
Vanderpool Technology for the
Intel® Itanium® Architecture (VT-i)
Preliminary Specification
Revision 1.0

January 2005
Document Number: 305942-001

Notice: The Intel® Itanium® 2 architecture processor may contain design defects or errors known
as errata which may cause the product to deviate from published specifications. Current
characterized errata are documented in this specification update.

2 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

THIS DOCUMENT AND RELATED MATERIALS AND INFORMATION ARE PROVIDED “AS IS” WITH NO WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-
INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION, OR SAMPLE. INTEL ASSUMES NO RESPONSIBILITY FOR ANY ERRORS CONTAINED IN THIS DOCUMENT AND HAS NO
LIABILITIES OR OBLIGATIONS FOR ANY DAMAGES ARISING FROM OR IN CONNECTION WITH THE USE OF THIS DOCUMENT.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel's website at http://developer.intel.com/design/litcentr.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Copyright © 2005, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Notice: This document contains information on products in the design phase of development. Do not finalize a
design with this information. Revised information will be published when the product is available. Verify with your
local Intel sales office that you have the latest datasheet before finalizing a design.

Contents
1 Revision History ...5

2 Introduction...7
2.1 Affected Documents/Related Documents...7
2.2 Virtualization Terminology ..7
2.3 Virtualization Concept...8
2.4 Virtualization Environment Overview..9
2.5 Resource Virtualization Policies ...9

3 Itanium® Architecture Changes..11

4 Instruction Reference ...19

5 Processor Abstraction Layer ..51
5.1 Virtualization Terminology ..51
5.2 PAL Virtualization Support..51

5.2.1 Virtual Processor Descriptor (VPD) ...52
5.2.2 Interruption Handling in a Virtual Environment ..56
5.2.3 PAL Intercepts in Virtual Environment ...58
5.2.4 Virtualization Optimizations ...61
5.2.5 PAL Virtualization Services..70

5.3 PAL Procedure Summary ...72
5.4 PAL Virtualization Services Specification ...72
5.5 PAL Procedures for Virtualization...84

Tables
4-1 Indirect Register File Mnemonics ...30
5-1 Virtual Processor Descriptor (VPD) ..52
5-2 Virtualization Acceleration Control (vac) Fields ..55
5-3 Virtualization Disable Control (vdc) Fields ..55
5-4 IVA Settings after PAL Virtualization-Related Procedures and Services....................................57
5-5 PAL Virtualization Intercept Handoff Cause (GR24)...59
5-6 Virtualization Accelerations Summary ..61
5-7 Detection of Virtual External Interrupts ...62
5-9 Interruptions when Virtual External Interrupt Optimization is Enabled..63
5-8 Synchronization Requirements for Virtual External Interrupt Optimization.................................63
5-10 Synchronization Requirements for Interruption Control Register Read

Optimization..63
5-11 Interruptions When Interruption Control Register Read Optimization

is Enabled...64
5-12 Synchronization Requirements for Interruption Control Register

Write Optimization ..64
5-13 Interruptions when Interruption Control Register Write Optimization

is Enabled...64
5-14 Synchronization Requirements for MOV-from-PSR Optimization ..65
5-15 Interruptions when MOV-from-PSR Optimization is Enabled ...65
5-16 Synchronization Requirements for MOV-from-CPUID Optimization...66
5-17 Interruptions when MOV-from-CPUID Optimization is Enabled ...66
Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 3

5-18 Synchronization Requirements for Cover Optimization.. 66
5-19 Interruptions when Cover Optimization is Enabled... 66
5-20 Interruptions When Bank Switch Optimization is Enabled.. 67
5-21 Virtualization Disables Summary.. 67
5-22 PAL Virtualization Services .. 70
5-23 State Requirements for PSR for PAL Virtualization Services... 71
5-24 PAL Virtualization Support Procedures ..72
5-25 Virtual Processor Settings in Architectural Resources for

PAL_VPS_RESUME_NORMAL and PAL_VPS_RESUME_HANDLER 73
5-26 vhpi – Virtual Highest Priority Pending Interrupt ...78
5-27 vp_env_info – Virtual Environment Information Parameter .. 87
5-28 config_options – Global Configuration Options .. 90
5-29 Format of pal_proc_vector.. 93
4 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

1 Revision History

Version Revision
Number Description Date

-001 1.0 • Initial release of the document. January 2005
 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 5

Revision History
6 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

2 Introduction

This document describes the software interfaces for Itanium® architecture-based processors which
support VT-i (Vanderpool Technology for the Intel® Itanium® architecture). These additions allow
for the virtualization of processor hardware in order to allow multiple instances of operating
systems to be run on a single system. This document is intended for hardware system
manufacturers and software developers of applications, operating systems, or tools.

Note: Virtualization, or Vanderpool Technology, is also supported on IA-32 Intel architecture
processors. However the implementation of Vanderpool technology for IA-32 architecture
processors is different than VT-i due to many reasons, including the fundamental differences
between the IA-32 and Itanium architectures. The IA-32 version of Vanderpool Technology is
referred to as VT-x and documentation on VT-x can be found in the Vanderpool Technology for IA-
32 Processors (VT-x) - Preliminary Specification.

2.1 Affected Documents/Related Documents

2.2 Virtualization Terminology
The following are terms related to Itanium architecture virtualization:

VT-i – Vanderpool Technology for the Itanium architecture.

VT-x – Vanderpool Technology for the IA-32 architecture.

Virtual Machine Monitor (VMM) – The VMM is the system software which implements
software policies to manage/support virtualization of processor and platform resources.

Virtual Processor Descriptor (VPD) – Represents the abstraction of the processor resources of a
single virtual processor. The VPD consists of per-virtual-processor control information together
with performance-critical architectural state. See Section 5.2.1, “Virtual Processor Descriptor
(VPD)” on page 52 for details.

Title Document #

Intel® Itanium® Architecture Software Developer’s Manual, Volume 1: Application
Architecture

245317-004

Intel® Itanium® Architecture Software Developer’s Manual, Volume 2: System Architecture 245318-004

Intel® Itanium® Architecture Software Developer’s Manual, Volume 3: Instruction Set
Reference

245319-004

Intel® Itanium® Architecture Software Developer’s Manual, Specification Update 248699-009

Vanderpool Technology for IA-32 Processors (VT-x) - Preliminary Specification C97063-001
 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 7

Introduction
Virtual Processor State – A memory data structure which represents the architectural state of a
virtual processor. Part of the virtual processor state is located in the Virtual Processor Descriptor
(VPD), and the rest is located in memory data structures maintained by the virtual machine
monitor.

PAL intercepts – Interfaces where PAL transfers control to the VMM on virtualization events
(execution of virtualized instructions/operations with PSR.vm==1). For details see Section 5.2.3,
“PAL Intercepts in Virtual Environment” on page 58.

2.3 Virtualization Concept
Modern operating system designs typically assume the operating system has complete and direct
control of hardware and system resources. The operating system implements the policies to
manage these resources to allow multiple user-level applications to be run. The goal of
virtualization is to allow multiple instances of operating systems1 to be run on a system.

In a typical virtualized environment, there will be a piece of system software responsible for
virtualizing the hardware and system resources to allow multiple instances of the operating systems
to be run. In the Itanium virtualization architecture, the term Virtual Machine Monitor or VMM
refers to the software component that provides such functionality. The VMM is a piece of host
software and is aware of the Itanium virtualization architecture.

For each instance of guest operating system, the VMM will need to create and present a virtual
machine to the guest operating system. A virtual machine includes all the hardware and system
resources (processors, memory, disk, network devices, and other peripherals) expected by the guest
operating system. From the VMM perspective, these hardware and system resources are
“virtualized”. In the Itanium virtualization architecture, a virtual processor is a virtualized logical
processor. The number of virtual processors created by a VMM in a virtual machine represents the
number of logical processors presented to a guest operating system. For example, in Figure 2-1,
Guest OS A will see a 4-way system, and Guest OS B will see a 2-way system. There will be at
least one virtual processor in a virtual machine. Architecturally there is no limit on the number of
virtual machines and virtual processors that can be created by the VMM2 on a system.

1. The operating systems can be same or different versions, and can come from different operating system vendors.
2. Although there is no architectural limit on the number of virtual machines and virtual processors on a system. There will be limits from the

implementation of the hardware and system resources. In addition, there will also be limitations from VMM implementation (e.g., time to
perform virtual processor switch).

Figure 2-1. Virtual Processor Concept

Hardware and System Resources

VMM

VP VP VP VP

Virtual Machine A

VP VP

Virtual Machine B

Guest OS A Guest OS B
8 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

2.4 Virtualization Environment Overview
The term virtualization environment refers to the system environment created by the VMM to
run virtualized software1. Figure 2-2 shows the main components in a virtualization environment2,
and the interactions between them. A virtualization environment will include one or more
processors supporting virtualization, the PAL supporting virtualization, the virtual machine
monitor, and virtualized software. The VMM is required to allocate the resources and create the
virtualization environment before guest software can be launched. In a virtualization environment,
virtualized software will continue to execute on the processor unmodified. Interruptions from the
processor will be handled by the VMM. A new architecture interface is defined between the VMM
and PAL for access to configuration and optimization options, virtualization services, and
virtualization intercept handling.

2.5 Resource Virtualization Policies
In a virtualization environment, guest operating systems are running virtualized. For each hardware
and system resource on the system, there are typically two policies the VMM can choose to run the
virtual processor(s) of the guest operating systems:

• Shared Policy – With the shared policy, the actual hardware and system resources will be
shared (time multiplexed) between multiple virtual processors. The VMM will need to
implement the scheduling/switching/sharing mechanisms to support this policy. For example,
in Figure 2-3, logical processor 1 is shared by two virtual processors, and logical processor 2 is
shared by the other two virtual processors. In the Itanium virtualization architecture,
virtualization accelerations are defined to optimize the usages of this policy. See
Section 6.2.4.1, “Virtualization Accelerations” on page 61 in Itanium Architecture
Virtualization Specification Update, Rev 2.0 for details.

1. Note that the term virtual machine used in Section 2.3, “Virtualization Concept” on page 8 represents the set of virtual resources presented to
a guest operating system. Typically the VMM will create one or more virtual machines in a virtualization environment. The usage model and
management policies of the virtualization environment is VMM-specific.

2. This is a simplified diagram to show the major components and their interactions, not all the components are listed (e.g., SAL, EFI…etc.),
see Chapter 9, “Firmware Virtualization” for details.

Figure 2-2. Interactions in a Virtualization Environment

Processor Supporting Virtualization

VMM

Guest OS A Guest OS B

PAL Supporting Virtualization

App App App App App App

Instruction
Execution

Interruptions
Architectural Software

Interface

Resume Guest Execution

Itanium
Virtualization
Architecture

Virtualization
Software

Virtualized
Software
 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 9

Introduction
• Dedicated Policy – With the dedicated policy, the actual hardware and system resources are
dedicated to a particular virtual processor. There will be no sharing of that particular hardware
and system resource between virtual processors. The virtual processor will have direct control
of the particular hardware and system resource. For example, in Figure 2-4, logical processor 1
is dedicated to virtual processor A, and logical processor 2 is shared by multiple virtual
processors. In the Itanium virtualization architecture, virtualization disables are defined to
optimize the usages of this policy. See Section 6.2.4.2, “Virtualization Disables” on page 67 in
Itanium Architecture Virtualization Specification Update, Rev 2.0 for details.

The VMM decides the resource virtualization policies for the virtual processors at creation time,
the policies are applicable until the virtual processor is terminated.

Since the resource virtualization policy is per-resource, the VMM can apply different policies for
different resources on a virtual processor basis. For example, on a given virtual processor, the
VMM can use a shared policy for an I/O device (i.e., the I/O device is shared between virtual
processors), and can use a dedicated policy for the performance counters (i.e., the performance
counters on the logical processor is not shared and can be controlled directly by the running virtual
processor). In the Itanium virtualization architecture, since there are optimizations defined to
support both policies for each resource1, the VMM cannot apply conflicting optimizations to these
resources. The illegal settings are described in each acceleration and disable in Section 6.2.4.1,
“Virtualization Accelerations” on page 61 in Itanium Architecture Virtualization Specification
Update, Rev 2.0 and Section 6.2.4.2, “Virtualization Disables” on page 67 in Itanium Architecture
Virtualization Specification Update, Rev 2.0.

1. For example, external interruption resources like external interrupt control registers, TPR and PSR.i.

Figure 2-3. Shared Virtualization Policy

Figure 2-4. Dedicated Virtualization Policy

Virtual CPU A Virtual CPU B Virtual CPU C Virtual CPU D

Hardware and System Resources

Logical CPU 1 Logical CPU 2

Virtual CPU A Virtual CPU B Virtual CPU C Virtual CPU D

Hardware and System Resources
Logical CPU 1 Logical CPU 2
10 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

3 Itanium® Architecture Changes

The rest of this document is formatted as a specification update to the Intel® Itanium® Architecture
Software Developer’s Manual. This details out every change to the architecture for VT-i including
the new instructions, processor behavior in the different virtualized modes, as well as the new PAL
interfaces. The Itanium architecture is a living document and updates happen periodically. Future
updates will be incorporated into the Intel® Itanium® Architecture Software Developer’s Manual
and specification updates.

1. Volume 2, Part I, Chapter 3 System State and Programming Model
1. New PSR.vm bit in Figure 3-2 Processor Status Register (PSR) (2:18):

2. New PSR.vm bit in Table 3-2 Processor Status Register Fields (2:19):

3. New section, Section 3.4, Processor Virtualization (2:35):
Itanium architecture processors may optionally implement a mechanism to support processor
virtualization. This includes an additional PSR.vm bit (see Section 3.3.2, “Processor Status
Register (PSR)”), which, when 1, causes certain instructions to take a virtualization fault (see
Section 5.6, “Interruption Priorities” and “Virtualization Vector (0x6100)”).
The set of instructions which are virtualized by PSR.vm are listed in Table 3-10 below.

4. New Table 3-10, Virtualized Instructions (2:35):

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv rt tb lp db si di pp sp dfh dfl dt rv pk i ic rv mfh mfl ac up be rv
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv vm ia bn ed ri ss dd da id it mc is cpl

system mask
user mask

Field Bits Description Interruption
State

Serialization
Required

vm 46 Virtual Machine – When 1, an attempt to execute
certain instructions results in a virtualization fault.
Implementation of this bit is optional. If the bit is not
implemented, it is treated as a reserved bit. Written by
the rfi and vmsw instructions.

0 rfi

Class Virtualized Instructions
All privileged instructions itc.i, itc.d, itr.i, itr.d, ptc.l, ptc.g, ptc.ga, ptc.e, ptr, tak, tpa, mov rr, mov pkr, mov cr,

mov ibr, mov dbr, mov pmc, mov to pmd, ssm, rsm, mov psr, rfi, bsw
Some non-privileged
instructions (virtualized at
all privilege levels)

thash, ttag, mov from cpuid

Some non-privileged
instructions (virtualized at
privilege level 0)

cover
 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 11

Itanium® Architecture Changes
5. New paragraph after Table 3-10 (2:35):
Processors which support processor virtualization must provide an implementation-dependent
mechanism for disabling the vmsw instruction. When enabled, the vmsw instruction
functions as described on the vmsw instruction page. When disabled, the vmsw instruction
always raises a virtualization fault when executed at the most privileged level.
Processor virtualization is largely invisible to system software, and therefore its effects on
virtualized instructions are not discussed in this document, except on the instruction
description pages themselves.

2. Volume 2, Part I, Chapter 4, Addressing and Protection
1. Section 4.3.2, Unimplemented Virtual Address Bits, add the following paragraph before the

final paragraph in the section (2:62):
If the PSR.vm bit is implemented, and if PSR.vm is 1, then virtual addresses are treated as
though one additional virtual address bit were unimplemented. If the PSR.vm bit is
implemented, at least 52 virtual address bits must be implemented.

2. Section 4.3.3, Instruction Behavior with Unimplemented Addresses, add the following bullet
after the last bullet (2:63):

• The behavior of executing vmsw.1 in a bundle whose address will become
unimplemented after PSR.vm is set to 1 is undefined.

3. Volume 2, Part I, Chapter 5, Interruptions
1. Add Virtualization fault and Virtual External Interrupt in Table 5-6, Interruption Priorities

(2:92):

Reading AR[ITC] with
PSR.si==1 takes
(virtualized at all privilege
levels)

mov from ar.itc

Instructions which write
privileged registers

mov to itc

Class Virtualized Instructions

Table 5-6 Interruption Priorities (Sheet 1 of 4)

Type Instr. Set Interruption Name Vector Name IA-32
Class1

Aborts
IA-32,
Intel®

Itanium®

1 Machine Reset (RESET) PALE_RESET vector
N/A

2 Machine Check (MCA) PALE_CHECK vector

Inter-
rupts

3 Initialization Interrupt (INIT) PALE_INIT vector
N/A

4 Platform Management Interrupt
(PMI)

PALE_PMI vector

5 External Interrupt (INT) External Interrupt vector

6 Virtual External Interrupt (VINT) Virtual External Interrupt vector N/A
12 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Faults

Intel
Itanium

7 IR Unimplemented Data
Address fault

General Exception vector

N/A

8 IR Data Nested TLB fault Data Nested TLB vector

9 IR Alternate Data TLB fault Alternate Data TLB vector

10 IR VHPT Data fault VHPT Translation vector

11 IR Data TLB fault Data TLB vector

12 IR Data Page Not Present fault Page Not Present vector

13 IR Data NaT Page Consumption
fault

NaT Consumption vector

14 IR Data Key Miss fault Data Key Miss vector

15 IR Data Key Permission fault Key Permission vector

16 IR Data Access Rights fault Data Access Rights vector

17 IR Data Access Bit fault Data Access-Bit vector

18 IR Data Debug fault Debug vector

Faults IA-32 19 IA-32 Instruction Breakpoint
fault

IA-32 Exception vector (Debug)

A

20 IA-32 Code Fetch fault2 IA-32 Exception vector (GPFault)

IA-32,
Intel

Itanium

21 Alternate Instruction TLB fault Alternate Instruction TLB vector

22 VHPT Instruction fault VHPT Translation vector

23 Instruction TLB fault Instruction TLB vector

24 Instruction Page Not Present
fault

Page Not Present vector

25 Instruction NaT Page
Consumption fault

NaT Consumption vector

26 Instruction Key Miss fault Instruction Key Miss vector

27 Instruction Key Permission fault Key Permission vector

28 Instruction Access Rights fault Instruction Access Rights vector

29 Instruction Access Bit fault Instruction Access-Bit vector

Intel
Itanium

30 Instruction Debug fault Debug vector

IA-32
31 IA-32 Instruction Length > 15

bytes
IA-32 Exception vector (GPFault)

B

32 IA-32 Invalid Opcode fault IA-32 Intercept vector (Instruction)

33 IA-32 Instruction Intercept fault IA-32 Intercept vector (Instruction)

Intel
Itanium

34 Illegal Operation fault3 General Exception vector

35 Illegal Dependency fault General Exception vector

36 Break Instruction fault Break Instruction vector

37 Privileged Operation fault General Exception vector

Table 5-6 Interruption Priorities (Sheet 2 of 4)

Type Instr. Set Interruption Name Vector Name IA-32
Class1
 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 13

Itanium® Architecture Changes
IA-32,
Intel

Itanium

38 Disabled Floating-point Register
fault

Disabled FP-Register vector

B
39 Disabled Instruction Set

Transition fault
General Exception vector

IA-32
40 IA-32 Device Not Available fault IA-32 Exception vector (DNA)

41 IA-32 FP Error fault4 IA-32 Exception vector (FPError)
CIA-32,

Intel
Itanium

42 Register NaT Consumption fault NaT Consumption vector

Intel
Itanium

43 Reserved Register/Field fault General Exception vector

44 Unimplemented Data Address
fault

General Exception vector

45 Privileged Register fault General Exception vector

46 Speculative Operation fault Speculation vector

47 Virtualization fault Virtualization vector

IA-32
48 IA-32 Stack Exception IA-32 Exception vector (StackFault)

C

49 IA-32 General Protection Fault IA-32 Exception vector (GPFault)

Faults

IA-32,
Intel

Itanium

50 Data Nested TLB fault Data Nested TLB vector

51 Alternate Data TLB fault5 Alternate Data TLB vector

52 VHPT Data faulte VHPT Translation vector

53 Data TLB faulte Data TLB vector

54 Data Page Not Present faulte Page Not Present vector

55 Data NaT Page Consumption
faulte

NaT Consumption vector

56 Data Key Miss faulte Data Key Miss vector

57 Data Key Permission faulte Key Permission vector

58 Data Access Rights faulte Data Access Rights vector

59 Data Dirty Bit fault Dirty-Bit vector

60 Data Access Bit faulte Data Access-Bit vector

Intel
Itanium

61 Data Debug faulte Debug vector

62 Unaligned Data Reference faulte Unaligned Reference vector

IA-32

63 IA-32 Alignment Check fault IA-32 Exception vector (Align-
mentCheck)

C

64 IA-32 Locked Data Reference
fault

IA-32 Intercept vector (Lock)

65 IA-32 Segment Not Present fault IA-32 Exception vector (NotPresent)

66 IA-32 Divide by Zero fault IA-32 Exception vector (Divide)

67 IA-32 Bound fault IA-32 Exception vector (Bound)

68 IA-32 SSE Numeric Error fault IA-32 Exception vector (Stream-
SIMD)

Table 5-6 Interruption Priorities (Sheet 3 of 4)

Type Instr. Set Interruption Name Vector Name IA-32
Class1
14 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

2. Add Virtual External Interrupt vector and virtualization vector in Table 5-7, Interruption
Vector Table (IVT) (2:96):

4. Volume 2, Part I, Chapter 8, Interruption Vector Descriptions
1. Add Virtual External Interrupt vector and virtualization vector in Table 8-1, Writing of

Interruption Resources by Vector (2:146):

Intel
Itanium

69 Unsupported Data Reference
fault

Unsupported Data Reference vector

70 Floating-point fault Floating-point Fault vector

Traps

Intel
Itanium

71 Unimplemented Instruction
Address trap6

Lower-Privilege Transfer Trap vector

72 Floating-point trap Floating-point Trap vector

73 Lower-Privilege Transfer trap Lower-Privilege Transfer Trap vector

74 Taken Branch trap Taken Branch Trap vector

75 Single Step trap Single Step Trap vector

IA-32

76 IA-32 System Flag Intercept trap IA-32 Intercept vector (SystemFlag)

D

77 IA-32 Gate Intercept trap IA-32 Intercept vector (Gate)

78 IA-32 INTO trap IA-32 Exception vector (Overflow)

79 IA-32 Breakpoint (INT 3) trap IA-32 Exception vector (Debug)

80 IA-32 Software Interrupt (INT)
trap

IA-32 Interrupt vector (Vector#)

81 IA-32 Data Breakpoint trap IA-32 Exception vector (Debug)

82 IA-32 Taken Branch trap IA-32 Exception vector (Debug)

83 IA-32 Single Step trap IA-32 Exception vector (Debug)

NOTES:
1. IA-32 Interruption Class, see Section 5.6.1, “IA-32 Interruption Priorities and Classes” on page 2:105 for

details.
2. IA-32 Code Fetch faults include Code Segment Limit Violation and other Code Fetch checks defined in

Section 6.2.3.3, “IA-32 Environment Runtime Integrity Checks” on page 121.
3. Illegal Operation faults can be taken for certain predicated off reserved opcodes. For details, refer to Section

4.1, “Format Summary” on page 272.
4. IA-32 FP Error fault conditions detected on an IA-32 FP instruction are reported as a fault on the next IA-32

FP instruction that performs an FWAIT operation.
5. If not deferred.
6. Unimplemented Instruction Address traps on emulated check instructions have a lower priority than Taken

Branch trap and Single Step trap. See “Speculation vector (0x5700)” on page 193.

