Vanderpool Technology for the
Intel® Itanium® Architecture (VT-i)
Preliminary Specification

Revision 1.0

January 2005

Notice: The Intel® Itanium® 2 architecture processor may contain design defects or errors known
as errata which may cause the product to deviate from published specifications. Current
characterized errata are documented in this specification update.

Document Number: 305942-001

Notice: This document contains information on products in the design phase of development. Do not finalize a
design with this information. Revised information will be published when the product is available. Verify with your
local Intel sales office that you have the latest datasheet before finalizing a design.

THIS DOCUMENT AND RELATED MATERIALS AND INFORMATION ARE PROVIDED “AS IS” WITH NO WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-
INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION, OR SAMPLE. INTEL ASSUMES NO RESPONSIBILITY FOR ANY ERRORS CONTAINED IN THIS DOCUMENT AND HAS NO
LIABILITIES OR OBLIGATIONS FOR ANY DAMAGES ARISING FROM OR IN CONNECTION WITH THE USE OF THIS DOCUMENT.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.
Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel's website at http://developer.intel.com/design/litcentr.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
Copyright © 2005, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

2 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

intal.

Contents

1 LAY] o] TN 1S3 (o] oY SRS 5
2 T oo [N Tt o] o DO ST PPPRTR 7
2.1 Affected Documents/Related DOCUMENTS.........ciiiiiiiiie ettt s 7
2.2 Virtualization TerMINOIOQYcceoiiiiiiiiiiiie e e e e e s e s s e e e e e e aeeesa s snnntenraeeeeeeesanannnns 7
2.3 RV TR (U= 14 L1 [0 T O o o= o) SRR 8
2.4 Virtualization ENVIrONMENT OVEIVIEWcccoiiuiiiiieiiiiiie ettt ettt e e e siibee e e s nnbee e e e s nnbbeee e s eees 9
2.5 Resource Virtualization POLICIESooiiuiiiiiiiiiie ettt e e s srbeee e e e 9
3 Itanium® ArChItECIUrE CRANGEScv.eveeeeeeeeeeeeeseeeeeeeseseeseeses e esseesee s eneseee e, 11
4 INSEIUCHION REFEIENCE ...t e et e e e 19
5 Processor ADSIIaCHION LAYE ..ottt e e e e e e 51
5.1 Virtualization TerMINOIOQYccoiiiiiiiiiiiee et e e e e e e s s s s s s e e ee e e e e e e s e s ntaenaeeeeeeeeannsnnns 51
5.2 [AN IV 4 (U= 1= Lo TS0 o] oo | SRR 51

5.2.1 Virtual Processor DESCHPLOr (VPD)uuuiiiiiiieieeiiiiiiiieeieee e e e e e e e s s s sstniaee e eee e e e e e e snssnnnnnes 52

5.2.2 Interruption Handling in a Virtual ENVIONMENtccvviiiiiiieee e 56

5.2.3 PAL Intercepts in Virtual ENVIFONMENToviiiieiiii i e e e e e e e s e s 58

5.2.4 Virtualization OPtIMIZAtIONScceeeeeiiiiiiiiiiiiieer e e e e e e e e css e e e e e e e s s e s s e ereeeeseesannaans 61

5.2.5 PAL VIirtualiZation SEIVICES.cciiiiiiiiiiiiiiiiie ettt et e st e e e sbeaeee e nnes 70
5.3 Y I o Yot =T [TS T UL a] 4= U/ SRR 72
5.4 PAL Virtualization Services SPeCIfiCationccouiiiiiiiiiiiiiiiie e ee e e e 72
55 PAL Procedures for VIrtUaliZationeeieeiiiiiie e 84
Tables
4-1 Indirect Register File MNEMONICScccuuuiiiieiiie e e s e e e s s e e e e e e e s s e s snnaereeeeeaes 30
5-1 Virtual Processor DESCHPLOr (VPD) ..cviiiiei e ettt e e e e se s r e e e e e e e e s snnnnrnanaeeeeaeeaeaenanes 52
5-2 Virtualization Acceleration Control (Vac) FIeldSuevevieeeeoiiiiiiiiee e 55
5-3 Virtualization Disable Control (VAC) FIeldScoooiiiieiiieeeieee e ee e e 55
5-4 IVA Settings after PAL Virtualization-Related Procedures and Services............cocccvvvvevveeneennnnnn 57
5-5 PAL Virtualization Intercept Handoff Cause (GR24)........cuuvivieiieiiiiiiiieiieece e 59
5-6 Virtualization Accelerations SUMMAIYccooiiiciiuiiiieeiiee e e e e iesisieeieeeeesaeesssssnneenreeerereeeesessnnnnnns 61
5-7 Detection of Virtual EXternal INtEITUPLSvviieii et e e e e s areeeee e e e e 62
5-9 Interruptions when Virtual External Interrupt Optimization is Enabled..............cc.coccvvieevennennnn. 63
5-8 Synchronization Requirements for Virtual External Interrupt Optimization.................ccccvvvvennen. 63
5-10 Synchronization Requirements for Interruption Control Register Read

(O] 0111491 74= 1[0] o F PRSP UPPRPTRPR 63
5-11 Interruptions When Interruption Control Register Read Optimization

(1S3 = g F=1 o] [=T o PP EUPR PP 64
5-12 Synchronization Requirements for Interruption Control Register

WIHEE OPHMIZALION ...ttt e et e e e e e e s e e bbb et e eeaae e e e s e aasnbbbnbeeeeeaaeannnnnes 64
5-13 Interruptions when Interruption Control Register Write Optimization

(L3 = F= o] =T o PSRN 64
5-14 Synchronization Requirements for MOV-from-PSR Optimizationccccccceveeviiiiicciiiiinreeneeeen, 65
5-15 Interruptions when MOV-from-PSR Optimization is Enabled............cccccoceeveeiiiiiicciieeecceeee, 65
5-16 Synchronization Requirements for MOV-from-CPUID Optimization.........cccccccevevveuvivvennneeneeeenn, 66
5-17 Interruptions when MOV-from-CPUID Optimization is Enabledccccccceveiiiiiiiciiiiieneeeeeen 66

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 3

5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25

5-26
5-27
5-28
5-29

Synchronization Requirements for Cover Optimizationcooooiiiiiiiiiiiiieee e 66
Interruptions when Cover Optimization is Enabled...............cccoi s 66
Interruptions When Bank Switch Optimization is Enabled...............cccoiiiiiiiiiiiie 67
Virtualization DiSableS SUMMAIYcoiiiiiiiiiiiiieie et e e e e s e e e e e e e e e s e nanes 67
PAL VirtUaliZAtionN SEIVICESoiiiiiiiiiiiiiee ettt e st e e e st e e e s snib e e e e s sarneeeeaaes 70
State Requirements for PSR for PAL Virtualization ServiCes...........oouiviiiieeiiiiiiiiiiiiiiieeeeeeeenn 71
PAL Virtualization SUPPOrt PrOCEAUIEScooiiiiiiiiiiie ettt a e 72
Virtual Processor Settings in Architectural Resources for

PAL_VPS_RESUME_NORMAL and PAL_VPS_RESUME_HANDLERcccccrniiiinineannen. 73
vhpi — Virtual Highest Priority Pending INterrupt...........ooooiiiiiiiiiee e 78
vp_env_info — Virtual Environment Information Parameter ... 87
config_options — Global Configuration OPLiONSocccuuiiiiiiiiiie e 90
Format Of Pal_PrOC_ VECIOK ...t e e e e e e e e e e e as 93

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

1 Revision History

. Revision L
Version Number Description Date
-001 1.0 « |Initial release of the document. January 2005

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Revision History intGI(@

6 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Introduction

2.1

2.2

This document describes the software interfaces for Itanium® architecture-based processors which
support VT-i (Vanderpool Technology for the Intel® Itanium® architecture). These additions allow
for the virtualization of processor hardware in order to allow multiple instances of operating
systemsto be run on a single system. This document is intended for hardware system
manufacturers and software devel opers of applications, operating systems, or tools.

Note: Virtualization, or Vanderpool Technology, is also supported on 1A-32 Intel architecture
processors. However the implementation of Vanderpool technology for 1A-32 architecture
processors is different than VT-i due to many reasons, including the fundamental differences
between the | A-32 and Itanium architectures. The |A-32 version of Vanderpool Technology is
referred to as V T-x and documentation on VT-x can be found in the Vanderpool Technology for |A-
32 Processors (VT-X) - Preliminary Specification.

Affected Documents/Related Documents

Title Document #

Intel® Itanium® Architecture Software Developer’s Manual, Volume 1: Application 245317-004
Architecture

Intel® Itanium® Architecture Software Developer’s Manual, Volume 2: System Architecture 245318-004

Intel® Itanium® Architecture Software Developer’'s Manual, Volume 3: Instruction Set 245319-004
Reference

Intel® Itanium® Architecture Software Developer’'s Manual, Specification Update 248699-009
Vanderpool Technology for IA-32 Processors (VT-X) - Preliminary Specification C97063-001

Virtualization Terminology

Thefollowing are terms related to Itanium architecture virtualization:
VT-i —Vanderpool Technology for the Itanium architecture.
VT-x — Vanderpool Technology for the IA-32 architecture.

Virtual Machine Monitor (VMM) —The VMM is the system software which implements
software policies to manage/support virtualization of processor and platform resources.

Virtual Processor Descriptor (VPD) — Represents the abstraction of the processor resources of a
single virtual processor. The VPD consists of per-virtual-processor control information together
with performance-critical architectural state. See Section 5.2.1, “Virtual Processor Descriptor
(VPD)” on page 52 for details.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 7

[]
Introduction IntGIc@

Virtual Processor State— A memory data structure which represents the architectural state of a
virtual processor. Part of the virtual processor stateislocated in the Virtual Processor Descriptor
(VPD), and the rest islocated in memory data structures maintained by the virtual machine
monitor.

PAL intercepts— Interfaces where PAL transfers control to the VMM on virtualization events
(execution of virtualized instructions/operations with PSR.vm==1). For details see Section 5.2.3,
“PAL Interceptsin Virtual Environment” on page 58.

2.3 Virtualization Concept

M odern operating system designs typically assume the operating system has complete and direct
control of hardware and system resources. The operating system implements the policies to
manage these resources to allow multiple user-level applications to be run. The goal of
virtualization isto allow multiple instances of operating systemst to be run on a system.

In atypical virtualized environment, there will be a piece of system software responsible for
virtualizing the hardware and system resources to allow multiple instances of the operating systems
to be run. In the Itanium virtualization architecture, the term Virtual Machine Monitor or VMM
refers to the software component that provides such functionality. The VMM is a piece of host
software and is aware of the Itanium virtualization architecture.

For each instance of guest operating system, the VMM will need to create and present avirtual
machine to the guest operating system. A virtual machine includes all the hardware and system
resources (processors, memory, disk, network devices, and other peripherals) expected by the guest
operating system. From the VMM perspective, these hardware and system resources are
“virtualized”. In the Itanium virtualization architecture, avirtual processor isavirtualized logical
processor. The number of virtual processors created by aVMM in avirtual machine representsthe
number of logical processors presented to a guest operating system. For example, in Figure 2-1,
Guest OS A will see a4-way system, and Guest OS B will see a 2-way system. There will be at
least one virtual processor in avirtual machine. Architecturally thereis no limit on the number of
virtual machines and virtual processorsthat can be created by the VM M2 on asystem.

Figure 2-1. Virtual Processor Concept

Guest OS A Guest OS B
VP| |VP| |VP| |VP VP| |VP
Virtual Machine A Virtual Machine B
VMM
Hardware and System Resources

1. The operating systems can be same or different versions, and can come from different operating system vendors.

2. Although there is no architectural limit on the number of virtual machines and virtual processors on a system. There will be limits from the
implementation of the hardware and system resources. In addition, there will also be limitations from VMM implementation (e.g., timeto
perform virtual processor switch).

8 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

2.4

Virtualization Environment Overview

Theterm virtualization environment refers to the system environment created by the VMM to
run virtualized software®. Figure 2-2 shows the main components in a virtualization envi ronment?,
and the interactions between them. A virtualization environment will include one or more
processors supporting virtualization, the PAL supporting virtualization, the virtual machine
monitor, and virtualized software. The VMM is required to allocate the resources and create the
virtualization environment before guest software can be launched. In avirtualization environment,
virtualized software will continue to execute on the processor unmodified. Interruptions from the
processor will be handled by the VMM. A new architecture interface is defined between the VMM
and PAL for accessto configuration and optimization options, virtualization services, and
virtualization intercept handling.

Figure 2-2. Interactions in a Virtualization Environment

2.5

App App App App App App Virtualized
Software
Guest OS A Guest OS B
[1 _
Lo Instruction
Resume Guest Execution L Execution
I o
Virtualization
VMM | Software
Architectural Software |
Interruptions Interface !
PAL Supporting Virtualization Itanium
Virtualization
Processor Supporting Virtualization Architecture

Resource Virtualization Policies

In avirtualization environment, guest operating systems are running virtualized. For each hardware
and system resource on the system, there are typically two policiesthe VMM can choose to run the
virtual processor(s) of the guest operating systems:

¢ Shared Policy — With the shared policy, the actual hardware and system resources will be
shared (time multiplexed) between multiple virtual processors. The VMM will need to
implement the scheduling/switching/sharing mechanisms to support this policy. For example,
in Figure 2-3, logical processor 1 isshared by two virtual processors, and logical processor 2is
shared by the other two virtual processors. In the Itanium virtualization architecture,
virtualization accelerations are defined to optimize the usages of this policy. See
Section 6.2.4.1, “Virtualization Accelerations’ on page 61 in Itanium Architecture
Virtualization Specification Update, Rev 2.0 for details.

1. Notethat theterm virtual machine used in Section 2.3, “Virtualization Concept” on page 8 represents the set of virtual resources presented to
aguest operating system. Typically the VMM will create one or more virtual machinesin avirtualization environment. The usage model and
management policies of the virtualization environment is V MM-specific.

2. Thisisasimplified diagram to show the major components and their interactions, not al the components are listed (e.g., SAL, EFI...etc.),
see Chapter 9, “Firmware Virtualization” for details.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Introduction

intel.

¢ Dedicated Policy — With the dedicated policy, the actual hardware and system resources are
dedicated to a particular virtual processor. There will be no sharing of that particular hardware
and system resource between virtual processors. The virtual processor will have direct control
of the particular hardware and system resource. For example, in Figure 2-4, logical processor 1
is dedicated to virtual processor A, and logical processor 2 is shared by multiple virtual
processors. In the Itanium virtualization architecture, virtualization disables are defined to
optimize the usages of this policy. See Section 6.2.4.2, “Virtualization Disables’ on page 67 in
Itanium Architecture Virtualization Specification Update, Rev 2.0 for details.

The VMM decides the resource virtualization policies for the virtual processors at creation time,
the policies are applicable until the virtual processor is terminated.

Since the resource virtualization policy is per-resource, the VMM can apply different policies for
different resources on avirtual processor basis. For example, on a given virtual processor, the
VMM can use a shared policy for an 1/0O device (i.e., the I/O device is shared between virtual
processors), and can use a dedicated policy for the performance counters (i.e., the performance
counters on the logical processor is not shared and can be controlled directly by the running virtual
processor). In the Itanium virtualization architecture, since there are optimizations defined to
support both policies for each resource’, the VMM cannot apply conflicting optimizations to these
resources. Theillegal settings are described in each acceleration and disable in Section 6.2.4.1,
“Virtualization Accelerations’ on page 61 in Itanium Architecture Virtualization Specification
Update, Rev 2.0 and Section 6.2.4.2, “Virtualization Disables’ on page 67 in Itanium Architecture
Virtualization Specification Update, Rev 2.0.

Figure 2-3. Shared Virtualization Policy

Virtual CPU A Virtual CPU B Virtual CPU C Virtual CPU D

CLogicaI CPU 1> CLogicaI CPU 2>

Hardware and System Resources

Figure 2-4. Dedicated Virtualization Policy

Virtual CPU A Virtual CPU B Virtual CPU C Virtual CPU D

(Logical CPU 1> (Logical CPU 2>

Hardware and System Resources

1. For example, external interruption resources like external interrupt control registers, TPR and PSR.i.

10

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

intel.

3 Itanium® Architecture Changes

Therest of this document isformatted as a specification update to the | ntel® Itanium® Architecture
Software Developer’s Manual. This details out every change to the architecture for VT-i including
the new instructions, processor behavior in the different virtualized modes, as well as the new PAL
interfaces. The Itanium architecture is aliving document and updates happen periodically. Future
updates will be incorporated into the Intel® Itanium® Architecture Software Developer’s Manual
and specification updates.

1. Volume 2, Part I, Chapter 3 System State and Programming Model
1. New PSR.vm bit in Figure 3-2 Processor Status Register (PSR) (2:18):
L system mask
<

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6I
rt‘tb‘lp‘db‘si‘di‘pp‘sp‘dfh‘dfl‘dt.pk‘ i ‘ic
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
vm‘ia‘bn‘ed‘ ri ‘ss‘dd‘da‘ id ‘ it ‘mc‘is‘ cpl ‘

| user mask ‘

3 2 1 0

5 4
] e

2. New PSR.vm hit in Table 3-2 Processor Status Register Fields (2:19):

Field Bits

Description

Interruption

State

Serialization
Required

vm

46

Virtual Machine — When 1, an attempt to execute 0
certain instructions results in a virtualization fault.
Implementation of this bit is optional. If the bit is not
implemented, it is treated as a reserved bit. Written by
the rfi and vimswinstructions.

rfi

3. New section, Section 3.4, Processor Virtualization (2:35):

Itanium architecture processors may optionally implement a mechanism to support processor
virtualization. Thisincludes an additional PSR.vm bit (see Section 3.3.2, “Processor Status

Register (PSR)"), which, when 1, causes certain instructions to take a virtualization fault (see
Section 5.6, “Interruption Priorities” and “Virtualization Vector (0x6100)").

The set of instructions which are virtualized by PSR.vm are listed in Table 3-10 below.
4. New Table 3-10, Virtualized Instructions (2:35):

Class

Virtualized Instructions

All privileged instructions

itc.i, itc.d, itr.i, itr.d, ptc.l, ptc.g, ptc.ga, ptc.e, ptr, tak, tpa, mov rr, mov pkr, mov cr,
mov ibr, mov dbr, mov pmc, mov to pmd, ssm, rsm, mov pst, rfi, bsw

Some non-privileged thash, ttag, mov from cpuid
instructions (virtualized at
all privilege levels)

Some non-privileged cover
instructions (virtualized at
privilege level 0)

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

11

u
Itanium™ Architecture Changes Intel ®

Class Virtualized Instructions

Reading AR[ITC] with mov from ar.itc
PSR.si==1 takes
(virtualized at all privilege
levels)

Instructions which write mov to itc
privileged registers

5. New paragraph after Table 3-10 (2:35):
Processors which support processor virtualization must provide an implementati on-dependent
mechanism for disabling the vnsw instruction. When enabled, thevirsw instruction
functions as described on the vnsw instruction page. When disabled, the vnsw instruction
always raises a virtualization fault when executed at the most privileged level.

Processor virtualization is largely invisible to system software, and therefore its effects on
virtualized instructions are not discussed in this document, except on the instruction
description pages themselves.

2. Volume 2, Part |, Chapter 4, Addressing and Protection

1. Section 4.3.2, Unimplemented Virtual Address Bits, add the following paragraph before the
final paragraph in the section (2:62):
If the PSR.vm bit isimplemented, and if PSR.vm is 1, then virtual addresses are treated as
though one additional virtual address bit were unimplemented. If the PSR.vm bit is
implemented, at least 52 virtual address bits must be implemented.

2. Section 4.3.3, Instruction Behavior with Unimplemented Addresses, add the following bullet
after the last bullet (2:63):

¢ The behavior of executing vnsw. 1 in abundle whose address will become
unimplemented after PSR.vm is set to 1 is undefined.

