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1 Introduction 

1.1 Programming Model 

As with most computing systems, the Intel® Many Integrated Core (Intel® MIC) Architecture programming model can be 
divided into two categories: application programming and system programming. 

1.1.1 Application Programming 

 In this guide, application programming refers to developing user applications or codes using either the Intel® Composer 
XE 2013 or 3rd party software development tools. These tools typically contain a development environment that includes 
compilers, libraries, and assorted other tools.  
 
Application programming will not be covered here; consult the  Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK 
START GUIDE for information on how to quickly write application code and run applications on a development platform 
including the Intel® Many Integrated Core Architecture (Intel® MIC Architecture). It also describes the available tools and 
gives some simple examples to show how to get C/C++ and Fortran-based programs up and running. 
 
The development environment includes the following compilers and libraries, which are available at 
https://registrationcenter.intel.com: 

 Intel® C/C++ Compiler XE 2013 including Intel® MIC Architecture for building applications that run on Intel® 64 and 
Intel® MIC Architectures  

 Intel® Fortran Compiler XE 2013 including Intel® MIC Architecture for building applications that run on Intel® 64 and 
Intel® MIC Architectures 

 
Libraries for use with the offload compiler include:  

 Intel® Math Kernel Library (Intel® MKL) optimized for Intel® MIC Architecture 

 Intel® Threading Building Blocks 
 
The development environment includes the following tools: 

 Debugger 
 Intel® Debugger for applications including Intel® MIC Architecture 
 Intel® Debugger for applications running on Intel® Architecture (IA)  
  

 Profiling  
 SEP enables performance data collection from the Intel® Xeon Phi™ coprocessor. This feature is included as 

part of the VTune™ Amplifier XE 2013 tool. 
 Performance data can be analyzed using VTune™ Amplifier XE 2013 

1.1.2 System Programming 

System programming here explains how to use the Intel® MIC Architecture, its low level APIs (e.g. SCIF), and the 
contents of the Intel® Many Integrated Core Architecture Platform Software Stack (MPSS). Detailed information on these 
low-level APIs can be found in Section 5 of this document.   
 

https://registrationcenter.intel.com/
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1.2 Section Overview 

The information in this guide is organized as follows:  

 Section 2 contains a high-level description of the Intel® Xeon Phi™ coprocessor hardware and software 
architecture. 

 Section Error! Reference source not found. covers power management from the software perspective. It also 
covers virtualization support in the Intel® Xeon Phi™ coprocessor and some Reliability Accessibility and 
Serviceability (RAS) features such as BLCR* and MCA.  

 Section 4 covers Operating System support. 

  Section 5 covers the low level APIs (e.g. SCIF) available with the Intel® Xeon Phi™ coprocessor software stack.  

 Section 6 illustrates the usage models and the various operating modes for platforms with the Intel® Xeon Phi™ 
coprocessors in the compute continuum.  

 Section 7 provides in-depth details of the Intel® Xeon Phi™ coprocessor Vector Processing Unit architecture. 

  Glossary of terms and abbreviations used can be found in Section 8. 

 References are collated in Section 9. 

1.3 Related Technologies and Documents 

This section lists some of the related documentation that you might find useful for finding information not covered here.  
 
Industry specification for standards (i.e.,  OpenMP*, OpenCL*, MPI, OFED*, and POSIX* threads) are not covered in this 
document. For this information, consult relevant specifications published by their respective owning organizations: 

 

Table 1-1. Related Industry Standards 

Technology Location 
OpemMP* http://openmp.org/ 

OpenCL* http://www.khronos.org/opencl/ 

MPI http://www.mpi-forum.org/ 

OFED* Overview http://www.openfabrics.org/ 

 
 
You should also consult relevant published documents which cover the Intel® software development tools not covered 
here: 

 
Table 1-2. Related Documents 

Document Location 
Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START 
GUIDE 

http://software.intel.com/en-us/mic-developer 

Intel® Many Integrated Core Platform Software Stack http://software.intel.com/en-us/mic-developer 

Intel® Xeon Phi™ Coprocessor Instruction Set Architecture 
Reference Manual 

http://software.intel.com/en-us/mic-developer 

An Overview of Programming for Intel® Xeon® processors 
and Intel® Xeon Phi™ coprocessors 

http://software.intel.com/en-us/mic-developer 

Debugging Intel® Xeon Phi™ Coprocessor:  Command-Line 
Debugging 

http://software.intel.com/en-us/mic-developer 

Building Native Applications for Intel® Xeon 
Phi™  Coprocessor 

http://software.intel.com/en-us/mic-developer 

Programming and Compiling for Intel® Many Integrated 
Core Architecture 

http://software.intel.com/en-us/mic-developer 

http://openmp.org/
http://www.khronos.org/opencl/
http://www.mpi-forum.org/
http://www.openfabrics.org/
http://software.intel.com/en-us/mic-developer
http://software.intel.com/en-us/mic-developer
http://software.intel.com/en-us/mic-developer
http://software.intel.com/en-us/mic-developer
http://software.intel.com/en-us/mic-developer
http://software.intel.com/en-us/mic-developer
http://software.intel.com/en-us/mic-developer


 Page 11 

Document Location 
Intel® Xeon Phi™ coprocessor Micro-architecture Software 
Stack 

http://software.intel.com/en-us/mic-developer 

Intel® Xeon Phi™ coprocessor Micro-architecture Overview http://software.intel.com/en-us/mic-developer 

Intel® MPI Library http://www.intel.com/go/mpi 

Intel® MIC SCIF API Reference Manual for Kernel Mode 
Linux* 

http://intel.com/software/mic 

Intel® MIC SCIF API Reference Manual for User Mode 
Linux* 

http://intel.com/software/mic 

 

http://software.intel.com/en-us/mic-developer
http://software.intel.com/en-us/mic-developer
http://www.intel.com/go/mpi
http://intel.com/software/mic
http://intel.com/software/mic
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2 Intel® Xeon Phi™ Coprocessor Architecture 

This Section explains both the hardware and the software architecture of the Intel® Xeon Phi™ coprocessor. It covers the 
major micro-architectural features such as the core, the vector processing unit (VPU), the high-performance on-die 
bidirectional interconnect, fully coherent L2 caches, and how the various units interact. Particular emphasis is placed on 
the key parameters necessary to understand program optimization, such as cache organization and memory bandwidth. 

2.1 Intel® Xeon Phi™ Coprocessor Architecture 

The Intel® Xeon Phi™  coprocessor comprises of up to sixty-one (61) processor cores connected by a high performance 
on-die bidirectional interconnect. In addition to the IA cores, there are 8 memory controllers supporting up to 16 GDDR5 
channels delivering up to 5.5 GT/s, and special function devices such as the PCI Express* system interface. 
 
Each core is a fully functional, in-order core, which supports fetch and decode instructions from four hardware thread 
execution contexts. In order to reduce hot-spot contention for data among the cores, a distributed tag directory is 
implemented so that every physical address the coprocessor can reach is uniquely mapped through a reversible one-to-
one address hashing function. This hashing function not only maps each physical address to a tag directory, but also 
provides a framework for more elaborate coherence protocol mechanisms than the individual cores could provide. 
 
Each memory controller is based on the GDDR5 specification, and supports two channels per memory controller. At up 
to 5.5 GT/s transfer speed, this provides a theoretical aggregate bandwidth of 352 GB/s (gigabytes per second) directly 
connected to the Intel® Xeon Phi™ coprocessor.  
 
At a high level, Intel® Xeon Phi™ coprocessor silicon is consists of up to 61 dual-issue in-order cores, where each core 
includes: 

 512 bit wide vector processor unit (VPU)  

 The Core Ring Interface (CRI) 

 Interfaces to the Core and the Ring Interconnect 

 The L2 Cache (including the tag, state, data and LRU arrays) and the L2 pipeline and associated arbitration logic 

 The Tag Directory (TD) which is a portion of the distributed duplicate tag directory infrastructure 

 Asynchronous Processor Interrupt Controller (APIC) which receives interrupts (IPIs, or externally generated) and 
must redirect the core to respond in a timely manner. 
 Memory controllers (GBOX), which access external memory devices (local physical memory on the coprocessor 

card) to read and write data. Each memory controller has 2 channel controllers, which together can operate 
two 32-bit memory channels. 

 A Gen2 PCI Express* client logic (SBOX), which is the system interface to the host CPU or PCI Express* switch, 
supporting x8 and x16 configurations.  

 The Ring Interconnect connecting all of the aforementioned components together on the chip. 
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Figure 2-1. Basic building blocks of the Intel® Xeon Phi™ Coprocessor 
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Table 2-1 gives a high-level description of each component. 
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Table 2-1. Description of Coprocessor Components 

Name Description 

Core  The processor core. It fetches and decodes instructions from four hardware thread 
execution contexts. It supports a 32-bit and 64-bit execution environment similar to 
those found in the Intel64® Intel® Architecture Software Developer’s Manual, along 
with the Intel Initial Many Core Instructions. . It contains a 32KB, 8-Way set associative 
L1 Icache and Dcache, and interfaces with the CRI/L2 block to request access to 
memory. The core can execute 2 instructions per clock cycle, one on the U-pipe, and 
one on the V-pipe. The V-pipe cannot execute all instruction types, and simultaneous 
execution is governed by pairing rules. The core does not support Intel® Streaming 
SIMD Extensions (Intel® SSE) or MMX™ instruction execution. 

VPU   The Vector Processor Unit includes the EMU (extended math unit) and executes 16 
single-precision floating point, 16 32bit integer operations per clock cycle, or 8 double-
precision floating-point operations per cycle. Each operation can be a floating-point 
multiply-add, giving 32 single precision floating-point operations per cycle. The VPU 
contains the vector register file (32 registers per thread context), and can read one of 
its operands directly from memory, including data format conversion on the fly. 
Broadcast and swizzle instructions are also available. The EMU can perform base-2 
exponential, base-2 logarithm, reciprocal, and reciprocal square root of single 
precision floating-point values. 

L2/CRI The Core-Ring Interface hosts the 512KB, 8-way, L2 cache and connects each core to 
an Intel® Xeon Phi™ coprocessor Ring Stop. Primarily, it comprises the core-private L2 
cache itself plus all of the off-core transaction tracking queues and transaction / data 
routing logic. Two other major blocks also live in the CRI: the R-Unit (APIC) and the Tag 
Directory (TD). 

TD Distributed duplicate tag directory for cross-snooping L2 caches in all cores. The CPU 
L2 caches are kept fully coherent with each other by the TDs, which are referenced 
after an L2 cache miss. A TD tag contains the address, state, and an ID for the owner 
(one of the L2 caches) of the cache line. The TD that is referenced is not necessarily the 
one co-located with the core that generated the miss, but is based upon address (each 
TD gets an equal portion of the address space). A request is sent from the core that 
suffered the memory miss to the correct TD via the ring interconnect. 

GBOX The Intel® Xeon Phi™ coprocessor memory controller comprises three main units: the 
FBOX (interface to the ring interconnect), the MBOX (request scheduler) and the PBOX 
(physical layer that interfaces with the GDDR devices). The MBOX comprises two CMCs 
(or Channel Memory Controllers) that are completely independent from each other. 
The MBOX provides the connection between agents in the system and the DRAM I/O 
block. It is connected to the PBOX and to the FBOX. Each CMC operates independently 
from the other CMCs in the system. 

SBOX PCI Express* client logic: DMA engine, limited power management capabilities 

Ring Ring Interconnect, including component interfaces, ring stops, ring turns, addressing, 
and flow control. Intel® Xeon Phi™ coprocessor has 2 each of these rings – one 
travelling each direction.  There is no queuing on the ring or in the ring turns; once a 
message is on the ring it will continue deterministically to its destination. In some 
cases, the destination does not have room to accept the message and may leave it on 
the ring and pick it up the next time it goes by. This is known as bouncing.  
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Name Description 

PBOX The PBOX is the analog interface component of the GBOX that communicates with the 
GDDR memory device. Besides the analog blocks, the PBOX contains the input/output 
FIFO buffers, part of the training state machines and mode registers to trim the analog 
interface. The analog interface consists of the actual I/O pads for DQs, Address and 
Command and the clocking structure. The PBOX also includes the GPLL which defines 
the clock domain for each PBOX and the respective MBOX/CBOX. 

PMU Performance Monitoring Unit. This performance monitoring feature allows data to be 
collected from all units in the architecture, utilizing a P6-style programming interface 
to configure and access performance counters. Implements an Intel® Xeon Phi™ 
coprocessor SPFLT which allows user-level code to filter the core events that its 
thread generates. Does not implement some advanced features found in mainline IA 
cores (e.g. precise event-based sampling, etc.). 

Clock The clock generation on Intel® Xeon Phi™ coprocessor supplies clocks to each of the 
four main clock domains. The core domain supports from 600 MHz to the part's 
maximum frequency in steps of 25 MHz Ratio changes in the core happen seamlessly 
and can be controlled through both software and internal hardware (using information 
from the thermal and current sensors on the card.) The GDDR supports frequencies 
that enable between 2.8 GT/s and the part's maximum frequency with a minimum step 
size of 50 MT/s. Intel® Xeon Phi™ coprocessors support frequency changes without 
requiring a reset.  PCI Express* clock modes support both Gen1 and Gen2 operation.  
The external clock buffer has been incorporated into the Intel® Xeon Phi™ coprocessor 
die, and the clocks are sourced from two 100 MHz PCI Express* reference clocks. 

 

2.1.1 Core 

Each in-order execution core provides a 64 bit execution environment similar to that found in the Intel64® Intel® 
Architecture Software Developer’s Guide, in addition to introducing support for Intel Initial Many Core Instructions. 
There is no support for MMX™ instructions, Intel Advanced Vector Extensions (Intel® AVX), or any of the Intel® 
Streaming SIMD Extensions (Intel® SSE). A full list of the instructions supported by the Intel® Xeon Phi™ coprocessor can 
be found in the following document (Intel® Xeon Phi™ Coprocessor Instruction Set Architecture Reference Manual 
(Reference Number: 327364)). New vector instructions provided by the Intel® Xeon Phi™ Coprocessor Instruction Set 
utilize a dedicated 512-bit wide vector floating-point unit (VPU) that is provided for each of the cores.  
 
Each core is connected to a Ring Interconnect via the Core Ring Interface (CRI), which is comprised of the L2 cache 
control and the Tag Directory (TD). The Tag Directory contains the tags for a portion of the overall L2 cache. The Core 
and L2 Slices are interconnected on a ring based interconnect along with additional ring agents on the die. Each agent on 
the ring, whether a core/L2 Slice, memory controller, or the system (SBOX), implements a ring stop that enables 
requests and responses to be sent on the ring bus.  
 
The core can execute 2 instructions per clock cycle, one on the U-pipe and one on the V-pipe. The V-pipe cannot execute 
all instruction types, and simultaneous execution is governed by pairing rules. Vector instructions can only be executed 
on the U-pipe. 
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Figure 2-2: Core Pipeline Components 
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Figure 2-3: Intel® Xeon Phi™ Coprocessor Core Architecture 

 Most integer and mask instructions have a 1-clock latency, while most vector instructions have 4-clock latency with a 1 
clock throughput. Dependent store- to-load latency is 4 clocks for simple vector operations. “Shuffles” and “Swizzles” 
increase this latency. The store-to-load penalty for the L1 is approximately 12 clocks. Kunit (data cache) bounces cause 2 
dead clocks (bank conflicts, U-pipe/V-pipe conflicts with higher-priority replacements, invalidations). Prefix decodes are 
available with 0-cycle “fast”: 62, c4, c5, REX, 0f, and a 2-cycle “slow”: operand size 66, address size 67, lock, segment, 
REP. 
 

2.1.2 Instruction Decoder 

One of the changes made to simplify the core was to modify the instruction decoder to be a two-cycle unit. While fully 
pipelined, the result of this change is that the core cannot issue instructions from the same hardware context in back-to-
back cycles. That is, if in cycle N the core issued instructions from context 1, then in cycle N +1 the core can issue 
instructions from any context except context 1. This allows for a significant increase in the maximum core frequency, 
resulting in a net performance gain even for single-threaded SPEC* benchmarks. 
 
For maximum chip utilization, at least two hardware contexts or threads must be run on each core. Since the scheduler 
cannot issue instructions in back-to-back cycles from the same hardware context, running one thread on a core will 
result in, at best, 50% utilization of the core potential. 
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2.1.3 Cache Organization and Hierarchy 

The Level One (L1) cache accommodates higher working set requirements for four hardware contexts per core. It has a 
32 KB L1 instruction cache and 32 KB L1 data cache. Associativity was increased to 8-way, with a 64 byte cache line. The 
bank width is 8 bytes. Data return can now be out-of-order. The L1 cache has a load-to-use latency of 1 cycle -- an 
integer value loaded from the cache can be used in the next clock by an integer instruction. Note, however, that vector 
instructions experience different latencies than integer instructions. The L1 cache has an address generation interlock 
with at least a 3-clock cycle latency. A GPR register must be produced three or more clocks prior to being used as a base 
or index register in an address computation. The register set-up time for base and index has the same 3-clock cycle 
latency.  
 
Another new feature is the 512 KB unified Level Two (L2) cache unit. The L2 organization comprises 64 bytes per way 
with 8-way associativity, 1024 sets, 2 banks, 32GB (35 bits) of cacheable address range and a raw latency of 11 clocks. 
The expected idle access time is approximately 80 cycles. The L2 cache has a streaming hardware prefetcher that can 
selectively prefetch code, read, and RFO (Read-For-Ownership) cache lines into the L2 cache. There are 16 streams that 
can bring in up to a 4-KB page of data. Once a stream direction is detected, the prefetcher can issue up to 4 multiple 
prefetch requests. The L2 in Intel® Xeon Phi™ coprocessor supports ECC, and power states such as the core C1 (shuts off 
clocks to the core and the VPU), C6 (shuts off clocks and power to the core and the VPU), and the package C3 states. The 
replacement algorithm for both the L1 and L2 caches is based on a pseudo-LRU implementation. 
 
The L2 cache is part of the Core-Ring Interface block. This block also houses the tag directory (TD) and the Ring Stop (RS), 
which connects to the interprocessor core network. Within these sub-blocks is the Transaction Protocol Engine which is 
an interface to the RS and is equivalent to a front side bus unit. The RS handles all traffic coming on and off the ring. The 
TDs, which are physically distributed, filter and forward requests to appropriate agents on the ring. They are also 
responsible for initiating communications with the GDDR5 memory via the on-die memory controllers.   
 
In the in-order Intel® Pentium® processor design, any miss to the cache hierarchy would be a core-stalling event such 
that the program would not continue executing until the missing data were fetched and ready for processing. In the 
Intel® Xeon Phi™ coprocessor cores, a miss in the L1 or L2 cache does not stall the entire core. Misses to the cache will 
not stall the requesting hardware context of a core unless it is a load miss. Upon encountering a load miss, the hardware 
context with the instruction triggering the miss will be suspended until the data are brought into the cache for 
processing. This allows the other hardware contexts in the core to continue execution. Both the L1 and L2 caches can 
also support up to about 38 outstanding requests per core (combined read and write). The system agent (containing the 
PCI Express* agent and the DMA controller) can also generate 128 outstanding requests (read and write) for a total of 
38*(number of cores) + 128. This allows software to prefetch data aggressively and avoids triggering a dependent stall 
condition in the cache. When all possible access routes to the cache are in use, new requests may cause a core stall until 
a slot becomes available. 
 
Both the L1 and L2 caches use the standard MESI protocol for maintaining the shared state among cores. The normal 
MESI state diagram is shown in Figure 2-4 and the cache states are listed in Table 2-2. L2 Cache States. 
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Figure 2-4: MESI Protocol 

 
Table 2-2. L2 Cache States 

L2 Cache State State Definition 

M Modified. Cacheline is updated relative to memory (GDDR).  Only 
one core may have a given line in M-state at a time. 

E Exclusive.  Cacheline is consistent with memory.  Only one core may 
have a given line in E-state at a time. 

S Shared. Cacheline is shared and consistent with other cores, but may 
not be consistent with memory.  Multiple cores may have a given 
line in S-state at the same time. 

I Invalid. Cacheline is not present in this core’s L2 or L1. 

 
To address potential performance limitations resulting from the lack of an O (Owner) state found in the MOESI protocol, 
the Intel® Xeon Phi™ coprocessor coherence system has an ownership tag directory (TD) similar to that implemented in 
many multiprocessor systems. The tag directory implements the GOLS3 protocol. By supplementing the individual core 
MESI protocols with the TD’s GOLS protocol, it becomes possible to emulate the missing O-state and to achieve the 
benefits of the full MOESI protocol without the cost of redesigning the local cache blocks. The TD is also useful for 
controlling other behaviors in the Intel® Xeon Phi™ coprocessor design and is used for more than this emulation 
behavior. The modified coherence diagrams for the core MESI protocol and the tag directory GOLS protocol are shown 
in Figure 2-5. 
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Figure 2-5 Globally Owned Locally Shared (GOLS) Diagram 

 
Table 2-3. Tag Directory States 

Tag Directory State State Definition 

GOLS Globally Owned, Locally Shared.  Cacheline is present in 
one or more cores, but is not consistent with memory. 

GS Globally Shared.  Cacheline is present in one or more 
cores and consistent with memory. 

GE/GM Globally Exclusive/Modified.  Cacheline is owned by one 
and only one core and may or may not be consistent 
with memory.  The Tag Directory does not know 
whether the core has actually modified the line. 

GI Globally Invalid.  Cacheline is not present in any core. 
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The tag directory is not centralized but is broken up into 64 distributed tag directories (DTDs). Each DTD is responsible 
for maintaining the global coherence state in the chip for its assigned cache lines. The basic L1 and L2 cache parameters 
are summarized in Table 2-4. Two unusual fields in this table are the Duty Cycle and Ports designations, which are 
specific only to the Intel® Xeon Phi™ coprocessor design. The L1 cache can be accessed each clock, whereas the L2 can 
only be accessed every other clock. Additionally, on any given clock software can either read or write the L1 or L2, but it 
cannot read and write in the same clock. This design artifact has implications when software is trying to access a cache 
while evictions are taking place. 

Table 2-4. Cache Hierarchy 

Parameter L1 L2 

Coherence MESI MESI 

Size 32 KB + 32 KB 512 KB 

Associativity 8-way 8-way 

Line Size 64 bytes 64 bytes 

Banks 8 8 

Access Time 1 cycle 11 cycles 

Policy pseudo LRU pseudo LRU 

Duty Cycle 1 per clock 1 per clock 

Ports Read or Write Read or Write 

 
The L2 cache organization per core is inclusive of the L1 data and instruction caches. How all cores work together to 
make a large, shared, L2 global cache (up to 31 MB) may not be clear at first glance. Since each core contributes 512 KB 
of L2 to the total shared cache storage, it may appear as though a maximum of 31 MB of common L2 cache is available. 
However, if two or more cores are sharing data, the shared data is replicated among the individual cores’ various L2 
caches. That is, if no cores share any data or code, then the effective total L2 size of the chip is 31 MB. Whereas, if every 
core shares exactly the same code and data in perfect synchronization, then the effective total L2 size of the chip is only 
512 KB. The actual size of the workload-perceived L2 storage is a function of the degree of code and data sharing among 
cores and thread. 
 
A simplified way to view the many cores in Intel® Xeon Phi™ coprocessor is as a chip-level symmetric multiprocessor 
(SMP). Each core acts as a stand-alone core with 512 KB of total cache space, and up to 62 such cores share a high-speed 
interconnect on-die. While not particularly accurate compared to a real SMP implementation, this simple mental model 
is useful when considering the question of how much total L2 capacity may be used by a given workload on the Intel® 
Xeon Phi™ coprocessor card. 
 

2.1.4 Page Tables 

The Intel® Xeon Phi™ coprocessor supports 32-bit physical addresses in 32-bit mode, 36-bit physical address extension 
(PAE) in 32-bit mode, and 40-bit physical address in 64-bit mode. 
 
It supports 4-KB and 2-MB page sizes. It also supports the Execute Disable (NX) bit. But there is no support for the Global 
Page bit, unlike other Intel® Architecture microprocessors. On a TLB miss, a four-level page table walk is performed as 
usual, and the INVLPG instruction works as expected. The advantage of this approach is that there are no restrictions for 
mixing the page sizes (4 KB, 2MB) within a single address block (2MB). However, undefined behavior will occur if the 16 
underlying 4-KB page-table entries are not consistent. 
 
Each L1 data TLB (dTLB) has 64 entries for 4 KB pages and 8 entries for 2MB pages. Each core also has one instruction 
TLB (iTLB), which only has 32 entries for 4 KB pages. No support for larger page sizes is present in the instruction TLB. For 
L2, the 4-way dTLB has 64 entries, usable as second-level TLB for 2M pages or as a page directory entry (PDE) cache for 
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4K. TLBs can share entries among threads that have the same values for the following registers: CR3, CR0.PG, CR4.PAE, 
CR4.PSE, EFER.LMA. 

Table 2-5. L1 and L2 Caches Characteristics 

  Page Size Entries  Associativity Maps 

L1 Data TLB 
4K 64 4-way 256K 

2M 8 4-way 16M 

L1 Instruction TLB 4K 32 4-way 128K 

L2 TLB 4K, 2M 64 4-way 128M 

 
The Intel® Xeon Phi™ coprocessor core implements two types of memory: uncacheable (UC) and write-back (WB). The 
other three memory forms [write-through (WT), write-combining (WC), and write-protect (WP)] are mapped internally 
to microcontroller behavior. No other memory type is legal or supported. 
 

2.1.5 Hardware Threads and Multithreading 

Figure 2-6 presents a high-level view of the major impacts for hardware multithreading support, such as architectural, 
pipeline, and cache interactions. This includes replicating complete architectural state 4 times: the GPRs, ST0-7, segment 
registers, CR, DR, EFLAGS, and EIP. Certain micro-architectural states are also replicated four times like the prefetch 
buffers, the instruction pointers, the segment descriptors, and the exception logic. “Thread specific” changes include 
adding thread ID bits to shared structures (iTLB, dTLB, BTB), converting memory stall to thread-specific flush, and the 
introduction of thread wakeup/sleep mechanisms through microcode and hardware support. Finally, the Intel® Xeon 
Phi™ coprocessor implements a “smart” round-robin multithreading. 
 

 

 

Figure 2-6.  Multithreading Architectural Support in the Intel® Xeon Phi™ Coprocessor 

Each of four hardware threads shown above in the grey shaded region has a “ready to run” buffer consisting of two 
instruction bundles. Since each core is capable of issuing two instructions per clock cycle, each bundle represents two 
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instructions. If the executing thread has a control transfer to a target that is not contained in this buffer, it will trigger a 
miss to the instruction cache, which flushes the context buffer and loads the appropriate target instructions. If the 
instruction cache does not have the control transfer point, a core stall will be initiated, which may result in performance 
penalties. In general, whichever hardware context issues instructions in a given clock cycle has priority for fetching the 
next instruction(s) from the instruction cache. Another significant function is the picker function (PF) that chooses the 
next hardware context to execute. The PF behaves in a round-robin manner, issuing instructions during any one clock 
cycle from the same hardware context only. In cycle N, if the PF issues instruction(s) from Context 3, then in cycle N + 1 
the PF will try to issue instructions from Context 0, Context 1, or Context 2 – in that order. As previously noted it is not 
possible to issue instructions from the same context (Context 3 in this example) in back-to-back cycles. 

2.1.6 Faults and Breakpoints 

The Intel® Xeon Phi™ coprocessor supports the fault types shown in Table 2-6 below. For complete details of fault 
behavior, please consult the  (Intel® 64 and IA-32 Architectures Software Developer Manuals). 
 
Breakpoint support required the widening of DR0-DR3 for Intel® 64 instruction compatibility and is now for 1, 2, 4, or 8 
bytes. The length was not extended to support 16, 32, or 64 bytes. Also, breakpoints in the Intel® Xeon Phi™ coprocessor 
instructions occur regardless of any conditional execution status indicated by mask registers. 
 

Table 2-6. Supported and Unsupported Faults on Intel® Xeon Phi™ Coprocessor 

Fault Type Supported Comments 

#PF Yes Page Fault 

#SS Yes For non-canonical and referencing SS segment 

#GP Yes Address is not canonical or not aligned to operand size 

#UD Yes 
If CR0.EM[2] = 1, or LOCK or REX prefix used; also triggered 
on IN or OUT instructions 

#XF No No unmasked exceptions in SIMD 

#AC No GP fault always takes priority 

#NM No CR0.TS[3] = 1 

 

2.1.7 Performance Monitoring Unit and Events Monitor 

The Intel® Xeon Phi™ coprocessor includes a performance monitoring unit (abbreviated as PMU) like the original Intel® 
Pentium® processor core. Most of the 42 event types from the original Intel® Pentium® processor exist, although the 
PMU interface has been updated to reflect more recent programming interfaces. Particular Intel® Xeon Phi™ 
coprocessor-centric events have been added to measure memory controller events, vector processing unit utilization 
and statistics, local and remote cache read/write statistics, and more. 
 
The Intel® Xeon Phi™ coprocessor comes with support for performance monitoring at the individual thread level. Each 
thread  has two performance counters and two event select registers. The events supported for performance monitoring 
are a combination of the legacy Intel® Pentium® processor events and new Intel® Xeon Phi™ coprocessor-centric events.  
 
The Intel® Xeon Phi™ coprocessor switched to the Intel® Pentium® Pro processor style of PMU interface, which allows 
user-space (ring three) applications to directly interface with and use the PMU features via specialized instructions such 
as RDPMC4. In this model, Ring 0 still controls the PMU but Ring 3 is capable of interacting with exposed features for 
optimization.  
 
Table 2-7 lists the instructions used by Ring 0 and Ring 3 code used to control and query the core PMU.  
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Table 2-7: Core PMU Instructions 

Instruction 
Name 

Description 
Privilege 

Mode 
(CPL) 

Thread-
Specific 

Input Output 

RDMSR Read model specific register. 
Used by Ring 0 code to read 
any core PMU register. 

Ring 0 Yes ECX: Address of MSR EDX:EAX = 64-bit MSR 
value 

WRMSR Write model specific register. 
Used by Ring 0 code to write 
to any core PMU register. 

Ring 0 Yes EDX:EAX = 64-bit 
MSR value 

ECX: Address of MSR 

None 

RDTSC Read timestamp counter. 
Reads the current timestamp 
counter value.  

Ring 0-3 No None EDX:EAX = 64-bit 
timestamp value 

RDPMC Read performance-monitoring 
counter. Reads the counts of 
any of the performance 
monitoring counters, including 
the PMU filtered counters. 

Ring 0-3 Yes ECX: Counter # 

0x0: IA32_PerfCntr0 
0x1: IA32_PerfCntr1 

EDX:EAX = Zero-extended 
40-bit counter value 

SPFLT Set user preference flag to 
indicate counter 
enable/disable.  

Ring 0-3 Yes Any GPR[0]: 
0x0: Clear (disable) 
0x1: Set (enable) 

Set/clear USER_PREF bit in 
PERF_SPFLT_CONTROL.  

 
The instructions RDMSR, WRMSR, RDTSC, and RDPMC are well-documented in the (Intel® 64 and IA-32 Architectures 
Software Developer Manuals). The only Intel® MIC Architecture-specific notes are that RDTSC has been enhanced to 
execute in 4-5 clock cycles and that a mechanism has been implemented to synchronize timestamp counters across the 
chip.  
 
SPFLT is unique because it allows software threads fine-grained control in enabling/disabling the performance counters. 
The anticipated usage model for this instruction is for instrumented code to enable/disable counters around desired 
portions of code. Note that software can only specify its preference for enabling/disabling counters and does not have 
control over which specific counters are affected (this behavior supports virtualization). The SPFLT instruction can only 
be executed while the processor is in Intel® 64-bit mode. 
 
Table 2-8 lists the model-specific registers used to program the operation of the core PMU.  
 

Table 2-8. Core PMU Control Registers 

Register 
Address Name Description Threaded? Width 

Hex Dec 

0x10 16 MSR_TIME_STAMP_COUNTER Timestamp Counter No 64 

0x20 32 MSR _PerfCntr0 Events Counted, core PMU counter 0 Yes 40 

0x21 33 MSR _PerfCntr1 Events Counted, core PMU counter 1 Yes 40 

0x28 40 MSR _PerfEvtSel0 
Performance Event Selection and configuration 
register for IA32_PerfCntr0. 

Yes 32 

0x29 41 MSR _PerfEvtSel1 
Performance Event Selection and configuration 
register for IA32_PerfCntr1. 

Yes 32 

0x2C 44 MSR_PERF_SPFLT_CONTROL 

SPFLT Control Register. This MSR controls the 
effect of the SPFLT instruction and whether it will 
allow software fine-grained control to 
enable/disable IA32_PerfCntrN.  

Yes 64 

0x2D 45 MSR _PERF_GLOBAL_STATUS 

Counter Overflow Status. This read-only MSR 
displays the overflow status of all the counters.  
Each bit is implemented as a sticky bit, set by a 
counter overflow. 

Yes 32 
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Register 
Address 

Name Description Threaded? Width 

0x2E 46 MSR _PERF_GLOBAL_OVF_CTRL 

Counter Overflow Control. This write-only MSR 
clears the overflow indications in the Counter 
Overflow Status register.  For each bit that is set, 
the corresponding overflow status is cleared.  

Yes 32 

0x2F 47 MSR _PERF_GLOBAL_CTRL 

Master PMU Enable.  Global PMU enable / 
disable. When these bits are set, the core PMU is 
permitted to count events as configured by each of 
the Performance Event Selection registers (which 
can each be independently enabled or disabled).  
When these bits are cleared, performance 
monitoring is disabled. The operation of the 
Timestamp Counter is not affected by this register. 

Yes 32 

 
For a description of the complete set of Intel® Xeon Phi™ coprocessor PMU and EMON registers and its performance 
monitoring facilities, please see the document (Intel® Xeon Phi™ Coprocessor Performance Monitoring Units, Document 
Number: 327357-001, 2012). 
 

2.1.7.1 Timestamp Counter (TSC) 

The RDTSC instruction that is used to access IA32_TIMESTAMP_COUNTER can be enabled for Ring 3 (user code) by 
setting CR4[2]. 
 
This behavior enables software (including user code) to use IA32_TIMESTAMP_COUNTER as a wall clock timer. The Intel® 
Xeon Phi™ coprocessor only supports this behavior in a limited configuration (P1 only) and not across different P-states. 
The Intel® Xeon Phi™ coprocessor will increment IA32_TIMESTAMP_COUNTER based on the current core frequency but 
the Intel® Xeon Phi™ coprocessor will not scale such MSRs across package C-states.  
 
For Intel® Xeon Phi™ coprocessor performance analysis, the IA32_TIMESTAMP_COUNTER feature always works on P1 
and standard behavior is expected so that any new or pre-existing code using RDTSC will obtain consistent results. 
However, P-states and package C-states must be disabled during fine-grained performance analysis.  

2.1.8 System Interface 

The System Interface consists of two major units: the Intel® Xeon Phi™ coprocessor System Interface and the 
Transaction Control Unit (TCU). The SI contains all of the PCI Express* logic, which includes the PCI Express* protocol 
engine, SPI for flash and coprocessor OS loading, I2C for fan control, and the APIC logic. The TCU bridges the coprocessor 
SI to the Intel® Xeon Phi™ coprocessor internal ring, and contains the hardware support for DMA and buffering with 
transaction control flow. This block includes the DMA controllers, the encryption/decryption engine, MMIO registers, 
and various flow-control queuing instructions that allow internal interface to the ring transaction protocol engine.  

2.1.8.1 PCI Express 

The Intel® Xeon Phi™ coprocessor card complies with the Gen2x16 PCI Express* and supports 64 to 256 byte packet. PCI 
Express* peer-to-peer writes and reads are also supported. 
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The following registers show the Intel® Xeon Phi™ coprocessor PCI Express configuration setting: 

 

 PCIE_PCIE_CAPABILITY Register (SBOX MMIO offset 0x584C) 
 

 Bits   Type Reset  Description 

 
23:20 

RO    0x0   Device/Port Type 

  other bits unmodified 

 

 PCIE_BAR_ENABLE Register (SBOX MMIO offset 0x5CD4) 
  

 Bits Type Reset Description 

    0 RW 1 MEMBAR0 (Aperture) Enable 

    1 RW 1   MEMBAR1 (MMIO Registers) Enable 

    2 RW 0 I/O BAR Enable 

    3 RW 0 EXPROM BAR Enable 

  31:4 Rsvd 0  

 

2.1.8.2 Memory Controller 

There are 8 on-die GDDR5-based memory controllers in the Intel® Xeon Phi™ coprocessor. Each can operate two 32-bit 
channels for a total of 16 memory channels that are capable of delivering up to 5.5 GT/s per channel. The memory 
controllers directly interface to the ring interconnect at full speed, receiving complete physical addresses with each 
request. It is responsible for reading data from and writing data to GDDR memory, translating the memory read and 
write requests into GDDR commands. All the requests coming from the ring interface are scheduled by taking into 
account the timing restrictions of the GDDR memory and its physical organization to maximize the effective bandwidth 
that can be obtained from the GDDR memory. The memory controller guarantees a bounded latency for special requests 
arriving from the SBOX. The bandwidth guaranteed to the SBOX is 2 GB/s. The MBOX communicates to the FBOX (the 
ring interface) and the PBOX (the physical interface to the GDDR). The MBOX is also responsible for issuing all the refresh 
commands to the GDDR. 
 
The GDDR5 interface supports an optional software-based ECC data integrity feature. 
 

2.1.8.2.1 DMA Capabilities 

Direct Memory Access (DMA) is a common hardware function within a computer system that is used to relieve the CPU 
from the burden of copying large blocks of data. To move a block of data, the CPU constructs and fills a buffer, if one 
doesn’t already exist, and then writes a descriptor into the DMA Channel’s Descriptor Ring. A descriptor describes details 
such as the source and target memory addresses and the length of data in cache lines. The following data transfers are 
supported: 

 Intel® Xeon Phi™ coprocessor to Intel® Xeon Phi™ coprocessor GDDR5 space (aperture) 

 Intel® Xeon Phi™ coprocessor GDDR5 to host System Memory 

 Host System Memory to Intel® Xeon Phi™ coprocessor GDDR5 (aperture or non-aperture) 

 Intra-GDDR5 Block Transfers within Intel® Xeon Phi™ coprocessor  
 
A DMA Descriptor Ring is programmed by either the coprocessor OS or the Host Driver. Up to eight Descriptor Rings can 
be opened by software; each being referred to as a DMA Channel. The coprocessor OS or Host Driver can open a DMA 
Channel in either system or GDDR5 memory respectively; that is, all descriptor rings owned by the host driver must exist 
in system memory while rings owned by the coprocessor OS must exist in GDDR5 memory. A programmable arbitration 
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scheme resolves access conflicts when multiple DMA Channels vie for system or Intel® Xeon Phi™ coprocessor 
resources. 
 
The Intel® Xeon Phi™ coprocessor supports host-initiated or device-initiated PCI Express* Gen2/Gen1 memory, I/O, and 
configuration transactions. The Intel® Xeon Phi™ coprocessor device-initiated memory transactions can be generated 
either from execution cores directly or by using the DMA engine in the SBOX.  
 
In summary, the DMA controller has the following capabilities: 

 8 DMA channels operating simultaneously, each with its own independent hardware ring buffer that can live in 
either local or system memory 

 Supports transfers in either direction (host / Intel® Xeon Phi™ coprocessor devices) 

 Supports transfers initiated by either side 

 Always transfers using physical addresses 

 Interrupt generation upon completion 

 64-byte granularity for alignment and size 

 Writing completion tags to either local or system memory 
 

The DMA block operates at the core clock frequency. There are 8 independent channels which can move data: 

 From GDDR5 Memory to System Memory 

 From System Memory to GDDR5 Memory 

 From GDDR5 Memory to GDDR5 Memory 
 
The Intel® Xeon Phi™ coprocessor not only supports 64-bytes (1 cache line) per PCI Express* transaction, but up to a 
maximum of 256 bytes for each DMA-initiated transaction. This requires that the Root-Complex support 256 byte 
transactions. Programming the MAX_PAYLOAD_SIZE in the PCI_COMMAND_STATUS register sets the actual size of each 
transaction. 
 
