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Introduction 1

This document describes the details regarding Floating-point Software Assistance exceptions (FP
SWA requests) in particular, and floating-point exceptions in general on the Itarpuoc&ssor,

the first implementation of the 1A-64 architecture. The document is useful to operating system
writers and compiler writers, besides being useful to anyone who wants to obtain a better
understanding of floating-point exceptions in the IA-64 architectinepter lthroughChapter 3
contain the general background information, whilepter 4hroughChapter 7are more focused,
and go into a lower level of detahapter 7gives the information necessary in integrating the FP
SWA Handler (the FP SWA EFI driver) with the operating system.

Chapter Icontains the introduction and describes the software components of an operating system
supporting floating-point exception handling.

Chapter describes the Software Assistance (SWA) traps and faults on the Itanium processor, and

Chapter Jists the conditions causing floating-point exceptions, the floating-point exception
priorities (distinguishing between exceptions raised [signaled] directly by the hardware and
exceptions raised by the software), and specifies the response of the various Itanium processor
instructions to floating-point exceptions - for both disabled (masked) and enabled (unmasked)
exceptions.

Chapter 4discusses the 1A-64 architecturally mandated Software Assistance requests, which can
be raised only by the divide and square root reciprocal approximation instructions (frcpa and
frsgrta). The floating-point divide and square root operations (as well as other operations based on
them, such as remainder, or integer divide and remainder) are implemented in software in the
IA-64 architecture. The starting point which is provided by the reciprocal approximation
instructions is followed by instructions that implement Newton-Raphson based or similar
algorithms for divide and square root or their derivatives. Software assistance is required when the
reciprocal approximation instructions implemented in hardware are not able to provide an initial
value sufficient for the software algorithms to determine the IEEE correct results for divide or
square root. Alternate algorithms are used when such requests are made by the hardware. The
frequency of occurrence for software assistance requests is estim@tdion 4.3and

Section 4.5

Chapter Sexamines the architecturally mandated Pseudo-Software Assistance requests,
characteristic for the parallel divide and square root reciprocal approximation instructions. These
requests are raised in situations similar to those for the scalar divide and square root reciprocal
approximation instructions, but instead of leading to a SWA fault or trap, the output predicate of
the parallel reciprocal approximation instruction is cleared. The frequency of occurrence for the
pseudo-software assistance requests is estimagettion 5.2andSection 5.4

Chapter gives examples of software assistance requests. Examples of Itanium processor-specific
SWA requests are given first, followed by 1A-64 architecturally mandated requests.

Chapter 7describes the implementation of the software component that handles software
assistance requests - the 1A-64 Floating-point Emulation Library, and specifies the API that allows
this library supported by Intel to be shared by various operating systems. The IA-64 Floating-point
Emulation Library (which has the role of a Floating-point SWA Handler) is implemented as an EFI
(Extensible Firmware Interface) driver.

Chapter 8ontains the references used in the text.

1-1



Introduction I ntQI ®

1.1 Related Documents

The | A-64 floating-point architecture and operations are discussed in several other documents.
Information contained in these sourcesis useful, or hel pful when reading the present document.The
main source of information isthe Intel 1A-64 Architecture Software Developer’s Guide [1].
Information specific to the Intel architecture can also be found in [2].

The recommended source for reference information on floating-point exceptionsis the |IEEE
Standard 754-1985 for Binary Floating-point Computations [3].

1.2 Software Components Supporting Floating-point
Exception Handling

Floating-point exception handling in the 1A-64 architecture has new features compared to |A-32
[2]. First, the 1A-64 floating-point architecture is more complex than that of previous Intel
processors. There are new instructions, some with three input operands, static precision modes (e.g.
in fma.s), static rounding modes (e.g. in fcvt.fx.trunc), and new floating-point formats and
computation models. Second, the necessity for software assistance (SWA) is new in the Intel
Architecture, and augments the floating-point exception handling mechanism. Third, the |A-64
architecture also has the ability to handle new parallel floating-point instructions. On the other
hand, the | A-64 architecture has extended floating-point capabilities, both in performance and in
accuracy.

When afloating-point exception occurs, the hardware saves a minimal amount of processor state
information in interruption control registers (only the registers of interest for floating-point
exceptions are listed): PSR (CR16 - Interruption Processor Status Register), ISR (CR17 -
Interruption Status Register), 1P (CR19 - Interruption Instruction Bundle Pointer), I1PA (CR22 -
Interruption Instruction Previous Address), and IFS (CR23 - Interruption Function State). The
information in IR, IPSR, and IFSis saved only if PSR.icisset to 1. Theinformation in [1PA is
saved only if PSR.ic was 1 prior to the interruption. Finally, ISR is saved regardless of the value of
PSR.ic.

A branch to the interruption vector (Floating-point Fault Vector 0x5¢00 or Floating-point Trap
Vector 0x5d00) and then to alow-level OS handler allows saving more of the processor state, and
propagates handling of the task higher in the operating system.

On any platform based on an 1A-64 processor, two system-level components are used in
floating-point exception handling: the operating system kernel floating-point trap handler, and the
| A-64 Floating-point Emulation Library (FP SWA Handler). The kernel floating-point trap handler
has the role to save state information not saved by the processor, and then to invoke the appropriate
exception handler: the FP SWA Handler for FP SWA requests, or the FP SWA handler and then a
user-level floating-point exception handler for other unmasked (enabled) floating-point exceptions.

Figure 1-1 depicts the control flow that occurs when an application running on an | A-64 processor
causes afloating-point exception condition.

The 1A-64 Floating-point Emulation Library (implemented as an EFI driver invoked by the OS

kernel) is capable of emulating any floating-point instruction defined by the architecture. It handles

the cases that require software assistance — situations that the hardware cannot handle, which fall
into the three categories presented in the next subsection.
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Software Assistance Faults and Traps
on the Itanium™ Processor 2

The three categories of Software Assistance exceptions: |A-64 architecturally mandated SWA
faults, Itanium processor specific SWA faults, and Itanium™ processor specific SWA traps, are
presented next.

2.1 |A-64 Architecturally Mandated SWA Faults

The architecturally mandated SWA faults occur for the scalar reciprocal approximation
instructionsfrcpa andfrsgrta, when their input operands are such that they potentially prevent
generation of the correct results by the iterative software algorithms that are employed for divide
and square root. Alternate algorithms are implemented in the IA-64 Floating-point Emulation
Library to provide the correct results in such situations.

In the case of the Itanium processor-specific SWA except®estion 2.2andSection 2.Jelow),

the SWA fault or trap can be caused by both scalar or parallel instructions. The architecturally
mandated SWA faults are caused only by scalar instructicps @ndfrsqgrta). The parallel
counterparts of the reciprocal approximation instructifanepa andfprsgrta just clear their output
predicate (in situations in which the scalar instructions would raise SWA faults), expecting this to
cause alternate algorithms to be executed in order to perform the parallel divide or square root
operations.

2.2 Itanium™ Processor-specific SWA Faults

SWA faults are allowed in the | A-64 architecture for virtually any reason. The architecturally
allowed SWA faults that occur on the Itanium processor are referred to as [tanium
processor-specific SWA faults, and they arise when floating-point instructions consume
denormalized or unnormal operands. If the denormal exceptions are disabled (masked), the SWA
fault isresolved by the | A-64 Floating-point Emulation Library (the SWA handler). If the denormal
exceptions are enabled (unmasked), the SWA fault is converted to a denormal fault by the 1A-64
Floating-point Emulation Library, and it is propagated through the OS kernel to the user level (a
denormal fault exception handler must have been registered to handle it). As SWA faults may be
raised for any reasonin an 1A-64 Architecture implementation in general, the | A-64 Floating-point
Emulation Library was designed and implemented to be able to provide the correct result for any

| A-64 floating-point arithmetic instruction, and for any values of the input operands.

2.3 ltanium™ Processor-specific SWA Traps

SWA traps are allowed in the | A-64 architecture when:
* Tiny results are generated and the underflow traps are disabled.
* Huge results are generated and the overflow traps are disabled.
* |nexact results are generated and the inexact traps are disabl ed.

2-1
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2.4

Note that tiny numbers have non-zero values, but less in absolute value than the smallest positive

normal floating-point number. Huge numbers have values larger in absolute value than the largest

positive normal floating-point number. The result of a floating-point operation is evaluated for

tininess or hugeness after rounding to the destination precision, but assuming an unbounded

exponent (“first IEEE rounding”), and before the second rounding that takes into account the
limited exponent range (“second IEEE rounding”). Note though that these two rounding steps are
hypothetical, and that the hardware only performs the IEEE rounding in one step (combining the
two steps outlined above). Breaking it into two steps just helps understanding the way numeric
results are generated. For tiny results, rounding will require denormalization, i.e. shifting the
significand to the right, while incrementing the exponent in order to bring it into the range allowed
by the format, followed by rounding to the destination precision. This has to be carried out on the
infinitely precise result, and the rounded result may be zero, a denormal, or the smallest normal
number representable in the destination format, with the appropriate sign (which means that the
first rounding step is not necessary in this case). If the result is huge, the second rounding will
modify it either to the largest normal floating-point number representable in the destination format,
or to infinity (with the appropriate sign).

The Itanium processor-specific SWA traps occur only when tiny results are generated, the
underflow traps are disabled, and the flush-to-zero mode is not enabled.

Handling Floating-point Exceptions

When a SWA request occurs, an instruction bundle is read, the excepting instruction is decoded, its
input or output operands are read, a result is generated, and the processor state is modified by the
software.

The IA-64 Floating-point Emulation Library provides a result only for SWA faults and traps.
Exceptions are the cases when a SWA fault or trap generates a new floating-point exception, e.g.
for an Itanium processor-specific SWA faults, when the denormal exceptions are enabled (in which
case the result is provided by a user handler for denormal exceptions). The library is invoked
though for all the enabled (unmasked) floating-point exceptions (SWA or not).Three situations are
possible.

The first possibility is for the emulation library to recognize a SWA fault or a SWA trap. It starts
processing it, and if a result can be generated, it is passed back to the kernel floating-point trap
handler, which in turn has to resume the thread that raised the exception.

The second possibility is for the emulation library to recognize an unmasked floating-point
exception other than a SWA fault or trap, or to have to raise a new floating-point exception that
occurs during the process of generating a result for the SWA fault or trap. This information is then
returned to the kernel trap handler, which will have to propagate the exception to a user level
floating-point exception handler.

The third possibility is for the emulation library to not recognize a floating-point fault or trap when
called by the OS kernel (this may include the case when incorrect parameters were passed to it). In
this situation, it returns to the OS kernel a value indicating failure, plus additional diagnostic
information.

At the user level, the floating-point exception can be handled by a user handler directly, or by a
filter function (usually an IEEE floating-point exception filter) that invokes a user handler.

The first function of an IEEE Floating-point Exception Filter is to transform the interruption

information to a format that is easier to understand and handle by the user, and to invoke a user
handler for the exception. The user provided result, and possibly other changes are propagated
back into the processor state if execution is continued (in some programming environments, the
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user has up to three options: to continue execution, to execute some cleanup code and exit, or to
continue searching for another handler).

The second function of the filter is to hide the complexities of the paralld instructions from the
user. If afloating-point fault occurs for examplein the high half of a parallel floating-point
instruction, and there is a user handler provided for that case, the paralel instruction is split into
two scalar instructions. The result for the high half comes from the user handler, while the low half
is re-executed. The two results are combined back into a parallel result, and execution can
continue. More complicated cases are those when two faults and/or traps occur in the same
instruction (the model used can be extended to more than 2-way parallel instructions). Note that
usage of the |EEE Floating-point Exception Filter is not compulsory - the user may choose to
handle enabled floating-point exceptions differently. A filter can be provided just as a convenient
way to solve such situations. Still, at least afilter with reduced functionality is necessary in order to
ensure full compliance with the |EEE-754 Standard requirements [6] regarding values to be passed
to auser handler when afloating-point exception occurs (e.g. scaling of the hardware generated
result when an overflow or underflow exception is raised has to be performed by the filter
function).

The next chapter describes the | A-64 instructions that are capable of raising floating-point
exceptions, and the conditions under which these exceptions may occur. The following chapters
will focus almost exclusively on SWA exceptions, but the reason for presenting all the
floating-point exceptions in the beginning is that SWA requests are floating-point exceptions
themsel ves (even though not user visible), and because they can be combined with, or immediately
followed by other floating-point exceptions.

2-3
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Conditions Causing, and Responses to,
Floating-point Exceptions 3

The Itanium processor arithmetic instructions, most of which can cause floating-point exceptions,
arelisted in Table 3-1 (the only arithmetic instruction that cannot rai se floating-point exceptionsis
fevt.xf, which converts a signed integer value to register file floating-point format).

Table 3-1. Itanium™ Processor Floating-point Arithmetic Instructions and Floating-point
Exceptions which may be Raised

FP Instructions Exceptions
Faults Traps

fma V, D, SWA O, U, I, SWA
fnorm V, D, SWA O, U, I, SWA
fpma V, D, SWA O, U, |, SWA
fms V, D, SWA O, U, I, SWA
fpms V, D, SWA O, U, |, SWA
fnma V, D, SWA O, U, I, SWA
fpnma V, D, SWA O, U, I, SWA
fmax V, D, SWA
fpmax V, D, SWA
fmin V, D, SWA
fpmin V, D, SWA
famax V, D, SWA
fpamax V, D, SWA
famin V, D, SWA
fpamin V, D, SWA
fcmp V, D, SWA
fpcmp V, D, SWA
fevt.fx V, D, SWA |
fpevt.fx V, D, SWA |
fevt.xf
frcpa V, Z, D, SWA ou,l?2
fprcpa V, Z, D, SWA
frsgrta V, D, SWA 1@
fprsqrta V, D, SWA

a. The traps indicated for frcpa and frsgrta cannot be generated directly by the hardware, but they can be raised
by the 1A-64 Floating-point Emulation Library, following a SWA fault for these instructions.

3-1



Conditions Causing, and Responses to, Floating-point Exceptions Intel o

3-2

Among the instructions that are pseudo-ops, only fnormisincluded, asit requires special attention.
It isimportant to know that

fnorm.pc.sf f1 =13
isequivalent to
fma.pc.sf f1 =13, F1, FO

where F1 contains +1.0, FO contains +0.0, and f1 and f3 are any other floating-point registers (f3
can aso be F1 or FO). It isnot equivalent to an fma instruction using another combination of
registers, e.g.

fma.pc.sf f1 = F1, f3, FO

For example, assuming that the denormal exceptions are disabled, the instruction above would
raise a SWA fault for any unnormal operand with a non-zero exponent, while the former
(equivalent to an fnorm) would not. The instruction

fma.pc.sf f1 =13, F1, FO

will raise a SWA fault only if f3 is unnormal and its biased exponent in floating-point register file
format is O, or if f3isunnormal and the denormal faults are enabled (the same holds for fms.pc.sf f1
=13, F1, FO and fnma.pc.sf f1 = f3, F1, FO). By contrast,

fma.pc.sf f1 = F1, {3, FO

will raise a SWA fault if f3 is unnormal (regardless of its exponent, or of the denormal exceptions
being disabled or not).

Asnoted, the similar statements hold for fms and fnma, i.e. the fms and fnma instructions follow the
same conventions for software assi stance as fma. For example,

fms.pc.sf f1 =13, F1, FO
acts like an fnorm.

The other pseudo-ops that are not included in the list above are fadd, fevt.xuf, fmpy (pseudo-ops of
fma), fnmpy (pseudo-op of fnma), fpmpy (pseudo-op of fpma), fpnmpy (pseudo-op of fpnma), and
fsub (pseudo-op of fms). Their floating-point exception behavior follows that of the instructions
they are derived from, with one exception: if fma, fms, fnma, fpma, fpms, or fpnma raise a SWA
fault and f2 is FO (asin fma.pc.sf f1 = 3, f4, FO), then the add operation in the multiply-add has to
be skipped (the result has to be the IEEE result for a multiply operations, and if the product f3 * f4
is 0.0 in absolute value, then adding or subtracting 0.0 might change the sign of the result).

Note that only Invalid (V), Divide-by-Zero (Z), Overflow (O), Underflow (U), and Inexact (1) are

| EEE exceptions. Denormal/Unnormal (D) exceptions are specific to the | A-32 architecture and to

the 1A-64 architecture, and SWA faults and traps are |A-64 specific. Note also that the invalid
exceptions, identified by “V” here might be denoted by “I” in other documents, and the inexact
exceptions identified by “I”, might be denoted by “P” (for “precision”).

In the following, references will often be made to the Floating-point Status Register, or FPSR
(Application Register 40), and to the Interrupt Status Register code, or ISR code (the ISR is
Control Register 17). Their definitions are included here too (but complete descriptions are given

in [1]).
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The Floating-point Status Register

The Floating-point Status Register (Application Register 40) contains the dynamic control and
status information for floating-point operations. There is one main set of control and status
information (FPSR.sf0) and three alternate sets (FPSR.sf1, FPSR.sf2, and FPSR.sf3). The FPSR
layout is shown in Figure 3-1.

Figure 3-1. Floating-point Status Register (AR40)

3.2
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Control bits 0 through 5 contain mask bits for floating-point exceptions (invalid, denormal,
divide-by-zero, overflow, underflow, and inexact). If amask bit is set, it disables the corresponding
exceptions regardless of the status field being used.

Each of the four status fields contains seven control bits (ftz - flush-to-zero, wre - widest range
exponent, pc - 2 bits for precision control, rc - 2 bits for rounding control, td - traps disabled [this
bit isreserved in status field 0]), and six status flags (invalid, denormal, divide-by-zero, overflow,
underflow, and inexact). Provided the underflow exceptions are disabled, the flush-to-zero mode
(ftz= 1) causestiny results to be truncated to the correctly signed zero, and the status flags for
underflow and inexact exceptions to be set. The widest range exponent bit, wre, when set, specifies
that the 17-bit exponent range will be used for floating-point calculations. The pc field specifies the
dynamic precision for floating-point calculations (pc = 00 for 24-bit significands, pc = 10 for 53-bit
significands, and pc = 11 for 64-hit significands). The rc field determines the rounding mode (rc =
00 for rounding to nearest, rc = 01 for rounding to negative infinity, rc = 10 for rounding to positive
infinity, and rc = 11 for rounding to zero). When set, the td bit (applicable only to statusfields 1, 2,
and 3), disablestheinvalid, denormal, divide-by-zero, overflow, underflow, and inexact exceptions
for floating-point operations using the corresponding status field. For status field O, or when td = 0
for statusfields 1, 2, or 3, control bits O through 5 in the FPSR determine which floating-point
exceptions are masked.

The Interruption Status Register

The Interruption Status Register (Control Register 17) receives information related to the nature of
an interruption. Its lower 16 bits contain the ISR code, providing additional information specific to
the current interruption. For unmasked floating-point exceptions, the | SR code contains the only
indication for the cause of the interruption.

Figure 3-2 () shows the I SR code for floating-point faults. Only the lower eight bits are defined.

Bits 0 through 3 (V - invalid operation, D - denormal operand, Z - divide-by-zero, SWA - software
assistance) refer to floating-point faults raised by scalar instructions, or by the high order
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components of parallel (SIMD - Single Instruction, Multiple Data stream) instructions. Bits 4
through 7 (V, D, Z, SWA) refer to floating-point faults raised by the low order components of
paralld instructions.

Figure 3-2 (b) showsthe I SR code for floating-point traps. Bit 0 (FP TRAP) isalways 1, indicating
afloating-point trap. Bit 3 (SS) indicates a single-step trap. Bits 7 through 10 (O - overflow, U -
underflow, | - inexact, FPA) refer to floating-point traps raised by the low order components of
paralld instructions. Bits 11 through 14 (O, U, |, FPA) refer to floating-point traps raised by scalar
instructions, or by the high order components of parallel instructions. The FPA bhit indicates that the
significand is larger in absolute value than the significand of the infinitely precise result. Note that
thereis no bit in the ISR code to indicate the occurrence of a SWA trap. Thereis no ambiguity
though - the SWA handler can detect this situation by examining the | SR code bits for traps and the
FPSR exception bits that mask/unmask floating-point exceptions.

Figure 3-2. Interruption Status Register Code (ISR.code) from ISR (CR17)
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3-4
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(a) ISR Code for Floating-Point Faults
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(b) ISR Code for Floating-Point Traps
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Floating-point Exception Priority

The floating-point exception priority on the Itanium processor is the following:

1. NaTVal operand (not an exception, but handling this case has priority over floating-point
exceptions).

2. Software Assistance (SWA) Floating-point Exception fault, Itanium processor-specific, when
one or more operands are unnormal (with the restrictions specified in Table 3-2 of
Section 3.4).

3. Invalid Operation (V) Floating-point Exception fault due to one or more operands being in an
unsupported format.

4. Invalid Operation (V) Floating-point Exception fault due to one or more operands that are
signaling NaN (SNaN) (or QNaN for certain types of floating-point compare).

5. QNaN operand (not an exception, but handling this case has priority over lower-priority
floating-point exceptions).

6. Invalid Operation (V) Floating-point Exception fault due to any reason other than those
mentioned above (e.g. when executing frcpafor 0/0, or frsgrtafor -Inf).

7. Zero Divide (Z) Floating-point Exception fault.
8. Denormal/Unnormal Operand (D) Floating-point Exception fault.
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9. Software Assistance (SWA) Floating-point Exception fault, architecturally mandated (only for
frcpa and frsgrta, when the exponents of the input operands satisfy certain conditions - see
Chapter 4).

10. Software Assistance (SWA) Floating-point Exception trap: when an fma, fpma, fms, fpms,
fnma, or fpnma operation has atiny result, the underflow exceptions are disabled, and the
flush-to-zero mode is not enabled.

11. Numeric Overflow (O) and Underflow (U) Floating-point Exception traps (inexactness can
also be indicated in the ISR.code field).

12. Inexact (1) Floating-point Exception trap.

Thislist reflects the fact that the | A-64 architecture asks for SWA faults that are not architecturally
mandated to be checked for prior to any other exceptions. For the Itanium processor though, these

SWA faults will not occur if any invalid or divide-by-zero faults are raised (besides NaTVal or

QNaN operands that do not cause invalid faults). Thus the “true” floating-point exception priority
on the Itanium processor is illustratedHigure 3-3for faults, and=igure 3-4andFigure 3-5for

traps. In both figures, the diamond shaped blocks are for decisions, the rectangular shaped blocks
represent intermediate states, and the rectangular shaped blocks with rounded corners represent
terminal states. The components represented with dotted lines correspond to software actions,
while the rest are carried out directly by the processor hardware.

Figure 3-3 Figure 3-4andFigure 3-5apply to scalar floating-point instructions. For parallel
instructions, two faults or two traps may occur simultaneously. In such cases, both faults or traps
are reflected through bits set in the ISR register or in the appropriate status field of the FPSR
register. Priorities are established on each half independently, but a fault in one half will have to be
handled before a trap in the other half.

Note that the FPSR status flags are not updated when an umasked fault occur, and no result is
provided to the exception handler. The status flags are updated on an unmasked trap (the exception
handler will see the modified status bits in the appropriate status field of the FPSR) and a result is
also provided to the exception handler. This is different from the 1A-32 case, where status flags in
the status word are updated for both unmasked floating-point faults and unmasked floating-point
traps. In both cases of unmasked faults or traps, the cause of the exception is indicated by bits set in
the ISR code.

If two floating-point faults or traps of the same kind (unmasked or not) occur in the two halves of a
parallel instruction, the corresponding status flag in the FPSR can be viewed as a logical “OR” of
the two hypothetical status flags for the individual halves (thus if a status flag is set when the
exceptions are masked, one cannot tell whether the cause was in the low or in the high half of the
instruction). For unmasked exceptions raised by parallel instructions, the FPSR has to be viewed in
the same way, but the ISR code (as se&ettion 3.2above) has separate sets of bits identifying
exceptions in the low and the high halves.