3. Volume 2, Part I, Chapter 5, Interruptions
1. Add Virtualization fault and Virtual External Interrupt in Table 5-6, Interruption Priorities
(2:92):
Table 5-6 Interruption Priorities (Sheet 1 of 4)
Type Instr. Set Interruption Name Vector Name IA-32
yp ' P Class?
Aborts 1 Machine Reset (RESET) PALE_RESET vector
IA-32, _ N/A
Intel® 2 Machine Check (MCA) PALE_CHECK vector
Inter- ltanium® | 3 |nitialization Interrupt (INIT) PALE_INIT vector
rupts N/A
4 Platform Management Interrupt | PALE_PMI vector
(PMI)
5 External Interrupt (INT) External Interrupt vector
6 Virtual External Interrupt (VINT) | Virtual External Interrupt vector N/A

12 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Table 5-6 Interruption Priorities (Sheet 2 of 4)

Type Instr. Set Interruption Name Vector Name CIIIAa:sl
Faults 7 IR Unimplemented Data General Exception vector
Address fault
8 IR Data Nested TLB fault Data Nested TLB vector
9 IR Alternate Data TLB fault Alternate Data TLB vector
10 IR VHPT Data fault VHPT Translation vector
Intel 11 IR Data TLB fault Data TLB vector N/A
Itanium
12 IR Data Page Not Present fault | Page Not Present vector
13 IR Data NaT Page Consumption | NaT Consumption vector
fault
14 IR Data Key Miss fault Data Key Miss vector
15 IR Data Key Permission fault Key Permission vector
16 IR Data Access Rights fault Data Access Rights vector
17 IR Data Access Bit fault Data Access-Bit vector
18 IR Data Debug fault Debug vector
Faults 1A-32 19 1A-32 Instruction Breakpoint 1A-32 Exception vector (Debug)
fault
20 1A-32 Code Fetch fault? IA-32 Exception vector (GPFault)
21 Alternate Instruction TLB fault | Alternate Instruction TLB vector
22 VHPT Instruction fault VHPT Translation vector A
23 Instruction TLB fault Instruction TLB vector
IA-32, 24 Instruction Page Not Present Page Not Present vector
Intel fault
Itanium | 25 |nstruction NaT Page NaT Consumption vector
Consumption fault
26 Instruction Key Miss fault Instruction Key Miss vector
27 Instruction Key Permission fault | Key Permission vector
28 Instruction Access Rights fault | Instruction Access Rights vector
29 Instruction Access Bit fault Instruction Access-Bit vector
Intel 30 Instruction Debug fault Debug vector
Itanium
31 1A-32 Instruction Length > 15 1A-32 Exception vector (GPFault)
IA-32 bytes B
32 1A-32 Invalid Opcode fault IA-32 Intercept vector (Instruction)
33 1A-32 Instruction Intercept fault | IA-32 Intercept vector (Instruction)
34 lllegal Operation fault3 General Exception vector
Intel 35 lllegal Dependency fault General Exception vector
Itanium 36 Break Instruction fault Break Instruction vector
37 Privileged Operation fault General Exception vector
Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 13

ltanium® Architecture Changes

14

®
Table 5-6 Interruption Priorities (Sheet 3 of 4)
Type Instr. Set Interruption Name Vector Name IA-32
yp : P Class?
38 Disabled Floating-point Register | Disabled FP-Register vector
IA-32, fault
Intel - - : B
ltanium | 39 Disabled Instruction Set General Exception vector
Transition fault
40 1A-32 Device Not Available fault | IA-32 Exception vector (DNA)
1A-32 41 1A-32 FP Error fault* IA-32 Exception vector (FPError)
- C
IA-82, | 42 Register NaT Consumption fault | NaT Consumption vector
Intel
Itanium
Intel 43 Reserved Register/Field fault General Exception vector
Itanium - -
44 Unimplemented Data Address | General Exception vector
fault
45 Privileged Register fault General Exception vector
46 Speculative Operation fault Speculation vector
47 Virtualization fault Virtualization vector
48 1A-32 Stack Exception IA-32 Exception vector (StackFault)
1A-32 -
49 1A-32 General Protection Fault | |A-32 Exception vector (GPFault)
Faults 50 Data Nested TLB fault Data Nested TLB vector
51 Alternate Data TLB fault® Alternate Data TLB vector
52 VHPT Data fault® VHPT Translation vector
53 Data TLB fault® Data TLB vector ¢
54 Data Page Not Present fault® Page Not Present vector
IA-32, _ .
Intel 55 Data NaT Page Consumption NaT Consumption vector
Itanium fault®
56 Data Key Miss fault® Data Key Miss vector
57 Data Key Permission fault® Key Permission vector
58 Data Access Rights fault® Data Access Rights vector
59 Data Dirty Bit fault Dirty-Bit vector
60 Data Access Bit fault® Data Access-Bit vector
61 Data Debug fault® Debug vector
Intel - :
ftanium | 62 Unaligned Data Reference fault® | Unaligned Reference vector
63 IA-32 Alignment Check fault IA-32 Exception vector (Align-
mentCheck)
1A-32 64 IA-32 Locked Data Reference IA-32 Intercept vector (Lock)
fault c
65 1A-32 Segment Not Present fault | |A-32 Exception vector (NotPresent)
66 IA-32 Divide by Zero fault IA-32 Exception vector (Divide)
67 1A-32 Bound fault IA-32 Exception vector (Bound)
68 1A-32 SSE Numeric Error fault | IA-32 Exception vector (Stream-
SIMD)

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Table 5-6 Interruption Priorities (Sheet 4 of 4)

. IA-32
Type Instr. Set Interruption Name Vector Name Class!
69 Unsupported Data Reference Unsupported Data Reference vector
Intel fault
Itanium 70 Floating-point fault Floating-point Fault vector
Traps 71 Unimplemented Instruction Lower-Privilege Transfer Trap vector
Address trap®
Intel 72 Floating-point trap Floating-point Trap vector
Itanium | 73 Lower-Privilege Transfer trap Lower-Privilege Transfer Trap vector
74 Taken Branch trap Taken Branch Trap vector
75 Single Step trap Single Step Trap vector
76 1A-32 System Flag Intercept trap | |A-32 Intercept vector (SystemFlag)
77 1A-32 Gate Intercept trap IA-32 Intercept vector (Gate)
78 1A-32 INTO trap IA-32 Exception vector (Overflow)
- D
IA-32 | 79 1A-32 Breakpoint (INT 3) trap IA-32 Exception vector (Debug)
80 1A-32 Software Interrupt (INT) | IA-32 Interrupt vector (Vector#)
trap
81 |A-32 Data Breakpoint trap IA-32 Exception vector (Debug)
82 1A-32 Taken Branch trap IA-32 Exception vector (Debug)
83 IA-32 Single Step trap IA-32 Exception vector (Debug)
NOTES:
1. IA-32 Interruption Class, see Section 5.6.1, “IA-32 Interruption Priorities and Classes” on page 2:105 for
details.
2. 1A-32 Code Fetch faults include Code Segment Limit Violation and other Code Fetch checks defined in
Section 6.2.3.3, “IA-32 Environment Runtime Integrity Checks” on page 121.
3. lllegal Operation faults can be taken for certain predicated off reserved opcodes. For details, refer to Section
4.1, “Format Summary” on page 272.
4. 1A-32 FP Error fault conditions detected on an 1A-32 FP instruction are reported as a fault on the next 1A-32
FP instruction that performs an FWAIT operation.
5. If not deferred.
6. Unimplemented Instruction Address traps on emulated check instructions have a lower priority than Taken

Branch trap and Single Step trap. See “Speculation vector (0x5700)” on page 193.

2. Add Virtual External Interrupt vector and virtualization vector in Table 5-7, Interruption
Vector Table (IVT) (2:96):

Offset Vector Name Interruption(s) Page

0x3400 | Virtual External Interrupt vector 6 2:183

0x6100 | Virtualization vector a7 2:202
4. Volume 2, Part I, Chapter 8, Interruption Vector Descriptions

1. Add Virtual External Interrupt vector and virtualization vector in Table 8-1, Writing of
Interruption Resources by Vector (2:146):

Interruption Resource I::DiHIDFSSRv IFA ITIR IHA IIM ISR
PSR.ic at time of interruption 0 1 0 1 0 1 0 1 0 1 0 1
Interruption Vector
Virtual External Interrupt vector - w W | W
Virtualization vector - w w | W

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 15

u
Itanium™ Architecture Changes Intel ®

16

2. Add Virtual External Interrupt vector and Virtualization vector in Table 8-2, ISR Values on
Interruption (2:147):

Vector / Interruption ed ei SO | ni ir’ | rs® | sp” | na r w X
Virtual External Interrupt Vector
Virtual External Interrupt 0 ri 0 ni ir" |o 0 0 0 |0 0
Virtualization Vector
Virtualization Fault 0 ri 0 ni 0 0 0 0 0 0 0

NOTES:
1. ISR.eiis equal to IPSR.ri for all faults and external interrupts (1 for faults and interrupts on the L+X

instruction of an MLX). For traps, ISR.ei points at the excepting instruction (2 for traps on the L+X
instruction of an MLX).

If ISR.ni is 1, the interruption occurred either when PSR.ic was 0 or was in-flight.

. ISR.ri captures the value of RSE.CFLE at the time of an interruption.

. ISR.rs is 1 for interruptions caused by mandatory RSE fills/spills and O for all others.

. ISR.sp is 1 for interruptions caused by speculative loads and zero for all others.

ISR.na is 1 for interruptions caused by non-access instructions and zero for all others.

ISR.ir is 1 if an external interrupt was taken when mandatory RSE fills caused by a br . ret orrfi were
re-loading the current register stack frame.

NoorwN

3. Add Virtual External Interrupt vector (0x3400) and Virtualization vector (0x6100) (2:186):

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

tel.

Name

Cause

Parameters

31 30 29 28 27

Virtual External Interrupt Vector (0x3400)

The guest highest pending interrupt (VHPI) specified by the VMM is unmasked on
the virtual processor.

IPSR.isindicates which instruction set was executing at the time of the
interruption.

Interruptions on this vector:
Virtual External interrupt
[P, IPSR, IIPA, IFS — are defined; refer to page 2:163 for a detailed description.

ISR —TheISR.ei bits are set to indicate which instruction was to be executed when
the external interrupt event was taken. The defined ISR bits are specified below.
For externa interrupts taken in the IA-32 instruction set, ISR.ei, ni and ir bitsare 0.

26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0

| 0 0 |

63 62 61 60 59

58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 ‘o‘ ei ‘o\ni‘ir\o‘o‘o\o‘o\o‘

Notes:

Software is expected to avoid situations which could cause ISR.ni to be 1.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 17

ltanium® Architecture Changes

Name

Cause

Parameters

intel.

Virtualization Vector (0x6100)

An attempt is made to execute an instruction which requires virtualization. This
fault cannot be raised by 1A-32 instructions.

Interruptions on this vector:

Virtualization fault

IR, IPSR, IIPA, IFS — are defined; refer to page 2:163 for a detailed description.

ISR —The ISR.ei bits are set to indicate which instruction caused the exception.
The defined ISR bits are specified below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0

| 0 0 | 0 o

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

| 0 (0] e |o]nijojo]ojo]oo]o0]
5. Volume 2, Part I, Chapter 11, Processor Abstraction Layer

1. Add PSR.vm hit in Table 11-19, State Requirements for PSR (2:289):

PSR Bit

Description Entry Exit Class

vm

processor virtualization 0 0 unchanged

2. Add bits 40 and 54 in Table 11-54, Processor Features (2:360):

Bit | Class | Control Description

40 Opt. No Virtual Machine features implemented. Denotes whether PSR.vm is implemented.
This feature may only be interrogated by PAL_PROC_GET_FEATURES. It may not
be enabled or disabled by PAL_PROC_SET_FEATURES. The corresponding
argument is ignored.

54 Opt. Req. Enable the use of the VMSWinstruction. When 0, the viTBwinstruction causes a
virtualization fault when executed at the most privileged level. When 1, this bit will
enable normal operation of the VITswinstruction.

6. Volume 3, Chapter 2, Instruction Reference

See “Instruction Reference” on page 16 for changes related to the virtualized instructions.

7. Revised Chapter 11 of Volume 2, Processor Abstraction Layer (text included
at end of this update)

Volume 2, Chapter 11, Processor Abstraction Layer has been modified to include new content to
support processor virtualization. The new content from Chapter 11 is presented at the end of this

update for convenience.

8

18

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

4 Instruction Reference

The subsequent pages list the changes related to the virtualized instructions.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

19

Instruction Reference

20

intel.

bsw — Bank Switch

Format:

Description:

Operation:

Interruptions:

Serialization:

bsw.0 zero_form B8
bsw.1 one_form B8

Thisinstruction switches to the specified register bank. The zero_form specifies
Bank 0 for GR16 to GR31. The one_form specifies Bank 1 for GR16 to GR31.
After the bank switch the previous register bank is no longer accessible but does
retain its current state. If the new and old register banks are the same, bswis
effectively anop, although there may be a performance degradation.

A bswinstruction must be thelast instruction in an instruction group. Otherwise, an
Illegal Operation fault is taken. Instructions in the same instruction group that
access GR16 to GR3L1 reference the previous register bank. Subsegquent instruction
groups reference the new register bank.

Thisinstruction can only be executed at the most privileged level, and when
PSR.vm isO.

Thisinstruction cannot be predicated.

if (!'followed_by stop())
illegal _operation_fault();

if (PSRcpl '=0)
privil eged_operation_fault(0);

if (PSRvm== 1)
virtualization_fault();

if (zero_form
PSR bn = 0;

else // one_form
PSR bn = 1;

Illegal Operation fault Virtualization fault
Privileged Operation fault

This instruction does not require any additional instruction or data serialization
operation. The bank switch occurs synchronoudly with its execution.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

In

tel.

cover — Cover Stack Frame

Format:

Description:

Operation:

Interruptions:

cover

A new stack frame of zero size is alocated which does not include any registers

B8

from the previous frame (as though all output registers in the previous frame had
been locals). The register rename base registers are reset. If interruption collection
isdisabled (PSR.ic is zero), then the old value of the Current Frame Marker (CFM)
is copied to the Interruption Function State register (IFS), and IFS.v is set to one.

A cover instruction must be thelast instruction in an instruction group. Otherwise,

an lllegal Operation fault istaken.

If PSR.cpl is non-zero, thisinstruction can only be executed when PSR.vm isalso

0. Thisinstruction cannot be predicated.

if (!'followed_by stop())
illegal _operation_fault();

if (PSRcpl == 0 & PSR vm == 1)
virtualization_fault();

al at _frane_updat e(CFM sof , 0);

rse_preserve_franme(CFM sof) ;

if (PSRic == 0) {
CRIIFS].ifm= CFM

CRIFS].v = 1;
}
CFM sof = 0;
CFM sol = 0;
CFM sor = 0;
CFMrrb.gr = 0;
CFMrrb.fr = 0;
CFMrrb.pr = 0;
Illegal Operation fault Virtualization fault

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

21

[]
Instruction Reference Intel®

itc — Insert Translation Cache

Format: (gp) itc.i ro instruction_form M41
(gp) itcd ry data form M41

Description: Anentry isinserted into the instruction or data translation cache. GR r, specifies
the physical address portion of the trandation. ITIR specifies the protection key,
page size and additional information. The virtual address is specified by the IFA
register and the region register is selected by IFA{63:61}. The processor
determines which entry to replace based on an implementation-specific
replacement algorithm.

Thevisihility of thei t ¢ instruction to externally generated purges (pt c. g,

pt c. ga) must occur before subsequent memory operations. From a software
perspective, thisis similar to acquire semantics. Serialization is still required to
observe the side-effects of atrandation being present.

i t c must be thelast instruction in an instruction group; otherwise, its behavior
(including its ordering semantics) is undefined.

The TLB isfirst purged of any overlapping entries as specified by Table 4-1 on
page 49.

Thisinstruction can only be executed at the most privileged level, and when PSR.ic
and PSR.vm are both 0.

To ensure forward progress, software must ensure that PSR.ic remains O until rfi -
ing to the instruction that requires the translation.

22 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

In

tel.

Operation:

Interruptions:

Serialization:

if (PRqp]) {
if (!followed_by_stop())
undef i ned_behavi or () ;

if (PSRic)
illegal _operation_fault();
if (PSRcpl !'=0)

privil eged_operation_fault(0);
if (GRry,].nat)

regi ster_nat_consunption_faul t (0);

tnp_size = CRITIR . ps;

tnp_va = CR | FA] {60: 0};

tmp_rid = RECR[| FA]{63: 61}].ri d;

tnp_va = align_to_size_boundary(tnp_va, tnp_size);

if (is_reserved_field(TLB_TYPE, GRry], CRITIR))
reserved_register_field fault();
if (Vinmpl _check_nmov_ifa() &&
uni npl erented_virtual _address(CR I FA], PSR vn))
uni nmpl erent ed_dat a_address_faul t (0);
if (PSRvm== 1)
virtualization_fault();

if (instruction_form {
tlb_nust_purge_itc_entries(tnp_rid, tnp_va, tnp_size);
tlb_may_purge_dtc_entries(tnp_rid, tnp_va, tnp_size);
slot = tlb_replacenent _al gorithn(l TC TYPE);
tlb_insert_inst(slot, GRry], CRITIR, CRIFA, tnp_rid,

T0;
} else { I
data_form
tlb_nust_purge dtc_entries(tnp_rid, tnp_va, tnp_size);
tlb_nmay _purge_itc_entries(tnp_rid, tnp_va, tnp_size);
slot = tlb_replacenent _al gorithn(DTC _TYPE);
tlb_insert_data(slot, GRry], CRITIR, CRIIFA, tnp_rid,
T0;
}
}
Machine Check abort Reserved Register/Field fault
Ilegal Operation fault Unimplemented Data Address fault
Privileged Operation fault Virtualization fault

Register NaT Consumption fault

For theinstruction_form, software must issue an instruction serialization operation
before a dependent instruction fetch access. For the data_form, software must issue
a data serialization operation before issuing a data access or non-access reference
dependent on the new translation.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 23

Instruction Reference

intel.

itr — Insert Translation Register

Format:

Description:

Operation:

(gp) itr.i itrfrg] =1, instruction_form M42
(gp) itr.d dtr[rg] =1, data form M42

A tranglation isinserted into the instruction or data translation register specified by
the contents of GR r3. GR r, specifies the physical address portion of the
trangdlation. I TIR specifies the protection key, page size and additional information.
The virtual addressis specified by the IFA register and the region register is
selected by IFA{63:61}.

Asdescribed in Table 4-1, “Purge Behavior of TLB Instructions’ on page 49, the
TLB isfirst purged of any entries that overlap with the newly inserted translation.
The translation previously contained in the TR slot specified by GR r3 is not
necessarily purged from the processor's TLBs and may remain asa TC entry. To
ensure that the previous TR trandlation is purged, software must use explicit pt r
instructions before inserting the new TR entry.

Thisinstruction can only be executed at the most privileged level, and when PSR.ic
and PSR.vm are both 0.

it (PRap]) {
if (PSRic)
illegal _operation_fault();
if (PSRcpl '=0)

privil eged_operation_fault(0);
if (Rrz].nat || GRr,].nat)

regi ster_nat _consunption_faul t (0);

slot = GRr3]{7:0};

tnp_size = CRITIR . ps;

tnp_va = CR | FA] {60: 0};

tmp_rid = RRICR | FA] {63: 61}].ri d;

tnp_va = align_to_size_boundary(tnp_va, tnp_size);

tnp_tr_type = instruction_form? ITR TYPE : DIR TYPE

if (is_reserved_reg(tnp_tr_type, slot))
reserved_register _field fault();

if (is_reserved_field(TLB_TYPE, (Rry], CRITIR))
reserved_register_field fault();

if (Vinpl _check_nov_ifa() &&

uni npl erent ed_vi rtual _address(CR[| FA], PSR vn))

uni npl ement ed_dat a_addr ess_faul t (0);

if (PSR vm== 1)
virtualization_fault();

if (instruction_form {
tlb_nust_purge_itc_entries(tnp_rid, tnp_va, tnp_size);
tlb_may_purge dtc_entries(tnp_rid, tnp_va, tnp_size);
tlb_insert_inst(slot, GRry], CRHITIR, CRIFA], tnp_rid,
TR ;

} else { I
data_form
tlb_nust_purge _dtc_entries(tnp_rid, tnp_va, tnp_size);
tlb_may_purge_itc_entries(tnp_rid, tnp_va, tnp_size);
tlb_insert_data(slot, GRro], CRHITIR, CRIFA], tnp_rid,
TR ;

24 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

intel.

}
}

Interruptions: Machine Check abort Reserved Register/Field fault
Ilegal Operation fault Unimplemented Data Address
fault
Privileged Operation fault Virtualization fault

Register NaT Consumption fault

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 25

Instruction Reference

26

mov — Move Application Register

Format:

Description:

intel.

(gp) mov ry=arg pseudo-op
(gp) mov arz=r, pseudo-op
(gp) mov arz =immg pseudo-op
(gp) mov.i rq=ars i_form, from_form 128
(gp) mov.i arz=r, i_form, register_form, to_form 126
(gp) mov.i arz=immg i_form, immediate form, to_form 127
(gp) mov.m ry=arz m_form, from_form M31
(gp) mov.m arz=r, m_form, register_form, to_form M29
(gp) mov.m arz=immg m_form, immediate_form, to_form M30

The source operand is copied to the destination register.

In thefrom_form, the application register specified by arziscopied into GRr; and
the corresponding NaT hit is cleared.

Intheto_form, thevaluein GRr, (in theregister_form), or the sign-extended value
inimmg (in theimmediate_form), is placed in AR ars. In the register_form if the
NaT bit corresponding to GR 15, is set, then a Register NaT Consumption fault is
raised.

Only a subset of the application registers can be accessed by each execution unit
(M or I). Table 3-3 on page 28 indicates which application registers may be
accessed from which execution unit type. An access to an application register from
the wrong unit type causes an lllegal Operation fault.

This instruction has multiple forms with the pseudo operation eliminating the need
for specifying the execution unit. Accesses of the ARs are always implicitly
serialized. While implicitly serialized, read-after-write and write-after-write
dependency violations must be avoided (e.g., setting CCV, followed by cnpxchg in
the same instruction group, or simultaneous writes to the UNAT register by

I d.fill andmovtoUNAT).

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

[|
Intel® Instruction Reference

Operation: if (PRgp]) {
tnp_type = (i _form? AR | _TYPE : AR M TYPE);
if (is_reserved_reg(tnp_type, arj))
illegal _operation_fault();

if (fromform {
check_target _register(rq);
if (((arz == BSPSTORE) || (ar3 == RNAT)) && (AR RSC]. node
1=10))

illegal _operation_fault();

if (ar3g==1TC && PSR si &% PSR cpl != 0)
privileged_register _fault();

if (arg==1TC && PSR si && PSR vm == 1)
virtualization_fault();

GRrq] = (is_ignored_reg(arg)) ? 0 : AR arj];
&R[rq].nat = 0;

} else { /1 to_form
tnmp_val = (register_form ? GRryp] : sign_ext(imyg, 8);

if (is_read_only_register(AR TYPE, arj3) ||
(((arz == BSPSTORE) || (arz == RNAT)) && (AR RSC . node
1=0)))

illegal _operation_fault();

if (register_formé&& GRr,].nat)
regi ster_nat _consunption_fault(0);

if (is_reserved_fiel d(AR TYPE, ar3 tnp_val))
reserved_register_field fault();

if ((is_kernel_reg(arg) || arg == ITCO && (PSR cpl != 0))
privileged_register_fault();

if (arg == ITC && PSR vm == 1)
virtualization_fault();

if (lis_ignored_reg(arsg)) {
tnp_val = ignored_field_mask(AR TYPE, ar3, tnp_val);
/1 check for illegal pronotion
if (arg3 == RSC && tnp_val {3: 2} u< PSR cpl)
tnp_val {3: 2} = PSR cpl;
AR[arg] = tnp_val;

if (arz == BSPSTCRE) {
AR[BSP] =
rse_update_internal _stack_pointers(tnp_val);
AR[RNAT] = undefined();

}
}
}
Interruptions: Illegal Operation fault Privileged Register fault
Register NaT Consumption fault Virtualization fault
Reserved Register/Field fault

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 27

[]
Instruction Reference Intel®

mov — Move Control Register

Format: (gp) mov ry=crs from_form M33
(gp) mov crz=r, to_form M32

Description: The source operand is copied to the destination register.

