
Knights Corner Instruction Set Reference
Manual

July 24, 2012

Reference Number: 327364-001

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTIONWITH INTEL PRODUCTS. NO LICENSE, EX-
PRESSOR IMPLIED,BYESTOPPELOROTHERWISE, TOANY INTELLECTUALPROPERTYRIGHTS ISGRANTEDBY
THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,
INTEL ASSUMES NO LIABILITYWHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIEDWARRANTY,
RELATING TO SALE AND/ORUSE OF INTEL PRODUCTS INCLUDING LIABILITY ORWARRANTIES RELATING TO
FITNESS FORA PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENTOF ANY PATENT, COPYRIGHT
OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or
indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH
MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUB-
CONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS
AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT
OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING
IN ANYWAY OUT OF SUCHMISSION CRITICAL APPLICATION,WHETHER ORNOT INTEL OR ITS SUBCONTRAC-
TORWAS NEGLIGENT IN THE DESIGN, MANUFACTURE, ORWARNING OF THE INTEL PRODUCT OR ANY OF ITS
PARTS.

Intel may make changes to speci ications and product descriptions at any time, without notice. Designers must
not rely on the absence or characteristics of any features or instructionsmarked "reserved" or "unde ined". Intel
reserves these for future de inition and shall have no responsibility whatsoever for con licts or incompatibilities
arising from future changes to them. The information here is subject to change without notice. Do not inalize a
design with this information.

The products described in this documentmay contain design defects or errors known as erratawhichmay cause
the product to deviate from published speci ications. Current characterized errata are available on request.

Contact your local Intel sales of ice or your distributor to obtain the latest speci ications and before placing your
product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature,
may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Intel, the Intel® logo, Intel® Pentium®, Intel® Xeon®, Intel® Pentium® 4 Processor, Intel® Core™ Duo, Intel®
Core™ 2 Duo, MMX™, Intel® Streaming SIMD Extensions (Intel® SSE), Intel® Advanced Vector Extensions (Intel®
AVX) are trademarks or registered trademarks of Intel® Corporation or its subsidiaries in the United States and
other countries. *Other names and brands may be claimed as the property of others.

Copyright 2012 Intel® Corporation. All rights reserved.

2 Reference Number: 327364-001

CONTENTS

Contents

1 Introduction 20

2 Instructions Terminology and State 21

2.1 Overview of the Knights Corner instructions Extensions . 21

2.1.1 What are vectors? . 21

2.1.2 Vector mask registers . 21

2.1.2.1 Vector mask k0 . 22

2.1.2.2 Example of use . 22

2.1.3 Understanding Knights Corner instructions . 23

2.1.3.1 Knights Corner instructions Vector Instructions 24

2.1.3.2 Knights Corner instructions Vector Memory Instructions: 25

2.1.3.3 Knights Corner instructions vector mask Instructions 26

2.1.3.4 Knights Corner instructions New Scalar Instructions 26

2.2 Knights Corner instructions Swizzles and Converts . 27

2.2.1 Load-Op Swizzle/Convert . 28

2.2.2 Load Up-convert . 30

2.2.3 Down-Conversion . 32

2.3 Static Rounding Mode . 35

2.4 Knights Corner Execution Environments . 36

3 Knights Corner Instruction Format 40

3.1 Overview . 40

3.2 Instruction Formats . 40

Reference Number: 327364-001 3

CONTENTS

3.2.1 MVEX/VEX and the LOCK pre ix . 40

3.2.2 MVEX/VEX and the 66H, F2H, and F3H pre ixes . 41

3.2.3 MVEX/VEX and the REX pre ix . 41

3.3 The MVEX Pre ix . 41

3.3.1 Vector SIB (VSIB) Memory Addressing . 43

3.4 The VEX Pre ix . 43

3.5 Knights Corner instructions Assembly Syntax . 45

3.6 Notation . 45

3.6.1 Operand Notation . 45

3.6.2 The Displacement Bytes . 46

3.6.3 Memory size and disp8*N calculation . 46

3.7 EH hint . 49

3.8 Functions and Tables Used . 51

3.8.1 MemLoad and MemStore . 51

3.8.2 SwizzUpConvLoad, UpConvLoad and DownConvStore . 51

3.8.3 Other Functions/Identi iers . 52

4 Floating-Point Environment, Memory Addressing, and Processor State 54

4.1 Overview . 54

4.1.1 Suppress All Exceptions Attribute (SAE) . 54

4.1.2 SIMD Floating-Point Exceptions . 55

4.1.3 SIMD Floating-Point Exception Conditions . 55

4.1.3.1 Invalid Operation Exception (#I) . 56

4.1.3.2 Divide-By-Zero Exception (#Z) . 56

4.1.3.3 Denormal Operand Exception (#D) . 56

4.1.3.4 Numeric Over low Exception (#O) . 57

4.1.3.5 Numeric Under low Exception (#U) . 58

4.1.3.6 Inexact Result (Precision) Exception (#P) . 58

4.2 Denormal Flushing Control . 58

4.2.1 Denormal control in up-conversions and down-conversions 58

4 Reference Number: 327364-001

CONTENTS

4.2.1.1 Up-conversions . 58

4.2.1.2 Down-conversions . 58

4.3 Extended Addressing Displacements . 59

4.4 Swizzle/up-conversion exceptions . 59

4.5 Accessing uncacheable memory . 61

4.5.1 Memory read operations . 61

4.5.2 vloadunpackh*/vloadunpackl* . 61

4.5.3 vgatherd* . 61

4.5.4 Memory stores . 61

4.6 Floating-point Notes . 62

4.6.1 Rounding Modes . 62

4.6.1.1 Swizzle-explicit rounding modes . 62

4.6.1.2 De inition and propagation of NaNs . 62

4.6.1.3 Signed Zeros . 63

4.6.2 REX pre ix and Knights Corner instructions interactions . 65

4.7 Knights Corner instructions State Save . 65

4.8 Knights Corner instructions Processor State After Reset . 65

5 Instruction Set Reference 67

5.1 Interpreting Instruction Reference Pages . 67

5.1.1 Instruction Format . 67

5.1.2 Opcode Notations for MVEX Encoded Instructions . 67

5.1.3 Opcode Notations for VEX Encoded Instructions . 68

6 Instruction Descriptions 70

6.1 Vector Mask Instructions . 71

JKNZD - Jump near if mask is not zero . 72

JKZD - Jump near if mask is zero . 75

KAND - AND Vector Mask . 78

KANDN - AND NOT Vector Mask . 80

Reference Number: 327364-001 5

CONTENTS

KANDNR - Reverse AND NOT Vector Mask . 82

KCONCATH - Pack and Move High Vector Mask . 84

KCONCATL - Pack and Move Low Vector Mask . 86

KEXTRACT - Extract Vector Mask From Register . 88

KMERGE2L1H - Swap and Merge High Element Portion and Low Portion of Vector Masks 90

KMERGE2L1L - Move Low Element Portion into High Portion of Vector Mask 92

KMOV - Move Vector Mask . 94

KNOT - Not Vector Mask . 96

KOR - OR Vector Masks . 98

KORTEST - OR Vector Mask And Set EFLAGS . 100

KXNOR - XNOR Vector Masks . 102

KXOR - XOR Vector Masks . 104

6.2 Vector Instructions . 106

VADDNPD - Add and Negate Float64 Vectors . 107

VADDNPS - Add and Negate Float32 Vectors . 110

VADDPD - Add Float64 Vectors . 113

VADDPS - Add Float32 Vectors . 116

VADDSETSPS - Add Float32 Vectors and Set Mask to Sign . 119

VALIGND - Align Doubleword Vectors . 123

VBLENDMPD - Blend Float64 Vectors using the Instruction Mask 125

VBLENDMPS - Blend Float32 Vectors using the Instruction Mask 128

VBROADCASTF32X4 - Broadcast 4xFloat32 Vector . 131

VBROADCASTF64X4 - Broadcast 4xFloat64 Vector . 133

VBROADCASTI32X4 - Broadcast 4xInt32 Vector . 135

VBROADCASTI64X4 - Broadcast 4xInt64 Vector . 137

VBROADCASTSD - Broadcast Float64 Vector . 139

VBROADCASTSS - Broadcast Float32 Vector . 141

VCMPPD - Compare Float64 Vectors and Set Vector Mask . 143

VCMPPS - Compare Float32 Vectors and Set Vector Mask . 148

6 Reference Number: 327364-001

CONTENTS

VCVTDQ2PD - Convert Int32 Vector to Float64 Vector . 153

VCVTFXPNTDQ2PS - Convert Fixed Point Int32 Vector to Float32 Vector 156

VCVTFXPNTPD2DQ - Convert Float64 Vector to Fixed Point Int32 Vector 160

VCVTFXPNTPD2UDQ - Convert Float64 Vector to Fixed Point Uint32 Vector 164

VCVTFXPNTPS2DQ - Convert Float32 Vector to Fixed Point Int32 Vector 168

VCVTFXPNTPS2UDQ - Convert Float32 Vector to Fixed Point Uint32 Vector 172

VCVTFXPNTUDQ2PS - Convert Fixed Point Uint32 Vector to Float32 Vector 176

VCVTPD2PS - Convert Float64 Vector to Float32 Vector . 179

VCVTPS2PD - Convert Float32 Vector to Float64 Vector . 183

VCVTUDQ2PD - Convert Uint32 Vector to Float64 Vector . 186

VEXP223PS - Base-2 Exponential Calculation of Float32 Vector . 189

VFIXUPNANPD - Fix Up Special Float64 Vector Numbers With NaN Passthrough 192

VFIXUPNANPS - Fix Up Special Float32 Vector Numbers With NaN Passthrough 196

VFMADD132PD - Multiply Destination By Second Source and Add To First Source Float64 Vectors 200

VFMADD132PS - Multiply Destination By Second Source and Add To First Source Float32 Vectors 204

VFMADD213PD - Multiply First Source By Destination and Add Second Source Float64 Vectors . 207

VFMADD213PS - Multiply First Source By Destination and Add Second Source Float32 Vectors . . 211

VFMADD231PD - Multiply First Source By Second Source and Add To Destination Float64 Vectors 215

VFMADD231PS - Multiply First Source By Second Source and Add To Destination Float32 Vectors 219

VFMADD233PS - Multiply First Source By Specially Swizzled Second Source and Add To Second
Source Float32 Vectors . 223

VFMSUB132PD - Multiply Destination By Second Source and Subtract First Source Float64 Vectors227

VFMSUB132PS - Multiply Destination By Second Source and Subtract First Source Float32 Vectors231

VFMSUB213PD - Multiply First Source By Destination and Subtract Second Source Float64 Vectors234

VFMSUB213PS - Multiply First Source By Destination and Subtract Second Source Float32 Vectors238

VFMSUB231PD - Multiply First Source By Second Source and Subtract Destination Float64 Vectors241

VFMSUB231PS - Multiply First Source By Second Source and Subtract Destination Float32 Vectors245

VFNMADD132PD - Multiply Destination By Second Source and Subtract From First Source
Float64 Vectors . 248

VFNMADD132PS - Multiply Destination By Second Source and Subtract From First Source
Float32 Vectors . 252

Reference Number: 327364-001 7

CONTENTS

VFNMADD213PD - Multiply First Source By Destination and Subtract From Second Source
Float64 Vectors . 256

VFNMADD213PS - Multiply First Source By Destination and Subtract From Second Source
Float32 Vectors . 260

VFNMADD231PD - Multiply First Source By Second Source and Subtract From Destination
Float64 Vectors . 264

VFNMADD231PS - Multiply First Source By Second Source and Subtract From Destination
Float32 Vectors . 268

VFNMSUB132PD - Multiply Destination By Second Source, Negate, and Subtract First Source
Float64 Vectors . 272

VFNMSUB132PS - Multiply Destination By Second Source, Negate, and Subtract First Source
Float32 Vectors . 276

VFNMSUB213PD - Multiply First Source By Destination, Negate, and Subtract Second Source
Float64 Vectors . 280

VFNMSUB213PS - Multiply First Source By Destination, Negate, and Subtract Second Source
Float32 Vectors . 284

VFNMSUB231PD - Multiply First Source By Second Source, Negate, and Subtract Destination
Float64 Vectors . 288

VFNMSUB231PS - Multiply First Source By Second Source, Negate, and Subtract Destination
Float32 Vectors . 292

VGATHERDPD - Gather Float64 Vector With Signed Dword Indices 296

VGATHERDPS - Gather Float32 Vector With Signed Dword Indices 299

VGATHERPF0DPS - Gather Prefetch Float32 Vector With Signed Dword Indices Into L1 302

VGATHERPF0HINTDPD - Gather Prefetch Float64 Vector Hint With Signed Dword Indices 305

VGATHERPF0HINTDPS - Gather Prefetch Float32 Vector Hint With Signed Dword Indices 307

VGATHERPF1DPS - Gather Prefetch Float32 Vector With Signed Dword Indices Into L2 309

VGETEXPPD - Extract Float64 Vector of Exponents from Float64 Vector 312

VGETEXPPS - Extract Float32 Vector of Exponents from Float32 Vector 315

VGETMANTPD - Extract Float64 Vector of Normalized Mantissas from Float64 Vector 318

VGETMANTPS - Extract Float32 Vector of Normalized Mantissas from Float32 Vector 323

VGMAXABSPS - Absolute Maximum of Float32 Vectors . 328

VGMAXPD - Maximum of Float64 Vectors . 332

VGMAXPS - Maximum of Float32 Vectors . 336

VGMINPD - Minimum of Float64 Vectors . 340

8 Reference Number: 327364-001

CONTENTS

VGMINPS - Minimum of Float32 Vectors . 344

VLOADUNPACKHD - Load Unaligned High And Unpack To Doubleword Vector 348

VLOADUNPACKHPD - Load Unaligned High And Unpack To Float64 Vector 351

VLOADUNPACKHPS - Load Unaligned High And Unpack To Float32 Vector 354

VLOADUNPACKHQ - Load Unaligned High And Unpack To Int64 Vector 357

VLOADUNPACKLD - Load Unaligned Low And Unpack To Doubleword Vector 360

VLOADUNPACKLPD - Load Unaligned Low And Unpack To Float64 Vector 363

VLOADUNPACKLPS - Load Unaligned Low And Unpack To Float32 Vector 366

VLOADUNPACKLQ - Load Unaligned Low And Unpack To Int64 Vector 369

VLOG2PS - Vector Logarithm Base-2 of Float32 Vector . 372

VMOVAPD - Move Aligned Float64 Vector . 375

VMOVAPS - Move Aligned Float32 Vector . 378

VMOVDQA32 - Move Aligned Int32 Vector . 381

VMOVDQA64 - Move Aligned Int64 Vector . 384

VMOVNRAPD - Store Aligned Float64 Vector With No-Read Hint . 387

VMOVNRAPS - Store Aligned Float32 Vector With No-Read Hint . 389

VMOVNRNGOAPD - Non-globally Ordered Store Aligned Float64 Vector With No-Read Hint 392

VMOVNRNGOAPS - Non-globally Ordered Store Aligned Float32 Vector With No-Read Hint 395

VMULPD - Multiply Float64 Vectors . 398

VMULPS - Multiply Float32 Vectors . 401

VPACKSTOREHD - Pack And Store Unaligned High From Int32 Vector 404

VPACKSTOREHPD - Pack And Store Unaligned High From Float64 Vector 407

VPACKSTOREHPS - Pack And Store Unaligned High From Float32 Vector 410

VPACKSTOREHQ - Pack And Store Unaligned High From Int64 Vector 413

VPACKSTORELD - Pack and Store Unaligned Low From Int32 Vector 416

VPACKSTORELPD - Pack and Store Unaligned Low From Float64 Vector 419

VPACKSTORELPS - Pack and Store Unaligned Low From Float32 Vector 422

VPACKSTORELQ - Pack and Store Unaligned Low From Int64 Vector 425

VPADCD - Add Int32 Vectors with Carry . 428

Reference Number: 327364-001 9

CONTENTS

VPADDD - Add Int32 Vectors . 431

VPADDSETCD - Add Int32 Vectors and Set Mask to Carry . 434

VPADDSETSD - Add Int32 Vectors and Set Mask to Sign . 437

VPANDD - Bitwise AND Int32 Vectors . 440

VPANDND - Bitwise AND NOT Int32 Vectors . 443

VPANDNQ - Bitwise AND NOT Int64 Vectors . 446

VPANDQ - Bitwise AND Int64 Vectors . 449

VPBLENDMD - Blend Int32 Vectors using the Instruction Mask . 452

VPBLENDMQ - Blend Int64 Vectors using the Instruction Mask . 455

VPBROADCASTD - Broadcast Int32 Vector . 458

VPBROADCASTQ - Broadcast Int64 Vector . 460

VPCMPD - Compare Int32 Vectors and Set Vector Mask . 462

VPCMPEQD - Compare Equal Int32 Vectors and Set Vector Mask . 466

VPCMPGTD - Compare Greater Than Int32 Vectors and Set Vector Mask 469

VPCMPLTD - Compare Less Than Int32 Vectors and Set Vector Mask 472

VPCMPUD - Compare Uint32 Vectors and Set Vector Mask . 475

VPERMD - Permutes Int32 Vectors . 479

VPERMF32X4 - Shuf le Vector Dqwords . 481

VPGATHERDD - Gather Int32 Vector With Signed Dword Indices . 483

VPGATHERDQ - Gather Int64 Vector With Signed Dword Indices . 486

VPMADD231D - Multiply First Source By Second Source and Add To Destination Int32 Vectors . . 489

VPMADD233D - Multiply First Source By Specially Swizzled Second Source and Add To Second
Source Int32 Vectors . 492

VPMAXSD - Maximum of Int32 Vectors . 496

VPMAXUD - Maximum of Uint32 Vectors . 499

VPMINSD - Minimum of Int32 Vectors . 502

VPMINUD - Minimum of Uint32 Vectors . 505

VPMULHD - Multiply Int32 Vectors And Store High Result . 508

VPMULHUD - Multiply Uint32 Vectors And Store High Result . 511

VPMULLD - Multiply Int32 Vectors And Store Low Result . 514

10 Reference Number: 327364-001

CONTENTS

VPORD - Bitwise OR Int32 Vectors . 517

VPORQ - Bitwise OR Int64 Vectors . 520

VPSBBD - Subtract Int32 Vectors with Borrow . 523

VPSBBRD - Reverse Subtract Int32 Vectors with Borrow . 526

VPSCATTERDD - Scatter Int32 Vector With Signed Dword Indices 529

VPSCATTERDQ - Scatter Int64 Vector With Signed Dword Indices 532

VPSHUFD - Shuf le Vector Doublewords . 535

VPSLLD - Shift Int32 Vector Immediate Left Logical . 537

VPSLLVD - Shift Int32 Vector Left Logical . 540

VPSRAD - Shift Int32 Vector Immediate Right Arithmetic . 543

VPSRAVD - Shift Int32 Vector Right Arithmetic . 546

VPSRLD - Shift Int32 Vector Immediate Right Logical . 549

VPSRLVD - Shift Int32 Vector Right Logical . 552

VPSUBD - Subtract Int32 Vectors . 555

VPSUBRD - Reverse Subtract Int32 Vectors . 558

VPSUBRSETBD - Reverse Subtract Int32 Vectors and Set Borrow . 561

VPSUBSETBD - Subtract Int32 Vectors and Set Borrow . 564

VPTESTMD - Logical AND Int32 Vectors and Set Vector Mask . 567

VPXORD - Bitwise XOR Int32 Vectors . 570

VPXORQ - Bitwise XOR Int64 Vectors . 573

VRCP23PS - Reciprocal of Float32 Vector . 576

VRNDFXPNTPD - Round Float64 Vector . 579

VRNDFXPNTPS - Round Float32 Vector . 583

VRSQRT23PS - Vector Reciprocal Square Root of Float32 Vector . 587

VSCALEPS - Scale Float32 Vectors . 590

VSCATTERDPD - Scatter Float64 Vector With Signed Dword Indices 594

VSCATTERDPS - Scatter Float32 Vector With Signed Dword Indices 597

VSCATTERPF0DPS - Scatter Prefetch Float32 Vector With Signed Dword Indices Into L1 600

VSCATTERPF0HINTDPD - Scatter Prefetch Float64 Vector Hint With Signed Dword Indices 603

Reference Number: 327364-001 11

CONTENTS

VSCATTERPF0HINTDPS - Scatter Prefetch Float32 Vector Hint With Signed Dword Indices 605

VSCATTERPF1DPS - Scatter Prefetch Float32 Vector With Signed Dword Indices Into L2 607

VSUBPD - Subtract Float64 Vectors . 610

VSUBPS - Subtract Float32 Vectors . 613

VSUBRPD - Reverse Subtract Float64 Vectors . 616

VSUBRPS - Reverse Subtract Float32 Vectors . 619

A Scalar Instruction Descriptions 622

CLEVICT0 - Evict L1 line . 623

CLEVICT1 - Evict L2 line . 625

DELAY - Stall Thread . 627

LZCNT - Leading Zero Count . 629

POPCNT - Return the Count of Number of Bits Set to 1 . 631

SPFLT - Set performance monitor iltering mask . 633

TZCNT - Trailing Zero Count . 636

TZCNTI - Initialized Trailing Zero Count . 638

VPREFETCH0 - Prefetch memory line using T0 hint . 640

VPREFETCH1 - Prefetch memory line using T1 hint . 642

VPREFETCH2 - Prefetch memory line using T2 hint . 644

VPREFETCHE0 - Prefetch memory line using T0 hint, with intent to write 646

VPREFETCHE1 - Prefetch memory line using T1 hint, with intent to write 648

VPREFETCHE2 - Prefetch memory line using T2 hint, with intent to write 650

VPREFETCHENTA - Prefetch memory line using NTA hint, with intent to write 652

VPREFETCHNTA - Prefetch memory line using NTA hint . 654

B Knights Corner 64 bit Mode Scalar Instruction Support 656

B.1 64 bit Mode General-Purpose and X87 Instructions . 656

B.2 Knights Corner 64 bit Mode Limitations . 657

B.3 LDMXCSR - Load MXCSR Register . 659

B.4 FXRSTOR - Restore x87 FPU and MXCSR State . 661

12 Reference Number: 327364-001

CONTENTS

B.5 FXSAVE - Save x87 FPU and MXCSR State . 663

B.6 RDPMC - Read Performance-Monitoring Counters . 665

B.7 STMXCSR - Store MXCSR Register . 668

B.8 CPUID - CPUID Identi ication . 669

C Floating-Point Exception Summary 681

C.1 Instruction loating-point exception summary . 681

C.2 Conversion loating-point exception summary . 683

C.3 Denormal behavior . 684

D Instruction Attributes and Categories 689

D.1 Conversion Instruction Families . 690

D.1.1 Df32 Family of Instructions . 690

D.1.2 Df64 Family of Instructions . 690

D.1.3 Di32 Family of Instructions . 690

D.1.4 Di64 Family of Instructions . 690

D.1.5 Sf32 Family of Instructions . 690

D.1.6 Sf64 Family of Instructions . 690

D.1.7 Si32 Family of Instructions . 691

D.1.8 Si64 Family of Instructions . 691

D.1.9 Uf32 Family of Instructions . 691

D.1.10 Uf64 Family of Instructions . 691

D.1.11 Ui32 Family of Instructions . 691

D.1.12 Ui64 Family of Instructions . 691

E Non-faulting Unde ined Opcodes 692

F General Templates 694

F.1 Mask Operation Templates . 695

Mask m0 - Template . 696

Mask m1 - Template . 697

Reference Number: 327364-001 13

CONTENTS

Mask m2 - Template . 698

Mask m3 - Template . 699

Mask m4 - Template . 700

Mask m5 - Template . 701

F.2 Vector Operation Templates . 702

Vector v0 - Template . 703

Vector v1 - Template . 705

Vector v10 - Template . 706

Vector v11 - Template . 708

Vector v2 - Template . 709

Vector v3 - Template . 711

Vector v4 - Template . 712

Vector v5 - Template . 714

Vector v6 - Template . 716

Vector v7 - Template . 717

Vector v8 - Template . 718

Vector v9 - Template . 720

F.3 Scalar Operation Templates . 721

Scalar s0 - Template . 722

Scalar s1 - Template . 723

14 Reference Number: 327364-001

LIST OF TABLES

List of Tables

2.1 EH attribute syntax. 28

2.2 32 bit Register SwizzUpConv swizzle primitives. Notation: dcba denotes the 32 bit elements
that form one 128-bit block in the source (with 'a' least signi icant and 'd' most signi icant), so
aaaameans that the least signi icant element of the 128-bit block in the source is replicated to all
four elements of the same 128-bit block in the destination; the depicted pattern is then repeated
for all four 128-bit blocks in the source and destination. We use 'ponm lkji hgfe dcba' to denote a
full Knights Corner instructions source register, where 'a' is the least signi icant element and 'p' is
the most signi icant element. However, since each 128-bit block performs the same permutation
for register swizzles, we only show the least signi icant block here. Note that in this table as well
as in subsequent ones from this chapter S2S1S0 are bits 6-4 from MVEX pre ix encoding (see
Figure 3.3 . 29

2.3 64 bit Register SwizzUpConv swizzle primitives. Notation: dcba denotes the 64 bit elements
that form one 256-bit block in the source (with 'a' least signi icant and 'd' most signi icant), so
aaaa means that the least signi icant element of the 256-bit block in the source is replicated to
all four elements of the same 256-bit block in the destination; the depicted pattern is then re-
peated for the two 256-bit blocks in the source and destination. We use 'hgfe dcba' to denote a
full Knights Corner instructions source register, where 'a' is the least signi icant element and 'h' is
the most signi icant element. However, since each 256-bit block performs the same permutation
for register swizzles, we only show the least signi icant block here. 29

2.4 32 bit Floating-point Load-op SwizzUpConvf32 swizzle/conversion primitives. We use 'ponm
lkji hgfe dcba' to denote a full Knights Corner instructions source register, with each letter refer-
ring to a 32 bit element, where 'a' is the least signi icant element and 'p' is the most signi icant
element. So, for example, 'dcba dcba dcba dcba' shows that the source elements are copied to the
destination by replicating the lower 128 bits of the source (the four least signi icant elements) to
each 128-bit block of the destination. 30

2.5 32 bit Integer Load-op SwizzUpConvi32 (Doubleword) swizzle/conversion primitives. We use
'ponm lkji hgfe dcba' to denote a full Knights Corner instructions source register, with each let-
ter referring to a 32 bit element, where 'a' is the least signi icant element and 'p' is the most
signi icant element. So, for example, 'dcba dcba dcba dcba' shows that the source elements are
copied to the destination by replicating the lower 128 bits of the source (the four least signi icant
elements) to each 128-bit block of the destination. 30

Reference Number: 327364-001 15

LIST OF TABLES

2.6 64 bit Floating-point Load-op SwizzUpConvf64 swizzle/conversion primitives. We use 'hgfe
dcba' to denote a full Knights Corner instructions source register, with each letter referring to a
64 bit element, where 'a' is the least signi icant element and 'h' is the most signi icant element.
So, for example, 'dcba dcba' shows that the source elements are copied to the destination by
replicating the lower 256 bits of the source (the four least signi icant elements) to each 256-bit
block of the destination. 31

2.7 64 bit Integer Load-op SwizzUpConvi64 (Quadword) swizzle/conversion primitives. We use
'hgfe dcba' to denote a full Knights Corner instructions source register, with each letter referring
to a64bit element, where 'a' is the least signi icant element and 'h' is themost signi icant element.
So, for example, 'dcba dcba' shows that the source elements are copied to the destination by
replicating the lower 256 bits of the source (the four least signi icant elements) to each 256-bit
block of the destination. 31

2.8 32 bit Load UpConv load/broadcast instructions per datatype. Elements may be 1, 2, or 4 bytes
in memory prior to data conversion, after which they are always 4 bytes. We use 'ponm lkji hgfe
dcba' to denote a full Knights Corner instructions source register, with each letter referring to a
32bit element, where 'a' is the least signi icant element and 'p' is themost signi icant element. So,
for example, 'dcba dcba dcba dcba' shows that the source elements are copied to the destination
by replicating the lower 128bits of the source (the four least signi icant elements) to each 128-bit
block of the destination. 32

2.9 32 bit Load UpConv conversion primitives. 33

2.10 64 bit Load UpConv load/broadcast instructions per datatype. Elements are always 8 bytes. We
use 'hgfe dcba' to denote a full Knights Corner instructions source register, with each letter re-
ferring to a 64 bit element, where 'a' is the least signi icant element and 'h' is themost signi icant
element. So, for example, 'dcba dcba' shows that the source elements are copied to the destina-
tion by replicating the lower 256 bits of the source (the four least signi icant elements) to each
256-bit block of the destination. 33

2.11 64 bit Load UpConv conversion primitives. 34

2.12 32 bit DownConv conversion primitives. Unless otherwise noted, all conversions from loating-
point use MXCSR.RC . 34

2.13 64 bit DownConv conversion primitives. 35

2.14 Static Rounding-Mode Swizzle available modes plus SAE. 36

2.15 MXCSR bit layout. Note: MXCSR bit 20 is reserved, however it is not reported as Reserved by
MXCSR_MASK. Setting this bit will result in unde ined behavior . 39

3.1 Operand Notation . 47

3.2 Vector Operand Value Notation . 47

3.3 Size of vector or element accessed in memory for up-conversion . 48

3.4 Size of vector or element accessed in memory for down-conversion 49

3.5 Prefetch behavior based on the EH (cache-line eviction hint) . 50

3.6 Load/load-op behavior based on the EH bit. 50

16 Reference Number: 327364-001

LIST OF TABLES

3.7 Store behavior based on the EH bit. 50

3.8 SwizzUpConv, UpConv and DownConv function conventions . 51

4.1 Masked Responses of Knights Corner instructions to Invalid Arithmetic Operations 57

4.2 Summary of legal and illegal swizzle/conversion primitives for special instructions. 60

4.3 Rules for handling NaNs for unary and binary operations. 63

4.4 Rules for handling NaNs for fused multiply and add/sub operations (ternary). 64

4.5 Processor State Following Power-up, Reset, or INIT. 66

6.1 VADDN outcome when adding zeros depending on rounding-mode. See Signed Zeros in Sec-
tion 4.6.1.3 for other cases with a result of zero. 107

6.2 VADDN outcome when adding zeros depending on rounding-mode. See Signed Zeros in Sec-
tion 4.6.1.3 for other cases with a result of zero. 110

6.3 VCMPPD behavior . 143

6.4 VCMPPS behavior . 148

6.5 Converting to integer special loating-point values behavior . 160

6.6 Converting to integer special loating-point values behavior . 164

6.7 Converting to integer special loating-point values behavior . 168

6.8 Converting to integer special loating-point values behavior . 172

6.9 Converting loat64 to loat32 special values behavior . 179

6.10 vexp2_1ulp() special int values behavior . 189

6.11 VFNMSUB outcome when adding zeros depending on rounding-mode 272

6.12 VFNMSUB outcome when adding zeros depending on rounding-mode 276

6.13 VFNMSUB outcome when adding zeros depending on rounding-mode 280

6.14 VFNMSUB outcome when adding zeros depending on rounding-mode 284

6.15 VFMADDN outcome when adding zeros depending on rounding-mode 288

6.16 VFMADDN outcome when adding zeros depending on rounding-mode 292

6.17 GetExp() special loating-point values behavior . 312

6.18 GetExp() special loating-point values behavior . 315

6.19 GetMant() special loating-point values behavior . 318

6.20 GetMant() special loating-point values behavior . 323

Reference Number: 327364-001 17

LIST OF TABLES

6.21 Max exception lags priority . 332

6.22 Max exception lags priority . 336

6.23 Min exception lags priority . 340

6.24 Min exception lags priority . 344

6.25 vlog2_DX() special loating-point values behavior . 372

6.26 recip_1ulp() special loating-point values behavior . 576

6.27 RoundToInt() special loating-point values behavior . 579

6.28 RoundToInt() special loating-point values behavior . 583

6.29 rsqrt_1ulp() special loating-point values behavior . 587

B.3 Highest CPUID Source Operand for IA-32 Processors . 670

B.4 Information Returned by CPUID Instruction . 671

B.5 Information Returned by CPUID Instruction (Contd.) . 672

B.6 Information Returned by CPUID Instruction. 8000000xH leafs. 673

B.7 Information Returned by CPUID Instruction. 8000000xH leafs. (Contd.) 674

B.8 Feature Information Returned in the EDX Register (CPUID.EAX[01h].EDX) 678

B.9 Feature Information Returned in the EDX Register (CPUID.EAX[01h].EDX) (Contd.) 679

B.10 Feature Information Returned in the ECX Register (CPUID.EAX[01h].ECX) 680

C.3 Float-to-integer Max/Min Valid Range . 687

C.4 Float-to- loat Max/Min Valid Range . 688

18 Reference Number: 327364-001

LIST OF FIGURES

List of Figures

2.1 64 bit Execution Environment . 37

2.2 Vector and Vector Mask Registers . 38

3.1 New Instruction Encoding Format with MVEX Pre ix . 41

3.2 New Instruction Encoding Format with VEX Pre ix . 41

3.3 MVEX bit ields . 42

3.4 VEX bit ields . 44

4.1 MXCSR Control/Status Register . 55

Reference Number: 327364-001 19

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

This document describes new vector instructions for the co-processor code-named Knights Corner.

The major features of the new vector instructions described herein are:

A high performance 64 bit execution environment Knights Corner provides a 64 bit execution environment
(see Figure 2.1) similar to that found in the Intel64® Intel® Architecture Software Developer's Manual.
Additionally, Knights Corner instructions provides basic support for loat64 and int64 logical operations.

32 new vector registers Knights Corner's 64 bit environment offers 32 512-bit wide vector SIMD registers
tailored to boost the performance of high performance computing applications. The 512-bit vector SIMD
instruction extensions provide comprehensive, native support to handle 32 bit and 64 bit loating-point
and integer data, including a rich set of conversions for native data types.

Ternary instructions Most instructions are ternary, with two sources and a different destination. Multi-
ply&add instructions are ternary with three sources, one of which is also the destination.

Vector mask support KnightsCorner instructions introduces8vectormask registers that allow for conditional
execution over the 16 (or 8) elements in a vector instruction, and merging of the results into the destina-
tion. Masks allow vectorizing loops that contain conditional statements. Additionally, Knights Corner
instructions provides support for updating the value of the vector masks with special vector instructions
such as vcmpmps.

Coherent memory model The Knights Corner instructions operates in a memory address space that follows
the standard de ined by the Intel® 64 achitecture. This feature eases the process of developing vector code.

Gather/Scatter support The Knights Corner instructions features speci ic gather/scatter instructions that al-
low manipulation of irregular data patterns of memory (by fetching sparse locations of memory into a
dense vector register or vice-versa) thus enabling vectorization of algorithms with complex data struc-
tures.

20 Reference Number: 327364-001

CHAPTER 2. INSTRUCTIONS TERMINOLOGY AND STATE

Chapter 2

Instructions Terminology and State

The vector streaming SIMD instruction extensions are designed to enhance the performance of Intel® 64 pro-
cessors for scienti ic and engineering applications.

This chapter introduces Knights Corner instructions terminology and relevant processor state.

2.1 Overview of the Knights Corner instructions Extensions

2.1.1 What are vectors?

The vector is the basic working unit of the Knights Corner instructions. Most instructions use at least one vec-
tor. A vector is de ined as a sequence of packed data elements. For Knights Corner instructions the size of a
vector is 64 bytes. As the support data types are loat32, int32, loat64 and int64, then a vector consists on ei-
ther 16 doubleword-size elements or alternatively, 8 quadword-size elements. Only doubleword and quadword
elements are supported in Knights Corner instructions.

The number of Knights Corner instructions registers is 32.

Additionally, Knights Corner instructions features vector masks. Vector masks allow any set of elements in the
destination to be protected from updates during the execution of any operation. A subset of this functionality
is the ability to control the vector length of the operation being performed (that is, the span of elements being
modi ied, from the irst to the last one); however, it is not necessary that the elements that are modi ied be
consecutive.

2.1.2 Vector mask registers

Most Knights Corner instructions vector instructions use a special extra source, known as the write-mask,
sourced from a set of 8 registers called vector mask registers. These registers contain one bit for each element
that can be held by a regular Knights Corner instructions vector register.

Elements are always either loat32, int32, loat64 or int64 and the vector size is set to 64 bytes. Therefore, a
vector register holds either 8 or 16 elements; accordingly, the length of a vector mask register is 16 bits. For 64

Reference Number: 327364-001 21

CHAPTER 2. INSTRUCTIONS TERMINOLOGY AND STATE

bit datatype instructions, only the 8 least signi icant bits of the vector mask register are used.

Avectormask register affects an instruction forwhich it is thewrite-maskoperandat element granularity (either
32 or 64 bits). Thatmeans that every element-sized operation and element-sized destination update by a vector
instruction is predicated on the corresponding bit of the vector mask register used as the write-mask operand.
That has two implications:

• The instruction's operation is not performed for an element if the correspondingwrite-mask bit is not
set. This implies that no exception or violation can be caused by an operation on a masked-off element.

• A destination element is not updated if the corresponding write-mask bit is not set. Thus, the mask in
effect provides a merging behavior for Knights Corner instructions vector register destinations, thereby
potentially converting destinations into implicit sources, whenever a write-mask containing any 0-bits is
used.
This merging behavior, and the associated performance hazards, can also occur when writing a vector to
memory via a vector store. Vectors are written on a per element basis, based on the vector mask regis-
ter used as a write-mask. Therefore, no exception or violation can be caused by a write to a masked-off
element of a destination vector operand.
The stickybits implemented in theMXCSR to indicate that loating-point exceptionsoccurred, are set based
soley upon operations on non-masked vector elements.

The value of a givenmask register can be set up as a direct result of a vector comparison instruction, transferred
from a GP register, or calculated as a direct result of a logical operation between two masks.

Vector mask registers can be used for purposes other than write-masking. For example, they can be used to to
set the EFLAGS based on the 0/0xFFFF/other status of the OR of two vector mask registers. A number of the
Knights Corner instructions are provided to support such uses of the vector mask register.

2.1.2.1 Vector mask k0

The only exception to the vectormask rules described above ismask k0. Mask k0 cannot be selected as thewrite-
mask for a vector operation; the encoding that would be expected to select mask k0 instead selects an implicit
mask of 0xFFFF, thereby effectively disabling masking. Vector mask k0 can still be used as any non-write-mask
operand for any instruction that takes vector mask operands; it just can't ever be selected as a write-mask.

2.1.2.2 Example of use

Here's an example of a masked vector operation.

The initial state of vector registers zmm0, zmm1, and zmm2 is:

MSB LSB
zmm0 = [0x00000003 0x00000002 0x00000001 0x00000000] (bytes 15 through 0)

[0x00000007 0x00000006 0x00000005 0x00000004] (bytes 31 through 16)
[0x0000000B 0x0000000A 0x00000009 0x00000008] (bytes 47 through 32)
[0x0000000F 0x0000000E 0x0000000D 0x0000000C] (bytes 63 through 48)

zmm1 = [0x0000000F 0x0000000F 0x0000000F 0x0000000F] (bytes 15 through 0)
[0x0000000F 0x0000000F 0x0000000F 0x0000000F] (bytes 31 through 16)

22 Reference Number: 327364-001

CHAPTER 2. INSTRUCTIONS TERMINOLOGY AND STATE

[0x0000000F 0x0000000F 0x0000000F 0x0000000F] (bytes 47 through 32)
[0x0000000F 0x0000000F 0x0000000F 0x0000000F] (bytes 63 through 48)

zmm2 = [0xAAAAAAAA 0xAAAAAAAA 0xAAAAAAAA 0xAAAAAAAA] (bytes 15 through 0)
[0xBBBBBBBB 0xBBBBBBBB 0xBBBBBBBB 0xBBBBBBBB] (bytes 31 through 16)
[0xCCCCCCCC 0xCCCCCCCC 0xCCCCCCCC 0xCCCCCCCC] (bytes 47 through 32)
[0xDDDDDDDD 0xDDDDDDDD 0xDDDDDDDD 0xDDDDDDDD] (bytes 63 through 48)

k3 = 0x8F03 (1000 1111 0000 0011)

Given this state, we will execute the following instruction:

vpaddd zmm2 {k3}, zmm0, zmm1

The vpaddd instruction adds vector elements of 32 bit integers. Since elements are not operated uponwhen the
corresponding bit of the mask is not set, the temporary result would be:

[********** ********** 0x00000010 0x0000000F] (bytes 15 through 0)
[********** ********** ********** **********] (bytes 31 through 16)
[0x0000001A 0x00000019 0x00000018 0x00000017] (bytes 47 through 32)
[0x0000001E ********** ********** **********] (bytes 63 through 48)

where "**********" indicates that no operation is performed.

This temporary result is then written into the destination vector register, zmm2, using vector mask register k3
as the write-mask, producing the following inal result:

zmm2 = [0xAAAAAAAA 0xAAAAAAAA 0x00000010 0x0000000F] (bytes 15 through 0)
[0xBBBBBBBB 0xBBBBBBBB 0xBBBBBBBB 0xBBBBBBBB] (bytes 31 through 16)
[0x0000001A 0x00000019 0x00000018 0x00000017] (bytes 47 through 32)
[0x0000001E 0xDDDDDDDD 0xDDDDDDDD 0xDDDDDDDD] (bytes 63 through 48)

Note that for a 64 bit instruction (say vaddpd), only the 8 LSB of mask k3 (0x03) would be used to identify the
write-mask operation on each one of the 8 elements of the source/destination vectors.

2.1.3 Understanding Knights Corner instructions

Knights Corner instructions can be classi ied depending on the nature of their operands. The majority of the
Knights Corner instructions operate on vector registers, with a vector mask register serving as a write-mask.
However, in most cases these instructions may have one of the vector source operands stored in either memory
or a vector register, and may additionally have one or more non-vector (scalar) operands, such as a Intel® 64
general purpose register or an immediate value. Additionally, some instructions use vector mask registers as
destinations and/or explicit sources. Finally, Knights Corner instructions adds some new scalar instructions.

Reference Number: 327364-001 23

CHAPTER 2. INSTRUCTIONS TERMINOLOGY AND STATE

From the point of view of instruction formats, there are four main types of Knights Corner instructions:

• Vector Instructions

• Vector Memory Instructions

• Vector Mask Instructions

• New Scalar Instructions

2.1.3.1 Knights Corner instructions Vector Instructions

Vector instructions operate onvectors that are sourced fromeither registers ormemory and that canbemodi ied
prior to the operation via prede ined swizzle and convert functions. The destination is usually a vector register,
though some vector instructions may have a vector mask register as either a second destination or the primary
destination.

All these instructions work in an element-wise manner: the irst element of the irst source vector is operated
on together with the irst element of the second source vector, and the result is stored in the irst element of the
destination vector, and so on for the remaining 15 (or 7) elements.

As described above, the vectormask() register that serves as thewrite-mask for a vector instruction determines
which element locations are actually operated upon; the mask can disable the operation and update for any
combination of element locations.

Most vector instructions have three different vector operands (typically, two sources and one destination) ex-
cept those instructions that have a single source and thus use only two operands. Additionally, most vector
instructions feature an extra operand in the form of the vector mask() register that serves as the write-mask.
Thus, we can categorize Knights Corner instructions vector instructions based on the number of vector sources
they use:

Vector-Converted Vector/Memory. Vector-converted vector/memory instructions, such as vaddps (which
adds two vectors), are ternary operations that take two different sources, a vector register and a converted
vector/memory operand, and a separate destination vector register, as follows:

zmm0 <= OP(zmm1, S(zmm2, m))

where zmm1 is a vector operand that is used as the irst source for the instruction, S(zmm2,m) is a con-
verted vector/memory operand that is used as the second source for the instruction, and the result of
performing operation OP on the two source operands is written to vector destination register zmm0.
A converted vector/memory operand is a source vector operand that it is obtained through the process of
applying a swizzle/conversion function to either aKnights Corner instructions vector or amemoryoperand.
The details of the swizzle/conversion function are found in section 2.2; note that its behavior varies de-
pendingonwhether the operand is a register or amemory location, and, formemoryoperands, onwhether
the instruction performs a loating-point or integer operation. Each source memory operand must have
an address that is aligned to the number of bytes of memory actually accessed by the operand (that is,
before the swizzle/convert is performed); otherwise, a #GP fault will result.

Converted Vector/Memory. Converted vector/memory instructions, such as vcvtpu2ps (which converts a vec-
tor of unsigned integers to a vector of loats), are binary operations that take a single vector source, as
follows:

24 Reference Number: 327364-001

CHAPTER 2. INSTRUCTIONS TERMINOLOGY AND STATE

zmm0 <= OP(S(zmm1, m))

Vector-Vector-Converted Vector/Memory. Vector-vector-converted vector/memory instructions, of which
vfmadd*ps (multiply-add of three vectors) is a good example, are similar to the vector-converted vec-
tor/memory family of instructions; here, however, the destination vector register is used as a third source
as well:

zmm0 <= OP(zmm0, zmm1, S(zmm2, m))

2.1.3.2 Knights Corner instructions Vector Memory Instructions:

Vector Memory Instructions perform vector loads from and vector stores to memory, with extended conversion
support.

As with regular vector instructions, vector memory instructions transfer data from/to memory in an element-
wise fashion, with the elements that are actually transferred dictated by the contents of the vector mask that is
selected as the write-mask.

There are two basic groups of Knights Corner instructions vectormemory instructions, vector loads/broadcasts
and vector stores.

Vector Loads/Broadcasts. A vector load/broadcast reads a memory source, performs a prede ined load con-
version function, and replicates the result (in the case of broadcasts) to form a 64-byte 16-element vector
(or 8-element for 64 bit datatypes). This vector is then conditionally written element-wise to the vector
destination register, with the writes enabled or disabled according to the corresponding bits of the vector
mask register selected as the write-mask.
The size of the memory operand is a function of the type of conversion and the number of replications
to be performed on the memory operand. We call this special memory operand an up-converted memory
operand. Each source memory operand must have an address that is aligned to the number of bytes of
memory actually accessed by the operand (that is, before the swizzle/convert is performed); otherwise, a
#GP fault will result.
A Vector Load operates as follows:

zmm0 <= U(m)

whereU(m) is anup-convertedmemoryoperandwhose contents are replicated andwritten todestination
register zmm0. The mnemonic dictates the degree of replication and the conversion table.
A special sub-case of these instructions are Vector Gathers. Vector Gathers are a special form of vector
loads where, instead of a consecutive chunks of memory, we load a sparse set of memory operands (as
many as the vector elements of the destination). Every one of those memory operands must obey the
alignment rules; otherwise, a #GP fault will result if the related write-mask bit is not disabled (set to 0).
A Vector Gather operates as follows:

zmm0 <= U(mv)

Reference Number: 327364-001 25

CHAPTER 2. INSTRUCTIONS TERMINOLOGY AND STATE

where U(mv) is a set of up-converted memory operands described by a base address, a vector of indices
and an immediate scale to apply for each index. Every one of those operands is conditionally written to
destination vector zmm0 (based on the value of the write-mask).

Vector Stores. A vector store reads a vector register source, performs a prede ined store conversion function,
and writes the result to the destination memory location on a per-element basis, with the writes enabled
or disabled according to the corresponding bits of the vector mask register selected as the write-mask.
The size of the memory destination is a function of the type of conversion associated with the mnemonic.
We call this special memory operand a down-converted memory operand. Each memory destination
operand must have an address that is aligned to the number of bytes of memory accessed by the operand
(pre-conversion, if conversion is performed); otherwise, a #GP fault will result.
A Vector Store operates as follows:

m <= D(zmm0)

where zmm0 is the vector register source whose full contents are down-converted (denoted byD()), and
written to memory.
A special sub-case of these instructions are Vector Scatters. Vector Scatters are a special form of vector
stores where, instead of writing the source vector into a consecutive chuck of memory, we store each
vector element into a different memory location. Every one of those memory destinations must obey the
alignment rules; otherwise, a #GP fault will result if the related write-mask bit is not disabled (set to 0).
A Vector Scatter operates as follows:

mv <= D(zmm0)

where zmm0 is the vector register source whose full or partial contents are down-converted (denoted
by D()), and written to the set of memory locations mv, speci ied by a base address, a vector of indices
and an immediate scale which is applied to every index. Every one of those down-converted elements are
conditionally stored in the memory locations based on the value of the write-mask.

2.1.3.3 Knights Corner instructions vector mask Instructions

Vector mask instructions allow programmers to set, copy, or operate on the contents of a given vector mask.

There are three types of vector mask instructions:

• Mask read/write instructions: These instructionmove data between a general-purpose integer register
and a vector mask register, or between two vector mask registers.

• Flag instructions: This category, consisting of instructions that modify EFLAGS based on vector mask
registers, actually contains only one instruction, kortest.

• Mask logical instructions: These instructions perform standard bitwise logical operations between vec-
tor mask registers.

2.1.3.4 Knights Corner instructions New Scalar Instructions

In addition to vector, vectormemory, and vectormask instructions, Knights Corner instructions adds a few scalar
instructions as well. These instructions are useful for increasing the performance of some critical algorithms;

26 Reference Number: 327364-001

CHAPTER 2. INSTRUCTIONS TERMINOLOGY AND STATE

for example, any code that suffers reduced performance due to cache-miss latency can bene it from the new
prefetch instructions.

2.2 Knights Corner instructions Swizzles and Converts

Data transformation, in the formof certain data conversions or element rearrangements (for loads, both at once)
of one operand, can be performed for free as part of most Knights Corner instructions vector instructions.

Three sorts of data transformations are available:

• Data Conversions: Sources frommemory can be converted to either 32 bit signed or unsigned integer or
32 bit loating-point before being used. Supported data types in memory are loat16, sint8, uint8, sint16,
and uint16 for load-op instructions

• Broadcast: If the source memory operand contains fewer than the total number of elements, it can be
broadcast (repeated) to form the full number of elements of the effective source operand (16 for 32 bit
instructions, 8 for 64 bit instructions). Broadcast can be combined with load-type conversions only; load-
op instructions can do one or the other: either broadcast, or swizzle and/or up-conversion. There are two
broadcast granularities:

– 1-element granularitywhere the 1 element of the source memory operand are broadcast 16 times
to form a full 16-element effective source operand (for 32 bit instructions), or 8 times to form a full
8-element effective source operand (for 64 bit instructions).

– 4-element granularity where the 4 elements of the source memory operand is broadcast 4 times
to form a full 16-element effective source operand (for 32 bit instructions), or 2 times to form a full
8-element effective source operand (for 64 bit instructions).

Broadcast is very useful for instructions that mix vector and scalar sources, where one of the sources is
common across the different operations.

• Swizzles: Sources from registers can undergo swizzle transformations (that is, they can be permuted),
although only 8 swizzles are available, all of which are limited to permuting within 4-element sets (either
of 32 bits or 64 bits each).

Knights Corner instructions also introduces the concept of Rounding Mode Override or Static (per instruc-
tion) Rounding Mode, which ef iciently supports the feature of determining the rounding mode for arithmetic
operations on a per-instruction basis. Thus one can choose the roundingmodewithout having to perform costly
MXCSR save-modify-restore operations.

Knights Corner extends the swizzle functionality for register-register operands in order to provide rounding
mode override capabilities for Knights Corner loating-point instructions instead of obeying the MXCSR.RC bits.
All four rounding modes are available via swizzle attribute: Round-up, Round-down, Round-toward-zero and
Round-to-nearest. The option is not available for instructions with memory operands. On top of these options,
Knights Corner introduces the SAE (suppress-all-exceptions) attribute feature. An instruction with SAE set will
not raise any kind of loating-point exception lags, independent of the inputs.

In addition to those transformations, all Knights Corner instructions memory operands may have a special at-
tribute, called the EH hint (eviction hint), that indicates to the processor that the data is non-temporal - that is,
it is unlikely to be reused soon enough to bene it from caching in the 1st-level cache and should be given prior-
ity for eviction. This is, however, a hint, and the processor may implement it in any way it chooses, including
ignoring the hint entirely.

Reference Number: 327364-001 27

CHAPTER 2. INSTRUCTIONS TERMINOLOGY AND STATE

Table 2.1 shows the assembly language syntax used to indicate the presence or absence of the EH hint.

B1 Function Usage Comment
0 [eax] (no effect) regular memory operand
1 EH [eax]{eh} memory operand with Non-Temporal (Evic-

tion) hint

Table 2.1: EH attribute syntax.

Data transformations can only be performed on one source operand at most; for instructions that take two or
three source operands, the other operands are always used unmodi ied, exactly as they're stored in their source
registers. In no case do any of the Knights Corner instructions allow using data conversion and swizzling at
the same time. Broadcasts, on the other hand, can be combined with data conversions when performing vector
loads.

Not all instructions can use all of the different data transformations. Load-op instructions (such as vector arith-
metic instructions), vector loads, and vector stores have different data transformation capabilities. We can cat-
egorize these transformation capabilities into three families:

• Load-OpSwizzUpConv: For a register source, swizzle; for amemory operand, either: (a) broadcast, or (b)
convert to 32 bit loats or 32 bit signed or unsigned integers. This is used by vector arithmetic instructions
and other load-op instructions. There are two versions, one for 32 bit loating-point instructions and
another for 32 bit integer instructions; in addition, the available data transformations differ for register
and memory operands.

• LoadUpConv: Convert from amemory operand to 32 bit loats or 32 bit signed or unsigned integers; used
by vector loads and broadcast instructions. For 32 bit loats, there are three different conversion tables
based on three different input types. See Section 2.2.2, Load UpConvert.
There is no load conversion support for 64 bit datatypes.

• DownConv: Convert from32bit loats or 32 bit signed or unsigned integers to amemory operand; used by
vector stores. For 32 bit loats, there are three different conversion tables based on three different output
types. See Section 2.2.3, Down-Conversion.
There is no store conversion support for 64 bit datatypes.

2.2.1 Load-Op Swizzle/Convert

Vector load-op instructions can swizzle, broadcast, or convert one of the sources; we will refer to this as the
swizzle/convert source, and we will use SwizzUpConv to describe the swizzle/convert function itself. The avail-
able SwizzUpConv transformations vary depending on whether the operand is memory or a register, and also
in the case of conversions from memory depending on whether the vector instruction is 32 bit integer, 32 bit
loating-point, 64 bit integer or 64 bit loating-point. 3 bits are used to select among the different options, so
eight options are available in each case.

When the swizzle/convert source is a register, SwizzUpConv allows the choice of one of eight swizzle primitives
(one of the eight being the identity swizzle). These swizzle functions work on either 4-byte or 8-byte elements
within 16-byte/32-byte boundaries. For 32 bit instructions, that means certain permutations of each set of four
elements (16 bytes) are supported, replicated across the four sets of four elements. When the swizzle/convert
source is a register, the functionality is the same for both integer and loating-point 32 bit instructions. Table 2.2
shows the available register-source swizzle primitives.

28 Reference Number: 327364-001

CHAPTER 2. INSTRUCTIONS TERMINOLOGY AND STATE

S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element across 4-element packets zmm0 {aaaa}
101 broadcast b element across 4-element packets zmm0 {bbbb}
110 broadcast c element across 4-element packets zmm0 {cccc}
111 broadcast d element across 4-element packets zmm0 {dddd}

Table 2.2: 32 bit Register SwizzUpConv swizzle primitives. Notation: dcba denotes the 32 bit elements that
form one 128-bit block in the source (with 'a' least signi icant and 'd' most signi icant), so aaaa means that the
least signi icant element of the 128-bit block in the source is replicated to all four elements of the same 128-
bit block in the destination; the depicted pattern is then repeated for all four 128-bit blocks in the source and
destination. We use 'ponm lkji hgfe dcba' to denote a full Knights Corner instructions source register, where 'a' is
the least signi icant element and 'p' is themost signi icant element. However, since each 128-bit block performs
the same permutation for register swizzles, we only show the least signi icant block here. Note that in this table
as well as in subsequent ones from this chapter S2S1S0 are bits 6-4 fromMVEX pre ix encoding (see Figure 3.3

S2S1S0 Function: 4 x 64 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element across 4-element packets zmm0 {aaaa}
101 broadcast b element across 4-element packets zmm0 {bbbb}
110 broadcast c element across 4-element packets zmm0 {cccc}
111 broadcast d element across 4-element packets zmm0 {dddd}

Table 2.3: 64 bit Register SwizzUpConv swizzle primitives. Notation: dcba denotes the 64 bit elements that
form one 256-bit block in the source (with 'a' least signi icant and 'd' most signi icant), so aaaa means that the
least signi icant element of the 256-bit block in the source is replicated to all four elements of the same 256-
bit block in the destination; the depicted pattern is then repeated for the two 256-bit blocks in the source and
destination. We use 'hgfe dcba' to denote a full Knights Corner instructions source register, where 'a' is the least
signi icant element and 'h' is themost signi icant element. However, since each 256-bit block performs the same
permutation for register swizzles, we only show the least signi icant block here.

For 64 bit instructions, that means certain permutations of each set of four elements (32 bytes) are supported,
replicated across the two sets of four elements. When the swizzle/convert source is a register, the functionality
is the same for both integer and loating-point 64 bit instructions. Table 2.3 shows the available register-source
swizzle primitives.

When the source is a memory location, load-op swizzle/convert can perform either no transformation, 2 differ-
ent broadcasts, or four data conversions. Vector load-op instructions cannot both broadcast and perform data
conversion at the same time. The conversions available differ depending on whether the associated vector in-
struction is integer or loating-point, and whether the natural data type is 32 bit or 64 bit. (Note however that
there are no load conversions for 64 bit destination data types.)

Sourcememory operandsmay have sizes smaller than 64 bytes, expanding to the full 64 bytes of a vector source
by means of either broadcasting (replication) or data conversion.

Reference Number: 327364-001 29

CHAPTER 2. INSTRUCTIONS TERMINOLOGY AND STATE

Each source memory operand must have an address that is aligned to the number of bytes of memory actually
accessedby the operand (that is, before conversionor broadcast is performed); otherwise, a #GP faultwill result.
Thus, for SwizzUpConv, any of 4-byte, 16-byte, 32-byte, or 64-byte alignment may be required.

.

S2S1S0 Function: Usage
000 no conversion [rax]
001 broadcast 1 element (x16) [rax] {1to16}
010 broadcast 4 elements (x4) [rax] {4to16}
011 loat16 to loat32 [rax] { loat16}
100 uint8 to loat32 [rax] {uint8}
101 reserved N/A
110 uint16 to loat32 [rax] {uint16}
111 sint16 to loat32 [rax] {sint16 }

Table 2.4: 32 bit Floating-point Load-op SwizzUpConvf32 swizzle/conversion primitives. We use 'ponm lkji
hgfe dcba' to denote a full Knights Corner instructions source register, with each letter referring to a 32 bit
element, where 'a' is the least signi icant element and 'p' is the most signi icant element. So, for example, 'dcba
dcba dcba dcba' shows that the source elements are copied to the destination by replicating the lower 128 bits
of the source (the four least signi icant elements) to each 128-bit block of the destination.

S2S1S0 Function: Usage
000 no conversion [rax] {16to16} or [rax]
001 broadcast 1 element (x16) [rax] {1to16}
010 broadcast 4 elements (x4) [rax] {4to16}
011 reserved N/A
100 uint8 to uint32 [rax] {uint8}
101 sint8 to sint32 [rax] {sint8}
110 uint16 to uint32 [rax] {uint16}
111 sint16 to sint32 [rax] {sint16 }

Table 2.5: 32 bit Integer Load-op SwizzUpConvi32 (Doubleword) swizzle/conversion primitives. We use
'ponm lkji hgfe dcba' to denote a full Knights Corner instructions source register, with each letter referring to a
32 bit element, where 'a' is the least signi icant element and 'p' is the most signi icant element. So, for example,
'dcba dcba dcba dcba' shows that the source elements are copied to the destination by replicating the lower 128
bits of the source (the four least signi icant elements) to each 128-bit block of the destination.

Table 2.4 shows the available 32 bit loating-point swizzle primitives.

SwizzUpConv conversions to loat32s are exact.

Table 2.5 shows the available 32 bit integer swizzle primitives.

Table 2.6 shows the available 64 bit loating-point swizzle primitives.

Finally, Table 2.7 shows the available 64 bit integer swizzle primitives.

2.2.2 Load Up-convert

Vector load/broadcast instructions can perform a wide array of data conversions on the data being read from
memory, and can additionally broadcast (replicate) that data across the elements of the destination vector reg-
ister depending on the instructions. The type of broadcast depends on the opcode/mnemonic being used. We

30 Reference Number: 327364-001

CHAPTER 2. INSTRUCTIONS TERMINOLOGY AND STATE
.

S2S1S0 Function: Usage
000 no conversion [rax] {8to8} or [rax]
001 broadcast 1 element (x8) [rax] {1to8}
010 broadcast 4 elements (x2) [rax] {4to8}
011 reserved N/A
100 reserved N/A
101 reserved N/A
110 reserved N/A
111 reserved N/A

Table 2.6: 64 bit Floating-point Load-op SwizzUpConvf64 swizzle/conversion primitives. We use 'hgfe dcba'
to denote a full Knights Corner instructions source register, with each letter referring to a 64 bit element, where
'a' is the least signi icant element and 'h' is the most signi icant element. So, for example, 'dcba dcba' shows that
the source elements are copied to the destination by replicating the lower 256 bits of the source (the four least
signi icant elements) to each 256-bit block of the destination.

.
S2S1S0 Function: Usage
000 no conversion [rax] {8to8} or [rax]
001 broadcast 1 element (x8) [rax] {1to8}
010 broadcast 4 elements (x2) [rax] {4to8}
011 reserved N/A
100 reserved N/A
101 reserved N/A
110 reserved N/A
111 reserved N/A

Table 2.7: 64 bit Integer Load-op SwizzUpConvi64 (Quadword) swizzle/conversion primitives. We use 'hgfe
dcba' to denote a full Knights Corner instructions source register, with each letter referring to a 64 bit element,
where 'a' is the least signi icant element and 'h' is the most signi icant element. So, for example, 'dcba dcba'
shows that the source elements are copied to the destination by replicating the lower 256 bits of the source (the
four least signi icant elements) to each 256-bit block of the destination.

will refer to this conversion process as up-conversion, and we will use UpConv to describe the load conversion
function itself.

Based on that, load instructions could be divided into the following categories:

• regular loads: load 16 elements (32 bits) or 8 elements (64 bits), convert them andwrite into the destina-
tion vector

• broadcast 4-elements: load 4 elements, convert them (possible only for 32 bit data types), replicate them
four times (32 bits) or two times (64 bits) and write into the destination vector

• broadcast 1-element: load 1 element, convert it (possible only for 32 bit data types), replicate it 16 times
(32 bits) or 8 times (64 bits) and write into the destination vector

Therefore, unlike load-op swizzle/conversion, Load UpConv can perform both data conversion and broadcast
simultaneously. Wewill refer to this process as up-conversion, and wewill use Load UpConv to describe the load
conversion function itself.

When a broadcast 1-element is selected, the memory data, after data conversion, has a size of 4 bytes, and is
broadcast 16 times across all 16 elements of the destination vector register. In other words, one vector element

Reference Number: 327364-001 31

CHAPTER 2. INSTRUCTIONS TERMINOLOGY AND STATE

is fetched frommemory, converted to a 32 bit loat or integer, and replicated to all 16 elements of the destination
register. Using the notation where the contents of the source register are denoted {ponm lkji hgfe dcba}, with
each letter referring to a 32 bit element ('a' being the least signi icant element and 'p' being the most signi icant
element), the source elements map to the destination register as follows:

{aaaa aaaa aaaa aaaa}

When broadcast 4-element is selected, the memory data, after data conversion, has a size of 16 bytes, and is
broadcast 4 times across the four 128-bit sets of the destination vector register. In other words, four vector
elements are fetched frommemory, converted to four32bit loats or integers, and replicated to all four4-element
sets in thedestination register. For this broadcast, the source elementsmap to thedestination register as follows:

{dcba dcba dcba dcba}

Table 2.8 shows the different 32 bit Load up-conversion instructions in function of the broadcast function and
the conversion datatype. Similarly, Table 2.10 shows the different 64 bit Load up-conversion instructions in
function of the broadcast function and datatype.

Datatype Load (16-element) Broadcast 4-element Broadcast 1-element
INT32 (d) VMOVDQA32 VBROADCASTI32X4 VPBROADCASTD
FP32 (ps) VMOVAPS VBROADCASTF32X4 VBROADCASTSS

Table 2.8: 32 bit Load UpConv load/broadcast instructions per datatype. Elements may be 1, 2, or 4 bytes in
memory prior to data conversion, after which they are always 4 bytes. We use 'ponm lkji hgfe dcba' to denote
a full Knights Corner instructions source register, with each letter referring to a 32 bit element, where 'a' is the
least signi icant element and 'p' is the most signi icant element. So, for example, 'dcba dcba dcba dcba' shows
that the source elements are copied to the destination by replicating the lower 128 bits of the source (the four
least signi icant elements) to each 128-bit block of the destination.

As with SwizzUpConv, UpConv may have source memory operands with sizes smaller than 64-bytes, which are
expanded to a full 64-byte vector by means of broadcast and/or data conversion. Each source memory operand
must have an address that is aligned to the number of bytes of memory actually accessed by the operand (that
is, before conversion or broadcast is performed); otherwise, a #GP fault will result. Thus, any of 1-byte, 2-byte,
4-byte, 8-byte, 16-byte, 32-byte, or 64-byte alignment may be required.

Table 2.9 shows the available data conversion primitives for 32 bit Load UpConv and for the different datatypes
supported.

Table 2.11 shows the 64 bit counterpart of Load UpConv. As shown, no 64 bit conversions are available but the
pure "no-conversion" option.

2.2.3 Down-Conversion

Vector store instructions can perform a wide variety of data conversions to the data on the way to memory.
We will refer to this process as down-conversion, and we will use DownConv to describe the store conversion
function itself.

DownConv may have destination memory operands with sizes smaller than 64 bytes, as a result of data conver-
sion. Each destinationmemory operandmust have an address that is aligned to the number of bytes of memory
actually accessed by the operand (that is, after data conversion is performed); otherwise, a #GP fault will result.

32 Reference Number: 327364-001

CHAPTER 2. INSTRUCTIONS TERMINOLOGY AND STATE

UpConvi32 (INT32)
S2S1S0 Function: Usage
000 no conversion [rax]
001 reserved N/A
010 reserved N/A
011 reserved N/A
100 uint8 to uint32 [rax] {uint8}
101 sint8 to sint32 [rax] {sint8}
110 uint16 to uint32 [rax] {uint16}
111 sint16 to sint32 [rax] {sint16 }

UpConvf32 (FP32)
S2S1S0 Function: Usage
000 no conversion [rax]
001 reserved N/A
010 reserved N/A
011 loat16 to loat32 [rax] { loat16}
100 uint8 to loat32 [rax] {uint8}
101 sint8 to loat32 [rax] {sint8}
110 uint16 to loat32 [rax] {uint16}
111 sint16 to loat32 [rax] {sint16 }

Table 2.9: 32 bit Load UpConv conversion primitives.

Datatype Load Broadcast 4-element Broadcast 1-element
INT64 (q) VMOVDQA64 VBROADCASTI64X4 VPBROADCASTQ
FP64 (pd) VMOVAPD VBROADCASTF64X4 VBROADCASTSD

Table 2.10: 64 bit Load UpConv load/broadcast instructions per datatype. Elements are always 8 bytes. We
use 'hgfe dcba' to denote a full Knights Corner instructions source register, with each letter referring to a 64
bit element, where 'a' is the least signi icant element and 'h' is the most signi icant element. So, for example,
'dcba dcba' shows that the source elements are copied to the destination by replicating the lower 256 bits of the
source (the four least signi icant elements) to each 256-bit block of the destination.

Thus, any of 1-byte, 2-byte, 4-byte, 8-byte, 16-byte, 32-byte, or 64-byte alignment may be required.

Table 2.12 shows the available data conversion primitives for 32 bit DownConv and for the different supported
datatypes.

Table 2.13 shows the 64 bit counterpart of DownConv. As shown, no 64 bit conversions are available but the
pure "no-conversion" option.

Reference Number: 327364-001 33

CHAPTER 2. INSTRUCTIONS TERMINOLOGY AND STATE

UpConvi64 (INT64)
S2S1S0 Function: Usage
000 no conversion [rax] {8to8} or [rax]
001 reserved N/A
010 reserved N/A
011 reserved N/A
100 reserved N/A
101 reserved N/A
110 reserved N/A
111 reserved N/A

UpConvf64 (FP64)
S2S1S0 Function: Usage
000 no conversion [rax] {8to8} or [rax]
001 reserved N/A
010 reserved N/A
011 reserved N/A
100 reserved N/A
101 reserved N/A
110 reserved N/A
111 reserved N/A

Table 2.11: 64 bit Load UpConv conversion primitives.

DownConvi32 (INT32)
S2S1S0 Function: Usage
000 no conversion zmm1
001 reserved N/A
010 reserved N/A
011 reserved N/A
100 uint32 to uint8 zmm1 {uint8}
101 sint32 to sint8 zmm1 {sint8}
110 uint32 to uint16 zmm1 {uint16}
111 sint32 to sint16 zmm1 {sint16 }

DownConvf32 (FP32)
S2S1S0 Function: Usage
000 no conversion zmm1
001 reserved N/A
010 reserved N/A
011 loat32 to loat16 zmm1 { loat16}
100 loat32 to uint8 zmm1 {uint8}
101 loat32 to sint8 zmm1 {sint8}
110 loat32 to uint16 zmm1 {uint16}
111 loat32 to sint16 zmm1 {sint16 }

Table 2.12: 32 bit DownConv conversion primitives. Unless otherwise noted, all conversions from loating-
point use MXCSR.RC

34 Reference Number: 327364-001

CHAPTER 2. INSTRUCTIONS TERMINOLOGY AND STATE

DownConvi64 (INT64)
S2S1S0 Function: Usage
000 no conversion zmm1
001 reserved N/A
010 reserved N/A
011 reserved N/A
100 reserved N/A
101 reserved N/A
110 reserved N/A
111 reserved N/A

DownConvf64 (FP64)
S2S1S0 Function: Usage
000 no conversion zmm1
001 reserved N/A
010 reserved N/A
011 reserved N/A
100 reserved N/A
101 reserved N/A
110 reserved N/A
111 reserved N/A

Table 2.13: 64 bit DownConv conversion primitives.

2.3 Static Rounding Mode

Asdescribedbefore, Knights Corner introduces anew instruction attribute on topof thenormal register swizzles
called Static (per instruction) RoundingModeorRoundingMode override. This attribute allows statically applying
a speci ic arithmetic rounding mode ignoring the value of RM bits in MXCSR.

Static Rounding Mode can be enabled in the encoding of the instruction by setting the EH bit to 1 in a register-
register vector instruction. Table 2.14 shows the available rounding modes and their encoding. On top of the
rounding-mode, Knights Corner also allows to set the SAE ("suppress-all-exceptions") attribute, to disable re-
porting any loating-point exception lag on MXCSR. This option is available, even if the instruction does not
perform any kind of rounding.

Note that some instructions already allow to specify the rounding mode statically via immediate bits. In such
case, the immediate bits take precedence over the swizzle-speci ied rounding mode (in the same way that they
take precedence over the MXCSR.RC setting).

Reference Number: 327364-001 35

CHAPTER 2. INSTRUCTIONS TERMINOLOGY AND STATE

.

S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}
1xx SAE , {sae}

Table 2.14: Static Rounding-Mode Swizzle available modes plus SAE.

2.4 Knights Corner Execution Environments

Knights Corner's support for 32 bit and 64 bit execution environments are similar to those found in the Intel64®
Intel® Architecture Software Developer's Manual. The 64 bit execution environment of Knights Corner is shown
in Figure 2.1. The layout of 512-bit vector registers and vector mask registers are shown in Figure 2.2. This
section describes new features associatedwith the 512-bit vector registers and the 16 bit vectormask registers.

Knights Corner instructions de ines two new sets of registers that hold the new vector state. The Knights Corner
instructions extension uses the vector registers, the vector mask registers and/or the x86 64 general purpose
registers.

Knights Corner instructions Vector Registers. The 32 registers each store store 16 doubleword/single pre-
cision loating-point entries (or 8 quadword/double precision loating-point entries), and serve as source
and destination operands for vector packed loating point and integer operations. Additionally, they may
also contain memory pointer offsets used to gather and scatter data from/to memory. These registers are
referenced as zmm0 through zmm31.

Vector Mask Registers. These registers specifywhich vector elements are operated on andwritten for Knights
Corner instructions vector instructions. If the Nth bit of a vectormask register is set, then the Nth element
of the destination vector is overridden with the result of the operation; otherwise, the element remains
unchanged. A vector mask register can be set using vector compare instructions, instructions to move
contents from a GP register, or a special subset of vector mask arithmetic instructions.
Knights Corner vector instructions are able to report exceptions via MXCSR lags but never cause traps
as all SIMD loating-point exceptions are always masked (unlike Intel® SSE/Intel® AVX instructions in
other processors, that may trap if loating-point exceptions are unmasked, depending on the value of the
OM/UM/IM/PM/DM/ZM bits). The reason is that Knights Corner forces the new DUE bit (Disable Un-
masked Exceptions) in the MXCSR (bit21) to be set to 1.
On Knights Corner, both single precision and double precision loating-point instructions use MXCSR.DAZ
and MXCSR.FZ to decide whether to treat input denormals as zeros or to lush tiny results to zero (the
latter are in most cases - but not always - denormal results which are lushed to zero when MXCSR.FZ is
set to 1; see the IEEE Standard 754-2008, section 7.5, for a de inition of tiny loating-point results).
Table 2.15 shows the bit layout of the MXCSR control register.
MXCSR bit 20 is reserved, however it is not reported as Reserved by MXCSR_MASK. Setting this bit will
result in unde ined behavior

General-purpose registers. The sixteen general-purpose registers are available in Knights Corner's 64 bit

36 Reference Number: 327364-001

CHAPTER 2. INSTRUCTIONS TERMINOLOGY AND STATE

Figure 2.1: 64 bit Execution Environment
Reference Number: 327364-001 37

CHAPTER 2. INSTRUCTIONS TERMINOLOGY AND STATE

Figure 2.2: Vector and Vector Mask Registers

38 Reference Number: 327364-001

CHAPTER 2. INSTRUCTIONS TERMINOLOGY AND STATE

mode execution environment. These registers are identical to those available in the 64 bit execution en-
vironment described in the Intel64® Intel® Architecture Software Developer's Manual.

EFLAGS register. R/EFLAGS are updated by instructions according to the Intel64® Intel® Architecture Soft-
ware Developer's Manual. Additionally, it is also updated by Knights Corner's KORTEST instruction.

FCW and FSW registers. Used by x87 instruction set extensions to set rounding modes, exception masks and
lags in the case of the FCW, and to keep track of exceptions in the case of the FSW.

x87 stack. An eight-element stack used to perform loating-point operations on 32/64/80-bit loating-point
data using the x87 instruction set.

Bit ields Field Description

31-22 Reserved Reserved bits
21 DUE Disable Unmasked Exceptions (always set to 1)
20-16 Reserved Reserved bits
15 FZ Flush To Zero
14-13 RC Rounding Control
12-7 Reserved Reserved bits (IM/DM/ZM/OM/UM/PM in other proliferations)
6 DAZ Denormals Are Zeros
5 PE Precision Flag
4 UE Under low Flag
3 OE Over low Flag
2 ZE Divide-by-Zero Flag
1 DE Denormal Operation Flag
0 IE Invalid Operation Flag

Table 2.15: MXCSR bit layout. Note: MXCSR bit 20 is reserved, however it is not reported as Reserved by
MXCSR_MASK. Setting this bit will result in unde ined behavior

Reference Number: 327364-001 39

CHAPTER 3. KNIGHTS CORNER INSTRUCTION FORMAT

Chapter 3

Knights Corner Instruction Format

This chapter describes the instruction encoding format and assembly instruction syntax of new instructions
supported by Knights Corner.

3.1 Overview

Knights Corner introduces 512-bit vector instructions operating on 512-bit vector registers (zmm0-zmm31),
and offers vector mask registers (k0-k7) to support a rich set of conditional operations on data elements within
the zmm registers. Vector instructions operating on zmm registers are encoded using amulti-byte pre ix encod-
ing scheme, with 62H being the 1st of the multi-byte pre ix. This multi-byte pre ix is referred to as MVEX in this
document.

Instructions operating on the vector mask registers are encoded using another multi-byte pre ix, with C4H or
C5H being the 1st of themulti-byte pre ix. Thismulti-byte pre ix is similar to the VEX pre ix that is de ined in the
"Intel®Architecture Instruction Set Architecture Programming Reference". Wewill refer to the C4H/C5H based
VEX-like pre ix as "VEX" in this document. Additionally, Knights Corner also provides a handful of new instruc-
tions operating on general-purpose registers but are encoded using VEX. In some cases, new scalar instructions
supported by Knights Corner can be encoded with either MVEX or VEX.

3.2 Instruction Formats

Instructions encoded by MVEX have the format shown in Figure 3.1.

Instructions encoded by VEX have the format shown in Figure 3.2.

3.2.1 MVEX/VEX and the LOCK prex

AnyMVEX-encoded or VEX-encoded instructionwith a LOCKpre ix preceding themulti-byte pre ixwill generate
an invalid opcode exception (#UD).

40 Reference Number: 327364-001

CHAPTER 3. KNIGHTS CORNER INSTRUCTION FORMAT

Figure 3.1: New Instruction Encoding Format with MVEX Pre ix

Figure 3.2: New Instruction Encoding Format with VEX Pre ix

3.2.2 MVEX/VEX and the 66H, F2H, and F3H prexes

Any MVEX-encoded or VEX-encoded instruction with a 66H, F2H, or F3H pre ix preceding the multi-byte pre ix
will generate an invalid opcode exception (#UD).

3.2.3 MVEX/VEX and the REX prex

Any MVEX-encoded or VEX-encoded instruction with a REX pre ix preceding the multi-byte pre ix will generate
an invalid opcode exception (#UD).

3.3 The MVEX Prex

The MVEX pre ix consists of four bytes that must lead with byte 62H. An MVEX-encoded instruction supports
up to three operands in its syntax and is operating on vectors in vector registers or memory using a vector mask
register to control the conditional processing of individual data elements in a vector. Swizzling, conversion and
other operations on data elements within a vector can be encoded with bit ields in the MVEX pre ix, as shown
in Figure 3.3. The functionality of these bit ields is summarized below:

• 64 bit mode register speci ier encoding (R, X, B, R', W, V') for memory and vector register operands (en-
coded in 1's complement form).

– A vector register as source or destination operand is encoded by combining the R'R bits with the reg
ield, or the XB bits with the r/m ield of the modR/M byte.

– The base of amemory operand is a general purpose register encoded by combining the B bit with the
r/m ield. The index of a memory operand is a general purpose register encoded by combining the X
bit with the SIB.index ield.

Reference Number: 327364-001 41

CHAPTER 3. KNIGHTS CORNER INSTRUCTION FORMAT

– The vector index operand in the gather/scatter instruction family is a vector register, encoded by
combining the VX bits with the SIB.index ield. MVEX.vvvv is not used in the gather/scatter instruc-
tion family.

Figure 3.3: MVEX bit ields

• Non-destructive source register speci ier (applicable to the three operand syntax): This is the irst source
operand in the three-operand instruction syntax. It is represented by the notation, MVEX.vvvv. It can
encode any of the lower 16 zmm vector registers, or using the low 3 bits to encode a vector mask register
as a source operand. It can be combined with V to encode any of the 32 zmm vector registers

• Vector mask register and masking control: The MVEX.aaa ield encodes a vector mask register that is
used in controlling the conditional processing operation on the data elements of a 512-bit vector instruc-
tion. The MVEX.aaa ield does not encode a source or a destination operand. When the encoded value of
MVEX.aaa is 000b, this corresponds to "no vector mask register will act as conditional mask for the vector
instruction".

• Non-temporal/eviction hint. TheMVEX.E ield can encode a hint to the processor on amemory referencing
instruction that the data is non-temporal and canbeprioritized for eviction. When an instruction encoding

42 Reference Number: 327364-001

CHAPTER 3. KNIGHTS CORNER INSTRUCTION FORMAT

does not reference anymemory operand, this bit may also be used to control the function of theMVEX.SSS
ield.

• Compaction of legacy pre ixes (66H, F2H, F3H): This is encoded in the MVEX.pp ield.

• Compaction of two-byte and three-byte opcode: This is encoded in the MVEX.mmmm ield.

• Register swizzle/memory conversion operations (broadcast/up-convert/down-convert)/static-rounding
override: This is encoded in the MVEX.SSS ield.

– Swizzle operation is supported only for register-register syntax of 512-bit vector instruction, and re-
quiresMVEX.E = 0, the encoding ofMVEX.SSS determines the exact swizzle operation - see Section2.2

– Static rounding override only applies to register-register syntax of vector loating-point instructions,
and requires MVEX.E = 1.

The MVEX pre ix is required to be the last pre ix and immediately precedes the opcode bytes.

3.3.1 Vector SIB (VSIB) Memory Addressing

In the gather/scatter instruction family, an SIB byte that follows the ModR/M byte can support VSIB memory
addressing to an array of linear addresses. VSIB memory addressing is supported only with the MVEX pre ix.

In VSIB memory addressing, the SIB byte consists of:

• The scale ield (bit 7:6), which speci ies the scale factor.

• The index ield (bits 5:3), which is prepended with the 2-bit logical value of the MVEX.VX bits to specify
the vector register number of the vector index operand; each element in the vector register speci ies an
index.

• The base ield (bits 2:0) is prependedwith the logical value of MVEX.B ield to specify the register number
of the base register.

3.4 The VEX Prex

The VEX pre ix is encoded in either the two-byte form (the irst bytemust be C5H) or in the three-byte form (the
irst byte must be C4H). Beyond the irst byte, the VEX pre ix consists of a number of bit ields providing speci ic
capability; they are shown in Figure 3.4.
The functionality of the bit ields is summarized below:

• 64 bit mode register speci ier encoding (R, X, B, W): The R/X/B bit ield is combined with the lower three
bits or register operand encoding in themodR/Mbyte to access the upper half of the 16 registers available
in 64 bit mode. The VEX.R, VEX.X, VEX.B ields replace the functionality of REX.R, REX.X, REX.B bit ields.
TheWbit either replaces the functionality of REX.W or serves as an opcode extension bit. The usage of the
VEX.WRXB bits is explained in detail in section 2.2.1.2 of the Intel® 64 and IA-32 Architectures Software
developer's manual, Volume 2A. This bit is stored in 1's complement form (bit inverted format).

