernel. Similarly, the operating system will

Intel® Itanium® Processor Family System Abstraction Layer Specification

3.3.24

3.3.3

Boot Sequence

need to pass parametersto SAL through pointersin Memory Stack Pointer (SP) and Globa Data
Pointer (GP) registers. The SAL and the operating system must refer to these common data
structures using Region Register 0, i.e. the virtual addresses used to address the common data
structures must have bits 61-63 set to 0.

Memory Attribute Aliasing Guidelines

Several memory resources are used by the PAL/SAL and the OS. The memory attributes between
these need to be consistent in order to avoid memory attribute aliasing (i.e. the same page cannot be
accessed in both UC and WB modes). Memory attribute aliasing may result in stale data left in the
processor cache and may cause a processor machine check event. This section describes the steps
that can be taken to ensure consistent access to common memory areas by the PAL, SAL, and OS.

The Min-State Save areais used by the PAL to dump registers and processor state during MCA and
INIT. The PAL requires that the Min-State Save areais UC. To ensure consistent access to the
Min-State Save area, the SAL must:
* Definethe Min-State Save area as UC separated from other data areas by 16K (thisisto avoid
any prefetching side effects).

* Report the Min-State Save area to the OS as EfiMemoryMapped| O (UC).

¢ All SAL accessesto Min-State Save area performed in physical addressing mode, uncached
only.

The firmware address space contains the PAL/SAL entrypoints which are accessed in physical
address mode, uncached. These are the PAL entrypoints for reset, init, and machine check, and the
SALE_ENTRY entrypoint for the SAL layer. In addition, both the SAL and PAL accessthe FIT to
get the address of other firmware components and the flash read/write utilities access the firmware
address space. To avoid memory attribute aiasing, the firmware address space should be reported
to the OS as EfiMemoryMappedl O (UC).

When calling SAL procedures, the caller must set bit 63 of arguments which are physical
addresses, according to the argument’s memory attribute.

Other Restrictions on the Operating System

1. The operating system shall not change the values of the following system resources:
« LID register, the uniqueid/eid value for this processor.

* DCR.lc, the Buslock setting for the platform, if the sameis set to 1. Note that the
PAL_BUS SET FEATURES procedure may be invoked to execute the locked
transactions as a series of non-atomic transactions. Refer to the Intel® Itanium®

Architecture Software Devel oper’s Manual for details.
* Physical address of the Processor Interrupt Block Address.
 Physical address of the |A-32 /O Port Block.
» Thevaluein the IOBASE register (AR.kO) until the OS takes over the IVA.

2. The operating system shall not change the Min-State Save area which was registered by the
SAL usingthe PAL_REGISTER_MEM procedure.

3. The operating system shall not change the location of the PAL procedures within memory.
SAL copiesthe PAL proceduresinto memory using the PAL_COPY _PAL procedure.

4. The operating system creates virtual address mappings for the PAL and the SAL procedures
and registers them with the firmware using interfaces provided by the EFI specification. The

Intel® Itanium® Processor Family System Abstraction Layer Specification 45

Boot Sequence Inte|®

operating system shall not alter the virtual address mappings after such aregistration, asthisis
not permitted by the EFI specification.

5. The operating system may lower the CMCI, MCA, and BERR# promotion strategy set by SAL
by invoking the PAL_PROC_SET_FEATURES procedure, but thisis not recommended.

6. Refer to Table 9-2 for restrictions on the OS from calling certain PAL procedures.

7. Inaddition to the handlersfor virtual memory management (if in virtual addressing mode), the
OS must provide these handlers when invoking SAL runtime servicesin virtual addressing
mode:

» Floating Point Fault Vector (0x5C00): This vector provides the floating point software
assists.

 Speculation Vector (0x5700) if check branching is not implemented on the processor. This
vector provides the software assists for speculative check instructions.

« External Interrupt Vector (0x3000) if external interrupts are enabled (PSR.i == 1).

46 Intel® Itanium® Processor Family System Abstraction Layer Specification

intel.

Machine Checks 4

Machine checks, including MCAs, and expected machine checks cause the processor to jump to
the PALE_CHECK entrypoint in PAL. Please refer to Volume 2, Chapter 11 in thel ntel® Itanium®
Architecture Software Developer’s Manual for details regarding PALE_CHECK processing. Also
refer to the Intel® Itanium® Processor Family Error Handling Guide for error handling from a
system software perspective.

When PALE_CHECK hasfinished processing, it will pass control to SALE_ENTRY entrypoint in
SAL, which in turn branches to the SAL MCA handler. The entry conditionsfor SALE_ENTRY
are described in the Intel® Itanium® Architecture Software Developer’s Manual.

This chapter defines the actions required of SAL_CHECK aswell as optional considerations.
Figure 4-1 shows a simplified control flow of Machine Check processing.

Figure 4-1. Overview of Machine Check Flow

4.1

PAL SAL OS_MCA
Uncorrected MC

Correct Error,
Set New/
Interrupted

Context

System
Halt/
Reboot

Correctible
by 0S?

Error

—»| PALE_CHECK || SALE_

ENTRY

RrReturnj | Yes |Emmmmmmomoom s e s e s s e e e e
<—| PAL_MC_RESUME

SAL_CHECK

_______ Optional

001076

Uncorrected machine checks refer to errors that cannot be corrected at PAL and SAL layers. These
may still be fully or partially recoverable at the operating system layer. The control flow differs
between corrected and uncorrected machine checks. For corrected machine checks, the operating
system-corrected error interrupt handlers will be invoked some time after returning to the
interrupted process. Section 4.1 describesthe functionality and processing stepsfor the uncorrected
machine checks and Section 4.2 describes the corrected machine checks.

SAL_CHECK

SAL_CHECK has the basic responsibility for the following:
* Record processor and platform error information.
* Save the processor and platform state information.
¢ Perform any platform hardware-specific corrections.
* For uncorrected machine checks, validate the OS_MCA entrypoint and branch to it.
* Clear the error record resources and re-enable future information collection.

Intel® Itanium® Processor Family System Abstraction Layer Specification 47

Machine Checks Inte|®

41.1

48

* Halt the processor or platform as necessary.
* Handle MP situations.

* Ensurethat processorsin SAL boot rendezvous do not hand off to the OS on MCA events.
This includes fatal, non-maskable MCA events. SAL should also avoid sending MC
Rendezvous or MC Wakeup I PS to these processors. See Section 3.2.5,
“OS_BOOT_RENDEZ" for more details.

I'n addition, it is useful to note that where hardware/firmware cannot fix amachine check condition,
SAL_CHECK should provide the necessary information and conditions to allow the operating
system to recover whenever possible. It is expected that most of the error recovery is performed at
the OS_MCA layer. The amount of state information saved by SAL isimplementation-dependent
and the SAL_GET_STATE_INFO procedure provides validation bits indicating the saved state
information.

SAL_CHECK Processing Details

During boot, SAL_RESET codewill call PAL_MC_REGISTER_MEM to assign PAL aMin-State
Save area used to deposit minimal processor state information, when PAL performs
PALE_CHECK processing. This step is performed on al the processors in the system.

During the platform test and initialization stage, SAL may invoke the PAL_MC_EXPECTED
procedure to notify PAL that a machine check may surface and that PAL must not attempt to
correct the error. If the machine check was expected by SAL, SAL will check the results of the
operation, invoke PAL_MC_EXPECTED to notify PAL that machine check isno longer expected,
and resume execution by calling PAL_MC_RESUME.

When an unexpected machine check event has occurred and SAL_CHECK is entered, it isthe
responsibility of SAL_CHECK to call back to PAL (PFAL_MC_ERROR_INFO), in order to
retrieve processor-specific error information pertaining to the machine check. In addition,
SAL_CHECK should interrogate the platform (through error logging registers) for any
platform-specific information which pertains to the machine check condition. Once the processor
error record information isretrieved, SAL_CHECK will call PAL_MC_CLEAR_L OG to make the
processor error logging resources available for capturing future machine check error information.
A similar task is necessary to make platform error logging resources available for future events.

An error dueto an MCA event, when corrected by firmware becomes a Processor Corrected
Machine Check or a Platform Corrected Error event condition. A hand-off to the OS MCA isaso
not required during this event type transformation.

When multiple processors experience machine checks simultaneously, SAL selects a“monarch”
machine check processor to accumulate all the error records at the platform level and continue with
the machine check processing. “Monarch” statusis relevant only for the current MCA error event.

SAL isresponsible for reporting the state information to the operating system viathe
SAL_GET_INFO call so that the operating system can make the determination to:

* Fix the error and return to interrupted or new context through the SAL MCA handler, or

* Request the SAL MCA handler to reset the platform.
SAL_CHECK shall not hide any architectural state from the OS_MCA layer. This permitsthe
OS _MCA layer to run unencumbered. OS_MCA can save the processor and platform state and
re-enabl e future machine checks as soon as possible. Otherwise, OS_ MCA would be constrained to

operating with machine checks disabled in order to preserve the architectural information at the
PAL and SAL layers.

Intel® Itanium® Processor Family System Abstraction Layer Specification

4.2

Machine Checks

When the operating system registersthe OS_MCA entrypoint with SAL, it also supplies the length
of the code (or at least the length of the first level OS_MCA handler). The operating system may
optionally supply a modulo checksum of the code area (all bytes of the code areaincluding the
checksum byte must add up to zero). The SAL saves the checksum for this code area. Prior to
entering the OS_MCA, it is SAL_CHECK's responsibility to ensure that the OS_MCA vector is
valid by verifying the checksum of the OS_MCA code. The SAL code that verifies the integrity of
the OS_MCA code shall respect the cacheability attribute of the OS_MCA code. Thus, if the
operating system had provided an uncacheable address for the OS_MCA entrypoint (bit 63 of
physical address = 1), the SAL code shall not make cacheable accessesto the OS_MCA code areas
while verifying the checksum.

There may be some platform-specific issuesthat render the OS_MCA handler invalid. For example
since the OS_MCA handler isin memory, if the memory controller which handles that portion of
memory isno longer functional, it does not make sense to attempt to branch to that code. If either
the OS_MCA handler was not registered prior to the machine check event or if the OS MCA
handler is otherwise invalid, SAL_CHECK may halt or reboot the system. Thisactionis SAL
implementation-dependent. When the OS_MCA returnsto the SAL indicating that the error has
been corrected by the operating system layer, SAL will call the PAL_MC_RESUME procedure to
resume execution. See Section 4.8.1 for other options.

Figure 4-2 depicts the control flow during corrected and uncorrected machine checks.

Corrected Machine Checks

There are different categories of Itanium architecture corrected machine checks:

¢ Corrected internally by the processor hardware, e.g. single bit data ECC error on a processor
cache.

¢ Corrected by PAL, e.g. double bit data ECC error on a clean processor cacheline (E, I, S),
during an instruction fetch operation.

¢ Corrected by the platform hardware, e.g. single bit data ECC error in system memory.

¢ Corrected by SAL. These are primarily platform errors that can be corrected by SAL without
immediate involvement of the operating system.

None of these categories will require a processor rendezvous.

The SAL_CHECK processing steps for corrected machine checks are similar to the steps for the
uncorrected machine checks. SAL will maintain the processor and platform error information and
save the state of the processor and platform. In the subsequent steps, SAL may do one of the
following:

¢ |f the error was corrected by PAL, SAL returnsto the interrupted context by calling
PAL_MC_RESUME. PAL_MC _RESUME procedure provides an option for generating a
Corrected Machine Check (CMC) interrupt to the operating system for the processor CMC
events. The CMCYV register specifies the CMC interrupt vector and its mask status.

* SAL will perform any platform hardware-specific correction as described in Section 4.3,
“Platform Errors,” send a Corrected Platform Error Interrupt (CPEI) to the operating system
and then call PAL_MC_RESUME to return to the interrupted context.

Intel® Itanium® Processor Family System Abstraction Layer Specification 49

Machine Checks Inte|®

Figure 4-2. Machine Check Code Flow

Execution Mode: Itanium® Instructions

(- RN

PALE_CHECK

4

SAL_CHECK

AN

Error Logged

Translation Turned Off

|
0S Notified (interrupt) !
|

Did OS Fix
:¢ 7777777777777777 Error?
Corrected Error Interrupt |
I
v I No
OSHandler |g PAL_MC_RESUME
Logging System Reset
000288b

For corrected machine checks, SAL does not call the OS MCA layer immediately but the
operating system CMC interrupt handler or the operating system Corrected Platform Error
interrupt handler will be invoked some time after returning to the interrupted process, assuming
that the CMC or Corrected Platform Error interrupt is enabled in hardware. Some operating
systems may choose to poll for corrected processor and/or platform errorsinstead of relying on the
CMCI/CPEI interrupts. Refer to Section 4.4 for details.

The operating system-corrected error handler shall run with interrupts enabled® and would invoke
the SAL_GET_STATE_INFO and the SAL_CLEAR_STATE_INFO proceduresto process the
error information associated with the event(s). The operating system must ensure that the entire
CMC or Corrected Platform Error handler executes on the same processor on which it was
signalled.

The amount of state information saved by SAL isimplementation-dependent and SAL provides
validation bitsindicating the saved state information. Thus, a particular SAL implementation may
choose not to save ARS, CRs, or floating-point registers during a corrected machine check, for
performance reasons.

1. Itisrequired that the operating system handlers operate with interrupts enabled, so that system firmware can manage its resources (like
NVRAM based error records) without impacting the system performance.

50 Intel® Itanium® Processor Family System Abstraction Layer Specification

4.3.1

4.3.2

Machine Checks

Platform Errors

Platform errorsrefer to errors signalled by system components other than processors, e.g. memory,
1/0 busses, chipsets, devices, etc.

Uncorrected platform errors may be signalled by asserting pins such as BERR# or BINIT# or by
generating a2 x ECC or a synchronous Hard Fail response on the processor system bus.

Corrected platform errors are usualy signalled using an interrupt line. An example of a corrected
error isasingle bit error corrected by the memory controller. An interrupt will be signalled by the
platform when the data from the memory location is consumed.

Some platforms may use interrupts to signal a potential uncorrected error. An example of this
situation is poisoned data stored into memory. A CPEI is signalled to the processor at the time of
the store and if the poisoned data is consumed later by a processor, that processor will incur alocal
MCA.

Scope of Platform Errors

The scope of platform errorsis platform and firmware implementation-dependent. Depending upon
the platform topology, a single physical platform may have multiple nodes, each with a set of
processors and its own error event generation and notification. There may be requirements for
routing the interrupt signalsto specific processors as processors may not have visibility to all the
platform components in a system. The SAL shall provide details of the interrupt input line(s) and
the interrupt routing requirements, including the ID and EID of the processor to receive the CPEI
interrupt to the operating system through the ACPI tables. The scope of platform error logsis
implicitly indicated by the SAL by providing multiple entries for Corrected Platform Error
interrupts in the ACPI tables. Platforms that do not support interrupts on corrected errors may
report the scope through an ACPI structure. Refer to the Advanced Configuration and Power
Interface Specification for additional details.

Processing of Corrected Platform Errors

When the operating system wantsto be notified of the platform error eventsthrough an interrupt, it
will select a corrected platform error vector (CPEV) and arm the interrupt line(s) to deliver
interrupt(s) to the processor. The operating system is aso required to register the chosen interrupt
vector number with SAL through the SAL_MC_SET_PARAMS procedure.

The system component responsible for the corrected error (hardware or firmware) sends event
notification to the operating system. For hardware-corrected platform errors, the hardware device
sends the Corrected Platform Error Event notification to the operating system by asserting an
interrupt. For firmware-corrected errors, SAL reports the platform-corrected error event to the
operating system by sending an interprocessor interrupt to the processor with the CPEV that is
registered by the operating system through the SAL_MC_SET_PARAMS procedure.

On the processor on which the CPEI was signalled, the operating system shall invoke the
SAL_GET_STATE INFO andthe SAL_CLEAR_STATE_INFO procedures with argument type of
CPE to retrieve and process the corrected platform error information.

Intel® Itanium® Processor Family System Abstraction Layer Specification 51

Machine Checks Inte|®

4.3.3

4.4

4.5

52

Processing of Uncorrected Platform Errors

Uncorrected platform errors may result in alocd or aglobal MCA. The operating system shall
invokethe SAL_GET_STATE_INFO and the SAL_CLEAR_STATE_INFO procedures with the
argument type of MCA on al the processors on which the MCA condition is signalled to retrieve
and process the uncorrected platform error information.

The SAL shall return an error record on each of the processors that experienced the MCA
condition. Some error records may have a processor error section and one or more platform error
sections, while some error records may have only the processor error section. The platform
section(s) would provide the error information for the node associated with the processor on which
the SAL call ismade. If a SAL implementation is capable of accessing error information for the
entire multi-node system from one processor, it is permitted to aggregate all the platform error
sections within one error record.

Polling for Corrected Errors

Some operating systems may choose to poll for corrected processor and platform error events. For
corrected processor events, the operating system must periodically invoke the
SAL_GET_STATE_INFO and the SAL_CLEAR_STATE_INFO procedures on each logical
processor in the system.

For corrected platform events, the operating system must periodically invoke the
SAL_GET_STATE_INFO and the SAL_CLEAR_STATE_INFO procedures from a processor on
each node within the system since some platform errors may only be visible on the node of
occurrence.

If the operating system chooses to employ polling for the corrected platform error events, it must
neither program the interrupt redirection table entry for the interrupt line on which the Corrected
Platform Error is signalled nor register the CPEV vector with the SAL. Instead, it should
periodically call the SAL_GET_STATE_INFO procedure on the same processor(s) for which it
would have programmed the interrupt. All other processing steps are the same as for the interrupt
driven approach.

OS_MCA

When the operating system is ready to handle machine check events, it should call

SAL_SET VECTORSto register the physical address, length, and the GP of the OS_MCA
handler. It is highly recommended that a non-zero length and checksum be supplied by the
operating system to the SAL so that the SAL can ensure the integrity of the OS_MCA code. The
operating system must usethe SAL_SET VECTORS function if it expectsto be able to recover
from any machine check conditionsin which it may have to beinvolved, or to retrieve error records
and state information and dumping such information for subsequent debug anaysis. After
registering the OS_MCA address, the operating system can re-enable machine checks by clearing
the PSR.mc bit. The operating system must call the SAL_GET_STATE_INFO_SIZE procedure to
obtain the maximum size of machine check state information that SAL would return for the MCA
events.

When the machine check event occurs, SAL_CHECK will invoke OS MCA. OS MCA
functionality is implementati on-dependent. At a minimum, OS_MCA must call
SAL_GET_STATE_INFO to retrieve the error records and state information. When it has finished
thistask, it must call SAL_CLEAR_STATE _IN FO! to release the SAL resources used for logging

Intel® Itanium® Processor Family System Abstraction Layer Specification

45.1

Machine Checks

MCA events and state save. The OS_MCA can then re-enable machine checks by clearing the
PSR.mc bit to 0. Once the operating system has consumed and cleared an error record, it will no
longer be available from the SAL. SAL error records are always associated with a particular MCA
or Corrected error event and shall contain all the relevant information packaged together asa
record, and may contain error information from just the processor or platform or both. This
information is presented in an error record structure with a Record Header and multiple sections.
Each section has an associated globally unique ID (GUID) to identify the section type as being
processor, memory, bus, controller or platform-specific hardware. Refer to the Appendix B for
details.

The operating system may perform any corrections on the operating system controlled hardware
resources. The operating system makes the decision whether it wants to recover the interrupted
context or not, but it must take into account the state information retrieved from the
SAL_GET_STATE INFO cdl. Thisinformation describes the continuability of the
processor/system. Thus, even if the operating system could correct the error, if PAL reportsthat it
did not capture the entire processor context, (e.g. processor state parameter states that the GRs are
invalid), resumption of the interrupted context will not be possible. The operating system must also
determine from values in the Min-State Save area whether the machine check occurred while
operating with PSR.ic set to 0 and whether the processor implements the XIP, XPSR and XFS

registers necessary for the recovery.

When OS_MCA returnsto SAL or PAL, it is permitted to set new values for the registers that are
passed by PAL in the Min-State Save area. Thisis achieved by constructing a data structure with
the Min-State Save areaformat and returning it to SAL. Refer to the Intel® Itanium® Architecture
Software Developer’s Manual for the layout of this structure.

OS_MCA may select one of the following actions:

¢ Correct the error and return to SAL_CHECK with the status of “corrected.” The operating
system may set a new context in the Min-State Save area, and SAL will then invoke
PAL_MC_RESUME to return to the interrupted or the new context. If the interrupted context
was in the firmware address range and the operating system decides to set a new context, the
operating system must take steps for resumption of the firmware code eventually, otherwise
the system may become unstable.

* |ntheevent of an uncorrected error, return to SAL_CHECK with the uncorrected status value
and an indication to the SAL to halt or reboot the system.

Figure 4-3 shows the flow of control through SAL_CHECK on the monarch processor.

Unconsumed Error Records across Reboots

There may be situations where the OS_MCA layer could not be invoked or the OS_MCA layer
could not invokethe SAL_CLEAR_STATE_INFO procedureto clear a pending error record. If the
SAL implementation had logged the error to NVRAM, it should provide the unconsumed error
information to the operating system following the next reboot of the system. To support this
capability, following the next reboot of the operating system, the operating system shall invoke the
SAL_GET_STATE INFO and the SAL_CLEAR_STATE_INFO procedures (with the type
argument of MCA) to retrieve the pending error records and optionally log them to persistent
storage under control of the operating system. These SAL calls to consume the pending error
records may be made from any of the processorsin the system. For additional details, refer to the
Intel® Itanium® Processor Family Error Handling Guide.

1. Theerror records maintained by firmware are returned one at atime to the operating system. It is necessary for the operating system to clear
the current error record to be able to retrieve the next unread record.

Intel® Itanium® Processor Family System Abstraction Layer Specification 53

Machine Checks Inte|®

4.6

If the operating system failsto clear the log before another MCA surfaces, the SAL may overwrite
the unconsumed NVRAM log, if there is not space for another record. The SAL implementation
may additionally escalate the error severity (Section B.2.1, “Record Header”) when the error
information is subsequently provided to the operating system.

Procedures used in Machine Check Handling

PAL_CHECK and SAL_CHECK execute out of the firmware address space. SAL_CHECK may,
however, invokethe PAL proceduresin memory after ensuring that the memory area containing the
PAL proceduresis intact.

