intal.
|A-64 Assembly Language
Reference Guide

January 2000

Order Number 245363-001

THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF
MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions
of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating
to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability,
or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical,
life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."”
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

Intel processors associated with the Assembly Language may contain design defects or errors known as errata which may
cause the product to deviate from published specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be
obtained by calling 1-800-548-4725, or by visiting Intel's website at http://developer.intel.com/design/litcentr.

Copyright © Intel Corporation, 2000

*Third-party brands and names are the property of their respective owners.

intel.
Contents

Chapter 1 Overview

ADOUL thiS ManNUAL........ooviieiieii e 1-1
Related DoCUMENTALIONviieeee et e er e e aaees 1-2
NOtAtioN CONVENTIONS .cvuieieeie ettt e e eaenes 1-2

Chapter 2 Program Elements Overview

IAENLFIEIS coviciii e 2-1
NAME SPACES ...t 2-2
SYMDOIS ..o 2-2
SYymbBOl NaMES....coo e 2-3
SYMDBDOI TYPES..ciiiiiiiiiiiiiiii 2-5
Symbol Values ... 2-6
Register Namescooi i 2-6
MINEIMONICS ..iiiccii et 2-7
Machine Instruction MNEMONICScccevvneiiviieiiieiiiieeeiins 2-8
Pseudo-0p MNEMONICSuvevmriiiriiiiiiiiiiiiieeiieeiieeie e 2-8
Directive MNEMONICS.....cuvuiiiiiieiiiieii et 2-9
Data Allocation MNEMONICSccvveeiviiiiiiieiieeeeee e, 2-9
CONSIANES ..ot e e 2-9
NUMETIC CONSIANTS ..ot 2-9

C NUmeric ConstantS.......ccovvveeiiviiiiiieeeceeeeee e, 2-10
MASM Numeric ConstantS.........cccceuveeeiviieiviieeireeennnn. 2-11
Characters in Numeric Constantscccoeeeeeeennenn. 2-13

1A-64 Assembly Language Reference Guide iii

N

String CONSEANTScoovviiiiiiiiiii 2-14
EXPreSSIiONSccoviiiiiiiiiee e 2-14
ADbSolute EXPreSSiONSuuuvviririririiiiiiiiiiiiniieniierieeneeenn 2-14
Relocatable EXPressions ... 2-14
OPEIALOIS ...ttt s 2-15
SEALEMENTS ... 2-16
Label Statementscouviiiiiiiii 2-16
INStruction StatemMeNntSocvvvviiviiieieircc e 2-17
Directive StatementS..........cevviiiiiiiiiiiiiini e 2-19
Assignment Statementsuvuvevuiviriiiiiiiiiieiiieeeeeeeee 2-19
Symbol Assignment Statementsccccceveveieviiiiinnnn, 2-20
Register Assignment Statements.........cccceeeveeevverinennns 2-20
Equate Statementsc.oevviiiiiiiiiiiie e 2-21
Symbol Equate Statements..............coooeeeiiiiiiiinieeene 2-21
Register Equate Statementsccccccceevevinieieviieiinnnns 2-21

Data Allocation StatementsS...........ocuvviivinneieiinciiiinninn 2-22
Cross-section Data Allocation Statements...................... 2-23

Chapter 3 Program Structure

Y= Tox 1o L PR SPSPPPPRTPI 3-1
Section Flags and Section Type Operands....................... 3-2
Windows NT (COFF32) Specific Section Flag Operands. 3-3
Associated Section Name Flagcccoveiviiiiinnnnnnns 3-3
Section Definition DireCtiveceevvviiiiiiviiiiiiii e 3-4
Section Stack DireCtivesc.ucuvviiiiiiiiiiiiiiiie e 3-5
ADSOIULE SECLIONS ... 3-6
Section Return DIreCtiveccuvvviiiiiiiiiiiiei e 3-6
Predefined Section DIireCtivesS..........cccuvvvieiiviiieeieeeiiiiinnn 3-6
Using Section DireCtiVeSccoovvviiiiiiiiiiiiee 3-8
Include File DIr€CtiVEc.uuviiiiiiiiiiieies e 3-8
BUNAIES.....ciiiiiiii e 3-9
Implicit BUNAIiNgoocoviie e 3-10

iv |A-64 Assembly Language Reference Guide

intel.

Chapter 4

Chapter 5

EXplicit BUNAIINGc.vvviiiiiiiiiiiiiiiii 3-10
Auto-template Selection...........ocoveeiieiiiiie 3-10
Explicit-template Selection...........cccccvvviiiiiiiiiinninn.. 3-11

INSTFUCTION GrOUPS . .uvvtiiiiiiiiiiiietieeiieetie ettt ee e e e 3-12
Dependency Violations and Assembly Modes..................... 3-13
ProCedUIES.....coiii e 3-13

Procedure DIr€CHVEScovvviiiiiiiiiiiii e 3-14

Procedure Label (PLab@l)oovvviiiiiiiiiiiiiiiiiiiiii, 3-14

Stack Unwind DireCtivesScuuveviiiniiieiiiiiiiiiiiin e eeeeeeeens 3-15
Syntax for the .save.x Directives..........ccccccovvvvviinninnn. 3-21
Stack Unwind Directives Usage Guidelines............... 3-22

Windows NT (COFF32) Symbolic Debug Directives....... 3-24

Declarations
Symbol Scope Declaration.................eeeeeveeiiieiieeiieeiieeieeeneenne. 4-1

Local Scope Declaration DireCtive...........cceevevvviiininnenenn. 4-2

Global Scope Declaration Directive..........c.eveeieieieniininns 4-2

Weak Scope Declaration Directiveccccovvvvvviiinennenenn, 4-2
Weak Scope Declaration for UNIX (ELF)..................... 4-3
Weak Scope Declaration for Windows NT (COFF32).. 4-3

Symbol TYpe DIr€CHIVEuveeiviiiiiiiiiiiiiiieieiiieeieeeeeeee e 4-4
SymDbOl Size DIr€CHIVEuuveiiiiiiiiiiiiiiiiiiiiiiiieeee e 4-5
File Name Override DireClivecccvveviiiiiieiiiiiinieeeeeceeiiin, 4-6
Common Symbol Declarations.................eeevveeieeeieeiieenieeneenne. 4-6
Common Symbol DIreCtiVeeuuevuiiviiiiiiiieiiieeeieeeeeeeeeee 4-6
Local Common Symbol Directiveccccceeeiniiiniinnnnnnn. 4-7
Alias Declaration DireCtiVeS...........uuveviiiiiiieiiiiiiiiiiniene e eeeiaes 4-8
Data Allocation
Data Allocation StatemMentsS.............evvevieeiiiiiiiiiiiiieeiieeieeeneenne. 5-1
Uninitialized Space AllOCatioNeeevveviiiiiiiiiiiiiiiiiiiieene, 5-3
AlIGNMENT ... 5-4
Cross-section Data Allocation Statements..............cccccvvueennes 5-5

1A-64 Assembly Language Reference Guide v

Chapter 6 Miscellaneous Directives

Register Stack Directive...........coevviiiiii,

Stacked Registers in Assignment and Equate

StAteMENtS ...coveiii
Rotating Register Directivescccccevvivevevveviiviinnnnnn.
Using Rotating Register directives.............cceeveveeees

Rotating Registers in Assignment and Equate

StatemeNntsccoviiii
Byte Order Specification Directivescccvvvvvvvnnnnn.
String Specification Directiveccovvvvvveiiiiiiiiiieninnen,
Radix Indicator DIireCtivecovvveviviiiiiieneeeeeeiiiinnn
Preprocessor SUPPOIT.........oovvivvivieeeriininer e

Chapter 7 Annotations

Predicate Relationship Annotation..................cco.oooe.
Predicate Vector Annotationccceeeveeviienieennnee.
Memory Offset ANNOtation...........cccoeeveeeiieniie,
Entry ANNotation ...

Appendix A Register Names by Type
Appendix B Pseudo-ops

Appendix C Link-relocation Operators

Appendix D List of IA-64 Assembly Language Directives

Glossary

Index

vi

|A-64 Assembly Language Reference Guide

intel.

Overview

This manual describes the programming conventions used to write an
assembly program for the 1A-64 architecture.

As prerequisites, you should be familiar with the | A-64 architecture, and
have assembly-language programming experience.

About this Manual

This manual contains the following chapters and appendixes:
* This chapter lists related documentation and notation conventions.

® Chapter 2, “Program Elements Overview", describes the basic
elements and language specifications of an assembly-language
program for the | A-64 architecture.

®* Chapter 3, “Program Structure", describes the directives used to
structure the program.

* Chapter 4, “Declarations*, describes the directives used to declare
symbolsin the program.

®* Chapter 5, “Data Allocation*, describes the statements used to
allocate initialized and unitialized space for data objects, and align
data objects in the program.

* Chapter 6, “Miscellaneous Directives', describes directives not used
to structure a program or to declare symbols.

* Chapter 7, “Annotations*, describes the assembler annotations.

1A-64 Assembly Language Reference Guide 1-1

intel.

Appendix A, "Register Names by Type", lists the | A-64 architecture
registers.

Appendix B, "Pseudo-ops”, liststhe 1A-64 architecture psuedo
operations and their equivalent machine instructions, and pseudo-ops
with missing operands.

Appendix C, "Link-relocation Operators”, lists the link-relocation
operators and describes their functionality.

Appendix D,"List of 1A-64 Assembly L anguage Directives", liststhe
assembly-language directives according to category.

Related Documentation

The following documents, available at http://developer.intel.com ,
provide additional information:

| A-64 Architecture Software Devel oper’s Manual
Volume 1: 1A-64 Processor Application Architecture,
order number 245317-001

\Volume 2: 1A-64 Processor System Architecture,
order number 245318-001

Volume 3: 1A-64 Instruction Set Description,

order number 245319-001

Volume 4: 1A-32 Instruction Set Description,

order number 245320-001

| A-64 Software Conventions and Runtime Architecture Guide,
order number 245256-002

Notation Conventions

This notation is used in syntax descriptions:

This type style Indicates an element of syntax, areserved
word, keyword, afilename, computer
output, or part of aprogram example. The
text appearsin lowercase, unless
uppercase is significant.

1-2

1 A-64 Assembly Language Reference Guide

http://developer.intel.com

This type style
This type style

[1tens]

[items | iteni

Indicates the text you enter as input.

Indicates a placeholder for an identifier,
an expression, a string, a symbol or a
value. Substitute one of these items for
the placeholder.

Indicates optional items.

Indicates the possible choices. A vertical
bar (]) separates the items. Choose one of
the items enclosed in brackets.

1A-64 Assembly Language Reference Guide

1-3

intel.

Program Elements
Overview

This chapter describes the basic el ements and language specifications of
an assembly-language program for the | A-64 architecture. The basic
program elements are identifiers, symbols, name spaces, constants,
expressions, and statements.

Identifiers

In |A-64 assembly language, objects such as machine instructions,
registers, memory locations, sectionsin the object file, and constants,
have symbolic names. In the source code these names are represented
syntactically by identifiers.

Anidentifier may contain letters, digits, and a few special characters.
Identifiers may not begin with a digit.

Table 2-1 summarizes the rules for character usage in identifiers.

Table 2-1 Character Usage in Identifiers

Character Types First Characters Remaining Characters
Letters a-zorA-Z a-zorA-Z

Special characters @_%$ 7. @_% 7.

Digits not allowed 0-9

The assembler may place alimit on the length of an identifier, but this
limit must be no less than 256 characters.

1A-64 Assembly Language Reference Guide 2-1

intel.

Name Spaces

There are three classes of names in the | A-64 assembly language:

* Symboals, which refer to memory locations, sections, and symbolic
constants. These names are case sensitive.

* Registers, which refer to registers defined in the | A-64 architecture.
These names are not case sensitive. Some register names consist of
multiple syntactic elements rather than a single identifier.

* Mnemonics, which refer to machine instructions, pseudo-ops,
directives, and completers. These names are not case sensitive.

The assembler places names in three separate name spaces, according to
their class. A name may not be defined twice in the same namespace, but
it may be defined once in each namespace. When anameis defined in
both the register and symbol namespaces, the register name takes
precedence over the symbol unlessthe identifier is “protected” by
terminating it with the # operator; this forces the assembler to look up the
identifier in the symbol namespace.

The # operator in conjunction with asymbol is legal only when the
symbol is an operand.

The following examplesillustrate the correct use of the # operator:
r5: //1abel nanmed r5, where |abel is the synbol nane
movl r4=r5#//moves the r5 | abel address to register r4
.gl obal r5#//declares |abel r5 as gl obal

The # operator isunnecessary and illegal when included in the symbol
definition, as shown:

r 54#: /1illegal

Symbols

A symbol refersto alocation in memory, an object file section, a numeric
constant, or aregister. A symbol has the following attributes:

® name

2-2 1A-64 Assembly Language Reference Guide

intel.

* type
* vaue

The special symbols dollar sign ($) and period (.) when used in
expressions, always refer to the current location counter. The current
location counter points to the address of a bundle containing the current
instruction, or to the address of the first data object defined by the current
assembly statement. There is no difference between these symbols, either
can be used.

In the following example, the mov! instruction moves the address of the
bundle containing the current instruction ($) into register r 1:

nmovl r1=$%

In the following data allocation statement, the period (.) is the address of
the first data object defined by the assembly statement:

dat a4 2, 3,

Symbol Names

Symbol names are case-sensitiveidentifiers. Symbols whose names begin
with aperiod (.) are temporary. Temporary symbols are not placed in the
object file symbol table. Symbols whose names begin with two periods

(. .) aretemporary, and local. Local symbols are scope restricted
symboals. Loca symbols are recognized only within the scope in which
they are defined. See the "Symbol Scope Declaration” section in Chapter
4 for more information about local symbol scopes.

Table 2-2 summarizes the rules for using temporary and scope-restricted
indicators in different types of symbol names.

Table 2-2 Temporary and Scope-restricted Indicators in Symbol Names

Temporary and Scope

Symbol Type Temporary (.) Restricted (. .)
Labels Allowed Allowed
Instruction tags Allowed Allowed
Function names Not allowed Not allowed

1A-64 Assembly Language Reference Guide 2-3

intel.

Table 2-2

Temporary and Scope-restricted Indicators in Symbol Names

Temporary and Scope

Symbol Type Temporary (.) Restricted (. .)
Symbolic constants Not allowed Allowed
Section names Allowed Not allowed

Symbols whose names begin with an "at" sign (@ are reserved as
predefined constants. The assembler provides predefined symbolic
constants for special operand values for several instructions, for example,
fcl ass and nux instructions. Table 2-3 and Table 2-4 list the predefined
symbolic constant names for the operands of these instructions. These
symbolic constants can be used in expressions as any user-defined
symbolic constant.

Table 2-3 fclass Condition Predefined Operand Names
Category fclass Conditions Predefined Name
NaT test NaT @nat
Sign test Positive @os
Negative @neg
Class test Normalized @orm
Unnormalized @inorm
Signaling NaN @nan
Quiet NaN @nan
Zero @ero
Infinity @ nf
Table 2-4 mux Bytes Operation Predefined Type Operand Names
mux Bytes Operation Type (nbt ype) Predefined Name
Reverse @ev
Mix @n x
Shuffle @huf
Alternate @l t
Broadcast @r cst
2-4 1A-64 Assembly Language Reference Guide

intel.

Symbol Types

A symbol’s type indicates the class of object to which it refers. A symbol
type can be any of the following:

| abel Refersto alocation of code or datain memory. A |abel
cannot refer to a procedure entry point. A code label
refers to the address of a bundle. An instruction that
follows a code label always starts anew bundle. The
"Bundles’ section in Chapter 3 provides more
information about instruction bundling.

instruction tag

A symbol that refersto an instruction. An instruction
tag isused in branch prediction instructions, and in
unwind information directives. Unlike alabel, an
instruction tag does not cause the instruction to start a
new bundle.

function name A symbol that refersto a procedure entry point.

section name Represents an existing section that is active in the
output object file.

synbol i ¢ const ant
A constant assigned or equated to a number, symbol, or
expression.

