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Introduction 1

1.1 The Intel IA-64 Architecture and the System V ABI

The System V Application Binary Interface defines a system interface for compiled application 
programs. Its purpose is to establish a standard binary interface for application programs on 
systems that implement the interfaces defined in the X/Open Common Application Environment 
Specification, Issue 4.2 (also known as the “Single UNIX Specification”) and the System V 
Interface Definition, Issue 4. This includes, but is not limited to, systems that have implemente
UNIX System V, Release 4.

This document is the result of consensus among operating system vendors intending to prov
UNIX and UNIX workalike operating systems on the IA-64 architecture.  The vendors 
participating in this effort include Intel, Sun Microsystems, SCO, IBM, SGI, Cygnus Solutions,
Linux Systems, HP,  and Compaq.  This specification builds upon the definitions of the System V 
ABI and supplies those aspects of the System V ABI which are indicated as being processor-
specific.  In combination with the System V ABI and the documents included by reference by thi
specification, constitutes a specification for compiler, linker and object model compatibility fo
implementations of UNIX and UNIX workalike operating systems on systems that utilize the 
processor architecture of Intel IA-64 microprocessors.

1.2 How to Use the System V ABI for Intel IA-64 
Processors

The IA-64 architecture supports a 64 bit instruction set and also provides compatibility with t
IA-32 instruction set. Binaries using the IA-64 instruction set may program to either a 32-bit 
model, in which the C data types int and long and all pointer types are 32-bit objects (ILP32); or 
to a 64-bit model, in which the C int type is 32-bits but the C long type and all pointer types are
64-bit objects (LP64). This specification describes  information needed to construct, link and 
execute binaries using the LP64 programming model. In addition, the IA-64 architecture allo
both big-endian (most-significant byte first) and little-endian (least-significant byte first) encod
This specification may be used to instantiate a big-endian and/or a little-endian ABI.

This specification does not fully describe the ILP32 programming model. Since some vendor
support this model, some non-binding considerations will be covered in Chapter 7. The 
specification also does not describe the compatibility mode for IA-32 instruction set binaries.
mode is described by a separate ABI document.

This document is a supplement to the generic System V ABI and contains information referenced in
the generic specification that may differ when System V is implemented on different process
Therefore, the generic ABI is the prime reference document, and this supplement is provided
gaps in that specification.

As with the System V ABI, this specification references other available documents, especially 
IA-64 Processor Programmer’s Reference Manual, the Intel IA-64 Software Conventions and 
Runtime Architecture Guide and the 32-Bit Little-Endian IA-64 Software Conventions Addendum
for IA-64 UNIX. All the information referenced by this supplement should be considered part of 
this specification unless otherwise noted, and just as binding as the requirements and data explicitly 
included here.
UNIX System V Application Binary Interface 1-1
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1.3 Evolution of the ABI Specification

This specification will evolve over time to address new technology and market requirements, and 
will be reissued periodically. Each new edition of the specification is likely to contain extensions 
and additions that will increase the potential capabilities of applications that are written to conform 
to the ABI.

1.4 Additional Documents

The following documents are included by reference into this specification:

• IA-64 Processor Programmer’s Reference Manual, Intel Reference Number SC-2766, SC-
2767, SC-2893, SC-2769.

• IA-64 Software Conventions and Runtime Architecture Guide, Rev 2.5E, Intel Reference 
Number SC-2847

• 32-Bit Little-Endian IA-64 Software Conventions Addendum for IA64-UNIX, Intel Reference 
Number SC-2790
1-2 UNIX System V Application Binary Interface
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For future use.
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3.1 Introduction

The System V ABI leaves processor-specific low-level system information to the Processor 
Supplement (this document).  The majority of this required information is documented in the Intel 
IA-64 Software Conventions and Runtime Architecture Guide (“Conventions”), which is operating-
system independent.  Only information that is specific to implementing the ABI on the IA-64 
architecture will be described here.

Object files (relocatable files, executable files and shared object files) that are supplied as part of an 
ABI-conforming application must use position-independent code as described in Chapter 12 of 
Conventions.

3.2 Machine Interface

3.2.1 Fundamental Types

The following additional C language scalar data types are required.  long long is an integral 
type, while long double is a floating-point type.

Table 3-1. Additional Fundamental Data Types

Data Model C Type Size Align Hardware Representation

ILP32 long long
unsigned long long

8 4 Signed doubleword

Unsigned doubleword

LP64 long long
unsigned long long

8 8 Signed doubleword

Unsigned doubleword

ILP32 long double 12 4 IEEE Double-Extended floating point

LP64 long double 16 16 IEEE Double-Extended floating point

NOTE: long double in the LP64 model is allocated 16 bytes (128 bits) of storage but uses the 80-bit extended 
double format internally.
UNIX System V Application Binary Interface 3-1
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3.3 Operating System Interface

3.3.1 Exception Interface

As the IA-64 architecture manuals describe, the processor changes mode to handle exceptions. 
Some exceptions can be explicitly generated by a process. This section specifies those exception 
types with defined behavior. Figure 3-2 shows the signal number (si_signo) and the code 
(si_code) values that will be delivered for each type of hardware exception that has an effect on 
program execution. 

Figure 3-1. Double-Extended (80-bit) Floating-point Formats
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Table 3-2. Hardware Exceptions and Signals

Type of Exception si_signo si_code Notes

TLB faults SIGSEGV SEGV_MAPERR (1)

Access faults SIGSEGV SEGV_ACCERR

Privilege violations SIGILL ILL_PRVOPC

Register NaT consumption SIGILL ILL_PRVREG

NaT page consumption SIGSEGV __ILL_REGNAT

Speculative operation None SEGV_MAPERR (2)

Unaligned data SIGBUS BUS_ADRALN (3)

Floating-point exceptions SIGFPE see Table 3-3

Illegal instructions SIGILL ILL_ILLOPC
3-2 UNIX System V Application Binary Interface
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Notes:
1. TLB faults are first serviced by the system to determine if the attempted access was to a page to which the process has access.

A signal is delivered to the application only if the attempted access is determined to be invalid.
2. Speculative operation faults are the result of a speculative check or floating-point check flags operation. The system services

this fault, and emulates the instruction as a pc-relative branch when the fault is taken.
3. The system may emulate unaligned data references, possibly depending on flags set in the executable object file or on the

executable’s setting of the PSR.ac bit. If it does, no signal is delivered. Applications that rely on such behavior are not ABI con-
forming.

4. If the process is being controlled by a debugger, these faults generate debugger events, and do not cause a signal to be deliv-
ered to the process.

Table 3-3 details the possible reasons for a SIGFPE signal caused by a floating-point exception:

Break 0 (unknown error) SIGILL ILL_ILLOPC

Break 1 (integer divide by zero) SIGFPE FPE_INTDIV

Break 2 (integer overflow) SIGFPE FPE_INTOVF

Break 3 (range check/bounds check) SIGFPE FPE_FLTSUB

Break 4 (null pointer dereference) SIGSEGV SEGV_MAPERR

Break 5 (misaligned data) SIGBUS BUS_ADRALN

Break 6 (decimal overflow) SIGFPE __FPE_DECOVF

Break 7 (decimal divide by zero) SIGFPE __FPE_DECDIV

Break 8 (packed decimal error) SIGFPE __FPE_DECERR

Break 9 (invalid ASCII digit) SIGFPE __FPE_INVASC

Break 10 (invalid decimal digit) SIGFPE __FPE_INVDEC

Break 11 (paragraph stack overflow) SIGSEGV __SEGV_PSTKOVF

Break 12-0x03ffff (reserved) undefined

Break 0x040000-0x07ffff (application) SIGILL __ILL_BREAK

Break 0x080000-0x0fffff (debugger) SIGTRAP TRAP_BRKPT (4)

Break 0x100000-0x1fffff (reserved) undefined

Table 3-2. Hardware Exceptions and Signals (Continued)

Table 3-3. Floating Point Exceptions

Code Reason

FPE_FLTDIV floating point divide by zero

FPE_FLTOVF floating point overflow

FPE_FLTUND floating point underflow

FPE_FLTRES floating point inexact result

FPE_FLTINV invalid floating point operation

FPE_FLTSUB subscript out of range
UNIX System V Application Binary Interface 3-3
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3.3.2 Signal Delivery

The Single UNIX Specification defines information that is made available in the siginfo_t 
structure for specific signals. That information is reproduced, for informational purposes, in 
Table 3-4. Table 3-5 lists additional information delivered for specific signals on IA-64.

When a signal handler is installed, the application passes a function pointer to the system. As 
defined by Conventions, a function pointer points to a function descriptor, which contains the 
handler’s entry point address and its global pointer register (gp) value. The implementation must be 
aware of the structure of the function descriptor in order to deliver a signal correctly.

When delivering a signal, the implementation must do the following:

1. Build the signal info and signal context records at the top of the user stack. If SA_SIGINFO 
was not set when installing the signal handler, these records are not required. 