The flowchart inFigure 3-3starts after the input operands have been read. It includes also the cases
of NaTVal and NaN operands (not exceptions, but fitting as priority among floating-point
exceptions). In this figure, “IEEE Response” does not apply literally to all the instructions, as not
all have their behavior specified in the IEEE standard. When this is the case, behavior following
the spirit of the standard is defined for each Itanium processor instruction. The flowchart in
Figure 3-3ends with the computation of the result corresponding to the “first IEEE rounding” as
specified in the IEEE Standard 754-1985 [6] (again, this does not apply literally to all the
instructions), i.e. the result rounded to the destination precision, but with unbounded exponent.
Special cases worth mentioning are those when the resultfofpheandfrsgrta instructions is
computed in software following an Itanium processor-specific SWA fault (in the leftmost of the
three final states marked “COMPUTE RESULT Rigure 3-3: if any input argument is unnormal
and the mathematical conditions for the architecturally mandated SWA faulafdees-2of

Section 3.3 are not met, then only an 11-bit reciprocal approximation value is returned, that will
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allow computation by a compiler-inlined instruction sequence of the result for the divide or square
root operation.

There is one exception to the flowchart in Figure 3-3: the frsgrta and fprsgrtainstructions applied
to a negative non-zero unnormal argument (this includes negative non-zero denormal values) does
not signal an invalid fault directly. Instead, an |tanium processor-specific SWA fault israised. If the
invalid exceptions are disabled (masked), the QNaN Indefinite value is returned. If theinvalid
exceptions are enabled (unmasked), an invalid fault is raised.

Note that in the process of computing the result of an instruction (when no unmasked floating-point
fault exception occurs, or following a SWA fault), floating-point traps may be raised. This
computation may be initiated in hardware, or in software when it follows a SWA faullt.

Figure 3-3. Exception Priority for Itanium™ Processor Floating-point Faults
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The flowchart in Figure 3-4 appliesto the case when the result of the first IEEE rounding (as

shown in Figure 3-3) was computed in hardware. The result is tested for zero or infinity, and then

for tininess or hugeness. The result is tiny if its exponent satisfies e < ey, and it is huge if

e> e |n Figure 3-4 (and Figure 3-5 too), assigning to an ISR bit (e.g. in “ISR.I ASSIGNED”)
means setting it to 0 or 1, as appropriate for the operation it refers to. Updating an FPSR bit (e.g. in



“FPSR.SFX.I UPDATED”) means performing a logical OR between the old value of the status flag
bit in the user status field of the FPSR, and the value of the status flag (e.g the inexact status flag

Conditions Causing, and Responses to, Floating-point Exceptions

bit) for the current operation.

If the computation of the result of the first IEEE rounding operation showigime 3-3was
performed in software (following a floating-point SWA fault), then the exception priority for
floating-point traps is that depictedfingure 3-5

In bothFigure 3-4andFigure 3-5 the “second IEEE rounding” has as a result a value rounded to
the destination precision and with bounded exponent range. Special cases of the second IEEE
rounding can be those when the result is the correctly signed zero, denormal, smallest normal
floating-point value, largest normal floating-point value, or infinity. The second IEEE rounding

(for the instructions where this is applicable) starts with the result of the first IEEE rounding (plus a
few additional bits of information - rounding mode, and round and sticky bits from the first IEEE

rounding), and is not based on the values of the input operands.

Figure 3-4. Exception Priority for Itanium™ Processor Floating-point Traps Generated by a
Hardware Initiated Computation of the Result
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Figure 3-5. Exception Priority for Iltanium™ Processor Floating-point Traps Generated by a
Software Initiated Computation of the Result
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For SWA traps, unmasked underflow traps, and unmasked overflow traps, the exception handler
(the 1A-64 Floating-point Emulation Library for SWA traps, or a user handler otherwise) receives
the result after the first IEEE rounding, with exponent truncated to 17 bits. For unmasked inexact
traps, the exception handler receives the result after the second | EEE rounding (which can include
the special cases of a correctly signed zero, denormal, smallest normal floating-point number,
largest floating-point number, or infinity).

Note that if an enabled floating-point fault is taken, no status flag is updated in the FPSR, and no
result is provided to the exception handler. If an enabled floating-point trap is taken, the
appropriate status flags are updated in the FPSR, and aresult is provided to the exception handler.
(The way the status flags are being set is different from the 1A-32 behavior, where status flags are
updated in the status word on any enabled floating-point exception.) In both cases (enabled faults
or traps), the cause of the exception is indicated by bits set in the ISR code.
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3.4 Conditions Causing Floating-point Exceptions on
the Itanium™ Processor

The conditions under which floating-point exceptions occur for each Itanium processor arithmetic
instruction are listed in Table 3-2 below. This table applies to both disabled and enabled

exceptions. Note that SWA requests (faults or traps) are always “enabled” - there is no way to
disable them. It is assumed that NaTVal values are filtered in advance. It is also assumed
throughout this document that the qualifying predicate of any instruction being discussed is set to
1. For both disabled and enabled exceptions, the response is as specified by, or in the spirit of the
IEEE Standard 754-1985 for Binary Floating-point Computations [3] (but note that the standard
does not specify the behavior for certain operations such as fused multiply-add or min and max).

Note also that for parallel instructions, the single precision format does not allow for unsupported
operands.

Note: In Table 3-2, exceptions, and the conditions causing them, are listed in the decreasing order of
priority. For parallel instructions, it will be considered from now on that the low part is eval uated
first, followed by the high part (thisisjust a convention, and is not imposed by the architecture).

Table 3-2. Conditions that Determine Occurrence of Floating-point Exceptions

Floating-point Instruction Exception Condition

fma.pc.sf f1 = 3, f4, f2
fms.pc.sf f1 = {3, 4, 12
fnma.pc.sf f1 = 3, f4, f2

SWA fault, Itanium™  Any unnormal operand, and no operand is unsupported, and no
processor-specific operand is a NaN, and the operation does not lead to (Inf -Inf), (-Inf +
Inf), Inf * O, Inf * (-0), -Inf * O,
-Inf * (-0), 0 * Inf, -0 * Inf, O * (-Inf),
or -0 * (-Inf)

\% Any unsupported operand, or any SNaN operand, or no NaN
operand and the operation leads to (Inf -Inf), (-Inf + Inf), Inf * O, Inf *
(-0),
-Inf * 0, -Inf * (-0),
0 * Inf, -0 * Inf, 0 * (-Inf), or -0 * (-Inf)

D

SWA trap, Itanium
processor-specific

(0]
U

Any unnormal operand (not raised directly by the hardware, but
following an Itanium processor-specific SWA fault)

Result tiny, the underflow traps are disabled, and the flush-to-zero
mode is not enabled

Result huge

Result tiny if underflow exceptions are enabled; result tiny and
inexact if the underflow exceptions are disabled; the latter case will
occur directly from the hardware only if the flush-to-zero mode is
enabled, otherwise it would have already generated a SWA trap

Result inexact

fnorm.pc.sf f1 = f3

SWA fault, ltanium
processor-specific

D

SWA Trap, Itanium
processor-specific

Unnormal operand, and (biased exponent in floating-point register
file format is O or denormal exceptions are enabled), and the operand
is not unsupported, and the operand is not a NaN. Note that in
floating-point register file format, an unnormal with a biased exponent
of 0 is equivalent to the same unnormal with the biased exponent of
0xc001 (0xc001 = Oxffff - 0x3ffe), which corresponds to an unbiased
decimal exponent of -16382, the minimum value for 15-bit exponents

Unsupported operand, or SNaN operand

Unnormal operand (not raised directly by the hardware, but following
an Itanium processor-specific SWA fault)

Result tiny, the underflow traps are disabled, and the flush-to-zero
mode is not enabled
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Table 3-2.

intel.

Conditions that Determine Occurrence of Floating-point Exceptions (Cont'd)

Floating-point Instruction

Exception

Condition

Result huge

Result tiny if underflow exceptions are enabled; result tiny and
inexact if they are disabled; the latter case will occur directly from the
hardware only if the flush-to-zero mode is enabled, otherwise it would
have already generated a SWA trap

Result inexact

fpma.pc.sf f1 = 13, 4, f2
fpms.pc.sf f1 = {3, f4, f2
fpnma.pc.sf f1 = 3, f4, f2

SWA fault, Itanium
processor-specific

D

SWA trap, Itanium
processor-specific

0]
U

Any denormal operand, and no operand is a NaN, and the operation
does not lead to (+Inf - Inf), (-Inf + Inf), Inf * O, Inf * (-0),

-Inf * 0, -Inf * (-0), O * Inf, -0 * Inf,

0 * (-Inf), or -0 * (-Inf)

Any SNaN operand, or no NaN operand and the operation leads to
(-Inf + Inf),

(-Inf + Inf), Inf * O, Inf * (-0), -Inf * O,

-Inf * (-0), 0 * Inf, -0 * Inf, O * (-Inf), or

-0 * (-Inf)

Any denormal operand (not raised directly by the hardware, but
following an Itanium processor-specific SWA fault)

Result tiny, the underflow traps are disabled, and the flush-to-zero
mode is not enabled

Result huge

Result tiny if underflow exceptions are enabled; result tiny and
inexact if they are disabled; the latter case will occur directly from the
hardware only if the flush-to-zero mode is enabled, otherwise it would
have already generated a SWA trap

Result inexact

fmax.sf f1 = f2, 3
fmin.sf f1 = f2, 3
famax.sf f1 = f2, f3
famin.sf f1 = f2, 3

SWA Fault, Itanium
processor-specific

D

Any unnormal operand, and no operand is unsupported, and no
operand is a NaN

Any unsupported operand, or any NaN operand

Any unnormal operand (not raised directly by the hardware, but
following an Itanium processor-specific SWA fault)

fpmax.sf f1 = 2, f3
fpmin.sf f1 = 2, 3
fpamax.sf f1 = f2, {3
fpamin.sf f1 = 2, f3

SWA Fault, Itanium
processor-specific

Any denormal operand, and no operand is a NaN

Any NaN operand

Any denormal operand (not raised directly by the hardware, but
following an Itanium processor-specific SWA fault)

fcmp.frel.fctype.sf p1, p2 =2, f3

SWA Fault, Itanium
processor-specific

\Y

D

Any unnormal operand, and no operand is unsupported, and no
operand is a NaN

Any unsupported operand, or any SNaN operand, or (any QNaN
operand if ‘frel’ is one of It, le, nlt, nle)

Any unnormal operand (not raised directly by the hardware, but
following an Itanium processor-specific SWA fault)

fpecmp.frel.sf f1 = {2, {3

3-10

SWA Fault, Itanium
processor-specific

\Y

Any denormal operand, and no operand is a NaN

Any SNaN operand, or (any QNaN operand if ‘frel’ is one of It, le, nlt,
nle)
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Table 3-2.
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Conditions that Determine Occurrence of Floating-point Exceptions (Cont'd)

Floating-point Instruction

Exception

Condition

Any denormal operand (not raised directly by the hardware, but
following an Itanium processor-specific SWA fault)

fovt.fx.sf f1 = f2
fevt.fxu.sf f1 = f2
fevt.fx.trunc.sf f1 = f2
fevt.fxu.trunc.sf f1 = f2

SWA Fault, Itanium
processor-specific

\Y

D

Unnormal operand, and the operand is not unsupported, and the
operand is not a NaN

Unsupported operand, or NaN operand, or input is too large in
absolute value

Unnormal operand (not raised directly by the hardware, but following
an Itanium processor-specific SWA fault)

Result inexact

fpevt.fx.sf f1 = f2
fpevt.fxu.sf f1 = f2
fpevt.fx.trunc.sf f1 = f2
fpevt.fxu.trunc.sf f1 = f2

SWA Fault, Itanium
processor-specific

D

Denormal operand, and the operand is not a NaN

Any NaN operand, or any input is too large in absolute value

Any denormal operand (not raised directly by the hardware, but
following an Itanium processor-specific SWA fault)

Result inexact

frcpa.sf f1, p2 = 12, f3

SWA fault, Itanium
processor-specific

D

SWA fault, arch.
mandated

any unnormal operand, and no operand is unsupported, and no
operand is a NaN, and the operation is not Inf/Inf, and it is not
[pseudo]0/[pseudo]0, and it is not (non-zero normal)/[pseudo]0, and it
is not (non-pseudo 0 unnormal)/[pseudo]0 (with any combination of
signs; the square brackets indicate an optional component)

Any unsupported operand, or any SNaN operand, or the operation is
Inf/Inf, or it is [pseudo]0/[pseudo]0
(with any combination of signs)

Operation is (non-zero normal)/[pseudo]0, or (non-pseudo 0
unnormal)/[pseudo]0 (with any combination of signs)

Any unnormal operand (not raised directly by the hardware, but
following an Itanium processor-specific SWA fault)

For floating-point register file format, if

€< enmin-1,0r€y2ena -2,
Or€3- €y emay Or Eq-Ep<emin+1,0r€q<en, +N-1(N=64is
the significand precision)

Result huge; this can only occur after processing an architecturally
mandated SWA fault (not directly raised by the hardware), when the
result of the divide operation is provided by the SWA handler for
frcpa, and the output predicate is cleared

Result tiny if underflow exceptions are enabled; result tiny and
inexact if underflow exceptions are disabled; this can only occur after
processing an architecturally mandated SWA fault (not directly raised
by the hardware), when the result of the divide operation is provided
by the SWA handler for frcpa, and the output predicate is cleared

Result inexact; this can only occur after processing an architecturally
mandated SWA fault (not directly raised by the hardware), when the
result of the divide operation is provided by the SWA handler for
frcpa, and the output predicate is cleared

fprepa.sf f1, p2 = 2, f3

SWA fault, Itanium
processor-specific

Any denormal operand, and no operand is a NaN, and the operation
is not Inf/Inf, and it is not 0/0, and it is not (non-zero normal)/0 (with
any combination of signs)
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Table 3-2.

Conditions that Determine Occurrence of Floating-point Exceptions (Cont'd)

Floating-point Instruction Exception

Condition

Any SNaN operand, or the operation is Inf/Inf, or 0/0 (with any
combination of signs)

Operation is non-zero normal/0, or denormal/0 (with any combination
of signs)

Any denormal operand (not raised directly by the hardware, but
following an Itanium processor-specific SWA fault)

Note that if €, < €nin - 1, O €y 2 €nax - 2, OF

€4- €y €na Or E5-€y<eyp+1,0r

€5 < €enint+ N-1land no SWA, invalid, divide-by-zero, or denormal
exception occurs, then fprcpa clears the output predicate and returns

the best possible approximations in the floating-point output register
(see Section 5.1) (N = 24 is the significand precision)

frsqrta.sf f1, p2 = f3 SWA fault, Itanium

processor-specific

D

SWA fault, arch.
mandated

Unnormal operand (positive or negative), and the operand is not
unsupported, and the operand is not a NaN, and the operand is not
-Inf, and (the operand is not strictly negative normal or it is a
pseudo-zero) Note: the last condition allows negative pseudo-zeros
to raise a SWA request

Operand is unsupported, or the operand is SNaN , or the operand is
-Inf, or (the operand is strictly negative finite and it is not a
pseudo-zero) [‘strictly negative’ excludes -0.0]; note that if the
operand is a non-zero negative unnormal (or denormal), the invalid
fault is not raised directly by the hardware, but it follows an Itanium
processor-specific SWA fault

Unnormal operand, strictly positive (not raised directly by the
hardware, but following an Itanium processor-specific SWA fault)

for floating-point register file format, if

€5 <emin+ N - 1(N =64 is the significand precision)

Result inexact; this can only occur after processing an architecturally
mandated SWA fault (not directly raised by the hardware), when the

result of the square root operation is provided by the SWA handler,
and the output predicate is cleared

fprsqrta.sf f1, p2 = 3 SWA fault, Itanium

processor-specific

\Y

Denormal operand (negative or positive), and the operand is not a
NaN, the operand is not -Inf, and the operand is not a strictly
negative normal floating-point number

Operand is SNaN , or the operand is -Inf, or the operand is strictly
negative finite; note that if the operand is a non-zero negative
denormal, the invalid fault is not raised directly by the hardware, but it
follows an Itanium processor-specific SWA fault

Denormal operand, strictly positive (not raised directly by the
hardware, but following an Itanium processor-specific SWA fault

Note that if € < e, + N - 1and no SWA, invalid, or denormal
exception occurs, then fprsgrta clears the output predicate and
returns the best possible approximation in the floating-point output
register (see also 5.3) (N = 24 is the significand precision)

3-12

Note that Table 3-2 has a separate entry for fnorm, that emphasizes the conditions leading to
floating-point exceptions, and the differences between fma and fnormin raising Itanium
processor-specific SWA faults. For other purposes, fnorm behaves like a pseudo-op of fma.

If an enabled exception (V, Z, D, O, U, I) israised, the result is provided by the corresponding user
handler (provided execution of the application program containing the excepting instruction is

continued). For Software Assistance cases, the result is the IEEE mandated one, unless an enabled
| EEE exception israised asaresult of the computation. The user then providesthe result, viaauser
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exception handler (again, if the application program containing the excepting instruction is
continued).

If the SWA exception handler isinvoked or a user floating-point exception handler is reached after
an enabled exception has been raised, the indication regarding the cause of the exception is
contained in the ISR code (the 16 least-significant bits of the ISR register). There are different
interruption vectors for floating-point exception faults and for floating-point exception traps. The
FPSR register is changed by the excepting instruction before the handler isinvoked to update status
flags only for floating-point traps (SWA trap, overflow, underflow, or inexact). The handler may
make other changes to the FPSR, which will become effective when execution of the application
program that caused the exception is resumed.

If any of the conditions shown in the last column of Table 3-2 is met for IEEE exceptions (V, Z, O,
U, I) when the corresponding exception is disabled, then the appropriate FPSR flags are set (as
specified by the IEEE-754 Standard for Binary Floating-point Computations [3]), and the result is
the IEEE mandated one. A special case occurs for underflow: the U flag in the FPSR is set only if
theresult is both tiny and inexact, while an enabled underflow exception israised if the result is
merely tiny. Tininessis established after rounding to the destination precision, but with unbounded
exponent, i.e. after the first IEEE rounding (the result of which, if non-zero, will be normalized if
possible). Inexactness is established either after the first IEEE rounding (once the result is inexact
at this stage it will not become exact through a second rounding), or after the second |EEE
rounding, to the destination precision and a bounded exponent. This second and final result will be
different from the first one only if the result istiny and significant bits are lost through
denormalization, or if the result is huge (then the delivered result isinfinity or the largest
floating-point value in the destination format, depending on the rounding mode).

Note that if adenormal/unnormal operand is encountered, and the denormal exceptions are
disabled, a SWA fault is raised and the result will be provided by the SWA fault handler (the |A-64
Floating-point Emulation Library). The same holds for architecturally mandated SWA faults or for
SWA traps.

An explanation is required for the denormal and underflow exceptions. In Table 3-2, “any

unnormal operand” or “any denormal operand” (with the specified restrictions on the other
operands), leads to a SWA (Software Assistance) fault. The same condition, “any unnormal
operand” or “any denormal operand”, is specified for denormal exceptions. In the Itanium
processor implementation, the hardware never raises a denormal exception for these conditions,
raising instead a SWA fault. If the denormal exceptions are disabled, the SWA handler (the 1A-64
Floating-point Emulation Library) returns the result. If the denormal exceptions are enabled, the
SWA handler just returns an exception code modified from SWA fault to denormal exception, and
the OS kernel trap handler will have to invoke the corresponding (user registered) exception
handler.

A similar situation exists for underflow exceptions, when one ofrtlagfnorm, fms, fnma, fpma,

fpms, orfpnma instructions has a tiny result. An underflow trap will be taken if the “result is tiny”
(seeTable 3-2 and the underflow traps are enabled. If the underflow traps are disabled and the
result is tiny, a SWA trap will be raised instead. In this case, if the result is tiny but exact, the U flag
will not be set in the FPSR (it will preserve its previous value). If the result is tiny and inexact, both
U and | flags will be set in the FPSR. If the | traps are enabled, the inexact trap will be taken (raised
from within the SWA trap handler).

The next subsections specify the masked (disabled) and the unmasked (enabled) responses of the
Itanium processor (and IA-64 in general) arithmetic instructions to floating-point exceptions, in the
order: SWA faults, V, Z, D, SWA traps, O, U, |. In each case, it is assumed that an enabled
floating-point exception of higher priority does not occur. The masked and the unmasked response
are placed in the same table as in the simpler cases. Note that the meaning of “updated” and
“assigned” is the same as$ection 3.3"sticky” status bits are “updated” by a logical OR; other

state bits are “assigned” a value of O or 1).

3-13
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3.5 Response to SWA Faults

Table 3-3 lists the actions performed by the | A-64 Floating-point Emulation Library in response to
a SWA fault. The emulation library isinvoked by the operating system kernel, reached in this case
viathe floating-point fault vector.