For the from_form, the control register specified by cr5 isread and the value copied
into GRr.

For theto_form, GRr, isread and the value copied into CR cr.

Control registers can only be accessed at the most privileged level, and when
PSR.vm is 0. Reading or writing an interruption control register (CR16-CR25),
when the PSR.ic bit is one, will result in an Illegal Operation fault.

Operation: if (PR gp]) {
if (is_reserved_reg(CR TYPE, cry)
|| to_form&& is_read_only reg(CR TYPE, cry)
|| PSRic & is_interruption_cr(crg))

illegal _operation_fault();

if (fromform
check_target_register(rq);

if (PSRcpl !'=0)
privileged_operation_fault(0);

if (fromform {

if (PSRvm=
V|rtuaI|zat|on_fauIt();
if (crz3 ==1VR
check_i nterrupt _request();
if (crz3 ==1TR
CRrq] =inpl_itir_cwi _mask(CRITIR);
el se
Rrq] = CRcrg];
&Rr,].nat = 0;
} else { [/ to_form

if (GRr,].nat)

regi ster_nat _consunption_faul t (0);

if (is_reserved_fiel d(CR TYPE, crz, GRry]))
reserved | register_field faul t t();

if ((crz ==1FA &% inpl _check nov_ifa() &&
uni npl enent ed_vi rtual _address(&Rr,], PSR vm))
uni npl enent ed_dat a_address_faul t (0);

if (PSR vm==
virtualization_fault();

if (crz3 == EQ)
end_of _interrupt();

tnp_val = goredfleld mask(CR_TYPE, cr3, GRrj]);
CRcrg = np
i f (cr3 == | A)
last _|IP = tnp_val;
}
}
Interruptions: lllegal Operation fault Reserved Register/Field fault
Privileged Operation fault Virtualization fault

Register NaT Consumption fault

28 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

[|
Intel® Instruction Reference

Serialization: Reads of control registers reflect the results of all prior instruction groups and
interruptions.

In general, writes to control registers do not immediately affect subsequent
instructions. Software must issue a serialize operation before a dependent
instruction uses a modified resource.

Control register writes are not implicitly synchronized with a corresponding
control register read and requires data serialization.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 29

Instruction Reference

intel.

mov — Move Indirect Register

Format:

Description:

(gp) mov rq =iregrg] from_form M43
(ap) mov ireg[ra] =T, to form M42

The source operand is copied to the destination register.

For move from indirect register, GR r5 isread and the value used as an index into
theregister file specified by ireg (see Table 4-1 below). The indexed register isread
anditsvalueiscopied into GR 1.

For move to indirect register, GR ry isread and the value used as an index into the
register file specified by ireg. GR r, isread and its value copied into the indexed
register.

Table 4-1. Indirect Register File Mnemonics

ireg Register File
cpuid Processor Identification Register
dbr Data Breakpoint Register
ibr Instruction Breakpoint Register
pkr Protection Key Register
pmc Performance Monitor Configuration Register
pmd Performance Monitor Data Register
rr Region Register

For all register files other than the region registers, bits { 7:0} of GRr5 are used as
the index. For region registers, bits{ 63:61} are used. The remainder of the bits are
ignored.

Instruction and data breakpoint, performance monitor configuration, protection
key, and region registers can only be accessed at the most privileged level.
Performance monitor dataregisters can only be written at the most privileged level.

The CPU identification registers can only beread. Thereisno to_form of this
instruction.

For move to protection key register, the processor ensures uniqueness of protection
keys by checking new valid protection keys against all protection key registers. If
any matching keys are found, duplicate protection keys are invalidated.
Apart from the PMC and PMD register files, access of a non-existent register
resultsin a Reserved Register/Field fault. All accesses to the implementation-
dependent portion of PMC and PMD register files result in implementation
dependent behavior but do not fault.
Modifying aregion register or a protection key register which is being used to
trandate:

» The executing instruction stream when PSR.it == 1, or

» The data space for an eager RSE reference when PSR.rt ==

is an undefined operation.

30 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

[|
Intel® Instruction Reference

Operation: if (PRgp]) {
if (ireg == RR_TYPE)
tnp_i ndex = GRr3]{63: 61};
else // all other register types
tnp_index = GRr3] {7:0};

if (fromform {
check_target _register(rq);

if (PSRcpl '=0 & !(ireg == PMD_TYPE || ireg ==
CPU D_TYPE))
privil eged_operation_fault(0);

if (GRrg].nat)

regi ster_nat_consunption_faul t (0);

if (is_reserved_reg(ireg, tnp_index))
reserved_register _field fault();

if (PSRvm==1 & ireg != PVD_TYPE)
virtualization_fault();

if (ireg == PMD_TYPE) {
if ((PSRcpl '=0) & ((PSR sp == 1) ||
(tnmp_index > 3 &&
t mp_i ndex <= | MPL_MAXGENERI C_PMCPND &&
PMJ t mp_i ndex].pm == 1)))

&Rrq =0
el se
GRr4] = pnd_read(tnp_i ndex);

} else
switch (ireg) {
case CPU D TYPE GRr1]

CPU O t np_i ndex] ;

br eak;
case DBR TYPE: GRrl] = DBR tnp_index]; break;
case | BR TYPE: GRrl] = IBRtnp_index]; break;
case PKR TYPE: GRrl] = PKR tnp_index]; break;
case PMC _TYPE: GRr1] = pnt_read(tnp_index);
br eak;
case RR TYPE: GRrl] = RRtnp_index]; break;
}
&R[rq].nat = 0;
} else { /1 to_form
if (PSRcpl !'=0)

privil eged_operation_fault(0);

if (GRry].nat || GRr3].nat)

regi ster_nat_consunption_faul t (0);

if (is_reserved_reg(ireg, tnp_index)
|| is_reserved_field(ireg, tnp_index, GRry]))
reserved_register _field fault();
if (PSRvm==1)
virtualization_fault();
if (ireg == PKR.TYPE && GR{r,]{0} == 1) {// witing
valid prot key
if ((tnp_slot = tlb_search_pkr(GRr,]{31:8})) !=
NOT_FOUND)
PKR[tnmp_slot].v = 0; // clear valid bit of
mat chi ng key reg

tnp_val = ignored_field_mask(ireg, tnp_index, GRr,]);

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 31

Instruction Reference

32

Interruptions:

Serialization:

u
intel.
switch (ireg) {

case DBR TYPE: DBR[t np_i ndex] = tnp_val; break;
case | BR TYPE: IBR[tnp_i ndex] = tnp_val; break;
case PKR TYPE: PKR[t np_i ndex] = tnp_val; break;
case PMC TYPE: prmc_write(tnp_index, tnp_val);

br eak;

case PMD TYPE: pnmd_write(tnp_index, tnp_val);
br eak;

case RR TYPE: RR{t np_i ndex] = tnp_val ; break;

}
}

}
Illegal Operation fault Reserved Register/Field fault
Privileged Operation fault Virtualization fault

Register NaT Consumption fault

For move to data breakpoint registers, software must issue a data serialize
operation before issuing a memory reference dependent on the modified register.

For move to instruction breakpoint registers, software must issue an instruction
serialize operation before fetching an instruction dependent on the modified
register.

For move to protection key, region, performance monitor configuration, and
performance monitor data registers, software must issue an instruction or data
serialize operation to ensure the changes are observed before i ssuing any dependent
instruction.

To obtain improved accuracy, software can issue an instruction or data serialize
operation before reading the performance monitors.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

[|
Intel® Instruction Reference

mov — Move Processor Status Register

Format: (gp) mov rq = psr from_form M36
(ap) mov psr.l=r, to_ form M35

Description: The source operand is copied to the destination register. See Section 3.3.2,
“Processor Status Register (PSR)” on page 22.

For move from processor status register, PSR bits{36:35} and { 31:0} areread, and
copied into GR r. All other bits of the PSR read as zero.

For move to processor status register, GR r, isread, bits{31:0} copied into
PSR{31:0} and bits {45:32} areignored. All bitsof GR r, corresponding to
reserved fields of the PSR must be 0 or a Reserved Register/Field fault will result.

Moves to and from the PSR can only be performed at the most privileged level, and
when PSR.vm is 0.

The contents of the interruption resources (that are overwritten when the PSR.ic bit
is 1) are undefined if an interruption occurs between the enabling of the PSR.ic bit
and a subsequent instruction serialize operation.

Operation: if (PRgp]) {
if (fromform
check_target _register(rq);
if (PSRcpl !'=0)
privil eged_operation_fault(0);

if (fromform {
if (PSRvm==1)
virtualization_fault();

tnp_val = zero_ext(PSR{31:0}, 32); /1 read | ower 32
bits
tmp_val |= PSR{36:35} << 35; /1 read nt and it
bits
&Rrq = tnp_val; /1 other bits read
as zero
&Rrq].nat = 0;
} else { /1 to_form
if (GRr,].nat)
regi ster_nat_consunption_faul t (0);
if (is_reserved_field(PSR TYPE, PSR MOWPART, GRr,]))
reserved_register _field fault();
if (PSR vm==1)
virtualization_fault();
PSR{31: 0} = GR{r,] {31:0};
}
Interruptions: Illegal Operation fault Reserved Register/Field fault
Privileged Operation fault Virtualization fault

Register NaT Consumption fault

Serialization: Software must issue an instruction or data serialize operation before issuing
instructions dependent upon the altered PSR bits. Unlike with the r sminstruction,
the PSR.i bit is not treated specially when cleared.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 33

Instruction Reference

34

intel.

ptc.e — Purge Translation Cache Entry

Format:

Description:

Operation:

Interruptions:

Serialization:

(gp) ptc.e ry M47

One or more tranglation entries are purged from the local processor’s instruction
and data translation cache. Translation Registers and the VHPT are not modified.

The number of trandation cache entries purged isimplementation specific. Some
implementations may purge all levels of the translation cache hierarchy with one
iteration of PTC.e, while other implementations may require several iterationsto
flush all levels, sets and associativities of both instruction and data translation
caches. GR r3 specifies an implementation-specific parameter associated with each
iteration.

The following loop is defined to flush the entire trand ation cache for all processor
models. Software can acquire parameters through a processor dependent layer that
is accessed through a procedural interface. The selected region registers must
remain unchanged during the loop.

di sable_interrupts();
addr = base;
for (i =0; i <countl; i++) {
for (j =0; j <count2; j++) {
ptc.e(addr);
addr += stride2;

addr += stridel;

}

enabl e_interrupts();

Thisinstruction can only be executed at the most privileged level, and when
PSR.vmisO.

if (PRagp]) {
if (PSRcpl !'=0)
privil eged_operation_fault(0);
if (GRr3].nat)
regi ster_nat _consunption_fault(0);
if (PSR vm== 1)
virtualization_fault();
tlb_purge_transl ati on_cache(GRr3]);

}

Privileged Operation fault Virtualization fault
Register NaT Consumption fault

Software must issue a data serialization operation to ensure the purge is complete
before issuing a data access or non-access reference dependent upon the purge.
Software must issue instruction serialize operation before fetching an instruction
dependent upon the purge.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

In

tel.

ptc.g, ptc.ga — Purge Global Translation Cache

Format:

Description:

Operation:

(ap) ptc.g r3, 1o globa_form M45
(ap) ptc.gara,r; global_alat form M45

Theinstruction and data trandation cache for each processor in the local TLB
coherence domain are searched for all entries whose virtual address and page size
partially or completely overlap the specified purge virtual address and purge
address range. These entries are removed.

The purge virtual addressis specified by GR r5 bits{ 60:0} and the purge region
identifier is selected by GR r5 bits{ 63:61} . GR r,, specifies the address range of the
purge as 1<<GR([r,]{ 7:2} bytesin size.

Based on the processor model, the translation cache may be also purged of more
translations than specified by the purge parameters up to and including removal of
all entries within the trandation cache.

pt c. g has release semantics and is guaranteed to be made visible after all previous
data memory accesses are made visible. The memory fence instruction forces all
processors to complete the purge prior to any subsequent memory operations.
Serialization is still required to observe the side-effects of atranslation being
removed.

pt c. g must be the last instruction in an instruction group; otherwise, its behavior
(including its ordering semantics) is undefined.

The behavior of the pt c. ga instruction is similar to pt c. g. In addition to the
behavior specified for pt c. g the pt c. ga instruction encodes an extra bit of
information in the broadcast transaction. This information specifies the purgeis
due to a page remapping as opposed to a protection change or page tear down. The
remote processors within the coherence domain will then take what ever additional
action is necessary to make their ALAT consistent. The local ALAT is not purged.

Thisinstruction can only be executed at the most privileged level, and when
PSR.vmisO.

Unless specifically supported by the processors and platform, only one global
purge transaction may be issued at atime by all processors, the operation is
undefined otherwise. Software is responsible for enforcing this restriction.
Implementations may optionally support multiple concurrent global purge
transactions. The firmware returnsif implementations support this optional
behavior.

Propagation of pt c. g between multiple local TLB coherence domainsis platform
dependent, and must be handled by software. It is expected that the local TLB
coherence domain covers at least the processors on the same local bus.

if (PRapl) {
if (!'followed_by stop())
undef i ned_behavi or () ;
if (PSRcpl !'=0)
privileged_operation_fault(0);
if (GRrg].nat || GRr,].nat)
regi ster_nat_consunption_fault(0);
i f (uninplenmented_virtual _address(GRr3], PSR vn))
uni npl emrent ed_dat a_address_faul t (0);
if (PSRvm==1)
virtualization_fault();

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 35

Instruction Reference

36

Interruptions:

Serialization:

intel.

RR[G]R{[3]{?3 61}].
= CF{ 2 {7:2};

id
a
iz
a = align_to_size boundary(tnp_va, tnp_size);

II('DII

np_r
np_v
np_s
np_v
must_purge_dtc _entries(tnp rid, tnp_va, tnp_size);

t
t
t
t
tlb

tIb_nust _purge itc_entries(tnp_rid, tnp_va, tnp_size);

f (global _alat_form) tnp_ptc_type = GLOBAL_ALAT_FORM
se tnp_ptc_type = GLOBAL_FORM

tl b_broadcast_purge(tnmp_rid, tnp_va, tnp_size,
tnp_ptc_type);
}

Machine Check abort Unimplemented Data Address fault
Privileged Operation fault Virtualization fault
Register NaT Consumption fault

The broadcast purge TC is not synchronized with the instruction stream on a
remote processor. Software cannot depend on any such synchronization with the
instruction stream. Hardware on the remote machine cannot reload an instruction
from memory or cache after acknowledging a broadcast purge TC without first
retrandating the I-side access in the TLB. Hardware may continue to use avalid
private copy of the instruction stream data (possibly in an I-buffer) obtained prior
to acknowledging a broadcast purge TC to a page containing the i-stream data.
Hardware must retrandate access to an instruction page upon an interruption or any
explicit or implicit instruction seriaization event (e.g.,srl z. i, rfi).

Software must issue the appropriate data and/or instruction serialization operation
to ensure the purge is compl eted before alocal data access, non-access reference,
or local instruction fetch access dependent upon the purge.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

[|
Intel® Instruction Reference

ptc.| — Purge Local Translation Cache
Format: (gp) ptcl r3,ro M45

Description: ~ Theinstruction and data translation cache of the local processor is searched for all
entries whose virtual address and page size partialy or completely overlap the
specified purge virtual address and purge address range. All these entries are
removed.

The purge virtual addressis specified by GR r5 bits{ 60:0} and the purge region
identifier is selected by GR r5 bits{ 63:61} . GR r, specifies the address range of the
purge as 1<<GR([r,]{ 7:2} bytesin size.

The processor ensures that all entries matching the purging parameters are
removed. However, based on the processor model, the trand ation cache may be
also purged of more translations than specified by the purge parameters up to and
including removal of all entries within the translation cache.

Thisinstruction can only be executed at the most privileged level, and when
PSR.vmisO.

Thisisalocal operation, no purge broadcast to other processors occursin a
multiprocessor system.

Operation: if (PRgp]) {

if (PSRcpl !'=0)
privil eged_operation_fault(0);

if (GRra].nat || GRr,].nat)
regi ster_nat _consunption_fault(0);

i f (uninplemented_virtual _address(GRr3], PSR vm))
uni npl emrent ed_dat a_address_faul t (0);

if (PSRvm==1)
virtualization_fault();

tnmp_rid = RREGR{r3] {63:61}].rid;

tmp_va = GRr3] {60: 0};

tmp_size = GR{r,]{7:2};

tnp_va = align_to_size_boundary(tnp_va, tnp_size);
tlb_nust_purge dtc_entries(tnp_rid, tnp_va, tnp_size);
tlb_nust_purge_ itc_entries(tnp_rid, tnp_va, tnp_size);

}

Interruptions: Machine Check abort Unimplemented Data Address
fault
Privileged Operation fault Virtuaization fault

Register NaT Consumption fault

Serialization: Software must issue the appropriate data and/or instruction serialization operation
to ensure the purge is completed before a data access, non-access reference, or
instruction fetch access dependent upon the purge.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 37

Instruction Reference

38

intel.

ptr — Purge Translation Register

Format:

Description:

(qp) ptrd ra,rp data form M45
(ap) ptri r3,rp instruction_form M45

In the data form of thisinstruction, the data translation registers and caches are
searched for all entries whose virtual address and page size partially or completely
overlap the specified purge virtua address and purge address range. All these
entries are removed. Entries in the instruction trandation registers are unaffected
by the data form of the purge.

In theinstruction form, the instruction transl ation registers and caches are searched
for all entries whose virtual address and page size partially or completely overlap
the specified purge virtual address and purge address range. All these entries are
removed. Entries in the data trand ation registers are unaffected by the instruction
form of the purge.

In addition, in both forms, the instruction and data trand ation cache may be purged
of more translations than specified by the purge parameters up to and including
removal of all entries within the translation cache.

The purge virtual addressis specified by GR r bits{ 60:0} and the purge region
identifier isselected by GR r5 bits{63:61} . GR r, specifies the address range of the
purge as 1<<GR([r,]{ 7:2} bytesin size.

Thisinstruction can only be executed at the most privileged level, and when
PSR.vm isO.

Thisisalocal operation, no purge broadcast to other processors occursin a
multiprocessor system.

Asdescribed in Section 4.1.1.2, “ Translation Cache (TC)” on page 47, the
processor may use the translation caches to cache virtual address mappings held by
trandlation registers. Theptr.i and ptr. d instructions purge the processor’s
tranglation registers as well as cached translation register copies that may be
contained in the respective translation caches.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

in

tal.

Operation:

Interruptions:

Serialization:

Instruction Reference

it (PRIgp]) {

if (PSRcpl !'=0)
privil eged_operation_fault(0);

if (GRrg].nat || GRr,].nat)
regi ster_nat_consunption_fault(0);

i f (uninplenmented_virtual _address(GRrz], PSR vm))
uni npl emrent ed_dat a_address_faul t (0);

if (PSRvm==1)
virtualization_fault();

tnmp_rid = RREGR{r3] {63:61}].rid,;

tnmp_va = GR{r3]{60:0};

trp_size = GR{r,]{7:2};

tnp_va = align_to_size_boundary(tnp_va, tnp_size);

if (data_form {
tlb_nust_purge dtr_entries(tnp_rid, tnp_va, tnp_size);
tlb_nust_purge dtc_entries(tnp_rid, tnp_va, tnp_size);
tlb_nmay_purge_itc_entries(tnp_rid, tnp_va, tnp_size);
} else { I
instruction_form
tlb_nust _purge_itr_entries(tnp_rid, tnp_va, tnp_size);
tlb_nust_purge_itc_entries(tnp_rid, tnp_va, tnp_size);
tlb_nmay_purge dtc_entries(tnp_rid, tnp_va, tnp_size);

}

Privileged Operation fault Unimplemented Data Address fault
Register NaT Consumption fault Virtualization fault

For the data form, software must issue a data serialization operation to ensure the
purge is completed before issuing an instruction dependent upon the purge. For the
instruction form, software must issue an instruction serialization operation to
ensure the purge is completed before fetching an instruction dependent on that

purge.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 39

Instruction Reference

intel.

rfi — Return From Interruption

Format:

Description:

40

rfi B8

The machine context prior to an interruption isrestored. PSR isrestored from
IPSR, IPSR is unmodified, and IP is restored from I P. Execution continues at the
bundle address loaded into the IP, and the instruction slot loaded into PSRu.ri.

Thisinstruction must be immediately followed by a stop. Otherwise, an Illegal
Operation fault is taken. Thisinstruction switches to the register bank specified by
IPSR.bn. Ingtructionsin the same instruction group that access GR16 to GR31
reference the previous register bank. Subsequent instruction groups reference the
new register bank.

Thisinstruction performs instruction serialization, which ensures:

* Prior modifications to processor register resources that affect fetching of
subsequent instruction groups are observed.

* Prior modificationsto processor register resources that affect subsequent
execution or data memory accesses are observed.

 Prior memory synchronization (sync. i) operations have taken effect on the
local processor instruction cache.

 Subsequent instruction group fetches (including the target instruction group)
arere-initiated after rf i completes.

Therfi instruction must be in an instruction group after the instruction group
containing the operation that isto be serialized.

Thisinstruction can only be executed at the most privileged level, and when
PSR.vm is 0. Thisinstruction can not be predicated.

Execution of thisinstruction isundefined if PSR.ic or PSR.i are 1 and PSR.vmisO.
Software must ensure that an interruption cannot occur that could modify 1P,
IPSR, or IFS between when they are written and the subsequent r f i .