2. Create a new 16-byte scratch area at the top of the user stack, for the handler’s use. 

3. Create a new register stack frame with three output argument registers, and place the signal 
handler’s arguments in these registers. 

4. Set the global pointer register (gp) to the handler’s gp value. 

5. Initialize the floating-point status register (ar.fpsr) to the standard value, as defined by the 
common runtime conventions. 

6. Transfer control to the signal handler, providing the appearance that the handler has been 
called, so that a return from the handler will reinstall the saved (and possibly modified) 
context. 

Table 3-4. Standard Signal Delivery

Signal Member Value

SIGILL
SIGFPE

void * si_addr
Address of faulting instruction

SIGSEGV
SIGBUS

void * si_addr
Address of faulting memory reference

SIGCHLD
pid_t si_pid
int si_status
uid_t si_uid

Child process ID

Exit value or signal

Real user ID of the process that sent the signal

SIGPOLL long si_band Band event for POLL_IN, POLL_OUT or POLL_MSG

Table 3-5. Signal Delivery – Additional Details for IA-64

Signal Member Value

SIGTRAP
void * si_addr
int si_imm

Address of faulting instruction

break instruction immediate operand

SIGILL int si_imm break instruction immediate operand (for __ILL_BREAK)
3-4 UNIX System V Application Binary Interface
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3.3.3 Signal Handler Interface

According to the Single UNIX Specification, if the SA_SIGINFO flag is used when a signal handler 
is installed, the handler will be called with three arguments, according to the following prototype:

void handler(int signo, siginfo_t *info, void *context);

In addition to the several members required by Single UNIX Specification, the siginfo_t 
structure contains the following fields for IA-64:

The Single UNIX Specification defines the si_addr field as the address of the faulting instruction 
or the faulting memory reference. When it is an instruction address, the value is represented as a 
bundle address with the low-order two bits set to indicate the particular instruction within a bundle.

The Single UNIX Specification allows the application to cast the context argument to the type 
ucontext_t, which contains the following fields (at least):

The stack_t structure contains the following fields (at least):

The stack described by this structure includes both the memory stack and the backing store.

The mcontext_t structure is an opaque structure. Its size must be specified by the ABI, but its 
layout is implementation specific. Each implementation may provide an API for accessing and 
modifying the context.

Note: REVIEW NOTE: Specification of the size is left to an external standards body.

3.3.3.1 Signal Delivery – Implementation Notes

Note: This section is informational and does not form part of the specification.

The si_imm  field may be placed in the _fault member of the siginfo_t structure, since it 
is delivered only for SIGTRAP signals, when si_addr is also delivered.

A signal handler’s return pointer must be some value that causes the saved signal context to be 
reinstalled when the signal handler returns; thus, it can not be an address within the range of any of 
the application’s loaded segments. Typically, it will be the address of a kernel entry point, mapped 
into a shared portion of the application’s address space.

The signal context record placed on the stack marks a discontinuity in the stack. While the signal 
handler’s frame itself is an ordinary stack frame, its caller appears to be a routine whose stack 
frame is the context record. The system’s unwind routines will need a way of recognizing the 

int si_imm Immediate operand for break instruction

stack_t uc_stack The stack used by this context.

mcontext_t uc_mcontext
A machine-specific representation of the saved 
context.

void *ss_sp Stack base or pointer

size_t ss_size Size of the stack

int ss_flags Flags
UNIX System V Application Binary Interface 3-5
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ast 
discontinuity. The common runtime conventions provide a special implementation-dependent 
unwind descriptor format (P10) for this purpose. A recommended, but not required, mechanism is 
for the system to provide a special unwind table for the signal handler return point, using this 
special unwind descriptor to indicate to the unwind library that it has reached a signal context 
record on the stack. This unwind table is made available to the unwind library through an 
implementation-specific mechanism.

Implementations will likely choose not to copy the stacked general registers into the signal context 
record, relying instead on accessing the backing store as needed. Thus, the API routines for reading 
and writing the context record will need to understand the layout of the backing store in order to 
access and modify the stacked general registers.

If the backing store overflows as a result of flushing the register stack in preparation for signal 
delivery, the system may need to provide space in the mcontext_t record for saving the 
remainder of the register stack. Thus, there may be a discontinuity in the backing store, and API 
routines for accessing the general registers must take this into account.

The API set should include read and write routines for each element of user-visible state, plus read 
and write routines for the stacked general registers. The APIs should provide an abstraction layer to 
help the programmer deal with the complexities of NaT bits, the layout of the backing store, the 
frame marker, and the location of the instruction pointer within the current bundle.

3.3.4 Debugging Support

A program may use the break instruction subject to the restrictions documented in Chapter 2 of 
Conventions. A break instruction with an immediate operand with the high-order two bits set to 01 
is reserved for debugger breakpoints. For purposes of implementing the System V ABI, a value of 
zero in the remaining bits (i.e. an operand of 0x80000) is defined as the debugger breakpoint; all 
other values in this range are undefined.

3.3.5 Process Startup

This section describes the initial program state that the exec functions create when constructing a 
new process image. Programming language systems use this initial program state to establish a 
standard environment for their application programs. As an example, a C program begins 
executing at a function named main, conventionally declared in the following way.

extern int main(int argc, char *argv[]); 

Briefly, argc is a non-negative argument count and argv is an array of argument strings, with 
argv[argc]=0;.

Although this section does not describe C program initialization, it gives the information necessary 
to implement the call to main or to the entry point for a program in any other language.

The implementation will call (or appear to call) the program entry point recorded in the e_entry 
field of the ELF header, hereafter referred to as "main”, according to standard calling conventions
The system is responsible for initializing the process state to satisfy the common runtime 
conventions (see Conventions). These initializations include, but are not limited to, the following

1. The current frame marker must be configured for zero input and local registers, and at le
four output registers. 
3-6 UNIX System V Application Binary Interface
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2. The stack pointer register (sp) must be aligned to a 16-byte boundary. An initial stack frame 
must exist for the  routine in the implementation responsible for calling  main, with space for a 
16-byte scratch area for use by main. 

3. The RSE backing store pointer registers must be valid. 

4. The return pointer register (rp) is a valid return address, such that if the program returns from 
the main routine, the implementation will cause the program to exit normally, using the main’s 
return value as the exit status. 

5. The unwind information for this "bottom-of-stack" routine in the implementation must provide 
a mechanism for recognizing the bottom of the stack during a stack unwind. 

6. The global pointer register (gp) contains main’s global pointer. 

7. The floating-point status register (ar.fpsr) is initialized as described in Conventions. 

The first two argument registers (r32-r33, named out0-out1 at entry to main) must contain argc 
and argv, respectively. The third and fourth argument registers (r34-r35, out2-out3) must be 
allocated as required by the common runtime conventions, but are not defined by this ABI.
UNIX System V Application Binary Interface 3-7
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Object Files 4

4.1 ELF Header

4.1.1 Machine Information

4.1.1.1 Programming Model

As described in Section 1.1, “The Intel IA-64 Architecture and the System V ABI” on page 1-1, 
binaries using the IA-64 instruction set may program to either a 32-bit model, in which the C
types int and long and all pointer types are 32-bit objects (ILP32); or to a 64-bit model, in wh
the C int type is 32-bits but the C long type and all pointer types are 64-bit objects (LP64). Th
specification  describes both binaries that use the ILP32 and the LP64 model. For  LP64 bin
the e_flags member of the ELF header will include the value EF_IA_64_ABI64 (see 
Table 4-2 below). For ILP32 binaries  e_flags will not include EF_IA_64_ABI64. IA-64 files 
using the 32-bit programming model may not be combined with IA-64 files using the 64-bit 
programming model.

4.1.1.2 File Class

For IA-64 ILP32 relocatable (i.e. of type ET_REL) objects, the file class value in 
e_ident[EI_CLASS] must be ELFCLASS32.  For LP64 relocatable objects, the file class 
value may be either ELFCLASS32 or ELFCLASS64, and a conforming linker must be able t
process either or both classes.  ET_EXEC or ET_DYN object file types must use ELFCLASS
for ILP32 and ELFCLASS64 for LP64 programs.

Addresses appearing in ELFCLASS32 relocatable objects for LP64 programs are implicitly 
extended to 64 bits by zero-extending.

Note:  Some constructs legal in ILP64 programs, e.g. absolute 64-bit addresses outside the 
range, may require use of an ELFCLASS64 relocatable object file.

4.1.1.3 Data Encoding

For the data encoding in e_ident[EI_DATA],  IA-64 64-bit objects can use either 
ELFDATA2MSB or ELFDATA2LSB. That is, IA-64 64-bit ELF files may use either the big endi
or little endian data encoding. IA-64 files using ELFDATA2MSB encoding may not be combin
with IA-64 files using  ELFDATA2LSB encoding.