Reference Number: 327364-001 43

CHAPTER 3. KNIGHTS CORNER INSTRUCTION FORMAT

• Non-destructive source register speci ier (applicable to three operand syntax): this is the irst source
operand in the instruction syntax. It is represented by the notation, VEX.vvvv. It can encode any general-
purpose register, or using only 3 bits it can encode vector mask registers. This ield is encoded using 1's
complement form (bit inverted form), i.e. RAX/K0 is encoded as 1111B, and R15 is encoded as 0000B.

• Compaction of legacy pre ixes (66H, F2H, F3H): This is encoded in the VEX.pp ield.

• Compaction of two-byte and three-byte opcode: This is encoded in the VEX.mmmmm ield.

The VEX pre ix is required to be the last pre ix and immediately precedes the opcode bytes. It must follow any
other pre ixes. If the VEX pre ix is present a REX pre ix is not supported.

Figure 3.4: VEX bit ields

44 Reference Number: 327364-001

CHAPTER 3. KNIGHTS CORNER INSTRUCTION FORMAT

3.5 Knights Corner instructions Assembly Syntax

KnightsCorner instructions supports up to threeoperands. The rich encoding ields for swizzle/broadcast/convert/rounding,
masking control, and non-temporal hint are expressed asmodi ier expressions to the respective operands in the
assembly syntax. A few common forms for Knights Corner assembly instruction syntax are expressed in the gen-
eral form:

mnemonic vreg{masking modifier}, source1, transform_modifier(vreg/mem)
mnemonic vreg{masking modifier}, source1, transform_modifier(vreg/mem), imm
mnemonic mem{masking modifier}, transform_modifier(vreg)

The speci ic forms to express assembly syntax operands, modi iers, and transformations are listed in Table 3.1.

3.6 Notation

The notation used to describe the operation of each instruction is given as a sequence of control and assignment
statements inC-like syntax. This document only contains thenotation speci ically needed for vector instructions.
Standard Intel® 64 notation may be found at IA-32 Intel® Architecture Software Developer's Manual: Volume 2
for convenience.

When instructions are represented symbolically, the following notations are used:
label: mnemonic argument1 {write-mask}, argument2, argument3, argument4, ...

where:

• Amnemonic is a reserved name for a class of instruction opcodes which have the same function.
• The operands argument1, argument2, argument3, argument4, and so on are optional. There may be from
one to three register operands, depending on the opcode. The leftmost operand is always the destina-
tion; for certain instructions, such as vfmadd231ps, it may be a source as well. When the second leftmost
operand is a vector mask register, it may in certain cases be a destination as well, as for example with the
vpsubrsetbd instruction. All other register operands are sources. Theremay also be additional arguments
in the form of immediate operands; for example, the vcvtfxpntdq2ps instructions has a 3-bit immediate
ield that speci ies the exponent adjustment to be performed, if any. Thewrite-mask operand speci ies the
vectormaskmask register used to control the selective updating of elements in the destination register or
registers.

3.6.1 Operand Notation

In this manual we will consider vector registers from several perspectives. One perspective is is as an array of
64 bytes. Another is as an array of 16 doubleword elements. Another is an array of 8 quadword elements. Yet
another is as an array of 512 bits. In the mnemonic operation description pseudo-code, registers will be ad-
dressed using bit ranges, such as:

i = n*32
zmm1[i+31:i]

Reference Number: 327364-001 45

CHAPTER 3. KNIGHTS CORNER INSTRUCTION FORMAT

This example refers to the 32 bits of the n-th doubleword element of vector register zmm1.

Wewill use a similar bit-oriented notation to describe access to vectormask registers. In the case of vectormask
registers, we will usually specify a single bit, rather than a range of bits, because vector mask registers are used
for predication, carry, borrow, and comparison results, and a single bit per element is enough for any of those
purposes.

Using this notation, it is for example possible to test the value of the 12th bit in k1 as follows:

if (k1[11] == 1) { ... code here ... }

Tables 3.1 and 3.2 summarize the notation used for instruction operands and their values.

In Knights Corner instructions, the contents of vector registers are variously interpreted as loating-point values
(either 32 or 64 bits), integer values, or simply doubleword values of no particular data type, depending on the
instruction semantics.

3.6.2 The Displacement Bytes

Knights Corner introduces a brand new displacement representation that allows for a more compact encoding
in unrolled code: compressed displacement of 8-bits, or disp8*N. Such compressed displacement is based on
the assumption that the effective displacement is a multiple of the granularity of the memory access, and hence
we do not need to encode the redundant low-order bits of the address offset.

Knights Corner instructions using the MVEX pre ix (i.e. using encoding 62) have the following displacement
options:

• No displacement

• 32 bit displacement: this displacement works exactly the same as the legacy 32 bit displacement and
works at byte granularity

• Compressed 8 bit displacement (disp8*N): this displacement format substitutes the legacy 8-bit displace-
ment in Knights Corner instructions using map 62. This displacement assumes the same granularity as
the memory operand size (which is dependent on the instructions and the memory conversion function
being used). Redundant low-order bits are ignored and hence, 8-bit displacements are reinterpreted so
that they are multiplied by the memory operands total size in order to generate the inal displacement to
be used in calculating the effective address.

Note that the displacements in theMVEXvector instruction pre ix are encoded in exactly the sameway as regular
displacements (so there are no changes in theModRM/SIB encoding rules), with the only exception that disp8 is
overloaded to disp8*N. In other words there are no changes in the encoding rules or encoding lengths, but only
in the interpretation of the displacement value by hardware (which needs to scale the displacement by the size
of the memory operand to obtain a byte-wise address offset).

3.6.3 Memory size and disp8*N calculation

Table 3.3 and Table 3.4 show the size of the vector (or element) being accessed in memory, which is equal to the
scaling factor for compressed displacement (disp8*N). Note that some instructions work at element granularity

46 Reference Number: 327364-001

CHAPTER 3. KNIGHTS CORNER INSTRUCTION FORMAT

Notation Meaning
zmm1 A vector register operand in the argument1 ield of the instruction. The 64 byte

vector registers are: zmm0 through zmm31
zmm2 A vector register operand in the argument2 ield of the instruction. The 64 byte

vector registers are: zmm0 through zmm31
zmm3 A vector register operand in the argument3 ield of the instruction. The 64 byte

vector registers are: zmm0 through zmm31
Sf32(zmm/m) A vector loating-point 32 bit swizzle/conversion. Refer to Table 2.2 for register

sources and Table 2.4 for memory conversions.
Sf64(zmm/m) A vector loating-point 64 bit swizzle/conversion. Refer to Table 2.3 for register

sources and Table 2.6 for memory conversions.
Si32(zmm/m) A vector integer 32 bit swizzle/conversion. Refer to Table 2.2 for register sources

and Table 2.5 for memory conversions.
Si64(zmm/m) A vector integer 64 bit swizzle/conversion. Refer to Table 2.3 for register sources

and Table 2.7 for memory conversions.
Uf32(m) A loating-point 32 bit load Up-conversion. Refer to Table 2.9 for the memory

conversions available for all the different datatypes.
Ui32(m) An integer 32 bit load Up-conversion. Refer to Table 2.9 for the memory conver-

sions available for all the different datatypes.
Uf64(m) A loating-point 64 bit load Up-conversion. Refer to Table 2.11 for the memory

conversions available for all the different datatypes.
Ui64(m) An integer 64 bit load Up-conversion. Refer to Table 2.11 for thememory conver-

sions available for all the different datatypes.
Df32(zmm) A loating-point 32bit storeDown-conversion. Refer toTable2.12 for thememory

conversions available for all the different datatypes.
Di32(zmm) An integer 32 bit store Down-conversion. Refer to Table 2.12 for the memory

conversions available for all the different datatypes.
Df64(zmm) A loating-point 64bit storeDown-conversion. Refer toTable2.13 for thememory

conversions available for all the different datatypes.
Di64(zmm) An integer 64 bit store Down-conversion. Refer to Table 2.13 for the memory

conversions available for all the different datatypes.
m A memory operand.
mt A memory operand that may have an EH hint attribute.
mvt A vector memory operand that may have an EH hint attribute. This memory

operand is encoded using ModRM and VSIB bytes. It can be seen as a set of point-
ers where each pointer is equal toBASE + V INDEX[i]× SCALE

effective_address Used to denote the full effective address when dealing with a memory operand.
imm8 An immediate byte value.
SRC[a-b] A bit- ield from an operand ranging from LSB b to MSB a.

Table 3.1: Operand Notation

Notation Meaning
zmm1[i+31:i] The value of the element located between bit i and bit i + 31 of the argument1

vector operand.
zmm2[i+31:i] The value of the element located between bit i and bit i + 31 of the argument2

vector operand.
k1[i] Speci ies the i-th bit in the vector mask register k1.

Table 3.2: Vector Operand Value Notation

Reference Number: 327364-001 47

CHAPTER 3. KNIGHTS CORNER INSTRUCTION FORMAT

instead of full vector granularity at memory level, and hence should use the "element level" column in Table 3.3
and Table 3.4 (namely VLOADUNPACK, VPACKSTORE, VGATHER, and VSCATTER instructions).

Table 3.3: Size of vector or element accessed in memory for up-
conversion

Function Usage Memory accessed / Disp8*N

U/Sf32 No broadcast 4to16 broadcast 1to16 broadcast
or element level

000 [rax] {16to16} or [rax] 64 16 4
001 [rax] {1to16} 4 NA NA
010 [rax] {4to16} 16 NA NA
011 [rax] { loat16} 32 8 2
100 [rax] {uint8} 16 4 1
101 [rax] {sint8} 16 4 1
110 [rax] {uint16} 32 8 2
111 [rax] {sint16} 32 8 2

U/Si32 No broadcast 4to16 broadcast 1to16 broadcast
or element level

000 [rax] {16to16} or [rax] 64 16 4
001 [rax] {1to16} 4 NA NA
010 [rax] {4to16} 16 NA NA
011 N/A NA NA NA
100 [rax] {uint8} 16 4 1
101 [rax] {sint8} 16 4 1
110 [rax] {uint16} 32 8 2
111 [rax] {sint16} 32 8 2

U/Sf64 No broadcast 4to8 broadcast 1to8 broadcast
or element level

000 [rax] {8to8} or [rax] 64 32 8
001 [rax] {1to8} 8 NA NA
010 [rax] {4to8} 32 NA NA
011 N/A NA NA NA
100 N/A NA NA NA
101 N/A NA NA NA
110 N/A NA NA NA
111 N/A NA NA NA

U/Si64 No broadcast 4to8 broadcast 1to8 broadcast
or element level

000 [rax] {8to8} or [rax] 64 32 8
001 [rax] {1to8} 8 NA NA
010 [rax] {4to8} 32 NA NA
011 N/A NA NA NA
100 N/A NA NA NA
101 N/A NA NA NA
110 N/A NA NA NA
111 N/A NA NA NA

48 Reference Number: 327364-001

CHAPTER 3. KNIGHTS CORNER INSTRUCTION FORMAT

Table 3.4: Size of vector or element accessed in memory for down-
conversion

Function Usage Memory accessed / Disp8*N

Df32 Regular store Element level
000 zmm1 64 4
001 N/A NA NA
010 N/A NA NA
011 zmm1 { loat16} 32 2
100 zmm1 {uint8} 16 1
101 zmm1 {sint8} 16 1
110 zmm1 {uint16} 32 2
111 zmm1 {sint16} 32 2

Df64 Regular store Element level
000 zmm1 64 8
001 N/A NA NA
010 N/A NA NA
011 N/A NA NA
100 N/A NA NA
101 N/A NA NA
110 N/A NA NA
111 N/A NA NA

Di64 Regular store Element level
000 zmm1 64 8
001 N/A NA NA
010 N/A NA NA
011 N/A NA NA
100 N/A NA NA
101 N/A NA NA
110 N/A NA NA
111 N/A NA NA

3.7 EH hint

All vector instructions that access memory provide the option of specifying a cache-line eviction hint, EH.

EH is a performance hint, andmay operate in differentways or even be completely ignored in different hardware
implementations. Knights Corner is designed to provide support for cache-ef icient access to memory locations
that have either low temporal locality of access or bursts of a few very closely bunched accesses.

There are two distinct modes of EH hint operation, one for prefetching and one for loads, stores, and load-op

Reference Number: 327364-001 49

CHAPTER 3. KNIGHTS CORNER INSTRUCTION FORMAT

instructions.

The interaction of the EH hint with prefetching is summarized in Table 3.5.

EH value Hit behavior Miss behavior
EH not set Make data MRU Fetch data and make it MRU
EH set Make data MRU Fetch data into way #N, where N is the

thread number, and make it MRU

Table 3.5: Prefetch behavior based on the EH (cache-line eviction hint)

The above table describes the effect of the EH bit on gather/scatter prefetches into the targeted cache (e.g. L1
for vgatherpf0dps, L2 for vgatherpf1dps). If vgatherpf0dpsmisses both L1 and L2, the resulting prefetch into L1
is a non-temporal prefetch into way #N of L1, but the prefetch into L2 is a normal prefetch, not a non-temporal
prefetch. If you want the data to be non-temporally fetched into L2, youmust use vgatherpf1dps with the EH bit
set.

The operation of the EH hint with prefetching is designed to limit the cache impact of streaming data.

Note that regular prefetch instructions (like vprefetch0) do not have an embedded EH hint. Instead, the non-
temporal hint is given by the opcode/mnemonic (see VPREFETCHNTA/0/1/2 descriptions for details). The
same rules described in Table 3.5 still apply.

Table 3.6 summarizes the interaction of the EH hint with load and load-op instructions.

EH value L1 hit behavior L1 miss behavior
EH not set Make data MRU Fetch data and make it MRU
EH set Make data LRU Fetch data and make it MRU

Table 3.6: Load/load-op behavior based on the EH bit.

The EH bit, when used with load and load-op instructions, affects only the L1 cache behavior. Any resulting L2
misses are handled normally, regardless of the setting of the EH bit.

Table 3.7 summarizes the interaction of the EH hint with store instructions. Note that stores that write a full
cache-line (no mask, no down-conversion) evict the line from L1 (invalidation) while updating the contents
directly into the L2 cache. In any other case, a store with an EH hint works as a load with an EH hint.

EH value Store type L1 hit behavior L1 miss behavior
EH not set Make data MRU Fetch data and make it MRU
EH set No mask, no downconv. Invalidate L1 - Update L2 Fetch data and make it MRU
EH set Mask or downconv. Make data LRU Fetch data and make it MRU

Table 3.7: Store behavior based on the EH bit.

The EH bit, when used with load and load-op instructions, affects only the L1 cache behavior. Any resulting L2
misses are handled normally, regardless of the setting of the EH bit.

50 Reference Number: 327364-001

CHAPTER 3. KNIGHTS CORNER INSTRUCTION FORMAT

3.8 Functions and Tables Used

Somemnemonic de initions use auxiliary tables and functions to ease the process of describing the operations of
the instruction. The following section describes those tables and functions that do not have an obviousmeaning.

3.8.1 MemLoad and MemStore

This document uses two functions, Mem-Load andMemStore, to describe in pseudo-codememory transfers that
involve no conversions or broadcasts:

• MemLoad: Given an address pointer, this function returns the associated data from memory. Size is de-
ined by the explicit destination size in the pseudo-code (see for example LDMXCSR in Appendix B)

• MemStore: Given an address pointer, this function stores the associated data to memory. Size is de ined
by the explicit source data size in the pseudo-code.

3.8.2 SwizzUpConvLoad, UpConvLoad and DownConvStore

In this document, the detailed discussions of memory-accessing instructions that support datatype conversion
and/or broadcast (as de ined by the UpConv, SwizzUpConv, and DownConv tables in section 2.2) use the func-
tions shown in Table 3.8 in their Operation sections (the instruction pseudo-code). These functions are used
to describe any swizzle, broadcast, and/or conversion that can be performed by the instruction, as well as the
actual load in the case of SwizzUpConv and UpConv. Note that zmm/mmeans that the source may be either a
vector operand or a memory operand, depending on the ModR/M encoding.

Swizzle/conversion used Function used in operation description
Sf32(zmm/m) SwizzUpConvLoadf32(zmm/m)
Sf64(zmm/m) SwizzUpConvLoadf64(zmm/m)
Si32(zmm/m) SwizzUpConvLoadi32(zmm/m)
Si64(zmm/m) SwizzUpConvLoadi64(zmm/m)

Uf32(m) UpConvLoadf32(m)
Ui32(m) UpConvLoadi32(m)
Uf64(m) UpConvLoadf64(m)
Ui64(m) UpConvLoadi64(m)

Df32(zmm) DownConvStoref32(zmm) or DownConvStoref32(zmm[xx:yy])
Di32(zmm) DownConvStorei32(zmm) or DownConvStorei32(zmm[xx:yy])
Df64(zmm) DownConvStoref64(zmm) or DownConvStoref64(zmm[xx:yy])
Di64(zmm) DownConvStorei64(zmm) or DownConvStorei64(zmm[xx:yy])

Table 3.8: SwizzUpConv, UpConv and DownConv function conventions

The Operation sectionmay useUpConvSizeOf, which returns the inal size (in bytes) of an up-convertedmemory
element given a speci ied up-conversionmode. A speci ic subset of amemory streammaybeused as aparameter
for UpConv; Size of the subset is inferred by the size of destination together with the up-conversion mode.

Additionally, the Operation section may also use DownConvStoreSizeOf, which returns the inal size (in bytes) of
a downcoverted vector element given a speci ied down-conversion mode. A speci ic subset of a vector register

Reference Number: 327364-001 51

CHAPTER 3. KNIGHTS CORNER INSTRUCTION FORMAT

may be used as a parameter for DownConvStore; for example, DownConvStore(zmm2[31:0]) speci ies that the
low 32 bits of zmm2 form the parameter for DownConv.

3.8.3 Other Functions/Identiers

The following identi iers are used in the algorithmic descriptions:

• Carry - The carry bit from an addition.

• FpMaxAbs - The greater of the absolute values of two loating-point numbers. See the description of the
VGMAXABSPS instruction for further details.

• FpMax - The greater of two loating-point numbers. See the description of the VGMAXPS instruction for
further details.

• FpMin - The lesser of two loating-point numbers. See the description of the VGMINPS instruction for
further details.

• Abs - The absolute value of a number.

• IMax - The greater of two signed integer numbers.

• UMax - The greater of two unsigned integer numbers.

• IMin - The lesser of two signed integer numbers.

• UMin - The lesser of two unsigned integer numbers.

• CvtInt32ToFloat32 - Convert a signed 32 bit integer number to a 32 bit loating-point number.

• CvtInt32ToFloat64 - Convert a signed 32 bit integer number to a 64 bit loating-point number.

• CvtFloat32ToInt32 - Convert a 32 bit loating-point number to a 32 bit signed integer number using the
speci ied rounding mode.

• CvtFloat64ToInt32 - Convert a 64 bit loating-point number to a 32 bit signed integer number using the
speci ied rounding mode.

• CvtFloat32ToUint32 - Convert a 32 bit loating-point number to a 32 bit unsigned integer number using
the speci ied rounding mode.

• CvtFloat64ToUint32 - Convert a 64 bit loating-point number to a 32 bit unsigned integer number using
the speci ied rounding mode.

• CvtFloat32ToFloat64 - Convert a 32 bit loating-point number to a 64 bit loating-point number.

• CvtFloat64ToFloat32 - Convert a 64 bit loating-point number to a 32 bit loating-point number using
the speci ied rounding mode.

• CvtUint32ToFloat32 - Convert an unsigned 32 bit integer number to a 32 bit loating-point number.

• CvtUint32ToFloat64 - Convert an unsigned 32 bit integer number to a 64 bit loating-point number.

• GetExp - Obtains the (un-biased) exponent of a given loating-point number, returned in the form of a 32
bit loating-point number. See the description of the VGETEXPPS instruction for further details.

52 Reference Number: 327364-001

CHAPTER 3. KNIGHTS CORNER INSTRUCTION FORMAT

• RoundToInt - Rounds a loating-point number to the nearest integer, using the speci ied rounding mode.
The result is a loating-point representation of the rounded integer value.

• Borrow - The borrow bit from a subtraction.

• ZeroExtend - Returns a value zero-extended to the operand-size attribute of the instruction.

• FlushL1CacheLine - Flushes the cache line containing the speci ied memory address from L1.

• InvalidateCacheLine - Invalidate the cache line containing the speci iedmemory address from the whole
memory cache hierarchy.

• FetchL1CacheLine - Prefetches the cache line containing the speci ied memory address into L1. See the
description of the VPREFETCH1 instruction for further details.

• FetchL2CacheLine - Prefetches the cache line containing the speci ied memory address into L2. See the
description of the VPREFETCH2 instruction for further details.

Reference Number: 327364-001 53

CHAPTER 4. FLOATING-POINT ENVIRONMENT, MEMORY ADDRESSING, AND PROCESSOR STATE

Chapter 4

Floating-Point Environment, Memory Ad-
dressing, and Processor State

This chapter describes the Knights Corner vector loating-point instruction exception behavior and interactions
related to system programming.

4.1 Overview

Knights Corner 512-bit vector instructions that operate on loating-point data may signal exceptions related to
arithmetic processing. When SIMD loating-point exceptions occur, Knights Corner supports exception report-
ing using exception lags in the MXCSR register, but traps (unmasked exceptions) are not supported.

Exceptions caused by memory accesses apply to vector loating-point, vector integer, and scalar instructions.

The MXCSR register (see Figure 4.1) in Knights Corner provides:

• Exception lags to indicate SIMD loating-point exceptions signaled by loating-point instructions operat-
ing on zmm registers. The lags are: IE, DE, ZE, OE, UE, PE.

• Rounding behavior and control: DAZ, FZ and RC.

• Exception Suppression: DUE (always 1)

4.1.1 Suppress All Exceptions Attribute (SAE)

Knights Corner instructions that process loating-point data support a speci ic feature to disable loating-point
exception signaling, called SAE ("suppress all exceptions"). The SAE mode is enabled via a speci ic bit in the
register swizzle ield of the MVEX pre ix (by setting the EH bit to 1). When SAE is enabled in the instruction
encoding, that instruction does not report any SIMD loating-point exception in theMXCSR register. This feature
is only available to the register-register format of the instructions and in combinationwith static rounding-mode.

54 Reference Number: 327364-001

CHAPTER 4. FLOATING-POINT ENVIRONMENT, MEMORY ADDRESSING, AND PROCESSOR STATE

Figure 4.1: MXCSR Control/Status Register

4.1.2 SIMD Floating-Point Exceptions

SIMD loating-point exceptions are those exceptions that can be generated by Knights Corner instructions that
operate on loating-point data in zmm operands. Six classes of SIMD loating-point exception lags can be sig-
naled:

• Invalid operation (#I)

• Divide-by-zero (#Z)

• Numeric over low (#O)

• Numeric under low (#U)

• Inexact result (Precision) (#P)

• Denormal operand (#D)

4.1.3 SIMD Floating-Point Exception Conditions

The following sections describe the conditions that cause SIMD loating-point exceptions to be signaled, and the
masked response of the processor when these conditions are detected.

When more than one exception is encountered, then the following precedence rules are applied1.

1. Invalid-operation exception caused by sNaN operand

2. Any other invalid exception condition different from sNaN input operand
1Note that Knights Corner has no support for unmasked exceptions, so in this case the exception precedence rules have no effect. All

concurrently-encountered exceptions will be reported simultaneously.

Reference Number: 327364-001 55

CHAPTER 4. FLOATING-POINT ENVIRONMENT, MEMORY ADDRESSING, AND PROCESSOR STATE

3. Denormal operand exception

4. A divide-by-zero exception

5. Over low/under low exception

6. Inexact result

All Knights Corner instructions loating-point exceptions are precise and are reported as soon as the instruction
completes execution. The status lags from the MXCSR register set by each instruction will be the logical OR of
the lags set by each of the up to 16 (or 8) individual operations. The status lags are sticky and can be cleared
only via a LDMXCSR instruction.

4.1.3.1 Invalid Operation Exception (#I)

The loating-point invalid-operation exception (#I) occurs in response to an invalid arithmetic operand. The lag
(IE) and mask (IM) bits for the invalid operation exception are bits 0 and 7, respectively, in the MXCSR register.

Knights Corner instructions forces all loating-point exceptions, including invalid-operation exceptions, to be
masked. Thus, for the #I exception the value returned in the destination register is a QNaN, QNaN Inde inite,
Integer Inde inite, or one of the source operands. When a value is returned to the destination operand, it over-
writes the destination register speci ied by the instruction. Table 4.1 lists the invalid-arithmetic operations that
the processor detects for instructions and the masked responses to these operations.

Normally, when one or more of the source operands are QNaNs (and neither is an SNaN or in an unsupported
format), an invalid-operation exception is not generated. For VCMPPS and VCMPPD when the predicate is one
of lt, le, nlt, or nle, a QNaN source operand does generate an invalid-operation exception.

Note that divide-by-zero exceptions (like all other loating-point exceptions) are always masked in Knights Cor-
ner.

4.1.3.2 Divide-By-Zero Exception (#Z)

The processor reports a divide-by-zero exception when a VRCP23PS instruction has a 0 operand.

Note that divide-by-zero exceptions (like all other loating-point exceptions) are always masked in Knights Cor-
ner.

4.1.3.3 Denormal Operand Exception (#D)

The processor reports a denormal operand exception when an arithmetic instruction attempts to operate on a
denormal operand and the DAZ bit in theMXCSR (the "Denormals Are Zero" bit) is not set to 0 (so that denormal
operands are not treated as zeros).

Note that denormal exceptions (like all other loating-point exceptions) are always masked in Knights Corner.

56 Reference Number: 327364-001

CHAPTER 4. FLOATING-POINT ENVIRONMENT, MEMORY ADDRESSING, AND PROCESSOR STATE

Condition Masked Response
VADDNPD, VADDNPS, VADDPD, VADDPS, VADDSETSPS, VMULPD,
VMULPS, VRCP23PS, VRSQRT32PS, VLOG2PS, VSCALEPS, VSUBPD,
VSUBPS, VSUBRPD or an VSUBRPS instruction with an SNaN
operand

Return the SNaN converted to a QNaN.
For more detailed information refer to
Table 4.3

VCMPPD or VCMPPS with QNaN or SNaN operand Return 0 (except for the predicates not-
equal, unordered, not-less-than, or not-
less- than-or-equal, which return a 1)

VCVTPD2PS, or VCVTPS2PD instruction with an SNaN operand Return the SNaN converted to a QNaN.
VCVTFXPNTPD2DQ, VCVTFXPNTPD2UDQ, VCVTFXPNTPS2DQ, or
VCVTFXPNTPS2DQ instruction with an NaN operand

Return a 0.

VGATHERD, VMOVAPS, VLOADUNPACKHPS, VLOADUNPACKLPS, or
VBROADCATSS instruction with SNaN operand and selected Up-
Conv32 that converts from loating-point to another loating-point
data type

Return the SNaN converted to a QNaN.

VPACKSTOREHPS, VPACKSTORELPS, VSCATTERDPS, or VMOVAPS
instruction with SNaN operand and selected a DownConv32 that
converts from loat to another loat datatype

Return the SNaN converted to a QNaN.

VFMADD132PD, VFMADD132PS, VFMADD213PD, VFMADD213PS,
VFMADD231PD, VFMADD233PS, VFNMSUB132PD, VFNM-
SUB132PS, VFNMSUB213PD, VFNMSUB213PS, VFNMSUB231PD,
VNMSUB231PS, VFMSUB132PD, VFMSUB132PS, VFMSUB213PD,
VFMSUB213PS, VFMSUB231PD, VFMSUB231PS, VFNMADD132PD,
VFNMADD132PS, VFNMADD213PD, VFNMADD213PS, VFN-
MADD231PD, or VFNMADD231PS instruction with an SNaN
operand.

Follow rules described in Table 4.4.

VGMAXPD, VGMAXPS, VGMINPDorVGMINPS instructionwith SNaN
operand

Returns non NaN operand. If both
operands are NaN, return irst source
NaN.

VGMAXABSPS instruction with SNaN operand. Returns non NaN operand. If both
operands are NaN, return irst source
NaN with its sign bit cleared.

Multiplication of in inity by zero Return the QNaN loating-point Inde i-
nite.

VGETEXPPS, VRCP23PS, VRSQRT23PS or VRNDFXPNTPS instruc-
tion with SNaN operand

Return the SNaN converted to a QNaN.

VRSQRT23PS instruction with NaN or negative value Return the QNaN loating-point Inde i-
nite.

Addition of opposite signed in inities or subtraction of like-signed
in inities

Return the QNaN loating-point Inde i-
nite

Table 4.1: Masked Responses of Knights Corner instructions to Invalid Arithmetic Operations

4.1.3.4 Numeric Overow Exception (#O)

The processor reports a numeric over low exception whenever the rounded result of an arithmetic instruction
exceeds the largest allowable inite value that its in the destination operand.

Note that over low exceptions (like all other loating-point exceptions) are always masked in Knights Corner.

Reference Number: 327364-001 57

CHAPTER 4. FLOATING-POINT ENVIRONMENT, MEMORY ADDRESSING, AND PROCESSOR STATE

4.1.3.5 Numeric Underow Exception (#U)

The processor signals an under low exception whenever (a) the rounded result of an arithmetic instruction,
calculated assuming unbounded exponent, is less than the smallest possible normalized inite value that will it
in thedestinationoperand (the result is tiny), and (b) the inal rounded result, calculatedwith bounded exponent
determined by the destination format, is inexact.

Note that under low exceptions (like all other loating-point exceptions) are always masked in Knights Corner.

The lush-to-zero control bit provides an additional option for handling numeric under low exceptions in
Knights Corner. If set (FZ = 1), tiny results (these are usually, but not always, denormal values) are replaced
by zeros of the same sign. If not set (FZ=0) then tiny results will be rounded to 0, a denormalized value, or the
smallest normalized loating-point number in the destination format, with the sign of the exact result.

4.1.3.6 Inexact Result (Precision) Exception (#P)

The inexact-result exception (also called theprecisionexception) occurs if the result of anoperation is not exactly
representable in the destination format. For example, the fraction 1/3 cannot be precisely represented in binary
form. This exception occurs frequently and indicates that some (normally acceptable) accuracy has been lost.
The exception is supported for applications that need to perform exact arithmetic only. In lush-to-zero mode,
the inexact result exception is signaled for any tiny result. (Byde inition, tiny results are not zero, and are lushed
to zero when MXCSR.FZ = 1 for all instructions that support this mode.)

Note that inexact exceptions (like all other loating-point exceptions) are always masked in Knights Corner.

4.2 Denormal Flushing Control

4.2.1 Denormal control in up-conversions and down-conversions

Instruction up-conversions and down-conversions follow speci ic denormal lushing rules, i.e. for treating input
denormals as zeros and for lushing tiny results to zero:

4.2.1.1 Up-conversions

• Up-conversions from loat16 to loat32 ignore theMXCSR.DAZ setting and this never treat input denormals
as zeros. Denormal exceptions are never signaled (the MXCSR.DE lag is never set by these operations).

• Up-conversions from any small loating-point number (namely, loat16) to loat32 can never generate a
loat32 output denormal

4.2.1.2 Down-conversions

• Down-conversions from loat32 to loat16 follow the MXCSR.DAZ setting to decide whether to treat input
denormals as zeros or not. For input denormals, the MXCSR.DE lag is set only if MXCSR.DAZ is not set,
otherwise it is left unchanged.

58 Reference Number: 327364-001

CHAPTER 4. FLOATING-POINT ENVIRONMENT, MEMORY ADDRESSING, AND PROCESSOR STATE

• Down-conversions from loat32 to any integer format follow the MXCSR.DAZ setting to decide whether to
treat input denormals as zeros or not (this may matter only in directed rounding modes). The MXCSR.DE
status lag is never set.

• Down-conversions from loat32 to any small loating-point number ignoreMXCSR.FZ and always preserve
output denormals.

4.3 Extended Addressing Displacements

Address displacements used bymemory operands to theKnights Corner instructions vector instructions, aswell
as MVEX-encoded versions of VPREFETCH and CLEVICT, operate differently than do normal x86 displacements.
Knights Corner instructions 8-bit displacements (i.e. when MOD.mod=01) are reinterpreted so that they are
multiplied by the memory operand's total size in order to generate the inal displacement to be used in calcu-
lating the effective address (32 bit displacements, which vector instructions may also use, operate normally, in
the same way as for normal x86 instructions). Note that extended 8-bit displacements are still signed integer
numbers and need to be sign extended.

A given vector instruction's 8-bit displacement is always multiplied by the total number of bytes of memory
the instruction accesses, which can mean multiplication by 64, 32, 16, 8, 4, 2 or 1, depending on any broadcast
and/or data conversion in effect. Thus when reading a 64-byte (no conversion, no broadcast) source operand,
for example via

vmovaps zmm0, [rsi]

the encoded 8-bit displacement is irst multiplied by 64 (shifted left by 6) before being used in the effective
address calculation. For

vbroadcastss zmm0, [rsi]{uint16} // {1to16} broadcast of {uint16} data

however, the encoded displacement would be multiplied by 2. Note that for MVEX versions of VPREFETCH and
CLEVICT, we always use disp8*64; for VEX versions we use the standard x86 disp8 displacement.

The use of disp8*N makes it possible to avoid using 32 bit displacements with vector instructions most of the
time, thereby reducing code size and shrinking the required size of the paired-instruction decode window by
3 bytes. Disp8*N overcomes disp8 limitations, as it is simply too small to access enough vector operands to be
useful (only 4 64-byte operands). Moreover, although disp8*N can only generate displacements that are multi-
ples of N, that's not a signi icant limitation, since Knights Corner instructions memory operands must already
be aligned to the total number of bytes of memory the instruction accesses in order to avoid raising a #GP fault,
and that alignment is exactly what disp8*N results in, given aligned base+index addressing.

4.4 Swizzle/up-conversion exceptions

There is a set ofKnightsCorner instructions that donot accept all regular formsofmemoryup-conversion/register
swizzling and raise a #UD fault for illegal combinations. The instructions are:

• VALIGND

Reference Number: 327364-001 59

CHAPTER 4. FLOATING-POINT ENVIRONMENT, MEMORY ADDRESSING, AND PROCESSOR STATE

• VCVTDQ2PD

• VCVTPS2PD

• VCVTUDQ2PD

• VEXP223PS

• VFMADD233PS

• VLOG2PS

• VPERMD

• VPERMF32X4

• VPMADD233D

• VPSHUFD

• VRCP23PS

• VRSQRT23PS

Table 4.2 summarizeswhich up-conversion/swizzling primitives are allowed for every one of those instructions:

Register Memory
Mnemonic None {1to16} {4to16} swizzles Conversions
VALIGND yes no no no no
VCVTDQ2PD yes yes yes yes no
VCVTPS2PD yes yes yes yes no
VCVTUDQ2PD yes yes yes yes no
VEX223PS yes no no no no
VFMADD233PS yes no yes no no
VLOG2PS yes no no no no
VPERMD yes no no no no
VPERMF32X4 yes no no no no
VPMADD233D yes no yes no no
VPSHUFD yes no no no no
VRCP23PS yes no no no no
VRSQRT23PS yes no no no no

Table 4.2: Summary of legal and illegal swizzle/conversion primitives for special instructions.

60 Reference Number: 327364-001

CHAPTER 4. FLOATING-POINT ENVIRONMENT, MEMORY ADDRESSING, AND PROCESSOR STATE

4.5 Accessing uncacheable memory

When accessing non cacheable memory, it's important to de ine the amount of data that is really accessed when
using Knights Corner instructions (mainly when Knights Corner instructions instructions are used to access to
memory mapped I/O regions). Depending on the memory region accessed, an access may cause that a mapped
device behave differently.

Knights Corner instructions, when accessing to uncacheablememory access, can be categorized in four different
groups:

• regular memory read operations

• vloadunpackh*/vloadunpackl*

• vgatherd*

• memory store operations

4.5.1 Memory read operations

Any Knights Corner instructions that read from memory, apart from vloadunpackh*/vloadunpackl* and vgath-
erd, access as many consecutive bytes as dictated by the combination of memory SwizzUpConv modi iers.

4.5.2 vloadunpackh*/vloadunpackl*

vloadunpackh*/vloadunpackl* instructions are exceptions to the general rule. Those two instructions will
always access 64 bytes of memory. The memory region accessed is between effective_address & (0x3F) and
(effective_address & (0x3F)) + 63 in both cases.

4.5.3 vgatherd*

vgatherd instructions are able to gather to up to 16 32 bit elements. The amount of elements accessed is deter-
mined by the number of bits set in the vectormask provided as source. Vgatherd* instructionwill access up to 16
different 64-byte memory regions when gathering the elements. Note that, depending on the implementation,
only one 64-byte memory access is performed for a variable number of vector elements located in that region.

Each accessed regions will be between element_effective_address & (0x3F) and (element_effective_address &
(0x3F)) + 63.

4.5.4 Memory stores

All Knights Corner instructions that perform memory store operations, update those memory positions deter-
mined by the vector mask operand. Vector mask speci ies which elements will be actually stored in memory.
DownConv* determine the number of bytes per element that will be modi ied in memory.

Reference Number: 327364-001 61

CHAPTER 4. FLOATING-POINT ENVIRONMENT, MEMORY ADDRESSING, AND PROCESSOR STATE

4.6 Floating-point Notes

4.6.1 Rounding Modes

VRNDFXPNTPS and conversion instructions with loat32 sources, such as VCVTFXPNTPS2DQ, support four se-
lectable rounding modes: round to nearest (even), round toward negative in inity (round down), round toward
positive in inity (round up), and round toward zero, These are the standard IEEE rounding modes; see IA-32
Intel® Architecture Software Developer's Manual: Volume 1, Section 4.8.4, for details.

Knights Corner introduces general support for all four rounding-modes mandated for binary loating-point
arithmetic by the IEEE Standard 754-2008.

4.6.1.1 Swizzle-explicit rounding modes

Knights Corner introduces the option of specifying the rounding-mode per instruction via a speci ic regis-
ter swizzle mode (by setting the EH bit to 1). This speci ic rounding-mode takes precedence over whatever
MXCSR.RC speci ies.

For those instructions (like VRNDFXPNTPS) where an explicit rounding-mode is speci ied via immediate, this
immediate takes precedence over a swizzle-explicit rounding-mode embedded into the encoding of the instruc-
tion.

The priority of the rounding-modes of an instruction hence becomes (from highest to lowest):

1. Rounding mode speci ied in the instruction immediate (if any)

2. Rounding mode speci ied is the instruction swizzle attribute

3. Rounding mode speci ied in RC bits of the MXCSR

4.6.1.2 Denition and propagation of NaNs

The IA-32 architecture de ines two classes of NaNs: quiet NaNs (QNaNs) and signaling NaNs (SNaNs). Quiet
NaNs have 1 as their irst fraction bit, SNaNs have 0 as their irst fraction bit. An SNaN is quieted by setting its
irst irst fraction bit to 1. The class of a NaN (quiet or signaling) is preservedwhen converting between different
precisions.

The processor never generates an SNaN as a result of a loating-point operation with no SNaN operands, so
SNaNs must be present in the input data or have to be inserted by the software.

QNaNs are allowed to propagate through most arithmetic operations without signaling an exception. Note also
that Knights Corner instructions do not trap for arithmetic exceptions, as loating-point exceptions are always
masked.

If any operation has one or more NaN operands then the result, in most cases, is a QNaN that is one of the input
NaNs, quieted if it is an SNaN. This is chosen as the irst NaN encountered when scanning the operands from left
to right, as presented in the instruction descriptions from Chapter 6.

If any loating-point operation with operands that are not NaNs leads to an inde inite result (e.g. 0/0, 0×∞, or
∞−∞), the result will be QNaN Inde inite: 0xFFC00000 for 32 bit operations and 0xFFF8000000000000 for

62 Reference Number: 327364-001

CHAPTER 4. FLOATING-POINT ENVIRONMENT, MEMORY ADDRESSING, AND PROCESSOR STATE

64 bit operations.

When operating on NaNs, if the instruction does not de ine any other behavior, Table 4.3 describes the NaN
behavior for unary and binary instructions. Table 4.4 shows the NaN behavior for ternary fused multiply and
add/sub operations. This table can be derived by considering the operation as a concatenation of two binary op-
erations. The irst binary operation, the multiply, produces the product. The second operation uses the product
as the irst operand for the addition.

Source operands Result
SNaN SNaN source operand, converted into a QNaN
QNaN QNaN source operand
SNaN and QNaN First operand (if this operand is an SNaN, it is con-

verted to a QNaN)
Two SNaNs First operand converted to a QNaN
Two QNaNs First operand
SNaN and a loating-point value SNaN source operand, converted into a QNaN
QNaN and a loating-point value QNaN source operand

Table 4.3: Rules for handling NaNs for unary and binary operations.

4.6.1.3 Signed Zeros

Zero can be represented as a+0 or a−0 depending on the sign bit. Both encodings are equal in value. The sign
of a zero result depends on the operation being performed and the rounding mode being used.

Knights Corner instructions introduces the fused "multiply and add'' and "multiply and sub'' operations. These
consist of amultiplication (whose sign is possibly negated) followed by an addition or subtraction, all calculated
with just one rounding error.

The sign of themultiplication result is the exclusive-or of the signs of themultiplier andmultiplicand, regardless
of the rounding mode (a positive number has a sign bit of 0, and a negative one, a sign bit of 1).

The sign of the addition (or subtraction) result is in general that of the exact result. However, when this result
is exactly zero, special rules apply: when the sum of two operands with opposite signs (or the difference of two
operands with like signs) is exactly zero, the sign of that sum (or difference) is+0 in all rounding modes, except
round down; in that case, the sign of an exact zero sum (or difference) is −0. This is true even if the operands
are zeros, or denormals treated as zeros because MXCSR.DAZ is set to 1. Note that x+ x = x− (−x) retains the
same sign as x even when x is zero; in particular, (+0) + (+0) = +0, and (−0) + (−0) = −0, in all rounding
modes.

When (a× b)± c is exactly zero, the sign of fused multiply-add/subtract shall be determined by the rules above
for a sum of operands. When the exact result of ±(a × b) ± c is non-zero yet the inal result is zero because of
rounding, the zero result takes the sign of the exact result.

The result for "fused multiply and add" follows by applying the following algorithm:

• (xd, yd, zd) =DAZ applied to (Src1, Src2, Src3) (denormal operands, if any, are treated as zeros of the same
sign as the operand; other operands are not changed)

• Resultd = xd × yd + zd computed exactly then rounded to the destination precision.

Reference Number: 327364-001 63

CHAPTER 4. FLOATING-POINT ENVIRONMENT, MEMORY ADDRESSING, AND PROCESSOR STATE

vfm
add231ps

vfm
add132ps

vfm
add213ps

vfm
add233ps a

vfm
sub231ps

vfnm
sub132ps

vfnm
sub213ps

vfnm
add231ps

vfm
sub132ps

vfm
sub213ps

vm
add231pd

vfnm
add132ps

vfnm
add213ps

vfnm
sub231pd

vm
add132pd

vm
add213pd

vfm
sub231pd

vfnm
sub132pd

vfnm
sub213pd

vfnm
add231pd

vfm
sub132pd

vfm
sub213pd

Src1
Src2

Src3
vfnm

add132pd
vfnm

add213pd
NaN

1 ,
NaN

2 ,
NaN

3
qNaN

2
qNaN

1
qNaN

2
qNaN

2

NaN
1 ,

NaN
2 ,

value
qNaN

2
qNaN

1
qNaN

2
qNaN

2

NaN
1 ,

value,
NaN

3
qNaN

3
qNaN

1
qNaN

1
qNaN

3

value,
NaN

2 ,
NaN

3
qNaN

2
qNaN

3
qNaN

2
qNaN

2

NaN
1 ,

value,
value

qNaN
1

qNaN
1

qNaN
1

qNaN
1

value,
NaN

2 ,
value

qNaN
2

qNaN
2

qNaN
2

qNaN
2

value,
vaule,

NaN
3

qNaN
3

qNaN
3

qNaN
3

qNaN
3

Table4.4:RulesforhandlingNaNsforfusedm
ultiplyandadd/suboperations(ternary).

aTheinterpretation
ofthesourcesisslightlydifferentforthisinstruction.HeretheSrc1

colum
n
and

NaN
1
areassociated

with
Src3[31:0].Sim

ilarlytheSrc3
colum

n
and

NaN
3
are

associatedwithSrc3[63:32].

64 Reference Number: 327364-001

CHAPTER 4. FLOATING-POINT ENVIRONMENT, MEMORY ADDRESSING, AND PROCESSOR STATE

• Result = FTZ applied toResultd (tiny results are replaced by zeros of the same sign; other results are not
changed).

4.6.2 REX prex and Knights Corner instructions interactions

The REX pre ix is illegal in combination with Knights Corner instructions vector instructions, or with mask and
scalar instructions allocated using VEX and MVEX pre ixes.

Following the Intel® 64 behavior, if the REX pre ix is followed with any legacy pre ix and not located just before
the opcode escape, it will be ignored.

4.7 Knights Corner instructions State Save

Knights Corner does not include any explicit instruction to perform context save and restore of Knights Corner
state. To perform a context save and restore we may use:

• Vector loads and stores for vector registers

• A combination of kmov plus scalar loads and stores for mask registers

• LDMXCSR/STMXCSR for the MXCSR state register

Note also that vector instructions raise a device-not-available (#NM) exceptionswhen CR0.TS is set. This allows
to perform selective lazy save and restore of state.

4.8 Knights Corner instructions Processor State After Reset

Table 4.5 shows the state of the lags and other registers following power-up for Knights Corner.

Reference Number: 327364-001 65

CHAPTER 4. FLOATING-POINT ENVIRONMENT, MEMORY ADDRESSING, AND PROCESSOR STATE

Register Knights Corner
EFLAGS 00000002H
EIP 0000FFF0H
CR0 60000010H2
CR2, CR3, CR4 00000000H
CS Selector = F000H; Base = FFFF0000H

Limit = FFFFH
AR = Present, R/W, Accessed

SS, DS, ES, FS, GS Selector = 0000H; Base = 00000000H
Limit = FFFFH
AR = Present, R/W, Accessed

EDX 000005xxH
EAX 04
EBX, ECX, ESI, EDI, EBP, ESP 00000000H
ST0 through ST7 Pwr up or Reset: +0.0

FINIT/FNINIT: Unchanged
x87 FPU Control Word Pwr up or Reset: 0040H

FINIT/FNINIT: 037FH
x87 FPU Status Word Pwr up or Reset: 0000H

FINIT/FNINIT: 0000H
x87 FPU Tag Word Pwr up or Reset: 5555H

FINIT/FNINIT: FFFFH
x87 FPU Data Operand and CS Pwr up or Reset: 0000H
Seg. Selectors FINIT/FNINIT: 0000H
x87 FPU Data Operand and Pwr up or Reset: 00000000H
Inst. Pointers FINIT/FNINIT: 00000000H
MM0 through MM7 NA
XMM0 through XMM7 NA
k0 through k7 0000H
zmm0 through zmm31 0 (64 bytes)
MXCSR 0020_0000H
GDTR, IDTR Base = 00000000H, Limit = FFFFH

AR = Present, R/W
LDTR, Task Register Selector = 0000H, Base = 00000000H

Limit = FFFFH
AR = Present, R/W

DR0, DR1, DR2, DR3 00000000H
DR6 FFFF0FF0H
DR7 00000400H
Time-Stamp Counter Power up or Reset: 0H

INIT: Unchanged
Perf. Counters and Event Select Power up or Reset: 0H

INIT: Unchanged
All Other MSRs Power up or Reset: Unde ined

INIT: Unchanged
Data and Code Cache, TLBs Invalid
MTRRs, Machine-Check Not Implemented
APIC Pwr up or Reset: Enabled

INIT: Unchanged

Table 4.5: Processor State Following Power-up, Reset, or INIT.66 Reference Number: 327364-001

CHAPTER 5. INSTRUCTION SET REFERENCE

Chapter 5

Instruction Set Reference

Knights Corner instructions that are described in this document follow the general documentation convention
established in this chapter.

5.1 Interpreting Instruction Reference Pages

This section describes the format of information contained in the instruction reference pages in this chapter. It
explains notational conventions and abbreviations used in these sections

5.1.1 Instruction Format

The following is an example of the format used for each instruction description in this chapter.

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W1 50 /r vaddnpd zmm1 k1, zmm2, Sf64(zmm3/mi) Add loat64 vector

zmm2 and loat64 vector
Sf64(zmm3/mt), negate
the sum, and store the
result in zmm1, under
write-mask.

VEX.0F.W0 41 /r kand k1 , k2 Perform a bitwise AND
between k1 and k2, store
result in k1

5.1.2 Opcode Notations for MVEX Encoded Instructions

In the Instruction Summary Table, the Opcode column presents the details of each instruction byte encoding
using notations described in this section. For MVEX encoded instructions, the notations are expressed in the
following form (including the modR/M byte if applicable, and the immediate byte if applicable):

Reference Number: 327364-001 67

CHAPTER 5. INSTRUCTION SET REFERENCE

MVEX.[NDS,NDD].[512].[66,F2,F3].0F/0F3A/0F38.[W0,W1] opcode [/r] [/ib]

• MVEX: indicates the presence of the MVEX pre ix is required. TheMVEX pre ix consists of 4 bytes with the
leading byte 62H.
The encoding of various sub- ields of the MVEX pre ix is described using the following notations:

– NDS,NDD: speci ies that MVEX.vvvv ield is valid for the encoding of a register operand:
* MVEX.NDS: MVEX.vvvv encodes the irst source register in an instruction syntax where the con-
tent of source registers will be preserved. To encode a vector register in the range zmm16-
zmm31, the MVEX.vvvv ield is pre-pended with MVEX.V'.

* MVEX.NDD:MVEX.vvvv encodes the destination register that cannot be encodedbyModR/M:reg
ield. To encode a vector register in the range zmm16-zmm31, theMVEX.vvvv ield is pre-pended
with MVEX.V'.

* If none of NDS, NDD is present, MVEX.vvvv must be 1111b (i.e. MVEX.vvvv does not encode an
operand).

– 66,F2,F3: The presence or absence of these value maps to the MVEX.pp ield encodings. If absent,
this corresponds toMVEX.pp=00B. If present, the correspondingMVEX.pp value affects the "opcode"
byte in the same way as if a SIMD pre ix (66H, F2H or F3H) does to the ensuing opcode byte. Thus a
non-zero encoding of MVEX.pp may be considered as an implied 66H/F2H/F3H pre ix.

– 0F,0F3A,0F38: The presence of these valuesmaps to a valid encoding of theMVEX.mmmm ield. Only
three encoded values of MVEX.mmmm are de ined as valid, corresponding to the escape byte se-
quence of 0FH, 0F3AH and 0F38H.

– W0: MVEX.W=0
– W1: MVEX.W=1
– The presence of W0/W1 in the opcode column applies to two situations: (a) it is treated as an ex-

tended opcode bit, (b) the instruction semantics support an operand size promotion to 64 bit of a
general-purpose register operand or a 32 bit memory operand.

• opcode: Instruction opcode.
• /r: Indicates that the ModR/M byte of the instruction contains a register operand and an r/m operand.
• /vsib: Indicates the memory addressing uses the vector SIB byte.
• ib: A1-byte immediateoperand to the instruction that follows theopcode,ModR/Mbytesor scale/indexing
bytes.

In general, the encoding of the MVEX.R, MVEX.X, MVEX.B, and MVEX.V' ields are not shown explicitly in the
opcode column. The encoding scheme of MVEX.R, MVEX.X, MVEX.B, and MVEX.V' ields must follow the rules
de ined in Chapter 3.

5.1.3 Opcode Notations for VEX Encoded Instructions

In the Instruction Summary Table, the Opcode column presents the details of each instruction byte encoding
using notations described in this section. For VEX encoded instructions, the notations are expressed in the fol-
lowing form (including the modR/M byte if applicable, the immediate byte if applicable):

VEX.[NDS,NDD].[66,F2,F3].0F/0F3A/0F38.[W0,W1] opcode [/r] [/ib]

68 Reference Number: 327364-001

CHAPTER 5. INSTRUCTION SET REFERENCE

• VEX: indicates the presence of the VEX pre ix is required. The VEX pre ix can be encoded using the
three-byte form (the irst byte is C4H), or using the two-byte form (the irst byte is C5H). The two-byte
form of VEX only applies to those instructions that do not require the following ields to be encoded:
VEX.mmmmm, VEX.W, VEX.X, VEX.B. Refer to Chapter 3 for more details on the VEX pre ix.
The encoding of various sub- ields of the VEX pre ix is described using the following notations:

– NDS,NDD: speci ies that VEX.vvvv ield is valid for the encoding of a register operand:
* VEX.NDS: VEX.vvvv encodes the irst source register in an instruction syntax where the content
of source registers will be preserved.

* VEX.NDD: VEX.vvvv encodes the destination register that cannot be encoded by ModR/M:reg
ield.

* If none of NDS, NDD is present, VEX.vvvv must be 1111b (i.e. VEX.vvvv does not encode an
operand). The VEX.vvvv ield can be encoded using either the 2-byte or 3-byte form of the VEX
pre ix.

– 66,F2,F3: The presence or absence of these value maps to the VEX.pp ield encodings. If absent, this
corresponds to VEX.pp=00B. If present, the corresponding VEX.pp value affects the "opcode" byte in
the sameway as if a SIMDpre ix (66H, F2H or F3H) does to the ensuing opcode byte. Thus a non-zero
encoding of VEX.pp may be considered as an implied 66H/F2H/F3H pre ix. The VEX.pp ield may be
encoded using either the 2-byte or 3-byte form of the VEX pre ix.

– 0F,0F3A,0F38: The presence of these valuesmaps to a valid encoding of the VEX.mmmmm ield. Only
three encoded values of VEX.mmmmm are de ined as valid, corresponding to the escape byte se-
quenceof 0FH, 0F3AHand0F38H. The effect of a validVEX.mmmmmencodingon the ensuingopcode
byte is same as if the corresponding escape byte sequence on the ensuing opcode byte for non-VEX
encoded instructions. Thus a valid encoding of VEX.mmmmmmay be consider as an implies escape
byte sequence of either 0FH, 0F3AH or 0F38H. The VEX.mmmmm ield must be encoded using the
3-byte form of VEX pre ix.

– 0F,0F3A,0F38 and 2-byte/3-byte VEX: The presence of 0F3A and 0F38 in the opcode column implies
that opcode can only be encoded by the three-byte form of VEX. The presence of 0F in the opcode
column does not preclude the opcode to be encoded by the two-byte of VEX if the semantics of the
opcode does not require any sub ield of VEX not present in the two-byte form of the VEX pre ix.

– W0: VEX.W=0
– W1: VEX.W=1
– The presence of W0/W1 in the opcode column applies to two situations: (a) it is treated as an ex-

tended opcode bit, (b) the instruction semantics support an operand size promotion to 64 bit of a
general-purpose register operand or a 32 bit memory operand. The presence of W1 in the opcode
column implies the opcode must be encoded using the 3-byte form of the VEX pre ix. The presence
of W0 in the opcode column does not preclude the opcode to be encoded using the C5H form of the
VEX pre ix, if the semantics of the opcode does not require other VEX sub ields not present in the
two-byte form of the VEX pre ix.

• opcode: Instruction opcode.

• /r: Indicates that the ModR/M byte of the instruction contains a register operand and an r/m operand.

• ib: A1-byte immediateoperand to the instruction that follows theopcode,ModR/Mbytesor scale/indexing
bytes.

• In general, the encoding of the VEX.R, VEX.X, and VEX.B ields are not shown explicitly in the opcode col-
umn. The encoding scheme of VEX.R, VEX.X, and VEX.B ields must follow the rules de ined in Chapter
3.

Reference Number: 327364-001 69

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Chapter 6

Instruction Descriptions

This Chapter de ines all of the Knights Corner instructions vector instructions. Note: Some instruction descrip-
tions refer to the SSS or S2S1S0, which are bits 6-4 from the MVEX pre ix encoding. See Table 2.14 for more
details

70 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

6.1 Vector Mask Instructions

Reference Number: 327364-001 71

CHAPTER 6. INSTRUCTION DESCRIPTIONS

JKNZD - Jump near if mask is not zero

Opcode Instruction Description
VEX.NDS.128.0F.W0 85 id jknzd k1, rel32 Jump near if mask is not zero.
VEX.NDS.128.W0 75 ib jknzd k1, rel8 Jump near if mask is not zero.

Description

Checks the value of source mask, and if not all mask bits are set to 0, performs a jump to
the target instruction speci ied by the destination operand. If the condition is not satis-
ied, the jump is not performed and execution continues with the instruction following
the instruction.

The target instruction is speci ied with a relative offset (a signed offset relative to the
current value of the instruction pointer in the EIP register). A relative offset (rel8, rel16,
or rel32) is generally speci ied as a label in assembly code, but at the machine code level,
it is encoded as a signed, 8-bit or 32 bit immediate value, which is added to the instruction
pointer. Instruction coding ismost ef icient for offsets of -128 to +127. If the operand-size
attribute is 16, the upper two bytes of the EIP register are cleared, resulting in amaximum
instruction pointer size of 16 bits.

The instruction does not support far jumps (jumps to other code segments). When the
target for the conditional jump is in a different segment, use the opposite condition from
the condition being tested for the JKNZD instruction, and then access the target with an
unconditional far jump (JMP instruction) to the other segment. For example, the following
conditional far jump is illegal:

JKNZD FARLABEL;

To accomplish this far jump, use the following two instructions:

JKZD BEYOND;
JMP FARLABEL;
BEYOND:

This conditional jump is converted to code fetch of one or two cache lines, regardless of
jump address or cacheability.

In 64 bit mode, operand size (OSIZE) is ixed at 64 bits. JMP Short is RIP = RIP + 8-bit
offset sign extended to 64 bits. JMP Near is RIP = RIP + 32 bit offset sign extended to 64
bits.

72 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

if (k1[15:0]!=0)
{

tempEIP = EIP + SignExtend(DEST);

if(OSIZE == 16)
{

tempEIP = tempEIP & 0000FFFFH;
}
if (*tempEIP is not within code segment limit*)
{

#GP(0);
}
else
{

EIP = tempEIP
}

}

Flags Affected

None.

Intel® C/C++ Compiler Intrinsic Equivalent

None.

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

Reference Number: 327364-001 73

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#GP(0) If the memory address is in a non-canonical form.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

74 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

JKZD - Jump near if mask is zero

Opcode Instruction Description
VEX.NDS.128.0F.W0 84 id jkzd k1, rel32 Jump near if mask is zero.
VEX.NDS.128.W0 74 ib jkzd k1, rel8 Jump near if mask is zero.

Description

Checks the value of source mask, and if all mask bits are set to 0, performs a jump to the
target instruction speci ied by the destination operand. If the condition is not satis ied,
the jump is not performed and execution continues with the instruction following the in-
struction.

The target instruction is speci ied with a relative offset (a signed offset relative to the
current value of the instruction pointer in the EIP register). A relative offset (rel8, rel16,
or rel32) is generally speci ied as a label in assembly code, but at the machine code level,
it is encoded as a signed, 8-bit or 32 bit immediate value, which is added to the instruction
pointer. Instruction coding ismost ef icient for offsets of -128 to +127. If the operand-size
attribute is 16, the upper two bytes of the EIP register are cleared, resulting in amaximum
instruction pointer size of 16 bits.

The instruction does not support far jumps (jumps to other code segments). When the
target for the conditional jump is in a different segment, use the opposite condition from
the condition being tested for the JKNZD instruction, and then access the target with an
unconditional far jump (JMP instruction) to the other segment. For example, the following
conditional far jump is illegal:

JKZD FARLABEL;

To accomplish this far jump, use the following two instructions:

JKNZD BEYOND;
JMP FARLABEL;
BEYOND:

This conditional jump is converted to code fetch of one or two cache lines, regardless of
jump address or cacheability.

In 64 bit mode, operand size (OSIZE) is ixed at 64 bits. JMP Short is RIP = RIP + 8-bit
offset sign extended to 64 bits. JMP Near is RIP = RIP + 32 bit offset sign extended to 64
bits.

Reference Number: 327364-001 75

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

if (k1[15:0]==0)
{

tempEIP = EIP + SignExtend(DEST);

if(OSIZE == 16)
{

tempEIP = tempEIP & 0000FFFFH;
}
if (*tempEIP is not within code segment limit*)
{

#GP(0);
}
else
{

EIP = tempEIP
}

}

Flags Affected

None.

Intel® C/C++ Compiler Intrinsic Equivalent

None.

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

76 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#GP(0) If the memory address is in a non-canonical form.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 77

CHAPTER 6. INSTRUCTION DESCRIPTIONS

KAND - AND Vector Mask

Opcode Instruction Description
VEX.128.0F.W0 41 /r kand k1, k2 Perform a bitwise AND between vector masks

k1 and k2 and store the result in vector mask
k1.

Description

Performs a bitwise AND between the vector masks k2 and the vector mask k1, and writes
the result into vector mask k1.

Operation

for (n = 0; n < 16; n++) {
k1[n] = k1[n] & k2[n]

}

Flags Affected

None.

Intel® C/C++ Compiler Intrinsic Equivalent

__mmask16 _mm512_kand (__mmask16, __mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

78 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#NM If CR0.TS[bit 3]=1.
If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 79

CHAPTER 6. INSTRUCTION DESCRIPTIONS

KANDN - AND NOT Vector Mask

Opcode Instruction Description
VEX.128.0F.W0 42 /r kandn k1, k2 Perform a bitwise AND between NOT (vector

mask k1) and vector mask k2 and store the re-
sult in vector mask k1.

Description

Performs a bitwise AND between vector mask k2, and the NOT (bitwise logical negation)
of vector mask k1, and writes the result into vector mask k1.

Operation

for (n = 0; n < 16; n++) {
k1[n] = (~(k1[n])) & k2[n]

}

Flags Affected

None.

Intel® C/C++ Compiler Intrinsic Equivalent

__mmask16 _mm512_kandn (__mmask16, __mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

80 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#NM If CR0.TS[bit 3]=1.
If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 81

CHAPTER 6. INSTRUCTION DESCRIPTIONS

KANDNR - Reverse AND NOT Vector Mask

Opcode Instruction Description
VEX.128.0F.W0 43 /r kandnr k1, k2 Perform a bitwise AND between NOT (vector

mask k2) and vector mask k1 and store the re-
sult in vector mask k1.

Description

Performs a bitwise AND between the NOT (bitwise logical negation) of vector mask k2,
and the vector mask k1, and writes the result into vector mask k1.

Operation

for (n = 0; n < 16; n++) {
k1[n] = ~(k2[n]) & k1[n]

}

Flags Affected

None.

Intel® C/C++ Compiler Intrinsic Equivalent

__mmask16 _mm512_kandnr (__mmask16, __mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

82 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#NM If CR0.TS[bit 3]=1.
If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 83

CHAPTER 6. INSTRUCTION DESCRIPTIONS

KCONCATH - Pack and Move High Vector Mask

Opcode Instruction Description
VEX.NDS.128.0F.W0 95 /r kconcath r64, k1, k2 Concatenate vector masks k1 and k2 into the high part

of register r64.

Description

Packs vector masks k1 and k2 and moves the result to the high 32 bits of destination reg-
ister r64. The rest of the destination register is zeroed.

Operation

TMP[15:0] = k2[15:0]
TMP[31:16] = k1[15:0]
r64[31:0] = 0
r64[63:32] = TMP

Flags Affected

None.

Intel® C/C++ Compiler Intrinsic Equivalent

__int64 _mm512_kconcathi_64(__mmask16, __mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

84 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#NM If CR0.TS[bit 3]=1.
If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If destination is a memory operand.

Reference Number: 327364-001 85

CHAPTER 6. INSTRUCTION DESCRIPTIONS

KCONCATL - Pack and Move Low Vector Mask

Opcode Instruction Description
VEX.NDS.128.0F.W0 97 /r kconcatl r64, k1, k2 Concatenate vector masks k1 and k2 into the low part of

register r64.

Description

Packs vector masks k1 and k2 and moves the result to the low 32 bits of destination reg-
ister r64. The rest of the destination register is zeroed.

Operation

TMP[15:0] = k2[15:0]
TMP[31:16] = k1[15:0]
r64[31:0] = TMP
r64[63:32] = 0

Flags Affected

None.

Intel® C/C++ Compiler Intrinsic Equivalent

__int64 _mm512_kconcatlo_64(__mmask16, __mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

86 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#NM If CR0.TS[bit 3]=1.
If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If destination is a memory operand.

Reference Number: 327364-001 87

CHAPTER 6. INSTRUCTION DESCRIPTIONS

KEXTRACT - Extract Vector Mask From Register

Opcode Instruction Description
VEX.128.66.0F3A.W0 3E /r ib kextract k1, r64, imm8 Extract ield from general purpose register r64

into vector mask k1 using imm8.

Description

Extract the 16-bit ield selectedby imm8[1:0] fromgeneral purpose register r64 andwrite
the result into destination mask register k1.

Operation

index = imm8[1:0] * 16
k1[15:0] = r64[index+15:index]

Flags Affected

None.

Intel® C/C++ Compiler Intrinsic Equivalent

__mmask16 _mm512_kextract_64(__int64, const in);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

88 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#NM If CR0.TS[bit 3]=1.
If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If source is a memory operand.

Reference Number: 327364-001 89

CHAPTER 6. INSTRUCTION DESCRIPTIONS

KMERGE2L1H - Swap and Merge High Element Portion and Low Portion of
Vector Masks

Opcode Instruction Description
VEX.128.0F.W0 48 /r kmerge2l1h k1, k2 Concatenate the low half of vector mask k2 and the high half of

vector mask k1 and store the result in the vector mask k1.

Description

Move high element from vectormask register k1 into low element of vectormask register
k1, and insert low element of k2 into the high portion of vector mask register k1.

Operation

tmp = k1[15:8]
k1[15:8] = k2[7:0]
k1[7:0] = tmp

Flags Affected

None.

Intel® C/C++ Compiler Intrinsic Equivalent

__mmask16 _mm512_kmerge2l1h (__mmask16, __mmask16 k2);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

90 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#NM If CR0.TS[bit 3]=1.
If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 91

CHAPTER 6. INSTRUCTION DESCRIPTIONS

KMERGE2L1L - Move Low Element Portion into High Portion of Vector
Mask

Opcode Instruction Description
VEX.128.0F.W0 49 /r kmerge2l1l k1, k2 Move lowhalf of vectormaskk2 into thehighhalf of vectormask

k1.

Description

Insert low element fromvectormask register k2 into high element of vectormask register
k1. Low element of k1 remains unchanged.

Operation

k1[15:8] = k2[7:0]
k1[7:0] remains unchanged

Flags Affected

None.

Intel® C/C++ Compiler Intrinsic Equivalent

__mmask16 _mm512_kmerge2l1l (__mmask16, __mmask16 k2);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

92 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#NM If CR0.TS[bit 3]=1.
If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 93

CHAPTER 6. INSTRUCTION DESCRIPTIONS

KMOV - Move Vector Mask

Opcode Instruction Description
VEX.128.0F.W0 90 /r kmov k1, k2 Move vector mask k2 and store the result in k1.
VEX.128.0F.W0 93 /r kmov r32, k2 Move vector mask k2 to general purpose register r32.
VEX.128.0F.W0 92 /r kmov k1, r32 Move general purpose register r32 to vector mask k1.

Description

Either the vector mask register k2 or the general purpose register r32 is read, and its
contentswritten into destination general purpose register r32 or vectormask register k1;
however, general purpose register to general purpose register copies are not supported.
When the destination is a general purpose register, the 16 bit value that is copied is zero-
extended to the maximum operand size in the current mode.

Operation

if(DEST is a general purpose register) {
DEST[63:16] = 0
DEST[15:0] = k2[15:0]

} else if(DEST is vector mask and SRC is a general purpose register) {
k1[15:0] = SRC[15:0]

} else {
k1[15:0] = k2[15:0]

}

Flags Affected

None.

Intel® C/C++ Compiler Intrinsic Equivalent

__mmask16 _mm512_kmov (__mmask16);
__mmask16 _mm512_int2mask (int);

int _mm512_mask2int (__mmask16);

94 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#NM If CR0.TS[bit 3]=1.
If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If source/destination is a memory operand.

Reference Number: 327364-001 95

CHAPTER 6. INSTRUCTION DESCRIPTIONS

KNOT - Not Vector Mask

Opcode Instruction Description
VEX.128.0F.W0 44 /r knot k1, k2 Perform a bitwise NOT on vector mask k2 and

store the result in k1.

Description

Performs the bitwise NOT of the vector mask k2, and writes the result into vector mask
k1.

Operation

for (n = 0; n < 16; n++) {
k1[n] = ~ k2[n]

}

Flags Affected

None.

Intel® C/C++ Compiler Intrinsic Equivalent

__mmask16 _mm512_knot(__mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

96 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#NM If CR0.TS[bit 3]=1.
If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 97

CHAPTER 6. INSTRUCTION DESCRIPTIONS

KOR - OR Vector Masks

Opcode Instruction Description
VEX.128.0F.W0 45 /r kor k1, k2 vector masks k1 and k2 and store the result in

vector mask k1.

Description

Performs a bitwise OR between the vector mask k2, and the vector mask k1, and writes
the result into vector mask k1.

Operation

for (n = 0; n < 16; n++) {
k1[n] = k1[n] | k2[n]

}

Flags Affected

None.

Intel® C/C++ Compiler Intrinsic Equivalent

__mmask16 _mm512_kor(__mmask16, __mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

98 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#NM If CR0.TS[bit 3]=1.
If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 99

CHAPTER 6. INSTRUCTION DESCRIPTIONS

KORTEST - OR Vector Mask And Set EFLAGS

Opcode Instruction Description
VEX.128.0F.W0 98 /r kortest k1, k2 vector masks k1 and k2 and update ZF and CF

EFLAGS accordingly.

Description

Performs a bitwise OR between the vector mask register k2, and the vector mask register
k1, and sets CF and ZF based on the operation result.

ZF lag is set if both sources are 0x0. CF is set if, after the OR operation is done, the oper-
ation result is all 1's.

Operation

CF = 1
ZF = 1
for (n = 0; n < 16; n++) {

tmp = (k1[n] | k2[n])
ZF &= (tmp == 0x0)
CF &= (tmp == 0x1)

}

Flags Affected

• The ZF lag is set if the result of OR-ing both sources is all 0s
• The CF lag is set if the result of OR-ing both sources is all 1s
• The OF, SF, AF, and PF lags are set to 0.

Intel® C/C++ Compiler Intrinsic Equivalent

int _mm512_kortestz (__mmask16, __mmask16);
int _mm512_kortestc (__mmask16, __mmask16);

100 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#NM If CR0.TS[bit 3]=1.
If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 101

CHAPTER 6. INSTRUCTION DESCRIPTIONS

KXNOR - XNOR Vector Masks

Opcode Instruction Description
VEX.128.0F.W0 46 /r kxnor k1, k2 vector masks k1 and k2 and store the result in

vector mask k1.

Description

Performs a bitwise XNOR between the vector mask k1 and the vector mask k2, and the
result is written into vector mask k1.

The primary purpose of this instruction is to provide a way to set a vector mask register
to 0xFFFF in a single clock; this is accomplished by selecting the source and destination to
be the samemask register. In this case the result will be 0xFFFF regardless of the original
contents of the register.

Operation

for (n = 0; n < 16; n++) {
k1[n] = ~(k1[n] ^ k2[n])

}

Flags Affected

None.

Intel® C/C++ Compiler Intrinsic Equivalent

__mmask16 _mm512_kxnor (__mmask16, __mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

102 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#UD Instruction not available in these modes

64 bit Mode

#NM If CR0.TS[bit 3]=1.
If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 103

CHAPTER 6. INSTRUCTION DESCRIPTIONS

KXOR - XOR Vector Masks

Opcode Instruction Description
VEX.128.0F.W0 47 /r kxor k1, k2 vector masks k1 and k2 and store the result in

vector mask k1.

Description

Performs a bitwise XOR between the vector mask k2, and the vector mask k1, and writes
the result into vector mask k1.

Operation

for (n = 0; n < 16; n++) {
k1[n] = k1[n] ^ k2[n]

}

Flags Affected

None.

Intel® C/C++ Compiler Intrinsic Equivalent

__mmask16 _mm512_kxor (__mmask16, __mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

104 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#NM If CR0.TS[bit 3]=1.
If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 105

CHAPTER 6. INSTRUCTION DESCRIPTIONS

6.2 Vector Instructions

106 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VADDNPD - Add and Negate Float64 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W1
50 /r

vaddnpd zmm1 {k1}, zmm2,
Sf64(zmm3/mt)

Add loat64 vector zmm2 and loat64 vector
Sf64(zmm3/mt), negate the sum, and store the
result in zmm1, under write-mask.

Description

Performs an element-by-element addition between loat64 vector zmm2 and the loat64
vector result of the swizzle/broadcast/conversion process on memory or loat64 vector
zmm3, then negates the result. The inal result is written into loat64 vector zmm1.

Note that all the operations must be performed before rounding.

x y RN/RU/RZ RD
+0 +0 (-0) + (-0) = -0 (-0) + (-0) = -0
+0 -0 (-0) + (+0) = +0 (-0) + (+0) = -0
-0 +0 (+0) + (-0) = +0 (+0) + (-0) = -0
-0 -0 (+0) + (+0) = +0 (+0) + (+0) = +0

Table 6.1: VADDNoutcomewhen adding zeros depending on rounding-mode. See Signed Zeros in Section4.6.1.3
for other cases with a result of zero.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc3[511:0] = SwizzUpConvLoadf64(zmm3/mt)

}

for (n = 0; n < 8; n++) {
if(k1[n] != 0) {
i = 64*n
// float64 operation
zmm1[i+63:i] = (-zmm2[i+63:i]) + (-tmpSrc3[i+63:i])

}

Reference Number: 327364-001 107

CHAPTER 6. INSTRUCTION DESCRIPTIONS

}

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Intel® C/C++ Compiler Intrinsic Equivalent

__m512d _mm512_addn_pd(__m512d, __m512d);
__m512d _mm512_mask_addn_pd(__m512d, __mmask8, __m512d, __m512d);

Memory Up-conversion: Sf64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64
001 broadcast 1 element (x8) [rax] {1to8} 8
010 broadcast 4 elements (x2) [rax] {4to8} 32
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

108 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sf64

MVEX.EH=0
S2S1S0 Function: 4 x 64 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 109

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VADDNPS - Add and Negate Float32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0
50 /r

vaddnps zmm1 {k1}, zmm2,
Sf32(zmm3/mt)

Add loat32 vector zmm2 and loat32 vector
Sf32(zmm3/mt), negate the sum, and store the
result in zmm1, under write-mask.

Description

Performs an element-by-element addition between loat32 vector zmm2 and the loat32
vector result of the swizzle/broadcast/conversion process on memory or loat32 vector
zmm3, then negates the result. The inal result is written into loat32 vector zmm1.

Note that all the operations must be performed before rounding.

x y RN/RU/RZ RD
+0 +0 (-0) + (-0) = -0 (-0) + (-0) = -0
+0 -0 (-0) + (+0) = +0 (-0) + (+0) = -0
-0 +0 (+0) + (-0) = +0 (+0) + (-0) = -0
-0 -0 (+0) + (+0) = +0 (+0) + (+0) = +0

Table 6.2: VADDNoutcomewhen adding zeros depending on rounding-mode. See Signed Zeros in Section4.6.1.3
for other cases with a result of zero.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc3[511:0] = SwizzUpConvLoadf32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// float32 operation
zmm1[i+31:i] = (-zmm2[i+31:i]) + (-tmpSrc3[i+31:i])

}

110 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

}

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_addn_ps (__m512, __m512);
__m512 _mm512_mask_addn_ps (__m512, __mmask16, __m512, __m512);

Memory Up-conversion: Sf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 loat16 to loat32 [rax] { loat16} 32
100 uint8 to loat32 [rax] {uint8} 16
110 uint16 to loat32 [rax] {uint16} 32
111 sint16 to loat32 [rax] {sint16} 32

Reference Number: 327364-001 111

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sf32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

112 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VADDPD - Add Float64 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F.W1
58 /r

vaddpd zmm1 {k1}, zmm2,
Sf64(zmm3/mt)

Add loat64 vector zmm2 and loat64 vector
Sf64(zmm3/mt) and store the result in zmm1,
under write-mask.

Description

Performs an element-by-element addition between loat64 vector zmm2 and the loat64
vector result of the swizzle/broadcast/conversion process on memory or loat64 vector
zmm3. The result is written into loat64 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc3[511:0] = SwizzUpConvLoadf64(zmm3/mt)

}

for (n = 0; n < 8; n++) {
if(k1[n] != 0) {
i = 64*n
// float64 operation
zmm1[i+63:i] = zmm2[i+63:i] + tmpSrc3[i+63:i]

}
}

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Reference Number: 327364-001 113

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Intel® C/C++ Compiler Intrinsic Equivalent

__m512d _mm512_add_pd(__m512d, __m512d);
__m512d _mm512_mask_add_pd(__m512d, __mmask8, __m512d , __m512d);

Memory Up-conversion: Sf64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64
001 broadcast 1 element (x8) [rax] {1to8} 8
010 broadcast 4 elements (x2) [rax] {4to8} 32
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

114 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sf64

MVEX.EH=0
S2S1S0 Function: 4 x 64 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 115

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VADDPS - Add Float32 Vectors

Opcode Instruction Description
MVEX.NDS.512.0F.W058/r vaddps zmm1 {k1}, zmm2,

Sf32(zmm3/mt)
Add loat32 vector zmm2 and loat32 vector
Sf32(zmm3/mt) and store the result in zmm1,
under write-mask.

Description

Performs an element-by-element addition between loat32 vector zmm2 and the loat32
vector result of the swizzle/broadcast/conversion process on memory or loat32 vector
zmm3. The result is written into loat32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc3[511:0] = SwizzUpConvLoadf32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// float32 operation
zmm1[i+31:i] = zmm2[i+31:i] + tmpSrc3[i+31:i]

}
}

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

116 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_add_ps (__m512, __m512);
__m512 _mm512_mask_add_ps (__m512, __mmask16, __m512, __m512);

Memory Up-conversion: Sf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 loat16 to loat32 [rax] { loat16} 32
100 uint8 to loat32 [rax] {uint8} 16
110 uint16 to loat32 [rax] {uint16} 32
111 sint16 to loat32 [rax] {sint16} 32

Reference Number: 327364-001 117

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sf32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

118 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VADDSETSPS - Add Float32 Vectors and Set Mask to Sign

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0 CC /r vaddsetsps zmm1 {k1}, zmm2, Sf32(zmm3/mt) Add loat32 vec-

tor zmm2 and
loat32 vector
Sf32(zmm3/mt)
and store the sum in
zmm1 and the sign
from the sum in k1,
under write-mask.

Description

Performs an element-by-element addition between loat32 vector zmm2 and the loat32
vector result of the swizzle/broadcast/conversion process on memory or loat32 vector
zmm3. The result is written into loat32 vector zmm1.

In addition, the sign of the result for the n-th element is written into the n-th bit of vector
mask k1.

It is the sign bit of the inal result that gets copied to the destination, as opposed to the
result of comparison with zero.

This instruction is write-masked, so only those elementswith the corresponding bit set in
vector mask register k1 are computed and stored into zmm1 and k1. Elements in zmm1
and k1 with the corresponding bit clear in k1 register retain their previous value.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc3[511:0] = SwizzUpConvLoadf32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// float32 operation
zmm1[i+31:i] = zmm2[i+31:i] + tmpSrc3[i+31:i]
k1[n] = zmm1[i+31]

}

Reference Number: 327364-001 119

CHAPTER 6. INSTRUCTION DESCRIPTIONS

}

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_addsets_ps (__m512, __m512, __mmask16*);
__m512 _mm512_mask_addsets_ps (__m512, __mmask16, __m512 , __m512,

__mmask16*);

Memory Up-conversion: Sf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 loat16 to loat32 [rax] { loat16} 32
100 uint8 to loat32 [rax] {uint8} 16
110 uint16 to loat32 [rax] {uint16} 32
111 sint16 to loat32 [rax] {sint16} 32

120 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sf32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_addsets_ps (__m512, __m512, __mmask16*);
__m512 _mm512_mask_addsets_ps (__m512, __mmask16, __m512 , __m512,

__mmask16*);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is

Reference Number: 327364-001 121

CHAPTER 6. INSTRUCTION DESCRIPTIONS

in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If no write mask is provided or selected write-mask is k0.

122 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VALIGND - Align Doubleword Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F3A.W0
03 /r ib

valignd zmm1 {k1}, zmm2,
zmm3/mt, offset

Shift right and merge vectors zmm2 and
zmm3/mt with doubleword granularity using
offset as number of elements to shift, and store
the inal result in zmm1, under write-mask.

Description

Concatenates and shifts right doublewordelements fromvector zmm2andmemory/vector
zmm3. The result is written into vector zmm1.

No swizzle, broadcast, or conversion is performed by this instruction.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

src[511:0] = zmm3/mt

// Concatenate sources
tmp[511:0] = src[511:0]
tmp[1023:512] = zmm2[511:0]

// Shift right doubleword elements
SHIFT = imm8[3:0]
tmp[1023:0] = tmp[1023:0] >> (32*SHIFT)

// Apply write-mask
for (n = 0; n < 16; n++) {

if (k1[n] != 0) {
i = 32*n
zmm1[i+31:i] = tmp[i+31:i]

}
}

Reference Number: 327364-001 123

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Flags Affected

None.

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_alignr_epi32 (__m512i, __m512i, const int);
__m512i _mm512_mask_alignr_epi32 (__m512i, __mmask16, __m512i, __m512i, const int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
This instruction does not support any
SwizzUpConv different from the default value (no broadcast,
no conversion). If SwizzUpConv function is set to any value
different than "no action", then an Invalid Opcode fault is
raised. This includes register swizzles.

124 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VBLENDMPD - Blend Float64 Vectors using the Instruction Mask

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W1
65 /r

vblendmpd zmm1 {k1}, zmm2,
Sf64(zmm3/mt)

Blend loat64 vector zmm2 and loat64 vector
Sf64(zmm3/mt) and store the result in zmm1,
under write-mask.

Description

Performs an element-by-element blending between loat64 vector zmm2 and the loat64
vector result of the swizzle/broadcast/conversion process on memory or loat64 vector
zmm3, using the instruction mask as selector. The result is written into loat64 vector
zmm1.