1A-64 Assembly Language Reference Guide 2-5

intel.

Symbol Values

A symbol is defined when it is assigned avalue. A symbol value can also
be a number or expression assigned to asymbolic constant. The value of a
symbol identifies the object to which it refers. If the symbol refersto a
location in memory, the assigned value is the address of that memory
location. In most cases, this address is resolved only in link time.

Register Names

All registers have predefined names, which are listed in Appendix A.
Predefined register names are not case-sensitive. You can assign new
register names to some of the predefined registers with aregister
assignment statement, or a rotating register directive. See the
"Assignment Statements’, and "Equate Statements" section in this
chapter, and the "Rotating Register Directives" section in Chapter 6, for
more details. Registers that use the value of a specified general-purpose
register as an index into the register file consist of the register file name
followed by the name of a general register enclosed in brackets, such as
pnc|r].

The assembler determines the register type according to the form of its
name, as shown in Table 2-5. Some registers appear in name and number
form. For example, ar . bsp isthe name form of an application register,
which also has a number form, ar 17.

2-6 1A-64 Assembly Language Reference Guide

intel.

Table 2-5 Register Number and Name Forms

Register
Form Register Name Register Type
Number form r0-r127 General-purpose 64-bit registers
i n0-in95
| ocO-10c95
out O - out 95
fo-f127 Floating-point registers
p0 - p63 Predicate registers (1-bit)
b0 - b7 Branch registers
ar0-ar 127 Application registers
cr0-crl27 Control registers
Name form e.g. ar. bsp Named application registers
e.g. cr.dcr Named control registers
pr All-predicate register (64-bits)
pr.rot All rotating registers
ip Instruction pointer
psr. | Processor-status registers
psr.um
Indirect file e.g. pnt[r2] Register file with general-purpose register as index.
registers
User-defined user - nane Registers assigned new names with assignment
registers statements or rotating register directives.
Mnemonics

Mnemonics are predefined assembly-language names for machine
instructions, pseudo-ops, directives, and data allocation statements.
Mnemonics are not case-sensitive.

1A-64 Assembly Language Reference Guide

2-7

intel.

Machine Instruction Mnemonics

Machine instruction mnemonics specify the operation to be performed.
For example, br p isthe mnemonic for the branch predict instruction.

Some instruction mnemonics include suffixes and optional compl eters
that indicate variations on the basic operation. The suffixes and
completers are separated from the basic mnemonic by aperiod (.). For
example, the instructions br p. pp (predicate predict), and br p. r et
(return) include suffixes, and are variations of the basic branch predict
(br p) instruction.

In this manual, completers are italicized to distinguish them from the
instruction mnemonic suffixes. For example, in the instruction
brp.ret.sptk.inp bo, L, theoptional completers appear in italics to set
them apart from the . ret suffix.

For afull description of the instructions, see the | A-64 Architecture
Software Developer’s Manual .

Pseudo-op Mnemonics

Pseudo-op mnemonics represent assembler instructions that aias
machine instructions. They are equivalent to instruction mnemonics and
are provided for the convenience of the programmer. See Appendix B for
alist of the assembler pseudo-ops.

The following is an example of a pseudo-op:
mov r5=2

The assembler translates this pseudo-op into the equivalent machine
instruction:

addl r5=2,r0

For more details about the pseudo-ops, see the | A-64 Architecture
Software Developer’s Manual .

2-8

1A-64 Assembly Language Reference Guide

intel.

Directive Mnemonics

Directives are assembler instructions to the assembler during the
assembly process; they do not produce executable code. To distinguish
them from other instructions, directive mnemonics begin with a period

().
Chapter 3 through Chapter 7 describe the assembler directives and
explain how to use them.

Data Allocation Mnemonics

Data allocation mnenonics specify the types of data objects assembled in
data allocation statements. See the "Data Allocation™ section in Chapter 5
for alist of these mnemonics. Data allocation statements are used to
allocate initialized memory areas.

Constants
Constants can be numeric or string.
* Numeric constants contain integers and floating-point numbers.
® String constants contain one or more characters.

Numeric Constants

A numeric constant contains integer and floating-point numbers. The
assembler supports C and Microsoft Macro Assembly language (MASM)
numeric constants. C numeric constants are the default.

1A-64 Assembly Language Reference Guide 2-9

intel.

C Numeric Constants

C numeric constants can be any of the following:

Decimal integer constants (base 10) consist of one or more digits, 0
through 9, where 0 cannot be used as the first digit.

Binary constants (base 2) begin with aob or 0B prefix, followed by
one or more binary digits (0, 1).

Octal constants (base 8) consist of one or more digits 0 through 7,
where thefirst digitiso.

Hexadecimal constants (base 16) begin with aox or 0x prefix,
followed by a hexadecimal number represented by a combination of
digits 0 through 9, and characters A through F.

Floating-point constants consist of:

— anoptional sign - or+

— aninteger part a combination of digits o through 9
— aperiod .

— afractional part a sequence of digitso through 9

— an optional exponent e or E, followed by an optionally

signed sequence of one or more digits

For example, the following floating-point constant contains both the
optional and required parts. +1. 15e- 12.

The following floating-point constant contains only the required
parts: 1. 0

The following formal grammar summarizes the rules for the C numeric
constants:

C-constant :

C-i nteger-const ant
floati ng-poi nt - const ant
char act er - const ant

C-i nteger-constant:

2-10

1A-64 Assembly Language Reference Guide

[1-9][0-9]*
O[bB][01]*
o[0-7]*
O[xX][0-9a-fA-F] *

fl oati ng-poi nt - const ant :
integer-part.[fractional -part | [exponent-part]|

integer-part:
[0-9]*

fractional -part:
[0-9]*

exponent - part:
[eE][+-][0-9]*
[eE][0-9]*

MASM Numeric Constants

MASM numeric constants can be any of following:

* Radix constants are numeric constants that also specify the radix of
the value. They consist of one or more digits, 0 through 9, followed
by aradix indicator. The radix indicators of MASM numeric
constants define them as decimal (D), hexadecimal (H), octal (0), or
binary (B). If the current radix is hexadecimal, the letters B and D are
interpreted as digits. In this case, T specifies adecimal radix, and Y
specifies abinary radix. See Table 2-6.

Radix indicators are not case-sensitive.

See the "Radix Indicator Directive" section in Chapter 6, for more
information about how to specify aradix.

1A-64 Assembly Language Reference Guide 2-11

intel.

* Integer constantsin the current radix consist of one or more digits, 0
through 9, A through F. If the current radix is not hexadecimal, the
characters A through F are not applicable.

* Floating-point constants have the same syntax asin C. Seethe "C
Numeric Constants" section on page 2-10.

Table 2-6 MASM Radix Indicators

Radix Radix Indicator Suffix

Decimal D(d), or T (t) when the current radix is hex
Hexadecimal H (h)

Octal O(0) or Q(q)

Binary B (b), or Y (y) when the current radix is hex

The following formal grammar summarizes the rules for the MASM
numeric constants:

MASM const ant :
MASM | nt eger - const ant
MASM r adi x- const ant
floati ng-poi nt - const ant
char act er - const ant

MASM | nt eger - const ant :
[0-9][0-9a-fA-F]*

MASM r adi x- const ant
[0-9][0-9a-fA-F]*[t TdDhHOoqQbBYyY]

floating-point-constant: (asin C, see page 2-11.)

2-12 1A-64 Assembly Language Reference Guide

Table 2-7

Characters in Numeric Constants

An underscore (_) can beinserted in a numeric constant to improve
readability, asfollows 1_000_000. An underscore can be inserted
anywhere except before the first character. The assembler ignores
underscores.

Characters can represent numeric constants. For instance, asingle ASCII
character can represent anumeric constant by enclosing it in single quotes
(' *). The numeric constant is the ASCII value of the specified
characterise use other special characters to represent numeric constants,
use the character escapes defined in the ANSI C language, and enclose
them in single quotes. Table 2-7 lists the common character escapes. To
use the single quote (') to represent a numeric constant, insert a
backslash (\) before it, and enclose both in single quotes (' '), as

such, \' .

Common Character Escapes

Escape

Character Definition ASCII Value

\' Single quote 39

\ " Double quote 34

\'b Backspace

\ 't Tab

\'n New line 10

\ f Form feed 12

\'r Carriage return 13

\\ Backslash 92

\ num Character with octal value num -
(maximum three digits)

\ Xhh Character with the hexadecimal value -

hh (maximum two digits)

1A-64 Assembly Language Reference Guide 2-13

intel.

String Constants

String constants consist of a sequence of characters enclosed in double
guotes ("").

To specify double-quotes (") in a string constant, insert a backslash (\)
beforeit, assuch, "\ "".

To include other special characters in a string constant, use the character
escapes defined in the ANSI C language. See Table 2-7 for alist of
common character escapes.

Expressions

An expression is a combination of symbols, numeric constants, and
operators that uses standard arithmetic notation to yield aresult.
Expressions can be absolute or rel ocatable.

Absolute Expressions

An expression is absolute when it is not subject to link-time rel ocation.
An absolute expression may contain relocatable symbols, but they must
reduce to pairs of the form (R;- R,) , where R; and R, are relocatable
symbols defined in the same section in the current source file.

Relocatable Expressions

An expression is relocatable when it is subject to link-time relocation. A
relocatabl e expression contains a relocatable symbol, and may contain an
absolute expression. If arelocatable expression contains an absolute
expression, it must be reducible to the form (R+K) , where Ris either a
relocatable symbol defined in the current source file, or an undefined
symbol, and K is an absol ute expression. The address of the rel ocatable
symbol is defined in link time.

2-14

1A-64 Assembly Language Reference Guide

intel.

Operators

The assembly operators indicate arithmetic or bitwise-logic calculations.
Parentheses (()) determine the order in which calculations occur. The
assembler evaluates all operators of the same precedence from left to
right.

The assembler evaluates all operators according to their level of
precedence. Table 2-8 lists the operator precedence rules from lowest to
highest.

Table 2-8 Precedence of Arithmetic and Bitwise Logic Operations

Operator
Precedence Symbol Operation
0 (Low) + Addition
- Subtraction
Bitwise inclusive OR
n Bitwise exclusive OR
1 (Medium) * Multiplication
/ Division
% Remainder
<< Shift Left
>> Arithmetic shift right
& Bitwise AND
2 (High) - Unary negation

~ Unary one’s complement

Link-relocation Operators

Link-relocation operators generate link-relocation entries in expressions.
See Appendix C for alist of the link-relocation operators.

1A-64 Assembly Language Reference Guide 2-15

intel.

Statements

An assembly-language program consists of a series of statements
separated by a semicolon (;). Multiple statements may be on the same
line.

To separate lines, use the standard line termination convention on the
local host system, typically CR (carriage return) and LF (line feed). To
separate elements within a statement, use the CR, LF, FF (form feed), VT
(vertical tab), Space, or Tab that represent white space.

To separate acomment from the code at the end of a statement, insert the
comment before the semi colon (;) and precede it with a
double-backslash (/ /). The assembler ignores comments.

The assembler may place alimit on the length of an input line, but this
limit must be no less than 256 characters.

The types of assembly-language statements are as follows:
* |abel statements

® instruction statements

* directive statements

* assignment statements

* eguate statements

* dataalocation statements

® cross-section data allocation statements

The following sections detail each of the statement types, their
components and syntax, and provide an example of each.

Label Statements

A label statement has the following syntax:
[label]: /'l comments

Where:

2-16 1A-64 Assembly Language Reference Guide

| abel

Defines a symbol whose value is the address of the
current location counter. If the assembler inserts
padding to align the location counter to an implied
alignment boundary, the value of the label is not
affected.

The assembler interprets alabel followed by a double
colon (: :) asaglobal symbol. See the "Symbol Scope
Declaration” section in Chapter 4 for more information
about global symbols.

The following is an example of a global label statement:

foo::

Instruction Statements

An instruction statement has the following syntax:

[label:] [[tag:1] [(gp)] mmenonic|.conpl eters]
dest s=sources //coments

Where:
| abel

[tag]

(ap)

Defines a symbol whose value is the address of a
bundle. When a label is present, the assembler always
starts anew bundle.

If the assembler inserts padding to align the location
counter to a bundle boundary, the |abel is assigned the
address of the newly-aligned bundle.

The assembler interprets alabel followed by a double
colon (: :) asaglobal symbol. See the "Symbol Scope
Declaration” section in Chapter 4 for more information
about global symbols.

Defines asymbol whose valueis the bundle address and
slot number of the current instruction.

Represents a predicate register symbol, which must be
enclosed in parentheses. If this field is not defined,
predicate register O (po) is the default.

1A-64 Assembly Language Reference Guide 2-17

intel.

menoni c. conpl eters
Represents the instruction mnemonic or pseudo-op.
Instructions may optionally include one or more
completers. Completers must appear in the specified
order in the instruction syntax.

Mnemonics and completer mnemonics are not
case-sensitive.

Refer to the | A-64 Architecture Software Devel oper’s
Manual for a description of the machine instructions,
pseudo-ops, and compl eters.

dest s =sour ces
Represents the destination and source operands. The
operands are register names, expressions, or keywords,
depending on the instruction. Some instructions can
have two destination operands, and one or more source
operands. When there are multiple operands they are
separated by acomma (,). In cases where all operands
are destination operands or all operands are source
operands, the equal (=) sign is omitted.

The following is an example of an instruction statement with a/ abel and
(gp):

L5: (p7) addl r14 = @prel (LO), rl

The following is an example of an instruction statement with a ¢ ag:
[t1l:] fclass.munc p4, p5 = f6, @os

@os isapredefined constant representing the f cl ass operation. p4 is
trueif f 6 is positive.

2-18 1A-64 Assembly Language Reference Guide

INn

tel.

Directive Statements

A directive statement has the following syntax:
.directive [oper ands] /1 comments

Where:

.directive Represents the directive mnemonic. Directives always
begin with aperiod (.). Directive mnemonics are not
case-sensitive.

oper ands The operands are optional and determined by the
directive. Where multiple operands are present in
directives, separate them with commas.

The following is an example of a directive statement:

.proc foo

Assignment Statements

Assignment statements enable the programmer to define or redefine a
symbol by assigning it avalue. This value may be areference to another
symbol, register name, or expression. The new value takes effect
immediately and remainsin effect until the symbol isredefined. Symbols
defined in assignment statements do not have forward references.

In addition, symbols defined in assignment statements cannot:
* appear in the symbol table of an output object file.

* bedeclared global.

* bedefined in an equate statement.

There are two types of assignment statements:

* Symbol assignment statements, which define or redefine a symbol in
the symbol name space.

* Register assignment statements, which define or redefine aregister
name in the symbol name space.

1A-64 Assembly Language Reference Guide 2-19

Symbol Assignment Statements

A symbol assignment statement has the following syntax:

identifier=expression /1 conments
Where:
identifier Represents a symbol in the symbol name space.

expression Specifies the type and value of the identifier. The
expression cannot contain forward references.

The following is an example of an assignment statement that defines a
symbol:

C = LO+2

Register Assignment Statements

A register assignment statement has the following syntax:

identifier=register nane /1 conments
Where:
identifier Represents a register name in the symbol name space.

regi ster name
Specifies an alternate register name. If the register name
isastack or rotating register name, the new register
name continues to reference the previously-defined
register name, even if the name is no longer in effect.
See the "Register Stack Directive" section and
"Rotating Register Directives' section in Chapter 6.

The following is an example of an assignment statement that defines a
register name:
A=rl

2-20 1A-64 Assembly Language Reference Guide

intel.