Note: Quiescing of DMA channels is not supported in the Xeon Phi DMA engine. 

2.1.8.2.1.1 DMA Channel Arbitration 

There is no notion of priority between descriptors within a DMA Channel; descriptors are fetched, and operated on, in a 
sequential order. Priority between descriptors is resolved by opening multiple DMA channels and performing arbitration 
between DMA channels in a round-robin fashion. 

2.1.8.2.1.2 Descriptor Ring Overview 

A Descriptor Ring is a circular buffer as shown in Figure 2-7. The length of a Descriptor Ring can be up to 128K entries, 
and must align to the nearest cache line boundary. Software manages the ring by advancing a Head Pointer as it fills the 
ring with descriptors. When the descriptors have been copied, it writes this updated Header Pointer into the DMA Head 
Pointer Register (DHPR0 – DHPR7) for the appropriate DMA Channel. Each DMA Channel contains a Tail Pointer that 
advances as descriptors are fetched into a channel’s Local Descriptor Queue. The Descriptor Queue is 64 entries, and can 
be thought of as a sliding window over the Descriptor Ring. The Tail Pointer is periodically written back to memory so 
that software can track its progress. Upon initialization, software sets both the Head Pointer and Tail Pointer to point to 
the base of the Descriptor Ring. From the DMA Channel perspective, an empty state is approached when the Tail Pointer 
approaches the Head Pointer. From a software perspective, a full condition is approached when the Head Pointer 
approaches the Tail Pointer.  
 
 The Head and Tail Pointers are 40-bit Intel® Xeon Phi™ coprocessor addresses. If the high-order bit is a 1, the 
descriptors reside in system memory; otherwise they reside in the Intel® Xeon Phi™ coprocessor memory. Descriptors 
come in five different formats and are 16 bytes in length. There are no alignment restrictions when writing descriptors 
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into the ring. However, performance is optimized when descriptors start and end on cache line boundaries because 
memory accesses are performed on cache line granularities, four descriptors at a time. 
 

Descriptor Ring

Head Pointer

Tail Pointer

Descriptor Queue

64

 

Figure 2-7.  DMA Channel Descriptor Ring plus Local Descriptor Queue 

2.1.8.2.1.3 Descriptor Ring Setup 

Figure 2-8 shows how the Descriptor Ring Attributes Register or DRAR sets ups the Descriptor Ring in each DMA channel. 
Because a descriptor ring can vary in size, the Base Address (BA) represents a 36-bit index. The Tail Pointer Index is 
concatenated to the BA field to form up a Tail Pointer to the GDDR space. If the descriptor ring resides in system 
memory, BA[35] and BA[34] will be truncated to correspond with the 16GB system-memory page as shown in Figure 2-9. 
The Sys bit must be set along with a valid system-memory page number. 
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Figure 2-8.  Descriptor Ring Attributes 

 

KNC
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64GB Size0

3536

Page#

38 039
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3334

 

Figure 2-9.  Intel® Xeon Phi™ Coprocessor Address Format 

 
Because the size of the Descriptor Ring can vary, the Base Address must provide adequate space for concatenation of 
the Tail Pointer Index by zeroing out all the low-order bits that correspond to the size as shown in Figure 2-9. Table 2-9 
gives some examples of the base address ranges based on the size of the descriptor ring. 

Because the Head Pointer Index is updated by software, checks are made to determine if the index falls within the range 

specified by the size. An error will be generated if the range is exceeded. 
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Table 2-9. Examples of Base Address Ranges Based on Descriptor Ring Size 

Size Base Address Range Tail Pointer Range 

0x0004 (4) 0x0_0000_0000 :  0xF_FFFF_FFFC 0x0_0000 :  0x0003 

0x0008 (8) 0x0_0000_0000 :  0xF_FFFF_FFF8 0x0_0000 :  0x0007 

0x000C (12) 0x0_0000_0000 :  0xF_FFFF_FFF0 0x0_0000 :  0x000B 

0x0010 (16) 0x0_0000_0000 :  0xF_FFFF_FFF0 0x0_0000 :  0x000F 

0x0018 (24) 0x0_0000_0000 :  0xF_FFFF_FFE0 0x0_0000 :  0x0017 

0x0100 (256) 0x0_0000_0000 :  0xF_FFFF_FF00 0x0_0000 :  0x00FF 

0x0400 (1024) 0x0_0000_0000 :  0xF_FFFF_FC00 0x0_0000 :  0x03FF 

0x1000 (4096) 0x0_0000_0000 :  0xF_FFFF_F000 0x0_0000 :  0x0FFF 

 

35

Base Address (BA)

0

0 0 0 0

4 3 2 1

0 0

56

All 0s

nn+1

Size

 

Figure 2-10.  Base Address Width Variations 

Figure 2-11 shows the Head and Tail Pointer index registers used to access the descriptor ring. Both pointers are indexes 
into the descriptor ring relative to the base, not to Intel® Xeon Phi™ coprocessor addresses. Both indexes are on 
descriptor boundaries and are the same width as the Size field in the DRAR. For the Tail Pointer Address, the DMA uses 
the TPI along with the Sys bit, Page, and Base Address in the DRAR. 
 

031

Head Pointer Index (HPI)RESD

1617

031

Tail Pointer Index (TPI)RESD

1617

 

Figure 2-11 Head and Tail Pointer Index Registers 

 

2.1.8.2.2 Interrupt Handling  

There are three different types of interrupt flows that are supported in the Intel® Xeon Phi™ coprocessor: 
Local Interrupts – These are the interrupts that are destined for one (or more) of the Intel® Xeon Phi™ coprocessor cores 
located on the originating device. They appear in the form of APIC messages on the APIC serial bus. 
Remote Interrupts – These are the interrupts which are destined for one (or more) of the Intel® Xeon Phi™ coprocessor 
cores in other Intel® Xeon Phi™ coprocessor devices. They appear as MMIO accesses on the PEG port.  
System Interrupts – These are the interrupts which are destined for the host processor(s). They appear as INTx/MSI/MSI-
X messages on the PEG port, depending upon the PCI configuration settings. 
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2.1.8.2.3 Intel® Xeon Phi™ Coprocessor Memory Space 

Table 2-10 lists the starting addresses assigned to specific functions. 
 

Table 2-10. Coprocessor Memory Map 

Function Starting Address Size (Bytes) Comment 
GDDR5 Memory 00_0000_0000 Variable   

System Memory   Variable Addresses translated through SMPT 

Flash Memory 00_FFF8_5000 364K  
Actual size of flash varies, Some parts are not 

accessible through the normal memory path 

MMIO Registers 00_007D_0000 64K  Accessibility from the host is limited 

Boot ROM 00_FFFF_0000 64K 
New for Intel® Xeon Phi™ coprocessor.  Overlays 

FBOOT0 image in flash 

Fuse Block  00_FFF8_4000 4K New for Intel® Xeon Phi™ coprocessor memory space 

 

2.1.8.2.3.1 Host-Visible Intel® Xeon Phi™ Coprocessor Memory Space 

After Reset, all GDDR5 memory sits inside “stolen memory” (that is, memory not accessible by the Host). Stolen memory 
(CP_MEM_BASE/TOP) has precedence over the PCI Express* aperture. FBOOT1 code will typically shrink stolen memory 
or remove it. The aperture is programmed by the host or the coprocessor OS to create a flat memory space. 
 

2.1.8.2.3.2 Intel® Xeon Phi™ Coprocessor Boot ROM 

The Intel® Xeon Phi™ coprocessor software boot process is summarized below: 

1. After Reset: Boot-Strap Processor (BSP) executes code directly from the 1st-Stage Boot-Loader Image  (FBOOT0). 
2. FBOOT0 authenticates 2nd-Stage Boot-Loader (FBOOT1) and jumps to FBOOT1. 
3. FBOOT1 sets up/trains GDDR5 and basic memory map. 
4. FBOOT1 tells host to upload coprocessor OS image to GDDR5. 
5. FBOOT1 authenticates coprocessor OS image. If authentication fails, FBOOT1 locks out specific features. 
6. FBOOT1 jumps to coprocessor OS. 
 

2.1.8.2.3.3 SBOX MMIO Register Space 

The SBOX contains 666 MMIO (Memory-Mapped I/O) registers (12 K bytes) that are used for configuration, status and 
debug of the SBOX and other parts of the rest of Intel® Xeon Phi™ coprocessor. These are sometimes referred to as 
CSR’s and are not part of the PCI Express* configuration space. The SBOX MMIO space is located at 08_007D_0000h-
08_007D_FFFFh in the Intel® Xeon Phi™ coprocessor memory space. These MMIO registers are not contiguous, but are 
split between various functional blocks within the SBOX. Accessibility is always allowed to the coprocessor OS while 
accessibility by the host is limited to a subset for security. 
 

2.1.9 VPU and Vector Architecture  

The Intel® Xeon Phi™ coprocessor has a new SIMD 512-bit wide VPU with a corresponding vector instruction set. The 
VPU can be used to process 16 single precision or 8 double precision elements. There are 32 vector registers (8 mask 
registers with per lane predicated execution). Prime (hint) instructions for scatter/gather are available. Load operation 
comes from 2-3 sources to 1 destination. There are new SP transcendental instructions supported in hardware for 
exponent, logarithm, reciprocal, and square root operations. The VPUs are mostly IEEE 754 2008 floating-point 
compliant with added SP, DP-denorm, and SAE support for IEEE compliance and improved performance on fdiv/sqrt. 
Streaming stores (no read for ownership before write) are available with the vmovaps/pd.nr and vmovaps/pd.ngo 
instructions. 
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Section 7 contains more detailed information on the vector architecture. 
 

2.1.10 Intel® Xeon Phi™ Coprocessor Instructions  

The Intel® Xeon Phi™ coprocessor instruction set includes new vector instructions that are an extension of the existing 
Intel® 64 ISA. However, they do not support the Intel Architecture family of vector architecture models (MMX™ 
instructions, Intel® Streaming SIMD Extensions, or Intel® Advanced Vector Extensions).  
 
The major features of the Intel® Xeon Phi™ coprocessor vector ISA extensions are: 

 A new instruction repertoire specifically tailored to boost the performance of High Performance Computing (HPC) 
applications.  The instructions provide native support for both float32 and int32 operations while providing a rich 
set of conversions for common high performance computing native data types. Additionally, the Intel® Xeon Phi™ 
coprocessor ISA supports float64 arithmetic and int64 logic operations. 

 There are 32 new vector registers. Each is 512 bits wide, capable of packing 16 32-bit elements or 8 64-bit elements 
of floating point or integer values. A large and uniform vector register file helps in generating high performance 
code and covering longer latencies. 

 Ternary instructions with two sources and different destinations. There are also Fused Multiply and Add (FMA) 
instructions which are ternary with three sources, one of which is also the destination. 

 Intel® Xeon Phi™ coprocessor instructions introduce 8 vector mask registers that allow conditional execution over 
the 16 elements in a vector instruction and merged results to the original destination. Masks allow vectorizing 
loops that contain conditional statements. Additionally, support is provided for updating the value of the vector 
masks with special vector instructions such as vcmpps. 

 The vector architecture supports a coherent memory model wherein the new set of instructions operates in the 
same memory address space as the standard Intel® 64 instructions. This feature eases the process of developing 
vector code. 

 Specific gather/scatter instructions manipulate irregular data patterns in memory (by fetching sparse locations of 
memory into a dense vector register or vice-versa) thus enabling vectorization of algorithms with complex data 
structures. 

 
Consult the (Intel® Xeon Phi™ Coprocessor Instruction Set Architecture Reference Manual (Reference Number: 327364)) 
for complete details on the Intel® Xeon Phi™ coprocessor instructions.  

2.1.11 Multi-Card 

Each Intel® Xeon Phi™ coprocessor device is treated as an independent computing environment.  The host OS 
enumerates all the cards in the system at boot time and launches separate instances of the coprocessor OS and the SCIF 
driver.  See the SCIF documentation for more details about intercard communication. 
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2.1.12 Host and Intel® MIC Architecture Physical Memory Map 

 

Figure 2-12. Host and Intel® MIC Architecture Physical Memory Map 

The Intel® Xeon Phi™ coprocessor memory space supports 40-bit physical addresses, which translates into 1024 GiB of 
addressable memory space that is split into 3 high-level ranges: 

 Local address range: 0x00_0000_0000 to 0x0F_FFFF_FFFF (64 GiB) 

 Reserved: 0x10_0000_0000 to 0x7F_FFFF_FFFF (448 GiB) 

 System (Host) address range 0x80_0000_0000 to 0xFF_FFFF_FFFF (512 GiB) 
 
The Local Address Range 0x00_0000_0000 to 0x0F_FFFF_FFFF (64 GiB) is further divided into 4 equal size ranges: 

 0x00_0000_0000 to 0x03_FFFF_FFFF (16 GiB) 
 GDDR (Low) Memory 
 Local APIC Range (relocatable) 0x00_FEE0_0000 to 0x00_FEE0_0FFF (4 kB) 
 Boot Code (Flash) and Fuse (via SBOX) 0x00_FF00_0000 to 0x00_FFFF_FFFF (16 MB) 
  0x04_0000_0000 to 0x07_FFFF_FFFF (16 GB) 

 GDDR Memory (up to PHY_GDDR_TOP) 
 0x08_0000_0000 to 0x0B_FFFF_FFFF (16 GB) 

 Memory mapped registers 

 DBOX registers 0x08_007C_0000 to 0x08_007C_FFFF (64 kB) 

 SBOX registers 0x08_007D_0000 to 0x08_007D_FFFF (64 kB) 

 Reserved 0x0C_0000_0000 to 0x0F_FFFF_FFFF (16 GB) 
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The System address range 0x80_0000_0000 to 0xFF_FFFF_FFFF (512 GB) contains 32 pages of 16 GB each: 

 Sys 0: 0x80_0000_0000 to 0x83_FFFF_FFFF (16 GB) 

 Sys 1: 0x84_0000_0000 to 0x87_FFFF_FFFF (16 GB) 
. . . 

 Sys 31: 0xFC_0000_0000 to 0xFF_FFFF_FFFF (16 GB) 
 
These are used to access System Physical Memory addresses and can access up to 512 GiB at any given time. Remote 
Intel® Xeon Phi™ coprocessor devices are also accessed through System addresses. All requests over PCI Express* to 
Host are generated through this range. A System Memory Page Table (SMPT) expands the 40-bit local address to 64-bit 
System address.  
 
Accesses to host memory are snooped by the host if the No-snoop bit in the SMPT register is not set. The SCIF driver 
(see Sections 2.2.5.1 and 5.1) does not set this bit so host accesses are always snooped. Host accesses to Intel® Xeon 
Phi™ coprocessor memory are snooped if to cacheable memory. 
 
The System (Host) address map of Intel® Xeon Phi™ coprocessor memory is represented by two base address registers: 

 MEMBAR0 
 Relocatable in 64-bit System Physical Memory Address space 
 Prefetchable 
 32 GiB (max) down to 256 MiB (min) 
 Programmable in Flash 
 Offset into Intel® Xeon Phi™ coprocessor Physical Memory Address space 
 Programmable in APR_PHY_BASE register 
 Default is 0 

 MEMBAR1 
 Relocatable in 64b System Physical Memory Address space 
 Non-prefetchable 
 128 KiB 
 Covers DBOX0 & SBOX Memory-mapped registers 
 DBOX at offset 0x0_0000 
 SBOX at offset 0x1_0000 

 

2.1.13 Power Management 

Intel® Xeon Phi™ coprocessor power management supports Turbo Mode and other P-states. Turbo mode is an 
opportunistic capability that allows the CPU to take advantage of thermal and power delivery headroom to increase the 
operating frequency and voltage, depending on the number of active cores. Unlike the multicore family of Intel® Xeon® 
processors, there is no hardware-level power control unit (PCU); power management is controlled by the  coprocessor 
OS. Please see Section 3.1 for more information on the power management scheme.  
 
Below is a short description of the different operating modes and power states. For additional details, see the “Intel® 
Xeon Phi™ Coprocessor Datasheet,” Document Number 488073.  

 Core C1 State – Core and VPU are clock gated (all 4 threads have halted) 

 Core C6 State– Core and VPU are power gated  (C1 + time threshold) 

 Package C3 State 

 All Cores Clock or Power Gated 

 The Ring and Uncore are Clock Gated (MCLK gated (auto), VccP reduced (Deep)) 
 Package C6 State – The VccP is Off (Cores/Ring/Uncore Off) 
 Memory States 

 M1 – Clock Gating 
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 M2 – GDDR in Self Refresh 

 M3 – M2 + Shut off 
 GMClk PLL 
 SBOX States– L1 (PCI Express* Link States), SBOX Clock Gating 

 

2.2 Intel® Xeon Phi™ Coprocessor Software Architecture 

The software architecture for Intel® Xeon Phi™ coprocessor products accelerates highly parallel applications that take 
advantage of hundreds of independent hardware threads and large local memory.  Intel® Xeon Phi™ coprocessor 
product software enables easy integration into system platforms that support the PCI Express* interconnect and running 
either a Linux* or Windows* operating system.  
 

2.2.1 Architectural Overview 

Intel® Xeon Phi™ coprocessor products are implemented as a tightly integrated, large collection of processor cores 
(Intel® Many Integrated Core (MIC) Architecture) on a PCI Express* form-factor add-in card. As such, Intel® Xeon Phi™ 
coprocessor products comply as a PCI Express* endpoint, as described in the PCI Express* specification.  Therefore, each 
Intel® Xeon Phi™ coprocessor card implements the three required address spaces (configuration, memory, and I/O) and 
responds to requests from the host to enumerate and configure the card.  The host OS loads a device driver that must 
conform to the OS driver architecture and behavior customary for the host operating system running on the platform 
(e.g., interrupt handling, thread safe, security, ACPI power states, etc.). 
 
From the software prospective, each Intel® Xeon Phi™ coprocessor add-in card represents a separate Symmetric Multi-
Processing (SMP) computing domain that is loosely-coupled to the computing domain represented by the OS running on 
the host platform.  Because the Intel® Xeon Phi™ coprocessor cards appear as local resources attached to PCI Express*, 
it is possible to support several different programming models using the same hardware implementation.  For example, 
a programming model requiring shared memory can be implemented using SCIF messaging for communication.  Highly 
parallel applications utilize a range of programming models, so it is advantageous to offer flexibility in choosing a 
programming model. 
 
In order to support a wide range of tools and applications for High-Performance Computing (HPC), several Application 
Programming Interfaces (APIs) are provided.  The standard APIs provided are sockets over TCP/IP*, MPI, and OpenCL*.  
Some Intel proprietary interfaces are also provided to create a suitable abstraction layer for internal tools and 
applications.  The SCIF APIs provide a common transport over which the other APIs communicate between host and 
Intel® Xeon Phi™ coprocessor devices across the platform’s PCI Express hardware. Error! Reference source not found. 
illustrates the relative relationship of each of these APIs in the overall Intel® MIC Architecture Manycore Platform 
Software Stack (MPSS). 
 
As shown, the executable files and runtimes of a set of software development tools targeted at highly parallel 
programming are layered on top of and utilize various subsets of the proprietary APIs.  
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Figure 2-13. Intel® Xeon Phi™ Coprocessor Software Architecture 

 
The left side of the figure shows the host stack layered on a standard Linux* kernel. A similar configuration for an Intel® 
Xeon Phi™ coprocessor card is illustrated on the right side of the figure; the Linux*-based kernel has some Intel® Xeon 
Phi™ coprocessor specific modifications.  
 
This depicts the normal runtime state of the system well after the platform’s system BIOS has executed and caused the 
host OS to be loaded.  [Note:  The host platform’s system BIOS is outside the scope of this document and will not be 
discussed further.]  Each Intel® Xeon Phi™ coprocessor card’s local firmware, referred to as the “Bootstrap”, runs after 
reset.  The Bootstrap configures the card’s hardware, and then waits for the host driver to signal what is to be done 
next.  It is at this point that the coprocessor OS and the rest of the card’s software stack is loaded, completing the 
normal configuration of the software stack.  
 
The software architecture is intended to directly support the application programming models described earlier. Support 
for these models requires that the operating environment ( coprocessor OS, flash, bootstrap) for a specific Intel® Xeon 
Phi™ coprocessor is responsible for managing all of the memory and threads for that card. Although giving the host OS 
such a responsibility may be appropriate for host based applications (a kind of forward acceleration model), the host OS 
is not in a position to perform those services where work may be offloaded from any device to any other device. 
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Supporting the application programming models necessitates that communications between host and Intel® Xeon Phi™ 
coprocessor devices, after boot, is accomplished via the SCIF driver or a higher level API layered on SCIF. SCIF is designed 
for very low latency, low overhead communication and provides independent communication streams between SCIF 
clients.  
 
A virtual network interface on top of the SCIF Ring 0 driver creates an IP-based network between the Intel® Xeon Phi™ 
coprocessor devices and the host. This network may be bridged to additional networks via host/user configuration.   
 
Given this base architecture, developers and development environments are able to create usage models specific to 
their needs by adding user-installed drivers or abstractions on top of SCIF. For example, the MPI stack is layered on SCIF 
to implement the various MPI communications models (send/receive, one sided, two sided) . 
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2.2.2 Intel® Manycore Platform Software Stack (MPSS) 
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Figure 2-14 outlines the high level pieces that comprise the Intel® Manycore Platform Software Stack, or MPSS. 
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Figure 2-14. Intel® Xeon Phi™ Coprocessor Software Stack 
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2.2.3 Bootstrap 

Since the Intel® Xeon Phi™ coprocessor cores are x86 Intel Architecture cores, the bootstrap resembles a System BIOS at 
POST.  The bootstrap runs when the board first gets power, but can also run when reset by the host due to a 
catastrophic failure. The bootstrap is responsible for card initialization and booting the  coprocessor OS. 
 
The bootstrap consists of two separate blocks of code, called fboot0 and fboot1.  The fboot0 block resides in ROM 
memory on the die and cannot be upgraded, while fboot1 is upgradeable in the field and resides in the flash memory.  
 

2.2.3.1 fboot0 

When the card comes out of reset, the fboot0 instruction is executed first. This block of code is the root of trust because 
it cannot be modified in the field. Its purpose is to authenticate the second stage, fboot1, by passing the root of trust to 
fboot1. If authentication fails, fboot0 will remove power from the ring and cores, preventing any further action. The only 
recovery mechanism from this state is to put the card into “zombie mode” by manually changing a jumper on the card. 
Zombie mode allows the host to reprogram the flash chip, recovering from a bad fboot1 block.  
 
The fboot0 execution flow is as follows: 

1. Setup CAR mode to reduce execution time. 
2. Transition to 64-bit protected mode. 
3. Authenticate fboot1. 
4. If authentication fails, shut down card. 
5. If authentication passes, hand control to fboot1. 

2.2.3.2 fboot1 

Fboot1 is responsible for configuring the card and booting the  coprocessor OS. The card configuration involves 
initializing all of the cores, uncore units, and memory. This includes implementing any silicon workarounds since the 
hardware does not support microcode patching like a typical x86 core. The cores must be booted into 64-bit protected 
mode to be able to access the necessary configuration registers. 
 
When booting a 3rd party coprocessor OS, including the MPSS Linux*-based  coprocessor OS, the root of trust is not 
passed any further. The root of trust is only passed when booting into maintenance mode since privileged operations 
are performed while in maintenance mode. Maintenance mode is where some locked registers are re-written for 
hardware failure recovery. 
 
Authentication determines which coprocessor OS type is booting (3rd party or maintenance). Fboot1 calls back into 
fboot0 to run the authentication routine using the public key also embedded in fboot0. Only the maintenance 
coprocessor OS is signed with a private key, and all other images must remain unsigned. If authentication passes, the 
maintenance coprocessor OS boots. If authentication fails, the process is assumed to be a 3rd party coprocessor OS and 
the Linux* boot protocol is followed, locking out access to sensitive registers, protects intellectual property. 
 
 The fboot1 execution flow is as follows:  

1. Set memory frequency then reset the card. 
2. Perform core initialization. 
3. Initialize GDDR5 memory 

a. Use training parameters stored in the flash if memory has been trained earlier. 
b. If no training parameters are stored, or these parameters do not match the current configuration, perform the 

normal training routine and store training values in the flash. 
4. Shadow fboot1 into GDDR5 to improve execution time. 
5. Perform uncore initialization. 
6. Perform CC6 register initialization. 
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7. Boot APs. 
8. AP’s transition to 64-bit protected mode. 
9. AP’s perform core initialization. 
10. AP’s perform CC6 register initialization. 
11. AP’s reach the end of the AP flow and wait for further instructions. 
12. Wait for coprocessor OS download from host. 
13. Authenticate coprocessor OS. All cores participate in authentication to minimize execution time. 
14. If authentication passes, it is a maintenance coprocessor OS. Boot maintenance coprocessor OS. 
15. If authentication fails, it is a 3rd party coprocessor OS (see Linux* loader section below). 

a. Lock out register access. 
b. Create boot parameter structure. 
c. Transition to 32-bit protected mode with paging disabled. 
d. Hand control to the coprocessor OS. 

 

2.2.4 Linux* Loader 

The Intel® Xeon Phi™ coprocessor boots Linux*-based coprocessor OS images. It is capable of booting any 3rd party OS 
developed for the Intel® Xeon Phi™ coprocessor. Previously, an untrusted coprocessor OS would result in a card 
shutdown; however, the Intel® Xeon Phi™ coprocessor considers the Intel developed Linux*-based coprocessor OS to be 
untrusted. For this reason, it becomes simple to support 3rd party coprocessor OS images. 
 
To boot a Linux* OS, the bootstrap has to conform to a certain configuration as documented in the Linux* kernel. There 
are 3 potential entry points into the kernel: 16-bit, 32-bit, and 64-bit entry points. Each entry point requires increasingly 
more data structures to be configured. The Intel® Xeon Phi™ coprocessor uses the 32-bit mode entry point. 
 

2.2.4.1 16-bit Entry Point 

The 16-bit entry point does not require any data structures to be created prior to entering the kernel;  however it 
requires that there be support for system BIOS callbacks. The Intel® Xeon Phi™ coprocessor does not support this mode. 
 

2.2.4.2 32-bit Entry Point 

The 32-bit entry point requires a boot parameter (or zero page) structure and a structure defining the number of cores 
and other hardware (either an MP Table or SFI – Simple Firmware Interface - table). The Linux* documentation in 
boot.txt states “the CPU must be in 32-bit protected mode with paging disabled; a GDT must be loaded with the 
descriptors for selectors __BOOT_CS(0x10) and __BOOT_DS(0x18); both descriptors must be 4G flat segment; 
__BOOT_CS must have execute/read permission, and __BOOT_DS must have read/write permission; CS must be 
__BOOT_CS and DS, ES, SS must be __BOOT_DS; interrupt must be disabled; %esi must hold the base address of the 
struct boot_params; %ebp, %edi and %ebx must be zero.” 
 
There exists a field in the boot parameter structure (load flags) that tells the kernel whether it should use the segments 
setup by the bootstrap or to load new ones. If the kernel loads new ones, it uses the above settings. The bootstrap, 
however, does not have the segment descriptors in the same order as required by this documentation; and therefore 
sets the boot parameter flag to tell the kernel to continue using the segments already setup by the bootstrap. 
Everything about the bootstrap descriptors matches the documentation except for the offset location in the GDT, so it is 
safe to continue using them. 
 
The bootstrap also uses the SFI tables to report the number of cores, memory map, and other hardware configurations. 
This is a relatively new format designed by Intel and adheres to SFI version 0.7 (http://simplefirmware.org). SFI support 
was initially added to the Linux* kernel in version 2.6.32. The Intel® Xeon Phi™ coprocessor supports booting a Linux* 
kernel by using the 32-bit entry point. 

http://simplefirmware.org/


 Page 43 

 

2.2.4.3 64-bit Entry Point 

The Intel® Xeon Phi™ coprocessor does not support this mode. 
 

2.2.5 The Coprocessor Operating System (coprocessor OS) 

The Intel® Xeon Phi™ coprocessor establishes the basic execution foundation that the remaining elements of the Intel® 
Xeon Phi™ coprocessor card’s software stack rest upon. The Intel® Xeon Phi™ coprocessor OS is based on a standard 
Linux* kernel source code (from kernel.org) with as few changes to the standard kernel as possible. While some areas of 
the kernel are designed, by the Linux* development community, to be tailored for specific architectures, this is not the 
general case. Therefore, additional modifications to the kernel have been made to compensate for hardware normally 
found on PC platforms, but missing from Intel® Xeon Phi™ coprocessor cards. 
 
The coprocessor OS provides typical capabilities such as process/task creation, scheduling, and memory management.  It 
also provides configuration, power, and server management. Intel® Xeon Phi™ coprocessor-specific hardware is only 
accessible through a device driver written for the coprocessor OS environment.  
 
The Intel® Xeon Phi™ coprocessor Linux* kernel can be extended with loadable kernel modules (LKMs); LKMs may be 
added or removed with modprobe. These modules may include both Intel supplied modules, such as the idb server and 
SEP sampling collector, and end-user supplied modules. 
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Figure 2-15. The Linux* Coprocessor OS Block Diagram 

 
The Intel® Xeon Phi™ coprocessor Linux*-based coprocessor OS is a minimal, embedded Linux* environment ported to 
the Intel® MIC Architecture with the Linux* Standard Base (LSB) Core libraries. It is also an unsigned OS. It implements 
the Busybox* minimal shell environment. Table 2-11 lists the LSB components.  
 

Table 2-11. LSB Core Libraries 

Component Description 

glibc the GNU C standard library 

libc the C standard library 

libm the math library 

libdl programmatic interface to the dynamic linking loader 

librt POSIX real-time library (POSIX shared memory, clock and time functions, timers) 

libcrypt password and data encryption library 

libutil library of utility functions 
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Component Description 

libstdc++  the GNU C++ standard library 

libgcc_s  a low-level runtime library 

libz  a lossless data compression library 

libcurses  a terminal-independent method of updating character screens 

libpam  the Pluggable Authentication Module (PAM) interfaces allow applications to request authentication via a 
system administrator defined mechanism 

 

2.2.5.1 CPUID Enumeration 

CPUID enumeration can be obtained via the Linux* OS APIs that report information about the topology as listed in 
/sys/devices/system/cpu/cpu*/topology/*. 
 

2.2.6 Symmetric Communication Interface (SCIF) 

SCIF is the communication backbone between the host processors and the Intel® Xeon Phi™ coprocessors in a 
heterogeneous computing environment. It provides communication capabilities within a single platform.  SCIF enables 
communications between host and Intel® Xeon Phi™ coprocessor cards, and between Intel® Xeon Phi™ coprocessor 
cards within the platform. It provides a uniform API for communicating across the platform’s PCI Express* system busses 
while delivering the full capabilities of the PCI Express* transport hardware. SCIF directly exposes the DMA capabilities 
of Intel® Xeon Phi™ coprocessor for high bandwidth transfer of large data segments, as well as the ability to map 
memory of the host or an Intel® Xeon Phi™ coprocessor device into the address space of a process running on the host 
or on any Intel® Xeon Phi™ coprocessor device. 
 
Communication between SCIF node pairs is based on direct peer-to-peer access of the physical memory of the peer 
node. In particular, SCIF communication is not reflected through system memory when both nodes are Intel® Xeon Phi™ 
coprocessor cards. 
 
SCIF’s messaging layers take advantage of the PCI Express*’s inherent reliability, and operates as a simple data-only 
network without the need for any intermediate packet inspection. Messages are not numbered, nor is error checking 
performed. Due to the data-only nature of the interface, it is not a direct replacement for higher level communication 
APIs, but rather provides a level of abstraction from the system hardware for these other APIs. Each API that wishes to 
take advantage of SCIF will need to adapt to this new proprietary interface directly or through the use of a shim layer. 
 
A more detailed description of the SCIF API can be found in Section 5.3. 
 

2.2.7 Host Driver 

The host driver is a collection of host-side drivers and servers including SCIF, power management, and RAS and server 
management. The primary job of the host driver is to initialize the Intel® Xeon Phi™ coprocessor card(s); this includes 
loading the coprocessor OS and its required boot parameters for each of the cards. Following successful booting, the 
primary responsibility of the host driver is to serve as the root of the SCIF network.  Additional responsibilities revolve 
around serving as the host-side interface for power management, device management, and configuration.  However, the 
host driver does not directly support any type of user interface or remote process API.  These are implemented by other 
user-level programs or by communication protocols built on top of the driver or SCIF (e.g. Sockets, MPI, etc.). 
 
DMA support is an asynchronous operation. Host initiated DMA is expected to have less latency compared to the proxy 
DMA from the card. Applications have the option to pick between memory copy and DMA, or to let the driver choose 
the best method. Memory copy is optimized to be multiple threaded, which makes use of the multi-core to parallelize 
the operation at the limit of the PCI Express* bandwidth. When there is a need to lower the host CPU load, or when the 
transfer size is above threshold, DMA is the preferred method. 
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Interrupts based on MSI/x (Message Signaled Interrupts) are supported by the host driver with these benefits:  

 Eliminates dedicated hardware interrupt line connection 

 No interrupt sharing with other device(s) 

 With optimized hardware design, no need for the interrupt routine to read back from hardware which will improve 
the efficiency of the interrupt handling 

 The device can target different CPU cores when triggering, thus making full use of the multicore for interrupt 
handling.   
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Figure 2-16. Intel® Xeon Phi™ Coprocessor Host Driver Software Architecture Components  

 

2.2.7.1 Intel® Xeon Phi™ Coprocessor SMC Control Panel 

The SMC Control Panel (micsmc), located in /opt/intel/mic/bin after installing Intel® MPSS, is the local host-side user 
interface for system management. The Control Panel is more practical for smaller setups like a workstation environment 
rather than for a large-scale cluster deployment. The Control Panel is mainly responsible for: 

 Monitoring Intel® Xeon Phi™ coprocessor card status, parameters, power, thermal, etc. 

 Monitoring system performance, core usage, memory usage, process information 

 Monitoring overall system health, critical errors, or events 

 Hardware configuration and setting, ECC, turbo mode, power plan setting, etc. 
 
Control Panel applications rely on the MicAccessSDK to access card parameters. The MicAccessSDK exposes a set of APIs 
enabling applications to access the Intel® MIC Architecture hardware. The Ring 3 system management agent running on 
the card handles the queries from the host and returns results to the host through the SCIF interface.  
 
The host RAS agent captures the MCA error report from the card and takes proper action for different error categories. 
The host RAS agent determines the error exposed to the end-user based on the error filter and Maintenance mode 
test/repair result. Then the error/failure is shown to end users on the Control Panel. 
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Figure 2-17. Control Panel Software Architecture 

 

2.2.7.2 Ganglia* Support 

Ganglia* is a scalable, distributed monitoring system for high-performance computing systems such as clusters and 
grids. The implementation of Ganglia* is robust, has been ported to an extensive set of operating systems and processor 
architectures, and is currently in use on thousands of clusters around the world. 
 
Briefly, the Ganglia* system has a daemon running on each computing node or machine. The data from these daemons 
is collected by another daemon and placed in an rrdtool database. Ganglia* then uses PHP scripts on a web server to 
generate graphs as directed by the user. The typical Ganglia* data flow is illustrated in Figure 2-18. 
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Figure 2-18.  Ganglia* Monitoring System Data Flow Diagram 

 
The cluster level deployment of Ganglia* is illustrated in Figure 2-19. 
 

 

Figure 2-19: Ganglia* Monitoring System for a Cluster 

 
For integration with system management and monitoring systems like Ganglia*, the Manycore Platform Software Stack 
(MPSS) : 

 Provides an interface for the Ganglia* monitoring agent to collect monitoring state or data: sysfs or /proc virtual file 
system exposed by the Linux*-based coprocessor OS on each Intel® Xeon Phi™ coprocessor device. 
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 Provides a plug-in for custom made metrics about the nodes (that is, Intel® Xeon Phi™ coprocessor cards) that are 
being monitored by Ganglia*. 

 Serves as a reference implementation for the whole Ganglia* monitoring environment setup. 
 
In the Ganglia* reference implementation shown in Figure 2-20, each Intel® Xeon Phi™ coprocessor card can be treated 
as an independent computing node. Because Intel® Xeon Phi™ coprocessor is running a Linux*-based OS on the card, 
one can run gmond monitoring agent on the card as-is. Gmond supports configuration files and plug-ins so it is easy to 
add customized metrics. 
 
For workstation configuration or for a remote server in a cluster environment, gmetad can be run on the host. For 
gmetad, no customization is needed.  All the front-end tools like rrdtool, scripts should be standard Ganglia* 
configuration.  
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Figure 2-20.  Intel® Xeon Phi™ Coprocessor Ganglia* Support Diagram 

 
All of the daemons in Ganglia* talk to each other over TCP/IP. Intel® Xeon Phi™ coprocessor devices are accessible via a 
TCP/IP subnet off the host, in which the IP component is layered on SCIF.  
 
By default, Ganglia* collects the following metrics: 

 cpu_num 
 cpu_speed 
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 mem_total 
 swap_total 
 boottime 
 machine_type 
 os_name 
 os_release 
 location 
 gexec 
 cpu_user 
 cpu_system 
 cpu_idle 
 cpu_nice 
 cpu_aidle 
 cpu_wio 
 cpu_intr 
 cpu_sintr 
 load_one 
 load_five 
 load_fifteen 
 proc_run 
 proc_total 
 mem_free 
 mem_shared 
 mem_buffers 
 mem_cached 
 swap_free 
 bytes_out 
 bytes_in 
 pkts_in 
 pkts_out 
 disk_total 
 disk_free 
 part_max_used 

 
In addition to these default metrics, the following metrics can be collected on the Intel® Xeon Phi™ coprocessor: 

 Intel® Xeon Phi™ coprocessor device utilization 
 Memory utilization 
 Core utilization  
 Die temperature 
 Board temperature 
 Core frequency  
 Memory frequency 
 Core voltage 
 Memory voltage 
 Power consumption 
 Fan speed 
 Active core number (CPU number is standard) 

 
To collect additional metrics follow these steps: 

1. Write a script or C/C++ program which retrieves the information. The script can be written in any scripting 
language. Python is used to retrieve default metrics. In case of a C/C++ program, the .so files are needed. 
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2. Register the program with the Ganglia* daemon (gmond) by issuing the Ganglia* command gmetric. 
3. Make the registration persistent by adding the modification to the configuration file: /etc/ganglia/gmond.conf. 
 

2.2.7.3 Intel® Manycore Platform Software Stack (MPSS) Service 

The Linux* mechanism for controlling system services is used to boot and shut down Intel® Xeon Phi™ coprocessor 
cards. This service will start (load) and stop (unload) the MPSS to and from the card (e.g. “service mpss start/stop”). This 
replaces the micstart command utility described in the next section. Please see the README file included in the MPSS tar 
packages for instructions on how to use this service. 
 

2.2.7.4 Intel® MIC Architecture Commands 

This section provides a short summary of available Intel® MIC Architecture commands. More detailed information of 
each command can be obtained by issuing the ‘–help’ option with each command.  
 

Table 2-12. Intel® MIC Architecture commands 

Command Description 

micflash  A command utility normally used to update the Intel® Xeon Phi™ coprocessor 
PCI Express* card on-board flash. It can also be used to list the various device 
characteristics.  

micinfo  Displays the physical settings and parameters of the card including the driver 
versions.  

micsmc  The Control Panel that displays the card thermal, electrical, and usage 
parameters. Examples include Core Temperature, Core Usage, Memory Usage, 
etc. An API for this utility is also available to OEMs under the MicAccess SDK as 
mentioned previously in the section on the Control Panel.  

miccheck A utility that performs a set of basic checks to confirm that MPSS is correctly 
installed, all communications links between the host and coprocessor(s), and 
between coprocessors are functional. 