Table 5-6 Interruption Priorities (Sheet 4 of 4)

Type Instr. Set Interruption Name Vector Name IA-32
Class1

Offset Vector Name Interruption(s) Page
0x3400 Virtual External Interrupt vector 6 2:183
0x6100 Virtualization vector 47 2:202

Interruption Resource IIP, IPSR,
IIPA, IFS.v IFA ITIR IHA IIM ISR

PSR.ic at time of interruption 0 1 0 1 0 1 0 1 0 1 0 1
Interruption Vector

Virtual External Interrupt vector - W x x x x x x x x W W
Virtualization vector - W x x x x x x x x W W
 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 15

Itanium® Architecture Changes
2. Add Virtual External Interrupt vector and Virtualization vector in Table 8-2, ISR Values on
Interruption (2:147):

3. Add Virtual External Interrupt vector (0x3400) and Virtualization vector (0x6100) (2:186):

Vector / Interruption ed ei1

NOTES:
1. ISR.ei is equal to IPSR.ri for all faults and external interrupts (1 for faults and interrupts on the L+X

instruction of an MLX). For traps, ISR.ei points at the excepting instruction (2 for traps on the L+X
instruction of an MLX).

so ni2

2. If ISR.ni is 1, the interruption occurred either when PSR.ic was 0 or was in-flight.

ir3

3. ISR.ri captures the value of RSE.CFLE at the time of an interruption.

rs4

4. ISR.rs is 1 for interruptions caused by mandatory RSE fills/spills and 0 for all others.

sp5

5. ISR.sp is 1 for interruptions caused by speculative loads and zero for all others.

na6

6. ISR.na is 1 for interruptions caused by non-access instructions and zero for all others.

r w x
Virtual External Interrupt Vector
Virtual External Interrupt 0 ri 0 ni ir7

7. ISR.ir is 1 if an external interrupt was taken when mandatory RSE fills caused by a br.ret or rfi were
re-loading the current register stack frame.

0 0 0 0 0 0
Virtualization Vector
Virtualization Fault 0 ri 0 ni 0 0 0 0 0 0 0
16 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Name Virtual External Interrupt Vector (0x3400)

Cause The guest highest pending interrupt (VHPI) specified by the VMM is unmasked on
the virtual processor.

IPSR.is indicates which instruction set was executing at the time of the
interruption.

Interruptions on this vector:

Virtual External interrupt

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:163 for a detailed description.

ISR – The ISR.ei bits are set to indicate which instruction was to be executed when
the external interrupt event was taken. The defined ISR bits are specified below.
For external interrupts taken in the IA-32 instruction set, ISR.ei, ni and ir bits are 0.

Notes: Software is expected to avoid situations which could cause ISR.ni to be 1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni ir 0 0 0 0 0 0
 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 17

Itanium® Architecture Changes
Name Virtualization Vector (0x6100)

Cause An attempt is made to execute an instruction which requires virtualization. This
fault cannot be raised by IA-32 instructions.

Interruptions on this vector:

Virtualization fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:163 for a detailed description.

ISR – The ISR.ei bits are set to indicate which instruction caused the exception.

The defined ISR bits are specified below.

5. Volume 2, Part I, Chapter 11, Processor Abstraction Layer
1. Add PSR.vm bit in Table 11-19, State Requirements for PSR (2:289):

2. Add bits 40 and 54 in Table 11-54, Processor Features (2:360):

6. Volume 3, Chapter 2, Instruction Reference

See “Instruction Reference” on page 16 for changes related to the virtualized instructions.

7. Revised Chapter 11 of Volume 2, Processor Abstraction Layer (text included
at end of this update)

Volume 2, Chapter 11, Processor Abstraction Layer has been modified to include new content to
support processor virtualization. The new content from Chapter 11 is presented at the end of this
update for convenience.

§

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 0

PSR Bit Description Entry Exit Class
vm processor virtualization 0 0 unchanged

Bit Class Control Description
40 Opt. No Virtual Machine features implemented. Denotes whether PSR.vm is implemented.

This feature may only be interrogated by PAL_PROC_GET_FEATURES. It may not
be enabled or disabled by PAL_PROC_SET_FEATURES. The corresponding
argument is ignored.

54 Opt. Req. Enable the use of the VMSW instruction. When 0, the vmsw instruction causes a
virtualization fault when executed at the most privileged level. When 1, this bit will
enable normal operation of the vmsw instruction.
18 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

4 Instruction Reference

The subsequent pages list the changes related to the virtualized instructions.
 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 19

Instruction Reference
bsw — Bank Switch
Format: bsw.0 zero_form B8

bsw.1 one_form B8

Description: This instruction switches to the specified register bank. The zero_form specifies
Bank 0 for GR16 to GR31. The one_form specifies Bank 1 for GR16 to GR31.
After the bank switch the previous register bank is no longer accessible but does
retain its current state. If the new and old register banks are the same, bsw is
effectively a nop, although there may be a performance degradation.

A bsw instruction must be the last instruction in an instruction group. Otherwise, an
Illegal Operation fault is taken. Instructions in the same instruction group that
access GR16 to GR31 reference the previous register bank. Subsequent instruction
groups reference the new register bank.

This instruction can only be executed at the most privileged level, and when
PSR.vm is 0.

This instruction cannot be predicated.

Operation: if (!followed_by_stop())
illegal_operation_fault();

if (PSR.cpl != 0)
privileged_operation_fault(0);

if (PSR.vm == 1)
virtualization_fault();

if (zero_form)
PSR.bn = 0;

else // one_form
PSR.bn = 1;

Interruptions: Illegal Operation fault Virtualization fault
Privileged Operation fault

Serialization: This instruction does not require any additional instruction or data serialization
operation. The bank switch occurs synchronously with its execution.
20 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

cover — Cover Stack Frame
Format: cover B8

Description: A new stack frame of zero size is allocated which does not include any registers
from the previous frame (as though all output registers in the previous frame had
been locals). The register rename base registers are reset. If interruption collection
is disabled (PSR.ic is zero), then the old value of the Current Frame Marker (CFM)
is copied to the Interruption Function State register (IFS), and IFS.v is set to one.

A cover instruction must be the last instruction in an instruction group. Otherwise,
an Illegal Operation fault is taken.

If PSR.cpl is non-zero, this instruction can only be executed when PSR.vm is also
0. This instruction cannot be predicated.

Operation: if (!followed_by_stop())
illegal_operation_fault();

if (PSR.cpl == 0 && PSR.vm == 1)
virtualization_fault();

alat_frame_update(CFM.sof, 0);
rse_preserve_frame(CFM.sof);
if (PSR.ic == 0) {

CR[IFS].ifm = CFM;
CR[IFS].v = 1;

}

CFM.sof = 0;
CFM.sol = 0;
CFM.sor = 0;
CFM.rrb.gr = 0;
CFM.rrb.fr = 0;
CFM.rrb.pr = 0;

Interruptions: Illegal Operation fault Virtualization fault
 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 21

Instruction Reference
itc — Insert Translation Cache
Format: (qp) itc.i r2 instruction_form M41

(qp) itc.d r2 data_form M41

Description: An entry is inserted into the instruction or data translation cache. GR r2 specifies
the physical address portion of the translation. ITIR specifies the protection key,
page size and additional information. The virtual address is specified by the IFA
register and the region register is selected by IFA{63:61}. The processor
determines which entry to replace based on an implementation-specific
replacement algorithm.

The visibility of the itc instruction to externally generated purges (ptc.g,
ptc.ga) must occur before subsequent memory operations. From a software
perspective, this is similar to acquire semantics. Serialization is still required to
observe the side-effects of a translation being present.

itc must be the last instruction in an instruction group; otherwise, its behavior
(including its ordering semantics) is undefined.

The TLB is first purged of any overlapping entries as specified by Table 4-1 on
page 49.

This instruction can only be executed at the most privileged level, and when PSR.ic
and PSR.vm are both 0.

To ensure forward progress, software must ensure that PSR.ic remains 0 until rfi-
ing to the instruction that requires the translation.
22 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Operation: if (PR[qp]) {
if (!followed_by_stop())

undefined_behavior();
if (PSR.ic)

illegal_operation_fault();
if (PSR.cpl != 0)

privileged_operation_fault(0);
if (GR[r2].nat)

register_nat_consumption_fault(0);

tmp_size = CR[ITIR].ps;
tmp_va = CR[IFA]{60:0};
tmp_rid = RR[CR[IFA]{63:61}].rid;
tmp_va = align_to_size_boundary(tmp_va, tmp_size);

if (is_reserved_field(TLB_TYPE, GR[r2], CR[ITIR]))
reserved_register_field_fault();

if (!impl_check_mov_ifa() &&
unimplemented_virtual_address(CR[IFA], PSR.vm))

unimplemented_data_address_fault(0);
if (PSR.vm == 1)

virtualization_fault();

if (instruction_form) {
tlb_must_purge_itc_entries(tmp_rid, tmp_va, tmp_size);
tlb_may_purge_dtc_entries(tmp_rid, tmp_va, tmp_size);
slot = tlb_replacement_algorithm(ITC_TYPE);
tlb_insert_inst(slot, GR[r2], CR[ITIR], CR[IFA], tmp_rid,

TC);
} else { //

data_form
tlb_must_purge_dtc_entries(tmp_rid, tmp_va, tmp_size);
tlb_may_purge_itc_entries(tmp_rid, tmp_va, tmp_size);
slot = tlb_replacement_algorithm(DTC_TYPE);
tlb_insert_data(slot, GR[r2], CR[ITIR], CR[IFA], tmp_rid,

TC);
}

}

Interruptions: Machine Check abort Reserved Register/Field fault
Illegal Operation fault Unimplemented Data Address fault
Privileged Operation fault Virtualization fault
Register NaT Consumption fault

Serialization: For the instruction_form, software must issue an instruction serialization operation
before a dependent instruction fetch access. For the data_form, software must issue
a data serialization operation before issuing a data access or non-access reference
dependent on the new translation.
 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 23

Instruction Reference
itr — Insert Translation Register
Format: (qp) itr.i itr[r3] = r2 instruction_form M42

(qp) itr.d dtr[r3] = r2 data_form M42

Description: A translation is inserted into the instruction or data translation register specified by
the contents of GR r3. GR r2 specifies the physical address portion of the
translation. ITIR specifies the protection key, page size and additional information.
The virtual address is specified by the IFA register and the region register is
selected by IFA{63:61}.

As described in Table 4-1, “Purge Behavior of TLB Instructions” on page 49, the
TLB is first purged of any entries that overlap with the newly inserted translation.
The translation previously contained in the TR slot specified by GR r3 is not
necessarily purged from the processor's TLBs and may remain as a TC entry. To
ensure that the previous TR translation is purged, software must use explicit ptr
instructions before inserting the new TR entry.

This instruction can only be executed at the most privileged level, and when PSR.ic
and PSR.vm are both 0.

Operation: if (PR[qp]) {
if (PSR.ic)

illegal_operation_fault();
if (PSR.cpl != 0)

privileged_operation_fault(0);
if (GR[r3].nat || GR[r2].nat)

register_nat_consumption_fault(0);

slot = GR[r3]{7:0};
tmp_size = CR[ITIR].ps;
tmp_va = CR[IFA]{60:0};
tmp_rid = RR[CR[IFA]{63:61}].rid;
tmp_va = align_to_size_boundary(tmp_va, tmp_size);

tmp_tr_type = instruction_form ? ITR_TYPE : DTR_TYPE;

if (is_reserved_reg(tmp_tr_type, slot))
reserved_register_field_fault();

if (is_reserved_field(TLB_TYPE, GR[r2], CR[ITIR]))
reserved_register_field_fault();

if (!impl_check_mov_ifa() &&
unimplemented_virtual_address(CR[IFA], PSR.vm))

unimplemented_data_address_fault(0);
if (PSR.vm == 1)

virtualization_fault();

if (instruction_form) {
tlb_must_purge_itc_entries(tmp_rid, tmp_va, tmp_size);
tlb_may_purge_dtc_entries(tmp_rid, tmp_va, tmp_size);
tlb_insert_inst(slot, GR[r2], CR[ITIR], CR[IFA], tmp_rid,

TR);
} else { //

data_form
tlb_must_purge_dtc_entries(tmp_rid, tmp_va, tmp_size);
tlb_may_purge_itc_entries(tmp_rid, tmp_va, tmp_size);
tlb_insert_data(slot, GR[r2], CR[ITIR], CR[IFA], tmp_rid,

TR);
24 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

}
}

Interruptions: Machine Check abort Reserved Register/Field fault
Illegal Operation fault Unimplemented Data Address
fault
Privileged Operation fault Virtualization fault
Register NaT Consumption fault
 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 25

Instruction Reference
mov — Move Application Register
Format: (qp) mov r1 = ar3 pseudo-op

(qp) mov ar3 = r2 pseudo-op
(qp) mov ar3 = imm8 pseudo-op
(qp) mov.i r1 = ar3 i_form, from_form I28
(qp) mov.i ar3 = r2 i_form, register_form, to_form I26
(qp) mov.i ar3 = imm8 i_form, immediate_form, to_form I27
(qp) mov.m r1 = ar3 m_form, from_form M31
(qp) mov.m ar3 = r2 m_form, register_form, to_form M29
(qp) mov.m ar3 = imm8 m_form, immediate_form, to_form M30

Description: The source operand is copied to the destination register.

In the from_form, the application register specified by ar3 is copied into GR r1 and
the corresponding NaT bit is cleared.

In the to_form, the value in GR r2 (in the register_form), or the sign-extended value
in imm8 (in the immediate_form), is placed in AR ar3. In the register_form if the
NaT bit corresponding to GR r2 is set, then a Register NaT Consumption fault is
raised.

Only a subset of the application registers can be accessed by each execution unit
(M or I). Table 3-3 on page 28 indicates which application registers may be
accessed from which execution unit type. An access to an application register from
the wrong unit type causes an Illegal Operation fault.

This instruction has multiple forms with the pseudo operation eliminating the need
for specifying the execution unit. Accesses of the ARs are always implicitly
serialized. While implicitly serialized, read-after-write and write-after-write
dependency violations must be avoided (e.g., setting CCV, followed by cmpxchg in
the same instruction group, or simultaneous writes to the UNAT register by
ld.fill and mov to UNAT).
26 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Instruction Reference
Operation: if (PR[qp]) {
tmp_type = (i_form ? AR_I_TYPE : AR_M_TYPE);
if (is_reserved_reg(tmp_type, ar3))

illegal_operation_fault();

if (from_form) {
check_target_register(r1);
if (((ar3 == BSPSTORE) || (ar3 == RNAT)) && (AR[RSC].mode

!= 0))
illegal_operation_fault();

if (ar3 == ITC && PSR.si && PSR.cpl != 0)
privileged_register_fault();

if (ar3 == ITC && PSR.si && PSR.vm == 1)
virtualization_fault();

GR[r1] = (is_ignored_reg(ar3)) ? 0 : AR[ar3];
GR[r1].nat = 0;

} else { // to_form
tmp_val = (register_form) ? GR[r2] : sign_ext(imm8, 8);

if (is_read_only_register(AR_TYPE, ar3) ||
(((ar3 == BSPSTORE) || (ar3 == RNAT)) && (AR[RSC].mode

!= 0)))
illegal_operation_fault();

if (register_form && GR[r2].nat)
register_nat_consumption_fault(0);

if (is_reserved_field(AR_TYPE, ar3, tmp_val))
reserved_register_field_fault();

if ((is_kernel_reg(ar3) || ar3 == ITC) && (PSR.cpl != 0))
privileged_register_fault();

if (ar3 == ITC && PSR.vm == 1)
virtualization_fault();

if (!is_ignored_reg(ar3)) {
tmp_val = ignored_field_mask(AR_TYPE, ar3, tmp_val);
// check for illegal promotion
if (ar3 == RSC && tmp_val{3:2} u< PSR.cpl)

tmp_val{3:2} = PSR.cpl;
AR[ar3] = tmp_val;

if (ar3 == BSPSTORE) {
AR[BSP] =

rse_update_internal_stack_pointers(tmp_val);
AR[RNAT] = undefined();

}
}

}
}

Interruptions: Illegal Operation fault Privileged Register fault
Register NaT Consumption fault Virtualization fault
Reserved Register/Field fault
Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 27

Instruction Reference
mov — Move Control Register
Format: (qp) mov r1 = cr3 from_form M33

(qp) mov cr3 = r2 to_form M32

Description: The source operand is copied to the destination register.

For the from_form, the control register specified by cr3 is read and the value copied
into GR r1.

For the to_form, GR r2 is read and the value copied into CR cr3.

Control registers can only be accessed at the most privileged level, and when
PSR.vm is 0. Reading or writing an interruption control register (CR16-CR25),
when the PSR.ic bit is one, will result in an Illegal Operation fault.

Operation: if (PR[qp]) {
if (is_reserved_reg(CR_TYPE, cr3)

|| to_form && is_read_only_reg(CR_TYPE, cr3)
|| PSR.ic && is_interruption_cr(cr3))

{
illegal_operation_fault();

}

if (from_form)
check_target_register(r1);

if (PSR.cpl != 0)
privileged_operation_fault(0);

if (from_form) {
if (PSR.vm == 1)

virtualization_fault();
if (cr3 == IVR)

check_interrupt_request();

if (cr3 == ITIR)
GR[r1] = impl_itir_cwi_mask(CR[ITIR]);

else
GR[r1] = CR[cr3];

GR[r1].nat = 0;
} else { // to_form

if (GR[r2].nat)
register_nat_consumption_fault(0);

if (is_reserved_field(CR_TYPE, cr3, GR[r2]))
reserved_register_field_fault();

if ((cr3 == IFA) && impl_check_mov_ifa() &&
unimplemented_virtual_address(GR[r2], PSR.vm))
unimplemented_data_address_fault(0);

if (PSR.vm == 1)
virtualization_fault();

if (cr3 == EOI)
end_of_interrupt();

tmp_val = ignored_field_mask(CR_TYPE, cr3, GR[r2]);
CR[cr3] = tmp_val;
if (cr3 == IIPA)

last_IP = tmp_val;
}

}

Interruptions: Illegal Operation fault Reserved Register/Field fault
Privileged Operation fault Virtualization fault
Register NaT Consumption fault
28 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Instruction Reference
Serialization: Reads of control registers reflect the results of all prior instruction groups and
interruptions.

In general, writes to control registers do not immediately affect subsequent
instructions. Software must issue a serialize operation before a dependent
instruction uses a modified resource.