Equate Statements

Equate statements enable the programmer to define a symbol by
assigning it avalue. Thisvalue may be a reference to another symbol,
register name, or expression. In equate statements, a symbol can be
defined only once throughout the source file. These symbols may have
forward references, except when referencing a register name. A symbol
name defined in an equate statement cannot be defined in an assignment
Statement.

Equate statements have the same syntax as assignment statements, except
for the operator.

There are two types of equate statements:
* symbol equate statements
* register equate statements

Symbol Equate Statements
A symbol equate statement has the following syntax:

identifier==expression /1 conments
Where:
identifier Represents a symbol in the symbol name space.

expressi on Specifies the type and value of theidentifier. The
expression can contain forward references.

Thefollowing isan example of an equate statement that defines a symbol:
A ==

Register Equate Statements

A register equate statement has the following syntax:

identifier==register nane /1l commrents
Where:
identifier Represents a register name in the symbol name space.

1A-64 Assembly Language Reference Guide 2-21

intel.

regi ster name Specifiesan alternate register name. The register name
cannot contain forward references. If the register name
isastack or rotating register name, the new register
name continues to refer to the previously-defined
register, even if the nameis no longer in effect. See the
"Register Stack Directive" section and "Rotating
Register Directives" section in Chapter 6.

The following is an example of an equate statement that defines aregister
name:

A==r1l

Data Allocation Statements
A data allocation statement has the following syntax:

[label :] dataop operands /1 conments
Where:
| abel Defines a symbol whose valueis the address of thefirst

data object defined by the statement. If the assembler
inserts padding to align the location counter to an
implied alignment boundary, the label is assigned the
value of the newly-aligned address.

The assembler interprets alabel followed by a
double-colon (: :) asaglobal symbol. See the " Symbol
Scope Declaration” section in Chapter 4 for more
information about global symbols.

dat aop Defines the type and size of data objectsthat are
assembled. Data object mnemonics are not
case-sensitive. The "Data Allocation Statements®
section in Chapter 5 lists the data object mnemonics.

2-22 1A-64 Assembly Language Reference Guide

intel.

oper ands

Contain multiple expressions separated by commas.
Each expression defines a separate data object of the
same type and size. The assembler puts the data objects
into consecutive locations in memory, and
automatically aligns each to its natural boundary.

The following is an example of a data-allocation statement with a/ abel :
L2: data4.ua L1, L1+7, .t1+0x34, $-15

Cross-section Data Allocation Statements

A cross-section data allocation statement has the following syntax:

xdat aop section-name, operands [/ comrent s
Where:
xdat aop Defines the type and size of data objectsthat are

section-nane

oper ands

assembled. Cross-section data object mnemonics are
not case-sensitive.

Refersto a predefined name of an existing sectioninthe
object file.

Contain multiple expressions that are separated by
commas. Each expression defines a separate data object
of the same type and size. The assembler puts the data
objects into consecutive locations in memory, and
automatically aligns each to its natural boundary.

The following is an example of a cross-section data allocation statement:
.xdata8 .data, O0x123, L1

1A-64 Assembly Language Reference Guide 2-23

2-24

1A-64 Assembly Language Reference Guide

intel.

Program Structure

This chapter describes the overall structure of the 1A-64
assembly-language program and explains how to:

* Define sections

* Include contents from other files in the current source file

* Bundle and group instructions

* Define procedures

* Generate symbolic debug information (Windows NT* specific)

Sections

The output object file of an assembly program is made up of named
sections that contain code and data. The assembler allows any number of
sections to be created in parallel within the output object file, one of
which can be accessed at atime. The section currently accessed is
referred to as the current section.

The assembler maintains a separate location counter for each existing
section. The assembler always adds new code or data to the end of the
current section, moving the location counter in that section ahead to
incorporate the new code or data. The "Cross-section Data Allocation
Statements" section in Chapter 5 explains how to add data to a section
that is not the current section.

1A-64 Assembly Language Reference Guide 3-1

intel.

Section directives and predefined section directives are used to define and
switch between sections. Some section directives have flag and type
operands that specify the flag and type attributes of a section.

Section Flags and Section Type Operands

Table 3-1

The 1 ags operand specifies one or more flag attributes of a section. The
flags operand isa string constant composed of one or more characters.
Table 3-1 liststhe valid flag characters. The f1 ags operand is
case-sensitive. The assembler does not detect invalid specifications made
by the programmer, such as stores to a section that is a non-writable
section. A non-writable section is not flagged by the w flag character.

Section Flag Characters

Table 3-2

Flag Characters Description

w Write access allowed.

a Section is allocated in memory.

X Section contains executable instructions.
S Section contains "short" data.

Thet ype operand specifies a section’s type attribute. The t ype operand
isastring constant containing one of the valid section typeslisted in
Table 3-2. The section typeslisted in the table correspond directly to ELF
(UNIX*) section types, except for the" condat " section type, which
corresponds to COFF32 (Windows NT). The t ype operand is
case-sensitive.

Section Types

Section Type Description

" progbits" Sections with initialized data or code.

"nobi ts" Sections with uninitialized data (bss).

"condat " COMDAT sections. See the "Windows NT (COFF32)
(Windows NT Specific Section Flag Operands” section.

specific)

"not e" Note sections.

3-2

1A-64 Assembly Language Reference Guide

intel.

Windows NT (COFF32) Specific Section Flag Operands

In addition to the section flags described in the " Section Flags and Section

Type Operands” section, the assembler recognizes the flags listed in
Table 3-3 when the section typeis” condat " and the object file format is
COFF32 (Windows NT).

These flags represent link-time selection criteria, and are case-sensitive.

Table 3-3 COMDAT Section Flag Characters
Flag Description
D Allow only one instance of this section.
Y Select any one instance of this section.
S Select any one instance of this section; all instances must be the same size.
E Select any one instance of this section; all instances must have identical
contents.
N Select the newest instance of this section.
L Select the largest instance of this section.
T Section contains thread local storage (tls) data.
A Select an instance of this section only if the associated section name is

selected. See the "Associated Section Name Flag" section.

Associated Section Name Flag

When the A flag is present, the assembler identifies an associated section
name. Use the A flag in conjunction with an associated section operand.
The associated section operand is a section name. A section name can
only be loaded in link time if the associated section is already |oaded.

To select the Aflag, usethe. secti on or . pushsecti on directive with an
additional assoc- sect i on operand in one of the following formats:
.section section-nane [,"flags","type" [,assoc-section]]
.section section-nane = "flags","type" [, assoc-section]

. pushsection section-nanme [,"flags","type"
[, assoc-section]]

. pushsection section-nane = "flags","type" [, assoc-section]

Where:

1A-64 Assembly Language Reference Guide 3-3

intel.

section-name Represents a user-defined name using any valid
identifier. Section names are case-sensitive.

flags Represents a string constant composed of one or more
characters that specify the attributes of a section. See
the Table 3-1 for alist of the valid flag characters.

type Represents a string constant specifying atype attribute
of asection. See Table 3-2 for alist of the section types

assoc- section Represents a user-defined section name.

Section Definition Directive

The. secti on directive defines new sections, switches from one section
to another, and sets the current section. The . sect i on directive has the
following formats, with a different functionality for each format:

.section section-nane

.section section-nane, "fl ags"”, "t ype"
.section section-nanme = "flags", "type"
Where:

section-name Represents a user-defined name using any valid
identifier. Section names are case-sensitive.

flags Represents a string constant composed of one or more
characters that specify the attributes of a section. See
Table 3-1 for alist of the valid flag characters.

type Represents a string constant specifying atype attribute
of asection. See Table 3-2 for alist of the section types.

In the first format, the . secti on directive setsthe sect i on- nane asthe
current section.

In the second format, the.. sect i on directive defines a new section,
assignsf/ ags and t ype attributes, and makes the newly-defined section
the current section. If the newly-defined section hasthe samename, I ag
attributes, and t ype attribute as a previously-defined existing section, the
assembler switches to the previously-defined section without defining a

3-4

1A-64 Assembly Language Reference Guide

new one. For example, the following . sect i on directive defines a new
section (my_secti on), assignsf/ ags ("aw') andtype (" progbits")
attributes, and makes it the current section.

.section my_section, "aw', "progbits"

In thethird format, the . sect i on directive creates a new section with a
previously-defined section name, and assignsit new f/ ags and t ype
attributes. The newly-created section becomes the current section; any
reference to this section name refers to the newly-created section.

The "Using Section Directives" section illustrates how to use the
. secti on directive.

Section Stack Directives

The assembler maintains a section stack, which is defined by the

. pushsecti on and. popsect i on directives. These directives push and
pop previoudy-defined sections to and from the section stack. The
assembler may limit the depth of a section stack, but it must allow at least
ten levels.

The. pushsect i on directive pushes the current section onto the stack and
switches to the section specified in the directive. The . pushsecti on
directive, likethe . sect i on directive, has one of the following formats:

. pushsecti on section-nane

. pushsection section-nane, "fl ags"”, "t ype"

. pushsection section-name = "flags", "type"
Where:

section-name Represents a user-defined name using any valid
identifier. Section names are case-sensitive.

fl ags Represents a string constant composed of one or more
characters that specify the attributes of a section. See
Table 3-1 for alist of the valid flag characters.

type Represents a string constant specifying atype attribute
of a section. See Table 3-2 for alist of the section types

1A-64 Assembly Language Reference Guide 3-5

intel.

The . popsect i on directive pops the previously-pushed section from the
top of the stack, and makes it the current one.

The "Using Section Directives" section illustrates how to use the
. pushsecti on and . popsecti on directives.

Absolute Sections

Absolute sections are only supported by ELF object file formats. To
define an absolute section with afixed starting address, usethe . secti on
and . pushssect i on directives with an optional ori gi n operand. The
ori gi n operand must be an absolute expression. See the "Absolute
Expressions' section in Chapter 2 for more information about absolute
expressions. Absolute section addresses cannot overlap. The linker does
not merge absol ute sections with other section types, or with other
absolute sections.

The following example defines a new section name and assignsit new
flags andtype attributes, with a starting address specified by the
ori gi n parameter.

.section new_name, "aw', "progbits", 0x1000

Section Return Directive

The. previ ous directive returnsto the previously-defined section of the
current section and makes it the current section. This directive does not
affect the section stack. The "Using Section Directives' section illustrates
how to use this directive.

Predefined Section Directives

The predefined section directives define and switch between
commonly-used sections. A predefined section directive creates a new
section with the default 1 ags andt ype attributes, and makes that
section the current section.

3-6

1A-64 Assembly Language Reference Guide

The predefined section directive mnemonics are the same as the section
names. The assembler generates section names in lower case, even
though directive mnemonics are not case-sensitive.

On some platforms the assembler automatically creates alocal symbol
witha"secti on" type attribute for each defined section in the object file.
See the "Symbol Type Directive" section in Chapter 4 for more
information about symbol types.

The linker combines sections with the same name, f/ ags andt ype
attributes. The linker creates two separate output sections for sections
with the same name, but different 7/ ags and t ype attributes.

To define a section without the default flags and type attributes, use the
.section directive.

The predefined section directives cannot define a new section using the
same hame as a previously-defined section.

Table 3-4 lists the predefined section directives, and their default 7/ ags
and t ype attributes. A predefined section directive can have the same
name as a section name.

Table 3-4

Predefined Section Directives

Directive/
Section Name

.text
.data
.sdata
. bss

. sbss
.rodat a

. coment

Flags Type

"ax" " progbits"
"wa" " progbits"
"was" " progbi ts"”
"wa" "nobi ts"
"was" "nobits"
"a" " progbits"
" " progbi ts"”

Usage

Read-only object code.

Read-write initialized long data.
Read-write initialized short data.
Read-write uninitialized long data.
Read-write uninitialized short data.

Read-only long data (literals). ELF
format only.

Comments in the object file. ELF
format, and COFF formatonly when
used with the - Q y command-line
option.

1A-64 Assembly Language Reference Guide

3-7

intel.

Using Section Directives

The following code illustrates the use and behavior of the section
directives. text, . section, . pushsecti on, . popsecti on, and
. previ ous:

Example 3-1 Code Sequence using Section Directives

. text /1 Def aul t
.section A /1 Makes A the current section..text is A's previous
/'l section

. pushsection B //Pushes A onto the stack and makes B the current
/lsection. Ais B's previous section

. pushsection C//Pushes Bonto stack and nakes Cthe current section,
/1 Bis Cs previous section

. popsection /1 Pops B fromstack and makes it current

. popsection /1 Pops A fromstack and nmakes it current..text is
/1 A's previous section

. previ ous /1 Makes A's previously current section .text

/'l the current section. A beconmes .text’s
/'l previous section

. previ ous /1 Makes A the current section, .text becomes A's
/'l previous section

Include File Directive

To include the contents of another file in the current source file, use the
. i ncl ude directivein the following format:

.include "fil enane"
Where:
“fil enane" Specifies a string constant. If the specified filename is

an absolute pathname, the fileisincluded. If the
specified filename is arelative pathname, the assembler
performs a platform-dependent search to locate the
include file.

3-8 1A-64 Assembly Language Reference Guide

In

tel.

Bundles

| A-64 architecture instructions are grouped together in 128-bit aligned
containers called bundles. Each bundle contains three 41-bit instruction
dots, and a5-bit template field. The template field specifieswhich type of
execution unit processes each instruction in the bundle. Bit O isset to 1 if
thereisa stop at the end of a bundle. Thereisno fixed relation between
the boundaries of an instruction group and the boundaries of a bundle.
Figure 3-1 illustrates the format of a bundle.

Figure 3-1 Bundle Format

127 87 86 46 45 5 4 0

instruction slot 2 instruction slot 1 | instruction slot0 | template

41 41 41 5

Multiway branch bundles contain more than one branch instruction.
When the first branch instruction of a multiway bundle is taken, the
subsequent branch instruction does not execute.

Bundles are always aligned at 16-byte boundaries. The assembler
automatically aligns sections containing bundles to at least 16-bytes.

Bundling can be:
* implicit (automatically performed by the assembler)
* explicit (specified by the programmer)

— with automatic selection of the template

— with explicit selection of the template

Refer to the | A-64 Architecture Software Devel oper’s Manual for more
details about bundles.

1A-64 Assembly Language Reference Guide 3-9

intel.

Implicit Bundling

The assembler bundles instructions automatically by default.

In the implicit-bundling mode, section directives do not terminate a
partially-filled bundle of a previously-defined section. This means that
the assembler can return to the previous section and continue to fill the
bundle.

In implicit-bundling mode, a label forces the assembler to start a new
bundle.

Explicit Bundling

The programmer can explicitly assemble bundles by grouping together up
to three instructions, and enclosing them in braces ({}). The assembler
places these instructions in one bundle, separate from all preceding and
subsequent instructions. Stops at the end of an explicit bundle can be
placed before or after the closing brace.

Section directives and data all ocation statements cannot be used within an
explicit bundle. Cross-section data allocation statements can be used
within an explicit bundle. See the "Cross-section Data Allocation
Statements" section in Chapter 5 for more information.

In explicit-bundling mode, labels can be inserted only as the first
statement of an explicit bundle. Instruction tags can be applied to any
instruction.

When using explicit-bundling, the appropriate template can be selected in
one of the following ways:

* automatically by the assembler.
* explicitly by the programmer, using the explicit-template directives.

Auto-template Selection

By default, the assembler searches and selects a matching template for a
bundle. The template fields specify intra-bundle instruction stops. When
two templates consist of the same sequence of instruction types, they are

3-10

1A-64 Assembly Language Reference Guide

distinguished by stops. The assembler selects the appropriate template
field based on the stops within the bundle. If no template is found, the
assembler produces a diagnostic message. Instruction group stops may
occur in abundle.

Explicit-template Selection

To explicitly select a specific template, use one of the directiveslisted in
Table 3-5, asthefirst statement of your code within the braces. For
example, the. mi i directive selects the memory-integer-integer (mii)
template.