The mask is not used as a write-mask for this instruction. Instead, the mask is used as an
element selector: every element of the destination is conditionally selected between irst
source or second source using the value of the related mask bit (0 for irst source, 1 for
second source).

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = tmpSrc3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadf64(tmpSrc3/mt)

}

for (n = 0; n < 8; n++) {
if(k1[n]==1 or *no write-mask*) {

zmm1[i+63:i] = tmpSrc3[i+63:i]
} else {

zmm1[i+63:i] = zmm2[i+63:i]
}

}

SIMD Floating-Point Exceptions

None.

Reference Number: 327364-001 125

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Denormal Handling

Treat Input Denormals As Zeros :
NO

Flush Tiny Results To Zero :
NO

Memory Up-conversion: Sf64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64
001 broadcast 1 element (x8) [rax] {1to8} 8
010 broadcast 4 elements (x2) [rax] {4to8} 32
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Register Swizzle: Sf64

MVEX.EH=0
S2S1S0 Function: 4 x 64 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__m5128 _mm512_mask_blend_pd (__mmask8, __m5128, __m5128);

126 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 127

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VBLENDMPS - Blend Float32 Vectors using the Instruction Mask

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0
65 /r

vblendmps zmm1 {k1}, zmm2,
Sf32(zmm3/mt)

Blend loat32 vector zmm2 and loat32 vector
Sf32(zmm3/mt) and store the result in zmm1,
under write-mask.

Description

Performs an element-by-element blending between loat32 vector zmm2 and the loat32
vector result of the swizzle/broadcast/conversion process on memory or loat32 vector
zmm3, using the instruction mask as selector. The result is written into loat32 vector
zmm1.

The mask is not used as a write-mask for this instruction. Instead, the mask is used as an
element selector: every element of the destination is conditionally selected between irst
source or second source using the value of the related mask bit (0 for irst source, 1 for
second source).

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = tmpSrc3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadf32(tmpSrc3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n]==1 or *no write-mask*) {

zmm1[i+31:i] = tmpSrc3[i+31:i]
} else {

zmm1[i+31:i] = zmm2[i+31:i]
}

}

SIMD Floating-Point Exceptions

Invalid.

128 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Denormal Handling

Treat Input Denormals As Zeros :
NO

Flush Tiny Results To Zero :
NO

Memory Up-conversion: Sf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 loat16 to loat32 [rax] { loat16} 32
100 uint8 to loat32 [rax] {uint8} 16
110 uint16 to loat32 [rax] {uint16} 32
111 sint16 to loat32 [rax] {sint16} 32

Register Swizzle: Sf32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_mask_blend_ps (__mmask16, __m512, __m512);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Reference Number: 327364-001 129

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

130 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VBROADCASTF32X4 - Broadcast 4xFloat32 Vector

Opcode Instruction Description
MVEX.512.66.0F38.W0 1A
/r

vbroadcastf32x4 zmm1 {k1},
Uf32(mt)

Broadcast 4x loat32 vector Uf32(mt) into vec-
tor zmm1, under write-mask.

Description

The 4, 8 or 16 bytes (depending on the conversion and broadcast in effect) at memory
addressmt are broadcast and/or converted to a loat32 vector. The result is written into
loat32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

// {4to16}
tmpSrc2[127:0] = UpConvLoadf32(mt)
for (n = 0; n < 16; n++) {
if (k1[n] != 0) {
i = 32*n
j = i & 0x7F
zmm1[i+31:i] = tmpSrc2[j+31:j])

}
}

Flags Affected

Invalid.

Memory Up-conversion: Uf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] 16
001 reserved N/A N/A
010 reserved N/A N/A
011 loat16 to loat32 [rax] { loat16} 8
100 uint8 to loat32 [rax] {uint8} 4
101 sint8 to loat32 [rax] {sint8} 4
110 uint16 to loat32 [rax] {uint16} 8
111 sint16 to loat32 [rax] {sint16} 8

Reference Number: 327364-001 131

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_extload_ps (void const*,_MM_UPCONV_PS_ENUM,
_MM_BROADCAST32_ENUM, int);

__m512 _mm512_mask_extload_ps (__m512, __mmask16, void
const*,_MM_UPCONV_PS_ENUM, _MM_BROADCAST32_ENUM, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

132 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VBROADCASTF64X4 - Broadcast 4xFloat64 Vector

Opcode Instruction Description
MVEX.512.66.0F38.W1 1B
/r

vbroadcastf64x4 zmm1 {k1},
Uf64(mt)

Broadcast 4x loat64 vector Uf64(mt) into vec-
tor zmm1, under write-mask.

Description

The 32 bytes atmemory addressmt are broadcast to a loat64 vector. The result iswritten
into loat64 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

// {4to8}
tmpSrc2[255:0] = UpConvLoadf64(mt)
for (n = 0; n < 8; n++) {
if (k1[n] != 0) {
i = 64*n
j = i & 0xFF
zmm1[i+63:i] = tmpSrc2[j+63:j])

}
}

Flags Affected

None.

Memory Up-conversion: Uf64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] 32
001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Reference Number: 327364-001 133

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel® C/C++ Compiler Intrinsic Equivalent

__m512d _mm512_extload_pd (void const*,_MM_UPCONV_PD_ENUM,
_MM_BROADCAST64_ENUM, int);

__m512d _mm512_mask_extload_pd (__m512, __mmask8, void const*,
_MM_UPCONV_PD_ENUM, _MM_BROADCAST64_ENUM, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

134 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VBROADCASTI32X4 - Broadcast 4xInt32 Vector

Opcode Instruction Description
MVEX.512.66.0F38.W0 5A
/r

vbroadcasti32x4 zmm1 {k1},
Ui32(mt)

Broadcast 4xint32 vector Ui32(mt) into vector
zmm1, under write-mask.

Description

The 4, 8 or 16 bytes (depending on the conversion and broadcast in effect) at memory
address mt are broadcast and/or converted to a int32 vector. The result is written into
int32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

// {4to16}
tmpSrc2[127:0] = UpConvLoadi32(mt)
for (n = 0; n < 16; n++) {
if (k1[n] != 0) {
i = 32*n
j = i & 0x7F
zmm1[i+31:i] = tmpSrc2[j+31:j])

}
}

Flags Affected

None.

Memory Up-conversion: Ui32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] 16
001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 4
101 sint8 to sint32 [rax] {sint8} 4
110 uint16 to uint32 [rax] {uint16} 8
111 sint16 to sint32 [rax] {sint16} 8

Reference Number: 327364-001 135

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_extload_epi32 (void const*,_MM_UPCONV_EPI32_ENUM,
_MM_BROADCAST32_ENUM, int);

__m512i _mm512_mask_extload_epi32 (__m512i, __mmask16, void const*,
_MM_UPCONV_EPI32_ENUM, _MM_BROADCAST32_ENUM, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

136 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VBROADCASTI64X4 - Broadcast 4xInt64 Vector

Opcode Instruction Description
MVEX.512.66.0F38.W1 5B
/r

vbroadcasti64x4 zmm1 {k1},
Ui64(mt)

Broadcast 4xint64 vector Ui64(mt) into vector
zmm1, under write-mask.

Description

The 32 bytes at memory addressmt are broadcast to a int64 vector. The result is written
into int64 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

// {4to8}
tmpSrc2[255:0] = UpConvLoadi64(mt)
for (n = 0; n < 8; n++) {
if (k1[n] != 0) {
i = 64*n
j = i & 0xFF
zmm1[i+63:i] = tmpSrc2[j+63:j])

}
}

Flags Affected

None.

Memory Up-conversion: Ui64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] 32
001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Reference Number: 327364-001 137

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_extload_epi64 (void const*,_MM_UPCONV_EPI64_ENUM,
_MM_BROADCAST64_ENUM, int);

__m512i _mm512_mask_extload_epi64 (__m512i, __mmask8, void const*,
_MM_UPCONV_EPI64_ENUM, _MM_BROADCAST64_ENUM, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

138 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VBROADCASTSD - Broadcast Float64 Vector

Opcode Instruction Description
MVEX.512.66.0F38.W1 19
/r

vbroadcastsd zmm1 {k1},
Uf64(mt)

Broadcast loat64 vector Uf64(mt) into vector
zmm1, under write-mask.

Description

The 8 bytes at memory addressmt are broadcast to a loat64 vector. The result is written
into loat64 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

// {1to8}
tmpSrc2[63:0] = UpConvLoadf64(mt)
for (n = 0; n < 8; n++) {
if (k1[n] != 0) {
i = 64*n
zmm1[i+63:i] = tmpSrc2[63:0]

}
}

Flags Affected

None.

Memory Up-conversion: Uf64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] 8
001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Reference Number: 327364-001 139

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel® C/C++ Compiler Intrinsic Equivalent

__m512d _mm512_extload_pd (void const*,_MM_UPCONV_PD_ENUM,
_MM_BROADCAST64_ENUM, int);

__m512d _mm512_mask_extload_pd (__m512, __mmask8, void const*,
_MM_UPCONV_PD_ENUM, _MM_BROADCAST64_ENUM, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

140 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VBROADCASTSS - Broadcast Float32 Vector

Opcode Instruction Description
MVEX.512.66.0F38.W0 18
/r

vbroadcastss zmm1 {k1},
Uf32(mt)

Broadcast loat32 vector Uf32(mt) into vector
zmm1, under write-mask.

Description

The 1, 2, or 4 bytes (depending on the conversion and broadcast in effect) at memory
addressmt are broadcast and/or converted to a loat32 vector. The result is written into
loat32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

// {1to16}
tmpSrc2[31:0] = UpConvLoadf32(mt)
for (n = 0; n < 16; n++) {
if (k1[n] != 0) {
i = 32*n
zmm1[i+31:i] = tmpSrc2[31:0]

}
}

Flags Affected

Invalid.

Memory Up-conversion: Uf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] 4
001 reserved N/A N/A
010 reserved N/A N/A
011 loat16 to loat32 [rax] { loat16} 2
100 uint8 to loat32 [rax] {uint8} 1
101 sint8 to loat32 [rax] {sint8} 1
110 uint16 to loat32 [rax] {uint16} 2
111 sint16 to loat32 [rax] {sint16} 2

Reference Number: 327364-001 141

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_extload_ps (void const*,_MM_UPCONV_PS_ENUM,
_MM_BROADCAST32_ENUM, int);

__m512 _mm512_mask_extload_ps (__m512, __mmask16, void const*,
_MM_UPCONV_PS_ENUM, _MM_BROADCAST32_ENUM, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

142 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VCMPPD - Compare Float64 Vectors and Set Vector Mask

Opcode Instruction Description
MVEX.NDS.512.66.0F.W1 C2 /r ib vcmppd k2 {k1}, zmm1, Sf64(zmm2/mt), imm8 Compare between

loat64 vector zmm1
and loat64 vector
Sf64(zmm2/mt)
and store the re-
sult in k2, under
write-mask.

Description

Performs an element-by-element comparison between loat64 vector zmm1 and the
loat64 vector result of the swizzle/broadcast/conversion frommemory or loat64 vector
zmm2. The result is written into vector mask k2.

Note: If DAZ=1, denormals are treated as zeros in the comparison (original source regis-
ters untouched). untouched). +0 equals−0. Comparison with NaN returns false.

In inity of like signs, are considered equals. In inity values of either signs are considered
ordered values.

Table 6.3 summarizes VCMPPD behavior, in particular showing how various NaN results
can be produced.

Predicate Imm8 enc Description Emulation If NaN QNaN operand signals invalid
{eq} 000 A= B False No
{lt} 001 A< B False Yes
{le} 010 A<= B False Yes
{gt} A> B Swap operands, use LT False Yes
{ge} A>= B Swap operands, use LE False Yes
{unord} 011 Unordered True No
{neq} 100 NOT(A= B) True No
{nlt} 101 NOT(A< B) True Yes
{nle} 110 NOT(A<= B) True Yes
{ngt} NOT(A> B) Swap operands, use NLT True Yes
{nge} NOT(A>= B) Swap operands, use NLE True Yes
{ord} 111 Ordered False No

Table 6.3: VCMPPD behavior

Thewrite-mask does not perform the normal write-masking function for this instruction.
While it does enable/disable comparisons, it does not block updating of the destination;
instead, if a write-mask bit is 0, the corresponding destination bit is set to 0. Nonethe-
less, the operation is similar enough so that it makes sense to use the usual write-mask
notation. This mode of operation is desirable because the result will be used directly as a

Reference Number: 327364-001 143

CHAPTER 6. INSTRUCTION DESCRIPTIONS

write-mask, rather than the normal case where the result is used with a separate write-
mask that keeps the masked elements inactive.

Immediate Format

Comparison Type I2 I1 I0
eq Equal 0 0 0
lt Less than 0 0 1
le Less than or Equal 0 1 0

unord Unordered 0 1 1
neq Not Equal 1 0 0
nlt Not Less than 1 0 1
nle Not Less than or Equal 1 1 0
ord Ordered 1 1 1

Operation

switch (IMM8[2:0]) {
case 0: OP ← EQ; break;
case 1: OP ← LT; break;
case 2: OP ← LE; break;
case 3: OP ← UNORD; break;
case 4: OP ← NEQ; break;
case 5: OP ← NLT; break;
case 6: OP ← NLE; break;
case 7: OP ← ORD; break;

}

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
tmpSrc2[511:0] = zmm2[511:0]

} else {
tmpSrc2[511:0] = SwizzUpConvLoadf64(zmm2/mt)

}

for (n = 0; n < 8; n++) {
k2[n] = 0
if(k1[n] != 0) {
i = 64*n
// float64 operation
k2[n] = (zmm1[i+63:i] OP tmpSrc2[i+63:i]) ? 1 : 0

}
}

k2[15:8] = 0

144 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Instruction Pseudo-ops

Compilers and assemblers may implement the following pseudo-ops in addition to the
standard instruction op:

Pseudo-Op Implementation
vcmpeqpd k2 {k1}, zmm1, Sd(zmm2/mt) vcmppd k2 {k1}, zmm1, Sd(zmm2/mt), {eq}
vcmpltpd k2 {k1}, zmm1, Sd(zmm2/mt) vcmppd k2 {k1}, zmm1, Sd(zmm2/mt), {lt}
vcmplepd k2 {k1}, zmm1, Sd(zmm2/mt) vcmppd k2 {k1}, zmm1, Sd(zmm2/mt), {le}
vcmpunordpd k2 {k1}, zmm1, Sd(zmm2/mt) vcmppd k2 {k1}, zmm1, Sd(zmm2/mt), {unord}
vcmpneqpd k2 {k1}, zmm1, Sd(zmm2/mt) vcmppd k2 {k1}, zmm1, Sd(zmm2/mt), {neq}
vcmpnltpd k2 {k1}, zmm1, Sd(zmm2/mt) vcmppd k2 {k1}, zmm1, Sd(zmm2/mt), {nlt}
vcmpnlepd k2 {k1}, zmm1, Sd(zmm2/mt) vcmppd k2 {k1}, zmm1, Sd(zmm2/mt), {nle}
vcmpordpd k2 {k1}, zmm1, Sd(zmm2/mt) vcmppd k2 {k1}, zmm1, Sd(zmm2/mt), {ord}

SIMD Floating-Point Exceptions

Invalid, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
Not Applicable

Memory Up-conversion: Sf64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64
001 broadcast 1 element (x8) [rax] {1to8} 8
010 broadcast 4 elements (x2) [rax] {4to8} 32
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Reference Number: 327364-001 145

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sf64

MVEX.EH=0
S2S1S0 Function: 4 x 64 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
1xx SAE (Supress-All-Exceptions) , {sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__mmask8 _mm512_cmpeq_pd_mask (__m512d, __m512d);
__mmask8 _mm512_mask_cmpeq_pd_mask(__mmask8, __m512d, __m512d);
__mmask8 _mm51_cmplt_pd_mask(__m512d, __m512d);
__mmask8 _mm512_mask_cmplt_pd_mask(__mmask8, __m512d, __m512d);
__mmask8 _mm512_cmple_pd_mask(__m512d, __m512d);
__mmask8 _mm512_mask_cmple_pd_mask(__mmask8, __m512d, __m512d);
__mmask8 _mm512_cmpunord_pd_mask(__m512d, __m512d);
__mmask8 _mm512_mask_cmpunord_pd_mask(__mmask8, __m512d, __m512d);
__mmask8 _mm512_cmpneq_pd_mask(__m512d, __m512d);
__mmask8 _mm512_mask_cmpneq_pd_mask(__mmask8, __m512d, __m512d);
__mmask8 _mm512_cmpnlt_pd_mask(__m512d, __m512d);
__mmask8 _mm512_mask_cmpnlt_pd_mask(__mmask8, __m512d, __m512d);
__mmask8 _mm512_cmpnle_pd_mask(__m512d, __m512d);
__mmask8 _mm512_mask_cmpnle_pd_mask(__mmask8, __m512d, __m512d);
__mmask8 _mm512_cmpord_pd_mask(__m512d, __m512d);
__mmask8 _mm512_mask_cmpord_pd_mask(__mmask8, __m512d, __m512d);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

146 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 147

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VCMPPS - Compare Float32 Vectors and Set Vector Mask

Opcode Instruction Description
MVEX.NDS.512.0F.W0 C2 /r ib vcmpps k2 {k1}, zmm1, Sf32(zmm2/mt), imm8 Compare between

loat32 vector zmm1
and loat32 vector
Sf32(zmm2/mt) and
store the result in k2,
under write-mask.

Description

Performs an element-by-element comparison between loat32 vector zmm1 and the
loat32 vector result of the swizzle/broadcast/conversion frommemory or loat32 vector
zmm2. The result is written into vector mask k2.

Note: If DAZ=1, denormals are treated as zeros in the comparison (original source regis-
ters untouched). untouched). +0 equals−0. Comparison with NaN returns false.

In inity of like signs, are considered equals. In inity values of either signs are considered
ordered values.

Table 6.4 summarizes VCMPPS behavior, in particular showing how various NaN results
can be produced.

Predicate Imm8 enc Description Emulation If NaN QNaN operand signals invalid
{eq} 000 A= B False No
{lt} 001 A< B False Yes
{le} 010 A<= B False Yes
{gt} A> B Swap operands, use LT False Yes
{ge} A>= B Swap operands, use LE False Yes
{unord} 011 Unordered True No
{neq} 100 NOT(A= B) True No
{nlt} 101 NOT(A< B) True Yes
{nle} 110 NOT(A<= B) True Yes
{ngt} NOT(A> B) Swap operands, use NLT True Yes
{nge} NOT(A>= B) Swap operands, use NLE True Yes
{ord} 111 Ordered False No

Table 6.4: VCMPPS behavior

Thewrite-mask does not perform the normal write-masking function for this instruction.
While it does enable/disable comparisons, it does not block updating of the destination;
instead, if a write-mask bit is 0, the corresponding destination bit is set to 0. Nonethe-
less, the operation is similar enough so that it makes sense to use the usual write-mask
notation. This mode of operation is desirable because the result will be used directly as a
write-mask, rather than the normal case where the result is used with a separate write-
mask that keeps the masked elements inactive.

148 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Immediate Format

Comparison Type I2 I1 I0
eq Equal 0 0 0
lt Less than 0 0 1
le Less than or Equal 0 1 0

unord Unordered 0 1 1
neq Not Equal 1 0 0
nlt Not Less than 1 0 1
nle Not Less than or Equal 1 1 0
ord Ordered 1 1 1

Operation

switch (IMM8[2:0]) {
case 0: OP ← EQ; break;
case 1: OP ← LT; break;
case 2: OP ← LE; break;
case 3: OP ← UNORD; break;
case 4: OP ← NEQ; break;
case 5: OP ← NLT; break;
case 6: OP ← NLE; break;
case 7: OP ← ORD; break;

}

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
tmpSrc2[511:0] = zmm2[511:0]

} else {
tmpSrc2[511:0] = SwizzUpConvLoadf32(zmm2/mt)

}

for (n = 0; n < 16; n++) {
k2[n] = 0
if(k1[n] != 0) {
i = 32*n
// float32 operation
k2[n] = (zmm1[i+31:i] OP tmpSrc2[i+31:i]) ? 1 : 0

}
}

Reference Number: 327364-001 149

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Instruction Pseudo-ops

Compilers and assemblers may implement the following pseudo-ops in addition to the
standard instruction op:

Pseudo-Op Implementation
vcmpeqps k2 {k1}, zmm1, Sf (zmm2/mt) vcmpps k2 {k1}, zmm1, Sf (zmm2/mt), {eq}
vcmpltps k2 {k1}, zmm1, Sf (zmm2/mt) vcmpps k2 {k1}, zmm1, Sf (zmm2/mt), {lt}
vcmpleps k2 {k1}, zmm1, Sf (zmm2/mt) vcmpps k2 {k1}, zmm1, Sf (zmm2/mt), {le}
vcmpunordps k2 {k1}, zmm1, Sf (zmm2/mt) vcmpps k2 {k1}, zmm1, Sf (zmm2/mt), {unord}
vcmpneqps k2 {k1}, zmm1, Sf (zmm2/mt) vcmpps k2 {k1}, zmm1, Sf (zmm2/mt), {neq}
vcmpnltps k2 {k1}, zmm1, Sf (zmm2/mt) vcmpps k2 {k1}, zmm1, Sf (zmm2/mt), {nlt}
vcmpnleps k2 {k1}, zmm1, Sf (zmm2/mt) vcmpps k2 {k1}, zmm1, Sf (zmm2/mt), {nle}
vcmpordps k2 {k1}, zmm1, Sf (zmm2/mt) vcmpps k2 {k1}, zmm1, Sf (zmm2/mt), {ord}

SIMD Floating-Point Exceptions

Invalid, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
Not Applicable

Memory Up-conversion: Sf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 loat16 to loat32 [rax] { loat16} 32
100 uint8 to loat32 [rax] {uint8} 16
110 uint16 to loat32 [rax] {uint16} 32
111 sint16 to loat32 [rax] {sint16} 32

150 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sf32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
1xx SAE (Supress-All-Exceptions) , {sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__mmask16 _mm512_cmpeq_ps_mask (__m512, __m512);
__mmask16 _mm512_mask_cmpeq_ps_mask (__mmask16, __m512, __m512);
__mmask16 _mm51_cmplt_ps_mask (__m512, __m512);
__mmask16 _mm512_mask_cmplt_ps_mask (__mmask16, __m512, __m512);
__mmask16 _mm512_cmple_ps_mask (__m512, __m512);
__mmask16 _mm512_mask_cmple_ps_mask (__mmask16, __m512, __m512);
__mmask16 _mm512_cmpunord_ps_mask (__m512, __m512);
__mmask16 _mm512_mask_cmpunord_ps_mask (__mmask16, __m512, __m512);
__mmask16 _mm512_cmpneq_ps_mask (__m512, __m512);
__mmask16 _mm512_mask_cmpneq_ps_mask (__mmask16, __m512, __m512);
__mmask16 _mm512_cmpnlt_ps_mask (__m512, __m512);
__mmask16 _mm512_mask_cmpnlt_ps_mask (__mmask16, __m512, __m512);
__mmask16 _mm512_cmpnle_ps_mask (__m512, __m512);
__mmask16 _mm512_mask_cmpnle_ps_mask (__mmask16, __m512, __m512);
__mmask16 _mm512_cmpord_ps_mask (__m512, __m512);
__mmask16 _mm512_mask_cmpord_ps_mask (__mmask16, __m512, __m512);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

Reference Number: 327364-001 151

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

152 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VCVTDQ2PD - Convert Int32 Vector to Float64 Vector

Opcode Instruction Description
MVEX.512.F3.0F.W0 E6 /r vcvtdq2pd zmm1 {k1}, Si32(zmm2/mt) Convert int32 vector

Si32(zmm2/mt) to loat64, and
store the result in zmm1, under
write-mask.

Description

Performs an element-by-element conversion from the int32 vector result of the swiz-
zle/broadcast/conversion from memory or int32 vector zmm2 to a loat64 vector . The
result is written into loat64 vector zmm1. The int32 source is read from either the lower
half of the source operand (int32 vector zmm2), full memory source (8 elements, i.e. 256-
bits) or the broadcast memory source.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc2[255:0] = zmm2[255:0]

} else {
tmpSrc2[255:0] = SwizzUpConvLoadi32(zmm2/mt)

}

for (n = 0; n < 8; n++) {
if(k1[n] != 0) {
i = 64*n
j = 32*n
zmm1[i+63:i] =

CvtInt32ToFloat64(tmpSrc2[j+31:j])
}

}

SIMD Floating-Point Exceptions

None.

Reference Number: 327364-001 153

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Denormal Handling

Treat Input Denormals As Zeros :
Not Applicable

Flush Tiny Results To Zero :
Not Applicable

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 32
001 broadcast 1 element (x8) [rax] {1to8} 4
010 broadcast 4 elements (x4) [rax] {4to8} 16
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

_m512d _mm512_cvtepi32lo_pd (__m512i);
_m512d _mm512_mask_cvtepi32lo_pd (__m512d, __mmask8, __m512i);

154 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to 4, 16 or 32-byte (depending on the swizzle broadcast).

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
This instruction does not support any
SwizzUpConv involving data conversion.
If SwizzUpConvMem function frommemory is set to any
value different than "no action", {1to8} or{4to8}
then an Invalid Opcode fault is raised. Note
that this rule only applies to memory conversions
(register swizzles are allowed).

Reference Number: 327364-001 155

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VCVTFXPNTDQ2PS - Convert Fixed Point Int32 Vector to Float32 Vector

Opcode Instruction Description
MVEX.512.0F3A.W0 CB /r ib vcvtfxpntdq2ps zmm1 {k1}, Si32(zmm2/mt), imm8 Convert int32 vector

Si32(zmm2/mt) to
loat32, and store
the result in zmm1,
using imm8, under
write-mask.

Description

Performs an element-by-element conversion from the int32 vector result of the swiz-
zle/broadcast/conversion from memory or int32 vector zmm2 to a loat32 vector , then
performs an optional adjustment to the exponent.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Immediate Format

Exponent Adjustment value I7 I6 I5 I4
0 20 (32.0 - no exponent adjustment) 0 0 0 0
4 24 (28.4) 0 0 0 1
5 25 (27.5) 0 0 1 0
8 28 (24.8) 0 0 1 1
16 216 (16.16) 0 1 0 0
24 224 (8.24) 0 1 0 1
31 231 (1.31) 0 1 1 0
32 232 (0.32) 0 1 1 1
reserved *must UD* 1 x x x

Operation

expadj = IMM8[6:4]
if(source is a register operand and MVEX.EH bit is 1) {

if(SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc2[511:0] = zmm2[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc2[511:0] = SwizzUpConvLoadi32(zmm2/mt)

}

156 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
zmm1[i+31:i] =
CvtInt32ToFloat32(tmpSrc2[i+31:i], RoundingMode) / EXPADJ_TABLE[expadj]

}
}

SIMD Floating-Point Exceptions

Precision.

Denormal Handling

Treat Input Denormals As Zeros :
Not Applicable

Flush Tiny Results To Zero :
Not Applicable

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Reference Number: 327364-001 157

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
1xx SAE (Supress-All-Exceptions) , {sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_cvtfxpnt_round_adjustepi32_ps(__m512i, int, _MM_EXP_ADJ_ENUM);
__m512 _mm512_mask_cvtfxpnt_round_adjustepi32_ps(__m512, __mmask16, __m512i,

int, _MM_EXP_ADJ_ENUM);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

158 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 159

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VCVTFXPNTPD2DQ - Convert Float64 Vector to Fixed Point Int32 Vector

Opcode Instruction Description
MVEX.512.F2.0F3A.W1 E6 /r ib vcvtfxpntpd2dq zmm1 {k1}, Sf64(zmm2/mt), imm8 Convert

loat64 vector
Sf64(zmm2/mt)
to int32, and
store the result
in zmm1, using
imm8, under
write-mask.

Description

Performs an element-by-element conversion and rounding from the loat64 vector result
of the swizzle/broadcast/conversion frommemory or loat64 vector zmm2 to a int32 vec-
tor . The int32 result is written into the lower half of the destination register zmm1; the
other half of the destination is set to zero.

Out-of-range values are converted to the nearest representable value and that NaNs con-
vert to 0, because this makes the calculation of Exp2 more ef icient (avoiding problems
with converting very large values to integers, where undetected incorrect values could
otherwise result fromover low). Table 6.5 describeswhat should be the resultwhen deal-
ing with loating-point special number.

Input Result
NaN 0
+∞ INT _MAX
+0 0
-0 0
−∞ INT _MIN

Table 6.5: Converting to integer special loating-point values behavior

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Immediate Format

Rounding Mode I1 I0
rn Round to Nearest (even) 0 0
rd Round Down (Round toward Negative In inity) 0 1
ru Round Up (Round toward Positive In inity) 1 0
rz Round toward Zero 1 1

160 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

RoundingMode = IMM8[1:0]

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
tmpSrc2[511:0] = zmm2[511:0]

} else {
tmpSrc2[511:0] = SwizzUpConvLoadf64(zmm2/mt)

}

for (n = 0; n < 8; n++) {
if(k1[n] != 0) {
i = 64*n
j = 32*n
zmm1[j+31:j] =

CvtFloat64ToInt32(tmpSrc2[i+63:i], RoundingMode)
}

}

zmm1[511:256] = 0

SIMD Floating-Point Exceptions

Invalid, Precision.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
Not Applicable

Memory Up-conversion: Sf64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64
001 broadcast 1 element (x8) [rax] {1to8} 8
010 broadcast 4 elements (x2) [rax] {4to8} 32
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Reference Number: 327364-001 161

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sf64

MVEX.EH=0
S2S1S0 Function: 4 x 64 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
1xx SAE (Supress-All-Exceptions) , {sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_cvtfxpnt_roundpd_epi32lo(__m512d, int);
__m512i _mm512_mask_cvtfxpnt_roundpd_epi32lo(__m512i, __mmask8, __m512d, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

162 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Reference Number: 327364-001 163

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VCVTFXPNTPD2UDQ - Convert Float64 Vector to Fixed Point Uint32 Vec-
tor

Opcode Instruction Description
MVEX.512.F2.0F3A.W1 CA /r ib vcvtfxpntpd2udq zmm1 {k1}, Sf64(zmm2/mt), imm8 Convert

loat64 vector
Sf64(zmm2/mt)
to uint32, and
store the result
in zmm1, using
imm8, under
write-mask.

Description

Performs an element-by-element conversion and rounding from the loat64 vector result
of the swizzle/broadcast/conversion from memory or loat64 vector zmm2 to a uint32
vector . The uint32 result is written into the lower half of the destination register zmm1;
the other half of the destination is set to zero.

Out-of-range values are converted to the nearest representable value and that NaNs con-
vert to 0, because this makes the calculation of Exp2 more ef icient (avoiding problems
with converting very large values to integers, where undetected incorrect values could
otherwise result fromover low). Table 6.6 describeswhat should be the resultwhen deal-
ing with loating-point special number.

Input Result
NaN 0
+∞ INT _MAX
+0 0
-0 0
−∞ INT _MIN

Table 6.6: Converting to integer special loating-point values behavior

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Immediate Format

Rounding Mode I1 I0
rn Round to Nearest (even) 0 0
rd Round Down (Round toward Negative In inity) 0 1
ru Round Up (Round toward Positive In inity) 1 0
rz Round toward Zero 1 1

164 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

RoundingMode = IMM8[1:0]

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
tmpSrc2[511:0] = zmm2[511:0]

} else {
tmpSrc2[511:0] = SwizzUpConvLoadf64(zmm2/mt)

}

for (n = 0; n < 8; n++) {
if(k1[n] != 0) {
i = 64*n
j = 32*n
zmm1[j+31:j] =

CvtFloat64ToUint32(tmpSrc2[i+63:i], RoundingMode)
}

}

zmm1[511:256] = 0

SIMD Floating-Point Exceptions

Invalid, Precision.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
Not Applicable

Memory Up-conversion: Sf64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64
001 broadcast 1 element (x8) [rax] {1to8} 8
010 broadcast 4 elements (x2) [rax] {4to8} 32
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Reference Number: 327364-001 165

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sf64

MVEX.EH=0
S2S1S0 Function: 4 x 64 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
1xx SAE (Supress-All-Exceptions) , {sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_cvtfxpnt_roundpd_epi32lo(__m512d, int);
__m512i _mm512_mask_cvtfxpnt_roundpd_epi32lo(__m512i, __mmask8, __m512d, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

166 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Reference Number: 327364-001 167

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VCVTFXPNTPS2DQ - Convert Float32 Vector to Fixed Point Int32 Vector

Opcode Instruction Description
MVEX.512.66.0F3A.W0 CB /r ib vcvtfxpntps2dq zmm1 {k1}, Sf32(zmm2/mt), imm8 Convert

loat32 vector
Sf32(zmm2/mt)
to int32, and
store the result
in zmm1, using
imm8, under
write-mask.

Description

Performs an element-by-element conversion and rounding from the loat32 vector result
of the swizzle/broadcast/conversion frommemory or loat32 vector zmm2 to a int32 vec-
tor , with an optional exponent adjustment before the conversion.

Out-of-range values are converted to the nearest representable value and that NaNs con-
vert to 0, because this makes the calculation of Exp2 more ef icient (avoiding problems
with converting very large values to integers, where undetected incorrect values could
otherwise result fromover low). Table 6.7 describeswhat should be the resultwhen deal-
ing with loating-point special number.

Input Result
NaN 0
+∞ INT _MAX
+0 0
-0 0
−∞ INT _MIN

Table 6.7: Converting to integer special loating-point values behavior

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Immediate Format

Rounding Mode I1 I0
rn Round to Nearest (even) 0 0
rd Round Down (Round toward Negative In inity) 0 1
ru Round Up (Round toward Positive In inity) 1 0
rz Round toward Zero 1 1

168 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exponent Adjustment value I7 I6 I5 I4
0 20 (32.0 - no exponent adjustment) 0 0 0 0
4 24 (28.4) 0 0 0 1
5 25 (27.5) 0 0 1 0
8 28 (24.8) 0 0 1 1
16 216 (16.16) 0 1 0 0
24 224 (8.24) 0 1 0 1
31 231 (1.31) 0 1 1 0
32 232 (0.32) 0 1 1 1
reserved *must UD* 1 x x x

Operation

RoundingMode = IMM8[1:0]
expadj = IMM8[6:4]

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
tmpSrc2[511:0] = zmm2[511:0]

} else {
tmpSrc2[511:0] = SwizzUpConvLoadf32(zmm2/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
zmm1[i+31:i] =
CvtFloat32ToInt32(tmpSrc2[i+31:i] * EXPADJ_TABLE[expadj], RoundingMode)

}
}

SIMD Floating-Point Exceptions

Invalid, Precision.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
Not Applicable

Reference Number: 327364-001 169

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Sf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 loat16 to loat32 [rax] { loat16} 32
100 uint8 to loat32 [rax] {uint8} 16
110 uint16 to loat32 [rax] {uint16} 32
111 sint16 to loat32 [rax] {sint16} 32

Register Swizzle: Sf32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
1xx SAE (Supress-All-Exceptions) , {sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_cvtfxpnt_round_adjustps_epi32(__m512, int, _MM_EXP_ADJ_ENUM);
__m512i _mm512_mask_cvtfxpnt_round_adjustps_epi32(__m512i, __mmask16, __m512,

int, _MM_EXP_ADJ_ENUM);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

170 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 171

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VCVTFXPNTPS2UDQ - Convert Float32 Vector to Fixed Point Uint32 Vec-
tor

Opcode Instruction Description
MVEX.512.66.0F3A.W0 CA /r ib vcvtfxpntps2udq zmm1 {k1}, Sf32(zmm2/mt), imm8 Convert

loat32 vector
Sf32(zmm2/mt)
to uint32, and
store the result
in zmm1, using
imm8, under
write-mask.

Description

Performs an element-by-element conversion and rounding from the loat32 vector result
of the swizzle/broadcast/conversion from memory or loat32 vector zmm2 to a uint32
vector , with an optional exponent adjustment before the conversion.

Out-of-range values are converted to the nearest representable value and that NaNs con-
vert to 0, because this makes the calculation of Exp2 more ef icient (avoiding problems
with converting very large values to integers, where undetected incorrect values could
otherwise result fromover low). Table 6.8 describeswhat should be the resultwhen deal-
ing with loating-point special number.

Input Result
NaN 0
+∞ INT _MAX
+0 0
-0 0
−∞ INT _MIN

Table 6.8: Converting to integer special loating-point values behavior

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Immediate Format

Rounding Mode I1 I0
rn Round to Nearest (even) 0 0
rd Round Down (Round toward Negative In inity) 0 1
ru Round Up (Round toward Positive In inity) 1 0
rz Round toward Zero 1 1

172 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exponent Adjustment value I7 I6 I5 I4
0 20 (32.0 - no exponent adjustment) 0 0 0 0
4 24 (28.4) 0 0 0 1
5 25 (27.5) 0 0 1 0
8 28 (24.8) 0 0 1 1
16 216 (16.16) 0 1 0 0
24 224 (8.24) 0 1 0 1
31 231 (1.31) 0 1 1 0
32 232 (0.32) 0 1 1 1
reserved *must UD* 1 x x x

Operation

RoundingMode = IMM8[1:0]
expadj = IMM8[6:4]

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
tmpSrc2[511:0] = zmm2[511:0]

} else {
tmpSrc2[511:0] = SwizzUpConvLoadf32(zmm2/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
zmm1[i+31:i] =
CvtFloat32ToUint32(tmpSrc2[i+31:i] * EXPADJ_TABLE[expadj], RoundingMode)

}
}

SIMD Floating-Point Exceptions

Invalid, Precision.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
Not Applicable

Reference Number: 327364-001 173

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Sf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 loat16 to loat32 [rax] { loat16} 32
100 uint8 to loat32 [rax] {uint8} 16
110 uint16 to loat32 [rax] {uint16} 32
111 sint16 to loat32 [rax] {sint16} 32

Register Swizzle: Sf32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
1xx SAE (Supress-All-Exceptions) , {sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_cvtfxpnt_round_adjustps_epi32(__m512, int, _MM_EXP_ADJ_ENUM);
__m512i _mm512_mask_cvtfxpnt_round_adjustps_epi32(__m512i, __mmask16, __m512,

int, _MM_EXP_ADJ_ENUM);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

174 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 175

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VCVTFXPNTUDQ2PS - Convert Fixed Point Uint32 Vector to Float32 Vec-
tor

Opcode Instruction Description
MVEX.512.0F3A.W0 CA /r ib vcvtfxpntudq2ps zmm1 {k1}, Si32(zmm2/mt), imm8 Convert uint32 vec-

tor Si32(zmm2/mt)
to loat32, and store
the result in zmm1,
using imm8, under
write-mask.

Description

Performs an element-by-element conversion from the uint32 vector result of the swiz-
zle/broadcast/conversion frommemory or uint32 vector zmm2 to a loat32 vector , then
performs an optional adjustment to the exponent.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Immediate Format

Exponent Adjustment value I7 I6 I5 I4
0 20 (32.0 - no exponent adjustment) 0 0 0 0
4 24 (28.4) 0 0 0 1
5 25 (27.5) 0 0 1 0
8 28 (24.8) 0 0 1 1
16 216 (16.16) 0 1 0 0
24 224 (8.24) 0 1 0 1
31 231 (1.31) 0 1 1 0
32 232 (0.32) 0 1 1 1
reserved *must UD* 1 x x x

Operation

expadj = IMM8[6:4]
if(source is a register operand and MVEX.EH bit is 1) {

if(SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc2[511:0] = zmm2[511:0]

} else {
RoundingMode = MXCSR.RC

176 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

tmpSrc2[511:0] = SwizzUpConvLoadi32(zmm2/mt)
}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
zmm1[i+31:i] =
CvtUint32ToFloat32(tmpSrc2[i+31:i], RoundingMode) / EXPADJ_TABLE[expadj]

}
}

SIMD Floating-Point Exceptions

Precision.

Denormal Handling

Treat Input Denormals As Zeros :
Not Applicable

Flush Tiny Results To Zero :
Not Applicable

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Reference Number: 327364-001 177

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
1xx SAE (Supress-All-Exceptions) , {sae}

Intel® C/C++ Compiler Intrinsic Equivalent

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

178 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VCVTPD2PS - Convert Float64 Vector to Float32 Vector

Opcode Instruction Description
MVEX.512.66.0F.W1 5A /r vcvtpd2ps zmm1 {k1}, Sf64(zmm2/mt) Convert loat64 vector

Sf64(zmm2/mt) to loat32, and
store the result in zmm1, under
write-mask.

Description

Performs an element-by-element conversion and rounding from the loat64 vector result
of the swizzle/broadcast/conversion from memory or loat64 vector zmm2 to a loat32
vector . The result is written into loat32 vector zmm1. The loat32 result is written into
the lower half of the destination register zmm1; the other half of the destination is set to
zero.

Input Result
NaN Quietized NaN. Copy leading bits of loat64 signi icand
+∞ +∞
+0 +0
-0 −0
−∞ −∞

Table 6.9: Converting loat64 to loat32 special values behavior

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc2[511:0] = zmm2[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc2[511:0] = SwizzUpConvLoadf64(zmm2/mt)

}

for (n = 0; n < 8; n++) {
if(k1[n] != 0) {
i = 64*n
j = 32*n
zmm1[j+31:j] =

Reference Number: 327364-001 179

CHAPTER 6. INSTRUCTION DESCRIPTIONS

CvtFloat64ToFloat32(tmpSrc2[i+63:i], RoundingMode)
}

}

zmm1[511:256] = 0

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sf64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64
001 broadcast 1 element (x8) [rax] {1to8} 8
010 broadcast 4 elements (x2) [rax] {4to8} 32
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

180 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sf64

MVEX.EH=0
S2S1S0 Function: 4 x 64 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_cvtpd_pslo (__m512d);
__m512 _mm512_mask_cvtpd_pslo (__m512d, __mmask8, __m512d);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

Reference Number: 327364-001 181

CHAPTER 6. INSTRUCTION DESCRIPTIONS

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

182 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VCVTPS2PD - Convert Float32 Vector to Float64 Vector

Opcode Instruction Description
MVEX.512.0F.W0 5A /r vcvtps2pd zmm1 {k1}, Sf32(zmm2/mt) Convert loat32 vector

Sf32(zmm2/mt) to loat64, and store
the result in zmm1, under write-mask.

Description

Performs an element-by-element conversion and rounding from the loat32 vector result
of the swizzle/broadcast/conversion from memory or loat32 vector zmm2 to a loat64
vector . The result is written into loat64 vector zmm1. The loat32 source is read from
either the lower half of the source operand (loat32 vector zmm2), full memory source (8
elements, i.e. 256-bits) or the broadcast memory source.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
tmpSrc2[255:0] = zmm2[255:0]

} else {
tmpSrc2[255:0] = SwizzUpConvLoadf32(zmm2/mt)

}

for (n = 0; n < 8; n++) {
if(k1[n] != 0) {
i = 64*n
j = 32*n
zmm1[i+63:i] =

CvtFloat32ToFloat64(tmpSrc2[j+31:j])
}

}

SIMD Floating-Point Exceptions

Invalid, Denormal.

Reference Number: 327364-001 183

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
Not Applicable

Memory Up-conversion: Sf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 32
001 broadcast 1 element (x8) [rax] {1to8} 4
010 broadcast 4 elements (x4) [rax] {4to8} 16
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Register Swizzle: Sf32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
1xx SAE (Supress-All-Exceptions) , {sae}

Intel® C/C++ Compiler Intrinsic Equivalent

_m512d _mm512_cvtpslo_pd (__m512);
_m512d _mm512_mask_cvtpslo_pd (__m512d, __mmask8, __m512);

184 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to 4, 16 or 32-byte (depending on the swizzle broadcast).

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
This instruction does not support any
SwizzUpConv involving data conversion.
If SwizzUpConvMem function frommemory is set to any
value different than "no action", {1to8} or{4to8}
then an Invalid Opcode fault is raised. Note
that this rule only applies to memory conversions
(register swizzles are allowed).

Reference Number: 327364-001 185

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VCVTUDQ2PD - Convert Uint32 Vector to Float64 Vector

Opcode Instruction Description
MVEX.512.F3.0F.W0 7A /r vcvtudq2pd zmm1 {k1}, Si32(zmm2/mt) Convert uint32 vector

Si32(zmm2/mt) to loat64, and
store the result in zmm1, under
write-mask.

Description

Performs an element-by-element conversion from the uint32 vector result of the swiz-
zle/broadcast/conversion frommemory or uint32 vector zmm2 to a loat64 vector . The
result iswritten into loat64 vector zmm1. Theuint32 source is read fromeither the lower
half of the source operand (uint32 vector zmm2), full memory source (8 elements, i.e.
256-bits) or the broadcast memory source.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc2[255:0] = zmm2[255:0]

} else {
tmpSrc2[255:0] = SwizzUpConvLoadi32(zmm2/mt)

}

for (n = 0; n < 8; n++) {
if(k1[n] != 0) {
i = 64*n
j = 32*n
zmm1[i+63:i] =

CvtUint32ToFloat64(tmpSrc2[j+31:j])
}

}

SIMD Floating-Point Exceptions

None.

186 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Denormal Handling

Treat Input Denormals As Zeros :
Not Applicable

Flush Tiny Results To Zero :
Not Applicable

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 32
001 broadcast 1 element (x8) [rax] {1to8} 4
010 broadcast 4 elements (x4) [rax] {4to8} 16
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

_m512d _mm512_cvtepu32lo_pd (__m512i);
_m512d _mm512_mask_cvtepu32lo_pd (__m512d, __mmask8, __m512i);

Reference Number: 327364-001 187

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to 4, 16 or 32-byte (depending on the swizzle broadcast).

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
This instruction does not support any
SwizzUpConv involving data conversion.
If SwizzUpConvMem function frommemory is set to any
value different than "no action", {1to8} or{4to8}
then an Invalid Opcode fault is raised. Note
that this rule only applies to memory conversions
(register swizzles are allowed).

188 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VEXP223PS - Base-2 Exponential Calculation of Float32 Vector

Opcode Instruction Description
MVEX.512.66.0F38.W0 C8
/r

vexp223ps zmm1 {k1}, zmm2/mt Calculate the approx. exp2 from int32 vector
zmm2/mt and store the result in zmm1, under
write-mask.

Description

Computes the element-by-element base-2 exponential computation of the int32 vector
on memory or int32 vector zmm2 with 0.99ULP (relative error). Input int32 values are
considered as ixed point numberswith a fraction offset of 24 bits (i.e. 8MSBs correspond
to sign and integer part; 24 LSBs correspond to fractional part). The result is written into
loat32 vector zmm1.

exp2 of a FP input value is computed as a two-instruction sequence:

1. vcvtfxpntps2dq (with exponent adjustment, so that destination format is 32b, with
8b for integer part and 24b for fractional part)

2. vexp223ps

All over lows are captured by the combination of the saturating behavior of vcvtfxp-
ntps2dq instruction and the detection of MAX_INT/MIN_INT by the vexp223ps instruc-
tion. Tiny input numbers are quietly lushed to the ixed-point value 0 by the vcvtfxp-
ntps2dq instruction, which produces an overall output exp2(0) = 1.0f .

The overall behavior of the two-instruction sequence is the following:

• −∞ returns+0.0f

• ±0.0f returns 1.0f (exact result)
• +∞ returns +∞ (#Over low)
• NaN returns 1.0f (#Invalid)
• n, where n is an integral value returns 2n (exact result)

Input Result Comments
MIN_INT +0.0f
MAX_INT +∞ Raise #O lag

Table 6.10: vexp2_1ulp() special int values behavior

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Reference Number: 327364-001 189

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

tmpSrc2[511:0] = zmm2/mt

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE

}

for (n = 0; n < 16; n++) {
if (k1[n] != 0) {
i = 32*n
zmm1[i+31:i] = exp2_1ulp(tmpSrc2[i+31:i])

}
}

SIMD Floating-Point Exceptions

Over low.

Denormal Handling

Treat Input Denormals As Zeros :
Not Applicable

Flush Tiny Results To Zero :
YES

Register Swizzle

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 reserved N/A
010 reserved N/A
011 reserved N/A
100 reserved N/A
101 reserved N/A
110 reserved N/A
111 reserved N/A
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
1xx SAE (Supress-All-Exceptions) , {sae}

190 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_exp223_ps (__m512i);
__m512 _mm512_mask_exp223_ps (__m512, __mmask16, __m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
This instruction does not support any
SwizzUpConv different from the default value (no broadcast,
no conversion). If SwizzUpConv function is set to any value
different than "no action", then an Invalid Opcode fault is
raised. This includes register swizzles.

Reference Number: 327364-001 191

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFIXUPNANPD - FixUpSpecial Float64VectorNumbersWithNaNPassthrough

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W1 55 /r v ixupnanpd zmm1 {k1}, zmm2, Si64(zmm3/mt) Fix up, with NaN

passthrough, spe-
cial numbers in
loat64 vector
zmm1, loat64
vector zmm2
and int64 vector
Si64(zmm3/mt)
and store the result
in zmm1, under
write-mask.

Description

Performs an element-by-element ix-up of various real and special number types in
the loat64 vector zmm2 using the 21-bit table values from the result of the swiz-
zle/broadcast/conversion process on memory or int64 vector zmm3. The result is
merged into loat64 vector zmm1. Unlike in v ixuppd, source NaN values are passed-
through as quietized values. Note that, also unlike in v ixup, this quietization translates
into a #IE exception lag being reported for input SNaNs.

This instruction is speci ically intended for use in ixing up the results of arithmetic cal-
culations involving one source, although it is generally useful for ixing up the results of
multiple-instruction sequences to re lect special-number inputs. For example, consider
rcp(0). Input 0 to rcp, and you should get inf. However, evaluating rcp via 2x − ax2

(Newton-Raphson), where x = approx(1/0) = ∞, incorrectly yields NaN. To deal with
this, v ixupps can be used after the N-R reciprocal sequence to set the result to∞ when
the input is 0.

Denormal inputs must be treated as zeros of the same sign if DAZ is enabled.

Note that NO_CHANGE_TOKEN leaves the destination (output) unchanged. This means
that if the destination is a denormal, its value is not lushed to 0.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

enum TOKEN_TYPE
{

NO_CHANGE_TOKEN = 0,

192 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

NEG_INF_TOKEN = 1,
NEG_ZERO_TOKEN = 2,
POS_ZERO_TOKEN = 3,
POS_INF_TOKEN = 4,
NAN_TOKEN = 5,
MAX_DOUBLE_TOKEN = 6,
MIN_DOUBLE_TOKEN = 7,

}

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
tmpzmm3[511:0] = zmm3[511:0]

} else {
tmpzmm3[511:0] = SwizzUpConvLoadi64(zmm3/mt)

}

for (n = 0; n < 8; n++) {
if (k1[n] != 0) {
i = 64*n
tsrc[63:0] = zmm2[i+63:i]

if (IsNaN(tsrc[63:0])
{

zmm1[i+63:i] = QNaN(zmm2[i+63:i])
}
else
{

// tmp is an int value
if (tsrc[63:0] == -inf) tmp = 0
else if (tsrc[63:0] < 0) tmp = 1
else if (tsrc[63:0] == -0) tmp = 2
else if (tsrc[63:0] == +0) tmp = 3
else if (tsrc[63:0] == inf) tmp = 5
else /* tsrc[63:0] > 0 */ tmp = 4

table[20:0] = tmpzmm3[i+63:i]
token = table[(tmp*3)+2: tmp*3] // table is viewed as one 21-bit

// little-endian value.
// token is an int value
// the 7th entry is unused

// float64 result
if (token == NEG_INF_TOKEN) zmm1[i+63:i] = -inf
else if (token == NEG_ZERO_TOKEN) zmm1[i+63:i] = -0
else if (token == POS_ZERO_TOKEN) zmm1[i+63:i] = +0
else if (token == POS_INF_TOKEN) zmm1[i+63:i] = +inf
else if (token == NAN_TOKEN) zmm1[i+63:i] = QNaN_indefinite
else if (token == MAX_DOUBLE_TOKEN) zmm1[i+63:i] = NMAX
else if (token == MIN_DOUBLE_TOKEN) zmm1[i+63:i] = -NMAX

else if (token == NO_CHANGE_TOKEN) { /* zmm1[i+63:i] remains unchanged */ }
}

}

Reference Number: 327364-001 193

CHAPTER 6. INSTRUCTION DESCRIPTIONS

}

SIMD Floating-Point Exceptions

Invalid.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
NO

Memory Up-conversion: Si64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64
001 broadcast 1 element (x8) [rax] {1to8} 8
010 broadcast 4 elements (x2) [rax] {4to8} 32
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Register Swizzle: Si64

MVEX.EH=0
S2S1S0 Function: 4 x 64 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
1xx SAE (Supress-All-Exceptions) , {sae}

194 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel® C/C++ Compiler Intrinsic Equivalent

__m512d _mm512_ ixupnan_pd (__m512d, __m512d, __m512i);
__m512d _mm512_mask_ ixupnan_pd (__m512d, __mmask8, __m512d, __m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 195

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFIXUPNANPS - FixUpSpecial Float32VectorNumbersWithNaNPassthrough

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0 55 /r v ixupnanps zmm1 {k1}, zmm2, Si32(zmm3/mt) Fix up, with NaN

passthrough, spe-
cial numbers in
loat32 vector
zmm1, loat32
vector zmm2
and int32 vector
Si32(zmm3/mt)
and store the result
in zmm1, under
write-mask.

Description

Performs an element-by-element ix-up of various real and special number types in
the loat32 vector zmm2 using the 21-bit table values from the result of the swiz-
zle/broadcast/conversion process on memory or int32 vector zmm3. The result is
merged into loat32 vector zmm1. Unlike in v ixupps, source NaN values are passed-
through as quietized values. Note that, also unlike in v ixup, this quietization translates
into a #IE exception lag being reported for input SNaNs.

This instruction is speci ically intended for use in ixing up the results of arithmetic cal-
culations involving one source, although it is generally useful for ixing up the results of
multiple-instruction sequences to re lect special-number inputs. For example, consider
rcp(0). Input 0 to rcp, and you should get inf. However, evaluating rcp via 2x − ax2

(Newton-Raphson), where x = approx(1/0) = ∞, incorrectly yields NaN. To deal with
this, v ixupps can be used after the N-R reciprocal sequence to set the result to∞ when
the input is 0.

Denormal inputs must be treated as zeros of the same sign if DAZ is enabled.

Note that NO_CHANGE_TOKEN leaves the destination (output) unchanged. This means
that if the destination is a denormal, its value is not lushed to 0.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

enum TOKEN_TYPE
{

NO_CHANGE_TOKEN = 0,

196 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

NEG_INF_TOKEN = 1,
NEG_ZERO_TOKEN = 2,
POS_ZERO_TOKEN = 3,
POS_INF_TOKEN = 4,
NAN_TOKEN = 5,
MAX_FLOAT_TOKEN = 6,
MIN_FLOAT_TOKEN = 7,

}

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
tmpzmm3[511:0] = zmm3[511:0]

} else {
tmpzmm3[511:0] = SwizzUpConvLoadi32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if (k1[n] != 0) {
i = 32*n
tsrc[31:0] = zmm2[i+31:i]

if (IsNaN(tsrc[31:0])
{

zmm1[i+31:i] = QNaN(zmm2[i+31:i])
}
else
{

// tmp is an int value
if (tsrc[31:0] == -inf) tmp = 0
else if (tsrc[31:0] < 0) tmp = 1
else if (tsrc[31:0] == -0) tmp = 2
else if (tsrc[31:0] == +0) tmp = 3
else if (tsrc[31:0] == inf) tmp = 5
else /* tsrc[31:0] > 0 */ tmp = 4

table[20:0] = tmpzmm3[i+31:i]
token = table[(tmp*3)+2: tmp*3] // table is viewed as one 21-bit

// little-endian value.
// token is an int value
// the 7th entry is unused

// float32 result
if (token == NEG_INF_TOKEN) zmm1[i+31:i] = -inf
else if (token == NEG_ZERO_TOKEN) zmm1[i+31:i] = -0
else if (token == POS_ZERO_TOKEN) zmm1[i+31:i] = +0
else if (token == POS_INF_TOKEN) zmm1[i+31:i] = +inf
else if (token == NAN_TOKEN) zmm1[i+31:i] = QNaN_indefinite
else if (token == MAX_FLOAT_TOKEN) zmm1[i+31:i] = NMAX
else if (token == MIN_FLOAT_TOKEN) zmm1[i+31:i] = -NMAX

else if (token == NO_CHANGE_TOKEN) { /* zmm1[i+31:i] remains unchanged */ }
}

}

Reference Number: 327364-001 197

CHAPTER 6. INSTRUCTION DESCRIPTIONS

}

SIMD Floating-Point Exceptions

Invalid.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
NO

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
1xx SAE (Supress-All-Exceptions) , {sae}

198 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_ ixupnan_ps (__m512, __m512, __m512i);
__m512 _mm512_mask_ ixupnan_ps (__m512, __mmask16, __m512, __m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 199

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFMADD132PD - Multiply Destination By Second Source and Add To First
Source Float64 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W1
98 /r

vfmadd132pd zmm1 {k1}, zmm2,
Sf64(zmm3/mt)

Multiply loat64 vector zmm1 and loat64 vec-
tor Sf64(zmm3/mt), add the result to loat64
vector zmm2, and store the inal result in
zmm1, under write-mask.

Description

Performs an element-by-element multiplication between loat64 vector zmm1 and the
loat64 vector result of the swizzle/broadcast/conversion process on memory or vector
loat64 zmm3, then adds the result to loat64 vector zmm2. The inal sum is written into
loat64 vector zmm1.

Intermediate values are calculated to in inite precision, and are not truncated or rounded.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc3[511:0] = SwizzUpConvLoadf64(zmm3/mt)

}

for (n = 0; n < 8; n++) {
if(k1[n] != 0) {
i = 64*n
// float64 operation
zmm1[i+63:i] = zmm1[i+63:i] * tmpSrc3[i+63:i] + zmm2[i+63:i]

}
}

200 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sf64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64
001 broadcast 1 element (x8) [rax] {1to8} 8
010 broadcast 4 elements (x2) [rax] {4to8} 32
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Reference Number: 327364-001 201

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sf64

MVEX.EH=0
S2S1S0 Function: 4 x 64 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512d _mm512_fmadd_pd (__m512d, __m512d, __m512d);
__m512d _mm512_mask_fmadd_pd (__m512d, __mmask8, __m512d, __m512d);
__m512d _mm512_mask3_fmadd_pd (__m512d, __m512d, __m512d, __mmask8);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is

202 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 203

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFMADD132PS - Multiply Destination By Second Source and Add To First
Source Float32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0
98 /r

vfmadd132ps zmm1 {k1}, zmm2,
Sf32(zmm3/mt)

Multiply loat32 vector zmm1 and loat32 vec-
tor Sf32(zmm3/mt), add the result to loat32
vector zmm2, and store the inal result in
zmm1, under write-mask.

Description

Performs an element-by-element multiplication between loat32 vector zmm1 and the
loat32 vector result of the swizzle/broadcast/conversion process on memory or vector
loat32 zmm3, then adds the result to loat32 vector zmm2. The inal sum is written into
loat32 vector zmm1.

Intermediate values are calculated to in inite precision, and are not truncated or rounded.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc3[511:0] = SwizzUpConvLoadf32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// float32 operation
zmm1[i+31:i] = zmm1[i+31:i] * tmpSrc3[i+31:i] + zmm2[i+31:i]

}
}

204 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 loat16 to loat32 [rax] { loat16} 32
100 uint8 to loat32 [rax] {uint8} 16
110 uint16 to loat32 [rax] {uint16} 32
111 sint16 to loat32 [rax] {sint16} 32

Register Swizzle: Sf32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}

Reference Number: 327364-001 205

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_fmadd_ps (__m512, __m512, __m512);
__m512 _mm512_mask_fmadd_ps (__m512, __mmask16, __m512, __m512);
__m512 _mm512_mask3_fmadd_ps (__m512, __m512, __m512, __mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

206 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFMADD213PD - Multiply First Source By Destination and Add Second
Source Float64 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W1 A8 /r vfmadd213pd zmm1 {k1}, zmm2, Sf64(zmm3/mt) Multiply loat64

vector zmm2
and loat64
vector zmm1,
add the result to
loat64 vector
Sf64(zmm3/mt),
and store the
inal result in
zmm1, under
write-mask.

Description

Performsanelement-by-elementmultiplicationbetween loat64vector zmm2and loat64
vector zmm1and thenadds the result to the loat64vector result of the swizzle/broadcast/conversion
process on memory or vector loat64 zmm3. The inal sum is written into loat64 vector
zmm1.

Intermediate values are calculated to in inite precision, and are not truncated or rounded.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc3[511:0] = SwizzUpConvLoadf64(zmm3/mt)

}

for (n = 0; n < 8; n++) {
if(k1[n] != 0) {
i = 64*n
// float64 operation
zmm1[i+63:i] = zmm2[i+63:i] * zmm1[i+63:i] + tmpSrc3[i+63:i]

Reference Number: 327364-001 207

CHAPTER 6. INSTRUCTION DESCRIPTIONS

}
}

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sf64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64
001 broadcast 1 element (x8) [rax] {1to8} 8
010 broadcast 4 elements (x2) [rax] {4to8} 32
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

208 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sf64

MVEX.EH=0
S2S1S0 Function: 4 x 64 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512d _mm512_fmadd_pd (__m512d, __m512d, __m512d);
__m512d _mm512_mask_fmadd_pd (__m512d, __mmask8, __m512d, __m512d);
__m512d _mm512_mask3_fmadd_pd (__m512d, __m512d, __m512d, __mmask8);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is

Reference Number: 327364-001 209

CHAPTER 6. INSTRUCTION DESCRIPTIONS

in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

210 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFMADD213PS - Multiply First Source By Destination and Add Second
Source Float32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0 A8 /r vfmadd213ps zmm1 {k1}, zmm2, Sf32(zmm3/mt) Multiply loat32

vector zmm2
and loat32 vec-
tor zmm1, add
the result to
loat32 vector
Sf32(zmm3/mt),
and store the
inal result in
zmm1, under
write-mask.

Description

Performsanelement-by-elementmultiplicationbetween loat32vector zmm2and loat32
vector zmm1and thenadds the result to the loat32vector result of the swizzle/broadcast/conversion
process on memory or vector loat32 zmm3. The inal sum is written into loat32 vector
zmm1.

Intermediate values are calculated to in inite precision, and are not truncated or rounded.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc3[511:0] = SwizzUpConvLoadf32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// float32 operation
zmm1[i+31:i] = zmm2[i+31:i] * zmm1[i+31:i] + tmpSrc3[i+31:i]

Reference Number: 327364-001 211

CHAPTER 6. INSTRUCTION DESCRIPTIONS

}
}

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 loat16 to loat32 [rax] { loat16} 32
100 uint8 to loat32 [rax] {uint8} 16
110 uint16 to loat32 [rax] {uint16} 32
111 sint16 to loat32 [rax] {sint16} 32

212 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sf32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_fmadd_ps (__m512, __m512, __m512);
__m512 _mm512_mask_fmadd_ps (__m512, __mmask16, __m512, __m512);
__m512 _mm512_mask3_fmadd_ps (__m512, __m512, __m512, __mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

Reference Number: 327364-001 213

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

214 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFMADD231PD - Multiply First Source By Second Source and Add To Des-
tination Float64 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W1 B8 /r vfmadd231pd zmm1 {k1}, zmm2, Sf64(zmm3/mt) Multiply loat64

vector zmm2 and
loat64 vector
Sf64(zmm3/mt),
add the result to
loat64 vector
zmm1, and store
the inal result
in zmm1, under
write-mask.

Description

Performs an element-by-element multiplication between loat64 vector zmm2 and the
loat64 vector result of the swizzle/broadcast/conversion process on memory or vector
loat64 zmm3, then adds the result to loat64 vector zmm1. The inal sum is written into
loat64 vector zmm1.

Intermediate values are calculated to in inite precision, and are not truncated or rounded.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc3[511:0] = SwizzUpConvLoadf64(zmm3/mt)

}

for (n = 0; n < 8; n++) {
if(k1[n] != 0) {
i = 64*n
// float64 operation
zmm1[i+63:i] = zmm2[i+63:i] * tmpSrc3[i+63:i] + zmm1[i+63:i]

}

Reference Number: 327364-001 215

CHAPTER 6. INSTRUCTION DESCRIPTIONS

}

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sf64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64
001 broadcast 1 element (x8) [rax] {1to8} 8
010 broadcast 4 elements (x2) [rax] {4to8} 32
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

216 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sf64

MVEX.EH=0
S2S1S0 Function: 4 x 64 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512d _mm512_fmadd_pd (__m512d, __m512d, __m512d);
__m512d _mm512_mask_fmadd_pd (__m512d, __mmask8, __m512d, __m512d);
__m512d _mm512_mask3_fmadd_pd (__m512d, __m512d, __m512d, __mmask8);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is

Reference Number: 327364-001 217

CHAPTER 6. INSTRUCTION DESCRIPTIONS

in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

218 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFMADD231PS - Multiply First Source By Second Source and Add To Des-
tination Float32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0 B8 /r vfmadd231ps zmm1 {k1}, zmm2, Sf32(zmm3/mt) Multiply loat32

vector zmm2 and
loat32 vector
Sf32(zmm3/mt),
add the result to
loat32 vector
zmm1, and store
the inal result
in zmm1, under
write-mask.

Description

Performs an element-by-element multiplication between loat32 vector zmm2 and the
loat32 vector result of the swizzle/broadcast/conversion process on memory or vector
loat32 zmm3, then adds the result to loat32 vector zmm1. The inal sum is written into
loat32 vector zmm1.

Intermediate values are calculated to in inite precision, and are not truncated or rounded.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc3[511:0] = SwizzUpConvLoadf32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// float32 operation
zmm1[i+31:i] = zmm2[i+31:i] * tmpSrc3[i+31:i] + zmm1[i+31:i]

}

Reference Number: 327364-001 219

CHAPTER 6. INSTRUCTION DESCRIPTIONS

}

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 loat16 to loat32 [rax] { loat16} 32
100 uint8 to loat32 [rax] {uint8} 16
110 uint16 to loat32 [rax] {uint16} 32
111 sint16 to loat32 [rax] {sint16} 32

220 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sf32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_fmadd_ps (__m512, __m512, __m512);
__m512 _mm512_mask_fmadd_ps (__m512, __mmask16, __m512, __m512);
__m512 _mm512_mask3_fmadd_ps (__m512, __m512, __m512, __mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

Reference Number: 327364-001 221

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

222 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFMADD233PS -Multiply First SourceBySpecially Swizzled SecondSource
and Add To Second Source Float32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0 A4 /r vfmadd233ps zmm1 {k1}, zmm2, Sf32(zmm3/mt) Multiply loat32

vector zmm2 by
certain elements
of loat32 vector
Sf32(zmm3/mt),
add the re-
sult to certain
elements of
Sf32(zmm3/mt),
and store the
inal result in
zmm1, under
write-mask.

Description

This instruction is built around the concept of 4-element sets, of which there are four:
elements 0-3, 4-7, 8-11, and 12-15. If we refer to the loat32 vector result of the broadcast
(no conversion is supported) process onmemory or the loat32 vector zmm3 (no swizzle
is supported) as t3, then:

Each element 0-3 of loat32 vector zmm2 is multiplied by element 1 of t3, the result is
added to element 0 of t3, and the inal sum is written into the corresponding element 0-3
of loat32 vector zmm1.

Each element 4-7 of loat32 vector zmm2 is multiplied by element 5 of t3, the result is
added to element 4 of t3, and the inal sum is written into the corresponding element 4-7
of loat32 vector zmm1.

Each element 8-11 of loat32 vector zmm2 is multiplied by element 9 of t3, the result is
added to element 8 of t3, and the inal sum iswritten into the corresponding element 8-11
of loat32 vector zmm1.

Each element 12-15 of loat32 vector zmm2 is multiplied by element 13 of t3, the result
is added to element 12 of t3, and the inal sum is written into the corresponding element
12-15 of loat32 vector zmm1.

Intermediate values are calculated to in inite precision, and are not truncated or rounded.

This instructionmakes it possible to perform scale and bias in a single instructionwithout
needing to have either scale or bias already loaded in a register. This saves one vector load
for each interpolant, representing around ten percent of shader instructions.

For structure-of-arrays (SOA) operation, this instruction is intended to be used with the
{4to16} broadcast on src2, allowing all 16 scale and biases to be identical. For array-of-

Reference Number: 327364-001 223

CHAPTER 6. INSTRUCTION DESCRIPTIONS

structures (AOS) vec4 operations, no broadcast is used, allowing four different scales and
biases, one for each vec4.

No conversion or swizzling is supported for this instruction. However, all broadcasts ex-
cept {1to16} are supported (i.e. 16to16 and 4to16).

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc3[511:0] = SwizzUpConvLoadf32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if (k1[n] != 0) {
i = 32*n
base = (n & ~0x03) * 32
scale[31:0] = tmpSrc3[base+63:base+32]
bias[31:0] = tmpSrc3[base+31:base]
// float32 operation
zmm1[i+31:i] = zmm2[i+31:i] * scale[31:0] + bias[31:0]

}
}

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

224 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Sf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 reserved N/A N/A
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Register Swizzle: Sf32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 reserved N/A
010 reserved N/A
011 reserved N/A
100 reserved N/A
101 reserved N/A
110 reserved N/A
111 reserved N/A
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_fmadd233_ps (__m512, __m512);
__m512 _mm512_mask_fmadd233_ps (__m512, __mmask16, __m512, __m512);

Reference Number: 327364-001 225

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to 16 or 64-byte (depending on the swizzle broadcast).

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
This instruction does not support any
SwizzUpConv involving data conversion, register swizzling or
{1to16} broadcast. If SwizzUpConv function is set to any
value different than "no action" or {4to16} then
an Invalid Opcode fault is raised

226 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFMSUB132PD - Multiply Destination By Second Source and Subtract
First Source Float64 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W1
9A /r

vfmsub132pd zmm1 {k1}, zmm2,
Sf64(zmm3/mt)

Multiply loat64 vector zmm1 and loat64 vec-
tor Sf64(zmm3/mt), subtract loat64 vector
zmm2 from the result, and store the inal result
in zmm1, under write-mask.

Description

Performs an element-by-element multiplication of loat64 vector zmm1 and the loat64
vector result of the swizzle/broadcast/conversion process on memory or vector loat64
zmm3, then subtracts loat64 vector zmm2 from the result. The inal result is written into
loat64 vector zmm1.

Intermediate values are calculated to in inite precision, and are not truncated or rounded.
All operations must be performed previous to inal rounding.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc3[511:0] = SwizzUpConvLoadf64(zmm3/mt)

}

for (n = 0; n < 8; n++) {
if(k1[n] != 0) {
i = 64*n
// float64 operation
zmm1[i+63:i] = zmm1[i+63:i] * tmpSrc3[i+63:i] - zmm2[i+63:i]

}
}

Reference Number: 327364-001 227

CHAPTER 6. INSTRUCTION DESCRIPTIONS

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sf64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64
001 broadcast 1 element (x8) [rax] {1to8} 8
010 broadcast 4 elements (x2) [rax] {4to8} 32
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

228 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sf64

MVEX.EH=0
S2S1S0 Function: 4 x 64 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512d _mm512_fmsub_pd (__m512d, __m512d, __m512d);
__m512d _mm512_mask_fmsub_pd (__m512d, __mmask8, __m512d, __m512d);
__m512d _mm512_mask3_fmsub_pd (__m512d, __m512d, __m512d, __mmask8);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is

Reference Number: 327364-001 229

CHAPTER 6. INSTRUCTION DESCRIPTIONS

in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

230 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFMSUB132PS -Multiply DestinationBy Second Source and Subtract First
Source Float32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0
9A /r

vfmsub132ps zmm1 {k1}, zmm2,
Sf32(zmm3/mt)

Multiply loat32 vector zmm1 and loat32 vec-
tor Sf32(zmm3/mt), subtract loat32 vector
zmm2 from the result, and store the inal result
in zmm1, under write-mask.

Description

Performs an element-by-element multiplication of loat32 vector zmm1 and the loat32
vector result of the swizzle/broadcast/conversion process on memory or vector loat32
zmm3, then subtracts loat32 vector zmm2 from the result. The inal result is written into
loat32 vector zmm1.

Intermediate values are calculated to in inite precision, and are not truncated or rounded.
All operations must be performed previous to inal rounding.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc3[511:0] = SwizzUpConvLoadf32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// float32 operation
zmm1[i+31:i] = zmm1[i+31:i] * tmpSrc3[i+31:i] - zmm2[i+31:i]

}
}

Reference Number: 327364-001 231

CHAPTER 6. INSTRUCTION DESCRIPTIONS

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 loat16 to loat32 [rax] { loat16} 32
100 uint8 to loat32 [rax] {uint8} 16
110 uint16 to loat32 [rax] {uint16} 32
111 sint16 to loat32 [rax] {sint16} 32

Register Swizzle: Sf32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}

232 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_fmsub_ps (__m512, __m512, __m512);
__m512 _mm512_mask_fmsub_ps (__m512, __mmask16, __m512, __m512);
__m512 _mm512_mask3_fmsub_ps (__m512, __m512, __m512, __mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 233

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFMSUB213PD - Multiply First Source By Destination and Subtract Sec-
ond Source Float64 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W1
AA /r

vfmsub213pd zmm1 {k1}, zmm2,
Sf64(zmm3/mt)

Multiply loat64 vector zmm2 and loat64
vector zmm1, subtract loat64 vector
Sf64(zmm3/mt) from the result, and store
the inal result in zmm1, under write-mask.

Description

Performs an element-by-element multiplication of loat64 vector zmm2 and loat64 vec-
tor zmm1, then subtracts the loat64 vector result of the swizzle/broadcast/conversion
process on memory or vector loat64 zmm3 from the result. The inal result is written
into loat64 vector zmm1.

Intermediate values are calculated to in inite precision, and are not truncated or rounded.
All operations must be performed previous to inal rounding.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc3[511:0] = SwizzUpConvLoadf64(zmm3/mt)

}

for (n = 0; n < 8; n++) {
if(k1[n] != 0) {
i = 64*n
// float64 operation
zmm1[i+63:i] = zmm2[i+63:i] * zmm1[i+63:i] - tmpSrc3[i+63:i]

}
}

234 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sf64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64
001 broadcast 1 element (x8) [rax] {1to8} 8
010 broadcast 4 elements (x2) [rax] {4to8} 32
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Reference Number: 327364-001 235

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sf64

MVEX.EH=0
S2S1S0 Function: 4 x 64 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512d _mm512_fmsub_pd (__m512d, __m512d, __m512d);
__m512d _mm512_mask_fmsub_pd (__m512d, __mmask8, __m512d, __m512d);
__m512d _mm512_mask3_fmsub_pd (__m512d, __m512d, __m512d, __mmask8);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is

236 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 237

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFMSUB213PS -Multiply First Source ByDestination and Subtract Second
Source Float32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0
AA /r

vfmsub213ps zmm1 {k1}, zmm2,
Sf32(zmm3/mt)

Multiply loat32 vector zmm2 and loat32
vector zmm1, subtract loat32 vector
Sf32(zmm3/mt) from the result, and store
the inal result in zmm1, under write-mask.

Description

Performs an element-by-element multiplication of loat32 vector zmm2 and loat32 vec-
tor zmm1, then subtracts the loat32 vector result of the swizzle/broadcast/conversion
process on memory or vector loat32 zmm3 from the result. The inal result is written
into loat32 vector zmm1.

Intermediate values are calculated to in inite precision, and are not truncated or rounded.
All operations must be performed previous to inal rounding.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc3[511:0] = SwizzUpConvLoadf32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// float32 operation
zmm1[i+31:i] = zmm2[i+31:i] * zmm1[i+31:i] - tmpSrc3[i+31:i]

}
}

238 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 loat16 to loat32 [rax] { loat16} 32
100 uint8 to loat32 [rax] {uint8} 16
110 uint16 to loat32 [rax] {uint16} 32
111 sint16 to loat32 [rax] {sint16} 32

Register Swizzle: Sf32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}

Reference Number: 327364-001 239

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_fmsub_ps (__m512, __m512, __m512);
__m512 _mm512_mask_fmsub_ps (__m512, __mmask16, __m512, __m512);
__m512 _mm512_mask3_fmsub_ps (__m512, __m512, __m512, __mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

240 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFMSUB231PD - Multiply First Source By Second Source and Subtract
Destination Float64 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W1
BA /r

vfmsub231pd zmm1 {k1}, zmm2,
Sf64(zmm3/mt)

Multiply loat64 vector zmm2 and loat64 vec-
tor Sf64(zmm3/mt), subtract loat64 vector
zmm1 from the result, and store the inal result
in zmm1, under write-mask.

Description

Performs an element-by-element multiplication of loat32 vector zmm2 and the loat32
vector result of the swizzle/broadcast/conversion process on memory or vector loat32
zmm3, then subtracts loat32 vector zmm1 from the result. The inal result is written into
loat32 vector zmm1.

Intermediate values are calculated to in inite precision, and are not truncated or rounded.
All operations must be performed previous to inal rounding.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc3[511:0] = SwizzUpConvLoadf64(zmm3/mt)

}

for (n = 0; n < 8; n++) {
if(k1[n] != 0) {
i = 64*n
// float64 operation
zmm1[i+63:i] = zmm2[i+63:i] * tmpSrc3[i+63:i] - zmm1[i+63:i]

}
}

Reference Number: 327364-001 241

CHAPTER 6. INSTRUCTION DESCRIPTIONS

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sf64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64
001 broadcast 1 element (x8) [rax] {1to8} 8
010 broadcast 4 elements (x2) [rax] {4to8} 32
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

242 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sf64

MVEX.EH=0
S2S1S0 Function: 4 x 64 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512d _mm512_fmsub_pd (__m512d, __m512d, __m512d);
__m512d _mm512_mask_fmsub_pd (__m512d, __mmask8, __m512d, __m512d);
__m512d _mm512_mask3_fmsub_pd (__m512d, __m512d, __m512d, __mmask8);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is

Reference Number: 327364-001 243

CHAPTER 6. INSTRUCTION DESCRIPTIONS

in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

244 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFMSUB231PS -Multiply First SourceBy Second Source and Subtract Des-
tination Float32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0
BA /r

vfmsub231ps zmm1 {k1}, zmm2,
Sf32(zmm3/mt)

Multiply loat32 vector zmm2 and loat32 vec-
tor Sf32(zmm3/mt), subtract loat32 vector
zmm1 from the result, and store the inal result
in zmm1, under write-mask.

Description

Performs an element-by-element multiplication of loat32 vector zmm2 and the loat32
vector result of the swizzle/broadcast/conversion process on memory or vector loat32
zmm3, then subtracts loat32 vector zmm1 from the result. The inal result is written into
loat32 vector zmm1.

Intermediate values are calculated to in inite precision, and are not truncated or rounded.
All operations must be performed previous to inal rounding.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc3[511:0] = SwizzUpConvLoadf32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// float32 operation
zmm1[i+31:i] = zmm2[i+31:i] * tmpSrc3[i+31:i] - zmm1[i+31:i]

}
}

Reference Number: 327364-001 245

CHAPTER 6. INSTRUCTION DESCRIPTIONS

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 loat16 to loat32 [rax] { loat16} 32
100 uint8 to loat32 [rax] {uint8} 16
110 uint16 to loat32 [rax] {uint16} 32
111 sint16 to loat32 [rax] {sint16} 32

Register Swizzle: Sf32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}

246 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_fmsub_ps (__m512, __m512, __m512);
__m512 _mm512_mask_fmsub_ps (__m512, __mmask16, __m512, __m512);
__m512 _mm512_mask3_fmsub_ps (__m512, __m512, __m512, __mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 247

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFNMADD132PD - Multiply Destination By Second Source and Subtract
From First Source Float64 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W1 9C /r vfnmadd132pd zmm1 {k1}, zmm2, Sf64(zmm3/mt) Multiply

loat64 vec-
tor zmm1 and
loat64 vector
Sf64(zmm3/mt),
negate, and add
the result to
loat64 vector
zmm2, and
store the i-
nal result in
zmm1, under
write-mask.

Description

Performs an element-by-element multiplication of loat64 vector zmm2 and the loat64
vector result of the swizzle/broadcast/conversion process on memory or vector loat64
zmm3, then subtracts the result from loat64 vector zmm1. The inal result is written into
loat64 vector zmm1.

Intermediate values are calculated to in inite precision, and are not truncated or rounded.
All operations must be performed previous to inal rounding.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc3[511:0] = SwizzUpConvLoadf64(zmm3/mt)

}

for (n = 0; n < 8; n++) {
if(k1[n] != 0) {

248 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

i = 64*n
// float64 operation
zmm1[i+63:i] = -(zmm1[i+63:i] * tmpSrc3[i+63:i]) + zmm2[i+63:i]

}
}

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sf64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64
001 broadcast 1 element (x8) [rax] {1to8} 8
010 broadcast 4 elements (x2) [rax] {4to8} 32
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Reference Number: 327364-001 249

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sf64

MVEX.EH=0
S2S1S0 Function: 4 x 64 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512d _mm512_fnmadd_pd (__m512d, __m512d, __m512d);
__m512d _mm512_mask_fnmadd_pd (__m512d, __mmask8, __m512d, __m512d);
__m512d _mm512_mask3_fnmadd_pd (__m512d, __m512d, __m512d, __mmask8);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is

250 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 251

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFNMADD132PS - Multiply Destination By Second Source and Subtract
From First Source Float32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0 9C /r vfnmadd132ps zmm1 {k1}, zmm2, Sf32(zmm3/mt) Multiply

loat32 vec-
tor zmm1 and
loat32 vector
Sf32(zmm3/mt),
negate, and add
the result to
loat32 vector
zmm2, and
store the i-
nal result in
zmm1, under
write-mask.

Description

Performs an element-by-element multiplication of loat32 vector zmm2 and the loat32
vector result of the swizzle/broadcast/conversion process on memory or vector loat32
zmm3, then subtracts the result from loat32 vector zmm1. The inal result is written into
loat32 vector zmm1.