4.1.1.4 Operating System Identification

The e_ident[EI_OSABI] value identifies the operating system and ABI to which the objec
targeted, as listed in Table 4-1.
UNIX System V Application Binary Interface 4-1
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4.1.1.5 Processor Identification

Processor identification resides in the ELF header’s e_machine member and must have the value 
EM_IA_64.

4.1.1.6 Processor-Specific Flags

The ELF header e_flags member holds bit flags associated with the file, as listed in Table 4-2.

EF_IA_64_MASKOS All bits in this mask are reserved for operating system specific values.

EF_IA_64_ABI64 If this bit is set, the object uses the LP64 programming model, as 
described above. If the bit is clear, the object uses the ILP32 
programming model.

Table 4-1. Operating System Identification, e_ident[EI_OSABI]

Name Value Meaning

ELFOSABI_SYSV 0 UNIX System V

ELFOSABI_HPUX 1 HP-UX

ELFOSABI_NETBSD 2 NetBSD

ELFOSABI_LINUX 3 Linux

ELFOSABI_HURD 4 Hurd

“Unspecified” 5 Reserved 

ELFOSABI_SOLARIS 6 Solaris

ELFOSABI_MONTEREY 7 Monterey

ELFOSABI_IRIX 8 IRIX

ELFOSABI_FREEBSD 9 FreeBSD

ELFOSABI_TRU64 10 TRU64 UNIX

ELFOSABI_STANDALONE 255 Standalone application - no ABI

NOTE: ELFOSABI_STANDALONE may be used to indicate applications that have no operating system 
dependency. Such applications are not ABI-conforming since ABI-conforming programs by definition 
import basic system services from a shared object library.

Table 4-2. IA-64 Processor-Specific Flags, e_flags

Name Value

EF_IA_64_MASKOS 0x00ff000f

EF_IA_64_ABI64 0x00000010

EF_IA_64_REDUCEDFP 0x00000020

EF_IA_64_CONS_GP 0x00000040

EF_IA_64_NOFUNCDESC_CONS_GP 0x00000080

EF_IA_64_ABSOLUTE 0x00000100

EF_IA_64_ARCH 0xff000000
4-2 UNIX System V Application Binary Interface
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EF_IA_64_REDUCEDFP
If this bit is set, the object has been compiled with a reduced floating-
point model. The compiler uses only floating point registers FP6-FP11 
for integer arithmetic. If the program does not perform explicit floating-
point calculations, registers FP6-FP11 are the only floating-point 
registers that need to be saved by interrupt handlers. When combining 
relocatable objects, a linker should set the EF_IA_64_REDUCEDFP 
flag in the resulting object only if all of the objects to be combined have 
the flag set.

EF_IA_64_CONS_GP If this bit is set, the global pointer (gp) is treated as a program-wide 
constant. The gp is saved and restored only for indirect function calls. 
Objects with this bit set may not be combined with objects that do not 
have this bit set. This model is intended for use primarily in standalone 
programs, such as operating system kernels. Objects with this bit set are 
not ABI-conforming.

EF_IA_64_NOFUNCDESC_CONS_GP
If this bit is set, the global pointer (gp) is treated as a program-wide 
constant. The gp is never saved or restored across function calls. In this 
model, a function’s address is not treated as the address of a two-w
function descriptor. Rather, it is the actual address of the function 
definition itself. This model is intended for use primarily in standalon
programs, such as operating system kernels. Objects with this bit se
not ABI-conforming.

EF_IA_64_ABSOLUTE If this bit is set, the program loader is instructed to load the executab
the addresses specified in the program headers.  Objects with this b
are not ABI-conforming.

EF_IA_64_ARCH The integer value formed by these eight bits identifies the architect
version. This field is reserved for use when the IA-64 architecture is
extended with backward-compatible features. It records the minimu
level of the architecture required by the object code. The only curren
defined value is one.

4.2 Sections

4.2.1 Section Types

The IA-64 architecture defines two processor-specific section types and a reserved range to b
in the sh_type member of the ELF section header in addition to the standard section types.

Table 4-3. Section Types, sh_type

Name Value

SHT_IA_64_EXT 0x70000000

SHT_IA_64_UNWIND 0x70000001

SHT_IA_64_LOPSREG 0x78000000

SHT_IA_64_HIPSREG 0x7fffffff
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SHT_IA_64_EXT The section contains product specific extension bits. These consist of at 
least one 64-bit word of attribute flags that identify specific non-
architectural extensions that are required by the object code. See 
Section 4.2.4, “Architecture Extensions” on page 4-6.

SHT_IA_64_UNWIND The section contains unwind function table entries for stack unwind
See Conventions for details.

SHT_IA_64_LOPSREG to SHT_IA_64_HIPSREG
Sections in this range are reserved for implementation-specific sect
types. A portion of this range is allocated for use by implementation
which have assigned Operating System Identification values (see 
Section 4.1.1.4, “Operating System Identification” on page 4-1). If the 
high-order 8 bits of sh_type contain 0x78 then the next 8 bits contain 
the EI_OSABI value.  For example, if the EI_OSABI value for an 
implementation is 0x03, the reserved range for that implementation i
0x78030000 to 0x7803ffff.

4.2.2 Section Attribute Flags

A section header sh_flags member holds 1-bit flags that describe the attributes of the sectio
The IA-64 architecture defines two processor-specific values in addition to the standard valu

SHF_IA_64_SHORT The section contains objects that will be referenced using an offset
the global pointer (gp), so the section must be placed near gp.

SHF_IA_64_NORECOV The section contains code that uses speculative instructions witho
recovery code. ABI-conforming implementations are not required to
execute binaries that do not have recovery code associated with the

4.2.3 Special Sections

The following special sections are defined for use on the IA-64 architecture.

Table 4-4. Section Attribute Flags, sh_flags

Name Value

SHF_IA_64_SHORT 0x10000000

SHF_IA_64_NORECOV 0x20000000

Table 4-5. Special Sections

Name Type Attributes

.IA_64.archext SHT_IA_64_EXT None

.IA_64.pltoff SHT_PROGBITS SHF_ALLOC+SHF_WRITE+SHF_IA_64_SHORT

.IA_64.unwind SHT_IA_64_UNWIND SHF_ALLOC+SHF_LINK_ORDER

.IA_64.unwind_info SHT_PROGBITS SHF_ALLOC

.got SHT_PROGBITS SHF_ALLOC+SHF_WRITE+SHF_IA_64_SHORT
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.IA_64.archext This section holds product-specific extension bits (see 
SHT_IA_64_EXT in Section 4.2.1, “Section Types” on page 4-3 for 
details). The link editor will perform a logical “or” of the extension bit
of each object it combines when creating an executable so that it cre
only a single .IA_64.archext section in the executable.

.IA_64.pltoff This section holds local function descriptor entries. See “Coding 
Examples” in Conventions and Section 5.3.6, “Procedure Linkage 
Table” on page 5-7 for more information.

.IA_64.unwind This section holds the unwind function table. The contents are descr
in Conventions.

.IA_64.unwind_info This section holds stack unwind and exception handling informatio
The contents specific to unwind information are described in 
Conventions. The exception handling information is programming 
language specific and is unspecified.

.got This section holds the global offset table. See “Coding Examples” in
Conventions and Section 5.3.4, “Global Offset Table” on page 5-6 for 
more information.

.plt This section holds the procedure linkage table. See Section 5.3.6, 
“Procedure Linkage Table” on page 5-7 for more information.

.sbss This section holds unitialized data that contribute to the program's 
memory image. Data objects contained in this section are recommen
to  be eight bytes or less in size. The system initializes the data with
zeroes when the program begins to run. The section occupies no fil
space, as indicated by the section type SHT_NOBITS. The .sbss 
section is placed so it may be accessed using short direct addressin
bit offset from gp).  See “Protection Areas” in Conventions.

.sdata and .sdata1 These sections hold  initialized data that contribute to the program
memory image. Data objects contained in these sections are 
recommended to  be eight bytes or less in size. The .sdata and 
.sdata1 sections are placed so they may be accessed using short d
addressing (22-bit offset from gp).  See “Protection Areas” in 
Conventions.

.plt SHT_PROGBITS SHF_ALLOC+SHF_EXECINSTR

.sbss SHT_NOBITS SHF_ALLOC+SHF_WRITE+SHF_IA_64_SHORT

.sdata SHT_PROGBITS SHF_ALLOC+SHF_WRITE+SHF_IA_64_SHORT

.sdata1 SHT_PROGBITS SHF_ALLOC+SHF_WRITE+SHF_IA_64_SHORT

Table 4-5. Special Sections (Continued)

Name Type Attributes
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4.2.4 Architecture Extensions

The .IA_64.archext section allows a compiler to record dependencies on certain features and 
capabilities of a specific processor, that are extensions to the IA-64 architecture. Currently, there 
are no such extensions defined, and this section is not expected to be used by the compilers. 
Nevertheless, linkers and loaders should provide the proper implementation of this section in 
preparation for future architectural extensions.