Table 3-5 Explicit Template Selection Directives

Directive Template Selection

Slot0 Slot 1 Slot 2
.mm memory integer integer
. nfi memory floating-point integer
. bbb branch branch branch
. ox memory long immediate
.mb memory integer branch
) memory memory branch
. mmi memory memory integer
. mbb memory branch branch
.nfb memory floating-point branch
. mf memory memory floating-point

Refer to the | A-64 Architecture Software Devel oper’s Manual for more
information about template field encoding and instruction slot mapping.

1A-64 Assembly Language Reference Guide 3-11

intel.

N

NOTE. Select the. n x directive for the move long immediate
instruction. This instruction operates on 64-bit data types and is
too largeto fit into one of the 41-bit bundle slots. This directive
selectsthe m x template and inserts the instruction in slot 1 and
dot 2 of the bundle.

Example 3-2 is code that shows an explicit bundle using explicit template
selection, and a stop.

Example 3-2 Bundle with Explicit Template Selection and a Stop

{. mm /luse the nm tenplate for this bundle
m i nst // menory instruction
i /] stop
m i nst /!l menory instruction
i inst /linteger instruction
}

Instruction Groups

| A-64 architecture instructions are organized in instruction groups. Each
instruction group contains one or more statically contiguous instruction(s)
that can execute in parallel. An instruction group must contain at least one
instruction; there is no upper limit on the number of instructionsin an
instruction group.

Aninstruction group is terminated statically by a stop, and dynamically
by taken branches. Stops are represented by a double semi-colon (; ;).
The programmer can explicitly define stops. Stops immediately follow an
instruction, or appear on a separate line. They can be inserted between
two instructions on the same line.

Refer to the | A-64 Architecture Software Devel oper’s Manual for more
detailed information about instruction groups.

3-12

1A-64 Assembly Language Reference Guide

intel.

Dependency Violations and Assembly Modes

Dependency violations occur when instructions within an instruction
group access the same resource register, including registers that appear as
implicit operands. Dependency violations result in architecturally
undefined behavior. The assembler can detect and eliminate dependency
violations that occur within instruction groups, depending on its mode.

The assembler reads and processes assembly code in one of two modes:
explicit and automatic.

Use explicit mode if you are an expert user with profound knowledge of

| A-64 architecture or performance isimportant. In explicit mode, you are
responsible for bundling and stops (; ;), and the assembler generates
errors where it finds dependency violations.

Use automatic mode if you are anovice user or performance is not the
highest consideration. In automatic mode, the assembler bundles the code
and adds stops to avoid dependency violations. It ignores existing stops
and annotations.

You can mix code from both modesin the onefile. Set the mode using the
command-line option or the directives. auto and. explicit. The
directive. def aul t causes the assembler to revert to the mode of
operation defined in the command line.

For a complete description of the rules of data dependencies, see the
| A-64 Architecture Software Devel oper’s Manual.

This feature may not be currently supported by all assemblers.

Procedures

Software conventions require that instructions belong to a declared
procedure, and that procedure prologues be separated from the main body
within the procedure. These conventions ensure that the proper stack
unwind information is placed in the object file. Refer to the 1A-64
Software Conventions and Runtime Architecture Guide for details about
the software conventions.

1A-64 Assembly Language Reference Guide 3-13

intel.

Procedure Directives

The. proc and . endp directives combine code belonging to the same
procedure. The . pr oc directive marks the beginning of a procedure, and
the. endp directive marksthe end of aprocedure. A single procedure may
consist of several disjointed blocks of code. Each block should be
individually bracketed with these directives. Name operands within a
procedure can be used only for that specific procedure.

The. proc directive declares a symbol as afunction. The. pr oc directive
does not define the symbol by assigning it avalue. Symbols must be
defined as alabel within the procedure. When nane is defined, it is
automatically assigned a" f uncti on" type.

The following code sequence shows the basic format of a procedure:
. proc nane, . ..
name: /11 abel

/linstructions in procedure
.endp nane, ...

Where:

name Represents one or more entry points of the procedure.
Each entry point has a different name. The assembler
ignores the nane operands of the . endp directive.

Procedure Label (PLabel)

When the object file format is COFF32 (Windows NT), the assembler
creates two symbols for a defined procedure. One symbol represents the
procedure entry point and appears in the object file symbol table with the
original symbol name preceded by a dot. For example, the label named

f oo becomes. f oo in the object file symbol table. The other symbol
represents the procedure label, also referred to as the function descriptor
or PLabel, and isimplicitly generated by the assembler using the original
symbol name. Refer to the 1A-64 Software Conventions and Runtime
Architecture Guide for more information about the procedure label.

3-14

1A-64 Assembly Language Reference Guide

In

tel.

Stack Unwind Directives

Stack unwind directives are used to generate unwind information for a
procedure.

The 1A-64 Software Conventions and Runtime Architecture Guide
describes stack unwind el ements and their semantics. Refer to this
document for information about the semantics of the stack unwind
directives described in this section.

Procedures are bound by the. pr oc and . endp directives. See the
"Procedure Directives' section for more information about these
directives. Procedures are section-sensitive. The assembler interprets
stack unwind directives according to the procedure in which they appear.

Procedures contain prologue and body regions that are divided by
headers. These headers are specified using the . pr ol ogue and . body
directives.

The. prol ogue directive introduces a prologue region within a
procedure. Each prologue region must be introduced by the . pr ol ogue
directive.

The. body directive separates the procedure prologue from the main body
of the procedure. You can use the . body directive more than once within
procedures with multiple body regions.

For language specific data, use the . handl er dat a directive followed by
handler data allocations with the . endp directive after the handler data
allocations. The assembler places the handler datain the . xdat a section.
See the "Stack Unwind Directives Usage Guidelines' section on page
3-22 for more information about using this directive.

These directives may not be currently supported by all assemblers.

Example 3-3illustrates the format of a procedure with two prologues, two
body regions, and language specific data.

Example 3-3 Procedure Format in a Code Sequence

-p

roc

nane, . .. /lstart of procedure

1A-64 Assembly Language Reference Guide 3-15

intel.

Example 3-3 Procedure Format in a Code Sequence (continued)

. prol ogue /linstructions in first prol ogue

. body /linstructions in first body region

. prol ogue /linstructions in second prol ogue

. body /linstructions in second body region

. handl erdat a //data all ocations go to .xdata section
. endp nane, . .. /'l end of procedure

Stack unwind directives, except for the . endp directive, do not break
bundles. When at ag operand is present in a stack unwind directive, the
tag refersto alocation of an instruction dot. If thet ag isomitted, the
location default is the location counter of the next instruction. More than
one directive can refer to the same location of an instruction slot.

Generally, functions have unwind table entries. A stack unwind directive
must be present between the . pr oc and . endp directives to write function
entries and unwind information to the unwind table.

To create afunction entry for unwind information when there is no stack
unwind information, use the. unwent ry directive.

Table 3-6 lists the stack unwind directives and their operands. The
right-most column of the table summarizes the records and fields that are
affected by these directives. For more information about the affected
records and fields, refer to the 1A-64 Software Conventions and Runtime
Architecture Guide.

Table 3-6 Stack Unwind Directives

Third
First Second Operan Affected Records
Directive Name Operand Operand d and Fields
. proc synbol entry-start
. endp entry-end
. handl er dat a handl er data
al l ocation
.unwentry entry

generation

3-16 1A-64 Assembly Language Reference Guide

intel.

Table 3-6

Stack Unwind Directives (continued)

Directive Name

. prol ogue

. prol ogue

. body
.personality
fframe
.vframe
.vframesp
.vframepsp
.restore
.copy_state
.l abel _state

.save

.altrp
. savesp

. savepsp

.save

. savesp

First
Operand

i mm mask

synbol

si ze
gr-location
spof f
pspof f

sp

state_no
state_no

rp

br -1 ocation
rp

rp

ar. fpsr

ar. fpsr

Second
Operand

grsave

[phases]
[tag]
[tag]

[tag]

[tag]

[ecount]

gr-1location

i mm | ocation

i mm | ocation

gr_location

gr_location

Third
Operan

[tag]

[tag]

[tag]

[tag]

[tag]

[tag]

Affected Records
and Fields

prol ogue header
previ ous header
prol ogue header
previ ous header
body header
previ ous header
personality
mem st ack_f
mem st ack_v
psp_gr
mem st ack_v
psp_sprel
mem st ak_v
pso_psprel
epi | ogue
copy_state

| abel _state
rp_when

rp_gr

rp_br

rp_when
rp_sprel
rp_when
rp_psprel

f psr _when
fpsr_gr

f psr _when

f psr_sprel

1A-64 Assembly Language Reference Guide

3-17

intel.

Table 3-6 Stack Unwind Directives (continued)
Third
First Second Operan Affected Records

Directive Name Operand Operand d and Fields

. savepsp ar. fpsr imm_location [tag] f psr _when
f psr_psprel

. save ar. bsp gr_l ocation [tag] bsp_when
bsp_gr

. savesp ar. bsp imm_location [tag] bsp_when
bsp_sprel

. savepsp ar. bsp imm_location [tag] bsp_when
bsp_psprel

. save ar . bspstore gr_location [tag] bspst or e_when
bspstore_gr

. savesp ar. bspstore imm | ocation [tag] bspst or e_when
bspstore_sprel

. savepsp ar . bspstore imm | ocation [tag] bspst or e_when
bspstore_psprel

. save ar. rnat gr_l ocation [tag] rnat _when
rnat _gr

. savesp ar. rnat imm_location [tag] rnat _when
rnat _sprel

. savepsp ar. rnat imm_location [tag] rnat _when
rnat _psprel

. save ar.pfs gr-1location [tag] pfs_when
pfs_gr

. savesp ar.pfs immlocation [tag] pfs_when
pfs_sprel

. savepsp ar.pfs immlocation [tag] pfs_when
pfs_psprel

. save ar. unat gr-1location [tag] nat cr_when
natcr_gr

3-18 1A-64 Assembly Language Reference Guide

intel.

Table 3-6

Stack Unwind Directives (continued)

Third
First Second Operan Affected Records
Directive Name Operand Operand d and Fields
. savesp ar. unat immlocation [tag] nat cr_when
nat cr_sprel
.savepsp ar . unat immlocation [tag] nat cr_when
nat cr_psprel
. save ar.lc gr-1location [tag] | c_when
I c_gr
. savesp ar.lc immlocation [tag] | c_when
I c_sprel
. savepsp ar.lc immlocation [tag] | c_when
| c_psprel
.save pr gr-1location [tag] preds_when
preds_gr
. savesp pr immlocation [tag] preds_when
preds_sprel
.savepsp pr immlocation [tag] preds_when
preds_psprel
.save @ri unat gr_l ocation [tag] pri unat _when
priunat _gr
. savesp @ri unat imm_location [tag] pri unat _when
pri unat _sprel
.savepsp @ri unat imm_location [tag] pri unat _when
pri unat _psprel
.save. g i mm grmask gr_nmem
spi |l _i mask
.save. g i mm_grmask gr_l ocation [tag] gr_gr imask
.save. f imm frmask fr_mem
spi |l _i mask
1A-64 Assembly Language Reference Guide 3-19

intel.

Table 3-6 Stack Unwind Directives (continued)

Third
First Second Operan Affected Records

Directive Name Operand Operand d and Fields
.save. b i mm br mask br_mem

spi |l _i mask
. save. ¢f i mm grmask i mm frmask frgr_mem

spi |l _i mask
.save. b i mm br mask gr-1location br_gr

spi |l _i mask
.spill imm | ocation spi | | _base
. unwabi @vr 4 i mm_cont ext abi
. unwabi @ pux i mm_cont ext abi
. unwabi @nt i mm_cont ext abi

The following alphabetical list defines the stack unwind directive
operands listed in Table 3-6:

®* br-location istheaternative branch register used to get the return
link. By default, bo isthe return link.

®* ecount isthe number of prologues - 1 specified by the assembler if
thisfield is not specified by the user.

®* gr-location isagenera-purpose register that specifies the
destination of the save operation. For example, registersr 1 and | oc1.
®* grsave savestherp,ar. pfs, psp, andpr register contentsto the first
general-purpose register.
®* immlocation (immediate location) is the offset between thesp or
psp, andthe save addr ess, specified in bytes. This offset is always
positive and specified as follows:
* imm mask (immediate mask) isan integer constant specifying a bit
pattern for the preserved registers, as follows:
— Theimmediate mask (i mm mask) of the . prol ogue directiveis
specified asfollows: r p (return link) (bit 3), ar . pf s register
(bit 2), psp (previous stack pointer) (bit 1), pr register (bit 0)

3-20 1A-64 Assembly Language Reference Guide

— Theimmediate mask (i nm f r mask) of the . save. f and
. save. gf directives refer to the preserved floating-point
registers.

— Theimmediate mask (i nm gr mask) of the. save. g and
. save. gf directivesrefer to the preserved general registers.

— Theimmediate mask (i nm br mask) of the. save. b directive
refers to the preserved branch registers.

sp_offset: immlocation = save_address - sp_address
psp_offset: inmmlocation = psp_address - save_address
® phases isthe number of phases (0 to 3).
®* @riunat isapredefined symbol and indicates a primary unit.
* size isthefixed framesizein bytes.
® sp,rp,ar.pfs,ar.unat,ar.lc,andpr areexplicit register names.
®* state_no isthe state copied or restored.
* @vr4, @pux, and @t specify the operating system type.
®* synbol isanassembly label.

®* tag isanoptional operand, which specifiesa"when" attribute of the
operation described by the directive.

Syntax for the .save.x Directives

Thedirectives, . save. f, . save. g, . save. gf, and . save. b, define 2-bit
fields for each save operation in thei mask descriptor. The assembler
interprets the instruction that immediately follows a save directive as a
save instruction.

Example 3-4 illustrates the use of the . save. g directive. Each . save. g
directive describes the subsequent store instruction. The operand isa
mask where only one bit is set. This bit specifies the preserved saved
register. The assembler produces agr _mem descriptor with aox5 mask. In
addition, the assembler marks the 2-hit fields of the i mask descriptor,
corresponding to the slots of the two store instructions.

1A-64 Assembly Language Reference Guide 3-21

Example 3-4 Code Sequence Using the .save.g Directive

.save.g Ox1
st8... =r4
:ééve.g ox4
st8... =716

Example 3-5 illustrates the use of the . save. gf directive. The. save. gf
directive describes the subsequent store instruction. The operandsis a
mask where only one bit is set. This bit specifies the preserved saved
register. The assembler producesa f r gr _mem descriptor with a0x42
mask for the floating-point registers and a 0x2 mask for the
general-purpose registers. In addition, the assembler marks the 2-bit
fields of thei mask descriptor, corresponding to the dots of the three store
instructions.

Example 3-5 Code Sequence Using the .save.gf Directive

.save. gf 0, O0x2
fst... =3

.save.gf 0, 0x40
fst... =18

_save.gf 0x2, 0
st8... =715

Stack Unwind Directives Usage Guidelines

Follow these guidelines when using the stack unwind directives:

* Place stack unwind directives between the unwind entry point of the
function declared in . pr oc and . endp.

* Thefirst directive in each region in a procedure must be one of the
following region header directives, . pr ol ogue or . body.

* Thefirst directive in the procedure must point to the same address as
the first unwind entry point of the function.

3-22 1A-64 Assembly Language Reference Guide

Region header directives should alternate. No two consecutive
regions of the same type are allowed.

When none of the stack unwind directives listed in Table 3-6 are
specified, optionally usethe . unwent ry directive to create an unwind
entry for the function. Do not use this directive if the unwind records
arefilled by the compiler.

Use tags only within the current region. A tag operand cannot be
specified out of the scope region. If atag is omitted, the directive
refers to the next instruction, which resides in the same region.

Useonly one. personal i ty directive at any point within each
procedure.

Always precede the . handl er dat a directive with the. personal ity
directive.

Follow these guidelines for prologue regions:

— Useone of the following frame directives: . f f rane, . vfrane, or
. vframesp.