 

2.2.8 Sysfs Nodes 

Sysfs is a Linux* 2.6 virtual file system. It exports information about devices and drivers from the kernel device model to 
user space; and is similar to the sysctl mechanism found in BSD systems, albeit implemented as a file system. As such, 
some Intel® Xeon Phi™ coprocessor device characteristics can be obtained from sysfs. Characteristics such as core/cpu 
utilization, process/thread details and system memory usage are better presented from standard /proc interfaces. The 
purpose of these sysfs nodes is to present information not otherwise available. The organization of the file system 
directory hierarchy is strict and is based on the internal organization of kernel data structures. 
 
Sysfs is a mechanism for representing kernel objects, their attributes, and their relationships with each other. It provides 
two components: a kernel programming interface for exporting these items via sysfs, and a user interface to view and 
manipulate these items that maps back to the kernel objects they represent. Table 2-13 shows the mapping between 
internal (kernel) constructs and their external (user space) Sysfs mappings. 
 

Table 2-13. Kernel to User Space Mappings 

Internal External 

Kernel Objects Directories 

Object Attributes Regular Files 

Object Relationships Symbolic Links 
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The currently enabled sysfs nodes are listed in Table 2-14. 
 

Table 2-14. SYSFS Nodes 

Node Description 

clst Number of known cores 

fan   Fan state 

freq  Core frequencies 

gddr GDDR device info  

gfreq  GDDR frequency 

gvolt GDDR voltage 

hwinf  hardware info (revision, stepping, …)  

temp Temperature sensor readings 

vers Version string 

volt Core voltage 
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Figure 2-21: MPSS Ganglia* Support 

Sysfs is a core piece of the kernel infrastructure that provides a relatively simple interface to perform a simple task. 
Some popular system monitoring software like Ganglia* uses /proc or the sysfs interface to fetch system status 
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information. Since the Intel® Xeon Phi™ coprocessor can expose card information through sysfs, a single interface can be 
maintained for both local and server management. 
 

2.2.9 Intel® Xeon Phi™ Coprocessor Software Stack for MPI Applications 

This section covers the architecture of the Intel® Xeon Phi™ coprocessor software stack components to enable µDAPL 
and IB verbs support for MPI. Given the significant role of MPI in high-performance computing, the Intel® Xeon Phi™ 
coprocessor has built-in support for OFED* (Open Fabrics Enterprise Edition) which is widely used in high performance 
computing for applications that require high efficiency computing, wire-speed messaging, and microsecond latencies. 
OFED* is also the preferred communications stack for the Intel® MPI Library, allowing Intel® MIC Architecture to take 
advantage of remote direct memory access (RDMA) capable transport that it exposes. The Intel® MPI Library for Intel® 
MIC Architecture on OFED* can use SCIF or physical InfiniBand* HCA (Host Channel Adapter) for communications 
between Intel® Xeon Phi™ coprocessor devices and between an Intel® Xeon Phi™ coprocessor and the host; in this way, 
Intel® Xeon Phi™ coprocessor devices are treated as stand-alone nodes in an MPI network.  
 
There are two implementations that cover internode and intranode communications through the InfiniBand* HCA:  

 CCL (Coprocessor Communication Link).  A proxy driver that allows access to a hardware InfiniBand* HCA from the 
Intel® Xeon Phi™ coprocessor.  

 OFED*/SCIF.  A software-based InfiniBand*-like device that allows communication within the box. 
 
This guide only covers the first level decomposition of the software into its major components and describes how these 
components are used. This information is based on the OpenFabrics Alliance* (OFA*) development effort.  Because 
open source code is constantly changing and evolving, developers are responsible for monitoring the OpenFabrics 
Alliance* to ensure compatibility. 
 

2.2.9.1 Coprocessor Communication Link (CCL) 

To efficiently communicate with remote systems, applications running on Intel® Many Integrated Core Architecture 
(Intel® MIC Architecture) coprocessors require direct access to RDMA devices in the host platform.  This section 
describes an architecture providing this capability (called CCL) that is targeted for internode communication. 
 
In a heterogeneous computing environment, it is desirable to have efficient communication mechanisms from all 
processors, whether they are the host system CPUs or Intel® Xeon Phi™ coprocessor cores.  Providing a common, 
standards-based, programming and communication model, especially for clustered system applications is an important 
goal of the Intel® Xeon Phi™ coprocessor software.  A consistent model not only simplifies development and 
maintenance of applications, but allows greater flexibility for using a system to take full advantage of its performance. 
 
RDMA architectures such as InfiniBand* have been highly successful in improving performance of HPC cluster 
applications by reducing latency and increasing the bandwidth of message passing operations.  RDMA architectures 
improve performance by moving the network interface closer to the application, allowing kernel bypass, direct data 
placement, and greater control of I/O operations to match application requirements.  RDMA architectures allow process 
isolation, protection, and address translation to be implemented in hardware.  These features are well-suited to the 
Intel® Xeon Phi™ coprocessor environment where host and coprocessor applications execute in separate address 
domains.  
 
CCL brings the benefits of RDMA architecture to the Intel® Xeon Phi™ coprocessor.  In contrast, without CCL, 
communications into and out of attached processors must incur an additional data copy into host memory, substantially 
impacting both message latency and achievable bandwidth.  Figure 2-22 illustrates the operation of an RDMA transfer 
with CCL and an Intel® Xeon Phi™ coprocessor add-in PCI Express* card. 
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Figure 2-22 RDMA Transfer with CCL 

CCL allows RDMA device hardware to be shared between Linux*-based host and Intel® Xeon Phi™ coprocessor 
applications.  Figure 2-23 illustrates an MPI application using CCL. 
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Figure 2-23 MPI Application on CCL 

Figure 2-23 highlights the primary software modules (bolded rounded components) responsible for CCL.  The host 
system contains a PCI Express* interface with one or more RDMA devices and one or more Intel® Xeon Phi™ coprocessor 
add-in cards.  Software modules on the host and Intel® Xeon Phi™ coprocessor communicate with each other and access 
RDMA devices across the PCI Express* bus.  The software uses a split-driver model to proxy operations across PCI 
Express* to manage RDMA device resources allocated by the Vendor Driver on the host.  These modules include the IB* 
Proxy Daemon, the IB* Proxy Server, the IB* Proxy Client, the Vendor Proxy Drivers, and SCIF. 
 
RDMA operations are performed by a programming interface known as verbs.  Verbs are categorized into privileged and 
non-privileged classes.  Privileged verbs are used to allocate and manage RDMA resources.  Once these resources have 
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been initialized, non-privileged verbs are used to perform I/O operations.  I/O operations can be executed directly to 
and from user-mode applications on the Intel® Xeon Phi™ coprocessor concurrently with host I/O operations, with 
kernel-mode bypass, and with direct data placement.  The RDMA device provides process isolation and performs 
address translation needed for I/O operations.  CCL proxies privileged verb operations between host and Intel® Xeon 
Phi™ coprocessor systems such that each Intel® Xeon Phi™ coprocessor PCI Express* card appears as if it were another 
“user-mode” process above the host IB* core stack. 
 

2.2.9.1.1 IB* Core Modifications 

The IB* core module defines the kernel-mode verbs interface layer and various support functions.  Support functions 
that allow vendor drivers to access user-mode data are: 

 ib_copy_to_udata() 
 ib_copy_from_udata() 
 ib_umem_get() 
 ib_umem_page_count() 
 ib_umem_release() 

 
These functions may be used by vendor drivers for privileged verb operations.  Since the implementation of these 
functions assumes that data is always in host system user-space, modifications allowed redirection of these functions for 
CCL.  The IB* Proxy Server overrides the default implementation of these functions to transfer data to or from the Intel® 
Xeon Phi™ coprocessor as needed.  To be effective, vendor drivers must use the support functions provided by IB* core. 
 

2.2.9.1.2 Vendor Driver Requirements 

The IB* core module provides support functions that allow Vendor Drivers to access user-mode data.  Instead of using 
the IB* core support functions, however, some Vendor Driver implementations call user-mode access routines directly. 
Table 2-15 lists drivers that require modification to work with CCL. Currently, only the Mellanox HCAs are supported. 

Table 2-15: Vendor Drivers Bypassing IB* Core for User-Mode Access 

 amso1100* cxgb3* cxgb4* ehca* ipath* mlx4* mthca* nes* qib* 

copy_to_user     X    X 

copy_from_user     X    X 

get_user_pages     X  X  X 

 
Beyond utilizing the IB* core interface support functions, there are additional requirements for enabling Vendor Drivers 
to take full advantage of CCL.  Table 2-16 shows that RDMA is divided into two distinct architectures, InfiniBand* and 
iWARP*.   
 
The underlying process for establishing a connection differs greatly between InfiniBand* and iWARP* architectures.  
Although InfiniBand* architecture defines a connection management protocol, it is possible to exchange information 
out-of-band and directly modify a queue pair to the connected state.  µDAPL implements a socket CM (SCM) protocol 
that utilizes this technique and only requires user-mode verbs access through CCL. For iWARP* architecture, however, 
this requires the rdma_cm  kernel module to invoke special iWARP* CM verbs.  Therefore, to support iWARP* devices, 
CCL must proxy rdma_cm calls between the host and the Intel® Xeon Phi™ coprocessor. 
 
As shown in Table 2-16, the IBM* eHCA* device is not supported on x86 architecture; it requires a PowerPC* system 
architecture, which is not supported by Intel® Xeon Phi™ coprocessor products. 
 
QLogic* provides ipath* and qib* drivers, which are hybrid hardware/software implementations of InfiniBand* that in 
some cases use memcpy() to transfer data and that do not provide full kernel bypass.   
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Table 2-16: Summary of Vendor Driver Characteristics 

Driver Vendor RDMA Type x86 Support Kernel Bypass 

cxgb3* Chelsio Communications* iWARP* yes yes 

cxgb4* Chelsio Communications* iWARP* yes yes 

ehca* IBM Corporation* InfiniBand* no yes 

ipath* QLogic* InfiniBand* yes no 

mlx4* Mellanox Technologies* InfiniBand* yes yes 

mthca* Mellanox Technologies* InfiniBand* yes yes 

nes* Intel Corporation iWARP* yes yes 

qib* QLogic* InfiniBand* yes no 

 

2.2.9.1.3 IB* Proxy Daemon 

The IB* Proxy Daemon is a host user-mode application.  It provides a user-mode process context for IB* Proxy Server 
calls (through the IB* core) to the underlying vendor drivers.  A user-mode process context is needed to perform 
memory mappings without modifying the existing vendor drivers.  Vendor drivers typically map RDMA device MMIO 
memory into the calling user-mode process virtual address space with ioremap(), which requires a valid user-mode 
current->mm structure pointer. 
 
An instance of the IB* Proxy Daemon is started via a udev “run” rule for each Intel® Xeon Phi™ coprocessor device added 
by the IB* Proxy Server.  The IB* Proxy Daemon is straightforward.  It immediately forks to avoid blocking the udev 
device manager thread.  The parent process exits while the child examines the action type for device add notifications; 
all other notifications are ignored and the daemon simply exits.  If a device add notification is received, the device is 
opened followed by zero byte write.  It is this call to write that provides the user-mode process context used by the IB* 
Proxy Server.  When the IB* Proxy Server relinquishes the thread, the write completes, and the IB* Proxy Daemon closes 
the device and exits. 
 

2.2.9.1.4 IB* Proxy Server 

The IB* Proxy Server is a host kernel module.  It provides communication and command services for Intel® Xeon Phi™ 
coprocessor IB* Proxy Clients.  The IB* Proxy Server listens for client connections and relays RDMA device add, remove, 
and event notification messages.  The IB* Proxy Server initiates kernel-mode IB* verbs calls to the host IB* core layer on 
behalf of Intel® Xeon Phi™ coprocessor IB* Proxy Clients and returns their results. 
 
Upon initialization, the IB* Proxy Server registers with the host IB* core for RDMA device add and remove callbacks, and 
creates a kernel thread that listens for Intel® Xeon Phi™ coprocessor connections through SCIF.  The IB* Proxy Server 
maintains a list of data structures for each side of its interface.  One list maintains RDMA device information from IB* 
core add and remove callbacks, while another list maintains connections to IB* Proxy Clients running on the Intel® Xeon 
Phi™ coprocessor.  Together these lists preserve the state of the system so that RDMA device add and remove messages 
are forwarded to IB* Proxy Clients. 
 
When an IB* Proxy Client connection is established through SCIF, the IB* Proxy Server creates a device that represents 
the interface.  The device exists until the SCIF connection is lost or is destroyed by unloading the driver.  The Linux* 
device manager generates udev events for the device to launch the IB* Proxy Daemon. The IB* Proxy Server uses the IB* 
Proxy Daemon device write thread to send add messages for existing RDMA devices to the IB* Proxy Client, and enters a 
loop to receive and process client messages.  Any RDMA device add or remove notifications that occur after the IB* 
Proxy Client SCIF connections are established are sent from the IB* core callback thread.  In addition, the IB* Proxy 
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Server forwards asynchronous event and completion queue notification messages from IB* core to IB* Proxy Clients. 
These messages are also sent from the IB* core callback thread. 
 
The IB* Proxy Server performs verbs on behalf of IB* Proxy Clients.  Received messages are dispatched to an appropriate 
verb handler where they are processed to generate a verb response message.  Verbs are synchronous calls directed to 
specific Vendor Drivers through the IB* core interface.  The IB* Proxy Server performs pre- and post-processing 
operations as required for each verb, and maintains the state required to teardown resources should a SCIF connection 
abruptly terminate.  Privileged verbs provide access to user-mode data to Vendor Drivers through IB* core support 
functions.  The IB* Proxy Server overrides the default implementation of these functions to transfer data to or from 
Intel® Xeon Phi™ coprocessors as needed. 
 

2.2.9.1.5 IB* Proxy Client 

The IB* Proxy Client is an Intel® Xeon Phi™ coprocessor kernel module.  The IB* Proxy Client provides a programming 
interface to vendor proxy drivers to perform IB* verbs calls on the host.  The interface abstracts the details of formatting 
commands and performing the communication.  The IB* Proxy Client invokes callbacks for device add, remove, and 
event notifications to registered Intel® Xeon Phi™ coprocessor Vendor Proxy Drivers. 
 
Upon initialization, the IB* Proxy Client creates a kernel thread to establish a connection to the IB* Proxy Server through 
SCIF.  The IB* Proxy Client maintains a list of data structures for each side of its interface.  One list maintains RDMA 
device information received from IB* Server add and remove messages, while another list maintains Vendor Proxy 
Drivers that have registered with the IB* Proxy Client.  Together, these lists preserve the state of the system so that 
RDMA device add and remove callbacks are forwarded to Vendor Proxy Drivers as required. 
 
When a connection to the IB* Proxy Server is established through SCIF, the IB* Proxy Client enters a loop to receive and 
process server messages.  With the exception of verb response messages, all device add, remove, asynchronous event, 
and completion queue notification messages are queued for processing on a Linux work queue.  Processing these 
messages on a separate thread is required to avoid a potential communication deadlock with the receive thread. Device 
add and remove message callbacks are matched to registered Vendor Proxy Drivers using PCI vendor and device ID 
information.  Asynchronous event and completion queue notifications are dispatched to callback handlers provided 
upon resource creation or to the Intel® Xeon Phi™ coprocessor IB* core layer. 
 
The IB* Proxy Client provides a verbs command interface for use by Vendor Proxy Drivers.  This interface is modeled 
after the IB* Verbs Library command interface provided for user-mode Vendor Libraries.  A Vendor Proxy Driver uses 
this interface to perform IB* verbs calls to the Vendor Driver on the host.  The interface abstracts the details of 
formatting commands and performing the communication through SCIF.  Verbs are synchronous calls; the calling thread 
will block until the corresponding verb response message is received to complete the operation. 
 

2.2.9.1.6 Vendor Proxy Driver 

A vendor proxy driver is an Intel® Xeon Phi™ coprocessor kernel module.  Different vendor proxy drivers may be 
installed to support specific RDMA devices.  Upon initialization, each Vendor Proxy Driver registers with the IB* Proxy 
Client for RDMA device add and remove notifications for the PCI vendor and device IDs that it supports. The Vendor 
Proxy Driver uses the programming interface provided by the IB* Proxy Client to perform kernel-mode IB* verbs calls. 
The Vendor Proxy Driver handles the transfer and interpretation of any private data shared between the vendor library 
on the Intel® Xeon Phi™ coprocessor and vendor driver on the host. 
 
A vendor proxy driver announces that a device is ready for use when it calls the IB* core ib_register_device() function.  
All initialization must be complete before this call.  The device must remain usable until the call to ib_unregister_device() 
has returned, which removes the device from the IB* core layer.  The Vendor Proxy Driver must call ib_register_device() 
and ib_unregister_device() from process context.  It must not hold any semaphores that could cause deadlock if a 
consumer calls back into the driver across these calls. 



 Page 59 

 
Upper level protocol consumers registered with the IB* core layer receive an add method callback indicating that a new 
device is available.  Upper-level protocols may begin using a device as soon as the add method is called for the device.  
When a remove method callback is received, consumers must clean up and free all resources relating to a device before 
returning from the remove method.  A consumer is permitted to sleep in the add and remove methods.  When a Vendor 
Proxy Driver call to ib_unregister_device() has returned, all consumer allocated resources have been freed. 
 
Each vendor proxy driver provides verb entry points through an ib_device structure pointer in the ib_register_device() 
call.  All of the methods in the ib_device structure exported by drivers must be fully reentrant.  Drivers are required to 
perform all synchronization necessary to maintain consistency, even if multiple function calls using the same object are 
run simultaneously.  The IB* core layer does not perform any serialization of verb function calls. 
 
The vendor proxy drivers use the programming interface provided by the IB* Proxy Client to perform IB* verbs calls to 
the vendor driver on the host.  Each vendor proxy driver is responsible for the transfer and interpretation of any private 
data shared between the vendor library on the Intel® Xeon Phi™ coprocessor and the vendor driver on the host.  
Privileged verb operations use the default IB* core support functions to transfer data to or from user-mode as needed.  
The interpretation of this data is vendor specific. 
 

2.2.9.2 OFED*/SCIF 

The Symmetric Communications Interface (SCIF) provides the mechanism for internode communication within a single 
platform, where a node is an Intel® Xeon Phi™ coprocessor device or a host processor complex. SCIF abstracts the details 
of communicating over PCI Express* (and controlling related coprocessor hardware) while providing an API that is 
symmetric between the host and the Intel® Xeon Phi™ coprocessor. 
 
MPI (http://www.mpi-forum.org) (Message-Passing Interface) on the Intel® Xeon Phi™ coprocessor can use either the 
TCP/IP or the OFED* stack to communicate with other MPI nodes. The OFED*/SCIF driver enables a hardware 
InfiniBand* Host Communications Adapter (IBHCA) on the PCI Express* bus to access physical memory on an Intel® Xeon 
Phi™ coprocessor device. When there is no IBHCA in the platform, the OFED*/SCIF driver emulates an IBHCA, enabling 
MPI applications on the Intel® Xeon Phi™ coprocessor devices in the platform. 
 
OFED*/SCIF implements a software-emulated InfiniBand* HCA to allow OFED*-based applications, such as the Intel® 
MPI Library for Intel® MIC Architecture, to run on Intel® MIC Architecture without the presence of a physical HCA. 
OFED*/SCIF is only used for intranode communication whereas CCL is used for internode communication. 
 
OFED* provides an industrial standard low-latency, high-bandwidth communication package for HPC applications, 
leveraging the RDMA-based high performance communication capabilities of modem fabrics such as InfiniBand*. SCIF is 
a communication API (sections 2.2.5.1 and 5.1) for the Intel® Many Integrated Core Architecture (Intel® MIC 
Architecture) device that defines an efficient and consistent interface for point-to-point communication between Intel® 
Xeon Phi™ coprocessor nodes, as well as between it and the host. By layering OFED* on top of SCIF, many OFED*-based 
HPC applications become readily available to Intel® MIC Architecture. 
 
The OFED* software stack consists of multiple layers, from user-space applications and libraries to kernel drivers. Most 
of the layers are common code shared across hardware from different vendors. Vendor dependent code is confined in 
the vendor-specific hardware driver and the corresponding user-space library (to allow kernel bypass). Figure 2-24 
shows the architecture of the OFED*/SCIF stack. Since SCIF provides the same API for Intel® Xeon Phi™ coprocessor and 
the host, the architecture applies to both cases.  
 
The rounded bold blocks in Figure 2-24 are the modules specific to OFED*/SCIF. These modules include the IB-SCIF 
Library, IB-SCIF Driver, and SCIF (the kernel space driver only).  
 

http://www.mpi-forum.org/
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2.2.9.2.1 IB-SCIF Library 

The IB-SCIF Library is a user-space library that is required by the IB Verbs Library to work with the IB-SCIF Driver. It 
defines a set of routines that the IB Verbs Library calls to complete the corresponding functions defined by the user-
mode IB Verbs API. This allows vendor specific optimization (including kernel bypass) to be implemented in user space. 
The IB-SCIF Library, however, does not provide kernel bypass; it relays user-mode requests to the kernel-mode driver 
through the interface exposed by the IB uverbs driver. 
 

2.2.9.2.2 IB-SCIF Driver 

The IB-SCIF Driver is a kernel module that implements a software-based RDMA device. At initialization, it sets up one 
connection between each pair of SCIF nodes, and registers to the IB core driver as an “iWARP” device (to avoid MAD 
related functions being used). For certain OFED* operations (plain RDMA read/write), data is transmitted directly using 
the SCIF RMA functions. For all other OFED* operations, data is transmitted as packets, with headers that identify the 
communication context so that a single connection between two SCIF nodes is sufficient to support an arbitrary number 
of logical connections. Under the packet protocol, small-sized data is transmitted with the scif_send() and scif_recv() 
functions; and large-sized data is transmitted with the SCIF RMA functions after a hand shaking. When both ends of the 
logical connection are on the same SCIF node (i.e. loopback), data is copied directly from the source to the destination 
without involving SCIF. 
 

2.2.9.2.3 SCIF (See also Section 5.1) 

The SCIF kernel module provides a communication API between Intel® Xeon Phi™ coprocessors and between an Intel® 
Xeon Phi™ coprocessor and the host. SCIF itself is not part of OFED*/SCIF. OFED*/SCIF uses SCIF as the only internode 
communication channel (in SCIF terminology, the host is a node, and each Intel® Xeon Phi™ coprocessor card is a 
separate node). Although there is a SCIF library that provides similar API in the user space, that library is not used by 
OFED*/SCIF. 
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Figure 2-24: OFED*/SCIF Modules 
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2.2.9.3 Intel® MPI Library for Intel® MIC Architecture 

The Intel® MPI Library for Intel® MIC Architecture provides only the Hydra process manager (PM). Each node and each 
coprocessor are identified using their unique symbolic or IP addresses. Both external (e.g., command line) and internal 
(e.g., MPI_Comm_Spawn) methods of process creation and addressing capabilities to place executables explicitly on the 
nodes and the coprocessors are available. This enables you to match the target architecture and the respective 
executables. 
 
Within the respective units (host nodes and coprocessors), the MPI processes are placed and pinned according to the 
default and eventual explicit settings as described in the Intel® MPI Library documentation. The application should be 
able to identify the platform it is running on (host or coprocessor) at runtime. 
 
The Intel® MPI Library for Intel® MIC Architecture supports the communication fabrics shown in Figure 2-25. 
 

 

Figure 2-25.  Supported Communication Fabrics 

 

2.2.9.3.1 Shared Memory 

This fabric can be used within any coprocessor, between the coprocessors attached to the same node, and between a 
specific coprocessor and the host CPUs on the node that the coprocessor is attached to. The intracoprocessor 
communication is performed using the normal mmap(2) system call (shared memory approach). All other 
communication is performed in a similar way based on the scif_mmap(2) system call of the Symmetric Communication 
Interface (SCIF). This fabric can be used exclusively or combined with any other fabric, typically for higher performance. 
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Figure 2-26. Extended SHM Fabric Structure 

The overall structure of the extended SHM fabric is illustrated in Figure 2-26. The usual shared memory (SHM) 
communication complements the SCIF SHM extension that supports multisocket platforms, each socketed 
processor having a PCI Express* interface. SCIF-based SHM extensions can be used between any host processor 
and any Intel® Xeon Phi™ coprocessor, and between any two such coprocessors connected to separate PCI 
Express* buses.  

 

2.2.9.3.2 DAPL/OFA* 

This fabric is accessible thru two distinct interfaces inside the Intel® MPI Library: the Direct Application Programming 
Library (DAPL*) and the Open Fabrics Association (OFA*) verbs [also known as Open Fabrics Association Enterprise 
Distribution (OFED*) verbs] of the respective Host Channel Adaptor (HCA). In both cases, the typical Remote Memory 
Access (RMA) protocols are mapped upon the appropriate parts of the underlying system software layers; in this case, 
scif_writeto(2) and scif_readfrom(2) SCIF system calls. 
 

2.2.9.3.3 TCP 

This fabric is normally the slowest of all fabrics available. This fabric is normally used as a fallback communication 
channel when the higher performance fabrics mentioned previously cannot be used for some reason. 
 

2.2.9.3.4 Mixed Fabrics 

All these fabrics can be used in reasonable combinations for the sake of better performance; for example,  shm:dapl, 
shm:OFA*, and shm:tcp. All the default and eventual explicit settings described in the Intel® MPI Library documentation 
are inherited by the Intel® MPI Library for Intel® MIC Architecture. This also holds for the possibility of intranode use of 
both the shared memory and RDMA interfaces such as DAPL or OFA*. 

2.2.9.3.5 Standard Input and Output 

Finally, the Intel® MPI Library for Intel® MIC Architecture supports the following types of input/output (I/O): 

 Standard file I/O. The usual standard I/O streams (stdin, stdout, stderr) are supported through the Hydra PM as 
usual. All typical features work as expected within the respective programming model. The same is true for the file 
I/O. 

 MPI I/O. All MPI I/O features specified by the MPI standard are available to all processes if the underlying file 
system(s) support it. 

 
Please consult the (Intel® MPI Library for Intel® MIC Architecture, 2011-2012) user guide for details on how to set up and 
get MPI applications running on systems with Intel® Xeon Phi™ coprocessors. 
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2.2.10 Application Programming Interfaces 

Several application programming interfaces (APIs) aid in porting applications to the Intel® Xeon Phi™ coprocessor 
system.  They are the sockets networking interface, the Message Passing Interface (MPI), and the Open Computing 
Language (OpenCL*), and are industry standards that can be found in multiple execution environments. Additionally, the 
SCIF APIs have been developed for the Intel® Xeon Phi™ coprocessor. 
 

2.2.10.1 SCIF API 

SCIF serves as the backbone for intraplatform communication and exposes low-level APIs that developers can program 
to. A more detailed description of the SCIF API can be found in Section 5. 
 

2.2.10.2 NetDev Virtual Networking 

The virtual network driver provides a network stack connection across the PCI Express* bus. The NetDev device driver 
emulates a hardware network driver and provides a TCP/IP network stack across the PCI Express* bus. The Sockets API 
and library provide parallel applications with a means of end-to-end communication between computing agents (nodes) 
that is based on a ubiquitous industry standard.  This API implemented upon the TCP/IP protocol stack simplifies 
application portability and scalability. Other standard networking services, such as NFS, can be supported through this 
networking stack. See Section 5 for more details. 
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3 Power Management, Virtualization, RAS  

The server management and control panel component of the Intel® Xeon Phi™ coprocessor software architecture 
provides the system administrator with the runtime status of the Intel® Xeon Phi™ coprocessor card(s) installed into a 
given system.  There are two use cases that are of interest.  The first is the rack-mounted server that is managed 
remotely and that relies on 3rd-party management software.  The second is a stand-alone pedestal or workstation 
system that uses a local control panel application to access information stored on the system.  Applications of this type 
are designed to execute in a specific OS environment, and solutions for both the Linux* and the Windows operating 
systems are available.  Although these implementations may utilize common modules, each must address the particular 
requirements of the target host OS. 
 
There are two access methods by which the System Management (SM)/control panel component may obtain status 
information from the Intel® Xeon Phi™ coprocessor devices. The “in-band” method uses the SCIF network and the 
capabilities designed into the coprocessor OS and the host driver; delivers Intel® Xeon Phi™ coprocessor card status to 
the user; and provides a limited ability to control hardware behavior.  The same information can be obtained using the 
“out-of-band” method.  This method starts with the same capabilities in the coprocessors, but sends the information to 
the Intel® Xeon Phi™ coprocessor card’s System Management Controller (SMC).  The SMC can then respond to queries 
from the platform’s BMC using the IPMB protocol to pass the information upstream to the user. 

3.1 Power Management (PM) 

Today’s power management implementations increasingly rely on multiple software pieces working cooperatively with 
hardware to improve the power and performance of the platform, while minimizing the impact on performance.  Intel® 
MIC Architecture based platforms are no exception; power management for Intel® Xeon Phi™ coprocessors involves 
multiple software levels. 
 
Power management for the Intel® Xeon Phi™ coprocessor is predominantly performed in the background.   The power 
management infrastructure collects the necessary data to select performance states and target idle states, while the 
rest of the Intel® Manycore Platform Software Stack (MPSS) goes about the business of processing tasks for the host OS. 
In periods of idleness, the PM software places Intel® Xeon Phi™ coprocessor hardware into one of the low-power idle 
states to reduce the average power consumption. 
 
Intel® Xeon Phi™ coprocessor power management software is organized into two major blocks. One is integrated into 
the coprocessor OS running locally on the Intel® Xeon Phi™ coprocessor hardware. The other is part of the host driver 
running on the host. Each contributes uniquely to the overall PM solution.  
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Figure 3-1. Intel® Xeon Phi™ Coprocessor Power Management Software Architecture 

3.1.1  Coprocessor OS Role in Power Management 

Because this code controls critical power and thermal management safeguards, modification of this code may void the 
warranty for Intel® Xeon Phi™ coprocessor devices used with the modified code.  
 
Power management capabilities within the coprocessor OS are performed in the kernel at ring0.  The one exception is 
that during PC6 exit, the bootloader plays an important role after loss of core power. 
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Primarily the coprocessor OS kernel code is responsible for managing: 

 Selection and setting of the hardware’s performance level (P-states) including any “Turbo Mode” capability that 
may be present. 

 Data collection used to assess the level of device utilization; device thermal and power consumption readings must 
be collected to support the P-state selection process. 

 Modified P-state selection, which is based on externally imposed limits on card power consumption. 

 Selection and setting of core idle states (C-states). 

 Data collection to assess the level of device utilization that will be used to support core C-state selection. 

 Save and restore CPU context on core C6 entry and exit.  

 Orchestrate the entry and exit of the package to Auto C3 package state in order to ensure that the coprocessor OS 
is able to meet the scheduled timer deadlines.  

 Prepare the Intel® Xeon Phi™ coprocessor for entry into the PC6-state (that is, to make sure all work items are 
completed before entering PC6-state), save and restore machine context before PC6 entry and after PC6 exit, and 
return to full operation after PC6-state exit. The Bootloader then performs reset initialization and passes control to 
the GDDR resident coprocessor OS kernel. 

 
PM services executing at Ring0 provide the means to carry out many of the PM operations required by the coprocessor 
OS.  These services are invoked at key event boundaries in the OS kernel to manage power on the card. The active-to-
idle transition of the CPU in the kernel is one such event boundary that provides an opportunity for PM services in the 
kernel to capture data critical for calculating processor utilization.  In addition, idle routines use restricted instructions 
(e.g. HLT or MWAIT) enabling processors to take advantage of hardware C-states. Other services perform or assist in 
evaluating hardware utilization, selection, and execution of target P- and C-states.  Finally, there are services that 
directly support entry and exit from a particular C-state. 
 
PC-state entry/exit refers to the dedicated execution paths or specific functions used during transition from a C0 state of 
operation to a specific PC-state (entry) or from a specific PC-state back to the C0 state (exit).  To minimize the time 
required in transition, these dedicated execution paths must be tailored to the specific hardware need of the target PC-
state.  Minimizing transition times enables PC-states to be used more frequently, thus reducing lower average power 
consumption without any user-perceived impact on performance. 

3.1.2 Bootloader Role in Power Management 

The BootLoader is put into service during PC6 exit.  This PC6-state lowers the VccP voltage to zero.  As a result, the Intel® 
Xeon Phi™ coprocessor cores begin code execution at the reset vector (i.e. FFFF_FFF0h) when the voltage and clocks are 
restored to operational levels. However, unlike cycling power at the platform level or at a cold reset, an abbreviated 
execution path designed specifically for PC6 state exit can be executed.  This helps minimize the time required in 
returning Intel® Xeon Phi™ coprocessor to full operation and prevents a full-scale boot process from destroying GDDR 
contents that are retained under self-refresh.  These shortened execution paths are enabled in part by hardware state 
retention on sections that remain powered and through the use of a self-refresh mechanism for GDDR memory devices. 
 

3.1.3 Host Driver Role in Power Management 

The Host driver plays a central role in power management.  Its primary power management responsibilities are: 

 To monitor and manage the Intel® Xeon Phi™ coprocessor package idle states. 

 To address server management queries.   

 To drive the power management command/status interface between the host and the coprocessor OS. 

 To interface with the host communication layer.   
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3.1.4 Power Reduction 

The PM software reduces card power consumption by leveraging the Intel® Xeon Phi™ coprocessor hardware features 
for voltage/core frequency scaling (P-states), core idle states, and package idle states. By careful selection of the 
available P-states and idle states, the PM software opportunistically reduces power consumption without impacting the 
application performance. For all the idle and P-states, software follows a two-step approach:  state selection followed by 
state control or setting.  The architecture reflects this by grouping the modules as either state-selection or state-setting 
modules.  
 

3.1.4.1 P-State Selection 

The PM software uses Demand Based Scaling (DBS) to select the P-state under which the cores operate. “Demand” 
refers to the utilization of the CPUs over a periodic interval. An increase in CPU utilization is seen as a signal to raise the 
core frequency (or to reduce the P-state) in order to meet the increase in demand. Conversely, a drop in utilization is 
seen as an opportunity to reduce the core frequency and hence save power. The primary requirement of the P-state 
selection algorithm is to be responsive to changes in workload conditions so that P-states track the workload 
fluctuations and hence reduce power consumption with little or no performance impact.  Given this sensitivity of the P-
state selection algorithm to workload characteristics, the algorithm undergoes extensive tuning to arrive at an optimum 
set of parameters. The software architecture allows for extensive parameterization of the algorithms and even the 
ability to switch algorithms on the fly. Some of the parameters that can be changed to affect the P-state selection are:  

 Evaluation period over which utilization values are calculated. 

 Utilization step size over which a P-state selection is effective. 

 P-state step size that controls the P-state gradient between subsequent selections. 

 Guard bands around utilization thresholds to create a hysteresis in the way the P-states are increased and 
decreased. This prevents detrimental ping-pong behavior of the P-states.  

 
The architecture supports user-supplied power policy choices that can map to a set of predefined parameters from the 
list above. Other variables such as power budget for the Intel® Xeon Phi™ coprocessor hardware, current reading, and 
thermal thresholds can factor into the P-state selection either as individual upper limits that cause the P-states to be 
throttled automatically, or can be combined in more complex ways to feed into the selection algorithm.   
 
The coprocessor OS has exclusive responsibility for P-state selection. The P-state selection module contains the 
following routines:  

 Initialization 

 Evaluation task 

 Notification handler 
 
The P-state selection module has interfaces to the core coprocessor OS kernel, the P-state setting module, and the PM 
Event Handler. The architecture keeps this module independent of the underlying hardware mechanisms for setting P-
states (i.e., detecting over-current or thermal conditions, etc.).   
 
The P-state selection module registers a periodic timer task with the coprocessor OS core kernel. The “evaluation 
period” parameter decides the interval between consecutive invocations of the evaluation task. Modern operating 
system kernels maintain per-CPU running counters that keep track of the cumulative time that the CPU is idle, that the 
CPU executes interrupt code, that the CPU executes kernel code, and so on.  The evaluation task wakes up every 
evaluation time period, reads from these per-CPU counters the total time the that CPU was idle during the last 
evaluation window, and calculates the utilization for that CPU.  For the purpose of calculating the target P-state, the 
maximum utilization value across all CPUs is taken. Since the evaluation task runs in the background while the CPUs are 
executing application code, it is important that software employs suitable methods to read an internally consistent value 
for the per-CPU idle time counters without any interference to code execution on the CPUs. 
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Once the maximum utilization value (as a percentage of evaluation period) across all CPUs is computed, the evaluation 
task has to map this value to a target P-state. There are a number of ways this can be accomplished.  Figure 3-2 shows 
one way this can be done. Thresholds ThD1 and ThD2 provide the hysteresis guard band within which the P-state 
remains the same. The goal of this algorithm is to raise P-states (that is, lower core frequency) progressively till the 
maximum utilization value is increased to a configurable threshold value (THD2) value. As workload demand increases 
and the maximum utilization increases beyond this threshold, the algorithm decreases the target P-state (increase core 
frequency) still keeping within power and thermal limits. The threshold values, P-state increase and decrease step size, 
are all parameters that either map to a policy or set explicitly.   
 
The P-state selection module has to handle notifications from the rest of the system and modify its algorithm 
accordingly. The notifications are:  

 Start and stop thermal throttling due to conditions such as CPUHOT. 

 Changes to the card power budget. 

 Thermal threshold crossings. 

 Changes to power policy and P-state selection parameters. 
 
The notifications bubble up from the PM Event Handler and can be totally asynchronous to the evaluation task.  The 
effect of these notifications can range from modifications to P-state selection to a complete pause or reset of the 
evaluation task.  
 
The host driver generally does not play an active role in the P-state selection process. However, the host driver 
interfaces with the coprocessor OS P-state selection module to get P-state information, to set or get policy, and to set or 
get parameters related to P-state selection.   
 

3.1.4.2 P-State Control 

The P-state control module implements the P-states on the target Intel® Xeon Phi™ coprocessor hardware. The process 
of setting P-states in the hardware can vary between Intel® Xeon Phi™ coprocessor products. Hence the P-state module, 
by hiding the details of this process from other elements of the PM software stack, makes it possible to reuse large parts 
of the software between different generations of Intel® Xeon Phi™ coprocessors. 
 
P-state control operations take place entirely within the coprocessor OS. The P-state control module has the following 
main routines: 

 P-state table generation routine 

 P-state set/get routine 

 SVID programming routine 

 Notifier routine 
 
The P-state control module exports:  

 Get/set P-state 

 Register notification 

 Read current value 

 Set core frequency/voltage fuse values 
 
On Intel® Xeon Phi™ coprocessor devices (which do not have an architecturally defined mechanism to set P-states, like 
an MSR write), the mapping of P-states to core frequency and voltage has to be generated explicitly by software and 
stored in a table. The table generation routine takes as parameters: 

 Core frequency and voltage pairs for a minimal set of guaranteed P-states (Pn, P1 and P0) from which other pairs 
can be generated using linear interpolation. 

 Core frequency step sizes for different ranges of the core frequency. 
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 Mapping between core frequency value and corresponding MCLK code. 

 Mapping between voltage values and SVID codes. 
 
There are hardware-specific mechanisms by which these P-states are made available to the  coprocessor OS. In the 
Intel® Xeon Phi™ coprocessor, these values are part of  a preset configuration space that is read by the bootloader and 
copied to flash MMIO registers and read by the P-state control module. This routine exports the “Set core 
frequency/voltage fuse configuration” so that the coprocessor OS flash driver that initializes the MMIO registers 
containing the fuse configuration can store them before they get initialized. 
 
The P-state Get/Set routine uses the generated P-state table to convert P-states to core frequency and voltage pairs and 
vice versa. 
 
Other parts of the coprocessor OS may need to be notified of changes to core frequency. For example parts of the 
coprocessor OS that use the Timestamp Counter (TSC) as a clock source to calculate time intervals must be notified of 
core frequency changes so that the TSC can be recalibrated. The notifier routine exports a “register notification” 
interface so that other routines in the coprocessor OS can call-in to register for notification. The routine sends a 
notification any time a core frequency change occurs as a result of a P-state setting. 