Table 3-3. Response of the IA-64 Arithmetic Instructions to SWA Faults

Floating-point Instruction Exception
fma.pc.sf f1 = {3, 4, f2 SWA fault,
fms.pc.sf f1 =3, f4, {2 Itanium
fnma.pc.sf f1 =3, f4, f2 processor-specifi
fpma.pc.sf f1 = {3, f4, f2 c

fpms.pc.sf f1 = 13, 4, f2
fpnma.pc.sf f1 = 13, f4, f2

if the denornal exceptions are enabl ed
clear the SWA bit and set the D bit in the | SR code
rai se a denormal exception

el se

conpute the infinitely precise result rounded to the destination precision
w th unbounded exponent (first |EEE rounding)

if the result is huge
if the overflow exceptions are enabl ed

clear the SWA bit, set the Obit and assign the | and fpa
bits in the

I SR code
set the D and O bits, and update the | bit in FPSR sfx
truncate the exponent of the result to 17 bits
rai se an overflow exception

el se
cal cul ate the | EEE mandated result, according to the
roundi ng node
(a correctly signed infinity or |argest nornal
fl oati ng-poi nt
nunber) (second | EEE roundi ng)
if the inexact exceptions are enabled
clear the SWA bit, set the | bit, and assign the fpa
bit in
the I SR code
set the D, O and | bits in FPSR sfx
rai se an inexact exception
el se
set the D, Oand | bits in FPSR sfx
return the | EEE mandated result
endi f
endi f
else if the result is tiny
if the underfl ow exceptions are enabl ed
clear the SWA bit, set the U bit, and assign the |I and fpa
bits

in the ISR code
set the D bit, and update the Uand | bits in FPSR sfx
truncate the exponent of the result to 17 bits
rai se an underfl ow exception
el se

if the ftz node is disabled
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denormalize the result (a correctly signed zero
denor mal

or smallest normal is obtained) (second |EEE
roundi ng)

if the result is inexact
if the inexact exceptions are enabl ed

clear the SWA bit, set the | bit, and
assign the fpa bit

in the | SR code
set the D, U, and | bits in FPSR sfx
rai se an inexact exception
el se
set the D, Uand |I bits in FPSR sfx
return the result
endi f
el se
set the D bit in FPSR sfx
return the result
endi f
el se
set the result to the correctly signed zero
if the inexact exceptions are enabl ed

clear the SWA bit, set the | bit, and clear
the

fpa bit in the I SR code
set the D, U, and | bits in FPSR sfx
rai se an inexact exception
el se
set the D, Uand | bits in FPSR sfx
return the result
endi f
endi f
endi f
el se
conpute the result rounded to the destination precision
wi t h bounded exponent range (second | EEE roundi ng)
if the result is inexact
if the inexact exceptions are enabl ed
clear the SWA bit, set the | bit, and assign the
fpa bit in the | SR code
set the Dand | bits in FPSR sfx
rai se an i nexact exception
el se
set the Dand | bits in FPSR sfx
return the result
endi f
el se
set the D bit in FPSR sfx
return the result
endi f
endi f
endi f
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fmax.sf f1 = f2, 3 SWA Fault,
fmin.sf f1 = f2, f3 Itanium

famax.sf f1 = 2, f3 processor-specifi
famin.sf f1 = f2, 3 c

fpmax.sf f1 = f2, {3
fpmin.sf f1 = 2, f3
fpamax.sf f1 = f2, f3
fpamin.sf f1 =2, f3

if the denornal exceptions are enabl ed
clear the SWA bit and set the D bit in the I SR code
rai se a denornmal exception

el se
conpute the result (equal to one of the two inputs)
set the D bit in FPSR sfx
return result
endi f
fcmp.frel.fctype.sf p1, p2 = 12, 3 SWA fault,
fpcmp.frel.sf f1 = 2, f3 Itanium
processor-specifi
c

if the denornal exceptions are enabl ed
clear the SWA bit and set the D bit in the ISR code
rai se a denornmal exception

el se

conpute the result predicates

set the D bit in FPSR sfx

return result
endi f
fovt.fx.sf f1 = f2 SWA fault,
fevt.fxu.sf f1 = f2 Itanium
fevt.fx.trunc.sf f1 = f2 processor-specifi

fevt.fxu.trunc.sf f1 = f2 ¢

fpevt.fx.sf f1 = f2
fpevt.fxu.sf f1 = f2
fpevt.fx.trunc.sf f1 = f2
fpevt.fxu.trunc.sf f1 = f2

if the denornal exceptions are enabl ed
clear the SWA bit and set the D bit in the | SR code
rai se a denormal exception
el se
conpute the result
if the result is inexact
if the inexact exceptions are enabled
clear the SWA bit, set the | bit, and clear the
fpa bit in the | SR code
set the Dand | bits in FPSR sfx
rai se an inexact exception
el se
set the Dand | bits in FPSR sfx
return the result
endi f
el se
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set the D bit in FPSR sfx
return the result

endi f
endi f
frcpa.sf f1, p2 = f2, f3 SWA fault,
Itanium
processor-specif
c or arch.
mandated

if any input operand is unnormal and the denornal exceptions are enabl ed
clear the SWA bit and set the D bit in the | SR code
rai se a denormal exception
el se
if any input operand is unnornal, set the D bit in FPSR sfx
if this is (an architecturally mandated SWA fault) or (an Itani um processor

specific SWA fault and the mathematical conditions for an
architectural ly

mandated SWA fault are net)
conpute the infinitely precise result for the divide operation
rounded to the destination precision, wth unbounded

exponent
(first | EEE roundi ng)
if the result is huge
if the overflow exceptions are enabl ed
clear the SWA bit, set the O and assign the |I and
fpa bits in the | SR code
set the Obit, and update the | and fpa bits in
FPSR. sf x

truncate the exponent of the result to 17 bits
rai se an overfl ow exception
el se
cal culate the | EEE mandated result according to the
roundi ng node (a correctly signed infinity or

| argest normal fl oating-point nunber)
(second | EEE roundi ng)

if the inexact exceptions are enabl ed

clear the SWA bit, set the | bit, and assign
t he

fpa bit in the I SR code
set the Oand | bits in FPSR sfx
rai se an inexact exception
el se
set the Oand | bits in FPSR sfx

return the | EEE mandated result and a clear
out put predicate

endi f

endi f

else if the result is tiny

if the underfl ow exceptions are enabl ed

clear the SWA bit, set the U bit, and assign the
| and fpa bits in the | SR code

update the U, | and fpa bits in FPSR. sfx
truncate the exponent of the result to 17 bits
rai se an underfl ow exception

el se
if the ftz node is disabled
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zero, denor nal

intel.

denornmalize the result (a correctly signed

or smallest normal is obtained)

(second | EEE roundi ng)

and
the 1 SR code

FPSR. sf x

FPSR. sf x

out put predi cat

predicate

code

predicate

t he

predi cate

if the result is inexact
if the inexact exceptions are enabl ed
clear the SWA bit, set | bit,

assign the fpa bit in

set the Uand | bits in
rai se an inexact exception
el se
set the Uand | bits in

return the result and a clear
e

endi f
el se

return the result and a cl ear output

endi f
el se
set the result to the correctly signed zero
if the inexact exceptions are enabl ed
clear the SWA bit, set the | bit, and
assign the fpa bit in the ISR

set the Uand | bits in FPSR. sfx
rai se an i nexact exception

el se
set Uand | bits in FPSR sfx

return the result and a cl ear output

endi f
endi f
endi f
el se
conpute the result rounded to the destination precision
wi th bounded exponent range (second | EEE roundi ng)
if the result is inexact
if the inexact exceptions are enabl ed

clear the SWA bit, set the | bit, and assign

fpa bit in the I SR code
set the | bit in FPSR sfx
rai se an inexact exception
el se
set the | bit in FPSR sfx

return the result and a cl ear out put

endi f
el se
return the result and a cl ear output predicate
endi f
endi f

else (if this is an Itanium processor specific SWA fault and the

mat hemati ca
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conditions for an architecturally mandated SWA fault are not net)
return the 11-bit table approximation for the inverse of the
denom nat or (second argunent), and an output predicate set

to 1
endi f
endi f
fprcpa.sf f1, p2 = 2, f3 SWA fault,
Itanium
processor-specifi
c

if the denornal exceptions are enabl ed
clear the SWA bit and set the D bit in the | SR code
rai se a denornal exception

el se
set the D bit in FPSR sfx
return the 11-bit table approxination for the inverse of the denoni nator
(which may range fromzero to infinity) and a clear output predicate
endi f

In situations similar to those that lead to an architecturally mandated SWA fault for frcpa (this does
not exclude cases with denormal input operands covered above), the fprcpainstruction will instead
clear the output predicate, and will set the value of the output floating-point register as shown
below (assume alb is to be computed):

if eoSem'n- 1
result = Inf, with the sign of the denoni nator

else if € 2 ey - 2
result = 0, with the sign of the denom nator

else if €5 - € 2 ey OF €5 - €y < ey, +1o0r €< epp+N-1
result = 11-bit table approximation for the inverse of b

frsqrta.sf f1, p2 = f3 SWA fault,
Itanium
processor-specifi
c or arch.
mandated

if the invalid exceptions are enabled and the input operand is a strictly negative
unnor mal
clear the SWA bit and set the V bit in the | SR code
rai se an invalid exception
else if the input operand is a strictly positive unnormal and the
denormal exceptions are enabl ed
clear the SWA bit and set the D bit in the | SR code
rai se a denormal exception
else if the input operand is unnormal set the D bit in FPSR sfx
if an architecturally mandated SWA fault or an Itani um processor specific

SWA

fault and the mathematical condition for an architecturally
mandat ed

SWA fault is net

conpute the infinitely precise result for the square root operation

rounded

to the destination precision, with unbounded exponent (first
| EEE

roundi ng)
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3.6

3-20

Note:

conpute the result rounded to the destination precision,
wi t h bounded exponent range (second | EEE roundi ng)
if the inexact traps are disabled or the result is exact
if the result is inexact
set the | bit in FPSR sfx
endi f
return the result and a clear output predicate
else (if the result is inexact and the inexact traps are enabl ed)

clear the SWA bit, set the | bit, and assign the fpa bit in
the | SR code

set the | bit in FPSR sfx
rai se an i nexact exception
endi f

else if an Itanium processor specific SWA fault and the mat hemati cal
condi tion

for an architecturally mandated SWA fault is not net
return the 11-bit table approximation for the inverse of the square

r oot
of the input argunent and an output predicate set to 1
endi f
endi f
fprsqrta.sf f1, p2 = f3 SWA fault,

Itanium
processor-specifi
c

if the invalid exceptions are enabled and the input operand is a strictly negative
denor mal
clear the SWA bit and set the V bit in the | SR code
raise an invalid exception
else if the denormal exceptions are enabl ed
clear the SWA bit and set the D bit in the | SR code
rai se a denormal exception

el se
set the D bit in FPSR sfx
return the 11-bit table approximation for the inverse of the square root
of the input argunent and a cl ear output predicate
endi f

In situations similar to those that lead to an architecturally mandated SWA fault for frsgrta (this
does not exclude cases with adenormal input operand covered above), the fprsgrtainstruction will
instead clear the output predicate, and will set the value of the output floating-point register as
shown below (assume sgrt (a) isto be computed):

if €g<epn + N- 1
result = 11-bit table approximation for the inverse of sqgrt(a)

Response to Invalid Faults

The |IEEE-754 Standard for Binary Floating-point Computations [3] does not specify uniquely the
value of the result when an invalid exception is raised in case one of the operandsis asignaling
NaN, and the invaid exceptions are disabled. In addition, the | A-64 assembly instructions do not
match exactly the operations described in the standard. Table 3-4 covers this and other cases,
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specifying the masked response of the | A-64 arithmetic instructions to invalid exceptions. The

notation Q(fn) in Table 3-4 signifies a “quieted” NaN, assuming that the floating-point register fn
contains a signaling NaN (this means changing the second most significant bit in the significand of

the NaN in fn from 0 to 1). QNaN Indefinite is the NaN having the 82-bit pattern of
0x3ffffc000000000000000, which applies for scalar instructions, and the 32-bit pattern of
0xffc00000 which applies for parallel instructions.

Table 3-4lists the actions performed by the hardware as part of the masked response to an invalid
fault. In addition, the invalid exception status flag, V, is set in the appropriate status field of the

FPSR.

Masked Response of the IA-64 Arithmetic Instructions to Invalid Exceptions (listed
in decreasing order of their priority)

fpevt.fxu.sf f1 = f2
fpevt.fx.trunc.sf f1 = f2

fpevt.fxu.trunc.sf f1 = f2

Floating-point Instruction Exception Condition and Result
fma.pc.sf f1 = 13, 4, f2 \% Any unsupported operand
fms.pc.sf f1 = {3, 14, f2 f1 = QNaN Indefinite
fnma.pc.sf f1 = 3, f4, f2 Any SNaN operand
if f4 is SNaN, then f1 = Q (f4)
else if f2 is SNaN, then f1 = Q (f2)
else if f3 is SNaN,then f1 = Q (f3)
Operation leads to (-Inf + Inf), (+Inf -Inf),
Inf* 0, Inf * (-0), -Inf* O, -Inf * (-0), O * Inf, -0 * Inf,
0 * (-Inf), or -0 * (-Inf)
f1 = QNaN Indefinite
fpma.pc.sf f1 = 3, f4, f2 \% Any SNaN operand
fpms.pc.sf f1 = {3, 4, f2 if f4 is SNaN, then f1 = Q (f4)
fpnma.pc.sf f1 = {3, f4, f2 else if f2 is SNaN, then f1 = Q (f2)
else if f3is SNaN, then f1 = Q (f3)
Operation leads to (-Inf + Inf), (+Inf -Inf),
Inf* 0, Inf * (-0), -Inf* O, -Inf * (-0), O * Inf, -0 * Inf,
0 * (-Inf), or -0 * (-Inf)
f1 = QNaN Indefinite
fmax.sf f1 = 2, f3 \% Any unsupported operand or any NaN operand
fmin.sf f1 = 2, f3 fl=13
famax.sf f1 = 2, f3
famin.sf f1 = f2, {3
fpmax.sf f1 = f2, f3 \ Any NaN operand
fpmin.sf f1 = {2, {3 fl=13
fpamax.sf f1 = f2, 3
fpamin.sf f1 = f2, f3
fcmp.frel.fctype.sf p1, p2 = 2, f3 \% Any unsupported operand
if ‘frel” is unord, then p1, p2 =1, 0
elsepl,p2=0,1
Any SNaN operand, or (any QNaN operand
and ‘frel’ is one of It, le, nit, nle)
if ‘frel’” is unord, then p1, p2=1, 0
elsepl, p2=0,1
fpemp.frel.sf f1 = 2, f3 \% Any SNaN operand, or (any QNaN operand if ‘frel’ is one of
It, le, nlt, nle)
if ‘frel’ is unord, then f1 = OXxffffffff
else f1 = 0x00000000
fevt.fx.sf f1 = f2 \ Unsupported, or NaN operand, or too large in absolute
fevt.fxu.sf f1 = f2 value
fevt.fx.trunc.sf f1 = f2 f1 = Integer Indefinite
fevt.fxu.trunc.sf f1 =f2 (0x1003e8000000000000000)
fpevt.fx.sf f1 = f2 \% Any NaN operand, or too large in absolute value

f1 = Integer Indefinite
(32-bit code 0x80000000 in the appropriate
half; exponent: 0x1003e)
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Table 3-4. Masked Response of the I1A-64 Arithmetic Instructions to Invalid Exceptions (listed

3.7

3-22

in decreasing order of their priority) (Cont'd)

Floating-point Instruction Exception Condition and Result

frcpa.sf f1, p2 =12, f3 \% Any unsupported operand
f1 = QNaN Indefinite, p2 =0

Any SNaN operand
if 2 is SNaN, then f1 = Q (f2), p2=0
elsefl=Q (f3),p2=0

Operation is Inf/Inf, or it is [pseudo]0/[pseudo]0
f1 = QNaN Indefinite, p2 =0

fprepa.sf f1, p2 = 2, f3 \% Any SNaN operand
if f2 is SNaN, then f1 = Q (f2), p2 =0
elsefl=Q (f3),p2=0
Operation is Inf/Inf, or 0/0
(with any combination of signs)
f1 = QNaN Indefinite, p2 =0

frsqrta.sf f1, p2 = 3 \% Unsupported operand
f1 = QNaN Indefinite, p2 =0
Operand is SNaN
f1=Q (f3),p2=0
Operand is -Inf, or (the operand is strictly negative and it is
not a pseudo-zero)
f1 = QNaN Indefinite, p2 = 0

fprsgrta.sf f1, p2 = f3 \% Operand is SNaN

fl=Q (f3),p2=0
Operand is -Inf, or the operand is strictly negative (this
excludes -0)

f1 = QNaN Indefinite, p2 =0

In Table 3-4, for parallel instructions, it isimplied that the result specified applies only to the half
(halves) that corresponds to an invalid exception being raised.

The unmasked response of the | A-64 arithmetic instructions listed in Table 3-4 to invalid
exceptions is to leave the operands unchanged, and to set the V bit in the ISR code. The operating
system kernel, reached via the floating-point fault vector, will then invoke the user floating-point
exception handler, if one has been registered. Otherwise, the default action should be to terminate
the application.

Valid Operations with NaNs

Rules similar to those in Table 3-4 establish the value of the result in case one or more input

operands are quiet NaNs (QNaNs), and an invalid exception is not raised (for fcmp and fpcmp, this

means that 'frel’ is none of It, le, nlt, or nle; otherwise, fcmp or fpcmp will raise an invalid
exception)Table 3-5lists the value of the hardware-provided result in such cases, i.e. when at least
one of the operands is a quiet NaN, and no exception of higher priority applies (see the exception
priorities at the beginning &ection 3.3, regardless of whether the invalid exceptions are enabled
or not.Table 3-5is not related to any floating-point exception, but it is included here for
completeness because responding to QNaNs fits as priority between responding to invalid
exceptions due to unsupported or SNaN operands and to invalid exceptions due to causes other
than unsupported or SNaN operands. The results listeabie 3-5are generated by the hardware.
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Table 3-5. Result of Floating-point Arithmetic Instructions for QNaN Input(s), in the Absence
of Floating-point Exceptions

Floating-point Instruction Condition and Result

fma.pc.sf f1 = 13, 4, f2 Any QNaN operand

fms.pc.sf f1 =3, f4, f2 if f4 is QNaN, then f1 =4
fnma.pc.sf f1 = 3, f4, f2 else if f2 is QNaN, then f1 = 2
fms.pc.sf f1 = {3, 14, f2 else if f3is QNaN, then f1 = {3
fpma.pc.sf f1 = 3, f4, f2 Any QNaN operand

fpms.pc.sf f1 = {3, 14, 2 if f4 is QNaN, then f1 =4
fpnma.pc.sf f1 = {3, f4, f2 else if f2 is QNaN, then f1 = 2

else if f3is QNaN, then f1 = f3

fcmp.frel.fctype.sf pl, p2 =2, f3 Any QNaN operand, and ‘frel’ is none of It, le, nlt, nle
if ‘frel’ is unord, then p1,p2=1,0
elsepl, p2=0,1

fpcmp.frel.sf f1 = 2, f3 Any QNaN operand, and ‘frel’ is none of It, le, nlt, nle
if ‘frel’ is unord, then f1 = OXxffffffff
else f1 = 0x00000000

frcpa.sf f1, p2 =2, f3 Any QNaN operand
if f2 is QNaN, then f1 =2, p2 =0
elsefl=13,p2=0

fprcpa.sf f1, p2 = 2, f3 Any QNaN operand
if f2 is QNaN, then f1 =2, p2 =0
elsefl=13,p2=0

frsqrta.sf f1, p2 = f3 Operand is QNaN
fl=13,p2=0
fprsqrta.sf f1, p2 = f3 Any operand is QNaN
fl=13,p2=0
3.8 Response to Divide-by-Zero Faults

Table 3-6 lists the actions performed by the hardware as part of the masked responseto a
divide-by-zero fault.

Table 3-6. Masked Response of the IA-64 Arithmetic Instructions to Divide-by-Zero

Exceptions
Floating-point Instruction Exception Result
frcpa.sf f1, p2 =2, f3 z if a is non-[pseudo-]zero finite and b is [pseudo-]
fprcpa.sf f1, p2 = 2, f3 zero, then f1=Inf, with the sign of a/b, and p2=0
(the IEEE 754 Standard mandated result);
set the Z bit in FPSR.sfx

The unmasked response of the | A-64 arithmetic instructions listed in Table 3-6 to divide-by-zero
exceptionsis to leave the operands unchanged, and to set the Z bit in the ISR code. The operating
system kernel, reached via the floating-point fault vector, will then invoke the user floating-point
exception handler, if one has been registered. Otherwise, the default action should be to terminate
the application.
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3.10

Table 3-7.
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Response to Denormal Faults

Both the masked and the unmasked response to denormal faults originate in the | A-64 Floating-
Point Emulation Library (see Figure 3-3). The emulation library isinvoked by the operating system
kernel, reached via the floating-point fault vector, for an Itanium processor-specific SWA fault.

The masked response of the | A-64 arithmetic instructions to denormal exceptionsisidentical to the
response to | tanium processor-specific SWA faults, when the denormal exceptions are masked (see
Table 3-3in Section 3.5), which include providing aresult and setting the D status flag in the
appropriate status field of the FPSR.

The unmasked response of the |A-64 arithmetic instructions to denormal exceptionsisto leave the
operands unchanged, and to set the D hit in the ISR code. The |A-64 Floating-point Emulation
Library performs these operations, and returns a denormal exception code to the operating system
kernel, which will then invoke the user floating-point exception handler, if one has been registered.
Otherwise, the default action should be to terminate the application. The unmasked response to
denormal exceptionsisincluded in Table 3-3 of Section 3.5 above.

Response to SWA Traps

Table 3-7 summarizes the actions performed by the I A-64 Floating-point Emulation Library (SWA
handler) in response to an Itanium processor-specific SWA trap. Thelibrary isinvoked by the
operating system kernel, reached via the floating-point trap vector, for a SWA trap. The result of
the first IEEE rounding is already available.

Response of the 1A-64 Arithmetic Instructions to Itanium™ Processor-specific SWA
Traps

Floating-point Instruction Exception
fma.pc.sf f1 = {3, 4, f2 SWA Trap,
fms.pc.sf f1 = {3, 14, f2 Itanium
fnma.pc.sf f1 = 3, f4, f2 processor-specifi
fpma.pc.sf f1 = {3, f4, f2 c

fpms.pc.sf f1 = 13, 4, f2
fpnma.pc.sf f1 = {3, 14, f2

“undo” the first IEEE rounding, denormalize, and round to the destination
precision, with bounded exponent range (the result is a correctly signed zero,

denormal, or smallest normal floating-point number)
if the result is inexact
if the inexact exceptions are enabled
clear the SWA bit, set the | bit, and assign the fpa bit in the ISR

code
set the U and | bits in FPSR.sfx
raise an inexact exception
else
set the U and | bits in FPSR.sfx
return the result
endif
else
return the result
endif
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3.11 Response to Overflow Traps

For overflow traps, both the masked and the unmasked response are presented in Table 3-8. The
actions listed are performed by the hardware or by the 1A-64 Floating-point Emulation Library,
depending on whether the exception was raised by the hardware or by the emulation library (in
Figure 3-4 of Section 3.3 the overflow trap can be raised only by the hardware, whilein Figure 3-5,
the overflow trap can be raised only from software, by the emulation library).

Table 3-8. Response of the IA-64 Arithmetic Instructions to Overflow Exceptions

Floating-point Instruction Exception

fma.pc.sf f1 = {3, f4, f2 (0]
fms.pc.sf f1 = {3, f4, f2

fnma.pc.sf f1 = 3, f4, f2

fpma.pc.sf f1 = 3, f4, f2

fpms.pc.sf f1 = {3, 14, 2

fpnma.pc.sf f1 = {3, f4, f2

frcpa.sf f1, p2 =2, f3

Masked response:
set the result to the correctly signed infinity or to the largest nornal
fl oating-point number, according to the rounding node, as nmandated by
the | EEE 754 Standard (second | EEE roundi ng)
if the inexact exceptions are disabled
set the Oand | bits in FPSR sfx
return the | EEE nandated result

el se
set the | bit and assign the fpa bit in the ISR code
set the Oand | bits in FPSR sfx
rai se an i nexact exception

endi f

Unmasked response;

truncate to 17 bits the exponent of the result fromthe first |EEE rounding
set the Obit and assign the | and fpa bits in the ISR code

set the Obit and update the |I bit in FPSR. sfx

rai se an overfl ow exception

The |EEE Standard 754 for Binary Floating-point Computations [3] requests that when raising an
overflow trap, the user handler be provided with the result rounded to the destination precision, as

if with unbounded exponent, but then scaled down by a factor equal to 2 raised'fg @hére n

is the number of bits in the exponent of the floating-point format used to represent the result (this
will bring it close to the middle of the range covered by the particular format). The scaling factors
for the various formats are determined by the following:

Number of Bits in Exponent Exponent of the Base-2 Scaling Factor
8 3%26=192 = 0xc0
11 3+ 29 = 1536 = 0x600
15 3 * 213 = 24566 = 0x6000
17 3+ 215 = 98304 = 0x18000

The actual scaling is not performed by the hardware, nor by the 1A-64 Floating-point Emulation
Library. It is typically performed by an IEEE filter that is invoked before calling the user

3-25



Conditions Causing, and Responses to, Floating-point Exceptions Intel o

3.12

floating-point exception handler, if one has been registered (otherwise the default action is usually
to terminate the application).

Response to Underflow Traps

For underflow traps, both the masked and the unmasked response are presented in Table 3-9. The
actions listed are performed by the hardware or by the 1A-64 Floating-point Emulation Library,
depending on whether the exception was raised by the hardware or by the emulation library (in
Figure 3-4 of Section 3.3 the underflow trap can be raised only by the hardware, whilein

Figure 3-5, the underflow trap can be raised only from software, by the emulation library).

Table 3-9. Response of the IA-64 Arithmetic Instructions to Underflow Exceptions
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Floating-point Instruction Exception Result (Below)

fma.pc.sf f1 = {3, 4, f2 ]
fms.pc.sf f1 = {3, 14, f2

fnma.pc.sf f1 = 3, f4, f2

fpma.pc.sf f1 = {3, f4, f2

fpms.pc.sf f1 = 13, 4, f2

fpnma.pc.sf f1 = {3, 14, f2

frepa.sf f1, p2 =12, f3

Masked response:
“undo” the first IEEE rounding, denormalize, and round to the destination
precision, with bounded exponent range (the result is a correctly signed zero,
denormal, or smallest normal floating-point number)
if the result is exact or the inexact exceptions are disabled
if the result is inexact
set the U and | bits in FPSR.sfx

endif
return the result
else
set the | bit and update the fpa bit in the ISR code
set the U and | bits in FPSR.sfx
raise an inexact exception
endif
Unmasked response;

truncate to 17 bits the exponent of the result from the first IEEE rounding
set the U bit and assign the | and fpa bits in the ISR code

set the U bit and update the | bit in FPSR.sfx

raise an underflow exception

The |EEE Standard 754 for Binary Floating-point Computations [3] requests that when raising an
underflow trap, the user handler be provided with the result rounded to the destination precision, as

if with unbounded exponent, but then scaled up by a factor equal to 2 raised'ta ¥hé&re n is

the number of bits in the exponent of the floating-point format used to represent the result (this will
bring it close to the middle of the range covered by the particular format). The scaling factors for
the various formats are the same as those for unmasked overflow exceptions, listed above.