— Useeach of the. save directives only once. For example: . save
rp,ar.pfs, ar.unat,ar.lc,andpr.

— Multiple usage of the directives, . save. g, . save. f, . save. b,
and. save. gf isalowed. The number of bits set in the bit-mask
operand specifies the number of the consecutive save instructions
that immediately follow the directive.

— A single unwind record is built for one or more occurrences of
the following directives: . save. g, . save. f, . save. b,
and. save. gf . The bit-mask field of the record is a bitwise OR of
all the masks that appear in the directives.

— Useonly one. save. b with the gr-1/ ocat i on operand.
— Useonly one. spil | directive.
Useonly one . r est or e directive for body regions.

1A-64 Assembly Language Reference Guide 3-23

intel.

Windows NT (COFF32) Symbolic Debug Directives

When the object file format is COFF32 (Windows NT), the symbolic
debug directive. | n storesthe line number table entry of afunctionin the
symbolic debug information. The symbolic debug directive . | n must be
enclosed within a function defined by the. bf and . ef directives.The. bf
and . ef directives define the beginning and the end of afunction.

The. I n directive has the following format:

.In I'i ne-nunber[, function]
Where:

I'i ne-number Specifies the source line number associated with the
next assembled instruction.

function Isthe name of the current function.

The. bf and. ef directives have the following format:

. bf function,line

. ef function,li ne,code-si ze

Where:

function Represents the function name.

l'ine Is an integer number corresponding to the first source

line of the function.

code-si ze Is an integer number representing line group code size,
which is written as debug information.

3-24 1A-64 Assembly Language Reference Guide

intel.

Declarations

This chapter describesthe | A-64 assembly-language directives associated
with symbol declarations. These directives can be used to perform the
following functions:

Declare symbol scopes
Specify symbol types
Specify symbol sizes
Override default file names
Declare common symbols

Declare aliases for labels, function names, symbolic constants, or
sections

Symbol Scope Declaration

Symbols are declared as global, weak, or local scopes. Symbol scopes are
used to resolve symbol references within one object file or between
multiple object files. The symbol scope attribute is placed in the object
file symbol table and any reference to a symbol isresolved in link time.
By default, symbols have alocal scope, where they are available only to
the current assembly-language source file in which they are defined.

1A-64 Assembly Language Reference Guide 4-1

intel.

Local Scope Declaration Directive

References to symbols with alocal scope are resolved from within the
object file in which the symbols are declared. Local symbols with the
same name in different object files do not refer to the same entity.
Symbols have alocal scope by default, so it is not necessary to declare
symbols with local scopes. However, the. | ocal directiveis available for
completeness. The. 1 ocal directive has the following format:

.l ocal name, namne,

Where:
name Represents a symbol name.

Global Scope Declaration Directive

References to symbols with a global scope are resol ved within the object
file in which the symbols are declared, and within other object files.
Global symbols with the same name in different object files refer to the

same entity.
To declare one or more symbols with a global scope, usethe. gl obal

directive. These symbols are flagged as global symbols for the linkage
editor. The. gl obal directive has the following format:

. gl obal nane, nanme, ...
Where:
name Represents a symbol name.

Weak Scope Declaration Directive

References to symbols with aweak scope are resolved within the object
fileinwhich the symbols are declared, and within other object files. Weak
symbols with the same name in different object files may not refer to the
same entity. When a symbol name is declared with aweak scope as well
asaglobal or local scope, the global or local scope will take precedence
over the weak scopein link time.

4-2

1A-64 Assembly Language Reference Guide

To declare one or more symbols with aweak scope, use the . weak
directive.These symbols are flagged as weak symbols for the linkage
editor. The weak scope declaration format for UNIX* (ELF) and
Windows NT (COFF32) differ and are described in the sections that
follow.

Weak Scope Declaration for UNIX (ELF)

For UNIX (ELF), use the . weak directive in the following format:
. weak nanel, nane2,

Where:
name Represents a symbol name.

The following example illustrates how to declare an undefined symbol
with aweak scope. The defined symbol x: hasalocal scope.y hasthe
attributes of x and has alocal scope. The symbol y can then be declared
with aweak scope using the . weak directive while keeping the other
attributes of x.
X
y == X
.weak y

Weak Scope Declaration for Windows NT (COFF32)

For Windows NT (COFF32), use the . weak directive in the following
format to declare a symbol with aweak scope and search for defined
symbols within other object files and libraries:

. weak identifierl = identifier2

identifierl Representsasymbol name that isassigned aweak
symbol scope, which is resolved in link time.

identifier2 Representsasymbol name that holdsthe symbol
definition.

Use the following syntax to declare a symbol with aweak scope and search for

defined symbols within other object files and not within libraries:

. weak identifierl == jdentifier2

1A-64 Assembly Language Reference Guide 4-3

intel.

Where:

identifierl Representsasymbol name that isassigned aweak
symbol scope, which is resolved in link time.

identifier2 Representsasymbol name that holdsthe symbol
definition.

The following exampleillustrates a weak scope declaration where x: isa

local defined symbol. x is the associated symbol fory. The. weak

directive assignsy aweak scope.

X

.weak y = X

Symbol Type Directive

The default type of a symbol in an object file is based on the
assembly-time type of the symbol. See Table 4-1 for alist of the symbol
types and their predefined names. To explicitly specify a symbol’s type,
use the. t ype directive in the following format:

.type nane, type

Where:

name Represents a symbol name.

type Specifies the symbol type using one of the predefined

symbolslisted in Table 4-1.

Table 4-1 Symbol Types

Predefined Symbol Name

Symbol Types of Type

Symbolic constants and undefined symbols ~ @ot ype

Labels and common symbols @bj ect

Function names @ unction

Section names Created by the assembler.

4-4 | A-64 Assembly Language Reference Guide

& NOTE. The assembler automatically creates a symbol of type
name for section names.

When the object file format is COFF32 (Windows NT) the
assembler creates a function symbol name for @ unct i on. For
more information see the "Procedure Label (PLabel)" sectionin
Chapter 3.

Symbol Size Directive

To explicitly specify the size attribute of a symbol, usethe. si ze
directive.

The. si ze directive has the following format:

.Si ze nane, si ze

Where:

name Represents a symbol name.

si ze Represents an absolute integer expression with no

forward references.

To implicitly specify the default size attribute of a symbol, use a data
allocation statement. The default symbol size is written to the symbol
table. Seethe "Data Allocation Statements" section in Chapter 5 for more
information.

E NOTE. When the object file format is COFF32 (Windows NT), the
. si ze directiveis only effective for common symbols.

1A-64 Assembly Language Reference Guide 4-5

intel.

File Name Override Directive

By default, the file name is the name of the source file. To override the
default filename usethe . file directive. If youusethe. fil e directive
more than once in a source file, the assembler places multiple file names
in the output object file. The. fi | e directive has the following format:

file " nane"
Where:

" nanme" Represents a string constant specifying a source file
name.

Common Symbol Declarations

Common and local common symbol declarations enable you to define a
symbol with the same name in different object files. The difference
between a common symbol and local common symbol is as follows:

®* Thelinker mergestwo or more common symbol declarations for the
same symbol.

®* The assembler merges two or more local common symbol
declarations for the same symbol.

If asymbol is declared as both common and local common, the common
declaration overrides the local common declaration. Any definition of a
symbol supersedes either type of common declaration.

Common Symbol Directive

To declare a symbol as a common symbol, use the . conmon directive.
Common symbols have a global scope, and do not necessarily have the
same size and alignment attributes. The . conmon directive has the
following format:

. conmon nane, si ze, al i gnment

4-6

1A-64 Assembly Language Reference Guide

Where:
name Represents a symbol name.
si ze Represents an absolute integer expression.
al i gnment Represents an absol ute integer expression to the power
of two. Not supported in COFF32 format.
E NOTE. When the object file format is COFF32 (Windows NT), the

al i gnment operand is not supported.

Local Common Symbol Directive

To declare asymbol asaloca common symbol usethe. | conmdirective.
The . | commdirective has the following format:

.1 comm nane, si ze, al i gnnent

Where:

name Represents a symbol name.

si ze Represents an absolute integer expression.

al i gnment Represents an absolute integer expression to the power
of two.

The assembler allocates storage in the. bss or . sbss sections for
undefined symbols declared as local common. The . bss or . sbss
sections are chosen according to the size of the local common symbol.
The assembler defines the symbol with the rel ocatabl e address of the
allocated storage. The symbol isdeclared with alocal scope, and assigned
the largest size and alignment attributes of the local common declarations
for that symbol.

1A-64 Assembly Language Reference Guide 4-7

intel.

Alias Declaration Directives

The. al i as directive declares an alias for alabel, afunction name, or a
symbolic constant. This directive can be used to reference an external
symbol whose name is not legal in the assembly language. The. al i as
directive has the following format:

.alias synbol ," al i as"

Where:

symbol Represents a symbol name that the assembler can
recognize. This name must be avalid name for the type
of symbol.

“alias" Represents a string constant, which is the name the

assembler exports to the object file symbol table.

The. secal i as directive declares an alias for a section name. This
directive can be used to reference an external section whose name is not
legal in the assembly language. The . secal i as directive has the
following format:

.secalias section-nane, " al i as"
Where:

section-name Represents a section name that the assembler can
recognize. This name must be avalid name for the type
of section.

“alias" Represents a string constant, which is the name the
assembler exports to the object file symbol table.

4-8 1 A-64 Assembly Language Reference Guide

intel.

Data Allocation

This chapter describes the 1A-64 assembly language statements used to
allocate initialized and unitialized space for data objects in current
sections and in cross sections, and to align data objects in sections of the
code.

Data Allocation Statements

Data allocation statements allocate space for data objectsin the current
section, and initialize the space by assigning it a value. Data objects can
be integer numbers, floating-point numbers, or strings. Integer numbers
and floating point numbers are aligned according to their size. A data
allocation statement with a/ abel , defines asymbol of @bj ect type, and
sets the size attribute for that symbol.

Data allocation statements have any of the following formats:

[Iabel:] datal expression,
[Iabel:] data2 expression,
[I abel :] datad4 expression,
[Iabel:] dat a8 expression,
[I abel :] real 4 expression,
[Iabel:] real 8 expression,
[I abel :] real 10 expression,
[I abel :] real 16 expression,
[Iabel:] string "string",

1A-64 Assembly Language Reference Guide 5-1

intel.

[Iabel: |

Where:

| abel

expressi on

string

stringz

string",

Specifies the data allocation address of the first data
object.

Represents any of the valid expression types listed in

Table 5-1. Data allocation statements can have more

than one expression operand.

vaueslisted in Table 5-1.

Table 5-1 summarizes the data allocation mnemonics, and their
expression type, memory format, data-object size, and alignment
boundary for each.

Represents any of the valid string expression type

Table 5-1 Data Allocation Statements
Expression Size
Mnemonic Type Memory Format (in bytes) Alignment
dat al Integer Integer 1 1
dat a2 Integer Integer 2 2
dat a4 Integer Integer 4 4
dat a8 Integer Integer 8 8
real 4 Floating-point IEEE single precision 4 4
or integer floating-point
real 8 Floating-point IEEE double precision 8 8
or floating-point
integer
real 10 Floating-point IEEE extended precision 10 16
or integer floating-point (80-bit)
real 16 Floating-point IEEE extended precision 16 16
or integer floating-point (80-bit)
string String constant Array of ASCII characters Length of 1
string
stringz String constant Array of ASCII characters, Lengthof 1
with null terminator string + 1
5-2 1A-64 Assembly Language Reference Guide

To disable the automatic alignment of data objects in data allocation
statements, add the . ua completer after the mnemonic, for example,

dat a4. ua. These statements allocate unaligned data objects at the current
location within the current section.

The default byte order for data allocation statements is platform
dependant. To specify the byte order for data allocation statements, use
the . nsb, or . | sb directives described in the "Byte Order Specification
Directives' section in Chapter 6.

Uninitialized Space Allocation

The. ski p and . or g statements reserve uninitialized space in a section
without assigning it a value.

The . ski p and. or g statements enabl e the assembler to reserve spacein
any section type, including a" nobi t s" section. During program
execution, the contents of a" nobi ts" section areinitialized as zero by
the operating system program loader. When using the . ski p and. or g
statementsin any other section type, the assembler initializes the reserved
space with zeros.

The. ski p statement reserves a block of space in the current section. The
size of the block is specified in bytes, and is determined by an

expressi on operand. The expressi on operand specifiesthe size of
space reserved in the current section. The. ski p statement with a/ abel ,
defines asymbol of @bj ect type, and setsthe size attribute for that
symbol.

The. ski p statement has the following format:

[I abel :] .skip expression
Where:
| abel Specifies the data allocation address of the beginning of

the reserved block.

1A-64 Assembly Language Reference Guide 5-3

intel.

expression Represents an absolute integer expression with no
forward references. The location counter advancesto a
location relative to the current location within the
section. This operand cannot have a negative value
since the location counter cannot be reversed.

The. or g statement reserves a block of space in the current section. The
. or g statement advances the location counter to the location specified by
the expr essi on operand. The. org statement witha/ abel definesa
symbol of @bj ect type, and sets the size attribute for that symbol.

The. or g statement has the following format:

[abel :] .org expressi on
Where:
| abel Specifies the data allocation address of the beginning of

the reserved block.

expressi on Represents an integer, or arel ocatable expression, with
no forward references. If the expressionisrelocatable, it
must be reducible to the form R+K, where R is a symbol
previously defined in the current section, and K is an
absolute constant. The location counter is set to the
indicated offset relative to the beginning of the section.

Since the location counter cannot be reversed, this
operand must be greater than, or equal to, the current
|ocation counter.

Alignment

Instructions and data objects are aligned on natural alignment boundaries
within a section. To disable automatic alignment of data objects in data
allocation statements, add the . ua completer after the data all ocation
mnemonic, for example, dat a4. ua. Bundles are aligned at 16-byte
boundaries, and data objects are aligned according to their size. The
assembler does not align string data, since they are byte arrays.

5-4

1A-64 Assembly Language Reference Guide

intel.

L)

Each section has an alignment attribute, which is determined by the
largest aligned object within the section.

Section location counters are not aligned automatically. To align the
location counter in the current section to a specified alignment boundary
usethe. al i gn statement. The. al i gn statement has the following
format:

.align expressi on
Where:
expressi on Isan integer number that specifies the alignment

boundary of the location counter in the current section.
The integer must be a power of two.

The. al i gn statement enables the assembler to reserve space in any
section type, including a" nobi t s" section. During program execution
time the contents of a" nobi ts" section areinitialized as zero by the
operating system program loader. When using the . al i gn statement in
any other section type, the assembler initializes the reserved space with
zeros for non-executable sections, and with a NOP pattern for executable
sections.

NOTE. When the object file format is COFF32 (Windows NT) the
section alignment boundary is limited to 8KB. The assembler does
not guarantee alignment for requests above 8KB.

Cross-section Data Allocation Statements

Cross-section data allocation statements add data to a section that is not
the current section. These statements save the overhead of switching
between sectionsusing the. sect i on directive. Seethe" Sections" section
in Chapter 3 for more information about switching between sections.
Cross-section data allocation statements may be used within an explicit

1A-64 Assembly Language Reference Guide 5-5

intel.

bundle. All dataobjects are aligned to their natural boundariesin the cross
section. Cross-section data all ocation statements have any of the
following formats.

. xdatal section, expression,
. xdat a2 section, expression,
. xdat a4 section, expression,
. xdat a8 section, expression,

.Xstring section,"string",
.Xstringz section,"string",

Where:

section Represents the name of a previously-defined section
that is not the current section.

expression Represents an absolute or relocatable integer
expression. When these expressions reference alocation
counter, they refer to the location counter within the
cross section, not within the current section.

string Represents any of the valid string expression type
values listed in Table 5-1.