Thisinstruction does not take Lower Privilege Transfer, Taken Branch or Single
Step traps.

If thisinstruction sets PSR.ri to 2 and the target is an ML X bundle, then an Illegal
Operation fault will be taken on the target bundle.

If IPSR.isis 1, control is resumed in the IA-32 instruction set at the virtual linear
address specified by 11P{31:0}. PSR.di does not inhibit instruction set transitions
for thisinstruction. If PSR.dfhis 1 after rfi completes execution, a Disabled FP
Register fault israised on the target | A-32 instruction.

If IPSR.isis 1 and an Unimplemented Instruction Address trap is taken, 1P will
contain the original 64-bit target IP. (The value will not have been zero extended
from 32 bits.)

When entering the |A-32 instruction set, the size of the current stack frameis set to
zero, and all stacked general registers are left in an undefined state. Software can
not rely on the value of these registers across an instruction set transition. Software
must ensure that BSPSTORE==BSP on entry to the IA-32 instruction set,
otherwise undefined behavior may result.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

tal.

Operation:

Instruction Reference

If IPSR.isis 1, software must set other |PSR fields properly for IA-32 instruction
set execution; otherwise processor operation is undefined. See Table 3-2,
“Processor Status Register Fields’ on page 23 for details.

Software must issue anf instruction before thisinstruction if memory ordering is
required between | A-32 processor-consistent and Itanium unordered memory
references. The processor does not ensure | tanium-instruction-set-generated writes
into the instruction stream are seen by subsequent | A-32 instructions.

Software must ensure the code segment descriptor and selector are loaded before
issuing thisinstruction. If the target EIP value exceeds the code segment limit or
has a code segment privilege violation, an |A_32_Exception(GPFault) exceptionis
raised on the target 1A-32 instruction. For entry into 16-bit 1A-32 code, if 1IPis not
within 64K-bytes of CSD.base a GPFault is raised on the target instruction.
EFLAGf and PSR.id are unmodified until the successful completion of the target
IA-32 instruction. PSR.da, PSR.dd, PSR.ia and PSR.ed are cleared to zero before
the target 1A-32 instruction begins execution.

I A-32 instruction set execution leaves the contents of the ALAT undefined.
Software can not rely on ALAT state across an instruction set transition. On entry
to |A-32 code, existing entries in the ALAT are ignored.

if (!'followed_by stop())
illegal _operation_fault();

uni npl erent ed_address = 0;
if (PSRcpl !'=0)
privil eged_operation_fault(0);

if (PSR vm==1)
virtualization_fault();

if (PSRic ==1 || PSRi == 1)
undef i ned_behavi or () ;

taken_rfi = 1;

PSR = CRI PSR ;
if (CRIPSR.is ==1) { //resume | A-32 instruction set
if (RIPSR.ic ==0]| CRIPSR.dt == 0 ||
CRIPSR.nt == 1 || CRIPSR.it == 0)
undef i ned_behavi or () ;
tmp_IP = CRIIP];
if ((CRIPSR.it &% uninplenented_virtual _address(tnp_IP,
I PSR vim))
|| ('CRIPSR.it &&
uni npl erent ed_physi cal _address(tnmp_I P)))
uni npl erent ed_address = 1;
//conpute effective instruction
poi nt er
EIP{31:0} = CRIIP]{31:0} - AR CSD . Base;
//force zero-sized restored
frane
rse_restore_frame(0, 0, CFM sof);
CFM sof =
CFM sol
CFM sor =
CFMrrb. gr
CFMrrb. fr

0;
0;
0;

0;
0;

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 41

Instruction Reference

42

Interruptions:

Serialization:

u
intel.
CFMrrb.pr = 0;

rse_invalidate_non_current_regs();

/1 The register stack engine is disabled during | A 32
/linstruction set execution.

} else { [/return to Itaniuminstruction
set
tmp_IP = CRIIP] & ~0Oxf;
slot = CRIPSR].ri;
if ((CRIPSR.it &% uninplenented virtual _address(tnp_IP,
I PSR vim))
|| ('CRIPSR.it &&
uni npl enent ed_physi cal _address(tnp_I P)))
uni npl enent ed_address = 1;
if (CRIFS.v) {
tnp_growth = - CFM sof ;
alat_frane_update(-CRIFS].ifmsof, 0);
rse_restore_frame(CRIFS].ifmsof, tnmp_growh, CFM sof);
CFM = CRIIFS].ifm

rse_enabl e_current _frame_| oad();

}
IP=tnm_IP
instruction_serialize();
i f (uninpl enent ed_addr ess)
uni npl enented_i nstructi on_address_trap(0, tnp_IP);

Illegal Operation fault Virtuaization fault
Privileged Operation fault Unimplemented Instruction Address trap

Additional Faults on 1A-32 target instructions
IA_32 Exception(GPFault)
Disabled FP Reg Fault if PSR.dfhis 1

An implicit instruction and data serialization operation is performed.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

intal.

Instruction Reference

rsm — Reset System Mask

Format:

Description:

Operation:

(ap) rsm immp, M44

The complement of the immy,, operand is ANDed with the system mask
(PSR{23:0}) and the result is placed in the system mask. See Section 3.3.2,
“Processor Status Register (PSR)” on page 22.

The PSR system mask can only be written at the most privileged level, and when
PSR.vmisO.

When the current privilege level is zero (PSR.cpl is 0), an r sminstruction whose
mask includes PSR.i may cause external interrupts to be disabled for an
implementation-dependent number of instructions, even if the qualifying predicate
for ther sminstruction isfalse. Architecturally, the extents of this external interrupt
disabling “window” are defined as follows:

 External interrupts may be disabled for any instructionsin the sameinstruction
group as the r sm including those that precede ther sm in sequential program
order, regardless of the value of the qualifying predicate of the r sminstruction.

« If the qualifying predicate of the r smis true, then external interrupts are
disabled immediately following the r sminstruction.

« If the qualifying predicate of the r smisfalse, then external interrupts may be
disabled until the next data serialization operation that followsther sm
instruction.

The external interrupt disable window is guaranteed to be no larger than defined by
the above criteria, but it may be smaller, depending on the processor
implementation.

When the current privilege level is non-zero (PSR.cpl is not 0), an r sminstruction
whose mask includes PSR.i may briefly disable external interrupts, regardless of
the value of the qualifying predicate of the r sminstruction. However, processor
implementations guarantee that non-privileged code cannot lock out external
interrupts indefinitely (e.g., viaan arbitrarily long sequence of r sminstructions
with zero-valued qualifying predicates).

if (PRagp]) {
if (PSRcpl !'=0)
privil eged_operation_fault(0);

if (is_reserved_fiel d(PSR_TYPE, PSR SM inmmy,))
reserved_register_field fault();

if (PSRvm==1)
virtualization_fault();

if (i mmpa{1}) PSR{1} = 0;) Il be
if (i mmgf2}) PSR{2} = 0;) /1 up
if (i mmy{3}) PSR(3} = 0;) Il ac
if (i mmp,{4}) PSR{4} = 0;) 11 nfl
i f (i mmy{5}) PSR{5} = 0;) /1 nfh
if (inmy,{13}) PSR{13} = 0;) Il ic
if (imm,{14}) PSR(14} = 0;) i

if (imm,{15})) PSR(15} = 0;) Il pk
if (inm,{17}) PSR{17} = 0;) /1 dt
if (imm,{18}) PSR(18} = 0;) /11 dfl

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 43

[]
Instruction Reference Intel®

44

i f (i mmpg{19}) PSR(19} = 0;) /1 dfh
i f (i mmy,{20}) PSR{20} = 0;) Il sp
if (i mmy{21}) PSR(21} = 0:) /1 pp
if (i mmg{22}) PSR(22} = 0:) /1 di
i f (i mmy,{23}) PSR{23} = 0;) Il si
}
Interruptions: Privileged Operation fault Virtualization fault
Reserved Register/Field fault

Serialization: Software must use a data serialize or instruction serialize operation before issuing
instructions dependent upon the altered PSR bits — except the PSR.i bit. The PSR.i
bit isimplicitly serialized and the processor ensures that external interrupts are
masked by the time the next instruction executes.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

intal.

Instruction Reference

ssm — Set System Mask

Format:

Description:

Operation:

Interruptions:

Serialization:

(gp) ssm immy M44

The immy, operand is ORed with the system mask (PSR{23:0}) and the result is
placed in the system mask. See Section 3.3.2, “Processor Status Register (PSR)” on

page 22.

The PSR system mask can only be written at the most privileged level, and when
PSR.vmisO.

The contents of the interruption resources (that are overwritten when the PSR.ic bit
is 1), are undefined if an interruption occurs between the enabling of the PSR.ic bit
and a subsequent instruction serialize operation.

if (PRagp]) {

if (PSRcpl !'=0)

privil eged_operation_fault(0);
if (is_reserved_fiel d(PSR_TYPE, PSR SM inmmy,))

reserved_register_field fault();
if (PSRvm==1)

virtualization_fault();
if (i mmu{1}) PSR{(1} = 1;) /'l be
if (i mmpa{2}) PSR(2} = 1;) /'l up
if (i mmpu{3}) PSR{(3} = 1;) /'l ac
if (i mmu{4}) PSR(4} = 1;) [l nfl
if (i mmpu{5}) PSR{5} = 1;) /1 nfh
if (i mmp{13}) PSR{13} = 1;) Il ic
if (i mMmp,{14}) PSR{ 14} = 1;) 11
if (i mmp{15}) PSR{15} = 1;) /'l pk
if (i mmp{17}) PSR{17} = 1;) /1 dt
if (i mm,{18}) PSR{18} = 1;) /1 dfl
if (i mmpa{19}) PSR{19} = 1;) /1 dfh
if (i mmp{20}) PSR{20} = 1;) Il sp
if (i mmp,{21}) PSR{21} = 1;) /'l pp
if (i mmpa{22}) PSR{22} = 1;) /1 di
if (i mmp{23}) PSR{23} = 1;) Il si

}

Privileged Operation fault

Virtualization fault

Reserved Register/Field fault

Software must issue a data serialize or instruction serialize operation before issuing
instructions dependent upon the altered PSR bits from the ssminstruction. Unlike
with the r sminstruction, setting the PSR.i bit is not treated specially. Refer to
Section 3.2, “ Serialization” on page 17for a description of serialization.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 45

Instruction Reference

intel.

tak — Translation Access Key

Format:

Description:

Operation:

Interruptions:

46

(ap) tak ry=r3 M46

The protection key for a given virtual addressis obtained and placed in GR r.

When PSR.dt is 1, the DTLB and the VHPT are searched for the virtual address
specified by GR r5 and the region register indexed by GR r5 bits {63:61} . If a
matching present translation is found the protection key of the translation is placed
in GR ry. If amatching present trandation is not found or if an unimplemented
virtual addressis specified by GRr3, the value 1 is returned.

When PSR.dt is 0, only the DTLB is searched, because the VHPT walker is
disabled. If no matching present trandation isfound in the DTLB, thevalue 1is
returned.

A trandation with the NaTPage attribute is not treated differently and returnsits
key field.

Thisinstruction can only be executed at the most privileged level, and when
PSR.vm isO.

if (PRagp]) {
itype = NON_ACCESS| TAK;
check_target_register(rq);

if (PSRcpl '=0)
privil eged_operation_fault(itype);

if (GRr3].nat)

regi ster_nat _consunption_fault(itype);

if (PSR vm== 1)
virtualization_fault();

GR[r1] =tlb_access_key(GRr3], itype);

GRrq4].nat = 0;
}
Illegal Operation fault Register NaT Consumption fault
Privileged Operation fault Virtualization fault

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

intal.

Instruction Reference

thash — Translation Hashed Entry Address

Format:

Description:

Operation:

Interruptions:

(gp) thash ry=r3 M46

A Virtual Hashed Page Table (VHPT) entry addressis generated based on the
specified virtual address and the result is placed in GR rq. The virtual addressis
specified by GR r4 and the region register selected by GR r3 bits{ 63:61} .

If t hash is given aNaT input argument or an unimplemented virtual address as an
input, the resulting target register value is undefined, and its NaT bit is set to one.

When the processor is configured to use the region-based short format VHPT
(PTA.vf=0), the value returned by t hash is defined by the architected short format
hash function. See Section 4.1.5.3, “Region-based VHPT Short Format” on

page 60

When the processor is configured to use the long format VHPT (PTA.vf=1), t hash
performs an implementation-specific long format hash function on the virtual
address to generate a hash index into the long format VHPT.

In the long format, atranglation in the VHPT must be uniquely identified by its
hash index generated by thisinstruction and the hash tag produced fromthet t ag
instruction.

The hash function must use all implemented region bits and only virtual address
bits { 60:0} to determine the offset into the VHPT. Virtual address bits{63:61} are
used only by the short format hash to determine the region of the VHPT.

Thisinstruction must be implemented on all processor models, even processor
models that do not implement a VHPT walker.

This instruction can only be executed when PSR.vm is 0.

if (PRlap]) {

check_target _register(rq);

if (PSRvm== 1)
virtualization_fault();

if (GRra].nat || uninplenented_virtual _address(GRr3],
PSR vim) {
GRlr4] = undefined();

&R[rq].nat = 1,
} else {
tmp_vr = GRrg] {63:61};
tnmp_va = GR{r3]{60:0};
GRrq] = tlb_vhpt_hash(tnp_vr, tnmp_va, RR{tnp_vr].rid,
RR{tmp_vr].ps);
&Rrq].nat = 0;
}
}
I1legal Operation fault Virtualization fault

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 47

Instruction Reference

intel.

tpa — Translate to Physical Address

Format:

Description:

Operation:

Interruptions:

48

(gp) tpa ry=r3 M46

The physical address for the virtual address specified by GR r5 is obtained and
placed in GR r.

When PSR.dt is 1, the DTLB and the VHPT are searched for the virtual address
specified by GR r5 and the region register indexed by GR r5 bits {63:61} . If a
matching present translation is found the physical address of the trandation is
placed in GRr4. If amatching present trandation is not found the appropriate TLB
fault is taken.

When PSR.dt is 0, only the DTLB is searched, because the VHPT walker is
disabled. If no matching present trandation isfound in the DTLB, an Alternate
DataTLB faultisraised if psr.icisone or aDataNested TLB fault israised if psr.ic
is zero.

If thisinstruction faults, then it will set the non-access bit in the ISR. The ISR read
and write bits are not set.

Thisinstruction can only be executed at the most privileged level, and when
PSR.vm isO.

if (PRagp]) {
i type = NON_ACCESS| TPA;
check_target_register(rq);

if (PSRcpl '=0)
privil eged_operation_fault(itype);

if (GRr3].nat)

regi ster_nat_consunption_fault(itype);

if (PSR vm== 1)
virtualization_fault();

GRrq] = tlb_translate_nonaccess(GRrs3], itype);
GRr4].nat = 0;

}

Illegal Operation fault Alternate Data TLB fault
Privileged Operation fault VHPT Datafault

Register NaT Consumption fault Data TLB fault

Unimplemented Data Address fault Data Page Not Present fault
Virtualization fault Data NaT Page Consumption fault
Data Nested TLB fault

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

intal.

Instruction Reference

ttag — Translation Hashed Entry Tag

Format:

Description:

Operation:

Interruptions:

(gp) ttag ry=r3 M46

A tag used for matching during searches of the long format Virtual Hashed Page
Table (VHPT) is generated and placed in GR r4. The virtual addressis specified by
GR r5 and the region register selected by GR r5 bits { 63:61} .

If t t ag isgiven aNaT input argument or an unimplemented virtual address as an
input, the resulting target register value is undefined, and its NaT bit is set to one.

The tag generation function generates an implementation-specific long format
VHPT tag. The tag generation function must use all implemented region bits and
only virtual address bits {60:0}. PTA.vf isignored by thisinstruction.

A trandation in the long format VHPT must be uniquely identified by its hash
index generated by the t hash instruction and the tag produced from this
instruction.

Thisinstruction must be implemented on all processor models, even processor
models that do not implement a VHPT walker.

This instruction can only be executed when PSR.vm is 0.

if (PRlap]) {

check_target _register(rq);

if (PSRvm== 1)
virtualization_fault();

if (GRra].nat || uninplenented_virtual _address(GRr3],
PSR vim) {
GRlr4] = undefined();

&Rrq].nat = 1,
} else {
tnp_vr rs] {63: 61};

_vr = R
tnp_va = GRr3]{60: 0};

Rrq] tlb_vhpt tag(tnp_va, RRtnmp_vr].rid,
RR{tnp_vr].ps);
&R[rq].nat = 0;
}
}
I1legal Operation fault Virtualization fault

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 49

Instruction Reference

intel.

vmsw — Virtual Machine Switch

Format:

Description:

Operation:

Interruptions:

50

vmsw.0 zero_form B8
vmsw.1 one_form B8

Thisinstruction sets the PSR.vm hit to the specified value. This instruction can be
used to implement transitions to/from virtual machine mode without the overhead
of aninterruption.

If instruction address trandation is enabled and the page containing the vims w
instruction has accessrights equal to 7, then the new value iswritten to the PSR.vm
bit. In the zero_form, PSR.vm is set to 0, and in the one_form, PSR.vm isset to 1.

Instructions after thevnsw instruction in the same instruction group may be
executed with the old or new value of PSR.vm. Instructions in subsequent
instruction groups will be executed with PSR.vm equal to the new value.

If the above conditions are not met, this instruction takes a virtualization fault.

Thisinstruction can only be executed at the most privileged level. Thisinstruction
cannot be predicated.

Implementation of PSR.vm is optional. If it is not implemented, this instruction
takes Illegal Operation fault. If it isimplemented but is disabled, thisinstruction
takes a virtualization fault when executed at the most privileged level. See Section
3.4, “Processor Virtualization” on page 40 and PAL_PROC_GET_FEATURES on
page 385 for details.

if (Vinplenented_vi())
illegal _operation fault();

if (PSRcpl '=0)
privil eged_operation_fault(0);

if (1(PSRit ==1&&itlb_ar() ==7) || vmdisabled())
virtualization_fault();

if (zero_form {

PSR vm = 0O;
el se {
PSR vm = 1;
}
Ilegal Operation fault Virtualization fault

Privileged Operation fault

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

In
S

tel.

Processor Abstraction Layer

5.1

5.2

Note:

This section and all of its subsections track directly to Section 11, Processor Abstraction Layer, in
the Intel® Itanium® Architecture Software Devel oper’'s Manual.

Virtualization Terminology

Thefollowing are terms related to Itanium architecture virtualization:

Virtual Machine Monitor (VMM) —The VMM is the system software which implements
software policies to manage/support virtualization of processor and platform resources.

Virtual Processor Descriptor (VPD) — Represents the abstraction of the processor resources of a
single virtual processor. The Virtual Processor Descriptor (VPD) consists of per-virtual-processor
control information together with performance-critical architectural state. See Section 5.2.1,
“Virtual Processor Descriptor (VPD)” on page 52 for details.

Virtual Processor State — A memory data structure which represents the architectural state of a
virtual processor. Part of the virtual processor state islocated in the VPD, and therest islocated in
memory data structures maintained by the virtual machine monitor.

PAL intercepts— Interfaces where PAL transfers control to the VMM on virtualization events
(execution of virtualized instructions/operations with PSR.vm==1). For details see Section 5.2.3,
“PAL Interceptsin Virtual Environment” on page 58.

PAL Virtualization Support

This section describes the PAL architectural support for Itanium architecture virtualization.

Itanium architecture processors that support processor virtualization, the PAL virtualization
support described in this document will be available. Itanium architecture virtualization support
can be determined by calling PAL_PROC_GET_FEATURES.

The virtualization support in PAL presents an implementation-independent interface to enable the
VMM to implement software policies to manage/support virtualization of Itanium processors.

The PAL extensions for virtualization consist of three main components:

1. A set of proceduresto support virtualization operations. These procedures alow the VMM to
configure logical processors for virtualization operations and suspend/resume virtual
processors on logical processors. Details for this component are described in Section 5.5,
“PAL Procedures for Virtualization” on page 84.

2. A set of servicesto provide low-latency, low-overhead support for performance-critical VMM
operations. Details for this component are described in Section 5.2.5, “PAL Virtualization
Services’ on page 70.

3. A PAL intercept interface to allow PAL to deliver virtualization eventsto the VMM in alow-
latency, low-overhead manner. This PAL-to-VMM interface also allows PAL to provide

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 51

u
Processor Abstraction Layer Inte|®

optimizations for VMM operations. Details for this component are described in Section 5.2.3,
“PAL Interceptsin Virtual Environment” on page 58.

The VMM isresponsible for managing the set of available system resources (CPU, memory,
peripherals) and implement policies to virtualize these resources. In order to support virtual
processor operations, the VMM will create avirtual environment and associate logical processors
with the virtual environment. A virtual environment consists of one or morelogical processors plus
the memory resource allocated by the VMM during PAL_VP_INIT_ENV.

The VMM creates avirtual environment by calling PAL_VP_ENV_INFO to obtain the memory
requirement for creating a virtual environment, and then by calling PAL_VP_INIT_ENV on each
logical processor that isto be part of the virtual environment. After avirtual environment is
created, the VMM can create and initialize virtual processorsto run in the environment by calling
PAL_VP_CREATE.

The state of avirtual processor belonging to a virtual environment can be restored/saved on a
logical processor in the environment by calling PAL_VP_RESTORE or PAL_VP_SAVE
respectively. The VMM starts virtual processor operations on alogical processor by invoking
either PAL_VPS RESUME_NORMAL or PAL_VPS RESUME_HANDLER.

The VMM can add/remove alogical processor from avirtual environment at any time by calling
PAL_VP_INIT_ENV or PAL_VP_EXIT_ENV respectively.