Just as for overflow, the actual scaling is not performed by the hardware, nor by the 1A-64
Floating-point Emulation Library. It is typically performed by an IEEE filter that is invoked before
calling the user floating-point exception handler, if one has been registered (otherwise the default
action is usually to terminate the application).
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Response to Inexact Traps

For inexact traps, both the masked and the unmasked response are presented in Table 3-10. The
actions listed are performed by the hardware or by the 1A-64 Floating-point Emulation Library,
depending on whether the exception was raised by the hardware or by the emulation library (in
Figure 3-4 of Section 3.3 both situations are possible, while in Figure 3-5, the inexact trap can be
raised only from software, by the emulation library).

Table 3-10. Response of the IA-64 Arithmetic Instructions to Inexact Exceptions

Floating-point Instruction Exception Result (Below)

fma.pc.sf f1 = {3, f4, f2
fms.pc.sf f1 = {3, f4, f2
fnma.pc.sf f1 = 3, f4, f2
fpma.pc.sf f1 = 3, f4, f2
fpms.pc.sf f1 = {3, 14, 2
fpnma.pc.sf f1 = {3, f4, f2
fevt.fx.sf f1 = f2
fevt.fxu.sf f1 = 2
fevt.fx.trunc.sf f1 = 12
fevt.fxu.trunc.sf f1 = f2
fpevt.fx.sf f1 = f2
fpevt.fxu.sf f1 = f2
fpevt.fx.trunc.sf f1 = f2
fpevt.fxu.trunc.sf f1 = f2
frcpa.sf f1, p2 = f2, f3
frsqgrta.sf f1, p2 = f3

Masked response:
set the | bit in FPSR sfx
return the result

Unmasked response;

set the | bit and update the fpa bit in the ISR code
set the |I bit in FPSR sfx

rai se an i nexact exception

The explanations in Table 3-2 through Table 3-10 above are given for scalar instructions, or for

‘one half’ for parallel ones. For parallel instructions, one or two simultaneous exception conditions
per instruction are possible. If any is a SWA fault condition, it may also lead to one or two trap
conditions per instruction. If only SWA faults and traps are involved (and no other enabled
floating-point exception conditions), then the result for the excepting half (halves) of the
instruction is provided as explainedTiable 3-3andTable 3-7(response to SWA faults and to

SWA traps). The non-excepting half, if any, is executed if it is associated with a SWA fault in the
other half, or its result is left unchanged if it is associated with a SWA trap. If any enabled
exceptions occur while executing a parallel instruction, then a user handler has to be invoked in
order to generate a result. Support for handling such situations is provided through an IEEE
Floating-point Exception Filter (details on its operation are given in a separate man page). The role
of the filter is to simplify handling of unmasked floating-point exceptions in user code (it shields
the user from many machine specific aspects, and it simplifies and increases the portability of the
user code).
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Examples

The control flow and the sequence of steps followed in processing floating-point exceptions are
illustrated next by four examples. The order of the sequence of steps followed is marked in each
figure. Software components that occur multiple timesin the same figure indicate different
invocations (only in Example 1 and Example 4).

Example 1

Thefirst example is that of a divide operation that raises a SWA fault, and then an underflow trap
(underflow traps are assumed to be enabled).

Figure 3-6. Flow of Control for Handling a SWA Fault Raised by a Divide Operation, Followed
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by an Underflow Trap

User Mode

Application Code

@ SWA Fault
ISR Code = 0x08

v Result
Kernel Mode < @ User Mode
Result
Kernel Trap Handler IEEE Filter

ISR Code = 0x1001

: @ U Trap ‘
@ SWA Fault @ U Trap

ISR Code = 0x08 U Trap
@ Y Result @

ISR Code = 0x1001

Kernel Mode User Mode
IA-64 Floating-point User Floating-point
Emulation Library Exception Handler

(SWA Handler)

Divide Example: (0.0100...01 * 2”emin) / (1.0 * 222) = 0.0001 * 2”emin

(D traps disabled: SWA Fault; U traps enabled: No SWA trap, but user handler called)
000838

Assuming a scalar divide operation, the SWA fault is raised by anfrcpa instruction that jump-starts
the iterative computation for computing the result of the divide operation. Asthe result is provided
by the user exception handler for unmasked (enabled) underflow exceptions, the output predicate
of frpca hasto be clear when execution of the application program containing it is resumed
(clearing the output predicate is the task of the user handler or of the IEEE Floating-point
Exception Filter). The clear output predicate disables the iterative computation following frcpa, as
the result is already in the correct floating-point register (the iterative computation will bein
general inlined automatically by the compiler).
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Example 2

The second example illustrates the case of aparallél instruction that raises an invalid fault in the
high half, and a SWA fault in the low half (reported first as a SWA fault, but then converted to a
denormal fault by the |A-64 Floating-point Emulation Library). Both invalid and denormal
exceptions are assumed to be enabled. This example could be that of an fpma instruction having a
denormal operand in the low half (e.g. 0.1 * 27126) and asignaling NaN in the high half (the fpma
operation has three single precision input operands for each half). It is assumed that processing of
thetwo halves at the user level takes placein thelittle endian order: low half first, followed then by
the high half (thisisjust a convention, and is not imposed by the architecture).

Figure 3-7. Flow of Control for Handling a Double Fault (V high, SWA Fault low), Raised by an

IA-64 Parallel Instruction

User Mode

Application Code

@ V_hi, SWA_F_lo

ISR Code = 0x81 SIMD
Result @
Kernel Mode @ User Mode
SIMD Result
Kernel Trap Handler IEEE Filter
ISR Code = 0x21

V_hi, D_lo
@ V_hi, SWA_F lo ] @ @ D ] @ v

ISR Code = 0x81 V_hi, D_lo Scalar Scalar
ISR Code = 0x21 @ v Result @ L/ Result

A

Y

Kernel Mode User Mode
IA-64 Floating-point User Floating-point
Emulation Library Exception Handler
(SWA Handler)

Parallel (SIMD) Instruction Example: denormal operand in the low half, invalid operand in the high half

(V and D traps enabled)

000839
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Example 3

Thethird exampleillustratesthe case of aparallel instruction that raises an invalid fault in the high
half, and an underflow trap in the low half, with no SWA requests involved. Both invalid and
underflow exceptions are assumed to be enabled. Asonly the fault is detected first, the |EEE filter
tries to re-execute the low half of the instruction, generating a new exception (underflow trap).
Note that steps 2 and 4 (the calls to the |EEE Filter from the kernel trap handler) should also
include a brief call to the Floating-point Emulation Library. Thisis not represented in Figure 3-8,
astheonly action performed by the floating-point emulation library in these casesisto return to the
caler.

Figure 3-8. Flow of Control for Handling a Fault in the High Half (V high), and a Trap in the
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Low Half (U low) of an IA-64 Parallel Instruction

User Mode

Application Code

A
ISR Code = 0x01 @

@ SIMD V_hi
Result v © ISR Code = 0x0101
Kernel Mode Kernel Mode
U_lo
Kernel Trap Handler (Re-exec) Kernel Trap Handler

A A

ISR Code = 0x01 @ ISR Code = 0x0101 @

SIMD Result V_hi @ SIMD Result U_lo
@ (For original data) v (For modified data_hi) Y
User Mode User Mode
IEEE Filter SIMD IEEE Filter

Result

A V Fault @ A U Trap @
© | et ® | Reau

\ 4

A

User Mode User Mode
User Floating-point User Floating-point
Exception Handler Exception Handler

Parallel (SIMD) Instruction Example: underflow in the low half, invalid operand in the high half (nested traps)

(V and U traps enabled)
000840
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Example 4

Finally, the fourth example repeats the third one, but with underflow exceptions disabled. This
transforms the underflow trap into a SWA trap.

Figure 3-9. Flow of Control for Handling a Fault in the High Half (V high), and a
SWA Trap in the Low Half of an 1A-64 Parallel Instruction

User Mode

Application Code

4 ISR Code = 0x01
SIMD V_hi @
Result
Y
Kernel Mode

Kernel Trap Handler

ISR Code = 0x0101

SWAT
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Result

4 ISR Code = 0x01
SIMD Result V_hi @
@ (For original data) v
User Mode
IEEE Filter
[ V Fault @
Scalar
Result
4
User Mode

User Floating-point
Exception Handler

Parallel (SIMD) Instruction Example: SWA trap in the low half, invalid operand in the high half (nested traps)

(V traps enabled, U traps disabled)

Kernel Mode

Kernel Trap Handler

[} ISR Code = 0x0101 @
SIMD Result SWA_trap_lo

(For modified data_hi) Y

Kernel Mode

IA-64 Floating-point
Emulation Library

000841
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Architecturally Mandated Floating-point
Software Assistance 4

4.1

4.1.1

The architecturally mandated software assistance is necessary for the scalar reciprocal
approximation instructions, frcpa and frsgrta, that help implement in software the floating-point
and integer divide and remainder, and respectively the floating-point square root operations.

Conditions that Require Architecturally Mandated
SWA

The architecturally mandated SWA conditions for the scaar divide and sgquare root are presented
next (the conditions for divide apply to the remainder operation aswell, asit is based on the divide
algorithm). Similar conditions exist for the parallel divide and square root operations, but they do
not lead to SWA requests. The paralldl instructions behavior will be detailed in Chapter 5.

Architecturally Mandated SWA Conditions for Divide

For divide, if a/b hasto be calculated, the frcpa instruction provides an initial approximation of 1/b
that allows starting a Newton-Raphson (or similar) iterative process to compute the correctly
rounded value of a/b as specified by the IEEE-754 Standard for Binary Floating-point
Computations [3]. Several floating-point divide algorithms are available, depending on the
instruction type (parallel or not), on the precision of the arguments and of the result, but also on
whether best latency or best throughput is preferred. For the scalar single, double, and
double-extended precision algorithms (see [1] for the single and double precision algorithms) the
result can be calculated correctly for any valid input values of the arguments. Special cases exist
only for the algorithm that operates on register file format floating-point numbers. If the inputs are
in floating-point register file format, with 17-bit exponents, then some of the intermediate
computation steps might underflow, overflow, or lose precision. A sample agorithm for register
file format computations is shown below. The same algorithm can be used for double-extended
precision calculations.

Consider the following sample algorithm for calculating a/b in floating-point register file format,
wherea, b, g, €, Y1, €1, Y2, €, Ya, €3, Y4, o, l'o, U1, F1, and g, are floating-point numbers with N =
64 bitsin the significand, yg is an 11-bit approximation of /b, rn isthe |EEE rounding to nearest
mode, and rnd is any |EEE rounding mode. The precision of the calculation isindicated for each

step.

Ly = U/b[l+eg) e <2™ m = 8886 table lookup

2. ey = (1-b0y),, register file double-extended precision
3.y, = (Yo* e Do), register file double-extended precision
4. e = (eg)rn register file double-extended precision
5.y, = (yp+e O, register file double-extended precision
6. e, = (1-b0y,),, register file double-extended precision
7.y3= (Yot 0),, register file double-extended precision
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8. e; = (1-bDyy)
9.y, = (Ya3+e303),,
10. g5 = (a Eyo)rn
11y, = (a—bhy),,
12. q; = (ap+ 1o B3),,
13.r; = (a-b ), ,
14. 9, = (93 + 11 0/g), g

intel.

register file double-extended precision
register file double-extended precision
register file double-extended precision
register file double-extended precision
register file double-extended precision
register file double-extended precision
register file double-extended precision

The agorithm generates g, = (a/b),,4 , the correctly rounded floating-point register file format
value of a/b. In the actual implementation, each of the 14 computation steps above translates into
one |A-64 assembly language instruction. The first and the last step use status field 0 from the
FPSR (the user status field), while al the intermediate steps use status field 1 (reserved for special
computations by software conventions; status field 1 uses rounding to nearest, and the register file
double-extended floating-point format [1], with 17-bit exponents and 64-bit significands). Steps (2)
through the last are predicated by the output predicate of the frcpa instruction (corresponding to
step (1) above). Thus, when the result of the divide operation is provided directly by the hardware
or by the SWA handler (the | A-64 Floating-point Emulation Library), the output predicate will be
cleared and steps (2) through the last will be skipped. For thisto work, the frcpa instruction and the
last instruction in the sequence need to have the same output register.

The conditions that might cause certain intermediate steps to overflow, underflow, or lose precision
are the following, and they identify situations when the Itanium processor will have to ask for

software assistance (SWA):

(a) ¢ <ey,,—1 (y; might be huge)

e
b 2 emax

[Xc)
O
[1(d)
O
[(e)

—2 (y; might be tiny
€,— €, 2 €, (g, might be hugg
€,—€,<€,,+t1 (g might be tiny

€,< €nin T N—1 (r; might lose precision

An observation is necessary for condition (a). The condition for avoiding generation of ahugey;

was determined mathematically as

{(d) e,<e,;,—2 (y; might be huge)

Aswritten above, it would not require Software Assistance for some denormal values of b (for
those that have &, = ey, - 1, when combined with avalue of a that has a negative exponent, but
larger than e, + N - 1; see Figure 4-1 in Section 4.2). If frcpa returns a valid approximation for
thereciprocal /b, the divide algorithm will generate a correct result. The disadvantage isthat steps
(2), (6), (8), (11), and (13) of the algorithm above will all cause Itanium processor-specific SWA
faults, because b is denormal. It is therefore better to include the case g, = €, - 1 with the
architecturally mandated SWA faults, thus allowing for the result to be generated with one single

SWA fault. Condition (a) was thus modified to:

{(a) ®p=eq,—1 (y; might be huge)

An observation is necessary also for condition (b). When e, = g5, - 2, Somey; might becometiny,
but the precision losswill not be catastrophic, i.e. thefinal result of the divide operation will still be
correct. Yet, producing adenormal y; and then consuming it in the next instruction would cause an
Itanium processor-specific SWA trap, and then an Itanium processor-specific SWA fault. This
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could happen again for a subsequent y;, which would slow down the computation significantly. The
decision was taken to ask for software assistance for e, = €z - 2 100, not only for e, 2 ey - 1
(condition (b) is already modified above).

When an 1A-64 architecturally mandated SWA fault israised, the SWA handler will scale the input
values appropriately, will calculate the result of the divide operation for the scaled values, and will
scale back the result. The output predicate of frcpa will be set to O.

Architecturally Mandated SWA Conditions for Square Root

For the square root, if ./a has to be calculated, the frsgrta instruction provides an initial
approximation of 1/(./a), that allows starting a Newton-Raphson or similar iterative process to
compute the correctly rounded value of ./a as specified by the IEEE-754 Standard for Binary
Floating-point Computations [3]. Several floating-point square root algorithms are available,
depending on the instruction type (parallel or not), on the precision of the argument and of the
result, but also on whether best latency or best throughput is preferred. For the scalar single,
double, and double-extended precision algorithms devised (see [1] for the single and double
precision algorithms) the result can be calculated correctly for any valid input values of the
argument. Special cases exist only for the algorithm that accepts register file format floating-point
numbers. If the inputs are in register file floating-point format (with 17-bit exponents), then some
of the intermediate computation steps might lose precision. A sample algorithm for register file
format computations is shown below. The same algorithm can be used for double-extended
precision calculations.

Consider the following sample algorithm for calculating ./a in floating-point register file format,
where a, h, ty, t, ta, t4, ts, ts, Y1, Y2, S H, d, S;, Hy, dy, and R are floating-point numbers with N =
64 bitsin the significand, yg is an 11-bit approximation of 1/(./a), rnis the IEEE rounding to
nearest mode, and rnd is any | EEE rounding mode. The precision of the calculation isindicated for
each step.

1y =1/ Jadl+gp), |g<2 ", m = 8831 table lookup

2. h=(1/2M),, register file double-extended precision
3.t = (Yo B,y register file double-extended precision
4.ty = (V/2-t Th) | register file double-extended precision
5 y1 = o+t B,y register file double-extended precision
6. t3 = (y,h),, register file double-extended precision
7.ty = (VV2-130),, register file double-extended precision
8.y, = (yy+t,0y),, register file double-extended precision
9. s=(aby,),, register file double-extended precision
10. t5 = (y, [h),, register file double-extended precision
11 H = (1/20),),, register file double-extended precision
12. d = (a-S®),, register file double-extended precision
13. tg = (V/2-t50,),, register file double-extended precision
14. 5, = (S+dH),, register file double-extended precision
15. Hy = (H+tgH), register file double-extended precision
16. d; = (a-S,5),, register file double-extended precision
17. R = (S, +d; Hy), 4 register file double-extended precision
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4.1.3

4-4

The algorithm generates R = (./a),nq, the correctly rounded floating-point register file format
value of ./a. In the actual implementation, each of the 17 computation steps above trandl ates into
one |A-64 assembly language instruction. The first and the last step use status field 0 from the
FPSR (the user status field), while al the intermediate steps use status field 1 (reserved for special
computations by software conventions). Steps (2) through the last are predicated by the output
predicate of the frsgrta instruction (corresponding to step (1) above). Thus, when the result of the
sguare root operation is provided directly by the hardware or by the SWA handler (the IA-64
Floating-point Emulation Library), the output predicate will be cleared and steps (2) through the
last will be skipped. For thisto work, the frsgrta instruction and the last instruction in the sequence
have to have the same output register.

The condition that might cause certain intermediate steps to lose precision is shown below. It
identifies situations when the Itanium processor will have to ask for software assistance (SWA):

€, < eyin + N—1 @, might lose precision)

When an 1A-64 architecturally mandated SWA fault is raised, the SWA handler will scale the input
value appropriately, will calculate the result of the square root for the scaled value, and will scale
back the result. The output predicatdrsefrta will be set to 0.

Floating-point Traps Raised by the SWA Handler for
Architecturally Mandated SWA Faults

The 1A-64 architecturally mandated SWA conditions were presenfeabie 3-2of Section 3.4

If frcpa raises an 1A-64 architecturally mandated SWA fault, the SWA handler (the 1A-64
Floating-point Emulation Library) will provide the result for the divide operation (not just an
approximation for the inverse of the denominator), and will clear the output predicate. The
software assistance handler can also raise an underflow, overflow, or inexact exception pertaining
to the result of the divide operation. If any input is unnormal and the denormal exceptions are
enabled, the SWA handler will just convert the ISR code to that of a denormal exception and the
operating system will search for a corresponding user exception handiBe(siea 4.2

Algorithms for SWA Faults for Floating-point Divide, for more details)

Similarly, if frsgrta raises an 1A-64 architecturally mandated SWA fault, the SWA handler (the
IA-64 Floating-point Emulation Library) will provide the result for the square root operation (not
just an approximation for the inverse of the square root of the denominator), and will clear the
output predicate. The software assistance handler can also raise an inexact exception pertaining to
the result of the square root operation. If the input is unnormal and the denormal exceptions are
enabled, the SWA handler will just convert the ISR code to that of a denormal exception and the
operating system will search for a corresponding user exception handigefsiea 4.4

Algorithms for SWA Faults for Floating-point Square Root for more details).

The existence of floating-point traps raised by the SWA handler (the 1A-64 Floating-point
Emulation Library) was acknowledged alsdSection 3.3 “Floating-point Exception Priority”,
throughFigure 3-4andFigure 3-5 Figure 3-3shows also that a denormal fault can be raised by the
SWA handler following an Itanium processor-specific SWA fault.

Of the floating-point exceptions that can be raised from software, some traps can never be raised
directly by the hardware. These are overflow, underflow, and inexact traps raised following an
architecturally mandated SWA fault fivcpa, and inexact traps raised following an architecturally
mandated SWA fault fdrsgrta. A user floating-point exception handler reached for such an
enabled exception will associate it witlapa or frsgrta respectively (so from the user’s point of

view, these traps appear to be raised by the two scalar reciprocal approximation instructions).
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Algorithms for SWA Faults for Floating-point Divide

When an architecturally mandated SWA fault israised for frcpa, the SWA handler, which is
invoked by the operating system kernel, uses alternate algorithmsto calculate the result for the
divide operation.

Figure 4-1 delimits the regions of the (e,, &,) plane where | A-64 architecturally mandated SWA
faultsarerequired. Note that e, and g, areinteger numbers, which meansthat only points of integer
coordinates in plane have to be considered. We have e,, e, O[e,,—N+ 1, e, , asdenormal

values are also allowed. The five conditions, (a) through (€), that determine the architecturally

mandated SWA faults are represented by half-planes, delimited by straight lines as shown in

Figure 4-1. The innermost irregular hexagon delimited by dotted lines (including its boundaries)

identifies the points in plane for which 1A-64 architecturally mandated software assistance is not
necessary. The regions marked Underflow and Overflow contain points where the result of the

divide operation is either tiny or huge. For some points on these regions’ boundaries, the underflow
or overflow might or might not occur, depending also on the significands of the dividend and of the
divisor.

Figure 4-1. Architecturally Mandated SWA Conditions for frcpa

/f@a’/eb) /

(©)ea= ann *N-1 e emt N (@esmes el coc,,

6 a_w W[3 s m s a s s aaaeaaae

........................

€a= €max

;b: Gnax- 2

NO SWA

A (e @)
-4+ 1 'SWA

SWA -7 Overflow
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4-6

The various conditions that require architecturally mandated SWA faults for the divide operation
will be examined next in detail. A floating-point number x will be represented as a product of its
sign, significand, and a power of 2;

X = OX[SXEQeX

The four |EEE rounding modes are rn (rounding to nearest), rm (rounding to negative infinity), rp
(rounding to positive infinity), and rz (rounding to zero). An unspecified rounding mode is denoted
by rnd.

The thirteen cases that follow are listed in the order in which they are checked for in the source

code of the FP SWA handler. Their sequence translates into an “if - else if - else if - ... - else”
construct. This means that when examining any condition, it may be looked at as if logically
AND-ed with the negations of all the previous conditions. Note though that in any of the following
cases, if any input argumentftapa is unnormal and the denormal exceptions are enabled, a
denormal fault will be taken (which implies setting the D flag in the ISR code, and leaving the
FPSR unchanged).

Case(l) ey < e, — 64 — 2 (part of condition (c) for SWA)

It can be shown that:

‘%‘ > MAXFP + 1ulp

holds, wherdMAXFP is the largest normal number that can be represented in the floating-point
register file format.

S - S
@‘ = —amea ebz_amemax"'zz 1N+1|Iemax+2>2emax+l
bl S So 2-2"
= MAXFP + 1ulp

The calculation ofa/b| will always raise an overflow exception (enabled or not), no matter which
rounding mode is used. The first computation steps are shown below (some details are omitted).

* Scdeaandb:

_ea _ _
a;=all ", e, =e,—e;=0

b,=b® ™ €, = €—€=0

¢ Calculate ¢; using the algorithm for double-extended and fl oating-point register file format
values, and alocal value of the Floating-point Status Register (FPSR), but with the user
settings for rounding mode, precision and computation mode;

a e,—e,
clzb—lchZb
1
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Thisisanormal floating-point number:

_ Sa e,—e,—e,t+6g, _ Sa D]_- |:|
o = 22 = 20520

The result depends now on whether an overflow or inexact trap occurs or not. The three cases that
matter are listed below.