Intermediate values are calculated to in inite precision, and are not truncated or rounded.
All operations must be performed previous to inal rounding.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc3[511:0] = SwizzUpConvLoadf32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {

252 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

i = 32*n
// float32 operation
zmm1[i+31:i] = -(zmm1[i+31:i] * tmpSrc3[i+31:i]) + zmm2[i+31:i]

}
}

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 loat16 to loat32 [rax] { loat16} 32
100 uint8 to loat32 [rax] {uint8} 16
110 uint16 to loat32 [rax] {uint16} 32
111 sint16 to loat32 [rax] {sint16} 32

Reference Number: 327364-001 253

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sf32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_fnmadd_ps (__m512, __m512, __m512);
__m512 _mm512_mask_fnmadd_ps (__m512, __mmask16, __m512, __m512);
__m512 _mm512_mask3_fnmadd_ps (__m512, __m512, __m512, __mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

254 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 255

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFNMADD213PD -Multiply First Source By Destination and Subtract From
Second Source Float64 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W1 AC /r vfnmadd213pd zmm1 {k1}, zmm2, Sf64(zmm3/mt) Multiply loat64

vector zmm2
and loat64
vector zmm1,
negate, and add
the result to
loat64 vector
Sf64(zmm3/mt),
and store the
inal result in
zmm1, under
write-mask.

Description

Performs an element-by-element multiplication of loat64 vector zmm1 and the loat64
vector result of the swizzle/broadcast/conversion process on memory or vector loat64
zmm3, then subtracts the result from loat64 vector zmm2. The inal result is written into
loat64 vector zmm1.

Intermediate values are calculated to in inite precision, and are not truncated or rounded.
All operations must be performed previous to inal rounding.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc3[511:0] = SwizzUpConvLoadf64(zmm3/mt)

}

for (n = 0; n < 8; n++) {
if(k1[n] != 0) {
i = 64*n

256 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

// float64 operation
zmm1[i+63:i] = -(zmm2[i+63:i] * zmm1[i+63:i]) + tmpSrc3[i+63:i]

}
}

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sf64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64
001 broadcast 1 element (x8) [rax] {1to8} 8
010 broadcast 4 elements (x2) [rax] {4to8} 32
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Reference Number: 327364-001 257

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sf64

MVEX.EH=0
S2S1S0 Function: 4 x 64 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512d _mm512_fnmadd_pd (__m512d, __m512d, __m512d);
__m512d _mm512_mask_fnmadd_pd (__m512d, __mmask8, __m512d, __m512d);
__m512d _mm512_mask3_fnmadd_pd (__m512d, __m512d, __m512d, __mmask8);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is

258 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 259

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFNMADD213PS - Multiply First Source By Destination and Subtract From
Second Source Float32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0 AC /r vfnmadd213ps zmm1 {k1}, zmm2, Sf32(zmm3/mt) Multiply loat32

vector zmm2
and loat32
vector zmm1,
negate, and
add the result
to loat32 vector
Sf32(zmm3/mt),
and store the
inal result in
zmm1, under
write-mask.

Description

Performs an element-by-element multiplication of loat32 vector zmm1 and the loat32
vector result of the swizzle/broadcast/conversion process on memory or vector loat32
zmm3, then subtracts the result from loat32 vector zmm2. The inal result is written into
loat32 vector zmm1.

Intermediate values are calculated to in inite precision, and are not truncated or rounded.
All operations must be performed previous to inal rounding.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc3[511:0] = SwizzUpConvLoadf32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n

260 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

// float32 operation
zmm1[i+31:i] = -(zmm2[i+31:i] * zmm1[i+31:i]) + tmpSrc3[i+31:i]

}
}

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 loat16 to loat32 [rax] { loat16} 32
100 uint8 to loat32 [rax] {uint8} 16
110 uint16 to loat32 [rax] {uint16} 32
111 sint16 to loat32 [rax] {sint16} 32

Reference Number: 327364-001 261

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sf32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_fnmadd_ps (__m512, __m512, __m512);
__m512 _mm512_mask_fnmadd_ps (__m512, __mmask16, __m512, __m512);
__m512 _mm512_mask3_fnmadd_ps (__m512, __m512, __m512, __mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

262 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 263

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFNMADD231PD - Multiply First Source By Second Source and Subtract
From Destination Float64 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W1 BC /r vfnmadd231pd zmm1 {k1}, zmm2, Sf64(zmm3/mt) Multiply

loat64 vec-
tor zmm2 and
loat64 vector
Sf64(zmm3/mt),
negate, and add
the result to
loat64 vector
zmm1, and
store the i-
nal result in
zmm1, under
write-mask.

Description

Performs an element-by-element multiplication of loat64 vector zmm2 and loat64 vec-
tor zmm1, then subtracts the result fromthe loat64vector result of the swizzle/broadcast/conversion
process onmemory or vector loat64 zmm3. The inal result is written into loat64 vector
zmm1.

Intermediate values are calculated to in inite precision, and are not truncated or rounded.
All operations must be performed previous to inal rounding.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc3[511:0] = SwizzUpConvLoadf64(zmm3/mt)

}

for (n = 0; n < 8; n++) {
if(k1[n] != 0) {

264 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

i = 64*n
// float64 operation
zmm1[i+63:i] = -(zmm2[i+63:i] * tmpSrc3[i+63:i]) + zmm1[i+63:i]

}
}

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sf64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64
001 broadcast 1 element (x8) [rax] {1to8} 8
010 broadcast 4 elements (x2) [rax] {4to8} 32
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Reference Number: 327364-001 265

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sf64

MVEX.EH=0
S2S1S0 Function: 4 x 64 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512d _mm512_fnmadd_pd (__m512d, __m512d, __m512d);
__m512d _mm512_mask_fnmadd_pd (__m512d, __mmask8, __m512d, __m512d);
__m512d _mm512_mask3_fnmadd_pd (__m512d, __m512d, __m512d, __mmask8);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is

266 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 267

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFNMADD231PS - Multiply First Source By Second Source and Subtract
From Destination Float32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0 BC /r vfnmadd231ps zmm1 {k1}, zmm2, Sf32(zmm3/mt) Multiply

loat32 vec-
tor zmm2 and
loat32 vector
Sf32(zmm3/mt),
negate, and add
the result to
loat32 vector
zmm1, and
store the i-
nal result in
zmm1, under
write-mask.

Description

Performs an element-by-element multiplication of loat32 vector zmm2 and loat32 vec-
tor zmm1, then subtracts the result fromthe loat32vector result of the swizzle/broadcast/conversion
process onmemory or vector loat32 zmm3. The inal result is written into loat32 vector
zmm1.

Intermediate values are calculated to in inite precision, and are not truncated or rounded.
All operations must be performed previous to inal rounding.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc3[511:0] = SwizzUpConvLoadf32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {

268 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

i = 32*n
// float32 operation
zmm1[i+31:i] = -(zmm2[i+31:i] * tmpSrc3[i+31:i]) + zmm1[i+31:i]

}
}

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 loat16 to loat32 [rax] { loat16} 32
100 uint8 to loat32 [rax] {uint8} 16
110 uint16 to loat32 [rax] {uint16} 32
111 sint16 to loat32 [rax] {sint16} 32

Reference Number: 327364-001 269

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sf32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_fnmadd_ps (__m512, __m512, __m512);
__m512 _mm512_mask_fnmadd_ps (__m512, __mmask16, __m512, __m512);
__m512 _mm512_mask3_fnmadd_ps (__m512, __m512, __m512, __mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

270 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 271

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFNMSUB132PD - Multiply Destination By Second Source, Negate, and
Subtract First Source Float64 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W1 9E /r vfnmsub132pd zmm1 {k1}, zmm2, Sf64(zmm3/mt) Multiply

loat64 vec-
tor zmm1 and
loat64 vector
Sf64(zmm3/mt),
negate, and sub-
tract loat64
vector zmm2
from the result,
and store the
inal result in
zmm1, under
write-mask.

Description

Performs an element-by-element multiplication between loat64 vector zmm1 and the
loat64 vector result of the swizzle/broadcast/conversion process on memory or vector
loat64 zmm3, negates, and subtracts loat64 vector zmm2. The inal result is written into
loat64 vector zmm1.

Intermediate values are calculated to in inite precision, and are not truncated or rounded.
All operations must be performed previous to inal rounding.

x*y z RN/RU/RZ RD
+0 +0 (-0) + (-0) = -0 (-0) + (-0) = -0
+0 -0 (-0) + (+0) = +0 (-0) + (+0) = -0
-0 +0 (+0) + (-0) = +0 (+0) + (-0) = -0
-0 -0 (+0) + (+0) = +0 (+0) + (+0) = +0

Table 6.11: VFNMSUB outcome when adding zeros depending on rounding-mode

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

272 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc3[511:0] = SwizzUpConvLoadf64(zmm3/mt)

}

for (n = 0; n < 8; n++) {
if(k1[n] != 0) {
i = 64*n
// float64 operation
zmm1[i+63:i] = (-(zmm1[i+63:i] * tmpSrc3[i+63:i]) - zmm2[i+63:i])

}
}

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sf64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64
001 broadcast 1 element (x8) [rax] {1to8} 8
010 broadcast 4 elements (x2) [rax] {4to8} 32
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Reference Number: 327364-001 273

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sf64

MVEX.EH=0
S2S1S0 Function: 4 x 64 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512d _mm512_fnmsub_pd (__m512d, __m512d, __m512d);
__m512d _mm512_mask_fnmsub_pd (__m512d, __mmask8, __m512d, __m512d);
__m512d _mm512_mask3_fnmsub_pd (__m512d, __m512d, __m512d, __mmask8);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is

274 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 275

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFNMSUB132PS - Multiply Destination By Second Source, Negate, and
Subtract First Source Float32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0 9E /r vfnmsub132ps zmm1 {k1}, zmm2, Sf32(zmm3/mt) Multiply

loat32 vec-
tor zmm1 and
loat32 vector
Sf32(zmm3/mt),
negate, and sub-
tract loat32
vector zmm2
from the result,
and store the
inal result in
zmm1, under
write-mask.

Description

Performs an element-by-element multiplication between loat32 vector zmm1 and the
loat32 vector result of the swizzle/broadcast/conversion process on memory or vector
loat32 zmm3, negates, and subtracts loat32 vector zmm2. The inal result is written into
loat32 vector zmm1.

Intermediate values are calculated to in inite precision, and are not truncated or rounded.
All operations must be performed previous to inal rounding.

x*y z RN/RU/RZ RD
+0 +0 (-0) + (-0) = -0 (-0) + (-0) = -0
+0 -0 (-0) + (+0) = +0 (-0) + (+0) = -0
-0 +0 (+0) + (-0) = +0 (+0) + (-0) = -0
-0 -0 (+0) + (+0) = +0 (+0) + (+0) = +0

Table 6.12: VFNMSUB outcome when adding zeros depending on rounding-mode

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

276 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc3[511:0] = SwizzUpConvLoadf32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// float32 operation
zmm1[i+31:i] = (-(zmm1[i+31:i] * tmpSrc3[i+31:i]) - zmm2[i+31:i])

}
}

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 loat16 to loat32 [rax] { loat16} 32
100 uint8 to loat32 [rax] {uint8} 16
110 uint16 to loat32 [rax] {uint16} 32
111 sint16 to loat32 [rax] {sint16} 32

Reference Number: 327364-001 277

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sf32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_fnmsub_ps (__m512, __m512, __m512);
__m512 _mm512_mask_fnmsub_ps (__m512, __mmask16, __m512, __m512);
__m512 _mm512_mask3_fnmsub_ps (__m512, __m512, __m512, __mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

278 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 279

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFNMSUB213PD - Multiply First Source By Destination, Negate, and Sub-
tract Second Source Float64 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W1 AE /r vfnmsub213pd zmm1 {k1}, zmm2, Sf64(zmm3/mt) Multiply loat64

vector zmm2
and loat64
vector zmm1,
negate, and
subtract
loat64 vector
Sf64(zmm3/mt)
from the result,
and store the
inal result in
zmm1, under
write-mask.

Description

Performsanelement-by-elementmultiplicationbetween loat64vector zmm2and loat64
vector zmm1, negates, and subtracts the loat64vector result of the swizzle/broadcast/conversion
process on memory or vector loat64 zmm3. The inal sum is written into loat64 vector
zmm1.

Intermediate values are calculated to in inite precision, and are not truncated or rounded.
All operations must be performed previous to inal rounding.

x*y z RN/RU/RZ RD
+0 +0 (-0) + (-0) = -0 (-0) + (-0) = -0
+0 -0 (-0) + (+0) = +0 (-0) + (+0) = -0
-0 +0 (+0) + (-0) = +0 (+0) + (-0) = -0
-0 -0 (+0) + (+0) = +0 (+0) + (+0) = +0

Table 6.13: VFNMSUB outcome when adding zeros depending on rounding-mode

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

280 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc3[511:0] = SwizzUpConvLoadf64(zmm3/mt)

}

for (n = 0; n < 8; n++) {
if(k1[n] != 0) {
i = 64*n
// float64 operation
zmm1[i+63:i] = (-(zmm2[i+63:i] * zmm1[i+63:i]) - tmpSrc3[i+63:i])

}
}

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sf64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64
001 broadcast 1 element (x8) [rax] {1to8} 8
010 broadcast 4 elements (x2) [rax] {4to8} 32
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Reference Number: 327364-001 281

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sf64

MVEX.EH=0
S2S1S0 Function: 4 x 64 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512d _mm512_fnmsub_pd (__m512d, __m512d, __m512d);
__m512d _mm512_mask_fnmsub_pd (__m512d, __mmask8, __m512d, __m512d);
__m512d _mm512_mask3_fnmsub_pd (__m512d, __m512d, __m512d, __mmask8);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is

282 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 283

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFNMSUB213PS - Multiply First Source By Destination, Negate, and Sub-
tract Second Source Float32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0 AE /r vfnmsub213ps zmm1 {k1}, zmm2, Sf32(zmm3/mt) Multiply

loat32 vec-
tor zmm2 and
loat32 vector
zmm1, negate,
and subtract
loat32 vector
Sf32(zmm3/mt)
from the result,
and store the
inal result in
zmm1, under
write-mask.

Description

Performsanelement-by-elementmultiplicationbetween loat32vector zmm2and loat32
vector zmm1, negates, and subtracts the loat32vector result of the swizzle/broadcast/conversion
process on memory or vector loat32 zmm3. The inal sum is written into loat32 vector
zmm1.

Intermediate values are calculated to in inite precision, and are not truncated or rounded.
All operations must be performed previous to inal rounding.

x*y z RN/RU/RZ RD
+0 +0 (-0) + (-0) = -0 (-0) + (-0) = -0
+0 -0 (-0) + (+0) = +0 (-0) + (+0) = -0
-0 +0 (+0) + (-0) = +0 (+0) + (-0) = -0
-0 -0 (+0) + (+0) = +0 (+0) + (+0) = +0

Table 6.14: VFNMSUB outcome when adding zeros depending on rounding-mode

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

284 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc3[511:0] = SwizzUpConvLoadf32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// float32 operation
zmm1[i+31:i] = (-(zmm2[i+31:i] * zmm1[i+31:i]) - tmpSrc3[i+31:i])

}
}

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 loat16 to loat32 [rax] { loat16} 32
100 uint8 to loat32 [rax] {uint8} 16
110 uint16 to loat32 [rax] {uint16} 32
111 sint16 to loat32 [rax] {sint16} 32

Reference Number: 327364-001 285

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sf32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_fnmsub_ps (__m512, __m512, __m512);
__m512 _mm512_mask_fnmsub_ps (__m512, __mmask16, __m512, __m512);
__m512 _mm512_mask3_fnmsub_ps (__m512, __m512, __m512, __mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

286 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 287

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFNMSUB231PD - Multiply First Source By Second Source, Negate, and
Subtract Destination Float64 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W1 BE /r vfnmsub231pd zmm1 {k1}, zmm2, Sf64(zmm3/mt) Multiply

loat64 vec-
tor zmm2 and
loat64 vector
Sf64(zmm3/mt),
negate, and
subtract loat64
vector zmm1
from the result,
and store the
inal result in
zmm1, under
write-mask.

Description

Performs an element-by-element multiplication between loat64 vector zmm2 and the
loat64 vector result of the swizzle/broadcast/conversion process on memory or vector
loat64 zmm3, negates, and subtracts loat64 vector zmm1. The inal result is written into
loat64 vector zmm1.

Intermediate values are calculated to in inite precision, and are not truncated or rounded.
All operations must be performed previous to inal rounding.

x*y z RN/RU/RZ RD
+0 +0 (-0) + (-0) = -0 (-0) + (-0) = -0
+0 -0 (-0) + (+0) = +0 (-0) + (+0) = -0
-0 +0 (+0) + (-0) = +0 (+0) + (-0) = -0
-0 -0 (+0) + (+0) = +0 (+0) + (+0) = +0

Table 6.15: VFMADDN outcome when adding zeros depending on rounding-mode

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

288 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc3[511:0] = SwizzUpConvLoadf64(zmm3/mt)

}

for (n = 0; n < 8; n++) {
if(k1[n] != 0) {
i = 64*n
// float64 operation
zmm1[i+63:i] = (-(zmm2[i+63:i] * tmpSrc3[i+63:i]) - zmm1[i+63:i])

}
}

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sf64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64
001 broadcast 1 element (x8) [rax] {1to8} 8
010 broadcast 4 elements (x2) [rax] {4to8} 32
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Reference Number: 327364-001 289

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sf64

MVEX.EH=0
S2S1S0 Function: 4 x 64 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512d _mm512_fnmsub_pd (__m512d, __m512d, __m512d);
__m512d _mm512_mask_fnmsub_pd (__m512d, __mmask8, __m512d, __m512d);
__m512d _mm512_mask3_fnmsub_pd (__m512d, __m512d, __m512d, __mmask8);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is

290 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 291

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFNMSUB231PS - Multiply First Source By Second Source, Negate, and
Subtract Destination Float32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0 BE /r vfnmsub231ps zmm1 {k1}, zmm2, Sf32(zmm3/mt) Multiply

loat32 vec-
tor zmm2 and
loat32 vector
Sf32(zmm3/mt),
negate, and sub-
tract loat32
vector zmm1
from the result,
and store the
inal result in
zmm1, under
write-mask.

Description

Performs an element-by-element multiplication between loat32 vector zmm2 and the
loat32 vector result of the swizzle/broadcast/conversion process on memory or vector
loat32 zmm3, negates, and subtracts loat32 vector zmm1. The inal result is written into
loat32 vector zmm1.

Intermediate values are calculated to in inite precision, and are not truncated or rounded.
All operations must be performed previous to inal rounding.

x*y z RN/RU/RZ RD
+0 +0 (-0) + (-0) = -0 (-0) + (-0) = -0
+0 -0 (-0) + (+0) = +0 (-0) + (+0) = -0
-0 +0 (+0) + (-0) = +0 (+0) + (-0) = -0
-0 -0 (+0) + (+0) = +0 (+0) + (+0) = +0

Table 6.16: VFMADDN outcome when adding zeros depending on rounding-mode

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

292 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc3[511:0] = SwizzUpConvLoadf32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// float32 operation
zmm1[i+31:i] = (-(zmm2[i+31:i] * tmpSrc3[i+31:i]) - zmm1[i+31:i])

}
}

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 loat16 to loat32 [rax] { loat16} 32
100 uint8 to loat32 [rax] {uint8} 16
110 uint16 to loat32 [rax] {uint16} 32
111 sint16 to loat32 [rax] {sint16} 32

Reference Number: 327364-001 293

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sf32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_fnmsub_ps (__m512, __m512, __m512);
__m512 _mm512_mask_fnmsub_ps (__m512, __mmask16, __m512, __m512);
__m512 _mm512_mask3_fnmsub_ps (__m512, __m512, __m512, __mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

294 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 295

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VGATHERDPD - Gather Float64 Vector With Signed Dword Indices

Opcode Instruction Description
MVEX.512.66.0F38.W1 92
/r /vsib

vgatherdpd zmm1 {k1},
Uf64(mvt)

Gather loat64 vector Uf64(mvt) into loat64
vector zmm1 using doubleword indices and k1
as completion mask.

Description

A set of 8 memory locations pointed by base address BASE_ADDR and doubleword
index vector V INDEX with scale SCALE are converted to a loat64 vector. The result
is written into loat64 vector zmm1.

Note the special mask behavior as only a subset of the active elements of write mask k1
are actually operated on (as denoted by function SELECT _SUBSET). There are only
two guarantees about the function: (a) the destinationmask is a subset of the sourcemask
(identity is included), and (b) on a given invocationof the instruction, at leastone element
(the least signi icant enabled mask bit) will be selected from the source mask.

Programmers should always enforce the execution of a gather/scatter instruction to be
re-executed (via a loop) until the full completion of the sequence (i.e. all elements of the
gather/scatter sequence have been loaded/stored and hence, the write-mask bits all are
zero).

Note that accessed element bywill always access 64 bytes ofmemory. Thememory region
accessed by each element will always be between elemen_linear_address & (∼0x3F) and
(element_linear_address & (∼0x3F)) + 63 boundaries.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Note also the special mask behavior as the corresponding bits in write mask k1 are reset
with each destination element being updated according to the subset of write mask k1.
This is useful to allow conditional re-trigger of the instruction until all the elements from
a given write mask have been successfully loaded.

The instruction will #GP fault if the destination vector zmm1 is the same as index vector
V INDEX .

Operation

// instruction works over a subset of the write mask
ktemp = SELECT_SUBSET(k1)

// Use mvt as vector memory operand (VSIB)
for (n = 0; n < 8; n++) {

if (ktemp[n] != 0) {

296 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

i = 64*n
j = 32*n
// mvt[n] = BASE_ADDR + SignExtend(VINDEX[j+31:j] * SCALE)
pointer[63:0] = mvt[n]
zmm1[i+63:i] = UpConvLoadf64(pointer)
k1[n] = 0

}
}
k1[15:8] = 0

SIMD Floating-Point Exceptions

None.

Memory Up-conversion: Uf64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] 8
001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Intel® C/C++ Compiler Intrinsic Equivalent

__m512d _mm512_i32logather_pd (__m512i, void const*, int);
__m512d _mm512_mask_i32logather_pd (__m512d, __mmask8, __m512i, void const*, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

Reference Number: 327364-001 297

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form, and corresponding write-mask bit is not zero.

#GP(0) If a memory address is in a non-canonical form,
and corresponding write-mask bit is not zero.
If a memory operand linear address is not aligned
to element-wise data granularity dictated by the UpConv
and corresponding write-mask bit is not zero.
If the destination vector is the same as the index vector [see
.

#PF(fault-code) If a memory operand linear address produces a page fault
and corresponding write-mask bit is not zero.

#NM If CR0.TS[bit 3]=1.
If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If using a 16 bit effective address.
If ModRM.rm is different than 100b.
If no write mask is provided or selected write-mask is k0.

298 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VGATHERDPS - Gather Float32 Vector With Signed Dword Indices

Opcode Instruction Description
MVEX.512.66.0F38.W0 92
/r /vsib

vgatherdps zmm1 {k1},Uf32(mvt) Gather loat32 vector Uf32(mvt) into loat32
vector zmm1 using doubleword indices and k1
as completion mask.

Description

A set of 16 memory locations pointed by base address BASE_ADDR and doubleword
index vector V INDEX with scale SCALE are converted to a loat32 vector. The result
is written into loat32 vector zmm1.

Note the special mask behavior as only a subset of the active elements of write mask k1
are actually operated on (as denoted by function SELECT _SUBSET). There are only
two guarantees about the function: (a) the destinationmask is a subset of the sourcemask
(identity is included), and (b) on a given invocationof the instruction, at leastone element
(the least signi icant enabled mask bit) will be selected from the source mask.

Programmers should always enforce the execution of a gather/scatter instruction to be
re-executed (via a loop) until the full completion of the sequence (i.e. all elements of the
gather/scatter sequence have been loaded/stored and hence, the write-mask bits all are
zero).

Note that accessed element bywill always access 64 bytes ofmemory. Thememory region
accessed by each element will always be between elemen_linear_address & (∼0x3F) and
(element_linear_address & (∼0x3F)) + 63 boundaries.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Note also the special mask behavior as the corresponding bits in write mask k1 are reset
with each destination element being updated according to the subset of write mask k1.
This is useful to allow conditional re-trigger of the instruction until all the elements from
a given write mask have been successfully loaded.

The instruction will #GP fault if the destination vector zmm1 is the same as index vector
V INDEX .

Operation

// instruction works over a subset of the write mask
ktemp = SELECT_SUBSET(k1)

// Use mvt as vector memory operand (VSIB)
for (n = 0; n < 16; n++) {

if (ktemp[n] != 0) {

Reference Number: 327364-001 299

CHAPTER 6. INSTRUCTION DESCRIPTIONS

i = 32*n
// mvt[n] = BASE_ADDR + SignExtend(VINDEX[i+31:i] * SCALE)
pointer[63:0] = mvt[n]
zmm1[i+31:i] = UpConvLoadf32(pointer)
k1[n] = 0

}
}

SIMD Floating-Point Exceptions

Invalid.

Memory Up-conversion: Uf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] 4
001 reserved N/A N/A
010 reserved N/A N/A
011 loat16 to loat32 [rax] { loat16} 2
100 uint8 to loat32 [rax] {uint8} 1
101 sint8 to loat32 [rax] {sint8} 1
110 uint16 to loat32 [rax] {uint16} 2
111 sint16 to loat32 [rax] {sint16} 2

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_i32gather_ps (__m512i, void const*, int);
__m512 _mm512_mask_i32gather_ps (__m512, __mmask16, __m512i, void const*, int);
__m512 _mm512_i32extgather_ps (__m512i, void const*, _MM_UPCONV_PS_ENUM, int,

int);
__m512 _mm512_mask_i32extgather_ps (__m512, __mmask16, __m512i, void const*,

_MM_UPCONV_PS_ENUM, int, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

300 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form, and corresponding write-mask bit is not zero.

#GP(0) If a memory address is in a non-canonical form,
and corresponding write-mask bit is not zero.
If a memory operand linear address is not aligned
to element-wise data granularity dictated by the UpConv
and corresponding write-mask bit is not zero.
If the destination vector is the same as the index vector [see
.

#PF(fault-code) If a memory operand linear address produces a page fault
and corresponding write-mask bit is not zero.

#NM If CR0.TS[bit 3]=1.
If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If using a 16 bit effective address.
If ModRM.rm is different than 100b.
If no write mask is provided or selected write-mask is k0.

Reference Number: 327364-001 301

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VGATHERPF0DPS - Gather Prefetch Float32 Vector With Signed Dword
Indices Into L1

Opcode Instruction Description
MVEX.512.66.0F38.W0 C6
/1 /vsib

vgatherpf0dps Uf32(mvt) {k1} GatherPrefetch loat32vectorUf32(mvt), using
doubleword indices with T0 hint, under write-
mask.

Description

A set of 16 loat32memory locations pointed by base addressBASE_ADDR anddouble-
word index vectorV INDEX with scaleSCALE are prefetched frommemory to L1 level
of cache. If any memory access causes any type of memory exception, the memory access
will be considered as completed (destination mask updated) and the exception ignored.

Note the special mask behavior as only a subset of the active elements of write mask k1
are actually operated on (as denoted by function SELECT _SUBSET). There are only
two guarantees about the function: (a) the destinationmask is a subset of the sourcemask
(identity is included), and (b) on a given invocationof the instruction, at leastone element
(the least signi icant enabled mask bit) will be selected from the source mask.

Programmers should always enforce the execution of a gather/scatter instruction to be
re-executed (via a loop) until the full completion of the sequence (i.e. all elements of the
prefetch sequence have been prefetched and hence, the write-mask bits all are zero).

Note that accessed element bywill always access 64 bytes ofmemory. Thememory region
accessed by each element will always be between elemen_linear_address & (∼0x3F) and
(element_linear_address & (∼0x3F)) + 63 boundaries.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Note also the special mask behavior as the corresponding bits in write mask k1 are reset
with each destination element being updated according to the subset of write mask k1.
This is useful to allow conditional re-trigger of the instruction until all the elements from
a given write mask have been successfully loaded.

Note that both gather and scatter prefetches set the access bit (A) in the related TLB page
entry. Scatter prefetches (which prefetch data with RFO) do not set the dirty bit (D).

Operation

// instruction works over a subset of the write mask
ktemp = SELECT_SUBSET(k1)

exclusive = 0
evicthintpre = MVEX.EH

302 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

// Use mvt as vector memory operand (VSIB)
for (n = 0; n < 16; n++) {

if (ktemp[n] != 0) {
i = 32*n
// mvt[n] = BASE_ADDR + SignExtend(VINDEX[i+31:i] * SCALE)
pointer[63:0] = mvt[n]
FetchL1cacheLine(pointer, exclusive, evicthintpre)
k1[n] = 0

}
}

SIMD Floating-Point Exceptions

None.

Memory Up-conversion: Uf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] 4
001 reserved N/A N/A
010 reserved N/A N/A
011 loat16 to loat32 [rax] { loat16} 2
100 uint8 to loat32 [rax] {uint8} 1
101 sint8 to loat32 [rax] {sint8} 1
110 uint16 to loat32 [rax] {uint16} 2
111 sint16 to loat32 [rax] {sint16} 2

Intel® C/C++ Compiler Intrinsic Equivalent

void _mm512_prefetch_i32gather_ps (__m512i, void const*, int, int);
void _mm512_mask_prefetch_i32gather_ps (__m512i, __mmask16, void const*, int,

int);
void _mm512_prefetch_i32extgather_ps (__m512i, void const*,

_MM_UPCONV_PS_ENUM, int, int);
void _mm512_mask_prefetch_i32extgather_ps (__m512i, __mmask16, void const*,

_MM_UPCONV_PS_ENUM, int, int);

Reference Number: 327364-001 303

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#NM If CR0.TS[bit 3]=1.
If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If using a 16 bit effective address.
If ModRM.rm is different than 100b.
If no write mask is provided or selected write-mask is k0.

304 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VGATHERPF0HINTDPD - Gather Prefetch Float64 Vector HintWith Signed
Dword Indices

Opcode Instruction Description
MVEX.512.66.0F38.W1 C6
/0 /vsib

vgatherpf0hintdpd Uf64(mvt)
{k1}

GatherPrefetch loat64vectorUf64(mvt), using
doubleword indices with T0 hint, under write-
mask.

Description

The instruction speci ies a set of 8 loat64 memory locations pointed by base address
BASE_ADDR and doubleword index vector V INDEX with scale SCALE as a perfor-
mance hint that a real gather instruction with the same set of sources will be invoked. A
programmer may execute this instruction before a real gather instruction to improve its
performance.

This instruction is a hint and may be speculative, and may be dropped or specify invalid
addresseswithout causing problems ormemory related faults. This instructions does not
modify any kind of architectural state (including the write-mask).

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Operation

// Use mvt as vector memory operand (VSIB)
for (n = 0; n < 8; n++) {

if (k1[n] != 0) {
i = 64*n
j = 32*n
// mvt[n] = BASE_ADDR + SignExtend(VINDEX[j+31:j] * SCALE)
pointer[63:0] = mvt[n]
HintPointer(pointer)

}
}

SIMD Floating-Point Exceptions

None.

Reference Number: 327364-001 305

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Uf64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] 8
001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Intel® C/C++ Compiler Intrinsic Equivalent

None

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#NM If CR0.TS[bit 3]=1.
#UD If processor model does not implement the speci ic instruction.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If using a 16 bit effective address.
If ModRM.rm is different than 100b.
If no write mask is provided or selected write-mask is k0.

306 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VGATHERPF0HINTDPS - Gather Prefetch Float32 Vector Hint With Signed
Dword Indices

Opcode Instruction Description
MVEX.512.66.0F38.W0 C6
/0 /vsib

vgatherpf0hintdps Uf32(mvt)
{k1}

GatherPrefetch loat32vectorUf32(mvt), using
doubleword indices with T0 hint, under write-
mask.

Description

The instruction speci ies a set of 16 loat32 memory locations pointed by base address
BASE_ADDR and doubleword index vector V INDEX with scale SCALE as a perfor-
mance hint that a real gather instruction with the same set of sources will be invoked. A
programmer may execute this instruction before a real gather instruction to improve its
performance.

This instruction is a hint and may be speculative, and may be dropped or specify invalid
addresseswithout causing problems ormemory related faults. This instructions does not
modify any kind of architectural state (including the write-mask).

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Operation

// Use mvt as vector memory operand (VSIB)
for (n = 0; n < 16; n++) {

if (k1[n] != 0) {
i = 32*n
// mvt[n] = BASE_ADDR + SignExtend(VINDEX[i+31:i] * SCALE)
pointer[63:0] = mvt[n]
HintPointer(pointer)

}
}

SIMD Floating-Point Exceptions

None.

Reference Number: 327364-001 307

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Uf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] 4
001 reserved N/A N/A
010 reserved N/A N/A
011 loat16 to loat32 [rax] { loat16} 2
100 uint8 to loat32 [rax] {uint8} 1
101 sint8 to loat32 [rax] {sint8} 1
110 uint16 to loat32 [rax] {uint16} 2
111 sint16 to loat32 [rax] {sint16} 2

Intel® C/C++ Compiler Intrinsic Equivalent

None

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#NM If CR0.TS[bit 3]=1.
#UD If processor model does not implement the speci ic instruction.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If using a 16 bit effective address.
If ModRM.rm is different than 100b.
If no write mask is provided or selected write-mask is k0.

308 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VGATHERPF1DPS - Gather Prefetch Float32 Vector With Signed Dword
Indices Into L2

Opcode Instruction Description
MVEX.512.66.0F38.W0 C6
/2 /vsib

vgatherpf1dps Uf32(mvt) {k1} GatherPrefetch loat32vectorUf32(mvt), using
doubleword indices with T1 hint, under write-
mask.

Description

A set of 16 loat32memory locations pointed by base addressBASE_ADDR anddouble-
word index vectorV INDEX with scaleSCALE are prefetched frommemory to L2 level
of cache. If any memory access causes any type of memory exception, the memory access
will be considered as completed (destination mask updated) and the exception ignored.

Note the special mask behavior as only a subset of the active elements of write mask k1
are actually operated on (as denoted by function SELECT _SUBSET). There are only
two guarantees about the function: (a) the destinationmask is a subset of the sourcemask
(identity is included), and (b) on a given invocationof the instruction, at leastone element
(the least signi icant enabled mask bit) will be selected from the source mask.

Programmers should always enforce the execution of a gather/scatter instruction to be
re-executed (via a loop) until the full completion of the sequence (i.e. all elements of the
prefetch sequence have been prefetched and hence, the write-mask bits all are zero).

Note that accessed element bywill always access 64 bytes ofmemory. Thememory region
accessed by each element will always be between elemen_linear_address & (∼0x3F) and
(element_linear_address & (∼0x3F)) + 63 boundaries.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Note also the special mask behavior as the corresponding bits in write mask k1 are reset
with each destination element being updated according to the subset of write mask k1.
This is useful to allow conditional re-trigger of the instruction until all the elements from
a given write mask have been successfully loaded.

Note that both gather and scatter prefetches set the access bit (A) in the related TLB page
entry. Scatter prefetches (which prefetch data with RFO) do not set the dirty bit (D).

Operation

// instruction works over a subset of the write mask
ktemp = SELECT_SUBSET(k1)

exclusive = 0
evicthintpre = MVEX.EH

Reference Number: 327364-001 309

CHAPTER 6. INSTRUCTION DESCRIPTIONS

// Use mvt as vector memory operand (VSIB)
for (n = 0; n < 16; n++) {

if (ktemp[n] != 0) {
i = 32*n
// mvt[n] = BASE_ADDR + SignExtend(VINDEX[i+31:i] * SCALE)
pointer[63:0] = mvt[n]
FetchL2cacheLine(pointer, exclusive, evicthintpre)
k1[n] = 0

}
}

SIMD Floating-Point Exceptions

None.

Memory Up-conversion: Uf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] 4
001 reserved N/A N/A
010 reserved N/A N/A
011 loat16 to loat32 [rax] { loat16} 2
100 uint8 to loat32 [rax] {uint8} 1
101 sint8 to loat32 [rax] {sint8} 1
110 uint16 to loat32 [rax] {uint16} 2
111 sint16 to loat32 [rax] {sint16} 2

Intel® C/C++ Compiler Intrinsic Equivalent

void _mm512_prefetch_i32gather_ps (__m512i, void const*, int, int);
void _mm512_mask_prefetch_i32gather_ps (__m512i, __mmask16, void const*, int,

int);
void _mm512_prefetch_i32extgather_ps (__m512i, void const*,

_MM_UPCONV_PS_ENUM, int, int);
void _mm512_mask_prefetch_i32extgather_ps (__m512i, __mmask16, void const*,

_MM_UPCONV_PS_ENUM, int, int);

310 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#NM If CR0.TS[bit 3]=1.
If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If using a 16 bit effective address.
If ModRM.rm is different than 100b.
If no write mask is provided or selected write-mask is k0.

Reference Number: 327364-001 311

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VGETEXPPD - Extract Float64 Vector of Exponents from Float64 Vector

Opcode Instruction Description
MVEX.512.66.0F38.W1 42
/r

vgetexppd zmm1 {k1},
Sf64(zmm2/mt)

Extract loat64 vector of exponents from vector
Sf64(zmm2/mt) and store the result in zmm1,
under write-mask.

Description

Performs an element-by-element exponent extraction from the Float64 vector result of
the swizzle/broadcast/conversion process on memory or Float64 vector zmm2. The re-
sult is written into Float64 vector zmm1.

GetExp() returns the (un-biased) exponent n in loating-point format. That is, whenX =
1/16, GetExp() returns the value −4, represented as C0800000 in IEEE single precision
(for the single-precision version of the instruction). If the source is denormal, VGETEXP
will normalize it prior to exponent extraction (unless DAZ=1).

GetExp() function follows Table 6.17 when dealing with loating-point special number.

Input Result
NaN quietized input NaN
+∞ +∞
+0 −∞
-0 −∞
−∞ +∞

Table 6.17: GetExp() special loating-point values behavior

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
tmpSrc2[511:0] = zmm2[511:0]

} else {
tmpSrc2[511:0] = SwizzUpConvLoadf64(zmm2/mt)

}

for (n = 0; n < 8; n++) {
if(k1[n] != 0) {
i = 64*n
zmm1[i+63:i] = GetExp(tmpSrc2[i+63:i])

312 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

}
}

SIMD Floating-Point Exceptions

Invalid, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
Not Applicable

Memory Up-conversion: Sf64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64
001 broadcast 1 element (x8) [rax] {1to8} 8
010 broadcast 4 elements (x2) [rax] {4to8} 32
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Register Swizzle: Sf64

MVEX.EH=0
S2S1S0 Function: 4 x 64 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
1xx SAE (Supress-All-Exceptions) , {sae}

Reference Number: 327364-001 313

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel® C/C++ Compiler Intrinsic Equivalent

__m512d _mm512_getexp_pd (__m512d);
__m512d _mm512_mask_getexp_pd (__m512d, __mmask8, __m512d);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

314 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VGETEXPPS - Extract Float32 Vector of Exponents from Float32 Vector

Opcode Instruction Description
MVEX.512.66.0F38.W0 42
/r

vgetexpps zmm1 {k1},
Sf32(zmm2/mt)

Extract loat32 vector of exponents from vector
Sf32(zmm2/mt) and store the result in zmm1,
under write-mask.

Description

Performs an element-by-element exponent extraction from the Float32 vector result of
the swizzle/broadcast/conversion process on memory or Float32 vector zmm2. The re-
sult is written into Float32 vector zmm1.

GetExp() returns the (un-biased) exponent n in loating-point format. That is, whenX =
1/16, GetExp() returns the value −4, represented as C0800000 in IEEE single precision
(for the single-precision version of the instruction). If the source is denormal, VGETEXP
will normalize it prior to exponent extraction (unless DAZ=1).

GetExp() function follows Table 6.18 when dealing with loating-point special number.

Input Result
NaN quietized input NaN
+∞ +∞
+0 −∞
-0 −∞
−∞ +∞

Table 6.18: GetExp() special loating-point values behavior

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
tmpSrc2[511:0] = zmm2[511:0]

} else {
tmpSrc2[511:0] = SwizzUpConvLoadf32(zmm2/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
zmm1[i+31:i] = GetExp(tmpSrc2[i+31:i])

Reference Number: 327364-001 315

CHAPTER 6. INSTRUCTION DESCRIPTIONS

}
}

SIMD Floating-Point Exceptions

Invalid, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
Not Applicable

Memory Up-conversion: Sf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 loat16 to loat32 [rax] { loat16} 32
100 uint8 to loat32 [rax] {uint8} 16
110 uint16 to loat32 [rax] {uint16} 32
111 sint16 to loat32 [rax] {sint16} 32

Register Swizzle: Sf32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
1xx SAE (Supress-All-Exceptions) , {sae}

316 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_getexp_ps (__m512);
__m512 _mm512_mask_getexp_ps (__m512, __mmask16, __m512);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 317

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VGETMANTPD - Extract Float64 Vector of Normalized Mantissas from
Float64 Vector

Opcode Instruction Description
MVEX.512.66.0F3A.W1 26
/r ib

vgetmantpd zmm1 {k1},
Sf64(zmm2/mt), imm8

Get Normalized Mantissa from loat64 vector
Sf64(zmm2/mt) and store the result in zmm1,
using imm8 for sign control andmantissa inter-
val normalization, under write-mask.

Description

Performs an element-by-element conversion of the Float64 vector result of the swiz-
zle/broadcast/conversion process on memory or Float64 vector zmm2 to Float64 values
with the mantissa normalized to the interval speci ied by interv and sign dictated by the
sign control parameter sc. The result is written into Float64 vector zmm1. Denormal val-
ues are explicitly normalized.

The formula for the operation is:

GetMant(x) = ±2k|x.significand|

where:

1 <= |x.significand| < 2

Exponent k is dependent on the interval range de ined by interv and whether the expo-
nent of the source is even or odd. The sign of the inal result is determined by sc and the
source sign.

GetMant() function follows Table 6.19 when dealing with loating-point special numbers.

Input Result Exceptions/comments
NaN QNaN(SRC) Raises #I if sNaN
+∞ +∞ ignore interv
+0 +0.0 ignore interv
-0 (SC[0])? +0.0 : −0.0 ignore interv, set NaN/raise #I if SC[1]=1
−∞ (SC[0])? +∞ : −∞ ignore interv, set NaN/raise #I if SC[1]=1
< 0 set NaN/raise #I if SC[1]=1

Table 6.19: GetMant() special loating-point values behavior

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

318 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Immediate Format

Normalization Interval I1 I0
[1,2) 0 0
[1/2,2) 0 1
[1/2,1) 1 0
[3/4,3/2) 1 1

Sign Control I3 I2
sign = sign(SRC) 0 0
sign = 0 0 1
DEST = NaN (#I) if sign(SRC) = 1 1 x

Operation

GetNormalizedMantissa(SRC , SignCtrl, Interv)
{

// Extracting the SRC sign, exponent and mantissa fields
SIGN = (SignCtrl[0])? 0 : SRC[63];
EXP = SRC[63:52];
FRACT = (DAZ && (EXP == 0))? 0 : SRC[51:0];

// Check for NaN operand
if(IsNaN(SRC)) {

if(IsSNaN(SRC)) *set I flag*
return QNaN(SRC)

}

// If SignCtrl[1] is set to 1, return NaN and set
// exception flag if the operand is negative.
// Note that -0.0 is included
if(SignCtrl[1] && (SRC[63] == 1)) {

set I flag
return QNaN_Indefinite

}

// Check for +/-INF and +/-0
if((EXP == 0x7FF && FRACTION == 0)
|| (EXP == 0 && FRACTION == 0)) {
DEST[63:0] = (SIGN << 63) | (EXP[11:0] << 52) | FRACT[51:0];
return DEST

}

// Normalize denormal operands
// note that denormal operands are treated as zero if
// DAZ is set to 1
if((EXP == 0) && (FRACTION !=0) {

// JBIT is the hidden integral bit
JBIT = 0; // Zero in case of denormal operands
EXP = 03FFh; // Set exponent to BIAS

Reference Number: 327364-001 319

CHAPTER 6. INSTRUCTION DESCRIPTIONS

While(JBIT == 0) {
JBIT = FRACT[51]; // Obtain fraction MSB
FRACT = FRACT << 1; // Normalize mantissa
EXP--; // and adjust exponent

}
set D flag

}

// Apply normalization intervals
UNBIASED_EXP = EXP - 03FFh; // get exponent in unbiased form
IS_ODD_EXP = UNBIASED_EXP[0]; // if the unbiased exponent odd?

if((Interv == 10b)
|| ((Interv == 01b) && IS_ODD_EXP)
|| ((Interv == 11b) && (FRACT[51]==1))) {
EXP = 03FEh; // Set exponent to -1 (unbiased)

}
else {

EXP = 03FFh; // Set exponent to 0 (unbiased)
}

// form the final destination
DEST[63:0] = (SIGN << 63) | (EXP[11:0] << 52) | FRACT[51:0];
return DEST

}

sc = IMM8[3:2]
interv = IMM8[1:0]

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
tmpSrc2[511:0] = zmm2[511:0]

} else {
tmpSrc2[511:0] = SwizzUpConvLoadf64(zmm2/mt)

}

for (n = 0; n < 8; n++) {
if(k1[n] != 0) {
i = 64*n
// float64 operation
zmm1[i+63:i] = GetNormalizedMantissa(tmpSrc2[i+63:i], sc, interv)

}
}

320 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

SIMD Floating-Point Exceptions

Invalid, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
Not Applicable

Memory Up-conversion: Sf64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64
001 broadcast 1 element (x8) [rax] {1to8} 8
010 broadcast 4 elements (x2) [rax] {4to8} 32
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Register Swizzle: Sf64

MVEX.EH=0
S2S1S0 Function: 4 x 64 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
1xx SAE (Supress-All-Exceptions) , {sae}

Reference Number: 327364-001 321

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel® C/C++ Compiler Intrinsic Equivalent

__m512d _mm512_getmant_pd (__m512d, _MM_MANTISSA_NORM_ENUM,
_MM_MANTISSA_SIGN_ENUM);

__m512d _mm512_mask_getmant_pd (__m512d, __mmask8, __m512d,
_MM_MANTISSA_NORM_ENUM, _MM_MANTISSA_SIGN_ENUM);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

322 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VGETMANTPS - Extract Float32 Vector of Normalized Mantissas from
Float32 Vector

Opcode Instruction Description
MVEX.512.66.0F3A.W0 26
/r ib

vgetmantps zmm1 {k1},
Sf32(zmm2/mt), imm8

Get Normalized Mantissa from loat32 vector
Sf32(zmm2/mt) and store the result in zmm1,
using imm8 for sign control andmantissa inter-
val normalization, under write-mask.

Description

Performs an element-by-element conversion of the Float32 vector result of the swiz-
zle/broadcast/conversion process on memory or Float32 vector zmm2 to Float32 values
with the mantissa normalized to the interval speci ied by interv and sign dictated by the
sign control parameter sc. The result is written into Float32 vector zmm1. Denormal val-
ues are explicitly normalized.

The formula for the operation is:

GetMant(x) = ±2k|x.significand|

where:

1 <= |x.significand| < 2

Exponent k is dependent on the interval range de ined by interv and whether the expo-
nent of the source is even or odd. The sign of the inal result is determined by sc and the
source sign.

GetMant() function follows Table 6.20 when dealing with loating-point special numbers.

Input Result Exceptions/comments
NaN QNaN(SRC) Raises #I if sNaN
+∞ +∞ ignore interv
+0 +0.0 ignore interv
-0 (SC[0])? +0.0 : −0.0 ignore interv, set NaN/raise #I if SC[1]=1
−∞ (SC[0])? +∞ : −∞ ignore interv, set NaN/raise #I if SC[1]=1
< 0 set NaN/raise #I if SC[1]=1

Table 6.20: GetMant() special loating-point values behavior

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Reference Number: 327364-001 323

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Immediate Format

Normalization Interval I1 I0
[1,2) 0 0
[1/2,2) 0 1
[1/2,1) 1 0
[3/4,3/2) 1 1

Sign Control I3 I2
sign = sign(SRC) 0 0
sign = 0 0 1
DEST = NaN (#I) if sign(SRC) = 1 1 x

Operation

GetNormalizedMantissa(SRC , SignCtrl, Interv)
{

// Extracting the SRC sign, exponent and mantissa fields
SIGN = (SignCtrl[0])? 0 : SRC[31];
EXP = SRC[30:23];
FRACT = (DAZ && (EXP == 0))? 0 : SRC[22:0];

// Check for NaN operand
if(IsNaN(SRC)) {

if(IsSNaN(SRC)) *set I flag*
return QNaN(SRC)

}

// If SignCtrl[1] is set to 1, return NaN and set
// exception flag if the operand is negative.
// Note that -0.0 is included
if(SignCtrl[1] && (SRC[31] == 1)) {

set I flag
return QNaN_Indefinite

}

// Check for +/-INF and +/-0
if((EXP == 0xFF && FRACTION == 0)
|| (EXP == 0 && FRACTION == 0)) {
DEST[31:0] = (SIGN << 31) | (EXP[7:0] << 23) | FRACT[22:0];
return DEST

}

// Apply normalization intervals
UNBIASED_EXP = EXP - 07Fh; // get exponent in unbiased form
IS_ODD_EXP = UNBIASED_EXP[0]; // if the unbiased exponent odd?

if((Interv == 10b)
|| ((Interv == 01b) && IS_ODD_EXP)
|| ((Interv == 11b) && (FRACT[22]==1))) {

324 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

EXP = 07Eh; // Set exponent to -1 (unbiased)
}
else {

EXP = 07Fh; // Set exponent to 0 (unbiased)
}

// form the final destination
DEST[31:0] = (SIGN << 31) | (EXP[7:0] << 23) | FRACT[22:0];
return DEST

}

sc = IMM8[3:2]
interv = IMM8[1:0]

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
tmpSrc2[511:0] = zmm2[511:0]

} else {
tmpSrc2[511:0] = SwizzUpConvLoadf32(zmm2/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// float32 operation
zmm1[i+31:i] = GetNormalizedMantissa(tmpSrc2[i+31:i], sc, interv)

}
}

SIMD Floating-Point Exceptions

Invalid, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
Not Applicable

Reference Number: 327364-001 325

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Sf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 loat16 to loat32 [rax] { loat16} 32
100 uint8 to loat32 [rax] {uint8} 16
110 uint16 to loat32 [rax] {uint16} 32
111 sint16 to loat32 [rax] {sint16} 32

Register Swizzle: Sf32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
1xx SAE (Supress-All-Exceptions) , {sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_getmant_ps (__m512, _MM_MANTISSA_NORM_ENUM,
_MM_MANTISSA_SIGN_ENUM);

__m512 _mm512_mask_getmant_ps (__m512, __mmask16, __m512,
_MM_MANTISSA_NORM_ENUM, _MM_MANTISSA_SIGN_ENUM);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

326 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 327

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VGMAXABSPS - Absolute Maximum of Float32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0
51 /r

vgmaxabsps zmm1 {k1}, zmm2,
Sf32(zmm3/mt)

Determine the maximum of the absolute val-
ues of loat32 vector zmm2 and loat32 vector
Sf32(zmm3/mt) and store the result in zmm1,
under write-mask.

Description

Determines the maximum of the absolute values of each pair of corresponding elements
in loat32 vector zmm2 and the loat32 vector result of the swizzle/broadcast/conversion
process on memory or loat32 vector zmm3. The result is written into loat32 vector
zmm1.

Abs() returns the absolute value of one loat32 argument. FpMax() returns the bigger
of the two loat32 arguments, following IEEE in general. NaN has special handling: If
one source operand is NaN, then the other source operand is returned (choice made per-
component). If both are NaN, then the unchanged NaN from the irst source (here zmm2)
is returned. Please note that if irst source is a SNaN it won't be quietized, it will be re-
turned without any modi ication. This differs from the new IEEE 754-08 rules, which
states that in case of an input SNaN, its quietized version should be returned instead of
the other value.

Another new IEEE 754-08 rule is that max(-0,+0) == max(+0,-0) == +0, which honors the
sign, in contrast to the comparison rules for signed zero (stated above). D3D10.0 recom-
mends the IEEE 754-08 behavior here, but it will not be enforced; it is permissible for the
result of comparing zeros to be dependent on the order of parameters, using a comparison
that ignores the signs.

This instruction treats input denormals as zeros according to the DAZ control bit, but it
does not lush tiny results to zero.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

FpMaxAbs(A,B)
{

if ((A == NaN) && (B == NaN))
return Abs(A);

else if (A == NaN)
return Abs(B);

else if (B == NaN)

328 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

return Abs(A);
else if ((Abs(A) == +inf) || (Abs(B) == +inf))
return +inf;

else if (Abs(A) >= Abs(B))
return Abs(A);

else
return Abs(B);

}

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadf32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// float32 operation
zmm1[i+31:i] = FpMaxAbs(zmm2[i+31:i] , tmpSrc3[i+31:i])

}
}

SIMD Floating-Point Exceptions

Invalid, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
NO

Memory Up-conversion: Sf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 loat16 to loat32 [rax] { loat16} 32
100 uint8 to loat32 [rax] {uint8} 16
110 uint16 to loat32 [rax] {uint16} 32
111 sint16 to loat32 [rax] {sint16} 32

Reference Number: 327364-001 329

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sf32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
1xx SAE (Supress-All-Exceptions) , {sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_gmaxabs_ps (__m512, __m512);
__m512 _mm512_mask_gmaxabs_p s(__m512, __mmask16, __m512, __m512);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.
#UD If processor model does not implement the speci ic instruction.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

330 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Reference Number: 327364-001 331

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VGMAXPD - Maximum of Float64 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W1
53 /r

vgmaxpd zmm1 {k1}, zmm2,
Sf64(zmm3/mt)

Determine the maximum of loat64 vector
zmm2 and loat64 vector Sf64(zmm3/mt) and
store the result in zmm1, under write-mask.

Description

Determines the maximum value of each pair of corresponding elements in loat64 vec-
tor zmm2 and the loat64 vector result of the swizzle/broadcast/conversion process on
memory or loat64 vector zmm3. The result is written into loat64 vector zmm1.

FpMax() returns the bigger of the two loat32 arguments, following IEEE in general. NaN
has special handling: If one source operand is NaN, then the other source operand is re-
turned (choice made per-component). If both are NaN, then the unchanged NaN from the
irst source (here zmm2) is returned. Please note that if irst source is a SNaN it won't be
quietized, it will be returned without any modi ication. This differs from the new IEEE
754-08 rules, which states that in case of an input SNaN, its quietized version should be
returned instead of the other value.

Another new IEEE 754-08 rule is that max(-0,+0) == max(+0,-0) == +0, which honors the
sign, in contrast to the comparison rules for signed zero (stated above). D3D10.0 recom-
mends the IEEE 754-08 behavior here, but it will not be enforced; it is permissible for the
result of comparing zeros to be dependent on the order of parameters, using a comparison
that ignores the signs.

This instruction treats input denormals as zeros according to the DAZ control bit, but it
does not lush tiny results to zero.

The following table describes exception lags priority:

Input 1 Input 2 Flags Comments
SNAN denormal #I #I priority over #D
denormal SNAN #I #I priority over #D
QNAN denormal none QNaN rule priority over #D
denormal QNAN none QNaN rule priority over #D
normal denormal #D only if DAZ=0
denormal normal #D only if DAZ=0
denormal denormal #D only if DAZ=0

Table 6.21: Max exception lags priority

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

332 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

FpMax(A,B)
{

if ((A == -0.0) && (B == +0.0)) return B;
if ((A == +0.0) && (B == -0.0)) return A;
if ((A == NaN) && (B == NaN)) return A;
if (A == NaN) return B;
if (B == NaN) return A;
if (A == -inf) return B;
if (B == -inf) return A;
if (A == +inf) return A;
if (B == +inf) return B;
if (A >= B) return A;

return B;
}

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadf64(zmm3/mt)

}

for (n = 0; n < 8; n++) {
if(k1[n] != 0) {
i = 64*n
// float64 operation
zmm1[i+63:i] = FpMax(zmm2[i+63:i] , tmpSrc3[i+63:i])

}
}

SIMD Floating-Point Exceptions

Invalid, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
NO

Reference Number: 327364-001 333

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Sf64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64
001 broadcast 1 element (x8) [rax] {1to8} 8
010 broadcast 4 elements (x2) [rax] {4to8} 32
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Register Swizzle: Sf64

MVEX.EH=0
S2S1S0 Function: 4 x 64 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
1xx SAE (Supress-All-Exceptions) , {sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512d _mm512_gmax_pd (__m512d, __m512d);
__m512d _mm512_mask_gmax_pd (__m512d, __mmask8,__m512d, __m512d);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

334 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.
#UD If processor model does not implement the speci ic instruction.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 335

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VGMAXPS - Maximum of Float32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0
53 /r

vgmaxps zmm1 {k1}, zmm2,
Sf32(zmm3/mt)

Determine the maximum of loat32 vector
zmm2 and loat32 vector Sf32(zmm3/mt) and
store the result in zmm1, under write-mask.

Description

Determines the maximum value of each pair of corresponding elements in loat32 vec-
tor zmm2 and the loat32 vector result of the swizzle/broadcast/conversion process on
memory or loat32 vector zmm3. The result is written into loat32 vector zmm1.

FpMax() returns the bigger of the two loat32 arguments, following IEEE in general. NaN
has special handling: If one source operand is NaN, then the other source operand is re-
turned (choice made per-component). If both are NaN, then the unchanged NaN from the
irst source (here zmm2) is returned. Please note that if irst source is a SNaN it won't be
quietized, it will be returned without any modi ication. This differs from the new IEEE
754-08 rules, which states that in case of an input SNaN, its quietized version should be
returned instead of the other value.

Another new IEEE 754-08 rule is that max(-0,+0) == max(+0,-0) == +0, which honors the
sign, in contrast to the comparison rules for signed zero (stated above). D3D10.0 recom-
mends the IEEE 754-08 behavior here, but it will not be enforced; it is permissible for the
result of comparing zeros to be dependent on the order of parameters, using a comparison
that ignores the signs.

This instruction treats input denormals as zeros according to the DAZ control bit, but it
does not lush tiny results to zero.

The following table describes exception lags priority:

Input 1 Input 2 Flags Comments
SNAN denormal #I #I priority over #D
denormal SNAN #I #I priority over #D
QNAN denormal none QNaN rule priority over #D
denormal QNAN none QNaN rule priority over #D
normal denormal #D only if DAZ=0
denormal normal #D only if DAZ=0
denormal denormal #D only if DAZ=0

Table 6.22: Max exception lags priority

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

336 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

FpMax(A,B)
{

if ((A == -0.0) && (B == +0.0)) return B;
if ((A == +0.0) && (B == -0.0)) return A;
if ((A == NaN) && (B == NaN)) return A;
if (A == NaN) return B;
if (B == NaN) return A;
if (A == -inf) return B;
if (B == -inf) return A;
if (A == +inf) return A;
if (B == +inf) return B;
if (A >= B) return A;

return B;
}

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadf32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// float32 operation
zmm1[i+31:i] = FpMax(zmm2[i+31:i] , tmpSrc3[i+31:i])

}
}

SIMD Floating-Point Exceptions

Invalid, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
NO

Reference Number: 327364-001 337

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Sf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 loat16 to loat32 [rax] { loat16} 32
100 uint8 to loat32 [rax] {uint8} 16
110 uint16 to loat32 [rax] {uint16} 32
111 sint16 to loat32 [rax] {sint16} 32

Register Swizzle: Sf32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
1xx SAE (Supress-All-Exceptions) , {sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_gmax_ps (__m512, __m512);
__m512 _mm512_mask_gmax_ps (__m512, __mmask16, __m512, __m512);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

338 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.
#UD If processor model does not implement the speci ic instruction.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 339

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VGMINPD - Minimum of Float64 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W1
52 /r

vgminpd zmm1 {k1}, zmm2,
Sf64(zmm3/mt)

Determine the minimum of loat64 vector
zmm2 and loat64 vector Sf64(zmm3/mt) and
store the result in zmm1, under write-mask.

Description

Determines the minimum value of each pair of corresponding elements in loat64 vec-
tor zmm2 and the loat64 vector result of the swizzle/broadcast/conversion process on
memory or loat64 vector zmm3. The result is written into loat64 vector zmm1.

FpMin() returns the smaller of the two loat32 arguments, following IEEE in general. NaN
has special handling: If one source operand is NaN, then the other source operand is re-
turned (choice made per-component). If both are NaN, then the unchanged NaN from the
irst source (here zmm2) is returned. Please note that if irst source is a SNaN it won't be
quietized, it will be returned without any modi ication. This differs from the new IEEE
754-08 rules, which states that in case of an input SNaN, its quietized version should be
returned instead of the other value.

Another new IEEE 754-08 rule is that min(-0,+0) == min(+0,-0) == -0, which honors the
sign, in contrast to the comparison rules for signed zero (stated above). D3D10.0 recom-
mends the IEEE 754-08 behavior here, but it will not be enforced; it is permissible for the
result of comparing zeros to be dependent on the order of parameters, using a comparison
that ignores the signs.

This instruction treats input denormals as zeros according to the DAZ control bit, but it
does not lush tiny results to zero.

The following table describes exception lags priority:

Input 1 Input 2 Flags Comments
SNAN denormal #I #I priority over #D
denormal SNAN #I #I priority over #D
QNAN denormal none QNaN rule priority over #D
denormal QNAN none QNaN rule priority over #D
normal denormal #D only if DAZ=0
denormal normal #D only if DAZ=0
denormal denormal #D only if DAZ=0

Table 6.23: Min exception lags priority

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

340 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

FpMin(A,B)
{

if ((A == -0.0) && (B == +0.0)) return A;
if ((A == +0.0) && (B == -0.0)) return B;
if ((A == NaN) && (B == NaN)) return A;
if (A == NaN) return B;
if (B == NaN) return A;
if (A == -inf) return A;
if (B == -inf) return B;
if (A == +inf) return B;
if (B == +inf) return A;
if (A < B) return A;

return B;
}

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadf64(zmm3/mt)

}

for (n = 0; n < 8; n++) {
if(k1[n] != 0) {
i = 64*n
// float64 operation
zmm1[i+63:i] = FpMin(zmm2[i+63:i] , tmpSrc3[i+63:i])

}
}

SIMD Floating-Point Exceptions

Invalid, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
NO

Reference Number: 327364-001 341

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Sf64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64
001 broadcast 1 element (x8) [rax] {1to8} 8
010 broadcast 4 elements (x2) [rax] {4to8} 32
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Register Swizzle: Sf64

MVEX.EH=0
S2S1S0 Function: 4 x 64 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
1xx SAE (Supress-All-Exceptions) , {sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512d _mm512_gmin_pd (__m512d, __m512d);
__m512d _mm512_mask_gmin_pd (__m512d, __mmask8, __m512d, __m512d);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

342 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.
#UD If processor model does not implement the speci ic instruction.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 343

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VGMINPS - Minimum of Float32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0
52 /r

vgminps zmm1 {k1}, zmm2,
Sf32(zmm3/mt)

Determine the minimum of loat32 vector
zmm2 and loat32 vector Sf32(zmm3/mt) and
store the result in zmm1, under write-mask.

Description

Determines the minimum value of each pair of corresponding elements in loat32 vec-
tor zmm2 and the loat32 vector result of the swizzle/broadcast/conversion process on
memory or loat32 vector zmm3. The result is written into loat32 vector zmm1.

FpMin() returns the smaller of the two loat32 arguments, following IEEE in general. NaN
has special handling: If one source operand is NaN, then the other source operand is re-
turned (choice made per-component). If both are NaN, then the unchanged NaN from the
irst source (here zmm2) is returned. Please note that if irst source is a SNaN it won't be
quietized, it will be returned without any modi ication. This differs from the new IEEE
754-08 rules, which states that in case of an input SNaN, its quietized version should be
returned instead of the other value.

Another new IEEE 754-08 rule is that min(-0,+0) == min(+0,-0) == -0, which honors the
sign, in contrast to the comparison rules for signed zero (stated above). D3D10.0 recom-
mends the IEEE 754-08 behavior here, but it will not be enforced; it is permissible for the
result of comparing zeros to be dependent on the order of parameters, using a comparison
that ignores the signs.

This instruction treats input denormals as zeros according to the DAZ control bit, but it
does not lush tiny results to zero.

The following table describes exception lags priority:

Input 1 Input 2 Flags Comments
SNAN denormal #I #I priority over #D
denormal SNAN #I #I priority over #D
QNAN denormal none QNaN rule priority over #D
denormal QNAN none QNaN rule priority over #D
normal denormal #D only if DAZ=0
denormal normal #D only if DAZ=0
denormal denormal #D only if DAZ=0

Table 6.24: Min exception lags priority

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

344 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

FpMin(A,B)
{

if ((A == -0.0) && (B == +0.0)) return A;
if ((A == +0.0) && (B == -0.0)) return B;
if ((A == NaN) && (B == NaN)) return A;
if (A == NaN) return B;
if (B == NaN) return A;
if (A == -inf) return A;
if (B == -inf) return B;
if (A == +inf) return B;
if (B == +inf) return A;
if (A < B) return A;

return B;
}

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadf32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// float32 operation
zmm1[i+31:i] = FpMin(zmm2[i+31:i] , tmpSrc3[i+31:i])

}
}

SIMD Floating-Point Exceptions

Invalid, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
NO

Reference Number: 327364-001 345

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Sf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 loat16 to loat32 [rax] { loat16} 32
100 uint8 to loat32 [rax] {uint8} 16
110 uint16 to loat32 [rax] {uint16} 32
111 sint16 to loat32 [rax] {sint16} 32

Register Swizzle: Sf32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
1xx SAE (Supress-All-Exceptions) , {sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_gmin_ps(__m512, __m512);
__m512 _mm512_mask_gmin_ps(__m512, __mmask16, __m512, __m512);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

346 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.
#UD If processor model does not implement the speci ic instruction.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 347

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VLOADUNPACKHD - LoadUnalignedHigh AndUnpack To Doubleword Vec-
tor

Opcode Instruction Description
MVEX.512.0F38.W0 D4 /r vloadunpackhd zmm1 {k1},

Ui32(mt)
Load high 64-byte-aligned portion of unaligned
doubleword stream Ui32(mt - 64), unpack
mask-enabled elements that fall in that portion,
and store those elements in doubleword vector
zmm1, under write-mask.

Description

The high-64-byte portion of the byte/word/doubleword stream starting at the element-
aligned address (mt−64) is loaded, converted and expanded into thewrite-mask-enabled
elements of doubleword vector zmm1. The number of set bits in the write-mask deter-
mines the length of the converted doubleword stream, as each converted doubleword is
mapped to exactly one of the doubleword elements in zmm1, skipping overwrite-masked
elements of zmm1.

This instruction only transfers those converted doublewords (if any) in the stream that
occur at or after the irst 64-byte-aligned address following (mt − 64) (that is, in the high
cache line of the memory stream for the current implementation). Elements in zmm1
that don't map to those stream doublewords are left unchanged. The vloadunpackld in-
struction is used to load the part of the stream before the irst 64-byte-aligned address
precedingmt.

In conjunction with vloadunpackld, this instruction is useful for re-expanding data that
was packed into a queue. Also in conjunction with vloadunpackld, it allows unaligned
vector loads (that is, vector loads that are only element-wise, not vector-wise, aligned);
use amask of 0xFFFF or nowrite-mask for this purpose. The typical instruction sequence
to perform an unaligned vector load would be:

// assume memory location is pointed by register rax
vloadunpackld v0 {k1}, [rax]
vloadunpackhd v0 {k1}, [rax+64]

This instruction does not have broadcast support.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Note that this instruction will always access 64 bytes of memory. The memory region
accessedwill always be between linear_address & (∼0x3F) and (linear_address & (∼0x3F))
+ 63 boundaries.

Note that the address reported by a page fault is the beggining of the 64-byte cache line
boundary containing the memory operand. The instruction will not produce any #GP or

348 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS fault due to address canonicity nor #PF fault if the address is aligned to a 64-byte
boundary. Additionally, A/D bits in the page table will not be updated.

This instruction is write-masked, so only those elementswith the corresponding bit set in
vectormask register k1 aremodi ied in zmm1. Elements in zmm1with the corresponding
bit clear in vector mask1 retain their previous values. However, see above for unusual
aspects of the write-mask's operation with this instruction.

Operation

loadOffset = 0
upSize = UpConvLoadSizeOfi32(SSS[2:0])
foundNext64BytesBoundary = false

pointer = mt - 64
for (n = 0; n < 16; n++) {

if(k1[n] != 0) {
if (foundNext64BytesBoundary == false) {

if ((((pointer + (loadOffset+1)*upSize) % 64) == 0) {
foundNext64BytesBoundary = true

}
} else {

i = 32*n
zmm1[i+31:i] = UpConvLoadi32(pointer + upSize*loadOffset)

}
loadOffset++

}
}

Flags Affected

None.

Memory Up-conversion: Ui32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 4
001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 1
101 sint8 to sint32 [rax] {sint8} 1
110 uint16 to uint32 [rax] {uint16} 2
111 sint16 to sint32 [rax] {sint16} 2

Reference Number: 327364-001 349

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_extloadunpackhi_epi32 (__m512i, void const*,
_MM_UPCONV_EPI32_ENUM, int);

__m512i _mm512_mask_extloadunpackhi_epi32 (__m512i, __mmask16, void const*,
_MM_UPCONV_EPI32_ENUM, int);

__m512i _mm512_loadunpackhi_epi32 (__m512i, void const*);
__m512i _mm512_mask_loadunpackhi_epi32 (__m512i, __mmask16, void const*);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to element-wise data granularity dictated by the UpConv.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.
#UD If processor model does not implement the speci ic instruction.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If the second operand is not a memory location.

350 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VLOADUNPACKHPD - Load Unaligned High And Unpack To Float64 Vector

Opcode Instruction Description
MVEX.512.0F38.W1 D5 /r vloadunpackhpd zmm1 {k1},

Uf64(mt)
Load high 64-byte-aligned portion of unaligned
loat64 stream Uf64(mt - 64), unpack mask-
enabled elements that fall in that portion, and
store those elements in loat64 vector zmm1,
under write-mask.

Description

The high-64-byte portion of the quadword stream starting at the element-aligned address
(mt − 64) is loaded, converted and expanded into the write-mask-enabled elements of
quadword vector zmm1. The number of set bits in the write-mask determines the length
of the converted quadword stream, as each converted quadword ismapped to exactly one
of the quadword elements in zmm1, skipping over write-masked elements of zmm1.

This instruction only transfers those converted quadwords (if any) in the stream that oc-
cur at or after the irst 64-byte-aligned address following (mt − 64) (that is, in the high
cache line of the memory stream for the current implementation). Elements in zmm1
that don't map to those stream quadwords are left unchanged. The vloadunpacklpd in-
struction is used to load the part of the stream before the irst 64-byte-aligned address
precedingmt.

In conjunction with vloadunpacklpd, this instruction is useful for re-expanding data that
was packed into a queue. Also in conjunction with vloadunpacklpd, it allows unaligned
vector loads (that is, vector loads that are only element-wise, not vector-wise, aligned);
use a mask of 0xFF or no write-mask for this purpose. The typical instruction sequence
to perform an unaligned vector load would be:

// assume memory location is pointed by register rax
vloadunpacklpd v0 {k1}, [rax]
vloadunpackhpd v0 {k1}, [rax+64]

This instruction does not have broadcast support.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Note that this instruction will always access 64 bytes of memory. The memory region
accessedwill always be between linear_address & (∼0x3F) and (linear_address & (∼0x3F))
+ 63 boundaries.

Note that the address reported by a page fault is the beggining of the 64-byte cache line
boundary containing the memory operand. The instruction will not produce any #GP or
#SS fault due to address canonicity nor #PF fault if the address is aligned to a 64-byte

Reference Number: 327364-001 351

CHAPTER 6. INSTRUCTION DESCRIPTIONS

boundary. Additionally, A/D bits in the page table will not be updated.

This instruction is write-masked, so only those elementswith the corresponding bit set in
vectormask register k1 aremodi ied in zmm1. Elements in zmm1with the corresponding
bit clear in vector mask1 retain their previous values. However, see above for unusual
aspects of the write-mask's operation with this instruction.

Operation

loadOffset = 0
upSize = UpConvLoadSizeOff64(SSS[2:0])
foundNext64BytesBoundary = false

pointer = mt - 64
for (n = 0; n < 8; n++) {

if(k1[n] != 0) {
if (foundNext64BytesBoundary == false) {

if ((((pointer + (loadOffset+1)*upSize) % 64) == 0) {
foundNext64BytesBoundary = true

}
} else {

i = 64*n
zmm1[i+63:i] = UpConvLoadf64(pointer + upSize*loadOffset)

}
loadOffset++

}
}

SIMD Floating-Point Exceptions

None.

Memory Up-conversion: Uf64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 8
001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

352 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel® C/C++ Compiler Intrinsic Equivalent

__m512d _mm512_extloadunpackhi_pd (__m512d, void const*, _MM_UPCONV_PD_ENUM,
int);

__m512d _mm512_mask_extloadunpackhi_pd (__m512d, __mmask8, void const*,
_MM_UPCONV_PD_ENUM, int);

__m512d _mm512_loadunpackhi_pd (__m512d, void const*);
__m512d _mm512_mask_loadunpackhi_pd (__m512d, __mmask8, void const*);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to element-wise data granularity dictated by the UpConv.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.
#UD If processor model does not implement the speci ic instruction.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If the second operand is not a memory location.

Reference Number: 327364-001 353

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VLOADUNPACKHPS - Load Unaligned High And Unpack To Float32 Vector

Opcode Instruction Description
MVEX.512.0F38.W0 D5 /r vloadunpackhps zmm1 {k1},

Uf32(mt)
Load high 64-byte-aligned portion of unaligned
loat32 stream Uf32(mt - 64), unpack mask-
enabled elements that fall in that portion, and
store those elements in loat32 vector zmm1,
under write-mask.

Description

The high-64-byte portion of the byte/word/doubleword stream starting at the element-
aligned address (mt−64) is loaded, converted and expanded into thewrite-mask-enabled
elements of doubleword vector zmm1. The number of set bits in the write-mask deter-
mines the length of the converted doubleword stream, as each converted doubleword is
mapped to exactly one of the doubleword elements in zmm1, skipping overwrite-masked
elements of zmm1.

This instruction only transfers those converted doublewords (if any) in the stream that
occur at or after the irst 64-byte-aligned address following (mt − 64) (that is, in the high
cache line of the memory stream for the current implementation). Elements in zmm1
that don't map to those stream doublewords are left unchanged. The vloadunpacklps in-
struction is used to load the part of the stream before the irst 64-byte-aligned address
precedingmt.

In conjunction with vloadunpacklps, this instruction is useful for re-expanding data that
was packed into a queue. Also in conjunction with vloadunpacklps, it allows unaligned
vector loads (that is, vector loads that are only element-wise, not vector-wise, aligned);
use amask of 0xFFFF or nowrite-mask for this purpose. The typical instruction sequence
to perform an unaligned vector load would be:

// assume memory location is pointed by register rax
vloadunpacklps v0 {k1}, [rax]
vloadunpackhps v0 {k1}, [rax+64]

This instruction does not have broadcast support.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Note that this instruction will always access 64 bytes of memory. The memory region
accessedwill always be between linear_address & (∼0x3F) and (linear_address & (∼0x3F))
+ 63 boundaries.

Note that the address reported by a page fault is the beggining of the 64-byte cache line
boundary containing the memory operand. The instruction will not produce any #GP or

354 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS fault due to address canonicity nor #PF fault if the address is aligned to a 64-byte
boundary. Additionally, A/D bits in the page table will not be updated.

This instruction is write-masked, so only those elementswith the corresponding bit set in
vectormask register k1 aremodi ied in zmm1. Elements in zmm1with the corresponding
bit clear in vector mask1 retain their previous values. However, see above for unusual
aspects of the write-mask's operation with this instruction.

Operation

loadOffset = 0
upSize = UpConvLoadSizeOff32(SSS[2:0])
foundNext64BytesBoundary = false

pointer = mt - 64
for (n = 0; n < 16; n++) {

if(k1[n] != 0) {
if (foundNext64BytesBoundary == false) {

if ((((pointer + (loadOffset+1)*upSize) % 64) == 0) {
foundNext64BytesBoundary = true

}
} else {

i = 32*n
zmm1[i+31:i] = UpConvLoadf32(pointer + upSize*loadOffset)

}
loadOffset++

}
}

SIMD Floating-Point Exceptions

Invalid.

Memory Up-conversion: Uf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 4
001 reserved N/A N/A
010 reserved N/A N/A
011 loat16 to loat32 [rax] { loat16} 2
100 uint8 to loat32 [rax] {uint8} 1
101 sint8 to loat32 [rax] {sint8} 1
110 uint16 to loat32 [rax] {uint16} 2
111 sint16 to loat32 [rax] {sint16} 2

Reference Number: 327364-001 355

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_extloadunpackhi_ps (__m512, void const*, _MM_UPCONV_PS_ENUM,
int);

__m512 _mm512_mask_extloadunpackhi_ps (__m512, __mmask16, void const*,
_MM_UPCONV_PS_ENUM, int);

__m512 _mm512_loadunpackhi_ps (__m512, void const*);
__m512 _mm512_mask_loadunpackhi_ps (__m512, __mmask16, void const*);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to element-wise data granularity dictated by the UpConv.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.
#UD If processor model does not implement the speci ic instruction.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If the second operand is not a memory location.

356 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VLOADUNPACKHQ - Load Unaligned High And Unpack To Int64 Vector

Opcode Instruction Description
MVEX.512.0F38.W1 D4 /r vloadunpackhq zmm1 {k1},

Ui64(mt)
Load high 64-byte-aligned portion of unaligned
int64 stream Ui64(mt - 64), unpack mask-
enabled elements that fall in that portion, and
store those elements in int64 vector zmm1, un-
der write-mask.

Description

The high-64-byte portion of the quadword stream starting at the element-aligned address
(mt − 64) is loaded, converted and expanded into the write-mask-enabled elements of
quadword vector zmm1. The number of set bits in the write-mask determines the length
of the converted quadword stream, as each converted quadword ismapped to exactly one
of the quadword elements in zmm1, skipping over write-masked elements of zmm1.

This instruction only transfers those converted quadwords (if any) in the stream that oc-
cur at or after the irst 64-byte-aligned address following (mt − 64) (that is, in the high
cache line of thememory stream for the current implementation). Elements in zmm1 that
don't map to those stream quadwords are left unchanged. The vloadunpacklq instruction
is used to load the part of the stream before the irst 64-byte-aligned address preceding
mt.

In conjunction with vloadunpacklq, this instruction is useful for re-expanding data that
was packed into a queue. Also in conjunction with vloadunpacklq, it allows unaligned
vector loads (that is, vector loads that are only element-wise, not vector-wise, aligned);
use a mask of 0xFF or no write-mask for this purpose. The typical instruction sequence
to perform an unaligned vector load would be:

// assume memory location is pointed by register rax
vloadunpacklq v0 {k1}, [rax]
vloadunpackhq v0 {k1}, [rax+64]

This instruction does not have broadcast support.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Note that this instruction will always access 64 bytes of memory. The memory region
accessedwill always be between linear_address & (∼0x3F) and (linear_address & (∼0x3F))
+ 63 boundaries.

Note that the address reported by a page fault is the beggining of the 64-byte cache line
boundary containing the memory operand. The instruction will not produce any #GP or
#SS fault due to address canonicity nor #PF fault if the address is aligned to a 64-byte
boundary. Additionally, A/D bits in the page table will not be updated.

Reference Number: 327364-001 357

CHAPTER 6. INSTRUCTION DESCRIPTIONS

This instruction is write-masked, so only those elementswith the corresponding bit set in
vectormask register k1 aremodi ied in zmm1. Elements in zmm1with the corresponding
bit clear in vector mask1 retain their previous values. However, see above for unusual
aspects of the write-mask's operation with this instruction.

Operation

loadOffset = 0
upSize = UpConvLoadSizeOfi64(SSS[2:0])
foundNext64BytesBoundary = false

pointer = mt - 64
for (n = 0; n < 8; n++) {

if(k1[n] != 0) {
if (foundNext64BytesBoundary == false) {

if ((((pointer + (loadOffset+1)*upSize) % 64) == 0) {
foundNext64BytesBoundary = true

}
} else {

i = 64*n
zmm1[i+63:i] = UpConvLoadi64(pointer + upSize*loadOffset)

}
loadOffset++

}
}

Flags Affected

None.

Memory Up-conversion: Ui64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 8
001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

358 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_extloadunpackhi_epi64 (__m512i, void const*,
_MM_UPCONV_EPI64_ENUM, int);

__m512i _mm512_mask_extloadunpackhi_epi64 (__m512i, __mmask8, void const*,
_MM_UPCONV_EPI64_ENUM, int);

__m512i _mm512_loadunpackhi_epi64 (__m512i, void const*);
__m512i _mm512_mask_loadunpackhi_epi64 (__m512i, __mmask8, void const*);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to element-wise data granularity dictated by the UpConv.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.
#UD If processor model does not implement the speci ic instruction.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If the second operand is not a memory location.

Reference Number: 327364-001 359

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VLOADUNPACKLD - Load Unaligned Low And Unpack To Doubleword Vec-
tor

Opcode Instruction Description
MVEX.512.0F38.W0 D0 /r vloadunpackld zmm1 {k1},

Ui32(mt)
Load low 64-byte-aligned portion of unaligned
doubleword stream Ui32(mt), unpack mask-
enabled elements that fall in that portion, and
store those elements in doubleword vector
zmm1, under write-mask.

Description

The low-64-byte portion of the byte/word/doubleword stream starting at the element-
aligned address mt is loaded, converted and expanded into the write-mask-enabled el-
ements of doubleword vector zmm1. The number of set bits in the write-mask deter-
mines the length of the converted doubleword stream, as each converted doubleword is
mapped to exactly one of the doubleword elements in zmm1, skipping overwrite-masked
elements of zmm1.

This instruction only transfers those converted doublewords (if any) in the stream that
occur before the irst 64-byte-aligned address followingmt (that is, in the lowcache line of
the memory stream in the current implementation). Elements in zmm1 that don't map to
those converted stream doublewords are left unchanged. The vloadunpackhd instruction
is used to load thepart of the streamat or after the irst 64-byte-aligned address preceding
mt.

In conjunction with vloadunpackhd, this instruction is useful for re-expanding data that
was packed into a queue. Also in conjunction with vloadunpackhd, it allows unaligned
vector loads (that is, vector loads that are only element-wise, not vector-wise, aligned);
use amask of 0xFFFF or nowrite-mask for this purpose. The typical instruction sequence
to perform an unaligned vector load would be:

// assume memory location is pointed by register rax
vloadunpackld v0 {k1}, [rax]
vloadunpackhd v0 {k1}, [rax+64]

This instruction does not have broadcast support.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Note that this instruction will always access 64 bytes of memory. The memory region
accessedwill always be between linear_address & (∼0x3F) and (linear_address & (∼0x3F))
+ 63 boundaries.