5.2.1 Virtual Processor Descriptor (VPD)

The Virtual Processor Descriptor (VPD) represents the abstraction of processor resources of a
single virtual processor. The VPD consists of per-virtual-processor control information together
with performance-critical architectural state. The VPD is 64K in size and the base must be 32K
aligned. Table 5-1 shows the fields and layout of the VPD. The valuesin the VPD can be stored in
little or big endian format, depending on the setting of be field setting in “config_options — Global
Configuration Options” during PAL_VP_INIT_ENV call. See“PAL Initialize Virtua
Environment” on page 89 for details. The VPD is divided into two classes —the first class stores
control information and the second class stores the performance-critical architectural state of the
virtual processor.

The VMM must keep the virtual processor statein the VPD for a particular state entry either:

always, or only when one or more particular accelerations is enabled, as described in the Class
column of Table 5-1. See Section 5.2.4.1, “Virtualization Accelerations’ on page 61 for details.

Table 5-1. Virtual Processor Descriptor (VPD) (Sheet 1 of 3)

Name Entries | Offset Description Class

vac 1 0 Virtualization Acceleration Control — these Control [always]
control bits enable virtualization acceleration
of a particular resource or instruction. See
Section 5.2.1.1, “Virtualization Controls” on
page 54 for details.

vdc 1 8 Virtualization Disable Control — these control Control [always]
bits disable the virtualization of a particular
resource or instruction. See Section 5.2.1.1,
“Virtualization Controls” on page 54 for details.

52 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Processor Abstraction Layer

Table 5-1. Virtual Processor Descriptor (VPD) (Sheet 2 of 3)

Name

Entries

Offset

Description

Class

vhpi

1

256

Virtual Highest Priority Pending Interrupt —
Specifies the current highest priority pending
interrupt for the virtual processor. See

Table 5-26, “vhpi — Virtual Highest Priority
Pending Interrupt” on page 78 for details.

Control [a_int]

registers 0-4 of the virtual processor.

NOTE: vcpuid[0-1] and vcpuid[4){63:32} must
contain the same values as the corresponding
values of the logical processor on which this
virtual processor is running.

vgr[16-31] 16 1024 Virtual General Registers — Represent the Architectural State
bank 1 general registers 16-31 of the virtual [a_bsw]
processor. When the virtual processor is run-
ning and vpsr.bn is 1, the values in these
entries are undefined.

vbgr[16-31] 16 1152 Virtual Banked General Registers — Represent | Architectural State
the bank 0 general registers 16-31 of the vir- [a_bsw]
tual processor. When the virtual processor is
running and vpsr.bn is 0, the values in these
entries are undefined.

vnat 1 1280 Virtual General Register NaTs — Bits 0-15 rep- | Architectural State
resent the NaT values corresponding to vgrl6- | [a_bsw]
31, where the NaT bit for vgrl6 is in bit 0. Bits
16-63 are don't cares.

vbnat 1 1288 Virtual Banked Register NaTs — Bits 16-31 rep- | Architectural State
resent the NaT values corresponding to [a_bsw]
vbgrl6-31, where the NaT bit for vbgrl6 is in
bit 16. Bits 0-15 and 32-63 are don't cares.

vcpuid[0-4] 5 1296 Virtual CPUID Registers — Represent cpuid Architectural State

[a_from_cpuid]

Predicate Registers of the virtual processor.
The bit positions in vpr correspond to predi-
cate registers in the same manner as with the
mov predicates instruction.

vpsr 1 1424 Virtual Processor Status Register — Repre- Architectural State
sents the Processor Status Register of the vir- | [always?, a_int?,
tual processor. a_from_psr,
a_from_int_cr®,
a toi nt_cr3,
a_cover®, a_bsw?]
vpr 1 1432 Virtual Predicate Registers — Represents the Architectural State

[always]

ver[0-127]

128

2048

Virtual Control Registers — Represent the con-
trol registers of the virtual processor. For the
reserved control registers, the corresponding
VPD entries are reserved.

Architectural State
[a_int®,
a_from_int_cr”,
a_to_int_cr’,
a_cover?]

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

53

Processor Abstraction Layer In

Table 5-1. Virtual Processor Descriptor (VPD) (Sheet 3 of 3)

Name Entries | Offset Description Class

vmm_avail 128 31744 | Available for VMM use. This area is ignored by | Ignored
the processor and PAL.

NOTES:

. If the value of the opcode field in the config_options parameter during PAL_VP_INIT_ENV is 1, then vpsr.ic
must be kept in the VPD independent of any accelerations.

. The a_int acceleration only requires that the vpsr.i bit be kept in the VPD; other bits of the virtual processor's
psr need not be kept here.

The a_from_int_cr and a_to_int_cr accelerations only require that vpsr.ic be kept in the VPD.

The a_cover acceleration only requires that the vpsr.ic bit be kept in the VPD.

The a_bsw acceleration only requires that the vpsr.bn bit be kept in the VPD.

The a_int acceleration only requires that vtpr be kept in the VPD.

The a_from_int_cr and a_to_int_cr accelerations only require that the virtual interruption CRs (vipst, visr, viip,
vifa, vitir, viipa, vifs, viim, viha) be kept in the VPD.

. The a_cover acceleration only requires that vifs be kept in the VPD.

® Noosrw N P

5211 Virtualization Controls

54

The Virtualization Acceleration Control (vac) and Virtualization Disable Control (vdc) fieldsin the
VPD contain configuration control bits which define the set of events that will cause an intercept
from PAL to the VMM. The virtualization controls are divided into two categories:

1. Virtualization Acceleration Control —these control bits enable virtualization optimization
support of aparticular resource or instruction. Figure 5-1 and Table 5-2 describe these control
bits.

2. Virtualization Disable Control — these control bits disable the virtualization of a particular
resource or instruction. Figure 5-2 and Table 5-3 describe these control bits.

The vac and vdc settings are specified by the VMM during virtual processor initialization when the
PAL_VP_CREATE procedure is called, and cannot be changed until the virtual processor is
terminated by PAL_VP_TERMINATE.

Figure 5-1. Virtualization Acceleration Control (vac)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Acceleration Controls

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Processor Abstraction Layer

Table 5-2. Virtualization Acceleration Control (vac) Fields

Field

Bit

Description

a_int!

Enable the virtual external interrupt optimization. See Section 5.2.4.1.1, “Vir-
tual External Interrupt Optimization” on page 61 for details.

a_from_int_crt

Enable the interruption control register (CR16-25) read optimization. See
Section 5.2.4.1.2, “Interruption Control Register Read Optimization” on
page 63 for details.

a_to_int_cr1 Enable the interruption control register (CR16-25) write optimization. See
Section 5.2.4.1.3, “Interruption Control Register Write Optimization” on
page 64 for details.

a_from_psrt Enable the processor status register read optimization. See Section

5.2.4.1.4, “MOV-from-PSR Optimization” on page 65 for details.

a_from_cpuid®

Enable the CPUID read optimization. See Section 5.2.4.1.5, “MOV-from-
CPUID Optimization” on page 65 for details.

1

a_cover Enable the cover instruction optimization. See Section 5.2.4.1.6, “Cover
Optimization” on page 66 for details.
a_bsw1 Enable the bswinstruction optimization. See Section 5.2.4.1.7, “Bank Switch

Optimization” on page 66 for details.

NOTES:

1. The functionality provided by this field is not available if the value of the opcode field in the config_options
parameter during PAL_VP_INIT_ENV is 0. For details see Table 5-27, “vp_env_info — Virtual Environment
Information Parameter” on page 87.

Figure 5-2. Virtualization Disable Control (vdc)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Disable Controls

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Table 5-3. Virtualization Disable Control (vdc) Fields (Sheet 1 of 2)

Field

Bits

Description

d_vmsw

Disable vswinstruction — If 1, disables vimsw instruction on the logical pro-
cessor. Execution of the vinsw instruction, independent of the state of
PSR.vm, will cause a virtualization intercept.

d_extint!

Disable external interrupt control register virtualization — If 1, accesses
(reads/writes) of the external interrupt control registers (CR65-71) are not vir-
tualized. Code running with PSR.vm==1 can read and write the external inter-
rupt control registers of the logical processor directly and without handling off
to the VMM. See Section 5.2.4.2.9, “Disable External Interrupt Control Regis-
ter Virtualization” on page 68 for details.

d_ibr_dbrt

Disable breakpoint register virtualization — If 1, accesses (reads/writes) of the
data and instruction breakpoint registers (IBR/DBR) are not virtualized. Code
running with PSR.vm==1 can read and write the data/instruction breakpoint
registers of the logical processor directly and without handling off to the
VMM.

If 0, accesses of the breakpoint registers with PSR.vm==1 result in virtualiza-
tion intercepts.

d_pmct

Disable PMC virtualization — If 1, accesses (reads/writes) of the performance
monitor configuration registers (PMCs) are not virtualized. Code running with
PSR.vm==1 can read and write the performance monitor configuration regis-
ters of the logical processor directly and without handling off to the VMM.

If 0, accesses of the performance counter configuration registers with
PSR.vm==1 result in virtualization intercepts.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 55

u
Processor Abstraction Layer Inte|®

Table 5-3. Virtualization Disable Control (vdc) Fields (Sheet 2 of 2)

5.2.2

56

Field Bits Description

d_to_pmd1 4 Disable PMD write virtualization — If 1, writes to the performance monitor data
registers (PMDs) are not virtualized. Code running with PSR.vm==1 can write
the performance monitor data registers of the logical processor directly and
without handling off to the VMM.

If 0, writes of the performance counter data registers with PSR.vm==1 result
in virtualization intercepts.

d_itm? 5 Disable ITM virtualization — If 1, writes to the Interval Timer Match (ITM) reg-
ister are not virtualized. Code running with PSR.vm==1 can write the ITM
register of the logical processor directly and without handling off to the VMM.
If 0, writes of the ITM register with PSR.vm==1 result in virtualization inter-
cepts.

d_psr_i1 6 Disable PSR.i virtualization — If 1, accesses (reads/writes) to the interrupt bit
in processor state register (PSR.i) are not virtualized. Code running with
PSR.vm==1 can read and write only the interrupt bit via the ssmand r sm
instructions directly without handling off to the VMM. Attempts to modify other
PSR bits in addition to the interrupt bit via the ssmand r sminstructions will
result in virtualization intercepts. Attempts to modify the interrupt bit with the
mov psr. | instruction will continue to result in virtualization intercepts.

If 0, accesses to the PSR.i bit with PSR.vm==1 result in virtualization inter-
cepts.

NOTES:

1. The functionality provided by this field is not available if the value of the opcode field in the config_options
parameter during PAL_VP_INIT_ENV is 0. For details see Table 5-27, “vp_env_info — Virtual Environment
Information Parameter” on page 87.

Interruption Handling in a Virtual Environment

For logical processors which have been added to a virtual environment through
PAL_VP_INIT_ENV, al 1VA-based interruptions continue to be delivered to the host IVT
independent of the state of PSR.vm at the time of interruption. All IVA-based interruptions are
serviced by the host IVT pointed to by the IVA (CR2) control register on the logical processor.

IVA-based interruptions that do not represent virtualization events will be delivered to the guest
IVT by the VMM. The guest IVT is specified by the VIVA control register in the VPD of the
virtual processor.

For I'VA-based interruption handling during virtual processor operations, PAL provides maximum
flexibility to the VMM by supporting per-virtual-processor host 1VTs. This alowsthe VMM to
provide a different host IVT with optimizations specific to a particular guest operating system on
the virtual processor. The VMM can a so choose to provide the same IVT for some or all of the
virtual processorsin avirtual environment.

Hence, at any timein avirtual environment, the IVA (CR2) control register of thelogical processor
will be pointing to either:

* The per-virtual-processor host IVT.

* The generic host IVT not specific to any virtual processor.

The per-virtual-processor host IVT for each virtual processor is setup by PAL when the virtual
processor isfirst created (PAL_VP_CREATE) or registered (PAL_VP_REGISTER) in the virtual
environment. The VMM passes a pointer to the host IVT specific to the virtual processor as an
incoming parameter to the PAL_VP_CREATE or PAL_VP_REGISTER procedures. The per-
virtual-processor host IVT is setup to perform long branches to the corresponding vector of the

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

n
Intel® Processor Abstraction Layer

IVT specified in the incoming parameter for al 1VA-based interruptions except the Virtualization
vector. Virtualization vector will be delivered as virtualization intercept in the per-virtual -processor
host IVT. See Section 5.2.3, “PAL Interceptsin Virtual Environment” on page 58 for details on
PAL intercepts.

In the virtual environment, the VA (CR2) control register will be set by PAL virtualization-related
procedures and services as summarized in Table 5-4.

Table 5-4. IVA Settings after PAL Virtualization-Related Procedures and Services

PAL Virtualization-
related Procedure / Description
Service

PAL_VP_CREATE
PAL_VP_ENV_INFO

These procedures do not change the IVA control register.

PAL_VP_EXIT_ENV This procedure sets the IVA control register to point to the IVT specified by the caller.

PAL_VM_INIT_ENV
PAL_VP_REGISTER

These procedures do not change the IVA control register.

PAL_VP_RESTORE / | This procedure / service sets the IVA control register to point to the per-virtual-
PAL_VPS_RESTORE | processor host IVT.

PAL_VP_SAVE/

PAL_VPS_SAVE This procedure / service does not change the IVA control register.

PAL_VP_TERMINATE | This procedure sets the IVA control register to point to the IVT specified by the caller.

After successful execution of PAL_VP_RESTORE procedure or PAL_VPS RESTORE service,
the IVA control register on the logical processor is set to point to the per-virtua -processor host
IVT. After successful completion of PAL_VP_RESTORE procedure, the VMM must not change
the IVA control register on the logical processor until after the next invocation of PAL_VP_SAVE
or PAL_VPS_SAVE.

On IVA-based interruptions when a virtual processor is running (after

PAL_VPS RESUME_NORMAL or PAL_VPS RESUME_HANDLER), the IVA control register
on thelogical processor isunchanged and will continue to point to the per-virtual-processor host
IVT. On resume execution to the same virtual processor through PAL_VPS RESUME_NORMAL
or PAL_VPS RESUME HANDLER PAL services, the VMM must ensurethe | VA control register
on the logical processor is set to point to the per-virtual-processor host IVT at the time of
interruption.t

Faults and virtualization intercepts on the following instructions can be handled in two ways,
determined by the value of the opcode field in the config_options parameter passed to
PAL_VP_INIT_ENV:

¢ mov-from-interruption-CR (CRs 16, 17, 19-25)
¢ mov-to-interruption-CR (CRs 16, 17, 19-25)
® jtc.d, itc.i
® jtr.d, itr.i
These instructions can raise one or more of these faults:

* lllegal Operation fault
* Privileged Operation fault

1. Inother words, the VMM is allowed to change to another IVT after IVA-based interruptions happening during virtual processor execution.
The VMM must ensure the per-virtural processor IVT is restored before resuming to the same virtual processor through
PAL_VPS RESUME_NORMAL or PAL_VPS RESUME_HANDLER.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 57

u
Processor Abstraction Layer Inte|®

* Reserved Register/Field fault
¢ Unimplemented Data Address fault
* Register NaT Consumption fault

If the value of the opcode field in the config_options parameter passed to PAL_VP_INIT_ENV
was 1 when these instructions execute, the above faults may be raised at the General Exception
vector of the host IVT based on the state of the virtual processor. If hone of the above faults are
raised, avirtualization intercept israised at the Virtualization vector or at the optional
Virtualization Intercept handler specified by the VMM, and thereis no need for the VMM to check
for the above faults at the virtualization intercept handler.

If the value of the opcode field in the config_options parameter passed to PAL_VP_INIT_ENV
was 0, these instructions are delivered at the General Exception vector of the host IVT, with ISR
indicating an Illegal Operation fault. In this case, the VMM is responsible to determine whether
any of the above faults have caused by these instructions based on the state of the virtual processor
before any handling code for these instructions.

5.2.3 PAL Intercepts in Virtual Environment

When the VA control register on the logical processor is set to point to the per-virtual -processor
host IVT, virtualization intercepts will be raised at the Virtualization vector or at an optional
virtualization intercept handler specified by the VMM. By default, virtualization intercepts are
delivered to the Virtualization vector of the IVT specified by the VMM during PAL_VP_CREATE
/ PAL_VP_REGISTER. If the VMM specified the optional virtualization intercept handler, all
virtualization intercepts are delivered to that handler (instead of the Virtualization vector.)

Section 5.2.3.1, “PAL Virtualization Intercept Handoff State” on page 58 describes the handoff
state of the PAL intercepts. For al interruption vectors other than Virtualization vector, the
architectural state at the corresponding I VA-based interruption vector is the same as defined in
Chapter 8, “Interruption Vector Descriptions’ in Volume 2.

5.2.3.1 PAL Virtualization Intercept Handoff State

The state of the logical processor at virtualization intercept handoff is:
* GRs:

— Non-banked GRs:. The contents of non-banked general registers are preserved from the
time of the interruption.

— Bank 1 GRs: The contents of all bank one general registers are preserved from the time of
the interruption.

— Bank 0: GR16-23: The contents of these bank zero general registers are preserved from
the time of the interruption.

— Bank 0: GR24-31: Scratch, contains parameters/state for VMM:

* GR24 indicates the cause of virtualization intercept. See Table 5-5, “PAL
Virtualization Intercept Handoff Cause (GR24)” for details. Thisfield is not provided
tothe VMM if the value of the cause field in the config_options parameter passed to
PAL_VP_INIT_ENV isO. If the value of the causefield in the config_options
parameter passed to PAL_VP_INIT_ENV is0, the value of GR24 on virtualization
intercept handoff is undefined.

* GR25 containsthe 41-bit opcodein little endian format and the type of the instruction
which caused the fault, excluding the qualifying predicate (gp) field. See Figure 5-3,

58 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Processor Abstraction Layer

“PAL Virtualization Intercept Handoff Opcode (GR25),” on page :60 for details. This
field is not provided to the VMM if the value of the opcode field in the config_options
parameter passed to PAL_VP_INIT_ENV is 0. If the value of the opcode field in the
config_options parameter passed to PAL_VP_INIT_ENV is 0, the value of GR25 on
virtualization intercept handoff is undefined.

* GR26-31 are available for the VMM to use.

FRs: The contents of all floating-point registers are preserved from the time of the
interruption.

Predicates: The contents of all predicate registers are undefined and available for use. The
original contents are saved in the VPD.

BRs: The contents of all branch registers are preserved from the time of the interruption.

ARs: The contents of all application registers are preserved from the time of the interruption,
except the ITC counter. The ITC register will not be directly modified by PAL, but will
continue to count during the execution of the virtualization intercept handler.

CFM: The contents of the CFM register is preserved from the time of the interruption.
RSE: All RSE stateis preserved from the time of the interruption.

PSR: PSR fields are set according to the “Interruption State” column in Table 3-2, “Processor
Status Register Fields’ on page 2:23.

CRs: The contents of all control registers are preserved from the time of the interruption with
the exception of resources described below:

— IRRs: The contents of IRRs are not changed by PAL. Incoming interruptions may change
the contents.

— IFS: IFSis unchanged from the time of the interruption.
— IIP: Contains the value of IP at the time of the interruption.
— IPSR: Contains the value of PSR at the time of the interruption.
RRs: The contents of all region registers are preserved from the time of the interruption.

PKRs: The contents of all protection key registers are preserved from the time of the
interruption.

DBRYIBRs: The contents of all breakpoint registers are preserved from the time of the
interruption.

PMCs/PMDs: The contents of the PMC registers are preserved from the time of the
virtualization intercept. The contents of the PMD registers are not modified by PAL code, but
may be modified if events being monitored are encountered. The performance counters will be
frozen if specified by the VMM through a parameter of PAL_VP_INIT_ENV procedure.

Cache: The processor internal cache is not specifically modified by PAL handler but may be
modified due to normal cache activity of running the handler code.

TLB: The TRs are unchanged from the time of the interruption.

Table 5-5. PAL Virtualization Intercept Handoff Cause (GR24) (Sheet 1 of 2)

Value Cause Description
toAR Due to MOV-to-AR instruction.
toARIimm Due to MOV-to-AR-imm instruction.
fromAR Due to MOV-from-AR instruction.
toCR Due to MOV-to-CR instruction.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 59

Processor Abstraction Layer

Table 5-5. PAL Virtualization Intercept Handoff Cause (GR24) (Sheet 2 of 2)

Value Cause Description
5 fromCR Due to MOV-from-CR instruction.
6 toPSR Due to MOV-to-PSR instruction.

7 fromPSR Due to MOV-from-PSR instruction.
8 itc_d Duetoitc. dinstruction.

9 itc_i Duetoitc.i instruction.

10 toRR Due to MOV-to-RR instruction.

11 toDBR Due to MOV-to-DBR instruction.
12 tolBR Due to MOV-to-IBR instruction.

13 toPKR Due to MOV-to-PKR instruction.
14 toPMC Due to MOV-to-PMC instruction.
15 toPMD Due to MOV-to-PMD instruction.
16 itr_d Due toi tr. dinstruction.

17 itr_i Duetoitr.i instruction.

18 fromRR Due to MOV-from-RR instruction.
19 fromDBR Due to MOV-from-DBR instruction.
20 fromIBR Due to MOV-from-IBR instruction.
21 fromPKR Due to MOV-from-PKR instruction.
22 fromPMC Due to MOV-from-PMC instruction.
23 fromCPUID | Due to MOV-from-CPUID instruction.
24 ssm Due to ssminstruction.

25 rsm Due to r sminstruction.

26 ptc_| Due to pt c. | instruction.

27 ptc_g Due to pt c. g instruction.

28 ptc_ga Due to pt c. ga instruction.

29 ptr_d Due to ptr. d instruction.

30 ptr_i Due to ptr. i instruction.

31 thash Due to t hash instruction.

32 ttag Due to t t ag instruction.

33 tpa Due to t pa instruction.

34 tak Due to t ak instruction.

35 ptc_e Due to pt c. e instruction.

36 cover Due to cover instruction.

37 rfi Due torfi instruction.

38 bsw_0 Due to bsw. 0 instruction.

39 bsw_1 Due to bsw. 1 instruction.

40 vmsw Due to vnswinstruction.