(I a). If the overflow traps are disabled and the inexact traps are disabled, then return the IEEE
mandated result for the divide operation:

+ oo, if 04" op=0andrndisrnorrp
+ MAXFP, if o, op,=0and rndisrmor rz
—oo,if 0,70y =1 andrndisrnorrm

—MAXFP, if 0, "o, =1 andrndisrporrz

UIIIQJ
o

where the symbol ” denotes the exclusive OR operation.
* Set to 1 the overflow and inexact status flags in the FPSR.
* Clear the result predicate of the frcpa instruction.

* Return TRUE to the OS kernel trap handler, indicating that the result of the divide operationis
provided.

(I b). If the overflow traps are enabled, the result of the divide has to be cal culated with exponent
modulo 217, and has to be delivered to the OS kernel, which will in turn passit to the user trap

handler. The computation steps are listed bel ow.
* Calculate the biased exponent for ¢ = ¢, [2

€€,

e.thias = e, +e,—e,+bias

Ase, +bias> 217 — 1, setO = 1 in the ISR code
(e, +biasymod2"’ ) ] ] ]
* Settheresultto ¢l = o, 5, [2 , which will be delivered to the exception
handler.

¢ |f theresult isinexact, determine the fpa bit. Using alocal value of the FPSR, with rounding to
nearest and in floating-point register file format, calculate

dy = |by| Oy —ay]

Ascq iswithin 1 ulp of a;/b; (no matter which rounding mode is used to calculate it), the
calculation for d; will be exact. Also, d; will be normal due to the range of a;. Two cases are
possible, as the result isinexact (this excludes the cased; = 0):

If d; <0, setl =1andfpa=0inthelSR code.
Ifd; >0, setl =1andfpa=1inthelSR code.

* Set O=1and update | inthe FPSR.
¢ Clear the output predicate of frcpa.

4-7
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¢ Return FAL SE to the OS kernel trap handler, indicating that a new (and different) exception
hasto beraised, and that it provides aresult for the divide operation that has to be propagated
to the user exception handler. Also indicate that a fault was converted to a floating-point trap
(thiswill help the OS kernel to increment the instruction pointer correctly).

(I ). If theinexact traps are enabled and the result is inexact, then return the |EEE mandated result
for the divdide operation:
E + o, if 0,70, =0andndisrnorrp

a [ +MAXFP, ifo,”oy=0andndisrmorrz

|

b~ 0 — if 0,0, =1 andndisrn orrm

0o

—MAXFP, if 0,0, =1 andrndisrporrz

¢ Setl =1inthelSR code and fpa =1 if theresult isinfinite (in absolute value).
* SetO=1and!=1intheFPSR.
¢ Clear the output predicate.

¢ Return FALSE to the OS kernel trap handler, indicating that a new (and different) exception
hasto beraised, and that it provides aresult for the divide operation that has to be propagated
to the user exception handler. Also indicate that a fault was converted to a floating-point trap
(thiswill help the OS kernel to increment the instruction pointer correctly).

Case (I1) &y = &5 — 65 — 1 and g=s, (part of condition (c) for SWA)

It can be shown that:

‘9 > MAXFP + 1ulp
a Sa €a— € Sa Emax T 1 €max + 1
_‘ =2 =2 >2 = MAXFP + 1ulp
bl S Sp

This case is similar to Case (l) above, and it can be logically OR-ed with Case (I).
Case(l1l) e, = e, — 6nax — 1 and g< s, (part of condition (c) for SWA)

It can be shown that

MAXFP < ‘g < MINFP

holds, whereMINFP is the smallest normal number that is representable in floating-point register
file format. This means thatb will be a normal floating-point number, no matter which rounding
mode is used to calculate it.

g = S—amea_eb = S_amemax+1sz—2—N+2|Iemax+l
bl S Sp 5_oN+1
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First, it will be shown that:

‘é‘ <MAXFP -
b

From above, it is sufficient to show that:

- _N+2|Iemax+1<(2 2—N+l) Qemax
2_2—N+1
_ _ 2
202-2 V" <@-2N"h o
4_2—N+3<4_2—N+3+ 2—2N+2
which istrue.
Next, it will be shown that:
‘9 > MINFP
b
a Sa €a— 6 Sa €max t 1 1 Emaxt 1 €max
g =—=[P = =[P > [P >2 " >MINFP
bl S Sp 2o N*1
From above:
MINFP < E <MAXFP

which means that a/b is anormal floating-point number, but it still might raise an inexact
exception, if the inexact exceptions are enabled. In any case, the result of the divide operation has
to be calculated. The computation steps are listed below.

e Scdeaandb:

_ea _ _
a=all ", e, =e,—e=0
b,=b@2 " e =6 -e=0
1~ v €, = C— 6=

Calculate ¢ using the algorithm for double-extended and floating-point register file format values,
and alocal vaue of the FPSR, but with the user settings for rounding mode, precision and
computation mode:

4-9
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4-10

Thisisanormal floating-point number:

ey = Saptreate _ Sap o0
s, s, 2

* Caculatec = ¢, 2™ ™.

The result depends now on whether the inexact (1) traps are enabled or not.

(111 a). If the inexact traps are disabled or the result is exact, then:
e Setthel flag in the FPSR if the result of the divide operation isinexact.
¢ Clear theresult predicate of the frcpa instruction.
* Return TRUE to the OS kernel trap handler, indicating that it provides the result of the divide
operation.

(111 b). If theinexact traps are enabled and the result of the divide operation isinexact, the quotient
has to be delivered to the OS kernel trap handler, which will raise an inexact exception and will
then pass the quotient to the user trap handler.

The following computation steps have to be performed:

¢ Determine the fpa bit. Using alocal value of the FPSR, with rounding to nearest and in
floating-point register file format, calculate

d; = [by| Hecy| —[ay|

Ascy iswithin 1 ulp of a;/b; (no matter which rounding mode is used to calculate it), the
computation of d; will be exact. Also, d; will be normal, due to the range of a;.

¢ Two cases are possible (as the result is inexact):
Ifdy <0, setl =1andfpa=0inthelSR code.
Ifd; >0, setl=1andfpa=1inthelSR code.

* Setl=1inthe FPSR

* Clear the result predicate of the frcpa instruction.

¢ Return FALSE to the OS kernel trap handler, indicating that a new (and different) exception
hasto be raised, and that it provides aresult for the divide operation that has to be propagated
to the user exception handler. Also indicate that a fault was converted to a floating-point trap
(thiswill help the OS kernel to increment the instruction pointer correctly).

Case (V) g, = e; — g, (part of condition (c) for SWA)

s _ s _o~N+1
‘9‘ = B = Bt 22w o MAXEP
bl S S 1
Also:
S - S -
‘9 = 2% = 2ty L s 2™ s MINFP
bl Sp o 2-2"
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From above:

MINFP < % < MAXFP

This case isthus similar to Case (111) above, and it can be logically OR-ed with Case (I11).

Case(V)e,—ghax t 1S gyandegy<e;—gpin—2and €, < enint N—1ore, < enpn—1or
& 2 emax — 2) (part of conditions (a), (b), and (e) for SWA)

S, — S, ) ! !
‘9‘ = _a@ea eij‘EQem'n+22 1 Qem|n+2>zemm+1
bl S So g _pN+1
> 2% = MINFP
Also:
‘f_i S_a ea_ebgs_allemax 1_2_2 N+1|Iemax_1
b Sp So 1
- %EMAXFP<MAXFP
From above:
MINFP < |8 < MAXFP

This case too is similar to Case (lll) above, and it can be logically OR-ed with Case (lll).
Case (VI) g, = e, — &,in — 1 (part of conditions (b), (d) and (e) for SWA)

‘g‘ - %mea_eb_ %memin+l> 1 memin"'l

b

Sp Sp SN+l
>%Ezem‘“”= 2% — MINFP
Also:
‘g = %Qea_eb: S_almemin+l<2_2_N+1|Iemin+l
bl S Sy 1
<@2-2"""Y ™= MAXFP
From above:
MINFP < E <MAXFP
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This case too is similar to Case (111) above, and it can be logically OR-ed with Case (I11).

Case (VII) ey = e, — 6,in @ands, 2 s, (part of conditions (b), (d) and (e) for SWA)

al = 28 p% %o 28y o o M NFP
bl S Sp
Also:
—N+1
‘9 - S_a mea_eb: S_a |IeminS 2_2 memin
b S Sp 1
<2-2"""Y %= MAXFP
From above:
MINFP < g <MAXFP

This case also is similar to Case (Ill) above, and it can be logically OR-ed with Case (lll).
Case (VIII) ey =e;— 6, and g <s, (part of conditions (b), (d) and (e) for SWA)
It can be shown that:

‘% < MINFP - 1ulp

whereMINFP — 1ulp is the smallest normal minus 1 ulp (1 ulp considered for the bin§8& {2

2em|n)_
—N+2
S €2 — € S €min — €min
‘@‘:.3[2 b~ 2 Sg_jLN:E[Q
bl S So 2-2°
We will show that/b is smaller than the smallest normal minus 1 ulp. For this, it is sufficient to
show that:
—N+2
- €min - emin_l
2 2_N+1E2 <(2-2 N+1)EIZ .
2-2
_ _ 2
22-2 V" <c2-27N Y o
4_ZN+3<4_2—N+@+ZQN+2
which is true.
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It can also be shown that a/b is larger than the smallest denormal (which is not important anymore
for the computation of the result of a/b.)

S - S ) .
g- = _a @ea eb: _a Qemln > 1 — @emm
bl S Sp 2-2"
I —N+1
> 2em|n 1 > 2em|n +

where 2" isthe value of the smallest denormal that can be represented in the given format.
The calculation of the tiny value Ja/b] might raise an underflow and/or an inexact exception, no
matter which rounding mode is used. The main computation steps are listed bel ow.

* Scaleaandb:

— —€a — —
a;=all ", e, =e,—e=0

b,=b® ™, €, = €~ €= 0

¢ Calculate cq using the algorithm for double-extended and floating-point register file format
values, and alocal value of the FPSR, but with the user settings for rounding mode, precision
and computation mode:

Thisisanormal floating-point number:

S - -
o = 2% 0 20

¢ If theresult isinexact, determine the fpa bit. Using aloca value of the FPSR, with rounding to
nearest and in floating-point register file format, calculate

d; = [by| Heyf —[ay|

Ascq iswithin 1 ulp of a;/b; (no matter which rounding mode is used to calculate it), the
calculation for d; will be exact. Also, d; will be normal due to the range of a;. Two cases are
possible (as the result is inexact):

If d; <0, then fpa=0.
If d; >0, then fpa = 1.
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The result depends now on whether an underflow or inexact trap occurs or not. Two cases that
matter are the following:

(VIII a). If the underflow traps are enabled, the result of the divide has to be calculated with
exponent modulo 217, and has to be delivered to the OS kernel, which will in turn passit to the user
trap handler. The computation steps are listed bel ow.

€~ €,

Calculate the biased exponent for ¢ = ¢, [2

e tbias = e, +e,—¢e,+bhias

(e, + bias)mod2"

Set theresult to ¢l = o 5, [2

Set U =1inthelSR code (as e, + bias< —2!7 + 1). If the result is inexact, set 1 and the
value offpa calculated above in the ISR code.

Set U =1inFPSR. If theresult isinexact, set | =1 in the FPSR.
Clear the output predicate of frcpa.

Return FAL SE to the OS kernel trap handler, indicating that a new (and different) exception
hasto beraised, and that it provides aresult for the divide operation that has to be propagated
to the user exception handler. Also indicate that a fault was converted to a floating-point trap
(thiswill help the OS kernel to increment the instruction pointer correctly).

, that will be delivered to the exception handler.

(VI b). If the underflow traps are disabled:

If the flush-to-zero mode is disabled (ftz = 0), calculatec = ¢, 2%"%® . Asthis is a “normal”
with an exponent smaller thap,;g when an unbounded exponent range is consideneil,
have to be denormalized using the informatiofpa rnd = I, andsticky = O (wherd is the
inexact status flag from the calculation @f.¢Denormalization consists in shifting the
significand right and incrementing the exponent at each step until it reaghebhe result is
then rounded to the destination precision.)

Otherwisg, if the flush-to-zero modeis enabled (ftz= 1), then |c| = O, where ¢ has the sign of ¢;,
and the result isinexact.

If theresult isinexact, set U =1 and | =1 in the FPSR.
Clear the output predicate of frcpa.

If theresult isinexact and the inexact traps are enabled, set | = 1 and the value of the fpa bit in
the ISR code (the value of fpa was calculated in the denormalization process). Return FALSE
to the OS kerndl trap handler, indicating that a new (and different) exception has to be raised,
and that it provides aresult for the divide operation that has to be propagated to the user
exception handler. Also indicate that a fault was converted to a floating-point trap (this will
help the OS kernel to increment the instruction pointer correctly).

Otherwise, if the result cis exact or the inexact traps are disabled, return TRUE to the OS
kernel, indicating that the SWA handler provides the result of the divide operation.

Case (IX) e;— &nin + 1< e, < e, — 6nin + N — 2 (part of conditions (b), (d) and (e) for SWA)

It can be shown that:

4-14
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where MINFP — 1ulp is the smallest normal minus 1 ulp (1 ulp considered for the binﬁﬂi@'f‘z
2em|n)_

|I S— @emin_l

= (2-27"*Y ™= MINFP—1ulp

This shows that the infinitely preciaéb is tiny. Further, it can be shown thab is larger than the
smallest denormal (which is not important anymore for the computation of the reafhlx of

‘a‘— %‘ @ea_ebz % |Iemin_N+22 1N+ 1 @emin_N+2>2emin_N+1
Sb Sp 2-2"

in—N+1 . . .
where2®™ "7 s equal in value to the smallest denormal that can be represented. This shows

that no matter which rounding mode is us#l,is a non-zero denormal, or possibly the smallest
denormal (in absolute value).

Case (IX) is similar to Case (VIII) above, and it can be logically OR-ed with Case (VIII).

Case (X) ey =e;— &nin + N — 1 and g2 s, (part of conditions (b), (d) and (e) for SWA)

In this case it can be shown that:

E<MINFP—1qu

‘g: %Qea_eb: S_a@emin_N"'lS2_2—N+1|Iemin_N+1
bl S Sp 1
C_N+2
<252 S MINFP - Lulp

This shows thad/b is tiny. Further, it can be shown theb is larger than the smallest denormal
(which is not important anymore for the computation of the resualtopf

al_ Sa P = Sa DZemin—N+ 1 2emin—N+1
bl So So

in—N+1 . . .
where2"™ T s equal in value to the smallest denormal that can be represented. This shows
that no matter which rounding mode is used, the rounded vahib isfa non-zero denormal.

Case (X) is similar to Case (VIII) above, and it can be logically OR-ed with Case (VIII).
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4-16

Case (XI) ey =e;—&in * N =1 and g< s, (part of conditions (b), (d) and (e) for SWA)

It can be shown thatb is smaller than the smallest denormal, minus 1 ulp (1 ulp considered for the
binade [EMNN, 2emin-N+lyy.

—N+2
ea_eb _ S_allemin_N+1< 2—2
—N+1

So 2-2

€nin—N+1

‘9‘: % p 5’
b S

In order to show that:

N+ 1 emin_N

‘9 <2-2""hHe

b

_ =N . . L. -
where(2-2 N* l) o is the smallest denormal minus 1 ulp, it is sufficient to show that:

2_2—N+2

2 2—N+1

Qemin_N"' 1< (2_2—N+ 1) II(:-‘min_N -

N+ 2 —N+1

)<(2-2

<q_p N*3,

)

—2N+2
2

2(2-2"
4 N*3

which is true.

This shows that/b is smaller than the smallest denormal number that can be represented in the
floating-point register file format, even after rounding to the destination precision.

Case (XI) is similar from a computational point of view to Case (VIII) above, and it can be
logically OR-ed with Case (VIII). In case (XI) though, the result will always be zero or the smallest
normal in absolute value, provided no underflow trap is taken (it may still be zero if an inexact trap
is taken).

Case (XII) g, 2 e, — ey, + N (part of conditions (b), (d) and (e) for SWA)

It can be shown in this case too thét is smaller than or equal to the smallest denormal, minus
1 ulp (1 ulp considered for the binad&TFN, 2emin-N+1yy.

—-N+1
@: S_a@ea_ebss_almemin_st_z |Iemin_N
b Sy 1
—N+ 1 emin_N
=@2-2""Hm®
where (2—2_N+ l) rpn is the smallest denormal minus 1 ulp.

Case (XII) too is similar from a computational point of view to Case (VIII) above, and it can be
logically OR-ed with Case (VIII). In case (XIl), just as in Case (XI), the result will always be zero
or the smallest denormal in absolute value, provided no underflow trap is taken (it may still be zero
if an inexact trap is taken).
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Note that for coding purposes, cases (1X), (X), (XI), and (X11) can be logically OR-ed to form one
condition, e, = e; — ey + 1.

Case (XI11) Error

If all the tests for cases (I) through (XII) have failed, an architecturally mandated SWA fault or an
Itanium processor-specific SWA fault caused by a floating-point register file format denormal is
not necessary. In the actual IA-64 Floating-point Emulation Library code, this case is reserved for
Itanium processor-specific SWA faults for floating-point data types with an exponent range smaller
than that for 17 bits (8, 11, or 15 bits). In such cases, an approximation of the valuaraf ah

output predicate set to 1 are the results ofrtpma instruction. The SWA handler returns TRUE to

the OS kernel, indicating that it provides the resuftdpa. The software algorithm that begins

with frcpa will then calculate the result for the divide operation.

Note that the logical union of Cases (I) through (V) specified above covers condition (a) for
software assistance froBection 4.1.1

{(d) %y<e,—1 (y, mightbehuge)
Cases (V) through (XII) cover condition (b):

{(b) ®y=e,x—2 (y; might betiny)

max

Cases (I) through (1V) cover condition (c):

{(c) e;—e,=¢€,,, (g, might be hugg
Cases (VI) through (XII) cover condition (d):

{(d) e,—e,<e,;,+1 (g, might be tiny

min
Finally, Cases (V) through (XII) cover condition (e):

{(e) e;<ey,+N=1 (r; might lose precision)

Frequency Estimation of the Architecturally
Mandated SWA Faults for Floating-point Divide

An estimation of the total number of possible pairs of exponengsdndb, (g, &), is:

2

2 2
Ntot = [emax_(emin_ 1) + 1] = (emax_emin + 2) = (2 Eémax"' 1)

whereN is the number of bits in the significand. We countggl @vice, in order to account for
denormals (whose significands are of the forimlt}...by_q, with b; binary digits). For the
purposes of this estimation, unnormals other than denormals are considered to be already
normalized.
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The total number of possible pairs of exponents for a and b, (e, &), for which the architecturally
mandated SWA does not happen, is:

NNOS\NA = [(emax_3) ~€min + l] E[emax_(emin + N) + 1]

1 1
_é [(_emin+ 1) E(_emin+ 2)_5 E(_emin_N) E(_emin_l\I +1)

= (2, —~3) 02, . ~N)

max max

1 1
_é Demax [(emax +1) _é E(emax_ N-1) [(emax_ N)

(we subtracted the lower and the upper triangles respectively from the rectangle considered
initially in Figure 4-1 of Section 4.2). The total number of possible pairs of exponents for a and b,
(ey, &), for which the architecturally mandated SWA does happen is then:

Nswa = Niot—Nnoswa
For the floating-point register file format:

Ny = (2065535 +1)° = 17, 179, 607, 041

% (55350 65536% (165535 64 1) (65535 64 =

13106700131006- 2 147 450 88, 143 193 185 12 879 919 337
Nowa = 17,179, 607,041 -12, 879, 919, 337 = 4, 299 687 704
From here:

Ngwa/ Niot = (4, 299, 687, 704/ 17, 179, 607, 041) (1100 = 25.0278 %

This calculation assumes that all the possible exponents of a and b have equal probability of
occurring when computing a/b.

Note that in the computation performed in the SWA handler for the floating-point register file
format, the conditions for Itanium processor-specific SWA faults are covered by the conditions for
the architecturally mandated SWA faults (this was achieved also by modifying condition (a), as
explained above).
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Algorithms for SWA Faults for Floating-point
Square Root

When an architecturally mandated SWA fault israised for frsgrta, the SWA handler, whichiis
invoked by the operating system kernel, uses an aternate algorithm to calculate the result for the
sguare root operation.

Figure 4-2 shows the regions of the e, axis where | A-64 architecturally mandated SWA faults are
required. Note that e, is an integer number, which meansthat only points of integer coordinates on
this axis have to be considered. We have e, O [e,;,,—N + l.e,,,] , 8 denormal values are also
allowed. The condition that determines the necessity for architecturally mandated SWA faultsis

e, <€, +N-1

Figure 4-2. Architecturally Mandated SWA Condition for frsqrta

Ca €a~ Ca

- ea

T :

e . -N+1 e. e . +N-1
min min min

e
2N-1

This condition will be examined next. Again, afloating-point number x will be represented asa
product of its sign, significand, and a power of 2;

X = GXD;XDZeX

The four |EEE rounding modes are rn (rounding to nearest), rm (rounding to negative infinity), rp
(rounding to positive infinity), and rz (rounding to zero). An unspecified rounding mode is denoted
by rnd.

The two cases that follow arelisted in the order in which they are checked for in the |A-64
Floating-point Emulation Library source code. Their sequence translates into an “if - else”
construct. Note though that in any of the following two cases, if the input argunfesurta is

unnormal and the denormal exceptions are enabled, a denormal fault will be taken (which implies

setting the D flag in the ISR code, and leaving the FPSR unchanged).

Case(l)eg<eqnntN-1

The square root reduces approximately in half the exponent of the result, which meghas that
be a normal floating-point number in register file format.
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To calculate s = ./a, thevalue of aisscaled to

—-€, . .
a, = alR * if e, is even, or

p— ea

a, = al? " e, is odd

After applying the square root algorithm, s, = JaTl is obtained, which has to be scaled back:

e/2 . :
s=s/ 7 if e, is even, or

(ea_ 1)/

s=s/ [P 2 if e, is odd

The subsequent actions depend now on whether the result is inexact, and whether the inexact (1)
traps are enabled.

(I a). If theinexact traps are disabled or the result is exact:
* Set theresult for the square root operationto s
¢ |f theresultisinexact, set | = 1 (theinexact status flag) in the FPSR
¢ Clear the output predicate of frsgrta

* Return TRUE to the OS kernel, indicating that the SWA handler provides the result of the
square root operation

(I b). If the inexact traps are enabled and the result of the square roct operation is inexact, then the
result has to be delivered to the OS kernel, which will in turn passit to the user trap handler:

¢ Determine the fpa bit. Using aloca value of the FPSR, with rounding to nearest and in
floating-point register file format, calculate

dy = [sqf Osyf =[ay)
* Ass; iswithin 1 ulp of a;/s; (no matter which rounding mode was used to calculate it), the
computation of d; will be exact. Also, d; will be normal, due to the range of a;.

¢ Two cases are possible:
If dy <0, setl =1andfpa=0inthelSR code
If dy >0, set] =1andfpa=1inthelSR code

* Set| =1 (theinexact statusflag) in the FPSR
* Set theresult for the square root operationto s
¢ Clear the output predicate of frsgrta

¢ The SWA handler returns FAL SE to the OS kernel, indicating that a new (and different)
exception hasto beraised, and that it provides aresult for the square root operation that has to
be propagated to the user exception handler. Also indicate that a fault was converted to a
floating-point trap (this will help the OS kernel to increment the instruction pointer correctly).

Case (I1) Error

If thetest for case (1) hasfailed, it means that an architecturally mandated SWA fault or an Itanium
processor-specific SWA fault caused by a floating-point register file format unnormal is not
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necessary. In the actual code |A-64 Floating-point Emulation Library, this case is reserved for
Itanium processor-specific SWA faultsfor floating-point data types with an exponent range smaller
than that for 17 bits (8, 11, or 15 bits). In such cases, an approximation of the value 1/ ./a and an
output predicate set to 1 are the results of thefrsgrta instruction. The SWA handler returns TRUE
to the OSkernel, indicating that it provides the result to frsgrta. The software algorithm that begins
with frsgrta will then calculate the result for the square root operation.