Control register writes are not implicitly synchronized with a corresponding
control register read and requires data serialization.
Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 29

Instruction Reference
mov — Move Indirect Register
Format: (qp) mov r1 = ireg[r3] from_form M43

(qp) mov ireg[r3] = r2 to_form M42

Description: The source operand is copied to the destination register.

For move from indirect register, GR r3 is read and the value used as an index into
the register file specified by ireg (see Table 4-1 below). The indexed register is read
and its value is copied into GR r1.

For move to indirect register, GR r3 is read and the value used as an index into the
register file specified by ireg. GR r2 is read and its value copied into the indexed
register.

For all register files other than the region registers, bits {7:0} of GR r3 are used as
the index. For region registers, bits {63:61} are used. The remainder of the bits are
ignored.

Instruction and data breakpoint, performance monitor configuration, protection
key, and region registers can only be accessed at the most privileged level.
Performance monitor data registers can only be written at the most privileged level.

The CPU identification registers can only be read. There is no to_form of this
instruction.

For move to protection key register, the processor ensures uniqueness of protection
keys by checking new valid protection keys against all protection key registers. If
any matching keys are found, duplicate protection keys are invalidated.

Apart from the PMC and PMD register files, access of a non-existent register
results in a Reserved Register/Field fault. All accesses to the implementation-
dependent portion of PMC and PMD register files result in implementation
dependent behavior but do not fault.

Modifying a region register or a protection key register which is being used to
translate:

• The executing instruction stream when PSR.it == 1, or
• The data space for an eager RSE reference when PSR.rt == 1

is an undefined operation.

Table 4-1. Indirect Register File Mnemonics
ireg Register File

cpuid Processor Identification Register
dbr Data Breakpoint Register
ibr Instruction Breakpoint Register
pkr Protection Key Register
pmc Performance Monitor Configuration Register
pmd Performance Monitor Data Register
rr Region Register
30 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Instruction Reference
Operation: if (PR[qp]) {
if (ireg == RR_TYPE)

tmp_index = GR[r3]{63:61};
else // all other register types

tmp_index = GR[r3]{7:0};

if (from_form) {
check_target_register(r1);

if (PSR.cpl != 0 && !(ireg == PMD_TYPE || ireg ==
CPUID_TYPE))

privileged_operation_fault(0);

if (GR[r3].nat)
register_nat_consumption_fault(0);

if (is_reserved_reg(ireg, tmp_index))
reserved_register_field_fault();

if (PSR.vm == 1 && ireg != PMD_TYPE)
virtualization_fault();

if (ireg == PMD_TYPE) {
if ((PSR.cpl != 0) && ((PSR.sp == 1) ||

 (tmp_index > 3 &&
 tmp_index <= IMPL_MAXGENERIC_PMCPMD &&
 PMC[tmp_index].pm == 1)))
GR[r1] = 0;

else
GR[r1] = pmd_read(tmp_index);

} else
switch (ireg) {

case CPUID_TYPE: GR[r1] = CPUID[tmp_index];
break;

case DBR_TYPE: GR[r1] = DBR[tmp_index]; break;
case IBR_TYPE: GR[r1] = IBR[tmp_index]; break;
case PKR_TYPE: GR[r1] = PKR[tmp_index]; break;
case PMC_TYPE: GR[r1] = pmc_read(tmp_index);

break;
case RR_TYPE: GR[r1] = RR[tmp_index]; break;

}
GR[r1].nat = 0;

} else { // to_form
if (PSR.cpl != 0)

privileged_operation_fault(0);

if (GR[r2].nat || GR[r3].nat)
register_nat_consumption_fault(0);

if (is_reserved_reg(ireg, tmp_index)
|| is_reserved_field(ireg, tmp_index, GR[r2]))
reserved_register_field_fault();

if (PSR.vm == 1)
virtualization_fault();

if (ireg == PKR_TYPE && GR[r2]{0} == 1) { // writing
valid prot key

if ((tmp_slot = tlb_search_pkr(GR[r2]{31:8})) !=
NOT_FOUND)

PKR[tmp_slot].v = 0; // clear valid bit of
matching key reg

}
tmp_val = ignored_field_mask(ireg, tmp_index, GR[r2]);
Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 31

Instruction Reference
switch (ireg) {
case DBR_TYPE: DBR[tmp_index] = tmp_val; break;
case IBR_TYPE: IBR[tmp_index] = tmp_val; break;
case PKR_TYPE: PKR[tmp_index] = tmp_val; break;
case PMC_TYPE: pmc_write(tmp_index, tmp_val);

break;
case PMD_TYPE: pmd_write(tmp_index, tmp_val);

break;
case RR_TYPE: RR[tmp_index]= tmp_val; break;

}
}

}

Interruptions: Illegal Operation fault Reserved Register/Field fault
Privileged Operation fault Virtualization fault
Register NaT Consumption fault

Serialization: For move to data breakpoint registers, software must issue a data serialize
operation before issuing a memory reference dependent on the modified register.

For move to instruction breakpoint registers, software must issue an instruction
serialize operation before fetching an instruction dependent on the modified
register.

For move to protection key, region, performance monitor configuration, and
performance monitor data registers, software must issue an instruction or data
serialize operation to ensure the changes are observed before issuing any dependent
instruction.

To obtain improved accuracy, software can issue an instruction or data serialize
operation before reading the performance monitors.
32 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Instruction Reference
mov — Move Processor Status Register
Format: (qp) mov r1 = psr from_form M36

(qp) mov psr.l = r2 to_form M35

Description: The source operand is copied to the destination register. See Section 3.3.2,
“Processor Status Register (PSR)” on page 22.

For move from processor status register, PSR bits {36:35} and {31:0} are read, and
copied into GR r1. All other bits of the PSR read as zero.

For move to processor status register, GR r2 is read, bits {31:0} copied into
PSR{31:0} and bits {45:32} are ignored. All bits of GR r2 corresponding to
reserved fields of the PSR must be 0 or a Reserved Register/Field fault will result.

Moves to and from the PSR can only be performed at the most privileged level, and
when PSR.vm is 0.

The contents of the interruption resources (that are overwritten when the PSR.ic bit
is 1) are undefined if an interruption occurs between the enabling of the PSR.ic bit
and a subsequent instruction serialize operation.

Operation: if (PR[qp]) {
if (from_form)

check_target_register(r1);
if (PSR.cpl != 0)

privileged_operation_fault(0);

if (from_form) {
if (PSR.vm == 1)

virtualization_fault();
tmp_val = zero_ext(PSR{31:0}, 32); // read lower 32

bits
tmp_val |= PSR{36:35} << 35; // read mc and it

bits
GR[r1] = tmp_val; // other bits read

as zero
GR[r1].nat = 0;

} else { // to_form
if (GR[r2].nat)

register_nat_consumption_fault(0);

if (is_reserved_field(PSR_TYPE, PSR_MOVPART, GR[r2]))
reserved_register_field_fault();

if (PSR.vm == 1)
virtualization_fault();

PSR{31:0} = GR[r2]{31:0};
}

}

Interruptions: Illegal Operation fault Reserved Register/Field fault
Privileged Operation fault Virtualization fault
Register NaT Consumption fault

Serialization: Software must issue an instruction or data serialize operation before issuing
instructions dependent upon the altered PSR bits. Unlike with the rsm instruction,
the PSR.i bit is not treated specially when cleared.
Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 33

Instruction Reference
ptc.e — Purge Translation Cache Entry
Format: (qp) ptc.e r3 M47

Description: One or more translation entries are purged from the local processor’s instruction
and data translation cache. Translation Registers and the VHPT are not modified.

The number of translation cache entries purged is implementation specific. Some
implementations may purge all levels of the translation cache hierarchy with one
iteration of PTC.e, while other implementations may require several iterations to
flush all levels, sets and associativities of both instruction and data translation
caches. GR r3 specifies an implementation-specific parameter associated with each
iteration.

The following loop is defined to flush the entire translation cache for all processor
models. Software can acquire parameters through a processor dependent layer that
is accessed through a procedural interface. The selected region registers must
remain unchanged during the loop.

disable_interrupts();
addr = base;
for (i = 0; i < count1; i++) {

for (j = 0; j < count2; j++) {
ptc.e(addr);
addr += stride2;

}
addr += stride1;

}
enable_interrupts();

This instruction can only be executed at the most privileged level, and when
PSR.vm is 0.

Operation: if (PR[qp]) {
if (PSR.cpl != 0)

privileged_operation_fault(0);
if (GR[r3].nat)

register_nat_consumption_fault(0);
if (PSR.vm == 1)

virtualization_fault();
tlb_purge_translation_cache(GR[r3]);

}

Interruptions: Privileged Operation fault Virtualization fault
Register NaT Consumption fault

Serialization: Software must issue a data serialization operation to ensure the purge is complete
before issuing a data access or non-access reference dependent upon the purge.
Software must issue instruction serialize operation before fetching an instruction
dependent upon the purge.
34 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

ptc.g, ptc.ga — Purge Global Translation Cache
Format: (qp) ptc.g r3, r2 global_form M45

(qp) ptc.ga r3, r2 global_alat_form M45

Description: The instruction and data translation cache for each processor in the local TLB
coherence domain are searched for all entries whose virtual address and page size
partially or completely overlap the specified purge virtual address and purge
address range. These entries are removed.

The purge virtual address is specified by GR r3 bits{60:0} and the purge region
identifier is selected by GR r3 bits {63:61}. GR r2 specifies the address range of the
purge as 1<<GR[r2]{7:2} bytes in size.

Based on the processor model, the translation cache may be also purged of more
translations than specified by the purge parameters up to and including removal of
all entries within the translation cache.

ptc.g has release semantics and is guaranteed to be made visible after all previous
data memory accesses are made visible. The memory fence instruction forces all
processors to complete the purge prior to any subsequent memory operations.
Serialization is still required to observe the side-effects of a translation being
removed.

ptc.g must be the last instruction in an instruction group; otherwise, its behavior
(including its ordering semantics) is undefined.

The behavior of the ptc.ga instruction is similar to ptc.g. In addition to the
behavior specified for ptc.g the ptc.ga instruction encodes an extra bit of
information in the broadcast transaction. This information specifies the purge is
due to a page remapping as opposed to a protection change or page tear down. The
remote processors within the coherence domain will then take what ever additional
action is necessary to make their ALAT consistent. The local ALAT is not purged.

This instruction can only be executed at the most privileged level, and when
PSR.vm is 0.

Unless specifically supported by the processors and platform, only one global
purge transaction may be issued at a time by all processors, the operation is
undefined otherwise. Software is responsible for enforcing this restriction.
Implementations may optionally support multiple concurrent global purge
transactions. The firmware returns if implementations support this optional
behavior.

Propagation of ptc.g between multiple local TLB coherence domains is platform
dependent, and must be handled by software. It is expected that the local TLB
coherence domain covers at least the processors on the same local bus.

Operation: if (PR[qp]) {
if (!followed_by_stop())

undefined_behavior();
if (PSR.cpl != 0)

privileged_operation_fault(0);
if (GR[r3].nat || GR[r2].nat)

register_nat_consumption_fault(0);
if (unimplemented_virtual_address(GR[r3], PSR.vm))

unimplemented_data_address_fault(0);
if (PSR.vm == 1)

virtualization_fault();
 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 35

Instruction Reference
tmp_rid = RR[GR[r3]{63:61}].rid;
tmp_va = GR[r3]{60:0};
tmp_size = GR[r2]{7:2};
tmp_va = align_to_size_boundary(tmp_va, tmp_size);
tlb_must_purge_dtc_entries(tmp_rid, tmp_va, tmp_size);
tlb_must_purge_itc_entries(tmp_rid, tmp_va, tmp_size);

if (global_alat_form) tmp_ptc_type = GLOBAL_ALAT_FORM;
else tmp_ptc_type = GLOBAL_FORM;

tlb_broadcast_purge(tmp_rid, tmp_va, tmp_size,
tmp_ptc_type);
}

Interruptions: Machine Check abort Unimplemented Data Address fault
Privileged Operation fault Virtualization fault
Register NaT Consumption fault

Serialization: The broadcast purge TC is not synchronized with the instruction stream on a
remote processor. Software cannot depend on any such synchronization with the
instruction stream. Hardware on the remote machine cannot reload an instruction
from memory or cache after acknowledging a broadcast purge TC without first
retranslating the I-side access in the TLB. Hardware may continue to use a valid
private copy of the instruction stream data (possibly in an I-buffer) obtained prior
to acknowledging a broadcast purge TC to a page containing the i-stream data.
Hardware must retranslate access to an instruction page upon an interruption or any
explicit or implicit instruction serialization event (e.g., srlz.i, rfi).

Software must issue the appropriate data and/or instruction serialization operation
to ensure the purge is completed before a local data access, non-access reference,
or local instruction fetch access dependent upon the purge.
36 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Instruction Reference
ptc.l — Purge Local Translation Cache
Format: (qp) ptc.l r3, r2 M45

Description: The instruction and data translation cache of the local processor is searched for all
entries whose virtual address and page size partially or completely overlap the
specified purge virtual address and purge address range. All these entries are
removed.

The purge virtual address is specified by GR r3 bits{60:0} and the purge region
identifier is selected by GR r3 bits {63:61}. GR r2 specifies the address range of the
purge as 1<<GR[r2]{7:2} bytes in size.

The processor ensures that all entries matching the purging parameters are
removed. However, based on the processor model, the translation cache may be
also purged of more translations than specified by the purge parameters up to and
including removal of all entries within the translation cache.

This instruction can only be executed at the most privileged level, and when
PSR.vm is 0.

This is a local operation, no purge broadcast to other processors occurs in a
multiprocessor system.

Operation: if (PR[qp]) {
if (PSR.cpl != 0)

privileged_operation_fault(0);
if (GR[r3].nat || GR[r2].nat)

register_nat_consumption_fault(0);
if (unimplemented_virtual_address(GR[r3], PSR.vm))

unimplemented_data_address_fault(0);
if (PSR.vm == 1)

virtualization_fault();

tmp_rid = RR[GR[r3]{63:61}].rid;
tmp_va = GR[r3]{60:0};
tmp_size = GR[r2]{7:2};
tmp_va = align_to_size_boundary(tmp_va, tmp_size);
tlb_must_purge_dtc_entries(tmp_rid, tmp_va, tmp_size);
tlb_must_purge_itc_entries(tmp_rid, tmp_va, tmp_size);

}

Interruptions: Machine Check abort Unimplemented Data Address
fault
Privileged Operation fault Virtualization fault
Register NaT Consumption fault

Serialization: Software must issue the appropriate data and/or instruction serialization operation
to ensure the purge is completed before a data access, non-access reference, or
instruction fetch access dependent upon the purge.
Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 37

Instruction Reference
ptr — Purge Translation Register
Format: (qp) ptr.d r3, r2 data_form M45

(qp) ptr.i r3, r2 instruction_form M45

Description: In the data form of this instruction, the data translation registers and caches are
searched for all entries whose virtual address and page size partially or completely
overlap the specified purge virtual address and purge address range. All these
entries are removed. Entries in the instruction translation registers are unaffected
by the data form of the purge.

In the instruction form, the instruction translation registers and caches are searched
for all entries whose virtual address and page size partially or completely overlap
the specified purge virtual address and purge address range. All these entries are
removed. Entries in the data translation registers are unaffected by the instruction
form of the purge.

In addition, in both forms, the instruction and data translation cache may be purged
of more translations than specified by the purge parameters up to and including
removal of all entries within the translation cache.

The purge virtual address is specified by GR r3 bits{60:0} and the purge region
identifier is selected by GR r3 bits {63:61}. GR r2 specifies the address range of the
purge as 1<<GR[r2]{7:2} bytes in size.

This instruction can only be executed at the most privileged level, and when
PSR.vm is 0.

This is a local operation, no purge broadcast to other processors occurs in a
multiprocessor system.

As described in Section 4.1.1.2, “Translation Cache (TC)” on page 47, the
processor may use the translation caches to cache virtual address mappings held by
translation registers. The ptr.i and ptr.d instructions purge the processor’s
translation registers as well as cached translation register copies that may be
contained in the respective translation caches.
38 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Instruction Reference
Operation: if (PR[qp]) {
if (PSR.cpl != 0)

privileged_operation_fault(0);
if (GR[r3].nat || GR[r2].nat)

register_nat_consumption_fault(0);
if (unimplemented_virtual_address(GR[r3], PSR.vm))

unimplemented_data_address_fault(0);
if (PSR.vm == 1)

virtualization_fault();

tmp_rid = RR[GR[r3]{63:61}].rid;
tmp_va = GR[r3]{60:0};
tmp_size = GR[r2]{7:2};
tmp_va = align_to_size_boundary(tmp_va, tmp_size);

if (data_form) {
tlb_must_purge_dtr_entries(tmp_rid, tmp_va, tmp_size);
tlb_must_purge_dtc_entries(tmp_rid, tmp_va, tmp_size);
tlb_may_purge_itc_entries(tmp_rid, tmp_va, tmp_size);

} else { //
instruction_form

tlb_must_purge_itr_entries(tmp_rid, tmp_va, tmp_size);
tlb_must_purge_itc_entries(tmp_rid, tmp_va, tmp_size);
tlb_may_purge_dtc_entries(tmp_rid, tmp_va, tmp_size);

}
}

Interruptions: Privileged Operation fault Unimplemented Data Address fault
Register NaT Consumption fault Virtualization fault

Serialization: For the data form, software must issue a data serialization operation to ensure the
purge is completed before issuing an instruction dependent upon the purge. For the
instruction form, software must issue an instruction serialization operation to
ensure the purge is completed before fetching an instruction dependent on that
purge.
Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 39

Instruction Reference
rfi — Return From Interruption
Format: rfi B8

Description: The machine context prior to an interruption is restored. PSR is restored from
IPSR, IPSR is unmodified, and IP is restored from IIP. Execution continues at the
bundle address loaded into the IP, and the instruction slot loaded into PSR.ri.

This instruction must be immediately followed by a stop. Otherwise, an Illegal
Operation fault is taken. This instruction switches to the register bank specified by
IPSR.bn. Instructions in the same instruction group that access GR16 to GR31
reference the previous register bank. Subsequent instruction groups reference the
new register bank.

This instruction performs instruction serialization, which ensures:

• Prior modifications to processor register resources that affect fetching of
subsequent instruction groups are observed.

• Prior modifications to processor register resources that affect subsequent
execution or data memory accesses are observed.

• Prior memory synchronization (sync.i) operations have taken effect on the
local processor instruction cache.

• Subsequent instruction group fetches (including the target instruction group)
are re-initiated after rfi completes.

The rfi instruction must be in an instruction group after the instruction group
containing the operation that is to be serialized.

This instruction can only be executed at the most privileged level, and when
PSR.vm is 0. This instruction can not be predicated.

Execution of this instruction is undefined if PSR.ic or PSR.i are 1 and PSR.vm is 0.
Software must ensure that an interruption cannot occur that could modify IIP,
IPSR, or IFS between when they are written and the subsequent rfi.

This instruction does not take Lower Privilege Transfer, Taken Branch or Single
Step traps.

If this instruction sets PSR.ri to 2 and the target is an MLX bundle, then an Illegal
Operation fault will be taken on the target bundle.

If IPSR.is is 1, control is resumed in the IA-32 instruction set at the virtual linear
address specified by IIP{31:0}. PSR.di does not inhibit instruction set transitions
for this instruction. If PSR.dfh is 1 after rfi completes execution, a Disabled FP
Register fault is raised on the target IA-32 instruction.

If IPSR.is is 1 and an Unimplemented Instruction Address trap is taken, IIP will
contain the original 64-bit target IP. (The value will not have been zero extended
from 32 bits.)

When entering the IA-32 instruction set, the size of the current stack frame is set to
zero, and all stacked general registers are left in an undefined state. Software can
not rely on the value of these registers across an instruction set transition. Software
must ensure that BSPSTORE==BSP on entry to the IA-32 instruction set,
otherwise undefined behavior may result.
40 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Instruction Reference
If IPSR.is is 1, software must set other IPSR fields properly for IA-32 instruction
set execution; otherwise processor operation is undefined. See Table 3-2,
“Processor Status Register Fields” on page 23 for details.

Software must issue a mf instruction before this instruction if memory ordering is
required between IA-32 processor-consistent and Itanium unordered memory
references. The processor does not ensure Itanium-instruction-set-generated writes
into the instruction stream are seen by subsequent IA-32 instructions.

Software must ensure the code segment descriptor and selector are loaded before
issuing this instruction. If the target EIP value exceeds the code segment limit or
has a code segment privilege violation, an IA_32_Exception(GPFault) exception is
raised on the target IA-32 instruction. For entry into 16-bit IA-32 code, if IIP is not
within 64K-bytes of CSD.base a GPFault is raised on the target instruction.
EFLAG.rf and PSR.id are unmodified until the successful completion of the target
IA-32 instruction. PSR.da, PSR.dd, PSR.ia and PSR.ed are cleared to zero before
the target IA-32 instruction begins execution.

IA-32 instruction set execution leaves the contents of the ALAT undefined.
Software can not rely on ALAT state across an instruction set transition. On entry
to IA-32 code, existing entries in the ALAT are ignored.