Figure 5-3. PAL Virtualization Intercept Handoff Opcode (GR25)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 12 1110 9 8 7 6 5 4 3 2 1 O

Opcode {31:6}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

[o]m)

Opcode {40:32}

60 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

INlal.

5.24

Processor Abstraction Layer

Virtualization Optimizations

After the PAL_VP_INIT_ENV procedureis called, execution of the virtualized instructions listed
in Table 3-10, “Virtualized Instructions” on page 2:40 with PSR.vm==1 resultsin virtualization
intercepts to the VMM . Virtualization optimizations allow these instructions to execute, with
PSR.vm==1, without causing intercepts to the VMM. Virtualization optimizations are divided into
two classes:

* Virtualization accel erations— Virtualization accel erations optimize the execution of virtualized
instructions by supporting fast access to the virtual instance of the resource and perform the
virtualized operations based on the virtual instance of the resource without handling off to the
VMM. Section 5.2.4.1, “Virtualization Accelerations’ on page 61 describes the supported
Virtualization accel erations in the architecture.

¢ Virtualization disables — Virtualization disables optimize the execution of virtualized
instructions by disabling virtualization of a particul ar resource or instruction. Accesses to the
virtualization-disabled resources or executions of virtualization-disabled instructions, even
with PSR.vm==1, will not cause intercepts to the VMM. Section 5.2.4.2, “Virtualization
Disables’ on page 67 describes the supported Virtualization disables in the architecture.

5.24.1 Virtualization Accelerations
Table 5-6 summarizes the virtualization accelerations supported in Itanium architecture.

Table 5-6. Virtualization Accelerations Summary

Virtualization
Acceleration
Control (vac)!

Optimization Description

Virtual External Interrupt Optimization

a_int

Section 5.2.4.1.1

Interruption Control Register Read Optimization

a_from_int_cr

Section 5.2.4.1.2

Interruption Control Register Write Optimization

a_to_int_cr

Section 5.2.4.1.3

MOV-from-PSR Optimization

a_from_psr

Section 5.2.4.1.4

MOV-from-CPUID Optimization

a_from_cpuid

Section 5.2.4.1.5

Cover Optimization

a_cover

Section 5.2.4.1.6

Bank Switch Optimization

a_bsw

Section 5.2.4.1.7

NOTES:
1. The Virtualization Acceleration Control (vac) field resides in the Virtual Processor Descriptor (VPD), see
Section 5.2.1, “Virtual Processor Descriptor (VPD)” on page 52 for details.

For each of the accelerations, certain virtual processor control and architectural state is managed
directly by hardware/firmware, and hence must be maintained in the VPD, and synchronization is
required when the VMM reads or writes this state in the VPD. Some entries must be maintained in
the VPD independent of any accelerations. (These are marked as [always].) See Table 5-1 for
details on which VPD state is used with each of the accelerations. See Section 5.2.5, “PAL
Virtualization Services’ on page 70 for a description of the synchronization services.

5.2.4.1.1 Virtual External Interrupt Optimization

Thevirtual external interrupt optimization allows the VMM to specify the virtual highest priority
pending interrupt so that avirtual externa interrupt is raised on changes of vtpr or vpsr.i only when
that the virtual highest priority pending interrupt is unmasked. For details on virtual external
interrupts, see “Virtual External Interrupt vector (0x3400)” on page 2:183.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 61

u
Processor Abstraction Layer Inte|®

The virtual external interrupt optimization is enabled by the a_int bit in the Virtualization
Acceleration Control (vac) field in the VPD. When this optimization is enabled, the VMM
specifies the virtual highest priority pending interrupt (vhpi) through the
PAL_VPS_SET_PENDING_INTERRUPT service described in Section 5.2.5, “PAL Virtualization
Services’ on page 70. If this optimization is disabled, processor behavior is undefined if

PAL_VPS SET_PENDING_INTERRUPT isinvoked.

When this optimization is enabled, execution of r smand ssminstructions, with PSR.vm==1, which
modify only vpsr.i will not intercept to the VMM and vpsr.i is updated with the new value, unlessa
fault condition is detected (see Table 5-9 for details). A virtual external interrupt israised if the
virtual highest priority pending interrupt (vhpi) is unmasked by the new vpsr.i and vtpr. If the
virtual highest priority pending interrupt (vhpi) is still masked by the new vpsr.i or vtpr, no virtual
external interrupt will beraised. Note that execution of MOV-to-PSR instructionswith PSR.vm==1
always resultsin avirtualization intercept no matter which PSR bits are modified.

When this optimization is enabled, execution of r smand ssminstructions, with PSR.vm==1, which
modify any bitsin addition to vpsr.i result in avirtualization intercepts. No virtual external
interrupts are raised and the VMM isresponsible for delivering avirtual external interrupt if the
virtual highest priority pending interrupt (vhpi) is unmasked.

When this optimization is enabled, execution of aMOV-from-CR instruction, with PSR.vm==1,
targeting vtpr reads the most recent value, unless a fault condition is detected (see Table 5-9 for
details).

When this optimization is enabled, on execution of MOV-to-TPR instructions with PSR.vm==1,
vtpr will be updated with the new value without handling off to the VMM, unless a fault condition
is detected (see Table 5-9 for details). A virtual external interrupt israised if the virtual highest
priority pending interrupt (vhpi) is unmasked by the new vpsr.i and vtpr. No virtual external
interrupt israised if the virtual highest priority pending interrupt is still masked by vpsr.i or vtpr.

When this optimization is enabled, after completion of an instruction with PSR.vm==1 which
modifies vtpr or vpsr.i (if the instruction completes without an intercept), a determination is made
asto whether the new state unmasks the virtual highest priority pending interrupt. If it does, then a
virtual external interrupt will be raised and the VMM will be entered on the Virtual External
Interrupt vector. See Table 5-7 for details on the detection of virtual external interrupts.

Table 5-7. Detection of Virtual External Interrupts

Condition Virtual External Interrupt

No — virtual highest priority pending

vhpi <= (lvpsr.i << 5 | vtpr.mmi <<4 | vtpr.mic) interrupt is still masked.

Yes — virtual highest priority pending

vhpi > (lvpsr.i << 5 | vtpr.mmi <<4 | vtpr.mic) interrupt is unmasked

This optimization is available only if the value of the opcode field in the config_options parameter
passed to PAL_VP_INIT_ENV was 1.

Synchronization is required when this optimization is enabled, see Table 5-8 for details.

When this optimization is enabled, certain VPD state is accessed, as described in Table 5-1,
“Virtual Processor Descriptor (VPD)” on page 52.

62 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

In ® Processor Abstraction Layer

Table 5-8. Synchronization Requirements for Virtual External Interrupt Optimization

VPD Resource Synchronization Required
vtpr Read, Write
VpsSr.i Read, Write
vhpi Write

Table 5-9. Interruptions when Virtual External Interrupt Optimization is Enabled

Instructions Interruptions

When the virtual external interrupt optimization is enabled, execu-
tion of r smand ssminstructions with PSR.vm==1 which modify only

rsmssm vpst.i, may raise the following faults:

« Privileged Operation fault — if vpsr.cpl is not zero.

When the virtual external interrupt optimization is enabled, execu-
tion of MOV-from-CR instruction targeting vtpr with PSR.vm==1,

may raise the following faults:
MOV-from-TPR .) .
« lllegal Operation fault — if the target operand specifies GR 0 or

an out-of-frame stacked register.
« Privileged Operation fault — if vpsr.cpl is not zero.

When the virtual external interrupt optimization is enabled, execu-
tion of MOV-to-CR instruction targeting vtpr with PSR.vm==1, may
raise the following faults:

MOV-to-TPR « Privileged Operation fault — if vpsr.cpl is not zero.
« Register NaT Consumption fault — if the NaT bit in the source

register is one.

« Reserved Register/Field fault — if the reserved field in the vtpr is
being written with a non-zero value.

5.2.4.1.2 Interruption Control Register Read Optimization

Theinterruption control register read optimization is enabled by the a from_int_cr bit in the
Virtualization Acceleration Control (vac) field in the VPD. When this optimization is enabled, and
vpsr.ic is 0, software running with PSR.vm==1 will be able to read the virtual interruption control
registers (vipsr, vist, viip, vifa, vitir, viipa, vifs, viim, viha) without any interceptsto the VMM,
unless afault condition is detected (see Table 5-11 for details).

If this optimization is disabled, aread of the interruption CRs with PSR.vm==1 resultsin a
virtualization intercept.

This optimization is available only if the value of the opcode field in the config_options parameter
passed to PAL_VP_INIT_ENV was 1.

Synchronization is required when this optimization is enabled, see Table 5-10 for details.

When this optimization is enabled, certain VPD state is accessed, as described in Table 5-1,
“Virtual Processor Descriptor (VPD)” on page 52.

Table 5-10. Synchronization Requirements for Interruption Control Register Read
Optimization

VPD Resource Synchronization Required

vipsr, visr, viip, vifa, vitir, viipa, vifs,

. . Write
viim, viha

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 63

Processor Abstraction Layer In

Table 5-11. Interruptions When Interruption Control Register Read Optimization is Enabled

Instructions Interruptions

Move from interruption control registers | When the interruption control register read optimization is enabled,
reads of interruption control registers with PSR.vm==1, may raise
the following faults:
 lllegal Operation fault — if vpsr.ic is not zero or the target
operand specifies GR 0 or an out-of-frame stacked register

¢ Privileged Operation fault — if vpsr.cpl is not zero

5.2.4.1.3 Interruption Control Register Write Optimization

Theinterruption control register write optimization is enabled by thea to_int_cr bit in the
Virtualization Acceleration Control (vac) field in the VPD. When this optimization is enabled, and
vpsr.ic is 0, software running with PSR.vm==1 will be able to write the virtual interruption control
registers (vipsr, vist, viip, vifa, vitir, viipa, vifs, viim, viha) without any interceptsto the VMM,
unless afault condition is detected (see Table 5-13 for details).

If this optimization is disabled, awrite of the interruption control registers with PSR.vm==1 results
in avirtualization intercept.

This optimization is available only if the value of the opcode field in the config_options parameter
passed to PAL_VP_INIT_ENV was 1.

Synchronization is required when this optimization is enabled, see Table 5-12 for details.

When this optimization is enabled, certain VPD state is accessed, as described in Table 5-1,
“Virtual Processor Descriptor (VPD)” on page 52.

Table 5-12. Synchronization Requirements for Interruption Control Register Write
Optimization

VPD Resource Synchronization Required

vipsr, visr, viip, vifa, vitir, viipa, vifs,

.) Read
viim, viha

Table 5-13. Interruptions when Interruption Control Register Write Optimization is Enabled

Instructions Interruptions

Move to interruption control registers | When the interruption control register write optimization is enabled,
writes to interruption control registers with PSR.vm==1, may raise
the following faults:

¢ lllegal Operation fault — if vpsr.ic is not zero.

« Privileged Operation fault — if vpsr.cpl is not zero.

* Register NaT Consumption fault — if the NaT bit of the source
operand is one.

* Reserved Register/Field fault — if any reserved field in the
specified control register is written with a non-zero value.

* Unimplemented Data Address fault — if writing to vifa and an
unimplemented virtual address is specified.

64 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

n
Intel® Processor Abstraction Layer

5.2.4.1.4 MOV-from-PSR Optimization

The MOV-from-PSR optimization is enabled by thea from_psr bit in the Virtualization
Acceleration Control (vac) field in the VPD. When this optimization is enabled, software running
with PSR.vm==1 will be able to execute MOV-from-PSR instructions to read the virtual processor
status register without any intercepts to the VMM ; and the last value written to the vpsr will be
returned, unless afault condition is detected (see Table 5-15 for details). The value returned for the
fml, mfh, ac, up and be bits are simply the values of those bits in the PSR of the logical processor,
since those bits are not virtualized.

If this optimization is disabled, execution of aMOV-from-PSR instruction with PSR.vm==1 results
in avirtualization intercept.

This optimization is available only if the value of the opcode field in the config_options parameter
passed to PAL_VP_INIT_ENV was 1.

Synchronization is required when this optimization is enabled, see Table 5-14 for details.

When this optimization is enabled, certain VPD state is accessed, as described in Table 5-1,
“Virtual Processor Descriptor (VPD)” on page 52.

Table 5-14. Synchronization Requirements for MOV-from-PSR Optimization

VPD Resource Synchronization Required
vpsr Write

Table 5-15. Interruptions when MOV-from-PSR Optimization is Enabled

Instructions Interruptions

MOV-from-PSR When the MOV-from-PSR optimization is enabled, MOV-from-PSR
instructions with PSR.vm==1, may raise the following faults:

« lllegal Operation fault — if the target operand specifies GR 0 or an
out-of-frame stacked register.

« Privileged Operation fault — if vpsr.cpl is not zero.

5.2.4.1.5 MOV-from-CPUID Optimization

The MOV-from-CPUID optimization is enabled by the a from_cpuid bit in the Virtualization
Acceleration Control (vac) field in the VPD. When this optimization is enabled, software running
with PSR.vm==1 will be able to execute MOV-from-CPUID instruction to read the virtual CPUID
registers without any intercepts to the VMM ; and the corresponding VCPUID value from the VPD
will be returned, unless a fault condition is detected (see Table 5-17 for details).

If this optimization is disabled, execution of a MOV-from-CPUID instruction with PSR.vm==
resultsin avirtualization intercept.

This optimization is available only if the value of the opcode field in the config_options parameter
passed to PAL_VP_INIT_ENV was 1.

Synchronization is required when this optimization is enabled, see Table 5-16 for details.

When this optimization is enabled, certain VPD state is accessed, as described in Table 5-1,
“Virtual Processor Descriptor (VPD)” on page 52.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 65

u
Processor Abstraction Layer Inte|®

Table 5-16. Synchronization Requirements for MOV-from-CPUID Optimization

VPD Resource Synchronization Required
vcpuido-4 Write

Table 5-17. Interruptions when MOV-from-CPUID Optimization is Enabled

Instructions Interruptions

MOV-from-CPUID When the MOV-from-CPUID optimization is enabled, MOV-from-
CPUID instructions with PSR.vm==1, may raise the following faults:

¢ lllegal Operation fault — if the target operand specifies GR 0 or an
out-of-frame stacked register.

* Register NaT Consumption fault — if the NaT bit in the target
register is one.

¢ Reserved Register/Field fault — if a reserved CPUID register is
being read.

5.2.4.1.6 Cover Optimization

The cover optimization is enabled by the a_cover bit in the Virtualization Acceleration Control
(vac) field in the VPD. When this optimization is enabled, software running with PSR.vm==1 will
be ableto executecover instructions without any interceptsto the VMM, unless afault conditionis
detected (see Table 5-19 for details). The cover instruction will execute and ver.ifswill be updated
if vpsricisO.

If this optimization is disabled, execution of the cover instruction with PSR.vm==1 resultsin a
virtualization intercept.

This optimization is available only if the value of the opcode field in the config_options parameter
passed to PAL_VP_INIT_ENV was 1.

Synchronization is required when this optimization is enabled, see Table 5-18 for details.

When this optimization is enabled, certain VPD state is accessed, as described in Table 5-1,
“Virtual Processor Descriptor (VPD)” on page 52.

Table 5-18. Synchronization Requirements for Cover Optimization

VPD Resource Synchronization Required
vifs Read, Write

Table 5-19. Interruptions when Cover Optimization is Enabled

Instructions Interruptions

cover When the cover optimization is enabled, cover instructions with
PSR.vm==1, may raise the following faults:

 lllegal Operation fault — if the instruction is not the last instruction
in an instruction group.

5.2.4.1.7 Bank Switch Optimization
The bank switch optimization is enabled by the a_bsw bit in the Virtualization Acceleration

Control (vac) field in the VPD. When this optimization is enabled, execution of the bswinstruction
with PSR.vm==1 spills the currently active banked registers and the corresponding NaT bitsto the

66 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Processor Abstraction Layer

VPD, and loads the other banked registers and the corresponding NaT bits from the VPD. vpsr.bn
is updated to reflect the new register bank without any interceptsto the VMM, unless a fault
condition is detected (see Table 5-21 for details).

If this optimization is disabled, execution of the bswinstruction with PSR.vm==1resultsin a
virtualization intercept.

This optimization is available only if the value of the opcode field in the config_options parameter
passedto PAL_VP_INIT_ENV is 1.

This optimization requires no special synchronization.

Table 5-20. Interruptions When Bank Switch Optimization is Enabled

5.24.2

Instructions Interruptions

bsw When the bank switch optimization is enabled, bswinstructions with

PSR.vm==1, may raise the following faults:

« lllegal Operation fault — if the instruction is not the last
instruction in an instruction group

¢ Privileged Operation fault — if vpsr.cpl is not zero

Virtualization Disables

Table 5-6 summarizes the virtualization disables supported in Itanium architecture.

Table 5-21. Virtualization Disables Summary

Virtualization

Disable Disable Control Description
(vdc)?
Disable VMSWiInstruction d_vmsw Section 5.2.4.2.8
Disable External Interrupt Control Register Virtualization d_extint Section 5.2.4.2.9
Disable Breakpoint Register Virtualization d_ibr_dbr Section 5.2.4.2.10
Disable PMC Virtualization d_pmc Section 5.2.4.2.11
Disable MOV-to-PMD Virtualization d_to_pmd Section 5.2.4.2.12

Disable ITM Virtualization

d_itm

Section 5.2.4.2.13

Disable PSR Interrupt-bit Virtualization

d_psr_i

Section 5.2.4.2.14

NOTES:

1. The Virtualization Disable Control (vdc) field resides in the Virtual Processor Descriptor (VPD), see Section
5.2.1, “Virtual Processor Descriptor (VPD)” on page 52 for details.

5.2.4.2.8 Disable vnswInstruction

Thevmsw instruction disable is controlled by thed vnsw bit in the Virtualization Disable

Control (vdc) field in the VPD. When this control isset to 1, thevmsw instruction is disabled on the
logical processor. Execution of thevnsw instruction, independent of the state of PSR.vm, resultsin
avirtualization intercept.

If this control isset to 0, thevmsw instruction can be executed by both the VMM and guest without
virtualization intercepts, if PSR.itis 1 and thevmsw instruction is executed on a page with access

rights of 7.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

67

u
Processor Abstraction Layer Inte|®

5.2.4.2.9 Disable External Interrupt Control Register Virtualization

The external interrupt control register virtualization disable is controlled by thed_extint bit in the
Virtualization Disable Control (vdc) field in the VPD. When this control is set to 1, the external
interrupt control registers (CR65-71) are not virtualized, and code running with PSR.vm==1 can
read and write these resources directly without any intercepts to the VMM.

If this control is set to 0, accesses (reads/writes) to the external interruption control registers with
PSR.vm==1 result in virtualization intercepts.

The functionality provided by thisfield is not available if the value of the opcode field in the
config_options parameter during PAL_VP_INIT_ENV isO.

5.2.4.2.10 Disable Breakpoint Register Virtualization

The breakpoint register virtualization disable is controlled by thed ibr_dbr bit in the Virtualization
Disable Control (vdc) field in the VPD. When this control is set to 1, accesses (reads/writes) to the
data and instruction breakpoint registers (DBR/IBR) are not virtualized, and code running with
PSR.vm==1 can read and write these resources directly without any intercepts to the VMM.

If this control is set to 0, accesses (reads/writes) to the breakpoint registers with PSR.vm==1 result
in virtualization intercepts.

The functionality provided by thisfield is not available if the value of the opcode field in the
config_options parameter during PAL_VP_INIT_ENV isO.

5.2.4.2.11 Disable PMC Virtualization

The PMC virtualization disableis controlled by thed _pmc bit in the Virtualization Disable Control
(vdc) field in the VPD. When this control is set to 1, accesses (reads/writes) to the performance
monitor configuration registers (PMCs) are not virtualized, and code running with PSR.vm==1 can
read and write these resources directly without any intercepts to the VMM.

If this control is set to 0, accesses (reads/writes) to the performance counter configuration registers
with PSR.vm==1 result in virtualization intercepts.

The functionality provided by thisfield is not availableif the value of the opcode field in the
config_options parameter during PAL_VP_INIT_ENV isO.

5.2.4.2.12 Disable MOV-to-PMD Virtualization

The MOV-to-PMD? virtualization disable is controlled by the d_to_pmd bit in the Virtualization
Disable Control (vdc) field in the VPD. When this control is set to 1, writes to the performance
monitor data registers (PMDs) are not virtualized, and code running with PSR.vm==1 can write
these resources directly without any intercepts to the VMM.

If this control is set to 0, writesto the performance monitor data registerswith PSR.vm==1resultin
virtualization intercepts.

The functionality provided by thisfield is not availableif the value of the opcode field in the
config_options parameter during PAL_VP_INIT_ENV isO.

1. The MOV-from-PMD instruction is not virtualzied. Hence there is no need to provide optimizations for the MOV-from-PMD instruction.

68 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Note:

5.2.4.3

Processor Abstraction Layer

5.2.4.2.13 Disable ITM Virtualization

The ITM virtualization disable is controlled by the d_itm bit in the Virtualization Disable Control
(vdc) field in the VPD. When this control is set to 1, writes to the Interval Timer Match (ITM)
register are not virtualized, and code running with PSR.vm==1 can write this resource directly
without any interceptsto the VMM.

If this control is set to O, writesto the ITM register with PSR.vm==1 result in virtualization
intercepts.

The functionality provided by thisfield is not availableif the value of the opcode field in the
config_options parameter during PAL_VP_INIT_ENV isO.

5.2.4.2.14 Disable PSR Interrupt-bit Virtualization

The PSR interrupt-bit virtualization disable is controlled by thed_psr_i bit in the Virtualization
Disable Control (vdc) field in the VPD. When this control is set to 1, accesses (reads/writes) to the
interrupt bit in processor state register (PSR.i) are not virtualized. Code running with PSR.vm==1
can read and write to PSR.i through ssmand r sminstructions without any intercepts to the VMM.
Attempts to modify other PSR bits in addition to the interrupt bit viathe ssmand r sminstructions
will result in virtualization intercepts.