Frequency Estimation of the Architecturally
Mandated SWA Faults for Floating-point Square
Root

An estimation of the total number of possible values of the exponent of ais:

Niot = €max— (Emin—1)+1 =2 +1

max

where N isthe number of bitsin the significand, and the value of g, — 1 was added to account for
denormal values dd. For the purposes of this estimation, unnormals other than denormals are
considered to be already normalized.

The number of values of the exponegyggor which the architecturally mandated SWA faults
occur, is:

Nowa = (Enint N=-1)—(e,,—1)+1 =N+1
For floating-point register file format:

Ngwa/ Nyot = (64 + 1)/ (2 (65535 + 1) (1100 = 0.04989

This calculation assumes that all the possible exponeathafe equal probability of occurring
when computing/a .
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Architecturally Mandated Pseudo-SWA
Requests for Parallel Computations 5

The architecturally mandated software assi stance requests are issued while executing the frcpa or
frsgrta instructions, when an intermediate computation step in the cal culation of adivide or square
root result initiated by these instructions might overflow, underflow, or lose precision, thus
potentially leading to an incorrect result, or to the incorrect raising of an |EEE exception. A SWA
reguest is a floating-point exception handled by the 1A-64 Floating-point Emulation Library.

Similar situations may arise for the fprcpa or fprsgrta instructions. In these cases, rather than

issuing SWA requests, fprcpa and fprsgrta are raising “pseudo-SWA requests”, by merely clearing
their output predicate. The software assistance will have to come in this case from the user code,
instead of a dedicated SWA handler (the IA-64 Floating-point Emulation Library). As the divide
and square root sequences of instructions are usually inlined by compilers, code for processing
pseudo-SWA requests will have to be inlined as well. The complimentary code will unpack the
parallel (SIMD) operands of the instruction that issued the pseudo-SWA request, will normalize
them, will perform two scalar calculations for the two halves of the result, and will pack the
parallel result. This is possible, because performing the unpacked operations using the
floating-point register file format for single precision operands will avoid any further SWA
requests (this could not have been easily possible for SWA requests issued for register file format
operands, as there is no higher precision to use for a simple alternate calculation).

There is a major advantage to this approach, as the pseudo-SWA requeftscframndfprsorta

occur more frequently (on a relative scale) than those firgra andfrsgrta. Therefore it is

important to ensure faster processing of these requests in the application code, than what can be
achieved using an interrupt handler.

The main disadvantage is that a clear output predicafprépa andfprsgrta does not

disambiguate the cases when the output register contains the result of the divide or square root
operation (e.g. for 0/0 oy=1 ), from the cases when it contains just a reciprocal approximation
(examples will be given below for each instruction). This constitutes an issue when floating-point
exceptions that are enabled occur while computing divide or square root results (the detailed
solution is not included here).

5.1 Architecturally Mandated Pseudo-SWA Conditions
for Parallel Floating-point Divide

For the parallel divide, i&,/b; anday/b, have to be calculated, th@cpa instruction provides

initial approximations of b, and 1b, that allow starting a Newton-Raphson or similar iterative
process to compute the correctly rounded valueg/bf anday/b, as specified by the IEEE-754
Standard for Binary Floating-point Computations [3]. The sample algorithm presented below
might not generate the IEEE correct result if some of the intermediate computation steps
underflow, overflow, or lose precision. For simplicity, the computation is presented only for one set
of single precision input values.

Consider the following algorithm for calculatiaf in single precision, wher b, yq, €, Y1, €1,
Yo, €, Ya, do, Fo» d1, 1, @andas, are floating-point numbers witkg-bit significandsyg is an 11-bit

5-1



Architecturally Mandated Pseudo-SWA Requests for Parallel Computations

5-2

intel.

approximation of 1/b, rnisthe IEEE rounding to nearest mode, and rnd is any |EEE rounding
mode. The precision of the calculation isindicated for each step.

1

Yo = I/b1+gy), g <2, m = 8886

table lookup

2. ey = (1-bLy),, single precision
3. y1 = (Yo*€ Do),y single precision
4. e = (1-b0y),, single precision
3. ¥, = (Yr+e b)), single precision
6. e, = (1-b0y),, single precision
7.3 = (Ya+e,00),, single precision
8. dp = (@D¥p),, single precision
9. 1y = (a-b ), single precision
10. a; = (ap+ 1o 0),, single precision
11. ry = (a-b ), single precision

12.q, = (g, +r, Eys)m single precision

The agorithm generates g, = (a/b), ¢, the correctly rounded single precision value of a/b.

The conditions that might cause certain intermediate steps to overflow, underflow, or lose precision
are the following, and they identify situations when the Itanium processor will have to issue a
pseudo-software assistance (SWA) request, by clearing the output predicate of fprcpa:

(a) ¢ <ey,,—1 (y; might be huge)
E(b) €= €nax—2 (y; might be tiny
E(c) €,— €, 2 €4 (g, might be hugg
(d) e,—e,<e,,*+1 (g; might be tiny
E(e) €,< €nin T N—1 (r; might lose precision
The same observations as in the case of frcpa can be made for conditions (a) and (b) (see

Section 4.1.1, “Architecturally Mandated SWA Conditions for Divide”), but in the casdpofpa
the action taken is that the output predicate is cleared, rather than raising a SWA fault.

Whenfprcpa asks for pseudo-SWA by clearing its output predicate, the floating-point output
register will contain the approximatifrcpa can provide for the inverse bf The code containing
thefprcpa instruction will have to check the result predicate, if an IEEE correct answer is needed.
Otherwise, for a non-IEEE divide one could simply multiply the approximatiorbdfyld. The

values provided bfprcpa in such cases are:

* o, with the sign of the denominator, if &, < ein— 1

* 0, with the sign of the denominator, if e, = €y, — 2

* the 11-bit table approximation for the inverse of the denominator if e; —e, = €4
€a—€p<Emin+ 1 0r€<emnp+N-1

Note that if a pseudo-SWA request condition is met when one of the inputs is a denormal number
and the denormal exceptions are enabled, then the OS kernel trap handler will first invoke the SWA
handler (for a SWA fault). This will in turn convert the ISR code to that of a denormal exception
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and will return it to the kernel. The operating system will then search for a corresponding
user-registered floating-point exception handler.

Similar to theregister file format divide operation, each of the 12 computation steps above
tranglates into a parallel 1A-64 assembly language instruction. The first and the last step use status
field O from the FPSR (the user status field), while all the intermediate steps use status field 1
(reserved for special computations by software conventions). Steps (2) through the last are
predicated by the output predicate of the fprcpa instruction (corresponding to step (1) above). Thus,
when the output predicate of fprcpa (corresponding to step (1)) is cleared, steps (2) through the last
will be skipped. Again, the fprcpa instruction and the last instruction in the sequence have to need
the same output register.

Care has to be exercised when the output predicate of fprcpais cleared, asthereis no easy way to
tell whether the floating-point output register contains the result of the parallel divide operation, or
just approximations to the inverses of the two denominators. The solution is to split the parallel
operandsin two in both cases (result provided or approximation), to perform two scalar operations,
and to pack the two halves of the result in the end. This means re-cal culating the two components
of the result in cases when it was already provided by fprcpa. This solution is preferred to the one
that would check the input operands and decide whether the result is aready there when the output
predicate is cleared - this would only lengthen the execution timein all cases. The sequence of
steps inlined by the compiler for aparallel divide operation is outlined below (but the actual
implementation may be different):

Yo = V/b[1+¢gg), [gg < 2™ forcpa table lookup
intermediate parallel computation steps predicated by fprcpa output

B predicate

g, = (g +rq Ey3)md result = g,; predicated by forcpa
go to “done” if fprcpa output predicate is 1 branch predicated by fprcpa

output predicate

unpack parallel operands into scalar operands
normalize scalar operands

Yo = 1/bO1+ So)- ‘80‘ <™ frcpa table lookup for the low half

intermediate scalar computation steps - low half predicated by frcpa output
predicate

g3 = (q3)md low result = ¢, ; predicated by
the frcpa output?'predicate

Yo = 1/bO1+ So)- ‘80‘ <™ I)f]r;:f?a table lookup for the high

intermediate scalar computation steps - high half predicated by frcpa output
predicate

q's = (q3)rnd high result = q"5; predicated by

frcpa output predicate

pack the low half and high half of the result
done : store result

Note though that the sequence outlined above has to be implemented so as to handle correctly all
the floating-point exceptions.
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An observation has to be made regarding the denormal fl oating-point exceptions raised when
computing the result of a divide operation. In the case of the parallel divide, the last operation in
the sequence (using the user status field 0) may receive adenormal input generated by the previous
computation step (using status field 1), even though none of the original input operandsa and b
was denormal. Thiswill cause raising the denormal operand exception (setting the D status flag in
statusfield O if the denormal exceptions are disabled, or taking adenormal trap if they are enabled).
This situation can be resolved by scaling the input operands at the beginning, and by scaling the
result accordingly at the end of the computation.

Frequency Estimation of the Architecturally
Mandated Pseudo-SWA Faults for Parallel
Floating-point Divide

For the parallel single precision format, even though there is no architecturally mandated SWA, an
evaluation similar to that for the floating-point register file format can be made for the number of
pointsin the (e, &,) plane, for which fprcpa will return the best approximation it can provide for
the reciprocal 1/ b, but will clear the output predicate:

Niot = (2127 +1)°= 65025
Nyoswa = (20127 - 3) [(2 (127— 24 —% 127 mz&% [(127— 24— 1 ({127— 24

= 2510230-127064— 5100103= 57730 8128 5253 44349
Ngpya = 65025 -44349 = 20676

where N;; represents the total number of possible pairs of exponents for aand b, Nyogaa 1S the
number of points for which user level software assistance is not needed, and Ngp denotes the
number of pointsfor which user level software assistance (pseudo-SWA) is needed.

From here:
Ngwa’ Nior = (20676/65025) (100 = 31.797 %

This calculation assumes that all the possible exponents of a and b have equal probability of
occurring when computing a/b.

Architecturally Mandated Pseudo-SWA Conditions
for Parallel Floating-point Square Root

For the parallel squareroat, if Jai and ﬁ haveto be calculated, thefprsgrta instruction provides
initial approximations of 1/ Jaj and 1/ ,/a, that allow starting a Newton-Raphson or similar
iterative process to compute the correctly rounded val ues of Ja: and Ja; as specified by the
|EEE-754 Standard for Binary Floating-point Computations [3]. The sample algorithm presented
below might not generate the IEEE correct result if some of the intermediate computation steps
lose precision. For simplicity, the computation is presented only for one set of single precision
input values.

Consider the following algorithm for calculating ./a in single precision, wherey, is an 11-bit
approximation of 1/./a, thevauesa, h, ty, ty, t4, y1, S H, D, Sy, Hy, di, and R are floating-point
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numbers with Ng = 24 bits in the significand (single precision), rn isthe |IEEE rounding to nearest
mode, and rnd is any |EEE rounding mode. The precision of the calculation isindicated for each

step.

L yo = 1/Jall+gg), ggs2 m= 8831 table lookup

2. h=(1/20,),, single precision
3.t = (@b, single precision
4.t = (V/2-t.Th) | single precision
5.y = Yo+t 00),, single precision
6. S=(aby),, single precision
7. H=(1/20,),, single precision
8. d=(a-S®),, single precision
9. t, = (V2-SH),, single precision
10. §; = (S+dH),, single precision
11 Hy = (H+t,TH), single precision
12. d, = (a-S,[5y),, single precision

13. R = (S, +d; H,) single precision

rnd

The algorithm generates R = (./a)ng, the correctly rounded single precision value of ./a.

The condition that might cause certain intermediate steps to lose precision is the following, and it
identifies situations when the Itanium processor will have to issue a pseudo-software assistance
(SWA) request, by clearing the output predicate of fprsgrta:

{ eg< emin + N —1 ¢ might lose precision)

Whenfprsgrta asks for pseudo-SWA by clearing its output predicate, the floating-point output
register will contain the 11-bit approximation for the inverse/af . The code containing the
fprsgrta instruction will have to check the result predicate, if an IEEE correct answer is heeded.
Otherwise, for a non-IEEE square root one could simply multiply the approximation/af a. by

Note that if a pseudo-SWA request condition is met when the input is a denormal number and the
denormal exceptions are enabled, then the OS kernel trap handler will first invoke the SWA handler
(for a SWA fault). This will in turn convert the ISR code to that of a denormal exception and will
return it to the kernel. The operating system will then search for a corresponding user-registered
floating-point exception handler.

Similar to the register file format square root operation, each of the 13 computation steps above
translates into a parallel IA-64 assembly language instruction. The first and the last step use status
field O from the FPSR (the user status field), while all the intermediate steps use status field 1
(reserved for special computations by software conventions). Steps (2) through the last are
predicated by the output predicate of fixesgrta instruction (corresponding to step (1) above).

Thus, when the output predicatefjafsgrta (corresponding to step (1)) is cleared, steps (2) through

the last will be skipped. THersgrta instruction and the last instruction in the sequence need to

have the same output register.

Care has to be exercised when the output predicfpesgfta is cleared, as there is no easy way to

tell whether the floating-point output register contains the result of the parallel square root
operation, or just approximations to the inverse square roots of the two arguments. The solution is
to split the parallel operands in two in both cases (result provided or approximation), to perform
two scalar operations, and to pack the two halves of the result in the end. This means re-calculating
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the two components of the result in cases when it was already provided by fprsgrta. Thissolutionis

preferred to the one that would check the input operands and decide whether the result is already

there when the output predicate is cleared — this would only lengthen the execution time in all
cases. The sequence of steps inlined by the compiler for a parallel square root operation is outlined
below (but the actual implementation may be different):

€ < 2" forsgrta table lookup

Yo = 1/Jé|:(1+50).

intermediate parallel computation steps predicated by fprsqrta output

predicate

R=(§+d; I:Hl)rnd result = R; predicated by forsgrta

output predicate

branch predicated by fprsqrta

o to “done” if fprsqgrta output predicate is 1
g prsa putp output predicate

unpack parallel operands into scalar operands
normalize scalar operands

frsqrta table lookup for the low
Yo = 1/ Jal(l+gy), i P

—Mm
gg <=2 half

intermediate scalar computation steps - low half

R = (Sl + d1 [Hl)rnd

€ < 2™

Yo = 1/Jé|:(1+50).

intermediate scalar computation steps - low half

R" = (Sl+ dl [Hl)rnd

predicated by frsgrta output
predicate

low result = R’ ; predicated by
frsqrta output predicate

frsqrta table lookup for the high
half

predicated by frsgrta output
predicate

high result = R"; predicated by

frsqrta output predicate

pack the low and high half of the result
done: store result

Note that the sequence outlined above has to be implemented so as to handle correctly all the
floating-point exceptions.

An observation has to be made regarding the denormal floating-point exceptions raised when
computing the result of a square root operation. In the case of the parallel square root, the last
operation in the sequence (using the user status field 0) may receive a denormal input generated by
the previous computation step (using status field 1), even though the original input @peemd

not denormal. This will cause raising the denormal operand exception (setting the D status flag in
status field O if the denormal exceptions are disabled, or taking a denormal trap if they are enabled).
Just as for the parallel divide operation, this situation is resolved by scaling the input operand at the
beginning, and by scaling the result accordingly at the end of the computation.



Architecturally Mandated Pseudo-SWA Requests for Parallel Computations

Frequency Estimation of the Architecturally
Mandated Pseudo-SWA Faults for Parallel
Floating-point Square Root

For the parallel single precision format, even though there is no architecturally mandated SWA, a
similar evaluation can be made for the number of points on the e, axis, for which fprsgrta will
return the best approximation it can provide for 1/./a, but will clear the output predicate:

Nona/ Nigt = (24 + 1) / (2 - 127 + 1) - 100 = 9.8039 %

whereNgya denotes the number of points for which user level software assistance (pseudo-SWA)
is needed, anl; is the total number of possible exponentsafor

This calculation assumes that all the possible exponeathafe equal probability of occurring
when computing/a .
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Assistance Requests 6

Examples for Itanium processor-specific as well as | A-64 architecturally mandated SWA requests
are given in the following subsections.

Examples are also given of parallel floating-point operations that lead first to SWA faults or traps,
and then to other enabled floating-point exceptions. First, they are processed by the SWA handler
(IA-64 Floating-point Emulation Library), and then, by an optional Floating-point |EEE Filter and
by a user exception handler.

6.1 Examples of Itanium™ Processor-specific Software
Assistance Requests

Itanium processor-specific software assistance requests appear in two forms: Itanium
processor-specific software assistance faults and |tanium processor-specific software assistance
traps. These two cases will be illustrated separately.

6.1.1 Itanium™ Processor-specific Software Assistance Faults

Itanium processor-specific software assistance faults are raised when an input operand to an |A-64
instruction is unnormal or denormal (for parallel instructions unnormals other than denormals are
not representable), with the restrictions specified in Table 3-2. Software assistancein this caseis
necessary because the Itanium processor cannot handle input operands that are unnormal. One
exception occurs for the fnorm operation, which multipliesitsinput operand by 1.0, and adds 0.0 to
theresult. The exception isthat the fnorminstruction with an unnormal input will raise a SWA fault
only if the exponent of the input operand is O, or if the denormal exceptions are enabled. In this
|atter case, the SWA handler (the | A-64 Floating-point Emulation Library), will raise a denormal
operand (D) exception, and the operating system will ook for a user defined handler for denormal
exceptions.

A few examples of operations raising (or not raising) Itanium processor-specific SWA faults
follow. The examples, illustrating only the fma operation, are meant to cover avariety of situations
that are possible. In al the cases when a SWA fault israised, it is because one of the operandsis
unnormal (or denormal).

Examplel fmas0fl=f3,f4,f2
with rc = 0x00 (rounding to nearest), pc = 0x11 (64-bit significand), wre = 1 (17-bit exponent),
exceptions disabled, and:

f3= 102"
f4 = 00111...1 2" "' = 0.0111...1 (2~ %*7
f2 = 0.0
The fma instruction raises an Itanium processor-specific SWA fault because f4 contains an

unnormal.
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Floating-point status flags set: D, indicating an unnormal operand.
The result, normal and exact, is:

f1 = f304+2 = 1.11...100 2" "> = 1.11...100 [~ 8534+ 5

Note that if the denormal exceptions are enabled, the SWA handler raises a denormal exception.
Compare this example with Example 7 below, for fnorm.

Example2 fmas0fl=f3, f4,f2
with rc = 0x00 (rounding to nearest), pc = 0x11 (64-bit significand), wre = 1 (17-bit exponent),
exceptions disabled, and:

3 = 1.02°

f4 = 0.0111...1 2™ = 0.0111...1 [P
f2 = 0.0
The fma instruction raises an Itanium processor-specific SWA fault because f4 contains a
denormal.
Floating-point status flags set: D, indicating a denormal operand.
Theresult, tiny and exact, is:

—65534

f1 = f3F4+f2 = 0.0111...1 (""" = 0.0111...1 [p %

Note that if the denormal exceptions are enabled, the SWA handler raises adenormal exception. If
the denormal exceptions are disabled but the underflow exceptions are enabled, an underflow trap
is taken. Compare this example with Example 10 below, for fnorm (from Section 6.1.2).

Example3 fmas0fl=f3, f4,f2
with rc = 0x00 (rounding to nearest), pc = Ox11 (64-bit significand), wre = 1 (17-bit exponent),
exceptions disabled, and:

3 = 0.011...1 2™ = 0.011...1 %%

fa =102
f2 = 0.0
The fma instruction raises an Itanium processor-specific SWA fault because f3 contains a
denormal.
Floating-point status flags set: D, indicating a denormal operand; U, indicating aresult that istiny
and inexact; |, indicating aresult that is inexact.
The result, tiny and inexact, is:

€min —

f1 = f3[f4+f2 = 0.000100...0 (2" = 0.000100...0 [2~°****

Note that if the denormal exceptions are enabled, the SWA handler raises adenormal exception. If
the denormal exceptions are disabled but the underflow exceptions are enabled, an underflow trap
istaken. If the denormal and underflow exceptions are disabled but the inexact exceptions are
enabled, an inexact trap is taken.
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Example4 fmas0fl=f3,4,f2
with rc = 0x00 (rounding to nearest), pc = 0x11 (64-bit significand), wre = 1 (17-bit exponent),
exceptions disabled, and:

f3 = 0.011...1000 (2™ = 0.011...1000 [2
f4=10m@°

f2 = 0.0

The fma instruction raises an Itanium processor-specific SWA fault because f3 contains a
denormal.

Floating-point status flags set: D, indicating a denormal operand.

Theresult, tiny and exact, is:

—65534

f1 = f3[F4+f2 = 0.000011...1 (2" = 0.000011...1 (R 2

Note that if the denormal exceptions are enabled, the SWA handler raises a denormal exception. If
the denormal exceptions are disabled but the underflow exceptions are enabled, an underflow trap
is taken.

Example5 fmasOfl=f3,f4,f2
with rc = 0x00 (rounding to nearest), pc = 0x00 (24-hit significand), wre = 0 (15-hit exponent),
exceptions disabled, and:
0
f3 =102
f4 = 0.0111111111111111111111100...0 (™"
—16382

0.0111111111111111111111100...0 2

f2 = 0.0

Note that f4 is represented as an 1A-32 stack single real denormal (1-bit sign + 15-bit exponent +
24-hit significand). In floating-point register file format, it will have a biased exponent of 0 instead
of Oxc001.

The fma instruction raises an Itanium processor-specific SWA fault because f4 contains a
denormal.

Floating-point status flags set: D, indicating a denormal operand.
Theresult, tiny and exact, is:

f1 = f3F4+f2 = 0.0111111111111111111111100...0 ™"
—-16382

0.0111111111111111111111100...0

Note that if the denormal exceptions are enabled, the SWA handler raises adenormal exception. If
the denormal exceptions are disabled but the underflow exceptions are enabled, an underflow trap
is taken. Compare this example with Example 8 below, for fnorm.
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Example6 fmas0fl=1f3, {4, f2
with rc = 0x00 (rounding to nearest), pc = 0x10 (53-bit significand), wre = 0 (15-bit exponent),
exceptions disabled, and:

3 = 1.0 2°

f4 = 0.011111...100000000000 (2" =
0.011111... 100000000000 2 0%

f2 = 0.0

Note that f4 is represented as an |A-32 stack double real denormal (1-bit sign + 15-bit exponent +
53-bit significand). In floating-point register file format, it will have a biased exponent of 0 instead
of 0xc001.

The fma instruction raises an Itanium processor-specific SWA fault because f4 contains a
denormal.

Floating-point status flags set: D, indicating a denormal operand.
The result, tiny and exact, is:

fl1 = f304+f2 =
0.0111... 100000000000 (2" =

0.0111...100000000000 (216382

Note that if the denormal exceptions are enabled, the SWA handler raises adenormal exception. If
the denormal exceptions are disabled but the underflow exceptions are enabled, an underflow trap
istaken.

Example7 fnorm.s0f1=1f3
with rc = 0x00 (rounding to nearest), pc = 0x11 (64-bit significand), wre = 1 (17-bit exponent),
exceptions disabled, and:

f3 = 0.0111...1 2" = 0.0111...1 (P~ %%**7

Floating-point status flags set: D, indicating a denormal operand.
The result, normal and exact, is:

.+ —
fl = f3[.0+0.0 = 1.11...100 (2™ " = 1.11...100 [~ %"
The fnorminstruction (pseudo-op for fma) does not raise a SWA fault, even though f3 contains an
unnormal, because its biased exponent in floating-point register file format is not 0, and the
denormal exceptions are disabled. To compute the result, which is normal and exact, the hardware
shifts left the significand and decrements the exponent. Note that if the denormal exceptions are
enabled, the SWA handler raises a denormal exception. Compare this example with Example 1
above, for fma.