Operation: if (!followed_by_stop())
illegal_operation_fault();

unimplemented_address = 0;
if (PSR.cpl != 0)

privileged_operation_fault(0);

if (PSR.vm == 1)
virtualization_fault();

if (PSR.ic == 1 || PSR.i == 1)
undefined_behavior();

taken_rfi = 1;

PSR = CR[IPSR];
if (CR[IPSR].is == 1) { //resume IA-32 instruction set

if (CR[IPSR].ic == 0 || CR[IPSR].dt == 0 ||
CR[IPSR}.mc == 1 || CR[IPSR].it == 0)
undefined_behavior();

tmp_IP = CR[IIP];
if ((CR[IPSR].it && unimplemented_virtual_address(tmp_IP,

IPSR.vm))
|| (!CR[IPSR].it &&

unimplemented_physical_address(tmp_IP)))
unimplemented_address = 1;

//compute effective instruction
pointer

EIP{31:0} = CR[IIP]{31:0} - AR[CSD].Base;
//force zero-sized restored

frame
rse_restore_frame(0, 0, CFM.sof);
CFM.sof = 0;
CFM.sol = 0;
CFM.sor = 0;
CFM.rrb.gr = 0;
CFM.rrb.fr = 0;
Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 41

Instruction Reference
CFM.rrb.pr = 0;
rse_invalidate_non_current_regs();
//The register stack engine is disabled during IA-32
//instruction set execution.

} else { //return to Itanium instruction
set

tmp_IP = CR[IIP] & ~0xf;
slot = CR[IPSR].ri;
if ((CR[IPSR].it && unimplemented_virtual_address(tmp_IP,

IPSR.vm))
|| (!CR[IPSR].it &&

unimplemented_physical_address(tmp_IP)))
unimplemented_address = 1;

if (CR[IFS].v) {
tmp_growth = -CFM.sof;
alat_frame_update(-CR[IFS].ifm.sof, 0);
rse_restore_frame(CR[IFS].ifm.sof, tmp_growth, CFM.sof);
CFM = CR[IFS].ifm;

}
rse_enable_current_frame_load();

}
IP = tmp_IP;
instruction_serialize();
if (unimplemented_address)

unimplemented_instruction_address_trap(0, tmp_IP);

Interruptions: Illegal Operation fault Virtualization fault
Privileged Operation fault Unimplemented Instruction Address trap

Additional Faults on IA-32 target instructions
IA_32_Exception(GPFault)
Disabled FP Reg Fault if PSR.dfh is 1

Serialization: An implicit instruction and data serialization operation is performed.
42 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Instruction Reference
rsm — Reset System Mask
Format: (qp) rsm imm24 M44

Description: The complement of the imm24 operand is ANDed with the system mask
(PSR{23:0}) and the result is placed in the system mask. See Section 3.3.2,
“Processor Status Register (PSR)” on page 22.

The PSR system mask can only be written at the most privileged level, and when
PSR.vm is 0.

When the current privilege level is zero (PSR.cpl is 0), an rsm instruction whose
mask includes PSR.i may cause external interrupts to be disabled for an
implementation-dependent number of instructions, even if the qualifying predicate
for the rsm instruction is false. Architecturally, the extents of this external interrupt
disabling “window” are defined as follows:

• External interrupts may be disabled for any instructions in the same instruction
group as the rsm, including those that precede the rsm in sequential program
order, regardless of the value of the qualifying predicate of the rsm instruction.

• If the qualifying predicate of the rsm is true, then external interrupts are
disabled immediately following the rsm instruction.

• If the qualifying predicate of the rsm is false, then external interrupts may be
disabled until the next data serialization operation that follows the rsm
instruction.

The external interrupt disable window is guaranteed to be no larger than defined by
the above criteria, but it may be smaller, depending on the processor
implementation.

When the current privilege level is non-zero (PSR.cpl is not 0), an rsm instruction
whose mask includes PSR.i may briefly disable external interrupts, regardless of
the value of the qualifying predicate of the rsm instruction. However, processor
implementations guarantee that non-privileged code cannot lock out external
interrupts indefinitely (e.g., via an arbitrarily long sequence of rsm instructions
with zero-valued qualifying predicates).

Operation: if (PR[qp]) {
if (PSR.cpl != 0)

privileged_operation_fault(0);

if (is_reserved_field(PSR_TYPE, PSR_SM, imm24))
reserved_register_field_fault();

if (PSR.vm == 1)
virtualization_fault();

if (imm24{1}) PSR{1} = 0;) // be
if (imm24{2}) PSR{2} = 0;) // up
if (imm24{3}) PSR{3} = 0;) // ac
if (imm24{4}) PSR{4} = 0;) // mfl
if (imm24{5}) PSR{5} = 0;) // mfh
if (imm24{13}) PSR{13} = 0;) // ic
if (imm24{14}) PSR{14} = 0;) // i
if (imm24{15}) PSR{15} = 0;) // pk
if (imm24{17}) PSR{17} = 0;) // dt
if (imm24{18}) PSR{18} = 0;) // dfl
Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 43

Instruction Reference
if (imm24{19}) PSR{19} = 0;) // dfh
if (imm24{20}) PSR{20} = 0;) // sp
if (imm24{21}) PSR{21} = 0;) // pp
if (imm24{22}) PSR{22} = 0;) // di
if (imm24{23}) PSR{23} = 0;) // si

}

Interruptions: Privileged Operation fault Virtualization fault
Reserved Register/Field fault

Serialization: Software must use a data serialize or instruction serialize operation before issuing
instructions dependent upon the altered PSR bits – except the PSR.i bit. The PSR.i
bit is implicitly serialized and the processor ensures that external interrupts are
masked by the time the next instruction executes.
44 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Instruction Reference
ssm — Set System Mask
Format: (qp) ssm imm24 M44

Description: The imm24 operand is ORed with the system mask (PSR{23:0}) and the result is
placed in the system mask. See Section 3.3.2, “Processor Status Register (PSR)” on
page 22.

The PSR system mask can only be written at the most privileged level, and when
PSR.vm is 0.

The contents of the interruption resources (that are overwritten when the PSR.ic bit
is 1), are undefined if an interruption occurs between the enabling of the PSR.ic bit
and a subsequent instruction serialize operation.

Operation: if (PR[qp]) {
if (PSR.cpl != 0)

privileged_operation_fault(0);

if (is_reserved_field(PSR_TYPE, PSR_SM, imm24))
reserved_register_field_fault();

if (PSR.vm == 1)
virtualization_fault();

if (imm24{1}) PSR{1} = 1;) // be
if (imm24{2}) PSR{2} = 1;) // up
if (imm24{3}) PSR{3} = 1;) // ac
if (imm24{4}) PSR{4} = 1;) // mfl
if (imm24{5}) PSR{5} = 1;) // mfh
if (imm24{13}) PSR{13} = 1;) // ic
if (imm24{14}) PSR{14} = 1;) // i
if (imm24{15}) PSR{15} = 1;) // pk
if (imm24{17}) PSR{17} = 1;) // dt
if (imm24{18}) PSR{18} = 1;) // dfl
if (imm24{19}) PSR{19} = 1;) // dfh
if (imm24{20}) PSR{20} = 1;) // sp
if (imm24{21}) PSR{21} = 1;) // pp
if (imm24{22}) PSR{22} = 1;) // di
if (imm24{23}) PSR{23} = 1;) // si

}

Interruptions: Privileged Operation fault Virtualization fault
Reserved Register/Field fault

Serialization: Software must issue a data serialize or instruction serialize operation before issuing
instructions dependent upon the altered PSR bits from the ssm instruction. Unlike
with the rsm instruction, setting the PSR.i bit is not treated specially. Refer to
Section 3.2, “Serialization” on page 17for a description of serialization.
Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 45

Instruction Reference
tak — Translation Access Key
Format: (qp) tak r1 = r3 M46

Description: The protection key for a given virtual address is obtained and placed in GR r1.

When PSR.dt is 1, the DTLB and the VHPT are searched for the virtual address
specified by GR r3 and the region register indexed by GR r3 bits {63:61}. If a
matching present translation is found the protection key of the translation is placed
in GR r1. If a matching present translation is not found or if an unimplemented
virtual address is specified by GR r3, the value 1 is returned.

When PSR.dt is 0, only the DTLB is searched, because the VHPT walker is
disabled. If no matching present translation is found in the DTLB, the value 1 is
returned.

A translation with the NaTPage attribute is not treated differently and returns its
key field.

This instruction can only be executed at the most privileged level, and when
PSR.vm is 0.

Operation: if (PR[qp]) {
itype = NON_ACCESS|TAK;
check_target_register(r1);

if (PSR.cpl != 0)
privileged_operation_fault(itype);

if (GR[r3].nat)
register_nat_consumption_fault(itype);

if (PSR.vm == 1)
virtualization_fault();

GR[r1] = tlb_access_key(GR[r3], itype);
GR[r1].nat = 0;

}

Interruptions: Illegal Operation fault Register NaT Consumption fault
Privileged Operation fault Virtualization fault
46 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Instruction Reference
thash — Translation Hashed Entry Address
Format: (qp) thash r1 = r3 M46

Description: A Virtual Hashed Page Table (VHPT) entry address is generated based on the
specified virtual address and the result is placed in GR r1. The virtual address is
specified by GR r3 and the region register selected by GR r3 bits {63:61}.

If thash is given a NaT input argument or an unimplemented virtual address as an
input, the resulting target register value is undefined, and its NaT bit is set to one.

When the processor is configured to use the region-based short format VHPT
(PTA.vf=0), the value returned by thash is defined by the architected short format
hash function. See Section 4.1.5.3, “Region-based VHPT Short Format” on
page 60

When the processor is configured to use the long format VHPT (PTA.vf=1), thash
performs an implementation-specific long format hash function on the virtual
address to generate a hash index into the long format VHPT.

In the long format, a translation in the VHPT must be uniquely identified by its
hash index generated by this instruction and the hash tag produced from the ttag
instruction.

The hash function must use all implemented region bits and only virtual address
bits {60:0} to determine the offset into the VHPT. Virtual address bits {63:61} are
used only by the short format hash to determine the region of the VHPT.

This instruction must be implemented on all processor models, even processor
models that do not implement a VHPT walker.

This instruction can only be executed when PSR.vm is 0.

Operation: if (PR[qp]) {
check_target_register(r1);

if (PSR.vm == 1)
virtualization_fault();

if (GR[r3].nat || unimplemented_virtual_address(GR[r3],
PSR.vm)) {

GR[r1] = undefined();
GR[r1].nat = 1;

} else {
tmp_vr = GR[r3]{63:61};
tmp_va = GR[r3]{60:0};
GR[r1] = tlb_vhpt_hash(tmp_vr, tmp_va, RR[tmp_vr].rid,

 RR[tmp_vr].ps);
GR[r1].nat = 0;

}
}

Interruptions: Illegal Operation fault Virtualization fault
Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 47

Instruction Reference
tpa — Translate to Physical Address
Format: (qp) tpa r1 = r3 M46

Description: The physical address for the virtual address specified by GR r3 is obtained and
placed in GR r1.

When PSR.dt is 1, the DTLB and the VHPT are searched for the virtual address
specified by GR r3 and the region register indexed by GR r3 bits {63:61}. If a
matching present translation is found the physical address of the translation is
placed in GR r1. If a matching present translation is not found the appropriate TLB
fault is taken.

When PSR.dt is 0, only the DTLB is searched, because the VHPT walker is
disabled. If no matching present translation is found in the DTLB, an Alternate
Data TLB fault is raised if psr.ic is one or a Data Nested TLB fault is raised if psr.ic
is zero.

If this instruction faults, then it will set the non-access bit in the ISR. The ISR read
and write bits are not set.

This instruction can only be executed at the most privileged level, and when
PSR.vm is 0.

Operation: if (PR[qp]) {
itype = NON_ACCESS|TPA;
check_target_register(r1);

if (PSR.cpl != 0)
privileged_operation_fault(itype);

if (GR[r3].nat)
register_nat_consumption_fault(itype);

if (PSR.vm == 1)
virtualization_fault();

GR[r1] = tlb_translate_nonaccess(GR[r3], itype);
GR[r1].nat = 0;

}

Interruptions: Illegal Operation fault Alternate Data TLB fault
Privileged Operation fault VHPT Data fault
Register NaT Consumption fault Data TLB fault
Unimplemented Data Address fault Data Page Not Present fault
Virtualization fault Data NaT Page Consumption fault
Data Nested TLB fault
48 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Instruction Reference
ttag — Translation Hashed Entry Tag
Format: (qp) ttag r1 = r3 M46

Description: A tag used for matching during searches of the long format Virtual Hashed Page
Table (VHPT) is generated and placed in GR r1. The virtual address is specified by
GR r3 and the region register selected by GR r3 bits {63:61}.

If ttag is given a NaT input argument or an unimplemented virtual address as an
input, the resulting target register value is undefined, and its NaT bit is set to one.

The tag generation function generates an implementation-specific long format
VHPT tag. The tag generation function must use all implemented region bits and
only virtual address bits {60:0}. PTA.vf is ignored by this instruction.

A translation in the long format VHPT must be uniquely identified by its hash
index generated by the thash instruction and the tag produced from this
instruction.

This instruction must be implemented on all processor models, even processor
models that do not implement a VHPT walker.

This instruction can only be executed when PSR.vm is 0.

Operation: if (PR[qp]) {
check_target_register(r1);

if (PSR.vm == 1)
virtualization_fault();

if (GR[r3].nat || unimplemented_virtual_address(GR[r3],
PSR.vm)) {

GR[r1] = undefined();
GR[r1].nat = 1;

} else {
tmp_vr = GR[r3]{63:61};
tmp_va = GR[r3]{60:0};
GR[r1] = tlb_vhpt_tag(tmp_va, RR[tmp_vr].rid,

RR[tmp_vr].ps);
GR[r1].nat = 0;

}
}

Interruptions: Illegal Operation fault Virtualization fault
Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 49

Instruction Reference
vmsw — Virtual Machine Switch
Format: vmsw.0 zero_form B8

vmsw.1 one_form B8

Description: This instruction sets the PSR.vm bit to the specified value. This instruction can be
used to implement transitions to/from virtual machine mode without the overhead
of an interruption.

If instruction address translation is enabled and the page containing the vmsw
instruction has access rights equal to 7, then the new value is written to the PSR.vm
bit. In the zero_form, PSR.vm is set to 0, and in the one_form, PSR.vm is set to 1.

Instructions after the vmsw instruction in the same instruction group may be
executed with the old or new value of PSR.vm. Instructions in subsequent
instruction groups will be executed with PSR.vm equal to the new value.

If the above conditions are not met, this instruction takes a virtualization fault.

This instruction can only be executed at the most privileged level. This instruction
cannot be predicated.

Implementation of PSR.vm is optional. If it is not implemented, this instruction
takes Illegal Operation fault. If it is implemented but is disabled, this instruction
takes a virtualization fault when executed at the most privileged level. See Section
3.4, “Processor Virtualization” on page 40 and PAL_PROC_GET_FEATURES on
page 385 for details.

Operation: if (!implemented_vm())
illegal_operation fault();

if (PSR.cpl != 0)
privileged_operation_fault(0);

if (!(PSR.it == 1 && itlb_ar() == 7) || vm_disabled())
virtualization_fault();

if (zero_form) {
PSR.vm = 0;

}
else {

PSR.vm = 1;
}

Interruptions: Illegal Operation fault Virtualization fault
Privileged Operation fault
50 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

5 Processor Abstraction Layer

Note: This section and all of its subsections track directly to Section 11, Processor Abstraction Layer, in
the Intel® Itanium® Architecture Software Developer’s Manual.

5.1 Virtualization Terminology
The following are terms related to Itanium architecture virtualization:

Virtual Machine Monitor (VMM) – The VMM is the system software which implements
software policies to manage/support virtualization of processor and platform resources.

Virtual Processor Descriptor (VPD) – Represents the abstraction of the processor resources of a
single virtual processor. The Virtual Processor Descriptor (VPD) consists of per-virtual-processor
control information together with performance-critical architectural state. See Section 5.2.1,
“Virtual Processor Descriptor (VPD)” on page 52 for details.

Virtual Processor State – A memory data structure which represents the architectural state of a
virtual processor. Part of the virtual processor state is located in the VPD, and the rest is located in
memory data structures maintained by the virtual machine monitor.

PAL intercepts – Interfaces where PAL transfers control to the VMM on virtualization events
(execution of virtualized instructions/operations with PSR.vm==1). For details see Section 5.2.3,
“PAL Intercepts in Virtual Environment” on page 58.

5.2 PAL Virtualization Support
This section describes the PAL architectural support for Itanium architecture virtualization.

Itanium architecture processors that support processor virtualization, the PAL virtualization
support described in this document will be available. Itanium architecture virtualization support
can be determined by calling PAL_PROC_GET_FEATURES.

The virtualization support in PAL presents an implementation-independent interface to enable the
VMM to implement software policies to manage/support virtualization of Itanium processors.

The PAL extensions for virtualization consist of three main components:

1. A set of procedures to support virtualization operations. These procedures allow the VMM to
configure logical processors for virtualization operations and suspend/resume virtual
processors on logical processors. Details for this component are described in Section 5.5,
“PAL Procedures for Virtualization” on page 84.

2. A set of services to provide low-latency, low-overhead support for performance-critical VMM
operations. Details for this component are described in Section 5.2.5, “PAL Virtualization
Services” on page 70.

3. A PAL intercept interface to allow PAL to deliver virtualization events to the VMM in a low-
latency, low-overhead manner. This PAL-to-VMM interface also allows PAL to provide
 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 51

Processor Abstraction Layer
optimizations for VMM operations. Details for this component are described in Section 5.2.3,
“PAL Intercepts in Virtual Environment” on page 58.

The VMM is responsible for managing the set of available system resources (CPU, memory,
peripherals) and implement policies to virtualize these resources. In order to support virtual
processor operations, the VMM will create a virtual environment and associate logical processors
with the virtual environment. A virtual environment consists of one or more logical processors plus
the memory resource allocated by the VMM during PAL_VP_INIT_ENV.

The VMM creates a virtual environment by calling PAL_VP_ENV_INFO to obtain the memory
requirement for creating a virtual environment, and then by calling PAL_VP_INIT_ENV on each
logical processor that is to be part of the virtual environment. After a virtual environment is
created, the VMM can create and initialize virtual processors to run in the environment by calling
PAL_VP_CREATE.

The state of a virtual processor belonging to a virtual environment can be restored/saved on a
logical processor in the environment by calling PAL_VP_RESTORE or PAL_VP_SAVE
respectively. The VMM starts virtual processor operations on a logical processor by invoking
either PAL_VPS_RESUME_NORMAL or PAL_VPS_RESUME_HANDLER.

The VMM can add/remove a logical processor from a virtual environment at any time by calling
PAL_VP_INIT_ENV or PAL_VP_EXIT_ENV respectively.

5.2.1 Virtual Processor Descriptor (VPD)
The Virtual Processor Descriptor (VPD) represents the abstraction of processor resources of a
single virtual processor. The VPD consists of per-virtual-processor control information together
with performance-critical architectural state. The VPD is 64K in size and the base must be 32K
aligned. Table 5-1 shows the fields and layout of the VPD. The values in the VPD can be stored in
little or big endian format, depending on the setting of be field setting in “config_options – Global
Configuration Options” during PAL_VP_INIT_ENV call. See “PAL Initialize Virtual
Environment” on page 89 for details. The VPD is divided into two classes – the first class stores
control information and the second class stores the performance-critical architectural state of the
virtual processor.

The VMM must keep the virtual processor state in the VPD for a particular state entry either:
always, or only when one or more particular accelerations is enabled, as described in the Class
column of Table 5-1. See Section 5.2.4.1, “Virtualization Accelerations” on page 61 for details.

Table 5-1. Virtual Processor Descriptor (VPD) (Sheet 1 of 3)
Name Entries Offset Description Class

vac 1 0 Virtualization Acceleration Control – these
control bits enable virtualization acceleration
of a particular resource or instruction. See
Section 5.2.1.1, “Virtualization Controls” on
page 54 for details.

Control [always]

vdc 1 8 Virtualization Disable Control – these control
bits disable the virtualization of a particular
resource or instruction. See Section 5.2.1.1,
“Virtualization Controls” on page 54 for details.

Control [always]

Reserved 30 16 Reserved Area – Reserved for future expan-
sion.

Reserved
52 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Processor Abstraction Layer
vhpi 1 256 Virtual Highest Priority Pending Interrupt –
Specifies the current highest priority pending
interrupt for the virtual processor. See
Table 5-26, “vhpi – Virtual Highest Priority
Pending Interrupt” on page 78 for details.

Control [a_int]

Reserved 95 264 Reserved Area – Reserved for future expan-
sion.

Reserved

vgr[16-31] 16 1024 Virtual General Registers – Represent the
bank 1 general registers 16-31 of the virtual
processor. When the virtual processor is run-
ning and vpsr.bn is 1, the values in these
entries are undefined.

Architectural State
[a_bsw]

vbgr[16-31] 16 1152 Virtual Banked General Registers – Represent
the bank 0 general registers 16-31 of the vir-
tual processor. When the virtual processor is
running and vpsr.bn is 0, the values in these
entries are undefined.

Architectural State
[a_bsw]

vnat 1 1280 Virtual General Register NaTs – Bits 0-15 rep-
resent the NaT values corresponding to vgr16-
31, where the NaT bit for vgr16 is in bit 0. Bits
16-63 are don’t cares.