This control has no effect on nov psr. | instructions; attempts to modify the interrupt bit with the
mov psr.| instruction result in virtualization intercepts.

The functionality provided by thisfield is not availableif the value of the opcode field in the
config_options parameter during PAL_VP_INIT_ENV isO.

Thisfield overridesthe a_int Virtualization Acceleration Control (vac) described in Section
5.2.4.1.1, “Virtual External Interrupt Optimization” on page 61. If this control is enabled (set to 1),
the a_int Virtualization Acceleration Control (vac) isignored.

Virtualization Synchronizations

When certain virtualization accelerations described in Section 5.2.4.1, “Virtualization
Accelerations’ on page 61 are enabled, processor implementations can provide implementation-
specific control resources to enhance the performance of virtual processors. Two PAL services are
provided to synchronize the implementation-specific control resources and the resources in the
VPD. There are two types of synchronizations:

1. Read Synchronization —When a specific acceleration is enabled, after interruptions and
intercepts that occur when PSR.vm was 1, the VMM must invoke PAL_VPS SYNC READ
to synchronize the related resources before reading their values from the VPD.

2. Write Synchronization — When a specific acceleration is enabled, the VMM must invoke
PAL_VPS _SYNC_WRITE to synchronize the related resources after modifying their valuesin
the VPD and before resuming the virtual processor.

For detailson PAL_VPS_SYNC_READ and PAL_VPS_SYNC_WRITE, see Section 5.2.5, “PAL
Virtualization Services’ on page 70.

Read and/or write synchronizations are required only if the specific acceleration is enabled. For the
resources that require synchronizationsiif the acceleration is enabled, failure to perform the proper
synchronizations will result in undefined processor behavior®.

1. Virtua machine monitors must perform al the required synchronizations specified. Virtual machine monitors not conforming to this
specification are not guaranteed to work on all processor implementations.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 69

u
Processor Abstraction Layer Inte|®

5.25

The synchronization requirements of the related resources for each acceleration are described in
the corresponding sections for each acceleration in Section 5.2.4.1, “Virtualization Accelerations”
on page 61.

No synchronization is required for any of the virtualization disables.

PAL Virtualization Services

In order to support efficient handling of interruptions when PSR.vm was 1, a set of PAL
virtualization services is defined to allow certain frequent PAL functions to be performed in alow-
latency and low-overhead manner.

Upon successful completion of PAL_VP_INIT_ENV, the virtual base address of the PAL
virtualization services (VSA) isreturned to the VMM. VMM can invoke PAL services by
branching to the defined offsets from the virtual base address. See Table 5-22 for the defined
services. See Section 5.4, “PAL Virtualization Services Specification” on page 72 for details on
PAL virtualization services.

These PAL virtualization serviceswill only make referencesto the PAL virtual environment buffer.
The VMM isrequired to maintain the ITR and DTR translations of the PAL virtual environment
buffer during any PAL virtualization service calls.

Table 5-22. PAL Virtualization Services

5.25.1

70

Offset PAL Service
0x0000 PAL_VPS_RESUME_NORMAL
0x0400 PAL_VPS_RESUME_HANDLER
0x0800 PAL_VPS_SYNC_READ
0x0c00 PAL_VPS_SYNC_WRITE
0x1000 PAL_VPS_SET_PENDING_INTERRUPT
0x1400 PAL_VPS_THASH
0x1800 PAL_VPS_TTAG
0x1c00 PAL_VPS_RESTORE
0x2000 PAL_VPS_SAVE

PAL Virtualization Service Invocation Convention

This section describes the required parameters applicable to all PAL Virtualization Services.
Additional parameters are listed in the description section of specific PAL Virtualization Services.
Architectural state not listed in this section is managed by the VMM and can contain both VMM
and/or virtual processor state. The architectural state not listed is unchanged by PAL virtualization
services.
The state of the processor on handing off to any PAL Virtualization Serviceis:

* GR24-31: Parametersfor PAL virtualization services.

* BRs:

— BRO: Scratch, the VMM will use BRO to specify the 64-bit host virtual address of the PAL
Virtualization Service being invoked.

* Predicates: The predicates are preserved by the PAL virtualization services.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

* PSR State (see Table 5-23 for details):
— PSR.be, i, cpl, is, ss, db, th, vm must be 0.
— PSR.dt, rt and it must be 1.
— All other values are don't cares.

Processor Abstraction Layer

Table 5-23. State Requirements for PSR for PAL Virtualization Services (Sheet 1 of 2)

PSR Bit Description Value
be big-endian memory access enable A
up user performance monitor enable -
ac alignment check -
mfl floating-point registers f2-f31 written -
mfh floating-point registers f32-f127 written -
ic interruption state collection enable 02

3
i interrupt enable 0
pk protection key validation enable -
dt data address translation enable 1
dfl disabled FP register f2 to f31 -
dfh disabled FP register f32 to f127 -
sp secure performance monitors -
pp privileged performance monitor enable -
di disable ISA transition -
Si secure interval timer -
db debug breakpoint fault enable 0
Ip lower-privilege transfer trap enable -
th taken branch trap enable 0
rt register stack translation enable
cpl current privilege level
is instruction set
mc machine check abort mask -
it instruction address translation enable 1
id instruction debug fault disable -
da data access and dirty-bit fault disable -
dd data debug fault disable -
Ss single step trap enable 0
ri restart instruction -
ed exception deferral -
bn register bank A

0°

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 71

Processor Abstraction Layer

intel.

Table 5-23. State Requirements for PSR for PAL Virtualization Services (Sheet 2 of 2)

5.3

Table 5-24. PAL Virtualization Support Procedures

5.4

72

PSR Bit Description Value
ia instruction access-bit fault disable -
vm processor virtualization 0

NOTES:

1. PAL services can be called with PSR.be bit equal to 0 or 1. The behavior is undefined if PSR.be setting does
not match the be parameter during PAL_VP_INIT_ENV. See “PAL Initialize Virtual Environment” on page 89

for details.

for details.

as wN

for details.

PAL Procedure Summary

Most PAL services are invoked with PSR.ic equal to O.
. Specific PAL services can be invoked with PSR.ic equal to 1 or 0. See the description of specific PAL services

. Most PAL services can be invoked with PSR.bn equal to 1 or 0.
. Specific PAL services must be invoked with PSR.bn equal to 0. See the description of specific PAL services

Procedure Idx | Class Conv. Mode Description
PAL_VP_CREATE 265 | Opt. Stacked Virt. Initializes a new VPD for the
operation of a new virtual
processor in the virtual
environment.
PAL_VP_ENV_INFO 266 | Opt. Stacked Virt. Returns the parameters needed
to enter a virtual environment.
PAL_VP_EXIT_ENV 267 | Opt. Stacked Virt. Allows a logical processor to exit
a virtual environment.
PAL_VP_INIT_ENV 268 | Opt. Stacked Virt. Allows a logical processor to
enter a virtual environment.
PAL_VP_REGISTER 269 | Opt. Stacked Virt. Register a different host IVT for
the virtual processor.
PAL_VP_RESTORE 270 | Opt. Stacked Virt. Restore virtual processor state on
the logical processor.
PAL_VP_SAVE 271 | Opt. Stacked Virt. Save virtual processor state on
the logical processor.
PAL_VP_TERMINATE 272 | Opt. Stacked Virt. Terminates operation for the
specified virtual processor.

PAL Virtualization Services Specification

The following pages provide detailed interface specifications for each of the PAL Virtualization

Services.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Processor Abstraction Layer

PAL VPS RESUME_NORMAL — Resume Virtual Processor
Normal (0x0000)

Purpose: Resumes the current virtual processor. This serviceis used when vpsr.icis 1. This
service can also be used independently of the state of vpsr.ic if al virtualization
accelerations and disables are disabled.

Arguments:

Argument Description

GR24 VBRO

GR25 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)

GR26 Reserved

GR27 Reserved

GR28 Reserved

GR29 Reserved

GR30 Reserved

GR31 Reserved

Returns: PAL_VPS RESUME_NORMAL does not return to the VMM.

Description: On interruptions or intercepts, PAL_VPS RESUME_NORMAL allowsthe VMM

to resume the same virtual processor wherethevpsricisl. PAL_VP _RESTORE
can be used to restore the state of a different virtual processor.

The VMM specifies the VBRO of the virtual processor in GR24 and the 64-bit
virtual pointer to the VPD in GR25.

The VMM isresponsible for setting up all the required virtual processor state in the
architectural registersaswell asin the VPD prior to invoking this service. See
Table 5-25, “Virtual Processor Settingsin Architectural Resources for
PAL_VPS_RESUME_NORMAL and PAL_VPS_RESUME_HANDLER” on
page 73 for details.

PAL_VPS RESUME_NORMAL must be called with PSR.bn equal to 0.

If al virtualization accelerations and disables are disabled,
PAL_VPS RESUME_NORMAL can aso be used to resume to the guest
independent on the state of vpsr.ic.

Table 5-25. Virtual Processor Settings in Architectural Resources for
PAL_VPS_RESUME_NORMAL and PAL_VPS_RESUME_HANDLER (Sheet 1 of 2)

Resource Description

Bank 1 GRs Contains state of bank 0/1 GRs of the virtual processor (depends on
vpsr.bn.)

FRs Contains floating-point register state of the virtual processor.

Predicate Register Contains the predicates of the virtual processor.

Branch Registers BR1-BR7 contains the state of the virtual processor. BRO of the virtual
processor resides in bank 0 GR24.

Application Registers Contains application register state of the virtual processor.

Interruption Control Registers 1IP, IPSR and IFS contains the IP, PSR and CFM of the virtual processor.

The rest of the interruption control registers are don'’t cares. For
PAL_VPS_RESUME_HANDLER, the virtual interruption control registers
are specified in the VPD. See Section 5.2.4, “Virtualization Optimizations”
on page 61 for synchronization of VPD resources before resuming the
virtual processor.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 73

Processor Abstraction Layer

74

In

Table 5-25. Virtual Processor Settings in Architectural Resources for
PAL_VPS_RESUME_NORMAL and PAL_VPS_RESUME_HANDLER (Sheet 2 of 2)

Resource

Description

External Interrupt Control
Registers

The external interrupt control registers contain the state of the virtual
processor if d_extint in Virtualization Disable Control (vdc) is 1. Otherwise
the external interrupt control registers are virtualized by the VMM and
contain VMM state.

Data/Instruction Breakpoint
Registers

The data/instruction breakpoint registers contain the state of the virtual
processor if d_ibr_dbr in Virtualization Disable Control (vdc) is 1.
Otherwise the data/instruction breakpoint registers are virtualized by the
VMM and contain VMM state.

Performance Monitor
Configuration Registers

The performance monitor configuration registers contain the state of the
virtual processor if d_pmc in Virtualization Disable Control (vdc) is 1.
Otherwise the performance monitor configuration registers are virtualized
by the VMM and contain VMM state.

Performance Monitor Data
Registers

Contain the state of the virtual processor.

PAL_VPS RESUME_NORMAL performs the following actions:

* Perform any implementation-specific setup to run avirtual processor.

» Re-enable performance countersif the value of the fr_pmc field in the
config_options parameter passed to PAL_VP_INIT_ENV was 1.

» Resume the virtual processor.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Processor Abstraction Layer

PAL VPS RESUME_HANDLER — Resume Virtual Processor
Handler (0x0400)

Purpose: Resumes the current virtual processor. This serviceis used when vpsr.icisO.
Arguments:

Argument Description

GR24 VBRO

GR25 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)

GR26 Virtualization Acceleration Control (vac) field from the VPD specified in GR25

GR27 Reserved

GR28 Reserved

GR29 Reserved

GR30 Reserved

GR31 Reserved

Returns: PAL_VPS RESUME_HANDLER does not return to the VMM.
Description: Oninterruptionsor intercepts, PAL_VPS RESUME_HANDLER alowsthe VMM

to resume to the same virtual processor where the vpsr.icis oL

The VMM specifies the BRO of the virtual processor in GR24, the 64-bit virtual
pointer to the VPD in GR25 and the vac field of the VPD in GR26. Behavior is
undefined if the vac in GR26 does not match the vac field in the VPD argument
specified in GR25.

The VMM isresponsible for setting up all the required virtual processor state in the
architectural registersaswell asin the VPD prior to invoking this service. See
Table 5-25, “Virtual Processor Settingsin Architectural Resources for

PAL_VPS RESUME_NORMAL and PAL_VPS_RESUME_HANDLER” on
page 73 for details.

PAL_VPS RESUME_HANDLER must be called with PSR.bn equal to 0.
PAL_VPS RESUME_HANDLER performs the following actions:

 Perform any implementation-specific setup to run avirtual processor.

» Re-enable performance countersif the value of the fr_pmc field in the
config_options parameter passed to PAL_VP_INIT_ENV was 1.

» Resumethe virtual processor.

1. PAL_VP_RESTORE can be used to restore the state of a different virtual processor.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 75

u
Processor Abstraction Layer Inte|®

PAL_VPS_SYNC_READ - Synchronize VPD State for Reads

(0x0800)

Purpose: Synchronize VPD with the latest implementation-specific virtual architectural
State.

Arguments:

Argument Description

GR24 64-Dbit host virtual return address

GR25 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)

GR26 Reserved

GR27 Reserved

GR28 Reserved

GR29 Reserved

GR30 Reserved

GR31 Reserved

Returns:

Return Value Description

GR24 Scratch

GR25 Scratch

GR26 Scratch

GR27 Scratch

GR28 Scratch

GR29 Scratch

GR30 Scratch

GR31 Scratch

Description: On processor implementations that support virtualization accelerations,

implementation-specific control resources can be provided to enhance performance
of virtual processors. When a specific acceleration is enabled, after interruptions
and intercepts which occur when PSR.vm was 1, the VMM must invoke this
service to synchronize the related resources before reading the value from the VPD.
For the accelerations that are disabled, the corresponding resources in the VPD are
unchanged.

The synchronization requirements of the related resources for each acceleration are
described in the corresponding sections for each acceleration in Section 5.2.4.1,
“Virtualization Accelerations’ on page 61.

PAL_VPS _SYNC_READ performs the following actions:

» Copy implementation-specific control resources of the enabled accelerations
into VPD.

» Returnto VMM by anindirect branch specified in the GR24 parameter.

76 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

n
Intel® Processor Abstraction Layer

PAL_VPS_SYNC_WRITE — Synchronize VPD State for Writes

(0x0c00)

Purpose: Synchronize the implementation-specific virtual architectural state with VPD.
Arguments:

Argument Description

GR24 64-bit host virtual return address.
GR25 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD.)
GR26 Reserved

GR27 Reserved

GR28 Reserved

GR29 Reserved

GR30 Reserved

GR31 Reserved

Returns:

Return Value Description

GR24 Scratch

GR25 Scratch

GR26 Scratch

GR27 Scratch

GR28 Scratch

GR29 Scratch

GR30 Scratch

GR31 Scratch

Description: On processor implementations that support virtualization accelerations,
implementation-specific control resources can be provided to enhance performance
of virtual processors. When a specific acceleration is enabled, the VMM must
invokethis serviceto synchronize the related resources after modifying thevaluein
the VPD and before resuming the virtual processor. For the accelerations that are
disabled, the corresponding resources in the VPD are ignored.

The synchronization requirements of the related resources for each acceleration are
described in the corresponding sections for each acceleration in Section 5.2.4.1,
“Virtualization Accelerations” on page 61.

PAL_VPS SYNC_WRITE performs the following actions:

» Copy values of the enabled accelerations in the VPD into implementation-
specific control resources.

» Returnto VMM by an indirect branch specified in the GR24 parameter.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 77

Processor Abstraction Layer

78

intel.

PAL_VPS_SET PENDING_INTERRUPT — Register Highest
Priority Pending Interrupt (0x1000)

Purpose: Register highest priority pending interrupt of the running virtual processor.
Arguments:

Argument Description

GR24 64-Dbit host virtual return address

GR25 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)
GR26 Reserved

GR27 Reserved

GR28 Reserved

GR29 Reserved

GR30 Reserved

GR31 Reserved

Returns:

Return Value Description

GR24 Scratch

GR25 Scratch

GR26 Scratch

GR27 Scratch

GR28 Scratch

GR29 Scratch

GR30 Scratch

GR31 Scratch

Description: PAL_VPS_SET_PENDING_INTERRUPT allowsthe VMM to register the highest

Table 5-26. vhpi — Virtual Highest Priority Pending Interrupt (Sheet 1 of 2)

priority pending interrupt for the virtual processor. The virtual highest priority
pending interrupt is specified in the vhpi field in the VPD. See Table 5-26, “vhpi —

Virtual Highest Priority Pending Interrupt” on page 78 for details.

PAL_VPS_SET_PENDING_INTERRUPT can be called with PSR.ic equal to 1 or

0.

Value Description

0 Nothing pending.

1 Class 1 interrupt pending.
2 Class 2 interrupt pending.
3 Class 3 interrupt pending.
4 Class 4 interrupt pending.
5 Class 5 interrupt pending.
6 Class 6 interrupt pending.
7 Class 7 interrupt pending.
8 Class 8 interrupt pending.
9 Class 9 interrupt pending.
10 Class 10 interrupt pending.
11 Class 11 interrupt pending.
12 Class 12 interrupt pending.
13 Class 13 interrupt pending.
14 Class 14 interrupt pending.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

n
I ntGI ® Processor Abstraction Layer

Table 5-26. vhpi — Virtual Highest Priority Pending Interrupt (Sheet 2 of 2)

Value Description
15 Class 15 interrupt pending.
16 ExtINT pending.

PAL_VPS SET_PENDING_INTERRUPT performs the following actions:

« Copy the virtual highest priority pending interrupt from the VPD into
implementation-specific resources.

¢ Returnto VMM by an indirect branch specified in the GR24 parameter.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

79

u
Processor Abstraction Layer Inte|®

80

PAL_VPS _THASH - Compute Long Format VHPT Entry Address

(0x1400)

Purpose: Compute along format VHPT entry address.
Arguments:

Argument Description

GR24 64-Dbit host virtual return address

GR25 64-bit virtual address used to compute the hash entry address
GR26 Region register value used to compute the hash entry address
GR27 Virtual PTA

GR28 Reserved

GR29 Reserved

GR30 Reserved

GR31 Reserved

Returns:

Return Value Description

GR24 Scratch

GR25 Scratch

GR26 Scratch

GR27 Scratch

GR28 Scratch

GR29 Scratch

GR30 Scratch

GR31 64-bit VHPT entry address

Description: PAL_VPS THASH computes along format Virtual Hashed Page Table (VHPT)

entry address based on the input arguments and the result is returned in GR31. The
format of the region register parameter (GR26) isdefined in Section 4.1.2, “Region
Registers (RR)” on page 2:55, the ve field isignored by the service. The format of
the Virtual PTA parameter (GR27) is defined in Section 3.3.4.4, “Page Table
Address (PTA —CR8)” on page 2:32, the vf field isignored by the service.

PAL_VPS THASH returns the samelong format VHPT entry address given the
same input arguments across different implementations. The long format VHPT
entry address returned may not be the same as the long format VHPT entry address
generated by thet hash instruction of the processor.

PAL_VPS THASH can be called with PSR.ic equal to 1 or O.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Processor Abstraction Layer

PAL_VPS_TTAG — Compute Translated Hashed Entry Tag

(0x1800)
Purpose: Compute the long format translated hashed entry tag.
Arguments:

Argument Description

GR24 64-bit host virtual return address

GR25 64-bit virtual address used to compute the hash entry tag
GR26 Region register value used to compute the hash entry tag
GR27 Reserved

GR28 Reserved

GR29 Reserved

GR30 Reserved

GR31 Reserved

Returns:

Return Value Description

GR24 Scratch

GR25 Scratch

GR26 Scratch

GR27 Scratch

GR28 Scratch

GR29 Scratch

GR30 Scratch

GR31 64-bit VHPT entry tag

Description: PAL_VPS TTAG computes the tag value of the long format Virtual Hashed Page

Table (VHPT) based on theinput arguments and the result isreturned in GR31. The
format of the region register parameter (GR26) isdefined in Section 4.1.2, “Region
Registers (RR)” on page 2:55, the ve field isignored by the service.

PAL_VPS TTAG returns the same tag value given the same input arguments
across different implementations. The tag value returned may not be the same as
the tag value generated by thet t ag instruction of the processor.

PAL_VPS TTAG can be called with PSR.ic equal to 1 or 0.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 81

u
Processor Abstraction Layer Inte|®

PAL VPS RESTORE - Fast Restore Virtual Processor State

(0x1c00)

Purpose: Performs an implementation-specific lightweight restore operation for the specified
VPD on thelogical processor.

Arguments:

Argument Description

GR24 64-Dbit host virtual return address

GR25 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)

GR26 Scratch

GR27 Scratch

GR28 Scratch

GR29 Scratch

GR30 Scratch

GR31 Scratch

Returns:

Return Value Description

GR24 Scratch

GR25 Scratch

GR26 Scratch

GR27 Scratch

GR28 Scratch

GR29 Scratch

GR30 Scratch

GR31 Scratch

Description: PAL_VPS RESTORE performs an implementation-specific lightweight restore

operation of the virtual processor specified by the VPD parameter (GR25) on the
logical processor. The host virtual to host physical translation of the 64K region
specified by the VPD parameter (GR25) and the PAL virtual environment buffer
must be mapped by instruction and data trand ation registers (TR). The instruction
and data translation must be maintained until after the next invocation of
PAL_ VP _SAVE or PAL_VPS SAVE and adifferent host IVT is set up by the
VMM by writing to the IVA control register. PAL_VPS _RESTORE configures the
logical processor to run the specified virtual processor by loading the minimal
implementation-specific virtual processor context from the VPD, and returns
control back to the VMM.

This service performs animplicit PAL_VPS SYNC_WRITE; thereis no need for
the VMM toinvoke PAL_VPS SYNC WRITE unlessthe VPD values are
modified before resuming the virtual processor. After the service, the caller is
responsible for restoring al of the architectural state before resuming to the new
virtual processor through PAL_VPS RESUME_NORMAL or

PAL_VPS RESUME_HANDLER.