Note that the address reported by a page fault is the beggining of the 64-byte cache line
boundary containing the memory operand.

360 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

This instruction is write-masked, so only those elementswith the corresponding bit set in
vectormask register k1 aremodi ied in zmm1. Elements in zmm1with the corresponding
bit clear in vector mask1 retain their previous values. However, see above for unusual
aspects of the write-mask's operation with this instruction.

Operation

loadOffset = 0
upSize = UpConvLoadSizeOfi32(SSS[2:0])

for(n = 0 ;n < 16; n++) {
i = 32*n
if (k1[n] != 0) {
zmm1[i+31:i] = UpConvLoadi32(mt+upSize*loadOffset)
loadOffset++
if (((mt + upSize*loadOffset) % 64) == 0) {
break

}
}

}

Flags Affected

None.

Memory Up-conversion: Ui32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 4
001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 1
101 sint8 to sint32 [rax] {sint8} 1
110 uint16 to uint32 [rax] {uint16} 2
111 sint16 to sint32 [rax] {sint16} 2

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_extloadunpacklo_epi32 (__m512i, void const*,
_MM_UPCONV_EPI32_ENUM, int);

__m512i _mm512_mask_extloadunpacklo_epi32 (__m512i, __mmask16, void const*,
_MM_UPCONV_EPI32_ENUM, int);

__m512i _mm512_loadunpacklo_epi32 (__m512i, void const*);
__m512i _mm512_mask_loadunpacklo_epi32 (__m512i, __mmask16, void const*);

Reference Number: 327364-001 361

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to element-wise data granularity dictated by the UpConv.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.
#UD If processor model does not implement the speci ic instruction.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If the second operand is not a memory location.

362 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VLOADUNPACKLPD - Load Unaligned Low And Unpack To Float64 Vector

Opcode Instruction Description
MVEX.512.0F38.W1 D1 /r vloadunpacklpd zmm1 {k1},

Uf64(mt)
Load low 64-byte-aligned portion of unaligned
loat64 streamUf64(mt), unpackmask-enabled
elements that fall in that portion, and store
those elements in loat64 vector zmm1, under
write-mask.

Description

The low-64-byte portion of the quadword stream starting at the element-aligned address
mt is loaded, converted and expanded into thewrite-mask-enabled elements of quadword
vector zmm1. The number of set bits in the write-mask determines the length of the con-
verted quadword stream, as each converted quadword is mapped to exactly one of the
quadword elements in zmm1, skipping over write-masked elements of zmm1.

This instruction only transfers those converted quadwords (if any) in the stream that oc-
cur before the irst 64-byte-aligned address followingmt (that is, in the low cache line of
the memory stream in the current implementation). Elements in zmm1 that don't map to
those converted stream quadwords are left unchanged. The vloadunpackhq instruction is
used to load the part of the stream at or after the irst 64-byte-aligned address preceding
mt.

In conjunction with vloadunpackhpd, this instruction is useful for re-expanding data that
was packed into a queue. Also in conjunction with vloadunpackhpd, it allows unaligned
vector loads (that is, vector loads that are only element-wise, not vector-wise, aligned);
use a mask of 0xFF or no write-mask for this purpose. The typical instruction sequence
to perform an unaligned vector load would be:

// assume memory location is pointed by register rax
vloadunpacklpd v0 {k1}, [rax]
vloadunpackhpd v0 {k1}, [rax+64]

This instruction does not have broadcast support.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Note that this instruction will always access 64 bytes of memory. The memory region
accessedwill always be between linear_address & (∼0x3F) and (linear_address & (∼0x3F))
+ 63 boundaries.

Note that the address reported by a page fault is the beggining of the 64-byte cache line
boundary containing the memory operand.

This instruction is write-masked, so only those elementswith the corresponding bit set in
vectormask register k1 aremodi ied in zmm1. Elements in zmm1with the corresponding

Reference Number: 327364-001 363

CHAPTER 6. INSTRUCTION DESCRIPTIONS

bit clear in vector mask1 retain their previous values. However, see above for unusual
aspects of the write-mask's operation with this instruction.

Operation

loadOffset = 0
upSize = UpConvLoadSizeOff64(SSS[2:0])

for(n = 0 ;n < 8; n++) {
i = 64*n
if (k1[n] != 0) {
zmm1[i+63:i] = UpConvLoadf64(mt+upSize*loadOffset)
loadOffset++
if (((mt + upSize*loadOffset) % 64) == 0) {
break

}
}

}

SIMD Floating-Point Exceptions

None.

Memory Up-conversion: Uf64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 8
001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Intel® C/C++ Compiler Intrinsic Equivalent

__m512d _mm512_extloadunpacklo_pd (__m512d, void const*, _MM_UPCONV_PD_ENUM,
int);

__m512d _mm512_mask_extloadunpacklo_pd (__m512d, __mmask8, void const*,
_MM_UPCONV_PD_ENUM, int);

__m512d _mm512_loadunpacklo_pd (__m512d, void const*);
__m512d _mm512_mask_loadunpacklo_pd (__m512d, __mmask8, void const*);

364 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to element-wise data granularity dictated by the UpConv.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.
#UD If processor model does not implement the speci ic instruction.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If the second operand is not a memory location.

Reference Number: 327364-001 365

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VLOADUNPACKLPS - Load Unaligned Low And Unpack To Float32 Vector

Opcode Instruction Description
MVEX.512.0F38.W0 D1 /r vloadunpacklps zmm1 {k1},

Uf32(mt)
Load low 64-byte-aligned portion of unaligned
loat32 streamUf32(mt), unpackmask-enabled
elements that fall in that portion, and store
those elements in loat32 vector zmm1, under
write-mask.

Description

The low-64-byte portion of the byte/word/doubleword stream starting at the element-
aligned address mt is loaded, converted and expanded into the write-mask-enabled el-
ements of doubleword vector zmm1. The number of set bits in the write-mask deter-
mines the length of the converted doubleword stream, as each converted doubleword is
mapped to exactly one of the doubleword elements in zmm1, skipping overwrite-masked
elements of zmm1.

This instruction only transfers those converted doublewords (if any) in the stream that
occur before the irst 64-byte-aligned address followingmt (that is, in the lowcache line of
the memory stream in the current implementation). Elements in zmm1 that don't map to
those converted stream doublewords are left unchanged. The vloadunpackhd instruction
is used to load thepart of the streamat or after the irst 64-byte-aligned address preceding
mt.

In conjunction with vloadunpackhps, this instruction is useful for re-expanding data that
was packed into a queue. Also in conjunction with vloadunpackhps, it allows unaligned
vector loads (that is, vector loads that are only element-wise, not vector-wise, aligned);
use amask of 0xFFFF or nowrite-mask for this purpose. The typical instruction sequence
to perform an unaligned vector load would be:

// assume memory location is pointed by register rax
vloadunpacklps v0 {k1}, [rax]
vloadunpackhps v0 {k1}, [rax+64]

This instruction does not have broadcast support.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Note that this instruction will always access 64 bytes of memory. The memory region
accessedwill always be between linear_address & (∼0x3F) and (linear_address & (∼0x3F))
+ 63 boundaries.

Note that the address reported by a page fault is the beggining of the 64-byte cache line
boundary containing the memory operand.

This instruction is write-masked, so only those elementswith the corresponding bit set in

366 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

vectormask register k1 aremodi ied in zmm1. Elements in zmm1with the corresponding
bit clear in vector mask1 retain their previous values. However, see above for unusual
aspects of the write-mask's operation with this instruction.

Operation

loadOffset = 0
upSize = UpConvLoadSizeOff32(SSS[2:0])

for(n = 0 ;n < 16; n++) {
i = 32*n
if (k1[n] != 0) {
zmm1[i+31:i] = UpConvLoadf32(mt+upSize*loadOffset)
loadOffset++
if (((mt + upSize*loadOffset) % 64) == 0) {
break

}
}

}

SIMD Floating-Point Exceptions

Invalid.

Memory Up-conversion: Uf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 4
001 reserved N/A N/A
010 reserved N/A N/A
011 loat16 to loat32 [rax] { loat16} 2
100 uint8 to loat32 [rax] {uint8} 1
101 sint8 to loat32 [rax] {sint8} 1
110 uint16 to loat32 [rax] {uint16} 2
111 sint16 to loat32 [rax] {sint16} 2

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_extloadunpacklo_ps (__m512, void const*, _MM_UPCONV_PS_ENUM,
int);

__m512 _mm512_mask_extloadunpacklo_ps (__m512, __mmask16, void const*,
_MM_UPCONV_PS_ENUM, int);

__m512 _mm512_loadunpacklo_ps (__m512, void const*);
__m512 _mm512_mask_loadunpacklo_ps (__m512, __mmask16, void const*);

Reference Number: 327364-001 367

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to element-wise data granularity dictated by the UpConv.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.
#UD If processor model does not implement the speci ic instruction.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If the second operand is not a memory location.

368 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VLOADUNPACKLQ - Load Unaligned Low And Unpack To Int64 Vector

Opcode Instruction Description
MVEX.512.0F38.W1 D0 /r vloadunpacklq zmm1 {k1},

Ui64(mt)
Load low 64-byte-aligned portion of unaligned
int64 stream Ui64(mt), unpack mask-enabled
elements that fall in that portion, and store
those elements in int64 vector zmm1, under
write-mask.

Description

The low-64-byte portion of the quadword stream starting at the element-aligned address
mt is loaded, converted and expanded into thewrite-mask-enabled elements of quadword
vector zmm1. The number of set bits in the write-mask determines the length of the con-
verted quadword stream, as each converted quadword is mapped to exactly one of the
quadword elements in zmm1, skipping over write-masked elements of zmm1.

This instruction only transfers those converted quadwords (if any) in the stream that oc-
cur before the irst 64-byte-aligned address followingmt (that is, in the low cache line of
the memory stream in the current implementation). Elements in zmm1 that don't map to
those converted stream quadwords are left unchanged. The vloadunpackhq instruction is
used to load the part of the stream at or after the irst 64-byte-aligned address preceding
mt.

In conjunction with vloadunpackhq, this instruction is useful for re-expanding data that
was packed into a queue. Also in conjunction with vloadunpackhq, it allows unaligned
vector loads (that is, vector loads that are only element-wise, not vector-wise, aligned);
use a mask of 0xFF or no write-mask for this purpose. The typical instruction sequence
to perform an unaligned vector load would be:

// assume memory location is pointed by register rax
vloadunpacklq v0 {k1}, [rax]
vloadunpackhq v0 {k1}, [rax+64]

This instruction does not have broadcast support.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Note that this instruction will always access 64 bytes of memory. The memory region
accessedwill always be between linear_address & (∼0x3F) and (linear_address & (∼0x3F))
+ 63 boundaries.

Note that the address reported by a page fault is the beggining of the 64-byte cache line
boundary containing the memory operand.

This instruction is write-masked, so only those elementswith the corresponding bit set in
vectormask register k1 aremodi ied in zmm1. Elements in zmm1with the corresponding

Reference Number: 327364-001 369

CHAPTER 6. INSTRUCTION DESCRIPTIONS

bit clear in vector mask1 retain their previous values. However, see above for unusual
aspects of the write-mask's operation with this instruction.

Operation

loadOffset = 0
upSize = UpConvLoadSizeOfi64(SSS[2:0])

for(n = 0 ;n < 8; n++) {
i = 64*n
if (k1[n] != 0) {
zmm1[i+63:i] = UpConvLoadi64(mt+upSize*loadOffset)
loadOffset++
if (((mt + upSize*loadOffset) % 64) == 0) {
break

}
}

}

Flags Affected

None.

Memory Up-conversion: Ui64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 8
001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_extloadunpacklo_epi64 (__m512i, void const*,
_MM_UPCONV_EPI64_ENUM, int);

__m512i _mm512_mask_extloadunpacklo_epi64 (__m512i, __mmask8, void const*,
_MM_UPCONV_EPI64_ENUM, int);

__m512i _mm512_loadunpacklo_epi64 (__m512i, void const*);
__m512i _mm512_mask_loadunpacklo_epi64 (__m512i, __mmask8, void const*);

370 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to element-wise data granularity dictated by the UpConv.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.
#UD If processor model does not implement the speci ic instruction.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If the second operand is not a memory location.

Reference Number: 327364-001 371

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VLOG2PS - Vector Logarithm Base-2 of Float32 Vector

Opcode Instruction Description
MVEX.512.66.0F38.W0 C9
/r

vlog2ps zmm1 {k1}, zmm2/mt Calculate logarithm from loat32 vector
zmm2/mt and store the result in zmm1, under
write-mask.

Description

Computes the element-by-element logarithm base-2 of the loat32 vector on memory or
loat32 vector zmm2. The result is written into loat32 vector zmm1.

1. 4ulp of relative error when the source value is within the intervals (0, 0.5) or (2,∞]
2. absolute error less than 2−21 within the interval [0.5, 2]

For an input value of +/ − 0 the instruction returns −∞ and sets the Divide-By-Zero
lag (#Z). Negative numbers (including−∞) should return the canonical NaN and set the
Invalid lag (#I). Note however that this instruction treats input denormals as zeros of
the same sign, so for denormal negative inputs it returns−∞ and sets the Divide-By-Zero
status lag. If any source element is NaN, the quietized NaN source value is returned for
that element (and #I is raised for input sNaNs).

Current implementation of this instruction does not support any SwizzUpConv setting
other than "no broadcast and no conversion"; any other SwizzUpConv setting will result
in an Invalid Opcode exception.

log2_DX() function follows Table 6.25 when dealing with loating-point special numbers.

Input Result Comments
NaN input qNaN Raise #I lag if sNaN
+∞ +∞
+0 −∞ Raise #Z lag
−0 −∞ Raise #Z lag
<0 NaN Raise #I lag
−∞ NaN Raise #I lag
2n n Exact integral result

Table 6.25: vlog2_DX() special loating-point values behavior

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

372 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

tmpSrc2[511:0] = zmm2/mt

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE

}

for (n = 0; n < 16; n++) {
if (k1[n] != 0) {
i = 32*n
zmm1[i+31:i] = vlog2_DX(tmpSrc2[i+31:i])

}
}

SIMD Floating-Point Exceptions

Invalid, Zero.

Denormal Handling

Treat Input Denormals As Zeros :
YES

Flush Tiny Results To Zero :
YES

Register Swizzle

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 reserved N/A
010 reserved N/A
011 reserved N/A
100 reserved N/A
101 reserved N/A
110 reserved N/A
111 reserved N/A
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
1xx SAE (Supress-All-Exceptions) , {sae}

Reference Number: 327364-001 373

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_log2_ps (__m512);
__m512 _mm512_mask_log2_ps (__m512, __mmask16, __m512);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
This instruction does not support any
SwizzUpConv different from the default value (no broadcast,
no conversion). If SwizzUpConv function is set to any value
different than "no action", then an Invalid Opcode fault is
raised. This includes register swizzles.

374 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VMOVAPD - Move Aligned Float64 Vector

Opcode Instruction Description
MVEX.512.66.0F.W1 28 /r vmovapd zmm1 {k1}, Uf64(mt) Move loat64 vector Uf64(mt) into vector

zmm1, under write-mask.
MVEX.512.66.0F.W1 28 /r vmovapd zmm1 {k1},Sf64(zmm2) Move loat64 vector Sf64(zmm2) into vector

zmm1, under write-mask.
MVEX.512.66.0F.W1 29 /r vmovapdmt {k1},Df64(zmm1) Move loat64 vector Df64(zmm1) into mt, un-

der write-mask.

Description

Moves loat64 vector result of the swizzle/broadcast/conversion process on memory or
loat64vector zmm2 into loat64vector zmm1ordown-converts and stores loat64vector
zmm2 into destination memory.

This instruction iswrite-masked, so only those elementswith the corresponding bit(s) set
in the vectormask (k1) register are computed and stored into register/memory. Elements
in register/memory with the corresponding bit(s) clear in the vector mask register are
maintained with the previous value.

Operation

DESTINATION IS A VECTOR OPERAND
if(source is a register operand) {

if(MVEX.EH==1) {
tmpSrc2[511:0] = zmm2[511:0]

} else {
tmpSrc2[511:0] = SwizzUpConvLoadf64(zmm2)

}
} else {

tmpSrc2[511:0] = UpConvLoadf64(mt)
}

for (n = 0; n < 8; n++) {
if (k1[n] != 0) {
i = 64*n
zmm1[i+63:i] = tmpSrc2[i+63:i])

}
}

DESTINATION IS A MEMORY OPERAND

downSize = DownConvStoreSizeOff64(SSS[2:0])

for(n = 0 ;n < 8; n++) {

Reference Number: 327364-001 375

CHAPTER 6. INSTRUCTION DESCRIPTIONS

if (k1[n] != 0) {
i = 64*n
tmp = DownConvStoref64(zmm1[i+63:i], SSS[2:0])
if(downSize == 8) {
MemStore(mt+8*n) = tmp[63:0]

}
}

}

SIMD Floating-Point Exceptions

DESTINATION IS A VECTOR OPERAND: None.
DESTINATION IS A MEMORY OPERAND: None.

Memory Up-conversion: Uf64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64
001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Register Swizzle: Sf64

MVEX.EH=0
S2S1S0 Function: 4 x 64 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

376 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Down-conversion: Df64

S2S1S0 Function: Usage disp8*N
000 no conversion zmm1 64
001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Intel® C/C++ Compiler Intrinsic Equivalent

__m512d _mm512_mask_mov_pd (__m512d, __mmask8, __m512d);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 377

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VMOVAPS - Move Aligned Float32 Vector

Opcode Instruction Description
MVEX.512.0F.W0 28 /r vmovaps zmm1 {k1}, Uf32(mt) Move loat32 vector Uf32(mt) into vector

zmm1, under write-mask.
MVEX.512.0F.W0 28 /r vmovaps zmm1 {k1}, Sf32(zmm2) Move loat32 vector Sf32(zmm2) into vector

zmm1, under write-mask.
MVEX.512.0F.W0 29 /r vmovapsmt {k1},Df32(zmm1) Move loat32 vector Df32(zmm1) into mt, un-

der write-mask.

Description

Moves loat32 vector result of the swizzle/broadcast/conversion process on memory or
loat32vector zmm2 into loat32vector zmm1ordown-converts and stores loat32vector
zmm2 into destination memory.

This instruction iswrite-masked, so only those elementswith the corresponding bit(s) set
in the vectormask (k1) register are computed and stored into register/memory. Elements
in register/memory with the corresponding bit(s) clear in the vector mask register are
maintained with the previous value.

Operation

DESTINATION IS A VECTOR OPERAND
if(source is a register operand) {

if(MVEX.EH==1) {
tmpSrc2[511:0] = zmm2[511:0]

} else {
tmpSrc2[511:0] = SwizzUpConvLoadf32(zmm2)

}
} else {

tmpSrc2[511:0] = UpConvLoadf32(mt)
}

for (n = 0; n < 16; n++) {
if (k1[n] != 0) {
i = 32*n
zmm1[i+31:i] = tmpSrc2[i+31:i])

}
}

DESTINATION IS A MEMORY OPERAND

downSize = DownConvStoreSizeOff32(SSS[2:0])

for(n = 0 ;n < 16; n++) {

378 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

if (k1[n] != 0) {
i = 32*n
tmp = DownConvStoref32(zmm1[i+31:i], SSS[2:0])
if(downSize == 4) {
MemStore(mt+4*n) = tmp[31:0]

} else if(downSize == 2) {
MemStore(mt+2*n) = tmp[15:0]

} else if(downSize == 1) {
MemStore(mt+n) = tmp[7:0]

}
}

}

SIMD Floating-Point Exceptions

DESTINATION IS A VECTOR OPERAND: Invalid.
DESTINATION IS A MEMORY OPERAND: Over low, Under low, Invalid, Precision, Denor-
mal.

Memory Up-conversion: Uf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 reserved N/A N/A
010 reserved N/A N/A
011 loat16 to loat32 [rax] { loat16} 32
100 uint8 to loat32 [rax] {uint8} 16
101 sint8 to loat32 [rax] {sint8} 16
110 uint16 to loat32 [rax] {uint16} 32
111 sint16 to loat32 [rax] {sint16} 32

Register Swizzle: Sf32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Reference Number: 327364-001 379

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Down-conversion: Df32

S2S1S0 Function: Usage disp8*N
000 no conversion zmm1 64
001 reserved N/A N/A
010 reserved N/A N/A
011 loat32 to loat16 zmm1 { loat16} 32
100 loat32 to uint8 zmm1 {uint8} 16
101 loat32 to sint8 zmm1 {sint8} 16
110 loat32 to uint16 zmm1 {uint16} 32
111 loat32 to sint16 zmm1 {sint16} 32

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_mask_mov_ps (__m512, __mmask16, __m512);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

380 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VMOVDQA32 - Move Aligned Int32 Vector

Opcode Instruction Description
MVEX.512.66.0F.W0 6F /r vmovdqa32 zmm1 {k1}, Ui32(mt) Move int32 vector Ui32(mt) into vector zmm1,

under write-mask.
MVEX.512.66.0F.W0 6F /r vmovdqa32 zmm1 {k1},

Si32(zmm2)
Move int32 vector Si32(zmm2) into vector
zmm1, under write-mask.

MVEX.512.66.0F.W0 7F /r vmovdqa32mt {k1},Di32(zmm1) Move int32 vector Di32(zmm1) into mt, under
write-mask.

Description

Moves int32 vector result of the swizzle/broadcast/conversion process on memory or
int32 vector zmm2 into int32 vector zmm1 or down-converts and stores int32 vector
zmm2 into destination memory.

This instruction iswrite-masked, so only those elementswith the corresponding bit(s) set
in the vectormask (k1) register are computed and stored into register/memory. Elements
in register/memory with the corresponding bit(s) clear in the vector mask register are
maintained with the previous value.

Operation

DESTINATION IS A VECTOR OPERAND

if(source is a register operand) {
if(MVEX.EH==1) {

tmpSrc2[511:0] = zmm2[511:0]
} else {

tmpSrc2[511:0] = SwizzUpConvLoadi32(zmm2)
}

} else {
tmpSrc2[511:0] = UpConvLoadi32(mt)

}

for (n = 0; n < 16; n++) {
if (k1[n] != 0) {
i = 32*n
zmm1[i+31:i] = tmpSrc2[i+31:i])

}
}

DESTINATION IS A MEMORY OPERAND

downSize = DownConvStoreSizeOfi32(SSS[2:0])

Reference Number: 327364-001 381

CHAPTER 6. INSTRUCTION DESCRIPTIONS

for(n = 0 ;n < 16; n++) {
if (k1[n] != 0) {
i = 32*n
tmp = DownConvStorei32(zmm1[i+31:i], SSS[2:0])
if(downSize == 4) {
MemStore(mt+4*n) = tmp[31:0]

} else if(downSize == 2) {
MemStore(mt+2*n) = tmp[15:0]

} else if(downSize == 1) {
MemStore(mt+n) = tmp[7:0]

}
}

}

Flags Affected

DESTINATION IS A VECTOR OPERAND: None.
DESTINATION IS A MEMORY OPERAND: None.

Memory Up-conversion: Ui32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

382 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Down-conversion: Di32

S2S1S0 Function: Usage disp8*N
000 no conversion zmm1 64
001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 uint32 to uint8 zmm1 {uint8} 16
101 sint32 to sint8 zmm1 {sint8} 16
110 uint32 to uint16 zmm1 {uint16} 32
111 sint32 to sint16 zmm1 {sint16} 32

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_mask_mov_epi32 (__m512i, __mmask16, __m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 383

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VMOVDQA64 - Move Aligned Int64 Vector

Opcode Instruction Description
MVEX.512.66.0F.W1 6F /r vmovdqa64 zmm1 {k1}, Ui64(mt) Move int64 vector Ui64(mt) into vector zmm1,

under write-mask.
MVEX.512.66.0F.W1 6F /r vmovdqa64 zmm1 {k1},

Si64(zmm2)
Move int64 vector Si64(zmm2) into vector
zmm1, under write-mask.

MVEX.512.66.0F.W1 7F /r vmovdqa64mt {k1},Di64(zmm1) Move int64 vector Di64(zmm1) into mt, under
write-mask.

Description

Moves int64 vector result of the swizzle/broadcast/conversion process on memory or
int64 vector zmm2 into int64 vector zmm1 or down-converts and stores int64 vector
zmm2 into destination memory.

This instruction iswrite-masked, so only those elementswith the corresponding bit(s) set
in the vectormask (k1) register are computed and stored into register/memory. Elements
in register/memory with the corresponding bit(s) clear in the vector mask register are
maintained with the previous value.

Operation

DESTINATION IS A VECTOR OPERAND

if(source is a register operand) {
if(MVEX.EH==1) {

tmpSrc2[511:0] = zmm2[511:0]
} else {

tmpSrc2[511:0] = SwizzUpConvLoadi64(zmm2)
}

} else {
tmpSrc2[511:0] = UpConvLoadi64(mt)

}

for (n = 0; n < 8; n++) {
if (k1[n] != 0) {
i = 64*n
zmm1[i+63:i] = tmpSrc2[i+63:i])

}
}

DESTINATION IS A MEMORY OPERAND

downSize = DownConvStoreSizeOfi64(SSS[2:0])

384 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

for(n = 0 ;n < 8; n++) {
if (k1[n] != 0) {
i = 64*n
tmp = DownConvStorei64(zmm1[i+63:i], SSS[2:0])
if(downSize == 8) {
MemStore(mt+8*n) = tmp[63:0]

}
}

}

Flags Affected

DESTINATION IS A VECTOR OPERAND: None.
DESTINATION IS A MEMORY OPERAND: None.

Memory Up-conversion: Ui64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64
001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Register Swizzle: Si64

MVEX.EH=0
S2S1S0 Function: 4 x 64 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Reference Number: 327364-001 385

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Down-conversion: Di64

S2S1S0 Function: Usage disp8*N
000 no conversion zmm1 64
001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_mask_mov_epi64 (__m512i, __mmask8, __m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

386 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VMOVNRAPD - Store Aligned Float64 Vector With No-Read Hint

Opcode Instruction Description
MVEX.512.F3.0F.W1.EH0
29 /r

vmovnrapdm {k1},Df64(zmm1) Store with No-Read hint loat64 vector
Df64(zmm1) intom, under write-mask.

Description

Stores loat64 vector zmm1 (or a down-converted version of it) into destination memory
with a No-Read hint for the case thewhole vector is going to bewritten intomemory. This
instruction is intended to speed up the case of stores in streaming kernels wherewewant
to avoidwastingmemory bandwidth by being forced to read the original content of entire
cache lines frommemory when we overwrite their whole contents completely.

InKnights Corner, this instruction is able to optimizememorybandwidth in caseof a cache
miss and avoid reading the original contents of the memory destination operand if the
following conditions hold true:

• The instruction does not use a write-mask (MVEX.aaa=000).
• The instruction does not perform any kind of down-conversion (MVEX.SSS=000).

Note that this instruction is encoded by forcing MVEX.EH bit to 0. The Eviction Hint does
not have any effect on this instruction.

The No-Read directive is intended as a performance hint and could be ignored by a given
processor implementation.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are stored to memory. Elements in the destination memory
vector with the corresponding bit clear in k1 register retain their previous value.

Operation

DESTINATION IS A MEMORY OPERAND

downSize = DownConvStoreSizeOff64(SSS[2:0])

for(n = 0 ;n < 8; n++) {
if (k1[n] != 0) {
i = 64*n
tmp = DownConvStoref64(zmm1[i+63:i], SSS[2:0])
if(downSize == 8) {
MemStore(mt+8*n) = tmp[63:0]

}
}

}

Reference Number: 327364-001 387

CHAPTER 6. INSTRUCTION DESCRIPTIONS

SIMD Floating-Point Exceptions

None.

Memory Down-conversion: Df64

S2S1S0 Function: Usage disp8*N
000 no conversion zmm1 64
001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Intel® C/C++ Compiler Intrinsic Equivalent

void _mm512_storenr_pd(void*, __m512d);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

388 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VMOVNRAPS - Store Aligned Float32 Vector With No-Read Hint

Opcode Instruction Description
MVEX.512.F2.0F.W0.EH0
29 /r

vmovnrapsm {k1},Df32(zmm1) Store with No-Read hint loat32 vector
Df32(zmm1) intom, under write-mask.

Description

Stores loat32 vector zmm1 (or a down-converted version of it) into destination memory
with a No-Read hint for the case thewhole vector is going to bewritten intomemory. This
instruction is intended to speed up the case of stores in streaming kernels wherewewant
to avoidwastingmemory bandwidth by being forced to read the original content of entire
cache lines frommemory when we overwrite their whole contents completely.

InKnights Corner, this instruction is able to optimizememorybandwidth in caseof a cache
miss and avoid reading the original contents of the memory destination operand if the
following conditions hold true:

• The instruction does not use a write-mask (MVEX.aaa=000).
• The instruction does not perform any kind of down-conversion (MVEX.SSS=000).

Note that this instruction is encoded by forcing MVEX.EH bit to 0. The Eviction Hint does
not have any effect on this instruction.

The No-Read directive is intended as a performance hint and could be ignored by a given
processor implementation.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are stored to memory. Elements in the destination memory
vector with the corresponding bit clear in k1 register retain their previous value.

Operation

DESTINATION IS A MEMORY OPERAND

downSize = DownConvStoreSizeOff32(SSS[2:0])

for(n = 0 ;n < 16; n++) {
if (k1[n] != 0) {
i = 32*n
tmp = DownConvStoref32(zmm1[i+31:i], SSS[2:0])
if(downSize == 4) {
MemStore(mt+4*n) = tmp[31:0]

} else if(downSize == 2) {
MemStore(mt+2*n) = tmp[15:0]

} else if(downSize == 1) {

Reference Number: 327364-001 389

CHAPTER 6. INSTRUCTION DESCRIPTIONS

MemStore(mt+n) = tmp[7:0]
}

}
}

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Memory Down-conversion: Df32

S2S1S0 Function: Usage disp8*N
000 no conversion zmm1 64
001 reserved N/A N/A
010 reserved N/A N/A
011 loat32 to loat16 zmm1 { loat16} 32
100 loat32 to uint8 zmm1 {uint8} 16
101 loat32 to sint8 zmm1 {sint8} 16
110 loat32 to uint16 zmm1 {uint16} 32
111 loat32 to sint16 zmm1 {sint16} 32

Intel® C/C++ Compiler Intrinsic Equivalent

void _mm512_storenr_ps(void*, __m512);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

390 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 391

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VMOVNRNGOAPD - Non-globally Ordered Store Aligned Float64 Vector
With No-Read Hint

Opcode Instruction Description
MVEX.512.F3.0F.W1.EH1
29 /r

vmovnrngoapd m {k1},
Df64(zmm1)

Non-ordered Store with No-Read hint loat64
vectorDf64(zmm1) intom, under write-mask.

Description

Stores loat64 vector zmm1 (or a down-converted version of it) into destination memory
with a No-Read hint for the case the whole vector is going to be written into memory,
using a weakly-ordered memory consistency model (i.e. stores performed with these in-
struction are not globally ordered, and subsequent stores from the same thread can be
observed before them).

This instruction is intended to speed up the case of stores in streaming kernels where we
want to avoid wasting memory bandwidth by being forced to read the original content of
entire cache lines frommemorywhenwe overwrite theirwhole contents completely. This
instruction takes advantage of theweakly-orderedmemory consistencymodel to increase
the throughput at which this type of write operations can be performed. Due to the same
reason, a fencing operation implemented with SFENCE, MFENCE or CPUID instructions
shouldbeused in conjunctionwith this instruction ifmultiple threads are reading/writing
thememory operand location (note that Knights Corner does not implement SFENCE nor
MFENCE).

InKnights Corner, this instruction is able to optimizememorybandwidth in caseof a cache
miss and avoid reading the original contents of the memory destination operand if the
following conditions hold true:

• The instruction does not use a write-mask (MVEX.aaa=000).
• The instruction does not perform any kind of down-conversion (MVEX.SSS=000).

Note that this instruction is encoded by forcing MVEX.EH bit to 1. The Eviction Hint does
not have any effect on this instruction.

The No-Read directive is intended as a performance hint and could be ignored by a given
processor implementation.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are stored to memory. Elements in the destination memory
vector with the corresponding bit clear in k1 register retain their previous value.

392 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

DESTINATION IS A MEMORY OPERAND

downSize = DownConvStoreSizeOff64(SSS[2:0])

for(n = 0 ;n < 8; n++) {
if (k1[n] != 0) {
i = 64*n
tmp = DownConvStoref64(zmm1[i+63:i], SSS[2:0])
if(downSize == 8) {
MemStore(mt+8*n) = tmp[63:0]

}
}

}

SIMD Floating-Point Exceptions

None.

Memory Down-conversion: Df64

S2S1S0 Function: Usage disp8*N
000 no conversion zmm1 64
001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Intel® C/C++ Compiler Intrinsic Equivalent

void _mm512_storenrngo_pd(void*, __m512d);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Reference Number: 327364-001 393

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

394 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VMOVNRNGOAPS - Non-globally Ordered Store Aligned Float32 Vector
With No-Read Hint

Opcode Instruction Description
MVEX.512.F2.0F.W0.EH1
29 /r

vmovnrngoaps m {k1},
Df32(zmm1)

Non-ordered Store with No-Read hint loat32
vectorDf32(zmm1) intom, under write-mask.

Description

Stores loat32 vector zmm1 (or a down-converted version of it) into destination memory
with a No-Read hint for the case the whole vector is going to be written into memory,
using a weakly-ordered memory consistency model (i.e. stores performed with these in-
struction are not globally ordered, and subsequent stores from the same thread can be
observed before them).

This instruction is intended to speed up the case of stores in streaming kernels where we
want to avoid wasting memory bandwidth by being forced to read the original content of
entire cache lines frommemorywhenwe overwrite theirwhole contents completely. This
instruction takes advantage of theweakly-orderedmemory consistencymodel to increase
the throughput at which this type of write operations can be performed. Due to the same
reason, a fencing operation implemented with SFENCE, MFENCE or CPUID instructions
shouldbeused in conjunctionwith this instruction ifmultiple threads are reading/writing
thememory operand location (note that Knights Corner does not implement SFENCE nor
MFENCE).

InKnights Corner, this instruction is able to optimizememorybandwidth in caseof a cache
miss and avoid reading the original contents of the memory destination operand if the
following conditions hold true:

• The instruction does not use a write-mask (MVEX.aaa=000).
• The instruction does not perform any kind of down-conversion (MVEX.SSS=000).

Note that this instruction is encoded by forcing MVEX.EH bit to 1. The Eviction Hint does
not have any effect on this instruction.

The No-Read directive is intended as a performance hint and could be ignored by a given
processor implementation.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are stored to memory. Elements in the destination memory
vector with the corresponding bit clear in k1 register retain their previous value.

Reference Number: 327364-001 395

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

DESTINATION IS A MEMORY OPERAND

downSize = DownConvStoreSizeOff32(SSS[2:0])

for(n = 0 ;n < 16; n++) {
if (k1[n] != 0) {
i = 32*n
tmp = DownConvStoref32(zmm1[i+31:i], SSS[2:0])
if(downSize == 4) {
MemStore(mt+4*n) = tmp[31:0]

} else if(downSize == 2) {
MemStore(mt+2*n) = tmp[15:0]

} else if(downSize == 1) {
MemStore(mt+n) = tmp[7:0]

}
}

}

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Memory Down-conversion: Df32

S2S1S0 Function: Usage disp8*N
000 no conversion zmm1 64
001 reserved N/A N/A
010 reserved N/A N/A
011 loat32 to loat16 zmm1 { loat16} 32
100 loat32 to uint8 zmm1 {uint8} 16
101 loat32 to sint8 zmm1 {sint8} 16
110 loat32 to uint16 zmm1 {uint16} 32
111 loat32 to sint16 zmm1 {sint16} 32

Intel® C/C++ Compiler Intrinsic Equivalent

void _mm512_storenrngo_ps(void*, __m512);

396 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 397

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VMULPD - Multiply Float64 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F.W1
59 /r

vmulpd zmm1 {k1}, zmm2,
Sf64(zmm3/mt)

Multiply loat64 vector zmm2 and loat64 vec-
tor Sf64(zmm3/mt) and store the result in
zmm1, under write-mask.

Description

Performs an element-by-element multiplication between loat64 vector zmm2 and the
loat64 vector result of the swizzle/broadcast/conversion process on memory or loat64
vector zmm3. The result is written into loat64 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc3[511:0] = SwizzUpConvLoadf64(zmm3/mt)

}

for (n = 0; n < 8; n++) {
if(k1[n] != 0) {
i = 64*n
// float64 operation
zmm1[i+63:i] = zmm2[i+63:i] * tmpSrc3[i+63:i]

}
}

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

398 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sf64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64
001 broadcast 1 element (x8) [rax] {1to8} 8
010 broadcast 4 elements (x2) [rax] {4to8} 32
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Register Swizzle: Sf64

MVEX.EH=0
S2S1S0 Function: 4 x 64 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}

Reference Number: 327364-001 399

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel® C/C++ Compiler Intrinsic Equivalent

__m512d _mm512_mul_pd (__m512d, __m512d);
__m512d _mm512_mask_mul_pd (__m512d, __mmask8, __m512d, __m512d);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

400 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VMULPS - Multiply Float32 Vectors

Opcode Instruction Description
MVEX.NDS.512.0F.W059/r vmulps zmm1 {k1}, zmm2,

Sf32(zmm3/mt)
Multiply loat32 vector zmm2 and loat32 vec-
tor Sf32(zmm3/mt) and store the result in
zmm1, under write-mask.

Description

Performs an element-by-element multiplication between loat32 vector zmm2 and the
loat32 vector result of the swizzle/broadcast/conversion process on memory or loat32
vector zmm3. The result is written into loat32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc3[511:0] = SwizzUpConvLoadf32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// float32 operation
zmm1[i+31:i] = zmm2[i+31:i] * tmpSrc3[i+31:i]

}
}

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Reference Number: 327364-001 401

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 loat16 to loat32 [rax] { loat16} 32
100 uint8 to loat32 [rax] {uint8} 16
110 uint16 to loat32 [rax] {uint16} 32
111 sint16 to loat32 [rax] {sint16} 32

Register Swizzle: Sf32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}

402 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_mul_ps (__m512, __m512);
__m512 _mm512_mask_mul_ps (__m512, __mmask16, __m512, __m512);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 403

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPACKSTOREHD - Pack And Store Unaligned High From Int32 Vector

Opcode Instruction Description
MVEX.512.66.0F38.W0 D4
/r

vpackstorehd mt {k1},
Di32(zmm1)

Pack mask-enabled elements of int32 vector
zmm1 to form an unaligned int32 stream,
down-convert it and logically map the stream
starting at mt − 64, and store that portion
of the stream that maps to the high 64-byte-
aligned portion of the memory destination, un-
der write-mask.

Description

Packs anddown-converts themask-enabledelements of int32vector zmm1 into abyte/word/doubleword
stream logically mapped starting at element-aligned address (mt − 64), and stores the
high-64-byte elements of that stream (those elements of the stream that map at or after
the irst 64-byte-aligned address following (mt − 64), the high cache line in the current
implementation). The length of the stream depends on the number of enabled masks, as
elements disabled by the mask are not added to the stream.

The vpackstoreld instruction is used to store the part of the stream before the irst 64-
byte-aligned address precedingmt.

The mask is not used as a write-mask for this instruction. Instead, the mask is used as an
element selector, choosing which elements are added to the stream. The one similarity
to a write-mask as used in the rest of this document is that the no-write-mask option
(encoding 0) is available to select a mask of 0xFFFF for this instruction. For that reason,
the notation and encoding are the same as for a write-mask.

In conjunction with vpackstoreld, this instruction is useful for packing data into a queue.
Also in conjunction with vpackstoreld, it allows unaligned vector stores (that is, vector
stores that are only element-wise , not vector-wise, aligned); just use amask of 0xFFFF or
nowrite-mask for this purpose. The typical instruction sequence to performan unaligned
vector store would be:

// assume memory location is pointed by register rax
vpackstoreld [rax] {k1}, v0
vpackstorehd [rax+64] {k1}, v0

This instruction does not have subset support.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element after down-conversion.

Note that the address reported by a page fault is the beggining of the 64-byte cache line
boundary containing the memory operand. The instruction will not produce any #GP or
#SS fault due to address canonicity nor #PF fault if the address is aligned to a 64-byte
boundary. Additionally, A/D bits in the page table will not be updated.

404 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

storeOffset = 0
downSize = DownConvStoreSizeOfi32(SSS[2:0])
foundNext64BytesBoundary = false

pointer = mt - 64
for (n = 0; n < 16; n++) {

if(k1[n] != 0) {
if (foundNext64BytesBoundary == false) {

if (((pointer + (storeOffset+1)*downSize) % 64) == 0) {
foundNext64BytesBoundary = true

}
} else {

i = 32*n
tmp = DownConvStorei32(zmm1[i+31:i], SSS[2:0])
if(downSize == 4) {
MemStore(pointer + storeOffset*4) = tmp[31:0]

} else if(downSize == 2) {
MemStore(pointer + storeOffset*2) = tmp[15:0]

} else if(downSize == 1) {
MemStore(pointer + storeOffset) = tmp[7:0]

}
}
storeOffset++

}
}

Flags Affected

None.

Memory Down-conversion: Di32

S2S1S0 Function: Usage disp8*N
000 no conversion zmm1 4
001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 uint32 to uint8 zmm1 {uint8} 1
101 sint32 to sint8 zmm1 {sint8} 1
110 uint32 to uint16 zmm1 {uint16} 2
111 sint32 to sint16 zmm1 {sint16} 2

Reference Number: 327364-001 405

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel® C/C++ Compiler Intrinsic Equivalent

void _mm512_extpackstorehi_epi32 (void*, __m512i,
_MM_DOWNCONV_EPI32_ENUM, int);

void _mm512_mask_extpackstorehi_epi32 (void*, __mmask16, __m512i,
_MM_DOWNCONV_EPI32_ENUM, int);

void _mm512_packstorehi_epi32 (void*, __m512i);
void _mm512_mask_packstorehi_epi32 (void*, __mmask16, __m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to element-wise data granularity dictated by the DownConv.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.
#UD If processor model does not implement the speci ic instruction.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If the ist operand is not a memory location.

406 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPACKSTOREHPD - Pack And Store Unaligned High From Float64 Vector

Opcode Instruction Description
MVEX.512.66.0F38.W1 D5
/r

vpackstorehpd mt {k1},
Df64(zmm1)

Pack mask-enabled elements of loat64 vector
zmm1 to form an unaligned loat64 stream,
down-convert it and logically map the stream
starting at mt − 64, and store that portion
of the stream that maps to the high 64-byte-
aligned portion of the memory destination, un-
der write-mask.

Description

Packs and down-converts the mask-enabled elements of loat64 vector zmm1 into a
loat64 stream logicallymapped starting at element-aligned address (mt−64), and stores
the high-64-byte elements of that stream (those elements of the stream that map at or af-
ter the irst 64-byte-aligned address following (mt−64), the high cache line in the current
implementation). The length of the stream depends on the number of enabled masks, as
elements disabled by the mask are not added to the stream.

The vpackstorelpd instruction is used to store the part of the stream before the irst 64-
byte-aligned address precedingmt.

The mask is not used as a write-mask for this instruction. Instead, the mask is used as an
element selector, choosing which elements are added to the stream. The one similarity
to a write-mask as used in the rest of this document is that the no-write-mask option
(encoding 0) is available to select a mask of 0xFF for this instruction. For that reason, the
notation and encoding are the same as for a write-mask.

In conjunctionwith vpackstorelpd, this instruction is useful for packing data into a queue.
Also in conjunction with vpackstorelpd, it allows unaligned vector stores (that is, vector
stores that are only element-wise , not vector-wise, aligned); just use a mask of 0xFF or
nowrite-mask for this purpose. The typical instruction sequence to performan unaligned
vector store would be:

// assume memory location is pointed by register rax
vpackstorelpd [rax] {k1}, v0
vpackstorehpd [rax+64] {k1}, v0

This instruction does not have subset support.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element after down-conversion.

Note that the address reported by a page fault is the beggining of the 64-byte cache line
boundary containing the memory operand. The instruction will not produce any #GP or
#SS fault due to address canonicity nor #PF fault if the address is aligned to a 64-byte
boundary. Additionally, A/D bits in the page table will not be updated.

Reference Number: 327364-001 407

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

storeOffset = 0
downSize = DownConvStoreSizeOff64(SSS[2:0])
foundNext64BytesBoundary = false

pointer = mt - 64
for (n = 0; n < 8; n++) {

if(k1[n] != 0) {
if (foundNext64BytesBoundary == false) {

if (((pointer + (storeOffset+1)*downSize) % 64) == 0) {
foundNext64BytesBoundary = true

}
} else {

i = 64*n
tmp = DownConvStoref64(zmm1[i+63:i], SSS[2:0])
if(downSize == 8) {
MemStore(pointer + storeOffset*8) = tmp[63:0]

}
}
storeOffset++

}
}

SIMD Floating-Point Exceptions

None.

Memory Down-conversion: Df64

S2S1S0 Function: Usage disp8*N
000 no conversion zmm1 8
001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

408 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel® C/C++ Compiler Intrinsic Equivalent

void _mm512_extpackstorehi_pd (void*, __m512d, _MM_DOWNCONV_PD_ENUM, int);
void _mm512_mask_extpackstorehi_pd (void*, __mmask8, __m512d,

_MM_DOWNCONV_PD_ENUM, int);
void _mm512_packstorehi_pd (void*, __m512d);
void _mm512_mask_packstorehi_pd (void*, __mmask8, __m512d);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to element-wise data granularity dictated by the DownConv.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.
#UD If processor model does not implement the speci ic instruction.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If the ist operand is not a memory location.

Reference Number: 327364-001 409

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPACKSTOREHPS - Pack And Store Unaligned High From Float32 Vector

Opcode Instruction Description
MVEX.512.66.0F38.W0 D5
/r

vpackstorehps mt {k1},
Df32(zmm1)

Pack mask-enabled elements of loat32 vector
zmm1 to form an unaligned loat32 stream,
down-convert it and logically map the stream
starting at mt − 64, and store that portion
of the stream that maps to the high 64-byte-
aligned portion of the memory destination, un-
der write-mask.

Description

Packs and down-converts the mask-enabled elements of loat32 vector zmm1 into a
byte/word/doubleword stream logically mapped starting at element-aligned address
(mt − 64), and stores the high-64-byte elements of that stream (those elements of the
stream that map at or after the irst 64-byte-aligned address following (mt−64), the high
cache line in the current implementation). The length of the stream depends on the num-
ber of enabled masks, as elements disabled by the mask are not added to the stream.

The vpackstorelps instruction is used to store the part of the stream before the irst 64-
byte-aligned address precedingmt.

The mask is not used as a write-mask for this instruction. Instead, the mask is used as an
element selector, choosing which elements are added to the stream. The one similarity
to a write-mask as used in the rest of this document is that the no-write-mask option
(encoding 0) is available to select a mask of 0xFFFF for this instruction. For that reason,
the notation and encoding are the same as for a write-mask.

In conjunctionwith vpackstorelps, this instruction is useful for packing data into a queue.
Also in conjunction with vpackstorelps, it allows unaligned vector stores (that is, vector
stores that are only element-wise , not vector-wise, aligned); just use amask of 0xFFFF or
nowrite-mask for this purpose. The typical instruction sequence to performan unaligned
vector store would be:

// assume memory location is pointed by register rax
vpackstorelps [rax] {k1}, v0
vpackstorehps [rax+64] {k1}, v0

This instruction does not have subset support.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element after down-conversion.

Note that the address reported by a page fault is the beggining of the 64-byte cache line
boundary containing the memory operand. The instruction will not produce any #GP or
#SS fault due to address canonicity nor #PF fault if the address is aligned to a 64-byte
boundary. Additionally, A/D bits in the page table will not be updated.

410 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

storeOffset = 0
downSize = DownConvStoreSizeOff32(SSS[2:0])
foundNext64BytesBoundary = false

pointer = mt - 64
for (n = 0; n < 16; n++) {

if(k1[n] != 0) {
if (foundNext64BytesBoundary == false) {

if (((pointer + (storeOffset+1)*downSize) % 64) == 0) {
foundNext64BytesBoundary = true

}
} else {

i = 32*n
tmp = DownConvStoref32(zmm1[i+31:i], SSS[2:0])
if(downSize == 4) {
MemStore(pointer + storeOffset*4) = tmp[31:0]

} else if(downSize == 2) {
MemStore(pointer + storeOffset*2) = tmp[15:0]

} else if(downSize == 1) {
MemStore(pointer + storeOffset) = tmp[7:0]

}
}
storeOffset++

}
}

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Memory Down-conversion: Df32

S2S1S0 Function: Usage disp8*N
000 no conversion zmm1 4
001 reserved N/A N/A
010 reserved N/A N/A
011 loat32 to loat16 zmm1 { loat16} 2
100 loat32 to uint8 zmm1 {uint8} 1
101 loat32 to sint8 zmm1 {sint8} 1
110 loat32 to uint16 zmm1 {uint16} 2
111 loat32 to sint16 zmm1 {sint16} 2

Reference Number: 327364-001 411

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel® C/C++ Compiler Intrinsic Equivalent

void _mm512_extpackstorehi_ps (void*, __m512, _MM_DOWNCONV_PS_ENUM, int);
void _mm512_mask_extpackstorehi_ps (void*, __mmask16, __m512,

_MM_DOWNCONV_PS_ENUM, int);
void _mm512_packstorehi_ps (void*, __m512);
void _mm512_mask_packstorehi_ps (void*, __mmask16, __m512);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to element-wise data granularity dictated by the DownConv.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.
#UD If processor model does not implement the speci ic instruction.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If the ist operand is not a memory location.

412 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPACKSTOREHQ - Pack And Store Unaligned High From Int64 Vector

Opcode Instruction Description
MVEX.512.66.0F38.W1 D4
/r

vpackstorehq mt {k1},
Di64(zmm1)

Pack mask-enabled elements of int64 vector
zmm1 to form an unaligned int64 stream,
down-convert it and logically map the stream
starting at mt − 64, and store that portion
of the stream that maps to the high 64-byte-
aligned portion of the memory destination, un-
der write-mask.

Description

Packs and down-converts the mask-enabled elements of int64 vector zmm1 into a int64
stream logically mapped starting at element-aligned address (mt − 64), and stores the
high-64-byte elements of that stream (those elements of the stream that map at or after
the irst 64-byte-aligned address following (mt − 64), the high cache line in the current
implementation). The length of the stream depends on the number of enabled masks, as
elements disabled by the mask are not added to the stream.

The vpackstorelq instruction is used to store the part of the stream before the irst 64-
byte-aligned address precedingmt.

The mask is not used as a write-mask for this instruction. Instead, the mask is used as an
element selector, choosing which elements are added to the stream. The one similarity
to a write-mask as used in the rest of this document is that the no-write-mask option
(encoding 0) is available to select a mask of 0xFF for this instruction. For that reason, the
notation and encoding are the same as for a write-mask.

In conjunction with vpackstorelq, this instruction is useful for packing data into a queue.
Also in conjunction with vpackstorelq, it allows unaligned vector stores (that is, vector
stores that are only element-wise , not vector-wise, aligned); just use a mask of 0xFF or
nowrite-mask for this purpose. The typical instruction sequence to performan unaligned
vector store would be:

// assume memory location is pointed by register rax
vpackstorelq [rax] {k1}, v0
vpackstorehq [rax+64] {k1}, v0

This instruction does not have subset support.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element after down-conversion.

Note that the address reported by a page fault is the beggining of the 64-byte cache line
boundary containing the memory operand. The instruction will not produce any #GP or
#SS fault due to address canonicity nor #PF fault if the address is aligned to a 64-byte
boundary. Additionally, A/D bits in the page table will not be updated.

Reference Number: 327364-001 413

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

storeOffset = 0
downSize = DownConvStoreSizeOfi64(SSS[2:0])
foundNext64BytesBoundary = false

pointer = mt - 64
for (n = 0; n < 8; n++) {

if(k1[n] != 0) {
if (foundNext64BytesBoundary == false) {

if (((pointer + (storeOffset+1)*downSize) % 64) == 0) {
foundNext64BytesBoundary = true

}
} else {

i = 64*n
tmp = DownConvStorei64(zmm1[i+63:i], SSS[2:0])
if(downSize == 8) {
MemStore(pointer + storeOffset*8) = tmp[63:0]

}
}
storeOffset++

}
}

Flags Affected

None.

Memory Down-conversion: Di64

S2S1S0 Function: Usage disp8*N
000 no conversion zmm1 8
001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

414 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel® C/C++ Compiler Intrinsic Equivalent

void _mm512_extpackstorehi_epi64 (void*, __m512i,
_MM_DOWNCONV_EPI64_ENUM, int);

void _mm512_mask_extpackstorehi_epi64 (void*, __mmask8, __m512i,
_MM_DOWNCONV_EPI64_ENUM, int);

void _mm512_packstorehi_epi64 (void*, __m512i);
void _mm512_mask_packstorehi_epi64 (void*, __mmask8, __m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to element-wise data granularity dictated by the DownConv.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.
#UD If processor model does not implement the speci ic instruction.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If the ist operand is not a memory location.

Reference Number: 327364-001 415

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPACKSTORELD - Pack and Store Unaligned Low From Int32 Vector

Opcode Instruction Description
MVEX.512.66.0F38.W0 D0
/r

vpackstoreld mt {k1},
Di32(zmm1)

Pack mask-enabled elements of int32 vector
zmm1 to form an unaligned int32 stream,
down-convert it and logically map the stream
starting at mt, and store that portion of the
stream that maps to the low 64-byte-aligned
portion of the memory destination, under
write-mask.

Description

Packs anddown-converts themask-enabledelements of int32vector zmm1 into abyte/word/doubleword
stream logically mapped starting at element-aligned address mt, and stores the low-64-
byte elements of that stream (those elements of the stream that map before the irst 64-
byte-aligned address followingmt, the low cache line in the current implementation). The
length of the stream depends on the number of enabled masks, as elements disabled by
the mask are not added to the stream.

The vpackstorehd instruction is used to store the part of the stream at or after the irst
64-byte-aligned address precedingmt.

The mask is not used as a write-mask for this instruction. Instead, the mask is used as an
element selector, choosing which elements are added to the stream. The one similarity
to a write-mask as used in the rest of this document is that the no-write-mask option
(encoding 0) is available to select a mask of 0xFFFF for this instruction. For that reason,
the notation and encoding are the same as for a write-mask.

In conjunction with vpackstorehd, this instruction is useful for packing data into into a
queue. Also in conjunction with vpackstorehd, it allows unaligned vector stores (that is,
vector stores that are only element-wise, not vector-wise, aligned); just use a mask of
0xFFFF or no write-mask for this purpose. The typical instruction sequence to perform
an unaligned vector store would be:

// assume memory location is pointed by register rax
vpackstoreld [rax] {k1}, v0
vpackstorehd [rax+64] {k1}, v0

This instruction does not have subset support.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element after down-conversion.

Note that the address reported by a page fault is the beggining of the 64-byte cache line
boundary containing the memory operand.

416 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

storeOffset = 0
downSize = DownConvStoreSizeOfi32(SSS[2:0])

for(n = 0 ;n < 16; n++) {
if (k1[n] != 0) {
i = 32*n
tmp = DownConvStorei32(zmm1[i+31:i], SSS[2:0])
if(downSize == 4) {
MemStore(mt+4*storeOffset) = tmp[31:0]

} else if(downSize == 2) {
MemStore(mt+2*storeOffset) = tmp[15:0]

} else if(downSize == 1) {
MemStore(mt+storeOffset) = tmp[7:0]

}
storeOffset++
if (((mt + downSize*storeOffset) % 64) == 0) {
break

}
}

}

Flags Affected

None.

Memory Down-conversion: Di32

S2S1S0 Function: Usage disp8*N
000 no conversion zmm1 4
001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 uint32 to uint8 zmm1 {uint8} 1
101 sint32 to sint8 zmm1 {sint8} 1
110 uint32 to uint16 zmm1 {uint16} 2
111 sint32 to sint16 zmm1 {sint16} 2

Reference Number: 327364-001 417

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel® C/C++ Compiler Intrinsic Equivalent

void _mm512_extpackstorelo_epi32 (void*, __m512i,
_MM_DOWNCONV_EPI32_ENUM, int);

void _mm512_mask_extpackstorelo_epi32 (void*, __mmask16, __m512i,
_MM_DOWNCONV_EPI32_ENUM, int);

void _mm512_packstorelo_epi32 (void*, __m512i);
void _mm512_mask_packstorelo_epi32 (void*, __mmask16, __m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to element-wise data granularity dictated by the DownConv.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.
#UD If processor model does not implement the speci ic instruction.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If the ist operand is not a memory location.

418 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPACKSTORELPD - Pack and Store Unaligned Low From Float64 Vector

Opcode Instruction Description
MVEX.512.66.0F38.W1 D1
/r

vpackstorelpd mt {k1},
Df64(zmm1)

Pack mask-enabled elements of loat64 vector
zmm1 to form an unaligned loat64 stream,
down-convert it and logically map the stream
starting at mt, and store that portion of the
stream that maps to the low 64-byte-aligned
portion of the memory destination, under
write-mask.

Description

Packs and down-converts the mask-enabled elements of loat64 vector zmm1 into a
loat64 stream logically mapped starting at element-aligned address mt, and stores the
low-64-byte elements of that stream (those elements of the stream that map before the
irst 64-byte-aligned address following mt, the low cache line in the current implemen-
tation). The length of the stream depends on the number of enabled masks, as elements
disabled by the mask are not added to the stream.

The vpackstorehpd instruction is used to store the part of the stream at or after the irst
64-byte-aligned address precedingmt.

The mask is not used as a write-mask for this instruction. Instead, the mask is used as an
element selector, choosing which elements are added to the stream. The one similarity
to a write-mask as used in the rest of this document is that the no-write-mask option
(encoding 0) is available to select a mask of 0xFF for this instruction. For that reason, the
notation and encoding are the same as for a write-mask.

In conjunction with vpackstorehpd, this instruction is useful for packing data into into a
queue. Also in conjunction with vpackstorehpd, it allows unaligned vector stores (that
is, vector stores that are only element-wise, not vector-wise, aligned); just use a mask of
0xFF or no write-mask for this purpose. The typical instruction sequence to perform an
unaligned vector store would be:

// assume memory location is pointed by register rax
vpackstorelpd [rax] {k1}, v0
vpackstorehpd [rax+64] {k1}, v0

This instruction does not have subset support.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element after down-conversion.

Note that the address reported by a page fault is the beggining of the 64-byte cache line
boundary containing the memory operand.

Reference Number: 327364-001 419

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

storeOffset = 0
downSize = DownConvStoreSizeOff64(SSS[2:0])

for(n = 0 ;n < 8; n++) {
if (k1[n] != 0) {
i = 64*n
tmp = DownConvStoref64(zmm1[i+63:i], SSS[2:0])
if(downSize == 8) {
MemStore(mt+8*storeOffset) = tmp[63:0]

}
storeOffset++
if (((mt + downSize*storeOffset) % 64) == 0) {
break

}
}

}

SIMD Floating-Point Exceptions

None.

Memory Down-conversion: Df64

S2S1S0 Function: Usage disp8*N
000 no conversion zmm1 8
001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Intel® C/C++ Compiler Intrinsic Equivalent

void _mm512_extpackstorelo_pd (void*, __m512d, _MM_DOWNCONV_PD_ENUM, int);
void _mm512_mask_extpackstorelo_pd (void*, __mmask8, __m512d,

_MM_DOWNCONV_PD_ENUM, int);
void _mm512_packstorelo_pd (void*, __m512d);
void _mm512_mask_packstorelo_pd (void*, __mmask8, __m512d);

420 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to element-wise data granularity dictated by the DownConv.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.
#UD If processor model does not implement the speci ic instruction.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If the ist operand is not a memory location.

Reference Number: 327364-001 421

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPACKSTORELPS - Pack and Store Unaligned Low From Float32 Vector

Opcode Instruction Description
MVEX.512.66.0F38.W0 D1
/r

vpackstorelps mt {k1},
Df32(zmm1)

Pack mask-enabled elements of loat32 vector
zmm1 to form an unaligned loat32 stream,
down-convert it and logically map the stream
starting at mt, and store that portion of the
stream that maps to the low 64-byte-aligned
portion of the memory destination, under
write-mask.

Description

Packs and down-converts the mask-enabled elements of loat32 vector zmm1 into a
byte/word/doubleword stream logicallymapped starting at element-aligned addressmt,
and stores the low-64-byte elements of that stream (those elements of the stream that
map before the irst 64-byte-aligned address followingmt, the low cache line in the cur-
rent implementation). The length of the streamdepends on the number of enabledmasks,
as elements disabled by the mask are not added to the stream.

The vpackstorehps instruction is used to store the part of the stream at or after the irst
64-byte-aligned address precedingmt.

The mask is not used as a write-mask for this instruction. Instead, the mask is used as an
element selector, choosing which elements are added to the stream. The one similarity
to a write-mask as used in the rest of this document is that the no-write-mask option
(encoding 0) is available to select a mask of 0xFFFF for this instruction. For that reason,
the notation and encoding are the same as for a write-mask.

In conjunction with vpackstorehps, this instruction is useful for packing data into into a
queue. Also in conjunction with vpackstorehps, it allows unaligned vector stores (that
is, vector stores that are only element-wise, not vector-wise, aligned); just use a mask of
0xFFFF or no write-mask for this purpose. The typical instruction sequence to perform
an unaligned vector store would be:

// assume memory location is pointed by register rax
vpackstorelps [rax] {k1}, v0
vpackstorehps [rax+64] {k1}, v0

This instruction does not have subset support.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element after down-conversion.

Note that the address reported by a page fault is the beggining of the 64-byte cache line
boundary containing the memory operand.

422 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

storeOffset = 0
downSize = DownConvStoreSizeOff32(SSS[2:0])

for(n = 0 ;n < 16; n++) {
if (k1[n] != 0) {
i = 32*n
tmp = DownConvStoref32(zmm1[i+31:i], SSS[2:0])
if(downSize == 4) {
MemStore(mt+4*storeOffset) = tmp[31:0]

} else if(downSize == 2) {
MemStore(mt+2*storeOffset) = tmp[15:0]

} else if(downSize == 1) {
MemStore(mt+storeOffset) = tmp[7:0]

}
storeOffset++
if (((mt + downSize*storeOffset) % 64) == 0) {
break

}
}

}

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Memory Down-conversion: Df32

S2S1S0 Function: Usage disp8*N
000 no conversion zmm1 4
001 reserved N/A N/A
010 reserved N/A N/A
011 loat32 to loat16 zmm1 { loat16} 2
100 loat32 to uint8 zmm1 {uint8} 1
101 loat32 to sint8 zmm1 {sint8} 1
110 loat32 to uint16 zmm1 {uint16} 2
111 loat32 to sint16 zmm1 {sint16} 2

Intel® C/C++ Compiler Intrinsic Equivalent

void _mm512_extpackstorelo_ps (void*, __m512, _MM_DOWNCONV_PS_ENUM, int);
void _mm512_mask_extpackstorelo_ps (void*, __mmask16, __m512,

_MM_DOWNCONV_PS_ENUM, int);
void _mm512_packstorelo_ps (void*, __m512);
void _mm512_mask_packstorelo_ps (void*, __mmask16, __m512);

Reference Number: 327364-001 423

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to element-wise data granularity dictated by the DownConv.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.
#UD If processor model does not implement the speci ic instruction.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If the ist operand is not a memory location.

424 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPACKSTORELQ - Pack and Store Unaligned Low From Int64 Vector

Opcode Instruction Description
MVEX.512.66.0F38.W1 D0
/r

vpackstorelq mt {k1},
Di64(zmm1)

Pack mask-enabled elements of int64 vector
zmm1 to form an unaligned int64 stream,
down-convert it and logically map the stream
starting at mt, and store that portion of the
stream that maps to the low 64-byte-aligned
portion of the memory destination, under
write-mask.

Description

Packs and down-converts the mask-enabled elements of int64 vector zmm1 into a int64
stream logically mapped starting at element-aligned address mt, and stores the low-64-
byte elements of that stream (those elements of the stream that map before the irst 64-
byte-aligned address followingmt, the low cache line in the current implementation). The
length of the stream depends on the number of enabled masks, as elements disabled by
the mask are not added to the stream.

The vpackstorehq instruction is used to store the part of the stream at or after the irst
64-byte-aligned address precedingmt.

The mask is not used as a write-mask for this instruction. Instead, the mask is used as an
element selector, choosing which elements are added to the stream. The one similarity
to a write-mask as used in the rest of this document is that the no-write-mask option
(encoding 0) is available to select a mask of 0xFF for this instruction. For that reason, the
notation and encoding are the same as for a write-mask.

In conjunction with vpackstorehq, this instruction is useful for packing data into into a
queue. Also in conjunction with vpackstorehq, it allows unaligned vector stores (that is,
vector stores that are only element-wise, not vector-wise, aligned); just use a mask of
0xFF or no write-mask for this purpose. The typical instruction sequence to perform an
unaligned vector store would be:

// assume memory location is pointed by register rax
vpackstorelq [rax] {k1}, v0
vpackstorehq [rax+64] {k1}, v0

This instruction does not have subset support.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element after down-conversion.

Note that the address reported by a page fault is the beggining of the 64-byte cache line
boundary containing the memory operand.

Reference Number: 327364-001 425

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

storeOffset = 0
downSize = DownConvStoreSizeOfi64(SSS[2:0])

for(n = 0 ;n < 8; n++) {
if (k1[n] != 0) {
i = 64*n
tmp = DownConvStorei64(zmm1[i+63:i], SSS[2:0])
if(downSize == 8) {
MemStore(mt+8*storeOffset) = tmp[63:0]

}
storeOffset++
if (((mt + downSize*storeOffset) % 64) == 0) {
break

}
}

}

Flags Affected

None.

Memory Down-conversion: Di64

S2S1S0 Function: Usage disp8*N
000 no conversion zmm1 8
001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Intel® C/C++ Compiler Intrinsic Equivalent

void _mm512_extpackstorelo_epi64 (void*, __m512i,
_MM_DOWNCONV_EPI64_ENUM, int);

void _mm512_mask_extpackstorelo_epi64 (void*, __mmask8, __m512i,
_MM_DOWNCONV_EPI64_ENUM, int);

void _mm512_packstorelo_epi64 (void*, __m512i);
void _mm512_mask_packstorelo_epi64 (void*, __mmask8, __m512i);

426 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to element-wise data granularity dictated by the DownConv.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.
#UD If processor model does not implement the speci ic instruction.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If the ist operand is not a memory location.

Reference Number: 327364-001 427

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPADCD - Add Int32 Vectors with Carry

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0
5C /r

vpadcd zmm1 {k1}, k2,
Si32(zmm3/mt)

Add int32 vector Si32(zmm3/mt), vector mask
register k2 and int32 vector zmm1 and store
the result in zmm1, and the carry of the sum in
k2, under write-mask.

Description

Performs an element-by-element three-input addition between int32 vector zmm1, the
int32 vector result of the swizzle/broadcast/conversion process onmemory or int32 vec-
tor zmm3, and the corresponding bit of k2. The result is written into int32 vector zmm1.

In addition, the carry from the sum for the n-th element is written into the n-th bit of
vector mask k2.

This instruction is write-masked, so only those elementswith the corresponding bit set in
vector mask register k1 are computed and stored into zmm1 and k2. Elements in zmm1
and k2 with the corresponding bit clear in k1 retain their previous value.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadi32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// integer operation
tmpCarry = Carry(zmm1[i+31:i] + k2[n] + tmpSrc3[i+31:i])
zmm1[i+31:i] = zmm1[i+31:i] + k2[n] + tmpSrc3[i+31:i]
k2[n] = tmpCarry

}
}

Flags Affected

None.

428 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_adc_epi32(__m512i, __mmask16, __m512i, __mmask16*);
__m512i _mm512_mask_adc_epi32(__m512i, __mmask16, __mmask16, __m512i,

__mmask16*);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

Reference Number: 327364-001 429

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.
#UD If processor model does not implement the speci ic instruction.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

430 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPADDD - Add Int32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F.W0
FE /r

vpaddd zmm1 {k1}, zmm2,
Si32(zmm3/mt)

Add int32 vector zmm2 and int32 vector
Si32(zmm3/mt) and store the result in zmm1,
under write-mask.

Description

Performs an element-by-element addition between int32 vector zmm2 and the int32 vec-
tor result of the swizzle/broadcast/conversion process onmemory or int32 vector zmm3.
The result is written into int32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadi32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// integer operation
zmm1[i+31:i] = zmm2[i+31:i] + tmpSrc3[i+31:i]

}
}

Flags Affected

None.

Reference Number: 327364-001 431

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_add_epi32 (__m512i, __m512i);
__m512i _mm512_mask_add_epi32 (__m512i, __mmask16, __m512i, __m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

432 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 433

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPADDSETCD - Add Int32 Vectors and Set Mask to Carry

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0
5D /r

vpaddsetcd zmm1 {k1}, k2,
Si32(zmm3/mt)

Add int32 vector zmm1 and int32 vector
Si32(zmm3/mt) and store the sum in zmm1
and the carry from the sum in k2, under write-
mask.

Description

Performs an element-by-element addition between int32 vector zmm1 and the int32 vec-
tor result of the swizzle/broadcast/conversion process onmemory or int32 vector zmm3.
The result is written into int32 vector zmm1.

In addition, the carry from the sum for the n-th element is written into the n-th bit of
vector mask k2.

This instruction is write-masked, so only those elementswith the corresponding bit set in
vector mask register k1 are computed and stored into zmm1 and k2. Elements in zmm1
and k2 with the corresponding bit clear in k1 retain their previous value.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadi32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// integer operation
k2[n] = Carry(zmm1[i+31:i] + tmpSrc3[i+31:i])
zmm1[i+31:i] = zmm1[i+31:i] + tmpSrc3[i+31:i]

}
}

Flags Affected

None.

434 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_addsetc_epi32 (__m512i, __m512i, __mmask16*);
__m512i _mm512_mask_addsetc_epi32 (__m512i, __mmask16,__mmask16, __m512i,

__mmask16*);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

Reference Number: 327364-001 435

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.
#UD If processor model does not implement the speci ic instruction.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

436 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPADDSETSD - Add Int32 Vectors and Set Mask to Sign

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0 CD /r vpaddsetsd zmm1 {k1}, zmm2, Si32(zmm3/mt) Add int32 vec-

tor zmm2 and
int32 vector
Si32(zmm3/mt)
and store the sum in
zmm1 and the sign
from the sum in k1,
under write-mask.

Description

Performs an element-by-element addition between int32 vector zmm2 and the int32 vec-
tor result of the swizzle/broadcast/conversion process onmemory or int32 vector zmm3.
The result is written into int32 vector zmm1.

In addition, the sign of the result for the n-th element is written into the n-th bit of vector
mask k1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadi32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// signed integer operation
zmm1[i+31:i] = zmm2[i+31:i] + tmpSrc3[i+31:i]
k1[n] = zmm1[i+31]

}
}

Reference Number: 327364-001 437

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Flags Affected

None.

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_addsets_epi32 (__m512i, __m512i, __mmask16*);
__m512i _mm512_mask_addsets_epi32 (__m512i, __mmask16, __m512i, __m512i,

__mmask16*);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

438 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If any memory operand linear address is not aligned to 4-byte
data granularity.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If no write mask is provided or selected write-mask is k0.

Reference Number: 327364-001 439

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPANDD - Bitwise AND Int32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F.W0
DB /r

vpandd zmm1 {k1}, zmm2,
Si32(zmm3/mt)

Perform a bitwise AND between int32 vector
zmm2 and int32 vector Si32(zmm3/mt) and
store the result in zmm1, under write-mask.

Description

Performs an element-by-element bitwise AND between int32 vector zmm2 and the int32
vector result of the swizzle/broadcast/conversion process on memory or int32 vector
zmm3. The result is written into int32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadi32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
zmm1[i+31:i] = zmm2[i+31:i] & tmpSrc3[i+31:i]

}
}

Flags Affected

None.

440 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_and_epi32(__m512i, __m512i);
__m512i _mm512_mask_and_epi32(__m512i, __mmask16,__m512i, __m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

Reference Number: 327364-001 441

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

442 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPANDND - Bitwise AND NOT Int32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F.W0
DF /r

vpandnd zmm1 {k1}, zmm2,
Si32(zmm3/mt)

Perform a bitwise ANDbetweenNOT int32 vec-
tor zmm2and int32vectorSi32(zmm3/mt) and
store the result in zmm1, under write-mask.

Description

Performs an element-by-element bitwise AND between NOT int32 vector zmm2 and the
int32 vector result of the swizzle/broadcast/conversion process onmemory or int32 vec-
tor zmm3. The result is written into int32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadi32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
zmm1[i+31:i] = (~(zmm2[i+31:i])) & tmpSrc3[i+31:i]

}
}

Flags Affected

None.

Reference Number: 327364-001 443

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_andnot_epi32 (__m512i, __m512i);
__m512i _mm512_mask_andnot_epi32 (__m512i, __mmask16, __m512i, __m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

444 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 445

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPANDNQ - Bitwise AND NOT Int64 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F.W1
DF /r

vpandnq zmm1 {k1}, zmm2,
Si64(zmm3/mt)

Perform a bitwise ANDbetweenNOT int64 vec-
tor zmm2and int64vectorSi64(zmm3/mt) and
store the result in zmm1, under write-mask.

Description

Performs an element-by-element bitwise AND between NOT int64 vector zmm2 and the
int64 vector result of the swizzle/broadcast/conversion process onmemory or int64 vec-
tor zmm3. The result is written into int64 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadi64(zmm3/mt)

}

for (n = 0; n < 8; n++) {
if(k1[n] != 0) {
i = 64*n
zmm1[i+63:i] = (~(zmm2[i+63:i])) & tmpSrc3[i+63:i]

}
}

Flags Affected

None.

446 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Si64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64
001 broadcast 1 element (x8) [rax] {1to8} 8
010 broadcast 4 elements (x2) [rax] {4to8} 32
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Register Swizzle: Si64

MVEX.EH=0
S2S1S0 Function: 4 x 64 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_andnot_epi64(__m512i, __m512i);
__m512i _mm512_mask_andnot_epi64(__m512i, __mmask8, __m512i, __m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

Reference Number: 327364-001 447

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

448 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPANDQ - Bitwise AND Int64 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F.W1
DB /r

vpandq zmm1 {k1}, zmm2,
Si64(zmm3/mt)

Perform a bitwise AND between int64 vector
zmm2 and int64 vector Si64(zmm3/mt) and
store the result in zmm1, under write-mask.

Description

Performs an element-by-element bitwise AND between int64 vector zmm2 and the int64
vector result of the swizzle/broadcast/conversion process on memory or int64 vector
zmm3. The result is written into int32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadi64(zmm3/mt)

}

for (n = 0; n < 8; n++) {
if(k1[n] != 0) {
i = 64*n
zmm1[i+63:i] = zmm2[i+63:i] & tmpSrc3[i+63:i]

}
}

Flags Affected

None.

Reference Number: 327364-001 449

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Si64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64
001 broadcast 1 element (x8) [rax] {1to8} 8
010 broadcast 4 elements (x2) [rax] {4to8} 32
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Register Swizzle: Si64

MVEX.EH=0
S2S1S0 Function: 4 x 64 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_and_epi64(__m512i, __m512i);
__m512i _mm512_mask_and_epi64(__m512i, __mmask8, __m512i, __m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

450 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 451

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPBLENDMD - Blend Int32 Vectors using the Instruction Mask

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0
64 /r

vpblendmd zmm1 {k1}, zmm2,
Si32(zmm3/mt)

Blend int32 vector zmm2 and int32 vector
Si32(zmm3/mt) and store the result in zmm1,
under write-mask.

Description

Performs an element-by-element blending between int32 vector zmm2 and the int32 vec-
tor result of the swizzle/broadcast/conversion process onmemory or int32 vector zmm3,
using the instruction mask as selector. The result is written into int32 vector zmm1.

The mask is not used as a write-mask for this instruction. Instead, the mask is used as an
element selector: every element of the destination is conditionally selected between irst
source or second source using the value of the related mask bit (0 for irst source, 1 for
second source).

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = tmpSrc3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadi32(tmpSrc3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n]==1 or *no write-mask*) {

zmm1[i+31:i] = tmpSrc3[i+31:i]
} else {

zmm1[i+31:i] = zmm2[i+31:i]
}

}

Flags Affected

None.

452 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_mask_blend_epi32 (__mmask16, __m512i, __m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

Reference Number: 327364-001 453

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

454 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPBLENDMQ - Blend Int64 Vectors using the Instruction Mask

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W1
64 /r

vpblendmq zmm1 {k1}, zmm2,
Si64(zmm3/mt)

Blend int64 vector zmm2 and int64 vector
Si64(zmm3/mt) and store the result in zmm1,
under write-mask.

Description

Performs an element-by-element blending between int64 vector zmm2 and the int64 vec-
tor result of the swizzle/broadcast/conversion process onmemory or int64 vector zmm3,
using the instruction mask as selector. The result is written into int64 vector zmm1.

The mask is not used as a write-mask for this instruction. Instead, the mask is used as an
element selector: every element of the destination is conditionally selected between irst
source or second source using the value of the related mask bit (0 for irst source, 1 for
second source).

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = tmpSrc3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadi64(tmpSrc3/mt)

}

for (n = 0; n < 8; n++) {
if(k1[n]==1 or *no write-mask*) {

zmm1[i+63:i] = tmpSrc3[i+63:i]
} else {

zmm1[i+63:i] = zmm2[i+63:i]
}

}

Flags Affected

None.

Reference Number: 327364-001 455

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Si64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64
001 broadcast 1 element (x8) [rax] {1to8} 8
010 broadcast 4 elements (x2) [rax] {4to8} 32
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Register Swizzle: Si64

MVEX.EH=0
S2S1S0 Function: 4 x 64 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_mask_blend_epi64 (__mmask8, __m512i, __m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

456 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 457

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPBROADCASTD - Broadcast Int32 Vector

Opcode Instruction Description
MVEX.512.66.0F38.W0 58
/r

vpbroadcastd zmm1 {k1},
Ui32(mt)

Broadcast int32 vector Ui32(mt) into vector
zmm1, under write-mask.

Description

The 1, 2, or 4 bytes (depending on the conversion and broadcast in effect) at memory
address mt are broadcast and/or converted to a int32 vector. The result is written into
int32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

// {1to16}
tmpSrc2[31:0] = UpConvLoadi32(mt)
for (n = 0; n < 16; n++) {
if (k1[n] != 0) {
i = 32*n
zmm1[i+31:i] = tmpSrc2[31:0]

}
}

Flags Affected

None.

Memory Up-conversion: Ui32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] 4
001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 1
101 sint8 to sint32 [rax] {sint8} 1
110 uint16 to uint32 [rax] {uint16} 2
111 sint16 to sint32 [rax] {sint16} 2

458 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_extload_epi32(void const*,_MM_UPCONV_EPI32_ENUM,
_MM_BROADCAST32_ENUM, int);

__m512i _mm512_mask_extload_epi32(__m512i, __mmask16, void
const*,_MM_UPCONV_EPI32_ENUM, _MM_BROADCAST32_ENUM, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 459

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPBROADCASTQ - Broadcast Int64 Vector

Opcode Instruction Description
MVEX.512.66.0F38.W1 59
/r

vpbroadcastq zmm1 {k1},
Ui64(mt)

Broadcast int64 vector Ui64(mt) into vector
zmm1, under write-mask.

Description

The 8 bytes at memory addressmt are broadcast to a int64 vector. The result is written
into int64 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

// {1to8}
tmpSrc2[63:0] = UpConvLoadi64(mt)
for (n = 0; n < 8; n++) {
if (k1[n] != 0) {
i = 64*n
zmm1[i+63:i] = tmpSrc2[63:0]

}
}

Flags Affected

None.

Memory Up-conversion: Ui64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] 8
001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

460 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_extload_epi64(void const*,_MM_UPCONV_EPI64_ENUM,
_MM_BROADCAST64_ENUM, int);

__m512i _mm512_mask_extload_epi64(__m512i, __mmask16, void
const*,_MM_UPCONV_EPI64_ENUM, _MM_BROADCAST64_ENUM, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 461

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPCMPD - Compare Int32 Vectors and Set Vector Mask

Opcode Instruction Description
MVEX.NDS.512.66.0F3A.W0 1F /r ib vpcmpd k2 {k1}, zmm1, Si32(zmm2/mt), imm8 Compare be-

tween int32
vector zmm1
and int32 vector
Si32(zmm2/mt)
and store the re-
sult in k2, under
write-mask.

Description

Performs an element-by-element comparison between int32 vector zmm1 and the int32
vector result of the swizzle/broadcast/conversion from memory or int32 vector zmm2.
The result is written into vector mask k2.

Thewrite-mask does not perform the normal write-masking function for this instruction.
While it does enable/disable comparisons, it does not block updating of the destination;
instead, if a write-mask bit is 0, the corresponding destination bit is set to 0. Nonethe-
less, the operation is similar enough so that it makes sense to use the usual write-mask
notation. This mode of operation is desirable because the result will be used directly as a
write-mask, rather than the normal case where the result is used with a separate write-
mask that keeps the masked elements inactive.

Immediate Format

Comparison Type I2 I1 I0
eq Equal 0 0 0
lt Less than 0 0 1
le Less than or Equal 0 1 0
neq Not Equal 1 0 0
nlt Not Less than 1 0 1
nle Not Less than or Equal 1 1 0

Operation

switch (IMM8[2:0]) {
case 0: OP ← EQ; break;
case 1: OP ← LT; break;
case 2: OP ← LE; break;
case 4: OP ← NEQ; break;
case 5: OP ← NLT; break;

462 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

case 6: OP ← NLE; break;
default: Reserved; break;

}

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc2[511:0] = zmm2[511:0]

} else {
tmpSrc2[511:0] = SwizzUpConvLoadi32(zmm2/mt)

}

for (n = 0; n < 16; n++) {
k2[n] = 0
if(k1[n] != 0) {
i = 32*n
// signed integer operation
k2[n] = (zmm1[i+31:i] OP tmpSrc2[i+31:i]) ? 1 : 0

}
}

Instruction Pseudo-ops

Compilers and assemblers may implement the following pseudo-ops in addition to the
standard instruction op:

Pseudo-Op Implementation
vpcmpeqd k2 {k1}, zmm1, Si(zmm2/mt) vcmpd k2 {k1}, zmm1, Si(zmm2/mt), {eq}
vpcmpltd k2 {k1}, zmm1, Si(zmm2/mt) vcmpd k2 {k1}, zmm1, Si(zmm2/mt), {lt}
vpcmpled k2 {k1}, zmm1, Si(zmm2/mt) vcmpd k2 {k1}, zmm1, Si(zmm2/mt), {le}
vpcmpneqd k2 {k1}, zmm1, Si(zmm2/mt) vcmpd k2 {k1}, zmm1, Si(zmm2/mt), {neq}
vpcmpnltd k2 {k1}, zmm1, Si(zmm2/mt) vcmpd k2 {k1}, zmm1, Si(zmm2/mt), {nlt}
vpcmpnled k2 {k1}, zmm1, Si(zmm2/mt) vcmpd k2 {k1}, zmm1, Si(zmm2/mt), {nle}

Flags Affected

None.