Architectural State
[a_bsw]

vbnat 1 1288 Virtual Banked Register NaTs – Bits 16-31 rep-
resent the NaT values corresponding to
vbgr16-31, where the NaT bit for vbgr16 is in
bit 16. Bits 0-15 and 32-63 are don’t cares.

Architectural State
[a_bsw]

vcpuid[0-4] 5 1296 Virtual CPUID Registers – Represent cpuid
registers 0-4 of the virtual processor.
NOTE: vcpuid[0-1] and vcpuid[4]{63:32} must
contain the same values as the corresponding
values of the logical processor on which this
virtual processor is running.

Architectural State
[a_from_cpuid]

Reserved 11 1336 Reserved Area – Reserved for future expan-
sion.

Reserved

vpsr 1 1424 Virtual Processor Status Register – Repre-
sents the Processor Status Register of the vir-
tual processor.

Architectural State
[always1, a_int2,
a_from_psr,
a_from_int_cr3,
a_to_int_cr3,
a_cover4, a_bsw5]

vpr 1 1432 Virtual Predicate Registers – Represents the
Predicate Registers of the virtual processor.
The bit positions in vpr correspond to predi-
cate registers in the same manner as with the
mov predicates instruction.

Architectural State
[always]

Reserved 76 1440 Reserved Area – Reserved for future expan-
sion. This area may also be used by PAL to
hold additional machine-specific processor
state.

Reserved

vcr[0-127] 128 2048 Virtual Control Registers – Represent the con-
trol registers of the virtual processor. For the
reserved control registers, the corresponding
VPD entries are reserved.

Architectural State
[a_int6,
a_from_int_cr7,
a_to_int_cr7,
a_cover8]

Table 5-1. Virtual Processor Descriptor (VPD) (Sheet 2 of 3)
Name Entries Offset Description Class
Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 53

Processor Abstraction Layer
5.2.1.1 Virtualization Controls

The Virtualization Acceleration Control (vac) and Virtualization Disable Control (vdc) fields in the
VPD contain configuration control bits which define the set of events that will cause an intercept
from PAL to the VMM. The virtualization controls are divided into two categories:

1. Virtualization Acceleration Control – these control bits enable virtualization optimization
support of a particular resource or instruction. Figure 5-1 and Table 5-2 describe these control
bits.

2. Virtualization Disable Control – these control bits disable the virtualization of a particular
resource or instruction. Figure 5-2 and Table 5-3 describe these control bits.

The vac and vdc settings are specified by the VMM during virtual processor initialization when the
PAL_VP_CREATE procedure is called, and cannot be changed until the virtual processor is
terminated by PAL_VP_TERMINATE.

Reserved 128 3072 Reserved Area – Reserved for future expan-
sion. This area may also be used by PAL to
hold additional machine-specific processor
state

Reserved

Reserved 3456 4096 Reserved Area – Reserved for future expan-
sion. This area may also be used by PAL to
hold additional machine-specific processor
state

Reserved

vmm_avail 128 31744 Available for VMM use. This area is ignored by
the processor and PAL.

Ignored

Reserved 4096 32768 Reserved Area – Reserved for future expan-
sion. This area may also be used by PAL to
hold additional machine-specific processor
state

Reserved

NOTES:
1. If the value of the opcode field in the config_options parameter during PAL_VP_INIT_ENV is 1, then vpsr.ic

must be kept in the VPD independent of any accelerations.
2. The a_int acceleration only requires that the vpsr.i bit be kept in the VPD; other bits of the virtual processor's

psr need not be kept here.
3. The a_from_int_cr and a_to_int_cr accelerations only require that vpsr.ic be kept in the VPD.
4. The a_cover acceleration only requires that the vpsr.ic bit be kept in the VPD.
5. The a_bsw acceleration only requires that the vpsr.bn bit be kept in the VPD.
6. The a_int acceleration only requires that vtpr be kept in the VPD.
7. The a_from_int_cr and a_to_int_cr accelerations only require that the virtual interruption CRs (vipsr, visr, viip,

vifa, vitir, viipa, vifs, viim, viha) be kept in the VPD.
8. The a_cover acceleration only requires that vifs be kept in the VPD.

Table 5-1. Virtual Processor Descriptor (VPD) (Sheet 3 of 3)
Name Entries Offset Description Class

Figure 5-1. Virtualization Acceleration Control (vac)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Acceleration Controls
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved
54 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Processor Abstraction Layer
Table 5-2. Virtualization Acceleration Control (vac) Fields
Field Bit Description

a_int1

NOTES:
1. The functionality provided by this field is not available if the value of the opcode field in the config_options

parameter during PAL_VP_INIT_ENV is 0. For details see Table 5-27, “vp_env_info – Virtual Environment
Information Parameter” on page 87.

0 Enable the virtual external interrupt optimization. See Section 5.2.4.1.1, “Vir-
tual External Interrupt Optimization” on page 61 for details.

a_from_int_cr1 1 Enable the interruption control register (CR16-25) read optimization. See
Section 5.2.4.1.2, “Interruption Control Register Read Optimization” on
page 63 for details.

a_to_int_cr1 2 Enable the interruption control register (CR16-25) write optimization. See
Section 5.2.4.1.3, “Interruption Control Register Write Optimization” on
page 64 for details.

a_from_psr1 3 Enable the processor status register read optimization. See Section
5.2.4.1.4, “MOV-from-PSR Optimization” on page 65 for details.

a_from_cpuid1 4 Enable the CPUID read optimization. See Section 5.2.4.1.5, “MOV-from-
CPUID Optimization” on page 65 for details.

a_cover1 5 Enable the cover instruction optimization. See Section 5.2.4.1.6, “Cover
Optimization” on page 66 for details.

a_bsw1 6 Enable the bsw instruction optimization. See Section 5.2.4.1.7, “Bank Switch
Optimization” on page 66 for details.

Reserved 63:7 Reserved

Figure 5-2. Virtualization Disable Control (vdc)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Disable Controls
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved

Table 5-3. Virtualization Disable Control (vdc) Fields (Sheet 1 of 2)
Field Bits Description

d_vmsw 0 Disable vmsw instruction – If 1, disables vmsw instruction on the logical pro-
cessor. Execution of the vmsw instruction, independent of the state of
PSR.vm, will cause a virtualization intercept.

d_extint1 1 Disable external interrupt control register virtualization – If 1, accesses
(reads/writes) of the external interrupt control registers (CR65-71) are not vir-
tualized. Code running with PSR.vm==1 can read and write the external inter-
rupt control registers of the logical processor directly and without handling off
to the VMM. See Section 5.2.4.2.9, “Disable External Interrupt Control Regis-
ter Virtualization” on page 68 for details.

d_ibr_dbr1 2 Disable breakpoint register virtualization – If 1, accesses (reads/writes) of the
data and instruction breakpoint registers (IBR/DBR) are not virtualized. Code
running with PSR.vm==1 can read and write the data/instruction breakpoint
registers of the logical processor directly and without handling off to the
VMM.
If 0, accesses of the breakpoint registers with PSR.vm==1 result in virtualiza-
tion intercepts.

d_pmc1 3 Disable PMC virtualization – If 1, accesses (reads/writes) of the performance
monitor configuration registers (PMCs) are not virtualized. Code running with
PSR.vm==1 can read and write the performance monitor configuration regis-
ters of the logical processor directly and without handling off to the VMM.
If 0, accesses of the performance counter configuration registers with
PSR.vm==1 result in virtualization intercepts.
Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 55

Processor Abstraction Layer
5.2.2 Interruption Handling in a Virtual Environment
For logical processors which have been added to a virtual environment through
PAL_VP_INIT_ENV, all IVA-based interruptions continue to be delivered to the host IVT
independent of the state of PSR.vm at the time of interruption. All IVA-based interruptions are
serviced by the host IVT pointed to by the IVA (CR2) control register on the logical processor.

IVA-based interruptions that do not represent virtualization events will be delivered to the guest
IVT by the VMM. The guest IVT is specified by the VIVA control register in the VPD of the
virtual processor.

For IVA-based interruption handling during virtual processor operations, PAL provides maximum
flexibility to the VMM by supporting per-virtual-processor host IVTs. This allows the VMM to
provide a different host IVT with optimizations specific to a particular guest operating system on
the virtual processor. The VMM can also choose to provide the same IVT for some or all of the
virtual processors in a virtual environment.

Hence, at any time in a virtual environment, the IVA (CR2) control register of the logical processor
will be pointing to either:

• The per-virtual-processor host IVT.

• The generic host IVT not specific to any virtual processor.

The per-virtual-processor host IVT for each virtual processor is setup by PAL when the virtual
processor is first created (PAL_VP_CREATE) or registered (PAL_VP_REGISTER) in the virtual
environment. The VMM passes a pointer to the host IVT specific to the virtual processor as an
incoming parameter to the PAL_VP_CREATE or PAL_VP_REGISTER procedures. The per-
virtual-processor host IVT is setup to perform long branches to the corresponding vector of the

d_to_pmd1 4 Disable PMD write virtualization – If 1, writes to the performance monitor data
registers (PMDs) are not virtualized. Code running with PSR.vm==1 can write
the performance monitor data registers of the logical processor directly and
without handling off to the VMM.
If 0, writes of the performance counter data registers with PSR.vm==1 result
in virtualization intercepts.

d_itm1 5 Disable ITM virtualization – If 1, writes to the Interval Timer Match (ITM) reg-
ister are not virtualized. Code running with PSR.vm==1 can write the ITM
register of the logical processor directly and without handling off to the VMM.
If 0, writes of the ITM register with PSR.vm==1 result in virtualization inter-
cepts.

d_psr_i1 6 Disable PSR.i virtualization – If 1, accesses (reads/writes) to the interrupt bit
in processor state register (PSR.i) are not virtualized. Code running with
PSR.vm==1 can read and write only the interrupt bit via the ssm and rsm
instructions directly without handling off to the VMM. Attempts to modify other
PSR bits in addition to the interrupt bit via the ssm and rsm instructions will
result in virtualization intercepts. Attempts to modify the interrupt bit with the
mov psr.l instruction will continue to result in virtualization intercepts.
If 0, accesses to the PSR.i bit with PSR.vm==1 result in virtualization inter-
cepts.

Reserved 63:7 Reserved

NOTES:
1. The functionality provided by this field is not available if the value of the opcode field in the config_options

parameter during PAL_VP_INIT_ENV is 0. For details see Table 5-27, “vp_env_info – Virtual Environment
Information Parameter” on page 87.

Table 5-3. Virtualization Disable Control (vdc) Fields (Sheet 2 of 2)
Field Bits Description
56 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Processor Abstraction Layer
IVT specified in the incoming parameter for all IVA-based interruptions except the Virtualization
vector. Virtualization vector will be delivered as virtualization intercept in the per-virtual-processor
host IVT. See Section 5.2.3, “PAL Intercepts in Virtual Environment” on page 58 for details on
PAL intercepts.

In the virtual environment, the IVA (CR2) control register will be set by PAL virtualization-related
procedures and services as summarized in Table 5-4.

After successful execution of PAL_VP_RESTORE procedure or PAL_VPS_RESTORE service,
the IVA control register on the logical processor is set to point to the per-virtual-processor host
IVT. After successful completion of PAL_VP_RESTORE procedure, the VMM must not change
the IVA control register on the logical processor until after the next invocation of PAL_VP_SAVE
or PAL_VPS_SAVE.

On IVA-based interruptions when a virtual processor is running (after
PAL_VPS_RESUME_NORMAL or PAL_VPS_RESUME_HANDLER), the IVA control register
on the logical processor is unchanged and will continue to point to the per-virtual-processor host
IVT. On resume execution to the same virtual processor through PAL_VPS_RESUME_NORMAL
or PAL_VPS_RESUME_HANDLER PAL services, the VMM must ensure the IVA control register
on the logical processor is set to point to the per-virtual-processor host IVT at the time of
interruption.1

Faults and virtualization intercepts on the following instructions can be handled in two ways,
determined by the value of the opcode field in the config_options parameter passed to
PAL_VP_INIT_ENV:

• mov-from-interruption-CR (CRs 16, 17, 19-25)

• mov-to-interruption-CR (CRs 16, 17, 19-25)

• itc.d, itc.i

• itr.d, itr.i

These instructions can raise one or more of these faults:

• Illegal Operation fault

• Privileged Operation fault

Table 5-4. IVA Settings after PAL Virtualization-Related Procedures and Services
PAL Virtualization-
related Procedure /

Service
Description

PAL_VP_CREATE
These procedures do not change the IVA control register.

PAL_VP_ENV_INFO
PAL_VP_EXIT_ENV This procedure sets the IVA control register to point to the IVT specified by the caller.
PAL_VM_INIT_ENV

These procedures do not change the IVA control register.
PAL_VP_REGISTER
PAL_VP_RESTORE /
PAL_VPS_RESTORE

This procedure / service sets the IVA control register to point to the per-virtual-
processor host IVT.

PAL_VP_SAVE /
PAL_VPS_SAVE This procedure / service does not change the IVA control register.

PAL_VP_TERMINATE This procedure sets the IVA control register to point to the IVT specified by the caller.

1. In other words, the VMM is allowed to change to another IVT after IVA-based interruptions happening during virtual processor execution.
The VMM must ensure the per-virtural processor IVT is restored before resuming to the same virtual processor through
PAL_VPS_RESUME_NORMAL or PAL_VPS_RESUME_HANDLER.
Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 57

Processor Abstraction Layer
• Reserved Register/Field fault

• Unimplemented Data Address fault

• Register NaT Consumption fault

If the value of the opcode field in the config_options parameter passed to PAL_VP_INIT_ENV
was 1 when these instructions execute, the above faults may be raised at the General Exception
vector of the host IVT based on the state of the virtual processor. If none of the above faults are
raised, a virtualization intercept is raised at the Virtualization vector or at the optional
Virtualization Intercept handler specified by the VMM, and there is no need for the VMM to check
for the above faults at the virtualization intercept handler.

If the value of the opcode field in the config_options parameter passed to PAL_VP_INIT_ENV
was 0, these instructions are delivered at the General Exception vector of the host IVT, with ISR
indicating an Illegal Operation fault. In this case, the VMM is responsible to determine whether
any of the above faults have caused by these instructions based on the state of the virtual processor
before any handling code for these instructions.

5.2.3 PAL Intercepts in Virtual Environment
When the IVA control register on the logical processor is set to point to the per-virtual-processor
host IVT, virtualization intercepts will be raised at the Virtualization vector or at an optional
virtualization intercept handler specified by the VMM. By default, virtualization intercepts are
delivered to the Virtualization vector of the IVT specified by the VMM during PAL_VP_CREATE
/ PAL_VP_REGISTER. If the VMM specified the optional virtualization intercept handler, all
virtualization intercepts are delivered to that handler (instead of the Virtualization vector.)

Section 5.2.3.1, “PAL Virtualization Intercept Handoff State” on page 58 describes the handoff
state of the PAL intercepts. For all interruption vectors other than Virtualization vector, the
architectural state at the corresponding IVA-based interruption vector is the same as defined in
Chapter 8, “Interruption Vector Descriptions” in Volume 2.

5.2.3.1 PAL Virtualization Intercept Handoff State

The state of the logical processor at virtualization intercept handoff is:

• GRs:

— Non-banked GRs: The contents of non-banked general registers are preserved from the
time of the interruption.

— Bank 1 GRs: The contents of all bank one general registers are preserved from the time of
the interruption.

— Bank 0: GR16-23: The contents of these bank zero general registers are preserved from
the time of the interruption.

— Bank 0: GR24-31: Scratch, contains parameters/state for VMM:
• GR24 indicates the cause of virtualization intercept. See Table 5-5, “PAL

Virtualization Intercept Handoff Cause (GR24)” for details. This field is not provided
to the VMM if the value of the cause field in the config_options parameter passed to
PAL_VP_INIT_ENV is 0. If the value of the cause field in the config_options
parameter passed to PAL_VP_INIT_ENV is 0, the value of GR24 on virtualization
intercept handoff is undefined.

• GR25 contains the 41-bit opcode in little endian format and the type of the instruction
which caused the fault, excluding the qualifying predicate (qp) field. See Figure 5-3,
58 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Processor Abstraction Layer
“PAL Virtualization Intercept Handoff Opcode (GR25),” on page :60 for details. This
field is not provided to the VMM if the value of the opcode field in the config_options
parameter passed to PAL_VP_INIT_ENV is 0. If the value of the opcode field in the
config_options parameter passed to PAL_VP_INIT_ENV is 0, the value of GR25 on
virtualization intercept handoff is undefined.

• GR26-31 are available for the VMM to use.

• FRs: The contents of all floating-point registers are preserved from the time of the
interruption.

• Predicates: The contents of all predicate registers are undefined and available for use. The
original contents are saved in the VPD.

• BRs: The contents of all branch registers are preserved from the time of the interruption.

• ARs: The contents of all application registers are preserved from the time of the interruption,
except the ITC counter. The ITC register will not be directly modified by PAL, but will
continue to count during the execution of the virtualization intercept handler.

• CFM: The contents of the CFM register is preserved from the time of the interruption.

• RSE: All RSE state is preserved from the time of the interruption.

• PSR: PSR fields are set according to the “Interruption State” column in Table 3-2, “Processor
Status Register Fields” on page 2:23.

• CRs: The contents of all control registers are preserved from the time of the interruption with
the exception of resources described below:

— IRRs: The contents of IRRs are not changed by PAL. Incoming interruptions may change
the contents.

— IFS: IFS is unchanged from the time of the interruption.

— IIP: Contains the value of IP at the time of the interruption.

— IPSR: Contains the value of PSR at the time of the interruption.

• RRs: The contents of all region registers are preserved from the time of the interruption.

• PKRs: The contents of all protection key registers are preserved from the time of the
interruption.

• DBRs/IBRs: The contents of all breakpoint registers are preserved from the time of the
interruption.

• PMCs/PMDs: The contents of the PMC registers are preserved from the time of the
virtualization intercept. The contents of the PMD registers are not modified by PAL code, but
may be modified if events being monitored are encountered. The performance counters will be
frozen if specified by the VMM through a parameter of PAL_VP_INIT_ENV procedure.

• Cache: The processor internal cache is not specifically modified by PAL handler but may be
modified due to normal cache activity of running the handler code.

• TLB: The TRs are unchanged from the time of the interruption.

Table 5-5. PAL Virtualization Intercept Handoff Cause (GR24) (Sheet 1 of 2)
Value Cause Description
1 toAR Due to MOV-to-AR instruction.
2 toARimm Due to MOV-to-AR-imm instruction.
3 fromAR Due to MOV-from-AR instruction.
4 toCR Due to MOV-to-CR instruction.
Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 59

Processor Abstraction Layer
5 fromCR Due to MOV-from-CR instruction.
6 toPSR Due to MOV-to-PSR instruction.
7 fromPSR Due to MOV-from-PSR instruction.
8 itc_d Due to itc.d instruction.
9 itc_i Due to itc.i instruction.
10 toRR Due to MOV-to-RR instruction.
11 toDBR Due to MOV-to-DBR instruction.
12 toIBR Due to MOV-to-IBR instruction.
13 toPKR Due to MOV-to-PKR instruction.
14 toPMC Due to MOV-to-PMC instruction.
15 toPMD Due to MOV-to-PMD instruction.
16 itr_d Due to itr.d instruction.
17 itr_i Due to itr.i instruction.
18 fromRR Due to MOV-from-RR instruction.
19 fromDBR Due to MOV-from-DBR instruction.
20 fromIBR Due to MOV-from-IBR instruction.
21 fromPKR Due to MOV-from-PKR instruction.
22 fromPMC Due to MOV-from-PMC instruction.
23 fromCPUID Due to MOV-from-CPUID instruction.
24 ssm Due to ssm instruction.
25 rsm Due to rsm instruction.
26 ptc_l Due to ptc.l instruction.
27 ptc_g Due to ptc.g instruction.
28 ptc_ga Due to ptc.ga instruction.
29 ptr_d Due to ptr.d instruction.
30 ptr_i Due to ptr.i instruction.
31 thash Due to thash instruction.
32 ttag Due to ttag instruction.
33 tpa Due to tpa instruction.
34 tak Due to tak instruction.
35 ptc_e Due to ptc.e instruction.
36 cover Due to cover instruction.
37 rfi Due to rfi instruction.
38 bsw_0 Due to bsw.0 instruction.
39 bsw_1 Due to bsw.1 instruction.
40 vmsw Due to vmsw instruction.
All
other
values

Reserved Reserved for future expansion.

Figure 5-3. PAL Virtualization Intercept Handoff Opcode (GR25)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Opcode {31:6} Reserved
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
b m Reserved Opcode {40:32}

Table 5-5. PAL Virtualization Intercept Handoff Cause (GR24) (Sheet 2 of 2)
Value Cause Description
60 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Processor Abstraction Layer
5.2.4 Virtualization Optimizations
After the PAL_VP_INIT_ENV procedure is called, execution of the virtualized instructions listed
in Table 3-10, “Virtualized Instructions” on page 2:40 with PSR.vm==1 results in virtualization
intercepts to the VMM. Virtualization optimizations allow these instructions to execute, with
PSR.vm==1, without causing intercepts to the VMM. Virtualization optimizations are divided into
two classes:

• Virtualization accelerations – Virtualization accelerations optimize the execution of virtualized
instructions by supporting fast access to the virtual instance of the resource and perform the
virtualized operations based on the virtual instance of the resource without handling off to the
VMM. Section 5.2.4.1, “Virtualization Accelerations” on page 61 describes the supported
Virtualization accelerations in the architecture.