To disable automatic alignment of data objects in a cross-section data
allocation statement, add the . ua completer to the statement, for example,
. xdat a4. ua. These statements allocate unaligned data objects at the
current location counter of the cross section, not the current section.

The default byte order for cross-section data allocation statements is
platform dependent. The byte order is determined by the cross section,
not by the current section.

5-6

1A-64 Assembly Language Reference Guide

intel.

Miscellaneous Directives

This chapter describesthe following | A-64 assembly-language directives:
* Register stack directive

* Rotating register directives

* Byte-order specification directive

® |dent string specification directive

* Radix indicator directive

®* Preprocessor support

Register Stack Directive

The 1A-64 architecture provides a mechanism for register renaming.
Register renaming is implemented by all ocating a register stack frame
consisting of input, local, and output registers. These registers can be
renamed. These renamable registers map to the general registersr 32
throughr 127. The assembler provides predefined alternate register names
for the input, local, and output register areas of the register stack frame.
The mapping of these registers to the general registersis determined by
the nearest preceding al | oc instruction.

Refer to the I A-64 Architecture Software Developer’s Manual for detailed
information about register renaming and for a full description of the
al | oc instruction.

1A-64 Assembly Language Reference Guide 6-1

intel.

The. r egst k directivereplaces the default register mappings defined by a
preceding al | oc instruction with new mappings. The. r egst k directive
does not allocate a new register stack frame.

The. r egst k directive has the following format:

.regstk ins, locals, outs, rotators
Where:
ins Represents the number of input registers in the general

register stack frame.

i n0 throughii n; 5. ; represent r 32 throughr 5, ,s for
ins> 0.

I ocal s Represents the number of local registersin the general
register stack frame state.

I ocO through 1 oc; ycas. 1 FEPresentr s, ,s through
I'31+i ns+l ocal s for locals> 0.

outs Represents the number of output registersin the general
register stack frame.

out 0 through out ;5.7 rEPresent r 554 ns+ ocs through
I'31+i ns+l ocal s+out s for outs > 0.

rotators Represents the number of rotating registersin the
general register frame. r ot at ors must be <=
i ns+l ocal s+out s.

Thein, oc, and out register names defined by a previous. r egst k
directive or al | oc instruction are visible by all subsequent instructions
until the next . r egst k directive or al I oc instruction is specified.

The alternate register names specified by the operands of the . r egst k
directive refer to registersin the current register stack frame. If you
reference input, local, or output registers using the alternate register
names that are not within the current stack frame, the assembler produces
an error message.

6-2

1A-64 Assembly Language Reference Guide

To prevent referencing the alternate register names, usethe. r egst k
directive without the operands. The operands of a subsequent . r egst k
directive or al | oc instruction redefine the mappings of the alternate
register names.

Theal | oc instruction and. r egst k directive do not affect the names of
the general registers, r 32 through r 127.

Stacked Registers in Assignment and Equate Statements

To define an alternate register name for a stacked register, use an
assignment statement. The alternate register name is not affected by any
subsequent changes to the rotating register. See the "Assignment
Statements” and "Equate Statements” sections in Chapter 2 for more
details about assignment and equate statements.

Example 6-1 illustrates how to define an alternate register name using an
assignment statement, so that the alternate register name is not affected by
asubsequent . r egst k directive. Thelocal register namel oc0 mapsto the
general register r 36. 1 oc0 isassigned to t np. The subsequent add
instruction referstol oc0, which is currently mapped tor 40. The next add
instruction refersto t mp which is mapped to r 36, not r 40.

Example 6-1 Defining a Stacked Register in an Assignment Statement

.regstk 4,4,2,0

tnp = |l ocO /110oc0O is currently r36
_regstk 8,1,3,0
add locO =r1,r7 /110oc0O is currently r40
add ri =r2,tnp /[l tnp = r36!

Rotating Register Directives

General registers, floating-point registers, and predicate registers contain
asubset of rotating registers. This subset of rotating registers can be
renamed.

1A-64 Assembly Language Reference Guide 6-3

intel.

Thefollowing directives enable the programmer to provide namesfor one
or more registers within each rotating register region:

® _.rotr for general registers
® .rotf for floating-point registers
®* _.rotp for predicate registers

The. r ot x directives assign aternate names and generation numbers for
the rotating registers. One generation corresponds to one iteration of a
software-pipelined loop. Each copied register is numbered with an index,
where the most recent copy of aregister has a zero index, such asb[0] .
For every loop iteration, the registers within the group are renamed, and
become one generation older by incrementing the index by one.

The. r ot x directives define the number of instances of each pipeline
variable and all ocate them in the appropriate rotating register region. You
can use an arbitrary name with a subscript-like notation for referencing
the current and previous generations of each variable.

The rotating register directives have the following format:

.rotr name [expression],

.rotf name [expression],

.rotp nane [expression],

Where:

name Represents a register name specified by the user, and

represents a pipelined variable.

expressi on Specifies the number of generations needed for the
variable. The expressi on must be an absolute integer
expression with no forward references.

When the alias rotating register names are used as instruction operands,
they have the following format:

nanme[expressi on]

6-4

1A-64 Assembly Language Reference Guide

Where:

name Represents an alias rotating register name defined by
one of the rotating register directives.

expressi on Represents an absolute integer expression with no
forward references. The index must be between 0 and
(n-1), wheren isthe number of generations defined
for that name. If the index is negative, or greater than
(n-1), the assembler produces an error message.

The.rotr,.rotf,and.rotp directivescancel all previous alias names
associated with the appropriate register file, before defining new register
names. Theregister filesinclude the general, floating-point, and predicate
registers.

If the number of rotating general registersimplied by a. r ot r directive
exceeds the number of rotating registers declared by the nearest preceding
al | oc instruction, or . regst k directive, the assembler issues awarning.

Using Rotating Register directives

Example 6-2 and Example 6-3 illustrate the behaviour of the. r ot p and
.rotf directives, respectively.

Example 6-2 illustrates how the. r ot p directive declares alternate rotating
predicate register names for two predicate registers, p[2] , and three
predicate registers q[3] . Instructions subsequent to the . r ot p directive
refer to p[0] for the current generation of p, and p[1] for the previous
generation of p. For the current generation of g, the subsequent
instructionsrefer to q[0], q[1] for the previous generation, and q[2] for
the one before the previous generation.

Example 6-2 Using the .rotp Directive

.rotp p[2],q[3]

1A-64 Assembly Language Reference Guide 6-5

intel.

Example 6-2 Using the .rotp Directive (continued)

The alternate predicate register names map to the predicate registers

as follows:
p[0] = p16; p[1l] = pl7
q[0] = p18; q[1] = pl9; q[2] = p20

Example 6-3 illustrates how the. r ot f directive declares alternate
floating-point register names for three floating-point registers x[3] , two
floating-point registersy[2] , and three floating-point registers z[3] .

Example 6-3 Using the .rotf Directive

.rotf x[3],vy[2], z[3]

The alternate fl oating-point register names map to the floating-point
registers as follows:

x[0] =f 32; x[1] =f 33; x[2] =f 34
y[0] =f 35; y[1] =f 36
z[0] =f 37; z[1] =f 38; z[2] =f 39

Rotating Registers in Assignment and Equate Statements

To define an alias name for arotating register, use an assignment
statement. The aliasregister name is not affected by any subsequent
changes to the rotating register. See the "Assignment Statements” and
"Equate Statements" sectionsin Chapter 2 for more details about
assignment and equate statements.

Example 6-4 illustrates how to define an alias name using an assignment
statement so that the alias name is not affected by a subsequent . r ot r
directive. The . r ot r directive mapsb[1] to general register r 36. b[1] iS
assignedtot np. Thesecond . r ot r directive definesthe new mapping of
b[1] tor 33. The subsequent add instruction that referstob[1] is
currently mapped to r 33. The second add instruction refersto t np, which
is mapped to r 36, not r 33.

6-6

1A-64 Assembly Language Reference Guide

intel.

Example 6-4 Defining an Alias Name in an Assignment Statement

.rotr al 3], b[2], c[4]

tnp = b[1] /1b[1] is currently r36
rotr b[4], c[3], d[2]
add b[1] =r1,r7 /1b[1] is currently r33
add rl =r2,tnp /[l tnp = r36!

Byte Order Specification Directives

The. nsb and. | sb directives determine the byte order of data assembled
by thedatan, real n, and . xdat an data allocation statements. The
values of n for dataand . xdata are1i, 2, 4, and 8. Thevaluesof n for
real are4, 8, 10, and 16. See Chapter 5 for more information about data
allocation statements.

The. nsb and.|sb directiveschangethe byte order for current sections
only. They do not affect the instructions that are assembled. They only
affect the data created. The default byte order is little-endian.

The. nsb directive switchesto MSB, where the most-significant byteis
stored at the lowest address (big-endian). The. | sb directive switches to
L SB, where the least-significant byte is stored at the lowest address
(little-endian).

The byte order is a property of each section. If the byte order is changed
in one section, it remains in effect for that section until the byte order is
redefined. This change does not affect the byte order of other sectionsin
the assembly program.

String Specification Directive

The. i dent directive places anull terminated string in the . comrent
section of an output object file. See the use of . comment in _Chapter 3,
“Program Structure”. The. i dent directive has the following format:

. i dent "string”

1A-64 Assembly Language Reference Guide 6-7

Where:
"string" Represents a string.

Radix Indicator Directive

The. radi x directive selects the numeric constant style.

To select aMASM numeric constant and specify aradix indicator, use the
.radi x directive in the following format:

. radi x [radi x-i ndi cat or]
Where:

radi x-i ndi cat or
Indicates aMASM (Microsoft” macro assembler)
numeric constant and specifies the radix. See Table 2-6
in Chapter 2, for alist of the radix indicators.

The MASM numeric constant and radix remain in effect until redefined.
To select a C numeric constant, use the . r adi x directive in the following
format:

. radi x [d

Where:

C Indicates a C numeric constant.

The. r adi x directive used with an operand, pushes the previous numeric
constant style and radix onto aradix stack. The . r adi x directive without
the radi x- i ndi cat or operand, pops and restores the previous style and

radix from the stack. The assembler may limit the depth of aradix stack,
but this limit must be no lessthan 10 levels.

Preprocessor Support

The assembler recognizes a special filename and the line number
directive (#1 i ne) inserted by the standard C preprocessor, and setsits
record as the current filename and line number accordingly. The #line
directive has the following format:

6-8

1A-64 Assembly Language Reference Guide

#line Iine_number, filenane

Where:

I'ine_nurmber Specifiesthe source line number

fil ename I dentifies the name of the current filename.

Additionally, the assembler supports the following built-in symbols:

@ine Current line number
@il enane Current filename
@il epath Current file path

1A-64 Assembly Language Reference Guide

6-9

6-10

1A-64 Assembly Language Reference Guide

intel.

Annotations

Annotations are a subset of the assembler directives. They explicitly provide
additional information for the assembler during the assembly process.
These annotations have the same format and syntax as all other directives.
This chapter describes these annotations and their functionality.

The annotations covered in this chapter include

¢ .pred.rel

® . pred.vector
* . memoffset
® .entry

Predicate Relationship Annotation

The predicate rel ationship annotation . pr ed. r el providesinformation for
the assembler about a logical relationship between the values of predicate
registers. It is relevant only for explicit code.

The annotation . pr ed. r el takesthe following forms:

"mut ex" mutual exclusion
"inply" implication
"clear"” clear existing relations

When conflicting instructions follow an entry point, IASignoresall existing
predicate relationships defined before the entry point.

1A-64 Assembly Language Reference Guide 7-1

intel.

Predicate Vector Annotation

The predicate vector annotation . pred. vect or explicitly specifies the
predicate register contents using a user-defined value. The user-defined
valueis represented by a 64-bit binary number and each bit correspondsto a
predicate register, respectively. A second optional operand can be used as a
mask to selectively set only some of the predicate registers. Currently this
annotation isignored by the |A-64 Assembler.

This annotation takes effect at the point of insertion and the assembler may
use thisinformation for further analysis. The. pr ed. vect or annotation
has the following syntax:

. pred. vector val [, nmask]

Where:

val Specifies anumber represented as a 64-bit binary
number. Each bit represents a 1-bit value in each of the
corresponding 64 predicate registers. If val isnot
within the 64-bit range, this annotation is ignored.

mask Represents an optional mask value used to define a

subset of the predicate register file.

Example 7-1 illustrates a predicate vector annotation that sets the predicate
registers according the specified value 0x9, and uses amask of Oxf f f f to
define a subset of the predicate register file.

Example 7-1 Using a Predicate Vector Annotation with a Mask

. pred. vector 0Ox9, Oxffff /lonly refers to | owest 16-bits that

are set in the mask. Val ues of p0-pl5
are defined.

Memory Offset Annotation

The memory offset annotation . mem of f set provides hints about the
address that memory operations address, when the exact addressis
unknown. The annotation is useful for avoiding false reports of dependency
violations. The annotation affects the instruction that follows.

7-2

1A-64 Assembly Language Reference Guide

The . mem of f set annotation has the following syntax:

. mem of f set of f_val , base_i nd
Where:
of f_val The rel ative offset for the memory region where the data

is stored or retrieved.

base_i nd A number that identifies the memory region where the
information is stored or retrieved. The number isan
arbitrary method of distinguishing between different
memory regions.

Example 7-2 illustrates a. mem of f set annotation.

Example 7-2 Using the Memory Offset Annotation

.proc foo

foo::

FOO_STACK_| NDEX=0

C // code. ..

.mem of f set 0, FOO_STACK_I NDEX /1 Suppose r3 contains the stack pointer
st8.spill [r3]=r32,8 /1'We want to save r32-r34

.mem of f set 8, FOO_STACK_ | NDEX

st8.spill [r3]=r33,8

.mem of fset 16, FOO_STACK | NDEX

st8.spill [r3]=r34,8

.endp

. proc bar

bar: :

. BAR_STACK | NDEX=1

C /I code. ..

.mem of f set 0, BAR_STACK | NDEX /1 Suppose r3 contains the stack pointer
st8.spill [r3]=r40 /W& want to save r40

Entry Annotation

The entry annotation . ent r y notifies the assembler that alabel can be
entered from another function. By default, only global labels, designated by
<l abel >: : , are considered entry points. The annotation and the |abel need
not be consecutive.

1A-64 Assembly Language Reference Guide 7-3

The. ent ry annotation has the following syntax:

.entry | abel [, labels...]
Where:
| abel Represents the associated |abel.

Example 7-3 Using the Entry Annotation

.entry A /lentry annotation

A nov rl=r2

7-4

1A-64 Assembly Language Reference Guide

intel.

Register Names by Type

Table A-1 through Table A-8 list the | A-64 architecture registers and their

names.

Table A-1 General Registers
Register Register Name
Fixed general registers ro - r31
Stacked general registers r32 - rl127
Alternate names for input registers in0 - in95
Alternate names for local registers locO - loc95
Alternate names for output registers out0 - out95
Global pointer (r 1) ap
Return value registers (r 8- r 11) ret0 - ret3
Stack pointer (r 12) sp

Table A-2 Floating-point Registers

Register Register Name
Floating-point registers fo - f127
Argument registers (f 8- f 15) fargd - farg7
Return value registers (f 8- f 15) fret0 - fret?

1A-64 Assembly Language Reference Guide A-1

intel.

Table A-3 Predicate Registers
Register Register Name
Predicates pO0O - p63
All predicates pr
Rotating predicates pr.rot
Table A-4 Branch Registers
Register Register Name
Branch registers b0 - b7
Return pointer (b0) rp
Table A-5 Application Registers
Register Register Number Register Name
Application registers by number 0o - 127 ar0 - arl27
Kernel registers o - 7 ar. k0 - ar.k7
RSE control register 16 ar.rsc
Backing store pointer 17 ar. bsp
Backing store “store” pointer 18 ar. bspstore
RSE NaT collection register 19 ar. rnat
Compare & Exchange comparison value 32 ar.ccv
User NaT collection register 36 ar. unat
Floating-point status register 40 ar. f psr
Interval time counter 44 ar.itc
Previous frame state 64 ar. pfs
Loop counter 65 ar.lc
Epilog counter 66 ar. ec

A-2 I1A-64 Assembly Language Reference Guide

intel.