3.1.4.3 Idle State Selection 

Prudent use of the core and package idle states enables the Intel® Xeon Phi™ coprocessor PM software to further 
reduce card power consumption without incurring a performance penalty. The algorithm for idle state selection 
considers two main factors:  the expected idle residency and the idle state latency. In general, the deeper the idle state 
(and hence the greater the power saving), the higher  the latency. The formula for deciding the particular idle state to 
enter is of the form:      
 

Expected idle residency >= C * (ENTRY_LATENCYCx + EXIT_LATENCYCx) 

 
Where: 

- C  is a constant that is always greater than one and determined by power policy. It can also be set 
explicitly.  

- ENTRY_LATENCYCx  is the time required to enter the Cx idle state. 
- Exit_LATENCYCx  is the time required to exit the Cx idle state. 

 
The comparison is performed for each of the supported idle states (Cx) and the deepest idle state that satisfies this 
comparison is selected as the target idle state.  If none of the comparisons are successful, then the target idle state is set 
to C0 (no idle state). 
 
The expected idle residency for a CPU is a function of several factors; some of which are deterministic such as 
synchronous events like timers scheduled to happen on the CPU at certain times in the future (that will force the CPU 
out of its idleness) and some of which are nondeterministic such as interprocessor interrupts.  
 
In order to keep the idle-state selection module independent of the specific Intel® Xeon Phi™ coprocessor, the PM 
software architecture includes data structures that are used to exchange information between the idle-state selection 
and hardware-specific idle state control modules, such as the:  

 Number of core idle states supported by the hardware 

 Number of package idle states supported for each core and package idle state 

 Name of the state (for user-mode interfaces)  

 Entry and exit latency 

 Entry point of the routine to call to set state 

 Average historical residency of state 
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 TSC and LAPIC behavior in this idle state 

 Bitmasks marking core CPUs that have selected this idle state  
 
The idle-state control module fills in most of the information in these data structures. 
 

3.1.4.3.1 Core Idle State Selection 

The Intel® Xeon Phi™ coprocessor supports a Core C1 idle state and a deeper Core C6 idle state. Both core idle states are 
a logical AND operations of the individual idle states of the CPUs that make up the core. While entry and exit into the 
core C1 state needs no software intervention (except the individual CPUs executing a HALT), Core C6 entry and exit 
require the CPU state to be saved/restored by software. Hence a deliberate choice has to be made by software running 
on the CPU whether to allow the core (of which the CPU is part ) transition to Core C6 state.  
 

3.1.4.3.2 The coprocessor OS Role in Core Idle State Selection 

Core idle state selection happens entirely in the  coprocessor OS. As mentioned before, modern operating systems have 
an architecturally defined CPU idle routine. Entry to and exit from idleness occurs within this routine. The core idle-
selection module interfaces with this routine to  select the core idle state on entry and to collect idleness statistics on 
exit (to be used for subsequent idle state selections).  The core idle state selection module has the following main 
routines: 

 Core idle select   

 Core idle update 

 Core idle get and set parameter 
 
Figure 3-2 shows the Core C6 selection process in the Intel® Xeon Phi™ coprocessor. 
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3.1.4.3.2.1 Core Idle Select  

This routine interfaces to the coprocessor OS CPU idle routine and gets control before the CPU executes the idle 
instruction (HALT in the case of Intel® Xeon Phi™ coprocessor).  The core idle select routine runs the algorithm to 
compute the expected idle residency of the CPU. The main components in the idle residency calculation are the next 
timer event time for the CPU and the historic idle residency values for the CPU. 
 
In the case of core C6 for the Intel® Xeon Phi™ coprocessor, the algorithm running on the last CPU in the core to go idle 
can optionally estimate the idle residency of the core by taking into account the expected idle residency of other idle 
CPUs in the core and the time elapsed since the other CPUs went idle.   
 

3.1.4.3.2.2 Core Idle Update 

This routine interfaces to the coprocessor OS CPU idle routine and gets control after the CPU wakes up from idle. It 
records the actual residency of the CPU in the idle state for use in the computation of the historic idle residency 
component in the core idle selection. 
 

3.1.4.3.2.3 Core Idle Get/Set Parameter 

This routine provides interfaces to user-mode programs that allow them to get and set core idle state parameters such 
as the latency constant C used in the equation to determine target core idle state.  
 

3.1.4.3.3 Package Idle State Selection 

The Intel® Xeon Phi™ coprocessor supports package idle states such as Auto-C3 (wherein all cores and other agents on 
the ring are clock gated), Deeper-C3 (which further reduces the voltage to the package), and Package C6 (which 
completely shuts off power to the package while keeping card memory in self-refresh). Some of the key differences 
between the package idle states and the core (CPU) idle states are: 

 One of the preconditions for all package idle states is that all the cores be idle. 

 Unlike P-states and core idle states, package state entry and exit are controlled by the Intel® Xeon Phi™ 
coprocessor host driver (except in Intel® Xeon Phi™ coprocessor Auto-C3 where it is possible to enter and exit the 
idle state without host driver intervention).    

 Wake up from package idle states requires an external event such as PCI Express* traffic, external interrupts, or 
active intervention by the Intel® Xeon Phi™ coprocessor driver. 

 Idle residency calculations for the package states take into account the idle residency values of all the cores.  

 Since the package idle states cause the Timestamp counter (TSC) and the local APIC timer to freeze, an external 
reference timer like the SBox Elapsed Time Counter (ETC) on the Intel® Xeon Phi™ coprocessor can be used, on 
wake up from idle, to synchronize any software timers that are based on the TSC or local APIC.  

     

3.1.4.3.4 The coprocessor OS Role in Package Idle State Selection 

The coprocessor OS plays a central role in selecting package idle states. The package idle state selection is facilitated in 
the coprocessor OS by three main routines: 

 package idle select 

 package idle update 

 get/set package idle parameter 
 

3.1.4.3.4.1 Package Idle Select 

The last CPU that is ready to go idle invokes the package idle-select routine. As with the core idle state selection 
algorithm, the package idle-select algorithm bases its selection on the expected idle residency of the package and the 
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latency of the package idle state. The expected idle residency is calculated using the earliest scheduled timer event 
across all cores and the historical data on package idleness. 
 
On the Intel® Xeon Phi™ coprocessor, the coprocessor OS selects the PC3 and PC6 package states. Figure 3-4 shows the 
software flow for package idle-state selection. 
 
While selecting a package idle state, the coprocessor OS PM software can choose to disregard certain scheduled timer 
events that are set up to accomplish housekeeping tasks in the OS. This ensures that such events do not completely 
disallow deeper package idle states from consideration. It is also possible for the coprocessor OS package idle-state 
selection algorithm to choose a deeper idle state (such as PC6), and still require that the package exit the deep idle state 
in order to service a timer event. In such cases, the coprocessor OS informs the host PM software not only the target 
package idle-state selected but also the desired wake up time from the idle state. 
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3.1.4.3.4.2 Package Idle Update 

This routine is invoked upon wake up from a package idle state. It records the actual time that the package was idle, 
which is then used in the idle residency calculation. Since the TSC and the local APIC timers freeze during a package idle 
state, this routine uses an external clock (such as the SBox ETC) on Intel® Xeon Phi™ coprocessor cards to measure the 
package idle time. 

3.1.4.3.5 Host Driver Role in Package Idle State Selection 

The PM task in the host driver plays a key role in the package idle-state selection process. Though the coprocessor OS 
selects the package idle state based on its assessment of the expected idle residency, there are other reasons that might 
cause the host PM task to modify this selection. Some of these are: 

  The coprocessor OS selects PC3 based on the expected residency of the cores. However, PC3 depends on the 
idleness of both the core and the uncore parts of the package. So, it is possible for a PC3 selection by the 
coprocessor OS to be overridden by the host driver if it determines that some part of the uncore chain is busy.  

 If the idle residency estimate by the coprocessor OS for a certain package idle state turns out to be too 
conservative and the package stays in the selected idle state longer than the estimated time, the host driver can 
decide to select a deeper idle state than the one chosen by the coprocessor OS.  

 Package idle states, such as DeepC3 and PC6 on the Intel® Xeon Phi™ coprocessor, require the active intervention 
of the host driver to wake up the package so that it can respond to PCI Express* traffic from the host. Therefore, 
these deeper idle states might be unsuitable in scenarios where the card memory is being accessed directly by a 
host application that bypasses the host driver. The host driver should detect such situations and override the 
deeper idle-state selections. 

 

3.1.4.3.6  Coprocessor OS-to-Host Driver Interface for Package Idle Selection 

The coprocessor OS and the host driver use two main interfaces to communicate their package idle state selections: 

 The coprocessor OS-host communication interface through SCIF message. 

 The PM state flags such as the µOSPMState and hostPMState. In the Intel® Xeon Phi™ coprocessor, these flags are 
implemented as registers in the MMIO space. The µOSPMState is written by the coprocessor OS to indicate its state 
selection, and read by the host driver and vice versa for the hostPMState flag.   

 
The SCIF API and the package idle control API are implemented so as to be hardware independent. 
 

3.1.4.4 Idle State Control 

The idle state control function sets the cores (or the package) to the selected idle state. While controlling the core’s idle 
state is primarily handled by the coprocessor OS, controlling the package idle state requires co-ordination between the 
host driver and the bootstrap software.  
 

3.1.4.4.1  Coprocessor OS Role in Idle State Control 

The idle-state control module in the coprocessor OS implements the selected core or package idle state on the target 
Intel® Xeon Phi™ coprocessor. It hides all the hardware details from the selection module. It initializes the data 
structures that it shares with the idle-state selection module with information on idle states specific to the Intel® Xeon 
Phi™ coprocessor. The interface to the selection module is mainly through these data structures. Table 3-1 lists some 
low-level routines in this module that are common to all idle states.    
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Table 3-1. Routines Common to All Package Idle States 

Routine  Description 

Save_CPU_State Saves the register state of the selected logical processor. The CPU state includes 
basic program execution registers, x87 FPU registers, control registers, memory 
management registers, debug registers, memory type range registers (MTRR), and 
machine specific registers (MSR). The VPU register context is also saved. 

Restore_CPU_State Restores the register state that was saved by the Save_CPU_State routine.  

Save_Uncore_State Saves the Intel® Xeon Phi™ coprocessor hardware states that are not associated 
with CPUs (e.g. SBox).  This function is used to preserve the uncore context in 
preparation for or during the PC6 entry sequence.  

Restore_Uncore_State Restores the Intel® Xeon Phi™ coprocessor hardware state that was saved by the 
Save_Uncore_State routine. 

 

3.1.4.4.2 Core Idle State Control in the Coprocessor OS 

There are two routines that control the idle state of the core (Core C6):  CC6_Enter and CC6_Exit.   
 

3.1.4.4.2.1 CC6_Enter 

The CC6_Enter routine starts when Core C6 is selected to prepare the CPU for a CC6 entry. However, if one or more 
other CPUs either are non-idle or did not enable C6, then the core might not enter the C6 idle state. The return from this 
routine to the caller (that is, to the CPU idle routine) looks exactly the same as a return from a Core C1 (return from 
HALT). The only way software using an Intel® Xeon Phi™ coprocessor can figure out that a CPU entered Core C6 is when 
the CPU exits Core C6 and executes its designated CC6 exit routine. The essential sequence of actions in this routine is as 
follows: 

1. Start CC6_Enter. 
2. Reset the count of CPUs that have exited CC6 (only for last CPU in core going idle). 
3. Save CR3. 
4. Switch page tables to the identity map of the lower 1MB memory region. 
5. Run Save_CPU_State. 
6. Enable CC6 for the selected CPU. 
7. Enable interrupt and HALT. 

 
The real mode trampoline code runs in lower memory (first MB of memory), and the CC6_Enter entry point is an address 
in this memory range. The idle-state control driver copies the trampoline code to this memory area during its 
initialization. It is also important to make sure that this memory range is not used by the bootloader program.  
 

3.1.4.4.2.2 CC6_Exit 

When cores exit from CC6 (as a result of  an interrupt to one or more CPUs in the core), they come back from reset in 
real mode and start executing code from an entry point that is programmed by the Enable_CC6 routine. The essential 
sequence of actions in the CC6 exit routine is as follows:   

1. Start CC6_Exit. 
2. Run trampoline code to set up for 64-bit operation. 
3. Detect the CPU number from the APIC identification number. 
4. Restore the CPU state. 
5. Restore CR3. 
6. Increment the count of CPUs in the core that have exited CC6. 
7. Enable interrupt and HALT.    
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As shown in Figure 3-5, it is possible for a CPU to exit CC6 while remaining HALTED and to go back to CC6 when the CC6 
conditions are met again. If a CPU stays HALTED between entry and exit from CC6,  it is not required that the CPU state 
be saved every time it transitions to CC6.  
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Figure 3-5 CPU Idle State Transitions 

 

3.1.4.4.3 Package Idle State Control  

 
Table 3-2 Package Idle State Behavior in the Intel® Xeon Phi™ Coprocessor 

Package  
Idle State 

Core  State 
Uncore 
State 

TSC/LAPIC C3WakeupTimer PCI Express* Traffic 

PC3 Preserved Preserved Frozen 
On expiration,  
package exits PC3 

Package exits PC3 

Deep C3 Preserved Preserved Frozen No effect Times out 

PC6 Lost Lost Reset No effect Time out 

 
As shown in Table 3-2, the package idle states behave differently in ways that impact the PM software running both on 
the card as well as on the host. The idle-state control driver handles the following key architectural issues:  

 LAPIC behavior: The LAPIC  timer stops counting forward when the package is in any idle state. Modern operating 
systems support software timers (like the POSIX timer) that enable application and system programs to schedule 
execution in terms of microseconds or ticks from the current time. On the Intel® Xeon Phi™ coprocessor, due to the 
absence of platform hardware timers, the LAPIC timer is used to schedule timer interrupts that wake up the CPU to 
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service the software timer requests.  When the LAPIC timer stops making forward progress during package idle 
states, timer interrupts from the LAPIC are suspended. So, the software timers cannot be serviced when the 
package is in an idle state. In order for the operating system to honor such software timer requests, the package 
idle state control software enlists the services of hardware timers, such as the C3WakeupTimer in the Intel® Xeon 
Phi™ coprocessor, or the host driver to wake up the card in time to service the scheduled timers. 

 TSC behavior: On the  Intel® Xeon Phi™ coprocessor, the TSC is used as the main clock source to maintain a running 
clock of ticks in the system. When the TSC freezes during package idle states, the software must  be able to rely on 
an external reference clock  to resynchronize the TSC based clock upon exit from the package idle state. On the 
Intel® Xeon Phi™ coprocessor, the SBox Elapsed Time Counter can be used for this purpose. 

 Effect of PCI Express* traffic:  While PCI Express* traffic  brings the card out of a Package C3 idle state, it does not 
do so for deeper idle states such as DeepC3 or PC6.  Also, the transition to DeepC3 or PC6 from PC3 does not 
happen automatically but requires active intervention from host software. Consequently, when the host driver 
places the card in one of these deep package idle states, it has to ensure that all subsequent PCI Express* traffic to 
the card be directed through the host driver. This makes it possible for the host driver to bring the card out of one 
of these deeper package idle states so that  the card can respond to the subsequent PCI Express* traffic. 

 Core and uncore states: While the core and uncore states are preserved across PC3 and DeeperC3 idle states entry 
and exit, they are not preserved for PC6. So, when the host driver transitions the package to PC6 from PC3 or 
DeepC3, it has to wake up the card and give the coprocessor OS a chance to save the CPU state as well as to flush 
the L2 cache before it puts the package in PC6 idle state.           

      
Package idle state control is implemented both in the coprocessor OS and in the host driver.          
 

3.1.4.4.3.1 Package Idle State Control in the Coprocessor OS 

The coprocessor OS role in package idle-state control is limited to the PC3 and PC6 idle states. DeepPC3 is controlled by 
the host driver, and the coprocessor OS has no knowledge of it. Coprocessor OS package idle state control mainly 
consists of the following activities:   

 Prepare the coprocessor OS and the hardware to wake up from idle state in order to service timer interrupts. 

 Save the core/uncore state and flush L2 cache, when necessary. 

 On exit from package idle state reprogram LAPIC timers and synchronize timekeeping using an external reference 
clock such as the ETC on the Intel® Xeon Phi™ coprocessor. 

 Send and receive messages to the host driver, and update the µOSPMstate flag with package idle state as seen 
from the coprocessor OS. 

 

3.1.4.4.3.2 PC3_Entry  

This function handles the package C3 idle state entry. As shown in Figure 3-6, this function is called from the core idle-
state control entry function of the last CPU in the system to go idle. The core idle-selection module selects the package 
idle state in addition to the CPU idle state for the last CPU going idle and calls the core idle-state control entry function. 
The sequence of actions this function executes is: 

1. Start PC3_Entry. 
2. The last CPU going idle sets up the C3WakeupTimer so that the package will exit PC3 in time to service the earliest 

scheduled timer event across all CPUs. 
3. Record current tick count and reference clock (ETC) time.     
4. Set µOSPMState flag to PC3. 
5. Send message to host driver with target state and wake up time. 
6. CPU HALTS.  
 
There might be conditions under which the time interval to the earliest scheduled timer event for the package is larger 
than what can be programmed into the C3WakeupTimer. In such cases the coprocessor OS relies on the host driver to 
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wake up the package. The package idle-state readiness message that the coprocessor OS sends to the host PM software 
could optionally include wake up time. The host driver will wake up the package at the requested time.    
 

3.1.4.4.3.3 PC3_Exit 

An exit from the package C3 idle state happens when the C3WakeupTimer expires and exits from PC3 or when PCI 
Express* traffic arrives and causes the package to exit PC3. Figure 3-6 illustrates the former. It is important to remember 
that in either case, when the package exits PC3, it triggers the GoalReached interrupt when the core frequency reaches 
the set value. One possible sequence of events that can happen in this case is as follows: 

1. The C3WakeupTimer expires and the package exits PC3. 
2. The GoalReached interrupt wakes up BSP. 
3. The BSP processes PC3 exit. 
 
Although the package is set up for PC3 and all the CPUs are HALTED, there is no guarantee that the package actually 
transitioned to PC3 idle. So, any CPU that wakes up after PC3_Entry is executed, must check to make sure that a 
transition to PC3 idle did indeed take place.  One way that this can be done is through the hostPMState flag that is set by 
the host when it confirms that the package is in PC3 idle.    
 
The sequence of steps taken by the PC3_Exit routine is as follows: 

1. Start PC3_Exit. 
2. Check the hostPMState flag to confirm transition to PC3. 
3. If the hostPMState flag is not set, then set the µOSPMState flag to PC0. 
4. Send UOS_PM_PC3_ABORT message to the host driver. 
5. Return . 
6. Read the ETC and calculate package residency in AutoC3. 
7. Update kernel time counters. 
8. Send AutoC3_wakeup IPI to all APs. 
9. Reprogram the Boot Strap Processor (BSP) LAPIC timer for earliest timer event on BSP. 
10. Set the µOSPMState flag to PC0. 
11. Send UOS_PM_PC3_WAKEUP message to the host driver. 
12. Return. 
 
The sequence of steps taken by the AC3_wakeup_IPI _handler (on all Application Processors (APs)) is: 

1. Reprogram LAPIC timer for earliest timer event on CPU 
2. Return 
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Figure 3-6. Package C-state Transitions 

 

3.1.4.4.3.4 PC6_Entry 

The coprocessor OS runs the PC6_Entry  routine  either when the coprocessor OS idle-state selection module selects PC6 
as the target package idle state or when the host PM software decides that the package has been in PC3 long enough to 
warrant a deeper idle state like PC6.  In the latter case, the host software sends a PC6_Request message to the 
coprocessor OS that invokes the PC6_Entry routine.  Architecturally, the PC6 idle state is similar to the APCI S3 suspend 
state, wherein the memory is in self refresh while the rest of the package is powered down.  The sequence of actions 
this routine executes consists of:  

1. PC6_Entry (on BSP) 
2. Save CR3. 
3. Switch page tables (to identity map for lower 1MB memory region). 
4. Send C6_Entry IPI to all APs. 
5. Wait for APs to finish PC6 Entry preparation. 
6. Save uncore context to memory. 
7. Record the ETC value and current tick count. 
8. Save BSP context to memory. 
9. Flush cache. 
10. Set the µOSPMState flag to PC6. 
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11. Send PC6 ready message to host. 
12. HALT BootStrap Processor (BSP). 
Or  

13. PC6 Entry (on AP). 
14. Save CR3. 
15. Switch page tables (to identity map for lower 1MB memory region). 
16. Save AP context to memory. 
17. Set flag to mark PC6 Entry completion. 
18. Flush cache. 
19. HALT AP. 
 
The PC6 entry implementation takes advantage of the fact that when the PC6 selection is made, it is more than likely 
that most of the cores are already in Core C6, and therefore have already saved the CPU context. If the L2 cache is 
flushed before the last CPU in every core prepares to go to Core C6, then the PC6 Entry algorithm might not  need to 
wake up CPUs (from core C6) only to flush the cache. This reduces the PC6 entry latencies and simplifies the design, but 
the cost of doing a L2 cache flush every time a core is ready for CC6 has to be factored in. 
 

3.1.4.4.3.5 PC6 Exit 

The host driver PM software is responsible for bringing the package out of a PC6 idle state when the host software 
attempts to communicate with the card. The implicit assumption in any host-initiated package idle-state exit is that after 
the card enters a deep idle state, any further communication with the card has to be mediated through the host PM 
software. Alternatively, the host PM software can bring the card out of a package idle state if the coprocessor OS on the 
card has requested (as part of its idle entry process) that it be awakened after a certain time interval.         
 
The sequence of actions this routine executes consists of: 

1. PC6_Exit (BSP). 
2. Begin BSP execution from the reset vector because of the VccP transition from 0 to minimum operational 

voltage and the enabling of MCLK. 
3. BootLoader determines that this is a PC6 Exit (as opposed to a cold reset). 
4. BootLoader begins execution of specific PC6_Exit sequence. 
5. Bootstrap passes control to  _PC6_Exit_ entry point in GDDR resident  coprocessor OS. 
6. BSP restores processor context. 
7. BSP restores uncore context. 
8. BSP reads the  SBox ETC and updates kernel time counters. 
9. BSP wakes up APs. 
10. BSP sets µOSPMState to PC0. 
11. BSP sends  coprocessor OS_Ready message to host driver . 

Or  

1. PC6_Exit (AP). 
2. AP begins execution of trampoline code and switches to 64 bit mode. 
3. AP restores processor state. 
4. Signals PC6_Exit complete to BSP. 
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Figure 3-7 Package C6 Entry and Exit Flow 

 

3.1.4.4.3.6 Bootloader Role in Idle State Control 

The bootloader program co-ordinates the exit from PC6 as well as facilitating the waking up of cores from CC6. The 
Bootloader interfaces with both the coprocessor OS and the host Intel® MPSS driver to enable these transitions. The 
main interfaces are: 

 Interface to reserve memory in the first megabyte of GDDR to install Core C6 wake up code 

 Interface with host Intel® MPSS driver to obtain PC6 entry point into the coprocessor OS kernel. 

 Interface with the host Intel® MPSS driver to detect a PC6 exit as against a cold reset.   
 
One Intel® Xeon Phi™ coprocessor implementation option is for the host Intel® MPSS driver to send the PC6 exit entry 
point as part of a BootParam structure that is located in a region of GDDR memory at a well-known address between the 
host Intel® MPSS driver and the Bootloader.  
 
The hostPMState MMIO register could be used by the Bootloader to distinguish a PC6 exit from cold reset. 
 
Every Intel® Xeon Phi™ coprocessor core has a block of registers that is initialized by the Bootloader, and then locked 
against subsequent write access for security reasons. However, since these register contents are lost during CC6, the 
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Intel® Xeon Phi™ coprocessor reserves a block of SBox MMIO registers that are used to maintain a copy of these secure 
register contents. It is the Bootloader’s responsibility to initialize this block with the contents of the control registers 
during the boot up process. Subsequently, when a core wakes up from CC6, the µcode copies the contents of the SBox 
register block back into the core registers.  
 

3.1.5 PM Software Event Handling Function 

One of the key roles for the Intel® MIC Architecture PM software is the handling of power and thermal events and 
conditions that occur during the operation of the Intel® Xeon Phi™ coprocessor.  These events and conditions are 
handled primarily by the coprocessor OS PM Event Handler module. The number and priority of these events are 
hardware dependent and implementation specific.  However, these events fall into two basic categories:   proactive and 
reactive. 
 
For example, the Intel® Xeon Phi™ coprocessor has the ability to notify the coprocessor OS when the die temperature 
exceeds programmed thresholds, which allows the software to act proactively.  On the other hand, the coprocessor OS 
software acts reactively when an OverThermal condition occurs in the die by automatically throttling the core frequency 
to a predetermined lower value and interrupting the CPU. 
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Table 2-1 lists the events and conditions that the coprocessor OS should handle for the Intel® Xeon Phi™ coprocessor, 
their source, indications, and suggested software response. 
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Table 3-3. Events and Conditions Handled by the Coprocessor OS 

Event or Condition Source Indication Suggested Coprocessor OS 
Action  

Remarks 

CPUHOT Raised either 
by the 
sensors in the 
die, the VR, 
or the SMC 

TMU interrupt 
and MMIO 
status register  

Hardware automatically 
throttles core frequency to a 
low value. Coprocessor OS 
resets its P-state evaluation 
algorithm, programs 
frequency and voltage to 
correspond to configurable 
values and enables the 
GoalReached interrupt.   

When the hardware 
exits the CPUHOT 
condition, it locks on 
to the frequency 
programmed by the 
coprocessor OS, and 
raises the 
GoalReached 
interrupt. 
Coprocessor OS 
restarts the P-state 
evaluation algorithm.  

SW Thermal 
threshold 1 crossed 
on the way up. 

TMU  TMU interrupt 
and MMIO 
status register  

 Coprocessor OS sets max P-
state to P1. The new max P-
state takes effect during the 
next P-state selection pass. 

 

SW Thermal 
threshold 2 crossed 
on the way up. 

TMU TMU interrupt 
and MMIO 
status register  

 Coprocessor OS sets max P-
state to a configurable value 
between P1 and Pn. Affects 
P-state change immediately.   

 

SW Thermal 
threshold 1 crossed 
on the way down. 

TMU  TMU interrupt 
and MMIO 
status register  

 Coprocessor OS sets max P-
state to P0 (turbo). The new 
max P-state takes effect 
during the next P-state 
selection pass. 

 

PWRLIMIT SMC I2C interrupt    Coprocessor OS reads SMC 
power limit value and sets 
low and high water mark 
thresholds for power limit 
alerting.  

SMC will interrupt 
the coprocessor OS 
when it has a new 
power limit setting 
from the platform.  

PWRALERT SMC TMU interrupt, 
MMIO status 
register   

Raised when the card power 
consumption crosses either 
the low or the high threshold 
set by the coprocessor OS. 
The coprocessor OS adjusts 
P-state accordingly. 

 

Over current limit SVID   Coprocessor OS P-state 
evaluation algorithm reads 
SVID current output and 
compares it to preset limits 
for modifying the P-state. 

 

Fan speed SMC MMIO register  Coprocessor OS P-state 
evaluation algorithm reads 
fan speed and compares it to 
preset limits for modifying 
the P-state. 
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3.1.6 Power Management in the Intel® MPSS Host Driver 

The host driver power management (PM) component is responsible for performing PM activities in cooperation with the 
coprocessor OS on an Intel® Xeon Phi™ coprocessor.  These activities are performed after receiving events or 
notifications from the control panel, the coprocessor OS, or the host operating system. The PM component in the host 
driver and the PM component in the coprocessor OS communicate using the SCIF.  
 
The Power Management for the host driver falls into four functional categories: 

 Control panel (Ring3 module) interface  

 Host OS power management 

 Host-to-coprocessor OS communication and commands  

 Package states handling 
 

3.1.6.1 PM Interface to the Control Panel 

The Host driver implements services to collect user inputs. It is an interface (e.g.,  Sysfs on Linux*) by which the control 
panel reads PM status variables such as core frequency, VID, number of idle CPUs, power consumption, etc. The 
interface can also be used by other PM tools and monitoring applications to set or get PM variables. 
 

3.1.6.2 Host OS Power Management 

Power management works on two levels. It can be applied to the system as a whole or to individual devices. The 
operating system provides a power management interface to drivers in the form of entry points, support routines, and 
I/O requests. The Intel® MPSS host drivers conform to operating system requirements and cooperate to manage power 
for its devices. This allows the operating system to manage power events on a system wide. For example, when the OS 
sets the system to state S3; it relies upon the Intel® MPSS host driver to put the device in the corresponding device 
power state (D-state) and to return to the working state in a predictable fashion. Even if the Intel® MPSS host driver can 
manage the Intel® Xeon Phi™ coprocessor’s sleep and wake cycles, it uses the operating system’s power management 
capabilities to put the system as a whole into a sleep state.  
 
The Intel® MPSS host driver interfaces with the host operating system for power management by doing the following: 

 Reporting device power capabilities during PnP enumeration. 

 Handling power I/O requests sent by the host OS or by another driver in the device stack (applicable to Windows 
environment). 

 Powering up the Intel® Xeon Phi™ coprocessor(s) as soon as it is needed after system startup or idle shutdown. 

 Powering down the Intel® Xeon Phi™ coprocessor at system at shutdown or putting system to sleep when idle. 
 
Most of the power management operations are associated with installing and removing Intel® Xeon Phi™ coprocessors. 
Hence, the Intel® MPSS host driver supports Plug and Play (PnP) to get power-management notifications. 
 

3.1.6.2.1 Power Policies (applicable to Windows) 

You can use the Windows control panel to set system power options. The Intel® MPSS host driver registers a callback 
routine with the operating system to receive notification. As soon as a callback is registered by the driver during load, 
the OS immediately calls the callback routine and passes the current value of the power policy. Later, the OS notifies the 
host driver of the changes to the active power policy that were made through this callback. The driver then forwards the 
policy change request and associated power settings to the coprocessor OS.  
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3.1.6.3 PM Communication with the coprocessor OS 

A set of commands specifically for power management facilitate communication between the host driver and the 
coprocessor OS.  These commands initiate specific PM functions or tasks, and coordinate the exchange of PM 
information. 
 
The Intel® MPSS host driver uses the symmetric communication interface (SCIF) layer to create a channel to send 
messages to the coprocessor OS PM component. SCIF provides networking and communication capabilities within a 
single platform.  In the SCIF context, the host driver and the coprocessor OS PM components are on different SCIF 
nodes. The Intel® MPSS host driver creates a Ring0-to-Ring0 communication queue from its own node to a “known” SCIF 
port (logical destination) on the coprocessor OS node.  The message types are summarized in Table 3-4. 
 

Table 3-4. Power Management Messages 

Message Type Description 

Status queries  Messages passed to inquire about the current PM status; for example, core 
voltage, frequency, power budget, etc. Most of this data is supplied to the control 
panel. 

Policy control   Messages that control PM policies in the coprocessor OS. For example, 
enable/disable turbo, enable/disable idle package states, etc. 

Package state commands   Messages used to monitor and handle package states. For example, get/set vccp, 
get entry/exit latencies, etc. 

Notifications from the 
coprocessor OS  

The coprocessor OS notifies the4 host driver when it is going to enter an idle state 
because all the cores are idle. 

 

3.1.6.4 Package States (PC States) Handling 

One of the main PM responsibilities of the Intel® MPSS host driver is to monitor idle states. The host driver monitors the 
amount of time that the coprocessor OS spends idle and makes decisions based on the timer’s expiration.  When all the 
CPUs in the Intel® Xeon Phi™ coprocessors are in core state (C1), the coprocessor OS notifies the host driver that the 
devices are ready to enter package sleep states. At this stage, the coprocessor OS goes to auto PC3 state. The 
coprocessor OS, on its own, cannot select the deeper idle states (deep PC3 and PC6). It is the responsibility of the host 
driver to request that the coprocessor OS enter a deeper idle state when it believes that the coprocessor OS has spent 
enough idle time in the current idle state (PC6 is the deepest possible idle state). 
 

3.1.6.4.1 Power Control State Entry and Exit Sequences 

This section summarizes the steps followed when the package enters the PC3 or the PC6 idle state. 
 
_PC3_auto Entry_: 

1. Receive idle state notification for auto PC3 entry from coprocessor OS. 
2. Wait for Intel® Xeon Phi™ coprocessor Idle/Resume flag = PC3 code. 
3. Verify hardware idle status. 
4. Set HOST Idle/Resume flag =  auto PC3 code. 
5. Start host driver timer for auto PC3 state. 
 
_PC3_ deep Entry_:   

1. Make sure that the host driver auto PC3 timer has expired. 
2. Verify hardware idle status. 
3. Set VccP to minimum the retention voltage value. 
4. Set HOST Idle/Resume flag =  deep PC3 code. 
5. Start the host driver timer for PC6 state. 
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_PC6_Entry_:   

1. Make sure that the host driver PC6 timer has expired. 
2. Executethw _PC3_deep_Exit_ algorithm. 
3. Request that the coprocessor OS to enter PC6 state. 
4. Receive readiness notification for PC6 entry from the  coprocessor OS. 
5. Wait for Intel® Xeon Phi™ coprocessor Idle/Resume flag = PC6 code. 
6. Verify hardware idle status. 
7. Set VccP to zero (0) volts. 
8. Set HOST Idle/Resume flag = PC6 code. 
 
_PC3_ deep Exit_:   

1. Set VccP to the minimum operating voltage. 
2. Wait for Intel® Xeon Phi™ coprocessor Idle/Resume flag = C0 code. 
3. Set HOST Idle/Resume flag = C0 code. 
 
_PC6_Exit_:   

1. Set VccP to the minimum operating voltage. 
2. Wait for LRB Idle/Resume flag = C0 code. 
3. Set HOST Idle/Resume flag = C0 code. 
 

3.1.6.4.2 Package State Handling and SCIF 

SCIF is the interface used for communication between the host software and the coprocessor OS software running on 
one or more Intel® Xeon Phi™ coprocessors. SCIF is also used for peer-to-peer communication between Intel® Xeon Phi™ 
coprocessors. This interface could potentially (for speed and efficiency reasons) be based on a distributed shared 
memory architecture where peer entities on the host and the Intel® Xeon Phi™ coprocessor share messages by directly 
writing to each other’s local memory (Remote Memory Access). The host driver takes into account the SCIF 
communication channels that are open on an Intel® Xeon Phi™ coprocessor when deciding to put it into a deeper 
package idle state.   
 

3.1.6.4.3 Boot Loader to Host Driver Power Management Interface 

The boot loader executes when power is first applied to the device, but can also run when exiting from PC6 idle states 
due to the removal of the VccP power rail.  The boot-loader component for Intel® Xeon Phi™ coprocessors has a PM-
aware abbreviated execution path designed specifically for exiting D3 and PC6 states,  minimizing the time required to 
return the Intel® Xeon Phi™ coprocessor to full operation from D3 and PC6. To support PC6 exit, the host driver interacts 
with the boot loader via the scratchpad registers. 
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Figure 3-8 Intel® MPSS Host Driver to Coprocessor OS Package State Interactions 
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3.2 Virtualization 

A platform that supports virtualization typically has a Virtual Machine Manager (VMM) that hosts multiple Virtual 
Machines. Each virtual machine runs an OS (Guest OS) and application software. Different models exist for supporting 
I/O devices in virtualized environments, and the Intel® Xeon Phi™ coprocessor supports the direct assignment model 
wherein the VMM directly assigns the Intel® Xeon Phi™ coprocessor device to a particular VM and the driver within the 
VM has full control with minimal intervention from the VMM.  The coprocessor OS does not require any modifications to 
support this model; however, the chipset and VMM are required to support the following Intel VT-d (Intel Virtualization 
Technology for Direct I/O) features: 

 Hardware-assisted DMA remapping 

 Hardware-assisted interrupt remapping 

 Shared device virtualization 
 

3.2.1 Hardware Assisted DMA Remapping 

In virtualized environments, guests have their own view of physical memory (guest physical addresses) that is distinct 
from the host’s physical view of memory. The guest OS Intel® Xeon Phi™ coprocessor device driver (and thus the 
coprocessor OS on the Intel® Xeon Phi™ coprocessor  dedicated to the guest) only knows about guest physical addresses 
that must be translated to host physical addresses before any system memory access.  Intel VT-d (implemented in the 
chipset)   supports this translation for transactions that are initiated by an I/O device in a manner that is transparent to 
the I/O device (i.e., the Intel® Xeon Phi™ coprocessor).  It is the VMM’s responsibility to configure the VT-d hardware in 
the chipset with the mappings from guest physical to host physical addresses when creating the VM.  For details refer to 
the Intel VT for Direct I/O Specification (Intel® Virtualization Technology for Directed I/O, 2011). 
 

3.2.2 Hardware Assisted Interrupt Remapping 

In a virtualized environment with direct access, it is the guest and not the host VMM that should handle an interrupt 
from an I/O device. Without hardware support, interrupts would have to be routed to the host VMM first which then 
injects the interrupt into the guest OS. Intel VT-d provides Interrupt remapping support in the chipset which the VMM 
can use to route interrupts (either I/O APIC generated or MSIs) from specific devices to guest VMs. For details refer to 
the Intel VT for Direct I/O specification. 
 

3.2.3 Shared Device Virtualization 

Each card in the system can be either dedicated to a guest OS or shared among multiple guest operating systems.  This 
option requires the highest level of support in the coprocessor OS as it can service multiple host operating systems 
simultaneously.   

3.3 Reliability Availability Serviceability (RAS) 

RAS stands for reliability, availability, and serviceability. Specifically, reliability is defined as the ability of the system to 
perform its actions correctly. Availability is the ability of the system to perform useful work. Serviceability is the ability of 
the system to be repaired when failures occur. Given that HPC computing tasks may require large amounts of resources 
both in processing power (count of processing entities or nodes) and in processing time, node reliability becomes a 
limiting factor if not addressed by RAS strategies and policies.  This section covers RAS strategies available in software on 
Intel® Xeon Phi™ coprocessor and its host-side server. 
  
In HPC compute clusters,  reliability and availability are traditionally handled in a two-pronged approach:  by deploying 
hardware with advanced RAS features to reduce error rates (as exemplified in the Intel® Xeon® processors) and by 
adapting fault tolerance in high-end system software or hardware. Common software-based methods of fault tolerance 
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are to deploy redundant cluster nodes or to implement snapshot and restore (check pointing) mechanisms that allow a 
cluster manager to reduce data loss when a compute node fails by setting it to the state of last successful snapshot. 
Fault tolerance, in this context, is about resuming from a failure with as much of the machine state intact as possible. It 
does not imply that a cluster or individual compute nodes can absorb or handle failures without interrupting the task at 
hand. 
 
The Intel® Xeon Phi™ coprocessor   addresses reliability and availability the same two ways. Hardware features have 
been added that improve reliability; for example,  ECC on GDDR and internal memory arrays that reduce error rates.  
Fault tolerance on Intel® Xeon Phi™ coprocessor hardware improves failure detection (extended machine check 
architecture, or MCA). Managed properly, the result is a controlled and limited degradation allowing a node to stay in 
service after certain anticipated hardware failure modes manifest themselves. Fault tolerance in Intel® Xeon Phi™ 
coprocessor software is assisted by the Linux* coprocessor OS, which supports application-level snapshot and restore 
features that are based on BLCR (Berkeley Labs Checkpoint Restart). 
 
Intel® Xeon Phi™ coprocessor approach to serviceability is through software redundancy (that is, node management 
removes failing compute nodes from the cluster), and has no true hardware redundancy. Instead software and firmware 
features allow a compute node to reenter operation after failures at reduced capacity until the card can be replaced. 
The rationale behind this ‘graceful’ degradation strategy is the assumption that an Intel® Xeon Phi™ coprocessor unit 
with, say one less core, will be able to resume application snapshots and therefore is a better proposition to the cluster 
than removing the node entirely.  
 
A hardware failure requires the failing card to be temporarily removed from the compute cluster it is participating in. 
After a reboot, the card may rejoin the cluster if cluster management policies allow for it.   
 
The Intel® Xeon Phi™ coprocessor implements extended machine check architecture (MCA) features that allow software 
to detect and act on detected hardware failures in a manner  allowing a ‘graceful’ degradation of service when certain 
components fail. Intel® Xeon Phi™ coprocessor hardware reads bits from programmable FLASH at boot time, which may 
disable processor cores, cache lines, and tag directories that the MCA has reported as failing. 
 