The contents of the .IA_64.archext section, if present, is interpreted as a series of individual 
bits grouped into 64-bit doublewords. The first doubleword of the group is defined to correspond 
bitwise to the bits in CPUID Register 4 (General Features/Capability Bits). Additional 
doublewords in the section have no defined meaning, unless and until the IA-64 architecture is 
extended with additional CPUID Registers defining additional capability bits.

All .IA_64.archext sections must be of section type SHT_IA_64_EXT, and should have no 
flags set in the sh_flags field. Each section must be a multiple of 8 bytes in length, with 8 byte 
alignment. The linker must combine such sections by a bitwise OR operation on each 
corresponding doubleword of each section (i.e., the first doubleword of one section OR’ed with the 
first doubleword of the other section, and so on). If some sections are shorter than others, the 
shorter ones are padded with zeroes at the end, so that the combined output section is equal in 
length to the largest input section.

If a .IA_64.archext section exists in the output file, the linker must create a program header 
table entry of type PT_IA_64_ARCHEXT to communicate this information to the loader. This 
program header table entry must precede all entries of type PT_LOAD. If the .IA_64.archext 
section exists, but its contents are all zeroes, the linker may omit the section and program header 
table entry, but it is not required to.

When an executable or shared library is loaded, and a PT_IA_64_ARCHEXT entry is present in 
the program header table, the loader should compare the contents of the first doubleword of the 
section with CPUID Register 4. If any bits are set in the section that are not also set in CPUID 
Register 4, the implementation must refuse to load the file. If, in the future, additional CPUID 
registers are defined to identify further capability bits, the loader should check additional double-
words of this section with those registers as well. If the section contains excess doublewords that 
do not correspond to defined CPUID registers, the loader should check that all excess bits are zero.

The linker should be prepared to deal with .IA_64.archext sections of arbitrary length, but it 
is permissible to truncate the sections to a reasonable length. It is recommended that all tools 
should be prepared to deal with at least four doublewords in this section.

4.3 Relocations

4.3.1 Relocation Types

A relocation entry’s r_offset value designates the offset or virtual address of the affected 
storage unit. For data relocations, this is the first byte of the word or doubleword being relocated. 
For instructions, it is the address of the bundle containing the instruction being relocated. The least 
significant two bits of the offset identify the instruction slot to which the relocation applies, as 
described below. Each instruction bundle is 16 bytes long and 16 byte aligned; each instruction slot 
is 41 bits long. Whether a given relocation type applies to an instruction or data field is noted in the 
Field column of the table of relocations, below.
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Relocation entries describe how to alter the following instruction and data fields (bit numbers 
appear to the upper left of the field they label; all fields are numbered from bit 0).

Figure 4-1. Instruction Bundle Layout

000947

Table 4-6. Relocation Offset Instruction Slot Encoding

Encoding (last two bits) Instruction slot

00 Slot 0

01 Slot 1

10 Slot 2

11 Invalid

slot 2 slot 1 slot 0

127 86 45 4

template

087 46 5

5414141
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word32 A 32-bit field occupying four bytes with arbitrary alignment. The byte 
order for these values is specified by the relocation type.

word64 A 64-bit field occupying eight bytes with arbitrary alignment. The byte 
order for these values is specified by the relocation type.

function descriptor Two contiguous 64-bit words occupying 16 bytes with 8-byte alignment. 
The byte order for the function descriptor is specified by the relocation 
type. Function descriptor entries are created by the linker and/or the 
dynamic linker and are used in resolving function addresses. The first 
64-bit word contains the function address. The second 64-bit word 
contains the value of the global pointer (gp) for the object containing the 
definition of the function. Function descriptor entries are referenced by 

Figure 4-2. Relocatable Fields

000948

31 0

word32

word32

word64

63 0
word64

word64

word64

63 0
function descriptor
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4-8 UNIX System V Application Binary Interface



Object Files
relocations contained in shared objects and executable objects only and 
are intended to be processed at run-time.

instruction - immediate14 A signed 14-bit immediate value. imm7b contains bits 0 through 6 (low-
order bits). imm6d contains bits 7 through 12. s contains the high-order 
bit (sign bit).

instruction - immediate22 A signed 22-bit immediate value. imm7b contains bits 0 through 6 (low-
order bits). imm9d contains bits 7 through 15. imm5c contains bits 16 
through 20. s contains the high-order bit (sign bit).

instruction - immediate21 - form 1
A signed 21-bit immediate value. This value is formed by taking a 25-bit 
displacement and shifting it right by four bits. For the resulting value, 
imm20b contains bits 0 through 19 (low-order bits). s contains the high-
order bit (sign bit).

instruction - immediate21 - form 2
A signed 21-bit immediate value. This value is formed by taking a 25-bit 
displacement and shifting it right by four bits. For the resulting value, 
imm7a contains bits 0 through 6 (low-order bits). imm13c contains bits 7 
through 19. s contains the high-order bit (sign bit).

instruction - immediate21 - form 3
A signed 21-bit immediate value. This value is formed by taking a 25-bit 
displacement and shifting it right by four bits. For the resulting value, 
imm20a contains bits 0 through 19 (low order bits).

instruction - immediate64 A 64-bit immediate value. The value is contained within two 41-bit 
instruction slots (slots 1 and 2 of a bundle). imm7b contains bits 0 
through 6 (low order bits). imm9d contains bits 7 through 15. imm5c 
contains bits 16 through 20. ic contains bit 21. imm41 contains bits 22 
through 62 and takes the entire width of slot 1 (the second instruction 
slot). i contains bit 63.

The calculations below assume one of two contexts. First, the relocations may be contained within 
a relocatable file; the actions are transforming the relocatable file into an executable or a shared 
object file. Conceptually, the link editor merges one or more relocatable files to form the output. It 
first decides how to locate and combine the input files, then updates the symbol values, and finally 
performs the relocation. Because many IA-64 instructions have small immediate fields, the longer 
form of relocation entry containing an explicit addend (Elf32_Rela or Elf64_Rela) is 
always used for relocatable objects on IA-64. Second, the relocations may be contained within an 
executable file or shared object; the actions complete the job of relocation by fixing addresses for 
position-independent code. Relocations contained within executable files or shared objects may 
use either the shorter form (Elf32_Rel or Elf64_Rel) or the longer form (Elf32_Rela or 
Elf64_Rela). These relocations always apply to word or doubleword data objects.

Descriptions below use the following notation.

A The Addend used to compute the value of the relocatable field.

BD The Base address Difference, a constant that must be applied to a virtual 
address. This constant represents the difference between the run-time 
virtual address and the link-time virtual address of a particular segment. 
The segment is implied by the value of the link-time virtual address. See 
Section 5.2, “Program Loading” on page 5-1 for details.
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P The “Place” (section offset or address) of the storage unit being reloc
(computed using r_offset). If the relocation applies to an instruction
this is the address of the bundle containing the instruction.

S The value of the Symbol whose index resides in the relocation entry

@gprel(expr) Computes a gp-relative displacement - the difference between expr and 
the value of the global pointer (gp) for the current module.

@ltoff(expr) Requests the creation of a global offset table (GOT) entry that will h
the full value of expr and computes the gp-relative displacement to th
GOT entry. See Section 5.3.4, “Global Offset Table” on page 5-6 for 
more information.

@pltoff(symbol) Requests the creation of a local function descriptor entry for the give
symbol and computes the gp-relative displacement to that function 
descriptor entry. See Section 5.3.6, “Procedure Linkage Table” on 
page 5-7 for more information.

@segrel(expr) Computes a segment-relative displacement - the difference betweenexpr 
and the address of the beginning of the segment containing the 
relocatable object. This relocation type is designed for data structur
that reside in read-only segments, but need to contain pointers. The
relocatable object and effective address must be contained within th
same segment. Applications using these pointers must be aware tha
are segment-relative and must adjust their values at run-time, using
load address of the containing segment. No output relocations will b
generated for @segrel relocations.

@secrel(expr) Computes a section-relative displacement - the difference between expr 
and the address of the beginning of the (output) section that contain 
expr. This relocation type is designed for references from one non-
allocatable section to another. Applications using these values mus
aware that they are section-relative and must adjust their values at 
time, using the adjusted address of the target section. No output 
relocations will be generated for @secrel relocations.

@fptr(symbol) Evaluates to the address of the “official” function descriptor for the giv
symbol. See Conventions for more information.

The MSB and LSB suffixes on the following relocation types indicate whether the target field
stored most significant byte first (big-endian) or least significant byte first (little-endian), 
respectively.