• Virtualization disables – Virtualization disables optimize the execution of virtualized
instructions by disabling virtualization of a particular resource or instruction. Accesses to the
virtualization-disabled resources or executions of virtualization-disabled instructions, even
with PSR.vm==1, will not cause intercepts to the VMM. Section 5.2.4.2, “Virtualization
Disables” on page 67 describes the supported Virtualization disables in the architecture.

5.2.4.1 Virtualization Accelerations

Table 5-6 summarizes the virtualization accelerations supported in Itanium architecture.

For each of the accelerations, certain virtual processor control and architectural state is managed
directly by hardware/firmware, and hence must be maintained in the VPD, and synchronization is
required when the VMM reads or writes this state in the VPD. Some entries must be maintained in
the VPD independent of any accelerations. (These are marked as [always].) See Table 5-1 for
details on which VPD state is used with each of the accelerations. See Section 5.2.5, “PAL
Virtualization Services” on page 70 for a description of the synchronization services.

5.2.4.1.1 Virtual External Interrupt Optimization

The virtual external interrupt optimization allows the VMM to specify the virtual highest priority
pending interrupt so that a virtual external interrupt is raised on changes of vtpr or vpsr.i only when
that the virtual highest priority pending interrupt is unmasked. For details on virtual external
interrupts, see “Virtual External Interrupt vector (0x3400)” on page 2:183.

Table 5-6. Virtualization Accelerations Summary

Optimization
Virtualization
Acceleration

Control (vac)1

NOTES:
1. The Virtualization Acceleration Control (vac) field resides in the Virtual Processor Descriptor (VPD), see

Section 5.2.1, “Virtual Processor Descriptor (VPD)” on page 52 for details.

Description

Virtual External Interrupt Optimization a_int Section 5.2.4.1.1
Interruption Control Register Read Optimization a_from_int_cr Section 5.2.4.1.2
Interruption Control Register Write Optimization a_to_int_cr Section 5.2.4.1.3
MOV-from-PSR Optimization a_from_psr Section 5.2.4.1.4
MOV-from-CPUID Optimization a_from_cpuid Section 5.2.4.1.5
Cover Optimization a_cover Section 5.2.4.1.6
Bank Switch Optimization a_bsw Section 5.2.4.1.7
Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 61

Processor Abstraction Layer
The virtual external interrupt optimization is enabled by the a_int bit in the Virtualization
Acceleration Control (vac) field in the VPD. When this optimization is enabled, the VMM
specifies the virtual highest priority pending interrupt (vhpi) through the
PAL_VPS_SET_PENDING_INTERRUPT service described in Section 5.2.5, “PAL Virtualization
Services” on page 70. If this optimization is disabled, processor behavior is undefined if
PAL_VPS_SET_PENDING_INTERRUPT is invoked.

When this optimization is enabled, execution of rsm and ssm instructions, with PSR.vm==1, which
modify only vpsr.i will not intercept to the VMM and vpsr.i is updated with the new value, unless a
fault condition is detected (see Table 5-9 for details). A virtual external interrupt is raised if the
virtual highest priority pending interrupt (vhpi) is unmasked by the new vpsr.i and vtpr. If the
virtual highest priority pending interrupt (vhpi) is still masked by the new vpsr.i or vtpr, no virtual
external interrupt will be raised. Note that execution of MOV-to-PSR instructions with PSR.vm==1
always results in a virtualization intercept no matter which PSR bits are modified.

When this optimization is enabled, execution of rsm and ssm instructions, with PSR.vm==1, which
modify any bits in addition to vpsr.i result in a virtualization intercepts. No virtual external
interrupts are raised and the VMM is responsible for delivering a virtual external interrupt if the
virtual highest priority pending interrupt (vhpi) is unmasked.

When this optimization is enabled, execution of a MOV-from-CR instruction, with PSR.vm==1,
targeting vtpr reads the most recent value, unless a fault condition is detected (see Table 5-9 for
details).

When this optimization is enabled, on execution of MOV-to-TPR instructions with PSR.vm==1,
vtpr will be updated with the new value without handling off to the VMM, unless a fault condition
is detected (see Table 5-9 for details). A virtual external interrupt is raised if the virtual highest
priority pending interrupt (vhpi) is unmasked by the new vpsr.i and vtpr. No virtual external
interrupt is raised if the virtual highest priority pending interrupt is still masked by vpsr.i or vtpr.

When this optimization is enabled, after completion of an instruction with PSR.vm==1 which
modifies vtpr or vpsr.i (if the instruction completes without an intercept), a determination is made
as to whether the new state unmasks the virtual highest priority pending interrupt. If it does, then a
virtual external interrupt will be raised and the VMM will be entered on the Virtual External
Interrupt vector. See Table 5-7 for details on the detection of virtual external interrupts.

This optimization is available only if the value of the opcode field in the config_options parameter
passed to PAL_VP_INIT_ENV was 1.

Synchronization is required when this optimization is enabled, see Table 5-8 for details.

When this optimization is enabled, certain VPD state is accessed, as described in Table 5-1,
“Virtual Processor Descriptor (VPD)” on page 52.

Table 5-7. Detection of Virtual External Interrupts
Condition Virtual External Interrupt

vhpi <= (!vpsr.i << 5 | vtpr.mmi <<4 | vtpr.mic) No – virtual highest priority pending
interrupt is still masked.

vhpi > (!vpsr.i << 5 | vtpr.mmi <<4 | vtpr.mic) Yes – virtual highest priority pending
interrupt is unmasked.
62 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Processor Abstraction Layer
5.2.4.1.2 Interruption Control Register Read Optimization

The interruption control register read optimization is enabled by the a_from_int_cr bit in the
Virtualization Acceleration Control (vac) field in the VPD. When this optimization is enabled, and
vpsr.ic is 0, software running with PSR.vm==1 will be able to read the virtual interruption control
registers (vipsr, visr, viip, vifa, vitir, viipa, vifs, viim, viha) without any intercepts to the VMM,
unless a fault condition is detected (see Table 5-11 for details).

If this optimization is disabled, a read of the interruption CRs with PSR.vm==1 results in a
virtualization intercept.

This optimization is available only if the value of the opcode field in the config_options parameter
passed to PAL_VP_INIT_ENV was 1.

Synchronization is required when this optimization is enabled, see Table 5-10 for details.

When this optimization is enabled, certain VPD state is accessed, as described in Table 5-1,
“Virtual Processor Descriptor (VPD)” on page 52.

Table 5-8. Synchronization Requirements for Virtual External Interrupt Optimization
VPD Resource Synchronization Required

vtpr Read, Write
vpsr.i Read, Write
vhpi Write

Table 5-9. Interruptions when Virtual External Interrupt Optimization is Enabled
Instructions Interruptions

rsm, ssm

When the virtual external interrupt optimization is enabled, execu-
tion of rsm and ssm instructions with PSR.vm==1 which modify only
vpsr.i, may raise the following faults:

• Privileged Operation fault – if vpsr.cpl is not zero.

MOV-from-TPR

When the virtual external interrupt optimization is enabled, execu-
tion of MOV-from-CR instruction targeting vtpr with PSR.vm==1,
may raise the following faults:

• Illegal Operation fault – if the target operand specifies GR 0 or
an out-of-frame stacked register.

• Privileged Operation fault – if vpsr.cpl is not zero.

MOV-to-TPR

When the virtual external interrupt optimization is enabled, execu-
tion of MOV-to-CR instruction targeting vtpr with PSR.vm==1, may
raise the following faults:

• Privileged Operation fault – if vpsr.cpl is not zero.
• Register NaT Consumption fault – if the NaT bit in the source

register is one.
• Reserved Register/Field fault – if the reserved field in the vtpr is

being written with a non-zero value.

Table 5-10. Synchronization Requirements for Interruption Control Register Read
Optimization

VPD Resource Synchronization Required
vipsr, visr, viip, vifa, vitir, viipa, vifs,
viim, viha Write
Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 63

Processor Abstraction Layer
5.2.4.1.3 Interruption Control Register Write Optimization

The interruption control register write optimization is enabled by the a_to_int_cr bit in the
Virtualization Acceleration Control (vac) field in the VPD. When this optimization is enabled, and
vpsr.ic is 0, software running with PSR.vm==1 will be able to write the virtual interruption control
registers (vipsr, visr, viip, vifa, vitir, viipa, vifs, viim, viha) without any intercepts to the VMM,
unless a fault condition is detected (see Table 5-13 for details).

If this optimization is disabled, a write of the interruption control registers with PSR.vm==1 results
in a virtualization intercept.

This optimization is available only if the value of the opcode field in the config_options parameter
passed to PAL_VP_INIT_ENV was 1.

Synchronization is required when this optimization is enabled, see Table 5-12 for details.

When this optimization is enabled, certain VPD state is accessed, as described in Table 5-1,
“Virtual Processor Descriptor (VPD)” on page 52.

Table 5-11. Interruptions When Interruption Control Register Read Optimization is Enabled
Instructions Interruptions

Move from interruption control registers When the interruption control register read optimization is enabled,
reads of interruption control registers with PSR.vm==1, may raise
the following faults:

• Illegal Operation fault – if vpsr.ic is not zero or the target
operand specifies GR 0 or an out-of-frame stacked register

• Privileged Operation fault – if vpsr.cpl is not zero

Table 5-12. Synchronization Requirements for Interruption Control Register Write
Optimization

VPD Resource Synchronization Required
vipsr, visr, viip, vifa, vitir, viipa, vifs,
viim, viha Read

Table 5-13. Interruptions when Interruption Control Register Write Optimization is Enabled
Instructions Interruptions

Move to interruption control registers When the interruption control register write optimization is enabled,
writes to interruption control registers with PSR.vm==1, may raise
the following faults:

• Illegal Operation fault – if vpsr.ic is not zero.
• Privileged Operation fault – if vpsr.cpl is not zero.
• Register NaT Consumption fault – if the NaT bit of the source

operand is one.
• Reserved Register/Field fault – if any reserved field in the

specified control register is written with a non-zero value.
• Unimplemented Data Address fault – if writing to vifa and an

unimplemented virtual address is specified.
64 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Processor Abstraction Layer
5.2.4.1.4 MOV-from-PSR Optimization

The MOV-from-PSR optimization is enabled by the a_from_psr bit in the Virtualization
Acceleration Control (vac) field in the VPD. When this optimization is enabled, software running
with PSR.vm==1 will be able to execute MOV-from-PSR instructions to read the virtual processor
status register without any intercepts to the VMM; and the last value written to the vpsr will be
returned, unless a fault condition is detected (see Table 5-15 for details). The value returned for the
fml, mfh, ac, up and be bits are simply the values of those bits in the PSR of the logical processor,
since those bits are not virtualized.

If this optimization is disabled, execution of a MOV-from-PSR instruction with PSR.vm==1 results
in a virtualization intercept.

This optimization is available only if the value of the opcode field in the config_options parameter
passed to PAL_VP_INIT_ENV was 1.

Synchronization is required when this optimization is enabled, see Table 5-14 for details.

When this optimization is enabled, certain VPD state is accessed, as described in Table 5-1,
“Virtual Processor Descriptor (VPD)” on page 52.

5.2.4.1.5 MOV-from-CPUID Optimization

The MOV-from-CPUID optimization is enabled by the a_from_cpuid bit in the Virtualization
Acceleration Control (vac) field in the VPD. When this optimization is enabled, software running
with PSR.vm==1 will be able to execute MOV-from-CPUID instruction to read the virtual CPUID
registers without any intercepts to the VMM; and the corresponding VCPUID value from the VPD
will be returned, unless a fault condition is detected (see Table 5-17 for details).

If this optimization is disabled, execution of a MOV-from-CPUID instruction with PSR.vm==1
results in a virtualization intercept.

This optimization is available only if the value of the opcode field in the config_options parameter
passed to PAL_VP_INIT_ENV was 1.

Synchronization is required when this optimization is enabled, see Table 5-16 for details.

When this optimization is enabled, certain VPD state is accessed, as described in Table 5-1,
“Virtual Processor Descriptor (VPD)” on page 52.

Table 5-14. Synchronization Requirements for MOV-from-PSR Optimization
VPD Resource Synchronization Required

vpsr Write

Table 5-15. Interruptions when MOV-from-PSR Optimization is Enabled
Instructions Interruptions

MOV-from-PSR When the MOV-from-PSR optimization is enabled, MOV-from-PSR
instructions with PSR.vm==1, may raise the following faults:

• Illegal Operation fault – if the target operand specifies GR 0 or an
out-of-frame stacked register.

• Privileged Operation fault – if vpsr.cpl is not zero.
Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 65

Processor Abstraction Layer
5.2.4.1.6 Cover Optimization

The cover optimization is enabled by the a_cover bit in the Virtualization Acceleration Control
(vac) field in the VPD. When this optimization is enabled, software running with PSR.vm==1 will
be able to execute cover instructions without any intercepts to the VMM, unless a fault condition is
detected (see Table 5-19 for details). The cover instruction will execute and vcr.ifs will be updated
if vpsr.ic is 0.

If this optimization is disabled, execution of the cover instruction with PSR.vm==1 results in a
virtualization intercept.

This optimization is available only if the value of the opcode field in the config_options parameter
passed to PAL_VP_INIT_ENV was 1.

Synchronization is required when this optimization is enabled, see Table 5-18 for details.

When this optimization is enabled, certain VPD state is accessed, as described in Table 5-1,
“Virtual Processor Descriptor (VPD)” on page 52.

5.2.4.1.7 Bank Switch Optimization

The bank switch optimization is enabled by the a_bsw bit in the Virtualization Acceleration
Control (vac) field in the VPD. When this optimization is enabled, execution of the bsw instruction
with PSR.vm==1 spills the currently active banked registers and the corresponding NaT bits to the

Table 5-16. Synchronization Requirements for MOV-from-CPUID Optimization
VPD Resource Synchronization Required

vcpuid0-4 Write

Table 5-17. Interruptions when MOV-from-CPUID Optimization is Enabled
Instructions Interruptions

MOV-from-CPUID When the MOV-from-CPUID optimization is enabled, MOV-from-
CPUID instructions with PSR.vm==1, may raise the following faults:

• Illegal Operation fault – if the target operand specifies GR 0 or an
out-of-frame stacked register.

• Register NaT Consumption fault – if the NaT bit in the target
register is one.

• Reserved Register/Field fault – if a reserved CPUID register is
being read.

Table 5-18. Synchronization Requirements for Cover Optimization
VPD Resource Synchronization Required

vifs Read, Write

Table 5-19. Interruptions when Cover Optimization is Enabled
Instructions Interruptions

cover When the cover optimization is enabled, cover instructions with
PSR.vm==1, may raise the following faults:

• Illegal Operation fault – if the instruction is not the last instruction
in an instruction group.
66 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Processor Abstraction Layer
VPD, and loads the other banked registers and the corresponding NaT bits from the VPD. vpsr.bn
is updated to reflect the new register bank without any intercepts to the VMM, unless a fault
condition is detected (see Table 5-21 for details).

If this optimization is disabled, execution of the bsw instruction with PSR.vm==1 results in a
virtualization intercept.

This optimization is available only if the value of the opcode field in the config_options parameter
passed to PAL_VP_INIT_ENV is 1.

This optimization requires no special synchronization.

5.2.4.2 Virtualization Disables

Table 5-6 summarizes the virtualization disables supported in Itanium architecture.

5.2.4.2.8 Disable vmsw Instruction

The vmsw instruction disable is controlled by the d_vmsw bit in the Virtualization Disable
Control (vdc) field in the VPD. When this control is set to 1, the vmsw instruction is disabled on the
logical processor. Execution of the vmsw instruction, independent of the state of PSR.vm, results in
a virtualization intercept.

If this control is set to 0, the vmsw instruction can be executed by both the VMM and guest without
virtualization intercepts, if PSR.it is 1 and the vmsw instruction is executed on a page with access
rights of 7.

Table 5-20. Interruptions When Bank Switch Optimization is Enabled
Instructions Interruptions

bsw When the bank switch optimization is enabled, bsw instructions with
PSR.vm==1, may raise the following faults:

• Illegal Operation fault – if the instruction is not the last
instruction in an instruction group

• Privileged Operation fault – if vpsr.cpl is not zero

Table 5-21. Virtualization Disables Summary

Disable
Virtualization

Disable Control
(vdc)1

NOTES:
1. The Virtualization Disable Control (vdc) field resides in the Virtual Processor Descriptor (VPD), see Section

5.2.1, “Virtual Processor Descriptor (VPD)” on page 52 for details.

Description

Disable VMSW Instruction d_vmsw Section 5.2.4.2.8
Disable External Interrupt Control Register Virtualization d_extint Section 5.2.4.2.9
Disable Breakpoint Register Virtualization d_ibr_dbr Section 5.2.4.2.10
Disable PMC Virtualization d_pmc Section 5.2.4.2.11
Disable MOV-to-PMD Virtualization d_to_pmd Section 5.2.4.2.12
Disable ITM Virtualization d_itm Section 5.2.4.2.13
Disable PSR Interrupt-bit Virtualization d_psr_i Section 5.2.4.2.14
Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 67

Processor Abstraction Layer
5.2.4.2.9 Disable External Interrupt Control Register Virtualization

The external interrupt control register virtualization disable is controlled by the d_extint bit in the
Virtualization Disable Control (vdc) field in the VPD. When this control is set to 1, the external
interrupt control registers (CR65-71) are not virtualized, and code running with PSR.vm==1 can
read and write these resources directly without any intercepts to the VMM.

If this control is set to 0, accesses (reads/writes) to the external interruption control registers with
PSR.vm==1 result in virtualization intercepts.

The functionality provided by this field is not available if the value of the opcode field in the
config_options parameter during PAL_VP_INIT_ENV is 0.

5.2.4.2.10 Disable Breakpoint Register Virtualization

The breakpoint register virtualization disable is controlled by the d_ibr_dbr bit in the Virtualization
Disable Control (vdc) field in the VPD. When this control is set to 1, accesses (reads/writes) to the
data and instruction breakpoint registers (DBR/IBR) are not virtualized, and code running with
PSR.vm==1 can read and write these resources directly without any intercepts to the VMM.

If this control is set to 0, accesses (reads/writes) to the breakpoint registers with PSR.vm==1 result
in virtualization intercepts.

The functionality provided by this field is not available if the value of the opcode field in the
config_options parameter during PAL_VP_INIT_ENV is 0.

5.2.4.2.11 Disable PMC Virtualization

The PMC virtualization disable is controlled by the d_pmc bit in the Virtualization Disable Control
(vdc) field in the VPD. When this control is set to 1, accesses (reads/writes) to the performance
monitor configuration registers (PMCs) are not virtualized, and code running with PSR.vm==1 can
read and write these resources directly without any intercepts to the VMM.

If this control is set to 0, accesses (reads/writes) to the performance counter configuration registers
with PSR.vm==1 result in virtualization intercepts.

The functionality provided by this field is not available if the value of the opcode field in the
config_options parameter during PAL_VP_INIT_ENV is 0.

5.2.4.2.12 Disable MOV-to-PMD Virtualization

The MOV-to-PMD1 virtualization disable is controlled by the d_to_pmd bit in the Virtualization
Disable Control (vdc) field in the VPD. When this control is set to 1, writes to the performance
monitor data registers (PMDs) are not virtualized, and code running with PSR.vm==1 can write
these resources directly without any intercepts to the VMM.

If this control is set to 0, writes to the performance monitor data registers with PSR.vm==1 result in
virtualization intercepts.

The functionality provided by this field is not available if the value of the opcode field in the
config_options parameter during PAL_VP_INIT_ENV is 0.

1. The MOV-from-PMD instruction is not virtualzied. Hence there is no need to provide optimizations for the MOV-from-PMD instruction.
68 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Processor Abstraction Layer
5.2.4.2.13 Disable ITM Virtualization

The ITM virtualization disable is controlled by the d_itm bit in the Virtualization Disable Control
(vdc) field in the VPD. When this control is set to 1, writes to the Interval Timer Match (ITM)
register are not virtualized, and code running with PSR.vm==1 can write this resource directly
without any intercepts to the VMM.

If this control is set to 0, writes to the ITM register with PSR.vm==1 result in virtualization
intercepts.

The functionality provided by this field is not available if the value of the opcode field in the
config_options parameter during PAL_VP_INIT_ENV is 0.

5.2.4.2.14 Disable PSR Interrupt-bit Virtualization

The PSR interrupt-bit virtualization disable is controlled by the d_psr_i bit in the Virtualization
Disable Control (vdc) field in the VPD. When this control is set to 1, accesses (reads/writes) to the
interrupt bit in processor state register (PSR.i) are not virtualized. Code running with PSR.vm==1
can read and write to PSR.i through ssm and rsm instructions without any intercepts to the VMM.
Attempts to modify other PSR bits in addition to the interrupt bit via the ssm and rsm instructions
will result in virtualization intercepts.