3.3.1 Check Pointing 

In the context of RAS, check pointing is a mechanism to add fault tolerance to a system by saving its state at certain 
intervals during execution of a task. If a non-recoverable error occurs on that system, the task can be resumed from the 
last saved checkpoint, thereby reducing the loss caused by the failure to the work done since the last checkpoint. In HPC, 
the system is the entire cluster, which is defined as all the compute nodes participating in a given HPC application. 
Cluster management controls where and when checkpoints occur and locks down its compute nodes prior to the 
checkpoint. The usual mode of operation is for checkpoints to occur at regular intervals or if system monitoring 
determines that reinstating a checkpoint is the proper course of action. Individual compute nodes are responsible for 
handling local checkpoint and restore (C/R) events, which have to be coordinated in order to establish a cluster-wide 
coherent C/R.  Conceptually check pointing can be handled in two ways:  

  a checkpoint contains the state of the entire compute node, which  includes all applications running on it (similar 
to hibernate)  

 or a checkpoint contains the state of a single program running on the compute node, which is referred to as system 
or application checkpoints.  

 
Application check pointing is by far the most widespread method;  it is simpler to implement, produces smaller snapshot 
images, and may have uses beyond fault tolerance, such as task migration (create snapshot of one system, terminate the 
application, and restart it on another system) and gang scheduling.  These alternate uses are limited to cluster nodes 
running the same OS and running on similar hardware. System checkpoints are, for all practical purposes, locked to the 
system it was taken on. 
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The remainder of this section addresses the basics of BLCR and its integration into the Intel® Xeon Phi™ coprocessor. 
BLCR details are available at the following links: 

 http://crd.lbl.gov/~jcduell/papers/blcr.pdf  

 https://upc-bugs.lbl.gov//blcr/doc/html/FAQ.html#batch  

 https://upc-bugs.lbl.gov//blcr/doc/html/BLCR_Admin_Guide.html  

 https://upc-bugs.lbl.gov//blcr/doc/html/BLCR_Users_Guide.html 
 

3.3.2 Berkeley Labs Check point and Restore (BLCR) 

Due to the altered ABI required for the Linux* coprocessor OS, BLCR is recompiled specifically for the Intel® Xeon Phi™ 
coprocessor, but otherwise no changes are required for BLCR except for the kernel module. The kernel module 
incorporates additional process states provided by Intel® Xeon Phi™ coprocessor hardware (the vector registers). 
  
Beyond the enhanced register set, the BLCR kernel module is not different.  A patch set for BLCR version 0.8.2 (the 
latest) exists for the Linux* kernel 2.6.34 and has been shown to build correctly on a standard Linux* system. 
 
BLCR software is, by design, limited to creating a checkpoint for a process (or process group) running under a single 
operating system. In larger clusters, where the compute workload is spread over several cooperating systems, a 
checkpoint of a single process does not result in any fault tolerance because the state of that process would soon be out 
of synchronization with the rest of the cluster (due to inter process messaging). Therefore, a checkpoint within a cluster 
must be coordinated carefully; e.g., by creating checkpoints of all participants in compute task simultaneously during a 
lock-down of interprocess communications. Cluster management software must support C/R and implement a method 
either for putting all participants into a quiescent state during the checkpoint (and to restore all if a participant fails to 
create one) or for providing  a protocol to put  each node into a restorable state before the checkpoint occurs.  
 
MPI stacks supporting BLCR have built-in protocols to shut down the IPC between compute nodes and to request a 
checkpoint to be created on all participants of a ‘job’.  
  
Locally, BLCR offers either a cooperative approach or a non-cooperative approach for very simple applications.  With the 
cooperative approach, the application is notified before and after a checkpoint is created. The cooperative approach is 
intended to give checkpoint-aware applications a way to save the state of features known not to be preserved across a 
C/R event. The design of BLCR deliberately leaves out the handling of process states that cannot be implemented well 
(to avoid instability), such as TCP/IP sockets, System-V IPC, and asynchronous I/O.  If any of these features are used by 
the application, they must be brought into a state that allows the application to recreate them after a restore event.  
  
BLCR relies on kernel-assisted (kernel module required) methods to retrieve a useful process state.  A BLCR library must 
be linked to the application in order to establish communication between the application and the kernel module,  and to 
run a private thread within the application that handles call-outs before and after C/R events. 
 
An application process gets notification from the BLCR kernel module though a real time signal so that it can protect its 
critical regions by registering callbacks to clean house before the checkpoint data is written to file. Upon restart, the 
same callbacks allow the process to restore internal settings before resuming operations.   
 
The result of a BLCR checkpoint is an image file containing all process state information necessary to restart it. A 
checkpoint image can be quite large, potentially as large as the node’s available memory (swap plus RAM). The Intel® 
Xeon Phi™ coprocessor does not have local persistent storage to hold checkpoint images, which means they must be 
shipped to the host (or possibly beyond) over a networked file system to a disk device.  
 
Analysis of BLCR implementations shows that I/O to the disk device is the most time consuming part of check pointing. 
Assuming the checkpoint images go to the local host’s file system, the choice of file system and disk subsystem on the 

http://crd.lbl.gov/~jcduell/papers/blcr.pdf
https://upc-bugs.lbl.gov/blcr/doc/html/FAQ.html#batch
https://upc-bugs.lbl.gov/blcr/doc/html/BLCR_Admin_Guide.html
https://upc-bugs.lbl.gov/blcr/doc/html/BLCR_Users_Guide.html
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host become the key factors on checkpoint performance. Alternatives to spinning disks must be considered carefully, 
though it does not impact the C/R capability and is outside the scope of BLCR. 
 
The BLCR package provides three application programs and a library (plus includes) for building check pointing 
applications. The BLCR library contains local threads that allow the application some control over when a checkpoint can 
take place. A simple API lets parts of the application prepare for a checkpoint independently. The mechanism is to 
register functions like the following with the BLCR library during process initialization:  
 

Void my_callback(void *data_ptr) 

{ 

  struct my_data *pdata = (struct my_data*) data_ptr; 

  int did_restart; 

  // do checkpoint-time shutdown logic 

  // tell system to do the checkpoint 

  did_restart = cr_checkpoint(); 

  if (did_restart) 

    // we’ve been restarted from a checkpoint 

  else 

    // we’re continuing after being backed up 

} 

 
The local BLCR thread calls all registered callbacks before the kernel module checkpoints the application from a local 
thread. Once all callbacks have called with cr_checkpoint(), the local BLCR thread signals the kernel module to proceed 
with the checkpoint.  After the checkpoint,  cr_checkpoint() returns to the callback routines with information on 
whether a restart or checkpoint took place. 
 

3.3.2.1 BLCR and SCIF 

SCIF is a new feature in the Linux* based coprocessor OS and so has no support in the current BLCR implementation. 
SCIF has many features in common with sockets. Therefore, BLCR handling of open SCIF connections is treated the same 
way as open sockets; that is, not preserved across C/R events.  
 
The problem area for sockets is that part of the socket state might come from data present only in the kernel’s network 
stack at the time of checkpoint. It is not feasible for the BLCR kernel module to retrieve this data and stuff it back during 
a later restore.  
 
The problems for SCIF are the distribution of data in the queue pair and the heavy use of references to physical 
addresses in the PCI-Express* domain. It is not feasible to rely on physical locations of queue pairs being consistent 
across a Linux* coprocessor OS reboot, and SCIF is not designed to be informed of the location of queue pairs. 

3.3.2.2 Miscellaneous Options 

Some aspects of BLCR on the Intel® Xeon Phi™ coprocessor are linked to the applied usage model. In the Intel® MIC 
Architecture coprocessing mode, this requires a decision as to what a checkpoint covers. In this mode, only the host 
participates (by definition) as a node in a compute cluster. If it is compatible with compute clusters and C/R is used 
within the cluster, then only the host can be asked to create a checkpoint. The host must act as a proxy and delegate 
BLCR checkpoints to the Intel® Xeon Phi™ coprocessor cards as appropriate and manage the checkpoint images from 
Intel® Xeon Phi™ coprocessors in parallel with its own checkpoint file. 
 
Another, and less complicated approach, is to terminate tasks on all Intel® Xeon Phi™ coprocessors before creating a 
check point on itself.  The tradeoff is between complexities vs. compute time to be redone, depending on the average 
task length, as part of resuming from check pointing. 
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Intel® Xeon Phi™ coprocessors used in an Intel® Xeon® offload or autonomous mode do not face this problem because 
each card is known to the cluster manager that dispatches check point requests to cards individually. The host is a 
shared resource to the Intel® Xeon Phi™ coprocessors and is not likely to be part of the check pointing mechanism.  
 
Check pointing speed has been identified as a potential problem, mostly because the kernel module that performs the 
bulk of the state dump is single threaded. Work has been done in the MPI community to speed this up, but the 
bottleneck appears to be the disk driver and disk I/O,  not the single threading itself. Several references point to PCI-
Express*-based battery backed memory cards or to PCI-Express*-based Solid State Drive (SSD) disks as a faster medium 
for storing checkpoint images.  It is trivial to make the host use these devices to backup networked file systems used by 
the Linux*  coprocessor OS, but access still has to go through the host. It may be more effective to let the Intel® Xeon 
Phi™ coprocessors access these devices directly over PCI-Express*, but that approach requires that the device be 
independently  accessible from multiple peer Intel® Xeon Phi™ coprocessors and that device space be divided 
persistently between Intel® Xeon Phi™ coprocessors such that each has its own fast-access file system dedicated to 
checkpoint images.  

3.3.3 Machine Check Architecture (MCA) 

Machine Check Architecture is a hardware feature enabling an Intel® Xeon Phi™ coprocessor card to report failures to 
software by means of interrupts or exceptions. Failures in this context are conditions where  logic circuits have detected 
something out of order, which may have corrupted processor context or memory content. Failures are categorized by 
severity as either DUEs or CEs:  

 DUEs (Detected Unrecoverable Errors) are errors captured by the MC logic but the corruption cannot be 
repaired and the system as a whole is compromised; for example, errors in L1 cache. 

 CEs (Corrected Errors) are errors that have occurred and been corrected by the hardware, such as single bit 
errors in L2 ECC memory.  

 

3.3.3.1 MCA Hardware Design Overview 

Standard IA systems implement MCA by providing two mechanisms to report MC events to software: MC exceptions 
(#18) for events detected in the CPU core and NMI (#2) interrupts for events detected outside of the CPU core (uncore).  
 
Specifics on occurred MC exceptions are presented in MSR banks, each representing up to 32 events. The processor 
capability MSRs specify how many banks are supported by a given processor. The interpretation of data in MSR banks is 
semi-standardized; that is, acquiring detailed raw data on an event is standardized but the interpretation of acquired 
raw data is not. The  Intel® Xeon Phi™ coprocessor provides three MC MSR banks. 
 
MC events signaled through the NMI interrupt on standard IA systems come from the chipsets and represent failures in 
memory or I/O paths. Newer CPUs with built-in memory controllers also provide a separate interrupt for CEs (CMCIs) 
that have built-in counter dividers to throttle interrupt rates.  This capability is not provided on the Intel® Xeon Phi™ 
coprocessor. Instead, the Intel® Xeon Phi™ coprocessor delivers both uncorrected and corrected errors that are 
detected in the core domain via the standard MCA interrupt (#18).   Machine check events that occur in the uncore 
domain are delivered via the SBox, which can be programmed to generate an NMI interrupt targeted at one or all 
threads. The Uncore Interrupt includes MC events related to the PCI-Express  interface,  Memory Controller (ECC and 
link training errors), or other uncore units.  There is no CE error rate throttle in the Intel® Xeon Phi™ coprocessor. The 
only remedy against high error frequencies is to disable the interrupt at the source of the initiating unit (L2/L1 Cache, 
Tag Directory, or GBox).   
 
The NMI interrupt handler software must handle a diverse range of error types on Intel® Xeon Phi™ coprocessor.  
Registers to control and report uncore MC events on Intel® Xeon Phi™ coprocessor differ significantly from registers on 
standard IA chipsets, which means that stock operating systems have no support for uncore MC events on an Intel® 
Xeon Phi™ coprocessor. 
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3.3.3.2 MCA Software Design Overview 

Intel® Xeon Phi™ coprocessor RAS demands that the software perform MC event handling in two stages, event data 
gathering and event post processing.  
 
The first stage (which takes place in the Linux*  coprocessor OS) receives MC event notifications, collects raw data, and 
dispatches it to interested parties (i.e., an MCA agent running on the host and the on-card SMC controller).  If the 
coprocessor OS can resume operation, then its event handling is completed. Otherwise, the MC event handler notifies 
the host separately that its internal state has been corrupted and a reboot is required.  
 
An unrelated service for host-side monitoring of the Intel® Xeon Phi™ coprocessor card state will be added to the MCA 
handling routines. This service will act as a gateway between host side ‘in-band’ platform management and the SMC 
sub-system and respond to system state queries, such as memory statistics, free memory, temperatures, CPU states etc. 
Host queries of the coprocessor OS MCA log is a part of the service too.  

3.3.3.3 MC Event Capture in Linux* 2.6.34 

The stock Linux* kernel has support for core MCs in a single dedicated exception handler. The handler expects MCA 
exceptions to be broadcast to all processors in the system, and it will wait for all CPUs to line up at a rendezvous point 
before every CPU inspects its own MCA banks and stores flagged events in a global MC event log (consisting of 32 
entries). Then the handler on all CPUs lines up at a rendezvous point again and one CPU (the monarch, which is selected 
as the first entering the MCA event handler) gets to grade the MCA events collected in the global MC event log and to 
determine whether to panic or resume operation. This takes place in function monarch_reign().  If resumed, the MCA 
handler may send BUS-ERROR signals to the processes affected by the error. Linux* has several kernel variables that 
control sensitivity to MCA exceptions, ranging from always panic to always ignore them.  
 
Linux* expects MC events to be broadcast to all CPUs. The rendezvous point uses CPU count versus event handler 
entries as wait criteria. The wait loop is implemented as a spinlock with timeout, such that a defunct CPU cannot prevent 
the handler from completing.   
 
NMI interrupts on Linux* are treated one way for the boot processor (BP) and differently on the application processors 
(AP). Signals from the chipset are expected to be routed only to the BP and only the BP will check chipset registers to 
determine the NMI source. If chipset flags SERR# or IOCHK are set the BP NMI handler consults configurable control 
variables to select panic or ignore the MC event.  Otherwise, and on APs, the NMI handler will check for software 
watchdog timers, call registered NMI handlers, or if not serviced then a configurable control variables to select panic or 
ignore the unknown NMI. 

3.3.3.4 MC Handling in the  Intel® Xeon Phi™ Coprocessor Linux*-based  coprocessor OS 

The Linux* coprocessor OS MCA logic handles capture of core MC events on the Intel® Xeon Phi™ coprocessor without 
modifications if events are broadcast to all CPUs the same way as on standard IA systems. A callout is required from 
monarch_reign() to a new module for distribution of MC event reports to other interested parties (such as the SMC and 
the host side MC agent). After distributing the MC events, the Linux* coprocessor OS uses the grading result to select 
between CEs that resume operation immediately and DUEs that must request a reboot to maintenance mode and then 
cease operation. Another callout from monarch_reign() is required for this part. 
 
Handling of NMIs in the Linux* coprocessor OS requires new code because uncore MCA registers are completely 
different from those of chipset MCA; for example, MMIO register banks vs. I/O registers. Uncore MCA registers are 
organized similarly to core MCA banks, but the access method for  32-bit MMIO vs. 64-bit MSRs differs sufficiently to 
make a merge into the MCA exception handler code unfeasible. However, the global MC event log, the use of 
monarch_reign(), and the event signaling to the host side MCA agent should be the same for the NMI handler as it is for 
the MC exception handler. 
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3.3.3.5 MCA Event Sources and Causes 

MCA events are received from three sources on the ring: the CPU box, the GBox, and the SBox.  For more information on 
the encoding and controls available on the MCA features, refer to Section 3.3.3.8. 
 

3.3.3.6 MCA Event Post-Processing (coprocessor OS Side Handling) 

Once the MC event(s) has been collected into the global MC event log and graded,  the failure has been classified as 
either a DUE or CE. Both event types are distributed to the host and the SMC, potentially with some form of throttling or 
discrimination based on user configurable settings (via the kernel command line as a boot parameter or at runtime 
through the control panel). 
 
On CE type failures, the Intel® Xeon Phi™ coprocessor will resume operation because the hardware state is intact. DUE 
failures cannot be ignored and the next action is to signal the host for a reboot into maintenance mode.  
 
These activities are initiated by callbacks from a special routine and the NMI exception handler. The processing context 
is exception or interrupt. Both of these require careful coding because locking cannot be relied on for synchronization, 
even to a separate handler thread. The stock Linux* reaction to a DUE is simply to panic. On the Intel® Xeon Phi™ 
coprocessor, the recorded events must be distributed to at least two parties, both of which are based on non-trivial APIs 
(the I2C driver for reporting to the SMC and the SCIF driver for reporting to the host-side MC agent). 
 

3.3.3.7 MCA Event Post-Processing (Host Side Handling) 

There are several active proposals on what sort of processing is required for MC events. The Linux* coprocessor OS will 
capture events in raw form and pass them to an agent on the host for further processing. 
 
The host side MCA agent is a user space application using dedicated SCIF connections to communicate with the Intel® 
Xeon Phi™ coprocessor Linux* coprocessor OS MCA kernel module. The agent is responsible for the following: 

 Maintaining and providing access to a permanent MC event log on the host, preferably as a file on the host’s local 
file system.  This agent also handles the distribution of events beyond the host. 

 Providing a means to reset (or to trigger a reset) of an Intel® Xeon Phi™ coprocessor card into maintenance mode 
and passing the latest MC event. The card reset needs support by the host side Intel® Xeon Phi™ coprocessor driver 
since ring0 access is required.  

 Optionally providing access to the Intel® Xeon Phi™ coprocessors global MC event log  

 Acting as the host side application; that is, the RAS defect analyzer providing an interface to dump MCA error 
records from the EEPROM. 

 
The design of the host side MCA agent is beyond the scope of this document.  It must place as much content as possible 
as a user mode application in order to keep the host side drivers as simple and portable as possible. It shall be noted 
that it has been requested to have sysfs nodes on Linux* hosts present Intel® Xeon Phi™ coprocessor card properties, 
including MC event logs and states. This may require a kernel agent on the host side to provide the sysfs nodes. 
 
Beyond the overlap of features between driver and user mode agent, this also has issues with SCIF because only one 
party can own a SCIF queue pair. Having separate SCIF links for the kernel driver and user space agent is not feasible. 
The host side MCA agent may split into a kernel driver to provide the sysfs nodes and a user space application using the 
sysfs nodes, where only the kernel driver use SCIF.    
 

3.3.3.8 Core CPU MCA Registers (Encoding and Controls) 

While the Intel® Xeon Phi™ coprocessor does support MCA and MCE capabilities, the CPUID feature  bits used to identify 
the processor supports for these features are not set on the Intel® Xeon Phi™ coprocessor. 
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The Intel® Xeon Phi™ coprocessor implements a mechanism for detecting and reporting hardware errors.  Examples of 
these errors include on-chip cache errors, memory CRC errors, and I/O (PCI Express) link errors. The Intel® Xeon Phi™ 
coprocessor uses sets of MSR registers to setup machine checking as well as to log detected errors. 
 
Machine checks on the Intel® Xeon Phi™ coprocessor are broken down into two domains:  

 Core machine check events,  which are handled in a similar fashion to the IA MCA architecture definition 
 System machine check events, which are handled in a similar fashion to chipset machine check events 

 
Machine-check event delivery on the Intel® Xeon Phi™ coprocessor is not guaranteed to be synchronous with the 
instruction execution that may have caused the event. Therefore, recovery from a machine check is not always possible.  
Software is required to determine if recovery is possible, based on the information stored in the machine-check 
registers. 
 
The Intel® Xeon Phi™ coprocessor MCA implements one set of MC general registers per CPU (core control registers).  
There are three banks of MCx registers per core.  All hardware threads running on a core share the same set of registers.  
These registers are for the L1 cache, the L2 cache and the Tag Directories.  For the uncore sections, there is one bank of 
registers per box (GBox, SBox, etc.), each of which is composed of eight 32-bit registers.  All uncore events are sent over 
a serial link to the SBox’s I/O APIC.  From the I/O APIC,  an interrupt is sent to a core, after which normal interrupt 
processing occurs. 
 
The machine check registers on the Intel® Xeon Phi™ coprocessor consist of a set of core control registers, error 
reporting MSR register banks, and global system error reporting banks containing error status for the RAS agents.  Most 
core machine-check registers are shared amongst all the cores.  The machine-check error reporting registers are listed in 
Table 3-5. 

Table 3-5. Control and Error Reporting Registers 

Intel® Xeon Phi™ Coprocessor Machine Check Control Registers 

Register Name Size (bits) Description 

MCG_CAP 64 Core machine check capability register 

MCG_STATUS 64 Core machine check status register 

MCG_CTL 64 Core machine check control register (per thread 
register) 

Intel® Xeon Phi™ Coprocessor Machine Error Reporting Registers 

Register Name Register Name Register Name 

MCi_CTL 64 Machine check control register 

MCi_STATUS 64 Machine check status register 

MCi_ADDR 64 Machine check address register 

MCi_MISC 32 Not Implemented in every MC bank 

 

3.3.3.8.1 MCI_CTL MSR 

The MCi_CTL MSR controls error reporting for specific errors produced by a particular hardware unit (or group of 
hardware units).  Each of the 64 flags (EEj) represents a potential error.  Setting an EEj flag enables reporting of the 
associated error, and clearing it disables reporting of the error.  Writing the 64-bit value FFFFFFFFFFFFFFFFH to an 
MCI_CTL register enables the logging of all errors.  The coprocessor does not write changes to bits that are not 
implemented. 

Table 3-6. MCi_CTL Register Description 

Field Name Bit Range Description Type 

EEj 63:0 Error reporting enable flag (where j is 00 through 
63) 

R/W 
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3.3.3.8.2 MCi_STATUS MSR 

The MCi_STATUS MSR contains information related to a machine check error if its VAL (valid) flag is set. Software is 
responsible for clearing the MCi_STATUS register by writing it with all 0’s; writing 1’s to this register will cause a general-
protection exception to be generated.  The fields in this register are as follows (see also Table 3-7): 
 

 MCA (machine-check architecture) error code field, bits 0 through 15 
Specifies the machine-check architecture defined error code for the machine-check error condition detected.  

 Model-specific error code field, bits 16 through 31 
Specifies the model-specific error code that uniquely identifies the machine-check error condition detected. 

 Other information field, bits 32 through 56 
The functions of the bits in this field are implementation specific and are not part of the machine-check 
architecture.  

 PCC (processor context corrupt) flag, bit 57 
Indicates (when set) that the state of the processor might have been corrupted by the detected error condition 
and that reliable restarting of the processor may not be possible. When clear, this flag indicates that the error 
did not affect the processor’s state. 

 ADDRV (MCi_ADDR register valid) flag, bit 58 
Indicates (when set) that the MCi_ADDR register contains the address where the error occurred. When clear, 
this flag indicates that the MCi_ADDR register does not contain the address where the error occurred. 

 MISCV (MCi_MISC register valid) flag, bit 59 
Indicates (when set) that the MCi_MISC register contains additional information regarding the error. When 
clear, this flag indicates that the MCi_MISC register does not contain additional information regarding the 
error. 

 EN (error enabled) flag, bit 60 
Indicates (when set) that the error was enabled by the associated EEj bit of the MCi_CTL register. 

 UC (error uncorrected) flag, bit 61 
Indicates (when set) that the processor did not or was not able to correct the error condition. When clear, this 
flag indicates that the processor was able to correct the error condition. 

 OVER (machine check overflow) flag, bit 62 
Indicates (when set) that a machine-check error occurred while the results of a previous error were still in the 
error-reporting register bank (that is, the VAL bit was already set in the MCi_STATUS register). The processor 
sets the OVER flag and software is responsible for clearing it. 

 VAL (MCi_STATUS register valid) flag, bit 63 
Indicates (when set) that the information within the MCi_STATUS register is valid. When this flag is set, the 
processor follows the rules given for the OVER flag in the MCi_STATUS register when overwriting previously 
valid entries. The processor sets the VAL flag and software is responsible for clearing it. 
 
The VAL bit is only set by hardware when an MC event is detected and the respective MC enable bit in the 
MCi.CTL register is set as well.  Software should clear the MC3_STATUS.VAL bit by writing all 0’s to the 
MCi_STATUS register. 

 
Table 3-7. MCI_STATUS Register Description 

Field Name Bit Range Description Type 

MCA Code 15:0 MCA error code field R/W 

Model Code  31:16 Model specific error code R/W 

Info 56:32 Other information field R/W 

PCC 57 Processor context corrupt R/W 

ADDRV 58 MCi_ADDR register valid R/W 

MISCV 59 MCi_MISC register valid R/W 

EN 60 Error enabled R/W 
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Field Name Bit Range Description Type 

UC 61 Uncorrected error R/W 

OVER 62 Error overflow R/W 

VAL 63 MCi_STATUS register valid R/W 

 

3.3.3.8.3 MCi_ADDR MSR 

The MCi_ADDR MSR contains the address of the code or data memory location that produced the machine-check error if 
the ADDRV flag in the MCi_STATUS register is set. The address returned is a physical address on the Intel® Xeon Phi™ 
coprocessor.  
 

Table 3-8. MCi_ADDR Register Description 

Field Name Bit Range Description Type 

Address n:0 Address associated with error event  R/W 

Reserved 63:n Reserved (where n is implementation specific) R/W 

 

3.3.3.8.4 MCi_MISC MSR 

The MCi_MISC MSR contains additional information describing the machine-check error if the MISCV flag in the 
MCi_STATUS register is set.  This register is not implemented in the MC0 error-reporting register banks of the Intel® 
Xeon Phi™ coprocessor. 
 
 

3.3.3.8.5 Summary of Machine Check Registers 

Table 3-9 describes the Intel® Xeon Phi™ Coprocessor MCA registers.  
 

Table 3-9. Machine Check Registers 

MSR/MMIO 
Address 

Register Name Size (bits) Description 

Core MCA Registers 

179H MCG_CAP 64 Core machine check capability register  

17AH MCG_STATUS 64 Core machine check Status register  

17BH MCG_CTL 64 Core machine check control register  

400H MC0_CTL 64 Core machine check control register 

401H MC0_STATUS 64 Core machine check status register 

402H MC0_ADDR 64 Core machine check address register (Not Implemented) 

403H MC0_MISC 32 Core machine check miscellaneous register (Not Implemented) 

Intel® Xeon Phi™ coprocessor  MCA Registers 

404H MC1_CTL 32 L2 Cache machine check control register 

405H MC1_STATUS 64 L2 Cache machine check status register 

406H MC1_ADDR 64 L2 Cache machine check address register 

407H MC1_MISC 32 L2 Cache machine check Misc register 

TAG Directory MCA Registers 

408H MC2_CTL 32 TAG Directory machine check control register 

409H MC2_STATUS 64 TAG Directory machine check status register 

40AH MC2_ADDR 64 TAG Directory machine check address register 

40BH MC2_MISC 32 TAG Directory (Not Implemented) 

    

Uncore MCA Registers (#18 MCA interrupt not generated. Signalling via local interrupt controller) 
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MSR/MMIO 
Address 

Register Name Size (bits) Description 

SBox MCA Registers 

0x8007D3090 MCX_CTL_LO 32 SBox machine check control register 

0x8007D3094 MCX_CTL_HI 32 SBox machine check control register (Not implemented) 

0x8007D3098 MCX_STATUS_LO 32 SBox machine check status register 

0x8007D309C MCX_STATUS_HI 32 SBox machine check status register 

0x8007D30A0 MCX_ADDR_LO 32 SBox machine check address register 

0x8007D30A4 MCX_ADDR_HI 32 SBox machine check address register 

0x8007D30A8 MCX_MISC 32 SBox Misc (timeout TID register) 

0x8007D30AC MCX_MISC2 32 SBox Misc (timeout address register) 

0x8007DAB00 MCA_INT_STAT 32 SBox MCA Interrupt Status Register (Not retained on warm reset) 

0x8007DAB04 MCA_INT_EN 32 SBox MCA Interrupt Enable Register (Not retained on warm reset) 

Standalone TAG Directory 0  MCA Registers 

0x8007C0340 RTD_MCX_CTL 32 TAG Directory machine check control register 

0x8007C0348 RTD_MCX_STATUS 64 TAG Directory machine check status register 

0x8007C0350 RTD_MCX_ADDR 64 TAG Directory machine check address register 

Standalone TAG Directory 1  MCA Registers 

0x800620340 RTD_MCX_CTL 32 TAG Directory machine check control register 

0x800620348 RTD_MCX_STATUS 64 TAG Directory machine check status register 

0x800620350 RTD_MCX_ADDR 64 TAG Directory machine check address register 

Memory Controller (Gbox0) MCA Registers 

0x8007A005C MCX_CTL_LO 32 Gbox0 Fbox machine check control register 

0x8007A0060 MCX_CTL_HI 32 Gbox0 Fbox machine check control register 

0x8007A0064 MCX_STATUS_LO 32 Gbox0 Fbox machine check status register 

0x8007A0068 MCX_STATUS_HI 32 Gbox0 Fbox machine check status register 

0x8007A006C MCX_ADDR_LO 32 Gbox0 Fbox machine check address register 

0x8007A0070 MCX_ADDR_HI 32 Gbox0 Fbox machine check address register 

0x8007A0074 MCX_MISC 32 Gbox0 Fbox Misc (Transaction timeout register) 

0x8007A017C MCA_CRC0_ADDR 32 Gbox0 Mbox0 CRC address capture register  

0x8007A097C MCA_CRC1_ADDR 32 Gbox0 Mbox1 CRC address capture register 

Memory Controller (Gbox1) MCA Registers 

0x80079005C MCX_CTL_LO 32 Gbox1 Fbox machine check control register 

0x800790060 MCX_CTL_HI 32 Gbox1 Fbox machine check control register 

0x800790064 MCX_STATUS_LO 32 Gbox1 Fbox machine check status register 

0x800790068 MCX_STATUS_HI 32 Gbox1 Fbox machine check status register 

0x80079006C MCX_ADDR_LO 32 Gbox1 Fbox machine check address register 

0x800790070 MCX_ADDR_HI 32 Gbox1 Fbox machine check address register 

0x800790074 MCX_MISC 32 Gbox1 Fbox Misc (Transaction timeout register) 

0x80079017C MCA_CRC0_ADDR 32 Gbox1 Mbox0 CRC address capture register  

0x80079097C MCA_CRC1_ADDR 32 Gbox1 Mbox1 CRC address capture register 

Memory Controller (Gbox2) MCA Registers 

0x80070005C MCX_CTL_LO 32 Gbox2 Fbox machine check control register 

0x800700060 MCX_CTL_HI 32 Gbox2 Fbox machine check control register 

0x800700064 MCX_STATUS_LO 32 Gbox2 Fbox machine check status register 

0x800700068 MCX_STATUS_HI 32 Gbox2 Fbox machine check status register 

0x80070006C MCX_ADDR_LO 32 Gbox2 Fbox machine check address register 

0x800700070 MCX_ADDR_HI 32 Gbox2 Fbox machine check address register 

0x800700074 MCX_MISC 32 Gbox2 Fbox Misc (Transaction timeout register) 
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MSR/MMIO 
Address 

Register Name Size (bits) Description 

0x80070017C MCA_CRC0_ADDR 32 Gbox2 Mbox0 CRC address capture register  

0x80070097C MCA_CRC1_ADDR 32 Gbox2 Mbox1 CRC address capture register 

Memory Controller (Gbox3) MCA Registers 

0x8006F005C MCX_CTL_LO 32 Gbox3 Fbox machine check control register 

0x8006F0060 MCX_CTL_HI 32 Gbox3 Fbox machine check control register 

0x8006F0064 MCX_STATUS_LO 32 Gbox3 Fbox machine check status register 

0x8006F0068 MCX_STATUS_HI 32 Gbox3 Fbox machine check status register 

0x8006F006C MCX_ADDR_LO 32 Gbox3 Fbox machine check address register 

0x8006F0070 MCX_ADDR_HI 32 Gbox3 Fbox machine check address register 

0x8006F0074 MCX_MISC 32 Gbox3 Fbox Misc (Transaction timeout register) 

0x8006F017C MCA_CRC0_ADDR 32 Gbox3 Mbox0 CRC address capture register  

0x8006F097C MCA_CRC1_ADDR 32 Gbox3 Mbox1 CRC address capture register 

Memory Controller (Gbox4) MCA Registers 

0x8006D005C MCX_CTL_LO 32 Gbox4 Fbox machine check control register 

0x8006D0060 MCX_CTL_HI 32 Gbox4 Fbox machine check control register 

0x8006D0064 MCX_STATUS_LO 32 Gbox4 Fbox machine check status register 

0x8006D0068 MCX_STATUS_HI 32 Gbox4 Fbox machine check status register 

0x8006D006C MCX_ADDR_LO 32 Gbox4 Fbox machine check address register 

0x8006D0070 MCX_ADDR_HI 32 Gbox4 Fbox machine check address register 

0x8006D0074 MCX_MISC 32 Gbox4 Fbox Misc (Transaction timeout register) 

0x8006D017C MCA_CRC0_ADDR 32 Gbox4 Mbox0 CRC address capture register  

0x8006D097C MCA_CRC1_ADDR 32 Gbox4 Mbox1 CRC address capture register 

Memory Controller (Gbox5) MCA Registers 

0x8006C005C MCX_CTL_LO 32 Gbox5 Fbox machine check control register 

0x8006C0060 MCX_CTL_HI 32 Gbox5 Fbox machine check control register 

0x8006C0064 MCX_STATUS_LO 32 Gbox5 Fbox machine check status register 

0x8006C0068 MCX_STATUS_HI 32 Gbox5 Fbox machine check status register 

0x8006C006C MCX_ADDR_LO 32 Gbox5 Fbox machine check address register 

0x8006C0070 MCX_ADDR_HI 32 Gbox5 Fbox machine check address register 

0x8006C0074 MCX_MISC 32 Gbox5 Fbox Misc (Transaction timeout register) 

0x8006C017C MCA_CRC0_ADDR 32 Gbox5 Mbox0 CRC address capture register  

0x8006C097C MCA_CRC1_ADDR 32 Gbox5 Mbox1 CRC address capture register 

Memory Controller (Gbox6) MCA Registers 

0x8006B005C MCX_CTL_LO 32 Gbox6 Fbox machine check control register 

0x8006B0060 MCX_CTL_HI 32 Gbox6 Fbox machine check control register 

0x8006B0064 MCX_STATUS_LO 32 Gbox6 Fbox machine check status register 

0x8006B0068 MCX_STATUS_HI 32 Gbox6 Fbox machine check status register 

0x8006B006C MCX_ADDR_LO 32 Gbox6 Fbox machine check address register 

0x8006B0070 MCX_ADDR_HI 32 Gbox6 Fbox machine check address register 

0x8006B0074 MCX_MISC 32 Gbox6 Fbox Misc (Transaction timeout register) 

0x8006B017C MCA_CRC0_ADDR 32 Gbox6 Mbox0 CRC address capture register  

0x8006B097C MCA_CRC1_ADDR 32 Gbox6 Mbox1 CRC address capture register 

Memory Controller (Gbox7) MCA Registers 

0x8006A005C MCX_CTL_LO 32 Gbox7 Fbox machine check control register 

0x8006A0060 MCX_CTL_HI 32 Gbox7 Fbox machine check control register 

0x8006A0064 MCX_STATUS_LO 32 Gbox7 Fbox machine check status register 

0x8006A0068 MCX_STATUS_HI 32 Gbox7 Fbox machine check status register 
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MSR/MMIO 
Address 

Register Name Size (bits) Description 

0x8006A006C MCX_ADDR_LO 32 Gbox7 Fbox machine check address register 

0x8006A0070 MCX_ADDR_HI 32 Gbox7 Fbox machine check address register 

0x8006A0074 MCX_MISC 32 Gbox7 Fbox Misc (Transaction timeout register) 

0x8006A017C MCA_CRC0_ADDR 32 Gbox7 Mbox0 CRC address capture register  

0x8006A097C MCA_CRC1_ADDR 32 Gbox7 Mbox1 CRC address capture register 

 

3.3.3.9 Uncore MCA Registers (Encoding and Controls)  

The Intel® Xeon Phi™ coprocessor’s uncore agents (which are not part of the core CPU) signal their machine-check 
events via the I/O APIC, and log error events via agent-specific error control and logging registers.  These registers are 
implemented as registers in Intel® Xeon Phi™ coprocessor MMIO space associated with each uncore agent that is 
capable of generating machine-check events. 
 
Once an error is detected by an uncore agent, it signals the interrupt controller located in the uncore system box (SBox).  
The SBox logs the source of the error and generates an interrupt to the specified LRB programmed in the APIC 
redirection tables. 
 
Software must check all the uncore machine-check banks to identify the source of the uncore machine-check event.  To 
enable the generation of a machine-check event from a given source, the software should set the corresponding bit in 
the SBox MCA Interrupt Enable Register (MCA_INT_EN).  To disable the generation of machine-check events from a 
given source, the software should clear the corresponding bit of the SBox MCA_INT_EN register. 
 
Sources of uncore machine-check events in the Intel® Xeon Phi™ coprocessor uncore are listed in Table 3-10. 
 

Table 3-10. Sources of Uncore Machine-Check Events 

Uncore Agent Name number of instances Description 

SBox 1 System agent 

Tag Directory  2 Tag Directories not collocated with CPU slice 

GBox 8 Memory controller 

 
Each uncore agent capable of generating machine-check events contains event control and logging registers to facilitate 
event detection and delivery. 
 

3.3.3.9.1 System Agent (SBox) Error Logging Registers 

The SBox contains a set of machine check registers similar to core bank registers, but implemented in MMIO (USR 
register) for reporting errors.  Machine check events from the SBox are routed to the OS running on a specified thread 
via the local APIC in the SBox. The SBox local APIC redirection table assigned to MCA interrupts must be programmed 
with a specific thread in order to service SBox (and other uncore) machine-check events.  Errors related to DMA requests 
are handled directly by the affected DMA Channel itself and are reported to the DMA SW Driver via the local I/O APIC or 
by the System Interrupt logic, depending on the assigned ownership of the channel.  All MCA errors detected by the 
SBox are logged in the SBox MCA logging registers (MCx.STATUSx,  MCx.MISCx, and MCx.ADDR) regardless of whether 
the corresponding MCA_CTL bit is set, the exception being when the MCA_STATUS.EN bit is already set.  Only errors 
with their corresponding bit set in the MCx.CTL register can signal an error. 
 

Table 3-11. SBox Machine Check Registers 

Register Name Size (bits) Description 

MCX_CTL_LO 32 Machine check control register 
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MCX_CTL_HI 32 Machine check control register (Reads 0, Writes 
Dropped, Not implemented on coprocessor) 

MCX_STATUS_LO 32 Machine check status register 

MCX_STATUS_HI 32 Machine check status register   

MCX_ADDR_LO 32 Machine check address register 

MCX_ADDR_HI 32 Machine check address register 

MCX_MISC 32 Misc (timeout TID register) 

MCX_MISC2 32 Misc (timeout address register) 

 

3.3.3.9.2 Multiple Errors and Errors Over Multiple Cycles 

There are two cases in which the SBox may receive two or more errors before the software has a chance to process each 
individual error: 

5. Multiple errors (errors occurring simultaneously). This occurs when multiple error events are detected in the 
same cycle.  Essentially, this allows the hardware not to try and decode and prioritize multiple errors that occur 
in the same cycle. 

6. Errors occurring one after another over multiple cycles. This occurs when an existing error is already logged in 
the MCx register and another error is received in a subsequent cycle. 

 

3.3.3.9.3 SBox Error Events 

Table 3-12 lists the value of the Model code associated with each individual error.  The sections following the table 
provide some additional information on a select set of these errors. 
 