Following are typical PAL procedures that may beinvoked by SAL_CHECK:
* PAL_MC_ERROR_INFO
* PAL_MC _RESUME
* PAL_MC CLEAR_LOG

The following procedures may be called by SAL_RESET to control handling of machine checks:
* PAL_BUS GET_FEATURES
e PAL_BUS SET FEATURES
* PAL_PROC_GET_FEATURES
* PAL_PROC_SET_FEATURES
* PAL_MC _REGISTER MEM?!
* PAL_MC_EXPECTED

SAL may call the following procedure to ensure that all outstanding instructions within a processor
are completed and any potential machine checks due to these transactions get serviced.

e PAL_MC_DRAIN

Following are the SAL procedures that may be invoked by operating system to register its machine
check layer interfaces:

* SAL_MC_SET_PARAMS
* SAL_SET_VECTORS

Following are the typical SAL procedures that may be invoked by the operating system during
machine check processing:

e SAL_MC RENDEZ

e SAL_GET_STATE_INFO

* SAL_GET_STATE_INFO_SIZE
e SAL_CLEAR_STATE INFO

1. Thisprocedureisintended for use during firmwareinitialization. It shall not beinvoked by the operating system during runtime as thismight
affect firmware functionality.

54

Intel® Itanium® Processor Family System Abstraction Layer Specification

intgl.

Figure 4-3.

Machine Checks

SAL_CHECK Detailed Flow on the Monarch Processor

SAL_CHECK

PAL wants to
rendezvous

Yes

A

processors?

Send MC_rendezvous interrupt
if registered, else send INIT to
all other processors

Log processor & platform error into
SAL implementation-dependent area

A
Wait for all processors
to reach
MC_rendezvous state

Send INIT
to failed
processors

Yes

Restore original
processor state to
SAL_CHECK entry

OS_MCA
Correct error if
possible; Wake up | by OS
APs

'

Call PAL_MC_CLEAR_LOG to clear
processor error Iog resources

Y

Check
expected by
SAL?

No

PAL
corrected?

Yes

Corrected
by SAL?

Y

Yes OS_MCA

valid?

If valid, generate
No Corrected Platform
Error Interrupt

Uncorrected

A

Call PAL_MC_RESUME with
CMCI indicator set to restore

Return to PAL
through GR19

System Halt/Reboot state & return to interrupted
process
Corrected
by OS
hl
y
v Call PAL_MC_RESUME to v

restore state & return to
interrupted process

———————p»| Resume execution

001077

Intel® Itanium® Processor Family System Abstraction Layer Specification

55

Machine Checks Inte|®

4.7

4.7.1

4.7.2

56

Machine Checks in MP Configurations

There are certain machine check scenarios that require additional actions and considerationsin MP
configurations. A local MCA on one or more processors may require the systemto beina
quiescent state for error handling. Thisisaccomplished by bringing all the processorsin the system
that are not already in MCA to an idle state. The MCA architecture has defined a mechanism for
processor rendezvous through firmware and operating system coordination.

Rendezvous Requirements

In MP configurations, a coordination between processors is performed through processor
rendezvous. Refer to Section 3.2.2.1, “Rendezvous Functionality” for details of how the
rendezvous mechanism works.

Rendezvous of processorsis done for one of the following reasons:
* When PAL initiates a rendezvous request during an MCA.
* When SAL determines that the platform error needs rendezvous.

* When the operating system sets aflag requesting firmware to perform rendezvous for all MCA
errors.

PAL-Initiated Rendezvous: If the PAL machine check layer determines that other processors must
be rendezvoused for error containment, it passes an indication to SAL_CHECK to perform the
rendezvous and supplies a return address within PAL in GR19. Upon return, PALE_CHECK
performs the appropriate action and then calls SAL_CHECK again in the normal manner (with no
rendezvous indicator). The SAL must determine the state of other processors and bring al
processors not already in MCA to a spinloop by generating SAPIC interrupt messages. The
interrupt vector used by SAL to request for rendezvous is the one aready registered by the
operating system during the OS_MCA handler initialization

SAL-Initiated Rendezvous: Additionally, there may be platform related machine check situations
which require SAL firmware to rendezvous processors. For example, if platform hardware were to
stop forwarding transactions in order to maintain error containment, the other processorsin the
system must be rendezvoused before that platform hardware can be corrected to resume forwarding
transactions.

Operating System+-Initiated Rendezvous: If the operating system sets the rz_always flag during
invocation of the SAL_MC_SET_PARAMS procedure, the SAL isrequired to rendezvous al the
processorsin the system for all detected processor and platform MCA conditions, when such errors
are not corrected by the firmware. If thisflag is not set, then rendezvous is done only during the
PAL or SAL initiated rendezvous conditions described above.

Flow of Control During MCA in MP Configurations
The high level flow of control during MCAsin MP configurationsis depicted in Figure 4-4 and
Figure 4-5. The flow for anormal MCA rendezvousis as outlined bel ow:

1. Processor detects an MCA event. PAL takes control and attempts an error recovery.

2. PAL may ask SAL to rendezvous for certain errors. SAL may decide to do arendezvous on its
own accord or if the operating system has registered a configuration option to rendezvous for
all MCA errors, if it isnot already done at PAL’s request. If rendezvous does not occur, then
steps 3, 4, 5, and 6 are skipped.

Intel® Itanium® Processor Family System Abstraction Layer Specification

Machine Checks

. SAL sends SAPIC interrupt messagesto all the slave processors except those in SAL boot

rendezvous.

4. Interrupted slave processors enter aspin loop by calling SAL_MC_RENDEZ.
5. SAL selects amonarch for handling the error. All slaves processorsin SAL_MC_RENDEZ

check in their status with the SAL on the monarch.

. After al the slaves check in with SAL, the monarch SAL returnsto PAL.
7. PAL starts the actual error handling process with subsequent hand-off to SAL.
. SAL finishes the MCA handling on al the processorsthat arein MCA and waits for all the

processors in MCA to synchronize before branching to OS MCA for further processing. Note
that the hand-off to OS MCA from SAL MCA occurs simultaneously on all processors
executing in SAL MCA handler.

. OS_MCA may choose a monarch processor to continue with error handling. After OS_ MCA

compl etes the error handling, the monarch processor wakes up al the slaves through a
wake-up message as shown by (9) in Figure 4-4.

Figure 4-4. Normal SAL Rendezvous Flow

(Return)

SAPIC
R 1 PAL < S SAL & Rendez INT OS Rendez
Check MCA — McA | VT Interrupt Handler
L
Timeout 5 4 10
Loop
8 A
SAL_Rendezvous > Polling
N
|
0S_MCA 9,
I
I
Monarch Pr(_)cessor : WakeUp Signal : SLAVE Pro_cessor
Domain Domain
Direct Flow
————Interrupt Signaling
000289a

Intel® Itanium® Processor Family System Abstraction Layer Specification 57

Machine Checks Inte|®

Figure 4-5. Failed SAL Rendezvous Flow

SAPIC INIT
CPUX Message
i PAL SAL
Failed T ¥ > P> OS_INIT (€
Rendezvous 7 INIT 8" | INIT 3 |

16

(Return)
12
Machine 1 PAL [~ 2 SAL

Check ——P MCA 13 MCA

Timeout
Loop

SAL_Rendezvous > Polling

14

WakeUp
Monarch Processor | Signal SLAVE Processor
Domain e —— | Domain

Direct Flow
———— Interrupt Signaling

000290a

During theinitial attempt to rendezvous, some processors may fail to respond to the interrupt for an
extended period of time. The monarch processor SAL forces the failed processors to respond by
sending an SAPIC INIT message as shown in Figure 4-5. Once all the processors are in the spin
loop, then the monarch processor that received the MCA will attempt to recover from the error. The
flow of bringing the processors to a rendezvous state is the same asin Figure 4-4, except for the
additional steps 6., 7., 8., and 9.

4.7.3 OS_MCA Responsibilities

In order to support the MCA eventsin MP configurations, the operating system does the following:

* Register the addressof OS_MCA entrypoint and its GP valueusing the SAL_SET_VECTORS
function.

* Invokethe SAL_MC_SET_PARAMS procedure specifying an interrupt vector on which SAL
firmware can signal the non-monarch processors and the mechanism that the operating system
will employ to wake up the non-monarch processors at the end of machine check processing.

* Invokethe SAL_MC_SET_PARAMS procedure specifying if arendezvousis always required
for an MCA and whether MCA s should be escalated to BINIT# while machine checks are
masked.

On receipt of the MC_rendezvousinterrupt or the INIT for MC_rendezvous, the operating system
on the non-monarch processors will:
¢ Disable further interrupts.

* Set an OS implementation specific variable to indicate that a rendezvousinterrupt was
received. Such a variable may be used by the OS_MCA layer on the monarch processor to
identify the processors that need to be woken up at the end of MCA processing.

58 Intel® Itanium® Processor Family System Abstraction Layer Specification

Note:

Machine Checks

¢ Call SAL_MC_RENDEZ. This procedure will call PAL_MC_DRAIN to complete all
outstanding transactions within the processor and then enter aspin loop within SAL. This SAL
procedure shall be MP-safe. If the processor in rendezvous takes a machine check while
waiting for wake-up, the SAL should delay the handling of this subsequent machine check
event until completion of the current machine check (i.e. return from the OS_MCA layer).
SAL implementations that do not provide this capability may mask further machine checks
and escalate future MCA eventsto BINIT# using the PAL_PROC_SET_FEATURES
procedure.

SAL on the monarch processor will wait a specified amount of time for the signalled processors to
enter the SAL_MC_RENDEZ procedure. The wait time is specified as a parameter to the
SAL_MC_SET_PARAMS procedure. Assuming all processors report in as expected, the PAL and
SAL will perform the appropriate state save functions and proceed to the OS_MCA entrypoint to
allow the operating system to take the appropriate error recovery actions. Refer to Figure 4-4 for
more details on the control flow between the PAL, the SAL, and the operating system.

In situations where either the operating system has not registered an interrupt vector via the
SAL_MC_SET_PARAMScall or where the specified time to wait has elapsed and the signalled
processor did not respond, the SAL firmware on the monarch processor will send an INIT to the
remaining processorsin order that the machine check handlersin PAL and SAL can proceed. This
scenario is depicted in Figure 4-5.While sending an INIT to the other processors may not create an
inherently unrecoverable situation, it increases the risk for successful recovery. Thisistherationale
for registering the MC_rendezvous interrupt vector using the SAL_MC_SET_PARAMS
procedure. The monarch processor must allow sufficient time for the INIT IPI processing and
rendezvous on the targeted processors.

The PAL_INIT and the SAL_INIT firmware code executes out of the firmware address space and
contends for firmware accesses with the processors that experienced the machine check events.

If the PAL requests rendezvous of al the processors and SAL isunableto do so, SAL will return to
PAL with anon-zero valuein GR19. Refer to the Intel® Itanium® Architecture Software
Developer’s Manual for details regarding PALE_CHECK processing.

After the error is corrected by the OS MCA handler, OS_MCA on the monarch processor will
wake up the rendezvoused processors using the wake up mechanism specified in the
SAL_MC_SET_PARAMS cadll. For the processors rendezvoused using the MC_rendezvous
interrupt or the INIT, the continuation point is merely a return from the SAL_MC_RENDEZ
procedure. It isthe responsibility of the operating system to clear the IRR bitsfor the
MC_rendezvous interrupt and the wake up interrupt, if any. The operating system must re-enable
future interrupts and machine checks.

It should be noted that under certain machine check circumstances some platform implementations
will cause multiple processorsto enter PALE_CHECK and SAL_CHECK. PAL code will be
generally unaware of this, but SAL code should make every effort to take such situationsinto
account. SAL code must implement methods of detecting which processors have entered the
SAL_CHECK entrypoint and avoid steps to rendezvous such processors (using MC_rendezvous
interrupt or INIT). Some examples of situations when multiple processors experiencing machine
checks simultaneously are as follows:

* Broadcast machine check (BERR signal) from the platform.

¢ Error during acast out of a cache line in response to an incoming snoop cycle from another
processor.

When multiple processors experience machine checks simultaneously, SAL selects a monarch
machine check processor to accumulate all the error records at the platform level. Once thisis
done, the OS_MCA procedure will take control of further error handling on all the processors that
experienced the machine checks. The OS_MCA layer may need to implement asimilar monarch

Intel® Itanium® Processor Family System Abstraction Layer Specification 59

Machine Checks Inte|®

4.7.4

60

processor selection for the error recovery phase. The operating system will be aware of which
processors invoked the SAL_MC_RENDEZ procedure in response to the MC_rendezvous
interrupt or the INIT signal and shall wake up those processors.

Machine Check Processing Steps within Firmware and
Operating System

Figure 4-6 depictsthe typical flow of machine check processing steps from various firmware and
software layersin an MP configuration. Thisfigureillustratesthe example of two processors (1 and
2) experiencing a machine check within afour processor system. The error requires the other
processors to be rendezvoused.

On entry into SAL_CHECK, processor 1 promotes further MCAs to BINIT# for better error
containment. Thisis based on an argument supplied by the operating system as part of the
SAL_MC_SET_PARAMS procedure. The SAL on processor 1 is not aware of any other
processors having experienced machine check and hence sendsthe MC_rendezvous interrupt to all
the other processors including processor 2. It also sets a memory semaphore (MCA_In_Prog) to
indicate that a machine check isin progress. By setting such a semaphore, processor 1 gains the
monarch status for this machine check incidence at the SAL layer. Semaphore operations such as
XCHG, CMPXCHG can only be made to cacheable locations. If the platform provides an
equivalent mechanism such as a read/write-once port, the same may be employed in lieu of a
cacheable memory semaphore.

The operating system on the processor 3 receives the MC_rendezvous interrupt, setsaflag for
being rendezvoused in the operating system data structures and then callsthe SAL_ MC_RENDEZ
procedure. The processor 4 is running with interrupts masked and does not recognize the
MC_rendezvousinterrupt in atimely manner. Hence, the processor 1 sendsan INIT IPI to the
processor 4. This causes the processor 4 to enter the OS_INIT layer, which records the fact of
being rendezvoused in the operating system data structures and then callsthe SAL_MC_RENDEZ
procedure.

The SAL on processor 1, using SAL data structures, recognizes that processor 2 has reached the
SAL_CHECK layer and that processors 3 and 4 have reached the SAL_MC_RENDEZ procedure.
It clearsthe MCA_In_Prog semaphore, instructs the processor 2 to proceed to the OS_MCA layer,
and then proceedsto the OS_MCA layer itself.

At the OS_MCA layer, the operating system, using its data structures, determines that only
processors 1 and 2 will reach the OS_MCA layer. The operating system elects amonarch to handle
the machine check (processor 2 in Figure 4-6). The operating system makes necessary SAL callsto
retrieve and clear the processor and platform error information. The operating system on
processor 2 then instructs processors 1, 3 and 4 to return to the interrupted contexts. The
processor 1 returns via SAL and the PAL_MC_RESUME procedure while processors 3 and 4
return to the procedure that invoked the SAL_MC_RENDEZ procedure.

Once interrupts are re-enabled, the operating system on the processor 2 services a spurious
MC_Rendezvous interrupt and invokesthe SAL_MC_RENDEZ procedure. The SAL finds that no
machine check isin progress and hence returns to the operating system immediately. If the
operating system chosen wake-up mechanism is an interrupt, the operating system on the
processors 3 and 4 will service the wake-up interrupt. As part of servicing these interrupts, the
operating system reads the CR.IVR register and issues an EQI to the local SAPIC thereby clearing
the interrupt.

Notesfor Figure 4-6:

1. Thisplatform could provide a mechanism such as an I/O port to activate the need for a
memory semaphore. Memory semaphore operations can only be made to cacheabl e space.

Intel® Itanium® Processor Family System Abstraction Layer Specification

intgl.

Machine Checks

2. If MCA occurs here, control flow isthe same asfor P2. At the end of the MCA, follow path for
NO since MCA isno longer present. OS will not send wake-up for P3 dthough OS Rendez
flagis set.

Figure 4-6. Machine Check Handling in a Typical MP Configuration

Processor 1

Processor 2

Processor 3

Processor 4
Receives MCA

Receives Rendez

Int, then INIT
PAL_MCA Smm— —y PAL_INIT
/
Note V4 PAL_MCA Set OS_Rendez Flag A/
1 / for P3. Call SAL_INIT
SAL_MCA / K SAL_MC_Rendez T
Set MCA_In_Prog / SAL_MCA _MC_|
SEMAPHORE / If MCA_In_Prog
\J S/ already set, OS_INIT
7/ Set SAL_Check_in
Promote MCA to BINIT. flag No
Send Rendez Int to i MCA_In_Prog?
2,3,4. yd Set OS_Rendez
/,/ Flag for P4
¢ e Promote MCA to Call
e BINIT. Wait for = SAL_MC_Rendez
Ve \ signal from #
All Processors SAL_Monach Call MC_DRAIN
Check-in? Wait time set -
by MC_Set_Params + MCA_In_Prog?
Tkl MCA_In_Prog? .
- <
B - @
Yes y e Call MC_DRAIN
Send INIT to failed 0S_MCA: (Most o Set
processors & Wait likely Monarch) SAL_Check_lIn.
for specified time Call Promote MCA to >
P SalGetStatelnfo BINIT MCA_In_Prog?
Yy e < Y <
Clear MCA_In_Prog. .
i Wait for Wake up
SAL_ChecZkEIZ seen from A 4 “ Memory/Interrupt 4| SetSAL_Check_In.
o 0S Wakes up3,4. | 7 Promote MCA to BINIT
‘ 4 Tell P1toreturn to #
y SAL. '
Tell P2 to Jump to g .
0S Mo p yd Restore MCAto | _}._,| Wait for Wake up
Jump to OS_MCA 7 BINIT promotion Memory/Interrupt
v - yd Return to SAL_MCA. *
/,/ Restore MCA to BINIT
OS_MCA: Call |y’ promotion Y Restore MCA to
SALGetStatelnfo BINIT promotion
Return to OS Rendez
i IntHandler | *
SAL calls Return to OS_INIT
Return to PAL_MC_Resume Handler -
SAL_MCA. to return to OS
Restore MCA to 0S clears #
BINIT promotion ——
OS MC Rendez OS_Rendez Flag OS clears
Interrupt Handler forP3 EOIRA OS_Rendez Flag
n p for P4
SAL calls —
PAL_MC_Resume Rendez_Int #
to return to OS received, OS calls
SAL_MC_Rendez OS Wake-up Return to
Interrupt Handler SAL_INIT

SAL calls
PAL_MC_Resume

MCA_In_Prog?

to return to New
OS context

L J
OS MC_Rendez
Interrupt Handler

Return to OS Int
Handler, which does
EOI, RFI

001080

Intel® Itanium® Processor Family System Abstraction Layer Specification 61

Machine Checks Inte|®

4.8

Note:

4.8.1

62

OS_ MCA Hand-off State

The OS_MCA interface defines the boundary between SAL_CHECK and the operating system
machine check handler (OS MCA handler). The contents of non-banked and banked general
registers at the time of the interruption are saved by PAL in the Min-State Save area and are
available for use by SAL and the OS MCA handler. The following register contents define the OS
MCA hand-off state.

The state of the processor is the same as on exiting PALE_CHECK (refer to the Intel® Itanium®
Architecture Software Devel oper’s Manual) except as below:

GR1 = OS_MCA Globd Pointer (GP) registered by the operating system (the
operating
system’s GP).

GRs2-7 Unspecified.

GR8 Physical address of the PAL_PROC entrypoint.

GR9
GR10
GR11

Physical address of the SAL_PROC entrypoint.

GP (Physical address value) for SAL.

Rendezvous state information:

0 = Rendezvous of other processors was not regquired by firmware and hence
not done.

1= All other processors in the system were successfully rendezvoused using
MC_rendezvous interrupt.

2 = All other processors in the system were successfully rendezvoused using a
combination of MC_rendezvous interrupt and INIT.

—1 =Rendezvous of other processors was required but was unsuccessful on one
Or more processors.

Return address to alocation within the SAL_CHECK procedure.

Refer to the Intel® Itanium® Architecture Software Developer’s Manual.

Unspecified.

GR12
GRs13-31
BRO

On entry into SAL_CHECK, the RSE has been set to enforced lazy mode configuration. The
operating system shall not make cacheable accesses to the Min-State Save area, otherwise
unexpected behavior will occur.

For all SAL to OS MCA handoffs, the OS is expected to be able to execute the OS MCA handler
from memory at minimum. If a platform cannot guarantee the integrity of the system memory, the
platform firmware shall not hand off to the OS MCA handler, but shall cause an immediate system
reset. Error information shall then be reported to the OS during the next system boot and
initialization. Platforms that expect the OS MCA handler to have I/O support (display, disk
logging, etc.) must additionally guarantee the availability of critical 1/0 devices before firmware
hands off to the OS MCA handler.

Return from the OS_MCA Procedure

The OS_MCA procedure shall return to the SAL_CHECK at the end of its MCA processing. When
the OS_MCA procedure returns to the SAL, it must set appropriate valuesin the Min-State Save
area pointed to by GR22, for continuing execution at the interrupted or a new context. The
operating system must restore the processor state to the same as on entry to OS_MCA except as
follows:

Intel® Itanium® Processor Family System Abstraction Layer Specification

GRsl1-7
GR8

GR9
GR10

GRsl1-21

GR22
area,

GRs23-31
PSR
BRO

Machine Checks

Unspecified.

0 if error has been corrected by OS MCA:

—1if error was not corrected by OS_ MCA and SAL must warm boot the system.
—2 if error was not corrected by OS MCA and SAL must cold boot the system.
=3 if error was not corrected by OS_ MCA and SAL must halt the system.

GP (Physical address value) for SAL.

0 if return will be to the same context.

1if return will be to a new context.

Unspecified.

Pointer to a structure containing new vaues of registers in the Min-State Save

PAL_MC_RESUME procedure will restore the register values from this
structure;

OS_MCA must supply this parameter even if it does not change the register
valuesin the Min-State Save area.

Unspecified.

Same as on entry from SAL_CHECK except that PSR.mc may be either O or 1.
Unspecified.

Intel® Itanium® Processor Family System Abstraction Layer Specification 63

Machine Checks

64

Intel® Itanium® Processor Family System Abstraction Layer Specification

intel.

Initialization Event 5

5.1

INIT is an event generated by the platform or by software (through a SAPIC message). The INIT
event, which istypically used for crash dump reporting, causes the processor to branch to the
processor-dependent INIT handler (PALE_INIT). PALE_INIT saves minimum register state and
branchesto SALE_ENTRY which, in turn, passes control to the SAL INIT handler (SAL_INIT).
The state of the processor on exiting PALE_INIT and entering SALE_ENTRY is defined in the
Intel® Itanium® Architecture Software Developer’s Manual .*

SAL_INIT

SAL_INIT isentered from PALE_INIT viaSALE ENTRY. SAL_INIT's purpose isto save the
state of the processor to the platform-specific Processor State Information (PSI) area and either
invoke an operating system INIT handler (OS_INIT) if the same has been registered through a
SAL_SET VECTORS cdll, or warm boot the system otherwise. The SAL_SET VECTORS
procedure permits the operating system to register separate entrypoints for the first processor
(monarch) to enter the SAL_INIT layer and subsequent processors (non-monarchs).