Upon completion of this service, the IVA-based interruptions will be delivered to
the host IVT associated with this virtual processor.

This service does not restore any PAL procedure implementation-specific state’.
The caller of this serviceis responsible to manage the difference in settings for the
PAL procedures between the VMM and virtual processors.

1. PAL_VP_RESTORE can be used to restore PAL procedure implementation-specific state. See“ PAL Restore Virtual Processor” on page 93

for details.

82 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Processor Abstraction Layer

PAL_VPS_SAVE - Fast Save Virtual Processor State (0x2000)

Purpose: Performs an implementation-specific lightweight save operation for the specified
VPD on thelogical processor.

Arguments:

Argument Description

GR24 64-bit host virtual return address

GR25 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)

GR26 Scratch

GR27 Scratch

GR28 Scratch

GR29 Scratch

GR30 Scratch

GR31 Scratch

Returns:

Return Value Description

GR24 Scratch

GR25 Scratch

GR26 Scratch

GR27 Scratch

GR28 Scratch

GR29 Scratch

GR30 Scratch

GR31 Scratch

Description: PAL_VPS_SAVE performs an implementation-specific lightweight save operation

of the virtual processor specified by the VPD parameter (GR25) on the logical
processor. The host virtual to host physical trandation of the 64K region specified
by the VPD parameter (GR25) must be mapped by instruction and data trandlation
registers (TR).

This service performs an implicit PAL_VPS _SYNC_READ; thereis no need for
the VMM toinvoke PAL_VPS SYNC_READ to synchronize the implementation-
specific control resources before this service.

Upon completion of this service, the IVA-based interruptions will continue to be
delivered to the host IVT associated with this virtual processor. After this service,
the VMM can setup the IVA control register to use adifferent host IVT.

This service does not save any PAL procedure implementation-specific state!. The
caller of this service isresponsible to manage the difference in settings for the PAL
procedures between the VMM and virtual processors.

1. PAL_VP_SAVE can be used to save PAL procedure implementation-specific state. See“PAL Save Virtua Processor” on page 95 for details.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 83

Processor Abstraction Layer In

5.5

84

PAL Procedures for Virtualization

This section describes the procedures for Itanium architecture virtualization.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

tel.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Processor Abstraction Layer

PAL Create New Virtual Processor

Purpose: Initializes a new vpd for the operation of anew virtual processor in the virtual
environment.

Calling Conv: Stacked Registers

Mode: Virtua

Arguments:

Argument Description

index Index of PAL_VP_CREATE within the list of PAL procedures

vpd 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)

host_iva 64-bit host virtual pointer to the host IVT for the virtual processor

opt_handler 64-bit non-zero host-virtual pointer to an optional handler for virtualization intercepts. See
Section 5.2.3, “PAL Intercepts in Virtual Environment” on page 58 for details.

Returns:

Return Value Description

status Return status of the PAL_VP_CREATE procedure

Reserved 0

Reserved 0

Reserved 0

Status:

Status Value | Description

0

-1
-2
-3

Description:

Call completed without error

Unimplemented procedure

Invalid argument

Call completed with error — Indicates internal error in PAL

Initializes a new vpd for the operation of a new virtual processor within the virtual
environment.

The caller must pass a pointer to the new Virtual Processor Descriptor (vpd) as
argument. The host virtual to host physical translation of the 64K region specified
by vpd must be mapped with either aDTR or DTC. See Section 11.9.2.1.3,
“Making PAL Procedure Callsin Physical or Virtual Mode” on page 2:312 for
details on data trand ation requirements of memory buffer pointers passed as
arguments to PAL procedures. The vac and vdc parameters in the VPD must
aready beinitialized before calling this procedure.

The host_iva parameter specifiesthe host IVT to handle I\VA-based interruptions
when this virtual processor isrunning. The VMM can use the same or different
host_iva for each virtual processor. The opt_handler specifies an optional
virtualization intercept handler. If anon-zero valueis specified, al virtualization
intercepts are delivered to this handler. If azero valueis specified, all virtualization
intercepts are delivered to the Virtualization vector in the host IVT. If the VMM
relocatesthe IVT specified by the host_iva parameter and/or the virtualization
intercept handler specified by the opt_handler parameter after this procedure,
PAL_VP_REGISTER must be called to register the new host IVT and
virtualization intercept handler before resuming virtual processor execution or
allowing any I'VA-based interruptions to occur; otherwise processor operationis
undefined.

Upon return, the VMM is responsible for setting up the rest of the VMD state
before the new virtual processor islaunched (viaPAL_VPS RESUME_NORMAL
or PAL_VPS RESUME_HANDLER).

85

u
Processor Abstraction Layer Inte|®

86

PAL Virtual Environment Information

Purpose:

Calling Conv:

Returns the parameters needed to enter a virtual environment.
Stacked Registers

Mode: Virtual

Arguments:

Argument Description

index Index of PAL_VP_ENV_INFO within the list of PAL procedures
Reserved 0

Reserved 0

Reserved 0

Returns:

Return Value Description

status
buffer_size

vp_env_info
Reserved

Status:

Return status of the PAL_VP_ENV_INFO procedure

Unsigned integer denoting the number of bytes required by the PAL virtual environment
buffer during PAL_VP_INIT_ENV

64-bit vector of virtual environment information. See Table 5-27. for details

0

Status Value | Description

0
-1
-2
-3

Description:

Call completed without error

Unimplemented procedure

Invalid argument

Call completed with error — Indicates internal error in PAL

This procedure returns the configuration options and the PAL virtual environment
buffer size required by PAL_VP_INIT_ENV. This procedure is used by the VMM
to setup avirtual environment and determine the amount of memory / resources
required. The VMM can then allocate the required amount of physical memory, set

up the virtual to physical instruction and data trandations that cover the PAL
virtual environment buffer in TRsand call PAL_VP_INIT_ENV. The buffer
allocated must be at least 4K aligned.

On amultiprocessor system, this procedure need only be invoked once (on any one

logical processor) to obtain virtual environment information.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

INlal.

Processor Abstraction Layer

Table 5-27. vp_env_info — Virtual Environment Information Parameter

Field

opcode

Description

If 1, hardware support to provide opcode information during PAL intercepts is avail-
able. If 1, and if the opcode field of the config_options parameter to
PAL_VP_INIT_ENV is set to 1, then the opcode (and the decoding of cause) passed
as parameters to the VMM on intercept will represent the instruction that triggered the
intercept

If 0, opcode information during PAL intercepts is provided by PAL. If 0, and if the
opcode field of the config_options parameter to PAL_VP_INIT_ENV is set to 1, then
the opcode (and the decoding of cause) passed as parameters to the VMM on inter-
cept will not necessarily represent the instruction that triggered the intercept, but may
represent some value that was written to memory between the time the instruction that
triggered the intercept was fetched, and when the intercept was triggered.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 87

Processor Abstraction Layer

88

PAL Exit Virtual Environment

Purpose:

Calling Conv:

Allows alogical processor to exit avirtual environment.
Stacked Registers

Mode: Virtual
Arguments:
Argument Description
index Index of PAL_VP_EXIT_ENV within the list of PAL procedures
iva Optional 64-bit host virtual pointer to the IVT when this procedure is done
Reserved 0
Reserved 0
Returns:
Return Value Description
status Return status of the PAL_VP_EXIT_ENV procedure
Reserved 0
Reserved 0
Reserved 0
Status:
Status Value | Description
0 Call completed without error
-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error — Indicates internal error in PAL
Description: This procedure allows alogical processor to exit avirtual environment.

Upon successful execution of the PAL_VP_EXIT_ENV procedure and if the iva
parameter is non-zero, the IVA control register will contain the value from the iva

parameter.

On amultiprocessor system, the VMM must allow the last logical processor in this
environment to complete the procedure before freeing the memory resource

alocated to the virtual environment.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Processor Abstraction Layer

PAL Initialize Virtual Environment

Purpose: Allows alogical processor to enter avirtual environment.

Calling Conv: Stacked Registers

Mode: Virtual

Arguments:

Argument Description

index Index of PAL_VP_INIT_ENV within the list of PAL procedures

config_options | 64-bit vector of global configuration settings - See Table 5-28. for details

pbase_addr Host physical base address of a block of contiguous physical memory for the PAL virtual
environment buffer - This memory area must be allocated by the VMM and be 4K aligned.
The first logical processor to enter the environment will initialize the physical block for
virtualization operations.

vbase_addr Host virtual base address of the corresponding physical memory block for the PAL virtual
environment buffer - The VMM must maintain the host virtual to host physical data and
instruction translations in TRs for addresses within the allocated address space. Logical
processors in this virtual environment will use this address when transitioning to virtual mode
operations.

Returns:

Return Value

Description

status Return status of the PAL_VP_INIT_ENV procedure
vsa_base Virtualization Service Address — VSA specifies the virtual base address of the PAL
virtualization services in this virtual environment.
Reserved 0
Reserved 0
Status:
Status Value | Description

0 Call completed without error
-1 Unimplemented procedure
-2 Invalid argument — Invalid incoming arguments/environment
-3 Call completed with error — Indicates internal error in PAL.
Description: ~ This procedure allows alogical processor to enter avirtual environment. This call

must be made after calling PAL_VP_ENV_INFO and before calling other PAL
virtualization procedures and services. All of the logical processorsin avirtua
environment share the same PAL virtual environment buffer. The buffer must be
4K aligned. The first logical processor entering the virtual environment initializes
the buffer provided by the VM M. Subsequent processors can enter the virtual
environment at any time and will not perform initialization to the buffer.

PAL_VP_ENV_INFO must be called before this procedure to determine the
configuration options and size requirements for the virtual environment. The VMM
is required to maintain the ITR and DTR translations of the PAL virtua
environment buffer throughout this procedure. See “PAL Virtual Environment
Information” on page 86 for more information on PAL_VP_ENV_INFO.

After this procedure, it is optional for the VMM to maintain the TR mapping for
the PAL virtual environment buffer. If the TR translations for the buffer are not
installed, the VMM must not make any PAL virtualization service calls; and the
VMM must be prepared to handle DTLB faults during any PAL virtualization
procedure calls.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification 89

u
Processor Abstraction Layer Inte|®

Table 5-28 shows the layout of the config_options parameter. The config_options
parameter configures the global configuration optionsfor al thelogical processors
in the virtual environment. All logical processorsin the virtual environment must
specify the same configuration options in the config_options parameter, otherwise
processor operation is undefined.

Table 5-28. config_options — Global Configuration Options

Field Bit Description

initialize 0 If 1, this procedure will initialize the PAL virtual environment buffer for this virtual envi-
ronment. If 0, this procedure will not initialize the PAL virtual environment buffer. On a
multiprocessor system, the VMM must wait until this procedure completes on the first
logical processor before calling this procedure on additional logical processors; other-
wise processor operation is undefined.

fr_pmc 1 If 1, performance counters are frozen on all IVA-based interruptions when virtual pro-
cessors are running. If 0, the performance counters will not be frozen on IVA-based
interruptions when virtual processors are running.

be 2 Big-endian — Indicates the endian setting of the VMM. If 1, the values in the VPD are
stored in big-endian format and the PAL services calls are made with PSR.be bit
equals to 1. If 0, the values in the VPD are stored in little-endian format and the PAL
services calls are made with PSR.be bit equals to 0.

opcode 8 If 1, opcode information will be provided to the VMM during PAL intercepts within the
virtual environment. This opcode may or may not be guaranteed to be the opcode that
triggered the intercept. See Table 5-27, “vp_env_info — Virtual Environment Informa-
tion Parameter” on page 87 for details.

If 0, most virtualization optimizations cannot be enabled through the virtualization
acceleration control (vac) and virtualization disable control (vdc) fields in the VPD. For
details on specific optimizations supported in vac and vdc, see Table 5-2, “Virtualiza-
tion Acceleration Control (vac) Fields” on page 55 and Table 5-3, “Virtualization Dis-
able Control (vdc) Fields” on page 55.

The value of this field also determines how virtualization events and General Excep-
tion faults are delivered to the VMM on certain instructions. See Section 5.2.2, “Inter-
ruption Handling in a Virtual Environment” on page 56 for details.

cause 9 If 1, the causes of virtualization intercepts will be provided to the VMM during PAL
intercept handoffs within the virtual environment. No information will be provided if 0. If
this field is 1, the opcode field also be 1, otherwise processor operation is undefined.
See Section 5.2.3.1, “PAL Virtualization Intercept Handoff State” on page 58 for details
of virtualization intercept handoffs.

The fr_pmc bit in the global config_options parameter specifies whether the
performance counters will be frozen when the Virtualization optimizations
specified in the Virtualization Acceleration Control (vac) and Virtualization
Disable Control (vdc) are running. When avirtual processor is running, the vac
field in the corresponding VPD specifies whether a certain virtualization
accelerations are enabled. If thefr_pmc in the virtual environment was also
enabled, the performance counters will be frozen when the enabled virtualization
optimizations are running. See Section 5.2.4, “Virtualization Optimizations’ on
page 61 for details on Virtualization Acceleration Control (vac) and Virtualization
Disable Control (vdc).

90 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Processor Abstraction Layer

PAL Register Virtual Processor

Purpose: Register adifferent host IVT and/or a different optional virtualization intercept
handler for the virtual processor specified by vpd.

Calling Conv: Stacked Registers

Mode: Virtua

Arguments:

Argument Description

index Index of PAL_VP_REGISTER within the list of PAL procedures

vpd 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)

host_iva 64-bit host virtual pointer to the host IVT for the virtual processor

opt_handler 64-bit non-zero host-virtual pointer to an optional handler for virtualization intercepts. See
Section 5.2.3, “PAL Intercepts in Virtual Environment” on page 58 for details.

Returns:

Return Value Description

status Return status of the PAL_VP_REGISTER procedure

Reserved 0

Reserved 0

Reserved 0

Status:

Status Value | Description

Ok o

Description:

Call completed without error

Unimplemented procedure

Invalid argument

Call completed with error — Indicates internal error in PAL

PAL_VP_REGISTER registers a different host IV T and/or a different optional
virtualization intercept handler specific to the virtual processor specified by vpd.
On creation of avirtual processor by PAL_VP_CREATE, the VMM specifiesa
host IVT specific to the virtual processor. This procedure allowsthe VMM to
specify ahost IVT different from the one specified during PAL_VP_CREATE.

The host virtual to host physical trandation of the 64K region specified by vpd
must be mapped with either aDTR or DTC. See Section 11.9.2.1.3, “Making PAL
Procedure Callsin Physical or Virtual Mode” on page 2:312 for details on data
tranglation requirements of memory buffer pointers passed as arguments to PAL
procedures.

The host_iva parameter specifiesthe host IVT to handle IVA-based interruptions
when this virtual processor isrunning. The VMM can use the same or different
host_iva for each virtual processor. The opt_handler specifies an optional
virtualization intercept handler. If anon-zero valueis specified, al virtualization
intercepts are delivered to this handler. If azero valueis specified, all virtualization
intercepts are delivered to the Virtualization vector in the host IVT. Upon
completion of this procedure, the VMM must not relocate the IVT specified by the
host_iva parameter and/or the virtualization intercept handler specified by the
opt_handler parameter. The VMM can call this procedure again in caseit wishesto
associate adifferent host VT and/or virtualization intercept handler with the
virtual processor.

91

u
Processor Abstraction Layer Inte|®

This procedure can be used by the VMM to:

» Relocate the host IVT associated with the virtual processor.

« Specify adifferent optional virtualization intercept handler for the virtual
processor.

92 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Processor Abstraction Layer

PAL Restore Virtual Processor

Purpose:

Calling Conv:

Restores virtual processor state for the specified vpd on the logical processor.
Stacked Registers

Mode: Virtual
Arguments:
Argument Description
index Index of PAL_VP_RESTORE within the list of PAL procedures.
vpd 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD.)
pal_proc_vector | Vector specifies PAL procedure implementation-specific state to be restored
Reserved 0
Returns:
Return Value Description
status Return status of the PAL_VP_RESTORE procedure.
Reserved 0
Reserved 0
Reserved 0
Status:
Status Value | Description

LN B o

Description:

Call completed without error

Unimplemented procedure

Invalid argument

Call completed with error — Indicates internal error in PAL.

PAL_VP_RESTORE performs an implementation-specific restore operation of the
virtual processor specified by the vpd parameter on the logical processor. The host
virtual to host physical trandation of the 64K region specified by vpd and the PAL
virtual environment buffer must be mapped by instruction and data translation
registers (TR). The instruction and data translation must be maintained until after
the next invocation of PAL_VP_SAVE or PAL_VPS SAVE and adifferent host
IVT is set up by the VMM by writing to the VA control register.
PAL_VP_RESTORE configures the logical processor to run the specified virtual
processor by loading implementati on-specific virtual processor context from the
VPD, and returns control back to the VMM.

The pal_proc_vector parameter for PAL_VP_RESTORE alowsthe VMM to
control the PAL procedure implementation-specific state to be saved. Table 5-29
shows the format of pal_proc_vector. When abit is set to 1 in the vector, the
implementation-specific state for the corresponding PAL procedures will be
restored by PAL_VP_RESTORE. When a bit is set to 0 in the vector, no
implementation-specific state will be restored for the corresponding PAL
procedures.

Table 5-29. Format of pal_proc_vector

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Bit PAL Procedures
0 PAL_PROC_GET_FEATURES, PAL_PROC_SET_FEATURES
1 PAL_GET_PSTATE, PAL_SET_PSTATE

93

u
Processor Abstraction Layer Inte|®

This procedure performs an implicit PAL_VPS_SYNC_WRITE; there is ho need
for the VMM to invoke PAL_VPS SYNC WRITE unlessthe VPD values are
maodified before resuming the virtual processor. After the procedure, the caller is
responsible for restoring all of the architectural state before resuming to the new
virtual processor through PAL_VPS RESUME_NORMAL or

PAL_VPS RESUME_HANDLER.

Upon completion of this procedure, the I VA-based interruptions will be delivered
tothe host IVT associated with this virtual processor.

94 Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

Processor Abstraction Layer

PAL Save Virtual Processor

Purpose:

Calling Conv:

Saves virtual processor state for the specified vpd on the logical processor.
Stacked Registers

Mode: Virtual
Arguments:
Argument Description
index Index of PAL_VP_SAVE within the list of PAL procedures
vpd 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)
pal_proc_vector | Vector specifies PAL procedure implementation-specific state to be saved
Reserved 0
Returns:
Return Value Description
status Return status of the PAL_VP_SAVE procedure
Reserved 0
Reserved 0
Reserved 0
Status:
Status Value | Description

0

-1
-2
-3

Description:

Call completed without error

Unimplemented procedure

Invalid argument

Call completed with error — Indicates internal error in PAL

PAL_VP_SAVE performs an implementati on-specific save operation of the virtua
processor specified by the vpd parameter on the logical processor. The host virtual
to host physical translation of the 64K region specified by vpd must be mapped by
instruction and data translation registers (TR).

The pal_proc_vector parameter for PAL_VP_SAVE dlowsthe VMM to control
the PAL procedure implementation-specific state to be saved. Table 5-29 on

page 93 shows the format of pal_proc_vector. When a bit is set to 1 in the vector,
the implementation-specific state for the corresponding PAL procedures will be
saved by PAL_VP_SAVE. When abit is set to 0 in the vector, no implementation-
specific state will be saved for the corresponding PAL procedures.

Thisprocedure performsanimplicit PAL_VPS _SYNC_READ; thereisno need for
the VMM toinvoke PAL_VPS SYNC_READ to synchronize the implementation-
specific control resources before this procedure.

Upon completion of this procedure, the IVA-based interruptions will continue to be
delivered to the host IVT associated with this virtual processor. After this
procedure, the VMM can setup the IVA control register to use a different host IVT.

95

Processor Abstraction Layer

96

PAL Terminate Virtual Processor

Purpose: Terminates operation for the specified virtual processor.
Calling Conv: Stacked Registers
Mode: Virtual
Arguments:
Argument Description
index Index of PAL_VP_TERMINATE within the list of PAL procedures
vpd 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)
iva Optional 64-bit host virtual pointer to the IVT when this procedure is done
Reserved 0
Returns:
Return Value Description
status Return status of the PAL_VP_TERMINATE procedure
Reserved 0
Reserved 0
Reserved 0
Status:
Status Value | Description

0
-1
-2
-3

Description:

Call completed without error

Unimplemented procedure

Invalid argument

Call completed with error — Indicates internal error in PAL

Terminates operation of the virtual processor specified by vpd on the logical
processor. The host virtual to host physical translation of the 64K region specified
by vpd must be mapped by instruction and data translation registers (TR). See
Section 11.9.2.1.3, “Making PAL Procedure Callsin Physical or Virtual Mode” on
page 2:312 for details on data translation requirements of memory buffer pointers
passed as arguments to PAL procedures. All resources allocated for the execution
of the virtual machine are freed.

Upon successful execution of PAL_VP_TERMINATE procedure and if the iva
parameter is non-zero, the IVA control register will contain the value from the iva
parameter.

Vanderpool Technology for the Intel® Itanium® Architecture (VT-i) Preliminary Specification

	1 Revision History
	2 Introduction
	2.1 Affected Documents/Related Documents
	2.2 Virtualization Terminology
	2.3 Virtualization Concept
	2.4 Virtualization Environment Overview
	2.5 Resource Virtualization Policies

	3 Itanium® Architecture Changes
	4 Instruction Reference
	5 Processor Abstraction Layer
	5.1 Virtualization Terminology
	5.2 PAL Virtualization Support
	5.2.1 Virtual Processor Descriptor (VPD)
	5.2.2 Interruption Handling in a Virtual Environment
	5.2.3 PAL Intercepts in Virtual Environment
	5.2.4 Virtualization Optimizations
	5.2.5 PAL Virtualization Services

	5.3 PAL Procedure Summary
	5.4 PAL Virtualization Services Specification
	5.5 PAL Procedures for Virtualization