Table 3-12. SBox Error Descriptions 

Error Class 
MCX_CTL 
Bit Error Name 

Model 
Code Description SBOX Behaviour 

Unsuccessf
ul 
Completio
n 

9 

Received 
Configuration 
Request 
Retry Status 
(CRS) 

0x0006h A Completion with 
Configuration Request Retry 
Status was received for a 
Request from a Ring Agent 

All 1’s for data 
returned to the 
Ring 

1 
Received 
Completer 
Abort (CA) 

0x0007h A Completion with Completer 
Abort status was received for a 
Request from a Ring Agent 

All 1’s for data 
returned to the 
Ring 

2 

Received 
Unsupported 
Request (UR) 

0x0008h A Completion with 
Unsupported Request status 
was received for a Request 
from a Ring Agent 

All 1’s for data 
returned to the 
Ring 

Poisoned 
Data 

7 

Received 
Poisoned 
Data in 
Completion 
(PD) 

0x0040h A Successful Completion (SC) 
with Poisoned Data was 
received for a Request from a 
Ring Agent 

Data payload with 
error is returned to 
the Ring 

Timeout 

6 

Upstream 
Request 
terminated 
by 
Completion 
Timeout 
(CTO)  

0x0009h A Completion Timeout was 
detected for a Request from a 
Ring Agent 

All 1’s for data 
returned to the 
Ring.  
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Error Class 
MCX_CTL 
Bit Error Name 

Model 
Code Description SBOX Behaviour 

Illegal 
Access 

3 

Downstream 
Address 
outside of 
User 
accessible 
Range 

0x0020h PCIE downstream attempt to 
use indirect registers to access 
illegal address ranges via the 
I/O space 

RD: Successful 
Completion (SC) 
with all 0’s for data 
returned to PCIe 
WR: Discard 
transaction.  
Successful 
Completion (SC) 
with no data 
returned to PCIe. 

8 

Unclaimed 
Address (UA) 

0x0021h A Ring Agent Request to an 
unclaimed address was 
terminated by subtractive 
decode 

RD: All 1’s for data 
returned to the 
Ring. 
WR: Request is 
discarded. 

PCIe  
Error 4 

PCIe 
Correctable 
Error 

0x0030h A PCIe correctable error was 
logged by the Endpoint 

ERR_COR Message 
transmitted on 
PCIe 

5 

PCIe 
Uncorrectabl
e Error 

0x0031h A PCIe Uncorrectable error was 
logged by the Endpoint 

ERR_NONFATAL or 
ERR_FATAL 
Message 
transmitted on 
PCIe 

 

3.3.3.9.3.1 Timeout Error 

An upstream timeout occurs when the target fails to respond to an Intel® Xeon Phi™ coprocessor-initiated read request 
within a programmable amount of time.  The PCIE endpoint keeps track of these outstanding completions and will signal 
the GHOST unit when it is okay to free up the buffers allocated to hold the timed out completion.  To ensure that the 
core subsystem within the Intel® Xeon Phi™ coprocessor doesn’t hang while waiting for a read that will never return, the 
SBox generates a dummy completion back to the requesting thread.  The payload of this completion (BAD66BAD) clearly 
indicates that the completion is fake.  As well as generating an MCA event that is logged in the MCX_STATUS register, a 
portion of the completion header associated with the failing PCIe transaction is logged in the MCX_MISC register. 
 

3.3.3.9.3.2 Unrecognized Transaction Error 

This type of error indicates that a transaction was dropped by the SBox because it was of a type that is not handled by 
Intel® Xeon Phi™ coprocessor.  Transactions that fall into this category are usually vendor-specific messages that are not 
recognized by the Intel® Xeon Phi™ coprocessor.  
 

3.3.3.9.3.3 Illegal Access Error 

An illegal access error indicates that the SBOX was unable to complete the transaction because the destination address 
was not within the legal range.  For inbound transactions initiated by PCIE, this can only happen via I/O read and write 
cycles to the indirect address and data ports.   If the user specifies an address above or below the range set aside for 
MMIO host visibility, a machine check exception will be generated and key debug information will be logged for 
software inspection.   
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Ring-initiated transactions can also result in an illegal access error if the coprocessor OS or Tag Directory contains flaws 
in the coding or logic.  The SBox microarchitecture will ensure that all EXT_RD and EXT_WR transactions are delivered to 
the endpoint scheduler for inspection.  If the destination address (an internal Intel® Xeon Phi™ coprocessor address) 
does not match one of the direct-access ranges set aside for the Flash device or does not match one of the 32 available 
system memory ranges, it will be terminated and a default value returned to the requester.  If the ring traffic was routed 
to the SBox in error, this will likely fail all built-in address range checks and will overload the platform as a result.  To 
guard against this possibility, the endpoint scheduling logic must explicitly match one of its valid address ranges before 
driving PCI Express link.  Outbound traffic that fails this check will result in the following explicit actions: 

 EXT_WR transactions will be discarded, key debug information will be logged and an MCA exception will be 
generated.  

 EXT_RD transactions will complete and return data back to the requestor, key debug information will be logged, 
and an MCA exception will be generated. 

3.3.3.9.3.4 Correctable PCIe Fabric Error 

Errors detected in the PCIe fabric will generate an MCA error and be logged in the MCX_STATUS register as an event.  It 
is the responsibility of the software handler to extract the error event from the PCIe standalone agent status registers as 
well as from communication with the PCIe host.  The SBox does not log any more information on this error than what is 
contained in the MCX status register.  These errors are signaled by the assertion of this endpoint interface signal. 
 

Table 3-13. Correctable PCIe Fabric Error Signal 

Signal Name Width Description 

func0_rep_cor_err Scalar The end point has sent a correctable error message to the root complex 

 

3.3.3.9.3.5 Uncorrectable PCIe Fabric Error 

Errors detected in the PCIe fabric (GDA) will generate an MCA error and be logged in the MCX_STATUS register as an 
event.  It is the responsibility of the software handler to extract the error event from the PCIe standalone agent status 
registers as well as from communication with the PCIe host. The SBox does not log any more information on this error 
than is contained in the MCX status register.  These errors are signaled by the assertion of this endpoint interface signal. 
 

Table 3-14. Uncorrectable PCIe Fabric Error Signal 

Signal Name Width Description 

func0_rep_uncor_err Scalar The end point has sent an uncorrectable error message (fatal or 
nonfatal) to the root complex 

 

3.3.3.9.4 GBox Error Events 

Table 3-15. GBox Errors 

Error 
Category 

MCX_CTL 
Bit Error Name Model Code Description GBOX Behaviour 

ECC 2 Correctable ECC 
Error Detected Ch 
0 

0x00000000
4h 

Single bit ECC error 
on channel 0 

Log/Signal Event 

3 Correctable ECC 
Error Detected Ch 
1 

0x00000000
8h 

Single bit ECC error 
on channel 1 

31 Uncorrectable ECC 
Error Detected Ch 
0 

0x08000000
0h 

Double bit ECC error 
on channel 0 

Log/Signal Event 
“Corrupted” Data 
may be returned to 
consumer. 32 Uncorrectable ECC 

Error Detected Ch 
0x10000000 Double bit ECC error 
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Error 
Category 

MCX_CTL 
Bit Error Name Model Code Description GBOX Behaviour 

1 0h on channel 1 

33 Illegal Access to 
Reserved ECC 
Memory Space 

0x20000000
0h 

Access to reserved 
ECC memory 

CAPE 4 CAPE Exceeded 
Threshold Ch 0 

0x00000001
0h 

Memory Cape 
threshold Exceeded 
on Ch0 

Log/Signal Event 

5 CAPE Exceeded 
Threshold Ch 1 

0x00000002
0h 

Memory Cape 
threshold Exceeded 
on Ch0 

Training 0 Channel 0 
retraining 

0x00000000
1h 

Channel 0 retraining 
event  

Log/Signal Event 

1 Channel 1 
retraining 

0x00000000
2h 

Channel 0 retraining 
event 

29 Training failure 
after DM request 
Ch 0 

0x02000000
0h 

Training failure after 
DM request Ch 0 

Log/Signal Event 
Transaction halted 

30 Training failure 
after DM request 
Ch 1 

0x04000000
0h 

Training failure after 
DM request Ch 1 

Proxy MCA 8 Standalone tag 
directory Proxy 
MCA event 

0x00000010
0h 

MCA event In 
Standalone Tag 
Directory 

Log/Signal Event 

Miscellaneou
s 

6 Transaction 
Received to an 
Invalid Channel 

0x00000004
0h 

Memory transaction 
with invalid channel 
encountered 

Log/Signal Event 
“Corrupted” Data 
may be returned to 
consumer/Transactio
n halted 

23 Channel 0 Write 
Queue overflow 

0x00080000
0h 

Channel 0 Write 
Queue overflow 

Log/Signal Event 
Unspecified 
behaviour 24 Channel 1 Write 

Queue overflow 
0x00100000

0h 

Channel 1 Write 
Queue overflow 

 

3.3.3.9.5 Tag Directory Error Events 

Table 3-16. TD Errors 

Error Category 
MXC_CTL 
Bit Error Name 

Model 
Code Description 

Logging 
Register 

Tag-State UNCORR 
Error 

0 
External 

Transaction   
0x0001h 

A tag error occurred on an external 
TD transaction 

MC2_STATUS 
MC2_ADDR 

0 
Internal 

Transaction 0x0002h 
A tag error occurred on an internal 
TD transaction 
(i.e. Victim) 

MC2_STATUS 
MC2_ADDR 

Core-Valid 
UNCORR  Error  

1 
External 

Transaction 
0x0010h 

A state error occurred on an 
external TD transaction 

MC2_STATUS 
MC2_ADDR 

1 
Internal 

Transaction 0x0011h 
A State error occurred on an 
internal TD transaction 
(i.e. Victim) 

MC2_STATUS 
MC2_ADDR 

Tag-State CORR 0 External 0x0100h A tag error occurred on an external MC2_STATUS 
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Error Category 
MXC_CTL 
Bit Error Name 

Model 
Code Description 

Logging 
Register 

Error Transaction   TD transaction MC2_ADDR 

 0 
Internal 

Transaction 0x0101h 
A tag error occurred on an internal 
TD transaction 
(i.e. Victim) 

MC2_STATUS 
MC2_ADDR 

Core-Valid CORR 
Error  

1 
External 

Transaction 
0x0110h 

A state error occurred on an 
external TD transaction 

MC2_STATUS 
MC2_ADDR 

 1 
Internal 

Transaction 0x0111h 
A State error occurred on an 
internal TD transaction 
(i.e. Victim) 

MC2_STATUS 
MC2_ADDR 

 

3.3.3.9.6 Spare Tag Directory (TD) Logging Registers 

The Spare Tag Directory contains a set of registers similar to core bank registers but implemented in MMIO (USR 
register) space instead of the MSR space that co-located TD’s are assigned to. 
 

3.3.3.9.7 Memory Controller (GBox) Error Logging Registers 

The GBox contains a set of registers similar to core bank registers but implemented in MMIO (USR register) space 
instead of as MSRs. The GBox signals two classes of events, CRC retry and Training failure. CRC retry is signaled when the 
GBox attempts a predefined number of retries for a transaction (before initiating retraining). Training failure is signaled 
when the GBox training logic fails or when a transaction incurs a CRC failure after retraining was initiated. 
 

Table 3-17. GBox Error Registers 

Register Name Size (bits) Description 

MCX_CTL_LO 32 Machine Check control register 

MCX_CTL_HI 32 Machine Check control register 

MCX_STATUS_LO 32 Machine Check status register 

MCX_STATUS_HI 32 Machine Check status register 

MCX_ADDR_LO 32 Machine Check address register 

MCX_ADDR_HI 32 Machine Check address register 

MCX_MISC 32 MISC (Transaction timeout register) 

 

3.3.3.10 Uncore MCA Signaling 

Once a machine-check event has occurred in an uncore agent and has been logged in the error reporting register 
(MCX_STATUS), the MCX_STATUS.VAL bit is sent from each agent to the SBox interrupt controller,  which captures this 
bit in the SBox MCA_INT_STAT register.  Each bit of the SBox MCA_INT_STAT register represents an MCA/EMON event 
of an uncore agent.  When the corresponding bit of MCA_INT_EN is also set, then the SBox will generate an interrupt to 
the specified Intel® Xeon Phi™ coprocessor core with the interrupt vector specified in the SBox interrupt controller’s 
redirection table. 
 

3.3.4 Cache Line Disable 

A statistically significant number of SRAM cells can develop erratic and sticky bit failures over time.  Burn-in can be used 
to reduce these types of errors, but it is not sufficient to guarantee that there is statistically insignificant number of 
these errors as has been the case in the past.  These array errors also manifest more readily as a result of the 
requirement for the product to run at low voltage in order to reduce power consumption.  The Intel® Xeon Phi™ 
coprocessor operational voltage will need to find the right balance between power and reliable operation in this regard 
and it must be assumed that SRAM arrays on Intel® Xeon Phi™ coprocessor can develop erratic and sticky bit failures. 
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As a result of the statistically significant SRAM array error sources outlined above, the Intel® Xeon Phi™ coprocessor 
supports a mechanism known as Cache Line Disable (CLD) that is used to disable cache lines that develop erratic and 
sticky bit failures.  Intel® Xeon Phi™ coprocessor hardware detects these array errors and signals a machine check 
exception to a machine check handler,  which implements the error handling policy and which can (optionally) use CLD 
to preclude these errors from occurring in the future. Since the cache line in question will no longer be allowed to 
allocate a new line in the specific array that sourced the error, there may be a slight performance loss.  Since the errors 
can be sticky, and therefore persistent, the Intel® Xeon Phi™ coprocessor remembers the CLDs between cold boots and 
reapplies the CLDs as part of the reset process before the cache is enabled.  This is done through reset packets that are 
generated in the SBox and delivered to all units with CLD capability. 
 

3.3.5 Core Disable 

Similar to Cache Line Disable (CLD), core disable enables the software (OS) to disable a segment of the Intel® Xeon Phi™ 
coprocessor.  Core disable allows the OS to disable a particular Intel® Xeon Phi™ coprocessor core. 
 
Core disable is achieved by writing a segment of the flash room with a core disable mask, and then initiating a cold or 
warm reboot.  The selected cores will not be enumerated. 
 
Core Disable is intended to be used when it is determined that a particular core cannot function correctly due to specific 
error events.  When this case is detected, the coprocessor OS sends information to the host RAS agent corresponding to 
the affected core.  The RAS agent reboots the card into a special processing mode to disable the core, and then resets 
the Intel® Xeon Phi™ coprocessor card. 
 
On the next reboot, the core disable flash record will be used to disable the selected cores and prevent them from 
becoming visible to the coprocessor OS for future scheduling.  There will be no allocation into the CRI associated with 
the disabled core, but the co-located TD will still function to maintain Intel® Xeon Phi™ coprocessor coherency.  
 

3.3.6 Machine Check Flows 

This section describes the physical sources of machine check events on the Intel® Xeon Phi™ coprocessor and the 
hardware flows associated with them.  It also suggests how software handlers should address these machine check 
events. 
 

3.3.6.1 Intel® Xeon Phi™ Coprocessor Core 

Sources for machine check events are the L1 instruction and L1 data caches and their associated TLB’s as well as the 
microcode ROM. 
 
The L1 instruction cache is protected by parity bits.  There is no loss of machine state when a cache parity error occurs.  
MCA’s generated due to parity errors are informational only and are corrected in hardware.  The intent is for software to 
log the event. 
 
Both TLB’s are protected by parity and contain architectural state.  Errors in the TLB’s are uncorrected.  It is up to the 
software handler to decide if execution should continue. 
 
The L1 data cache is parity protected, but it does contain modified cache lines that make recovery impossible in every 
case. Also, it does not have any mechanism to convey its machine-check events in a synchronous fault.  Hence, 
instructions that encounter parity errors will consume the bad data from the cache.  Software must decide if execution 
should continue upon receiving a parity error.  The reporting registers provided for this cache allow software to 
invalidate or flush the cache index and way that encountered the parity error. 
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The Cache Ring Interface (CRI) L2 data cache is protected by ECC.  While machine checks are delivered asynchronously 
with respect to the instruction accessing the cache, single bit errors are corrected by hardware in-line with the data 
delivery.  The L2 tags are protected by parity.  
 
If data integrity is desired, software should consider a mode where all Intel® Xeon Phi™ coprocessor uncorrected errors 
are treated as fatal errors.  To enable potential recovery from L2 cache errors, the address and way of the transaction 
that encounters an error is logged in the Cache Ring Interface.  Software may use the address to terminate applications 
that use the affected memory addresses range and flush the affected line from cache.  L2 cache errors may occur in the 
Tag array or the data array.  Errors in the Tag or data array are typically not corrected and result in incorrect data being 
returned to the application. 
 
In addition to the error reporting resources, the CRI also contains Cache Line Disable (CLD) registers.  There registers are 
programmed on the accumulation of multiple errors to the same cache set and way.  Once written, the cache will not 
allow allocations into the specified cache set and way. 
 
The Intel® Xeon Phi™ coprocessor does not propagate a poison bit with cache-to-cache transfers.  Hence the probability 
of a bad line in the L2 propagating without a machine check is significantly higher.  On a cache-to-cache transfer for a 
line with bad parity, a machine check is going to be generated on the source L2’s core but the data is going to be 
transferred and cached in the requesting L2 as a good line.  As part of the MCA logging on a snoop operation, the 
destination of data is logged; this information can be used by the error handler to contain the effect of an L2 error. 
 
There are two special cases for snoops. The first is a snoop that encounters a Tag/State error that causes a miss in the 
Tag. The second case is a snoop that misses in the tag without a Tag error (or a regular miss).  In both cases, the CRI 
should complete the snoop transaction.  For snoop types that need a data response, the CRI returns data that may be 
unrelated to the actual requested line.  Snoops that incur a miss with a parity error report a TAG_MISS_UNCORR_ERR 
error, but coherency snoops (from TD) that miss generate a SNP_MISS_UNCORR_ERR error. 
 
The TD Tag-State (TS) and Core-Valid (CV) arrays are protected by ECC.  For the Intel® Xeon Phi™ coprocessor all errors 
detected in either the TS or CV arrays may generate a MCA event and are logged in the MCA logging register.  Single bit 
errors by the TD are corrected inline and do not change any TD flows for the affected transaction.   
 
Software must decide if and when to try and recover from a TD error.  To remove the error from the TD, software must 
issue WBINVD instructions such that all cores evict all lines from all caches and then evict or flush all possible addresses 
to the same set as the error address to regain coherency in the TDs as it is not obvious which lines are tracked in a 
particular TD. 
 
The TD allows one Cache-Line-Disable (CLD) register that software can program to disable allocation to a particular TD 
set and way. 
 

3.3.6.2 Memory Controller (GBox) 

The GBox detects link CRC failures between the PBox and the GDDR devices.  These CRC failures are delivered as 
machine-check events to the SBox and are logged in the error reporting registers located in the GBox.  In addition to 
CRC, ECC protection of GDDR contents has been added.  The GBox can detect single and double bit errors and can 
correct single bit errors.  Both single and double bit errors can be enabled to signal machine-check events. 
 
For a read request that encounters a CRC training failure or a double bit ECC error, the GBox will generate a CRC training 
failure or a double bit ECC error. The GBox will generate a fake completion of the request.  On a write the GBox should 
complete the transaction by dropping the write for failing link training or completing the write for a double bit error. 
 



 Page 112 

3.3.7 Machine Check Handler 

A software machine check handler (implemented as a kernel module in the coprocessor OS) is required to resolve 
hardware machine check events triggered during Intel® Xeon Phi™ coprocessor operation.  The machine check handler is 
responsible for logging hardware-corrected events (threshold controlled) and for communicating information to the 
host RAS agent about uncorrected events and logging these events.  The host RAS agent determines the correct action 
to take on uncorrected events. 
 

3.3.7.1 Basic Flow 

Due to the reliability requirements on the Intel® Xeon Phi™ coprocessor and the unique nature of the hardware a 
generic handler will not suffice and an Intel® Xeon Phi™ coprocessor specific handler is required.  A machine-check 
handler must perform following steps: 

1. Stop all threads and divert them to the machine check handler via IPI. 
2. Once all threads have reached, the machine check handler skips to step 4. 
3. One or more threads may be hung. Trigger shutdown/checkpoint failure and jump to step 20. 
4. Read MCA registers in each bank and log the information. 
5. If uncorrected error (MCi.STATUS.UC || MCi.STATUS.PCC), then jump to step 9. 
6. Write CLD field in flash, if necessary. 
7. If the reliability threshold is met, then jump to step 9. 
8. Exit handler. 
9. Turn off all cache and disable MCA (MCi.CTL) for all MC banks. 
10. Perform a WBINV to flush L2 contents. 
11. Invalidate L1 instruction and data caches via test registers. 
12. Turn on the caches, but not MCA. 
13. On a selected thread/core, perform a read of the entire GDDR memory space. 
14. Perform a WBINV to flush the contents of the selected core. 
15. Clear MCi.STATUS registers for all MC banks. 
16. If reliability testing is not enabled, jump to step 20. 
17. Perform a targeted test of the caches. 
18. Check the contents of the MCi_STATUS register for failure (note that MC.STATUS.VAL will not be set). 
19. If failure is detected, then set CLD to disable affected lines, and then repeat steps 9-15. 
20. Turn on MCA (enable MCi.CTL). 
21. Asses the severity of the error and determine the action to be taken (i.e., shutdown application, if possible). 
22. Clear the MCIP bit.  
23. Exit handler. 
 

3.3.8 Error Injection 

There are two basic methods that system software can use to simulate machine-check events: 

1. Dedicated Error Injection Registers. 
2. Machine checks STATUS register. 

3.3.8.1 Dedicated Error Injection Registers 

Machine check events can be generated using dedicated error injection registers available for a limited number of 
protected arrays. For Intel® Xeon Phi™ coprocessor, this is limited to the MC0 and MC1 error reporting banks. 

3.3.8.2 Error Injection via MCi_STATUS Register 

The last method of injecting MC events into the machine is via the MCi_STATUS register.  For the MC1, MC2 and Uncore 
MC Bank registers writing the MCx_STATUS.VAL bit will cause a machine check event to be generated from the targeted 
error reporting bank.  
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3.3.8.3 List of API’s for RAS 

The following interfaces provide communication between RAS features and other parts of the Intel® Xeon Phi™ 
coprocessor software:  

 SCIF access from exception/interrupt context 

 SCIF well known ports for the MCA agent and Linux* coprocessor OS MC event handlers 

 SCIF message formats for MC events reported to host side agent 

 Reboot to maintenance mode via IOCTL request 

 SCIF message formats for Intel® Xeon Phi™ coprocessor system queries and controls 

 Throttle mechanism for CEs 

 I2C driver for the bus where SMC resides 

 I2C identifiers for communicating with the SMC 

 Data formats for MC events. 

 Data formats for Intel® Xeon Phi™ coprocessor system queries (if any) 

 Data formats for system environment changes (fan speeds, temp, etc.) 

 Filter for which events to report to SMC 

 Storage location in SMC for MC raw data 

 Fuse override requests to maintenance mode 

 Diagnostic mode entry to maintenance mode 

 Data formats on the RAS log in Intel® Xeon Phi™ coprocessor EEPROM 
 
Time reference in maintenance mode (Intel® Xeon Phi™ coprocessor cards have no time reference). If the RAS log 
includes the timestamp, the host must provide a time base or a reference to a time counter. 
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4 Operating System Support and Driver Writer’s Guide 

This section discusses the support features that the Intel® Xeon Phi™ coprocessor provides for the operating system and 
device drivers. 

4.1 Third Party OS Support 

The Intel® MIC Architecture products support 3rd party operating systems such as modified versions of Linux* or 
completely custom designs.  The Linux* based coprocessor OS is treated like a 3rd party OS.  

4.2 Intel® Xeon Phi™ Coprocessor Limitations for Shrink-Wrapped Operating Systems 

This section is intended to help developers port an existing operating system that runs a platform built around an 
Intel 64 processor to Intel® Xeon Phi™ coprocessor hardware. 
 

4.2.1 Intel x86 and Intel 64 ABI 

The Intel x86 and Intel 64 -bit ABI uses the SSE2 XMM registers, which do not exist in the Intel® Xeon Phi™ coprocessor.  
 

4.2.2 PC-AT / I/O Devices 

Because the Intel® Xeon Phi™ coprocessor does not have a PCH southbridge, many of the devices generally assumed to 
exist on a PC platform do not exist. Intel® Xeon Phi™ coprocessor hardware supports a serial console using the serial 
port device on the SBOX I2C bus.  It is also possible to export a standard device, like an Ethernet interface, to the OS by 
emulating it over system and GDDR memory shared with the host. This allows for higher level functionality, such as SSH 
or Telnet consoles for interactive and NFS for file access. 
 

4.2.3 Long Mode Support 

Intel 64 Processors that support Long mode also support a compatibility submode within Long mode to handle existing 
32-bit x86 applications without recompilation. The Intel® Xeon Phi™ coprocessor does not support the compatibility 
submode. 
 

4.2.4 Custom Local APIC 

The local APIC registers have expanded fields for the APIC ID, Logical APIC ID, and APIC Destination ID. Refer to the SDM 
Volume 3A System Programming Guide for details.  
 
There is a local APIC (LAPIC) per hardware thread in the Intel® Xeon Phi™ coprocessor.  In addition, the SBox contains 
within it a LAPIC that has 8 Interrupt Command Registers (ICRs) to support host-to-coprocessor and inter-coprocessor 
interrupts. To initiate an interrupt from the host to an Intel® Xeon Phi™ coprocessor or from one Intel® Xeon Phi™ 
coprocessor to another, the initiator must write to an ICR on the target Intel® Xeon Phi™ coprocessor. Since there are 8 
ICRs, the system can have up to 8 Intel® Xeon Phi™ coprocessors that can be organized in a mesh topology along with 
the host. 
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4.2.5 Custom I/O APIC 

The Intel® Xeon Phi™ coprocessor I/O APIC has a fixed 64-bit base address. The base address of the I/O APIC on IA 
platforms is communicated to the OS by the BIOS (Bootstrap) via MP, ACPI, or SFI table entries. The MP and ACPI table 
entries use a 32-bit address for the base address of the I/O APIC, whereas the SFI table entry uses a 64-bit address.  
Operating systems that assume a 32-bit address for the I/O APIC will need to be modified. 
 
The I/O APIC pins (commonly known as irq0, irq1 and so on) on a PC-compatible platform are connected to ISA and PCI 
device interrupts.  None of these interrupt sources exist on the Intel® Xeon Phi™ coprocessor; instead the I/O APIC IRQs 
are connected to interrupts generated by the Intel® Xeon Phi™ coprocessor SBox (e.g., DMA channel interrupts, thermal 
interrupts, etc.).   
 

4.2.6 Timer Hardware 

Timer hardware devices like the programmable interval timer (PIT), the CMOS real time clock (RTC), the advanced 
configuration and power interface (ACPI) timer, and the high-precision event timer (HPET) commonly found on PC 
platforms are absent on the Intel® Xeon Phi™ coprocessor.  
 
The lack of timer hardware means that the Intel® Xeon Phi™ coprocessor OS must use the LAPIC timer for all 
timekeeping and scheduling activities. It still needs a mechanism to calibrate the LAPIC timer which is otherwise 
calibrated using the PIT. It also needs an alternative solution to the continuously running time-of-day (TOD) clock, which 
keeps time in year/month/day hour:minute:second format. The Intel® Xeon Phi™ coprocessor has a SBox MMIO register 
that provides the current CPU frequency, which can be used to calibrate the LAPIC timer. The TOD clock has to be 
emulated in software to query the host OS for the time at bootup and then using the LAPIC timer interrupt to update it.  
Periodic synchronization with the host may be needed to compensate for timer drift. 
 

4.2.7 Debug Store 

The Intel® Xeon Phi™ coprocessor does not support the ability to write debug information to a memory resident buffer. 
This feature is used by Branch Trace Store (BTS) and Precise Event Based Sampling (PEBS) facilities. 
 

4.2.8 Power and Thermal Management 

4.2.8.1 Thermal Monitoring 

Thermal Monitoring of the Intel® Xeon Phi™ coprocessor die is implemented by a Thermal Monitoring Unit (TMU). The 
TMU enforces throttling during thermal events by reducing core frequency ratio.  Unlike TM2 thermal monitoring on 
other Intel processors (where thermal events result in throttling of both core frequency and voltage), the Intel® Xeon 
Phi™ coprocessor TMU does not automatically adjust the voltage. The Intel® Xeon Phi™ coprocessor TMU coordinates 
with a software-based mechanism to adjust processor performance states (P-states). The TMU software interface 
consists of a thermal interrupt routed through the SBox I/O APIC and SBox interrupt control and status MMIO registers. 
For more information on the TMU and its software interface refer to the section on Intel® Xeon Phi™ Coprocessor Power 
and Thermal Management. 
 

4.2.8.2 ACPI Thermal Monitor and Software Controlled Clock Facilities 

The processor implements internal MSRs (IA32_THERM_STATUS, IA32_THERM_INTERRUPT, 
IA32_CLOCK_MODULATION) that allow the processor temperature to be monitored and the processor performance to 
be modulated in predefined duty cycles under software control.  
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The Intel® Xeon Phi™ coprocessor supports non-ACPI based thermal monitoring through a dedicated TMU and a set of 
thermal sensors. Thermal throttling of the core clock occurs automatically in hardware during a thermal event. 
Additionally, OS power-management software is given an opportunity to modulate the core frequency and voltage in 
response to the thermal event. These core frequency and voltage settings take effect when the thermal event ends.  In 
other words, Intel® Xeon Phi™ coprocessor hardware provides equivalent support for handling thermal events but 
through different mechanisms.   
 

4.2.8.2.1  Enhanced SpeedStep (EST) 

ACPI defines performance states (P-state) that are used to facilitate system software’s ability to manage processor 
power consumption. EST allows the software to dynamically change the clock speed of the processor (to different P-
states). The software makes P-state decisions based on P-state hardware coordination feedback provided by EST. 
 
Again, the Intel® Xeon Phi™ coprocessor is not ACPI compliant. However, the hardware provides a means for the OS 
power-management software to set core frequency and voltage that corresponds to the setting of P-states in the ACPI 
domain. OS PM software in the Intel® Xeon Phi™ coprocessor (just as in the case of EST) dynamically changes the core 
frequency and voltage of the processor cores based on core utilization, thereby reducing power consumption.  
Additionally, the Intel® Xeon Phi™ coprocessor hardware provides feedback to the software when the changes in 
frequency and voltage take effect. This is roughly equivalent to what exists for EST; except that there is a greater burden 
on OS PM software to: 

 generate a table of frequency/voltage pairs that correspond to P-states 

 set core frequency and voltage to dynamically change P-states.    
 

4.2.9 Pending Break Enable 

The Intel® Xeon Phi™ coprocessor does not support this feature. 
 

4.2.10 Global Page Tables 

The Intel® Xeon Phi™ coprocessor does not support the global bit in Page Directory Entries (PDEs) and Page Table Entries 
(PTEs). Operating systems typically detect the presence of this feature using the CPUID instruction. This feature is 
enabled on processors that support it by writing to the PGE bit in CR4. On the Intel® Xeon Phi™ coprocessor, writing to 
this bit results in a GP fault. 
 

4.2.11 CNXT-ID – L1 Context ID 

Intel® Xeon Phi™ coprocessor does not support this feature.  
 

4.2.12 Prefetch Instructions 

The Intel® Xeon Phi™ coprocessor’s prefetch instructions differ from those available on other Intel® processors that 
support the MMX™ instructions or the Intel® Streaming SIMD Extensions. As a result, the PREFETCH instruction is not 
supported. This set of instructions is replaced by VPREFETCH as described in the (Intel® Xeon Phi™ Coprocessor 
Instruction Set Reference Manual (Reference Number: 327364)).  

4.2.13 PSE-36 

PSE-36 refers to an Intel processor feature (in 32-bit mode) that extends the physical memory addressing capabilities 
from 32 bits to 36 bits. The Intel® Xeon Phi™ coprocessor  has 40 bits of physical address space but only supports  32 bits 
of physical address space in 32-bit mode. See also the (Intel® Xeon Phi™ Coprocessor Instruction Set Reference Manual 
(Reference Number: 327364)). 
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4.2.14 PSN (Processor Serial Number) 

The Intel® Xeon Phi™ coprocessor does not support this feature. 

4.2.15 Machine Check Architecture 

The Intel® Xeon Phi™ coprocessor does not support MCA as defined by the Intel® Pentium® Pro and later Intel 
processors. However, MCEs on the Intel® Xeon Phi™ coprocessor are compatible with the  Intel® Pentium® processor.  

4.2.16 Virtual Memory Extensions (VMX) 

The Intel® Xeon Phi™ coprocessor does not support the virtualization technology (VT) extensions available on some 
Intel® 64 processors. 

4.2.17 CPUID  

The Intel® Xeon Phi™ coprocessor supports a highest-source operand value (also known as a CPUID leaf) of 4 for CPUID 
basic information, 0x80000008 for extended function information, and 0x20000001 for graphics function information. 
 

4.2.17.1 Always Running LAPIC Timer 

The LAPIC timer on the Intel® Xeon Phi™ coprocessor keeps ticking even when the Intel® Xeon Phi™ coprocessor core is 
in the C3 state. On other Intel processors, the OS detects the presence of this feature using the CPU ID leaf 6. The Intel® 
Xeon Phi™ coprocessor does not support this leaf so any existing OS code that detects this feature must be modified to 
support the Intel® Xeon Phi™ coprocessor. 
 

4.2.18 Unsupported Instructions 

For the details on supported and unsupported instructions, please consult the (Intel® Xeon Phi™ Coprocessor Instruction 
Set Reference Manual (Reference Number: 327364)). 
 

4.2.18.1 Memory Ordering Instructions 

The Intel® Xeon Phi™ coprocessor memory model is the same as that of the Intel® Pentium processor. The reads and 
writes always appear in programmed order at the system bus (or the ring interconnect in the case of the Intel® Xeon 
Phi™ coprocessor); the exception being that read misses are permitted to go ahead of buffered writes on the system bus 
when all the buffered writes are cached hits  and are, therefore,  not directed to the same address being accessed by the 
read miss.  
 
As a consequence of its stricter memory ordering model, the Intel® Xeon Phi™ coprocessor does not support the 
SFENCE, LFENCE, and MFENCE instructions that provide a more efficient way of controlling memory ordering on other 
Intel processors.   
 
While reads and writes from an Intel® Xeon Phi™ coprocessor appear in program order on the system bus, the  compiler 
can still reorder unrelated memory operations  while maintaining program order on a single Intel® Xeon Phi™ 
coprocessor (hardware thread).  If software running on an Intel® Xeon Phi™ coprocessor is dependent on the order of 
memory operations on another Intel® Xeon Phi™ coprocessor then a serializing instruction (e.g., CPUID, instruction with 
a LOCK prefix) between the memory operations is required to guarantee completion of all memory accesses issued prior 
to the serializing instruction before any subsequent memory operations are started. 
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4.2.18.2 Conditional Movs 

Intel® Xeon Phi™ coprocessor does not support the Conditional Mov instructions.   The OS can detect  the lack of CMOVs 
using CPUID. 
 

4.2.18.3 IN and OUT 

The Intel® Xeon Phi™ coprocessor does not support IN (IN, INS, INSB, INSW, INSD) and OUT (OUT, OUTS, OUTSB, 
OUTSW, OUTSD) instructions. These instructions result in a GP fault. There is no use for these instructions on Intel® Xeon 
Phi™ coprocessors; all I/O devices are accessed through MMIO registers. 
 

4.2.18.4 SYSENTER and SYSEXIT 

The Intel® Xeon Phi™ coprocessor does not support the SYSENTER and SYSEXIT instructions that are used by 32-bit Intel 
processors (since the Pentium II) to implement system calls. However, the Intel® Xeon Phi™ coprocessor does support 
the SYSCALL and SYSRET instructions that are supported by Intel 64 processors. Using CPUID, the OS can detect the lack 
of SYSENTER and SYSEXIT and the presence of SYSCALL and SYSRET instructions. 
 

4.2.18.5 MMX™ Technology and Streaming SIMD Extensions 

The Intel® Xeon Phi™ coprocessor only supports SIMD vector registers that are 512 bits wide (zmm0-31) along with eight 
16-bit wide vector mask registers. 
 
The IA-32 architecture includes features by which an OS can avoid the time-consuming restoring of the floating- point 
state when activating a user process that does not use the floating-point unit. It does this by setting the TS bit in control 
register CR0. If a user process then tries to use the floating-point unit, a device-not-available fault (exception 7 = #NM) 
occurs. The OS can respond to this by restoring the floating-point state and by clearing CR0.TS, which prevents the fault 
from recurring. 
 
The Intel® Xeon Phi™ coprocessor does not include any explicit instruction to perform context a save and restore of the 
Intel® Xeon Phi™ coprocessor state. To perform a context save and restore you can use: 

 Vector loads and stores for vector registers 

 A combination of vkmov plus scalar loads and stores for mask registers 

 LDMXCSR and STMXCSR for MXCSR state register 

4.2.18.6 Monitor and Mwait 

The Intel® Xeon Phi™ coprocessor does not support the MONITOR and MWAIT instructions. The OS can use CPUID to 
detect lack of support for these. 
 
MONITOR and MWAIT are provided to improve synchronization between multiple agents. In the implementation for the 
Intel® Pentium®4 processor with Streaming SIMD Extensions 3 (SSE3),  MONITOR/MWAIT are targeted for use by system 
software to provide more efficient thread synchronization primitives. MONITOR defines an address range used to 
monitor write-back stores. MWAIT is used to indicate that the software thread is waiting for a write-back store to the 
address range defined by the MONITOR instruction. 
 
FCOMI, FCOMIP, FUCOMI, FUCOM, FCMOVcc 
The Intel® Xeon Phi™ coprocessor does not support these floating-point instructions, which were introduced after the 
Intel® Pentium® processor. 
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4.2.18.7 Pause 

The Intel® Xeon Phi™ coprocessor does not support the pause instruction (introduced in the Intel® Pentium® 4 to 
improve its performance in spin loops and to reduce the power consumed). The Intel® Pentium® 4 and the Intel® Xeon® 
processors implement the PAUSE instruction as a pre-defined delay.  The delay is finite and can be zero for some 
processors.  The equivalent Intel® Xeon Phi™ coprocessor instruction is  DELAY, which has a programmable delay. Refer 
to the programmer’s manual for further details. 
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5 Application Programming Interfaces 

5.1 The SCIF APIs 

SCIF provides a mechanism for internode communication within a single platform, where a node is either an Intel® Xeon 
Phi™ coprocessor or the Xeon-based host processor complex. In particular, SCIF abstracts the details of communicating 
over the PCI Express* bus (and controlling related Intel® Xeon Phi™ coprocessors) while providing an API that is 
symmetric between the host and the Intel® Xeon Phi™ coprocessor. An important design objective for SCIF was to 
deliver the maximum possible performance given the communication abilities of the hardware. 
 
The Intel® MPSS supports a computing model in which the workload is distributed across both the Intel® Xeon® host 
processors and the Intel® Xeon Phi™ coprocessor based add-in PCI Express* cards. An important property of SCIF is 
symmetry; SCIF drivers should present the same interface on both the host processor and the Intel® Xeon Phi™ 
coprocessor so that software written to SCIF can be executed wherever is most appropriate. SCIF architecture is 
operating system independent; that is, SCIF implementations on different operating systems are able to 
intercommunicate. SCIF is also the transport layer that supports MPI, OpenCL*, and networking (TCP/IP).  
 
This section defines the architecture of the Intel® MIC Symmetric Communications Interface (SCIF).  It identifies all 
external interfaces and each internal interface between the major system components. 
 
The feature sets listed below are interdependent with SCIF. 

 Reliability Availability Serviceability (RAS )Support 
Because SCIF serves as the communication channel between the host and the Intel® Xeon Phi™ coprocessors, it 
is used for RAS communication.  

 Power Management 
SCIF must deal with power state events such as a node entering or leaving package C6.  