SAL_INIT should ensure that processors in SAL boot rendezvous do not hand off to the OS on
INIT events. Processorsin SAL boot rendezvous should remain there until awakened by the BSP.
See Section 3.2.5, “OS _BOOT_RENDEZ" for more details.

The warm boot mechanism is SAL implementation-dependent and can be done either by calling
the SAL_RESET entrypoint with anon-zero valuein GR32, or by generating areset event that will
cause a system-wide warm boot. Note that during the transition from PALE_RESET to
SAL_RESET viaSALE_ENTRY, the value in GR32 will be zero.

The following defines the behavior of SAL_INIT:

¢ During boot, SAL_RESET code will call PAL_MC_REGISTER_MEM to tell PAL code
where it may deposit some minimal processor state information so that PAL code has
sufficient resources to perform the necessary machine check or INIT processing. This stepis
performed on all the processorsin the system.

SAL_INIT savesthe minimal processor state information aswell as some additional processor
and platform state information in the SAL data area and provides the sameto OS _INIT.
PAL_INIT and SAL_INIT shall not hide any architectural state from the OS_INIT layer.

* Check if the OS_INIT handlersfor the monarch and non-monarch processors are registered
and that both of them are vaid. When the OS_INIT procedures were registered with the SAL,
the operating system may optionally supply the modulo checksum for the code areas (all bytes
of the code areaincluding the checksum byte must add up to zero). The SAL savesthe
checksumsfor the code areas. On receipt of the INIT condition, the SAL verifiesthe checksum
of the code at the OS_INIT procedure addresses before jumping to it.

¢ |f the code for the OS_INIT handlers are intact, call the OS_INIT handlers for the monarch
and non-monarch processors.

¢ |f the OS_INIT handler is not registered, set implementation-dependent SAL warm boot
indicator and reboot the system either by calling SAL_RESET or by generating areset event.

1. CR.itm and AR.itc must remain unchanged (see Table 8-1, “ Definition of Terms”).

Intel® Itanium® Processor Family System Abstraction Layer Specification 65

Initialization Event In'te|®

INITs are masked on entry to SAL_INIT and should remain masked (PSR.mc = 1) until the INIT
processor stateislogged at least. Thereis neither arequirement nor away to clear apending INIT
condition.

Figure 5-1 shows a possible flow of control through SAL_INIT.

Figure 5-1. SAL_INIT Control Flow

5.2

66

INIT ()
Event PAL_INIT
A 4

SAL_INIT

Write Processor/
Platform Info to

Save Area
OS_INIT y
Procedures - YES OS_INIT
Valid?
No

Warm Boot Return Value

from OS

A 4

Warm Boot
(SAL Implementation

Specific) PAL_MC_RESUME

000938b

OS_INIT

OS_INIT isan entrypoint into the operating system to deal with the initialization event. The exact
definition of OS_INIT functionality is OS-dependent. SAL_SET VECTORS s called by the
operating system prior to theinitialization event to register the physical addresses and the GP of the
OS_INIT handlersfor the monarch and non-monarch processors. If an operating system intends to
make the monarch selection in the operating system layer, it could register the same OS_INIT
entrypoint for both the monarch and non-monarch processors. From the SAL'’s perspective, there
are no functionality differences between the two OS_INIT entrypoints and the hand-off state from
the SAL to the OS_INIT layer are similar.

Following are the typical SAL procedures that may be invoked by the OS_INIT handler:
e SAL_MC_RENDEZ
e SAL_GET_STATE_INFO
e SAL_GET_STATE_INFO_SIZE
e SAL_CLEAR_STATE_INFO

Intel® Itanium® Processor Family System Abstraction Layer Specification

5.3

Note:

Note:

Initialization Event

When the OS_INIT layer iscaled by SAL_INIT, OS_INIT should call SAL_GET_STATE_INFO
to get processor/platform state. When it has finished this task, it must call
SAL_CLEAR_STATE_INFO to release these resources for future logging and state save. The
OS _INIT can then re-enable further INITs and machine checks by clearing the PSR.mc bit to O.

The OS_INIT handler shall return to the SAL with an indication to effect awarm reset or areturn
to the interrupted context. The OS_INIT may set new values for registers that are saved by PAL in
the Min-State Save area. Thisis achieved by constructing a data structure with the format identical
to the Min-State Save area and passing the same as an argument to the PAL_MC_RESUME
procedure. Refer to the Intel® Itanium® Architecture Software Developer’s Manual for the layout
of this structure.

OS_INIT Hand-off State

The OS_INIT interface defines the boundary between SAL_INIT and the operating system code,
OS _INIT. The contents of non-banked and bank zero general registers at the time of the
interruption have been saved by PAL in the Min-State Save area and these are available for use by
SAL and OS_INIT. The following register contents define the OS_INIT hand-off state.
The state of the processor is the same as on exiting PALE_INIT (refer to the Intel® Itanium®
Architecture Software Developer’s Manual) except as below:

GR1 = Physical address of the OS_INIT Global Pointer (GP) registered by the
operating system (the operating system’s GP).
GRs2-7 = Unspecified.
GRS = Physical address of the PAL_PROC entrypoint.
GR9 = Physical address of the SAL_PROC entrypoint.
GR10 = GPvalue (Physical address) for SAL.
GR11 = INIT reason code:
0= Received INIT signal on this processor for reasons other than machine
check rendezvous and CrashDump switch assertion.
1= Received INIT signal on this processor during machine check rendezvous.
2 = Received INIT signal on this processor due to CrashDump switch
assertion.
GR12 = Return address to alocation within the SAL_INIT procedure.
GRs13-31 = Refer to the Intel® Itanium® Architecture Software Developer’s Manual .
BRO = Unspecified.

On entry into SAL_INIT, the RSE has been set to enforced lazy mode configuration. The operating
system must not make cacheable accesses to the Min-State Save area, otherwise unexpected
behavior will occur.
System state resources are:

* TLB -TCsand TRs are unchanged.

* Caches— Enabled, coherent and consistent in the absence of hardware failures.

* Memory — Unchanged, except for the updated Processor State |nformation (PSI) area.
The RSE backing store must be restored to OS_INIT, such that the OS has the context to unwind

the stack, if desired. Thisimpliesthat ar.bspstore, and the RSE dirty register partition that existed at
the time of the INIT must be restored on entry to OS_INIT.

Intel® Itanium® Processor Family System Abstraction Layer Specification 67

Initialization Event

5.4

5.5

68

intel.

Return from OS_INIT Procedure

When the OS_INIT procedure returns to the SAL, it must set appropriate values in the Min-State
Save area pointed to by GR22, for continuing execution at the interrupted or anew context. The
operating system must restore the processor state to the same as on entry to OS _INIT except as

follows:

GRsl1-7
GRS

GR9
GR10

GRsl1-21
GR22

GRs23-31
PSR
BRO

Unspecified.

0 if SAL must return to interrupted context using PAL_ MC_RESUME.

—1if SAL must warm boot the system.

GP (Physical address value) for SAL.

0 if return will be to the same context.

1if return will be to anew context.

Unspecified.

Pointer to a structure containing new values of registers in the Min-State Save
area; PAL_MC_RESUME procedure will restore the register values from this
structure; OS_INIT must supply this parameter even if it does not change the
register valuesin the Min-State Save area.

Unspecified.

Same as on entry from SAL_INIT except that PSR.mc may be either O or 1.
Unspecified.

If OS_INIT requests SAL to reboot the system, it is SAL’s responsibility to rendezvous all the
processors in the system and then select a BSP for further system initialization.

MP INIT Support

In aMP configuration, the following should be observed:

¢ For monarch and non-monarch processors entering SAL_INIT, if there are no registered
OS _INIT handlers or the OS_INIT checksum isincorrect, the system should reset the system
and perform awarm boot. The first processor to observe this condition shall reset the system.

* Processorsin SAL boot rendezvous should not enter SAL_INIT. They should remain in SAL
boot rendezvous until awakened by the BSP or the system resets.

Intel® Itanium® Processor Family System Abstraction Layer Specification

intel.

Platform Management Interruptions 6

Patform Management Interruptions (PMIs) provide an operating system-independent interrupt
mechanism to support OEM and vendor-specific hardware events.

6.1 SALE_PMI Overview

PMI interrupts cause execution of code at PALE_PMI handler. This code saves key processor state
in interruption resources and then callsthe SALE_PMI handler. SALE_PMI shall return to the
PALE_PMI layer which, in turn, will return to the interrupted context.

PALE_PMI cdls SALE_PMI whenthe PMI pinisasserted, or on receipt of a SAPIC message with
delivery type of PMI and interrupt vector value in the range reserved for SAL. Certain
processor-specific events may also cause PMI interrupts. These are handled entirely within the
PALE_PMI environment and the SAL layer is not notified. Refer to the Intel® Itanium®
Architecture Software Developer’s Manual® for details regarding PALE_PMI processing.

PMI is the highest priority external interrupt and it ranks after Reset, Machine Check and INIT in
terms of priority. PMI is masked by setting the PSR.ic bit to O (interrupt collection disabled). The
PSR.i bit (interrupt enable) has no effect on masking of PMI events.

The operating system can mask PMIs by setting PSR.ic bit to O (interrupt collection disabled).
Also, PMI interrupt processing causes execution of PALE_PMI code before entering the
SALE_PMI code. To minimize latency in entering code inthe SALE_PMI layer, the operating
system must avoid operating with PSR.ic bit set to O for long durations. Otherwise, some software
inthe SALE_PMI layer may fail. Note that some real time applications may have more stringent
timing restrictions with regards to operating with interrupt collection disabled.

Operation with PSR.ic bit set to 0 compromises recovery from machine check and INIT events. It
also causes specia problemsif multiple SAPIC messages of PMI delivery type are targeted to the
same destination processor (see Section 6.4).

One method of software entry into the PMI environment isto send a SAPIC message to the same
processor. Such a SAPIC message must use the interrupt vector value in the range reserved for
SAL.

6.2 SALE_PMI Initialization

During power up, SAL copies the SALE_PMI handler to memory and then invokes the PAL
procedure PAL_PMI_ENTRY POINT to set the programmable entrypoint of the SALE_PMI
procedure. In an MP environment, this step must be performed on all the processors. The
SALE_PMI entrypoint can be different for various processors in an MP configuration.

1. CR.itm and AR.itc must remain unchanged (see Table 8-1, “ Definition of Terms”).

Intel® Itanium® Processor Family System Abstraction Layer Specification 69

Platform Management Interruptions Inte|®

6.3

6.4

70

SALE_PMI Processing

On entry to SALE_PMI, one of the general registers contains the type of PMI interrupt and the
interrupt vector value. The processor state at entry to SALE_PMI and the exit conditions from
SALE_PMI to PALE_PMI are fully documented in the Intel® Itanium® Architecture Software
Developer’s Manual.

SALE_PMI isentered in physical mode with PSR.i and PSR.ic bits set to O (interrupt and interrupt
collection bitsdisabled). SALE_PMI executes in the Itanium system environment regardless of the
current processor state. The processing steps for various PMI events within the SAL layer are
platform and SAL implementation-dependent. At the end of processing the PMI, SALE_PMI
returnsto PALE_PMI using branch register BRO. There is neither a requirement nor away to clear
apending PMI interrupt.

It is possible for multiple SAPIC messages of PMI delivery type to be delivered to a processor
simultaneously. In this situation, only one PMI interrupt will be recognized. This is analogous to
sending edge triggered externd interrupts using the same interrupt vector. To guard against loss of
such PMI messages, SALE_PMI layer on the sending processor may communicate the reason for
the PMI using memory data structures.

Special Considerations for Multiprocessor
Configurations

Depending on the platform, SALE_PMI may determine whether to bring all the processorsin the
system to the SAL PMI environment. This can be achieved by sending a SAPIC message with
delivery type of PMI. In an MP configuration, there could be conflicts between PMI and machine
check. One of the processors could bein SAL_CHECK, trying to bring other processors to
SAL_MC_RENDEZ using the MC_rendezvous external interrupt. If thelatter werein SALE_PMI,
the MC_rendezvous external interrupt would not be recognized immediately and this might
necessitate the monarch processor to issue an INIT to the processor in the PMI environment. Since
recoverability from INIT isminimized when PSR.icis 0, it is recommended that SALE_PMI
handler saves the interruption resources and set the PSR.ic bit to 1 as early as possible.

Intel® Itanium® Processor Family System Abstraction Layer Specification

intel.

IA-32 Support (Optional) !

7.1

7.2

7.2.1

|A-32 Support Model

This chapter describes the optional | A-32 support within SAL during the booting process.
Additionally, it provides some guidelines on the choice of 1A-32 instructions to SAL developers
who plan to re-use existing 1A-32 BIOS code.

For details on 1 A-32 instruction execution on Itanium architecture processors, refer to Volume 1,
Chapter 6 and Volume 2, Chapter 10 of the Intel® Itanium® Architecture Software Developer’s
Manual.

IA-32 support code in SAL cannot be used after an operating system (1A-32 operating system or
Itanium architecture-based operating system) has taken control of the translation resources. Most
Itanium architecture-based operating systems will provide their own 1A-32 support code and not
usethe code in SAL. If the user boots an | A-32 operating system, SAL would have invoked the
PAL_ENTER_IA_32_ENV procedure which activates the PAL layer in support of | A-32 operating
systems and this PAL firmware layer configures the processor to behave like a Pentium® 111
processor, obviating the need for SAL’s | A-32 support code. For more details, refer to Intel®
Itanium™ Processor Reference Manual for Software Devel opment.

During the platform initialization phase of the boot sequence, the IVA may pointtoa32 KB IVT in
the firmware address space. Some of the trap handlersin the IVT could support execution of [A-32
code. Thus, it is possible to execute | A-32 code early in the boot sequence, if needed. Refer to
Chapter 3, for fault/trap handler support requirementsin SAL.

IA-32 Support Requirements

Itanium architecture-based platforms may contain one or more | A-32 adapter cards containing
IA-32 Option ROMs. If the adapter cards support boot devices, they will need to beinitialized in
the process of booting the operating system. The | A-32 support code in SAL will be exercised
while executing the |A-32 code. Also, since SAL contains | A-32 support code for execution of the
IA-32 Option cards, aportion of the SAL layer for Itanium architecture-based platforms may itself
be coded in IA-32 | SA (i.e. the traditional 1A-32 System ROM BIOS may be reused).

Resources Supported by SAL

The following resources need to be supported by SAL for maintaining legacy compatibility.
* Legacy Memory Map:

— Interrupt Vector Area 0 — Ox3FF: Contains entrypoints for software interruptsin
offset:segment format.

— BIOSRAM Data Area 0x400 — Ox4FF. Data variables stored by System BIOS and Option
ROMs.

— Option ROM Space: 0x000C_0000 — 0x000D_FFFF.

— legacy Compatibility Entrypoints. Addressesin the OXO00OF _EOQ0 to OxO00F_FFFF range
pointing to entrypoints and tables.

Intel® Itanium® Processor Family System Abstraction Layer Specification 71

IA-32 Support (Optional) In'te|®

71.2.2

7.2.3

72

It is expected that SAL code would be designed to useidentical virtual-to-physical memory
mappings and not conflict with the | A-32 BIOS memory usage.

¢ Legacy I/O Map: Motherboard 1/0 ports are in the range of 00 to OxFF and other 1A-32
devicesoccupy therest of the 64K 1/0 space. The most important 1/O ports used by BIOS code
are Interrupt controller (0x20, 0x21, OXAO, 0xA1), Interval timer (0x40 to 0x43) and CMOS
RAM (0x70, 0x71).

Overview of I1A-32 Support Layer Functionality

I A-32 support layer ismainly required for the following areas:

* Memory mapped I/O: The processor needs to provide the uncacheable semantics for memory
mapped 1/0 to devices such as VGA buffer. Also, the search for memory mapped devices need
to be performed without caching artifacts. Caches within the processor are enabled by
invoking the PAL_PROC_SET FEATURES call. When processor caches are enabled, the
uncacheable memory attribute required for I/O completion is specified by setting bit 63 of the
memory address, in physical addressing mode. Bit 63 of the physical address has no effect
while processor caches have been disabled using the PAL_PROC_SET_FEATURES call.

Sinceit is not possible to generate an address with bit 63 set while operating in the 32-bit
IA-32 ISA mode, |A-32 code needs to be executed with trand ations enabled and TLBs need to
specify the uncacheable memory attribute. TL Bs provide the same functionality asMTRRs on
a Pentium Pro processor.

¢ Handle traps during 1A-32 code execution.

¢ Virtualizing legacy peripherals: If some legacy devices are not present on the platform, SAL
may provide the necessary virtualization during 1A-32 code execution by setting up TLBsto
trap the accesses.

IA-32 Instruction Usage Guidelines

| A-32 system BIOS code executing within the SAL environment must follow these guidelinesin its
usage of 1A-32 instructions, in order to limit SAL’s1A-32 support requirements. These restrictions
do not affect operation of existing 1A-32 Option ROMs which are restricted to operating in |A-32
rea mode. Option ROM code on legacy compatible platforms are already compliant with the
following guidelines:

* |A-32 code shall not use protected mode instructions of the IA-32 ISA. Only real mode and
big real mode opcodes are permitted. The transitions between real mode and big real mode
will occur using the SAL code that sets up the appropriate 1A-32 segment descriptors, and not
by use of the IA-32 LGDT instruction. The traditional 1A-32 BIOS functions requiring
protected mode usage, such as search for PCI Option ROMs near 4 GB address, can be done
easily using the big real mode or in the Itanium system environment. SAL will provide support
the Extended Memory Move function (IA-32 INT 0x15, sub function 0x87) for moving datato
and from addresses above 1 MB.

¢ |A-32 code shall not alter the following bits of EFLAGS: TF, NT, RF, AC.

* |A-32 code shall not use code involving 1A-32 privileged instructions such as LGDT,
RDMSR, MOV to CRs, DRs, etc. Such functionality must be replaced by equivaent Itanium
instructions. Refer to the Intel® Itanium® Architecture Software Devel oper’'s Manual for a
complete list of instructions that cause the | A-32 Instruction Intercepts.

* SAL shall provide necessary emulation support for the following instructions:

Intel® Itanium® Processor Family System Abstraction Layer Specification

7.2.4

7.2.5

IA-32 Support (Optional)

CLI,CLTS, HLT, I NT 3,1 NTO | NVD, | NVLPG | RET, | RETD,
MOV SS, POP SS, POPF, POPFD, STI , \BI NVD

¢ |A-32 code shall not use code involving |A-32 Call Gates.
¢ |A-32 stack must be aligned on an even byte boundary. The 1A-32 support layer in SAL will

need to retrieve or store valuesinto the |A-32 stack in order to emulate instructions such as
INT, IRET. If the | A-32 stack is aligned on an odd byte boundary, an unaligned data reference
fault will result and SAL does not provide a handler for this exception.

The above restrictions are not applicable when the operating system kernel takes over. Thus, an
IA-32 or Itanium architecture-based operating system may set up the environment for 1A-32
protected mode and invoke protected mode functions of |A-32 BIOS.

IA-32 Support Environment

This section describes the execution environment for 1A-32 code.

1

IA-32 BIOS code will be executed with Instruction translation on, Data translation on and
RSE trandation on (PSR.it = 1, PSR.dt = 1, PSR.rt = 1). The PSR.ac bit may be set to 0 to
mask exceptions caused by unaligned memory references during execution of A-32 code.

The following traps will be supported in the Interrupt Vector Table (IVT) for supporting 1A-32
execution:

« 1A-32_Exception vector
* 1A-32_Intercept vector
¢ |A-32_ Interrupt vector
 External interrupt vector

SAL will set up CFLG register which mapsto the | A-32 system registers CRO and CR4. When
SAL procedures are called by the operating system loader, SAL will set up the appropriate
value in the CFLG register, if transition to |A-32 ISA mode is required.

The CFLGio bit will be set to 0 to eliminate the need for Task State Segment (TSS) while
executing 1A-32 code. IA-32 EFLAG.opl field should be set to 3 to permit IA-32 1/O
instructions without causing any traps. IOBA SE register and translation mechanisms within
the processor will be set up to automatically convert the IA-32 I/O accesses to Itanium
instructions for memory load or store operations with the uncacheable memory attribute. If
some legacy devices are not present on the platform, TLBs may be set up to trap the accesses
and SAL can either redirect the I/O to adifferent hardware on the platform or provide suitable
software emulation.

The PSR.i bit may be set to 1 to enable interrupts in the Itanium system environment and the
CFLGiif bit may be set to 1 to allow | A-32 code to control interrupt masking. With these
settings, the 1A-32 EFLAG.T bit will enable or disable external interrupts while executing
IA-32 code. The EFLAG.T bit cannot mask/unmask interrupts while executing the Itanium
instruction set.

The CFLGii bit may be set to 0 if there is no need to intercept changes to interrupt enable flag.

IA-32 Interruption Handler Support

External interrupts, |A-32 defined exceptions and software interrupts are delivered to the
interruption handlersin the Itanium system environment. All interruption handlers may run with
PSR.dt, PSR.rt turned off to avoid the Nested TLB fault that can occur while accessing the fault

Intel® Itanium® Processor Family System Abstraction Layer Specification 73

IA-32 Support (Optional) In'te|®

74

handler’slocal variables and data structures. SAL will populate the following handlersin the IVT
to handle interruption in its environment:

* |A-32_Exception vector: This handler will handle exceptions caused by 1A-32 instructions

such as Divide by zero fault. These interruptions should not occur while executing debugged
IA-32 BIOS code. The exception should be reflected to 1 A-32 code using the |A-32 real mode
Interrupt Descriptor Table (IDT) at locations 0 to Ox3FF. Typically, IA-32 codeinthe IDT will
display an error message when such exceptions are encountered.

IA-32_Intercept vector: This handler will handle several categories of intercepted instructions
as described in the Intel® Itanium® Architecture Software Developer’s Manual.

— Instruction Intercept: Refer to Section 7.2.3 for alist of the |A-32 instructionsthat must be
emulated by SAL.

— Lock Intercept: Thisinterruption handler will be invoked for the LOCK and the XCHG
instructions. Thisintercept can be avoided by enabling the lock feature in the Itanium
processor’s Default Control Register (DCR.Ic = 0), if the platform can support locked read
modified writes. If the platform does not support the bus lock signal,
PAL_BUS SET FEATURES may beinvoked to execute the locked transactions as a
series of non-atomic transactions. This, in effect, will mask the lock intercept. Refer to the
Intel® Itanium® Architecture Software Developer’s Manual for details.

— Gate Intercept: Support is not needed for trapping privilege transitions using gates. |A-32
System BIOS code shall avoid thisintercept and Option ROM codeis not permitted to use
privilege transitions using gates.