Table 4-7. IA-64 Relocation Types

Name Value Field Calculation

R_IA_64_NONE 0 None None

R_IA_64_IMM14 0x21 instruction - immediate14 S + A

R_IA_64_IMM22 0x22 instruction - immediate22 S + A

R_IA_64_IMM64 0x23 instruction - immediate64 S + A

R_IA_64_DIR32MSB 0x24 word32 MSB S + A

R_IA_64_DIR32LSB 0x25 word32 LSB S + A

R_IA_64_DIR64MSB 0x26 word64 MSB S + A

R_IA_64_DIR64LSB 0x27 word64 LSB S + A
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R_IA_64_GPREL22 0x2a instruction - immediate22 @gprel(S + A)

R_IA_64_GPREL64I 0x2b instruction - immediate64 @gprel(S + A)

R_IA_64_GPREL64MSB 0x2e word64 MSB @gprel(S + A)

R_IA_64_GPREL64LSB 0x2f word64 LSB @gprel(S + A)

R_IA_64_LTOFF22 0x32 instruction - immediate22 @ltoff(S + A)

R_IA_64_LTOFF64I 0x33 instruction - immediate64 @ltoff(S + A)

R_IA_64_PLTOFF22 0x3a instruction - immediate22 @pltoff(S + A)

R_IA_64_PLTOFF64I 0x3b instruction - immediate64 @pltoff(S + A)

R_IA_64_PLTOFF64MSB 0x3e word64 MSB @pltoff(S + A)

R_IA_64_PLTOFF64LSB 0x3f word64 LSB @pltoff(S + A)

R_IA_64_FPTR64I 0x43 instruction - immediate64 @fptr(S + A)

R_IA_64_FPTR32MSB 0x44 word32 MSB @fptr(S + A)

R_IA_64_FPTR32LSB 0x45 word32 LSB @fptr(S + A)

R_IA_64_FPTR64MSB 0x46 word64 MSB @fptr(S + A)

R_IA_64_FPTR64LSB 0x47 word64 LSB @fptr(S + A)

R_IA_64_PCREL21B 0x49 instruction - immediate21 form 1 S + A – P

R_IA_64_PCREL21M 0x4a instruction - immediate21 form 2 S + A - P

R_IA_64_PCREL21F 0x4b instruction - immediate21 form 3 S + A – P

R_IA_64_PCREL32MSB 0x4c word32 MSB S + A – P

R_IA_64_PCREL32LSB 0x4d word32 LSB S + A – P

R_IA_64_PCREL64MSB 0x4e word64 MSB S + A – P

R_IA_64_PCREL64LSB 0x4f word64 LSB S + A – P

R_IA_64_LTOFF_FPTR22 0x52 instruction - immediate22 @ltoff(@fptr(S + A))

R_IA_64_LTOFF_FPTR64I 0x53 instruction - immediate64 @ltoff(@fptr(S + A))

R_IA_64_LTOFF_FPTR32MSB 0x54 word32MSB @ltoff(@ftpr(S + A))

R_IA_64_LTOFF_FPTR32LSB 0x55 word32LSB @ltoff(@fptr(S + A))

R_IA_64_LTOFF_FPTR64MSB 0x56 word64MSB @ltoff(@fptr(S + A))

R_IA_64_LTOFF_FPTR64LSB 0x57 word64LSB @ltoff(@fptr(S + A))

R_IA_64_SEGREL32MSB 0x5c word32 MSB @segrel(S + A)

R_IA_64_SEGREL32LSB 0x5d word32 LSB @segrel(S + A)

R_IA_64_SEGREL64MSB 0x5e word64 MSB @segrel(S + A)

R_IA_64_SEGREL64LSB 0x5f word64 LSB @segrel(S + A)

R_IA_64_SECREL32MSB 0x64 word32 MSB @secrel(S + A)

R_IA_64_SECREL32LSB 0x65 word32 LSB @secrel(S + A)

R_IA_64_SECREL64MSB 0x66 word64 MSB @secrel(S + A)

R_IA_64_SECREL64LSB 0x67 word64 LSB @secrel(S + A)

R_IA_64_REL32MSB 0x6c word32 MSB BD + A

R_IA_64_REL32LSB 0x6d word32 LSB BD + A

R_IA_64_REL64MSB 0x6e word64 MSB BD + A

Table 4-7. IA-64 Relocation Types (Continued)

Name Value Field Calculation
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Note: Values above 0xe0 are available for use in implementation-defined ways. All other values are 
reserved for future use.

The relocation type values have been chosen so that the expression type can be easily extracted by 
masking off the lower three or four bits, and the data/instruction format can be determined in most 
cases by looking only at the low-order four bits.

R_IA_64_LTV32MSB, R_IA_64_LTV32LSB, R_IA_64_LTV32MSB and R_IA_64_LTV32LSB
These relocations appear only in relocatable objects. They behave 
identically to the R_IA_64_DIR* family of relocations, with one 
exception:  while it is expected that the addresses created will need 
further relocation at run-time, the linker should not create a 
corresponding relocation in the output executable or shared object file. 
The run-time consumer of the information provided is expected to 
relocate these values.

R_IA_64_IPLTMSB and R_IA_64_IPLTLSB
These relocations appear only in dynamic executables and shared 
objects. When used with the shorter form of relocation entry  
(Elf32_Rel or Elf64_Rel), they instruct the dynamic linker to 
initialize the corresponding function descriptor entry with the address of 
the referenced function and the value of the global pointer (gp) for the 
object containing the function’s definition. When used with the longer 
form of relocation entry containing an explicit addend (Elf32_Rela 
or Elf64_Rela), the addend is additionally added to the address of the 
referenced function. See Section 5.3.6, “Procedure Linkage Table” on 
page 5-7 for more information.

R_IA_64_LTOFF22X and R_IA_64_LDXMOV
These relocations are used to support link-time rewriting of the indir
addressing code sequences. The R_IA_64_LTOFF22X  relocation is 
used on the addl instruction that computes the address of a linkage ta
entry in place of the normal R_IA_64_LTOFF22 relocation. It has 
exactly the same semantics as R_IA_64_LTOFF22 unless the linker 
determined that the symbol could be addressed directly, in which ca
the linker transforms this into an R_IA_64_GPREL22 relocation. An 
ABI-conforming implementation must recognize this relocation, but 
may choose to treat it as a synonym for R_IA_64_LTOFF22. The 
R_IA_64_LDXMOV relocation is used on an ld8 instruction, where no 

R_IA_64_REL64LSB 0x6f word64 LSB BD + A

R_IA_64_LTV32MSB 0x74 word32 MSB S + A (see below)

R_IA_64_LTV32LSB 0x75 word32 LSB S + A (see below)

R_IA_64_LTV64MSB 0x76 word64 MSB S + A (see below)

R_IA_64_LTV64LSB 0x77 word64 LSB S + A (see below)

R_IA_64_IPLTMSB 0x80 function descriptor MSB see below

R_IA_64_IPLTLSB 0x81 function descriptor LSB see below

R_IA_64_SUB 0x85 Instruction-imm64 A – S

R_IA_64_LTOFF22X 0x86 instruction - immediate22 see below

R_IA_64_LDXMOV 0x87 instruction - immediate22 see below

Table 4-7. IA-64 Relocation Types (Continued)

Name Value Field Calculation
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relocation would ordinarily be seen. The ld8 instruction normally 
extracts the address of the referenced object from the linkage table by 
dereferencing the address conputed by the addl. Its symbol and addend 
fields must match exactly those of a corresponding R_IA_LTOFF22X 
relocation. If the linker determines that the symbol can be addressed 
directly, it rewrites the ld8 as a mov. This can be done by masking out 
all but the qp, r1, and r3 fields of the instruction, then or’ing in the bit 
pattern 0x8000000000. If an ABI-conforming implementation is 
choosing to treat  R_IA_64_LTOFF22X  as a synonym for 
R_IA_64_LTOFF22, this relocation is ignored.
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Program Loading and Dynamic Linking5

5.1 Program Header

The IA-64 architecture defines two processor-specific values to be used in the p_type member of 
the program header.

PT_IA_64_ARCHEXT The segment contains a section of type SHT_IA_64_EXT as described 
in Section 4.2, “Sections” on page 4-3. If this entry is present, it must 
precede all entries of type PT_LOAD.

PT_IA_64_UNWIND The segment contains the stack unwind tables. See Conventions and 
Section 4.2, “Sections” on page 4-3 for details.

The IA-64 architecture defines one processor-specific value to be used in the p_flags member of 
the program header.

PF_IA_64_NORECOV If this bit is set, the segment contains code that uses speculative 
instructions without recovery code. Executbles with this flag bit set a
not ABI conforming.