Example8 fnorm.s0 f1=1f3
with rc = 0x00 (rounding to nearest), pc = 0x00 (24-bit significand), wre = 0 (15-bit exponent),
exceptions disabled, and:

f3 = 0.0111111111111111111111100...0 2™ =
—16382

0.0111111111111111111111100...02
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Note that f3 is represented as an 1A-32 stack single real denormal (1-bit sign + 15-bit exponent +
53-bit significand). In floating-point register file format, it will have a biased exponent of 0 instead
of Oxc001.

The fnorminstruction (pseudo-op for fma) raises an Itanium processor-specific SWA fault because
f3 contains a denormal, and its biased exponent in floating-point register file format is 0.

Floating-point status flags set: D, indicating a denormal operand.
The result, tiny and exact, is:

f1 = f3[.0+00 = 0.0111111111111111111111100...0 [2°™" =
—-16382

0.0111111111111111111111100...0 2

If the denormal exceptions are enabled, then a SWA fault is raised, but the SWA handler raises a
denormal exception. If the denormal and the underflow exceptions are disabled, the result, tiny and
exact, will leave unchanged the U status flag in the appropriate status field of the FPSR. If the
underflow exceptions are enabled, the tiny result causes an underflow trap to be raised. Compare
this example with Example 5 above, for fma.

Example9 fnorm.s0f1=f3
with rc = 0x00 (rounding to nearest), pc = 0x11 (64-bit significand), wre = 0 (15-bit exponent),
exceptions disabled, and:

f3 = 0.0111...1 2™ = 0.0111...1 [p 62

Note that f3 is represented as an 1A-32 stack double-extended real denormal (1-bit sign + 15-bit
exponent + 64-bit significand). In floating-point register file format, it will have a biased exponent
of 0 instead of Oxc001.

The fnorminstruction (pseudo-op for fma) raises an Itanium processor-specific SWA fault because
f3 contains a denormal, and its biased exponent in floating-point register file format is 0.
Floating-point status flags set: D, indicating a denormal operand.

Theresult, tiny and exact in double-extended precision, is:

€min —

f1 = f30LO+0.0 = 0.0111...1 2" = 0.0111...1 2%

If the denormal exceptions are enabled, then a SWA fault is raised, but the SWA handler raises a
denormal exception. If the denormal and the underflow exceptions are disabled, the result, tiny and
exact, will leave unchanged the U status flag in the appropriate status field of the FPSR. If the
underflow exceptions are enabled, the tiny result causes an underflow trap to be raised.

Sampl e source code for the examples aboveisincluded in Section 6.1.3.

Itanium™ Processor-specific Software Assistance Traps

Itanium processor-specific software assistance traps are raised when the underflow traps are
disabled, if the result of a floating-point instruction istiny (tininess is evaluated after rounding to
the destination precision, with unbounded exponent range), and the flush-to-zero mode is disabled.
This means that the result requires denormalization, i.e. shifting right of the significand and
incrementing the exponent (in the simplest case), operations that the hardware cannot perform.

A few examples of operations raising (or not) Itanium processor-specific SWA traps follow.
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Example 10 fnorm.s0 f1 = f3
with rc = 0x00 (rounding to nearest), pc = Ox11 (64-bit significand), wre = 1 (17-bit exponent),
exceptions disabled, and:

3 = 0.0111...1 ™"

Floating-point status flags set: D, indicating a denormal operand.
The result, tiny and exact, will be:

f1 = f30L.0+00 = 0.0111...1 2™

In the example above, the fnorm instruction (pseudo-op for fma) does not raise a SWA fault, even
though f3 contains a denormal, because its biased exponent in floating-point register file format is
not 0, and the denormal exceptions are disabled. If the denormal exceptions are enabled, then a
SWA fault is raised, but the SWA handler raises further a denormal exception. If the denormal and
underflow exceptions are disabled, the result, tiny and exact, will leave unchanged the U statusflag
in the appropriate status field of the FPSR, and will cause raising an Itanium processor-specific
SWA trap. If the underflow exceptions are enabled, the tiny result will cause raising of an
underflow trap. Compare this example with Example 2 above, for fma.

Example 11 fmas0 f1 = {3, 4, f2
with rc = 0x00 (rounding to nearest), pc = Ox11 (64-bit significand), wre = 1 (17-bit exponent),
exceptions disabled, and:

3 = 1.11...100 (2™ = 1.11...100 [ >

-5
Yz 1007
The fma instruction raises a SWA trap because its result is a tiny floating-point number.
Floating-point status flags set: U, indicating aresult that istiny and inexact; |, indicating aresult
that is inexact.

The result, tiny and inexact, is:

f1 = f3F4+f2 = 0.000100...0 (2™ = 0.000100...0 (R °®*

Note that if the underflow exceptions are enabled, the SWA handler raises an underflow exception.
If the underflow exceptions are disabled, but the inexact exceptions are enabled, then the SWA
handler raises an inexact exception.

Example 12 fma.s0 f1 = f3, f4, 2
with rc = 0x00 (rounding to nearest), pc = 0x11 (64-hit significand), wre = 1 (17-bit exponent),
exceptions disabled, and:

f3 = 1.11...100000 (2™ = 1.11...100000 [ >4

f4 = 10@2°
f2 = 00

The fma instruction raises a SWA trap because its result is a tiny floating-point number.
Floating-point status flags set: none.
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The result, tiny and exact, is:

f1 = f3F4+f2 = 0.0000111...1 (2°™ = 0.0000111...1 (22>

Note that if the underflow exceptions are enabled, the SWA handler raises an underflow exception.
Example 13 fmas0 f1 = {3, 4, f2

with rc = 0x01 (rounding to minusinfinity), pc = 0x00 (24-bit significand), wre = 1 (17-bit
exponent), exceptions disabled, and:

f3 = 1.11...100000 (2™ = 1.11...100000 (>4

f4 =10@°
f2 = 0.0
The fma instruction raises a SWA trap because its result is tiny.

Floating-point status flags set: U, indicating aresult that istiny and inexact; |, indicating aresult
that is inexact.

Theresult, tiny and inexact, is:

f1 = f3F4+f2 = 0.0000111111111111111111100...02™"
—65534

0.0000111111717111111122121100...0 2

Notethat if the underflow exceptions are enabled, the SWA handler raises an underflow exception.
If the underflow exceptions are disabled, but the inexact exceptions are enabled, then the SWA
handler raises an inexact exception.

Example 14 fmas0 f1 = {3, 4, 2

with rc = 0x10 (rounding to plusinfinity), pc = 0x00 (24-bit significand), wre = 0 (15-bit
exponent), exceptions disabled, and:

€min(17 bits) —65534

f3 = 1.11...100000 [P = 1.11...100000 [P

f4 = 1.0
f2 = 0.0

(Note that the value in f3 is outside the range of numbers representable with 15-bit exponents.)
The fmainstruction raises a SWA trap because its result istiny.

Floating-point status flags set: U, indicating aresult that is tiny and inexact; |, indicating a result
that is inexact.

The result, tiny and inexact, is:

fl = f304+f2 =

0.0000000000000000000000100...0 (2™ =

0.0000000000000000000000100....0 L2

Notethat if the underflow exceptions are enabled, the SWA handler raises an underflow exception.
If the underflow exceptions are disabled, but the inexact exceptions are enabled, then the SWA
handler raises an inexact exception.

Sampl e source code for the examples above isincluded also in Section 6.1.3 below.
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Sample Code for Examples of Itanium™ Processor-specific
Software Assistance Faults and Traps

Sampl e source code for the examples presented in the two previous subsectionsisincluded next. A
simpletest driver (writtenin C), calls the IA-64 assembly routines run_fma () and run_fnorm () to
execute the fma and fnor m operations with given input operands and Floating-point Status Register
(run_fnorm () is not shown).

mai n. c:

#i ncl ude <stdio. h>

typedef struct {

__int64 LowPart;
__int64 HighPart;

} FLOAT128;

void run_fma (unsigned __int64 *fpsr,
FLOAT128 *d, FLOAT128 *a, FLOAT128 *b, FLOAT128 *c); // d = a * b + ¢c
voi d run_fnorm (unsigned __int64 *fpsr, FLOAT128 *d, FLOAT128 *a);

voi d
main ()

/1 d=a* 1.0+ 0.0

FLOAT128 a, b, c, d;
unsigned __int64 fpsr;
int *p;

p = (int *)&d;

// EE R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R Ik kR //

[ | *xxxxxxsxksx | TANIUM PROCESSOR SPECI FI C SWA FAULTS ****#xkxsxssssx [ ]

[ ] RERKKK KR KKK KA KKK KK KA KRR K KK A A AR K KK KA AR K KK A AR XK KA A A KKKk kR Ak hk ok ok xkx k[ ]

/'l Exanple 1

// unnormal operand(s), traps disabled, rn
[/ fpsr = 0x003bf - sf0: rc=00, pc=11, we=1l, traps dis.
// 1.0 * 220 * 0.011...1 * 2"(€mn 17 bits * 7) + 0.0 =
/1 1.11...100 * 2°(€pin 17 bits + 5)

fpsr = (unsigned __int64)0x03bf; o

a. Hi ghPart = 0x000000000000ffff; a.LowPart
b. Hi ghPart 0x0000000000000008; b. LowPar t

run_fma (& psr, &, &a, &b, &c);
printf (‘RN d [HH, HL, LH, LL] = %8x %8x %8x %8x PUOZDI = %2x\n”
p[3], p[2], p[1], p[O], (short int)((fpsr >> 13) & 0x3f));

/I Example 7
/I unnormal operand(s), traps disabled, rn

1l fpsr = 0x003bf - sf0: rc=00, pc=11, wre=1, traps dis.
//0.011...1 * 27\(e min_ 17 bits ¥ 7)*1.0*2"0+0.0=

0x8000000000000000;
Ox3fffffffffffffff;
c. H ghPart = 0x0000000000000000; c.LowPart = 0x0000000000000000;



I

run_fma:
{.mmi
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/1 1.11...100 * 2"(enin 17 bits * D)
fpsr = (unsigned __int64)0x03bf; o
a. HighPart = 0x0000000000000008; a.lLowPart = Ox3fffffffffffffff;
b. H ghPart = 0x000000000000ffff; b.LowPart = 0x8000000000000000;
c. Hi ghPart = 0x0000000000000000; c.LowPart = 0x0000000000000000;
run_f norm (&f psr, &d, &a);
printf (‘RN d [HH, HL, LH, LL] = %8x %8x %8x %8x PUOZDI = %2x\n”,

p[3], p[2], p[1], p[O], (short int)((fpsr >> 13) & 0x3f));

I I
[ wexxsocexseess | TANIUM PROCESSOR SPECIFIC SWA TRAPS trsitxsitcxsircs

" 1
/I Example 10

/I unnormal operand(s), traps disabled, rn

/I fpsr = 0x003bf - sf0: rc=00, pc=11, wre=1, traps dis.

//0.011...1 * 2™(e nin 17 bits) *1.0*270+ 0.0 =

" 0.011...1 * 2°(e Win 17 bits)

fpsr = (unsigned __int64)0x03bf; o

a.HighPart = 0x0000000000000001; a.LowPart = Ox3fffffffffffffff;

b.HighPart = 0x000000000000ffff; b.LowPart = 0x8000000000000000;

c.HighPart = 0x0000000000000000; c.LowPart = 0x0000000000000000;

run_fnorm (&fpsr, &d, &a);

printf (‘RN d [HH, HL, LH, LL] = %8x %8x %8x %8x PUOZDI = %2x\n",
p[3], p[2], p[1], p[O], (short int)((fpsr >> 13) & 0x3f));

/I Example 11

/I normal operands, unnormal result, traps disabled, rn

/I fpsr = 0x003bf - sf0: rc=00, pc=11, wre=1, traps dis.

//1.11...100 * 27(e mn 17 bits) * 1.0*27(-5)+ 0.0 =

I 0.00001...1 * 2(e win 17 bits)

fpsr = (unsigned __int64)0x03bf; o

a.HighPart = 0x0000000000000001; a.LowPart = Oxfffffffffffffffc;

b.HighPart = 0x000000000000fffa; b.LowPart = 0x8000000000000000;

c.HighPart = 0x0000000000000000; c.LowPart = 0x0000000000000000;

run_fma (&fpsr, &d, &a, &b, &c);

printf (“RN d [HH, HL, LH, LL] = %8x %8x %8x %8x PUOZDI = %2x\n”
p[3], p[2], p[1], p[O], (short int)((fpsr >> 13) & 0x3f));

run_frma.s

file “run_fma.s”
.section .text
.align 32

.proc run_fma#
.global run_fma#
.align 32
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alloc r31=ar.pfs,5,2,0,0 // r32, r33, r34, r35 r36, r37, r38
/Il & psr is in r32

/1 & rl (output) is in r33

/1 & r2 (input) is inr34

/1 & r3 (input) is inr35

/Il & r4 (input) is in r36

/1l save old FPSR in r37
mov r37 = ar40
nop.i O;;

/1 load new fpsr in r38
1d8 r38 = [r32];;

/'l set new val ue of FPSR
nov ar40 = r38

nop.i O;;

/1 load first input argument into f8
ldf . fill f8 = [r34]

/1 1oad second input argunent into f9
ldf . fill f9 = [r35]

nop.i O;;

P

/1 load third input argunent into f10
[df . fill f10 = [r36]

nop. m O
nop.i O;;
P{ .nfi
nop. moO
(p0) fma.sO f11 = f8, f9, f10 // f11 = f8 * f9 + f10
nop.i O;;
p{o.omm

/'l store result
stf.spill [r33] =f11
// save new FPSR in r38
mov r38 = ar40

nop.i O;;

/'l store new fpsr fromr38
st8 [r32] =r38
/'l restore FPSR
nmov ar40 = r37
nop.i O;;
}{ .mb
nop. moO
nop.i O
/1 return
br.ret.sptk b0

.endp run_fnma
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Examples of 1A-64 Architecturally Mandated
Software Assistance Requests

Divide
1) Condition (a):

ebsemin_l

Example: The exponents of a = 1.11733%%0and b = 0.00000101 ~#534= 1.01 - 2655%0g4isfy
condition (@), but no other condition for architecturally mandated software assistance.

2) Condition (b):

€ = Enax— 2
Example:
The pair

a = 1.0

b=1111.. 102%™ 2 = 1.111...12%%®

satisfies condition (b), but no other condition for software assistance.

As an exercise, the precision loss jitgn be evaluated in this case. Without a software assistance
request fronfrcpa, the algorithm for double-extended and floating-point register file format inputs
generates the valyg* (the value of the second approximatinof 1/b before rounding) that is
shown below:

y]_D - (264_240 +1+ 2—9 + 2—20) 9—65533— 65 -

(263+262+ 4%, 1+2—9+2-20) P
(1+ PR R R 2‘83) 2

65533-65 _

—65535

But this is tiny, as g, = 65534, and will be represented as a denormal. When denormalizing, the
least significant bit which is 1 (the 64-th bit above) is shifted out, and by rounding to nearest, the
previous bit, which was 0, becomes 1:

y, = 0.111...1100...01 2~ ***

where the fraction contains 24 consecutive 1's, followed by 39 consecutive 0’s, followed by a 1.
Represented in hexadecimal on 82 bits as a floating-point register file format number (17-bit
exponent and 64-bit significand) this becomes:

00001 7ffff80000000001

The effect of this accuracy lossyinis that the final result fa/b might be incorrect (in reality, for
this particular case, the precision loss is not catastrophic, i.e. the final result would not be affected;
other examples can be found for condition (b) where the precision loss really matters).
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Without the architecturally mandated SWA requests, the operation producing y; (an fma) would
create adenormal, and it would lead to an Itanium processor-specific SWA trap. The operation
consuming y; (also an fma), would then raise a SWA fault. This may further happen also for ys, ya,
and y,. Therefore (not mentioning accuracy), the performance is better if frcpa asks directly for
SWA in this case.

3) Condition (c):
€a — € = Emax

Example: The exponents of a = 1.01%%8 and b = 1.11 95530 satisfy condition (c), but no
other condition for architecturally mandated software assistance.

4) Condition (d):
€~ <emptl

Example: The exponents of a = 1.01°%%3¢ and b = 1.11 -85 satisfy condition (d), but no
other condition for architecturally mandated software assistance.

5) Condition (e):
eaS emin +N-1
Example 1: if

N-1 —65487

a = 1.111...110001 2" = 1.111...110001 (2

and

b = 1.111...1110000 (22

(with 64-bit significands), the algorithm for double-extended precision and register file format
floating-point numbers producetb = 1.0 - %47 instead of the correctly rounded resati =
1.0...01 - F477,

Example 2: The exponents of a = 1.01923 and b = 1.11 -"%530 satisfy condition (e), but no
other condition for architecturally mandated software assistance.

Note that all the cases whaior b are denornal in floating-point register file format, are covered by
the conditions for architecturally mandated SWA. In such cases, the SWA handiepdarill
return the correct result for the divide. Fprcpa, if any input is denormal, the SWA handler will

just return an approximation for 1 / b (but not necessarily one that can be used to start a
Newton-Raphson or similar iterative calculation for the result of the divide operation).

Square Root
The condition for architecturally mandated SWA is:
€a<€Emint N-1

This tells that i, > &, + N — 1, a valid normal value will be returnedfbsgrta or fprsgrta as an
approximation to 1//a .
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Example 1: If aisafloating-point register file format value:

a= 1111112 Nt = 119111

the algorithm for double-extended precision and register file format floati ng—Poi nt numbers
produces ./a = 1.0 (22" instead of the correct result ./a = 1.11...11 (22", The |EEE correct
value of ./a will be calculated by the SWA handler.

Example 2: The exponent of a = 0.00000101 95534 = 1,01 - P55 satisfies the condition for

architecturally mandated software assistance, and the IEEE correct valae of will be calculated
by the SWA handler.
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IA-64 Floating-point Emulation Library [

The first section describes the method for installing the 1 A-64 Floating-point Emulation Library as
an EFI driver. The second section describes the API defined for the | A-64 Fl oating-point
Emulation Library. The API is defined to be independent of the operating system. The last
subsection illustrates the integration of 1A-64 Floating-point Emulation Library with the operating
system.

It is assumed that the reader isfamiliar with the Extensible Firmware Interface (EFI) Specification
[4]. Where necessary, apprpropriate references will be made to the relevant sections of the EFI

Spec.

7.1 EFI Floating-point SWA Driver

This section outlines a method for incorporating the Intel provided |A-64 Floating-point Emulation
Library (Floating-point Software Assistance Handler, or FP SWA handler) on an Itanium processor
based platform.

The Extensible Firmware Interface (EFI) provides services for loading runtime driver images into
memory. The FP SWA handler is encapsulated as an EFI runtime driver image. This allowsthe
loading of the FP SWA handler before an operating system is loaded. The topics discussed include:

¢ Installing an FP SWA driver.

* Updating an FP SWA driver.

¢ |oading an FP SWA driver.

* |dentifying an FP SWA driver from an OS Loader or an OS Kernel.

7.1.1 Introduction to EFI Drivers

Thefollowing is abrief introduction to EFI drivers. For more details, please refer to the EFI
Specification [4].

EFI drivers can be coded in most high level languages, including C, and are relocatable. Aswith
any EFI driver image, it may be loaded through several mechanisms:

1) loaded from firmware storage device

2) loaded from afile on an EFl System Partition, or

3) loaded from any location that is accessible by EFI (Network, add-in device’s option ROM, etc.).

An EFI driver can also be replaced with a newer revision of the same driver. The update is
performed either from the EFI firmware or under control of an OS.

Once a runtime EFI driver is loaded, the EFI firmware marks the memory used by the driver as not
available for OS use and further indicates the range as requiring an OS virtual address mapping.
This allows the OS to make calls into the runtime driver from within its native OS virtual mapping,
and if it is appropriate for the function call to be performed with interrupts enabled. Before the OS
uses any EFI components in virtual mode, it supplies EFI with the set of virtual mappings required.
EFI notifies all runtime components, thus mapping the images to the new virtual addresses.
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7.1.2

7.1.2.1

7.1.2.2

7-2

FP SWA EFI Driver

The FP SWA driver may be included in non-volatile firmware storage device (e.g. flash memory)
along with the rest of firmware components (PAL and SAL), and/or it may be in adirectory on an
EFI system partition (on hard disk). To support the identification and serviceability goals, the FP

SWA driver needs to be locatable and identifiable such that newer versions may automatically be
applied by custom setup or OS setup functions. To accomplish this:

* When installed on an EFl System Partition, the FP SWA driver image will be called
“f pswa. ef i ”, and will be installed in thel'nt el Fi r nwar e” directory within the EFI
directory. The file path for the FP SWA driver from the root of an EFI System Partition is
“\EFI\Intel Firmvare\fpswa.efi”.

This allows for custom or OS setup and utility functions to locate the FP SWA image if the
image resides on the EFIl System Partition.

* Thedriver will have amonotonically increasing major and minor revision number assigned to
it (these will be stored in the high, and low 16 bits of the Revision field of the Fpswal nterface
variable of type FPSWA_INTERFACE respectively). This revision number and the FP SWA
GUID (Guaranteed Unique Identifier) will be included in a PE (portable executable file
format) [5] resource on the image.

This allows for custom or OS setup and utility functions to automatically determine if they
have a new copy and the EF| systemto determineif it has a newer version of the driver at load
image time.

¢ Thedriver will have provision to be loaded at an operating system prescribed virtual address.
The FP SWA driver implementation allows for the relocation of the entry point and
demonstrates its usage.

This allows for the OSto call the driver from within the context of the kernel, thus saving the

need for heavy-weight mode transitioning operations (e.g., switch to physical mode and

flushing TLB’s, synchronizing processors in a multiprocessor system, etc.). See Chapter 3 of
the EFI Specification [4] for more details.

In addition, the presence of an EFI System Partition install option allows providing tools that
maintain the FP SWA component on the platform. These tools can update the existing FP SWA
driver, even if thedriver isin the ROM. The key dataitem to which an OSV must pay attention is
the globally defined variable that prescribes the loading of the FP SWA driver. For the load order,
theDri ver Or der global variable and the associated Dr i ver XXXX variable will be stored in
NVRAM:; please refer to Chapter 17 of the EFI Specification [4]. EFI supports overriding the
built-in ROM version of adriver with one on the EFI System Partition.

OEM Requirements

OEMs must ship the platform with the Intel provided FP SWA EFI driver installed on the platform

(either on firmware storage media or on EFI system partition). This ensures that the platform will

have the necessary FP SWA EFI driver in the event that an OS does not have the driver or has an

older revision of FP SWA EFI driver. This also provides a path for OEM’s to upgrade the FP SWA
EFI driver.

Operating System Vendor (OSV) Requirements

OSVs must include the latest version of the Intel provided FP SWA EFI driver with the OS and
related service packs at the time of shipment. During OS or service-pack installation, the OS setup
procedure shall ;

1. Check for the presence of an FP SWA EFI driver on the platform.*
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2. Compare the version of the FP SWA EFI driver included with the OS with the version found
on the platform.

3. If the OS FP SWA EFI driver version is more recent than the version found on the platform,
the OS must update the platform with the most recent version.

*If no FPSWA EFI driver isfound on the platform, the OS must install the FPSWA EFI driver
contained on the OS media.

For instances when the OS isinstalled on a machine that has the FP SWA EFI driver missing, the
OS Loader shall, on failure to detect the FP SWA Protocol interface, usethe EFI Load| mage()
operation to dynamically load the FP SWA driver included with the OS media before transferring
control to the OS setup procedure. The OS setup procedure must install the FP SWA driver on the
EFl System Partition, and update the Dr i ver Or der and Dr i ver XXXX environment variables.

FP SWA EFI Driver Functionality

Providing the FP SWA handler as an EFI driver does not mean that code within the driver that
provides the useful FP SWA functionality actualy utilizes the EFI mechanism in any way other
than to load the binary code into memory. The FP SWA handler code does not use the EFI services.
Thisissimilar to other EFI runtime drivers that keep their functionality lightweight. Most of the
EFI core services only materialize during the boot-services phase and are not available during
runtime.