— 1A-32 System Flag Intercept: Thisintercept can be avoided for the STI, CLI, POPF and
POPFD instructions by setting CFLG.if bit to 1, which allows the IA-32 code to control
interrupt masking with the |A-32 EFLAG.f bit. To support the MOV SS and the POP SS
instructions, SAL shall disable interrupts and execute the next 1A-32 instruction with the
PSR.ssset to 1. Thiswill generate an 1A-32_Exception (Debug). The handler for this
exception will restore the previous value of PSR.i and return to the 1A-32 code.

* |A-32_Interrupt vector: Thishandler supportsthel A-32 INT instruction. SAL will provide the

necessary emulation support for the Extended Memory Move function (INT 0x15, subvention
0x87) in order that real mode code may move data to and from addresses over 1 MB without
requiring atransition to the Itanium system environment. The rest of the INT instructions will
be emulated by jumping to the address pointed to by the IA-32 real mode IDT. Following is
an example of pseudo code:

— Get the Software interrupt number nn from ISR.vector.

— Use nn asanindex into the |A-32 real mode Interrupt Descriptor Table at location
0000h and obtainthesegnent : of f set of IA-32 code to be invoked.

— Store the two byte FLAGS on | A-32 stack.

* Storethe segnent : of f set address of the IA-32 instruction followingthe | NT nn
on 1A-32 stack. Storethe lA-32 segnent : of f set addressesin the appropriate
Itanium architecture processor registers corresponding to IP, CS sdlector, CS segment
descriptor and transition to I1A-32 code using RFI instruction.

* ThelA-32 code will terminate by issuing an IRET or aRET 2 instruction and this will
return to the 1A-32 instruction following the | NT nn.

External interrupt vector: Hardware interrupts will be received by SAL in the Itanium system
environment which will obtain the interrupt vector corresponding to the interrupting source.
For more details, refer to Section 3.3.1. If the interrupts need to be reflected to | A-32 code, the
address will be derived from the |A-32 Interrupt Descriptor Table.

Intel® Itanium® Processor Family System Abstraction Layer Specification

intel.

Calling Conventions

8.1 SAL Calling Conventions

The following general rules govern the definition of the SAL procedure calling conventions.

8.1.1 Definition of Terms

The terms used in the definition of the requirements are defined in Table 8-1.

Table 8-1. Definition of Terms

Term Description
Entry Start of the first instruction of the SAL procedure.
Exit Start of the first instruction after return to caller’s code.
0 Must be zero at entry to or exit from the procedure.
1 Must be one at entry to or exit from the procedure.
C The state of bits marked with C are defined by the caller. If the value at exit is also C, it must be
the same as the value at entry.
Unchanged | The SAL procedure must not change these values from their entry values during execution of
the procedure.
Scratch There are no requirements on the state of these values during execution of the procedure. The
SAL procedure may modify them as necessary during execution of the procedure.
Preserved | The SAL procedure may modify these values as necessary during execution of the procedure.
However, they must be restored to their entry values prior to exit from the procedure.
8.1.2 Processor State

Table 8-2 defines the requirements for the Processor Status Register (PSR) at entry to and at exit

from a SAL procedure call. The operating system loader must follow the state requirements for
PSR shown below. SAL calls that invoke PAL procedures may impose additional requirements.

Table 8-2. State Requirements for PSR

PSR Bit Description Entry Exit Class
be Big-endian memory access enable 0 0 Preserved
up User performance monitor enable C C Unchanged
ac Alignment check C C Preserved
mfl Floating-point registers f2-f15 written C C Preserved
mfh Floating-point registers f16-f127 written C C Preserved
ic Interruption state collection enable C C Preserved?®

0 0 Unchanged
i Interrupt unmask C C Preserved®
pk Protection key validation enable C C Unchanged

Intel® Itanium® Processor Family System Abstraction Layer Specification

75

Calling Conventions

Table 8-2. State Requirements for PSR (Continued)

8.1.3

intel.

PSR Bit Description Entry Exit Class
dt Data address translation enable C C Preserved?®
dfl Disabled FP register f2 to f15 C Unchanged®
dfh Disabled FP register f16 to f127 C C Unchanged®
sp Secure performance monitors C C Unchanged
pp Privileged performance monitor enable C C Unchanged
di Disable ISA transition C C Preserved
si Secure interval timer C C Unchanged
db Debug breakpoint fault enable C C Unchanged
Ip Lower-privilege transfer trap enable C C Unchanged
tb Taken branch trap enable C C Unchanged
rt Register stack translation enable C C Preserved?®
cpl Current privilege level 0 0 Unchanged
is Instruction set 0 0 Preserved
mc Machine check abort mask C C Preserved®

1 1 Unchanged
it Instruction address translation enable C C Unchanged
id Instruction debug fault disable C C Unchanged
da Disable Data access/dirty-bit faults 0 0 Unchanged
dd Data debug fault disable 0 0 Unchanged
ss Single step trap enable 0 0 Unchanged
ri Restart instruction 0 0 Preserved
ed Exception deferral 0 0 Preserved
bn Register bank 1 1 Preserved
ia Disable instruction access-bit faults 0 0 Unchanged

a. If this bit is 0 on entry, the value of this bit shall be 0 on exit and it must be classified as unchanged.

b. SAL procedures shall not enable interrupts if interrupts are disabled on entry.

c. If this bit is 1 on entry, a Disabled FP-register vector fault may occur.
d. In general, this bit shall be 0 on entry, 0 on exit and of class preserved. If this bit is 1 on entry, the value on exit shall be 1 and
must be classified as unchanged.

System Registers

Table 8-3. System Register Conventions

76

Name Description Class
DCR Default Control Register Unchanged
IT™ Interval Timer Match Register Unchanged
IVA Interruption Vector Address Unchanged
PTA Page Table Address Unchanged
GPTA Reserved IA-32 Resource Unchanged
IPSR Interruption Processor Status Register Scratch

Intel® Itanium® Processor Family System Abstraction Layer Specification

intgl.

Table 8-3. System Register Conventions (Continued)

Calling Conventions

Name Description Class
ISR Interruption Status Register Unchanged?
1P Interruption Instruction Bundle Pointer Unchanged?
IFA Interruption Faulting Address Unchanged?
ITIR Interruption TLB Insertion Register Unchanged?
1IPA Interruption Instruction Previous Address Unchanged?
IFS Interruption Function State Unchanged?
1IM Interruption Immediate Register Unchanged?
IHA Interruption Hash Address Unchanged?
LID Local Interrupt ID Unchanged
IVR Interrupt Vector Register (read only) Unchanged
TPR Task Priority Register Unchanged
EOI End of Interrupt Unchanged
IRRO-IRR3 Interrupt Request Registers 0-3 (read only) Unchanged?
ITV Interval Timer Vector Unchanged
PMV Performance Monitoring Vector Unchanged
CcMCcvV Corrected Machine Check Vector Unchanged
LRRO-LRR1 Local Redirection Registers 0-1 Unchanged
RR Region Registers Preserved
PKR Protection Key Registers Unchanged
TR Translation Registers Unchanged®
TC Translation Cache Scratch
IBR/DBR Break Point Registers Preserved
PMC Performance Monitor Control Registers Preserved
PMD Performance Monitor Data Registers Unchanged®

a. SAL procedures may not update these registers, but the arrival of asynchronous interrupts may cause them to change.
b. If an implementation provides a means to read TRs through a PAL procedure call, this should be preserved.
¢. No SAL procedure writes to the PMD. Depending on the PMC, the PMD may be kept counting performance monitor events

during a procedure call.

8.1.4 General Registers

SAL will use the standard calling convention as described in the Itanium® Software Conventions
and Runtime Architecture Guide. Routines written using this convention may be written either in
assembly or C or other high level languages.

Table 8-4. General Registers — Standard Calling Conventions

Register Conventions
GRO Always 0.
GR1 Special; global data pointer (GP).
GR2 - GR3 Scratch; used with 22 bit immediate add.
GR4 - GR7 Preserved.

Intel® Itanium® Processor Family System Abstraction Layer Specification

7

Calling Conventions In'te|®

Table 8-4. General Registers —Standard Calling Conventions (Continued)

8.1.5

8.1.6

8.1.7

8.1.8

78

Register Conventions
GR8 — GR11 Scratch, procedure return value.
GR12 Special, stack pointer. preserved.
GR13 Special, thread pointer. preserved.
GR14 - GR31 Scratch.
Bank 0 Registers Preserved.
(GR16 — GR23)
Bank 0 Registers Scratch.
(GR 24 — GR31)
GR32 - GR127 Stacked registers:

in0 — in95: input arguments (SAL index must be in0)
locO — loc95: local variables
outO — out95: output arguments

The GP for the SAL code should be known to system software as SAL passes it as one of the boot
parameters. The caller must initialize the GP and SP prior to calling a SAL procedure. If the GP
and SP values do not point to valid addresses, the SAL behavior is undefined. A minimum 16 KB
bytes must be available for the stack space of the SAL procedure and a minimum of 16 KB bytes of
RSE backing store must be available for SAL.

Floating-Point Registers

Although there is no SAL procedure that passes floating-point parameters, the floating-point
register conventions are the similar to those specified by the Itanium® Software Conventions and
Runtime Architecture Guide. SAL shall not use the floating-point registers 32 to 127, thus
eliminating the need for the operating system to save these registers across SAL procedure calls.
All the pending floating-point exceptions must be handled before calling SAL if the execution
environment for calling SAL cannot handle any floating-point exceptions.

Predicate Registers

The conventions for these registers follow the Itanium® Software Conventions and Runtime
Architecture Guide.

Branch Registers

The conventions for these registers follows the Itanium® Software Conventions and Runtime
Architecture Guide. Note that the application register AR44 (ITC: Interval Time Counter) must
remain unchanged (as in the definition presented in Table 8-1, “ Definition of Terms”)

Application Special Registers

The application registers follow the Itanium® Software Conventions and Runtime Architecture
Guide.

Intel® Itanium® Processor Family System Abstraction Layer Specification

8.2

8.2.1

Calling Conventions

Parameter Buffers

The parameter buffersto SAL_PROC must be aligned to the greater of its data type size or 8-byte
aligned. SAL may check for alignment and return a—2 error if unaligned. Addresses passed to SAL
procedures as buffers for return parameters or input parameter may be physical or virtual and must
be consistent with the PSR.dt value. The addressing mode of the parameter buffers depends on the
execution environment of the caller. The following conventions are followed for the parameter
buffers:

* Until the operating system takes over the IVT and translation faults, parameter buffers passed
to SAL areidentity mapped virtua addresses and are accessible by the region register 0 (RRO).
In this environment, SAL can handle the access faults while accessing parameter buffersif the
buffers are identity mapped.

* Parameter buffers passed to SAL runtime services can be either physical or virtual. If the
parameter buffers are virtual, the operating system runtime execution environment must
provide the proper mapping for the parameter buffers.

Software Interface Conventions for SAL Procedures

A generic interface is provided between the Itanium architecture-based operating system and SAL.
An Itanium architecture-based operating system aways follows the standard calling convention to
call SAL functions. The parameters passed to the SAL interface are defined as follows:

SAL_PROC(arg0, argl, ..., arg7)
Where input parameters (maximum of eight 64-bit values) are:

arg0 —functional identifier. Currently the upper 32 bits are ignored and only the lower 32 bits
are used. The following functional identifiers are defined:

OX01XXXXXX — Architected SAL functional group.

OX02X XX XXX to OXO3X XX XXX —OEM SAL functional group. Each OEM isallowed
to use the entire range in the OX02XX XXX X to OX03XXXXXX range.

OXOAX XX XXX to OXFFFFFFFF — Reserved.
argl —the first parameter of the architected/OEM specific SAL functions.
arg2 to arg7 — additional parameters for architected/OEM specific SAL functions.
and return parameters (maximum of four 64-bit values) are:
retO — return status: positive number indicates successful, negative number indicates failure.
retl to ret3 — other return parameters.

Control Flow of the SAL Interface

The operating system loader follows the standard calling convention to call both architected and
OEM specific SAL functions. The operating system loader sets up the appropriate parametersin
the Itanium architecture processor’s general registers according to the calling convention and calls
SAL_PROC. Thefirst parameter passed to SAL_PROC specifies the functional identifier and
based on the functional identifier, SAL dispatches the function to the appropriate functional block.
Figure 8-1 shows the control flow of the SAL interface.

Intel® Itanium® Processor Family System Abstraction Layer Specification 79

Calling Conventions In'te|®

Figure 8-1. Control Flow of the SAL Procedure Interface

8.2.2

8.2.2.1

C OS/Loader)

SAL-defined interface: Set up
parameters in registers
(arg0...arg7) according to
standard calling convention:
arg0 — Function ID

argl to arg7 — parameters

v

’ SAL_PROC (argO0...arg7) ‘

] .
y A
’ Architected SAL Functions ‘ ’ OEM SAL Functions

001079

Calling Architected/OEM SAL Functions

To call an architected or OEM specific SAL function, the operating system |loader sets up arg0 to
the appropriate architected SAL or OEM specific SAL functional identifier. It then sets up other
parametersin argl to arg7 as specified by the SAL functional description and calls SAL_PROC.
All reserved arguments shall contain the value of 0 else SAL shall return to the caller with the
status of “Invalid argument.” SAL_PROC dispatches this function to either the architected SAL
function handler or the OEM specific SAL function handler based on the functional identifier. The
SAL function returns the status in retO and the additional return parametersin retl to ret3. If the
SAL function is not implemented, the SAL shall return with the Not I|mplemented return status.

SAL Return Status Value

SAL procedures return a 64-bit status value in ther et 0 parameter. Positive numbersindicate
success and negative numbersindicate failure. Table 8-5 summarizes the error code.

Table 8-5. SAL Return Status

80

Register Conventions

0 Call completed without error.
1 Call completed without error but some information was lost due to overflow.
2 Call completed without error; effect a warm boot of the system to complete the update.
3 More information is available for retrieval.

-1 Not implemented.

-2 Invalid Argument.

-3 Call completed with error due to hardware malfunction, firmware error, or if improperly

called (e.g. with PSR.cpl other than 0)

-4 Virtual address not registered.

-5 No information available.

-9 Scratch buffer required.

Intel® Itanium® Processor Family System Abstraction Layer Specification

intel.

SAL Procedures 9

9.1 SAL Runtime Services Overview

SAL runtime services are the firmware procedures which provide abstractions to the operating
system when it is executing. These services provide a platform-independent interface for hardware
components. Runtime services contain procedures called by the operating system to access
platform hardware features on behalf of the operating system. Runtime services should take no
more time to perform an action than it would take the operating system to perform the same action.

The entire SAL runtime services code must be located in one contiguous memory area. Similarly,
the SAL runtime services data area must be located in one contiguous memory area.

SAL runtime services are called from the following execution environment:

Operating system runtime execution environment. The normal operating system execution
environment iswith tranglation on and interrupts enabled but the operating system may choose
to call SAL runtime services in physical mode.

Operating system machine check and initialization handler. The execution environment for
these are provided by SAL and are in physical mode with interrupts disabled.

SAL PMI handler. The execution environment isin physical mode with interrupts disabl ed.

The following general rules govern the operational characteristics of the SAL procedures:

SAL runsin privilege level 0 and will return an error if called from other privilege levels.
SAL runslittle endian.

SAL procedures follow the standard calling convention for the Itanium architecture
processors. The SAL runtime services shall be implemented completely in the Itanium
processor system environment.

Bit 63 of arguments which are physica addresses must be set corresponding to the argument’s
memory attribute.

Some SAL procedures are primarily intended for use during OS initialization and designed to
be called on one processor. These are not required to be re-entrant. Some SAL procedures are
required to be called on multiple processors simultaneously. These are required to be MP-safe
but need not be re-entrant. Some SAL procedures may be re-invoked on the same processor,
e.g. theinvocation of the SAL_GET_STATE_INFO procedure for a CPE event may be
interrupted by the invocation of the same procedure for an MCA event on the same processor.
Such procedures need to be re-entrant as well as M P-safe. These reguirements are specified in
Table 9-2. For the procedures that are not re-entrant, the operating system isrequired to
enforce single threaded access.

The operating system must ensure that SAL procedures run to completion on the same
processor, i.e. the SAL procedure cannot migrate to another processor due to OS context
switching.

Architected SAL runtime procedures are called either in virtual or physical mode under the
operating system execution environment. Virtual mode means that PSR.it, PSR.dt, and PSR.rt
are set to 1, while “Physical mode” meansthat all 3 bitsare 0. If these 3 bits don't all match,
SAL shall return a-3 error.

OEM-specific SAL Runtime procedures may not support both virtual and physical modes of
operation. These calls shall return a-3 error if called in an unsupported mode.

Intel® Itanium® Processor Family System Abstraction Layer Specification 81

SAL Procedures Inte|®

9.1.1

9.1.2

82

* All SAL proceduresthat don’t return the status of unimplemented procedure (1), must be
implemented.

Invoking SAL Runtime Services in Virtual Mode

SAL runtime services may be called either in virtual or physical mode. The normal operating
system execution environment iswith trand ation on and interrupts enabled but operating system
may choose to call SAL runtime services in physical mode.

The parameters passed to SAL runtime services must be consistent with the addressing
environment, i.e. PSR.dt, PSR.rt setting. Additionally, the GP register must contain the physical or
virtual address of the SAL’s GP value provided to the operating system in the Entrypoint Descriptor
(refer to Table 3-5). SAL can compute the addresses of code and data objects within SAL using
offsetsrelative to thei p and GP. In other words, SAL code will be position independent.

The hand-off state from the EFI to the operating system loader will indicate the SAL’s
requirements for virtual address mappings. (Refer to the Extensible Firmware Interface
Specification for details.) In an MP configuration, the virtual addresses registered by the operating
system must be valid globally on all the processorsin the system. The Extensible Firmware
Interface Soecification also provides the interfaces for the operating system to register the virtual
address mappings. Some typical requirements for virtual address mappings are described bel ow:

1. The code and data areas of PAL and SAL in memory must be mapped contiguously in virtual
address space.

2. Some of the SAL runtime services, e.g. SAL_CACHE_FLUSH, will need to invoke PAL
procedures in memory. Prior to invoking the SAL proceduresin virtual mode, the operating
system must register the virtual address of the PAL code space in memory. If SAL needsto
invoke a PAL procedure, SAL shall do so in the same mode in which it was called by the
operating system (i.e. without changing the PSR.dt, PSR.rt and PSR.it bits). While invoking
these SAL procedures, the operating system must provide the appropriate transl ation resources
required by PAL (i.e. ITR and DTC covering the PAL code area).

3. The SAL_UPDATE_PAL procedure will invoke some PAL procedures in the firmware
address space. The operating system must register the virtual address of the firmware address
space (ending at 4 GB). The operating system must provide a contiguous virtual address
mapping for the entire firmware address space. If the SAL_UPDATE_PAL procedureiscalled
in the virtual mode, SAL will compute the virtual addresses of the relevant PAL proceduresin
the firmware address space and invoke them in the virtual addressing mode.

4. The operating system shall register the virtual addresses of the Firmware Reserved Memory if
requested by the SAL (refer to Table 3-5). Such registration must be done prior to making SAL
callsin virtual mode and the operating system must provide a contiguous virtual address
mapping for each of the data aresas.

Access to Resources not Supported by the Operating
System

In order to access resources for which the operating system does not provide the mapping, SAL
runtime services will access the platform resourcesin physical addressing mode. Thiswill be done
by disabling the interrupts and turning the data translation off before accessing the platform
resources. SAL will restore the state of the data translation and interrupt enable bitsin the PSR
after accessing the device. The following is a suggested code sequence:

nov r2=psr. | /] Save current PSR, low 32 bits
rsm (1<<14) | (1<<17) [/ WMask Interrupt (PSR bit 14) and

Intel® Itanium® Processor Family System Abstraction Layer Specification

9.2

SAL Procedures

//disable data translation (PSR bit 17)
e /1 End of instruction group
srlz.d //Serialize
N /1 End of instruction group

ld/st....... //Performload/store to platformspecific
/I devi ce using physical address

nf.a / Ensur e pl atform acceptance

i /1 End of instruction group

nov psr.l=r2 /I Restore original PSR low 32 bits
e /1 End of instruction group

srlz.d /] Serialize
Vs //End of instruction group

The code sequence (from rsm to the second srlz.d) must exist in asingle page of memory and the
translation for this code sequence must exist. The code sequence must not cause any NaT
consumption faults. All the memory accesses in this code sequence must be naturally aligned to
avoid unaligned data reference faults. If disabling of interrupt and data translation are done
separately, interrupts need to be disabled first and then the data translation. The code sequence may
not work if the data trandation is disabled first followed by interrupt disabling. The restoring of the
processor state must be done in the reverse order. In general, interrupt and data translation should
be disabled to access the devices in physical mode and then interrupt and data translation must be
re-enabled as soon as possible.

The duration of interrupt and data translation disabled state should be kept at a minimum to
preclude impacting normal operating system functions.

SAL Procedures that Invoke PAL Procedures

Some of the SAL procedures incorporate both processor and platform functionality. To perform the
processor functionality, these SAL procedures invoke the underlying PAL procedures. These
dependencies are listed in Table 9-1. The operating system isrequired to call the SAL procedures
instead of directly calling the PAL procedures.

Table 9-1. SAL Procedures Invoking PAL Procedures

SAL Procedure PAL Procedure
SAL_CACHE_FLUSH PAL_CACHE_FLUSH
SAL_CLEAR_STATE_INFO PAL_MC_CLEAR_LOG
SAL_GET_STATE_INFO PAL_MC_ERROR_INFO
Return to SAL at the end of OS_MCA, OS_INIT PAL_MC_RESUME

Intel® Itanium® Processor Family System Abstraction Layer Specification 83

SAL Procedures Inte|®

9.3 SAL Procedure Summary

Table 9-2. SAL Procedures

Procedure Function ID Description MP- Re-
(hex) P Safe | entrant
SAL_SET_VECTORS 0x01000000 Register software code locations
with SAL.
SAL_GET_STATE_INFO 0x01000001 Return Machine State information X X
obtained by SAL.
SAL_GET_STATE_INFO_SIZE 0x01000002 | Obtain size of Machine State X X
information.
SAL_CLEAR_STATE_INFO 0x01000003 Clear Machine State information. X X
SAL_MC_RENDEZ 0x01000004 | Cause the processor to go into a
spin loop within SAL.
SAL_MC_SET_PARAMS 0x01000005 Register the machine check interface
layer with SAL.
SAL_REGISTER_PHYSICAL_ 0x01000006 | Register the physical addresses of
ADDR locations needed by SAL.
SAL_CACHE_FLUSH 0x01000008 Flush the instruction or data caches.
SAL_CACHE_INIT 0x01000009 Initialize the instruction and data
caches.
SAL_PCI_CONFIG_READ 0x01000010 Read from the PCI configuration X X
space.
SAL_PCI_CONFIG_WRITE 0x01000011 Write to the PCI configuration space. X X
SAL_FREQ_BASE 0x01000012 | Return the base frequency of the
platform.
SAL_PHYSICAL_ID_INFO 0x01000013 Returns information on the physical X
processor mapping within the
platform.
SAL_UPDATE_PAL 0x01000020 Update the contents of firmware
blocks.