5.2 Program Loading

As the system creates or augments a process image, it logically copies a file's segment to a
memory segment. When–and if–the system physically reads the file depends on the program
execution behavior, system load, and so on. A process does not require a physical page unl
references the logical page during execution, and processes commonly leave many pages u
referenced. Therefore delaying physical reads frequently obviates them, improving system 
performance. To obtain this efficiency in practice, executable and shared object files must ha
segment images whose file offsets and virtual addresses are congruent, modulo the page si

The preferred page size for virtual memory management purposes for an IA-64 64-bit segme
contained in the p_align field of the program header entry describing that segment. The 
p_align field must contain 4 KB (0x1000) or a page size as defined in Section 7 of the IA-64 

Table 5-1. Program Header Types, p_type

Name Value

PT_IA_64_ARCHEXT 0x70000000

PT_IA_64_UNWIND 0x70000001

Table 5-2. Program Header Flags, p_flags

Name Value

PF_IA_64_NORECOV 0x80000000
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Processor Programmer’s Reference Manual. Virtual addresses and file offsets for IA-64 64–bit 
segments are congruent modulo either the value contained in the p_align field or 4KB 
(0x1000), whichever is larger.

The following examples show a 64k alignment; virtual addresses and file offsets for segmen
congruent modulo 64k (0x10000).

Figure 5-1. Example Executable File 

Figure 5-2. Example Program Header Segments 

Although the example's file offsets and virtual addresses are congruent modulo 64KB for bot
and data, up to four file pages hold impure text or data (depending on page size and file sys
block size).

• The first text page contains the ELF header, the program header table, and other information.

• The last text page holds a copy of the beginning of data.

• The first data page has a copy of the end of text.

• The last data page may contain file information not relevant to the running process.

File Offset File Virtual Address

0 ELF header

Program header table

Other information

0x110 Text segment 
. . . 

0x4af630 bytes 

0x4000000000000110 

0x40000000004af73f

0x4af740
Data segment 

. . . 
0x16768 bytes 

0x600000000000f740

0x6000000000025ea7

0x4c5ea0 Other information 
. . . 

Member Text Data

p_type PT_LOAD PT_LOAD

p_offset 0x110 0x4af740

p_vaddr 0x4000000000000110 0x600000000000f740

p_paddr unspecified unspecified

p_filesz 0x4af630 0x16768

p_memsz 0x4af630 0x46b90

p_flags PF_R+PF_X PF_R+PF_W+PF_X

p_align 0x10000 0x10000
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Logically, the system enforces the memory permissions as if each segment were complete and 
separate; segment addresses are adjusted to ensure each logical page in the address space has a 
single set of permissions. In the example above, the region of the file holding the end of text and 
the beginning of data will be mapped twice:  at one virtual address for text and at a different virtual 
address for data.

The end of the data segment requires special handling for uninitialized data, which the system 
defines to begin with zero values. Thus if a file’s last data page includes information not in the 
logical memory page, the extraneous data must be set to zero, not the unknown contents of the 
executable file. “Impurities” in the other three pages are not logically part of the process ima
whether the system expunges them is unspecified. The memory image for this program follo
assuming 64KB (0x10000) pages.

Figure 5-3. Example Process Image Segments 

On the IA-64 architecture, both executable and shared object segments contain position-
independent code. This lets a segment's virtual address change from one process to anothe
without invalidating execution behavior. Furthermore, there is no assumption that the individ
segments for a given executable or shared object are fixed relatively in relation to one anoth
example, the system might load all read-only segments for a process in one range of memo
addresses and all read-write segments in a different range of addresses. Therefore, while th
addresses shown in the example in Figures 5-3, 5-4 and 5-5 show the data segment for an 
executable immediately following the text segment, there is no requirement that it does so. T
addresses assigned for each segment by the link editor, however, must not overlap.

Because dynamically linked IA-64 64-bit executable files are position-independent, the exec 
routines may choose to load such files at different addresses than those specified in the file'
program header. The dynamic linker must be prepared to deal with this possibility.

Address Contents Segment

0x4000000000000000 Header padding 
0x110 bytes 

0x4000000000000110 Text segment 
. . .

0x4af630 bytes 
Text

0x40000000004af740 Data padding 
0x8c0 bytes 

0x6000000000000000 Text padding 
0xf740 bytes 

0x600000000000f740
Data segment 

. . .
0x16768 bytes 

Data

0x6000000000025ea8 Uninitialized data 
0x30428 zero bytes 

0x60000000000562d0 Page padding 
0x9d30 zero bytes 
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5.2.1 Link-Time and Run-Time Addresses

Virtual addresses assigned by the linker when creating an executable or shared object file are 
known as link-time virtual addresses. Since position-independent executables and shared objects 
may be loaded at different addresses than those assigned by the linker, run-time virtual addresses 
differ from link-time virtual address by a constant value. Since there is no fixed address 
relationship at run-time among segments created at link-time, the constant value must be calculated 
based on the segment containing the address in question. The constant is the difference between the 
address at which the containing segment was loaded and the address assigned for that segment by 
the linker. The following table illustrates the calculation for an example text object.

5.2.2 Initializations

As the implementation constructs the new process, it is responsible for a number of initialization 
actions.  Some of these have been described in Section 3.3.5, “Process Startup” on page 3-6. In 
addition to those steps, the implementation must:

1. Ensure the process environment has been properly initialized .

2. The global variable _environ must be initialized to point to the environment, before the 
initialization routines are executed. The execution of the initialization routines may result
the modification of _environ. 

3. Pre-initializations routines in the executable, described in “Dynamic Linking” in Chapter 
the System V ABI, must be called, according to standard calling conventions. 

4. Initialization routines, described in”“Dynamic Linking” in Chapter 5 of the System V ABI and 
in the following section, in the executable and in all loaded shared objects must be calle
according to standard calling conventions. The only order specified is that, for every libra
dependency "A depends on B”, the initialization routines for B must be called before thos
A. 

5.3 Dynamic Linking

5.3.1 Dynamic Linker

When building an executable file that uses dynamic linking, the link editor adds a program h
element of type PT_INTERP to an executable file, telling the system to invoke the dynamic l
as the program interpreter. The location of the dynamic linker, to be recorded on the PT_INT
string, varies depending on the code model, architecture and byte order.

Table 5-3. Example Run-Time Address Calculation

Value or Calculation Result

Address as determined by link editor 0x40000000000532f0

Segment address contained in program header 0x4000000000000110

Base address of segment in file 0x4000000000000000

Base address of segment in process 0x4c80000000000000

Run-time minus link-time base address 0x0c80000000000000

Address of object in process 0x4c800000000532f0
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5.3.2 Dynamic Section

All dynamic section entries containing addresses (entries that use the d_ptr member) contain 
link-time virtual addresses, as described above. The dynamic linker must relocate these addresses 
based on the difference between the link-time and run-time addresses of the segments referenced 
by the d_ptr member.

Dynamic section entries give information to the dynamic linker. Some of this information is 
processor-specific, including the interpretation of some entries in the dynamic structure.

DT_PLTGOT On the IA-64 architecture, this entry’s d_ptr member gives the address 
contained in the global pointer (gp) for the object.

The IA-64 architecture defines one processor-specific dynamic section tag value.

DT_IA_64_PLT_RESERVE
This element’s d_ptr member contains the address of the first of three 
8-byte words in the short data segment reserved for use by the dynamic 
linker. The three words are contiguous, with the second and third words 
growing toward higher addresses.

5.3.3 Shared Object Dependencies

The System V ABI describes, in “Shared Object Dependencies” in Chapter 5, the mechanism 
which the dynamic linker locates shared object files and attaches them to a process image. 
implemented on IA-64, the ABI supports a variety of code models, and since mixing models is 
allowed, the dynamic linker must be able to locate shared object files that match the model o
executable program which has shared object dependencies. When applying the algorithm in
System V ABI, the dynamic linker will treat the following locations as the “default directory” 
location:

Table 5-4. Dynamic Linker Location

Architecture Code Model Byte Order Dynamic Linker Name

IA-64 ILP32 Little-Endian /usr/lib/ia64l32/ld.so.1

IA-64 ILP32 Big-Endian /usr/lib/ia64b32/ld.so.1

IA-64 LP64 Little-Endian /usr/lib/ia64l64/ld.so.1

IA-64 LP64 Big-Endian /usr/lib/ia64b64/ld.so.1

Table 5-5. Dynamic Section Tag, d_tag

Name Value

DT_IA_64_PLT_RESERVE 0x70000000

Table 5-6. Default Shared Object Location

Architecture Code Model Byte Order Shared Object Location

NOTE: The standard location /usr/lib is reserved to the IA-32 ABI.
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5.3.4 Global Offset Table

In general, position-independent code cannot contain absolute virtual addresses. Global Offset 
Tables hold absolute addresses in private data, thus making the addresses available without 
compromising the position-independence and sharability of a program’s text. A program references 
its global offset table using the global pointer (gp) with position-independent addressing and 
extracts absolute values, thus redirecting position-independent references to absolute locations.

Initially, the global offset table holds information as required by its relocation entries (see 
Section 4.3, “Relocations” on page 4-6). After the system creates memory segments for a loada
object file, the dynamic linker processes the relocation entries, some of which will refer to th
global offset table. The dynamic linker determines the associated symbol values, calculates 
absolute addresses, and sets the appropriate memory table entries to the proper values. Alt
the absolute addresses are unknown when the link editor builds an object file, the dynamic li
knows the addresses of all memory segments and can thus calculate the absolute addresse
symbols contained therein.