FP SWA EFI Driver Implementation

The following header file example definesthe EFI _| NTEL_FPSWA Protocol. Thisincludesa
GUID (Guaranteed Unique Identifier) and a protocol interface structure. The GUID is used to
identify the FP SWA image and FP SWA Protocol interface structure. The protocol interface
structure only contains arevision field and a single entry point into the FP SWA handler.

#define EFI _| NTEL_FPSWA
{c41b6531- 97b9- 11d3- 9a29- 0090273 c14d}

typedef struct _FPSWA | NTERFACE {
Ul NT32 Revi si on;
Ul NT32 Reserved;
EFl _FPSWAFpswa;

} FPSWA | NTERFACE;

typedef struct _FPSWA RET {

Ul NT64 st at us;
Ul NT64 errl;
Ul NT64 err2;
Ul NT64 err3;

} FPSWA RET;
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typedef FPSWA RET (EFI APl *EFl _FPSWA) (

I N U NTN TrapType,
IN QUT VO D *Bundl e,
I N QUT Ul NT64 *pi psr,

I N OUT Ul NT64 *pf sr,

I N OUT Ul NT64 *pi sr,

I N OUT Ul NT64 *ppr eds,
I N OUT Ul NT64 *pifs,

IN QUT VO D *fp_state

),

On initialization, the EFI driver checksto seeif thereis an FP SWA driver aready installed by
utilizing the Locat eHandl e() and Handl ePr ot ocol () functions. If thereisasucha
driver, its Revi si on is checked against that of the current driver. If the current driver is newer, it
unloads the previous driver. |If the current driver is not newer, an error code is returned from its
initialization procedure and the driver isunloaded. After all of the FP SWA driversthat have been
registered with the EFI firmware have been initialized, there will be only one FP SWA driver in
memory, and this driver will be the one with the highest Revi si on.

7.1.3 OS Loader / OS Initialization Requirements

An OS Loader or an OS Kernel isrequired to perform the following steps to make use of the FP
SWA handler.

Call Locat eHandl e() to find the handle to the FP SWA driver

Cdl Handl ePr ot ocol () to retrieve the FP SWA Protocol instance.
Save the physical address of the FP SWA Protocol interface

Call Exi t Boot Ser vi ces()

Call Set Vi rt ual Addr essMap()

Usethe physical address of the FP SWA Protocol interface to retrieve the virtual address of the
FP SWA entry point.

Enable the FP SWA handler

The following code fragment shows the code required before Exi t Boot Ser vi ces() is
called.
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#define EFI _I NTEL_FPSWA \
{ Oxc41b6531, 0x97b9, 0x11d3, \
0Ox9a, 0x29, 0x0, 0x90, 0x27, O0x3f, Oxcl, O0x4d }
EFI _GUI D Fpswal d = EFI _| NTEL_FPSWA,

EFI _STATUS St at us;
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Ul NTN Buf f er Si ze;
EFI _HANDLE *Handl eBuf f er ;
EFI _HANDLE FpswaHandl e;

FPSWA_| NTERFACE * Fpswa,

Buf fer Si ze = si zeof (EFlI _HANDLE) ;

St at us = BS->Locat eHandl e( ByPr ot ocol ,
&Fpswal d,
NULL,

&Buf ferSize,
&FpswaHandl e
)
i f (EFI _ERROR(Status))
return(Status);/* return error */

Status =
Syst enflabl e- >Boot Ser vi ces- >Handl ePr ot ocol (
FpswaHandl e,
&Fpswal d,
&Fpswa
);
i f (EFI _ERROR( St at us))
return(Status);/* return error */

The value of Fpswa isa physical pointer to the FP SWA Protocol interface. This value must be
saved so that the FP SWA handler entry point can be extracted at alater time.

Once the physical address of the FP SWA interfaceis obtained by the OS loader or OS
initialization code, the OS loader must call the ExitBootServices() function and setup the
appropriate virtual mapping for the FP SWA using SetVirtual AddressMap() function. Once

Exi t Boot Servi ces() andSet Vi rt ual Addr essMap() havebeen called, the FP
SWA driver will be at its new virtual address, and the FP SWA Protocol interface structure Fpswa
will contain the virtual address of the FP SWA handler entry point. The OS can use this FP SWA
handler entry point to service floating-point software assi stance reguests (floating-point SWA
faults and floating-point SWA traps).

Floating-point SWA Handler API - API for the |1A-64
Floating-point Emulation Library

There is only one top-level function in the | A-64 Floating-point Emulation Library (FP SWA
handler), Fpswa(), which resolves all the cases of architecturally mandated SWA faults and of
Itanium processor-specific SWA faults and traps. The Floating-point Emulation Library also
includes part of FP82 Floating-point Reference Library, that isinvoked for cases of Itanium
processor-specific SWA faults. The pseudo-code for the FP82 Floating-point Reference Library

functions used in floating-point emulation is shown in the “IA-64 Software Developer’s Guide”

(1]
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It is assumed that:

1. The FP SWA handler isin LE (little endian) mode only.
The FP SWA handler uses registers from the register stack.
The FP SWA handler uses standard C calling conventions.
The FP SWA handler does not call back to the OS.

The FP SWA handler will ook at the first two fields in the data structure pointed at by itslast
parameter (see below), for the type of the floating-point state passed to it. If the state isless
than the full floating-point register state, it will use the actual physical floating-point registers
that are not present in the floating-point state for any updates.

g > w DN

Based on these assumptions, the operating system kernel should call the FP SWA handler as:
FPSWA_RET Fpswa (

int trap_type,
BUNDLE *pbundl e,
__int64 *pi psr,
__inté4 *pf psr,
__inté4 *pi sr,
__inté4 *ppr eds,
_int64 *pifs,
FP_STATE *fp_state

)
where __int64 stands for the 64-bit integer data type.

The list of parameters, their type (input and/or output), and their usage are the following (for
parameters which are pointers, the input or output attribute refers to the object pointed at):

* trap_type- (input) type of exception (0 for trap, 1 for fault, invalid otherwise); thisis necessary
because examination of the ISR code is not sufficient to distinguish between floating-point
faults and traps

¢ pbundle - (input) pointer to the 128-bit quantity that contains the |A-64 bundle; the OS must
guarantee that the FP SWA handler will be able to read the instruction bundle; the bundle
contains the floating-point instruction that caused the SWA request, and it is used for reading
the opcode of the instruction; the BUNDLE datatype is defined as follows:

t ypedef struct bundle_s {
_int64 bundl e_| ow64;
_int64 bundl e_hi gh64;

} BUNDLE;

* pipsr - (output) pointer to the 64-bit quantity that contains the IPSR value (Intrerruption
Processor Status Register); used to set in it the mfl and/or mfh bits that indicate whether a
“low” floating-point register was modified (f2 to f31), or respectively a “high” one (f32 to
f127); upon return, pipsr points to the updated interruption processor status register (IPSR)
Note: the OS can clear thél andmth bits in the 64-bit value pointed at by pipsr before
calling Fpsway(), and can examine them upon return; if set, they indicate that some
floating-point registers have been written by the FP SWA handler; whether these registers are
in the save area (with pointers in fp_state) or physical floating-point registers, depends on the
bit masks passed to Fpswa() in fp_state; the OS can also use the profiessomfh bits,
knowing that the FP SWA handler uses only floating-point registers f6 through f11

¢ pfpsr - (input/output) pointer to the 64-bit quantity that contains the FPSR value
(Floating-point Status Register); used to read control bit settings, and to write new status flag
values; upon return, pfpsr points to the updated floating-point status register (FPSR); only the
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status flags of the status field used by the instruction that caused the floating-point SWA fault
or trap may be changed upon return from the call to Fpswa()

pisr - (input/output) pointer to the 64-bit quantity that contains the ISR value (Intrerruption
Status Register); it isread to determine the type of an incoming floating-point exception; upon
return, if afloating-point exception has to be raised by the OS to the user level, pisr pointsto
the updated interruption status register (ISR) code for a (possibly) new floating-point
exception

ppreds - (input/output) pointer to the 64-bit quantity that contains the predicate register value;
used to read the qualifying predicate of the excepting instruction; upon return, ppreds points to
the updated value of the 64-bit predicate register, but only if the instruction that caused the
floating-point SWA fault or trap has at |east one output that is a predicate register (otherwise,
ppreds points to an unchanged value)

pifs - (input) pointer to the 64-bit quantity that contains the IFS value (Intrerruption Function
State); used to read the value of CFM (the Current Frame Marker), and to extract the values of
the rotating register bases for floating-point and predicate registers

fp_state - pointer to floating-point state area of type FP_STATE, containing the saved val ues of
the floating-point registers (the current floating-point register state); the definition of
FP_STATE isasfollows:

typedef struct fp_state_s {
__int64 bitmask_| owe4; /* bitmask of FP regs f63-f2 */
__int64 bitmask_high64; /* bitmask of FP regs f127-f64 */
FP_STATE_LOW PRESERVED *fp_state_|l ow preserved; /* f2-f5 */
FP_STATE_LOW VOLATI LE *fp_state_low volatile; /* f6-f15 */
FP_STATE_HI GH_PRESERVED *fp_st ate_hi gh_preserved; /* f16-f31 */
FP_STATE_H GH_VOLATI LE *fp_state_high_volatile; /* f32-f127 */
} FP_STATE;

typedef struct fp_state_|l ow preserved_s {
_int128 fp_Ip[4]; /* contains FP registers f2-f5 */
} FP_STATE_LOW PRESERVED;

typedef struct fp_state_low volatile_s {
_int128 fp_lv[10]; /* contains FP registers f6-f15 */
} FP_STATE_LOW VOLATI LE

typedef struct fp_state_high_preserved_s {
__int128 fp_hp[16]; /* contains FP registers f16-f31 */
} FP_STATE_H GH_PRESERVED;

typedef struct fp_state_high_volatile_s {
_int128 fp_hv[96]; /* contains FP registers f32-f127 */
} FP_STATE_H GH_VOLATI LE

The bitmask _|ow64 and bitmask _high64 fields of FP_STATE specify bit masks for all the
floating-point registers that are valid in FP_STATE. The bitmask _low64 field specifies the hit
mask for registers FO-F63, and bitmask _high64 specifies the bit mask for registers F64-F127. A
value of 1in the bit mask means that the corresponding floating-point register isvalid in
FP_STATE, and avalue of 0 means that the corresponding floating-point register is not valid in the
FP_STATE, and the FP SWA handler must use the corresponding hardware floating-point register.
For example, if bit 2 of bitmask_low64 is set (1), state register F2 isvalid in the FP_STATE
structure and isavailablein fp_state low_preserved[0], which correspond to f2. An important
observation is that saving and restoring floating-point registers has to be made as atomic
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operations. Interruptions have to be disabled during this timeframe, otherwise a context switch
could occur, another thread could write to some of the floating-point registers, and upon resuming
the interrupted thread, some floating-point registers could contain incorrect data.

The return value from Fpswalis of type RET_FPSWA, which is a structure of 32 bytes maximum
(contained in r8-r11). The first eight bytes of the structure indicate if the call to the FP SWA
handler succeeded or failed. The return value definition is:

typedef struct {
__int64 status; /1 r8
unsigned __int64 errl; // r9
unsigned __int64 err2; // rl10
unsigned __int64 err3; // rl1l
} FPSWA_RET;

If the return value (status) indicates an error (status < 0), the OS will print an error message and the
hex contents of some or all of r8, r9, r10, and r11, which contain implementation specific error
codes. A return value of 0 (status == 0) indicates that the FP SWA handler has successfully
emulated the instruction that caused the SWA fault or trap. A positive value (status > 0) indicates
that the floating-point exception is not a SWA fault or trap, or that the FP SWA handler has
converted it to another unmasked (enabled) floating-point exception that must be propagated to the
user. In the latter two cases, the FP SWA handler may update the floating-point state, the IPSR, the
FPSR, the ISR (only if afloating-point exception has to be propagated to the user level), and the
predicate registersin order to reflect the correct state information.

The return code of the FP SWA handler, status, is as follows:
¢ 0 - the floating-point instruction was successfully emulated, and aresult is being provided

¢ -1 - thefloating-point instruction emulation was unsuccessful (due to incorrect parameters to
the floating-point emulation function); this represents an internal error condition, and should
not occur if the FP SWA handler isinvoked with correct parameters by the OS

¢ >0 - indicates that the floating-point emulation was not successful, and a new floating-point
exception is reported by the |A-64 Floating-point Emulation Library; up to three bitsin the
value of the status field are set to indicate the status of the emulation; the following status bits
are defined:

— bit 0 - if set, indicates a new floating-point exception to be raised, that needs to be

delivered to the user; the actual floating-point exception type is indicated in the updated
ISR register.

— bit 1 - if set, an incoming floating-point fault was converted to an outgoing floating-point
trap by the 1A-64 Floating-point Emulation Library, otherwise the type of the incoming
exception (fault or trap) is maintained for the new exception to be raised; this bit is only
tested if bit O is set

— bit 2 - if set, it indicates that a parallel (SIMD) instruction has caused the exception; this
bit is only tested if bit 0 is set; an OS will use this bit only if it wants to provide more
information to the user handler than that in the ISR code (e.qg. it could indicate the
occurrence of a floating-point fault, of a floating-point trap, of multiple floating-point
faults, or of multiple floating-point traps; note though that such information - SIMD
instruction or not - can be derived also from the opcode of the instruction that caused the
exception)

— bits [3-63] - reserved

A template for interpreting the encoded error message when the return value from Fpsway() to the
OS kernel, fpswa_ret, contains fpswa_ret.status == -1, is presented below (note that the calls to
fprintf() will have to be replaced as needed for every OS).
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#i ncl ude <stdio. h>
#define FP_EMJUL_ERROR -1

voi d FPSWA_error_print (FPSWA_RET fpswa_ret)
{

unsigned int err_nr; // error nunber

unsigned int gp; // qualifying predicate

unsigned __int64 OpCode; // instruction opcode

unsigned int rc; // rounding control

unsigned int significand_size; // significand size: 24, 53, or 64
unsigned int ISRiow, // ISR code

unsigned int f1; // result floating-point register index
unsigned int sign; // sign bit of the result

unsi gned int exponent; // exponent of the result

unsigned __int64 significand; // significand of the result
unsi gned int new_trap_type;

/1 indicates that a new floating-point exception has to be raised
if (fpswa_ret.status != (__int64) FP_EMIL_ERROR) return;
err_nr = (unsigned int)(fpswa_ret.errl >> 56);

[/ err_nr in errl, bits 63-56
if (err_nr == 1) {

fprintf (stderr, “Fpswa () Internal Error 1: template FXX is “

“invalid\n”);
}else if (err_nr ==2) {
fprintf (stderr, “Fpswa () Internal Error 2: instruction slot 3 “
“is not valid\n”);
}elseif (err_nr == 3) {
gp = (unsigned int)fpswa_ret.errl; // // gp in errl, bits 31-0 (5-0)
fprintf (stderr, “Fpswa () Internal Error 3: qualifying predicate “
“PR[%ud] = 0\n", gp);
}elseif (err_nr == 4) {

OpCode = fpswa_ret.err2; // OpCode in err2, bits 63-0

fprintf (stderr, “Fpswa () Internal Error 4-%ud: instruction opcode”

“ %8x%8x not recognized\n”, (unsigned int)fpswa_ret.err3,
(unsigned int)(OpCode >> 32), (unsigned int)OpCode);
} else if (err_nr ==5) {
rc = (unsigned int)fpswa_ret.errl; // rc in errl, bits 31-0 (1-0)
fprintf (stderr, “Fpswa () Internal Error 5: invalid rc = %ud\n”,
re);
} else if (err_nr == 6) {
fprintf (stderr, “Fpswa () Internal Error 6: cannot determine “
“the computation model\n”);
Yelseif (err_nr==7) {
significand_size = (unsigned int)(fpswa_ret.errl >> 32);
/I significand_size in errl, bits 55-32

ISRlow = (unsigned int)fpswa_ret.errl; // ISRlow in errl, bits 31-0

f1 = (unsigned int)(fpswa_ret.err2 >> 32); // f1 in err2, bits 63-32

sign = (unsigned int) (fpswa_ret.err2 >> 17) & 0x01;

/I tmp_fp.sign in err2, bit 17
exponent = (unsigned int)fpswa_ret.err2 & Ox1ffff;
/l tmp_fp.exponent in err2, bits 16-0

significand = fpswa_ret.err3; // tmp_fp.significand in err3

fprintf (stderr, “Fpswa () Internal Error 7: incorrect significand”

“ size %ud for ISRlow = %4.4x and FR[%ud] = %1.1x %5.5x “
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“%8x%8x\n”, significand_size, ISRIow, f1, sign,exponent,
(unsigned int)(significand >> 32),
(unsigned int)significand);
}elseif (err_nr == 8) {
fprintf (stderr, “Fpswa () Internal Error 8: non-tiny result for “
“SWA trap\n”);
}else if (err_nr ==9) {
significand_size = (unsigned int)fpswa_ret.errl;
/I significand_size in errl, bits 31-0
fprintf (stderr, “Fpswa () Internal Error 9: incorrect significand”
“ size %ud\n”, significand_size);
} else if (err_nr == 10) {
rc = (unsigned int)fpswa_ret.errl; // rc in errl, bits 31-0
fprintf (stderr, “Fpswa () Internal Error 10: invalid rc = %ud for”
“non-SIMD F1 instruction\n”, rc);
}else if (err_nr == 11) {
ISRlow = (unsigned int)fpswa_ret.err1;
/I'lSRlow & OxOffff in errl, bits 31-0
fprintf (stderr, “Fpswa () Internal Error 11: SWA trap code “
“invoked with F1 instruction, with invalid ISR.code = %x\n”,
ISRIow);
}else if (err_nr == 12) {
ISRlow = (unsigned int)fpswa_ret.err1;
/I lSRlow & OxOffff in errl, bits 31-0
fprintf (stderr, “Fpswa () Internal Error 12: SWA trap code “
“invoked with SIMD F1 instruction, w/o O or U set in”
“ISR.code = %x\n”", ISRlow);
}else if (err_nr == 13) {
fprintf (stderr, “Fpswa () Internal Error 13: non-tiny result
“low\n”);
} else if (err_nr == 14) {
rc = (unsigned int)fpswa_ret.errl; // rc in errl, bits 31-0
fprintf (stderr, “Fpswa () Internal Error 14-%ud: invalid rc = %ud”
“for SIMD F1 instruction\n”, (unsigned int)fpswa_ret.err2,
rc);
} else if (err_nr == 15) {
fprintf (stderr, “Fpswa () Internal Error 15: non-tiny result “
“high\n”);
} else if (err_nr == 16) {
OpCode = fpswa_ret.err2;// OpCode in err2, bits 63-0
fprintf (stderr, “Fpswa () Internal Error 16: instruction opcode “
“%8x%8x not valid for SWA trap\n”,
(unsigned int)(OpCode >> 32), (unsigned int)OpCode);
}else if (err_nr == 17) {
OpCode = fpswa_ret.err2; // OpCode in err2, bits 63-0
ISRlow = (unsigned int)fpswa_ret.err3; // ISRlow in err3, bits 31-0
fprintf (stderr, “Fpswa () Internal Error 17: Fpswa () called w/o “

“trap_type FPFLT or FPTRAP, OpCode = %8x%8x, and ISR code “

“= %x\n”, (unsigned int)(OpCode >> 32),
(unsigned int)OpCode, ISRlow);
} else if (err_nr == 18) {
ISRlow = (unsigned int)fpswa_ret.err2;
fprintf (stderr, “Fpswa () Internal Error 18: SWA fault repeated, “
“fault_ISR_code = %x\n",ISRlow);
} else if (err_nr == 19) {
new_trap_type = (unsigned int)fpswa_ret.errl;



7.3

IA-64 Floating-point Emulation Library

/'l new_ trap_type in errl, bits 31-0
fprintf (stderr, “Fpswa () Internal Error 19: new_trap_type = %x\n",
new_trap_type);
} else { /I error
fprintf (stderr, “Incorrect err_nr = %8x%8x from Fpswa ()\n”,
(unsigned int)(fpswa_ret.errl >> 32),
(unsigned int)fpswa_ret.errl);

FP SWA Handler Integration with the Operating
System

The operating system provides interface code to the | A-64 Floating-point Emulation library. The
library is called not only for SWA faults or traps, but for all the enabled (unmasked) floating-point
exceptions. The SWA faults and traps are filtered and handled by the floating-point emulation
library, but other exceptions are returned to the operating system kernel for being passed on to a
user-registered floating-point exception handler. New floating-point exceptions can also be raised
by the floating-point emulation library while processing SWA faults or traps.

All the necessary information about the floating-point exception is passed from the kernel to the
floating-point emulation library as defined by the FP SWA API, which may update necessary
processor state upon return. Sample interface code is shown below (entities not defined previously
are self-explanatory). The OS needs to get the FP SWA entry point from the OS loader or OS
initialization code as described above.

#define FLTTOTRAP 2

Trap (...) {
FP_STATE fp_state;
FPSWA_RET fpswa_ret;

Switch (trap_type) {
Case FPFAULT:

/I get floating-point instruction bundle pointer
bundle = get_fp_instruction();

/I create proper fp_state information

/I example for f6-f15 used by kernel
fp_state.bitmask_low64 = 0xffcO; // bit6..bit15
fp_state.bitmask_high64 = 0O;

// t6_f15 structure contains the state of f6-f15
fp_state.fp_state_low_volatile = &f6_f15;

/I call 1A-64 Floating-Point Emulation Library
fpswa_ret = fpswa_interface->fpswa(l, &bundle, &ipsr, &fpsr,
&isr, &preds, &ifs, &fp_state);

if (fpswa_ret.status == 0) {
/I update IPSR and IIP to execute next instruction
/I on return
increment_iip (pisr, pipsr, piip);
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return;

} else if (fpswa_ret.status == -1) {
FPSWA_error_print (fpswa_ret);
panic ();

} else {

if (fpswa_ret.status & FLTTOTRAP) {
/'l next exception is trap
increment _iip (pisr, pipsr, piip)

}

rai se_exception (new exception); // raise new exception

return;
Case FPTRAP

// get floating-point instruction bundle pointer
bundl e = get_fp_instruction ();

Il create proper fp_state infornation

/'l exanple for f6-f15 used by kerne

fp_state. bitmask_| ow64 = OxffcO; // bit6..bitl5
fp_state. bitmask_hi gh64 = 0;

// f6_f15 structure contains the state of f6-f15
fp_state.fp_state_low volatile = & 6_f15

/1 call 1A-64 Floating-Point Emulation Library

fpswa_ret = fpswa_interface->fpswa(0, &bundle, & psr

& sr, &preds, & fs, & p_state);

if (fpswa_ret.status == 0) {

return;

} else if (fpswa_ret.status == -1) {
FPSWA_error_print (fpswa_ret);
panic ();

} else {

rai se_exception (new exception)
/'l raise new exception

}

return;

}

Sanpl e code for increment_iip () is shown next

increment _iip (pisr, pipsr, piip) {
__int64 *pisr; // pointer to ISR
__int64 *pipsr; // pointer to | PSR
__int64 *piip; // pointer to IIP
int ei; // excepting instruction slot nunber in bundle (0, 1, 2)
ei = (*pisr >> 41) & 0x03;
/1 advance instruction pointer
if (ei ==0) { // no tenplate for this case
*pipsr = *pipsr & (__int64)OxfffffoOffffffffff;
*pipsr = *pipsr | (__int64)0x0000020000000000
} elseif (ei ==1) { // tenplates: M-I, MB
*pipsr = *pipsr & (__int64)OxfffffOffffffffff;

&f psr,
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*pipsr = *pipsr | (__int64)0x0000040000000000
} else { /] if (ei == 2) - tenplates: MW

*pipsr = *pipsr & (__int64)OxfffffOffffffffff;

*piip = *piip + (__int64)0x10
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