This control has no effect on mov psr.l instructions; attempts to modify the interrupt bit with the
mov psr.l instruction result in virtualization intercepts.

The functionality provided by this field is not available if the value of the opcode field in the
config_options parameter during PAL_VP_INIT_ENV is 0.

Note: This field overrides the a_int Virtualization Acceleration Control (vac) described in Section
5.2.4.1.1, “Virtual External Interrupt Optimization” on page 61. If this control is enabled (set to 1),
the a_int Virtualization Acceleration Control (vac) is ignored.

5.2.4.3 Virtualization Synchronizations

When certain virtualization accelerations described in Section 5.2.4.1, “Virtualization
Accelerations” on page 61 are enabled, processor implementations can provide implementation-
specific control resources to enhance the performance of virtual processors. Two PAL services are
provided to synchronize the implementation-specific control resources and the resources in the
VPD. There are two types of synchronizations:

1. Read Synchronization – When a specific acceleration is enabled, after interruptions and
intercepts that occur when PSR.vm was 1, the VMM must invoke PAL_VPS_SYNC_READ
to synchronize the related resources before reading their values from the VPD.

2. Write Synchronization – When a specific acceleration is enabled, the VMM must invoke
PAL_VPS_SYNC_WRITE to synchronize the related resources after modifying their values in
the VPD and before resuming the virtual processor.

For details on PAL_VPS_SYNC_READ and PAL_VPS_SYNC_WRITE, see Section 5.2.5, “PAL
Virtualization Services” on page 70.

Read and/or write synchronizations are required only if the specific acceleration is enabled. For the
resources that require synchronizations if the acceleration is enabled, failure to perform the proper
synchronizations will result in undefined processor behavior1.

1. Virtual machine monitors must perform all the required synchronizations specified. Virtual machine monitors not conforming to this
specification are not guaranteed to work on all processor implementations.
Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 69

Processor Abstraction Layer
The synchronization requirements of the related resources for each acceleration are described in
the corresponding sections for each acceleration in Section 5.2.4.1, “Virtualization Accelerations”
on page 61.

No synchronization is required for any of the virtualization disables.

5.2.5 PAL Virtualization Services
In order to support efficient handling of interruptions when PSR.vm was 1, a set of PAL
virtualization services is defined to allow certain frequent PAL functions to be performed in a low-
latency and low-overhead manner.

Upon successful completion of PAL_VP_INIT_ENV, the virtual base address of the PAL
virtualization services (VSA) is returned to the VMM. VMM can invoke PAL services by
branching to the defined offsets from the virtual base address. See Table 5-22 for the defined
services. See Section 5.4, “PAL Virtualization Services Specification” on page 72 for details on
PAL virtualization services.

These PAL virtualization services will only make references to the PAL virtual environment buffer.
The VMM is required to maintain the ITR and DTR translations of the PAL virtual environment
buffer during any PAL virtualization service calls.

5.2.5.1 PAL Virtualization Service Invocation Convention

This section describes the required parameters applicable to all PAL Virtualization Services.
Additional parameters are listed in the description section of specific PAL Virtualization Services.
Architectural state not listed in this section is managed by the VMM and can contain both VMM
and/or virtual processor state. The architectural state not listed is unchanged by PAL virtualization
services.

The state of the processor on handing off to any PAL Virtualization Service is:

• GR24-31: Parameters for PAL virtualization services.

• BRs:

— BR0: Scratch, the VMM will use BR0 to specify the 64-bit host virtual address of the PAL
Virtualization Service being invoked.

• Predicates: The predicates are preserved by the PAL virtualization services.

Table 5-22. PAL Virtualization Services
Offset PAL Service

0x0000 PAL_VPS_RESUME_NORMAL
0x0400 PAL_VPS_RESUME_HANDLER
0x0800 PAL_VPS_SYNC_READ
0x0c00 PAL_VPS_SYNC_WRITE
0x1000 PAL_VPS_SET_PENDING_INTERRUPT
0x1400 PAL_VPS_THASH
0x1800 PAL_VPS_TTAG
0x1c00 PAL_VPS_RESTORE
0x2000 PAL_VPS_SAVE
All other
offsets

Reserved
70 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Processor Abstraction Layer
• PSR State (see Table 5-23 for details):

— PSR.be, i, cpl, is, ss, db, tb, vm must be 0.

— PSR.dt, rt and it must be 1.

— All other values are don’t cares.

Table 5-23. State Requirements for PSR for PAL Virtualization Services (Sheet 1 of 2)
PSR Bit Description Value

be big-endian memory access enable -1

up user performance monitor enable -
ac alignment check -
mfl floating-point registers f2-f31 written -
mfh floating-point registers f32-f127 written -
ic interruption state collection enable 02

-3

i interrupt enable 0
pk protection key validation enable -
dt data address translation enable 1

dfl disabled FP register f2 to f31 -
dfh disabled FP register f32 to f127 -

sp secure performance monitors -
pp privileged performance monitor enable -
di disable ISA transition -
si secure interval timer -
db debug breakpoint fault enable 0
lp lower-privilege transfer trap enable -
tb taken branch trap enable 0
rt register stack translation enable 1

cpl current privilege level 0
is instruction set 0
mc machine check abort mask -

it instruction address translation enable 1

id instruction debug fault disable -
da data access and dirty-bit fault disable -
dd data debug fault disable -
ss single step trap enable 0
ri restart instruction -
ed exception deferral -

bn register bank -4

05
Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 71

Processor Abstraction Layer
5.3 PAL Procedure Summary

5.4 PAL Virtualization Services Specification
The following pages provide detailed interface specifications for each of the PAL Virtualization
Services.

ia instruction access-bit fault disable -
vm processor virtualization 0

NOTES:
1. PAL services can be called with PSR.be bit equal to 0 or 1. The behavior is undefined if PSR.be setting does

not match the be parameter during PAL_VP_INIT_ENV. See “PAL Initialize Virtual Environment” on page 89
for details.

2. Most PAL services are invoked with PSR.ic equal to 0.
3. Specific PAL services can be invoked with PSR.ic equal to 1 or 0. See the description of specific PAL services

for details.
4. Most PAL services can be invoked with PSR.bn equal to 1 or 0.
5. Specific PAL services must be invoked with PSR.bn equal to 0. See the description of specific PAL services

for details.

Table 5-24. PAL Virtualization Support Procedures
Procedure Idx Class Conv. Mode Description

PAL_VP_CREATE 265 Opt. Stacked Virt. Initializes a new VPD for the
operation of a new virtual
processor in the virtual
environment.

PAL_VP_ENV_INFO 266 Opt. Stacked Virt. Returns the parameters needed
to enter a virtual environment.

PAL_VP_EXIT_ENV 267 Opt. Stacked Virt. Allows a logical processor to exit
a virtual environment.

PAL_VP_INIT_ENV 268 Opt. Stacked Virt. Allows a logical processor to
enter a virtual environment.

PAL_VP_REGISTER 269 Opt. Stacked Virt. Register a different host IVT for
the virtual processor.

PAL_VP_RESTORE 270 Opt. Stacked Virt. Restore virtual processor state on
the logical processor.

PAL_VP_SAVE 271 Opt. Stacked Virt. Save virtual processor state on
the logical processor.

PAL_VP_TERMINATE 272 Opt. Stacked Virt. Terminates operation for the
specified virtual processor.

Table 5-23. State Requirements for PSR for PAL Virtualization Services (Sheet 2 of 2)
PSR Bit Description Value
72 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Processor Abstraction Layer
PAL_VPS_RESUME_NORMAL – Resume Virtual Processor
Normal (0x0000)

Purpose: Resumes the current virtual processor. This service is used when vpsr.ic is 1. This
service can also be used independently of the state of vpsr.ic if all virtualization
accelerations and disables are disabled.

Arguments:

Returns: PAL_VPS_RESUME_NORMAL does not return to the VMM.

Description: On interruptions or intercepts, PAL_VPS_RESUME_NORMAL allows the VMM
to resume the same virtual processor where the vpsr.ic is 1. PAL_VP_RESTORE
can be used to restore the state of a different virtual processor.

The VMM specifies the VBR0 of the virtual processor in GR24 and the 64-bit
virtual pointer to the VPD in GR25.

The VMM is responsible for setting up all the required virtual processor state in the
architectural registers as well as in the VPD prior to invoking this service. See
Table 5-25, “Virtual Processor Settings in Architectural Resources for
PAL_VPS_RESUME_NORMAL and PAL_VPS_RESUME_HANDLER” on
page 73 for details.

PAL_VPS_RESUME_NORMAL must be called with PSR.bn equal to 0.

If all virtualization accelerations and disables are disabled,
PAL_VPS_RESUME_NORMAL can also be used to resume to the guest
independent on the state of vpsr.ic.

Argument Description
GR24 VBR0
GR25 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)
GR26 Reserved
GR27 Reserved
GR28 Reserved
GR29 Reserved
GR30 Reserved
GR31 Reserved

Table 5-25. Virtual Processor Settings in Architectural Resources for
PAL_VPS_RESUME_NORMAL and PAL_VPS_RESUME_HANDLER (Sheet 1 of 2)

Resource Description
Bank 1 GRs Contains state of bank 0/1 GRs of the virtual processor (depends on

vpsr.bn.)
FRs Contains floating-point register state of the virtual processor.
Predicate Register Contains the predicates of the virtual processor.
Branch Registers BR1-BR7 contains the state of the virtual processor. BR0 of the virtual

processor resides in bank 0 GR24.
Application Registers Contains application register state of the virtual processor.
Interruption Control Registers IIP, IPSR and IFS contains the IP, PSR and CFM of the virtual processor.

The rest of the interruption control registers are don’t cares. For
PAL_VPS_RESUME_HANDLER, the virtual interruption control registers
are specified in the VPD. See Section 5.2.4, “Virtualization Optimizations”
on page 61 for synchronization of VPD resources before resuming the
virtual processor.
Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 73

Processor Abstraction Layer
PAL_VPS_RESUME_NORMAL performs the following actions:

• Perform any implementation-specific setup to run a virtual processor.
• Re-enable performance counters if the value of the fr_pmc field in the

config_options parameter passed to PAL_VP_INIT_ENV was 1.
• Resume the virtual processor.

External Interrupt Control
Registers

The external interrupt control registers contain the state of the virtual
processor if d_extint in Virtualization Disable Control (vdc) is 1. Otherwise
the external interrupt control registers are virtualized by the VMM and
contain VMM state.

Data/Instruction Breakpoint
Registers

The data/instruction breakpoint registers contain the state of the virtual
processor if d_ibr_dbr in Virtualization Disable Control (vdc) is 1.
Otherwise the data/instruction breakpoint registers are virtualized by the
VMM and contain VMM state.

Performance Monitor
Configuration Registers

The performance monitor configuration registers contain the state of the
virtual processor if d_pmc in Virtualization Disable Control (vdc) is 1.
Otherwise the performance monitor configuration registers are virtualized
by the VMM and contain VMM state.

Performance Monitor Data
Registers

Contain the state of the virtual processor.

Table 5-25. Virtual Processor Settings in Architectural Resources for
PAL_VPS_RESUME_NORMAL and PAL_VPS_RESUME_HANDLER (Sheet 2 of 2)

Resource Description
74 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Processor Abstraction Layer
PAL_VPS_RESUME_HANDLER – Resume Virtual Processor
Handler (0x0400)

Purpose: Resumes the current virtual processor. This service is used when vpsr.ic is 0.

Arguments:

Returns: PAL_VPS_RESUME_HANDLER does not return to the VMM.

Description: On interruptions or intercepts, PAL_VPS_RESUME_HANDLER allows the VMM
to resume to the same virtual processor where the vpsr.ic is 01.

The VMM specifies the BR0 of the virtual processor in GR24, the 64-bit virtual
pointer to the VPD in GR25 and the vac field of the VPD in GR26. Behavior is
undefined if the vac in GR26 does not match the vac field in the VPD argument
specified in GR25.

The VMM is responsible for setting up all the required virtual processor state in the
architectural registers as well as in the VPD prior to invoking this service. See
Table 5-25, “Virtual Processor Settings in Architectural Resources for
PAL_VPS_RESUME_NORMAL and PAL_VPS_RESUME_HANDLER” on
page 73 for details.

PAL_VPS_RESUME_HANDLER must be called with PSR.bn equal to 0.

PAL_VPS_RESUME_HANDLER performs the following actions:

• Perform any implementation-specific setup to run a virtual processor.
• Re-enable performance counters if the value of the fr_pmc field in the

config_options parameter passed to PAL_VP_INIT_ENV was 1.
• Resume the virtual processor.

Argument Description
GR24 VBR0
GR25 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)
GR26 Virtualization Acceleration Control (vac) field from the VPD specified in GR25
GR27 Reserved
GR28 Reserved
GR29 Reserved
GR30 Reserved
GR31 Reserved

1. PAL_VP_RESTORE can be used to restore the state of a different virtual processor.
Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 75

Processor Abstraction Layer
PAL_VPS_SYNC_READ – Synchronize VPD State for Reads
(0x0800)

Purpose: Synchronize VPD with the latest implementation-specific virtual architectural
state.

Arguments:

Returns:

Description: On processor implementations that support virtualization accelerations,
implementation-specific control resources can be provided to enhance performance
of virtual processors. When a specific acceleration is enabled, after interruptions
and intercepts which occur when PSR.vm was 1, the VMM must invoke this
service to synchronize the related resources before reading the value from the VPD.
For the accelerations that are disabled, the corresponding resources in the VPD are
unchanged.

The synchronization requirements of the related resources for each acceleration are
described in the corresponding sections for each acceleration in Section 5.2.4.1,
“Virtualization Accelerations” on page 61.

PAL_VPS_SYNC_READ performs the following actions:

• Copy implementation-specific control resources of the enabled accelerations
into VPD.

• Return to VMM by an indirect branch specified in the GR24 parameter.

Argument Description
GR24 64-bit host virtual return address
GR25 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)
GR26 Reserved
GR27 Reserved
GR28 Reserved
GR29 Reserved
GR30 Reserved
GR31 Reserved

Return Value Description
GR24 Scratch
GR25 Scratch
GR26 Scratch
GR27 Scratch
GR28 Scratch
GR29 Scratch
GR30 Scratch
GR31 Scratch
76 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Processor Abstraction Layer
PAL_VPS_SYNC_WRITE – Synchronize VPD State for Writes
(0x0c00)

Purpose: Synchronize the implementation-specific virtual architectural state with VPD.

Arguments:

Returns:

Description: On processor implementations that support virtualization accelerations,
implementation-specific control resources can be provided to enhance performance
of virtual processors. When a specific acceleration is enabled, the VMM must
invoke this service to synchronize the related resources after modifying the value in
the VPD and before resuming the virtual processor. For the accelerations that are
disabled, the corresponding resources in the VPD are ignored.

The synchronization requirements of the related resources for each acceleration are
described in the corresponding sections for each acceleration in Section 5.2.4.1,
“Virtualization Accelerations” on page 61.

PAL_VPS_SYNC_WRITE performs the following actions:

• Copy values of the enabled accelerations in the VPD into implementation-
specific control resources.

• Return to VMM by an indirect branch specified in the GR24 parameter.

Argument Description
GR24 64-bit host virtual return address.
GR25 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD.)
GR26 Reserved
GR27 Reserved
GR28 Reserved
GR29 Reserved
GR30 Reserved
GR31 Reserved

Return Value Description
GR24 Scratch
GR25 Scratch
GR26 Scratch
GR27 Scratch
GR28 Scratch
GR29 Scratch
GR30 Scratch
GR31 Scratch
Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 77

Processor Abstraction Layer
PAL_VPS_SET_PENDING_INTERRUPT – Register Highest
Priority Pending Interrupt (0x1000)

Purpose: Register highest priority pending interrupt of the running virtual processor.

Arguments:

Returns:

Description: PAL_VPS_SET_PENDING_INTERRUPT allows the VMM to register the highest
priority pending interrupt for the virtual processor. The virtual highest priority
pending interrupt is specified in the vhpi field in the VPD. See Table 5-26, “vhpi –
Virtual Highest Priority Pending Interrupt” on page 78 for details.

PAL_VPS_SET_PENDING_INTERRUPT can be called with PSR.ic equal to 1 or
0.

Argument Description
GR24 64-bit host virtual return address
GR25 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)
GR26 Reserved
GR27 Reserved
GR28 Reserved
GR29 Reserved
GR30 Reserved
GR31 Reserved

Return Value Description
GR24 Scratch
GR25 Scratch
GR26 Scratch
GR27 Scratch
GR28 Scratch
GR29 Scratch
GR30 Scratch
GR31 Scratch

Table 5-26. vhpi – Virtual Highest Priority Pending Interrupt (Sheet 1 of 2)
Value Description

0 Nothing pending.
1 Class 1 interrupt pending.
2 Class 2 interrupt pending.
3 Class 3 interrupt pending.
4 Class 4 interrupt pending.
5 Class 5 interrupt pending.
6 Class 6 interrupt pending.
7 Class 7 interrupt pending.
8 Class 8 interrupt pending.
9 Class 9 interrupt pending.

10 Class 10 interrupt pending.
11 Class 11 interrupt pending.
12 Class 12 interrupt pending.
13 Class 13 interrupt pending.
14 Class 14 interrupt pending.
78 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Processor Abstraction Layer
PAL_VPS_SET_PENDING_INTERRUPT performs the following actions:

• Copy the virtual highest priority pending interrupt from the VPD into
implementation-specific resources.

• Return to VMM by an indirect branch specified in the GR24 parameter.

15 Class 15 interrupt pending.
16 ExtINT pending.

17-31 Reserved.
32 NMI pending.

33+ Reserved.

Table 5-26. vhpi – Virtual Highest Priority Pending Interrupt (Sheet 2 of 2)
Value Description
Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 79

Processor Abstraction Layer
PAL_VPS_THASH – Compute Long Format VHPT Entry Address
(0x1400)

Purpose: Compute a long format VHPT entry address.

Arguments:

Returns:

Description: PAL_VPS_THASH computes a long format Virtual Hashed Page Table (VHPT)
entry address based on the input arguments and the result is returned in GR31. The
format of the region register parameter (GR26) is defined in Section 4.1.2, “Region
Registers (RR)” on page 2:55, the ve field is ignored by the service. The format of
the Virtual PTA parameter (GR27) is defined in Section 3.3.4.4, “Page Table
Address (PTA – CR8)” on page 2:32, the vf field is ignored by the service.

PAL_VPS_THASH returns the same long format VHPT entry address given the
same input arguments across different implementations. The long format VHPT
entry address returned may not be the same as the long format VHPT entry address
generated by the thash instruction of the processor.

PAL_VPS_THASH can be called with PSR.ic equal to 1 or 0.

Argument Description
GR24 64-bit host virtual return address
GR25 64-bit virtual address used to compute the hash entry address
GR26 Region register value used to compute the hash entry address
GR27 Virtual PTA
GR28 Reserved
GR29 Reserved
GR30 Reserved
GR31 Reserved

Return Value Description
GR24 Scratch
GR25 Scratch
GR26 Scratch
GR27 Scratch
GR28 Scratch
GR29 Scratch
GR30 Scratch
GR31 64-bit VHPT entry address
80 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Processor Abstraction Layer
PAL_VPS_TTAG – Compute Translated Hashed Entry Tag
(0x1800)

Purpose: Compute the long format translated hashed entry tag.

Arguments:

Returns:

Description: PAL_VPS_TTAG computes the tag value of the long format Virtual Hashed Page
Table (VHPT) based on the input arguments and the result is returned in GR31. The
format of the region register parameter (GR26) is defined in Section 4.1.2, “Region
Registers (RR)” on page 2:55, the ve field is ignored by the service.

PAL_VPS_TTAG returns the same tag value given the same input arguments
across different implementations. The tag value returned may not be the same as
the tag value generated by the ttag instruction of the processor.

PAL_VPS_TTAG can be called with PSR.ic equal to 1 or 0.

Argument Description
GR24 64-bit host virtual return address
GR25 64-bit virtual address used to compute the hash entry tag
GR26 Region register value used to compute the hash entry tag
GR27 Reserved
GR28 Reserved
GR29 Reserved
GR30 Reserved
GR31 Reserved

Return Value Description
GR24 Scratch
GR25 Scratch
GR26 Scratch
GR27 Scratch
GR28 Scratch
GR29 Scratch
GR30 Scratch
GR31 64-bit VHPT entry tag
Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 81

Processor Abstraction Layer
PAL_VPS_RESTORE – Fast Restore Virtual Processor State
(0x1c00)

Purpose: Performs an implementation-specific lightweight restore operation for the specified
VPD on the logical processor.

Arguments:

Returns:

Description: PAL_VPS_RESTORE performs an implementation-specific lightweight restore
operation of the virtual processor specified by the VPD parameter (GR25) on the
logical processor. The host virtual to host physical translation of the 64K region
specified by the VPD parameter (GR25) and the PAL virtual environment buffer
must be mapped by instruction and data translation registers (TR). The instruction
and data translation must be maintained until after the next invocation of
PAL_VP_SAVE or PAL_VPS_SAVE and a different host IVT is set up by the
VMM by writing to the IVA control register. PAL_VPS_RESTORE configures the
logical processor to run the specified virtual processor by loading the minimal
implementation-specific virtual processor context from the VPD, and returns
control back to the VMM.