If a program requires direct access to the absolute address of a symbol, that symbol will hav
global offset table entry. Because the executable file and each shared object have separate 
offset tables, a symbol's address may appear in several tables. The dynamic linker processe
global offset table relocations before giving control to any code in the process image, thus en
the absolute addresses are available during execution.

The system may choose different memory segment addresses for the same shared object in
different programs; it may even choose different library addresses for different executions of
same program. Nonetheless, memory segments do not change addresses once the process
established. As long as a process exists, its memory segments reside at fixed virtual addres

5.3.5 Function Addresses

On the IA-64 architecture, when one function calls another it is the caller's responsibility to r
the global pointer (gp) to the correct value for the object containing the called function. Thus
call a function a caller needs two pieces of information:  the address of the function and the 
its global pointer should have. These two pieces of information are contained in a structure k
as a function descriptor (see Conventions). So that a function pointer may be passed from functi
to function and still retain enough information to enable the function to be called, a function po
is defined to be a pointer to the function descriptor for that function.

Each executable or shared object can have its own copy of the function descriptor entry for 
function it calls to make access to function descriptors more efficient. But, when any shared 
or the executable needs to reference the address of a function, each such reference must a
retrieve the same address or comparisons of function pointers will not be predictable. Thus, 
must be a unique function descriptor entry that can be referenced whenever the address of a
function is taken. This entry is known as the “official” function descriptor for a function. The 
“official” function descriptor for any function is created and initialized by the dynamic linker a

IA-64 ILP32 Little-Endian /usr/lib/ia64l32

IA-64 ILP32 Big-Endian /usr/lib/ia64b32

IA-64 LP64 Little-Endian /usr/lib/ia64l64

IA-64 LP64 Big-Endian /usr/lib/ia64b64

Table 5-6. Default Shared Object Location

NOTE: The standard location /usr/lib is reserved to the IA-32 ABI.
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needed in response to R_IA_64_FPTR32MSB, R_IA_64_FPTR32LSB, 
R_IA_64_FPTR64MSB and R_IA_64_FPTR64LSB relocations (see Section 4.3, 
“Relocations” on page 4-6).

5.3.6 Procedure Linkage Table

The link editor cannot resolve execution transfers (such as function calls) from one executab
shared object to another. So that function addresses can be assigned dynamically at run-tim
without compromising the position-independence and sharability of a program's text, functio
addresses must be kept in private data and retrieved at the time a function is called. On the 
architecture, the function addresses are kept in local function descriptor entries. Each entry is
containing the address of the referenced function and the value of the global pointer (gp) for
object containing the function's definition. The dynamic linker determines the destinations' 
absolute addresses and global pointer value and modifies the function descriptor's memory 
accordingly.

The function address and global pointer values are retrieved from the local function descripto
portion of code known as an import stub. The import stub may be compiled inline at the point of
call by the compiler, or it may be placed in the procedure linkage table. The procedure linkage 
table is contained in an object's read-only text. Each function called directly by the object, bu
external to the object, will have a local function desciptor.

The dynamic linker is allowed to implement lazy binding, where each local function descriptor is 
not bound until the first call using that function descriptor. Instead, the initial value of the func
address field of each function descriptor is initialized by the link editor to the address of a 
secondary PLT entry that is unique to the function being called. The secondary PLT entry mu
transfer control to the dynamic linker's lazy binding entry point, which will then resolve the 
reference, update the local function descriptor, and complete the call.

In order for the implementation to perform lazy binding correctly, the application must confor
the following conventions for transfer of control to the dynamic linker's lazy binding entry poi

1. The link editor must allocate a PLT Reserve area, consisting of three contiguous double
in the object's data segment. The DT_IA_64_PLT_RESERVE dynamic section entry mu
identify the first of  these three doublewords. These words are initialized by the dynamic l
at program startup.

2. The relocation index for the function being called must be placed into GR 15, so that the
dynamic linker can identify the target of the call. This value is an index into the portion o
dynamic relocation table addressed by the DT_JMPREL dynamic section entry. The 
designated relocation entry will have type R_IA_64_IPLTMSB or R_IA_64_IPLTLSB, and
offset will specify the local function descriptor entry referenced by the call.

3. An 8-byte identifier unique to the calling module must be placed into GR 16, so that the 
dynamic linker can identify the object from which the call originated, and thereby locate t
object's relocation table. This identifier is found in the first double-word of the PLT Reser
area.

4. The gp register must be set to the dynamic linker's own gp value. This value is found in 
second double-word of the PLT Reserve area.

5. The dynamic linker's lazy binding entry point is found in the third double-word of the PLT
Reserve area.
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Note that, by the time control is transferred to the secondary PLT entry, the gp value cannot be 
trusted, since the gp field of the local function descriptor is not initialized until the function is 
bound. Therefore, the import stub must copy the gp value to a scratch register before loading the gp 
value from the function descriptor, so that the secondary PLT entry may recover the original value 
in order to locate the PLT Reserve area.

The link editor must create import stubs, secondary PLT entries, and allocate local function 
descriptors for any direct call that cannot be statically bound within the same object (including 
calls where a definition is present, but is not protected against pre-emption). If an import stub is 
inlined by the compiler, the linker must still allocate the local function descriptor in response to the 
R_IA_64_PLTOFF relocation, and a secondary PLT entry to which the local function descriptor 
should point initially.

The LD_BIND_NOW environment variable can change dynamic linking behavior. If its value is 
non-null, the dynamic linker evaluates procedure linkage table entries before transferring control to 
the program. That is, the dynamic linker processes relocation entries of type R_IA_64_IPLTMSB 
and R_IA_64_IPLTLSB during process initialization. Otherwise, the dynamic linker evaluates 
procedure linkage table entries lazily, delaying symbol resolution and relocation until the first 
execution of a table entry.

Note: Lazy binding generally improves overall application performance, because unused symbols do not 
incur the dynamic linking overhead. Nevertheless, two situations make lazy binding undesirable 
for some applications. First, the initial reference to a shared object function takes longer than 
subsequent calls, because the dynamic linker intercepts the call to resolve the symbol. Some 
applications cannot tolerate this unpredictability. Second, if an error occurs and the dynamic linker 
cannot resolve the symbol, the dynamic linker will terminate the program. Under lazy binding, this 
might occur at arbitrary times. Once again, some applications cannot tolerate this unpredictability. 
By turning off lazy binding, the dynamic linker forces the failure to occur during process 
initialization, before the application receives control.

The following example shows a recommended implementation of these conventions.

Figure 5-4. Procedure Linkage Table Sample Entries
.PLT0: (initial special reserved entry)

mov r2 = r14  ;;

addl r14 = @gprel(plt_reserve), r2  ;;

ld8 r16 = [r14], 8  ;;

ld8 r17 = [r14], 8  ;;

ld8 gp = [r14]

mov b6 = r17

br b6

.PLT1: (entry for symbol name1)

addl r15 = @pltoff(name1), gp  ;;

ld8 r16 = [r15], 8

mov r14 = gp  ;;

ld8 gp = [r15]

mov b6 = r16

br b6

.PLT1a: mov r15 = reloc_index

br .PLT0

Following the steps below, the dynamic linker and the program “cooperate” to resolve symbo
references through the procedure linkage table and the global offset table.
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1. When first creating the memory image of the program, the dynamic linker sets three reserved 
8-byte words in each object’s short data segment to special values. Steps below explain more 
about those values (see also the description for DT_IA_64_PLT_RESERVE, above).

2. For illustration, assume the program calls name1, transferring control to the label .PLT1.

3. The first instruction calculates the address of the local function descriptor entry for name1 by 
adding its offset from gp to the value of gp. The address is saved in scratch register r15.

4. The third instruction saves the value of gp in scratch register r14.

5. The second and fourth instructions extract the information from the local function descriptor. 
The second instruction extracts the function address, storing its value in scratch register r16 
while incrementing r15 by eight. The fourth instruction loads gp with the value stored in the 
local function descriptor. The link editor initializes the local function descriptor entry so that 
the function address contains the address of the mov instruction labeled .PLT1a. The procedure 
linkage table sets scratch branch register b6 to the address saved in r16 and branches to that 
address.

6. Consequently, the program saves a relocation index  reloc_index in scratch register r15. 
The relocation index is a signed 22-bit immediate index into the portion of the relocation table 
addressed by the DT_JMPREL dynamic section entry. The designated relocation entry will 
have type R_IA_64_IPLTMSB or R_IA_64_IPLTLSB, and its offset will specify the local 
function descriptor entry referenced in the previous addl instruction. The relocation entry also 
contains a symbol table index, thus telling the dynamic linker what symbol is being 
referenced, name1 in this case.