84 Intel® Itanium® Processor Family System Abstraction Layer Specification

SAL Procedures

SAL_CACHE_FLUSH

Purpose:

Calling
Conventions:

Arguments:

Returns:

Status:

Description:

To flush the instruction or data caches on the current processor as well asthe
platform.

Standard. Callable by the operating system in virtual or physical mode.

Argument Description
func_id Function ID of SAL_CACHE_FLUSH within the list of SAL procedures
i_or_d Unsigned 64-bit integer denoting type of cache flush operation:

1 = Flush instruction cache

2 = Flush data cache

3 = Flush instruction and data cache

4 = Make local instruction caches coherent with the data caches
Other values are reserved

Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0

Return Value | Description

status Return status of SAL_CACHE_FLUSH procedure
Reserved 0
Reserved 0
Reserved 0

Status Value | Description

0 Call completed without error
-2 Invalid Argument
-3 Call completed with error
-4 Virtual address not registered

Flushes the instruction and/or data cachesto memory from all levels of cache
hierarchy, controlled by the platform and the processor on which this procedure is
invoked. This SAL procedure must be invoked on at least one processor within a
cache hierarchy (i.e. if platform caches are node specific, this SAL procedure must
be invoked on each node). If cache hierarchy information is not known, then it
must be invoked on each logical processor.

Thei_or_d parameter specifies the instruction and/or data caches. Unified caches
are flushed with both instruction and data caches. This procedure has the effect of
invalidating all instruction cache lines, or causing a write back and then
invalidating all data cache lines.

With thei_or_d parameter vaue of 4, the caller specifies SAL to makethe loca
instruction caches coherent with the data caches. This has the effect of ensuring
that the local instruction caches see the effects of earlier stores of instruction code
done by the local processor.

This SAL procedure invokes the corresponding PAL procedure,
PAL_CACHE_FLUSH. Refer to the Intel® Itanium® Architecture Software
Developer’s Manual for details. This PAL procedure may return to SAL without
compl eting the flush operation should there be an intervening interrupt. The PAL
procedure also returns the external interrupt vector as areturn parameter. In order
to execute the associated external interrupt handler, SAL shall:

« Write to the EOI register (CR.e0i);

Intel® Itanium® Processor Family System Abstraction Layer Specification 85

SAL Procedures Inte|®

* Repost theinterrupt by issuing an Pl message to self with the vector;

« Re-enableinterrupts; and
¢ On return from the external interrupt handler, re-invoke the
PAL_CACHE_FLUSH procedure specifying the continuation point for the
cache flush.
If interrupts need to be handled on atimely basis, this SAL procedure must be
invoked with interrupts enabled, i.e. PSR.i setto 1.

This SAL procedure is required to be MP-safe to permit the operating system on
the various processors to invoke this SAL procedure simultaneously.

Platform
Requirements: None

86 Intel® Itanium® Processor Family System Abstraction Layer Specification

|nte| o SAL Procedures

SAL_CACHE_INIT

Purpose: To initialize the instruction and data caches on the platform.
Calling
Conventions: Standard. Callable by the operating system in virtual or physical mode.
Arguments: Argument Description
func_id Function ID of SAL_CACHE_INIT within the list of SAL procedures
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Returns: Return Value Description
status Return status of SAL_CACHE_INIT procedure
Reserved 0
Reserved 0
Reserved 0
Status: Status Value Description
0 Call completed without error
-2 Invalid Argument
-3 Call completed with error
-4 Virtual address not registered

Initializes the instruction and data caches controlled by the platform only. The
operating system isrequired to invoke the PAL_CACHE_INIT procedure to
initialize the instruction and data caches within the processor. All cache lines will
be invalidated without causing a write back.

This SAL procedure must be invoked on at least one processor within a cache
hierarchy (i.e. if platform caches are node specific, this SAL procedure must be
invoked on each node). If cache hierarchy information is not known, then it must
be invoked on each logical processor.

This SAL procedure is required to be MP-safe to permit the operating system on
the various processors to invoke this SAL procedure simultaneously.

Platform
Requirements: None

Intel® Itanium® Processor Family System Abstraction Layer Specification 87

SAL Procedures

88

intel.

SAL_CLEAR_STATE_INFO

Purpose:

Calling
Conventions:

Arguments:

Returns:

Status:

Description:

Platform

This procedure is used to invalidate the error record logged by SAL with respect to
the machine state at the time of MCAS, INITs, CMCs or Corrected Platform Error
events.

Standard. Callable by the operating system in virtual or physical mode.

Argument Description
func_id Function ID of SAL_CLEAR_STATE_INFO call within the list of SAL
procedures.
type The type of information being invalidated:
0 — MCA event information
1 — INIT event information
2 — Processor CMC event information
3 — Corrected Platform event information
Other values are reserved
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Return Value Description
status Return status of SAL_CLEAR_STATE_INFO
Reserved 0
Reserved 0
Reserved 0
Status Value Description
0 Call completed without error
3 More Error Records of the type are available to be retrieved and cleared
-2 Invalid Argument
-3 Call completed with error
-4 Virtual address not registered

This call will invalidate an error record that is logged by SAL for the specified
event type. Once the record has been invalidated, any subsequent callsto
SAL_GET_STATE_INFO will get a—5 return value (no information available). In
an MP environment, processor record information pertains to the processor on
which this call is executed and the platform record information pertains to the
entire platform. By calling this procedure, the operating system indicates that the
resources used by the SAL to record the event are available for re-use.

If an MCA has been logged and the operating system failsto invalidate the record
prior to another MCA, then SAL may save the additional error records and would
consider thisto be afatal condition with a halt or reboot of the system. This means
that the error record information should be read as part of the OS_MCA handler or
the operating system boot loader and then followed by an explicit clear operation.

SAL returns one error record at atime through the SAL_GET_STATE_INFO
procedure. In certain cases, SAL may have multiple pending error records, to be
retrieved. A return status value of 3 from this call indicates that SAL can be called
to get more error records. Unless the current error record is cleared, further error
records shall not be provided by the SAL.

Requirements: None

Intel® Itanium® Processor Family System Abstraction Layer Specification

SAL Procedures

SAL_FREQ BASE

Purpose:

Calling
Conventions:

Arguments:

Returns:

Status:

Description:

Platform
Requirements:

This call returns the base frequency of the platform and other clock related
information.

Standard. Callable by the operating system in physical or virtual mode.

Argument Description

func_id Function ID of SAL_FREQ_BASE within the list of SAL procedures

clock_type Unsigned 64-bit integer specifying the type of clock source:
0 = Platform base clock frequency (clock input to the processor)
1 = Input frequency to the Interval Timer on the platform (optional)
2 = Input frequency to the Real time clock on the platform (optional)
Other values are reserved

Reserved 0

Reserved 0

Reserved 0

Reserved 0

Reserved 0

Reserved 0

Return Value Description

status Return status of SAL_FREQ_BASE procedure

clock_freq Frequency information in ticks per second

drift_info Drift value in parts per million clock ticks (optional)

Reserved 0

Status Value Description

0 Call completed without error

-2 Invalid Argument

-3 Call completed with error

-4 Virtual address not registered

This procedure is aruntime interface to determine the platform clock frequencies
and to facilitate the operating system in selecting the most accurate clock source.
Thiscall could, in turn, use the services of PAL_FREQ_BASE if the processor
implementation provides an output that is used as the platform clock.

Thiscall is used in determining the frequencies of the processor, the system bus
and the interval timer within the processor. First, the platform base clock frequency
is determined by invoking this SAL procedure with the clock type value of 0. The
clock_freq return parameter provides the platform base clock frequency whichis
also the frequency of the clock input to the processor. The next step is for the
operating system to invoke the PAL_FREQ_ RATIOS and this procedure supplies
the ratios of processor frequency, bus frequency and the interval timer frequency
relative to the clock input to the processor. The products of the clock_freq return
parameter and the various ratios provide the frequencies of the processor, the
system bus and the interval timer within the processor.

This procedure must supply the correct value for the platform base clock frequency
(clock_type of 0) and this value returned cannot be —1. Support for the other clock
types and drift information is optiona. The value in the clock_freq and drift_info
fieldsisset to—1 if the requested information is not available.

Itanium architecture-based platforms must provide mechanisms to determine the
base frequency of the platform.

Intel® Itanium® Processor Family System Abstraction Layer Specification 89

SAL Procedures

intel.

SAL_GET_STATE_INFO

Purpose:

Calling
Conventions:

Arguments:

Returns:

Status:

Description:

90

Provide a programmatic interface to the processor and platform information logged
by SAL with respect to the machine state at the time of the MCAs, INITs, CMCsor
Corrected Platform events.

Standard. Callable by the operating system in virtual or physical mode.

Argument Description

func_id Function ID of SAL_GET_STATE_INFO call within the list of SAL
procedures.

type The type of information being requested:
0 — MCA event information
1 — INIT event information
2 — Processor CMC event information
3 — Corrected Platform Event information
Other values are reserved

Reserved 0

memaddr Memory address of the buffer where the requested information should be
written

Reserved 0

Reserved 0

Reserved 0

Reserved 0

Return Value Description

status Return status of SAL_GET_STATE_INFO

total_len Size in bytes of the error information returned to the caller

Reserved 0

Reserved 0

Status Value Description

0 Call completed without error
1 Call completed without error but some information was lost due to

overflow

-2 Invalid Argument

-3 Call completed with error

-4 Virtual address not registered

-5 No information available

-15 Retry (CMC/CPE), invalid response for MCA/INIT events

This procedure enabl es the operating system (and diagnostic software) to gather
information obtained by SAL with respect to the machine state at the time of
MCASs, INITs, Processor CMCs, or Corrected Platform events.

This call will return any information logged by SAL for the specified event type. In
response to the MCA, Processor CMC, or Corrected Platform event, the operating
system must call this procedure to obtain all the pending processor and platform
error information that triggered the event.

The operating system is expected to call this procedure to retrieve the error record
related to an event. The operating system may retrieve the same information
multiple times prior to clearing the record. The record is cleared by the operating
system calling SAL_CLEAR_STATE_INFO. Once all the records have been
cleared, any subsequent callswill get a—5 return value (no information available).
The operating system must be prepared to handle the -5 return value. In the case of
multiple pending error records of the same type, the operating system hasto get
and clear the current record before it can get the next one.

Intel® Itanium® Processor Family System Abstraction Layer Specification

Platform

SAL Procedures

A return status of —15 indicates that the SAL was unable to create avalid error
record containing processor and/or platform error information due to aresource
conflict. No error record isretrieved. The OS may call SAL_GET_STATE infoat a
later time to get the error information. Note that CMC/CPE interrupts may remain
asserted (if these interrupts are enabled).

A return status of —15 is not avalid response for MCA/INIT events. For
MCA/INIT events, if the SAL isunable to query the processor or platform to
obtain error information due to aresource conflict, then the severity of the error
most be reported as fatal in the record header.

The maximum length of the buffer required to hold the requested record
information is obtained by calling the SAL_GET_STATE_INFO_SIZE procedure.
The operating system is expected to all ocate the memory buffer according to the
returned size and provide the same for the memaddr argument. SAL returns only
one error record at atime in the memory buffer area provided by the memaddr
argument. SAL may indicate the existence of more than one error record through
an appropriate return status during the call to the SAL_CLEAR_STATE_INFO
procedure.

In an MP environment, processor record information pertains to the processor on
which this call is executed and the platform record information pertainsto the
platform. Theinformation returned in the memaddr argument will contain the error
information logged for an event for all the error devices like the called processor,
memory controller, and 1/O devices (including host bridges) in the system. The
exact format of the records will be implementati on-dependent but the record for
each type of device will follow an architected structure to allow the operating
system to parse the records and extract the information. Refer to Chapter , “Error
Record Structures” for format of the error record information returned in the
memaddr argument.

Some categories of CMCs are entirely corrected by processor hardware. When this
procedure isinvoked for CMC information on a particular processor, SAL will
obtain all of the processor error information, by invoking the
PAL_MC_ERROR_INFO procedure. This procedure will then return to the caller
both the information buffered by SAL and the information collected from the PAL.

If an MCA has been logged and the operating system fails to clear the log prior to
another MCA, then SAL may save the additional error records and would consider
thisto be afatal condition with ahalt or reboot of the system. Hence, the MCA log
information should beread as part of the OS_MCA handler or the operating system
boot loader. On the other hand, if a CMC occurs prior to the operating system
clearing the CMC error log, the same shall not befatal. If SAL'sinternal buffersare
not sufficient to log multiple errors of the same type, SAL shdl discard the error
logs for the latter occurrences.

An error record for an MCA event shall be available across reboots if the operating
system has not cleared it already. SAL shall have an implementation specific
NVRAM storage for backing up the MCA error records. The SAL is not required
tolog CMC or CPE error records to the NVRAM storage. An operating system is
expected to retrieve and clear all pending error records during system boot time. If
the operating system fails to clear the log before another MCA surfaces, the SAL
may overwrite the unconsumed NVRAM log, if thereis not space for another
record.

Requirements: None

Intel® Itanium® Processor Family System Abstraction Layer Specification 91

SAL Procedures

92

intel.

SAL_GET_STATE_INFO_SIZE

Purpose:

Calling
Conventions:

Arguments:

Returns:

Status:

Description:

Platform
Requirements:

This procedure is used to obtain the maximum size of the information that could be
logged by SAL with respect to the machine state at the time of MCAs, INITs or

CMCs.

Standard. Callable by the operating system in virtual or physical mode.

Argument Description

func_id Function ID of SAL_GET_STATE_INFO_SIZE call within the list of SAL
procedures.

type The type of information being requested:
0 — MCA event information
1 — INIT event information
2 — Processor CMC event information
3 — Corrected Platform Event information
Other values are reserved

Reserved 0

Reserved 0

Reserved 0

Reserved 0

Reserved 0

Reserved 0

Return Value Description

status
size
Reserved
Reserved

Status Value

Return status of SAL_GET_STATE_INFO_SIZE

The maximum size of the information logged for the specified type
0

0

Description

0
-2
-3
-4

Call completed without error
Invalid Argument

Call completed with error
Virtual address not registered

This call will return the maximum size of the processor or platform information
logged by SAL for the specified event type. The operating system must make this
call to determine the maximum size of data logged by SAL for each type of record.
The operating system may then allocate suitable buffers, and provide the
pre-allocated buffers as argument to subsequent callsto the
SAL_GET_STATE_INFO procedure.

None

Intel® Itanium® Processor Family System Abstraction Layer Specification

SAL_MC_

Purpose:

Calling
Conventions:

Arguments:

Returns:

Status:

Description:

SAL Procedures

RENDEZ

This procedure causes the processor to go into a spin loop within SAL where SAL
awaits awake up from the monarch processor.

Standard. Callable by the operating system in virtual or physical mode.

Argument Description
func_id Function ID of SAL_MC_RENDEZ call within the list of SAL procedures
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Return Value Description
status Return status of SAL_MC_RENDEZ procedure
Reserved 0
Reserved 0
Reserved 0
Status Value Description
0 Call completed without error
-1 Not implemented
-3 Call completed with error
-4 Virtual address not registered

This procedure is invoked on non-monarch processors during machine check
processing. In some instances, this procedure may not be invoked on a processor
until machine check processing has completed. To support these spurious
MC_Rendezvous interrupts, the SAL first determines if a machine check isin
progress. If not, then it returns immediately.

Once it has determined that a machine check is in progress, this procedureis
invoked on non-monarch processors during machine check processing. This
procedure will disable interrupts and set an implementation-dependent check-in
flag within the SAL data area to indicate to the monarch processor that the
non-monarch processor has reached the SAL layer. Next, it will call the
PAL_MC_DRAIN procedure to complete all outstanding transactions within the
processor. The non-monarch processor will then go into a spin loop awaiting a
wake up signal from the monarch processor. The wake up mechanism may be an
externa interrupt or amemory variable as set up by the SAL_MC_SET_PARAMS
procedure. SAL will return an error if awake up mechanism has not been
registered.

If the external interrupt wake up mechanism is chosen, SAL spin loop routine will
poll the local SAPIC IRR register for the bit corresponding to the selected wakeup
interrupt to be set.

If amemory variable mechanism is chosen, SAL spin loop routine will poll the
memory variable for the unique value that includes the contents of the Local 1D
Register (refer to Figure 3-1). The monarch processor will set this value to wake up
one non-monarch processor at atime. SAL on the non-monarch processor will
clear the memory variable to zero and return. This procedure may be called in
virtual or physical mode but when memory variable mechanism is chosen, this

Intel® Itanium® Processor Family System Abstraction Layer Specification 93

SAL Procedures

94

Platform

intel.

procedure must be called in the same mode as the previous call to the
SAL_MC_SET_PARAMS procedure that specified the memory variable.

If the rendezvoused processor takes a machine check while waiting for wake-up,
the SAL should delay the handling of this subsequent machine check event until
completion of the current machine check (i.e. monarch processor returns from
OS_MCA layer).

SAL implementations that do not provide this capability, may mask further
machine checks and escalate future MCA eventsto BINIT# using the
PAL_PROC_SET FEATURES procedure. On receipt of the wake-up signal from
the monarch, the SAL shall restore the origina setting for error promotion and
return to the operating system.

When this procedure returns, it is the responsibility of the operating system to clear
the IRR bitsfor the MC_rendezvous interrupt and the wake up interrupt, if any.

This procedureis required for MP support. This SAL procedure is required to be
MP-safe in order that operating system on the various non-monarch processors
may enter the idle loop within the SAL simultaneously.

Requirements: None

Intel® Itanium® Processor Family System Abstraction Layer Specification

SAL Procedures

SAL_MC_SET_PARAMS

Purpose:

Calling
Conventions:

Arguments:

Returns:

Status:

Description:

This procedure allows the operating system to specify the interrupt number to be
used by SAL to interrupt the operating system during the machine check
rendezvous sequence as well as the mechanism to wake up the non-monarch
processors at the end of machine check processing.

Standard. Callable by the operating system in virtual or physical mode.

Argument Description

func_id Function ID of SAL_MC_SET_PARAMS call within the list of SAL
procedures

param_type Unsigned 64-bit integer value for the parameter type of the machine check
interface:
1 = rendezvous interrupt
2 = wake up
3 = Corrected Platform Error Vector
Other values are reserved

i_or_m Unsigned 64-bit integer value indicating whether interrupt vector or
memory address is specified:
1 = interrupt vector
2 = memory address
Other values are reserved

i_or_m_val Unsigned 64-bit integer value specifying the interrupt vector or the
memory address associated with the i_or_m parameter specified above.

time_out Unsigned 64-bit integer value for rendezvous time out (in milliseconds).

mca_opt Options set by the operating system for MCA handling within SAL.

Reserved 0

Reserved 0

Return Value Description

status Return status of SAL_MC_SET_PARAMS procedure

time_out_min Unsigned 64-bit integer value specifying the minimum rendezvous time
out (in milliseconds)

Reserved 0

Reserved 0

Status Value Description

0 Call completed without error

-1 Not implemented

-2 Invalid Argument

-3 Call completed with error

-4 Virtual address not registered

This procedure allows the OS to specify parametersto the SAL for use during

machine check processing. The parameters specified by the OS are applicableto all
the processors within the system. This procedureis required for MP support.
Section 3.2.2.1 provides details on how the rendezvous mechanism worksin an MP
configuration.

There are some machine check conditions which require the other processorsin the
system to be rendezvoused for error containment purposes and to recover from the
error condition. This procedure allows the operating system to register the interrupt
number it wishesto use for this purpose. Typicaly, when the operating system on
the non-monarch processor receives the rendezvousinterrupt, it will invoke the
SAL_MC_RENDEZ procedureto gointo a SAL spinloop routine. If the operating
system does not register thisinterrupt, SAL_CHECK on the monarch processor

Intel® Itanium® Processor Family System Abstraction Layer Specification 95

SAL Procedures

96

intel.

will be forced to issue INIT and thereby compromise the recoverability from the
machine check condition. This procedure must be called before MCAs can be
handled by the operating system.

The param_type parameter indicates whether the rendezvous interrupt or wake up
mechanism or Corrected platform Error Vector (CPEV) is being specified.

Thei_or_m parameter specifies whether an interrupt or memory variable is used
and this parameter is meaningful only for the param_type of 2. Interrupt is the only
valid choice for the rendezvous function since the ideaisto interrupt the
non-monarch processor as quickly as possible and correct the error. Either interrupt
or memory may be used for the wake up mechanism and this is operating system
implementati on-dependent.

Thei_or_m val parameter specifies the interrupt vector number or the memory
address associated with thei_or_m parameter. If memory address is used for the
wake up mechanism, the memory variable must be aligned on an 8-byte boundary
and coherent across the system fabric. The operating system shall not change the
physical address of the memory variable specified in thei_or_m val parameter.

For the rendezvous interrupt vector, a value of 0 indicates use of PMI as the
interrupt mechanism. The PMI interrupt mechanism shall not be employed by
Itanium architecture-based operating systems as either the rendezvous or the
wake-up interrupt.

The PMI interrupt mechanism is needed for legacy operating system support. SAL
may return an error status on platforms that do not support legacy operating
systems.

The mca_opt argument specifies the optionsthat the SAL MCA handler isrequired
to follow during machine check handling. This parameter is valid only when the
param_type is rendezvous interrupt. Following isthe format of this argument:

Bit Positions Length in Bits Description
0 1 rz_always flag.
1 1 binit_escalate flag
2-63 61 Reserved, must be zero

If therz_alwaysflag is set to 1, the SAL is expected to rendezvous the system for
all detected processor and platform MCA conditions. If thisflag is set to zero, then
rendezvous is done only when PAL initiates the rendezvous request during an
MCA or if SAL decidesto do it for certain platform MCA conditions.

During machine check processing, the SAL operates with machine checks masked
and hence does not immediately recognize subsequent machine checks. If the
operating system wishes to recognize subsequent machine checks in this condition,
it will set the binit_escalate flag to 1. When the binit_escalate flag is set, the SAL
shall escalate future MCAs and BERR eventsto BINIT# using the
PAL_PROC_SET_ FEATURES procedure. On return from the operating system,
the SAL shall restore the original setting.

If the operating system intends to use interrupts for corrected platform events, it
shall register the same interrupt vector number that is programmed into the I/O
SAPIC redirection table entry for triggering platform-corrected error interrupts. If
the operating system intends to use polling to collect thisinformation, it shall
neither register an interrupt vector with the SAL nor program the 1/0 SAPIC
redirection table entry.