 Virtualization Considerations 
The Intel® Xeon Phi™ coprocessor product supports the direct assignment virtualization model. The host 
processor is virtualized, and each Intel® Xeon Phi™ coprocessor device is assigned exclusively to exactly one 
VM. Under this model, each VM and its assigned Intel® Xeon Phi™ coprocessor devices can operate as a SCIF 
network. Each SCIF network is separate from other SCIF networks in that no intercommunication is possible. 

 Multi-card Support 
The SCIF model, in principle, supports an arbitrary number of Intel® Xeon Phi™ coprocessor devices. The SCIF 
implementation is optimized for up to 8 Intel® Xeon Phi™ coprocessor devices. 

 Board Tools 
The Intel® MPSS ships with some software tools commonly referred to as “board tools”.  Some of these board 
tools are layered on SCIF. 

 
As SCIF provides the communication capability between host and the Intel® Xeon Phi™ coprocessors, there must be 
implementations of SCIF on both the host and the Intel® Xeon Phi™ coprocessor. Multisocket platforms are supported 
by providing  each socketed processor with a physical PCI Express* interface.  SCIF supports communication between 
any host processor and any Intel® Xeon Phi™ coprocessor, and between any two Intel® Xeon Phi™ coprocessors 
connected through separate physical PCI buses. 
 
All of Intel® Xeon Phi™ coprocessor memory can be visible to the host or other Intel® Xeon Phi™ coprocessor devices. 
The upper 512GB of the Intel® Xeon Phi™ coprocessor’s physical address space is divided into 32 16-GB ranges that map 
through 32 corresponding SMPT registers to 16-GB ranges in host system address space. Each SMPT register can be 
programmed to any multiple of 16-GB in the host’s 64-bit address space. The  Intel® Xeon Phi™ coprocessor accesses the 
host’s physical memory through these registers. It also uses these registers to access the memory space of other Intel® 
Xeon Phi™ coprocessor devices for peer-to-peer communication since Intel® Xeon Phi™ coprocessor memory is mapped 
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into the host address space.  Thus, there is an upper limit of 512 GB to the host system memory space that can be 
addressed at any time. Up to seven SMPT registers (112 GB of this aperture) are needed to access the memory of seven 
other Intel® Xeon Phi™ coprocessor devices in a platform, for a maximum of 8 Intel® Xeon Phi™ coprocessor devices 
(assuming up to 16 GB per Intel® Xeon Phi™ coprocessor device). This leaves 25 SMPTs, which can map up to 400GB of 
host memory. Overall, as the number of Intel® Xeon Phi™ coprocessor devices within a platform increases, the amount 
of host memory that is visible to each Intel® Xeon Phi™ coprocessor device decreases. 
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Figure 5-1. SCIP Architectural Model 

 
Note that although SCIF supports peer-to-peer reads, the PCIe* root complex of some Intel client platforms do not. 
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The Intel® Xeon Phi™ coprocessor DMA engine begins DMAs on cache-line boundaries, and the DMA length is some 
multiple of the cache-line length (64B). Many applications need finer granularity. SCIF uses various software techniques 
to work compensate for this limitation. For example, when the source and destination base addresses are separated by 
a multiple of 64B, but do not begin on a cache-line boundary, the transfer is performed as unaligned “head” and “tail” 
read and write transfers (by the Intel® Xeon Phi™ coprocessor cores) and an aligned DMA “body” transfer. When the 
source and destination base addresses are not separated by a multiple of 64B, SCIF may first perform a local memory-to-
memory copy of the buffer, followed by the head/body/tail transfer. 
 
A SCIF implementation on a host or Intel® Xeon Phi™ coprocessor device includes both a user mode (Ring 3) library and 
kernel mode (Ring 0) driver. The user mode (Ring 3) library and kernel mode (Ring 0) driver implementations are 
designed to maximize portability across devices and operating systems. A kernel mode library facilitates accessing SCIF 
facilities from kernel mode. Subsequent subsections briefly describe the major components layered on SCIF. 
 
The kernel-mode SCIF API is similar to the user mode API and is documented in the Intel® MIC SCIF API Reference 
Manual for Kernel Mode Linux*. Table 5-1 is a snapshot summary of the SCIF APIs. In the table, µSCIF indicates a function 
in the user mode API, and kSCIF indicates a function in the kernel mode API. For complete details of the SCIF API and 
architectural design, please consult the Intel® MIC SCIF API Reference Manual for User Mode Linux*. 
 

Table 5-1 Summary of SCIF Functions 

Group Function Mode 

Connection scif_open µSCIF/kSCIF 

scif_close µSCIF/kSCIF 

scif_bind µSCIF/kSCIF 

scif_listen µSCIF/kSCIF 

scif_connect µSCIF/kSCIF 

scif_accept µSCIF/kSCIF 

Messaging scif_send µSCIF/kSCIF 

scif_recv µSCIF/kSCIF 

Registration  
and Mapping 

scif_register µSCIF/kSCIF 

scif_unregister µSCIF/kSCIF 

scif_mmap µSCIF 

scif_munmap µSCIF 

scif_pin_pages kSCIF 

scif_unpin_pages kSCIF 

scif_register_pinned_pages kSCIF 

scif_get_pages kSCIF 

scif_put_pages kSCIF 

RMA scif_readfrom µSCIF/kSCIF 

scif_writeto µSCIF/kSCIF 

scif_vreadfrom µSCIF/kSCIF 

scif_vwriteto µSCIF/kSCIF 

scif_fence_mark µSCIF/kSCIF 

scif_fence_wait µSCIF/kSCIF 

scif_fence_signal µSCIF/kSCIF 

Utility scif_event_register kSCIF 

scif_poll µSCIF/kSCIF 

scif_get_nodeIDs µSCIF/kSCIF 

scif_get_fd µSCIF 
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The Connection API group enables establishing connections between processes on different nodes in the SCIF network, 
and employs a socket-like connection procedure. Such connections are point-to-point, connecting a pair of processes, 
and are the context in which communication between processes is performed.  
 
The Messaging API group supports two-sided communication between connected processes and is intended for the 
exchange of short, latency-sensitive messages such as commands and synchronization operations.  
 
The Registration API group enables controlled access to ranges of the memory of one process by a process to which it is 
connected. This group includes APIs for mapping the registered memory of a process in the address space of another 
process.  
 
The RMA API group supports one-sided communication between the registered memories of connected processes, and 
is intended for the transfer of medium to large buffers. Both DMA and programmed I/O are supported by this group. 
The RMA API group also supports synchronization to the completion of previously initiated RMAs. 
 
Utility APIs provide a number of utility services. 
 

5.2 MicAccessAPI 

The MicAccessAPI is a C/C++ library that exposes a set of APIs for applications to monitor and configure several metrics 
of the Intel® Xeon Phi™ coprocessor platform. It also allows communication with other agents, such as the System 
Management Controller if it is present on the card. This library is in turn dependent on libscif.so.  This library is required 
in order to be able to connect to and communicate with the kernel components of the software stack. The libscif.so 
library is installed as part of Intel® MPSS. Several tools, including MicInfo, MicCheck, MicSmc & MicFlash all of which are 
located in /opt/intel/mic/bin after installing MPSS, rely heavily on MicAccessAPI. 

 
Following a successful boot of the Intel® Xeon Phi™ coprocessor card(s), the primary responsibility of MicAccessAPI is to 
establish connections with the host driver and the coprocessor OS, and subsequently allow software to 
monitor/configure Intel® Xeon Phi™ coprocessor parameters.  The host application and coprocessor OS communicate 
using messages, which are sent via the underlying SCIF architecture using the Sysfs mechanism as indicated in the figure 
below. 
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Figure 5-2 Intel® Xeon Phi™ Coprocessor SysMgmt MicAccessAPI Architecture Components Diagram 

Another important responsibility of MicAccessAPI is to update the Flash & SMC.  In order to be able to perform this 
update, the Intel® Xeon Phi™ coprocessor cards must be in the ‘ready’ mode. This can be accomplished using the 
‘micctrl’ tool that comes with MPSS.  The MicAccessAPI then enters into maintenance mode and interacts with the SPI 
Flash and the SMC’s flash components via the maintenance mode handler to successfully complete the update process 
as shown in the figure below.  
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Figure 5-3 MicAccessAPI Flash Update Procedure 

 
The various APIs included in the MicAccessAPI library can be classified into several broad categories as shown in Table 
5-2. 
 



 Page 126 

Table 5-2. MicAccessAPI Library APIs 

Group API Name 

Initialization MicInitAPI, MicCloseAPI, MicInitAdapter, MicCloseAadpter 

Flash MicGetFlashDeviceInfo, MicGetFlashInfo, 
MicGetFlashVersion, MicUpdateFlash , MicSaveFlash, 
MicWriteFlash, MicAbortFlashUpdate, MicDiffFlash, 
MicFlashCompatibility, MicGetMicFlashStatus 

Power management MicPowerManagementStatus, MicGetPowerUsage, 
MicGetPowerLimit, MicPowerManagementEnable, 
MicResetMaxPower 

SMC MicGetSMCFWVersion, MicGetSMCHWRevision, 
MicGetUUID, MicLedAlert 

Thermal MicGetFanStatus, MicSetFanStatus, MicGetTemperature, 
MicGetFSCInfo, MicGetFrequency, MicGetVoltage 

Memory MicGetDevMemInfo, MicGetGDDRMemSize, 
MicGetMemoryUtilization, MicMapMemory, 
MicUnmapMemory, MicReadMem, MicWriteMem, 
MicReadMemPhysical , MicWriteMemPhysical, 
MicCopyGDDRToFile 

PCI MicGetPcieLinkSpeed, MicGetPcieLinkWidth, 
MicGetPcieMaxPayload, MicGetPcieMaxReadReq 

Core MicGetCoreUtilization, MicGetNumCores 

Turbo & ECC MicGetTurboMode, MicDeviceSupportsTurboMode, 
MicEnableTurboMode, MicDisableTurboMode, 
MicGetEccMode, MicEnableEcc, MicDisableEcc 

Exception MicExceptionsEnableAPI, MicExceptionsDisableAPI, 
MicThrowException 

General Card Information MicGetDeviceID, MicGetPostCode, MicGetProcessorInfo, 
MicGetRevisionID, MicGetSiSKU, MicGetSteppingID, 
MicGetSubSystemID, MicCheckUOSDownloaded, 
MicGetMicVersion, MicGetUsageMode, MicSetUsageMode, 
MicCardReset 

 

5.3 Support for Industry Standards 

The Intel® MPSS supports industry standards like OpenMP™, OpenCL*, MPI, OFED*, and TCP/IP. 
 
OpenMP™ is supported as part of the Intel® Composer XE software tools suite for the Intel® MIC Architecture. 
 
MPI standards are supported through OFED* verbs development. See Section 2.2.9.2 for OFED* support offered in the 
Intel® Xeon Phi™ coprocessor.  
 
The support for the OpenCL* standard for programming heterogeneous computers consists of three components: 

 Platform APIs used by a host program to enumerate compute resources and their capabilities.  

 A set of Runtime APIs to control compute resources in a platform independent manner. The Runtime APIs are 
responsible for memory allocations, copies, and launching kernels;  and provide an event mechanism that allows 
the host to query the status of or wait for the completion of a given call.  

 A C-based programming language for writing programs for the compute devices. 
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For more information, consult the relevant specification published by the respective owning organizations: 

 OpenMP™ ( http://openmp.org/ ) 

 OpenCL ( http://www.khronos.org/opencl/ ) 

 MPI ( http://www.mpi-forum.org/ ) 

 OFED* Overview ( http://www.openfabrics.org )  
 

5.3.1 TCP/IP Emulation 

The NetDev drivers emulate an Ethernet device to the next higher layer (IP layer) of the networking stack. Drivers have 
been developed specifically  for the Linux* and Windows* operating systems. The host can be configured to bridge the 
TCP/IP network (created by the NetDev drivers) to other networks that the host is connected to. The availability of such 
a TCP/IP capability enables, among other things:  

 remote access to Intel® Xeon Phi™ coprocessor devices via Telnet or SSH 

 access to MPI on TCP/IP (as an alternative to MPI on OFED*) 

 NFS access to the host or remote file systems (see Section 0). 
 

5.4  Intel® Xeon Phi™ Coprocessor Command Utilities  

Table 5-3 describes the utilities that are available to move data or execute commands or applications from the host to 
the Intel® Xeon Phi™ coprocessors.  

Table 5-3. Intel® Xeon Phi™ Coprocessor Command Utilities 

Utility Description 

micctrl  This utility administers various Intel® Xeon Phi™ duties including initialization, resetting 
and changing/setting the modes of any coprocessors installed on the platform. 

 See the Intel® Xeon Phi™ Manycore Platform Software Stack (MPSS) Getting Started 
Guide (document number 513523) for details on how to use this tool. 

micnativeloadex  Uploads an executable and any dependent libraries: 
 from the host to a specified Intel® Xeon Phi™ coprocessor device 
 from one Intel® Xeon Phi™ coprocessor device back to the host  
 from one Intel® Xeon Phi™ coprocessor device to another Intel® Xeon Phi™ 

coprocessor device. 
 A process is created on the target device to execute the code. The application 
micnativeloadex can redirect (proxy) the process’s file I/O to or from a device on the host. 
See the Intel® Xeon Phi™ Manycore Platform Software Stack (MPSS) Getting Started Guide 
(document number 513523) for details on how to use this tool. 

 

5.5 NetDev Virtual Networking 

5.5.1 Introduction 

The Linux* networking (see Figure 5-4) stack is made up of many layers. The application layer at the top consists of 
entities that typically run in ring3 (e.g., FTP client, Telnet, etc.) but can include support from components that run in 
ring0. The ring3 components typically use the services of the protocol layers via a system call interface like sockets. The 
device agnostic transport layer consists of several protocols including the two most common ones – TCP and UDP. The 
transport layer is responsible for maintaining peer-to-peer communications between two endpoints (commonly 
identified by ports) on the same or on different nodes. The Network layer (layer 3) includes protocols such as IP, ICMP, 
and ARP; and is responsible for maintaining communication between nodes, including making routing decisions. The Link 
layer (layer 2) consists of a number of protocol agnostic device drivers that provide access to the Physical layer for a 

http://openmp.org/
http://www.khronos.org/opencl/
http://www.mpi-forum.org/
http://www.openfabrics.org/
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number of different mediums such as Ethernet or serial links. In the Linux* network driver model, the Network layer 
talks to the device drivers via an indirection level that provides a common interface for access to various mediums.  
 

Application Layer: FTP client, sockets 

Transport Layer: TCP/UDP

Network Layer: IP

Link Layer: Linux Device Driver (Ethernet)

 

Figure 5-4 Linux* Network Stack 

 
The focus of this section is to describe the virtual Ethernet driver that is used to communicate between various nodes in 
the system, including between cards. The virtual Ethernet driver sends and receives Ethernet frames across the PCI 
Express* bus and uses the DMA capability provided by the SBox on each card. 

5.5.2 Implementation 

A separate Linux* interface is created for each Intel® Xeon Phi™ coprocessor (mic0, mic1, and so on). It emulates a 
Linux* hardware network driver underneath the network stack on both ends. Currently, the connections are class C 
subnets local to the host system only. In the future, the class C subnets will be made available under the Linux* network 
bridging system for outside of host access. 
 
During initialization, the following steps are followed:  

1. Descriptor ring is created in host memory.  
2. Host provides receive buffer space in the descriptor ring using Linux* skbuffs  
3. Card maps to the host descriptor ring.  
4. During host transmit, the host posts transmit skbuffs to the card OS in descriptor ring. 
5. Card polls for changes in descriptor host transmit ring 
6. Card allocates skbuff and copies host transmit data 
7. Card sends new skbuff to card side TCP/IP stack. 
8.  At card transmit, card copies transmit skbuff to receive buffer provided at initialization.  
9. Card increments descriptor pointer. 
10. Host polls for changes in transmit ring. 
11. Host sends receive buffer to TCP/IP stack. 
 
In a future implementation, during initialization, Host will create a descriptor ring for controlling transfers, Host will 
allocate and post a number of receive buffers to the card, card will allocate and post a number of receive buffers to the 
host. At Host Transmit, Host DMAs data to receive skbuff posted by Intel® Xeon Phi™ coprocessor, Host interrupts card, 
Card interrupt routine sends skbuff to tcp/ip stack, card allocates and posts new empty buffer for host use. At Card 



 Page 129 

Transmit, Card DMAs data to receive skbuff posted by Host, Card interrupts host, Host interrupt routine sends skbuff to 
tcp/ip stack, Host allocates and posts new empty buffer for card use. 
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6 Compute Modes and Usage Models 

The architecture of the Intel® Xeon Phi™ coprocessor enables a wide continuum of compute paradigms far beyond what 
is currently available. This flexibility allows a dynamic range of solution to address your computing needs – from highly 
scalar processing to highly parallel processing, and a combination of both in between. There are three general categories 
of compute modes supported with the Intel® Xeon Phi™ coprocessor, which can be combined to develop applications 
that are optimal for the problem at hand.  

6.1 Usage Models 

The following two diagrams illustrate the compute spectrum enabled and supported by the Intel® Xeon® processor- 
Intel® Xeon Phi™ coprocessor coupling. Depending on the application’s compute needs, a portion of its compute 
processes can either be processed by the Intel® Xeon® processor host CPUs or by the Intel® Xeon Phi™ coprocessor. The 
application can also be started  or hosted by either the Intel® Xeon® processor host or by the Intel® Xeon Phi™ 
coprocessor. Depending on the computational load, an application will run within the range of this spectrum for optimal 
performance.   
 

 

Figure 6-1 : A Scalar/Parallel Code Viewpoint of the Intel® MIC Architecture Enabled Compute Continuum 

 
 
 

 

Figure 6-2: A Process Viewpoint of the Intel® MIC Architecture Enabled Compute Continuum 
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6.2 MPI Programming Models 

The Intel® MPI Library for Intel® MIC Architecture plans to provide all of the traditional Intel® MPI Library features on 
any combination of the Intel® Xeon® and the Intel® Xeon Phi™ coprocessors. The intention is to extend the set of 
architectures supported by the Intel® MPI Library for the Linux* OS, thus providing a uniform program development and 
execution environment across all supported platforms.  
 
The Intel® MPI Library for Linux* OS is a multi-fabric message-passing library based on ANL* MPICH2* and OSU* 
MVAPICH2*. The Intel® MPI Library for Linux* OS implements the Message Passing Interface, version 2.1* (MPI-2.1) 
specification. 
 
The Intel® MPI Library for Intel® MIC Architecture supports the programming models shown in Figure 6-3. 
 

 

Figure 6-3: MPI Programming Models for the Intel® Xeon Phi™ Coprocessor 

In the Offload mode, either the Intel® Xeon Phi™ coprocessors or the host CPUs are considered to be coprocessors. 
There are two possible scenarios: 

1. Xeon® hosted with Intel® Xeon Phi™ coprocessors, where the MPI processors run on the host Xeon® CPUs, while 
the offload is directed towards the Intel® Xeon Phi™ coprocessors. This model is supported by the Intel® MPI 
Library for Linux* OS as of version 4.0. Update 3. 

2. Intel® Xeon Phi™ coprocessor hosted with Xeon® coprocessing, where the MPI processes run on the Intel® Xeon 
Phi™ coprocessors while the offload is directed to the host Xeon® CPU.  

 
Both models make use of the offload capabilities of the products like Intel® C, C++,   Fortran Compiler for Intel® MIC 
Architecture, and Intel® Math Kernel Library (MKL). The second scenario is not supported currently due to absence of 
the respective offload capabilities in the aforementioned collateral products. 

 
In the MPI mode, the host Xeon® CPUs and the Intel® Xeon Phi™ coprocessors are considered to be peer nodes, so that 
the MPI processes may reside on both or either of the host Xeon® CPUs and Intel® Xeon Phi™ coprocessors in any 
combination. There are three major models: 

 Symmetric model 
 The MPI processes reside on both the host and the Intel® Xeon Phi™ coprocessors. This is the most general MPI 
view of an essentially heterogeneous cluster. 

http://pat.intel.com/w/images/1/1b/MPI_Models.png
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 Coprocessor-only model 
All MPI processes reside only on the Intel® Xeon Phi™ coprocessors. This can be seen as a specific case of the 
symmetric model previously described. Also, this model has a certain affinity to the Intel® Xeon Phi™ 
coprocessor hosted with Xeon® coprocessing model because the host CPUs may, in principle, be used for offload 
tasks. 

 Host-only model (not depicted) 
All MPI processes reside on the host CPUs and the presence of the Intel® Xeon Phi™ coprocessors is basically 
ignored. Again, this is a specific case of the symmetric model. It has certain affinity to the Xeon® hosted with 
Intel® MIC Architecture model, since the Intel® Xeon Phi™ coprocessors can in principle be used for offload. This 
model is already supported by the Intel MPI Library as of version 4.0.3. 

 

6.2.1 Offload Model 

This model is characterized by the MPI communications taking place only between the host processors. The 
coprocessors are used exclusively thru the offload capabilities of the products like Intel® C, C++, and Fortran Compiler 
for Intel® MIC Architecture, Intel® Math Kernel Library (MKL), etc. This mode of operation is already supported by the 
Intel® MPI Library for Linux* OS as of version 4.0. Update 3. Using MPI calls inside offloaded code is not supported. 
 
It should be noted that the total size of the offload code and data is limited to 85% of the amount of GDDR memory on 
the coprocessor.  
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Figure 6-4. MPI on Host Devices with Offload to Coprocessors 
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6.2.2 Coprocessor-Only Model 

In this model (also known as the “Intel® MIC architecture native” model), the MPI processes reside solely inside the 
coprocessor. MPI libraries, the application, and other needed libraries are uploaded to the coprocessors. Then an 
application can be launched from the host or from the coprocessor.  
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Figure 6-5: MPI on the Intel® Xeon Phi™ coprocessors Only 

 

6.2.3 Symmetric Model 

In this model, the host CPUs and the coprocessors are involved in the execution of the MPI processes and the related 
MPI communications. Message passing is supported inside the coprocessor, inside the host node, and between the 
coprocessor and the host via the shm and shm:tcp fabrics. The shm:tcp fabric is chosen by default; however, using shm 
for communication between the coprocessor and the host provides better MPI performance than TCP. To enable shm 
for internode communication, set the environment variable:  I_MPI_SSHM_SCIF={enable|yes|on|1}.  
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Figure 6-6: MPI Processes on Both the Intel® Xeon® Nodes and the Intel® MIC Architecture Devices 

 
The following is an example of the symmetric model:  

 
Symmetric model: 

 mpiexec.hydra is started on host,  

 launches 4 processes on host with 4 threads in each process,  

 and 2 processes on “mic0” coprocessor with 16 threads in each process 

 

(host)$mpiexec.hydra –host $(hostname)-n 4 –env OMP_NUM_THREADS 4 ./test.exe.host: \ 

-host mic0 –n 2 –env OMP_NUM_THREADS 16 –wdir /tmp /tmp/test.exe.mic 

 

6.2.4 Feature Summary 

The Intel® MPI Library requires the presence of the /dev/shm device in the system. To avoid failures related to the 
inability to create a shared memory segment, the /dev/shm device must be set up correctly. 
 
Message passing is supported inside the coprocessor, inside the host node, between the coprocessors, and between the 
coprocessor and the host via the shm and shm:tcp fabrics. The shm:tcp fabric is chosen by default.  
 
The Intel® MPI Library pins processes automatically. The environment variable I_MPI_PIN and related variables are used 
to control process pinning. The number of the MPI processes is limited only by the available resources. The memory 
limitation may manifest itself as an ‘lseek’ or ‘cannot register the bufs’ error in an MPI application. The environment 
variable I_MPI_SSHM_BUFFER_SIZE set to a value smaller than 64 KB may work around this issue. 
 
The current release of the Intel® MPI Library for Intel® MIC Architecture for Linux* OS does not support certain parts of 
the MPI-2.1 standard specification:  

 Dynamic process management  

 MPI file I/O  

 Passive target one-sided communication when the target process does not call any MPI functions  
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The current release of the Intel® MPI Library for Intel® MIC Architecture for Linux* OS also does not support certain 
features of the Intel® MPI Library 4.0 Update 3 for Linux* OS:  

 ILP64 mode  

 gcc support  

 IPM Statistic  

 Automatic Tuning Utility  

 Fault Tolerance  

 mpiexec –perhost option 
 

6.2.5 MPI Application Compilation and Execution 

 The typical steps of compiling an MPI application and executing it using mpiexec.hydra are canonically shown in Figure 
6-7.  

 

Figure 6-7. Compiling and Executing a MPI Application 

 
For detailed information about installing and running Intel® MPI Library for Intel® MIC Architecture with the Intel® Xeon 
Phi™ coprocessors, please see the Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE. 
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7 Intel® Xeon Phi™ Coprocessor Vector Architecture 

7.1 Overview 

The Intel® Xeon Phi™ coprocessor includes a new vector processing unit (VPU) with a new SIMD instruction set. These 
new instructions do not support prior vector architecture models like MMX™, Intel® SSE, or Intel® AVX. 
 
The Intel® Xeon Phi™ coprocessor VPU is a 16-wide floating-point/integer SIMD engine. It is designed to operate 
efficiently on SOA (Structures of Array) data, i.e. [x0, x1, x2, x3, …, x15], [y0, y1, y2, y3, …, y15], [z0, z1, z2, z3, …, z15], 
and [w0, w1, w2, w3, …, w15] as opposed to[x0, y0, z0, w0], [x1, y1, z1, w1], [x2, y2, z2, w2], [x3, y3, z3,  w3], …, [x15, 15, 
z15, w15]. 
 
The Intel® Xeon Phi™ vector architecture is defined in more detail in the Intel® Xeon Phi™ Coprocessor Instruction Set 
Architecture Reference Manual, reference number 327364-001.  
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8 Glossary and Abbreviations 

Term Description 
ABI Application Binary Interface 

I Autonomous Compute Node 

AGI Address Generation Interlock 

AP Application Program 

API Application Programming Interface 

APIC Advanced Programmable Interrupt Controller 

BA Base Address 

BLCR* Berkeley Lab Checkpoint Restore 

BMC Baseboard Management Controller 

BSP Bootstrap Processor 

CL* open Computing Language 

CLD Cache Line Disable 

CMC Channel Memory Controller 

COI Coprocessing Offload Infrastructure 

CPI Carry-Propagate Instructions 

CPU Central Processing Unit 

CPUID Central Processing Unit Identification 

C/R Check and Restore 

CRI Core Ring Interface 

C-state Core idle state 

CSR Configuration Status Register 

DAPL Direct Access Programming Library 

DBS Demand-Based Scaling 

DMA Direct Memory Access 

DRAR Descriptor Ring Attributes Register 

DTD Distributed Tag Directory 

DP Dual Precision 

ECC Error Correction Code 

EMU Extended Math Unit 

EMON Event  Monitoring 

ETC Elapsed Time Counter 

FBox Part of the GBox, the FBox is the interface to the ring interconnect. 

FIFO First In, First Out 

FMA Fused Multiply and Add 

FMS Fused Multiply Subtract 

FPU Floating Point Unit 

GBox memory controller 

GDDR Graphics Double Data Rate 

GDDR5 Graphics Double Data Rate, version 5 

GDT Global Descriptor Table 

GOLS Globally Owned, Locally Shared protocol 

GP General Protection 

HCA Host Channel Adaptor 

HPC High Performance Computing 
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Term Description 
HPI Head Pointer Index 

I²C  (“i-squared cee” or “i-two cee”) Inter-Integrated Circuit 

IA Intel  Architecture 

IB InfiniBand* 

IBHCA InfiniBand* Host Communication Adapter 

ID Identification 

INVLPG Invalidate TBL Entry 

IpoIB Internet Protocol over InfiniBand* 

IPMI Intelligent Platform Management Interface 

iWARP Internet Wide Area RDMA Protocol 

  

Intel® MPSS Intel® Manycore Platform Software Stack 

I/O Input/Output 

IOAPIC Input/Output Advanced Programmable Interrupt Controller 

ISA Instruction Set Architecture 

LAPIC Local Advanced Programmable Interrupt Controller 

LKM Loadable Kernel Modules 

LRU Least Recently Used 

LSB Linux* Standard Base 

MBox The request scheduler of the GBox. 

MCA Machine Check Architecture 

MCE Machine Check Exception 

MESI Modified, Exclusive, Shared, Invalid states 

MOESI Modified, Owner, Exclusive, Shared, Invalid states 

  

MKL Intel® Math Kernel Library 

MMIO Memory-Mapped Input/Output 

MMX  

MPI Message Passing Interface 

MPSS Intel® Many Integrated Core Architecture Platform Software Stack 

MRU Most Recently Used 

MSI/x  

MSR Model-Specific Register or Machine-Specific Register 

NT Non-Temporal 

MTRR Memory Type Range Register 

mux multiplexor 

MYO Intel® Mine Yours Ours Shared Virtual Memory 

NFS Network File System 

OpenCL* Open Computing Language 

OFA* Open Fabrics Alliance 

OFED* Open Fabrics Enterprise Distribution 

PBox  

PC Power Control 

PCH Platform Controller Hub 

PCI Express* Peripheral Component Interconnect Express 

PCU Power Control Unit 

PEG port  
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Term Description 
PDE Psge Directory Entry 

PF Picker Function 

PHP scripts  

P54C Intel® Pentium® Processor 

PM Power Management or Process Manager 

PMON Performance Monitoring 

PMU Performance Monitoring Unit 

PnP Plug and Play 

POST Power-On Self-Test 

P-state Performance level states 

RAS Reliability Accessibility Serviceability  

RDMA Remote Direct Memory Access 

RFO Read For Ownership 

RMA Remote Memory Access 

RS Ring Stack 

SAE Suppress All Exceptions 

SBox System Box (Gen2 PCI Express* client logic) 

SCIF Symmetric Communication Interface 

SC (SCM) protocol Socket Connection Management 

SDP Software Development Platform 

SDV Software Development Vehicle 

SEP SEP is a utility that provides the sampling functionality used by VTune analyzer 

SHM Shared Memory 

SI Intel® Xeon Phi™ Coprocessor System Interface 

SIMD Single Instructions, Multiple Data 

SM Server Management 

SMC System Management Controller 

SMP Symmetric Multiprocessor 

SMPY System Memory Page Table 

SP Single Precision 

SSE Streaming SIMD Extensions 

SSH Secure Shell 

SVID System V Interface Definition 

Sysfs a virtual file system provided by Linux* 

TCU Transaction Control Unit 

TPI Tail Pointer Index 

TSC Timestamp Counter 

TD Tag Directory 

TLB Translation Lookaside Buffer 

TMU Thermal Monitoring Unit 

TSC Timestamp Counter 

UC Uncacheable 

µDAPL User DAPL 

 coprocessor OS Micro Operating System 

verbs A programming interface 

VIA Virtual Interface Architecture 

VMM Virtual Machine Manager 
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Term Description 
VPU Vector Processing Unit 

VT-d Intel® Virtualization Technology for Directed I/O 

WB Write Back 

WC Write Combining 

WP Write Protect 

WT Write Through 
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Appendix: SBOX Control Register List 

Register Name MMI
O 

Start 

MMIO 
End 

Dec 
Offse

t 

Dword 
Offset 

Size Numbe
r 

Protectio
n Level 

Protectio
n 
Method 

Host 
Vis? 

Copr
ocess
or 
Vis? 

Init’d 
By 

Reset 
Domain 

Register 
Acess 

Description 

OC_I2C_ICR 1000 1000 4096 0400 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

TRM,I2C I2C Control Register 
for LRB Over-clocking 
Unit 

OC_I2C_ISR 1004 1004 4100 0401 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

TRM,I2C I2C Status Register 
for LRB Over-clocking 
Unit 

OC_I2C_ISAR 1008 1008 4104 0402 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

TRM,I2C I2C Slave Address 
Register for LRB 
Over-clocking Unit 

OC_I2C_IDBR 100C 100C 4108 0403 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

TRM,I2C I2C Data Buffer 
Register for LRB 
Over-clocking Unit 

OC_I2C_IDMR 1010 1010 4112 0404 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

TRM,I2C I2C Bus Monitor 
Register for LRB 
Over-clocking Unit 

THERMAL_STAT
US 

1018 1018 4120 0406 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

TRM Status and Log info 
for all the thermal 
interrupts 

THERMAL_INTE
RRUPT_ENABLE 

101C 101C 4124 0407 32 1 Ring 0 Paging YES YES RTL GRPA_P
WRGD,H
OT_RESE
T 

TRM Register that controls 
the interrupt 
response to thermal 
events 

MICROCONTRO
LLER_FAN_STAT
US 

1020 1020 4128 0408 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

TRM Upto data Status 
information from the 
Fan microcontroller 

STATUS_FAN1 1024 1024 4132 0409 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

TRM 32 bit Status of Fan 
#1 

STATUS_FAN2 1028 1028 4136 040A 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

TRM 32 bit Status of Fan 
#2 

SPEED_OVERRI
DE_FAN 

102C 102C 4140 040B 32 1 Ring 0 Paging YES YES RTL GRPA_P
WRGD,H
OT_RESE
T 

TRM 32 bit Status of Fan 
#2 

BOARD_TEMP1 1030 1030 4144 040C 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

TRM Temperature from 
Sensors 1 and 2 on 
LRB Card 

BOARD_TEMP2 1034 1034 4148 040D 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

TRM Temperature from 
Sensors 3 and 4 on 
LRB Card 

BOARD_VOLTA
GE_SENSE 

1038 1038 4152 040E 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

TRM Digitized value of 
Voltage sense input 
to LRB 

CURRENT_DIE_T
EMP0 

103C 103C 4156 040F 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

TRM Consists of Current 
Die Temperatures of 
sensors 0 thru 2 

CURRENT_DIE_T
EMP1 

1040 1040 4160 0410 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

TRM Consists of Current 
Die Temperatures of 
sensors 3 thru 5 

CURRENT_DIE_T
EMP2 

1044 1044 4164 0411 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

TRM Consists of Current 
Die Temperatures of 
sensors 6 thru 8 

MAX_DIE_TEMP
0 

1048 1048 4168 0412 32 1 Ring 0 Paging YES YES RTL GRPA_P
WRGD 

TRM Consists of Maximum 
Die Temperatures of 
sensors 0 thru 2 

MAX_DIE_TEMP
1 

104C 104C 4172 0413 32 1 Ring 0 Paging YES YES RTL GRPA_P
WRGD 

TRM Consists of Maximum 
Die Temperatures of 
sensors 3 thru 5 
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MAX_DIE_TEMP
2 

1050 1050 4176 0414 32 1 Ring 0 Paging YES YES RTL GRPA_P
WRGD 

TRM Consists of Maximum 
Die Temperatures of 
sensors 6 thru 8 

MIN_DIE_TEMP
0 

1054 1054 4180 0415 32 1 Ring 0 Paging YES YES RTL GRPA_P
WRGD 

TRM Consists of Minimum 
Die Temperatures of 
sensors 0 thru 2 

MIN_DIE_TEMP
1 

1058 1058 4184 0416 32 1 Ring 0 Paging YES YES RTL GRPA_P
WRGD 

TRM Consists of Minimum 
Die Temperatures of 
sensors 3 thru 5 

MIN_DIE_TEMP
2 

105C 105C 4188 0417 32 1 Ring 0 Paging YES YES RTL GRPA_P
WRGD 

TRM Consists of Minimum 
Die Temperatures of 
sensors 6 thru 8 

NOM_PERF_MO
N 

106C 106C 4204 041B 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

TRM Nominal 
Performance 
Monitors 

PMU_PERIOD_S
EL 

1070 1070 4208 041C 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

TRM PMU period 

ELAPSED_TIME_
LOW 

1074 1074 4212 041D 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

TRM "Elapsed Time Clock" 
Timer - lower 32 bits 

ELAPSED_TIME_
HIGH 

1078 1078 4216 041E 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

TRM "Elapsed Time Clock" 
Timer - higher 32 bits 

THERMAL_STAT
US_INTERRUPT 

107C 107C 4220 041F 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

TRM Status and Log info 
for lrb2 new thermal 
interrupts 

THERMAL_STAT
US_2 

1080 1080 4224 0420 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

TRM Thermal Status for 
LRB2 

EXT_TEMP_SET
TINGS0 

1090 1090 4240 0424 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

TRM External Thermal 
Sensor Setting - 
Sensor #0 

EXT_TEMP_SET
TINGS1 

1094 1094 4244 0425 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

TRM External Thermal 
Sensor Setting - 
Sensor #1 

EXT_TEMP_SET
TINGS2 

1098 1098 4248 0426 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

TRM External Thermal 
Sensor Setting - 
Sensor #2 

EXT_TEMP_SET
TINGS3 

109C 109C 4252 0427 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

TRM External Thermal 
Sensor Setting - 
Sensor #3 

EXT_TEMP_SET
TINGS4 

10A0 10A0 4256 0428 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

TRM External Thermal 
Sensor Setting - 
Sensor #4 

EXT_TEMP_SET
TINGS5 

10A4 10A4 4260 0429 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

TRM External Thermal 
Sensor Setting - 
Sensor #5 

EXT_CONTROLP
ARAMS0 

10A8 10A8 4264 042A 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

TRM External Thermal 
Sensor Parameters - 
Sensor #0 

EXT_CONTROLP
ARAMS1 

10AC 10AC 4268 042B 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

TRM External Thermal 
Sensor Parameters - 
Sensor #1 

EXT_CONTROLP
ARAMS2 

10B0 10B0 4272 042C 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

TRM External Thermal 
Sensor Parameters - 
Sensor #2 

EXT_CONTROLP
ARAMS3 

10B4 10B4 4276 042D 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

TRM External Thermal 
Sensor Parameters - 
Sensor #3 

EXT_CONTROLP
ARAMS4 

10B8 10B8 4280 042E 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

TRM External Thermal 
Sensor Parameters - 
Sensor #4 

EXT_CONTROLP
ARAMS5 

10BC 10BC 4284 042F 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

TRM External Thermal 
Sensor Parameters - 
Sensor #5 

EXT_TEMP_STA
TUS0 

10C0 10C0 4288 0430 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

TRM External Thermal 
Sensor Status - 
Sensor #0 ~ #2 



 Page 144 

EXT_TEMP_STA
TUS1 

10C4 10C4 4292 0431 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

TRM External Thermal 
Sensor Status - 
Sensor #3 ~ #5 

INT_FAN_STAT
US 

10C8 10C8 4296 0432 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

TRM Interl Thermal Sensor 
Status 

INT_FAN_CONT
ROL0 

10CC 10CC 4300 0433 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

TRM Internal Thermal 
Sensor 
Setting/Parameters 
and FCU 
Configuration - 0 

INT_FAN_CONT
ROL1 

10D0 10D0 4304 0434 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

TRM Internal Thermal 
Sensor 
Setting/Parameters 
and FCU 
Configuration - 1 

INT_FAN_CONT
ROL2 

10D4 10D4 4308 0435 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

TRM Internal Thermal 
Sensor 
Setting/Parameters 
and FCU 
Configuration - 2 

FAIL_SAFE_STAT
US 

2000 2000 8192 0800 32 1 Ring 0 Paging YES YES FLAS
H 

CSR_RES
ET 

TRM Fail Safe Image and 
Repair Status register 

FAIL_SAFE_OFFS
ET 

2004 2004 8196 0801 32 1 Ring 0 Paging YES YES FLAS
H 

CSR_RES
ET 

TRM Fail Safe Offset 
register 

SW_OVR_CORE
_DISABLE 

2008 2008 8200 0802 32 1 Ring 0 Paging YES YES OTHE
R 

HOT_RES
ET 

TRM Software controlled 
Core Disable register 
that says how many 
cores are disabled - 
deprecated 

CORE_DISABLE_
STATUS 

2010 2010 8208 0804 32 1 Ring 0 Paging YES YES FLAS
H 

CSR_RES
ET 

TRM Core Disable status 
register 

FLASH_COMPO
NENT 

2018 2018 8216 0806 32 1 Ring 0 Paging YES YES FLAS
H 

CSR_RES
ET 

TRM Flash Component 
register 

INVALID_INSTR
0 

2020 2020 8224 0808 32 1 Ring 0 Paging YES YES FLAS
H 

CSR_RES
ET 

TRM Invalid Instruction 
register 

INVALID_INSTR
1 

2024 2024 8228 0809 32 1 Ring 0 Paging YES YES FLAS
H 

CSR_RES
ET 

TRM Invalid Instruction 
register 

JEDECID 2030 2030 8240 080C 32 1 Ring 0 Paging YES YES FLAS
H 

CSR_RES
ET 

TRM JEDEC ID register. 
This is a SW only 
register, SPI 
Controller reads 
these bits from the 
flash descriptor and 
reports the values in 
this register. 