7. After assigning the relocation index, the program then branches to .PLT0, the first entry in the 
procedure linkage table. The first five instructions in this entry de-reference the three special 
values reserved for the dynamic linker in the short data segment using the scratch register r14, 
which was set to the value of gp for the object calling name1. The first instruction saves r14 in 
scratch register r2. This allows the use of a 22-bit immediate value in the second instruction 
(the addl instruction can only be used with general registers r0, r1, r2 and r3). The second 
instruction adds to r2 the offset from the global pointer of the invoking object to the first of the 
three values set by the dynamic linker for that object. This value is stored back in r14. The 
third instruction stores the contents of the first reserved entry in scratch register r16, 
incrementing r14 by eight. This entry gives the dynamic linker an 8-byte word of identifying 
information. The fourth instruction extracts the second reserved entry, saving it in scratch 
register r17, while, again, incrementing r14 by eight. The second reserved entry is initialized 
by the dynamic linker to contain the address of a function binding routine within the dynamic 
linker itself. The fifth instruction sets the value of gp to the value contained in the third 
reserved entry. The dynamic linker sets this entry to contain the gp value for the object 
containing the dynamic linker, itself. The program then sets scratch branch register b6 to the 
address saved in r17 and branches to that address.

8. When the dynamic linker receives control, two scratch registers contain information it will use 
in relocating the function call:  r15 contains the index of the relocation entry and r16 contains 
an 8-byte identifying word. The dynamic linker looks at the designated relocation entry, finds 
the symbol’s value and the value of gp for the object containing the symbol, stores these values 
in the local function descriptor entry for name1, and transfers control to the desired 
destination.

9. Subsequent executions of the procedure linkage table entry will transfer directly to name1 
instead of to .PLT0, bypassing the call to the dynamic linker.
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5.3.7 Initialization and Termination Functions

The implementation is responsible for executing the initialization functions specified by DT_INIT, 
DT_INIT_ARRAY, and DT_PREINIT_ARRAY entries in the executable file and shared object 
files for a process, and the termination (or finalization) functions  specified by DT_FINI and 
DT_FINI_ARRAY, as specified by the System V ABI.  The user program plays no further part in 
executing the initialization and termination functions specified by these dynamic tags.
5-10 UNIX System V Application Binary Interface



Libraries 6

For future use.
UNIX System V Application Binary Interface 6-1



Libraries
6-2 UNIX System V Application Binary Interface



 “place 

g 

ould 

 64 

 32 

nt 

 

ple 
Miscellaneous 7

7.1 Introduction

This chapter contains miscellaneous subjects which are agreed to need representation somewhere, 
but are not strictly issues for a binary standard.  The intent here is to provide this chapter as a
holder” rather than as the intended final destination for these issues.

7.2 Development Environment

To facilitate portability of source code, a compilation environment that is capable of producin
ABI conforming objects will provide the following information available at compilation time.

7.2.1 Pre-Defined Preprocessor Symbols 

__ia64 Describes the target architecture. The initial value is 1. This value sh
track future backward-compatible architectural extensions in the 
EF_IA_64_ARCH ELF header flags field.

_ILP32 32-bit ABI data model: int, long, and pointer are 32 bits, long long is
bits. Value if defined is 1. 

_LP64 64-bit ABI data model: long, long long, and pointer are 64 bits, int is
bits. Value if defined is 1. 

7.2.2 Pre-Defined Preprocessor Assertions 

 A compilation environment that is capable of producing ABI conforming objects will impleme
the C preprocessor assertion feature. This allows a preprocessor assertion of the form: 

#assert predicate[(token-sequence)] 

This assertion associates token-sequence with predicate in the assertion name space. All
tokens involved are preprocessor tokens: the predicate must be an identifier token, and the 
token-sequence is an arbitrary sequence of tokens. The (token-sequence) may be omitted 
from the #assert, in which case it associates no token sequence with predicate, but may be 
useful to place predicate in the assertion name space in order to avert possible warning 
messages for testing unrecognized predicates. 

Predicate assertion associations may then be tested with: 

#if #predicate(token-sequence) 

This assertion evaluates true if token-sequence is associated with predicate and false 
otherwise. The token-sequence must be non-empty in a predicate test. 

Multiple token sequences may be associated with a single predicate identifier by using multi
assertions. Each association may be tested independently. 
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In addition to #assert definition of assertion associations, compilers generally support the 
equivalent command-line option: 

-Apredicate(token-sequence) 

A compilation environment capable of producing ABI-conforming objects will provide the 
following pre-defined preprocessor assertions: 

machine(ia64) Target architecture. 

model(lp64) 64-bit ABI data model: long, long long, and pointer are 64 bits, int is 32 
bits. 

model(ilp32) 32-bit ABI data model: int, long, and pointer are 32 bits, long long is 64 
bits. 

endian(little) Little-endian data model. 

endian(big) Big-endian data model. 

7.2.3 Compiler Pragmas

A compilation environment that is capable of producing ABI conforming objects will support a 
pragma to control section attribute specification for variables:

// define a symbol in a section with “short” or “long” attributes.
#pragma alloc_section(symbol_name, “ attribute-list”)

“attribute-list” is a comma-separated list of attributes,  the defined values are:

“short”
“long”

Examples:
#pragma alloc_section(var1, “short”)
int var1 = 20;

#pragma alloc_section(var2, “short”)
extern int var2;

It is left to the compiler to decide whether the symbol should go to a “data” or “bss” or “rdata
section.

7.3 ILP32 ABI

Note: The following section is included for comment. There is not agreement that either an ILP32 A
mandatory nor that the mechanisms described in this section are the only way to implement
ILP32 ABI. Some vendors are known not to intend to implement an ILP32 ABI at all and at le
one plans a different implementation. Thus this section presents guidelines for a possible 
implementation which would have some commonality but ILP32 binaries are not ABI conform

This description along with the Conventions document describes the software conventions need
to support IA-64 programs which will run in 32 bit address space. The Intel 64-bit architecture
64) is composed of today’s 32-bit Intel Architecture (IA-32) along with the 64-bit Instruction S
Architecture (ISA). For Unix, the base IA-32 software conventions are contained in the i386tm 
Processor Application Binary Interface. These 32 bit conventions here describe a data model 
which is completely compatible with the appropriate IA-32 conventions on UNIX.
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The 64-bit runtime architecture along with the 32-bit Conventions defines most of the conventions 
necessary to compile, link, and execute a program on an operating system that supports these 
conventions. Its purpose is to ensure that object modules produced by different compilers can be 
linked together into a single application, and to specify the interfaces between compilers and linker, 
and between linker and operating system. 

7.3.1 Objectives of the 32-bit Little-endian Runtime Architecture

This document defines the software interfaces needed to ensure that software for IA-64 will 
operate correctly together. The intent is to define as small a set of interface specifications as 
possible, while still meeting the following goals: 

• High performance

• Ease of porting, IA-32 data compatibility

• Commonality with IA-64 64 bit software conventions

• Ease of implementation and use

We would like to provide complete enough interfaces between the different software products that 
they can be provided by different ISVs and still work together.  These include compilers, linkers, 
applications, and dynamic link libraries.  The goal is to have one convention, so software will be 
portable on IA-64 Unix systems. 

7.3.2 Changes from the 64-bit Software Conventions

In 32-bit Conventions the data representations are identical to the existing IA-32 conventions.

In other words all sizes and alignments of data items match existing IA-32 conventions. Integer, 
pointer and long types are each 4 bytes in size in ILP32 conventions. ILP32 function descriptors 
are 2 4-byte words. Global offset table entries are 4 bytes each. 

sizeof(long) = sizeof(int) = sizeof((void *))= 4.

Long long, doubles and double-extended are aligned on 0 mod 4 boundaries.

Alignment for the members of an aggregate match existing IA-32 conventions.

7.3.3 Addressing and Protection

The features of the processor architecture that are described in the Addressing and Protection 
section of the PRM are intended for the exclusive use of the operating system software, with the 
following exceptions:

• An application may use the zxt4 instructions to convert a 32-bit virtual address to a 64-bit 
virtual address.

• Refer to Chapter 2, Section 2.4 Addressing and protection of Conventions, for other 
exceptions.
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7.3.4 Data Allocation

7.3.4.1 Global Variables

Common blocks, dynamically allocated regions (such as malloc, etc.), and external data items 
greater than 4 bytes must all be aligned at least on a 4-byte boundary. Smaller data items must be 
aligned on the next larger power-of-two boundary. 

7.3.5 Local Memory Stack Variables

Stack frames must always be aligned on a 16-byte boundary. That is, the stack pointer register must 
always be aligned on a 16-byte boundary.

7.3.6 Parameter Passing

Parameter passing and allocation of parameter slots are done as described in Chapter 8, Section 8.5 
of Conventions. Each slot size remains 64 bits in ILP32 conventions to match the 64 bit calling 
conventions for IA-64.
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