Intel® Itanium® Processor Family System Abstraction Layer Specification

Platform

SAL Procedures

Except for the PMI interrupt above, the external interrupt vector value must bein
the range of 16 to 255 since these are the acceptable values that can be transferred
using SAPIC I Pl messages. A high value should be chosen for the rendezvous
interrupt vector to facilitate prompt handling of machine checks. Even a higher
value (close to 255) may need to be used for the wake up interrupt vector (if not
using memory variable mechanism). This is because the operating system is
responsible for clearing the IRR bit associated with the wake up interrupt vector by
reading the VR and issuing the EQI to the local SAPIC. If the wake up interrupt
bit is not cleared promptly, alater call to the SAL_MC_RENDEZ procedure may
return prematurely.

This procedure may be caled in virtual or physical mode but whenthei_or_m
parameter specifiesamemory address, subsequent callstothe SAL_MC_RENDEZ
must be made in the same mode (virtual/physical) asthis call.

Thetime_out field defines the rendezvous time out period in milliseconds. This
parameter is only applicable to the param type of rendezvous interrupt. If the
non-monarch processor does not invokethe SAL_MC_RENDEZ procedure within
the time out period, the monarch processor will generate an INIT signal to the
non-monarch processor. The time out value must be sufficient to cover situations
where other processors may be executing firmware codein local MCA and thus not
be capable of servicing external interrupts or INIT. If the time_out input parameter
isinsufficient, the SAL shall return with a status of —2 and the time_out_min return
argument shall specify the minimum time out interval required by the SAL.

Requirements: None

Intel® Itanium® Processor Family System Abstraction Layer Specification 97

SAL Procedures

98

SAL_PCI_CONFIG_READ

Purpose:

Calling
Conventions:

Arguments:

Returns:

Status:

Description:

Platform
Requirements:

This procedure is used to read from the PCI configuration space.

Standard. Callable by the operating system in virtual or physical mode.

Argument

Description

func_id

address

size
address type

Reserved
Reserved
Reserved
Reserved
Reserved

Return Value

Function ID of SAL_PCI_CONFIG_READ within the list of SAL
procedures

PCI configuration address:

If addresstype= 0

Bits 0..7 — Register address

Bits 8..10 — Function number

Bits 11..15 — Device number

Bits 16..23 — Bus number

Bits 24..31 — PCI segment group

Bits 32..63 — Reserved (0)

If addresstype =1

Bits 0..7 — Register address

Bits 8..11 — Extended Register address
Bits 12..14 — Function number

Bits 15..19 — Device nhumber

Bits 20..27 — Bus number

Bits 28..43 — PCI segment group

Bits 44..63 — Reserved (0)

Address must be naturally aligned with respect to the size of the read.
PCI config size (1, 2 or 4 bytes)

The type of PCI configuration address
0 = PCI Compatible Address

1 = Extended Register Address

Other values reserved

0

O oOoo

Description

status
value
Reserved
Reserved

Status Value

Return status of SAL_PCI_CONFIG_READ procedure
Value read from config space.

0

0

Description

0
-2
-3
-4

Call completed without error
Invalid Argument

Call completed with error
Virtual address not registered

This procedure is a runtime interface used to read from PCI configuration space.
The mechanism for accessing PCI configuration space is abstracted by this

procedure, thereby allowing host bridges to implement this mechanism in different

ways.

A non-zero value in the segment field can be used to access devices on platforms
with greater than 256 buses.

None

Intel® Itanium® Processor Family System Abstraction Layer Specification

SAL Procedures

SAL_PCI_CONFIG_WRITE

Purpose: This procedure is used to write to the PCI configuration space.

Calling

Conventions: Standard. Callable by the operating system in virtual or physical mode.

Arguments: Argument

Description

func_id

address

size
value
address type

Reserved
Reserved
Reserved
Reserved

Returns: Return Value

Function ID of SAL_PCI_CONFIG_WRITE within the list of SAL
procedures

PCI configuration address:

If addresstype= 0

Bits 0..7 — Register address

Bits 8..10 — Function number

Bits 11..15 — Device number

Bits 16..23 — Bus number

Bits 24..31 — PCI segment group

Bits 32..63 — Reserved (0)

If addresstype= 1

Bits 0..7 — Register address

Bits 8..11 — Extended Register address
Bits 12..14 — Function number

Bits 15..19 — Device number

Bits 20..27 — Bus number

Bits 28..43 — PCI segment group

Bits 44..63 — Reserved (0)

Address must be naturally aligned with respect to the size of the read.

PCI config size (1, 2 or 4 bytes)

Value to write to PCI config space
The type of PCI configuration address
0 = PCI Compatible Address

1 = Extended Register Address

Other values reserved

0

o oo

Description

status

Reserved
Reserved
Reserved

Status: Status Value

Return status of SAL_PCI_CONFIG_WRITE procedure
0
0
0

Description

0
-2
-3
-4

Call completed without error
Invalid Argument

Call completed with error
Virtual address not registered

Description: Thisprocedureisaruntime interface used to writeto PCI configuration space. The
mechanism for accessing PCI configuration space is abstracted by this procedure,
thereby allowing host bridges to implement this mechanism in different ways. This
procedure will guarantee the completion of the write to the caller.

A non-zero value in the segment field can be used to access devices on platforms
with greater than 256 buses.

Platform
Requirements: None

Intel® Itanium® Processor Family System Abstraction Layer Specification

99

SAL Procedures

100

intel.

SAL_REGISTER_PHYSICAL_ADDR

Purpose: Provide a mechanism for software to register the physical addresses of locations

needed by SAL

calling

Conventions: Standard. Callable by the operating system in virtual or physical mode.

Arguments: Argument

Description

func_id

phys_entity

p_addr

Reserved
Reserved
Reserved
Reserved
Reserved

Returns: Return Value

Function ID of SAL_REGISTER_PHYSICAL_ADDR call within the list of
SAL procedures

The encoded value of the entity whose physical address is registered

0 = PAL_PROC

Other values are reserved

64-bit integer value denoting the physical address

0

O O oo

Description

status

Reserved
Reserved
Reserved

Status: Status Value

Return status of SAL_REGISTER_PHYSICAL_ADDR procedure
0
0
0

Description

0
-2
-3
-4

Call completed without error
Invalid Argument

Call completed with error
Virtual address not registered

Description: This procedure is used by the operating system to register the new physical
addresses of the PAL_PROC procedure in memory. If the operating system wereto
copy PAL proceduresto adifferent memory location (using the PAL_COPY _PAL
procedure), it must register the new PAL_PROC entrypoint address with the SAL.
The SAL layer will then be in a position to invoke the PAL proceduresin physical

mode.

The phys_entity argument specifies the entity whose physical addressis being
registered with the SAL and the p_addr argument providesits physical address.

Platform
Requirements: None

Intel® Itanium® Processor Family System Abstraction Layer Specification

SAL Procedures

SAL_SET_VECTORS

Purpose:

Calling
Conventions:

Arguments:

Returns:

Status:

Description:

Provide a mechanism for software to register software-dependent code |ocations
with SAL. These locations are “handlers” or entrypoints where SAL will pass
control for the specified event. The events handled are for the Boot Rendezvous,
MCAs, and INIT scenarios.

Standard. Callable by the operating system in virtual or physical mode.

Argument Description
func_id Function ID of SAL_SET_VECTORS call within the list of SAL procedures
vector_type Type of event handler:
0 = Machine Check
1=INIT
2 = BOOT_RENDEZ
3-64 = Reserved
other values are implementation-dependent
phys_addr_1 Physical address of the event handler. This field must be a 16-byte aligned
address.
op_1 Global pointer (GP) of the event handler.
length_cs_1 Size of the event handler procedure and its checksum information
phys_addr_2 Physical address of the event handler. This field must be a 16-byte aligned
address.
ap_2 Global pointer (GP) of the event handler.
length_cs_2 Size of the event handler procedure and its checksum information
Return Value Description
status Return status of SAL_SET_VECTORS procedure
Reserved 0
Reserved 0
Reserved 0
Status Value Description
0 Call completed without error
-2 Invalid Argument
-3 Call completed with error
-4 Virtual address not registered

This procedure enables the operating system (and diagnostic software) to inform
firmware whether it is ready to handle the Machine Check, BOOT_RENDEZ, and
INIT events and precisely where to vector for each case. Since al three events
result in having processor execution being controlled by firmware, firmware
requires these software addresses of the operating system or diagnosticsin order to
pass control. The operating system registers the physical address where the specific
handler resides. SAL uses these addresses to vector to on occurrence of the event.
The parameters specified by the OS are applicable to dl the processors within the
system.

For the INIT event in an MP configuration, separate arguments must be provided
for the first processor (monarch) to enter the SAL_INIT layer and subsequent
processors (non-monarchs). The phys addr_1, gp_1 and length_cs_1 arguments
specify the entrypoint, GP-value and the length details respectively of the OS_INIT
procedure for the monarch and the phys_addr_2, gp_2 and length_cs_2 arguments
respectively specify the entrypoint, GP-val ue and the length details of the OS_INIT
procedure for the non-monarch processors. By having different entrypoints for the
monarch and non-monarch processors, the operating system can easily put the
non-monarch processors into await loop. It is permissible to have the same

Intel® Itanium® Processor Family System Abstraction Layer Specification 101

SAL Procedures

102

Platform

intel.

arguments for the monarch and non-monarch processors. In this case, the operating
system will need to perform the monarch selection on entry into the OS_INIT
procedure.

Thevauein thephys addr_n argument must be 16-byte adligned. The phys addr_n
argument may be checked as to whether it points into legal memory space (as
opposed to 1/0 space or firmware space). Specifying avalue of 0in the

phys addr_n argument invalidates the event handler procedure. For the INIT event
in an MP configuration, the valuesin the phys addr_1 and the phys addr_2
arguments must both be zeroes or non-zeroes, i.e. it is not possible to invalidate
only one of the two entrypoints. The phys addr_2, gp_2 and length_cs 2
arguments for the OS_MCA and the OS_ BOOT_RENDEZ vector_type are
reserved.

Thegp_nfield has the physical address of the GP for the event handler to be called
by SAL.

Thelength_cs n argument has the format shown below:

Bit Positions Length in Bits Description

0-31 32 Length of the operating system procedure in bytes
(this field must be a multiple of 16).

32 1 0 = Checksum information not provided by the
operating system.

1 = Checksum information provided by the
operating system in bits 40-47.

40-47 8 The modulo checksum of the operating system
procedure code area. All bytes including the
checksum byte must add up to zero.

48-63 16 Reserved.

The operating system has the option of registering the length and checksum of the
operating system procedure (or at least thefirst level OS MCA, OS_INIT,
OS_BOOT_RENDEZ procedure). If length_cs_n.Bit32 is set, SAL savesthe
operating system provided checksum for the procedure, and before invoking that
procedure, will authenticate the operating system code by verifying its checksum.
If length_cs n.Bit32 isnot set, SAL will ignore the remaining length_cs _n bitsand
will not authenticate the checksum of the registered procedure before invoking it.

Requirements: None

Intel® Itanium® Processor Family System Abstraction Layer Specification

SAL Procedures

SAL_UPDATE_PAL

Purpose:

Calling
Conventions:

Arguments:

Returns:

Status:

Description:

This procedure is used to update the contents of the PAL block in the non-volatile
storage device.

Standard. Callable by the operating system in virtual or physical mode.

Argument Description
func_id Function ID of the SAL_UPDATE_PAL within the list of SAL procedures
param_buf Pointer to a buffer containing information about the new firmware block(s).
scratch_buf Pointer to a scratch buffer.
scratch_buf_size | Unsigned 64-bit integer value for the size of the scratch buffer in bytes
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Return Value Description
status Return status of SAL_UPDATE_PAL procedure
error_code Additional information pertaining to the error
scrbuf_size_req Size of the scratch buffer needed
Reserved 0
Status Value Description
0 Call completed without error
2 Effect a warm boot of the system to complete the update.
-2 Invalid Argument
-3 Call completed with error. See error_code for details
-4 Virtual address not registered
-9 Insufficient scratch buffer provided

This procedure updates the contents of firmware blocks (e.g. PAL_B) in the
non-volatile storage device and revises the FIT entries pertaining to the firmware
blocks. If checksum isimplemented for the FIT table, this procedure will also
revise the same. This procedure is capable of selecting the appropriate location in
the storage device for the firmware components. In some flash ROM architectures,
updates may not be possible until the following INIT. This scenario is described
later.

Before performing update of PAL, this procedure will utilize resources within the
processor and/or PAL to authenticate the contents of the new version of PAL
provided by the caller. If the authentication is unsuccessful, the current PAL
contents will be left intact.

The param_buf points to a 16-byte aligned data structure in memory with alength
of 32 bytes that describes the new firmware. Thisinformation is organized in the
form of alinked list with each element describing one firmware component. This
procedure will update all the specified firmware components as well astheir FIT
entriesif successful, and none of the firmware components if errors are
encountered. The following table shows the format of each element of the data
structure. Refer to Section 2.5, “Firmware Interface Table" for explanation of fields
within the FIT.

Offset | Length | Description
0 8 64-bit pointer to the next element (0 if none present)
8 8 64-bit memory address of the update_data_block containing new

firmware contents

Intel® Itanium® Processor Family System Abstraction Layer Specification 103

SAL Procedures

104

intel.

Offset Length Description

16 1 Checksum flag:
0= Do not store checksum of this component in its FIT entry
1=Calculate and store checksum of this component in its FIT entry
17 15 Reserved

Theupdate _data block consists of a header of 64 bytes followed by the code for
the firmware component. The following table shows the contents of the 64 byte
header.

Offset Length Description

0 4 Size of the firmware component in bytes including the header (this
field must be a multiple of 16)

4 4 Date of the firmware component in mmddyyyy format: month, day,
year (e.g. 07/18/99 stored as 0x07181999)

8 2 Version number of the firmware component to be stored in its FIT
entry

10 1 Type of firmware component (Refer to Table 2-2 on page 2-22)

1= PAL_B; OxOF = PAL_A (also generic PAL_A); OxOE =
Processor-specific Pal_A

11 5 Reserved
16 8 Firmware Vendor ID
24 40 Reserved

This procedure will locate the PAL_B block on a32K byte aligned boundary on the
storage device.

If the scratch buffer size specified in the scratch_buf_size field isinsufficient, the
call will fail with a status of —9 and the scrbuf_size req return parameter will
specify the size of the scratch buffer required.

SAL reads the CPU identification registers on all the processors in the system and
maintains the processor stepping information. If a split PAL architecture is
supported (generic PAL_A, processor-specific PAL_A), then the SAL also
maintains processor generation information. If the PAL_B component is being
updated, SAL will ensure that the version number of the new PAL_B in the
update data block is compatible with all the processors in the system else return
an error status. If the processor-specific PAL_A component is being updated, SAL
will ensure that the version number of the new processor-specific PAL_A inthe
update_data_block is compatible with all the processors in the system else return
an error status.

The error_code return parameter provides additional information on the failure
when the status field contains a value of —3. Following are the definitions for the
error_codefield.

Error Code Description

-1 Version number of supplied PAL firmware is not suitable for one or more
processors in the system

-2 Supplied version of PAL failed the authentication test

-3 Invalid firmware component type

—4 PAL_A firmware not erasable

-5t0 -9 Reserved

-10 Write failure — inability to write to storage device

-11 Erase failure — inability to erase the storage device

-12 Read failure — inability to read the storage device

Intel® Itanium® Processor Family System Abstraction Layer Specification

Platform

SAL Procedures

In some firmware architectures (e.g. flash), writesto a chip or component
containing firmware would prevent the same chip being available for code
execution. For thisreason, if the PAL or SAL firmware code for handling machine
checks were located on the chip being revised, machine checks must be masked on
all the processors to avoid possible instruction fetch accesses to the firmware
address space. In an MP environment, the operating system must rendezvousall the
other processors on the node whose firmware is being updated. At the end of the
firmware update, the operating system must invoke the PAL_MC_ERROR_INFO
procedure to ascertain whether any machine checks occurred while they were
masked and take corrective actions. The operating system must then wake up the
rendezvoused processors and re-enable machine checks. In a multi-node system
with multiple copies of firmware, it may be possible to redirect interrupts to nodes
other than the one being updated.

In some flash architectures, writes to firmware address space may be prevented by
the flash hardware except immediately following a Reset or INIT. The operating
system may call this procedure in virtual mode but it is required to fix the pages
containing the new firmware contentsin memory, i.e. the operating system must
not change the contents of the corresponding physica pages until the firmware
update is complete. SAL will be aware of flash architecture restrictions and will
perform the usual authentication steps. If the authentication is successful, SAL will
accumulate the physical addresses of the new firmware contents by executing the
TPA instruction. (There may be several non-contiguous physical pagesif the
operating system had called this procedure in virtual mode.) SAL will then return
to the operating system a status value of 1 requesting awarm reboot. When SAL
regains control following the warm reboot, it will conduct the authentication steps
again and, if successful, update the contents of firmware.

The firmware update is effective on the next reboot. However, after a successful
update, firmware contents in the non-volatile storage device and memory will be
inconsistent. The copy in ROM (new code) will be utilized by the machine check
and INIT events while the copy in memory (old code) will be utilized by the
operating system. The operating system may solve this problem either by rebooting
the system following a firmware update, or by updating the memory copy of PAL
procedures by invoking the PAL_COPY _PAL procedure.

If the operating system decides to update the memory copy of PAL procedures,
there are additional considerationsin an MP environment:

1. While the runtime copy of PAL isbeing revised (during execution of the
PAL_COPY_PAL procedure), all the processors in the system must be
prevented from executing PAL proceduresin memory.

2. Themonarch processor, after invoking the PAL_COPY _PAL procedure, must
make the local instruction caches coherent with the data caches by invoking
the SAL_CACHE_FLUSH procedure (with thei_or_d parameter value of 4).

3. The non-monarch processors on being woken up by the monarch processor
must invoke the PAL_COPY _PAL procedure to register the new PAL
entrypointsfor PAL_PMI and PAL_FP. The non-monarch processors must do
aSRLZ.l instruction to ensure that modifications to instruction prefetches are
observed.

4. If the physical address of the PAL_PROC procedure changes, the operating
system must register the new address with SAL by invoking the
SAL_REGISTER_PHYSICAL_ADDR procedure.

Requirements: Platform must provide non-volatile storage space to save firmware components.

Intel® Itanium® Processor Family System Abstraction Layer Specification 105

SAL Procedures

SAL_PHYSICAL_ID_INFO

Purpose:

Calling
Conventions:

Arguments:

Returns:

Status:

Description:

intel.

Returns information on the physical processor die mapping in the platform.

Standard. Callable by the operating system in physical or virtual mode.

Argument Description
func_id Function ID of the SAL_PHYSICAL_ID_INFO within the list of SAL
procedures
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Return Value Description

status
plat_log_info
Reserved
Reserved

Status Value

Return status of SAL_PHYSICAL_ID_INFO procedure
The format of plat_log_info is shown in Figure 9-1.

0

0

Description

0
-1
-2
-3
4

Call completed without error
Unimplemented procedure
Invalid Argument

Call completed with error.
Virtual address not registered

This API can be used in conjunction with the PAL_L OGICAL_TO_PHYSICAL
API to uniquely identify a processor die/package within a system that contains
multiple host bus controllers. This procedure returns the value plid, which may be
based on a platforms host bus number, node number, or cluster number. The values
of ppid (returned by the PAL_LOGICAL_TO PHYSICAL API) and plid
combined uniquely identify each physical processor diein the platform. Plid values

may not be contiguous between processor die nor within the platform.

Figure 9-1. Layout of plat_log_info Return Value
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| rv

rv | plid

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

v

Platform

¢ plid - Platform ID. A value provided by the platform that may be based on
host bus, node or cluster IDs. Thisvalue, along with the ppid (returned by the
PAL_LOGICAL_TO_PHYSICAL API), must be unique for each physica
processor diein the platform.

* rv- Reserved

Requirements:|tanium architecture-based platforms must provide mechanismsto obtain the value
used for the platform ID field. The platform ID aong with the processor physical
die ID must be a unique value across the platform.

106

Intel® Itanium® Processor Family System Abstraction Layer Specification

intel.

Glossary

ACPI

AP

API

Bank

BIOS

Advanced Configuration and Power

Application Processor. One of the processors not responsible for system initialization.

Application Programming Interface

The memory modules on a card are organized into banks for better performance. The
bank number identifies a bank on a memory card.

Basic Input/Output System. A collection of routines that includes Power On Self-test
(POST), system configuration and a software layer between the operating system and
hardware. BIOS is written in 1A-32 instruction set.

Boot Block Support

BSP

BSP

Card

CcmMC

A hardware and/or software implementation that permits the end user to recover
PAL/SAL layers of software into the flash part after the previous flash programming
attempt was accidentally aborted.

Bootstrap Processor. The processor responsible for system initialization.

Backing Store Pointer (AR.BSP)

The card number identifies the specific memory card attached to amemory controller.
One or more memory cards may be attached to a memory controller. Each card
consists of anumber of memory modules organized in banks.

Corrected Machine Check

Cold Boot vs. Warm Boot

Cold Boot refers to a hardware/software event that setsall circuitry, including all
processors, system components, add-in cards and control logic, to aninitial state.
Initial power-on of a system triggers a cold boot. Warm Boot refers to an event that
sets some, but not all the circuitry of any or all of the processors and system
components to an initia state. This capability isimportant to minimize system boot
time. Warm boots can skip extensive memory testing, skip initialization of devices
whose configuration registers are preserved across resets, etc. Warm boots are not
required to preserve any register or memory state. INIT or MCA events can trigger a
warm boot.

Intel® Itanium® Processor Family System Abstraction Layer Specification 107

Glossary

108

intel.

Cold Reset vs. Hard Reset
Cold Reset refersto a hardware signal that setsall circuitry, including all processors,
buses, system components, add-in cards and control logic, to aninitial state. Hard
Reset istriggered by asimilar hardware signal. Hard Reset differs from Cold Reset in
that some sticky error flags in some system components may not be cleared, thereby
allowing determination of the cause of the Reset. Both Cold Reset and Hard Reset
signals operate without regard to cycle boundaries and are typically asserted by the
RESET pin. Both Cold Reset and Hard Reset signals will include the functionality of
the Cold Boot event.

Corrected Platform Error Interrupt (CPEI)

Interrupt generated by the platform following a hardware-corrected error. The
interrupt vector is set by the operating system (e.g. in the vector field of an I/O SAPIC
redirection table entry).

CPE
Corrected Platform Errors are the errors originating due to platform detected errors.

CPEV
Corrected Platform Error Interrupt Vector

Device Number
Each memory module consists of a number of DRAM devices. The device number
identifies a specific device (h/'w component or chip) on amodule.

EFI

Extensible Firmware Interface. Firmware that provides alegacy free APl interface to
the operating system.