Reference Number: 327364-001 463

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__mmask16 _mm512_cmp_epi32_mask(__m512i, __m512i, const _MM_CMPINT_ENUM);
__mmask16 _mm512_mask_cmp_epi32_mask(__mmask16, __m512i, __m512i, const

_MM_CMPINT_ENUM);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

464 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 465

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPCMPEQD - Compare Equal Int32 Vectors and Set Vector Mask

Opcode Instruction Description
MVEX.NDS.512.66.0F.W0 76 /r vpcmpeqd k2 {k1}, zmm1, Si32(zmm2/mt) Compare Equal be-

tween int32 vector
zmm1 and int32 vector
Si32(zmm2/mt), and set
vector mask k2 to re lect
the zero/non-zero status of
each element of the result,
under write-mask.

Description

Performs an element-by-element compare for equality between int32 vector zmm1 and
the int32 vector result of the swizzle/broadcast/conversion frommemory or int32 vector
zmm2. The result is written into vector mask k2.

Thewrite-mask does not perform the normal write-masking function for this instruction.
While it does enable/disable comparisons, it does not block updating of the destination;
instead, if a write-mask bit is 0, the corresponding destination bit is set to 0. Nonethe-
less, the operation is similar enough so that it makes sense to use the usual write-mask
notation. This mode of operation is desirable because the result will be used directly as a
write-mask, rather than the normal case where the result is used with a separate write-
mask that keeps the masked elements inactive.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc2[511:0] = zmm2[511:0]

} else {
tmpSrc2[511:0] = SwizzUpConvLoadi32(zmm2/mt)

}

for (n = 0; n < 16; n++) {
k2[n] = 0
if(k1[n] != 0) {
i = 32*n
// signed integer operation
k2[n] = (zmm1[i+31:i] == tmpSrc2[i+31:i]) ? 1 : 0

}
}

466 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Flags Affected

None.

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__mmask16 _mm512_cmpeq_epi32_mask (__m512i, __m512i);
__mmask16 _mm512_mask_cmpeq_epi32_mask (__mmask16, __m512i, __m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

Reference Number: 327364-001 467

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

468 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPCMPGTD - Compare Greater Than Int32 Vectors and Set Vector Mask

Opcode Instruction Description
MVEX.NDS.512.66.0F.W0 66 /r vpcmpgtd k2 {k1}, zmm1, Si32(zmm2/mt) Compare Greater between

int32vector zmm1and int32
vector Si32(zmm2/mt), and
set vector mask k2 to re lect
the zero/non-zero status of
each element of the result,
under write-mask.

Description

Performs an element-by-element compare for the greater value of int32 vector zmm1 and
the int32 vector result of the swizzle/broadcast/conversion frommemory or int32 vector
zmm2. The result is written into vector mask k2.

Thewrite-mask does not perform the normal write-masking function for this instruction.
While it does enable/disable comparisons, it does not block updating of the destination;
instead, if a write-mask bit is 0, the corresponding destination bit is set to 0. Nonethe-
less, the operation is similar enough so that it makes sense to use the usual write-mask
notation. This mode of operation is desirable because the result will be used directly as a
write-mask, rather than the normal case where the result is used with a separate write-
mask that keeps the masked elements inactive.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc2[511:0] = zmm2[511:0]

} else {
tmpSrc2[511:0] = SwizzUpConvLoadi32(zmm2/mt)

}

for (n = 0; n < 16; n++) {
k2[n] = 0
if(k1[n] != 0) {
i = 32*n
// signed integer operation
k2[n] = (zmm1[i+31:i] > tmpSrc2[i+31:i]) ? 1 : 0

}
}

Reference Number: 327364-001 469

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Flags Affected

None.

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__mmask16 _mm512_cmpgt_epi32_mask (__m512i, __m512i);
__mmask16 _mm512_mask_cmpgt_epi32_mask (__mmask16, __m512i, __m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

470 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 471

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPCMPLTD - Compare Less Than Int32 Vectors and Set Vector Mask

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0 74 /r vpcmpltd k2 {k1}, zmm1, Si32(zmm2/mt) Compare Less be-

tween int32 vector
zmm1 and int32 vector
Si32(zmm2/mt), and set
vector mask k2 to re lect
the zero/non-zero status
of each element of the
result, under write-mask.

Description

Performs an element-by-element compare for the lesser value of int32 vector zmm1 and
the int32 vector result of the swizzle/broadcast/conversion frommemory or int32 vector
zmm2. The result is written into vector mask k2.

Thewrite-mask does not perform the normal write-masking function for this instruction.
While it does enable/disable comparisons, it does not block updating of the destination;
instead, if a write-mask bit is 0, the corresponding destination bit is set to 0. Nonethe-
less, the operation is similar enough so that it makes sense to use the usual write-mask
notation. This mode of operation is desirable because the result will be used directly as a
write-mask, rather than the normal case where the result is used with a separate write-
mask that keeps the masked elements inactive.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc2[511:0] = zmm2[511:0]

} else {
tmpSrc2[511:0] = SwizzUpConvLoadi32(zmm2/mt)

}

for (n = 0; n < 16; n++) {
k2[n] = 0
if(k1[n] != 0) {
i = 32*n
// signed integer operation
k2[n] = (zmm1[i+31:i] < tmpSrc2[i+31:i]) ? 1 : 0

}
}

472 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Flags Affected

None.

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__mmask16 _mm512_cmplt_epi32_mask (__m512i, __m512i);
__mmask16 _mm512_mask_cmplt_epi32_mask (__mmask16, __m512i, __m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

Reference Number: 327364-001 473

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.
#UD If processor model does not implement the speci ic instruction.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

474 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPCMPUD - Compare Uint32 Vectors and Set Vector Mask

Opcode Instruction Description
MVEX.NDS.512.66.0F3A.W0 1E /r ib vpcmpud k2 {k1}, zmm1, Si32(zmm2/mt), imm8 Compare

between
uint32 vec-
tor zmm1 and
uint32 vector
Si32(zmm2/mt)
and store the re-
sult in k2, under
write-mask.

Description

Performs an element-by-element comparison between uint32 vector zmm1 and the
uint32 vector result of the swizzle/broadcast/conversion frommemory or uint32 vector
zmm2. The result is written into vector mask k2.

Thewrite-mask does not perform the normal write-masking function for this instruction.
While it does enable/disable comparisons, it does not block updating of the destination;
instead, if a write-mask bit is 0, the corresponding destination bit is set to 0. Nonethe-
less, the operation is similar enough so that it makes sense to use the usual write-mask
notation. This mode of operation is desirable because the result will be used directly as a
write-mask, rather than the normal case where the result is used with a separate write-
mask that keeps the masked elements inactive.

Immediate Format

Comparison Type I2 I1 I0
eq Equal 0 0 0
lt Less than 0 0 1
le Less than or Equal 0 1 0
neq Not Equal 1 0 0
nlt Not Less than 1 0 1
nle Not Less than or Equal 1 1 0

Operation

switch (IMM8[2:0]) {
case 0: OP ← EQ; break;
case 1: OP ← LT; break;
case 2: OP ← LE; break;
case 4: OP ← NEQ; break;

Reference Number: 327364-001 475

CHAPTER 6. INSTRUCTION DESCRIPTIONS

case 5: OP ← NLT; break;
case 6: OP ← NLE; break;
default: Reserved; break;

}

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc2[511:0] = zmm2[511:0]

} else {
tmpSrc2[511:0] = SwizzUpConvLoadi32(zmm2/mt)

}

for (n = 0; n < 16; n++) {
k2[n] = 0
if(k1[n] != 0) {
i = 32*n
// unsigned integer operation
k2[n] = (zmm1[i+31:i] OP tmpSrc2[i+31:i]) ? 1 : 0

}
}

Instruction Pseudo-ops

Compilers and assemblers may implement the following pseudo-ops in addition to the
standard instruction op:

Pseudo-Op Implementation
vpcmpequd k2 {k1}, zmm1, Si(zmm2/mt) vcmpud k2 {k1}, zmm1, Si(zmm2/mt), {eq}
vpcmpltud k2 {k1}, zmm1, Si(zmm2/mt) vcmpud k2 {k1}, zmm1, Si(zmm2/mt), {lt}
vpcmpleud k2 {k1}, zmm1, Si(zmm2/mt) vcmpud k2 {k1}, zmm1, Si(zmm2/mt), {le}
vpcmpnequd k2 {k1}, zmm1, Si(zmm2/mt) vcmpud k2 {k1}, zmm1, Si(zmm2/mt), {neq}
vpcmpnltud k2 {k1}, zmm1, Si(zmm2/mt) vcmpud k2 {k1}, zmm1, Si(zmm2/mt), {nlt}
vpcmpnleud k2 {k1}, zmm1, Si(zmm2/mt) vcmpud k2 {k1}, zmm1, Si(zmm2/mt), {nle}

Flags Affected

None.

476 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__mmask16 _mm512_cmp_epi32_mask(__m512i, __m512i, const _MM_CMPINT_ENUM);
__mmask16 _mm512_mask_cmp_epi32_mask(__mmask16, __m512i, __m512i, const

_MM_CMPINT_ENUM);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

Reference Number: 327364-001 477

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

478 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPERMD - Permutes Int32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0
36 /r

vpermd zmm1 {k1}, zmm2,
zmm3/mt

Element permute vector zmm3/mt using vec-
tor zmm2 as indices and store the inal result in
zmm1, under write-mask.

Description

Performs an element permutation of elements from int32 vector read from memory or
vector zmm3, using int32 vector zmm2 element as source indices. The result of the per-
mutation is written into int32 vector zmm1. Note that index values may be repeated so
that the same vector source element can be replicated across many vector destination
elements.

No swizzle, broadcast, or conversion is performed by this instruction.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

src[511:0] = zmm3/mt

for (n = 0; n < 16; n++) {
if (k1[n] != 0) {
i = 32*n
j = zmm2[i+3:i]*32
zmm1[i+31:i] = src[j+31:j]

}
}

Flags Affected

None.

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_permutevar_epi32 (__m512i, __m512i);
__m512i _mm512_mask_permutevar_epi32 (__m512i, __mmask16, __m512i, __m512i);

Reference Number: 327364-001 479

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
This instruction does not support any
SwizzUpConv different from the default value (no broadcast,
no conversion). If SwizzUpConv function is set to any value
different than "no action", then an Invalid Opcode fault is
raised. This includes register swizzles.

480 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPERMF32X4 - Shufe Vector Dqwords

Opcode Instruction Description
MVEX.512.66.0F3A.W0 07 /r ib vpermf32x4 zmm1 {k1}, zmm2/mt, imm8 4xFloat32 shuf le element

vector zmm2/mt and store
the result in zmm1, using
imm8 , under write-mask.

Description

Shuf les 128-bit blocks of the vector read frommemory or vector zmm2/memusing index
bits in immediate. The result of the shuf le is written into vector zmm1.

No swizzle, broadcast, or conversion is performed by this instruction.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Immediate Format

imm8 128-bit level permutation vector {3210} I7 I6 I5 I4 I3 I2 I1 I0

Operation

src[511:0] = zmm2/mt

// Inter-lane shuffle
for (n = 0; n < 16/4; n++) {

i = 128*n
j = 128*((perm128 >> 2*n) & 0x3)
tmp[i+127:i] = src[j+127:j]

}

// Writemasking
for (n = 0; n < 16; n++) {

if (k1[n] != 0) {
zmm1[i+31:i] = tmp[i+31:i]

}
}

Reference Number: 327364-001 481

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Flags Affected

None.

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_permute4f128_epi32 (__m512i, _MM_PERM_ENUM);
__m512i _mm512_mask_permute4f128_epi32 (__m512i, __mmask16, __m512i,

_MM_PERM_ENUM);
__m512 _mm512_permute4f128_ps (__m512, _MM_PERM_ENUM);
__m512 _mm512_mask_permute4f128_ps (__m512, __mmask16, __m512,

_MM_PERM_ENUM);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
This instruction does not support any
SwizzUpConv different from the default value (no broadcast,
no conversion). If SwizzUpConv function is set to any value
different than "no action", then an Invalid Opcode fault is
raised. This includes register swizzles.

482 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPGATHERDD - Gather Int32 Vector With Signed Dword Indices

Opcode Instruction Description
MVEX.512.66.0F38.W0 90
/r /vsib

vpgatherdd zmm1 {k1},Ui32(mvt) Gather int32 vector Ui32(mvt) into int32 vec-
tor zmm1 using doubleword indices and k1 as
completion mask.

Description

A set of 16 memory locations pointed by base address BASE_ADDR and doubleword
index vector V INDEX with scale SCALE are converted to a int32 vector. The result is
written into int32 vector zmm1.

Note the special mask behavior as only a subset of the active elements of write mask k1
are actually operated on (as denoted by function SELECT _SUBSET). There are only
two guarantees about the function: (a) the destinationmask is a subset of the sourcemask
(identity is included), and (b) on a given invocationof the instruction, at leastone element
(the least signi icant enabled mask bit) will be selected from the source mask.

Programmers should always enforce the execution of a gather/scatter instruction to be
re-executed (via a loop) until the full completion of the sequence (i.e. all elements of the
gather/scatter sequence have been loaded/stored and hence, the write-mask bits all are
zero).

Note that accessed element bywill always access 64 bytes ofmemory. Thememory region
accessed by each element will always be between elemen_linear_address & (∼0x3F) and
(element_linear_address & (∼0x3F)) + 63 boundaries.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Note also the special mask behavior as the corresponding bits in write mask k1 are reset
with each destination element being updated according to the subset of write mask k1.
This is useful to allow conditional re-trigger of the instruction until all the elements from
a given write mask have been successfully loaded.

The instruction will #GP fault if the destination vector zmm1 is the same as index vector
V INDEX .

Operation

// instruction works over a subset of the write mask
ktemp = SELECT_SUBSET(k1)

// Use mvt as vector memory operand (VSIB)
for (n = 0; n < 16; n++) {

if (ktemp[n] != 0) {

Reference Number: 327364-001 483

CHAPTER 6. INSTRUCTION DESCRIPTIONS

i = 32*n
// mvt[n] = BASE_ADDR + SignExtend(VINDEX[i+31:i] * SCALE)
pointer[63:0] = mvt[n]
zmm1[i+31:i] = UpConvLoadi32(pointer)
k1[n] = 0

}
}

Flags Affected

None.

Memory Up-conversion: Ui32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] 4
001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 1
101 sint8 to sint32 [rax] {sint8} 1
110 uint16 to uint32 [rax] {uint16} 2
111 sint16 to sint32 [rax] {sint16} 2

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_i32gather_epi32 (__m512i, void const*, int);
__m512i _mm512_mask_i32gather_epi32 (__m512i, __mmask16, __m512i, void const*,

int);
__m512i _mm512_i32extgather_epi32 (__m512i, void const*, _MM_UPCONV_EPI32_ENUM,

int, int);
__m512i _mm512_mask_i32extgather_epi32 (__m512i, __mmask16, __m512i, void const*,

_MM_UPCONV_EPI32_ENUM, int, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

484 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form, and corresponding write-mask bit is not zero.

#GP(0) If a memory address is in a non-canonical form,
and corresponding write-mask bit is not zero.
If a memory operand linear address is not aligned
to element-wise data granularity dictated by the UpConv
and corresponding write-mask bit is not zero.
If the destination vector is the same as the index vector [see
.

#PF(fault-code) If a memory operand linear address produces a page fault
and corresponding write-mask bit is not zero.

#NM If CR0.TS[bit 3]=1.
If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If using a 16 bit effective address.
If ModRM.rm is different than 100b.
If no write mask is provided or selected write-mask is k0.

Reference Number: 327364-001 485

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPGATHERDQ - Gather Int64 Vector With Signed Dword Indices

Opcode Instruction Description
MVEX.512.66.0F38.W1 90
/r /vsib

vpgatherdq zmm1 {k1},Ui64(mvt) Gather int64 vector Ui64(mvt) into int64 vec-
tor zmm1 using doubleword indices and k1 as
completion mask.

Description

A set of 8 memory locations pointed by base address BASE_ADDR and doubleword
index vector V INDEX with scale SCALE are converted to a int64 vector. The result is
written into int64 vector zmm1.

Note the special mask behavior as only a subset of the active elements of write mask k1
are actually operated on (as denoted by function SELECT _SUBSET). There are only
two guarantees about the function: (a) the destinationmask is a subset of the sourcemask
(identity is included), and (b) on a given invocationof the instruction, at leastone element
(the least signi icant enabled mask bit) will be selected from the source mask.

Programmers should always enforce the execution of a gather/scatter instruction to be
re-executed (via a loop) until the full completion of the sequence (i.e. all elements of the
gather/scatter sequence have been loaded/stored and hence, the write-mask bits all are
zero).

Note that accessed element bywill always access 64 bytes ofmemory. Thememory region
accessed by each element will always be between elemen_linear_address & (∼0x3F) and
(element_linear_address & (∼0x3F)) + 63 boundaries.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Note also the special mask behavior as the corresponding bits in write mask k1 are reset
with each destination element being updated according to the subset of write mask k1.
This is useful to allow conditional re-trigger of the instruction until all the elements from
a given write mask have been successfully loaded.

The instruction will #GP fault if the destination vector zmm1 is the same as index vector
V INDEX .

Operation

// instruction works over a subset of the write mask
ktemp = SELECT_SUBSET(k1)

// Use mvt as vector memory operand (VSIB)
for (n = 0; n < 8; n++) {

if (ktemp[n] != 0) {

486 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

i = 64*n
j = 32*n
// mvt[n] = BASE_ADDR + SignExtend(VINDEX[j+31:j] * SCALE)
pointer[63:0] = mvt[n]
zmm1[i+63:i] = UpConvLoadi64(pointer)
k1[n] = 0

}
}
k1[15:8] = 0

Flags Affected

None.

Memory Up-conversion: Ui64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] 8
001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_i32logather_epi64 (__m512i, void const*, int);
__m512i _mm512_mask_i32logather_epi64 (__m512i, __mmask8, __m512i, void const*,

int);
__m512i _mm512_i32loextgather_epi64 (__m512i, void const*,

_MM_UPCONV_EPI64_ENUM, int, int);
__m512i _mm512_mask_i32loextgather_epi64 (__m512i, __mmask8, __m512i, void const*,

_MM_UPCONV_EPI64_ENUM, int, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Reference Number: 327364-001 487

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form, and corresponding write-mask bit is not zero.

#GP(0) If a memory address is in a non-canonical form,
and corresponding write-mask bit is not zero.
If a memory operand linear address is not aligned
to element-wise data granularity dictated by the UpConv
and corresponding write-mask bit is not zero.
If the destination vector is the same as the index vector [see
.

#PF(fault-code) If a memory operand linear address produces a page fault
and corresponding write-mask bit is not zero.

#NM If CR0.TS[bit 3]=1.
If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If using a 16 bit effective address.
If ModRM.rm is different than 100b.
If no write mask is provided or selected write-mask is k0.

488 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPMADD231D - Multiply First Source By Second Source and Add To Des-
tination Int32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0 B5 /r vpmadd231d zmm1 {k1}, zmm2, Si32(zmm3/mt) Multiply int32

vector zmm2
and int32 vector
Si32(zmm3/mt),
add the result
to int32 vector
zmm1, and store
the inal result
in zmm1, under
write-mask.

Description

Performs an element-by-element multiplication between int32 vector zmm2 and the
int32 vector result of the swizzle/broadcast/conversion process on memory or vector
int32 zmm3, then adds the result to int32 vector zmm1. The inal sum is written into
int32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadi32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// integer operation
zmm1[i+31:i] = zmm2[i+31:i] * tmpSrc3[i+31:i] + zmm1[i+31:i]

}
}

Reference Number: 327364-001 489

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Flags Affected

None.

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_fmadd_epi32 (__m512i, __m512i, __m512i);
__m512i _mm512_mask_fmadd_epi32 (__m512i, __mmask16, __m512i, __m512i);
__m512i _mm512_mask3_fmadd_epi32 (__m512i, __m512i, __m512i, __mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

490 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 491

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPMADD233D -Multiply First Source By Specially Swizzled Second Source
and Add To Second Source Int32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0 B4 /r vpmadd233d zmm1 {k1}, zmm2, Si32(zmm3/mt) Multiply int32

vector zmm2 by
certain elements
of int32 vector
Si32(zmm3/mt),
add the re-
sult to certain
elements of
Si32(zmm3/mt),
and store the inal
result in zmm1,
underwrite-mask.

Description

This instruction is built around the concept of 4-element sets, of which there are four:
elements 0-3, 4-7, 8-11, and 12-15. If we refer to the int32 vector result of the broadcast
(no conversion is supported) process on memory or the int32 vector zmm3 (no swizzle
is supported) as t3, then:

Each element 0-3 of int32 vector zmm2 ismultiplied by element 1 of t3, the result is added
to element 0 of t3, and the inal sum iswritten into the corresponding element 0-3 of int32
vector zmm1.

Each element 4-7 of int32 vector zmm2 ismultiplied by element 5 of t3, the result is added
to element 4 of t3, and the inal sum iswritten into the corresponding element 4-7 of int32
vector zmm1.

Each element 8-11 of int32 vector zmm2 is multiplied by element 9 of t3, the result is
added to element 8 of t3, and the inal sum is written into the corresponding element
8-11 of int32 vector zmm1.

Each element 12-15 of int32 vector zmm2 is multiplied by element 13 of t3, the result is
added to element 12 of t3, and the inal sum is written into the corresponding element
12-15 of int32 vector zmm1.

This instructionmakes it possible to perform scale and bias in a single instructionwithout
needing to have either scale or bias already loaded in a register. This saves one vector load
for each interpolant, representing around ten percent of shader instructions.

For structure-of-arrays (SOA) operation, this instruction is intended to be used with the
{4to16} broadcast on src2, allowing all 16 scale and biases to be identical. For array-of-
structures (AOS) vec4 operations, no broadcast is used, allowing four different scales and
biases, one for each vec4.

492 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

No conversion or swizzling is supported for this instruction. However, all broadcasts ex-
cept {1to16} are supported (i.e. 16to16 and 4to16).

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadi32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if (k1[n] != 0) {
i = 32*n
base = (n & ~0x03) * 32
scale[31:0] = tmpSrc3[base+63:base+32]
bias[31:0] = tmpSrc3[base+31:base]
// integer operation
zmm1[i+31:i] = zmm2[i+31:i] * scale[31:0] + bias[31:0]

}
}

Flags Affected

None.

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 reserved N/A N/A
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Reference Number: 327364-001 493

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 reserved N/A
010 reserved N/A
011 reserved N/A
100 reserved N/A
101 reserved N/A
110 reserved N/A
111 reserved N/A

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_fmadd233_epi32 (__m512i, __m512i);
__m512i _mm512_mask_fmadd233_epi32 (__m512i, __mmask16, __m512i, __m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to 16 or 64-byte (depending on the swizzle broadcast).

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
This instruction does not support any
SwizzUpConv involving data conversion, register swizzling or
{1to16} broadcast. If SwizzUpConv function is set to any
value different than "no action" or {4to16} then

494 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

an Invalid Opcode fault is raised

Reference Number: 327364-001 495

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPMAXSD - Maximum of Int32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0
3D /r

vpmaxsd zmm1 {k1}, zmm2,
Si32(zmm3/mt)

Determine the maximum of int32 vector zmm2
and int32 vector Si32(zmm3/mt) and store the
result in zmm1, under write-mask.

Description

Determines the maximum value of each pair of corresponding elements in int32 vector
zmm2 and the int32 vector result of the swizzle/broadcast/conversion process on mem-
ory or int32 vector zmm3. The result is written into int32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadi32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// signed integer operation
zmm1[i+31:i] = IMax(zmm2[i+31:i] , tmpSrc3[i+31:i])

}
}

Flags Affected

None.

496 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_max_epi32 (__m512i, __m512i);
__m512i _mm512_mask_max_epi32 (__m512i, __mmask16, __m512i, __m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

Reference Number: 327364-001 497

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

498 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPMAXUD - Maximum of Uint32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0
3F /r

vpmaxud zmm1 {k1}, zmm2,
Si32(zmm3/mt)

Determine the maximum of uint32 vector
zmm2 and uint32 vector Si32(zmm3/mt) and
store the result in zmm1, under write-mask.

Description

Determines the maximum value of each pair of corresponding elements in uint32 vec-
tor zmm2 and the uint32 vector result of the swizzle/broadcast/conversion process on
memory or uint32 vector zmm3. The result is written into uint32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadi32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// unsigned integer operation
zmm1[i+31:i] = UMax(zmm2[i+31:i] , tmpSrc3[i+31:i])

}
}

Flags Affected

None.

Reference Number: 327364-001 499

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_max_epu32 (__m512i,__m512i);
__m512i _mm512_mask_max_epu32 (__m512i, __mmask16, __m512i,__m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

500 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 501

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPMINSD - Minimum of Int32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0
39 /r

vpminsd zmm1 {k1}, zmm2,
Si32(zmm3/mt)

Determine the minimum of int32 vector zmm2
and int32 vector Si32(zmm3/mt) and store the
result in zmm1, under write-mask.

Description

Determines the minimum value of each pair of corresponding elements in int32 vector
zmm2 and the int32 vector result of the swizzle/broadcast/conversion process on mem-
ory or int32 vector zmm3. The result is written into int32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadi32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// signed integer operation
zmm1[i+31:i] = (zmm2[i+31:i] < tmpSrc3[i+31:i]) ?

zmm2[i+31:i] : tmpSrc3[i+31:i]
}

}

Flags Affected

None.

502 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_min_epi32 (__m512i, __m512i);
__m512i _mm512_mask_min_epi32 (__m512i, __mmask16, __m512i, __m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

Reference Number: 327364-001 503

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

504 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPMINUD - Minimum of Uint32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0
3B /r

vpminud zmm1 {k1}, zmm2,
Si32(zmm3/mt)

Determine the minimum of uint32 vector
zmm2 and uint32 vector Si32(zmm3/mt) and
store the result in zmm1, under write-mask.

Description

Determines the minimum value of each pair of corresponding elements in uint32 vector
zmm2and the uint32 vector result of the swizzle/broadcast/conversion process onmem-
ory or uint32 vector zmm3. The result is written into uint32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadi32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// unsigned integer operation
zmm1[i+31:i] = UMin(zmm2[i+31:i] , tmpSrc3[i+31:i])

}
}

Flags Affected

None.

Reference Number: 327364-001 505

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_min_epu32 (__m512i, __m512i);
__m512i _mm512_mask_min_epu32 (__m512i, __mmask16, __m512i, __m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

506 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 507

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPMULHD - Multiply Int32 Vectors And Store High Result

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0
87 /r

vpmulhd zmm1 {k1}, zmm2,
Si32(zmm3/mt)

Multiply int32 vector zmm2 and int32 vector
Si32(zmm3/mt) and store the result in zmm1,
under write-mask.

Description

Performs an element-by-element multiplication between int32 vector zmm2 and the
int32 vector result of the swizzle/broadcast/conversion process onmemory or int32 vec-
tor zmm3. The high 32 bits of the result are written into int32 zmm1 vector.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadi32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// signed integer operation
tmp[63:0] = zmm2[i+31:i] * tmpSrc3[i+31:i]
zmm1[i+31:i] = tmp[63:32]

}
}

Flags Affected

None.

508 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_mulhi_epi32 (__m512i, __m512i);
__m512i _mm512_mask_mulhi_epi32 (__m512i, __mmask16, __m512i, __m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

Reference Number: 327364-001 509

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

510 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPMULHUD - Multiply Uint32 Vectors And Store High Result

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0
86 /r

vpmulhud zmm1 {k1}, zmm2,
Si32(zmm3/mt)

Multiply uint32 vector zmm2 and uint32 vector
Si32(zmm3/mt) and store the result in zmm1,
under write-mask.

Description

Performs an element-by-element multiplication between uint32 vector zmm2 and the
uint32 vector result of the swizzle/broadcast/conversion process on memory or uint32
vector zmm3. The high 32 bits of the result are written into uint32 zmm1 vector.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadi32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// unsigned integer operation
tmp[63:0] = zmm2[i+31:i] * tmpSrc3[i+31:i]
zmm1[i+31:i] = tmp[63:32]

}
}

Flags Affected

None.

Reference Number: 327364-001 511

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_mulhi_epu32 (__m512i, __m512i);
__m512i _mm512_mask_mulhi_epu32 (__m512i, __mmask16, __m512i, __m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

512 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 513

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPMULLD - Multiply Int32 Vectors And Store Low Result

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0
40 /r

vpmulld zmm1 {k1}, zmm2,
Si32(zmm3/mt)

Multiply int32 vector zmm2 and int32 vector
Si32(zmm3/mt) and store the result in zmm1,
under write-mask.

Description

Performs an element-by-element multiplication between int32 vector zmm2 and the
int32 vector result of the swizzle/broadcast/conversion process onmemory or int32 vec-
tor zmm3, and the low 32 bits of the result are written into int32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadi32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// signed integer operation
zmm1[i+31:i] = zmm2[i+31:i] * tmpSrc3[i+31:i]

}
}

Flags Affected

None.

514 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_mullo_epi32 (__m512i, __m512i);
__m512i _mm512_mask_mullo_epi32 (__m512i, __mmask16, __m512i, __m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

Reference Number: 327364-001 515

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

516 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPORD - Bitwise OR Int32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F.W0
EB /r

vpord zmm1 {k1}, zmm2,
Si32(zmm3/mt)

Perform a bitwise OR between int32 vector
zmm2 and int32 vector Si32(zmm3/mt) and
store the result in zmm1, under write-mask.

Description

Performs an element-by-element bitwise OR between int32 vector zmm2 and the int32
vector result of the swizzle/broadcast/conversion process on memory or int32 vector
zmm3. The result is written into int32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadi32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
zmm1[i+31:i] = zmm2[i+31:i] | tmpSrc3[i+31:i]

}
}

Flags Affected

None.

Reference Number: 327364-001 517

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_or_epi32 (__m512i, __m512i);
__m512i _mm512_mask_or_epi32 (__m512i, __mmask16, __m512i, __m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

518 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 519

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPORQ - Bitwise OR Int64 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F.W1
EB /r

vporq zmm1 {k1}, zmm2,
Si64(zmm3/mt)

Perform a bitwise OR between int64 vector
zmm2 and int64 vector Si64(zmm3/mt) and
store the result in zmm1, under write-mask.

Description

Performs an element-by-element bitwise OR between int64 vector zmm2 and the int64
vector result of the swizzle/broadcast/conversion process on memory or int64 vector
zmm3. The result is written into int64 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadi64(zmm3/mt)

}

for (n = 0; n < 8; n++) {
if(k1[n] != 0) {
i = 64*n
zmm1[i+63:i] = zmm2[i+63:i] | tmpSrc3[i+63:i]

}
}

Flags Affected

None.

520 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Si64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64
001 broadcast 1 element (x8) [rax] {1to8} 8
010 broadcast 4 elements (x2) [rax] {4to8} 32
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Register Swizzle: Si64

MVEX.EH=0
S2S1S0 Function: 4 x 64 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_or_epi64 (__m512i, __m512i);
__m512i _mm512_mask_or_epi64 (__m512i, __mmask8, __m512i, __m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

Reference Number: 327364-001 521

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

522 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPSBBD - Subtract Int32 Vectors with Borrow

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0
5E /r

vpsbbd zmm1 {k1}, k2,
Si32(zmm3/mt)

Subtract int32 vector Si32(zmm3/mt) and vec-
tor mask register k2 from int32 vector zmm1
and store the result in zmm1, and the borrow
of the subtraction in k2, under write-mask.

Description

Performs an element-by-element three-input subtraction of the int32 vector result of the
swizzle/broadcast/conversion process on memory or int32 vector zmm3, as well as the
corresponding bit of k2, from int32 vector zmm1. The result is written into int32 vector
zmm1.

In addition, the borrow from the subtraction difference for the n-th element is written
into the n-th bit of vector mask k2.

This instruction is write-masked, so only those elementswith the corresponding bit set in
vector mask register k1 are computed and stored into zmm1 and k2. Elements in zmm1
and k2 with the corresponding bit clear in k1 retain their previous value.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadi32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// integer operation
tmpBorrow = Borrow(zmm1[i+31:i] - k2[n] - tmpSrc3[i+31:i])
zmm1[i+31:i] = zmm1[i+31:i] - k2[n] - tmpSrc3[i+31:i]
k2[n] = tmpBorrow

}
}

Reference Number: 327364-001 523

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Flags Affected

None.

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_sbb_epi32 (__m512i, __mmask16, __m512i, __mmask16*);
__m512i _mm512_mask_sbb_epi32 (__m512i, __mmask16, __mmask16, __m512i,

__mmask16*);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

524 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.
#UD If processor model does not implement the speci ic instruction.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 525

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPSBBRD - Reverse Subtract Int32 Vectors with Borrow

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0
6E /r

vpsbbrd zmm1 {k1}, k2,
Si32(zmm3/mt)

Subtract int32 vector zmm1 and vector mask
register k2 from int32 vector Si32(zmm3/mt),
and store the result in zmm1, and the borrow
of the subtraction in k2, under write-mask.

Description

Performs an element-by-element three-input subtraction of int32 vector zmm1, aswell as
the correspondingbit of k2, fromthe int32vector result of the swizzle/broadcast/conversion
process on memory or int32 vector zmm3. The result is written into int32 vector zmm1.

In addition, the borrow from the subtraction for the n-th element is written into the n-th
bit of vector mask k2.

This instruction is write-masked, so only those elementswith the corresponding bit set in
vector mask register k1 are computed and stored into zmm1 and k2. Elements in zmm1
and k2 with the corresponding bit clear in k1 retain their previous value.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadi32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// integer operation
tmpBorrow = Borrow(tmpSrc3[i+31:i] - k2[n] - zmm1[i+31:i])
zmm1[i+31:i] = tmpSrc3[i+31:i] - k2[n] - zmm1[i+31:i]
k2[n] = tmpBorrow

}
}

Flags Affected

None.

526 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_sbbr_epi32 (__m512i, __mmask16, __m512i, __mmask16*);
__m512i _mm512_mask_sbbr_epi32 (__m512i, __mmask16, __mmask16, __m512i,

__mmask16*);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

Reference Number: 327364-001 527

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.
#UD If processor model does not implement the speci ic instruction.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

528 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPSCATTERDD - Scatter Int32 Vector With Signed Dword Indices

Opcode Instruction Description
MVEX.512.66.0F38.W0 A0
/r /vsib

vpscatterdd mvt {k1},
Di32(zmm1)

Scatter int32 vector Di32(zmm1) to vector
memory locations mvt using doubleword in-
dices and k1 as completion mask.

Description

Down-converts and stores all 16 elements in int32 vector UNDEF to thememory locations
pointed by base address BASE_ADDR and doubleword index vector V INDEX , with
scale SCALE.

Note the special mask behavior as only a subset of the active elements of write mask k1
are actually operated on (as denoted by function SELECT _SUBSET). There are only
two guarantees about the function: (a) the destinationmask is a subset of the sourcemask
(identity is included), and (b) on a given invocationof the instruction, at leastone element
(the least signi icant enabled mask bit) will be selected from the source mask.

Programmers should always enforce the execution of a gather/scatter instruction to be
re-executed (via a loop) until the full completion of the sequence (i.e. all elements of the
gather/scatter sequence have been loaded/stored and hence, the write-mask bits all are
zero).

Writes to overlapping destination memory locations are guaranteed to be ordered with
respect to eachother (fromLSB toMSBof the source registers). Onlywrites to overlapping
vector indices are guaranteed to be ordered with respect to each other (from LSB to MSB
of the source registers). Writes that are not overlappedmay happen in any order. Memory
ordering with other instructions follows the Intel-64 memory ordering model. Note that
this does not account for non-overlapping indices thatmap into the samephysical address
locations.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element after down-conversion.

Note also the special mask behavior as the corresponding bits in write mask k1 are reset
with each destination element being updated according to the subset of write mask k1.
This is useful to allow conditional re-trigger of the instruction until all the elements from
a given write mask have been successfully stored.

Operation

// instruction works over a subset of the write mask
ktemp = SELECT_SUBSET(k1)

// Use mvt as vector memory operand (VSIB)
for (n = 0; n < 16; n++) {

Reference Number: 327364-001 529

CHAPTER 6. INSTRUCTION DESCRIPTIONS

if (ktemp[n] != 0) {
i = 32*n
// mvt[n] = BASE_ADDR + SignExtend(VINDEX[i+31:i] * SCALE)
pointer[63:0] = mvt[n]
tmp = DownConvStorei32(UNDEF[i+31:i], SSS[2:0])
if(DownConvStoreSizeOfi32(SSS[2:0]) == 4) {
MemStore(pointer) = tmp[31:0]

} else if(DownConvStoreSizeOfi32(SSS[2:0]) == 2) {
MemStore(pointer) = tmp[15:0]

} else if(DownConvStoreSizeOfi32(SSS[2:0]) == 1) {
MemStore(pointer) = tmp[7:0]

}
k1[n] = 0

}
}

Flags Affected

None.

Memory Down-conversion: Di32

S2S1S0 Function: Usage disp8*N
000 no conversion zmm1 4
001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 uint32 to uint8 zmm1 {uint8} 1
101 sint32 to sint8 zmm1 {sint8} 1
110 uint32 to uint16 zmm1 {uint16} 2
111 sint32 to sint16 zmm1 {sint16} 2

Intel® C/C++ Compiler Intrinsic Equivalent

void _mm512_i32scatter_epi32 (void*, __m512i, __m512i, int);
void _mm512_mask_i32scatter_epi32 (void*, __mmask16, __m512i, __m512i, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

530 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form, and corresponding write-mask bit is not zero.

#GP(0) If a memory address is in a non-canonical form,
and corresponding write-mask bit is not zero.
If a memory operand linear address is not aligned
to element-wise data granularity dictated by the DownConv
mode, and corresponding write-mask bit is not zero.

#PF(fault-code) If a memory operand linear address produces a page fault
and corresponding write-mask bit is not zero.

#NM If CR0.TS[bit 3]=1.
If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If using a 16 bit effective address.
If ModRM.rm is different than 100b.
If no write mask is provided or selected write-mask is k0.

Reference Number: 327364-001 531

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPSCATTERDQ - Scatter Int64 Vector With Signed Dword Indices

Opcode Instruction Description
MVEX.512.66.0F38.W1 A0
/r /vsib

vpscatterdq mvt {k1},
Di64(zmm1)

Scatter int64 vector Di64(zmm1) to vector
memory locations mvt using doubleword in-
dices and k1 as completion mask.

Description

Down-converts and stores all 8 elements in int64 vector UNDEF to the memory locations
pointed by base address BASE_ADDR and doubleword index vector V INDEX , with
scale SCALE.

Note the special mask behavior as only a subset of the active elements of write mask k1
are actually operated on (as denoted by function SELECT _SUBSET). There are only
two guarantees about the function: (a) the destinationmask is a subset of the sourcemask
(identity is included), and (b) on a given invocationof the instruction, at leastone element
(the least signi icant enabled mask bit) will be selected from the source mask.

Programmers should always enforce the execution of a gather/scatter instruction to be
re-executed (via a loop) until the full completion of the sequence (i.e. all elements of the
gather/scatter sequence have been loaded/stored and hence, the write-mask bits all are
zero).

Writes to overlapping destination memory locations are guaranteed to be ordered with
respect to eachother (fromLSB toMSBof the source registers). Onlywrites to overlapping
vector indices are guaranteed to be ordered with respect to each other (from LSB to MSB
of the source registers). Writes that are not overlappedmay happen in any order. Memory
ordering with other instructions follows the Intel-64 memory ordering model. Note that
this does not account for non-overlapping indices thatmap into the samephysical address
locations.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element after down-conversion.

Note also the special mask behavior as the corresponding bits in write mask k1 are reset
with each destination element being updated according to the subset of write mask k1.
This is useful to allow conditional re-trigger of the instruction until all the elements from
a given write mask have been successfully stored.

Operation

// instruction works over a subset of the write mask
ktemp = SELECT_SUBSET(k1)

// Use mvt as vector memory operand (VSIB)
for (n = 0; n < 8; n++) {

532 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

if (ktemp[n] != 0) {
i = 64*n
j = 32*n
// mvt[n] = BASE_ADDR + SignExtend(VINDEX[j+31:j] * SCALE)
pointer[63:0] = mvt[n]
tmp = DownConvStorei64(UNDEF[i+63:i], SSS[2:0])
if(DownConvStoreSizeOfi64(SSS[2:0]) == 8) {
MemStore(pointer) = tmp[63:0]

}
k1[n] = 0

}
}
k1[15:8] = 0

Flags Affected

None.

Memory Down-conversion: Di64

S2S1S0 Function: Usage disp8*N
000 no conversion zmm1 8
001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Intel® C/C++ Compiler Intrinsic Equivalent

void _mm512_i32loscatter_epi64 (void*, __m512i, __m512i, int);
void _mm512_mask_i32loscatter_epi64 (void*, __mmask8, __m512i, __m512i, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Reference Number: 327364-001 533

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form, and corresponding write-mask bit is not zero.

#GP(0) If a memory address is in a non-canonical form,
and corresponding write-mask bit is not zero.
If a memory operand linear address is not aligned
to element-wise data granularity dictated by the DownConv
mode, and corresponding write-mask bit is not zero.

#PF(fault-code) If a memory operand linear address produces a page fault
and corresponding write-mask bit is not zero.

#NM If CR0.TS[bit 3]=1.
If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If using a 16 bit effective address.
If ModRM.rm is different than 100b.
If no write mask is provided or selected write-mask is k0.

534 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPSHUFD - Shufe Vector Doublewords

Opcode Instruction Description
MVEX.512.66.0F.W0 70 /r ib vpshufd zmm1 {k1}, zmm2/mt, imm8 Dword shuf le int32 vector

zmm2/mt and store the result
in zmm1, using imm8 , under
write-mask.

Description

Shuf les 32 bit blocks of the vector read frommemory or vector zmm2/mem using index
bits in immediate. The result of the shuf le is written into vector zmm1.

No swizzle, broadcast, or conversion is performed by this instruction.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Immediate Format

imm8 32 bit level permutation vector {dcba} I7 I6 I5 I4 I3 I2 I1 I0

Operation

src[511:0] = zmm2/mt

// Intra-lane shuffle
for (n = 0; n < 16; n++) {

if (k1[n] != 0) {
i = 32*n
// offset within 128-bit chunk
j = 32*((perm32 >> 2*(n & 0x3)) & 0x3)
// 128-bit level offset
j = j + 128*(n >> 2)
zmm1[i+31:i] = src[j+31:j]

}
}

Reference Number: 327364-001 535

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Flags Affected

None.

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_shuf le_epi32 (__m512i, _MM_PERM_ENUM);
__m512i _mm512_mask_shuf le_epi32 (__m512i, __mmask16, __m512i,

_MM_PERM_ENUM);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
This instruction does not support any
SwizzUpConv different from the default value (no broadcast,
no conversion). If SwizzUpConv function is set to any value
different than "no action", then an Invalid Opcode fault is
raised. This includes register swizzles.

536 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPSLLD - Shift Int32 Vector Immediate Left Logical

Opcode Instruction Description
MVEX.NDD.512.66.0F.W0
72 /6 ib

vpslld zmm1 {k1},
Si32(zmm2/mt), imm8

Shift left int32vectorSi32(zmm2/mt) and store
the result in zmm1, using imm8, under write-
mask.

Description

Performsanelement-by-element logical left shift of the result of the swizzle/broadcast/conversion
process on memory or vector int32 zmm2, shifting by the number of bits speci ied in im-
mediate ield. The result is stored in int32 vector zmm1.

If the value speci ied by the shift operand is greater than 31 then the destination operand
is set to all 0s.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc2[511:0] = zmm2[511:0]

} else {
tmpSrc2[511:0] = SwizzUpConvLoadi32(zmm2/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// integer operation
zmm1[i+31:i] = tmpSrc2[i+31:i] << IMM8[7:0]

}
}

Flags Affected

None.

Reference Number: 327364-001 537

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_slli_epi32 (__m512i, unsigned int);
__m512i _mm512_mask_slli_epi32 (__m512i, __mmask16, __m512i, unsigned int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

538 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 539

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPSLLVD - Shift Int32 Vector Left Logical

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0
47 /r

vpsllvd zmm1 {k1}, zmm2,
Si32(zmm3/mt)

Shift left int32 vector zmm2 and int32 vector
Si32(zmm3/mt) and store the result in zmm1,
under write-mask.

Description

Performs an element-by-element left shift of int32 vector zmm2, shifting by the number
of bits speci ied by the int32 vector result of the swizzle/broadcast/conversion process
on memory or vector int32 zmm3. The result is stored in int32 vector zmm1.

If the value speci ied by the shift operand is greater than 31 then the destination operand
is set to all 0s.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadi32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// signed integer operation
zmm1[i+31:i] = zmm2[i+31:i] << tmpSrc3[i+31:i]

}
}

Flags Affected

None.

540 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_sllv_epi32 (__m512i, __m512i);
__m512i _mm512_mask_sllv_epi32 (__m512i, __mmask16, __m512i,__m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

Reference Number: 327364-001 541

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

542 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPSRAD - Shift Int32 Vector Immediate Right Arithmetic

Opcode Instruction Description
MVEX.NDD.512.66.0F.W0
72 /4 ib

vpsrad zmm1 {k1},
Si32(zmm2/mt), imm8

Shift right arithmetic int32 vector
Si32(zmm2/mt) and store the result in zmm1,
using imm8, under write-mask.

Description

Performsanelement-by-element arithmetic right shift of the result of the swizzle/broadcast/conversion
process on memory or vector int32 zmm2, shifting by the number of bits speci ied in im-
mediate ield. The result is stored in int32 vector zmm1.

An arithmetic right shift leaves the sign bit unchanged after each shift count, so the inal
result has the i+1 msbs set to the original sign bit, where i is the number of bits by which
to shift right.

If the value speci ied by the shift operand is greater than 31 each destination data element
is illed with the initial value of the sign bit of the element.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc2[511:0] = zmm2[511:0]

} else {
tmpSrc2[511:0] = SwizzUpConvLoadi32(zmm2/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// signed integer operation
zmm1[i+31:i] = tmpSrc2[i+31:i] >> IMM8[7:0]

}
}

Flags Affected

None.

Reference Number: 327364-001 543

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_srai_epi32 (__m512i, unsigned int);
__m512i _mm512_mask_srai_epi32 (__m512i, __mmask16, __m512i, unsigned int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

544 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 545

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPSRAVD - Shift Int32 Vector Right Arithmetic

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0
46 /r

vpsravd zmm1 {k1}, zmm2,
Si32(zmm3/mt)

Shift right arithmetic int32 vector zmm2 and
int32 vector Si32(zmm3/mt) and store the re-
sult in zmm1, under write-mask.

Description

Performs an element-by-element arithmetic right shift of int32 vector zmm2, shifting by
thenumberof bits speci iedby the int32vector result of the swizzle/broadcast/conversion
process on memory or vector int32 zmm3. The result is stored in int32 vector zmm1.

An arithmetic right shift leaves the sign bit unchanged after each shift count, so the inal
result has the i+1 msbs set to the original sign bit, where i is the number of bits by which
to shift right.

If the value speci ied by the shift operand is greater than 31 each destination data element
is illed with the initial value of the sign bit of the element.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadi32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// signed integer operation
zmm1[i+31:i] = zmm2[i+31:i] >> tmpSrc3[i+31:i]

}
}

Flags Affected

None.

546 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_srav_epi32 (__m512i, __m512i);
__m512i _mm512_mask_srav_epi32 (__m512i, __mmask16, __m512i, __m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

Reference Number: 327364-001 547

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

548 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPSRLD - Shift Int32 Vector Immediate Right Logical

Opcode Instruction Description
MVEX.NDD.512.66.0F.W0
72 /2 ib

vpsrld zmm1 {k1},
Si32(zmm2/mt), imm8

Shift right logical int32 vector Si32(zmm2/mt)
and store the result in zmm1, using imm8, un-
der write-mask.

Description

Performsanelement-by-element logical right shift of the result of the swizzle/broadcast/conversion
process on memory or vector int32 zmm2, shifting by the number of bits speci ied in im-
mediate ield. The result is stored in int32 vector zmm1.

A logical right shift shifts a 0-bit into the msb for each shift count, so the inal result has
the imsbs set to 0, where i is the number of bits by which to shift right.

If the value speci ied by the shift operand is greater than 31 then the destination operand
is set to all 0s.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc2[511:0] = zmm2[511:0]

} else {
tmpSrc2[511:0] = SwizzUpConvLoadi32(zmm2/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// signed integer operation
zmm1[i+31:i] = tmpSrc2[i+31:i] >> IMM8[7:0]

}
}

Flags Affected

None.

Reference Number: 327364-001 549

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_srli_epi32 (__m512i, unsigned int);
__m512i _mm512_mask_srli_epi32 (__m512i, __mmask16, __m512i, unsigned int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

550 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 551

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPSRLVD - Shift Int32 Vector Right Logical

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0
45 /r

vpsrlvd zmm1 {k1}, zmm2,
Si32(zmm3/mt)

Shift right logical int32 vector zmm2 and int32
vector Si32(zmm3/mt) and store the result in
zmm1, under write-mask.

Description

Performs an element-by-element logical right shift of int32 vector zmm2, shifting by the
number of bits speci ied by the int32 vector result of the swizzle/broadcast/conversion
process on memory or vector int32 zmm3. The result is stored in int32 vector zmm1.

A logical right shift shifts a 0-bit into the msb for each shift count, so the inal result has
the imsbs set to 0, where i is the number of bits by which to shift right.

If the value speci ied by the shift operand is greater than 31 then the destination operand
is set to all 0s.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadi32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// signed integer operation
zmm1[i+31:i] = zmm2[i+31:i] >> tmpSrc3[i+31:i]

}
}

Flags Affected

None.

552 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_srlv_epi32 (__m512i, __m512i);
__m512i _mm512_mask_srlv_epi32 (__m512i, __mmask16, __m512i, __m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

Reference Number: 327364-001 553

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

554 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPSUBD - Subtract Int32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F.W0
FA /r

vpsubd zmm1 {k1}, zmm2,
Si32(zmm3/mt)

Subtract int32 vector Si32(zmm3/mt) from
int32 vector zmm2 and store the result in
zmm1, under write-mask.

Description

Performs an element-by-element subtraction from int32 vector zmm2 of the int32 vector
result of the swizzle/broadcast/conversion process on memory or int32 vector zmm3.
The result is written into int32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadi32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// integer operation
zmm1[i+31:i] = zmm2[i+31:i] - tmpSrc3[i+31:i]

}
}

Flags Affected

None.

Reference Number: 327364-001 555

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_sub_epi32 (__m512i, __m512i);
__m512i _mm512_mask_sub_epi32 (__m512i, __mmask16, __m512i, __m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

556 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 557

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPSUBRD - Reverse Subtract Int32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0
6C /r

vpsubrd zmm1 {k1}, zmm2,
Si32(zmm3/mt)

Subtract int32 vector zmm2 from int32 vector
Si32(zmm3/mt) and store the result in zmm1,
under write-mask.

Description

Performs an element-by-element subtraction of int32 vector zmm2 from the int32 vector
result of the swizzle/broadcast/conversion process on memory or int32 vector zmm3.
The result is written into int32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadi32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// integer operation
zmm1[i+31:i] = -zmm2[i+31:i] + tmpSrc3[i+31:i]

}
}

Flags Affected

None.

558 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_subr_epi32 (__m512i, __m512i);
__m512i _mm512_mask_subr_epi32 (__m512i, __mmask16, __m512i, __m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

Reference Number: 327364-001 559

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

560 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPSUBRSETBD - Reverse Subtract Int32 Vectors and Set Borrow

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0
6F /r

vpsubrsetbd zmm1 {k1}, k2,
Si32(zmm3/mt)

Subtract int32 vector zmm1 from int32 vector
Si32(zmm3/mt) and store the subtraction in
zmm1 and the borrow from the subtraction in
k2, under write-mask.

Description

Performs an element-by-element subtraction of int32 vector zmm1 from the int32 vector
result of the swizzle/broadcast/conversion process on memory or int32 vector zmm3.
The result is written into int32 vector zmm1.

In addition, the borrow from the subtraction for the n-th element is written into the n-th
bit of vector mask k2.

This instruction is write-masked, so only those elementswith the corresponding bit set in
vector mask register k1 are computed and stored into zmm1 and k2. Elements in zmm1
and k2 with the corresponding bit clear in k1 retain their previous value.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadi32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// integer operation
k2[n] = Borrow(tmpSrc3[i+31:i] - zmm1[i+31:i])
zmm1[i+31:i] = tmpSrc3[i+31:i] - zmm1[i+31:i]

}
}

Flags Affected

None.

Reference Number: 327364-001 561

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_subrsetb_epi32 (__m512i, __m512i, __mmask16*);
__m512i _mm512_mask_subrsetb_epi32 (__m512i, __mmask16, __mmask16, __m512i,

__mmask16*);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

562 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.
#UD If processor model does not implement the speci ic instruction.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 563

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPSUBSETBD - Subtract Int32 Vectors and Set Borrow

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0
5F /r

vpsubsetbd zmm1 {k1}, k2,
Si32(zmm3/mt)

Subtract int32 vector Si32(zmm3/mt) from
int32 vector zmm1 and store the subtraction in
zmm1 and the borrow from the subtraction in
k2, under write-mask.

Description

Performs an element-by-element subtraction of the int32 vector result of the swiz-
zle/broadcast/conversion process on memory or int32 vector zmm3 from int32 vector
zmm1. The result is written into int32 vector zmm1.

In addition, the borrow from the subtraction for the n-th element is written into the n-th
bit of vector mask k2.

This instruction is write-masked, so only those elementswith the corresponding bit set in
vector mask register k1 are computed and stored into zmm1 and k2. Elements in zmm1
and k2 with the corresponding bit clear in k1 retain their previous value.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadi32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// integer operation
k2[n] = Borrow(zmm1[i+31:i] - tmpSrc3[i+31:i])
zmm1[i+31:i] = zmm1[i+31:i] - tmpSrc3[i+31:i]

}
}

Flags Affected

None.

564 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_subsetb_epi32 (__m512i, __m512i, __mmask16*);
__m512i _mm512_mask_subsetb_epi32 (__m512i, __mmask16, __mmask16, __m512i,

__mmask16*);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

Reference Number: 327364-001 565

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.
#UD If processor model does not implement the speci ic instruction.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

566 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPTESTMD - Logical AND Int32 Vectors and Set Vector Mask

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0
27 /r

vptestmd k2 {k1}, zmm1,
Si32(zmm2/mt)

Perform a bitwise AND between int32 vector
zmm1 and int32 vector Si32(zmm2/mt), and
set vector mask k2 to re lect the zero/non-
zero status of each element of the result, under
write-mask.

Description

Performs an element-by-element bitwise AND between int32 vector zmm1 and the int32
vector result of the swizzle/broadcast/conversion process on memory or int32 vector
zmm2, and uses the result to construct a 16 bit vector mask, with a 0-bit for each element
for which the result of the AND was 0, and a 1-bit where the result of the AND was not
zero. The inal result is written into vector mask k2.

Thewrite-mask does not perform the normal write-masking function for this instruction.
While it does enable/disable comparisons, it does not block updating of the destination;
instead, if a write-mask bit is 0, the corresponding destination bit is set to 0. Nonethe-
less, the operation is similar enough so that it makes sense to use the usual write-mask
notation. This mode of operation is desirable because the result will be used directly as a
write-mask, rather than the normal case where the result is used with a separate write-
mask that keeps the masked elements inactive.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc2[511:0] = zmm2[511:0]

} else {
tmpSrc2[511:0] = SwizzUpConvLoadi32(zmm2/mt)

}

for (n = 0; n < 16; n++) {
k2[n] = 0
if(k1[n] != 0) {
i = 32*n
// signed integer operation
if ((zmm1[i+31:i] & tmpSrc2[i+31:i]) != 0) {
k2[n] = 1

}
}

}

Reference Number: 327364-001 567

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Flags Affected

None.

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__mmask16 _mm512_test_epi32_mask (__m512i, __m512i);
__mmask16 _mm512_mask_test_epi32_mask (__mmask16, __m512i, __m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

568 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 569

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPXORD - Bitwise XOR Int32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F.W0
EF /r

vpxord zmm1 {k1}, zmm2,
Si32(zmm3/mt)

Perform a bitwise XOR between int32 vector
zmm2 and int32 vector Si32(zmm3/mt) and
store the result in zmm1, under write-mask.

Description

Performs an element-by-element bitwise XOR between int32 vector zmm2 and the int32
vector result of the swizzle/broadcast/conversion process on memory or int32 vector
zmm3. The result is written into int32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadi32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// signed integer operation
zmm1[i+31:i] = zmm2[i+31:i] ^ tmpSrc3[i+31:i]

}
}

Flags Affected

None.

570 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_xor_epi32 (__m512i, __m512i);
__m512i _mm512_mask_xor_epi32 (__m512i, __mmask16, __m512i, __m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

Reference Number: 327364-001 571

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

572 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPXORQ - Bitwise XOR Int64 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F.W1
EF /r

vpxorq zmm1 {k1}, zmm2,
Si64(zmm3/mt)

Perform a bitwise XOR between int64 vector
zmm2 and int64 vector Si64(zmm3/mt) and
store the result in zmm1, under write-mask.

Description

Performs an element-by-element bitwise XOR between int64 vector zmm2 and the int64
vector result of the swizzle/broadcast/conversion process on memory or int64 vector
zmm3. The result is written into int64 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoadi64(zmm3/mt)

}

for (n = 0; n < 8; n++) {
if(k1[n] != 0) {
i = 64*n
zmm1[i+63:i] = zmm2[i+63:i] ^ tmpSrc3[i+63:i]

}
}

Flags Affected

None.

Reference Number: 327364-001 573

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Si64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64
001 broadcast 1 element (x8) [rax] {1to8} 8
010 broadcast 4 elements (x2) [rax] {4to8} 32
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Register Swizzle: Si64

MVEX.EH=0
S2S1S0 Function: 4 x 64 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512i _mm512_xor_epi64 (__m512i, __m512i);
__m512i _mm512_mask_xor_epi64 (__m512i, __mmask8, __m512i, __m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

574 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 575

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VRCP23PS - Reciprocal of Float32 Vector

Opcode Instruction Description
MVEX.512.66.0F38.W0 CA
/r

vrcp23ps zmm1 {k1}, zmm2/mt Compute the approximate reciprocals loat32
vector zmm2/mt and store the result in zmm1,
under write-mask.

Description

Computes the element-by-element reciprocal approximation of the loat32 vector on
memory or loat32 vector zmm2 with 0.912ULP (relative error). The result is written
into loat32 vector zmm1.

If any source element is NaN, the quietized NaN source value is returned for that element.
If any source element is±∞, 0.0 is returned for that element. Also, if any source element
is±0.0,±∞ is returned for that element.

Current implementation of this instruction does not support any SwizzUpConv setting
other than "no broadcast and no conversion"; any other SwizzUpConv setting will result
in an Invalid Opcode exception.

recip_1ulp() function follows Table 6.26when dealingwith loating-point special number.

Input Result Comment
NaN input qNaN raise #I lag if sNaN
+∞ +0
+0 +∞ raise #Z lag
-0 −∞ raise #Z lag
−∞ −0
2n 2−n exact result

Table 6.26: recip_1ulp() special loating-point values behavior

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

tmpSrc2[511:0] = zmm2/mt

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE

}

for (n = 0; n < 16; n++) {

576 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

if (k1[n] != 0) {
i = 32*n
zmm1[i+31:i] = recip_1ulp(tmpSrc2[i+31:i])

}
}

SIMD Floating-Point Exceptions

Invalid, Zero.

Denormal Handling

Treat Input Denormals As Zeros :
YES

Flush Tiny Results To Zero :
YES

Register Swizzle

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 reserved N/A
010 reserved N/A
011 reserved N/A
100 reserved N/A
101 reserved N/A
110 reserved N/A
111 reserved N/A
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
1xx SAE (Supress-All-Exceptions) , {sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_rcp23_ps (__m512);
__m512 _mm512_mask_rcp23_ps (__m512, __mmask16, __m512);

Reference Number: 327364-001 577

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
This instruction does not support any
SwizzUpConv different from the default value (no broadcast,
no conversion). If SwizzUpConv function is set to any value
different than "no action", then an Invalid Opcode fault is
raised. This includes register swizzles.

578 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VRNDFXPNTPD - Round Float64 Vector

Opcode Instruction Description
MVEX.512.66.0F3A.W1 52 /r ib vrndfxpntpd zmm1 {k1}, Sf64(zmm2/mt), imm8 Round loat64 vector

Sf64(zmm2/mt) and
store the result in
zmm1, using imm8,
under write-mask.

Description

Performsanelement-by-element roundingof the result of the swizzle/broadcast/conversion
from memory or loat64 vector zmm2. The rounding result for each element is a loat64
containing an integer or ixed-point value, depending on the value of expadj; the direction
of rounding depends on the value of RC. The result is written into loat64 vector zmm1.

This instruction doesn't actually convert the result to an int64; the results are loat64s,
just like the input, but are loat64s containing the integer or ixed-point values that result
from the speci ied rounding and scaling.

RoundToInt() function follows Table 6.27 when dealing with loating-point special num-
ber.

Input Result
NaN quietized input NaN
+∞ +∞
+0 +0
-0 −0
−∞ −∞

Table 6.27: RoundToInt() special loating-point values behavior

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Reference Number: 327364-001 579

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Immediate Format

Rounding Mode I1 I0
rn Round to Nearest (even) 0 0
rd Round Down (Round toward Negative In inity) 0 1
ru Round Up (Round toward Positive In inity) 1 0
rz Round toward Zero 1 1

Exponent Adjustment value I7 I6 I5 I4
0 20 (64.0 - no exponent adjustment) 0 0 0 0
4 24 (60.4) 0 0 0 1
5 25 (59.5) 0 0 1 0
8 28 (56.8) 0 0 1 1
16 216 (48.16) 0 1 0 0
24 224 (40.24) 0 1 0 1
31 231 (33.31) 0 1 1 0
32 232 (32.32) 0 1 1 1
reserved *must UD* 1 x x x

Operation

RoundingMode = IMM8[1:0]
expadj = IMM8[6:4]

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
tmpSrc2[511:0] = zmm2[511:0]

} else {
tmpSrc2[511:0] = SwizzUpConvLoadf64(zmm2/mt)

}

for (n = 0; n < 8; n++) {
if(k1[n] != 0) {
i = 64*n
// float64 operation
zmm1[i+63:i] =
RoundToInt(tmpSrc2[i+63:i] * EXPADJ_TABLE[expadj], RoundingMode) /
EXPADJ_TABLE[expadj]

}
}

SIMD Floating-Point Exceptions

Invalid, Precision.

580 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
NO

Memory Up-conversion: Sf64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64
001 broadcast 1 element (x8) [rax] {1to8} 8
010 broadcast 4 elements (x2) [rax] {4to8} 32
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Register Swizzle: Sf64

MVEX.EH=0
S2S1S0 Function: 4 x 64 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
1xx SAE (Supress-All-Exceptions) , {sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512d _mm512_roundfxpnt_adjust_pd (__m512d, int, _MM_EXP_ADJ_ENUM);
__m512d _mm512_mask_roundfxpnt_adjust_pd (__m512d, __mmask8, __m512d, int ,

_MM_EXP_ADJ_ENUM);

Reference Number: 327364-001 581

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.
#UD If processor model does not implement the speci ic instruction.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

582 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VRNDFXPNTPS - Round Float32 Vector

Opcode Instruction Description
MVEX.512.66.0F3A.W0 52 /r ib vrndfxpntps zmm1 {k1}, Sf32(zmm2/mt), imm8 Round loat32 vector

Sf32(zmm2/mt) and
store the result in
zmm1, using imm8,
under write-mask.

Description

Performsanelement-by-element roundingof the result of the swizzle/broadcast/conversion
from memory or loat32 vector zmm2. The rounding result for each element is a loat32
containing an integer or ixed-point value, depending on the value of expadj; the direction
of rounding depends on the value of RC. The result is written into loat32 vector zmm1.

This instruction doesn't actually convert the result to an int32; the results are loat32s,
just like the input, but are loat32s containing the integer or ixed-point values that result
from the speci ied rounding and scaling.

RoundToInt() function follows Table 6.28 when dealing with loating-point special num-
ber.

This instruction treats input denormals as zeros according to theDAZ control bit, but does
not lush tiny results to zero.

Input Result
NaN quietized input NaN
+∞ +∞
+0 +0
-0 −0
−∞ −∞

Table 6.28: RoundToInt() special loating-point values behavior

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Immediate Format

Rounding Mode I1 I0
rn Round to Nearest (even) 0 0
rd Round Down (Round toward Negative In inity) 0 1
ru Round Up (Round toward Positive In inity) 1 0
rz Round toward Zero 1 1

Reference Number: 327364-001 583

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exponent Adjustment value I7 I6 I5 I4
0 20 (32.0 - no exponent adjustment) 0 0 0 0
4 24 (28.4) 0 0 0 1
5 25 (27.5) 0 0 1 0
8 28 (24.8) 0 0 1 1
16 216 (16.16) 0 1 0 0
24 224 (8.24) 0 1 0 1
31 231 (1.31) 0 1 1 0
32 232 (0.32) 0 1 1 1
reserved *must UD* 1 x x x

Operation

RoundingMode = IMM8[1:0]
expadj = IMM8[6:4]

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
tmpSrc2[511:0] = zmm2[511:0]

} else {
tmpSrc2[511:0] = SwizzUpConvLoadf32(zmm2/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// float32 operation
zmm1[i+31:i] =
RoundToInt(tmpSrc2[i+31:i] * EXPADJ_TABLE[expadj], RoundingMode) /
EXPADJ_TABLE[expadj]

}
}

SIMD Floating-Point Exceptions

Invalid, Precision.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
NO

584 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Sf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 loat16 to loat32 [rax] { loat16} 32
100 uint8 to loat32 [rax] {uint8} 16
110 uint16 to loat32 [rax] {uint16} 32
111 sint16 to loat32 [rax] {sint16} 32

Register Swizzle: Sf32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
1xx SAE (Supress-All-Exceptions) , {sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_roundfxpnt_adjust_ps (__m512, int , _MM_EXP_ADJ_ENUM);
__m512 _mm512_mask_roundfxpnt_adjust_ps (__m512, __mmask16, __m512, int ,

_MM_EXP_ADJ_ENUM);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

Reference Number: 327364-001 585

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.
#UD If processor model does not implement the speci ic instruction.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

586 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VRSQRT23PS - Vector Reciprocal Square Root of Float32 Vector

Opcode Instruction Description
MVEX.512.66.0F38.W0 CB
/r

vrsqrt23ps zmm1 {k1}, zmm2/mt Reciprocal square root loat32 vector
zmm2/mt and store the result in zmm1,
under write-mask.

Description

Computes the element-by-element reciprocal square root of the loat32vector onmemory
or loat32 vector zmm2with a precision of 0.775ULP (relative error). The result iswritten
into loat32 vector zmm1.

If any source element is NaN, the quietized NaN source value is returned for that element.
Negative source numbers, as well as −∞, return the canonical NaN and set the Invalid
Flag (#I).

Current implementation of this instruction does not support any SwizzUpConv setting
other than "no broadcast and no conversion"; any other SwizzUpConv setting will result
in an Invalid Opcode exception.

rsqrt_1ulp() function follows Table 6.29when dealingwith loating-point special number.

For an input value of+/− 0 the instruction returns−∞ and sets the Divide-By-Zero lag
(#Z). Negative numbers should returnNaN and set the Invalid lag (#I). Note however that
this instruction treats input denormals as zeros of the same sign, so for denormal negative
inputs it returns−∞ and sets the Divide-By-Zero status lag.

Input Result Comments
NaN input qNaN Raise #I lag if sNaN
+∞ +0
+0 +∞ Raise #Z lag
−0 −∞ Raise #Z lag
<0 NaN Raise #I lag
−∞ NaN Raise #I lag
22n 2−n exact result

Table 6.29: rsqrt_1ulp() special loating-point values behavior

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Reference Number: 327364-001 587

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

tmpSrc2[511:0] = zmm2/mt

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE

}

for (n = 0; n < 16; n++) {
if (k1[n] != 0) {
i = 32*n
zmm1[i+31:i] = rsqrt_1ulp(tmpSrc2[i+31:i])

}
}

SIMD Floating-Point Exceptions

Invalid, Zero.

Denormal Handling

Treat Input Denormals As Zeros :
YES

Flush Tiny Results To Zero :
YES

Register Swizzle

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 reserved N/A
010 reserved N/A
011 reserved N/A
100 reserved N/A
101 reserved N/A
110 reserved N/A
111 reserved N/A
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
1xx SAE (Supress-All-Exceptions) , {sae}

588 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 __ICL_INTRINCC _mm512_rsqrt23_ps (__m512);
__m512 __ICL_INTRINCC _mm512_mask_rsqrt23_ps (__m512, __mmask16, __m512);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
This instruction does not support any
SwizzUpConv different from the default value (no broadcast,
no conversion). If SwizzUpConv function is set to any value
different than "no action", then an Invalid Opcode fault is
raised. This includes register swizzles.

Reference Number: 327364-001 589

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VSCALEPS - Scale Float32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0
84 /r

vscaleps zmm1 {k1}, zmm2,
Si32(zmm3/mt)

Multiply loat32 vector zmm2 by 2 raised to the
int32 vector Si32(zmm3/mt) and store the re-
sult in zmm1, under write-mask.

Description

Performs an element-by-element scale of loat32 vector zmm2 by multiplying it by 2exp,
where exp is the vector int32 result of the swizzle/broadcast/conversion process on
memory or vector int32 zmm3. The result is written into vector loat32 zmm1.

This instruction is needed for scaling u and v coordinates according to the mipmap size,
which is 2mipmap_level, and for the evaluation of Exp2.

Cases where the exponent would go out of range are handled as if multiplication (via
vmulps) of zmm2 by 2zmm3 had been performed.

If the result cannot be representedwith a loat32, then the properly signed∞ (for positive
scaling operand) or 0 (for negative scaling operand) will be returned.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc3[511:0] = SwizzUpConvLoadI(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if (k1[n] != 0) {
i = 32*n
exp[31:0] = tmpSrc3[i+31:i]
// signed int scale operation. float32 multiplication
zmm1[i+31:i] = zmm2[i+31:i] * 2exp[31:0]

}
}

590 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Si32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32

Reference Number: 327364-001 591

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Si32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_scale_ps (__m512, __m512i);
__m512 _mm512_mask_scale_ps (__m512, __mmask16, __m512, __m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

592 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 593

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VSCATTERDPD - Scatter Float64 Vector With Signed Dword Indices

Opcode Instruction Description
MVEX.512.66.0F38.W1 A2
/r /vsib

vscatterdpd mvt {k1},
Df64(zmm1)

Scatter loat64 vector Df64(zmm1) to vector
memory locations mvt using doubleword in-
dices and k1 as completion mask.

Description

Down-converts and stores all 8 elements in loat64 vector zmm1 to thememory locations
pointed by base address BASE_ADDR and doubleword index vector V INDEX , with
scale SCALE.

Note the special mask behavior as only a subset of the active elements of write mask k1
are actually operated on (as denoted by function SELECT _SUBSET). There are only
two guarantees about the function: (a) the destinationmask is a subset of the sourcemask
(identity is included), and (b) on a given invocationof the instruction, at leastone element
(the least signi icant enabled mask bit) will be selected from the source mask.

Programmers should always enforce the execution of a gather/scatter instruction to be
re-executed (via a loop) until the full completion of the sequence (i.e. all elements of the
gather/scatter sequence have been loaded/stored and hence, the write-mask bits all are
zero).

Writes to overlapping destination memory locations are guaranteed to be ordered with
respect to eachother (fromLSB toMSBof the source registers). Onlywrites to overlapping
vector indices are guaranteed to be ordered with respect to each other (from LSB to MSB
of the source registers). Writes that are not overlappedmay happen in any order. Memory
ordering with other instructions follows the Intel-64 memory ordering model. Note that
this does not account for non-overlapping indices thatmap into the samephysical address
locations.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element after down-conversion.

Note also the special mask behavior as the corresponding bits in write mask k1 are reset
with each destination element being updated according to the subset of write mask k1.
This is useful to allow conditional re-trigger of the instruction until all the elements from
a given write mask have been successfully stored.

Operation

// instruction works over a subset of the write mask
ktemp = SELECT_SUBSET(k1)

// Use mvt as vector memory operand (VSIB)
for (n = 0; n < 8; n++) {

594 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

if (ktemp[n] != 0) {
i = 64*n
j = 32*n
// mvt[n] = BASE_ADDR + SignExtend(VINDEX[j+31:j] * SCALE)
pointer[63:0] = mvt[n]
tmp = DownConvStoref64(zmm1[i+63:i], SSS[2:0])
if(DownConvStoreSizeOff64(SSS[2:0]) == 8) {
MemStore(pointer) = tmp[63:0]

}
k1[n] = 0

}
}
k1[15:8] = 0

SIMD Floating-Point Exceptions

None.

Memory Down-conversion: Df64

S2S1S0 Function: Usage disp8*N
000 no conversion zmm1 8
001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Intel® C/C++ Compiler Intrinsic Equivalent

void _mm512_i32loextscatter_pd (void*, __m512i, __m512d,
_MM_DOWNCONV_PD_ENUM, int, int);

void _mm512_mask_i32loextscatter_pd (void*, __mmask8, __m512i, __m512d,
_MM_DOWNCONV_PD_ENUM, int, int);

void _mm512_i32loscatter_pd (void*, __m512i, __m512d, int);
void _mm512_mask_i32loscatter_pd (void*, __mmask8, __m512i, __m512d, int);

Reference Number: 327364-001 595

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form, and corresponding write-mask bit is not zero.

#GP(0) If a memory address is in a non-canonical form,
and corresponding write-mask bit is not zero.
If a memory operand linear address is not aligned
to element-wise data granularity dictated by the DownConv
mode, and corresponding write-mask bit is not zero.

#PF(fault-code) If a memory operand linear address produces a page fault
and corresponding write-mask bit is not zero.

#NM If CR0.TS[bit 3]=1.
If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If using a 16 bit effective address.
If ModRM.rm is different than 100b.
If no write mask is provided or selected write-mask is k0.

596 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VSCATTERDPS - Scatter Float32 Vector With Signed Dword Indices

Opcode Instruction Description
MVEX.512.66.0F38.W0 A2
/r /vsib

vscatterdps mvt {k1},
Df32(zmm1)

Scatter loat32 vector Df32(zmm1) to vector
memory locations mvt using doubleword in-
dices and k1 as completion mask.

Description

Down-converts and stores all 16 elements in loat32 vector zmm1 to the memory loca-
tions pointed by base address BASE_ADDR and doubleword index vector V INDEX ,
with scale SCALE.

Note the special mask behavior as only a subset of the active elements of write mask k1
are actually operated on (as denoted by function SELECT _SUBSET). There are only
two guarantees about the function: (a) the destinationmask is a subset of the sourcemask
(identity is included), and (b) on a given invocationof the instruction, at leastone element
(the least signi icant enabled mask bit) will be selected from the source mask.

Programmers should always enforce the execution of a gather/scatter instruction to be
re-executed (via a loop) until the full completion of the sequence (i.e. all elements of the
gather/scatter sequence have been loaded/stored and hence, the write-mask bits all are
zero).

Writes to overlapping destination memory locations are guaranteed to be ordered with
respect to eachother (fromLSB toMSBof the source registers). Onlywrites to overlapping
vector indices are guaranteed to be ordered with respect to each other (from LSB to MSB
of the source registers). Writes that are not overlappedmay happen in any order. Memory
ordering with other instructions follows the Intel-64 memory ordering model. Note that
this does not account for non-overlapping indices thatmap into the samephysical address
locations.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element after down-conversion.

Note also the special mask behavior as the corresponding bits in write mask k1 are reset
with each destination element being updated according to the subset of write mask k1.
This is useful to allow conditional re-trigger of the instruction until all the elements from
a given write mask have been successfully stored.

Operation

// instruction works over a subset of the write mask
ktemp = SELECT_SUBSET(k1)

// Use mvt as vector memory operand (VSIB)
for (n = 0; n < 16; n++) {

Reference Number: 327364-001 597

CHAPTER 6. INSTRUCTION DESCRIPTIONS

if (ktemp[n] != 0) {
i = 32*n
// mvt[n] = BASE_ADDR + SignExtend(VINDEX[i+31:i] * SCALE)
pointer[63:0] = mvt[n]
tmp = DownConvStoref32(zmm1[i+31:i], SSS[2:0])
if(DownConvStoreSizeOff32(SSS[2:0]) == 4) {
MemStore(pointer) = tmp[31:0]

} else if(DownConvStoreSizeOff32(SSS[2:0]) == 2) {
MemStore(pointer) = tmp[15:0]

} else if(DownConvStoreSizeOff32(SSS[2:0]) == 1) {
MemStore(pointer) = tmp[7:0]

}
k1[n] = 0

}
}

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Memory Down-conversion: Df32

S2S1S0 Function: Usage disp8*N
000 no conversion zmm1 4
001 reserved N/A N/A
010 reserved N/A N/A
011 loat32 to loat16 zmm1 { loat16} 2
100 loat32 to uint8 zmm1 {uint8} 1
101 loat32 to sint8 zmm1 {sint8} 1
110 loat32 to uint16 zmm1 {uint16} 2
111 loat32 to sint16 zmm1 {sint16} 2

Intel® C/C++ Compiler Intrinsic Equivalent

void _mm512_i32extscatter_ps (void*, __m512i, __m512,
_MM_DOWNCONV_PS_ENUM, int, int);

void _mm512_mask_i32extscatter_ps (void*, __mmask16, __m512i, __m512,
_MM_DOWNCONV_PS_ENUM, int, int);

void _mm512_i32scatter_ps (void*, __m512i, __m512, int);
void _mm512_mask_i32scatter_ps (void*, __mmask16, __m512i, __m512, int);

598 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form, and corresponding write-mask bit is not zero.

#GP(0) If a memory address is in a non-canonical form,
and corresponding write-mask bit is not zero.
If a memory operand linear address is not aligned
to element-wise data granularity dictated by the DownConv
mode, and corresponding write-mask bit is not zero.

#PF(fault-code) If a memory operand linear address produces a page fault
and corresponding write-mask bit is not zero.

#NM If CR0.TS[bit 3]=1.
If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If using a 16 bit effective address.
If ModRM.rm is different than 100b.
If no write mask is provided or selected write-mask is k0.

Reference Number: 327364-001 599

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VSCATTERPF0DPS - Scatter Prefetch Float32 Vector With Signed Dword
Indices Into L1

Opcode Instruction Description
MVEX.512.66.0F38.W0 C6
/5 /vsib

vscatterpf0dps Uf32(mvt) {k1} Scatter Prefetch loat32 vector Uf32(mvt), us-
ing doubleword indices with T0 hint, under
write-mask.

Description

Prefetches into the L1 level of cache the memory locations pointed by base address
BASE_ADDR and doubleword index vector V INDEX , with scale SCALE, with re-
quest for ownership (exclusive). Up-conversion operand speci ies the granularity used
by compilers to better encode the instruction if a displacement, using disp8*N feature, is
provided when specifying the address. If any memory access causes any type of mem-
ory exception, the memory access will be considered as completed (destination mask up-
dated) and the exception ignored. Up-conversion parameter is optional, and it is used to
correctly encode disp8*N.

Note the special mask behavior as only a subset of the active elements of write mask k1
are actually operated on (as denoted by function SELECT _SUBSET). There are only
two guarantees about the function: (a) the destinationmask is a subset of the sourcemask
(identity is included), and (b) on a given invocationof the instruction, at leastone element
(the least signi icant enabled mask bit) will be selected from the source mask.

Programmers should always enforce the execution of a gather/scatter instruction to be
re-executed (via a loop) until the full completion of the sequence (i.e. all elements of the
prefetch sequence have been prefetched and hence, the write-mask bits all are zero).

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element after up-conversion.

Note also the special mask behavior as the corresponding bits in write mask k1 are reset
with each destination element being updated according to the subset of write mask k1.
This is useful to allow conditional re-trigger of the instruction until all the elements from
a given write mask have been successfully stored.

Note that both gather and scatter prefetches set the access bit (A) in the related TLB page
entry. Scatter prefetches (which prefetch data with RFO) do not set the dirty bit (D).

Operation

// instruction works over a subset of the write mask
ktemp = SELECT_SUBSET(k1)

exclusive = 1
evicthintpre = MVEX.EH

600 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

// Use mvt as vector memory operand (VSIB)
for (n = 0; n < 16; n++) {

if (ktemp[n] != 0) {
i = 32*n
// mvt[n] = BASE_ADDR + SignExtend(VINDEX[i+31:i] * SCALE)
pointer[63:0] = mvt[n]
FetchL1cacheLine(pointer, exclusive, evicthintpre)
k1[n] = 0

}
}

SIMD Floating-Point Exceptions

None.

Memory Up-conversion: Uf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] 4
001 reserved N/A N/A
010 reserved N/A N/A
011 loat16 to loat32 [rax] { loat16} 2
100 uint8 to loat32 [rax] {uint8} 1
101 sint8 to loat32 [rax] {sint8} 1
110 uint16 to loat32 [rax] {uint16} 2
111 sint16 to loat32 [rax] {sint16} 2

Intel® C/C++ Compiler Intrinsic Equivalent

void _mm512_prefetch_i32extscatter_ps (void*, __m512i, _MM_UPCONV_PS_ENUM,
int, int);

void _mm512_mask_prefetch_i32extscatter_ps(void*, __mmask16, __m512i,
_MM_UPCONV_PS_ENUM, int, int);

void _mm512_prefetch_i32scatter_ps(void*, __m512i, int, int);
void _mm512_mask_prefetch_i32scatter_ps(void*, __mmask16, __m512i, int, int);

Reference Number: 327364-001 601

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#NM If CR0.TS[bit 3]=1.
If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If using a 16 bit effective address.
If ModRM.rm is different than 100b.
If no write mask is provided or selected write-mask is k0.