This service performs an implicit PAL_VPS_SYNC_WRITE; there is no need for
the VMM to invoke PAL_VPS_SYNC_WRITE unless the VPD values are
modified before resuming the virtual processor. After the service, the caller is
responsible for restoring all of the architectural state before resuming to the new
virtual processor through PAL_VPS_RESUME_NORMAL or
PAL_VPS_RESUME_HANDLER.

Upon completion of this service, the IVA-based interruptions will be delivered to
the host IVT associated with this virtual processor.

This service does not restore any PAL procedure implementation-specific state1.
The caller of this service is responsible to manage the difference in settings for the
PAL procedures between the VMM and virtual processors.

Argument Description
GR24 64-bit host virtual return address
GR25 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)
GR26 Scratch
GR27 Scratch
GR28 Scratch
GR29 Scratch
GR30 Scratch
GR31 Scratch

Return Value Description
GR24 Scratch
GR25 Scratch
GR26 Scratch
GR27 Scratch
GR28 Scratch
GR29 Scratch
GR30 Scratch
GR31 Scratch

1. PAL_VP_RESTORE can be used to restore PAL procedure implementation-specific state. See “PAL Restore Virtual Processor” on page 93
for details.
82 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Processor Abstraction Layer
PAL_VPS_SAVE – Fast Save Virtual Processor State (0x2000)

Purpose: Performs an implementation-specific lightweight save operation for the specified
VPD on the logical processor.

Arguments:

Returns:

Description: PAL_VPS_SAVE performs an implementation-specific lightweight save operation
of the virtual processor specified by the VPD parameter (GR25) on the logical
processor. The host virtual to host physical translation of the 64K region specified
by the VPD parameter (GR25) must be mapped by instruction and data translation
registers (TR).

This service performs an implicit PAL_VPS_SYNC_READ; there is no need for
the VMM to invoke PAL_VPS_SYNC_READ to synchronize the implementation-
specific control resources before this service.

Upon completion of this service, the IVA-based interruptions will continue to be
delivered to the host IVT associated with this virtual processor. After this service,
the VMM can setup the IVA control register to use a different host IVT.

This service does not save any PAL procedure implementation-specific state1. The
caller of this service is responsible to manage the difference in settings for the PAL
procedures between the VMM and virtual processors.

Argument Description
GR24 64-bit host virtual return address
GR25 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)
GR26 Scratch
GR27 Scratch
GR28 Scratch
GR29 Scratch
GR30 Scratch
GR31 Scratch

Return Value Description
GR24 Scratch
GR25 Scratch
GR26 Scratch
GR27 Scratch
GR28 Scratch
GR29 Scratch
GR30 Scratch
GR31 Scratch

1. PAL_VP_SAVE can be used to save PAL procedure implementation-specific state. See “PAL Save Virtual Processor” on page 95 for details.
Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 83

Processor Abstraction Layer
5.5 PAL Procedures for Virtualization
This section describes the procedures for Itanium architecture virtualization.
84 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Processor Abstraction Layer
PAL Create New Virtual Processor

Purpose: Initializes a new vpd for the operation of a new virtual processor in the virtual
environment.

Calling Conv: Stacked Registers

Mode: Virtual

Arguments:

Returns:

Status:

Description: Initializes a new vpd for the operation of a new virtual processor within the virtual
environment.

The caller must pass a pointer to the new Virtual Processor Descriptor (vpd) as
argument. The host virtual to host physical translation of the 64K region specified
by vpd must be mapped with either a DTR or DTC. See Section 11.9.2.1.3,
“Making PAL Procedure Calls in Physical or Virtual Mode” on page 2:312 for
details on data translation requirements of memory buffer pointers passed as
arguments to PAL procedures. The vac and vdc parameters in the VPD must
already be initialized before calling this procedure.

The host_iva parameter specifies the host IVT to handle IVA-based interruptions
when this virtual processor is running. The VMM can use the same or different
host_iva for each virtual processor. The opt_handler specifies an optional
virtualization intercept handler. If a non-zero value is specified, all virtualization
intercepts are delivered to this handler. If a zero value is specified, all virtualization
intercepts are delivered to the Virtualization vector in the host IVT. If the VMM
relocates the IVT specified by the host_iva parameter and/or the virtualization
intercept handler specified by the opt_handler parameter after this procedure,
PAL_VP_REGISTER must be called to register the new host IVT and
virtualization intercept handler before resuming virtual processor execution or
allowing any IVA-based interruptions to occur; otherwise processor operation is
undefined.

Upon return, the VMM is responsible for setting up the rest of the VMD state
before the new virtual processor is launched (via PAL_VPS_RESUME_NORMAL
or PAL_VPS_RESUME_HANDLER).

Argument Description
index Index of PAL_VP_CREATE within the list of PAL procedures
vpd 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)
host_iva 64-bit host virtual pointer to the host IVT for the virtual processor
opt_handler 64-bit non-zero host-virtual pointer to an optional handler for virtualization intercepts. See

Section 5.2.3, “PAL Intercepts in Virtual Environment” on page 58 for details.

Return Value Description
status Return status of the PAL_VP_CREATE procedure
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error
-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error – Indicates internal error in PAL
Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 85

Processor Abstraction Layer
PAL Virtual Environment Information

Purpose: Returns the parameters needed to enter a virtual environment.

Calling Conv: Stacked Registers

Mode: Virtual

Arguments:

Returns:

Status:

Description: This procedure returns the configuration options and the PAL virtual environment
buffer size required by PAL_VP_INIT_ENV. This procedure is used by the VMM
to setup a virtual environment and determine the amount of memory / resources
required. The VMM can then allocate the required amount of physical memory, set
up the virtual to physical instruction and data translations that cover the PAL
virtual environment buffer in TRs and call PAL_VP_INIT_ENV. The buffer
allocated must be at least 4K aligned.

On a multiprocessor system, this procedure need only be invoked once (on any one
logical processor) to obtain virtual environment information.

Argument Description
index Index of PAL_VP_ENV_INFO within the list of PAL procedures
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_VP_ENV_INFO procedure
buffer_size Unsigned integer denoting the number of bytes required by the PAL virtual environment

buffer during PAL_VP_INIT_ENV
vp_env_info 64-bit vector of virtual environment information. See Table 5-27. for details
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error – Indicates internal error in PAL
86 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Processor Abstraction Layer
Table 5-27. vp_env_info – Virtual Environment Information Parameter
Field Bit Description

Reserved 7:0 Reserved
opcode 8 If 1, hardware support to provide opcode information during PAL intercepts is avail-

able. If 1, and if the opcode field of the config_options parameter to
PAL_VP_INIT_ENV is set to 1, then the opcode (and the decoding of cause) passed
as parameters to the VMM on intercept will represent the instruction that triggered the
intercept.
If 0, opcode information during PAL intercepts is provided by PAL. If 0, and if the
opcode field of the config_options parameter to PAL_VP_INIT_ENV is set to 1, then
the opcode (and the decoding of cause) passed as parameters to the VMM on inter-
cept will not necessarily represent the instruction that triggered the intercept, but may
represent some value that was written to memory between the time the instruction that
triggered the intercept was fetched, and when the intercept was triggered.

Reserved 63:9 Reserved
Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 87

Processor Abstraction Layer
PAL Exit Virtual Environment

Purpose: Allows a logical processor to exit a virtual environment.

Calling Conv: Stacked Registers

Mode: Virtual

Arguments:

Returns:

Status:

Description: This procedure allows a logical processor to exit a virtual environment.

Upon successful execution of the PAL_VP_EXIT_ENV procedure and if the iva
parameter is non-zero, the IVA control register will contain the value from the iva
parameter.

On a multiprocessor system, the VMM must allow the last logical processor in this
environment to complete the procedure before freeing the memory resource
allocated to the virtual environment.

Argument Description
index Index of PAL_VP_EXIT_ENV within the list of PAL procedures
iva Optional 64-bit host virtual pointer to the IVT when this procedure is done
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_VP_EXIT_ENV procedure
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error
-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error – Indicates internal error in PAL
88 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Processor Abstraction Layer
PAL Initialize Virtual Environment

Purpose: Allows a logical processor to enter a virtual environment.

Calling Conv: Stacked Registers

Mode: Virtual

Arguments:

Returns:

Status:

Description: This procedure allows a logical processor to enter a virtual environment. This call
must be made after calling PAL_VP_ENV_INFO and before calling other PAL
virtualization procedures and services. All of the logical processors in a virtual
environment share the same PAL virtual environment buffer. The buffer must be
4K aligned. The first logical processor entering the virtual environment initializes
the buffer provided by the VMM. Subsequent processors can enter the virtual
environment at any time and will not perform initialization to the buffer.

PAL_VP_ENV_INFO must be called before this procedure to determine the
configuration options and size requirements for the virtual environment. The VMM
is required to maintain the ITR and DTR translations of the PAL virtual
environment buffer throughout this procedure. See “PAL Virtual Environment
Information” on page 86 for more information on PAL_VP_ENV_INFO.

After this procedure, it is optional for the VMM to maintain the TR mapping for
the PAL virtual environment buffer. If the TR translations for the buffer are not
installed, the VMM must not make any PAL virtualization service calls; and the
VMM must be prepared to handle DTLB faults during any PAL virtualization
procedure calls.

Argument Description
index Index of PAL_VP_INIT_ENV within the list of PAL procedures
config_options 64-bit vector of global configuration settings - See Table 5-28. for details
pbase_addr Host physical base address of a block of contiguous physical memory for the PAL virtual

environment buffer - This memory area must be allocated by the VMM and be 4K aligned.
The first logical processor to enter the environment will initialize the physical block for
virtualization operations.

vbase_addr Host virtual base address of the corresponding physical memory block for the PAL virtual
environment buffer - The VMM must maintain the host virtual to host physical data and
instruction translations in TRs for addresses within the allocated address space. Logical
processors in this virtual environment will use this address when transitioning to virtual mode
operations.

Return Value Description
status Return status of the PAL_VP_INIT_ENV procedure
vsa_base Virtualization Service Address – VSA specifies the virtual base address of the PAL

virtualization services in this virtual environment.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument – Invalid incoming arguments/environment
-3 Call completed with error – Indicates internal error in PAL.
Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 89

Processor Abstraction Layer
Table 5-28 shows the layout of the config_options parameter. The config_options
parameter configures the global configuration options for all the logical processors
in the virtual environment. All logical processors in the virtual environment must
specify the same configuration options in the config_options parameter, otherwise
processor operation is undefined.

The fr_pmc bit in the global config_options parameter specifies whether the
performance counters will be frozen when the Virtualization optimizations
specified in the Virtualization Acceleration Control (vac) and Virtualization
Disable Control (vdc) are running. When a virtual processor is running, the vac
field in the corresponding VPD specifies whether a certain virtualization
accelerations are enabled. If the fr_pmc in the virtual environment was also
enabled, the performance counters will be frozen when the enabled virtualization
optimizations are running. See Section 5.2.4, “Virtualization Optimizations” on
page 61 for details on Virtualization Acceleration Control (vac) and Virtualization
Disable Control (vdc).

Table 5-28. config_options – Global Configuration Options
Field Bit Description

initialize 0 If 1, this procedure will initialize the PAL virtual environment buffer for this virtual envi-
ronment. If 0, this procedure will not initialize the PAL virtual environment buffer. On a
multiprocessor system, the VMM must wait until this procedure completes on the first
logical processor before calling this procedure on additional logical processors; other-
wise processor operation is undefined.

fr_pmc 1 If 1, performance counters are frozen on all IVA-based interruptions when virtual pro-
cessors are running. If 0, the performance counters will not be frozen on IVA-based
interruptions when virtual processors are running.

be 2 Big-endian – Indicates the endian setting of the VMM. If 1, the values in the VPD are
stored in big-endian format and the PAL services calls are made with PSR.be bit
equals to 1. If 0, the values in the VPD are stored in little-endian format and the PAL
services calls are made with PSR.be bit equals to 0.

Reserved 7:3 Reserved.
opcode 8 If 1, opcode information will be provided to the VMM during PAL intercepts within the

virtual environment. This opcode may or may not be guaranteed to be the opcode that
triggered the intercept. See Table 5-27, “vp_env_info – Virtual Environment Informa-
tion Parameter” on page 87 for details.
If 0, most virtualization optimizations cannot be enabled through the virtualization
acceleration control (vac) and virtualization disable control (vdc) fields in the VPD. For
details on specific optimizations supported in vac and vdc, see Table 5-2, “Virtualiza-
tion Acceleration Control (vac) Fields” on page 55 and Table 5-3, “Virtualization Dis-
able Control (vdc) Fields” on page 55.
The value of this field also determines how virtualization events and General Excep-
tion faults are delivered to the VMM on certain instructions. See Section 5.2.2, “Inter-
ruption Handling in a Virtual Environment” on page 56 for details.

cause 9 If 1, the causes of virtualization intercepts will be provided to the VMM during PAL
intercept handoffs within the virtual environment. No information will be provided if 0. If
this field is 1, the opcode field also be 1, otherwise processor operation is undefined.
See Section 5.2.3.1, “PAL Virtualization Intercept Handoff State” on page 58 for details
of virtualization intercept handoffs.

Reserved 63:10 Reserved.
90 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Processor Abstraction Layer
PAL Register Virtual Processor

Purpose: Register a different host IVT and/or a different optional virtualization intercept
handler for the virtual processor specified by vpd.

Calling Conv: Stacked Registers

Mode: Virtual

Arguments:

Returns:

Status:

Description: PAL_VP_REGISTER registers a different host IVT and/or a different optional
virtualization intercept handler specific to the virtual processor specified by vpd.
On creation of a virtual processor by PAL_VP_CREATE, the VMM specifies a
host IVT specific to the virtual processor. This procedure allows the VMM to
specify a host IVT different from the one specified during PAL_VP_CREATE.

The host virtual to host physical translation of the 64K region specified by vpd
must be mapped with either a DTR or DTC. See Section 11.9.2.1.3, “Making PAL
Procedure Calls in Physical or Virtual Mode” on page 2:312 for details on data
translation requirements of memory buffer pointers passed as arguments to PAL
procedures.

The host_iva parameter specifies the host IVT to handle IVA-based interruptions
when this virtual processor is running. The VMM can use the same or different
host_iva for each virtual processor. The opt_handler specifies an optional
virtualization intercept handler. If a non-zero value is specified, all virtualization
intercepts are delivered to this handler. If a zero value is specified, all virtualization
intercepts are delivered to the Virtualization vector in the host IVT. Upon
completion of this procedure, the VMM must not relocate the IVT specified by the
host_iva parameter and/or the virtualization intercept handler specified by the
opt_handler parameter. The VMM can call this procedure again in case it wishes to
associate a different host IVT and/or virtualization intercept handler with the
virtual processor.

Argument Description
index Index of PAL_VP_REGISTER within the list of PAL procedures
vpd 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)
host_iva 64-bit host virtual pointer to the host IVT for the virtual processor
opt_handler 64-bit non-zero host-virtual pointer to an optional handler for virtualization intercepts. See

Section 5.2.3, “PAL Intercepts in Virtual Environment” on page 58 for details.

Return Value Description
status Return status of the PAL_VP_REGISTER procedure
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error – Indicates internal error in PAL
Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 91

Processor Abstraction Layer
This procedure can be used by the VMM to:

• Relocate the host IVT associated with the virtual processor.
• Specify a different optional virtualization intercept handler for the virtual

processor.
92 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Processor Abstraction Layer
PAL Restore Virtual Processor

Purpose: Restores virtual processor state for the specified vpd on the logical processor.

Calling Conv: Stacked Registers

Mode: Virtual

Arguments:

Returns:

Status:

Description: PAL_VP_RESTORE performs an implementation-specific restore operation of the
virtual processor specified by the vpd parameter on the logical processor. The host
virtual to host physical translation of the 64K region specified by vpd and the PAL
virtual environment buffer must be mapped by instruction and data translation
registers (TR). The instruction and data translation must be maintained until after
the next invocation of PAL_VP_SAVE or PAL_VPS_SAVE and a different host
IVT is set up by the VMM by writing to the IVA control register.
PAL_VP_RESTORE configures the logical processor to run the specified virtual
processor by loading implementation-specific virtual processor context from the
VPD, and returns control back to the VMM.

The pal_proc_vector parameter for PAL_VP_RESTORE allows the VMM to
control the PAL procedure implementation-specific state to be saved. Table 5-29
shows the format of pal_proc_vector. When a bit is set to 1 in the vector, the
implementation-specific state for the corresponding PAL procedures will be
restored by PAL_VP_RESTORE. When a bit is set to 0 in the vector, no
implementation-specific state will be restored for the corresponding PAL
procedures.

Argument Description
index Index of PAL_VP_RESTORE within the list of PAL procedures.
vpd 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD.)
pal_proc_vector Vector specifies PAL procedure implementation-specific state to be restored
Reserved 0

Return Value Description
status Return status of the PAL_VP_RESTORE procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error – Indicates internal error in PAL.

Table 5-29. Format of pal_proc_vector
Bit PAL Procedures
0 PAL_PROC_GET_FEATURES, PAL_PROC_SET_FEATURES
1 PAL_GET_PSTATE, PAL_SET_PSTATE

63:2 Reserved
Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 93

Processor Abstraction Layer
This procedure performs an implicit PAL_VPS_SYNC_WRITE; there is no need
for the VMM to invoke PAL_VPS_SYNC_WRITE unless the VPD values are
modified before resuming the virtual processor. After the procedure, the caller is
responsible for restoring all of the architectural state before resuming to the new
virtual processor through PAL_VPS_RESUME_NORMAL or
PAL_VPS_RESUME_HANDLER.

Upon completion of this procedure, the IVA-based interruptions will be delivered
to the host IVT associated with this virtual processor.
94 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Processor Abstraction Layer
PAL Save Virtual Processor

Purpose: Saves virtual processor state for the specified vpd on the logical processor.

Calling Conv: Stacked Registers

Mode: Virtual

Arguments:

Returns:

Status:

Description: PAL_VP_SAVE performs an implementation-specific save operation of the virtual
processor specified by the vpd parameter on the logical processor. The host virtual
to host physical translation of the 64K region specified by vpd must be mapped by
instruction and data translation registers (TR).

The pal_proc_vector parameter for PAL_VP_SAVE allows the VMM to control
the PAL procedure implementation-specific state to be saved. Table 5-29 on
page 93 shows the format of pal_proc_vector. When a bit is set to 1 in the vector,
the implementation-specific state for the corresponding PAL procedures will be
saved by PAL_VP_SAVE. When a bit is set to 0 in the vector, no implementation-
specific state will be saved for the corresponding PAL procedures.

This procedure performs an implicit PAL_VPS_SYNC_READ; there is no need for
the VMM to invoke PAL_VPS_SYNC_READ to synchronize the implementation-
specific control resources before this procedure.

Upon completion of this procedure, the IVA-based interruptions will continue to be
delivered to the host IVT associated with this virtual processor. After this
procedure, the VMM can setup the IVA control register to use a different host IVT.

Argument Description
index Index of PAL_VP_SAVE within the list of PAL procedures
vpd 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)
pal_proc_vector Vector specifies PAL procedure implementation-specific state to be saved
Reserved 0

Return Value Description
status Return status of the PAL_VP_SAVE procedure
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error
-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error – Indicates internal error in PAL
Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 95

Processor Abstraction Layer
PAL Terminate Virtual Processor

Purpose: Terminates operation for the specified virtual processor.

Calling Conv: Stacked Registers

Mode: Virtual

Arguments:

Returns:

Status:

Description: Terminates operation of the virtual processor specified by vpd on the logical
processor. The host virtual to host physical translation of the 64K region specified
by vpd must be mapped by instruction and data translation registers (TR). See
Section 11.9.2.1.3, “Making PAL Procedure Calls in Physical or Virtual Mode” on
page 2:312 for details on data translation requirements of memory buffer pointers
passed as arguments to PAL procedures. All resources allocated for the execution
of the virtual machine are freed.

Upon successful execution of PAL_VP_TERMINATE procedure and if the iva
parameter is non-zero, the IVA control register will contain the value from the iva
parameter.

Argument Description
index Index of PAL_VP_TERMINATE within the list of PAL procedures
vpd 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)
iva Optional 64-bit host virtual pointer to the IVT when this procedure is done
Reserved 0

Return Value Description
status Return status of the PAL_VP_TERMINATE procedure
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error
-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error – Indicates internal error in PAL
96 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

	1 Revision History
	2 Introduction
	2.1 Affected Documents/Related Documents
	2.2 Virtualization Terminology
	2.3 Virtualization Concept
	2.4 Virtualization Environment Overview
	2.5 Resource Virtualization Policies

	3 Itanium® Architecture Changes
	4 Instruction Reference
	5 Processor Abstraction Layer
	5.1 Virtualization Terminology
	5.2 PAL Virtualization Support
	5.2.1 Virtual Processor Descriptor (VPD)
	5.2.2 Interruption Handling in a Virtual Environment
	5.2.3 PAL Intercepts in Virtual Environment
	5.2.4 Virtualization Optimizations
	5.2.5 PAL Virtualization Services

	5.3 PAL Procedure Summary
	5.4 PAL Virtualization Services Specification
	5.5 PAL Procedures for Virtualization