EOI
End of Interrupt

Error Categories
Corrected Error

All errors of thistype are either corrected by the processor/platform
hardware/firmware. This severity isfor logging purposes only. Thereis no
architectural damage to the detecting and reporting functions. Corrected errors require
no operating system intervention to correct the error.

Fatal Error
An uncorrected error occurred which has corrupted state, and the state information
may not be known. These type of errors cannot be corrected by the hardware,
firmware, or the operating system. The integrity of the system, including the IO
devicesisnot guaranteed and may require 10 deviceinitialization and a system reboot
to continue. Fatal errors may or may not have been contained within the processor or
memory hierarchy. If the error is not contained, it must be reported as fatal.

Recoverable Error
An uncorrected error occurred which had corrupted state, and the state information is
known. Recoverable errors cannot be corrected by either the hardware or firmware.
Thistype of errorsrequires operating system analysis and a corrective action to
recover. System operation/state may be impacted.

Intel® Itanium® Processor Family System Abstraction Layer Specification

Glossary

FRU
Field Replaceable Unit

FT
Fault Tolerant

GP
Global Data Pointer. Every procedure that references statically-allocated data or calls
another procedure requires a pointer to its data segment in the GP register so that it
can access its static data and its linkage tables.

GUID

A 16 byte Globally Unique Identifier/Universally Unique Identifier representing an
entity that needs to be uniquely identified.

Hardware-protected Flash Region

Thisterm refersto a part of the flash storage that is hardware-protected against
accidental erasure. Usudly, thisregion is programmed by the OEM only. The
hardware protection can either be on-chip and/or platform supported hardware.

IA-32 Architecture

The 32-bit and 16-bit Intel® architecture as described in the Intel® Itanium®
Architecture Software Devel oper’s Manual .

[tanium Architecture-based Operating System

An operating system written in the Itanium instruction set that can run Itanium
architecture-based applications and, optionally, | A-32 applications.

INTA
Interrupt Acknowledge
[Pl
Interprocessor interrupt signaling using the local SAPIC within the processor.
IPL
Initial Program Load
ISA
Instruction Set Architecture
VT

Interrupt Vector Table

Logical Processor / Processor
A processor may provide the ability to support two or more logical processors, which
are capable of executing independent instruction streams. The amount of processor
hardware resources that may be shared between logical processors is implementation
dependent. SAL should treat logical processors as if they are separate processing
elements and dedicate resources accordingly.

MBR
Master Boot Record

Intel® Itanium® Processor Family System Abstraction Layer Specification 109

Glossary

110

intel.

MC_rendezvous I nterrupt

An external interrupt vector provided to SAL by the Itanium architecture-based
operating system for interrupting the operating system running on the APs.

MCA
Machine Check Abort

Minimal Sate Save Area

Arearegistered by SAL with PAL for saving minimal processor state during machine
check and INIT processing. This area must be aligned on a 512-byte boundary and
must be in uncacheable memory. See the PAL EASfor details.

Module or Rank

A module consists of anumber of DRAM devices on a PCB board, which plugsinto a
socket. DIMM, RIMM are examples of memory modules. Module number identifiesa
module on amemory card (specifically, within a bank on the memory card). On
smaller systems, the rank/module might match the DIMM slot number. On larger
systems, a particular DIMM might not be able to be called out and the module/rank
number is the lowest FRU.

M onarch Processor

The processor selected by SAL to accumulate all the platform error logs and continue
with the machine check processing, when multiple processors experience machine
checks simultaneously.

MP
Multiprocessor

M P-Safe Procedure

A procedurethat can be invoked concurrently by multiple processors. The caller is not
required to enforce single-threaded access. If necessary, SAL performs
synchronization between threads.

MPS
Multiprocessor Specification
Node
A node consists of processors, memory and, in some cases, 1/0 devices. A system
may contain multiple nodes.
NTFS
Windows* NT File System
NVRAM
Non-volatile Random Access Memory
0s
Operating System
PAL

Processor Abstraction Layer. Firmware that abstracts processor
implementation-specific features.

Intel® Itanium® Processor Family System Abstraction Layer Specification

Glossary

Plabel
Procedure label, areference or pointer to a function. A plabel takes the form of a
pointer to a special descriptor (a plabel descriptor) that uniquely identifies the
function. The plabel descriptor contains the address of the function’s actual entrypoint
aswell asits linkage table pointer.

PMI

Platform Management Interrupt

Re-entrant Procedure
A procedure that may be invoked multiple times concurrently from the same
processor. That is, the procedure may be interrupted by an MCA and invoked again by
OS_MCA during MCA processing. Note that an MCA may be promoted to Fatal
severity if it occurs while executing a SAL procedure.

Row, Column
Memory cells (acell may hold one more Bits of data) on aDRAM is organized as an
array indexed by rows and columns. Row address and column address together
uniquely identify acell.

SAL
System Abstraction Layer. Firmware that abstracts system implementation
differences.

SAL_REV
The revision number of the SAL specification supported by the SAL implementation.
Thisinformation contains two one-byte fields for Mg or and Minor revision numbers
and the same are represented in binary coded decimal (BCD) format. For example, if
this variable contains 02h, 06h, the SAL revisionis 2.6.

SAPIC
Streamlined Advanced Programmable Interrupt Controller. The code name for the
high performance interrupt architecture for the Itanium architecture. The L ocal
SAPI C resides within the processor and accepts interrupts sent on the system bus.
The /O SAPIC resides on the I/O subsystem and provides the interrupt input pinson
which I/O devicesinject interrupts into the system.

Sector
Thisterm refersto alogical block of 512 bytes.

SP
Memory Stack Pointer

TLB
Translation L ookaside Buffer

TSS
Task State Segment

USB

Universal Serial Bus

Intel® Itanium® Processor Family System Abstraction Layer Specification 111

Glossary

112

VHPT
Virtual Hash Page Table

Wake Up Interrupt

Interrupt sent by the operating system to wake up the APs from the
SAL_MC_RENDEZ spin loop. Thisinterrupt vector is registered by an Itanium
architecture-based operating system with the SAL.

WBL
Write-back with Limited Speculation

Intel® Itanium® Processor Family System Abstraction Layer Specification

intel.

Error Record Structures B

B.1 Overview

The goals of the Error Record structures is to keep it generic and flexible enough to be extensible
and to abstract processor or platform implementation dependencies from the operating system
layers, at the sametime providing as much error information as possible to the operating system for
error handling purposes.

B.2 Error Record Structure

The error record structure consist of many different components called sections. Each error record
captures error information for one error event consisting of multiple sections. The size of the error
record structureisasindicated by RECORD_LEN and is dynamicaly set based on the total size of
all the section headers and section bodies combined. Each record must be 8-byte aligned and the
size must be amultiple of 8 bytes.

An error record consists of a generic header followed by alist of sections with actual error
information for the event. Each section relates to a particular error device (e.g. processor, platform
memory, platform PCI Bus, platform ISA Bus etc.), having a section header followed by section
body.

Record Header

Section-0 Header

Section-0 Body

Section-1 Header

Section-1 Body

Section-n Header

Section-n Body

Intel® Itanium® Processor Family System Abstraction Layer Specification 113

Error Record Structures In'te|®

B.2.1

114

Record Header

The format of the header for both the platform and processor error record is as shown below. For
machine check eventsand INIT events, the ERR_SEVERITY information reflects the worst case
error reported in the processor and platform sections. For these events, ERROR_SEVERITY may
be corrected, recoverable or fatal. For corrected processor and platform errors (CMCs and CPES),
the error may be reported as corrected or recoverable. For CMC/CPE events, if the error severity is
recoverable/uncorrected, the OS may choose to take action based on the error. However, recovery
from such CMCs and CPEsis not necessary for continued operation of the system.

The error record REVISION value consists of two fields; amajor value, and aminor value. An
increase in the major revision is required when changes to the headers and sections may not be
compatible with software developed based on previous major revisions. For example, adding new
fields, or changing the functionality of existing fields (excluding reserved hits) requires an increase
in the major revision.

Offset Length Field Description

0 8 bytes RECORD_ID An ID that is unique (system) wide that distinguishes between
resets, and is increasing for MCA/INIT, CMC, and CPE events
respectively?

8 2 bytes REVISION 2-byte Major and Minor revision number of the Record in BCD
format:

ByteO — Minor (03)

Bytel — Major (00)

10 1 byte ERR_SEVERITY This encoded field indicates error severity. See glossary section
for details on the definition:

0 — Recoverable

1 - Fatal

2 — Corrected

Others — Reserved

11 lbyte VALIDATION_BITS Bit 0 = If 1, the OEM_PLATFORM_ID field below contains valid
information.

Bit 1 = If 1, the TIME_STAMP field below contains invalid
information.

Bits 2-7 — Reserved, must be zero

12 4 bytes RECORD_LEN Length of this error record in bytes, including the header.

16 8 bytes TIME_STAMP Timestamp recorded when MCA, INIT or CMC occurred. This
contains the local time in BCD format:

Byte 0 — Seconds

Byte 1 — Minutes

Byte 2 — Hours

Byte 3 — Reserved

Byte 4 — Day

Byte 5 — Month

Byte 6 — Year

Byte 7 — Century

24 16 bytes OEM_PLATFORM_ID A unique identifier of the OEM platform.

a. For example, an implementation that generates a RECORD_ID in the following manner would meet these requirements:
RECORD_ID[63:24] contains a timestamp value that is obtained at reset, RECORD_ID[23:0] is divided into three fields
(MCAVINIT, CMC, CPE), which are incremented for each type of error event respectively.

Anincreasein the minor revision indicates that changes to the headers and sections are compatible
with software that use earlier revisions. Thisincludes, but is not limited to, errata fixes,
clarifications, the use of reserved fields, the addition of new sections identified with new GUIDs.

Refer to the Intel® Itanium® Architecture Software Developer’s Manual for explanation of fields
not described in this document.

Intel® Itanium® Processor Family System Abstraction Layer Specification

Error Record Structures

Section Header

The Device specific error section follows the header. For processor errors, thisfield will contain an
areathat is architected for all Itanium architecture processors. For platform errors, this section will
contain information specific to the platform devices. A unique GUID is associated with each
section for identification of the error device type (ex: processor, platform memory, platform PCI
busetc.).

The format of the section header for al error devicesis as shown below:

Offset Length Field Description

0 16 bytes GUID Unique 16-byte GUID for the error device. Refer to Table B-1 for
the format.

16 2 bytes REVISION 2-byte Major and Minor revision number of the Section in BCD
format:

ByteO — Minor (02)

Bytel — Major (00)

18 1 byte ERROR_RECOVERY_ Bit 7 = If set, the remaining bits in this field and the corresponding

INFO error section contains information about the error(s) reported.
Bit 6-5 = Reserved, must be 0
Bit 4 = Resource not accessible. If set, the resource could not be
queried for error information due to conflicts with other system
software or resources. Some fields of the section will be invalid.
Bit 3 =Error threshold exceeded. If set, OS may choose to
discontinue use of this resource.
Bit 2 = Reset. If set, the component must be re-initialized or
re-enabled by the operating system prior to use.
Bit 1 = Containment Warning. If set, the error was not contained
within the processor or memory hierarchy and the error may have
propagated to persistent storage or network.
Bit 0 = If set, the error has been corrected. If not set, the error was
not corrected.

19 1 byte RESERVED Reserved.

20 4 bytes SECTION_LEN Length of this error device section in bytes, including the header.

The GUID structureis as follows:

Table B-1. GUID Format

Offset ‘ Length Field Description
0 4 bytes DATA1 Datal
4 2 bytes DATA2 Data2
6 2 bytes DATA3 Data3
8 8 bytes DATA4 Data4

The first four bytes are treated as an integer, as are the next two two-byte entities. The last 8 bytes
are treated as a byte stream. For example, the following GUID would follow the byte order in
memory given in Table B-2:

GUID: OxDEADBEEF- 1234- 5678- DE- AD- 123456654321

Table B-2. GUID Ordering in Memory

Bytes

oOo|1(2|3|4|5|6|7|8)|9(10|11]12|13|14]|15

EF |BE|AD |DE| 34 |12 | 78 | 56 |DE|AD| 12 | 34 |56 | 65 | 43 | 21

Intel® Itanium® Processor Family System Abstraction Layer Specification 115

Error Record Structures In'te|®

SAL may examine several platform hardware resources to collect information pertaining to the
error and provide such information in various sections. Not all sections may be present in each
record but the SAL shall provide all the information significant for logging, identification of the
errant component and recovery. The section error information fields will have associated
validation bit(s), as part of the section body.

Multiple sections with the same GUID may be present within asingle error record. In this situation,
the ordering of the sections does not imply the chronological sequence of the errors. Thefirst error
among the sections, if known to firmware, shall be indicated by setting the First Error bit (see
Table B-5) in the error status field within the section.

The ERROR_RECOVERY _INFO field in some sections may indicate that the error has already
been corrected. It is acceptable to provide corrected error information for some platform
components as part of the MCA record, but the SAL must not provide uncorrected MCA
information in response to the request for CMC or CPE errors.

If the Containment Warning bit is set in the ERROR_RECOVERY _INFO field, the SAL firmware
may set the ERR_SEVERITY field in the Record Header (Section B.2.1) as “fatal”. Some
operating systems or device drivers having a complete chronology of accesses to the platform
component and knowledge of recovery capabilitieswithin the device, may effect arecovery despite
such a status.

The OS interpretation for the ERR_RECOVERY _INFO field is given in Table B-3.

Table B-3. Error Section Error_Recovery_Info Field Definition

Bit 7 | Bit4 | Bit3 | Bit2 | Bit 1 | Bit0 OS Recovery Action

0 X X X X X | Error Recovery Field is not valid: Specialized MCA handlers with
knowledge of the device reported by the section are required to
recover from this error. OS Recovery is not possible, if specialized
handlers are not available.

1 1 X X X X | Resource not accessible: Firmware must not return this status
when reporting corrected and recoverable MCA.

1 X X X 1 X | Containment Warning: Corrupt data propagated to persistent
storage or network. Generic MCA Handlers will treat this as a fatal
error and reboot. Some operating systems or device drivers having
a complete chronology of accesses to the platform component and
knowledge of recovery capabilities within the device, may effect a
recovery despite such a status.

1 0 0 0 0 o | Uncorrected error: Error recovery is necessary. Generic OS MCA
handlers should be able to handle uncorrected Processor and
Memory sections. For other platform uncorrected sections, platform
OEMs must supply extended MCA handlers to recover from those
errors.

1 0 0 1 0 0 Component Reset: Uncorrected error. Error recovery is necessary.
The component must be re-initialized prior to use.

1 0 0 0 0 1 Corrected error: Only logging and reporting is required. OS
recovery actions are not needed for the error in this section.

1 0 1 0 0 1 | Corrected error: Error threshold exceeded. No immediate OS
recovery actions are required for the error in this section. The
resource in error should be deallocated.

116 Intel® Itanium® Processor Family System Abstraction Layer Specification

B.2.3 Processor Device Error Info

Error Record Structures

Refer to the Intel® Itanium® Architecture Software Developer’s Manual for explanation of fields.

Offset ‘Length Field Description

0 16 bytes GUID {Oxe429fafl, 0x3cb7, 0x11d4, {Oxbc, Oxa7, 0x0, 0x80, 0xc7, 0x3c,

0x88, 0x81}}
16-23 8 bytes See Section B.2.2 for detai

PROCESSOR_SPECI FI C_ERROR_RECORD SECTI ON BODY STRUCTURE

Is.

{
VALI DATI ON_BI TSt 8 bytes
PROC_ERROR MAP_VALID BIT Bit O
PROC_STATE_PARAMETER VALID BIT Bit 1
PROC CR LID VALID BIT Bit 2
PSI _STATI C_STRUCT_VALID BI T Bit 3
CACHE_CHECK_NUM Bit 4-7 (Cache errors 0 to 15)
TLB_CHECK_NUM Bit 8-11 (TLB errors 0 to 15)
BUS_CHECK_NUM Bit 12-15(BUS errors 0 to 15)
REG_FI LE_CHECK_NUM Bit 16-19 (REG errors 0 to 15)
M5_CHECK_NUM Bit 20-23 (Ms errors 0 to 15)
CPU D I NFO VALID BI T Bit 24
RESERVED Bits 24-63
PROC_ERROR_MAP 8 bytes
PROC_STATE_PARAMETER 8 bytes
PROC CR LID 8 bytes
struct { Nx48 max. bytes (cache errors 0 to 15)
MOD_ERROR_| NFO_STRUCT 48 bytes each
} CACHE_ERROR_STRUCT[CACHE_CHECK_NUM
struct { Nx48 max. bytes (TLB errors 0 to 15)
MOD_ERROR_| NFO_STRUCT 48 bytes each
} TLB_ERROR_STRUCT[TLB_CHECK_NUM
struct { Nx48 max. bytes (BUS errors 0 to 15)
MOD_ERROR_| NFO_STRUCT 48 bytes each
} BUS_ERROR_STRUCT[BUS_CHECK_NUM
struct { Nx48 max. bytes (Reg.File errors 0 to 15)
MOD_ERROR_| NFO_STRUCT 48 bytes each
} REG FI LE_CHECK_ | NFO REG_FI LE_CHECK_NUM
struct { Nx48 max. bytes (Ms errors 0 to 15)
MOD_ERROR_| NFO_STRUCT 48 bytes each
} MS_CHECK_| NFO MS_CHECK_NUM
struct { 48 byt es
CPUI D_I NFO 40 bytes (CPUD registers 0 to 4)
RESERVED 8 bytes
} CPUI D_I NFO_STRUCT
struct { Processor Static Information
VALI D_FI ELD BI TS? 8 bytes
M NSTATE_VALID BI T Bit O
BR VALID BIT Bit 1
CR VALID BIT Bit 2
AR VALID BIT Bit 3
RR VALID BIT Bit 4
FR VALID BI' T Bit 5
RESERVED Bit 6-63

1. Theamount of information reported by SAL isimplementation-dependent. The validity of each field isindicated by either avalidation bit or
an encoded number field. Data areas corresponding to invalid fields will be padded. For CACHE, TLB, BUS, REG M Sfields, the encoded
NUM field indicates the number of MOD_ERROR_INFO_STRUCTsfor each category, ranging from 0-15. For these five categories only, if

the encoded NUM field is zero, then the data area corresponding to that category will be absent.
2. Data areas corresponding to Invalid fields will be padded.

Intel® Itanium® Processor Family System Abstraction Layer Specification

117

Error Record Structures

M nimal State Save Info Structurel

BRs 0-7
CRs 0-127
ARs 0- 127
RRs 0-7
FRs 0-127

} PSI_STATI C_STRUCT

}

1024 bytes

64 bytes
1024 bytes?3
1024 bytes?3
64 bytes
2048 bytes

The MOD_ERROR_I NFO_STRUCT structure is defined as bel ow
48 byt es*(Mbd)

struct{
VALI D_FI ELD BI TS 8 bytes
CHECK_| NFO VALID BI T Bit
REQUESTOR | DENTI FI ER_VALI D BI T Bi t
RESPONDER_| DENTI FI ER_VALI D BI T Bit
TARGET_| DENTI FI ER_VALI D BI T Bi t
PRECI SE_IP_VALID_BI T Bi t
RESERVED_VALID_BI T Bi t

MOD_CHECK_| NFO
MOD_TARGET_| DENTI FI ER

MOD_RESPONDER_| DENTI FI ER
MOD_RESPONDER_| DENTI FI ER

MOD_PRECI SE_| P
} MOD°_ERROR_| NFO_STRUCT

B.2.4 Platform Errors

W N - O

4
5-63

byt es
byt es

byt es
byt es

8
8
8 bytes
8
8

There are no standard platform errors defined in existing specifications. This section attemptsto
define some typical generic platform error information data structures. OEMs and platform
vendors can define additional platform error sections with unique GUIDs customized to their

platform topol ogy.

B.2.4.1. Platform Memory Device Error Info

This section describes error information from the memory sub-system.

Offset | Length Field

Description

0 16 bytes GUID

16-23 | 8 bytes

{Oxe429faf2, 0x3cb7, 0x11d4, {Oxbc, 0xa7, 0x0, 0x80, 0xc7, Ox3c,

0x88, 0x81}}

See Section B.2.2 for details.

1. Thesize of the Min-State Save areais about 1K bytes. For more details on the size and contents of the structure, please refer to the Intel®

Itanium® Architecture Software Devel oper’s Manual.

2. The number of Control and A pplication registers on aprocessor is processor implementation-dependent.

3. Some Application and Control registers (e.g. CR.IVR) are volatile and cannot be read without side effects. Thisinformation is returned by
the PAL_REGISTER_INFO procedure. SAL shall not read and store such volatile registers in this data structure.

4. Thesize of this structure will aways be 48 bytes, with invalid fields being padded with null values.

5. The MOD structureis common across CACHE, TLB, BUS, REGISTER_FILE and Microarchitectural structure error records.

118 Intel® Itanium® Processor Family System Abstraction Layer Specification

Inte|® Error Record Structures

PLATFORM_MEMORY_ERROR _RECORD SECTI ON BODY STRUCTURE

Offset | Length Field Description
0 8 VALIDATION_BItS Validation Bits to indicate the validity of each of the subsequent
fields:

Bit 0 - MEM_ERROR_STATUS_VALID_BIT

Bit 1 - MEM_PHYSICAL_ADDR_VALID_BIT

Bit 2~ MEM_ADDR_MASK_BIT

Bit 3 — MEM_NODE_VALID_BIT

Bit 4 —- MEM_CARD_VALID_BIT

Bit 5— MEM_MODULE_VALID_BIT

Bit 6 — MEM_BANK_VALID_BIT

Bit 7 — MEM_DEVICE_VALID_BIT

Bit 8 — MEM_ROW_VALID_BIT

Bit 9 — MEM_COLUMN_VALID_BIT

Bit 10 — MEM_BIT_POSITION_VALID_BIT

Bit 11 - MEM_PLATFORM_REQUESTOR_ID_VALID_BIT

Bit 12 —- MEM_PLATFORM_RESPONDER_ID_VALID_BIT

Bit 13 — MEM_PLATFORM_TARGET_VALID_BIT

Bit 14 - MEM_PLATFORM_BUS_SPECIFIC_DATA_VALID_BIT
Bit 15 — MEM_PLATFORM_OEM_ID_VALID_BIT

Bit 16 — MEM_PLATFORM_OEM_DATA_STRUCT_VALID_BIT
Bit 17-63 — RESERVED

8 8 bytes MEM_ERROR_STATUS Memory device error status fields (see Table B-5).

16 8 bytes MEM_PHYSICAL_ 64-Bit physical address of the memory error.
ADDR

24 8 bytes MEM_PHYSICAL_ Defines the valid address Bits in the 64-Bit physical address of the
ADDR_MASK memory error. The mask specifies the granularity of the physical

address which is dependent on the h/w implementation factors such
as interleaving.