602 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VSCATTERPF0HINTDPD - Scatter Prefetch Float64VectorHintWith Signed
Dword Indices

Opcode Instruction Description
MVEX.512.66.0F38.W1 C6
/4 /vsib

vscatterpf0hintdpd Uf64(mvt)
{k1}

Scatter Prefetch loat64 vector Uf64(mvt), us-
ing doubleword indices with T0 hint, under
write-mask.

Description

The instruction speci ies a set of 8 loat64 memory locations pointed by base address
BASE_ADDR and doubleword index vector V INDEX with scale SCALE as a perfor-
mance hint that a real scatter instruction with the same set of sources will be invoked. A
programmer may execute this instruction before a real scatter instruction to improve its
performance.

This instruction is a hint and may be speculative, and may be dropped or specify invalid
addresseswithout causing problems ormemory related faults. This instructions does not
modify any kind of architectural state (including the write-mask).

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Operation

// Use mvt as vector memory operand (VSIB)
for (n = 0; n < 8; n++) {

if (k1[n] != 0) {
i = 64*n
j = 32*n
// mvt[n] = BASE_ADDR + SignExtend(VINDEX[j+31:j] * SCALE)
pointer[63:0] = mvt[n]
HintPointer(pointer)

}
}

SIMD Floating-Point Exceptions

None.

Reference Number: 327364-001 603

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Uf64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] 8
001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Intel® C/C++ Compiler Intrinsic Equivalent

None

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#NM If CR0.TS[bit 3]=1.
#UD If processor model does not implement the speci ic instruction.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If using a 16 bit effective address.
If ModRM.rm is different than 100b.
If no write mask is provided or selected write-mask is k0.

604 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VSCATTERPF0HINTDPS - Scatter Prefetch Float32VectorHintWith Signed
Dword Indices

Opcode Instruction Description
MVEX.512.66.0F38.W0 C6
/4 /vsib

vscatterpf0hintdps Uf32(mvt)
{k1}

Scatter Prefetch loat32 vector Uf32(mvt), us-
ing doubleword indices with T0 hint, under
write-mask.

Description

The instruction speci ies a set of 16 loat32 memory locations pointed by base address
BASE_ADDR and doubleword index vector V INDEX with scale SCALE as a perfor-
mance hint that a real scatter instruction with the same set of sources will be invoked. A
programmer may execute this instruction before a real scatter instruction to improve its
performance.

This instruction is a hint and may be speculative, and may be dropped or specify invalid
addresseswithout causing problems ormemory related faults. This instructions does not
modify any kind of architectural state (including the write-mask).

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Operation

// Use mvt as vector memory operand (VSIB)
for (n = 0; n < 16; n++) {

if (k1[n] != 0) {
i = 32*n
// mvt[n] = BASE_ADDR + SignExtend(VINDEX[i+31:i] * SCALE)
pointer[63:0] = mvt[n]
HintPointer(pointer)

}
}

SIMD Floating-Point Exceptions

None.

Reference Number: 327364-001 605

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Uf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] 4
001 reserved N/A N/A
010 reserved N/A N/A
011 loat16 to loat32 [rax] { loat16} 2
100 uint8 to loat32 [rax] {uint8} 1
101 sint8 to loat32 [rax] {sint8} 1
110 uint16 to loat32 [rax] {uint16} 2
111 sint16 to loat32 [rax] {sint16} 2

Intel® C/C++ Compiler Intrinsic Equivalent

None

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#NM If CR0.TS[bit 3]=1.
#UD If processor model does not implement the speci ic instruction.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If using a 16 bit effective address.
If ModRM.rm is different than 100b.
If no write mask is provided or selected write-mask is k0.

606 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VSCATTERPF1DPS - Scatter Prefetch Float32 Vector With Signed Dword
Indices Into L2

Opcode Instruction Description
MVEX.512.66.0F38.W0 C6
/6 /vsib

vscatterpf1dps Uf32(mvt) {k1} Scatter Prefetch loat32 vector Uf32(mvt), us-
ing doubleword indices with T1 hint, under
write-mask.

Description

Prefetches into the L2 level of cache the memory locations pointed by base address
BASE_ADDR and doubleword index vector V INDEX , with scale SCALE, with re-
quest for ownership (exclusive). Down-conversion operand speci ies the granularity used
by compilers to better encode the instruction if a displacement, using disp8*N feature, is
provided when specifying the address. If any memory access causes any type of mem-
ory exception, the memory access will be considered as completed (destination mask up-
dated) and the exception ignored. Down-conversion parameter is optional, and it is used
to correctly encode disp8*N.

Note the special mask behavior as only a subset of the active elements of write mask k1
are actually operated on (as denoted by function SELECT _SUBSET). There are only
two guarantees about the function: (a) the destinationmask is a subset of the sourcemask
(identity is included), and (b) on a given invocationof the instruction, at leastone element
(the least signi icant enabled mask bit) will be selected from the source mask.

Programmers should always enforce the execution of a gather/scatter instruction to be
re-executed (via a loop) until the full completion of the sequence (i.e. all elements of the
prefetch sequence have been prefetched and hence, the write-mask bits all are zero).

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element after down-conversion.

Note also the special mask behavior as the corresponding bits in write mask k1 are reset
with each destination element being updated according to the subset of write mask k1.
This is useful to allow conditional re-trigger of the instruction until all the elements from
a given write mask have been successfully stored.

Note that both gather and scatter prefetches set the access bit (A) in the related TLB page
entry. Scatter prefetches (which prefetch data with RFO) do not set the dirty bit (D).

Operation

// instruction works over a subset of the write mask
ktemp = SELECT_SUBSET(k1)

exclusive = 1
evicthintpre = MVEX.EH

Reference Number: 327364-001 607

CHAPTER 6. INSTRUCTION DESCRIPTIONS

// Use mvt as vector memory operand (VSIB)
for (n = 0; n < 16; n++) {

if (ktemp[n] != 0) {
i = 32*n
// mvt[n] = BASE_ADDR + SignExtend(VINDEX[i+31:i] * SCALE)
pointer[63:0] = mvt[n]
FetchL2cacheLine(pointer, exclusive, evicthintpre)
k1[n] = 0

}
}

SIMD Floating-Point Exceptions

None.

Memory Down-conversion: Df32

S2S1S0 Function: Usage disp8*N
000 no conversion zmm1 4
001 reserved N/A N/A
010 reserved N/A N/A
011 loat32 to loat16 zmm1 { loat16} 2
100 loat32 to uint8 zmm1 {uint8} 1
101 loat32 to sint8 zmm1 {sint8} 1
110 loat32 to uint16 zmm1 {uint16} 2
111 loat32 to sint16 zmm1 {sint16} 2

Intel® C/C++ Compiler Intrinsic Equivalent

void _mm512_prefetch_i32extscatter_ps (void*, __m512i, _MM_UPCONV_PS_ENUM,
int, int);

void _mm512_mask_prefetch_i32extscatter_ps(void*, __mmask16, __m512i,
_MM_UPCONV_PS_ENUM, int, int);

void _mm512_prefetch_i32scatter_ps(void*, __m512i, int, int);
void _mm512_mask_prefetch_i32scatter_ps(void*, __mmask16, __m512i, int, int);

608 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#NM If CR0.TS[bit 3]=1.
If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If using a 16 bit effective address.
If ModRM.rm is different than 100b.
If no write mask is provided or selected write-mask is k0.

Reference Number: 327364-001 609

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VSUBPD - Subtract Float64 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F.W1
5C /r

vsubpd zmm1 {k1}, zmm2,
Sf64(zmm3/mt)

Subtract loat64 vector Sf64(zmm3/mt) from
loat64 vector zmm2 and store the result in
zmm1, under write-mask.

Description

Performs an element-by-element subtraction from loat64 vector zmm2 of the loat64
vector result of the swizzle/broadcast/conversion process on memory or loat64 vector
zmm3. The result is written into loat64 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc3[511:0] = SwizzUpConvLoadf64(zmm3/mt)

}

for (n = 0; n < 8; n++) {
if(k1[n] != 0) {
i = 64*n
// float64 operation
zmm1[i+63:i] = zmm2[i+63:i] - tmpSrc3[i+63:i]

}
}

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

610 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sf64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64
001 broadcast 1 element (x8) [rax] {1to8} 8
010 broadcast 4 elements (x2) [rax] {4to8} 32
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Register Swizzle: Sf64

MVEX.EH=0
S2S1S0 Function: 4 x 64 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}

Reference Number: 327364-001 611

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel® C/C++ Compiler Intrinsic Equivalent

__m512d _mm512_sub_pd (__m512d, __m512d);
__m512d _mm512_mask_sub_pd (__m512d, __mmask8, __m512d, __m512d);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

612 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VSUBPS - Subtract Float32 Vectors

Opcode Instruction Description
MVEX.NDS.512.0F.W05C/r vsubps zmm1 {k1}, zmm2,

Sf32(zmm3/mt)
Subtract loat32 vector Sf32(zmm3/mt) from
loat32 vector zmm2 and store the result in
zmm1, under write-mask.

Description

Performs an element-by-element subtraction from loat32 vector zmm2 of the loat32
vector result of the swizzle/broadcast/conversion process on memory or loat32 vector
zmm3. The result is written into loat32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc3[511:0] = SwizzUpConvLoadf32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// float32 operation
zmm1[i+31:i] = zmm2[i+31:i] - tmpSrc3[i+31:i]

}
}

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Reference Number: 327364-001 613

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 loat16 to loat32 [rax] { loat16} 32
100 uint8 to loat32 [rax] {uint8} 16
110 uint16 to loat32 [rax] {uint16} 32
111 sint16 to loat32 [rax] {sint16} 32

Register Swizzle: Sf32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}

614 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_sub_ps (__m512, __m512);
__m512 _mm512_mask_sub_ps (__m512, __mmask16, __m512, __m512);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 615

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VSUBRPD - Reverse Subtract Float64 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W1
6D /r

vsubrpd zmm1 {k1}, zmm2,
Sf64(zmm3/mt)

Subtract loat64 vector zmm2 from loat64 vec-
tor Sf64(zmm3/mt) and store the result in
zmm1, under write-mask.

Description

Performs an element-by-element subtraction of loat64 vector zmm2 from the loat64
vector result of the swizzle/broadcast/conversion process on memory or loat64 vector
zmm3. The result is written into loat64 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc3[511:0] = SwizzUpConvLoadf64(zmm3/mt)

}

for (n = 0; n < 8; n++) {
if(k1[n] != 0) {
i = 64*n
// float64 operation
zmm1[i+63:i] = -zmm2[i+63:i] + tmpSrc3[i+63:i]

}
}

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

616 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sf64

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64
001 broadcast 1 element (x8) [rax] {1to8} 8
010 broadcast 4 elements (x2) [rax] {4to8} 32
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Register Swizzle: Sf64

MVEX.EH=0
S2S1S0 Function: 4 x 64 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}

Reference Number: 327364-001 617

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel® C/C++ Compiler Intrinsic Equivalent

__m512d _mm512_subr_pd (__m512d, __m512d);
__m512d _mm512_mask_subr_pd (__m512d, __mmask8, __m512d, __m512d);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

618 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VSUBRPS - Reverse Subtract Float32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0
6D /r

vsubrps zmm1 {k1}, zmm2,
Sf32(zmm3/mt)

Subtract loat32 vector zmm2 from loat32 vec-
tor Sf32(zmm3/mt) and store the result in
zmm1, under write-mask.

Description

Performs an element-by-element subtraction of loat32 vector zmm2 from the loat32
vector result of the swizzle/broadcast/conversion process on memory or loat32 vector
zmm3. The result is written into loat32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if(source is a register operand and MVEX.EH bit is 1) {
if(SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode = MXCSR.RC
tmpSrc3[511:0] = SwizzUpConvLoadf32(zmm3/mt)

}

for (n = 0; n < 16; n++) {
if(k1[n] != 0) {
i = 32*n
// float32 operation
zmm1[i+31:i] = -zmm2[i+31:i] + tmpSrc3[i+31:i]

}
}

SIMD Floating-Point Exceptions

Over low, Under low, Invalid, Precision, Denormal.

Reference Number: 327364-001 619

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sf32

S2S1S0 Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) [rax] {1to16} 4
010 broadcast 4 elements (x4) [rax] {4to16} 16
011 loat16 to loat32 [rax] { loat16} 32
100 uint8 to loat32 [rax] {uint8} 16
110 uint16 to loat32 [rax] {uint16} 32
111 sint16 to loat32 [rax] {sint16} 32

Register Swizzle: Sf32

MVEX.EH=0
S2S1S0 Function: 4 x 32 bits Usage
000 no swizzle zmm0 or zmm0 {dcba}
001 swap (inner) pairs zmm0 {cdab}
010 swap with two-away zmm0 {badc}
011 cross-product swizzle zmm0 {dacb}
100 broadcast a element zmm0 {aaaa}
101 broadcast b element zmm0 {bbbb}
110 broadcast c element zmm0 {cccc}
111 broadcast d element zmm0 {dddd}
MVEX.EH=1
S2S1S0 Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}

620 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel® C/C++ Compiler Intrinsic Equivalent

__m512 _mm512_subr_ps (__m512,__m512);
__m512 _mm512_mask_subr_ps (__m512, __mmask16, __m512, __m512);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 pre ixes.

Reference Number: 327364-001 621

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

Appendix A

Scalar Instruction Descriptions

In this Chapter all the special scalar instructions introduced with the Knights Corner instruction set are de-
scribed.

622 Reference Number: 327364-001

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

CLEVICT0 - Evict L1 line

Opcode Instruction Description
VEX.128.F2.0F AE /7 clevict0 m8 Evict memory line from L1 in m8 using T0 hint.
MVEX.512.F2.0F AE /7 clevict0 m8 Evict memory line from L1 in m8 using T0 hint.

Description

Invalidates from the irst-level cache the cache line containing the speci ied linear address
(updating accordingly the cache hierarchy if the line is dirty). Note that, unlike CLFLUSH,
the invalidation is not broadcasted throughout the cache coherence domain.

The MVEX form of this instruction uses disp8*64 addressing. Displacements that would
normally be 8 bits according to the ModR/M byte are still 8 bits but scaled by 64 so that
they have cache-line granularity. VEX formsof this instruction uses regular disp8 address-
ing.

This instruction is a hint intended for performance and may be speculative, thus may be
dropped or specify invalid addresses without causing problems. The instruction does not
produce any type of memory-related fault.

Operation

FlushL1CacheLine(linear_address)

Flags Affected

None.

Intel® C/C++ Compiler Intrinsic Equivalent

void _mm_clevict (const void*, int);

Reference Number: 327364-001 623

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If operand is not a memory location.

624 Reference Number: 327364-001

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

CLEVICT1 - Evict L2 line

Opcode Instruction Description
VEX.128.F3.0F AE /7 clevict1 m8 Evict memory line from L2 in m8 using T1 hint.
MVEX.512.F3.0F AE /7 clevict1 m8 Evict memory line from L2 in m8 using T1 hint.

Description

Invalidates from the second-level cache the cache line containing the speci ied linear ad-
dress (updating accordingly the cache hierarchy if the line is dirty). Note that, unlike
CLFLUSH, the invalidation is not broadcasted throughout the cache coherence domain.

The MVEX form of this instruction uses disp8*64 addressing. Displacements that would
normally be 8 bits according to the ModR/M byte are still 8 bits but scaled by 64 so that
they have cache-line granularity. VEX formsof this instruction uses regular disp8 address-
ing.

This instruction is a hint intended for performance and may be speculative, thus may be
dropped or specify invalid addresses without causing problems. The instruction does not
produce any type of memory-related fault.

Operation

FlushL2CacheLine(linear_address)

Flags Affected

None.

Intel® C/C++ Compiler Intrinsic Equivalent

void _mm_clevict (const void*, int);

Reference Number: 327364-001 625

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If operand is not a memory location.

626 Reference Number: 327364-001

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

DELAY - Stall Thread

Opcode Instruction Description
VEX.128.F3.0F.W0 AE /6 delay r32 Stall Thread using r32.
VEX.128.F3.0F.W1 AE /6 delay r64 Stall Thread using r64.

Description

Hints that the processor should not fetch/issue instructions for the current thread for the
speci ied number of clock cycles in register source. Themaximum number of clock cycles
is limited to 232−1 (32 bit counter). The instructions is speculative and could be executed
as a NOP by a given processor implementation.

Any of the following events will cause the processor to start fetching instructions for the
delayed thread again: the counter counting down to zero, an NMI or SMI, a debug excep-
tion, amachine check exception, the BINIT# signal, the INIT# signal, or theRESET# signal.
The instruction may exit prematurely due to any interrupt (e.g. an interrupt on another
thread on the same core).

This instruction must properly handle the case where the current clock count turns over.
This can be accomplished by performing the subtraction shown below and treating the
result as an unsigned number.

This instruction shouldprevent the issuingof additional instructionson the issuing thread
as soon as possible, to avoid the otherwise likely case where another instruction on the
same thread that was issued 3 or 4 clocks later has to be killed, creating a pipeline bubble.

If, on any given clock, all threads are non-runnable, then any that are non-runnable due
to the execution of DELAY may or may not be treated as runnable threads.

Notes about Knights Corner implementation:

• In Knights Corner, the processor won't execute from a "delayed" thread before the
delay counter has expired, even if there are non-runnable threads at any given point
in time.

Operation

START_CLOCK = CURRENT_CLOCK_COUNT
DELAY_SLOTS = SRC
if(DELAY_SLOTS > 0xFFFFFFFF) DELAY_SLOTS = 0xFFFFFFFF
while ((CURRENT_CLOCK_COUNT - START_CLOCK) < DELAY_SLOTS)
{

avoid fetching/issuing from the current thread
}

Reference Number: 327364-001 627

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

Flags Affected

None.

Intel® C/C++ Compiler Intrinsic Equivalent

void _mm_delay_32 (unsigned int);
void _mm_delay_64 (unsigned __int64);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If operand is a memory location.

628 Reference Number: 327364-001

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

LZCNT - Leading Zero Count

Opcode Instruction Description
VEX.128.F3.0F.W0 BD /r lzcnt r32, r32 Count the number of leading bits set to 0 in r32 (src), leaving the

result in r32 (dst).
VEX.128.F3.0F.W1 BD /r lzcnt r64, r64 Count the number of leading bits set to 0 in r64 (src), leaving the

result in r64 (dst).

Description

Counts the number of leading most signi icant zero bits in a source operand (second
operand) returning the result into a destination (irst operand).

LZCNT is an extension of the BSR instruction. The key difference between LZCNT and BSR
is that LZCNT provides operand size as output when source operand is zero, while in the
case of BSR instruction, if source operand is zero, the content of destination operand are
unde ined.

ZF lag is set when the most signi icant set bit is bit OSIZE-1. CF is set when the source
has no set bit.

Operation

temp = OPERAND_SIZE - 1

DEST = 0
while((temp >= 0) AND (SRC[temp] == 0))
{

temp = temp - 1
DEST = DEST + 1

}

if(DEST == OPERAND_SIZE) {
CF = 1

} else {
CF = 0

}

if(DEST == 0) ZF = 1
} else {

ZF = 0
}

Reference Number: 327364-001 629

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

Flags Affected

• ZF lag is set to 1 in case of zero output (most signi icant bit of the source is set), and
to 0 otherwise

• CF lag is set to 1 if input was zero and cleared otherwise.
• The PF, OF, AF and SF lags are set to 0

Intel® C/C++ Compiler Intrinsic Equivalent

unsigned int _lzcnt_u32 (unsigned int);
__int64 _lzcnt_u64 (unsigned __int64);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If second operand is a memory location.

630 Reference Number: 327364-001

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

POPCNT - Return the Count of Number of Bits Set to 1

Opcode Instruction Description
VEX.128.F3.0F.W0 B8 /r popcnt r32, r32 Count the number of bits set to 1 in r32 (src), leaving the result

in r32 (dst).
VEX.128.F3.0F.W1 B8 /r popcnt r64, r64 Count the number of bits set to 1 in r64 (src), leaving the result

in r64 (dst).

Operation

tmp = 0
for (i=0; i<OPERAND_SIZE; i++)
{

if(SRC[i] == 1) tmp = tmp + 1
}
DEST = tmp

Flags Affected

• The ZF lag is set according to the result (if SRC==0)
• The OF, SF, AF, CF and PF lags are set to 0

Intel® C/C++ Compiler Intrinsic Equivalent

unsigned int _mm_popcnt_u32 (unsigned int);
__int64 _mm_popcnt_u64 (unsigned __int64);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

Reference Number: 327364-001 631

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

64 bit Mode

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If second operand is a memory location.

632 Reference Number: 327364-001

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

SPFLT - Set performance monitor ltering mask

Opcode Instruction Description
VEX.128.F2.0F.W0 AE /6 sp lt r32 Set performance monitoring iltering mask using r32.
VEX.128.F2.0F.W1 AE /6 sp lt r64 Set performance monitoring iltering mask using r64.

Description

SPFLT enables/disables performance monitoring on the currently executing thread only
based on the LSB value of the source.

SPFLT instruction is a model speci ic instruction and is not part of Intel® Architecture.
The bit(s) and register(s) modi ied are model-speci ic and may vary by processor imple-
mentation.

The PERF_SPFLT_CTRL model-speci ic register modi ied by SPFLT instruction may also
be read / modi ied with the RDMSR / WRMSR instructions, when executing at privilege
level 0.

The PERF_SPFLT_CTRL MSR is thread speci ic. SPFLT execution moves LSB of source
(EAX) into the USR_PREF bit (bit 63) in the PERF_SPFLT_CTRL MSR. The lower N bits,
called CNTR_x_SPFLT_EN (bits N-1:0, 1 per counter), in PERF_SPFLT_CTRL MSR control
whether the USR_PREF bit affects enabling of performance monitoring for the corre-
sponding counter.

SPFLT instruction does not modify the CNTR_x_SPFLT_EN bits, where as RDMSR and
WRMSR read / modify all bits of the PERF_SPFLT_CTRL MSR.

Enabling Performance countering

On a per thread basis, a performance monitoring counter n is incremented if, and only if:

1. PERF_GLOBAL_CTRL[n] is set to 1

2. IA32 PerfEvtSeln[22] is set to 1 (where 'n' is the enabled counter)

3. PERF_SPFLT_CTRL[n] is set to 0, or, PERF_SPFLT_CTRL[63] (USR_PREF) is set to 1.

4. The desired event is asserted for thread id T

Reference Number: 327364-001 633

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

MSR address Per-thread? Name
2Fh Y PERF_GLOBAL_CTRL

Bit 1: Enable IA32_PerfEvtSel1
Bit 0: Enable IA32_PerfEvtSel0

28h Y IA32_PerfEvtSel0
Bit 22: Enable counter 0

29h Y IA32_PerfEvtSel1
Bit 22: Enable counter 1

2Ch Y PERF_SPFLT_CTRL
Bit 63: User Preference (USR_PREF).
Bit 1: Counter 1 SPFLT Enable. Controls whether USR_PREF
is used in enabling performance monitoring for counter 1
Bit 0: Counter 0 SPFLT Enable. Controls whether USR_PREF
is used in enabling performance monitoring for counter 0

Operation

(* i is the thread ID of the current executing thread *)
PerfFilterMask[i][0] = SRC[0];

Flags Affected

None.

Intel® C/C++ Compiler Intrinsic Equivalent

void _mm_sp lt_32 (unsigned int);
void _mm_sp lt_64 (unsigned __int64);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

634 Reference Number: 327364-001

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

64 bit Mode

#UD If processor model does not implement SPFLT.
If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If operand is a memory location.

Reference Number: 327364-001 635

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

TZCNT - Trailing Zero Count

Opcode Instruction Description
VEX.128.F3.0F.W0 BC /r tzcnt r32, r32 Count the number of trailing bits set to 0 in r32 (src), leaving the

result in r32 (dst).
VEX.128.F3.0F.W1 BC /r tzcnt r64, r64 Count the number of trailing bits set to 0 in r64 (src), leaving the

result in r64 (dst).

Description

Searches the source operand (second operand) for the least signi icant set bit (1 bit). If a
least signi icant 1 bit is found, its bit index is stored in the destination operand; otherwise,
the destination operand is set to the operand size.

ZF lag is set when the least signi icant set bit is bit 0. CF is set when the source has no set
bit.

Operation

index = 0
if(SRC[OPERAND_SIZE-1:0] == 0)
{

DEST = OPERAND_SIZE
CF = 1

}
else
{

while(SRC[index] == 0)
{

index = index+1
}
DEST = index
CF = 0

}

Flags Affected

• The ZF is set according to the result
• The CF is set if SRC is zero
• The PF, OF, AF and SF lags are set to 0

636 Reference Number: 327364-001

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

Intel® C/C++ Compiler Intrinsic Equivalent

unsigned int _tzcnt_u32 (unsigned int);
__int64 _tzcnt_u64 (unsigned __int64);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If second operand is a memory location.

Reference Number: 327364-001 637

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

TZCNTI - Initialized Trailing Zero Count

Opcode Instruction Description
VEX.128.F2.0F.W0 BC /r tzcnti r32, r32 Count the number of trailing bits set to 0 between r32 (dst) and

r32 (src).
VEX.128.F2.0F.W1 BC /r tzcnti r64, r64 Count the number of trailing bits set to 0 between r64 (dst) and

r64 (src).

Description

Searches the source operand (second operand) for the least signi icant set bit (1 bit)
greater than bit DEST (whereDEST is the destination operand, the irst operand). If a least
signi icant 1 bit is found, its bit index is stored in the destination operand ; otherwise, the
destination operand is set to the operand size. The value of DEST is a signed offset from
bit 0 of the source operand. Any negative DEST value will produce a search starting from
bit 0, like TZCNT. Any DEST value equal to or greater than (OPERAND_SIZE-1) will cause
the destination operand to be set to the operand size.

This instruction allows continuation of searches through bit vectors without having to
mask off each least signi icant 1-bit before restarting, as is required with TZCNT.

The functionality of this instruction is exactly the same as for the TZCNT instruction, ex-
cept that the search starts at bit DEST+1 rather than bit 0.

CF is set when the speci ied index goes beyond the operand size or there is no set bit
between the index and the MSB bit of the source.

Operation

// DEST is a signed operand, no overflow
if (DEST[OSIZE-1:0] < 0) index = 0
else index = DEST + 1

if((index > OPERAND_SIZE-1) || (SRC[OPERAND_SIZE-1:index] == 0))
{

DEST = OPERAND_SIZE
CF=1

}
else
{

while(SRC[index] == 0)
{

index = index+1
}
DEST = index
CF=0

638 Reference Number: 327364-001

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

}

Flags Affected

• The ZF is set according to the result
• The CF is set if SRC is zero betwen index andMSB, or index is greater than the operand
size.

• The PF, OF, AF and SF lags are set to 0

Intel® C/C++ Compiler Intrinsic Equivalent

int _mm_tzcnti_32 (int, unsigned int);
__int64 _mm_tzcnti_64 (__int64, unsigned __int64);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If second operand is a memory location.

Reference Number: 327364-001 639

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

VPREFETCH0 - Prefetch memory line using T0 hint

Opcode Instruction Description
VEX.128.0F 18 /1 vprefetch0 m8 Prefetch memory line in m8 using T0 hint.
MVEX.512.0F 18 /1 vprefetch0 m8 Prefetch memory line in m8 using T0 hint.

Description

This is very similar to the existing IA-32 prefetch instruction, PREFETCH0, as described
in IA-32 Intel® Architecture Software Developer's Manual: Volume 2. If the line selected is
already present in the cache hierarchy at a level closer to the processor, no datamovement
occurs. Prefetches from uncacheable or WC memory are ignored.

In contrast with the existing prefetch instruction, the MVEX form of this instruction uses
disp8*64 addressing. Displacements that would normally be 8 bits according to the
ModR/M byte are still 8 bits but scaled by 64 so that they have cache-line granularity.
VEX forms of this instruction uses regular disp8 addressing.

This instruction is a hint and may be speculative, and may be dropped or specify invalid
addresses without causing problems or memory related faults.

This instruction contains a set of hint attributes that modify the prefetching behavior:

exclusive: make line Exclusive in the L1 cache (unless it's already Exclusive or Modi ied
in the L1 cache).

nthintpre (NTH): load data into the L1 nontemporal cache rather than the L1 temporal
cache. Data will be loaded in the #TIDth way and made MRU. Data should still be
cached normally in the L2 and higher caches.

Note that in Knights Corner, the hardware drops VPREFETCH if it hits L1 (so it becomes
transparent to L2). Consequently, this instructon is not a good solution to avoid hot
L1/cold L2 performance problems. Prefetches set the access bit (A) in the related TLB
page entry, but prefetches with exclusive access (RFO) do not set the dirty bit (D).

PREFETCH Hint equivalence for Knights Corner hardware
Instruction Cache Level Non-temporal Bring as exclusive
VPREFETCH0 L1 NO NO
VPREFETCHNTA L1 YES NO
VPREFETCH1 L2 NO NO
VPREFETCH2 L2 YES NO
VPREFETCHE0 L1 NO YES
VPREFETCHENTA L1 YES YES
VPREFETCHE1 L2 NO YES
VPREFETCHE2 L2 YES YES

640 Reference Number: 327364-001

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

Operation

exclusive = 0
nthintpre = 0
FetchL1CacheLine(effective_address, exclusive, nthintpre)

Flags Affected

None.

Intel® C/C++ Compiler Intrinsic Equivalent

void _mm_prefetch (char const*, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If operand is not a memory location.

Reference Number: 327364-001 641

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

VPREFETCH1 - Prefetch memory line using T1 hint

Opcode Instruction Description
VEX.128.0F 18 /2 vprefetch1 m8 Prefetch memory line in m8 using T1 hint.
MVEX.512.0F 18 /2 vprefetch1 m8 Prefetch memory line in m8 using T1 hint.

Description

This is very similar to the existing IA-32 prefetch instruction, PREFETCH0, as described
in IA-32 Intel® Architecture Software Developer's Manual: Volume 2. If the line selected is
already present in the cache hierarchy at a level closer to the processor, no datamovement
occurs. Prefetches from uncacheable or WC memory are ignored.

In contrast with the existing prefetch instruction, the MVEX form of this instruction uses
disp8*64 addressing. Displacements that would normally be 8 bits according to the
ModR/M byte are still 8 bits but scaled by 64 so that they have cache-line granularity.
VEX forms of this instruction uses regular disp8 addressing.

This instruction is a hint and may be speculative, and may be dropped or specify invalid
addresses without causing problems or memory related faults.

This instruction contains a set of hint attributes that modify the prefetching behavior:

exclusive: make line Exclusive in the L2 cache (unless it's already Exclusive or Modi ied
in the L2 cache).

nthintpre (NTH): load data into the L2 nontemporal cache rather than the L2 temporal
cache. Data will be loaded in the #TIDth way and made MRU. Data should still be
cached normally in the L2 and higher caches.

Note that in Knights Corner, the hardware drops VPREFETCH if it hits L1 (so it becomes
transparent to L2). Consequently, this instructon is not a good solution to avoid hot
L1/cold L2 performance problems. Prefetches set the access bit (A) in the related TLB
page entry, but prefetches with exclusive access (RFO) do not set the dirty bit (D).

PREFETCH Hint equivalence for Knights Corner hardware
Instruction Cache Level Non-temporal Bring as exclusive
VPREFETCH0 L1 NO NO
VPREFETCHNTA L1 YES NO
VPREFETCH1 L2 NO NO
VPREFETCH2 L2 YES NO
VPREFETCHE0 L1 NO YES
VPREFETCHENTA L1 YES YES
VPREFETCHE1 L2 NO YES
VPREFETCHE2 L2 YES YES

642 Reference Number: 327364-001

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

Operation

exclusive = 0
nthintpre = 0
FetchL2CacheLine(effective_address, exclusive, nthintpre)

Flags Affected

None.

Intel® C/C++ Compiler Intrinsic Equivalent

void _mm_prefetch (char const*, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If operand is not a memory location.

Reference Number: 327364-001 643

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

VPREFETCH2 - Prefetch memory line using T2 hint

Opcode Instruction Description
VEX.128.0F 18 /3 vprefetch2 m8 Prefetch memory line in m8 using T2 hint.
MVEX.512.0F 18 /3 vprefetch2 m8 Prefetch memory line in m8 using T2 hint.

Description

This is very similar to the existing IA-32 prefetch instruction, PREFETCH0, as described
in IA-32 Intel® Architecture Software Developer's Manual: Volume 2. If the line selected is
already present in the cache hierarchy at a level closer to the processor, no datamovement
occurs. Prefetches from uncacheable or WC memory are ignored.

In contrast with the existing prefetch instruction, the MVEX form of this instruction uses
disp8*64 addressing. Displacements that would normally be 8 bits according to the
ModR/M byte are still 8 bits but scaled by 64 so that they have cache-line granularity.
VEX forms of this instruction uses regular disp8 addressing.

This instruction is a hint and may be speculative, and may be dropped or specify invalid
addresses without causing problems or memory related faults.

This instruction contains a set of hint attributes that modify the prefetching behavior:

exclusive: make line Exclusive in the L2 cache (unless it's already Exclusive or Modi ied
in the L2 cache).

nthintpre (NTH): load data into the L2 nontemporal cache rather than the L2 temporal
cache. Data will be loaded in the #TIDth way and made MRU. Data should still be
cached normally in the L2 and higher caches.

Note that in Knights Corner, the hardware drops VPREFETCH if it hits L1 (so it becomes
transparent to L2). Consequently, this instructon is not a good solution to avoid hot
L1/cold L2 performance problems. Prefetches set the access bit (A) in the related TLB
page entry, but prefetches with exclusive access (RFO) do not set the dirty bit (D).

PREFETCH Hint equivalence for Knights Corner hardware
Instruction Cache Level Non-temporal Bring as exclusive
VPREFETCH0 L1 NO NO
VPREFETCHNTA L1 YES NO
VPREFETCH1 L2 NO NO
VPREFETCH2 L2 YES NO
VPREFETCHE0 L1 NO YES
VPREFETCHENTA L1 YES YES
VPREFETCHE1 L2 NO YES
VPREFETCHE2 L2 YES YES

644 Reference Number: 327364-001

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

Operation

exclusive = 0
nthintpre = 1
FetchL2CacheLine(effective_address, exclusive, nthintpre)

Flags Affected

None.

Intel® C/C++ Compiler Intrinsic Equivalent

void _mm_prefetch (char const*, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If operand is not a memory location.

Reference Number: 327364-001 645

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

VPREFETCHE0 - Prefetch memory line using T0 hint, with intent to write

Opcode Instruction Description
VEX.128.0F 18 /5 vprefetche0 m8 Prefetch memory line in m8 using T0 hint with intent to write.
MVEX.512.0F 18 /5 vprefetche0 m8 Prefetch memory line in m8 using T0 hint with intent to write.

Description

This is very similar to the existing IA-32 prefetch instruction, PREFETCH0, as described
in IA-32 Intel® Architecture Software Developer's Manual: Volume 2. If the line selected is
already present in the cache hierarchy at a level closer to the processor, no datamovement
occurs. Prefetches from uncacheable or WC memory are ignored.

In contrast with the existing prefetch instruction, the MVEX form of this instruction uses
disp8*64 addressing. Displacements that would normally be 8 bits according to the
ModR/M byte are still 8 bits but scaled by 64 so that they have cache-line granularity.
VEX forms of this instruction uses regular disp8 addressing.

This instruction is a hint and may be speculative, and may be dropped or specify invalid
addresses without causing problems or memory related faults.

This instruction contains a set of hint attributes that modify the prefetching behavior:

exclusive: make line Exclusive in the L1 cache (unless it's already Exclusive or Modi ied
in the L1 cache).

nthintpre (NTH): load data into the L1 nontemporal cache rather than the L1 temporal
cache. Data will be loaded in the #TIDth way and made MRU. Data should still be
cached normally in the L2 and higher caches.

In Knights Corner, the hardware drops VPREFETCH if it hits L1 (so it becomes transpar-
ent to L2). Consequently, this instructon is not a good solution to avoid hot L1/cold L2
performance problems. Prefetches set the access bit (A) in the related TLB page entry,
but prefetches with exclusive access (RFO) do not set the dirty bit (D).

PREFETCH Hint equivalence for Knights Corner hardware
Instruction Cache Level Non-temporal Bring as exclusive
VPREFETCH0 L1 NO NO
VPREFETCHNTA L1 YES NO
VPREFETCH1 L2 NO NO
VPREFETCH2 L2 YES NO
VPREFETCHE0 L1 NO YES
VPREFETCHENTA L1 YES YES
VPREFETCHE1 L2 NO YES
VPREFETCHE2 L2 YES YES

646 Reference Number: 327364-001

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

Operation

exclusive = 1
nthintpre = 0
FetchL1CacheLine(effective_address, exclusive, nthintpre)

Flags Affected

None.

Intel® C/C++ Compiler Intrinsic Equivalent

void _mm_prefetch (char const*, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If operand is not a memory location.

Reference Number: 327364-001 647

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

VPREFETCHE1 - Prefetch memory line using T1 hint, with intent to write

Opcode Instruction Description
VEX.128.0F 18 /6 vprefetche1 m8 Prefetch memory line in m8 using T1 hint with intent to write.
MVEX.512.0F 18 /6 vprefetche1 m8 Prefetch memory line in m8 using T1 hint with intent to write.

Description

This is very similar to the existing IA-32 prefetch instruction, PREFETCH0, as described
in IA-32 Intel® Architecture Software Developer's Manual: Volume 2. If the line selected is
already present in the cache hierarchy at a level closer to the processor, no datamovement
occurs. Prefetches from uncacheable or WC memory are ignored.

In contrast with the existing prefetch instruction, the MVEX form of this instruction uses
disp8*64 addressing. Displacements that would normally be 8 bits according to the
ModR/M byte are still 8 bits but scaled by 64 so that they have cache-line granularity.
VEX forms of this instruction uses regular disp8 addressing.

This instruction is a hint and may be speculative, and may be dropped or specify invalid
addresses without causing problems or memory related faults.

This instruction contains a set of hint attributes that modify the prefetching behavior:

exclusive: make line Exclusive in the L2 cache (unless it's already Exclusive or Modi ied
in the L2 cache).

nthintpre (NTH): load data into the L2 nontemporal cache rather than the L2 temporal
cache. The data will be loaded in the #TIDth way and making the data MRU. Data
should still be cached normally in the L2 and higher caches.

The hardware drops VPREFETCH if it hits L1 (so it becomes transparent to L2). Conse-
quently, this instructon is not a good solution to avoid hot L1/cold L2 performance prob-
lems. Prefetches set the access bit (A) in the related TLB page entry, but prefetches with
exclusive access (RFO) do not set the dirty bit (D).

PREFETCH Hint equivalence for Knights Corner hardware
Instruction Cache Level Non-temporal Bring as exclusive
VPREFETCH0 L1 NO NO
VPREFETCHNTA L1 YES NO
VPREFETCH1 L2 NO NO
VPREFETCH2 L2 YES NO
VPREFETCHE0 L1 NO YES
VPREFETCHENTA L1 YES YES
VPREFETCHE1 L2 NO YES
VPREFETCHE2 L2 YES YES

648 Reference Number: 327364-001

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

Operation

exclusive = 1
nthintpre = 0
FetchL2CacheLine(effective_address, exclusive, nthintpre)

Flags Affected

None.

Intel® C/C++ Compiler Intrinsic Equivalent

void _mm_prefetch (char const*, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If operand is not a memory location.

Reference Number: 327364-001 649

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

VPREFETCHE2 - Prefetch memory line using T2 hint, with intent to write

Opcode Instruction Description
VEX.128.0F 18 /7 vprefetche2 m8 Prefetch memory line in m8 using T2 hint with intent to write.
MVEX.512.0F 18 /7 vprefetche2 m8 Prefetch memory line in m8 using T2 hint with intent to write.

Description

This is very similar to the existing IA-32 prefetch instruction, PREFETCH0, as described
in IA-32 Intel® Architecture Software Developer's Manual: Volume 2. If the line selected is
already present in the cache hierarchy at a level closer to the processor, no datamovement
occurs. Prefetches from uncacheable or WC memory are ignored.

In contrast with the existing prefetch instruction, the MVEX form of this instruction uses
disp8*64 addressing. Displacements that would normally be 8 bits according to the
ModR/M byte are still 8 bits but scaled by 64 so that they have cache-line granularity.
VEX forms of this instruction uses regular disp8 addressing.

This instruction is a hint and may be speculative, and may be dropped or specify invalid
addresses without causing problems or memory related faults.

This instruction contains a set of hint attributes that modify the prefetching behavior:

exclusive: make line Exclusive in the L2 cache (unless it's already Exclusive or Modi ied
in the L2 cache).

nthintpre (NTH): load data into the L2 nontemporal cache rather than the L2 temporal
cache. Data will be loaded in the #TIDth way and made MRU. Data should still be
cached normally in the L2 and higher caches.

Note that in Knights Corner, the hardware drops VPREFETCH if it hits L1 (so it becomes
transparent to L2). Consequently, this instructon is not a good solution to avoid hot
L1/cold L2 performance problems. Prefetches set the access bit (A) in the related TLB
page entry, but prefetches with exclusive access (RFO) do not set the dirty bit (D).

PREFETCH Hint equivalence for Knights Corner hardware
Instruction Cache Level Non-temporal Bring as exclusive
VPREFETCH0 L1 NO NO
VPREFETCHNTA L1 YES NO
VPREFETCH1 L2 NO NO
VPREFETCH2 L2 YES NO
VPREFETCHE0 L1 NO YES
VPREFETCHENTA L1 YES YES
VPREFETCHE1 L2 NO YES
VPREFETCHE2 L2 YES YES

650 Reference Number: 327364-001

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

Operation

exclusive = 1
nthintpre = 1
FetchL2CacheLine(effective_address, exclusive, nthintpre)

Flags Affected

None.

Intel® C/C++ Compiler Intrinsic Equivalent

void _mm_prefetch (char const*, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If operand is not a memory location.

Reference Number: 327364-001 651

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

VPREFETCHENTA - Prefetch memory line using NTA hint, with intent to
write

Opcode Instruction Description
VEX.128.0F 18 /4 vprefetchenta m8 Prefetch memory line in m8 using NTA hint with intent to write.
MVEX.512.0F 18 /4 vprefetchenta m8 Prefetch memory line in m8 using NTA hint with intent to write.

Description

This is very similar to the existing IA-32 prefetch instruction, PREFETCH0, as described
in IA-32 Intel® Architecture Software Developer's Manual: Volume 2. If the line selected is
already present in the cache hierarchy at a level closer to the processor, no datamovement
occurs. Prefetches from uncacheable or WC memory are ignored.

In contrast with the existing prefetch instruction, this instruction uses disp8*64 address-
ing. Displacements that would normally be 8 bits according to the ModR/M byte are still
8 bits but scaled by 64 so that they have cache-line granularity.

This instruction is a hint and may be speculative, and may be dropped or specify invalid
addresses without causing problems or memory related faults.

This instruction contains a set of hint attributes that modify the prefetching behavior:

exclusive: make line Exclusive in the L1 cache (unless it's already Exclusive or Modi ied
in the L1 cache).

nthintpre (NTH): load data into the L1 nontemporal cache rather than the L1 temporal
cache. The data will be loaded in the #TIDth way and making the data MRU. Data
should still be cached normally in the L2 and higher caches.

The hardware drops VPREFETCH if it hits L1 (so it becomes transparent to L2). Conse-
quently, this instructon is not a good solution to avoid hot L1/cold L2 performance prob-
lems. Prefetches set the access bit (A) in the related TLB page entry, but prefetches with
exclusive access (RFO) do not set the dirty bit (D).

PREFETCH Hint equivalence for Knights Corner hardware
Instruction Cache Level Non-temporal Bring as exclusive
VPREFETCH0 L1 NO NO
VPREFETCHNTA L1 YES NO
VPREFETCH1 L2 NO NO
VPREFETCH2 L2 YES NO
VPREFETCHE0 L1 NO YES
VPREFETCHENTA L1 YES YES
VPREFETCHE1 L2 NO YES
VPREFETCHE2 L2 YES YES

652 Reference Number: 327364-001

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

Operation

exclusive = 1
nthintpre = 1
FetchL1CacheLine(effective_address, exclusive, nthintpre)

Flags Affected

None.

Intel® C/C++ Compiler Intrinsic Equivalent

void _mm_prefetch (char const*, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If operand is not a memory location.

Reference Number: 327364-001 653

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

VPREFETCHNTA - Prefetch memory line using NTA hint

Opcode Instruction Description
VEX.128.0F 18 /0 vprefetchnta m8 Prefetch memory line in m8 using NTA hint.
MVEX.512.0F 18 /0 vprefetchnta m8 Prefetch memory line in m8 using NTA hint.

Description

This is very similar to the existing IA-32 prefetch instruction, PREFETCH0, as described
in IA-32 Intel® Architecture Software Developer's Manual: Volume 2. If the line selected is
already present in the cache hierarchy at a level closer to the processor, no datamovement
occurs. Prefetches from uncacheable or WC memory are ignored.

In contrast with the existing prefetch instruction, the MVEX form of this instruction uses
disp8*64 addressing. Displacements that would normally be 8 bits according to the
ModR/M byte are still 8 bits but scaled by 64 so that they have cache-line granularity.
VEX forms of this instruction uses regular disp8 addressing.

This instruction is a hint and may be speculative, and may be dropped or specify invalid
addresses without causing problems or memory related faults.

This instruction contains a set of hint attributes that modify the prefetching behavior:

exclusive: make line Exclusive in the L1 cache (unless it's already Exclusive or Modi ied
in the L1 cache).

nthintpre (NTH): load data into the L1 nontemporal cache rather than the L1 temporal
cache. Data will be loaded in the #TIDth way and made MRU. Data should still be
cached normally in the L2 and higher caches.

In Knights Corner, the hardware drops VPREFETCH if it hits L1 (so it becomes transpar-
ent to L2). Consequently, this instructon is not a good solution to avoid hot L1/cold L2
performance problems. Prefetches set the access bit (A) in the related TLB page entry,
but prefetches with exclusive access (RFO) do not set the dirty bit (D).

PREFETCH Hint equivalence for Knights Corner hardware
Instruction Cache Level Non-temporal Bring as exclusive
VPREFETCH0 L1 NO NO
VPREFETCHNTA L1 YES NO
VPREFETCH1 L2 NO NO
VPREFETCH2 L2 YES NO
VPREFETCHE0 L1 NO YES
VPREFETCHENTA L1 YES YES
VPREFETCHE1 L2 NO YES
VPREFETCHE2 L2 YES YES

654 Reference Number: 327364-001

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

Operation

exclusive = 0
nthintpre = 1
FetchL1CacheLine(effective_address, exclusive, nthintpre)

Flags Affected

None.

Intel® C/C++ Compiler Intrinsic Equivalent

void _mm_prefetch (char const*, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

If preceded by any REX, F0, F2, F3, or 66 pre ixes.
If operand is not a memory location.

Reference Number: 327364-001 655

APPENDIX B. KNIGHTS CORNER 64 BIT MODE SCALAR INSTRUCTION SUPPORT

Appendix B

Knights Corner 64 bit Mode Scalar Instruc-
tion Support

In 64 bit mode, Knights Corner supports a subset of the Intel 64 Architecture instructions. The 64 bit mode
instructions supported by Knights Corner are listed in this chapter.

B.1 64 bit Mode General-Purpose and X87 Instructions

Knights Corner supports most of the general-purpose register (GPR) and X87 instructions in 64 bit mode. They
are listed in Table B.2.

64 bit Mode GPR and X87 Instructions in Knights Corner:

ADC ADD AND BSF BSR
BSWAP BT BTC BTR BTS
CALL CBW CDQ CDQE CLC
CLD CLI CLTS CMC CMP
CMPS CMPSB CMPSD CMPSQ CMPSW
CMPXCHG CMPXCHG8B CPUID CQO CWD
CWDE DEC DIV ENTER F2XM1
FABS FADD FADDP FBLD FBSTP
FCHS FCLEX FCOM FCOMP FCOMPP
FCOS FDECSTP FDIV FDIVP FDIVR
FDIVRP FFREE FIADD FICOM FICOMP
FIDIV FIDIVR FILD FIMUL FINCSTP
FINIT FIST FISTP FISUB FISUBR
FLD FLD1 FLDCW FLDENV FLDL2E
FLDL2T FLDLG2 FLDLN2 FLDPI FLDZ
FMUL FMULP FNCLEX FNINIT FNOP
FNSAVE FNSTCW FNSTENV FNSTSW FPATAN
FPREM FPREM1 FPTAN FRNDINT FRESTOR

656 Reference Number: 327364-001

APPENDIX B. KNIGHTS CORNER 64 BIT MODE SCALAR INSTRUCTION SUPPORT

FSAVE FSCALE FSIN FSINCOS FSQRT
FST FSTCW FSTENV FSTP FSTSW
FSUB FSUBP FSUBR FSUBRP FTST
FUCOM FUCOMP FUCOMPP FWAIT FXAM
FXCH FXRSTOR FXSAVE FXTRACT FYL2X
FYL2XP1 HLT IDIV IMUL INC
INT INT3 INTO INVD INVPLG
IRET IRETD JA JAE JB
JBE JC JCXZ JE JECXZ
JG JGE JL JLE JMP
JNA JNAE JNB JNBE JNC
JNE JNG JNGE JNL JNLE
JNO JNP JNS JNZ JO
JP JPE JPO JS JZ
LAHF LAR LEA LEAVE LFS
LGDT LGS LIDT LLDT LMSW
LOCK LODS LODSB LODSD LODSQ
LODSW LOOP LOOPE LOOPNE LOOPNZ
LOOPZ LSL LSS LTR MOV
MOV CR MOV DR MOVS MOVSB MOVSD
MOVSQ MOVSW MOVSX MOVSXD MOVZX
MUL NEG NOP NOT OR
POP POPF POPFQ PUSH PUSHF
PUSHFQ RCL RCR RDMSM RDPMC
RDTSC REP REPE REPNE REPNZ
RET ROL ROR RSM SAHF
SAL SAR SBB SCAS SCASB
SCASD SCASQ SCASW SETA SETAE
SETB SETBE SETC SETE SETG
SETGE SETL SETLE SETNA SETNAE
SETNB SETNBE SETNC SETNE SETNG
SETNGE SETNL SETNLE SETNO SETNP
SETNS SETNZ SETO SETP SETPE
SETPO SETS SETZ SGDT SHL
SHLD SHR SHRD SIDT SLDT
SMSW STC STD STI STOSB
STOSD STOSQ STOSW STR SUB
SWAPGS SYSCALL SYSRET TEST VERR
VERW WAIT WBINVD WRMSR XADD
XCHG XLAT XLATB XOR UD2

B.2 Knights Corner 64 bit Mode Limitations

In 64 bit mode, Knights Corner supports a subset of the Intel 64 Architecture instructions. The following sum-
marizes Intel 64 Architecture instructions that are not supported in Knights Corner:

Reference Number: 327364-001 657

APPENDIX B. KNIGHTS CORNER 64 BIT MODE SCALAR INSTRUCTION SUPPORT

• Instructions that operate on MMX registers

• Instructions that operate on XMM registers

• Instructions that operate on YMM registers

GPR and X87 Instructions Not Supported in Knights Corner

CMOV CMPXCHG16B FCMOVcc FCOMI
FCOMIP FUCOMI FUCOMIP IN
INS INSB INSD INSW
MONITOR MWAIT OUT OUTS
OUTSB OUTSD OUTSW PAUSE
SYSENTER SYSEXIT

658 Reference Number: 327364-001

APPENDIX B. KNIGHTS CORNER 64 BIT MODE SCALAR INSTRUCTION SUPPORT

B.3 LDMXCSR - Load MXCSR Register

Opcode Instruction Description
0F AE /2 ldmxcsr m32 Load MXCSR register fromm32

Description

Loads the source operand into the MXCSR control/status register. The source operand is
a 32 bit memory location. See MXCSR Control and Status Register in Chapter 10, of the
IA-32 Intel Architecture Software Developers Manual, Volume 1, for a description of the
MXCSR register and its contents. See chapter 3 of this document for a description of the
new Knights Corner's MXCSR feature bits.

The LDMXCSR instruction is typically used in conjunction with the STMXCSR instruction,
which stores the contents of the MXCSR register in memory.

The default MXCSR value at reset is 0020_0000H (DUE=1, FZ=0, RC=00, PM=0, UM=0,
OM=0, ZM=0, DM=0, IM=0, DAZ=0, PE=0, UE=0, OE=0, ZE=0, DE=0, IE=0).

Any attempt to set to 1 reserved bits in control register MXCSR will produce a #GP fault:

Bit default Comment
MXCSR[7-12] 0 Note that this corresponds to Intel® SSE's IM/DM/ZM/OM/UM/PM
MXCSR[16-20] 0 Reserved
MXCSR[22-31] 0 Reserved

Additionally, any attempt to set MXCSR.DUE (bit 21) to 0 will produce a #GP fault:

Bit default Comment
MXCSR[21] 1 DUE (Disable Unmasked Exceptions) always enforced in Knights Corner

This instructions operation is the same in non-64 bit modes and 64 bit mode.

Operation

MXCSR = MemLoad(m32)

Flags Affected

None.

Reference Number: 327364-001 659

APPENDIX B. KNIGHTS CORNER 64 BIT MODE SCALAR INSTRUCTION SUPPORT

Intel® C/C++ Compiler Intrinsic Equivalent

void _mm_setcsr (unsigned int)

Exceptions

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
For an attempt to set reserved bits in MXCSR

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3] = 1.
#UD If CR0.EM[bit 2] = 1.

If CS.L=0 or IA32_EFER.LMA=0.
If the lock pre ix is used.

#AC(0) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege
level is 3.

660 Reference Number: 327364-001

APPENDIX B. KNIGHTS CORNER 64 BIT MODE SCALAR INSTRUCTION SUPPORT

B.4 FXRSTOR - Restore x87 FPU and MXCSR State

Opcode Instruction Description
0F AE /1 fxrstor m512byte Restore the x87 FPU and MXCSR register state fromm512byte

Description

See Intel64® Intel® Architecture Software Developer's Manual for the description of the
original x86 instruction.

Reloads the x87 FPU and the MXCSR state from the 512-byte memory image speci ied in
the source operand. This data should have been written to memory previously using the
FXSAVE instruction, and in the same format as required by the operatingmodes. The irst
byte of the data should be located on a 16-byte boundary. There are three distinct layout
of the FXSAVE state map: one for legacy and compatibility mode, a second format for 64
bit modewith promoted operandsize, and the third format is for 64 bit modewith default
operand size.

Knights Corner follows the same layouts as described in Intel64® Intel® Architecture Soft-
ware Developer's Manual.

The state image referenced with an FXRSTOR instruction must have been saved using an
FXSAVE instruction or be in the same format as required by Intel64 Intel® Architecture
Software Developer's Manual. Referencing a state image saved with an FSAVE, FNSAVE
instruction or incompatible ield layout will result in an incorrect state restoration.

The FXRSTOR instruction does not lush pending x87 FPU exceptions. To check and raise
exceptionswhen loading x87 FPU state informationwith the FXRSTOR instruction, use an
FWAIT instruction after the FXRSTOR instruction.

Note that XMM15-0 registers are logically aliased to the the low 128-bit portions of
Knights Corner registers V15 through V0 (ZMM15-0). Therefore, FXRSTOR must restore
the contents of the low 128-bit portions of registers V15 through V0.

Any attempt to set reserved bits in control register MXCSR to 1 will produce a #GP fault:

Bit default Comment
MXCSR[7-12] 0 Note that this corresponds to Intel® SSE's IM/DM/ZM/OM/UM/PM
MXCSR[16-19] 0 Reserved
MXCSR[20] 0 Reserved
MXCSR[22-31] 0 Reserved

Additionally, any attempt to set MXCSR.DUE (bit 21) to 0 will produce a #GP fault:

Bit default Comment
MXCSR[21] 1 DUE (Disable Unmasked Exceptions) always enforced in Knights Corner

Reference Number: 327364-001 661

APPENDIX B. KNIGHTS CORNER 64 BIT MODE SCALAR INSTRUCTION SUPPORT

Operation

(x87 FPU, MXCSR, XMM) = MemLoad(SRC);

Flags Affected

None.

Intel® C/C++ Compiler Intrinsic Equivalent

void _fxrstor64 (void*);

Exceptions

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
If trying to set illegal MXCSR values.

#MF If there is a pending x87 FPU exception.
#PF(fault-code) For a page fault.
#UD If CPUID.01H:EDX.FXSR[bit 24] = 0.

If instruction is preceded by a LOCK pre ix.
#NM If CR0.TS[bit 3] = 1.

If CR0.EM[bit 2] = 1.
#AC If this exception is disabled a general protection exception

(#GP) is signaled if the memory operand is not aligned on a
16-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of
#AC is not guaranteed and may vary with implementation, as
follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In
addition, the width of the alignment check may also vary with
implementation. For instance, for a given implementation,
an alignment check exception might be signaled for a 2-byte
misalignment, whereas a general protection exception might
be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

662 Reference Number: 327364-001

APPENDIX B. KNIGHTS CORNER 64 BIT MODE SCALAR INSTRUCTION SUPPORT

B.5 FXSAVE - Save x87 FPU and MXCSR State

Opcode Instruction Description
0F AE /0 fxsave m512byte Save the x87 FPU and MXCSR register state to m512byte

Description

See Intel64® Intel® Architecture Software Developer's Manual for the description of the
original x86 instruction.

Saves the current state of the x87 FPU, XMM, and MXCSR registers to a 512-byte memory
location speci ied in the destination operand. The content layout of the 512 byte region
depends on whether the processor is operating in non- 64 bit operating modes or 64 bit
sub-mode of IA-32e mode.

Bytes 464:511 are available to software use. The processor does not write to bytes
464:511 of an FXSAVE area.

Knights Corner follows a similar layout as described in Intel64® Intel® Architecture Soft-
ware Developer's Manual.

All bits set to 0 in the MXCSR_MASK value indicate reserved bits in the MXCSR register.
Thus, if theMXCSR_MASKvalue is ANDdwith a value to bewritten into theMXCSR register,
the resulting value will be assured of having all its reserved bits set to 0, preventing the
possibility of a general-protection exception being generatedwhen the value is written to
the MXCSR register.

Note that XMM15-0 registers are logically aliased to the the low 128-bit portions of
Knights Corner registers V15 through V0 (ZMM15-0). Therefore, FXSAVE must save the
contents of the low 128-bit portions of registers V15 through V0.

Operation

if(64 bit Mode)
{

if(REX.W == 1)
{

MemStore(m512byte) = Save64BitPromotedFxsave(x87 FPU, XMM15-XMM0, MXCSR);
}
else {

MemStore(m512byte) = Save64BitDefaultFxsave(x87 FPU, XMM15-XMM0, MXCSR);
}

}
else {

MemStore(m512byte) = SaveLegacyFxsave(x87 FPU, XMM7-XMM0, MXCSR);

Reference Number: 327364-001 663

APPENDIX B. KNIGHTS CORNER 64 BIT MODE SCALAR INSTRUCTION SUPPORT

}

Flags Affected

None.

Intel® C/C++ Compiler Intrinsic Equivalent

void _fxsave64 (void*);

Exceptions

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#MF If there is a pending x87 FPU exception.
#PF(fault-code) For a page fault.
#UD If CPUID.01H:EDX.FXSR[bit 24] = 0.

If instruction is preceded by a LOCK pre ix.
#NM If CR0.TS[bit 3] = 1.

If CR0.EM[bit 2] = 1.
#AC If this exception is disabled a general protection exception

(#GP) is signaled if the memory operand is not aligned on a
16-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of
#AC is not guaranteed and may vary with implementation, as
follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In
addition, the width of the alignment check may also vary with
implementation. For instance, for a given implementation,
an alignment check exception might be signaled for a 2-byte
misalignment, whereas a general protection exception might
be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

664 Reference Number: 327364-001

APPENDIX B. KNIGHTS CORNER 64 BIT MODE SCALAR INSTRUCTION SUPPORT

B.6 RDPMC - Read Performance-Monitoring Counters

Opcode Instruction Description
0F 33 rdpmc Read

performance-
monitoring
counter
speci-
ied by
ECX
into
EDX:EAX.

Description

Loads the 40-bit performance-monitoring counter speci ied in the ECX register into reg-
isters EDX:EAX. The EDX register is loaded with the high-order 8 bits of the counter and
the EAX register is loaded with the low-order 32 bits. The counter to be read is speci ied
with an unsigned integer placed in the ECX register.

The Knights Corner co-processor has 2 performance monitoring counters per thread,
speci ied with 0000H through 0001H, respectively, in the ECX register.

When in protected or virtual 8086 mode, the performance-monitoring counters enabled
(PCE) lag in register CR4 restricts the use of the RDPMC instruction as follows. When the
PCE lag is set, the RDPMC instruction can be executed at any privilege level; when the lag
is clear, the instruction can only be executed at privilege level 0. (When in real-address
mode, the RDPMC instruction is always enabled.)

The performance-monitoring counters can also be read with the RDMSR instruction,
when executing at privilege level 0.

The performance-monitoring counters are event counters that can be programmed to
count events such as the number of instructions decoded, number of interrupts received,
or number of cache loads. Appendix A, Performance-Monitoring Events, in the IA-32
Intel® Architecture Software Developers Manual, Volume 3, lists the events that can be
counted for the Intel® Pentium® 4, Intel Xeon®, and earlier IA-32 processors.

The RDPMC instruction is not a serializing instruction; that is, it does not imply that all the
events caused by the preceding instructions have been completed or that events caused
by subsequent instructions have not begun. If an exact event count is desired, software
must insert a serializing instruction (such as the CPUID instruction) before and/or after
the RDPMC instruction.

The RDPMC instruction can execute in 16 bit addressing mode or virtual-8086 mode;
however, the full contents of the ECX register are used to select the counter, and the event
count is stored in the full EAX and EDX registers.

Reference Number: 327364-001 665

APPENDIX B. KNIGHTS CORNER 64 BIT MODE SCALAR INSTRUCTION SUPPORT

TheRDPMC instructionwas introduced into the IA-32Architecture in the Intel® Pentium®

Pro processor and the Intel® Pentium® processor with Intel® MMX™ technology. The ear-
lier Intel® Pentium® processors haveperformance-monitoring counters, but theymust be
read with the RDMSR instruction.

In 64 bit mode, RDPMC behavior is unchanged from 32 bit mode. The upper 32 bits of
RAX and RDX are cleared.

Operation

if (((ECX[31:0] >= 0) && (ECX[31:0] < 2)
&& ((CR4.PCE = 1) || (CPL = 0) || (CR0.PE = 0))
)

{
if(64 bit Mode)
{

RAX[31:0] = PMC(ECX[31:0])[31:0]; (* 40-bit read *)
RAX[63:32] = 0;
RDX[31:0] = PMC(ECX[31:0])[39:32];
RDX[63:32] = 0;

}
else
{

EAX = PMC(ECX[31:0])[31:0]; (* 40-bit read *)
EDX = PMC(ECX[31:0])[39:32];

}
}
else
{

#GP(0)
}

Flags Affected

None.

Intel® C/C++ Compiler Intrinsic Equivalent

__int64 _rdpmc (int);

666 Reference Number: 327364-001

APPENDIX B. KNIGHTS CORNER 64 BIT MODE SCALAR INSTRUCTION SUPPORT

Exceptions

TBD

Reference Number: 327364-001 667

APPENDIX B. KNIGHTS CORNER 64 BIT MODE SCALAR INSTRUCTION SUPPORT

B.7 STMXCSR - Store MXCSR Register

Opcode Instruction Description
0F AE /3 stmxcsr m32 Store contents of MXCSR register to m32

Description

Stores the contents of the MXCSR control and status register to the destination operand.
The destination operand is a 32 bit memory location.

This instructions operation is the same in non-64 bit modes and 64 bit mode.

Operation

MemStore(m32) = MXCSR

Flags Affected

None.

Intel® C/C++ Compiler Intrinsic Equivalent

unsigned int _mm_getcsr (void)

Exceptions

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3] = 1.
#UD If CR0.EM[bit 2] = 1.

If CS.L=0 or IA32_EFER.LMA=0.
If the lock pre ix is used.

#AC(0) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege
level is 3.

668 Reference Number: 327364-001

APPENDIX B. KNIGHTS CORNER 64 BIT MODE SCALAR INSTRUCTION SUPPORT

B.8 CPUID - CPUID Identication

Opcode Instruction Description
0F A2 cpuid Returns processor identi ication and feature information to the EAX, EBX, ECX, and

EDX registers, as determined by the input value entered in EAX.

Description

The ID lag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. If
a software procedure can set and clear this lag, the processor executing the procedure
supports the CPUID instruction. This instruction operates the same in non-64 bit modes
and 64 bit mode.

CPUID returns processor identi ication and feature information in the EAX, EBX, ECX, and
EDX registers. The instructions output is dependent on the contents of the EAX register
upon execution. For example, the following pseudo-code loads EAX with 00H and causes
CPUID to return a Maximum Return Value and the Vendor Identi ication String in the ap-
propriate registers:

MOV EAX, 00H
CPUID

Table B.4 through B.7 shows information returned, depending on the initial value loaded
into the EAX register. Table B.3 shows the maximum CPUID input value recognized for
each family of IA-32 processors on which CPUID is implemented. Since Intel® Pentium®

4 family of processors, two types of information are returned: basic and extended function
information. Prior to that, only the basic function information was returned. The irst is
accessed with EAX=0000000xh while the second is accessed with EAX=8000000xh. If a
value is entered for CPUID.EAX that is invalid for a particular processor, the data for the
highest basic information leaf is returned.

CPUID can be executed at any privilege level to serialize instruction execution. Serializing
instruction execution guarantees that any modi ications to lags, registers, and memory
for previous instructions are completed before the next instruction is fetched and exe-
cuted.

INPUT EAX = 0: Returns CPUID's Highest Value for Basic Processor Information and
the Vendor Identi ication String

WhenCPUIDexecuteswithEAX set to 0, the processor returns thehighest value theCPUID
recognizes for returning basic processor information. The value is returned in the EAX
register (see Table B.4 and is processor speci ic. A vendor identi ication string is also
returned in EBX, EDX, and ECX. For Intel® processors, the string is "GenuineIntel" and is
expressed:

EBX = 756e6547h (* "Genu", with G in the low nibble of BL *)
EDX = 49656e69h (* "ineI", with i in the low nibble of DL *)

Reference Number: 327364-001 669

APPENDIX B. KNIGHTS CORNER 64 BIT MODE SCALAR INSTRUCTION SUPPORT

IA-32 Processors Highest Value in EAX
Basic Information Extended Function In-

formation
Earlier Intel486 Processors CPUID Not Imple-

mented
CPUID Not Imple-
mented

Later Intel486 Processors and
Intel® Pentium® Processors

01H Not Implemented

Intel® Pentium® Pro and Intel®
Pentium® II Processors, Intel®
Celeron Processors

02H Not Implemented

Intel® Pentium® III Processors 03H Not Implemented
Intel® Pentium® 4 Processors 02H 80000004H
Intel® Xeon® Processors 02H 80000004H
Intel® Pentium® M Processor 02H 80000004H
Intel® Pentium® 4 Processor sup-
porting Intel® Hyper-Threading
Technology

05H 80000008H

Intel® Pentium® D Processor
(8xx)

05H 80000008H

Intel® Pentium® D Processor
(9xx)

06H 80000008H

Intel® Core™ Duo Processor 0AH 80000008H
Intel® Core™ 2 Duo Processor 0AH 80000008H
Intel® Xeon® Processor 3000,
3200, 5100, 5300 Series

0AH 80000008H

Knights Corner 04H 80000008H

Table B.3: Highest CPUID Source Operand for IA-32 Processors

ECX = 6c65746eh (* "ntel", with n in the low nibble of CL *)

INPUT EAX = 1: Returns Model, Family, Stepping Information

When CPUID executeswith EAX set to 1, version information is returned in EAX. Extended
family, extended model, model, family, and processor type for the processor code-named
Knights Corner is as follows:

• Extended Model: 0000B
• Extended Family: 0000_0000B
• Model: *see table*
• Family: 1011B
• Processor Type: 00B

INPUT EAX = 1: Returns Additional Information in EBX

When CPUID executes with EAX set to 1, additional information is returned to the EBX
register:

• Brand index (low byte of EBX) - this number provides an entry into a brand string
table that contains brand strings for IA-32 processors. More information about this
ield is provided later in this section.

670 Reference Number: 327364-001

APPENDIX B. KNIGHTS CORNER 64 BIT MODE SCALAR INSTRUCTION SUPPORT

EAX Information Provided about the Processor Return value
Basic CPUID Information

0H EAX Maximum Input Value for Basic CPUID Information 1
EBX "Genu" "Genu"
ECX "ntel" "ntel"
EDX "ineI" "ineI"
Basic and Extended Feature Information

1H
EAX Version Information: Type, Family, Model, and Stepping

ID
Bits 3-0: Stepping Id xxxx
Bits 7-4: Model 0001B
Bits 11-8: Family ID 1011B
Bits 13-12: Type 00B
Bits 19-16: Extended Model Id 00B
Bits 27-20: Extended Family Id 00000000B

EBX Bits 7-0: Brand Index 0
Bits 15-8: CLFLUSH/CLEVICTn line size (Value x 8 = cache
line size in bytes)

8

Bits 23-16: Maximumnumber of logical processors in this
physical package.

248

Bits 31-24: Initial APIC ID xxx

ECX Extended Feature Information (see Tables B.10) 00000000H

EDX Feature Information (see Tables B.8 and B.9) 110193FFH
Cache and TLB Information

2H EAX Reserved 0
EBX Reserved 0
ECX Reserved 0
EDX Reserved 0
Serial Number Information

3H EAX Reserved 0
EBX Reserved 0
ECX Reserved 0
EDX Reserved 0

Table B.4: Information Returned by CPUID Instruction

• CLFLUSH/CLEVICTn instruction cache line size (second byte of EBX) - this number
indicates the size of the cache line lushedwith CLEVICT1 instruction in 8-byte incre-
ments. This ield was introduced in the Intel® Pentium® 4 processor.

• Local APIC ID (high byte of EBX) - this number is the 8-bit ID that is assigned to the
local APIC on the processor during power up. This ield was introduced in the Intel®
Pentium® 4 processor.

INPUT EAX = 1: Returns Feature Information in ECX and EDX

When CPUID executes with EAX set to 1, feature information is returned in ECX and EDX.

Reference Number: 327364-001 671

APPENDIX B. KNIGHTS CORNER 64 BIT MODE SCALAR INSTRUCTION SUPPORT

EAX Information Provided about the Processor Return value
CPUID leaves> 3< 80000000 are visible only when
IA32_MISC_ENABLES.BOOT_NT4[bit 22] = 0 (default).
Deterministic Cache Parameters Leaf ECX=0/1/2

4H Note: 04H output also depends on the inital value in ECX.

EAX Bits 4-0: Cache Type (0 = Null - No more caches; 1 = Data Cache
2 = Instruction Cache, 3 = Uni ied Cache)

2/1/1

Bits 7-5: Cache Level (starts at 1) 1/1/2
Bits 8: Self Initializing cache level (does not need SW initializa-
tion)

1/1/1

Bits 9: Fully Associative cache 0/0/0
Bits 10: Write-Back Invalidate 0/1/1
Bits 11: Inclusive (of lower cache levels) 0/1/1
Bits 13-12: Reserved 0
Bits 25-14: Maximum number of threads sharing this cache in a
physical package (minus one)

//*

Bits 31-26: Maximumnumber of processor cores in this physical
package (minus one)

//*

EBX Bits 11-00: L = System Coherency Line Size (minus 1) 63/63/63
Bits 21-12: P = Physical Line partitions (minus 1) 0/0/0
Bits 31-22: W =Ways of associativity (minus 1) 7/7/7

ECX S = Number of Sets (minus 1) 63/63/1023

EDX Reserved = 0 0

Table B.5: Information Returned by CPUID Instruction (Contd.)

• Table B.8 through Table B.9 show encodings for EDX.
• Table B.10 show encodings for ECX.

For all feature lags, a 1 indicates that the feature is supported. Use Intel® to properly
interpret feature lags.

INPUT EAX = 2: Cache and TLB Information Returned in EAX, EBX, ECX, EDX

Knights Corner considers leaf 2 to be reserved, so no cache and TLB information is re-
turned when CPUID executes with EAX set to 2.

INPUT EAX = 3: Serial Number Information

Knights Corner does not implement Processor Serial Number support, as signalled by fea-
ture bit CPUID.EAX[01h].EDX.PSN. Therefore, all the returned ields are considered re-
served.

INPUT EAX = 4: Returns Deterministic Cache Parameters for Each Level

When CPUID executes with EAX set to 4 and ECX contains an index value, the processor
returns encoded data that describe a set of deterministic cache parameters (for the cache
level associated with the input in ECX).

672 Reference Number: 327364-001

APPENDIX B. KNIGHTS CORNER 64 BIT MODE SCALAR INSTRUCTION SUPPORT

EAX Information Provided about the Processor Return value
Extended Function CPUID Information

80000000H EAX Maximum Input Value for Extended CPUID Information 80000008H
EBX Reserved 0
ECX Reserved 0
EDX Reserved 0
Feature Information

80000001H EAX Reserved 0
EBX Reserved 0

ECX Bit 0: LAHF/SAHF available in 64 bit mode 1
Bits 31-1: Reserved 0

EDX Bits 10-0: Reserved 0
Bit 11: SYSCALL/SYSRET available (in 64 bit mode) 1
Bits 19-12: Reserved 0
Bit 20: Execute Disable Bit available 0
Bits 28-21: Reserved 0
Bit 29: Intel® 64 Technology available 1
Bits 31-30: Reserved 0

Processor Brand String
80000002H EAX Processor Brand String 0

EBX Processor Brand String Continued 0
ECX Processor Brand String Continued 0
EDX Processor Brand String Continued 0

80000003H EAX Processor Brand String Continued 0
EBX Processor Brand String Continued 0
ECX Processor Brand String Continued 0
EDX Processor Brand String Continued 0

80000004H EAX Processor Brand String Continued 0
EBX Processor Brand String Continued 0
ECX Processor Brand String Continued 0
EDX Processor Brand String Continued 0
Reserved

80000005H EAX Reserved 0
EBX Reserved 0
ECX Reserved 0
EDX Reserved 0

Table B.6: Information Returned by CPUID Instruction. 8000000xH leafs.

Software can enumerate the deterministic cache parameters for each level of the cache hi-
erarchy starting with an index value of 0, until the parameters report the value associated
with the cache type ield is 0. The architecturally de ined ields reported by deterministic
cacheparameters aredocumented inTableB.5. The associated cache structuresdescribed
by the different ECX descriptors are:

• ECX=0: Instruction Cache (I1)
• ECX=1: L1 Data Cache (L1)
• ECX=2: L2 Data Cache (L2)

Reference Number: 327364-001 673

APPENDIX B. KNIGHTS CORNER 64 BIT MODE SCALAR INSTRUCTION SUPPORT

EAX Information Provided about the Processor Return value
80000006H EAX Reserved 0

EBX Reserved 0

ECX Bits 7-0: L2 cache Line size in bytes 64
Bits 15-12: L2 associativity ield 06H
Bits 31-16: L2 cache size in 1K units 512

EDX Reserved 0
Reserved

80000007H EAX Reserved 0
EBX Reserved 0
ECX Reserved 0
EDX Reserved 0
Virtual/Physical Address size

80000008H EAX Bits 7-0: #Physical Address Bits 40
Bits 15-8: #Virtual Address Bits 48

EBX Reserved 0
ECX Reserved 0
EDX Reserved 0

Table B.7: Information Returned by CPUID Instruction. 8000000xH leafs. (Contd.)

Operation

IA32_BIOS_SIGN_ID MSR = Update with installed microcode revision number;

case (EAX)
{
EAX == 0:
EAX = 01H; // Highest basic function CPUID input value
EBX = "Genu";
ECX = "ineI";
EDX = "ntel";
break;

EAX = 2H:
// Cache and TLB information
EAX = 0;
EBX = 0;
ECX = 0;
EDX = 0;
break;

EAX = 3H:
// PSN features
EAX = 0;
EBX = 0;
ECX = 0;
EDX = 0;
break;

EAX = 4H:

674 Reference Number: 327364-001

APPENDIX B. KNIGHTS CORNER 64 BIT MODE SCALAR INSTRUCTION SUPPORT

// Deterministic Cache Parameters Leaf;
EAX = *see table*
EBX = *see table*
ECX = *see table*
EDX = *see table*
break;

EAX = 20000000H;
EAX = 01H; // Reserved
EBX = 0; // Reserved
ECX = 0; // Reserved
EDX = 0; // Reserved
break;

EAX = 20000001H;
EAX = 0; // Reserved
EBX = 0; // Reserved
ECX = 0; // Reserved
EDX = 00000010H; // Reserved
break;

EAX = 80000000H;
// Extended leaf
EAX = 08H; // Highest extended function CPUID input value
EBX = 0; // Reserved
ECX = 0; // Reserved
EDX = 0; // Reserved
break;

EAX = 80000001H;
EAX = 0; // Reserved
EBX = 0; // Reserved
ECX[0] = 1; // LAHF/SAHF support in 64 bit mode
ECX[31:1] = 0; // Reserved
EDX[10:0] = 0; // Reserved
EDX[11] = 1; // SYSCALL/SYSRET available in 64 bit mode
EDX[19:12] = 0; // Reserved
EDX[20] = 0; // Execute Disable Bit available
EDX[28:21] = 0; // Reserved
EDX[29] = 1; // Intel(R) 64 Technology available
EDX[31:30] = 0; // Reserved
break;

EAX = 80000002H;
EAX = 0; // Processor Brand String
EBX = 0; // Processor Brand String Continued
ECX = 0; // Processor Brand String Continued
EDX = 0; // Processor Brand String Continued
break;

EAX = 80000003H;
EAX = 0; // Processor Brand String Continued
EBX = 0; // Processor Brand String Continued
ECX = 0; // Processor Brand String Continued
EDX = 0; // Processor Brand String Continued
break;

EAX = 80000004H;
EAX = 0; // Processor Brand String Continued

Reference Number: 327364-001 675

APPENDIX B. KNIGHTS CORNER 64 BIT MODE SCALAR INSTRUCTION SUPPORT

EBX = 0; // Processor Brand String Continued
ECX = 0; // Processor Brand String Continued
EDX = 0; // Processor Brand String Continued
break;

EAX = 80000005H;
EAX = 0; // Reserved
EBX = 0; // Reserved
ECX = 0; // Reserved
EDX = 0; // Reserved
break;

EAX = 80000006H;
EAX = 0; // Reserved
EBX = 0; // Reserved
ECX[7:0] = 64; // L2 cache Line size in bytes
ECX[15:12] = 6; // L2 associativity field (8-way)
ECX[31:16] = 256; // L2 cache size in 1K units
EDX = 0; // Reserved
break;

EAX = 80000007H;
EAX = 0; // Reserved
EBX = 0; // Reserved
ECX = 0; // Reserved
EDX = 0; // Reserved
break;

EAX = 80000008H;
EAX[7:0] = 40; // Physical Address bits
EAX[15:8] = 48; // Virtual Address bits
EAX[31:16] = 0; // Reserved
EBX = 0; // Reserved
ECX = 0; // Reserved
EDX = 0; // Reserved
break;

default, EAX == 1H:
EAX[3:0] = Stepping ID;
EAX[7:4] = *see table* // Model
EAX[11:8] = 1011B; // Family
EAX[13:12] = 00B; // Processor type
EAX[15:14] = 00B; // Reserved
EAX[19:16] = 0000B; // Extended Model
EAX[23:20] = 00000000B; // Extended Family
EAX[31:24] = 00H; // Reserved;
EBX[7:0] = 00H; // Brand Index (* Reserved if the value is zero *)
EBX[15:8] = 8; // CLEVICT1/CLFLISH Line Size (x8)
EBX[23:16] = 248; // Maximum number of logical processors
EBX[31:24] = Initial Apic ID;
ECX = 00000000H; // Feature flags
EDX = 110193FFH; // Feature flags
break;

}

676 Reference Number: 327364-001

APPENDIX B. KNIGHTS CORNER 64 BIT MODE SCALAR INSTRUCTION SUPPORT

Flags Affected

None.

Intel® C/C++ Compiler Intrinsic Equivalent

None

Exceptions

None.

Reference Number: 327364-001 677

APPENDIX B. KNIGHTS CORNER 64 BIT MODE SCALAR INSTRUCTION SUPPORT

Bit
#

Mnemonic Description Return
Value

0 FPU Floating-point Unit On-Chip. The processor contains an x87 FPU. 1
1 VME Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements, in-

cluding CR4.VME for controlling the feature, CR4.PVI for protected mode vir-
tual interrupts, software interrupt indirection, expansion of the TSS with the
software indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP lags.

1

2 DE Debugging Extensions. Support for I/O breakpoints, including CR4.DE for
controlling the feature, and optional trapping of accesses to DR4 and DR5.

1

3 PSE Page Size Extension. Large pages of size 4 MByte are supported, including
CR4.PSE for controlling the feature, the de ined dirty bit in PDE (PageDirectory
Entries), optional reserved bit trapping in CR3, PDEs, and PTEs.

1

4 TSC TimeStampCounter. TheRDTSC instruction is supported, including CR4.TSD
for controlling privilege.

1

5 MSR Model Speci ic Registers RDMSR and WRMSR Instructions. The RDMSR
andWRMSR instructions are supported. Someof theMSRs are implementation
dependent.

1

6 PAE Physical Address Extension. Physical addresses greater than 32 bits are sup-
ported: extended page table entry formats, an extra level in the page transla-
tion tables is de ined, 2-MByte pages are supported instead of 4 Mbyte pages
if PAE bit is 1. The actual number of address bits beyond 32 is not de ined, and
is implementation speci ic.