Table A-6 Control Registers

Register Register Number Register Name
Control registers by number 0 - 127 crO - crl27
Default control register 0 cr.dcr
Interval time match 1 cr.itm
Interruption vector address 2 cr.iva
Page table address 8 cr.pta
Interruption processor status register 16 cr.ipsr
Interruption status register 17 cr.isr
Interruption data address 18 cr.ida
Interruption instruction pointer 19 cr.iip
Interruption data translation register 20 cr.idtr
Interruption instruction translation register 21 cr.iitr
Interruption instruction previous address 22 cr.iipa
Interruption frame state 23 cr.ifs
Interruption immediate 24 cr.iim
Interruption hash address 25 cr.iha
External interrupt registers 66 cr.lid

71 cr.ivr

72 cr.tpr

75 Cr. eoi

96, 98,100,102 cr.irr0 -

cr.irr3

114 cr.itv

116 cr.pnv

117 - 118 cr.lrro - cr.lrrl

119 cr.cncv

I1A-64 Assembly Language Reference Guide A-3

intel.

Table A-7 Other Registers
Register Register Name
Processor status register psr
Processor status register, lower 32 bits psr. |
User mask psr.um
Instruction pointer ip

Table A-8 Indirect-register Files
Register Register Name
Performance monitor control registers prec| r]
Performance monitor data registers pmd[r]
Protection key registers pkr[r]
Region registers rr[r]
Instruction breakpoint registers ibr[r]
Data breakpoint registers dbr [r]
Instruction translation registers itr[r]
Data translation registers dtr[r]
Processor identification register CPUI O r]

A-4 I1A-64 Assembly Language Reference Guide

intel.

Pseudo-ops

Table B-1 lists the assembly language pseudo-ops for the 1A-64
architecture according to their opcodes. Table B-2 lists pseudo-ops with
missing operands.

The opcodes are listed alphabetically, with their operands, and the
equivalent machine instructions. The table lists mnemonics converted to
other mnemonics.

Table B-1 Pseudo-ops Listed by Opcode

Instruction

Opcode Description Operands Equivalent Machine Instruction

add Add immediate rl =immr3 adds rl1 =inml4,r3
addl rl1 =ime2,r3

br eak Break img1 break.b im21 (B)
break.i im21 0]
break. m ime1 (M)
break.f im21 (F)

chk.s Speculationcheck r2, target25 chk.s.i r2, target25()
chk.s. m r2, target 25(M)

f abs Floating-point f1 =f3 ferge.s f1 =f0,f3

absolute value
fadd. pc Floating-pointadd f1 =f3,f2 fma. pc.sf f1 =f3,f1,f2

sf

fcvt.xu Convertintegerto f1 =f3 fma.pc.sf f1 =f3,f1,f0
f float unsigned

1A-64 Assembly Language Reference Guide B-1

intel.

Table B-1 Pseudo-ops Listed by Opcode (continued)
Instruction
Opcode Description Operands Equivalent Machine Instruction
f npy. pc Floating-point f1 =f3,f4 fma.pc.sf f1 =f3,f4,f0
. multiply
sf
f neg Floating-point f1 =f3 frrerge.ns f1 =f3,f3
negate
f negabs Floating-point fi1 =f3 frmerge.ns f1 =f0,f3
negate absolute
value
fnorm p Floating-point fi1 =f3 fma.pc.sf f1 =f3,f1,f0
c. sf normalize
fsub. pc Floating-point f1 =f3,f2 frms.pc.sf f1 =f3,f1,f2
. subtract
sf
nov Move to ar3 =inm8B nov. i ar3 =im8(l)
application mov. m ar3 =i m8(M)
register
immediate
nov Move to ar3 =r2 nov. i ar3 =r2 (I)
application mov. m ar3 =r2 (M)
register
nmov Move fi1 =f3 frerge.s f1 =f3,f3
floating-point
register
nov Move from rl =ar3 nov. i ri =ar3 (I)
application mov. m ri =ar3 (M)
register
nmov Move immediate rl1 =ime2 addl rl1 =ime2,ro
nov Move general rl =r2 adds rl =0,r2
register
nmov Move to branch bl =r2 nov bl =r2
register
nop No operation i me1 nop. b i me1 (B)
nop. i ime1 ()]
nop. m ime1 (M)
nop. f ime1 (3]
B-2 1A-64 Assembly Language Reference Guide

intel.

Table B-1 Pseudo-ops Listed by Opcode (continued)

Instruction
Opcode Description Operands Equivalent Machine Instruction
shl Shift left ri dep.z ri
=rz,count6 —r2 count6, 64- count 6
shr Shift right signed r1 extr rl1
=r3,count6 -3 count6, 64- count 6
shr.u Shift right ri extr.u ri
unsigned =r3,count6 -r3 count6, 64- count 6
xma. | u Fixed-point fi1 xma. | f1 =f2,f3,f4
multiply low =f2,f3, 4,
unsigned

Table B-2 lists pseudo-ops that omit one or more operands of the
machine instruction. The assembler substitutes the missing operand with
apredefined value. The missing operand(s) appear as bold text.

In addition to omitting many operands, many completers may also be
omitted.

Table B-2 Pseudo-ops with Missing Operands

Substitute
Pseudo-op Missing Operand(s) Value
al | oc alloc ril=ar.pfs,i,l,o,r ar. pfs
cnp cnp. crel.ctype pl,p2=im8,r3 pO
cnp cnp. crel. ctype pl,p2=r2,r3 pO
cnp4 cnp4. crel . ctype pl, p2=im8,r3 pO
cnp4 cnp4. crel . ctype pl,p2=r2,r3 pO
cnpxchg cnmpxchgsz. sem I dhint r1=[r3],r2,ar.ccv ar.ccv
fcl ass fclass.m fctype pl, p2=f2,f3 pO

fclass.nm fctype pl, p2=f2,f3

fcmp fcnp. fcrel. fctype. sf pl,p2=f2,f3 pO
nmov nmov pr=r2, mask17 all ones
thit thit.trel.ctype pl, p2=r3, pos6 pO

I1A-64 Assembly Language Reference Guide B-3

Table B-2 Pseudo-ops with Missing Operands (continued)

Substitute
Pseudo-op Missing Operand(s) Value

t nat thit.trel.ctype pl, p2=r3 pO

intel.

Link-relocation Operators

Table C-1 lists and describes the link-relocation operators, and their

usage.:
Table C-1

Link-relocation Operators

Operator

@pr el (expr)

@ecrel (expr)

@egrel (expr)

@ mager el (expr)

@t off(expr)

Generates a Relocation For:

The current instruction or data object
that calculates the gp-relative offset to
the address given by expr.

The current data object that calculates
the offset, relative to the beginning of
the section, to the address given by
expr.

The current data object that calculates
the offset, relative to the beginning of
the segment, to the address given by
expr.

The current data object that calculates
the offset, relative to the beginning of
the image, to the address given by
expr.

The current instruction that instructs the
linker to create a linkage table entry for
expr, and calculates the gp-relative
offset to the new linkage table entry.

Usage:

dat a8 statements and
add long immediate
instructions.

dat a4 and dat a8

statements, and the addl
instruction.

dat a4 and dat a8
statements, in ELF
format.

dat a4 statements, in
ELF format.

add long immediate
instructions.

1A-64 Assembly Language Reference Guide

C-1

intel.

Table C-1 Link-relocation Operators (continued)
Operator Generates a Relocation For: Usage:
@ptr(sym The current instruction or data object dat a4 and dat a8
that calculates the address of the official ~ statements, and move
pl abel descriptor for the symbol sym long immediate
which must be a procedure label instructions. Requires
(function descriptor) name. function symbol in COFF
format. It can be used in
add long immediate
instructions when
combined with the
@t of f operator in the
@toff (@ptr(sym
form.
@l tof f(sym The current instruction or data object dat a8 statements and
that calculates the gp-relative offset to add long immediate
the procedure linkage table entry for the instructions. The PLT
symbol sym which must be a function entry referenced by this
name. operator should be used
only for a direct procedure
call. Itdoes not serve as a
function descriptor name
@tv(expr) The current data object that calculates dat a4 statementsin ELF

the address of the relocatable
expression expr ,with one exception;
while it is expected that the addresses
created will need further relocation at
run-time, the linker should not create a
corresponding relocation in the output
executable or shared object file. The
runnn-time consumer of the information
provided is expected to relocate these
values.

format.

@ection(sec)

The current data object that provides
the section header number of section
sec . Used for debug information.

dat a2 statements in
COFF format.

1A-64 Assembly Language Reference Guide

intel.

List of | A-64 Assembly
Language Directives

Table D-1 summarizes the | A-64 assembly language directives according
to category.

Table D-1 IA-64 Assembly Language Directives

Category Directives

Alias declaration directives .alias
.secalias

Assembler annotations .pred.rel
. pred. vect or
. mem of f set
.entry

Assembler modes .auto
.explicit
. def aul t

Byte order specification directive . msb
.I'sb

Common symbol declaration directives .comon
. comm

Cross-section data allocation statements . xdatal
. xdat a2
. xdat a4
. xdat a8
.Xstring
.Xstringz

I1A-64 Assembly Language Reference Guide D-1

Table D-1 IA-64 Assembly Language Directives (continued)

Category
Data-allocation statements

Explicit template selection directives

File symbol declaration directive
Ident string directive
Include file directive

Language specific data directive
(Windows NT" specific)

Directives

dat al
dat a2
dat a4
dat a8
real 4
real 8
real 10
real 16
string
stringz
.mi
.nfi

. bbb
. ox
.mb

. mb

. mmi

. nmbb
.nfb

. mf

file

. i dent
.include

. handl er dat a

Procedure declaration directives . proc
. endp
Radix indicator directive . radi x
Register stack directive .regstk
Reserving uniniatialized space statements .skip
.org
Rotating register directives .rotr
.rotp
.rotf

D-2

1A-64 Assembly Language Reference Guide

intel.

Table D-1 IA-64 Assembly Language Directives (continued)
Category Directives
Section directives .section

. pushsecti on
. popsection

. previ ous
.text
. data
. sdata
. bss
. Sbss
.rodat a
. conmment
Section and data alignment directive .align
Stack unwind information directives See Table 3-6 in Chapter 3
Symbol scope declaration directives . gl obal
. weak
.l ocal
Symbol type and size directives .type
.size
Symbolic debug directive .In
Symbolic debug directive Windows NT . bf
specific . ef
Virtual register allocation directives .vreg. all ocatabl e

.vreg.safe_across_calls
.vreg.famly

. Vreg. var

. vreg. undef

1A-64 Assembly Language Reference Guide D-3

intel.
Glossary

absolute address

absolute expression

dias
assembler

assembly language

binding

A virtual (not physical) address within the
process address space that is computed as an
absol ute number.

An expression that is not subject to link-time
relocation.

Two identifiers referring to the same element.

A program that translates assembly language
into machine language.

A low level symbolic language closely
resembling machi ne-code language.

The process of resolving a symbolic reference
in one module by finding the definition of the
symbol in another module, and substituting the
address of the definition in place of the
symbolic reference. The linker binds

rel ocatabl e object modules together, and the
DLL loader binds executable load modules.
When searching for a definition, the linker and
DLL loader search each module in a certain
order, so that a definition of asymbol in one
module has precedence over a definition of the
same symbol in alater module. Thisorder is
called the binding order.

1A-64 Assembly Language Reference Guide

Glossary-1

intel.

bundle 128 bits that include three instructions and a
template field.

COFF Common Object File Format, an object-module
format.

directive An assembler instruction that does not produce

executable code.

execution time The time during which a program is actually
executing, not including the time during which
the program and its DL Ls are being loaded.

expression A sequence of symbols that represents a val ue.

function name A label that refers to a procedure entry point.

globa symbol Symbol visible outside the source file in which
it is defined.

IA-32 Intel Architecture-32: the name for Intel’s
current 32-bit Instruction Set Architecture
(ISA).

identifier Syntactic representation of symbol names using

alphabetic or special characters, and digits.

instruction An operation code that performs a specific
machine operation.

instruction group |A-64 architecture instructions are organized in
instruction groups. Each instruction group
contains one or more statically contiguous
instructions that execute in parallel. An
instruction group must contain at least one
instruction; there is no upper limit on the
number of instructionsin an instruction group.
An instruction group is terminated statically by
astop, and dynamically by taken branches.

Glossary-2 1 A-64 Assembly Language Reference Guide

Instruction Set
Architecture

instruction tag
ISA

[tanium processor
label

link time

linkage table

local symbol

location counter

Stops are represented by a doubl e semi-colon

(; ;). You can explicitly define stops. Stops
immediately follow an instruction, or appear on
aseparate line. They can be inserted between
two instructions on the same line, as a
semi-colon (;) is used to separate two
instructions.

The architecture that defines application level
resources which include: user-level
instructions, addressing modes, segmentation,
and user visible register files.

A label that refersto an instruction.
See Instruction Set Architecture
Name of Intel’sfirst 1A-64 processor.
A location in memory of code or data.

Thetime when a program, dynamic-link library
(DLL), or starred object is processed by the
linker. Any activity taking place at link timeis
static.

A table containing text, unwind information,
constants, literals, and pointersto imported data
symbols and functions.

Symbol visible only within the sourcefilein
which it is defined.

Keeps track of the current address when
assembling a program. It starts at zero at the
beginning of each segment and increments
appropriately as each instruction is assembled.
To adjust the location counter of a section, use
the . al i gn directive, or the . or g directive.

1A-64 Assembly Language Reference Guide

Glossary-3

intel.

memory stack A contiguous array of memory locations,
commonly referred to as “the stack”, used in
many processorsto save the state of thecalling
procedure, pass parameters to the called
procedure and store local variables for the
currently executing procedure.

mnemonic A predefined assembly-language name for
machine instructions, pseudo-ops, directives,
and data-all ocation statements.

multiway branch bundle A bundle that contains more than one branch
instruction.

name space A virtual (not physical) file. The assembler
assigns names to a symbol, register, or
mnemonic name space. Usually anameis
defined only once in each separate name space.
A name can be defined twice, in the symbol and
register name space. In this case the register
name takes precedence over the symbol name.

operator The assembly-language operators indicate
arithmetic or bitwise-logic calculations.

plabel See procedure |abel.

predicate registers 64 1-bit predicate registers that control the
execution of instructions. The first register, p0,
isawaystreated as 1.

predication The conditional execution of an instruction

used to remove branches from code.

procedure label A reference or pointer to a procedure. A
procedure label (PLabel) is a special descriptor
that uniquely identifies the procedure. The
PLabel descriptor contains the address of the
function’s actual entry point, and the linkage
table pointer.

Glossary-4 1 A-64 Assembly Language Reference Guide

pseudo-op

qualifying predicate

register rotation
register stack
configuration

relocatable expression

rotating registers

section

software pipelining

stacked registers

Aninstruction aliasing a machine instruction,
provided for the convenience of the
programmer.

The execution of most instructionsis gated by a
qualifying predicate. If the predicate istrue, the
instruction executes normally; if theinstruction
is false the instruction does not modify
architectural state or affect program behaviour.

Software renaming of registersto provide every
loop iteration with its own set of registers.

A 64-bit register used to control the register
stack engine (RSE).

An expression that is subject to link-time
relocation

Registers which are rotated by one register
position at each loop execution so that the
content of register Xisin register X+1 after one
rotation. The predicate, floating-point, and
general registers can be rotated. The registers
are rotated in awrap-around fashion.

Portions of an object file, such as code or data,
bound to one unit.

Pipelining of aloop by way of allowing the
processor to execute, in any given time, several
instructions in various instructions of the loop.