32 2 bytes MEM_NODE In a multi-node system, this value identifies the node containing the
memory in error.

34 2 bytes MEM_CARD The Card number of the memory error location.

36 2 bytes MEM_MODULE The Module or RANK number of the memory error location.

(NODE, CARD, and MODULE should provide the information
needed to identify the failing FRU)

38 2 bytes MEM_BANK The Bank number of the memory error location.

40 2 bytes MEM_DEVICE The Device number of the memory error location.

42 2 bytes MEM_ROW The Row number of the memory error location.

44 2 bytes MEM_COLUMN The Column number of the memory error location.

46 2 bytes MEM_BIT_POSITION Bit position specifies the Bit within the memory word that is in error.

48 8 bytes REQUESTOR_ID Hardware address of the device or component initiating transaction.

56 8 bytes RESPONDER_ID Hardware address of the responder to transaction.

64 8 bytes TARGET_ID Hardware address of intended target of transaction.

72 8 bytes BUS_SPECIFIC_DATA OEM specific bus-dependent data.

80 16 bytes MEM_PLATFORM_ OEM specific data containing identification information for the
OEM_ID Memory Controller.

96 N bytes MEM_PLATFORM_ OEM specific data of variable length. See Table B-4 for the format of

OEM_DATA_STRUCT this structure. N equals O if the
MEM_PLATFORM_OEM_DATA_STRUCT_VALID_BIT is not set.

Table B-4. Format of Variable Length Info Structure

Offset ‘ Length Field Description

0 2 bytes LENGTH Length of this structure in bytes. Length is 2 + M bytes. The value of
2 + M must align to an 8 byte boundary.

2 M bytes VARIABLE_INFO OEM defined variable size data.

Intel® Itanium® Processor Family System Abstraction Layer Specification 119

Error Record Structures

intel.

B.2.4.2. Platform PCI Bus Error Info
This section describes the errors that occur on the PCI busitself (e.g. parity error, target abort, etc.).
Errorswithin a PCl component are described in Section B.2.4.3.. An error within a PCl component
that resultsin error signalling on the PCI bus will result in both sections being present in the error
record.
Offset ‘ Length Field Description
0 16 bytes GUID {Oxe429faf4, 0x3cb7, 0x11d4, {Oxbc, Oxa7, 0x0, 0x80, 0xc7, Ox3c,
0x88, 0x81}}
16-23 | 8 bytes See Section B.2.2 for details.
PLATFORM _PCl _BUS_ERROR_RECORD SECTI ON BODY STRUCTURE
Offset | Length Field Description
0 8 VALIDATION_BITS Validation Bits to indicate the validity of each of the subsequent
fields:
Bit 0 — PCI_BUS_ERROR_STATUS_VALID_BIT
Bit 1 - PCI_BUS_ERROR_TYPE_VALID_BIT
Bit 2 - PCI_BUS_ID_VALID_BIT
Bit 3 - PCI_BUS_ADDRESS_VALID_BIT
Bit 4 — PCI_BUS_DATA_VALID_BIT
Bit 5 — PCI_BUS_CMD_VALID_BIT
Bit 6 — PCI_BUS_REQUESTOR_ID_VALID_BIT
Bit 7 — PCI_BUS_COMPLETER_ID_VALID_BIT
Bit 8 — PCI_BUS_TARGET_ID_VALID_BIT
Bit 9 — PCI_BUS_OEM_ID_VALID_BIT
Bit 10 — PCI_BUS_OEM_DATA_STRUCT_VALID_BIT
Bit 11..63— RESERVED
8 8 bytes PCI_BUS_ERROR_ PCI Bus error status fields (see Table B-5).
STATUS
16 2 bytes PCI_BUS_ERROR_ PCI Bus error types
TYPE ByteO:
0 — Unknown or OEM System Specific Error
1 — Data Parity Error
2 — System Error
3 — Master Abort
4 — Bus Time Out or No Device Present (No DEVSEL#)
5 — Master Data Parity Error
6 — Address Parity Error
7 — Command Parity Error
Others — Reserved
Bytel:
RESERVED
18 2 bytes PCI_BUS_ID Designated PCI Bus identifier encountering error.
Bits 0..7 — Bus Number
Bits 8..15 — Segment Number
20 4 bytes Reserved
24 8 bytes PCI_BUS_ADDRESS Memory or IO address on the PCI bus at the time of the event.
32 8 bytes PCI_BUS_DATA Data on the PCI bus at the time of the event.
40 8 bytes PCI_BUS_CMD Bus command or operation at the time of the event.
Byte 7: Bits 7-1: Reserved (should be 0)
Byte 7: Bit 0 = If 0, then the command is a PCI command. If 1, the
command is a PCI-X command
48 8 bytes PCI_BUS_ PCI Bus Requestor ID at the time of the event?,
REQUESTOR_ID
56 8 bytes PCI_BUS_ PCI Bus Responder ID at the time of the event.
COMPLETER_ID
64 8 bytes PCI_BUS_TARGET_IDb PCI Bus intended Target ID at the time of the event.
120 Intel® Itanium® Processor Family System Abstraction Layer Specification

B.2.4.3.

Error Record Structures

Offset | Length Field Description
72 16 bytes PCI_BUS_OEM_ID OEM specific data containing identification information for the PCI
Bus.
88 N bytes PCI_BUS_OEM_DATA_ OEM specific data of variable length. See Table B-4 for the format of
STRUCT this structure. N equals 0 if the

PCI_BUS_OEM_DATA_STRUCT_VALID_BIT is not set.

a. As defined in the PCI-X Addendum to the PCI Local Bus Specification (a combination of the devices bus number, device
number, and function number).
b. This could be a memory or I/O port address.

Refer to the PCI Specification (http://www.pcisig.com) for further details.

Platform PCI Component Error Info

Offset ‘ Length Field Description

0 16 bytes GUID {Oxe429faf6, 0x3cb7, 0x11d4, {Oxbc, Oxa7, 0x0, 0x80, 0xc7, 0x3c,
0x88, 0x81}}

16-23 | 8 bytes See Section B.2.2 for details.

PLATFORM PCI _COMPONENT _ERRCR RECORD SECTI ON BODY STRUCTURE

Offset | Length Field Description
0 8 VALIDATION_BITS Validation Bits to indicate the validity of each of the subsequent
fields:

Bit 0 — PCI_COMP_ERROR_STATUS_VALID_BIT

Bit 1 — PCI_COMP_INFO_VALID_BIT

Bit 2 — PCI_COMP_MEM_NUM_VALID_BIT

Bit 3— PCI_COMP_IO_NUM_VALID_BIT

Bit 4 — PCI_COMP_REGS_DATA_PAIR_VALID_BIT
Bit 5 — PCI_COMP_OEM_DATA_STRUCT_VALID_BIT
Bit 6..63— RESERVED

8 8 bytes PCI_COMP_ERROR_ PCI Component error status fields (see Table B-5).
STATUS
16 16 bytes PCI_COMP_INFO PCI Component Information to identify the device:

Bytes 0-1 — Vendor ID

Bytes 2-3 — Device ID

Bytes 4-6 — Class Code

Byte 7 — Function Number

Byte 8 — Device Number

Byte 9 — Bus Number

Byte 10 — Segment Number

Bytes 11-15 — Reserved (0)

38 4 bytes PCI_COMP_MEM_NUM Number of PCI Component Memory Mapped register address/data
pair values present in this structure.

36 4 bytes PCI_COMP_IO_NUM Number of PCI Component Programmed IO register address/data
pair values present in this structure.

40 2x8xN PCI_COMP_REGS_ An array of address/data pair values. The data may be 8 bytes in
bytes DATA_PAIR length.

40+2x| N bytes PCI_COMP_OEM_ OEM specific data of variable length. See Table B-4 for the format of

8xN DATA_STRUCT this structure. N equals O if

PCI_COMP_OEM_DATA_STRUCT _VALID_BIT is not set.

Refer to the PCI Bus Specification (http://www.pcisig.com) for further details. The above section
definition does not specify which chipset registers are required in the error section. To decode the
chipset errors completely, the error status registers may not be sufficient. Other

implementati on-dependent chipset configuration registers may be required to decode the error
status information. The error handler is expected to have an intimate knowledge of the chipset and
the platform to parse the error information.

Intel® Itanium® Processor Family System Abstraction Layer Specification 121

Error Record Structures

B.2.4.4.

122

intel.

Note that a multi-function device may require more than one section to report the error information
(one for each function).

Platform SEL Device Error Info

Offset | Length Field Description

0 16 bytes GUID {Oxe429faf3, 0x3ch7, 0x11d4, {Oxbc, Oxa7, 0x0, 0x80, 0xc7, Ox3c,
0x88, 0x81}}

16-23 | 8 bytes See Section B.2.2 for details.

PLATFORM _SYSTEM EVENT_LOG RECORD SECTI ON BODY STRUCTURE

Offset

Length

Field

Description

0

10

11
15

17
18
19
20

21
22
23

8

2 bytes
1 bytes

4 bytes
2 bytes

1 bytes
1 bytes
1 bytes
1 bytes

1 bytes
1 bytes
lbytes

VALIDATION_BITS

SEL_RECORD_ID
SEL_RECORD_TYPE

SEL_TIME_STAMP
SEL_GENERATOR_ID

SEL_EVM_REV
SEL_SENSOR_TYPE
SEL_SENSOR_NUM

SEL_EVENT DIR_
TYPE

SEL_DATA1
SEL_DATA2
SEL_DATA3

Validation Bits to indicate the validity of each of the subsequent
fields:

Bit 0 — SEL_RECORD_ID_VALID_BIT

Bit 1 — SEL_RECORD_TYPE_VALID_BIT

Bit 2 — SEL_GENERATOR_ID_VALID_BIT

Bit 3— SEL_EVM_REV_VALID_BIT

Bit 4 — SEL_SENSOR_TYPE_VALID_BIT

Bit 5 — SEL_SENSOR_NUM_VALID_BIT

Bit 6 — SEL_EVENT_DIR_TYPE_VALID_BIT

Bit 7 — SEL_EVENT_DATA1_VALID_BIT

Bit 8 — SEL_EVENT_DATA2_VALID_BIT

Bit 9 — SEL_EVENT_DATA3_VALID_BIT

Bit 10 — SEL_TIME_STAMP_VALID_BIT

Bit 11-63 — RESERVED

Record ID used for SEL record access.

Indicates the record type:

0x02 — System Event Record

0xC0-OxDF — OEM time stamped, bytes 8-16 OEM defined
0XEO0-OXFF — OEM non-time stamped, bytes 4-16 OEM defined
Time stamp of the event log

Software ID if event was generated by software

Bytel:

Bit 7:1 — 7-Bit system software ID.

Bit O — set to one (1) when using system software.

Byte 2:

Bit 7:2 — Reserved. Write as 0, ignore when read.

Bit 1:0 — IPMB device LUN if byte 1 holds slave address, 0x0
otherwise.

The error message format version.

Sensor type code of the sensor that generated the event.
Number of the sensor that generated the event.

Event Dir:

Bit 7 — O for assertion; 1 for deassertion.

Event Type:

Type of trigger for the event, e.g. critical threshold going high, state
asserted, etc. Also indicates class of the event, e.g. discrete,
threshold, or OEM. The Event Type field is encoded using the
Event/Reading Type Code. See Section 30.1, Event/Reading Type
Codes.

Bit 6:0 — Event Type Code

Event data field.

Event data field.

Event data field.

Intel® Itanium® Processor Family System Abstraction Layer Specification

B.2.4.5.

B.2.4.6.

Error Record Structures

Refer to the Intelligent Platform Management Initiative Specification (http://devel oper.intel.com/
design/servers/ipmi) for further details.

Platform SMBIOS Device Error Info

Offset | Length Field Description

0 16 bytes GUID {0xe429faf5, 0x3ch7, 0x11d4, {Oxbc, 0xa7, 0x0, 0x80, Oxc7, 0x3c,
0x88, 0x81}}

16-23 | 8 bytes See Section B.2.2 for details.

PLATFORM _SMBI OS_ERROR_RECORD SECTI ON BODY STRUCTURE

Offset | Length Field Description
0 8 VALIDATION_BITS Validation Bits to indicate the validity of each of the subsequent
fields:

Bit 0 — SMBIOS_EVENT_TYPE_VALID_BIT
Bit 1 — SMBIOS_LENGTH_VALID_BIT

Bit 2 — SMBIOS_TIME_STAMP_VALID_BIT
Bit 3 — SMBIOS_DATA_VALID_BIT

Bit 4-63 - RESERVED

8 1 bytes SMBIOS_EVENT_TYPE Event Type — enum see SMBIOS 2.3 — 3.3.16.6.1.

9 1 bytes SMBIOS_LENGTH Length of the error information in bytes.

10 6 bytes SMBIOS_TIME_STAMP Time stamp in BCD.

16 N bytes SMBIOS_DATA OEM specific data of variable length. See Table B-4 for the format of

this structure. N equals 0 if SMBIOS_DATA_VALID_BIT is not set.

Refer to the SMBIOS Specification (http://www.dmtf.org/standards/bi os.php) for further details.

Platform Specific Error Info

This section provides information on the OEM hardware errors that cannot be described by other
sections. The operating system could handle the error in a generic way by examining the section
GUID, the ERROR_RECOVERY _INFO, the PLATFORM_ERROR_STATUS, and the TARGET
address fields. Refer to the respective platform document for further details.

Offset ‘ Length Field Description

0 16 bytes GUID {Oxe429faf7, 0x3cb7, 0x11d4, {Oxbc, 0xa7, 0x0, 0x80, Oxc7, 0x3c,
0x88, 0x81}}

16-23 | 8 bytes See Section B.2.2 for details.

PLATFORM _GENERI C_ERROR_RECORD SECTI ON BODY STRUCTURE

Offset | Length Field Description
0 8 VALIDATION_BITS Validation Bits to indicate the validity of each of the subsequent
fields:

Bit 0 — PLATFORM_ERROR_STATUS_VALID_BIT

Bit 1 - PLATFORM_REQUESTOR_ID_VALID_BIT

Bit 2 — PLATFORM_RESPONDER_ID_VALID_BIT

Bit 3— PLATFORM_TARGET_VALID_BIT

Bit 4 — PLATFORM_SPECIFIC_DATA_VALID_BIT

Bit 5 — PLATFORM_OEM_ID_VALID_BIT

Bit 6 — PLATFORM_OEM_DATA_STRUCT_VALID_BIT
Bit 7 — PLATFORM_OEM_DEVICE_PATH_VALID_BIT
Bit 8..63 - RESERVED

8 8 bytes PLATFORM_ERROR_ Platform generic error status fields (see Table B-5).
STATUS

Intel® Itanium® Processor Family System Abstraction Layer Specification 123

Error Record Structures

Offset | Length Field Description
16 8 bytes PLATFORM_ Requestor ID at the time of the event.
REQUESTOR_ID
24 8 bytes PLATFORM_ Responder ID at the time of the event.
RESPONDER_ID
32 8 bytes PLATFORM_TARGET_ Target ID at the time of the event.
1D
40 8 bytes PLATFORM_BUS_ OEM specific bus-dependent data.
SPECIFIC_DATA
48 16 bytes OEM_COMPONENT_ A unique ID of the component reporting the error.
ID
64 N bytes PLATFORM_OEM_ OEM specific data of variable length. See Table B-4 for the format of
DATA_STRUCT this structure. N equals O if
PLATFORM_OEM_DATA_STRUCT_VALID_BIT is not set
64+N | X bytes PLATFORM_OEM_DEV OEM specific Vendor Device Path. Please refer to the Extensible
bytes ICE_PATH Firmware Interface Specification for the format of this field.X equals

B.2.5

0 if PLATFORM_OEM_DEVICE_PATH_VALID_BIT is not set.

Error Status

The error status definition provides the capability to abstract information from implementation-
specific error registersinto generic error codesin order that the operating systems may deal with
the errors without an intimate knowledge of the underlying platform.

Table B-5. Error Status Fields

Bit Position Description

Bit 0-Bit7 Reserved.

Bit8 — Bit 15 Encoded value for the Error_Type? (see Table B-6).

Bit 16 Address: Error was detected on the address signals or on the address portion of the
transaction.

Bit 17 Control: Error was detected on the control signals or in the control portion of the transaction.

Bit 18 Data: Error was detected on the data signals or in the data portion of the transaction.

Bit 19 Responder: Error was detected by the responder of the transaction.

Bit 20 Requestor: Error was detected by the requestor of the transaction.

Bit 21 First error: If multiple errors are logged for a section type, this is the first error in chronological
sequence. Setting of this bit is optional.

Bit 22 Overflow: Additional errors occurred and were not logged due to lack of logging resources.

Bit 23..63 Reserved.

a. Error_Type: Error_Type provides information about the type of error detected. If it is not possible to determine the exact cause
of the error, the type may be promoted to one of the two values of 1 or 16 as described in Table B-6.

Table B-6. Error Types

124

Encoding

Description

1

ERR_INTERNAL Error detected internal to the component.

16

ERR_BUS Error detected in the bus.

Detailed Internal Errors

4 ERR_MEM Storage error in memory (DRAM).
5 ERR_TLB Storage error in TLB.
6 ERR_CACHE Storage error in cache.

Intel® Itanium® Processor Family System Abstraction Layer Specification

In

tel.

Table B-6.

Error Record Structures

Error Types (Continued)
Encoding Description
7 ERR_FUNCTION Error in one or more functional units.
8 ERR_SELFTEST component failed self test.
9 ERR_FLOW Overflow or Undervalue of internal queue.
Detailed Bus Errors
17 ERR_MAP Virtual address not found on 10-TLB or I0-PDIR.
18 ERR_IMPROPER Improper access error.
19 ERR_UNIMPL Access to a memory address which is not mapped to any component.
20 ERR_LOL Loss Of Lockstep.
21 ERR_RESPONSE Response not associated with a request.
22 ERR_PARITY Bus parity error (must also set the A, C, or D Bits).
23 ERR_PROTOCOL Detection of a protocol error.
24 ERR_ERROR Detection of PATH_ERROR.
25 ERR_TIMEOUT Bus operation time-out.
26 ERR_POISONED A read was issued to data that has been poisoned.
All Others Reserved.

Intel® Itanium® Processor Family System Abstraction Layer Specification

125

Error Record Structures

126

Intel® Itanium® Processor Family System Abstraction Layer Specification

	1 Introduction
	1.1 Objectives
	1.2 Firmware Model
	1.3 System Abstraction Layer Overview
	1.4 Firmware Entrypoints
	1.4.1 Processor Abstraction Layer Entrypoints
	1.4.2 System Abstraction Layer Entrypoints
	1.4.3 Operating System Handlers

	1.5 Related Documents
	1.6 Revision History

	2 Platform Requirements
	2.1 Firmware Address Space
	2.2 PAL/SAL ROM Space
	2.3 Simplified Firmware Address Map
	2.4 Example Firmware Organization Using a Protected Boot Block
	2.4.1 Firmware Components

	2.5 Firmware Interface Table
	2.6 Resources Required for Legacy Compatibility
	2.7 Chipset and Shadowing Requirements
	2.8 Platform Support for Variant Architectural Features
	2.9 Platform Considerations Related to Processor Physical Location
	2.10 Non-Volatile Memory Requirements
	2.11 Miscellaneous Platform Requirements

	3 Boot Sequence
	3.1 Overview of the Code Flow after Hard Reset
	3.1.1 Code Flow During Recovery
	3.1.2 Boot Flow

	3.2 SAL_RESET
	3.2.1 Initialization Phase
	3.2.2 Bootstrap Processor Identification Phase in a Multiprocessor Configuration
	3.2.3 Platform Initialization Phase
	3.2.4 Firmware to Operating System Loader Hand-off State
	3.2.5 OS_BOOT_RENDEZ
	3.2.6 SAL System Table

	3.3 Itanium®Architecture-Based Operating System Loader Requirements
	3.3.1 Fault Handling
	3.3.2 Memory Management Resources Usage
	3.3.3 Other Restrictions on the Operating System

	4 Machine Checks
	4.1 SAL_CHECK
	4.1.1 SAL_CHECK Processing Details

	4.2 Corrected Machine Checks
	4.3 Platform Errors
	4.3.1 Scope of Platform Errors
	4.3.2 Processing of Corrected Platform Errors
	4.3.3 Processing of Uncorrected Platform Errors

	4.4 Polling for Corrected Errors
	4.5 OS_MCA
	4.5.1 Unconsumed Error Records across Reboots

	4.6 Procedures used in Machine Check Handling
	4.7 Machine Checks in MP Configurations
	4.7.1 Rendezvous Requirements
	4.7.2 Flow of Control During MCA in MP Configurations
	4.7.3 OS_MCA Responsibilities
	4.7.4 Machine Check Processing Steps within Firmware and Operating System

	4.8 OS_MCA Hand-off State
	4.8.1 Return from the OS_MCA Procedure

	5 Initialization Event
	5.1 SAL_INIT
	5.2 OS_INIT
	5.3 OS_INIT Hand-off State
	5.4 Return from OS_INIT Procedure
	5.5 MP INIT Support

	6 Platform Management Interruptions
	6.1 SALE_PMI Overview
	6.2 SALE_PMI Initialization
	6.3 SALE_PMI Processing
	6.4 Special Considerations for Multiprocessor Configurations

	7 IA-32 Support (Optional)
	7.1 IA-32 Support Model
	7.2 IA-32 Support Requirements
	7.2.1 Resources Supported by SAL
	7.2.2 Overview of IA-32 Support Layer Functionality
	7.2.3 IA-32 Instruction Usage Guidelines
	7.2.4 IA-32 Support Environment
	7.2.5 IA-32 Interruption Handler Support

	8 Calling Conventions
	8.1 SAL Calling Conventions
	8.1.1 Definition of Terms
	8.1.2 Processor State
	8.1.3 System Registers
	8.1.4 General Registers
	8.1.5 Floating-Point Registers
	8.1.6 Predicate Registers
	8.1.7 Branch Registers
	8.1.8 Application Special Registers
	8.1.9 Parameter Buffers

	8.2 Software Interface Conventions for SAL Procedures
	8.2.1 Control Flow of the SAL Interface
	8.2.2 Calling Architected/OEM SAL Functions

	9 SAL Procedures
	9.1 SAL Runtime Services Overview
	9.1.1 Invoking SAL Runtime Services in Virtual Mode
	9.1.2 Access to Resources not Supported by the Operating System

	9.2 SAL Procedures that Invoke PAL Procedures
	9.3 SAL Procedure Summary

	A Glossary
	B Error Record Structures
	B.1 Overview
	B.2 Error Record Structure
	B.2.1 Record Header
	B.2.2 Section Header
	B.2.3 Processor Device Error Info
	B.2.4 Platform Errors
	B.2.5 Error Status