1

7 MCE Machine Check Exception. Exception 18 is de ined for Machine Checks, in-
cluding CR4.MCE for controlling the feature. This feature does not de ine
the model-speci ic implementations of machine-check error logging, report-
ing, and processor shutdowns. Machine Check exception handlers may have to
depend on processor version to do model speci ic processing of the exception,
or test for the presence of the Machine Check feature.

1

8 CX8 CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64 bits) in-
struction is supported (implicitly locked and atomic).

1

9 APIC APIC On-Chip. The processor contains an Advanced Programmable Interrupt
Controller (APIC), responding to memory mapped commands in the physical
address range FFFE0000H to FFFE0FFFH (by default - some processors permit
the APIC to be relocated).

?

10 Reserved Reserved 0
11 SEP SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and as-

sociated MSRs are supported.
0

12 MTRR Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR
contains feature bits that describe what memory types are supported, how
many variableMTRRs are supported, andwhether ixedMTRRs are supported.

1

13 PGE PTE Global Bit. The global bit in page directory entries (PDEs) and page table
entries (PTEs) is supported, indicating TLB entries that are common to differ-
ent processes and need not be lushed. The CR4.PGE bit controls this feature.

0

14 MCA Machine Check Architecture. The Machine Check Architecture, which pro-
vides a compatible mechanism for error reporting in P6 family, Pentium® 4,
Intel® Xeon®processors, and future processors, is supported. The MCG_CAP
MSR contains feature bits describing howmany banks of error reportingMSRs
are supported.

0

Table B.8: Feature Information Returned in the EDX Register (CPUID.EAX[01h].EDX)

678 Reference Number: 327364-001

APPENDIX B. KNIGHTS CORNER 64 BIT MODE SCALAR INSTRUCTION SUPPORT

Bit
#

Mnemonic Description Return
Value

15 CMOV Conditional Move Instructions. The conditional move instruction CMOV is
supported. In addition, if x87 FPU is present as indicated by the CPUID.FPU
feature bit, then the FCOMI and FCMOV instructions are supported

0

16 PAT Page Attribute Table. Page Attribute Table is supported. This feature aug-
ments theMemory Type Range Registers (MTRRs), allowing an operating sys-
tem to specify attributes of memory on a 4K granularity through a linear ad-
dress.

1

17 PSE-36 36-Bit Page Size Extension. Extended 4-MByte pages that are capable of ad-
dressing physical memory beyond 4 GBytes are supported. This feature indi-
cates that the upper four bits of the physical address of the 4-MByte page is
encoded by bits 13-16 of the page directory entry.

0

18 PSN ProcessorSerialNumber. Theprocessor supports the96-bit processor iden-
ti ication number feature and the feature is enabled.

0

19 CLFSH CLFLUSH Instruction. CLFLUSH Instruction is supported. 0
20 Reserved Reserved 0
21 DS Debug Store. The processor supports the ability to write debug information

into a memory resident buffer. This feature is used by the branch trace store
(BTS) and precise event-based sampling (PEBS) facilities (see Chapter 15, De-
bugging and Performance Monitoring, in the IA-32 Intel® Architecture Soft-
ware Developers Manual, Volume 3).

0

22 ACPI Thermal Monitor and Software Controlled Clock Facilities. The processor im-
plements internal MSRs that allow processor temperature to be monitored
and processor performance to be modulated in prede ined duty cycles under
software control.

0

23 Intel®
MMX™

Intel® MMX™ Technology. The processor supports the Intel® MMX™ technol-
ogy.

0

24 FXSR FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR instructions
are supported for fast save and restore of the loating-point context. Presence
of this bit also indicates that CR4.OSFXSR is available for an operating system
to indicate that it supports the FXSAVE and FXRSTOR instructions.

1

25 Intel® SSE Intel® SSE. The processor supports the Intel® SSE extensions. 0
26 Intel® SSE2 Intel® SSE2. The processor supports the Intel® SSE2 extensions. 0
27 SS Self Snoop. The processor supports the management of con licting memory

types by performing a snoop of its own cache structure for transactions issued
to the bus.

0

28 HTT Multi-Threading. The physical processor package is capable of supporting
more than one logical processor.

1

29 TM ThermalMonitor. The processor implements the thermalmonitor automatic
thermal control circuitry (TCC).

0

30 Reserved Reserved 0
31 PBE Pending Break Enable. The processor supports the use of the FERR#/PBE#

pin when the processor is in the stop-clock state (STPCLK# is asserted) to sig-
nal the processor that an interrupt is pending and that the processor should
return to normal operation to handle the interrupt. Bit 10 (PBE enable) in the
IA32_MISC_ENABLE MSR enables this capability.

0

Table B.9: Feature Information Returned in the EDX Register (CPUID.EAX[01h].EDX) (Contd.)

Reference Number: 327364-001 679

APPENDIX B. KNIGHTS CORNER 64 BIT MODE SCALAR INSTRUCTION SUPPORT

Bit # Mnemonic Description Return
Value

0 Intel® SSE3 Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the
processor supports this technology.

0

1-2 Reserved Reserved 0
3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor sup-

ports this feature.
0

4 DS-CPL CPL Quali ied Debug Store. A value of 1 indicates the processor
supports the extensions to the Debug Store feature to allow for
branch message storage quali ied by CPL.

0

5 VMX Virtual Machine Extensions. A value of 1 indicates that the pro-
cessor supports this technology.

0

6 Reserved Reserved 0
7 EST Enhanced Intel® SpeedStep® technology. A value of 1 indicates

that the processor supports this technology.
0

8 TM2 Thermal Monitor 2. A value of 1 indicates whether the proces-
sor supports this technology.

0

9 SSSE3 Supplemental Streaming SIMD Extensions 3 (SSSE3). A value
of 1 indicates the processor supports this technology.

0

10 CNXT-ID L1 Context ID. A value of 1 indicates the L1 data cache mode
can be set to either adaptive mode or shared mode. A value of
0 indicates this feature is not supported. See de inition of the
IA32_MISC_ENABLEMSR Bit 24 (L1 Data Cache Context Mode)
for details.

0

11-12 Reserved Reserved 0
13 CMPXCHG16B CMPXCHG16B Available. A value of 1 indicates that the feature

is available. See the CMPXCHG8B/CMPXCHG16BCompare and
Exchange Bytes section in Volume 2A.

0

14 xTPR Update
Control

xTPR Update Control. A value of 1 indicates that the processor
supports changing IA32_MISC_ENABLES[bit 23].

0

15 PDCM Perf/Debug Capability MSR. A value of 1 indicates that the pro-
cessor supports the performance and debug feature indication
MSR

0

18 - 16 Reserved Reserved 0
19 Intel® SSE4.1 Intel® Streaming SIMD Extensions 4.1 (Intel® SSE4.1). A value

of 1 indicates the processor supports this technology.
0

20 Intel® SSE4.2 Intel® Streaming SIMD Extensions 4.2 (Intel® SSE4.2). A value
of 1 indicates the processor supports this technology.

0

22 - 21 Reserved Reserved 0
23 POPCNT POPCNT. A value of 1 indicates the processor supports the

POPCNT instruction.
0 a

31 - 24 Reserved Reserved 0

Table B.10: Feature Information Returned in the ECX Register (CPUID.EAX[01h].ECX)
aCPUIDbit 23erroneously indicates that POPCNT isnot supported. KnightsCornerdoes support thePOPCNT instruction. SeeAppendixA

for more information.

680 Reference Number: 327364-001

APPENDIX C. FLOATING-POINT EXCEPTION SUMMARY

Appendix C

Floating-Point Exception Summary

C.1 Instruction oating-point exception summary

Table C.3 shows all those instruction that can generate a loating-point exception. Each type of exception is
shown per instruction. For each table entry you will ind one of the following symbols:

• Nothing : Exception of that type cannot be produced by that instruction.

• Yboth: The instruction can produce that exception. The exceptionmay be produced by either the operation
or the data-type conversion applied to memory operand.

• Yconv: The instruction can produce that exception. That exception can only be produced by the data-type
conversion applied to memory operand.

• Yoper: The instruction can produce that exception. The exception can only be produced by the operation.
The data-type conversion applied to the memory operand cannot produce any exception.

Instruction #I #D #Z #O #U #P
vaddpd Yboth Yoper Yoper Yoper Yoper

vaddps Yboth Yoper Yoper Yoper Yoper

vaddnpd Yboth Yoper Yoper Yoper Yoper

vaddnps Yboth Yoper Yoper Yoper Yoper

vaddsetsps Yboth Yoper Yoper Yoper Yoper

vblendmps Yconv

vbroadcastf32x4 Yconv

vbroadcastss Yconv

vcmppd Yboth Yoper

vcmpps Yboth Yoper

vcvtpd2ps Yboth Yoper Yoper Yoper Yoper

vcvtps2pd Yboth Yoper

vcvtfxpntdq2ps Yoper

vcvtfxpntpd2dq Yboth Yoper

vcvtfxpntpd2udq Yboth Yoper

Reference Number: 327364-001 681

APPENDIX C. FLOATING-POINT EXCEPTION SUMMARY

Instruction #I #D #Z #O #U #P
vcvtfxpntps2dq Yboth Yoper

vcvtfxpntps2udq Yboth Yoper

vcvtfxpntudq2ps Yoper

vexp223ps Yoper

v ixupnanpd Yboth

v ixupnanps Yboth

vfmadd132pd Yboth Yoper Yoper Yoper Yoper

vfmadd132ps Yboth Yoper Yoper Yoper Yoper

vfmadd213pd Yboth Yoper Yoper Yoper Yoper

vfmadd213ps Yboth Yoper Yoper Yoper Yoper

vfmadd231pd Yboth Yoper Yoper Yoper Yoper

vfmadd231ps Yboth Yoper Yoper Yoper Yoper

vfmadd233ps Yboth Yoper Yoper Yoper Yoper

vfmsub132pd Yboth Yoper Yoper Yoper Yoper

vfmsub132ps Yboth Yoper Yoper Yoper Yoper

vfmsub213pd Yboth Yoper Yoper Yoper Yoper

vfmsub213ps Yboth Yoper Yoper Yoper Yoper

vfmsub231pd Yboth Yoper Yoper Yoper Yoper

vfmsub231ps Yboth Yoper Yoper Yoper Yoper

vfnmadd132pd Yboth Yoper Yoper Yoper Yoper

vfnmadd132ps Yboth Yoper Yoper Yoper Yoper

vfnmadd213pd Yboth Yoper Yoper Yoper Yoper

vfnmadd213ps Yboth Yoper Yoper Yoper Yoper

vfnmadd231pd Yboth Yoper Yoper Yoper Yoper

vfnmadd231ps Yboth Yoper Yoper Yoper Yoper

vfnmsub132pd Yboth Yoper Yoper Yoper Yoper

vfnmsub132ps Yboth Yoper Yoper Yoper Yoper

vfnmsub213pd Yboth Yoper Yoper Yoper Yoper

vfnmsub213ps Yboth Yoper Yoper Yoper Yoper

vfnmsub231pd Yboth Yoper Yoper Yoper Yoper

vfnmsub231ps Yboth Yoper Yoper Yoper Yoper

vgatherdps Yconv

vgetexppd Yboth Yoper

vgetexpps Yboth Yoper

vgetmantpd Yboth Yoper

vgetmantps Yboth Yoper

vgmaxpd Yboth Yoper

vgmaxps Yboth Yoper

vgmaxabsps Yboth Yoper

vgminpd Yboth Yoper

vgminps Yboth Yoper

vloadunpackhps Yconv

vloadunpacklps Yconv

vlog2ps Yboth Yoper

vmovaps (load) Yconv

vmovaps (store) Yconv Yconv Yconv Yconv Yconv

vmulpd Yboth Yoper Yoper Yoper Yoper

vmulps Yboth Yoper Yoper Yoper Yoper

682 Reference Number: 327364-001

APPENDIX C. FLOATING-POINT EXCEPTION SUMMARY

Instruction #I #D #Z #O #U #P
vpackstorehps Yconv Yconv Yconv Yconv Yconv

vpackstorelps Yconv Yconv Yconv Yconv Yconv

vrcp23ps Yboth Yoper

vrndfxpntpd Yboth Yoper

vrndfxpntps Yboth Yoper

vrsqrt23ps Yboth Yoper

vscaleps Yoper Yoper Yoper Yoper Yoper

vscatterdps Yconv Yconv Yconv Yconv Yconv

vsubpd Yboth Yoper Yoper Yoper Yoper

vsubps Yboth Yoper Yoper Yoper Yoper

vsubrpd Yboth Yoper Yoper Yoper Yoper

vsubrps Yboth Yoper Yoper Yoper Yoper

C.2 Conversion oating-point exception summary

Float-to- loat
Float16 to loat32 SwizzUpConv/UpConv Invalid (on SNaN)
Float32 to loat64 VCVTPS2PD Invalid (on SNaN), Denormal
Float32 to loat16 DownConv Invalid (on SNaN), Over low, Under low,

Precision, Denormal
Float64 to loat32 VCVTPD2PS Invalid (on SNaN), Over low, Under low,

Precision, Denormal
Integer-to- loat
Uint8/16 to loat32 UpConv None
Sint8/16 to loat32 UpConv None
Uint32 to loat32 VCVTFXPNTUDQ2PS Precision
Sint32 to loat32 VCVTFXPNTDQ2PS Precision
Uint32 to loat64 VCVTUDQ2PD None
Sint32 to loat64 VCVTDQ2PD None
Float-to-integer
Float32 to uint8/16 DownConv Invalid (onNaN, out-of-range), Precision

(if in-range but input not integer)
Float32 to sint8/16 DownConv Invalid (onNaN, out-of-range), Precision

(if in-range but input not integer)
Float32 to uint32 VCVTFXPNTPS2UDQ Invalid (onNaN, out-of-range), Precision

(if in-range but input not integer)
Float32 to sint32 VCVTFXPNTPS2DQ Invalid (onNaN, out-of-range), Precision

(if in-range but input not integer)
Float64 to uint32 VCVTFXPNTPD2UDQ Invalid (onNaN, out-of-range), Precision

(if in-range but input not integer)
Float64 to sint32 VCVTFXPNTPD2DQ Invalid (onNaN, out-of-range), Precision

(if in-range but input not integer)

Reference Number: 327364-001 683

APPENDIX C. FLOATING-POINT EXCEPTION SUMMARY

Out-of-range values are dependent on operation de inition and roundingmode. Table C.3 and Table C.4 describe
maximumandminimumallowed values for loat to integer and loat to loat conversion respectively. Please note
that presented ranges are considered after ``Denormals Are Zero (DAZ)'' are applied.

Those entries in Table C.4 labelled with an asterisk(∗), are not required for Knights Corner.

C.3 Denormal behavior

Instruction Treat Input Denormals As Zeros Flush Tiny Results To Zero
vaddpd MXCSR.DAZ MXCSR.FZ
vaddps MXCSR.DAZ MXCSR.FZ
vaddnpd MXCSR.DAZ MXCSR.FZ
vaddnps MXCSR.DAZ MXCSR.FZ
vaddsetsps MXCSR.DAZ MXCSR.FZ
vblendmpd NO NO
vblendmps NO NO
vcmppd MXCSR.DAZ Not Applicable
vcmpps MXCSR.DAZ Not Applicable
vcvtdq2pd Not Applicable Not Applicable
vcvtpd2ps MXCSR.DAZ MXCSR.FZ
vcvtps2pd MXCSR.DAZ Not Applicable
vcvtudq2pd Not Applicable Not Applicable
vcvtfxpntdq2ps Not Applicable Not Applicable
vcvtfxpntpd2dq MXCSR.DAZ Not Applicable
vcvtfxpntpd2udq MXCSR.DAZ Not Applicable
vcvtfxpntps2dq MXCSR.DAZ Not Applicable
vcvtfxpntps2udq MXCSR.DAZ Not Applicable
vcvtfxpntudq2ps Not Applicable Not Applicable
vexp223ps Not Applicable YES
v ixupnanpd MXCSR.DAZ NO
v ixupnanps MXCSR.DAZ NO
vfmadd132pd MXCSR.DAZ MXCSR.FZ
vfmadd132ps MXCSR.DAZ MXCSR.FZ
vfmadd213pd MXCSR.DAZ MXCSR.FZ
vfmadd213ps MXCSR.DAZ MXCSR.FZ
vfmadd231pd MXCSR.DAZ MXCSR.FZ
vfmadd231ps MXCSR.DAZ MXCSR.FZ
vfmadd233ps MXCSR.DAZ MXCSR.FZ
vfmsub132pd MXCSR.DAZ MXCSR.FZ
vfmsub132ps MXCSR.DAZ MXCSR.FZ
vfmsub213pd MXCSR.DAZ MXCSR.FZ
vfmsub213ps MXCSR.DAZ MXCSR.FZ
vfmsub231pd MXCSR.DAZ MXCSR.FZ
vfmsub231ps MXCSR.DAZ MXCSR.FZ
vfnmadd132pd MXCSR.DAZ MXCSR.FZ

684 Reference Number: 327364-001

APPENDIX C. FLOATING-POINT EXCEPTION SUMMARY

Instruction Treat Input Denormals As Zeros Flush Tiny Results To Zero
vfnmadd132ps MXCSR.DAZ MXCSR.FZ
vfnmadd213pd MXCSR.DAZ MXCSR.FZ
vfnmadd213ps MXCSR.DAZ MXCSR.FZ
vfnmadd231pd MXCSR.DAZ MXCSR.FZ
vfnmadd231ps MXCSR.DAZ MXCSR.FZ
vfnmsub132pd MXCSR.DAZ MXCSR.FZ
vfnmsub132ps MXCSR.DAZ MXCSR.FZ
vfnmsub213pd MXCSR.DAZ MXCSR.FZ
vfnmsub213ps MXCSR.DAZ MXCSR.FZ
vfnmsub231pd MXCSR.DAZ MXCSR.FZ
vfnmsub231ps MXCSR.DAZ MXCSR.FZ
vgatherdpd NO NO
vgatherdps NO NO
vgatherpf0dps NO NO
vgatherpf0hintdpd NO NO
vgatherpf0hintdps NO NO
vgatherpf1dps NO NO
vgetexppd MXCSR.DAZ Not Applicable
vgetexpps MXCSR.DAZ Not Applicable
vgetmantpd MXCSR.DAZ Not Applicable
vgetmantps MXCSR.DAZ Not Applicable
vgmaxpd MXCSR.DAZ NO
vgmaxps MXCSR.DAZ NO
vgmaxabsps MXCSR.DAZ NO
vgminpd MXCSR.DAZ NO
vgminps MXCSR.DAZ NO
vloadunpackhpd NO NO
vloadunpackhps NO NO
vloadunpacklpd NO NO
vloadunpacklps NO NO
vlog2ps YES YES
vmovapd (load) NO NO
vmovapd (store) NO (DAZ*) NO
vmovaps (load) NO NO
vmovaps (store) NO (DAZ*) NO
vmovnrapd (load) NO NO
vmovnrapd (store) NO (DAZ*) NO
vmovnraps (load) NO NO
vmovnraps (store) NO (DAZ*) NO
vmovnrngoapd (load) NO NO
vmovnrngoapd (store) NO (DAZ*) NO
vmovnrngoaps (load) NO NO
vmovnrngoaps (store) NO (DAZ*) NO
vmulpd MXCSR.DAZ MXCSR.FZ
vmulps MXCSR.DAZ MXCSR.FZ
vpackstorehpd NO (DAZ*) NO
vpackstorehps NO (DAZ*) NO
vpackstorelpd NO (DAZ*) NO

Reference Number: 327364-001 685

APPENDIX C. FLOATING-POINT EXCEPTION SUMMARY

Instruction Treat Input Denormals As Zeros Flush Tiny Results To Zero
vpackstorelps NO (DAZ*) NO
vrcp23ps YES YES
vrndfxpntpd MXCSR.DAZ NO
vrndfxpntps MXCSR.DAZ NO
vrsqrt23ps YES YES
vscaleps MXCSR.DAZ MXCSR.FZ
vscatterdpd NO (DAZ*) NO
vscatterdps NO (DAZ*) NO
vscatterpf0dps NO NO
vscatterpf0hintdpd NO NO
vscatterpf0hintdps NO NO
vscatterpf1dps NO NO
vsubpd MXCSR.DAZ MXCSR.FZ
vsubps MXCSR.DAZ MXCSR.FZ
vsubrpd MXCSR.DAZ MXCSR.FZ
vsubrps MXCSR.DAZ MXCSR.FZ
(*) FP32 down-conversion obeys MXCSR.DAZ

686 Reference Number: 327364-001

APPENDIX C. FLOATING-POINT EXCEPTION SUMMARY

Co
nv

er
sio

n
Co

nt
ex
t

Ro
un

di
ng

M
ax

M
in

Fl
oa

t3
2t

ou
in
t8

Do
wn

Co
nv

RN
0x

43
7f
7f
ff
(2
55

.5
-1

ul
p)

0x
bf
00

00
00

(-0
.5)

Fl
oa

t3
2t

os
in
t8

Do
wn

Co
nv

RN
0x

42
fe
fff
f(
12

7.5
-1

ul
p)

0x
c3

00
80

00
(-1

28
.5)

Fl
oa

t3
2t

ou
in
t1
6

Do
wn

Co
nv

RN
0x

47
7f
ff7

f(
65

53
5.5

-1
ul
p)

0x
bf
00

00
00

(-0
.5)

Fl
oa

t3
2t

os
in
t1
6

Do
wn

Co
nv

RN
0x

46
fff
ef
f(
32

76
7.5

-1
ul
p)

0x
c7

00
00

80
(-3

27
68

.5)
Fl
oa

t3
2t

ou
in
t3
2

VC
VT

FX
PN

TP
S2

UD
Q

RN
0x

4f
7f
fff
f(
2^

32
-1

ul
p)

0x
bf
00

00
00

(-0
.5)

Fl
oa

t3
2t

ou
in
t3
2

VC
VT

FX
PN

TP
S2

UD
Q

RD
0x

4f
7f
fff
f(
2^

32
-1

ul
p)

0x
80

00
00

00
(-0

.0)
Fl
oa

t3
2t

ou
in
t3
2

VC
VT

FX
PN

TP
S2

UD
Q

RU
0x

4f
7f
fff
f(
2^

32
-1

ul
p)

0x
bf
7f
fff
f(
-1
.0
+1

ul
p)

Fl
oa

t3
2t

ou
in
t3
2

VC
VT

FX
PN

TP
S2

UD
Q

RZ
0x

4f
7f
fff
f(
2^

32
-1

ul
p)

0x
bf
7f
fff
f(
-1
.0
+1

ul
p)

Fl
oa

t3
2t

os
in
t3
2

VC
VT

FX
PN

TP
S2

DQ
RN

0x
4e

fff
fff

(2
^3

1-
1u

lp
)

0x
cf0

00
00

0(
-2
^3

1)
Fl
oa

t3
2t

os
in
t3
2

VC
VT

FX
PN

TP
S2

DQ
RD

0x
4e

fff
fff

(2
^3

1-
1u

lp
)

0x
cf0

00
00

0(
-2
^3

1)
Fl
oa

t3
2t

os
in
t3
2

VC
VT

FX
PN

TP
S2

DQ
RU

0x
4e

fff
fff

(2
^3

1-
1u

lp
)

0x
cf0

00
00

0(
-2
^3

1)
Fl
oa

t3
2t

os
in
t3
2

VC
VT

FX
PN

TP
S2

DQ
RZ

0x
4e

fff
fff

(2
^3

1-
1u

lp
)

0x
cf0

00
00

0(
-2
^3

1)
Fl
oa

t6
4t

ou
in
t3
2

VC
VT

FX
PN

TP
D2

UD
Q

RN
0x

41
ef
fff
fff
ef
fff
f(
2^

32
-0

.5
-1

ul
p)

0x
bf
e0

00
00

00
00

00
00

(-0
.5)

Fl
oa

t6
4t

ou
in
t3
2

VC
VT

FX
PN

TP
D2

UD
Q

RD
0x

41
ef
fff
fff
fff
fff

(2
^3

2-
1u

lp
)

0x
80

00
00

00
00

00
00

00
(-0

.0)
Fl
oa

t6
4t

ou
in
t3
2

VC
VT

FX
PN

TP
D2

UD
Q

RU
0x

41
ef
fff
fff
e0

00
00

(2
^3

2-
1.0

)
0x

bf
ef
fff
fff
fff
fff

(-1
.0
+1

ul
p)

Fl
oa

t6
4t

ou
in
t3
2

VC
VT

FX
PN

TP
D2

UD
Q

RZ
0x

41
ef
fff
fff
fff
fff

(2
^3

2-
1u

lp
)

0x
bf
ef
fff
fff
fff
fff

(-1
.0
+1

ul
p)

Fl
oa

t6
4t

os
in
t3
2

VC
VT

FX
PN

TP
D2

DQ
RN

0x
41

df
fff
fff
df
fff
f(
2^

31
-0

.5
-1

ul
p)

0x
c1

e0
00

00
00

10
00

00
(-2

^3
1-

0.5
)

Fl
oa

t6
4t

os
in
t3
2

VC
VT

FX
PN

TP
D2

DQ
RD

0x
41

df
fff
fff
fff
fff

(2
^3

1-
1u

lp
)

0x
c1

e0
00

00
00

00
00

00
(-2

^3
1)

Fl
oa

t6
4t

os
in
t3
2

VC
VT

FX
PN

TP
D2

DQ
RU

0x
41

df
fff
fff
c0

00
00

(2
^3

1-
1.0

)
0x

c1
e0

00
00

00
1f
fff
f(
-2
^3

1-
1.0

+1
ul
p)

Fl
oa

t6
4t

os
in
t3
2

VC
VT

FX
PN

TP
D2

DQ
RZ

0x
41

df
fff
fff
fff
fff

(2
^3

1-
1u

lp
)

0x
c1

e0
00

00
00

1f
fff
f(
-2
^3

1-
1.0

+1
ul
p)

Ta
bl
eC

.3:
Fl
oa

t-t
o-
in
te
ge
rM

ax
/M

in
Va

lid
Ra

ng
e

Reference Number: 327364-001 687

APPENDIX C. FLOATING-POINT EXCEPTION SUMMARY

Case
Rounding

M
axposargw/ooverlow

M
inposargw/overlow

Float32to
loat16

RN
0x477fefff(65520.0-1ulp)

0x477ff000(65520.0)
RD

∗
0x477fffff(65536.0-1ulp)

0x47800000(65536.0)
RU

∗
0x477fe000(65504.0)

0x477fe001(65504.0+1ulp)
RZ

0x477fffff(65536.0-1ulp)
0x47800000(65536.0)

Float64to
loat32

RN
0x47efffffefffffff(2

1
2
8−

2
1
0
3−

1ulp)
0x47effffff0000000(2

1
2
8−

2
1
0
3)

RD
0x47efffffffffffff(2

1
2
8−

1ulp)
0x47f0000000000000(2

1
2
8
.0)

RU
0x47efffffe0000000(2

1
2
8−

2
1
0
4)

0x47efffffe0000001(2
1
2
8−

2
1
0
4
+
1ulp)

RZ
0x47efffffffffffff(2

1
2
8−

1ulp)
0x47f0000000000000(2

1
2
8
.0)

Case
Rounding

M
axnegargw/ooverlow

M
innegargw/overlow

Float32to
loat16

RN
0xc77fefff(-65520.0+1ulp)

0xc77ff000(-65520.0)
RD

∗
0xc77fe000(-65504.0)

0xc77fe001(-65504.0-1ulp)
RU

∗
0xc77fffff(-65536.0+1ulp)

0xc7800000(-65536.0)
RZ

0xc77fffff(-65536.0+1ulp)
0xc7800000(-65536.0)

Float64to
loat32

RN
0xc7efffffefffffff(−

2
1
2
8
+
2
1
0
3
+
1ulp)

0xc7effffff0000000(−
2
1
2
8
+
2
1
0
3)

RD
0xc7efffffe0000000(−

2
1
2
8
+
2
1
0
4)

0xc7efffffe0000001(−
2
1
2
8
+
2
1
0
4−

1ulp)
RU

0xc7efffffffffffff(−
2
1
2
8
+
1ulp)

0xc7f0000000000000(−
2
1
2
8
.0)

RZ
0xc7efffffffffffff(−

2
1
2
8
+
1ulp)

0xc7f0000000000000(−
2
1
2
8
.0)

TableC.4:Float-to-loatM
ax/M

inValidRange

688 Reference Number: 327364-001

APPENDIX D. INSTRUCTION ATTRIBUTES AND CATEGORIES

Appendix D

Instruction Attributes and Categories

In this Appendix we enumerate instruction attributes and categories

Reference Number: 327364-001 689

APPENDIX D. INSTRUCTION ATTRIBUTES AND CATEGORIES

D.1 Conversion Instruction Families

D.1.1 Df32 Family of Instructions

VMOVAPS VMOVNRAPS VMOVNRNGOAPS VPACKSTOREHPS
VPACKSTORELPS VSCATTERDPS VSCATTERPF1DPS

D.1.2 Df64 Family of Instructions

VMOVAPD VMOVNRAPD VMOVNRNGOAPD VPACKSTOREHPD
VPACKSTORELPD VSCATTERDPD

D.1.3 Di32 Family of Instructions

VMOVDQA32 VPACKSTOREHD VPACKSTORELD VPSCATTERDD

D.1.4 Di64 Family of Instructions

VMOVDQA64 VPACKSTOREHQ VPACKSTORELQ VPSCATTERDQ

D.1.5 Sf32 Family of Instructions

VADDNPS VADDPS VADDSETSPS VBLENDMPS
VCMPPS VCVTFXPNTPS2DQ VCVTFXPNTPS2UDQ VCVTPS2PD
VFMADD132PS VFMADD213PS VFMADD231PS VFMADD233PS
VFMSUB132PS VFMSUB213PS VFMSUB231PS VFNMADD132PS
VFNMADD213PS VFNMADD231PS VFNMSUB132PS VFNMSUB213PS
VFNMSUB231PS VGETEXPPS VGETMANTPS VGMAXABSPS
VGMAXPS VGMINPS VMULPS VRNDFXPNTPS
VSUBPS VSUBRPS

D.1.6 Sf64 Family of Instructions

VADDNPD VADDPD VBLENDMPD VCMPPD
VCVTFXPNTPD2DQ VCVTFXPNTPD2UDQ VCVTPD2PS VFMADD132PD
VFMADD213PD VFMADD231PD VFMSUB132PD VFMSUB213PD
VFMSUB231PD VFNMADD132PD VFNMADD213PD VFNMADD231PD
VFNMSUB132PD VFNMSUB213PD VFNMSUB231PD VGETEXPPD
VGETMANTPD VGMAXPD VGMINPD VMULPD
VRNDFXPNTPD VSUBPD VSUBRPD

690 Reference Number: 327364-001

APPENDIX D. INSTRUCTION ATTRIBUTES AND CATEGORIES

D.1.7 Si32 Family of Instructions

VCVTDQ2PD VCVTFXPNTDQ2PS VCVTFXPNTUDQ2PS VCVTUDQ2PD
VFIXUPNANPS VPADCD VPADDD VPADDSETCD
VPADDSETSD VPANDD VPANDND VPBLENDMD
VPCMPD VPCMPEQD VPCMPGTD VPCMPLTD
VPCMPUD VPMADD231D VPMADD233D VPMAXSD
VPMAXUD VPMINSD VPMINUD VPMULHD
VPMULHUD VPMULLD VPORD VPSBBD
VPSBBRD VPSLLD VPSLLVD VPSRAD
VPSRAVD VPSRLD VPSRLVD VPSUBD
VPSUBRD VPSUBRSETBD VPSUBSETBD VPTESTMD
VPXORD VSCALEPS

D.1.8 Si64 Family of Instructions

VFIXUPNANPD VPANDNQ VPANDQ VPBLENDMQ
VPORQ VPXORQ

D.1.9 Uf32 Family of Instructions

VBROADCASTF32X4 VBROADCASTSS VGATHERDPS VGATHERPF0DPS
VGATHERPF0HINTDPS VGATHERPF1DPS VLOADUNPACKHPS VLOADUNPACKLPS
VMOVAPS VMOVNRAPS VMOVNRNGOAPS VSCATTERPF0DPS
VSCATTERPF0HINTDPS

D.1.10 Uf64 Family of Instructions

VBROADCASTF64X4 VBROADCASTSD VGATHERDPD VGATHERPF0HINTDPD
VLOADUNPACKHPD VLOADUNPACKLPD VMOVAPD VMOVNRAPD
VMOVNRNGOAPD VSCATTERPF0HINTDPD

D.1.11 Ui32 Family of Instructions

VBROADCASTI32X4 VLOADUNPACKHD VLOADUNPACKLD VMOVDQA32
VPBROADCASTD VPGATHERDD

D.1.12 Ui64 Family of Instructions

VBROADCASTI64X4 VLOADUNPACKHQ VLOADUNPACKLQ VMOVDQA64
VPBROADCASTQ VPGATHERDQ

Reference Number: 327364-001 691

APPENDIX E. NON-FAULTING UNDEFINED OPCODES

Appendix E

Non-faulting Undened Opcodes

The following opcodes are non-faulting and have unde ined behavior:

• MVEX.512.0F38.W0 D2 /r

• MVEX.512.0F38.W0 D3 /r

• MVEX.512.0F38.W0 D6 /r

• MVEX.512.0F38.W0 D7 /r

• MVEX.512.66.0F38.W0 48 /r

• MVEX.512.66.0F38.W0 49 /r

• MVEX.512.66.0F38.W0 4A /r

• MVEX.512.66.0F38.W0 4B /r

• MVEX.512.66.0F38.W0 68 /r

• MVEX.512.66.0F38.W0 69 /r

• MVEX.512.66.0F38.W0 6A /r

• MVEX.512.66.0F38.W0 6B /r

• MVEX.512.66.0F38.W0 B0 /r /vsib

• MVEX.512.66.0F38.W0 B2 /r /vsib

• MVEX.512.66.0F38.W0 C0 /r /vsib

• MVEX.512.66.0F38.W0 D2 /r

• MVEX.512.66.0F38.W0 D6 /r

• MVEX.512.66.0F3A.W0 D0 /r ib

• MVEX.512.66.0F3A.W0 D1 /r ib

• MVEX.NDS.512.66.0F38.W0 54 /r

692 Reference Number: 327364-001

APPENDIX E. NON-FAULTING UNDEFINED OPCODES

• MVEX.NDS.512.66.0F38.W0 56 /r

• MVEX.NDS.512.66.0F38.W0 57 /r

• MVEX.NDS.512.66.0F38.W0 67 /r

• MVEX.NDS.512.66.0F38.W0 70 /r

• MVEX.NDS.512.66.0F38.W0 71 /r

• MVEX.NDS.512.66.0F38.W0 72 /r

• MVEX.NDS.512.66.0F38.W0 73 /r

• MVEX.NDS.512.66.0F38.W0 94 /r

• MVEX.NDS.512.66.0F38.W0 CE /r

• MVEX.NDS.512.66.0F38.W0 CF /r

• MVEX.NDS.512.66.0F38.W1 94 /r

• MVEX.NDS.512.66.0F38.W1 CE /r

• VEX.128.F2.0F38.W0 F0 /r

• VEX.128.F2.0F38.W0 F1 /r

• VEX.128.F2.0F38.W1 F0 /r

• VEX.128.F2.0F38.W1 F1 /r

• VEX.128.F3.0F38.W0 F0 /r

• VEX.128.F3.0F38.W1 F0 /r

Reference Number: 327364-001 693

APPENDIX F. GENERAL TEMPLATES

Appendix F

General Templates

In this Chapter all the general templates are described. Each instruction has one (at least) valid format, and each
format matches with one of these templates.

694 Reference Number: 327364-001

APPENDIX F. GENERAL TEMPLATES

F.1 Mask Operation Templates

Reference Number: 327364-001 695

APPENDIX F. GENERAL TEMPLATES

Mask m0 - Template

VMASKMask m0
Opcode Instruction Description
VEX.128 KOP k1, k2 Operate [mask k1 and] mask k2 [and store the

result in k1]

Description

Operand is a register

ESCAPE(C5) 1 1 0 0 0 1 0 1
7 6 5 4 3 2 1 0

VEX2 1 1 1 1 1 0 p1 p0
7 6 5 4 3 2 1 0

OPCODE OPCODE
7 6 5 4 3 2 1 0

ModR/M 11 reg (K1) r (K2)
7 6 5 4 3 2 1 0

696 Reference Number: 327364-001

APPENDIX F. GENERAL TEMPLATES

Mask m1 - Template

VMASKMask m1
Opcode Instruction Description
VEX.128 KOP r32/r64, k1, imm8 Move mask k1 into r32/r64 using imm8

Description

Operand is a register

ESCAPE(C4) 1 1 0 0 0 1 0 0
7 6 5 4 3 2 1 0

VEX1 !reg3 1 1 m4 m3 m2 m1 m0
7 6 5 4 3 2 1 0

VEX2 W 1 1 1 1 L=0 p1 p0
7 6 5 4 3 2 1 0

OPCODE OPCODE
7 6 5 4 3 2 1 0

ModR/M 11 reg (reg) r (K1)
7 6 5 4 3 2 1 0

{IMM8} I7 I6 I5 I4 I3 I2 I1 I0
7 6 5 4 3 2 1 0

Reference Number: 327364-001 697

APPENDIX F. GENERAL TEMPLATES

Mask m2 - Template

VMASKMask m2
Opcode Instruction Description

Description

Operand is a register

ESCAPE(C4) 1 1 0 0 0 1 0 0
7 6 5 4 3 2 1 0

VEX1 !reg3 1 1 m4 m3 m2 m1 m0
7 6 5 4 3 2 1 0

VEX2 W 1 !K12 !K11 !K10 L=0 p1 p0
7 6 5 4 3 2 1 0

OPCODE OPCODE
7 6 5 4 3 2 1 0

ModR/M 11 reg (reg) r (K2)
7 6 5 4 3 2 1 0

698 Reference Number: 327364-001

APPENDIX F. GENERAL TEMPLATES

Mask m3 - Template

VMASKMask m3
Opcode Instruction Description
VEX.128 KOP r32/r64, k1 Move mask k1 into r32/r64

Description

Operand is a register

ESCAPE(C5) 1 1 0 0 0 1 0 1
7 6 5 4 3 2 1 0

VEX1 !reg3 1 1 1 1 0 p1 p0
7 6 5 4 3 2 1 0

OPCODE OPCODE
7 6 5 4 3 2 1 0

ModR/M 11 reg (reg) r (K1)
7 6 5 4 3 2 1 0

Reference Number: 327364-001 699

APPENDIX F. GENERAL TEMPLATES

Mask m4 - Template

VMASKMask m4
Opcode Instruction Description
VEX.128 KOP k1, r32/r64 Move r32/r64 into mask k1

Description

Operand is a register

C4 Version

ESCAPE(C4) 1 1 0 0 0 1 0 0
7 6 5 4 3 2 1 0

VEX1 1 1 !reg3 m4 m3 m2 m1 m0
7 6 5 4 3 2 1 0

VEX2 W 1 1 1 1 0 p1 p0
7 6 5 4 3 2 1 0

OPCODE OPCODE
7 6 5 4 3 2 1 0

ModR/M 11 reg (K1) r (reg)
7 6 5 4 3 2 1 0

C5 Version

ESCAPE(C5) 1 1 0 0 0 1 0 1
7 6 5 4 3 2 1 0

VEX1 1 1 1 1 1 0 p1 p0
7 6 5 4 3 2 1 0

OPCODE OPCODE
7 6 5 4 3 2 1 0

ModR/M 11 reg (K1) r (reg)
7 6 5 4 3 2 1 0

700 Reference Number: 327364-001

APPENDIX F. GENERAL TEMPLATES

Mask m5 - Template

VMASKMask m5
Opcode Instruction Description
VEX.128 KOP k1, r32/r64, imm8 Move r32/r64 ield into mask k1 using imm8

Description

Operand is a register

ESCAPE(C4) 1 1 0 0 0 1 0 0
7 6 5 4 3 2 1 0

VEX1 1 1 !reg3 m4 m3 m2 m1 m0
7 6 5 4 3 2 1 0

VEX2 W 1 1 1 1 L=0 p1 p0
7 6 5 4 3 2 1 0

OPCODE OPCODE
7 6 5 4 3 2 1 0

ModR/M 11 reg (K1) r (reg)
7 6 5 4 3 2 1 0

{IMM8} I7 I6 I5 I4 I3 I2 I1 I0
7 6 5 4 3 2 1 0

Reference Number: 327364-001 701

APPENDIX F. GENERAL TEMPLATES

F.2 Vector Operation Templates

702 Reference Number: 327364-001

APPENDIX F. GENERAL TEMPLATES

Vector v0 - Template

VectorVector v0
Opcode Instruction Description
MVEX.512 VOP zmm1 {k1}, zmm2,

S(zmm3/mt)
Operate vector zmm2 and vector S(zmm3/mt)
[and vector zmm1] and store the result in
zmm1, under write-mask k1

MVEX.512 VOP zmm1 {k1}, zmm2,
S(zmm3/mt), imm8

Operate vector zmm2 and vector S(zmm3/mt)
[and vector zmm1] and store the result in
zmm1 using imm8, under write-mask k1

Description

Operand is a register

ESCAPE(62) 0 1 1 0 0 0 1 0
7 6 5 4 3 2 1 0

MVEX1 !Z13 !Z34 !Z33 !Z14 m3 m2 m1 m0
7 6 5 4 3 2 1 0

MVEX2 W !Z23 !Z22 !Z21 !Z20 L=0 p1 p0
7 6 5 4 3 2 1 0

MVEX3 EH S2 S1 S0 !Z24 K12 K11 K10
7 6 5 4 3 2 1 0

OPCODE OPCODE
7 6 5 4 3 2 1 0

ModR/M 11 reg (ZMM1) r (ZMM3)
7 6 5 4 3 2 1 0

{IMM8} I7 I6 I5 I4 I3 I2 I1 I0
7 6 5 4 3 2 1 0

Operand is a memory location

ESCAPE(62) 0 1 1 0 0 0 1 0
7 6 5 4 3 2 1 0

MVEX1 !Z13 !X !B !Z14 m3 m2 m1 m0
7 6 5 4 3 2 1 0

MVEX2 W !Z23 !Z22 !Z21 !Z20 L=0 p1 p0
7 6 5 4 3 2 1 0

MVEX3 EH S2 S1 S0 !Z24 K12 K11 K10
7 6 5 4 3 2 1 0

OPCODE OPCODE
7 6 5 4 3 2 1 0

ModR/M mod reg (ZMM1) m (mt)
7 6 5 4 3 2 1 0

{SIB} SIB byte
7 6 5 4 3 2 1 0

{DISPL} Displacement (8*N/32)
31,8 0

Reference Number: 327364-001 703

APPENDIX F. GENERAL TEMPLATES

{IMM8} I7 I6 I5 I4 I3 I2 I1 I0
7 6 5 4 3 2 1 0

704 Reference Number: 327364-001

APPENDIX F. GENERAL TEMPLATES

Vector v1 - Template

VectorVector v1
Opcode Instruction Description
MVEX.512 VOP zmm1 {k1}, S(mt) Load/brodcast vector S(mt) into zmm1, under

write-mask k1

Description

Operand is a memory location

ESCAPE(62) 0 1 1 0 0 0 1 0
7 6 5 4 3 2 1 0

MVEX1 !Z13 !X !B !Z14 m3 m2 m1 m0
7 6 5 4 3 2 1 0

MVEX2 W 1 1 1 1 L=0 p1 p0
7 6 5 4 3 2 1 0

MVEX3 EH S2 S1 S0 1 K12 K11 K10
7 6 5 4 3 2 1 0

OPCODE OPCODE
7 6 5 4 3 2 1 0

ModR/M mod reg (ZMM1) m (mt)
7 6 5 4 3 2 1 0

{SIB} SIB byte
7 6 5 4 3 2 1 0

{DISPL} Displacement (8*N/32)
31,8 0

Reference Number: 327364-001 705

APPENDIX F. GENERAL TEMPLATES

Vector v10 - Template

VectorVector v10
Opcode Instruction Description
MVEX.512 VOP zmm1 {k1}, S(zmm2/mt) Operate vector S(zmm2/mt) and store the re-

sult in zmm1, under write-mask k1
MVEX.512 VOP zmm1 {k1}, S(zmm2/mt),

imm8
Operate vector S(zmm2/mt) and store the re-
sult in zmm1 using imm8, underwrite-mask k1

MVEX.512 VOP zmm1 {k1}, S(zmm2/mt) Move vector S(zmm2/mt) into zmm1, under
write-mask k1

Description

Operand is a register

ESCAPE(62) 0 1 1 0 0 0 1 0
7 6 5 4 3 2 1 0

MVEX1 1 !Z24 !Z23 1 m3 m2 m1 m0
7 6 5 4 3 2 1 0

MVEX2 W !Z13 !Z12 !Z11 !Z10 L=0 p1 p0
7 6 5 4 3 2 1 0

MVEX3 EH S2 S1 S0 !Z14 K12 K11 K10
7 6 5 4 3 2 1 0

OPCODE OPCODE
7 6 5 4 3 2 1 0

ModR/M 11 Op. Ext. r (ZMM2)
7 6 5 4 3 2 1 0

{IMM8} I7 I6 I5 I4 I3 I2 I1 I0
7 6 5 4 3 2 1 0

Operand is a memory location

ESCAPE(62) 0 1 1 0 0 0 1 0
7 6 5 4 3 2 1 0

MVEX1 1 !X !B 1 m3 m2 m1 m0
7 6 5 4 3 2 1 0

MVEX2 W !Z13 !Z12 !Z11 !Z10 L=0 p1 p0
7 6 5 4 3 2 1 0

MVEX3 EH S2 S1 S0 !Z14 K12 K11 K10
7 6 5 4 3 2 1 0

OPCODE OPCODE
7 6 5 4 3 2 1 0

ModR/M mod Op. Ext. m (mt)
7 6 5 4 3 2 1 0

{SIB} SIB byte
7 6 5 4 3 2 1 0

{DISPL} Displacement (8*N/32)
31,8 0

706 Reference Number: 327364-001

APPENDIX F. GENERAL TEMPLATES

{IMM8} I7 I6 I5 I4 I3 I2 I1 I0
7 6 5 4 3 2 1 0

Reference Number: 327364-001 707

APPENDIX F. GENERAL TEMPLATES

Vector v11 - Template

VectorVector v11
Opcode Instruction Description
MVEX.512 VOP zmm1 {k1}, zmm2, S(mt) Load/brodcast and OP vector S(mt) with

zmm2andwrite result into zmm1, underwrite-
mask k1

Description

Operand is a memory location

ESCAPE(62) 0 1 1 0 0 0 1 0
7 6 5 4 3 2 1 0

MVEX1 !Z13 !X !B !Z14 m3 m2 m1 m0
7 6 5 4 3 2 1 0

MVEX2 W !Z23 !Z22 !Z21 !Z20 L=0 p1 p0
7 6 5 4 3 2 1 0

MVEX3 EH S2 S1 S0 !Z24 K12 K11 K10
7 6 5 4 3 2 1 0

OPCODE OPCODE
7 6 5 4 3 2 1 0

ModR/M mod reg (ZMM1) m (mt)
7 6 5 4 3 2 1 0

{SIB} SIB byte
7 6 5 4 3 2 1 0

{DISPL} Displacement (8*N/32)
31,8 0

708 Reference Number: 327364-001

APPENDIX F. GENERAL TEMPLATES

Vector v2 - Template

VectorVector v2
Opcode Instruction Description
MVEX.512 VOP k2 {k1}, zmm2, S(zmm3/mt) Operate vector zmm2 and vector S(zmm3/mt)

and store the result in k2, under write-mask k1
MVEX.512 VOPk2 {k1}, zmm2,S(zmm3/mt),

imm8
Operate vector zmm2 and vector S(zmm3/mt)
and store the result in k2 using imm8, under
write-mask k1

Description

Operand is a register

ESCAPE(62) 0 1 1 0 0 0 1 0
7 6 5 4 3 2 1 0

MVEX1 1 !Z24 !Z23 1 m3 m2 m1 m0
7 6 5 4 3 2 1 0

MVEX2 W !Z13 !Z12 !Z11 !Z10 L=0 p1 p0
7 6 5 4 3 2 1 0

MVEX3 EH S2 S1 S0 !Z14 K12 K11 K10
7 6 5 4 3 2 1 0

OPCODE OPCODE
7 6 5 4 3 2 1 0

ModR/M 11 reg (K2) r (ZMM2)
7 6 5 4 3 2 1 0

{IMM8} I7 I6 I5 I4 I3 I2 I1 I0
7 6 5 4 3 2 1 0

Operand is a memory location

ESCAPE(62) 0 1 1 0 0 0 1 0
7 6 5 4 3 2 1 0

MVEX1 1 !X !B 1 m3 m2 m1 m0
7 6 5 4 3 2 1 0

MVEX2 W !Z13 !Z12 !Z11 !Z10 L=0 p1 p0
7 6 5 4 3 2 1 0

MVEX3 EH S2 S1 S0 !Z14 K12 K11 K10
7 6 5 4 3 2 1 0

OPCODE OPCODE
7 6 5 4 3 2 1 0

ModR/M mod reg (K2) m (mt)
7 6 5 4 3 2 1 0

{SIB} SIB byte
7 6 5 4 3 2 1 0

{DISPL} Displacement (8*N/32)
31,8 0

{IMM8} I7 I6 I5 I4 I3 I2 I1 I0

Reference Number: 327364-001 709

APPENDIX F. GENERAL TEMPLATES
7 6 5 4 3 2 1 0

710 Reference Number: 327364-001

APPENDIX F. GENERAL TEMPLATES

Vector v3 - Template

VectorVector v3
Opcode Instruction Description
MVEX.512 VOPmt {k1},D(zmm1) Store vector D(zmm1) into mt, under write-

mask k1

Description

Operand is a memory location

ESCAPE(62) 0 1 1 0 0 0 1 0
7 6 5 4 3 2 1 0

MVEX1 !Z13 !X !B !Z14 m3 m2 m1 m0
7 6 5 4 3 2 1 0

MVEX2 W 1 1 1 1 L=0 p1 p0
7 6 5 4 3 2 1 0

MVEX3 EH S2 S1 S0 1 K12 K11 K10
7 6 5 4 3 2 1 0

OPCODE OPCODE
7 6 5 4 3 2 1 0

ModR/M mod reg (ZMM1) m (mt)
7 6 5 4 3 2 1 0

{SIB} SIB byte
7 6 5 4 3 2 1 0

{DISPL} Displacement (8*N/32)
31,8 0

Reference Number: 327364-001 711

APPENDIX F. GENERAL TEMPLATES

Vector v4 - Template

VectorVector v4
Opcode Instruction Description
MVEX.512 VOP zmm1 {k1}, zmm2/mt Operate vector zmm2/mt and store the result

in zmm1, under write-mask k1
MVEX.512 VOP zmm1 {k1}, zmm2/mt, imm8 Operate vector zmm2/mt and store the result

in zmm1 using imm8, under write-mask k1

Description

Operand is a register

ESCAPE(62) 0 1 1 0 0 0 1 0
7 6 5 4 3 2 1 0

MVEX1 !Z13 !Z24 !Z23 !Z14 m3 m2 m1 m0
7 6 5 4 3 2 1 0

MVEX2 W 1 1 1 1 L=0 p1 p0
7 6 5 4 3 2 1 0

MVEX3 EH 0 0 0 1 K12 K11 K10
7 6 5 4 3 2 1 0

OPCODE OPCODE
7 6 5 4 3 2 1 0

ModR/M 11 reg (ZMM1) r (ZMM2)
7 6 5 4 3 2 1 0

{IMM8} I7 I6 I5 I4 I3 I2 I1 I0
7 6 5 4 3 2 1 0

Operand is a memory location

ESCAPE(62) 0 1 1 0 0 0 1 0
7 6 5 4 3 2 1 0

MVEX1 !Z13 !X !B !Z14 m3 m2 m1 m0
7 6 5 4 3 2 1 0

MVEX2 W 1 1 1 1 L=0 p1 p0
7 6 5 4 3 2 1 0

MVEX3 EH 0 0 0 1 K12 K11 K10
7 6 5 4 3 2 1 0

OPCODE OPCODE
7 6 5 4 3 2 1 0

ModR/M mod reg (ZMM1) m (mt)
7 6 5 4 3 2 1 0

{SIB} SIB byte
7 6 5 4 3 2 1 0

{DISPL} Displacement (8*N/32)
31,8 0

{IMM8} I7 I6 I5 I4 I3 I2 I1 I0
7 6 5 4 3 2 1 0

712 Reference Number: 327364-001

APPENDIX F. GENERAL TEMPLATES

Reference Number: 327364-001 713

APPENDIX F. GENERAL TEMPLATES

Vector v5 - Template

VectorVector v5
Opcode Instruction Description
MVEX.512 VOP zmm1 {k1}, S(zmm2/mt) Operate vector S(zmm2/mt) and store the re-

sult in zmm1, under write-mask k1
MVEX.512 VOP zmm1 {k1}, S(zmm2/mt),

imm8
Operate vector S(zmm2/mt) and store the re-
sult in zmm1 using imm8, underwrite-mask k1

MVEX.512 VOP zmm1 {k1}, S(zmm2/mt) Move vector S(zmm2/mt) into zmm1, under
write-mask k1

Description

Operand is a register

ESCAPE(62) 0 1 1 0 0 0 1 0
7 6 5 4 3 2 1 0

MVEX1 !Z13 !Z24 !Z23 !Z14 m3 m2 m1 m0
7 6 5 4 3 2 1 0

MVEX2 W 1 1 1 1 L=0 p1 p0
7 6 5 4 3 2 1 0

MVEX3 EH S2 S1 S0 1 K12 K11 K10
7 6 5 4 3 2 1 0

OPCODE OPCODE
7 6 5 4 3 2 1 0

ModR/M 11 reg (ZMM1) r (ZMM2)
7 6 5 4 3 2 1 0

{IMM8} I7 I6 I5 I4 I3 I2 I1 I0
7 6 5 4 3 2 1 0

Operand is a memory location

ESCAPE(62) 0 1 1 0 0 0 1 0
7 6 5 4 3 2 1 0

MVEX1 !Z13 !X !B !Z14 m3 m2 m1 m0
7 6 5 4 3 2 1 0

MVEX2 W 1 1 1 1 L=0 p1 p0
7 6 5 4 3 2 1 0

MVEX3 EH S2 S1 S0 1 K12 K11 K10
7 6 5 4 3 2 1 0

OPCODE OPCODE
7 6 5 4 3 2 1 0

ModR/M mod reg (ZMM1) m (mt)
7 6 5 4 3 2 1 0

{SIB} SIB byte
7 6 5 4 3 2 1 0

{DISPL} Displacement (8*N/32)
31,8 0

714 Reference Number: 327364-001

APPENDIX F. GENERAL TEMPLATES

{IMM8} I7 I6 I5 I4 I3 I2 I1 I0
7 6 5 4 3 2 1 0

Reference Number: 327364-001 715

APPENDIX F. GENERAL TEMPLATES

Vector v6 - Template

VectorVector v6
Opcode Instruction Description
MVEX.512 VOP zmm1 {k1}, S(mvt) Gather sparse vector S(mvt) into zmm1, using

completion mask k1
MVEX.512 VOPmvt {k1},D(zmm1) Scatter vector D(zmm1) into sparse vector

mvt, using completion mask k1

Description

Operand is a memory location

ESCAPE(62) 0 1 1 0 0 0 1 0
7 6 5 4 3 2 1 0

MVEX1 !Z13 !X3 !B3 !Z14 m3 m2 m1 m0
7 6 5 4 3 2 1 0

MVEX2 W 1 1 1 1 L=0 p1 p0
7 6 5 4 3 2 1 0

MVEX3 EH S2 S1 S0 !X4 K12 K11 K10
7 6 5 4 3 2 1 0

OPCODE OPCODE
7 6 5 4 3 2 1 0

ModR/M mod reg (ZMM1) m= 100
7 6 5 4 3 2 1 0

V SIB SS1 SS0 Index(X) Base(B)
7 6 5 4 3 2 1 0

{DISPL} Displacement (8*N/32)
31,8 0

{IMM8} I7 I6 I5 I4 I3 I2 I1 I0
7 6 5 4 3 2 1 0

716 Reference Number: 327364-001

APPENDIX F. GENERAL TEMPLATES

Vector v7 - Template

VectorVector v7
Opcode Instruction Description
MVEX.512 VOP zmm1 {k1}, k2, S(zmm3/mt) Operatemask k2 and vectorS(zmm3/mt) [and

vector zmm1], and store the result in zmm1, un-
der write-mask k1

Description

Operand is a register

ESCAPE(62) 0 1 1 0 0 0 1 0
7 6 5 4 3 2 1 0

MVEX1 !Z13 !Z34 !Z33 !Z14 m3 m2 m1 m0
7 6 5 4 3 2 1 0

MVEX2 W 1 !K22 !K21 !K20 L=0 p1 p0
7 6 5 4 3 2 1 0

MVEX3 EH S2 S1 S0 1 K12 K11 K10
7 6 5 4 3 2 1 0

OPCODE OPCODE
7 6 5 4 3 2 1 0

ModR/M 11 reg (ZMM1) r (ZMM3)
7 6 5 4 3 2 1 0

Operand is a memory location

ESCAPE(62) 0 1 1 0 0 0 1 0
7 6 5 4 3 2 1 0

MVEX1 !Z13 !X !B !Z14 m3 m2 m1 m0
7 6 5 4 3 2 1 0

MVEX2 W 1 !K22 !K21 !K20 L=0 p1 p0
7 6 5 4 3 2 1 0

MVEX3 EH S2 S1 S0 1 K12 K11 K10
7 6 5 4 3 2 1 0

OPCODE OPCODE
7 6 5 4 3 2 1 0

ModR/M mod reg (ZMM1) m (mt)
7 6 5 4 3 2 1 0

{SIB} SIB byte
7 6 5 4 3 2 1 0

{DISPL} Displacement (8*N/32)
31,8 0

Reference Number: 327364-001 717

APPENDIX F. GENERAL TEMPLATES

Vector v8 - Template

VectorVector v8
Opcode Instruction Description
MVEX.512 VOP zmm1 {k1}, zmm2, zmm3/mt Operate vector zmm2 and vector zmm3/mt

[and vector zmm1] and store the result in
zmm1, under write-mask k1

MVEX.512 VOP zmm1 {k1}, zmm2,
zmm3/mt, imm8

Operate vector zmm2 and vector zmm3/mt

[and vector zmm1] and store the result in
zmm1 using imm8, under write-mask k1

Description

Operand is a register

ESCAPE(62) 0 1 1 0 0 0 1 0
7 6 5 4 3 2 1 0

MVEX1 !Z13 !Z34 !Z33 !Z14 m3 m2 m1 m0
7 6 5 4 3 2 1 0

MVEX2 W !Z23 !Z22 !Z21 !Z20 L=0 p1 p0
7 6 5 4 3 2 1 0

MVEX3 EH 0 0 0 !Z24 K12 K11 K10
7 6 5 4 3 2 1 0

OPCODE OPCODE
7 6 5 4 3 2 1 0

ModR/M 11 reg (ZMM1) r (ZMM3)
7 6 5 4 3 2 1 0

{IMM8} I7 I6 I5 I4 I3 I2 I1 I0
7 6 5 4 3 2 1 0

Operand is a memory location

ESCAPE(62) 0 1 1 0 0 0 1 0
7 6 5 4 3 2 1 0

MVEX1 !Z13 !X !B !Z14 m3 m2 m1 m0
7 6 5 4 3 2 1 0

MVEX2 W !Z23 !Z22 !Z21 !Z20 L=0 p1 p0
7 6 5 4 3 2 1 0

MVEX3 EH 0 0 0 !Z24 K12 K11 K10
7 6 5 4 3 2 1 0

OPCODE OPCODE
7 6 5 4 3 2 1 0

ModR/M mod reg (ZMM1) m (mt)
7 6 5 4 3 2 1 0

{SIB} SIB byte
7 6 5 4 3 2 1 0

{DISPL} Displacement (8*N/32)
31,8 0

718 Reference Number: 327364-001

APPENDIX F. GENERAL TEMPLATES

{IMM8} I7 I6 I5 I4 I3 I2 I1 I0
7 6 5 4 3 2 1 0

Reference Number: 327364-001 719

APPENDIX F. GENERAL TEMPLATES

Vector v9 - Template

VectorVector v9
Opcode Instruction Description
MVEX.512 VOP S(mvt) {k1} Prefetch sparse vector S(mvt), under write-

mask k1

Description

Operand is a memory location

ESCAPE(62) 0 1 1 0 0 0 1 0
7 6 5 4 3 2 1 0

MVEX1 1 !X3 !B3 1 m3 m2 m1 m0
7 6 5 4 3 2 1 0

MVEX2 W 1 1 1 1 L=0 p1 p0
7 6 5 4 3 2 1 0

MVEX3 EH S2 S1 S0 !X4 K12 K11 K10
7 6 5 4 3 2 1 0

OPCODE OPCODE
7 6 5 4 3 2 1 0

ModR/M mod Op. Ext. m= 100
7 6 5 4 3 2 1 0

V SIB SS1 SS0 Index(X) Base(B)
7 6 5 4 3 2 1 0

{DISPL} Displacement (8*N/32)
31,8 0

720 Reference Number: 327364-001

APPENDIX F. GENERAL TEMPLATES

F.3 Scalar Operation Templates

Reference Number: 327364-001 721

APPENDIX F. GENERAL TEMPLATES

Scalar s0 - Template

scalarScalar s0
Opcode Instruction Description
0F/0F38/0F3A OP r16, r16/m16 Operate [r16 and] r16/m16, leaving the result

in r16
0F/0F38/0F3A OP r32, r32/m32 Operate [r32 and] r32/m32, leaving the result

in r32
REX.W 0F/0F38/0F3A OP r64, r64/m64 Operate [r64 and] r64/m64, leaving the result

in r64

Description

Operand is a register

C4 Version

ESCAPE(C4) 1 1 0 0 0 1 0 0
7 6 5 4 3 2 1 0

VEX1 !dst3 1 !src3 m4 m3 m2 m1 m0
7 6 5 4 3 2 1 0

VEX2 W 1 1 1 1 L=0 p1 p0
7 6 5 4 3 2 1 0

OPCODE OPCODE
7 6 5 4 3 2 1 0

ModR/M 11 reg (dst) r (src)
7 6 5 4 3 2 1 0

C5 Version

ESCAPE(C5) 1 1 0 0 0 1 0 1
7 6 5 4 3 2 1 0

VEX2 !dst3 1 1 1 1 L=0 p1 p0
7 6 5 4 3 2 1 0

OPCODE OPCODE
7 6 5 4 3 2 1 0

ModR/M 11 reg (dst) r (src)
7 6 5 4 3 2 1 0

722 Reference Number: 327364-001

APPENDIX F. GENERAL TEMPLATES

Scalar s1 - Template

scalarScalar s1
Opcode Instruction Description
VEX.128 OPmt Prefetch/Evictmt memory location

Description

Operand is a memory location

C4 Version

ESCAPE(C4) 1 1 0 0 0 1 0 0
7 6 5 4 3 2 1 0

VEX1 1 !X !B m4 m3 m2 m1 m0
7 6 5 4 3 2 1 0

VEX2 W 1 1 1 1 L=0 p1 p0
7 6 5 4 3 2 1 0

OPCODE OPCODE
7 6 5 4 3 2 1 0

ModR/M mod Op. Ext. m (mt)
7 6 5 4 3 2 1 0

{SIB} SIB byte
7 6 5 4 3 2 1 0

{DISPL} Displacement (8/32)
31,8 0

C5 Version

ESCAPE(C5) 1 1 0 0 0 1 0 1
7 6 5 4 3 2 1 0

VEX2 1 1 1 1 1 L=0 p1 p0
7 6 5 4 3 2 1 0

OPCODE OPCODE
7 6 5 4 3 2 1 0

ModR/M mod Op. Ext. m (mt)
7 6 5 4 3 2 1 0

{SIB} SIB byte
7 6 5 4 3 2 1 0

{DISPL} Displacement (8/32)
31,8 0

Reference Number: 327364-001 723

	Introduction
	Instructions Terminology and State
	Overview of the Knights Corner instructions Extensions
	What are vectors?
	Vector mask registers
	Vector mask k0
	Example of use

	Understanding Knights Corner instructions
	Knights Corner instructions Vector Instructions
	Knights Corner instructions Vector Memory Instructions:
	Knights Corner instructions vector mask Instructions
	Knights Corner instructions New Scalar Instructions

	Knights Corner instructions Swizzles and Converts
	Load-Op Swizzle/Convert
	Load Up-convert
	Down-Conversion

	Static Rounding Mode
	Knights Corner Execution Environments

	Knights Corner Instruction Format
	Overview
	Instruction Formats
	MVEX/VEX and the LOCK prefix
	MVEX/VEX and the 66H, F2H, and F3H prefixes
	MVEX/VEX and the REX prefix

	The MVEX Prefix
	Vector SIB (VSIB) Memory Addressing

	The VEX Prefix
	Knights Corner instructions Assembly Syntax
	Notation
	Operand Notation
	The Displacement Bytes
	Memory size and disp8*N calculation

	EH hint
	Functions and Tables Used
	MemLoad and MemStore
	SwizzUpConvLoad, UpConvLoad and DownConvStore
	Other Functions/Identifiers

	Floating-Point Environment, Memory Addressing, and Processor State
	Overview
	Suppress All Exceptions Attribute (SAE)
	SIMD Floating-Point Exceptions
	SIMD Floating-Point Exception Conditions
	Invalid Operation Exception (#I)
	Divide-By-Zero Exception (#Z)
	Denormal Operand Exception (#D)
	Numeric Overflow Exception (#O)
	Numeric Underflow Exception (#U)
	Inexact Result (Precision) Exception (#P)

	Denormal Flushing Control
	Denormal control in up-conversions and down-conversions
	Up-conversions
	Down-conversions

	Extended Addressing Displacements
	Swizzle/up-conversion exceptions
	Accessing uncacheable memory
	Memory read operations
	vloadunpackh*/vloadunpackl*
	vgatherd*
	Memory stores

	Floating-point Notes
	Rounding Modes
	Swizzle-explicit rounding modes
	Definition and propagation of NaNs
	Signed Zeros

	REX prefix and Knights Corner instructions interactions

	Knights Corner instructions State Save
	Knights Corner instructions Processor State After Reset

	Instruction Set Reference
	Interpreting Instruction Reference Pages
	Instruction Format
	Opcode Notations for MVEX Encoded Instructions
	Opcode Notations for VEX Encoded Instructions

	Instruction Descriptions
	Vector Mask Instructions
	JKNZD - Jump near if mask is not zero
	JKZD - Jump near if mask is zero
	KAND - AND Vector Mask
	KANDN - AND NOT Vector Mask
	KANDNR - Reverse AND NOT Vector Mask
	KCONCATH - Pack and Move High Vector Mask
	KCONCATL - Pack and Move Low Vector Mask
	KEXTRACT - Extract Vector Mask From Register
	KMERGE2L1H - Swap and Merge High Element Portion and Low Portion of Vector Masks
	KMERGE2L1L - Move Low Element Portion into High Portion of Vector Mask
	KMOV - Move Vector Mask
	KNOT - Not Vector Mask
	KOR - OR Vector Masks
	KORTEST - OR Vector Mask And Set EFLAGS
	KXNOR - XNOR Vector Masks
	KXOR - XOR Vector Masks
	Vector Instructions
	VADDNPD - Add and Negate Float64 Vectors
	VADDNPS - Add and Negate Float32 Vectors
	VADDPD - Add Float64 Vectors
	VADDPS - Add Float32 Vectors
	VADDSETSPS - Add Float32 Vectors and Set Mask to Sign
	VALIGND - Align Doubleword Vectors
	VBLENDMPD - Blend Float64 Vectors using the Instruction Mask
	VBLENDMPS - Blend Float32 Vectors using the Instruction Mask
	VBROADCASTF32X4 - Broadcast 4xFloat32 Vector
	VBROADCASTF64X4 - Broadcast 4xFloat64 Vector
	VBROADCASTI32X4 - Broadcast 4xInt32 Vector
	VBROADCASTI64X4 - Broadcast 4xInt64 Vector
	VBROADCASTSD - Broadcast Float64 Vector
	VBROADCASTSS - Broadcast Float32 Vector
	VCMPPD - Compare Float64 Vectors and Set Vector Mask
	VCMPPS - Compare Float32 Vectors and Set Vector Mask
	VCVTDQ2PD - Convert Int32 Vector to Float64 Vector
	VCVTFXPNTDQ2PS - Convert Fixed Point Int32 Vector to Float32 Vector
	VCVTFXPNTPD2DQ - Convert Float64 Vector to Fixed Point Int32 Vector
	VCVTFXPNTPD2UDQ - Convert Float64 Vector to Fixed Point Uint32 Vector
	VCVTFXPNTPS2DQ - Convert Float32 Vector to Fixed Point Int32 Vector
	VCVTFXPNTPS2UDQ - Convert Float32 Vector to Fixed Point Uint32 Vector
	VCVTFXPNTUDQ2PS - Convert Fixed Point Uint32 Vector to Float32 Vector
	VCVTPD2PS - Convert Float64 Vector to Float32 Vector
	VCVTPS2PD - Convert Float32 Vector to Float64 Vector
	VCVTUDQ2PD - Convert Uint32 Vector to Float64 Vector
	VEXP223PS - Base-2 Exponential Calculation of Float32 Vector
	VFIXUPNANPD - Fix Up Special Float64 Vector Numbers With NaN Passthrough
	VFIXUPNANPS - Fix Up Special Float32 Vector Numbers With NaN Passthrough
	VFMADD132PD - Multiply Destination By Second Source and Add To First Source Float64 Vectors
	VFMADD132PS - Multiply Destination By Second Source and Add To First Source Float32 Vectors
	VFMADD213PD - Multiply First Source By Destination and Add Second Source Float64 Vectors
	VFMADD213PS - Multiply First Source By Destination and Add Second Source Float32 Vectors
	VFMADD231PD - Multiply First Source By Second Source and Add To Destination Float64 Vectors
	VFMADD231PS - Multiply First Source By Second Source and Add To Destination Float32 Vectors
	VFMADD233PS - Multiply First Source By Specially Swizzled Second Source and Add To Second Source Float32 Vectors
	VFMSUB132PD - Multiply Destination By Second Source and Subtract First Source Float64 Vectors
	VFMSUB132PS - Multiply Destination By Second Source and Subtract First Source Float32 Vectors
	VFMSUB213PD - Multiply First Source By Destination and Subtract Second Source Float64 Vectors
	VFMSUB213PS - Multiply First Source By Destination and Subtract Second Source Float32 Vectors
	VFMSUB231PD - Multiply First Source By Second Source and Subtract Destination Float64 Vectors
	VFMSUB231PS - Multiply First Source By Second Source and Subtract Destination Float32 Vectors
	VFNMADD132PD - Multiply Destination By Second Source and Subtract From First Source Float64 Vectors
	VFNMADD132PS - Multiply Destination By Second Source and Subtract From First Source Float32 Vectors
	VFNMADD213PD - Multiply First Source By Destination and Subtract From Second Source Float64 Vectors
	VFNMADD213PS - Multiply First Source By Destination and Subtract From Second Source Float32 Vectors
	VFNMADD231PD - Multiply First Source By Second Source and Subtract From Destination Float64 Vectors
	VFNMADD231PS - Multiply First Source By Second Source and Subtract From Destination Float32 Vectors
	VFNMSUB132PD - Multiply Destination By Second Source, Negate, and Subtract First Source Float64 Vectors
	VFNMSUB132PS - Multiply Destination By Second Source, Negate, and Subtract First Source Float32 Vectors
	VFNMSUB213PD - Multiply First Source By Destination, Negate, and Subtract Second Source Float64 Vectors
	VFNMSUB213PS - Multiply First Source By Destination, Negate, and Subtract Second Source Float32 Vectors
	VFNMSUB231PD - Multiply First Source By Second Source, Negate, and Subtract Destination Float64 Vectors
	VFNMSUB231PS - Multiply First Source By Second Source, Negate, and Subtract Destination Float32 Vectors
	VGATHERDPD - Gather Float64 Vector With Signed Dword Indices
	VGATHERDPS - Gather Float32 Vector With Signed Dword Indices
	VGATHERPF0DPS - Gather Prefetch Float32 Vector With Signed Dword Indices Into L1
	VGATHERPF0HINTDPD - Gather Prefetch Float64 Vector Hint With Signed Dword Indices
	VGATHERPF0HINTDPS - Gather Prefetch Float32 Vector Hint With Signed Dword Indices
	VGATHERPF1DPS - Gather Prefetch Float32 Vector With Signed Dword Indices Into L2
	VGETEXPPD - Extract Float64 Vector of Exponents from Float64 Vector
	VGETEXPPS - Extract Float32 Vector of Exponents from Float32 Vector
	VGETMANTPD - Extract Float64 Vector of Normalized Mantissas from Float64 Vector
	VGETMANTPS - Extract Float32 Vector of Normalized Mantissas from Float32 Vector
	VGMAXABSPS - Absolute Maximum of Float32 Vectors
	VGMAXPD - Maximum of Float64 Vectors
	VGMAXPS - Maximum of Float32 Vectors
	VGMINPD - Minimum of Float64 Vectors
	VGMINPS - Minimum of Float32 Vectors
	VLOADUNPACKHD - Load Unaligned High And Unpack To Doubleword Vector
	VLOADUNPACKHPD - Load Unaligned High And Unpack To Float64 Vector
	VLOADUNPACKHPS - Load Unaligned High And Unpack To Float32 Vector
	VLOADUNPACKHQ - Load Unaligned High And Unpack To Int64 Vector
	VLOADUNPACKLD - Load Unaligned Low And Unpack To Doubleword Vector
	VLOADUNPACKLPD - Load Unaligned Low And Unpack To Float64 Vector
	VLOADUNPACKLPS - Load Unaligned Low And Unpack To Float32 Vector
	VLOADUNPACKLQ - Load Unaligned Low And Unpack To Int64 Vector
	VLOG2PS - Vector Logarithm Base-2 of Float32 Vector
	VMOVAPD - Move Aligned Float64 Vector
	VMOVAPS - Move Aligned Float32 Vector
	VMOVDQA32 - Move Aligned Int32 Vector
	VMOVDQA64 - Move Aligned Int64 Vector
	VMOVNRAPD - Store Aligned Float64 Vector With No-Read Hint
	VMOVNRAPS - Store Aligned Float32 Vector With No-Read Hint
	VMOVNRNGOAPD - Non-globally Ordered Store Aligned Float64 Vector With No-Read Hint
	VMOVNRNGOAPS - Non-globally Ordered Store Aligned Float32 Vector With No-Read Hint
	VMULPD - Multiply Float64 Vectors
	VMULPS - Multiply Float32 Vectors
	VPACKSTOREHD - Pack And Store Unaligned High From Int32 Vector
	VPACKSTOREHPD - Pack And Store Unaligned High From Float64 Vector
	VPACKSTOREHPS - Pack And Store Unaligned High From Float32 Vector
	VPACKSTOREHQ - Pack And Store Unaligned High From Int64 Vector
	VPACKSTORELD - Pack and Store Unaligned Low From Int32 Vector
	VPACKSTORELPD - Pack and Store Unaligned Low From Float64 Vector
	VPACKSTORELPS - Pack and Store Unaligned Low From Float32 Vector
	VPACKSTORELQ - Pack and Store Unaligned Low From Int64 Vector
	VPADCD - Add Int32 Vectors with Carry
	VPADDD - Add Int32 Vectors
	VPADDSETCD - Add Int32 Vectors and Set Mask to Carry
	VPADDSETSD - Add Int32 Vectors and Set Mask to Sign
	VPANDD - Bitwise AND Int32 Vectors
	VPANDND - Bitwise AND NOT Int32 Vectors
	VPANDNQ - Bitwise AND NOT Int64 Vectors
	VPANDQ - Bitwise AND Int64 Vectors
	VPBLENDMD - Blend Int32 Vectors using the Instruction Mask
	VPBLENDMQ - Blend Int64 Vectors using the Instruction Mask
	VPBROADCASTD - Broadcast Int32 Vector
	VPBROADCASTQ - Broadcast Int64 Vector
	VPCMPD - Compare Int32 Vectors and Set Vector Mask
	VPCMPEQD - Compare Equal Int32 Vectors and Set Vector Mask
	VPCMPGTD - Compare Greater Than Int32 Vectors and Set Vector Mask
	VPCMPLTD - Compare Less Than Int32 Vectors and Set Vector Mask
	VPCMPUD - Compare Uint32 Vectors and Set Vector Mask
	VPERMD - Permutes Int32 Vectors
	VPERMF32X4 - Shuffle Vector Dqwords
	VPGATHERDD - Gather Int32 Vector With Signed Dword Indices
	VPGATHERDQ - Gather Int64 Vector With Signed Dword Indices
	VPMADD231D - Multiply First Source By Second Source and Add To Destination Int32 Vectors
	VPMADD233D - Multiply First Source By Specially Swizzled Second Source and Add To Second Source Int32 Vectors
	VPMAXSD - Maximum of Int32 Vectors
	VPMAXUD - Maximum of Uint32 Vectors
	VPMINSD - Minimum of Int32 Vectors
	VPMINUD - Minimum of Uint32 Vectors
	VPMULHD - Multiply Int32 Vectors And Store High Result
	VPMULHUD - Multiply Uint32 Vectors And Store High Result
	VPMULLD - Multiply Int32 Vectors And Store Low Result
	VPORD - Bitwise OR Int32 Vectors
	VPORQ - Bitwise OR Int64 Vectors
	VPSBBD - Subtract Int32 Vectors with Borrow
	VPSBBRD - Reverse Subtract Int32 Vectors with Borrow
	VPSCATTERDD - Scatter Int32 Vector With Signed Dword Indices
	VPSCATTERDQ - Scatter Int64 Vector With Signed Dword Indices
	VPSHUFD - Shuffle Vector Doublewords
	VPSLLD - Shift Int32 Vector Immediate Left Logical
	VPSLLVD - Shift Int32 Vector Left Logical
	VPSRAD - Shift Int32 Vector Immediate Right Arithmetic
	VPSRAVD - Shift Int32 Vector Right Arithmetic
	VPSRLD - Shift Int32 Vector Immediate Right Logical
	VPSRLVD - Shift Int32 Vector Right Logical
	VPSUBD - Subtract Int32 Vectors
	VPSUBRD - Reverse Subtract Int32 Vectors
	VPSUBRSETBD - Reverse Subtract Int32 Vectors and Set Borrow
	VPSUBSETBD - Subtract Int32 Vectors and Set Borrow
	VPTESTMD - Logical AND Int32 Vectors and Set Vector Mask
	VPXORD - Bitwise XOR Int32 Vectors
	VPXORQ - Bitwise XOR Int64 Vectors
	VRCP23PS - Reciprocal of Float32 Vector
	VRNDFXPNTPD - Round Float64 Vector
	VRNDFXPNTPS - Round Float32 Vector
	VRSQRT23PS - Vector Reciprocal Square Root of Float32 Vector
	VSCALEPS - Scale Float32 Vectors
	VSCATTERDPD - Scatter Float64 Vector With Signed Dword Indices
	VSCATTERDPS - Scatter Float32 Vector With Signed Dword Indices
	VSCATTERPF0DPS - Scatter Prefetch Float32 Vector With Signed Dword Indices Into L1
	VSCATTERPF0HINTDPD - Scatter Prefetch Float64 Vector Hint With Signed Dword Indices
	VSCATTERPF0HINTDPS - Scatter Prefetch Float32 Vector Hint With Signed Dword Indices
	VSCATTERPF1DPS - Scatter Prefetch Float32 Vector With Signed Dword Indices Into L2
	VSUBPD - Subtract Float64 Vectors
	VSUBPS - Subtract Float32 Vectors
	VSUBRPD - Reverse Subtract Float64 Vectors
	VSUBRPS - Reverse Subtract Float32 Vectors

	Scalar Instruction Descriptions
	CLEVICT0 - Evict L1 line
	CLEVICT1 - Evict L2 line
	DELAY - Stall Thread
	LZCNT - Leading Zero Count
	POPCNT - Return the Count of Number of Bits Set to 1
	SPFLT - Set performance monitor filtering mask
	TZCNT - Trailing Zero Count
	TZCNTI - Initialized Trailing Zero Count
	VPREFETCH0 - Prefetch memory line using T0 hint
	VPREFETCH1 - Prefetch memory line using T1 hint
	VPREFETCH2 - Prefetch memory line using T2 hint
	VPREFETCHE0 - Prefetch memory line using T0 hint, with intent to write
	VPREFETCHE1 - Prefetch memory line using T1 hint, with intent to write
	VPREFETCHE2 - Prefetch memory line using T2 hint, with intent to write
	VPREFETCHENTA - Prefetch memory line using NTA hint, with intent to write
	VPREFETCHNTA - Prefetch memory line using NTA hint

	Knights Corner 64 bit Mode Scalar Instruction Support
	64 bit Mode General-Purpose and X87 Instructions
	Knights Corner 64 bit Mode Limitations
	LDMXCSR - Load MXCSR Register
	FXRSTOR - Restore x87 FPU and MXCSR State
	FXSAVE - Save x87 FPU and MXCSR State
	RDPMC - Read Performance-Monitoring Counters
	STMXCSR - Store MXCSR Register
	CPUID - CPUID Identification

	Floating-Point Exception Summary
	Instruction floating-point exception summary
	Conversion floating-point exception summary
	Denormal behavior

	Instruction Attributes and Categories
	Conversion Instruction Families
	Df32 Family of Instructions
	Df64 Family of Instructions
	Di32 Family of Instructions
	Di64 Family of Instructions
	Sf32 Family of Instructions
	Sf64 Family of Instructions
	Si32 Family of Instructions
	Si64 Family of Instructions
	Uf32 Family of Instructions
	Uf64 Family of Instructions
	Ui32 Family of Instructions
	Ui64 Family of Instructions

	Non-faulting Undefined Opcodes
	General Templates
	Mask Operation Templates
	Mask m0 - Template
	Mask m1 - Template
	Mask m2 - Template
	Mask m3 - Template
	Mask m4 - Template
	Mask m5 - Template
	Vector Operation Templates
	Vector v0 - Template
	Vector v1 - Template
	Vector v10 - Template
	Vector v11 - Template
	Vector v2 - Template
	Vector v3 - Template
	Vector v4 - Template
	Vector v5 - Template
	Vector v6 - Template
	Vector v7 - Template
	Vector v8 - Template
	Vector v9 - Template
	Scalar Operation Templates
	Scalar s0 - Template
	Scalar s1 - Template