Stacked general registers, starting at r 32, used
to pass parameters to the called procedure and

store local variables for the currently executing
procedure.

1A-64 Assembly Language Reference Guide

Glossary-5

intel.

statement An assembly-language program consists of a
series of statements. The following are primary
types of assembly-language statements:

® |abel statements

® instruction statements

® directive statements

® assignment statements

® equate statements

® data allocation statements

® cross-data allocation statements

stop Indicates the boundary of an instruction group.
It is placed in the code by the assembly writer
or compiler.

symbol declaration The symbol addressis resolved, not necessarily

based on the current module. Declare symbols
using a. gl obal or.weak directive.

symbol definition The symbol address is resolved based on the
current module. A symboal is defined by
assigning it atype and value. You can define a
symbol either in an assignment statement, by
using it as alabel, or with a. conmon directive.

temporary symbol A symbol name that is not placed in the

object-file symbol table. To define atemporary
symbol name, precede the name with a period

()
weak symbol Undefined symbol in object file, resolved
during link time.

Glossary-6 1 A-64 Assembly Language Reference Guide

1A-64 Assembly Language Reference Guide

Glossary-7

intel.
| ndex

Symbols

" double quotes, 2-14
"condat ", 3-2, 3-3
"nobi ts", 32
"note", 32
"progbits", 32

line, C preprocessor support,

6-9
number sign, 2-2
$ dollar sign, 2-3
() parentheses, 2-15
. period, 2-3, Glossary-6
. two periods, 2-3
.auto directive, 3-13
. conmon directive, 6-7
.default directive, 3-13
.explicit directive, 3-13
.mem.offset annotation, 7-2
. ua completer, 5-3, 5-4
@'at" sign, 2-4
@lt,24
@r cst,2-4
@il enane, 6-9
@il epath,6-9
@ptr,C-2
@unction, 44

@prel ,C1

@ magerel ,C-1
@ nf,2-4

@i ne, 69
@toff,C1
@ni X, 2-4

@nat , 2-4

@neg, 2-4
@orm2-4

@not ype, 4-4
@bj ect ,4-4
©pl t of f,C-2
@os, 2-4
@nan, 2-4
@ev, 24
@ecrel ,C-1
@egrel ,C-1
@huf , 2-4
@nan, 2-4
@inorm 2-4
@ero,2-4

\ backslash, 2-14
__underscore, 2-13
{} braces, 3-10

' single quote, 2-13

1A-64 Assembly Language Reference Guide

Index-1

A

absolute expressions, 2-14
absol ute sections, 3-6
alias declaration, 4-8

. al i as directive, 4-8

. al i gn statement, 5-5
alignment, 5-4

al | oc instruction, 6-1

annotations, 7-1
.entry,7-3
.pred.rel,7-1
. pred. vector,7-2

application registers, A-2
assembly modes, 3-13
assignment statements, 2-19
automatic mode, 3-13

B

. bbb directive, 3-11

. bf directive, 3-24

. body directive, 3-15
body regions, 3-15
branch registers, A-2

. bss directive, 3-7

bundles
implicit and explicit bundling, 3-10
template selection, 3-11
with multiway branching, 3-9

byte order specification, 5-3, 6-7

C

C numeric constants, 2-10
character escapes, 2-13
clear form, 7-1

COMDAT section flags, 3-3

. conment directive, 3-7
. conmon directive, 4-6
common symbols, 4-6
completers, 2-8, 2-18, 5-3, 5-4
constants
C numeric constants, 2-10
MASM numeric constants, 2-11
numeric constants, 2-9
string constants, 2-14
control registers, A-3
. copy_st at e directive, 3-17
cross-section data allocation statements, 2-23,
5-5
current location counter, 2-3
current sections, 3-1

D

data allocation statements, 2-22, 5-1
.align,55
.org,53
. skip,53
list of, 5-2
specifying byte order, 5-3, 6-7

. dat a directive, 3-7

data object alignment, 5-4

debug information, 3-24

declarations, 4-1

dependency violations, 3-13

directive statements, 2-19

directives
.alias,4-8
. bbb, 3-11
. body, 3-15
. bss, 3-7
. coment, 3-7
. comon, 4-6, 6-7
.data, 3-7
. endp, 3-14, 3-15, 3-16
.ffranme, 3-17

Index-2

1A-64 Assembly Language Reference Guide

intel.

.file,46

. handl| er dat a, 3-15, 3-23
.ident,6-7
.include, 38

.l comm 4-7
.1n,324

.l ocal ,4-2
.1sb,53,6-7

. nbb, 3-11
.nfb,311

.m b, 311

.mx, 311

. b, 3-11

.mf | 3-11

.mm , 3-11

. meb, 5-3,6-7

. personality,317
. popsection, 35
. previous, 36

. proc, 3-14, 3-15

. prol ogue, 3-15

. pushsecti on, 3-3,3-5
.radi x, 6-8
.regstk, 62
.restore, 317
.rodat a, 3-7
.rotf,6-4
.rotp,64
.rotr,6-4

. save, 3-17
.save. b,321
.save. f,321
.save. g, 321
.save. gf ,3-21

. savepsp, 3-17

. savesp, 3-17
.Sbss, 37
.sdata, 3-7
.secal i as, 48
.section,33 34,55
.Size,45
.spill,3-20
.text,37
.type,44

. unwabi , 3-20
.unwentry, 3-16
.vfrane, 3-17
.viramepsp, 3-17
.vframesp, 3-17
copy_state, 3-17
| abel _st at e, 3-17
listed by category, D-1 thru D-3
Windows* NT* specific directives
. bf ,3-24
.ef,3-24

E

. ef directive, 3-24
. endp directive, 3-14, 3-15, 3-16
. ent ry annotation, 7-3
equate statements, 2-21
explicit mode, 3-13
expressions, 2-14, Glossary-2
absolute expressions, 2-14
relocatable expressions, 2-14, Glossary-5

external symbols, 4-8

F

. f frane directive, 3-17

. fil e directive, 4-6

file name, overriding, 4-6
floating-point registers, A-1
function descriptor, 3-14
function names, 2-5, Glossary-2

G

general registers, A-1
global symbols, 2-17, 4-2, Glossary-2

1A-64 Assembly Language Reference Guide

Index-3

intel.

H

. handl er dat a directive, 3-15, 3-23
headers, 3-15, 3-23

IA-32, Glossary-2

. i dent directive, 6-7

ident strings, 6-7

identifiers, 2-1, Glossary-2
imply form, 7-1

. i ncl ude directive, 3-8
includefiles, 3-8
indirect-register files, A-4
instruction bundles, 3-9
instruction completers, 2-8, 2-18
instruction group stops, 3-12
instruction groups, 3-12, Glossary-2
instruction statements, 2-17
instruction suffixes, 2-8
instruction tags, 2-5, Glossary-3
ISA, Glossary-3

Itanium™ processor, Glossary-3

L

label statements, 2-16

.1 abel _st at e directive, 3-17
labels, 2-5, 2-16, Glossary-3

. | commdirective, 4-7

link time, Glossary-3

linkage table, Glossary-3

link-relocation operators, 2-15
list of, C-1thru C-2

. | n directive, 3-24
local common symbols, 4-7
.l ocal directive, 4-2

local symbals, 4-2, Glossary-3
location counter, 2-3, 3-1, Glossary-3
. | sb directive, 5-3, 6-7

M

machine instructions, 2-8, 3-9, 3-12, Glossary-2

al | oc instruction, 6-1
tags, 2-5
MASM numeric constants, 2-11
memory stack, Glossary-4
. nf b directive, 3-11
. m b directive, 3-11
. m x directive, 3-11
. mmb directive, 3-11
. mmf directive, 3-11
. mbb directive, 3-11
. mm directive, 3-11
mnemonics, 2-7, Glossary-4

cross-section data all ocation mnemonics, 5-6

data all ocation mnemonics, 2-9, 5-2
directive mnemonics, 2-9

machine instruction mnemonics, 2-8
pseudo-op mnemonics, 2-8

. meb directive, 5-3, 6-7
multiway branch bundles, 3-9, Glossary-4
mutex form, 7-1

N

name spaces, 2-2, 2-19, Glossary-4
nobits, 3-2, 3-7, 5-3

null terminated string, 6-7

numeric constants, 2-9, 6-8

O

opcodes, 2-18

1A-64 Assembly Language Reference Guide

Index-4

intel.

operands, 2-19
operators, 2-15, Glossary-4
. Or g statement, 5-3

P
. personal ity directive, 3-17
PLabdl, 3-14
plabel, Glossary-4
. popsect i on directive, 3-5
. pred. rel annotation, 7-1
. pred. vect or annotation, 7-2
predefined section directives, 3-6, 3-7
predicate registers, A-2, Glossary-4
predication, Glossary-4
preprocessor built-in symbols, 6-9
. previ ous directive, 3-6
. pr oc directive, 3-14, 3-15
procedure label, Glossary-4
procedure label (PLabdl), 3-14
procedures, 3-13

declaring, 3-14

prologues, 3-15
proghits, 3-2, 3-5
. pr ol ogue directive, 3-15
pseudo-ops, 2-8, Glossary-5

list of, B-1 thru B-3
. pushsecti on directive, 3-3, 3-5

Q

qualifying predicate, 2-17, Glossary-5

R

radix constants and indicators, 6-8
. radi x directive, 6-8
region headers, 3-15, 3-23

register assignment statements, 2-20
register equate statements, 2-21
register rotation, Glossary-5
register stack, 6-1
registers, 2-6
application registers, A-2
assigning new register names, 2-6, 2-20,
2-21
branch registers, A-2
control registers, A-3
defining stacked registers, 6-3
floating-point registers, A-1
general registers, A-1
indirect-register files, A-4
predicate registers, A-2
register forms, 2-7
register renaming, 6-1
rotating registers, 6-3
stacked registers
defining, 6-3
. regst k directive, 6-2
relocatable expressions, 2-14, Glossary-5
. rest or e directive, 3-17
. rodat a directive, 3-7
rotating registers, Glossary-5
rotating registers, defining, 6-3, 6-6
. rotf directive, 6-4
. r ot p directive, 6-4
. rotr directive, 6-4

S

. save directive, 3-17

. save. b directive, 3-21

. save. f directive, 3-21

. save. g directive, 3-21

. save. gf directive, 3-21
. savepsp directive, 3-17
. savesp directive, 3-17

. sbss directive, 3-7

Index-5

1A-64 Assembly Language Reference Guide

intel.

scope declarations, 4-1
declaring aglobal symboal, 4-2
declaring alocal symboal, 4-2
declaring aweak symbol, 4-2
. sdat a directive, 3-7
.secal i as directive, 4-8
. secti on directive, 3-3, 3-4, 5-5
section flag characters, 3-2
section flags and types, 3-6
section names, 2-5
section return directive, 3-6
sections, 3-1, Glossary-5
defining, 3-4
defining a section stack, 3-5
predefined, 3-6
returning to, 3-6
section types, 3-2
specifying section flags and types, 3-2
. Si ze directive, 4-5
. ski p statement, 5-3
software pipelining, 6-4, Glossary-5
.spi || directive, 3-20
stack unwind directives, 3-15
ligt of, 3-16
using, 3-22
stack unwind information, 3-13
stacked registers, 6-1, Glossary-5
defining, 6-3
statements, 2-16, Glossary-6
assignment statements, 2-19
defining register names, 2-20
defining symbol names, 2-20
cross-section data allocation statements,
2-23,5-5
data alocation, 5-1
data allocation statements, 2-22, 5-2
directive statements, 2-19
equate statements, 2-21
defining register names, 2-21
defining symbol names, 2-21
instruction statements, 2-17

|abel statements, 2-16
stop, Glossary-6
in bundles, 3-9
in explicit bundles, 3-10
in instruction groups, 3-12
stop bit, 3-9
string constants, 2-14
symbol assignment statements, 2-20
symbol definition, 2-6, Glossary-6
symbol equate statements, 2-21
symbolic constants, 2-5
symbolic debug information
Windows* NT* specific, 3-24
symbols, 2-2
assigning avalue, 2-6
declaring, Glossary-6
declaring common symboals, 4-6
declaring local common symbols, 4-7
declaring symbol scopes, 4-1
defining, 2-6, Glossary-6
predefined symbol names, 2-4
referencing external symbols, 4-8
specifying symbol size, 4-5
specifying symbol types, 4-4
symbol names, 2-3
symbol types, 2-5

T

tag operand, 2-5, 3-16

temporary symbols, 2-3, Glossary-6
. t ext directive, 3-7

thread local storage, 3-3

. t ype directive, 4-4

U

unaligned data objects, 5-3, 5-4
undefined symbols, Glossary-6
uninitialized data alocation, 5-3

1A-64 Assembly Language Reference Guide

Index-6

. unwabi directive, 3-20
. unwent ry directive, 3-16

\%

. vf r ane directive, 3-17
. vf ramepsp directive, 3-17
. vf ramesp directive, 3-17

W

weak symbols, 4-2, Glossary-6

Index-7

1A-64 Assembly Language Reference Guide

	IA-64 Assembly Language Reference Guide, Rev. 1.0
	Overview
	About this Manual
	Related Documentation
	Notation Conventions

	Program Elements Overview
	Identifiers
	Name Spaces
	Symbols
	Symbol Names
	Symbol Types
	Symbol Values

	Register Names
	Mnemonics
	Machine Instruction Mnemonics
	Pseudo-op Mnemonics
	Directive Mnemonics
	Data Allocation Mnemonics

	Constants
	Numeric Constants
	C Numeric Constants
	MASM Numeric Constants
	Characters in Numeric Constants

	String Constants

	Expressions
	Absolute Expressions
	Relocatable Expressions
	Operators

	Statements
	Label Statements
	Instruction Statements
	Directive Statements
	Assignment Statements
	Symbol Assignment Statements
	Register Assignment Statements

	Equate Statements
	Symbol Equate Statements
	Register Equate Statements

	Data Allocation Statements
	Cross-section Data Allocation Statements

	Program Structure
	Sections
	Section Flags and Section Type Operands
	Windows NT (COFF32) Specific Section Flag Operands
	Associated Section Name Flag

	Section Definition Directive
	Section Stack Directives
	Absolute Sections
	Section Return Directive
	Predefined Section Directives
	Using Section Directives

	Include File Directive
	Bundles
	Implicit Bundling
	Explicit Bundling
	Auto-template Selection
	Explicit-template Selection

	Instruction Groups
	Dependency Violations and Assembly Modes
	Procedures
	Procedure Directives
	Procedure Label (PLabel)
	Stack Unwind Directives
	Syntax for the .save.x Directives
	Stack Unwind Directives Usage Guidelines

	Windows NT (COFF32) Symbolic Debug Directives

	Declarations
	Symbol Scope Declaration
	Local Scope Declaration Directive
	Global Scope Declaration Directive
	Weak Scope Declaration Directive
	Weak Scope Declaration for UNIX (ELF)
	Weak Scope Declaration for Windows NT (COFF32)

	Symbol Type Directive
	Symbol Size Directive
	File Name Override Directive
	Common Symbol Declarations
	Common Symbol Directive
	Local Common Symbol Directive

	Alias Declaration Directives

	Data Allocation
	Data Allocation Statements
	Uninitialized Space Allocation
	Alignment
	Cross-section Data Allocation Statements

	Miscellaneous Directives
	Register Stack Directive
	Stacked Registers in Assignment and Equate Statements

	Rotating Register Directives
	Using Rotating Register directives
	Rotating Registers in Assignment and Equate Statements

	Byte Order Specification Directives
	String Specification Directive
	Radix Indicator Directive
	Preprocessor Support

	Annotations
	Predicate Relationship Annotation
	Predicate Vector Annotation
	Memory Offset Annotation
	Entry Annotation

	Register Names by Type
	Pseudo-ops
	Link-relocation Operators
	List of IA-64 Assembly Language Directives
	Glossary
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