VENDOR_COMP
_CAPP 

2034 2034 8244 080D 32 1 Ring 0 Paging YES YES FLAS
H 

CSR_RES
ET 

TRM Vendor Specific 
component 
capabilities register. 
This is a SW only 
register, SPI 
Controller reads 
these bits from the 
flash descriptor and 
reports the values in 
this register. 

POWER_ON_ST
ATUS 

2038 2038 8248 080E 32 1 Ring 0 Paging YES YES FLAS
H 

CSR_RES
ET 

TRM Power On status 
register 

VALID_INSTR0 2040 2040 8256 0810 32 1 Ring 0 Paging YES YES FLAS
H 

CSR_RES
ET 

TRM Scratch 

VALID_INSTR1 2044 2044 8260 0811 32 1 Ring 0 Paging YES YES FLAS
H 

CSR_RES
ET 

TRM Scratch 

VALID_INSTR2 2048 2048 8264 0812 32 1 Ring 0 Paging YES YES FLAS
H 

CSR_RES
ET 

TRM Scratch 

VALID_INSTR_T
YP0 

2050 2050 8272 0814 32 1 Ring 0 Paging YES YES FLAS
H 

CSR_RES
ET 

TRM Scratch 

VALID_INSTR_T
YP1 

2054 2054 8276 0815 32 1 Ring 0 Paging YES YES FLAS
H 

CSR_RES
ET 

TRM Scratch 

VALID_INSTR_T
YP2 

2058 2058 8280 0816 32 1 Ring 0 Paging YES YES FLAS
H 

CSR_RES
ET 

TRM Scratch 
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HW_SEQ_STAT
US 

2070 2070 8304 081C 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

TRM HW Sequence Flash 
Status Register 

FAIL_SAFE_REP
AIR_OFFSET 

20CC 20CC 8396 0833 32 1 Ring 0 Paging YES YES FLAS
H 

CSR_RES
ET 

TRM Fail Safe Offset for 
Repair Sector 
register 

AGENT_DISABLE
_FLASH0 

20D0 20D0 8400 0834 32 1 Ring 0 Paging YES YES FLAS
H 

CSR_RES
ET 

TRM Agent Disable Value 
from Flash register 

AGENT_DISABLE
_FLASH1 

20D4 20D4 8404 0835 32 1 Ring 0 Paging YES YES FLAS
H 

CSR_RES
ET 

TRM Agent Disable Value 
from Flash register 

AGENT_DISABLE
_FLASH2 

20D8 20D8 8408 0836 32 1 Ring 0 Paging YES YES FLAS
H 

CSR_RES
ET 

TRM Agent Disable Value 
from Flash register 

AGENT_DISABLE
_FLASH3 

20DC 20DC 8412 0837 32 1 Ring 0 Paging YES YES FLAS
H 

CSR_RES
ET 

TRM Agent Disable Value 
from Flash register 

AGENT_DISABLE
_FLASH4 

20E0 20E0 8416 0838 32 1 Ring 0 Paging YES YES FLAS
H 

CSR_RES
ET 

TRM Agent Disable Value 
from Flash register 

AGENT_DISABLE
_FLASH5 

20E4 20E4 8420 0839 32 1 Ring 0 Paging YES YES FLAS
H 

CSR_RES
ET 

TRM Agent Disable Value 
from Flash register 

SPI_FSM 2100 2100 8448 0840 32 1 Ring 0 Paging YES YES FLAS
H 

CSR_RES
ET 

TRM SPI FSM Status 
register 

GH_SCRATCH 303C 303C 1234
8 

0C0F 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

CRU,TR
M 

Scratch register 

MCX_CTL_LO 3090 3090 1243
2 

0C24 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

CRU,TR
M 

MCX CTL LOW 

MCX_STATUS_L
O 

3098 3098 1244
0 

0C26 32 1 Ring 0 Paging YES YES RTL GRPA_P
WRGD 

CRU,TR
M 

MCX Status 

MCX_STATUS_H
I 

309C 309C 1244
4 

0C27 32 1 Ring 0 Paging YES YES RTL GRPA_P
WRGD 

CRU,TR
M 

MCX Status HI 

MCX_ADDR_LO 30A0 30A0 1244
8 

0C28 32 1 Ring 0 Paging YES YES RTL GRPA_P
WRGD 

CRU,TR
M 

MCX Addr Low 

MCX_ADDR_HI 30A4 30A4 1245
2 

0C29 32 1 Ring 0 Paging YES YES RTL GRPA_P
WRGD 

CRU,TR
M 

MCX Addr High 

MCX_MISC 30A8 30A8 1245
6 

0C2A 32 1 Ring 0 Paging YES YES RTL GRPA_P
WRGD 

CRU,TR
M 

Machine Check 
Miscellaneous #1 

MCX_MISC2 30AC 30AC 1246
0 

0C2B 32 1 Ring 0 Paging YES YES RTL GRPA_P
WRGD 

CRU,TR
M 

Machine Check 
Miscellaneous #2 

SMPT00 3100 3100 1254
4 

0C40 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

CRU,TR
M 

System Memory 
Page Table, Page 00. 

SMPT01 3104 3104 1254
8 

0C41 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

CRU,TR
M 

System Memory 
Page Table, Page 01. 

SMPT02 3108 3108 1255
2 

0C42 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

CRU,TR
M 

System Memory 
Page Table, Page 02. 

SMPT03 310C 310C 1255
6 

0C43 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

CRU,TR
M 

System Memory 
Page Table, Page 03. 

SMPT04 3110 3110 1256
0 

0C44 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

CRU,TR
M 

System Memory 
Page Table, Page 04. 

SMPT05 3114 3114 1256
4 

0C45 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

CRU,TR
M 

System Memory 
Page Table, Page 05. 

SMPT06 3118 3118 1256
8 

0C46 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

CRU,TR
M 

System Memory 
Page Table, Page 06. 

SMPT07 311C 311C 1257
2 

0C47 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

CRU,TR
M 

System Memory 
Page Table, Page 07. 

SMPT08 3120 3120 1257
6 

0C48 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

CRU,TR
M 

System Memory 
Page Table, Page 08. 

SMPT09 3124 3124 1258
0 

0C49 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

CRU,TR
M 

System Memory 
Page Table, Page 09. 
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SMPT10 3128 3128 1258
4 

0C4A 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

CRU,TR
M 

System Memory 
Page Table, Page 10. 

SMPT11 312C 312C 1258
8 

0C4B 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

CRU,TR
M 

System Memory 
Page Table, Page 11. 

SMPT12 3130 3130 1259
2 

0C4C 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

CRU,TR
M 

System Memory 
Page Table, Page 12. 

SMPT13 3134 3134 1259
6 

0C4D 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

CRU,TR
M 

System Memory 
Page Table, Page 13. 

SMPT14 3138 3138 1260
0 

0C4E 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

CRU,TR
M 

System Memory 
Page Table, Page 14. 

SMPT15 313C 313C 1260
4 

0C4F 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

CRU,TR
M 

System Memory 
Page Table, Page 15. 

SMPT16 3140 3140 1260
8 

0C50 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

CRU,TR
M 

System Memory 
Page Table, Page 16. 

SMPT17 3144 3144 1261
2 

0C51 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

CRU,TR
M 

System Memory 
Page Table, Page 17. 

SMPT18 3148 3148 1261
6 

0C52 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

CRU,TR
M 

System Memory 
Page Table, Page 18. 

SMPT19 314C 314C 1262
0 

0C53 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

CRU,TR
M 

System Memory 
Page Table, Page 19. 

SMPT20 3150 3150 1262
4 

0C54 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

CRU,TR
M 

System Memory 
Page Table, Page 20. 

SMPT21 3154 3154 1262
8 

0C55 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

CRU,TR
M 

System Memory 
Page Table, Page 21. 

SMPT22 3158 3158 1263
2 

0C56 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

CRU,TR
M 

System Memory 
Page Table, Page 22. 

SMPT23 315C 315C 1263
6 

0C57 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

CRU,TR
M 

System Memory 
Page Table, Page 23. 

SMPT24 3160 3160 1264
0 

0C58 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

CRU,TR
M 

System Memory 
Page Table, Page 24. 

SMPT25 3164 3164 1264
4 

0C59 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

CRU,TR
M 

System Memory 
Page Table, Page 25. 

SMPT26 3168 3168 1264
8 

0C5A 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

CRU,TR
M 

System Memory 
Page Table, Page 26. 

SMPT27 316C 316C 1265
2 

0C5B 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

CRU,TR
M 

System Memory 
Page Table, Page 27. 

SMPT28 3170 3170 1265
6 

0C5C 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

CRU,TR
M 

System Memory 
Page Table, Page 28. 

SMPT29 3174 3174 1266
0 

0C5D 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

CRU,TR
M 

System Memory 
Page Table, Page 29. 

SMPT30 3178 3178 1266
4 

0C5E 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

CRU,TR
M 

System Memory 
Page Table, Page 30. 

SMPT31 317C 317C 1266
8 

0C5F 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

CRU,TR
M 

System Memory 
Page Table, Page 31. 

RGCR 4010 4010 1640
0 

1004 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

TRM Reset Global Control 
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DSTAT 4014 4014 1640
4 

1005 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

TRM Device Status 
Register 

PWR_TIMEOUT 4018 4018 1640
8 

1006 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

TRM Timeout value used 
in the reset engine to 
timeout various reset 
external events. Slot 
Power, GrpBPwrGd 
assertion, Connector 
status timeout 
period. The number 
in this register is 
used to shift 1 N 
places. N has to be 
less than 32 

CurrentRatio 402C 402C 1642
8 

100B 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

TRM The expected MCLK 
Ratio that is sent to 
the corepll 

IccOverClock0 4040 4040 1644
8 

1010 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

TRM Core Overclocking 
Only, protected by 
overclocking disable 
fuse (OverclockDis) 

IccOverClock1 4044 4044 1645
2 

1011 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

TRM Mem Overclocking 
Only, protected by 
overclocking disable 
fuse (OverclockDis) 

IccOverClock2 4048 4048 1645
6 

1012 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

TRM Display Bend1, 
Always open, no fuse 
protection 

IccOverClock3 404C 404C 1646
0 

1013 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

TRM Display Bend2, 
Always open, no fuse 
protection 

COREFREQ 4100 4100 1664
0 

1040 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

SNARF Core Frequency 

COREVOLT 4104 4104 1664
4 

1041 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

SNARF Core Voltage 

MEMORYFREQ 4108 4108 1664
8 

1042 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

SNARF Memory Frequency 

MEMVOLT 410C 410C 1665
2 

1043 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

SNARF Memory Voltage 

SVIDControl 4110 4110 1665
6 

1044 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

SNARF SVID VR12/MVP7 
Control Interace 
Register 

PCUControl 4114 4114 1666
0 

1045 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

SNARF Power Control Unit 
Register 

HostPMState 4118 4118 1666
4 

1046 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

SNARF Host PM scratch 
registers 

uOSPMState 411C 411C 1666
8 

1047 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

SNARF uOS PM Scratch 
registers 

C3WakeUp_Tim
er 

4120 4120 1667
2 

1048 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

SNARF C3 WakeUp Timer 
Control for autoC3 

L1_Entry_Timer 4124 4124 1667
6 

1049 32 1 Ring 0 Paging YES YES RTL,
OTHE
R 

CSR_RES
ET,HOT_
RESET 

SNARF L1 Entry Timer 

C3_Timers 4128 4128 1668
0 

104A 32 1 Ring 0 Paging YES YES RTL,
OTHE
R 

HOT_RES
ET 

SNARF C3 Entry and Exit 
Timers 

uOS_PCUCONTR
OL 

412C 412C 1668
4 

104B 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

SNARF uOS PCU Control 
CSR.. i.e. not for host 
consumption 

SVIDSTATUS 4130 4130 1668
8 

104C 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

SNARF SVID Status 

COMPONENTID 4134 4134 1669
2 

104D 32 1 Ring 0 Paging YES YES   CSR_RES
ET 

SNARF COMPONENTID 

GboxPMControl 413C 413C 1670
0 

104F 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

SNARF GBOX PM Control 



 Page 148 

GPIO_Input_Sta
tus 

4140 4140 1670
4 

1050 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,OTHE
R 

SNARF GPIO Input Status 

GPIO_Output_C
ontrol 

4144 4144 1670
8 

1051 32 1 Ring 0 Paging YES YES RTL HOT_RES
ET 

SNARF GPIO Output Control 

EMON_Control 4160 4160 1673
6 

1058 32 1 Ring 0 Paging YES YES RTL HOT_RES
ET 

SNARF EMON Control 
Register 

EMON_Counter
0 

4164 4164 1674
0 

1059 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET 

SNARF EMON Counter 0 

PCIE_VENDOR_I
D_DEVICE_ID 

5800 5800 2252
8 

1600 32 1 Ring 0 Paging YES YES         

PCIE_PCI_COM
MAND_AND_ST
ATUS 

5804 5804 2253
2 

1601 32 1 Ring 0 Paging YES YES         

PCIE_PCI_REVISI
ON_ID_AND_C_
0X8 

5808 5808 2253
6 

1602 32 1 Ring 0 Paging YES YES         

PCIE_PCI_CACH
E_LINE_SIZE_L_
0XC 

580C 580C 2254
0 

1603 32 1 Ring 0 Paging YES YES         

PCIE_MEMORY_
BAR_0 

5810 5810 2254
4 

1604 32 1 Ring 0 Paging YES YES         

PCIE_UPPER_D
WORD_OF_ME
MOR_0X14 

5814 5814 2254
8 

1605 32 1 Ring 0 Paging YES YES         

PCIE_IO_BAR_2 5818 5818 2255
2 

1606 32 1 Ring 0 Paging YES YES         

PCIE_MEMORY_
BAR_1 

5820 5820 2256
0 

1608 32 1 Ring 0 Paging YES YES         

PCIE_UPPER_D
WORD_OF_ME
MOR_0X24 

5824 5824 2256
4 

1609 32 1 Ring 0 Paging YES YES         

PCIE_PCI_SUBSY
STEM 

582C 582C 2257
2 

160B 32 1 Ring 0 Paging YES YES         

PCIE_EXPANSIO
N_ROM_BAR 

5830 5830 2257
6 

160C 32 1 Ring 0 Paging YES YES         

PCIE_PCI_CAPA
BILITIES_POINT
ER 

5834 5834 2258
0 

160D 32 1 Ring 0 Paging YES YES         

PCIE_PCI_INTER
RUPT_LINE_PIN 

583C 583C 2258
8 

160F 32 1 Ring 0 Paging YES YES         

PCIE_PCI_PM_C
APABILITY 

5844 5844 2259
6 

1611 32 1 Ring 0 Paging YES YES         

PCIE_PM_STAT
US_AND_CONT
RO_0X48 

5848 5848 2260
0 

1612 32 1 Ring 0 Paging YES YES         

PCIE_PCIE_CAP
ABILITY 

584C 584C 2260
4 

1613 32 1 Ring 0 Paging YES YES         

PCIE_DEVICE_C
APABILITY 

5850 5850 2260
8 

1614 32 1 Ring 0 Paging YES YES         

PCIE_DEVICE_C
ONTROL_AND_
STATUS 

5854 5854 2261
2 

1615 32 1 Ring 0 Paging YES YES         

PCIE_LINK_CAP
ABILITY 

5858 5858 2261
6 

1616 32 1 Ring 0 Paging YES YES         

PCIE_LINK_CON
TROL_AND_STA
_0X5C 

585C 585C 2262
0 

1617 32 1 Ring 0 Paging YES YES         

PCIE_DEVICE_C
APABILITY_2 

5870 5870 2264
0 

161C 32 1 Ring 0 Paging YES YES         

PCIE_DEVICE_C
ONTROL_AND_
S_0X74 

5874 5874 2264
4 

161D 32 1 Ring 0 Paging YES YES         

PCIE_LINK_CON
TROL_AND_STA
TUS_2 

587C 587C 2265
2 

161F 32 1 Ring 0 Paging YES YES         

PCIE_MSI_CAPA
BILITY 

5888 5888 2266
4 

1622 32 1 Ring 0 Paging YES YES         
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PCIE_MESSAGE
_ADDRESS 

588C 588C 2266
8 

1623 32 1 Ring 0 Paging YES YES         

PCIE_MESSAGE
_UPPER_ADDRE
SS 

5890 5890 2267
2 

1624 32 1 Ring 0 Paging YES YES         

PCIE_MESSAGE
_DATA 

5894 5894 2267
6 

1625 32 1 Ring 0 Paging YES YES         

PCIE_MSIX_CAP
ABILITY 

5898 5898 2268
0 

1626 32 1 Ring 0 Paging YES YES         

PCIE_MSIX_TAB
LE_OFFSET_BIR 

589C 589C 2268
4 

1627 32 1 Ring 0 Paging YES YES         

PCIE_PBA_OFFS
ET_BIR 

58A0 58A0 2268
8 

1628 32 1 Ring 0 Paging YES YES         

PCIE_ADVANCE
D_ERROR_CAPA
BILITY 

5900 5900 2278
4 

1640 32 1 Ring 0 Paging YES YES         

PCIE_UNCORRE
CTABLE_ERROR
_0X104 

5904 5904 2278
8 

1641 32 1 Ring 0 Paging YES YES         

PCIE_UNCORRE
CTABLE_ERROR
_MASK 

5908 5908 2279
2 

1642 32 1 Ring 0 Paging YES YES         

PCIE_UNCORRE
CTABLE_ERROR
_0X10C 

590C 590C 2279
6 

1643 32 1 Ring 0 Paging YES YES         

PCIE_CORRECTA
BLE_ERROR_ST
ATUS 

5910 5910 2280
0 

1644 32 1 Ring 0 Paging YES YES         

PCIE_CORRECTA
BLE_ERROR_MA
SK 

5914 5914 2280
4 

1645 32 1 Ring 0 Paging YES YES         

PCIE_ADVANCE
D_ERROR_CAPA
_0X118 

5918 5918 2280
8 

1646 32 1 Ring 0 Paging YES YES         

PCIE_ERROR_HE
ADER_LOG_DW
ORD_0 

591C 591C 2281
2 

1647 32 1 Ring 0 Paging YES YES         

PCIE_ERROR_HE
ADER_LOG_DW
ORD_1 

5920 5920 2281
6 

1648 32 1 Ring 0 Paging YES YES         

PCIE_ERROR_HE
ADER_LOG_DW
ORD_2 

5924 5924 2282
0 

1649 32 1 Ring 0 Paging YES YES         

PCIE_ERROR_HE
ADER_LOG_DW
ORD_3 

5928 5928 2282
4 

164A 32 1 Ring 0 Paging YES YES         

MSIXRAM 7000 7000 2867
2 

1C00 32 1 Ring 0 Paging YES YES RTL OTHER TRM MSI-X RAM 

sysint_debug 9000 9000 3686
4 

2400 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

TRM SYSINT Debug 
Register 
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int_status 9004 9004 3686
8 

2401 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

TRM System Interrupt 
Status Register - 
Note: This register 
contains the status 
for all of the System 
Interrupt sources. 
When an Interrupt 
event occurs, the bit 
corresponding to the 
source shall be set in 
this register. If SW 
clears an System 
Interrupt Status 
Register bit in the 
same clock as a HW 
event wants to set it, 
the clear shall have 
precedence over the 
set. NOTE: While this 
behavior may seem 
counter-intuitive and 
that the HW may risk 
losing Interrupts, it is 
actually the 
preferred 
implementation 
because the SW flow 
must already prevent 
a race condition. 
Otherwise, the same 
problem could occur 
if the HW event 
came one clock 
before the SW clear. 
Therefore, SW 
always services 
Interrupts after 
clearing the status. If 
the SW clear did not 
have precedence, an 
additional Interrupt 
would be generated 
for this condition 
even though SW had 
already handled the 
Interrupt event, 
which would lead to 
an additional call of 
the ISR to clear the 
status. NOTE: Clear 
on Read functionality 
is not supported on 
this register at the 
request of SW and 
HW debug support 
teams. This results in 
a slight performance 
degradation in legacy 
INTx mode due to 
the additional UC 
Write required to 
clear any status bits 
that were set. 
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int_status_set 9008 9008 3687
2 

2402 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

TRM System Interrupt 
Status Set Register - 
Note: This register is 
used for SW testing 
and HW debug only. 
The intent of this 
register is for SW to 
create the 
appearance of a HW 
interrupt event for 
testing and debug. 
Writing a '1' to a bit 
in this register shall 
result in the 
corresponding bit in 
the System Interrupt 
Status register to be 
set along with the 
same behavior as if 
that HW interrupt 
event had occurred. 
Writing a '0' to a bit 
in this register shall 
have no effect. 

int_enable 900C 900C 3687
6 

2403 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

TRM System Interrupt 
Enable Register - 
hhThis register is 
used to enable 
individual Interrupt 
sources. An Interrupt 
source, captured in 
the System Interrupt 
Status register, shall 
be enabled to 
generate Interrupt 
messages when the 
value of the 
corresponding bit in 
this register is '1', 
and disabled when 
'0'. SW enables a 
particular Interrupt 
source by writing a 
'1' to the 
corresponding bit 
this register. Writing 
a '0' to any bit has no 
effect. NOTE: If SW 
wants to disable any 
previously enabled 
Interrupt sources 
from generating 
Interrupt messages, 
it should use the 
System Interrupt 
Disable register 
instead. NOTE: The 
value of the bits in 
this register does not 
affect the System 
interrupt Status 
register. They only 
affect the generation 
of the Interrupt 
messages. 
WARNING: The 
following should be 
true to avoid a hang 
condition: 1.SW will 
always acknowledge 
an Interrupt Vector 
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(clear status bit) 
before re-enabling it. 
2.SW will not blindly 
re-enable Vectors for 
which it did not 
receive an Interrupt 
* For the unlikely 
event that these 
rules need to be 
violated, you will 
need to defeature 
ordering checks to 
avoid the hang 
condition. 

int_disable 9010 9010 3688
0 

2404 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

TRM System Interrupt 
Disable - This register 
is used to disable 
individual Interrupt 
sources. Writing a '1' 
to a bit of this 
register clears the 
corresponding bit in 
the INTENB register. 
Writing a '0' to any 
bit has no effect. 
NOTE: The reason 
that the Interrupt 
enables are split into 
two separate HW 
register interfaces is 
to prevent the need 
for a Read-Modify-
Write operation (and 
potential locks) when 
different pieces of 
SW are handling 
separate Interrupt 
sources. 
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int_status_auto
_clear 

9014 9014 3688
4 

2405 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

TRM System Interrupt 
Status Auto-Clear - In 
systems that support 
MSI-X, the interrupt 
vector allows the ISR 
to know which 
interrupt without 
reading the System 
Interrupt Status 
register when a 
vector is uniquely 
assigned to an 
interrupt. In this 
case, the software 
overhead of a read 
or write transaction 
can be avoided by 
setting the auto-clear 
bits in this register. 
When auto-clear is 
enabled for an 
interrupt, the 
corresponding bit in 
the System Interrupt 
Status register will be 
set when an event 
occurs, and the MSI-
X message will be 
sent on PCI- Express. 
Then the 
corresponding bit in 
the System Interrupt 
Status register is 
cleared and can be 
asserted on a new 
event. The vector in 
the MSI-X message 
indicates which 
interrupt caused the 
event ad defined by 
the MSI Vector 
Assignment Regsiter. 
NOTE: To clarify the 
definition of SENT, 
the correspsonding 
bit will be cleared 
once the Endpoint 
accepts the 
messages which 
either means it was 
sent or the vector 
was masked. NOTE: If 
interrupts are not 
uniquely defined to a 
vector, those 
interrupts should not 
use auto-clear. If 
auto-clear is enabled 
on an interrupt once 
the vector is sent, all 
interrupts assocated 
to that vector will be 
cleared. 

itp_doorbell 9030 9030 3691
2 

240C 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

TRM System Interrupt ITP 
Doorbell 
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msi_vector 9044 9080 3693
2 

2411 32 16 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET 

TRM MSI(-X) Vector 
Assignment Register 
0-15 - Each of these 
registers assigns 
Interrupt sources 
from the System 
Interrupt Status 
register to one of the 
16 possible MSI(-X) 
Vectors. The bits set 
in a given register 
shall define the 
collection of 
Interrupt sources 
(from System 
Interrupt Status 
register) that are 
assigned to a 
particular Interrupt 
Vector. Register 0 
shall assign Interrupt 
sources to Vector 0, 
Register 1 shall 
assign Interrupt 
sources to Vector 1, 
and so on. NOTE: SW 
must ensure that no 
interrupts are 
enabled (in System 
Interrupt Disable) 
before modifying the 
value of any MSI(-X) 
Vector Assignment 
register, otherwise 
the behavior is 
undefined. NOTE: SW 
shall be responsible 
for assigning each 
interrupt source to 
an unique Vector, or 
otherwise must 
handle multiple 
interrupts for a given 
source. NOTE: SW 
must ensure that 
interrupts sharing 
the same vector have 
the correpsonding 
bits disabled System 
Interrupt Status 
Auto-clear register, 
otherwise the 
behavior is 
undefined. 

DCAR_0 A000 A000 4096
0 

2800 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Channel 
Attributes Register 

DHPR_0 A004 A004 4096
4 

2801 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Descriptor Head 
Pointer Register 

DTPR_0 A008 A008 4096
8 

2802 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Descriptor Tail 
Pointer Register 

DAUX_LO_0 A00C A00C 4097
2 

2803 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Auxiliary 
Register 0 

DAUX_HI_0 A010 A010 4097
6 

2804 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Auxiliary 
Register 0 

DRAR_LO_0 A014 A014 4098
0 

2805 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Descriptor Ring 
Attributes Register 

DRAR_HI_0 A018 A018 4098
4 

2806 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Descriptor Ring 
Attributes Register 

DITR_0 A01C A01C 4098
8 

2807 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Interrupt Timer 
Register 
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DMA_DSTAT_0 A020 A020 4099
2 

2808 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Channel Status 
Register 

DSTATWB_LO_0 A024 A024 4099
6 

2809 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Tail Pointer 
Write Back Register 
Lo 

DSTATWB_HI_0 A028 A028 4100
0 

280A 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Tail Pointer 
Write Back Register 

DCHERR_0 A02C A02C 4100
4 

280B 32 1 Ring 0 Paging YES YES RTL GRPB_P
WRGD 

CRU DMA Channel Error 
Register 

DCHERRMSK_0 A030 A030 4100
8 

280C 32 1 Ring 0 Paging YES YES RTL GRPB_P
WRGD 

CRU DMA Channel Error 
Register 

DCAR_1 A040 A040 4102
4 

2810 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Channel 
Attributes Register 

DHPR_1 A044 A044 4102
8 

2811 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Descriptor Head 
Pointer Register 

DTPR_1 A048 A048 4103
2 

2812 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Descriptor Tail 
Pointer Register 

DAUX_LO_1 A04C A04C 4103
6 

2813 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Auxiliary 
Register 0 

DAUX_HI_1 A050 A050 4104
0 

2814 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Auxiliary 
Register 0 

DRAR_LO_1 A054 A054 4104
4 

2815 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Descriptor Ring 
Attributes Register 

DRAR_HI_1 A058 A058 4104
8 

2816 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Descriptor Ring 
Attributes Register 

DITR_1 A05C A05C 4105
2 

2817 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Interrupt Timer 
Register 

DMA_DSTAT_1 A060 A060 4105
6 

2818 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Channel Status 
Register 

DSTATWB_LO_1 A064 A064 4106
0 

2819 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Tail Pointer 
Write Back Register 
Lo 

DSTATWB_HI_1 A068 A068 4106
4 

281A 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Tail Pointer 
Write Back Register 

DCHERR_1 A06C A06C 4106
8 

281B 32 1 Ring 0 Paging YES YES RTL GRPB_P
WRGD 

CRU DMA Channel Error 
Register 

DCHERRMSK_1 A070 A070 4107
2 

281C 32 1 Ring 0 Paging YES YES RTL GRPB_P
WRGD 

CRU DMA Channel Error 
Register 

DCAR_2 A080 A080 4108
8 

2820 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Channel 
Attributes Register 

DHPR_2 A084 A084 4109
2 

2821 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Descriptor Head 
Pointer Register 

DTPR_2 A088 A088 4109
6 

2822 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Descriptor Tail 
Pointer Register 

DAUX_LO_2 A08C A08C 4110
0 

2823 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Auxiliary 
Register 0 

DAUX_HI_2 A090 A090 4110
4 

2824 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Auxiliary 
Register 0 

DRAR_LO_2 A094 A094 4110
8 

2825 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Descriptor Ring 
Attributes Register 

DRAR_HI_2 A098 A098 4111
2 

2826 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Descriptor Ring 
Attributes Register 

DITR_2 A09C A09C 4111
6 

2827 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Interrupt Timer 
Register 

DMA_DSTAT_2 A0A0 A0A0 4112
0 

2828 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Channel Status 
Register 

DSTATWB_LO_2 A0A4 A0A4 4112
4 

2829 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Tail Pointer 
Write Back Register 
Lo 

DSTATWB_HI_2 A0A8 A0A8 4112
8 

282A 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Tail Pointer 
Write Back Register 

DCHERR_2 A0AC A0AC 4113
2 

282B 32 1 Ring 0 Paging YES YES RTL GRPB_P
WRGD 

CRU DMA Channel Error 
Register 

DCHERRMSK_2 A0B0 A0B0 4113
6 

282C 32 1 Ring 0 Paging YES YES RTL GRPB_P
WRGD 

CRU DMA Channel Error 
Register 

DCAR_3 A0C0 A0C0 4115
2 

2830 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Channel 
Attributes Register 
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DHPR_3 A0C4 A0C4 4115
6 

2831 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Descriptor Head 
Pointer Register 

DTPR_3 A0C8 A0C8 4116
0 

2832 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Descriptor Tail 
Pointer Register 

DAUX_LO_3 A0CC A0CC 4116
4 

2833 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Auxiliary 
Register 0 

DAUX_HI_3 A0D0 A0D0 4116
8 

2834 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Auxiliary 
Register 0 

DRAR_LO_3 A0D4 A0D4 4117
2 

2835 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Descriptor Ring 
Attributes Register 

DRAR_HI_3 A0D8 A0D8 4117
6 

2836 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Descriptor Ring 
Attributes Register 

DITR_3 A0DC A0DC 4118
0 

2837 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Interrupt Timer 
Register 

DMA_DSTAT_3 A0E0 A0E0 4118
4 

2838 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Channel Status 
Register 

DSTATWB_LO_3 A0E4 A0E4 4118
8 

2839 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Tail Pointer 
Write Back Register 
Lo 

DSTATWB_HI_3 A0E8 A0E8 4119
2 

283A 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Tail Pointer 
Write Back Register 

DCHERR_3 A0EC A0EC 4119
6 

283B 32 1 Ring 0 Paging YES YES RTL GRPB_P
WRGD 

CRU DMA Channel Error 
Register 

DCHERRMSK_3 A0F0 A0F0 4120
0 

283C 32 1 Ring 0 Paging YES YES RTL GRPB_P
WRGD 

CRU DMA Channel Error 
Register 

DCAR_4 A100 A100 4121
6 

2840 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Channel 
Attributes Register 

DHPR_4 A104 A104 4122
0 

2841 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Descriptor Head 
Pointer Register 

DTPR_4 A108 A108 4122
4 

2842 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Descriptor Tail 
Pointer Register 

DAUX_LO_4 A10C A10C 4122
8 

2843 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Auxiliary 
Register 0 

DAUX_HI_4 A110 A110 4123
2 

2844 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Auxiliary 
Register 0 

DRAR_LO_4 A114 A114 4123
6 

2845 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Descriptor Ring 
Attributes Register 

DRAR_HI_4 A118 A118 4124
0 

2846 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Descriptor Ring 
Attributes Register 

DITR_4 A11C A11C 4124
4 

2847 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Interrupt Timer 
Register 

DMA_DSTAT_4 A120 A120 4124
8 

2848 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Channel Status 
Register 

DSTATWB_LO_4 A124 A124 4125
2 

2849 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Tail Pointer 
Write Back Register 
Lo 

DSTATWB_HI_4 A128 A128 4125
6 

284A 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Tail Pointer 
Write Back Register 

DCHERR_4 A12C A12C 4126
0 

284B 32 1 Ring 0 Paging YES YES RTL GRPB_P
WRGD 

CRU DMA Channel Error 
Register 

DCHERRMSK_4 A130 A130 4126
4 

284C 32 1 Ring 0 Paging YES YES RTL GRPB_P
WRGD 

CRU DMA Channel Error 
Register 

DCAR_5 A140 A140 4128
0 

2850 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Channel 
Attributes Register 

DHPR_5 A144 A144 4128
4 

2851 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Descriptor Head 
Pointer Register 

DTPR_5 A148 A148 4128
8 

2852 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Descriptor Tail 
Pointer Register 

DAUX_LO_5 A14C A14C 4129
2 

2853 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Auxiliary 
Register 0 

DAUX_HI_5 A150 A150 4129
6 

2854 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Auxiliary 
Register 0 

DRAR_LO_5 A154 A154 4130
0 

2855 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Descriptor Ring 
Attributes Register 

DRAR_HI_5 A158 A158 4130
4 

2856 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Descriptor Ring 
Attributes Register 

DITR_5 A15C A15C 4130
8 

2857 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Interrupt Timer 
Register 
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DMA_DSTAT_5 A160 A160 4131
2 

2858 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Channel Status 
Register 

DSTATWB_LO_5 A164 A164 4131
6 

2859 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Tail Pointer 
Write Back Register 
Lo 

DSTATWB_HI_5 A168 A168 4132
0 

285A 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Tail Pointer 
Write Back Register 

DCHERR_5 A16C A16C 4132
4 

285B 32 1 Ring 0 Paging YES YES RTL GRPB_P
WRGD 

CRU DMA Channel Error 
Register 

DCHERRMSK_5 A170 A170 4132
8 

285C 32 1 Ring 0 Paging YES YES RTL GRPB_P
WRGD 

CRU DMA Channel Error 
Register 

DCAR_6 A180 A180 4134
4 

2860 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Channel 
Attributes Register 

DHPR_6 A184 A184 4134
8 

2861 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Descriptor Head 
Pointer Register 

DTPR_6 A188 A188 4135
2 

2862 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Descriptor Tail 
Pointer Register 

DAUX_LO_6 A18C A18C 4135
6 

2863 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Auxiliary 
Register 0 

DAUX_HI_6 A190 A190 4136
0 

2864 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Auxiliary 
Register 0 

DRAR_LO_6 A194 A194 4136
4 

2865 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Descriptor Ring 
Attributes Register 

DRAR_HI_6 A198 A198 4136
8 

2866 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Descriptor Ring 
Attributes Register 

DITR_6 A19C A19C 4137
2 

2867 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Interrupt Timer 
Register 

DMA_DSTAT_6 A1A0 A1A0 4137
6 

2868 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Channel Status 
Register 

DSTATWB_LO_6 A1A4 A1A4 4138
0 

2869 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Tail Pointer 
Write Back Register 
Lo 

DSTATWB_HI_6 A1A8 A1A8 4138
4 

286A 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Tail Pointer 
Write Back Register 

DCHERR_6 A1AC A1AC 4138
8 

286B 32 1 Ring 0 Paging YES YES RTL GRPB_P
WRGD 

CRU DMA Channel Error 
Register 

DCHERRMSK_6 A1B0 A1B0 4139
2 

286C 32 1 Ring 0 Paging YES YES RTL GRPB_P
WRGD 

CRU DMA Channel Error 
Register 

DCAR_7 A1C0 A1C0 4140
8 

2870 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Channel 
Attributes Register 

DHPR_7 A1C4 A1C4 4141
2 

2871 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Descriptor Head 
Pointer Register 

DTPR_7 A1C8 A1C8 4141
6 

2872 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Descriptor Tail 
Pointer Register 

DAUX_LO_7 A1CC A1CC 4142
0 

2873 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Auxiliary 
Register 0 

DAUX_HI_7 A1D0 A1D0 4142
4 

2874 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Auxiliary 
Register 0 

DRAR_LO_7 A1D4 A1D4 4142
8 

2875 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Descriptor Ring 
Attributes Register 

DRAR_HI_7 A1D8 A1D8 4143
2 

2876 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Descriptor Ring 
Attributes Register 

DITR_7 A1DC A1DC 4143
6 

2877 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Interrupt Timer 
Register 

DMA_DSTAT_7 A1E0 A1E0 4144
0 

2878 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Channel Status 
Register 

DSTATWB_LO_7 A1E4 A1E4 4144
4 

2879 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Tail Pointer 
Write Back Register 
Lo 

DSTATWB_HI_7 A1E8 A1E8 4144
8 

287A 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Tail Pointer 
Write Back Register 

DCHERR_7 A1EC A1EC 4145
2 

287B 32 1 Ring 0 Paging YES YES RTL GRPB_P
WRGD 

CRU DMA Channel Error 
Register 

DCHERRMSK_7 A1F0 A1F0 4145
6 

287C 32 1 Ring 0 Paging YES YES RTL GRPB_P
WRGD 

CRU DMA Channel Error 
Register 

DCR A280 A280 4160
0 

28A0 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU DMA Configuration 
Register 
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DQAR A284 A284 4160
4 

28A1 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Descriptor Queue 
Access Register 

DQDR_TL A288 A288 4160
8 

28A2 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Descriptor Queue 
Data Register Top 
Left 

DQDR_TR A28C A28C 4161
2 

28A3 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Descriptor Queue 
Data Register Top 
Right 

DQDR_BL A290 A290 4161
6 

28A4 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Descriptor Queue 
Data Register Bottom 
Left 

DQDR_BR A294 A294 4162
0 

28A5 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Descriptor Queue 
Data Register Bottom 
Right 

DMA_MISC A2A4 A2A4 4163
6 

28A9 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Misc bits such as 
chicken bits -- etc... 

DMA_LOCK A400 A400 4198
4 

2900 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Master Lock register 

APICIDR A800 A800 4300
8 

2A00 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU APIC Identification 
Register 

APICVER A804 A804 4301
2 

2A01 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU APIC Version Register 

APICAPR A808 A808 4301
6 

2A02 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU APIC Priority Register 

APICRT A840 A908 4307
2 

2A10 64 26 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU APIC Redirection 
Table 

APICICR A9D0 AA08 4347
2 

2A74 64 8 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU APIC Interrupt 
Command Register 0 
to 7 

MCA_INT_STAT AB00 AB00 4377
6 

2AC0 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU MCA Interrupt Status 
Register 

MCA_INT_EN AB04 AB04 4378
0 

2AC1 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU MCA Interrupt 
Enable Register 

SCRATCH AB20 AB5C 4380
8 

2AC8 32 16 Ring 0 Paging YES YES RTL GRPB_P
WRGD 

CRU Scratch Registers for 
Software 

CONCAT_CORE_
HALTED 

AC0C AC0C 4404
4 

2B03 64 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Concatenated core 
halted status 

CORE_HALTED AC4C AD40 4410
8 

2B13 32 62 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Core of same 
number writes a 1 
just before halting 

RDMASR0 B180 B180 4544
0 

2C60 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Remote DMA 
register 

RDMASR1 B184 B184 4544
4 

2C61 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Remote DMA 
register 

RDMASR2 B188 B188 4544
8 

2C62 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Remote DMA 
register 

RDMASR3 B18C B18C 4545
2 

2C63 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Remote DMA 
register 

RDMASR4 B190 B190 4545
6 

2C64 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Remote DMA 
register 

RDMASR5 B194 B194 4546
0 

2C65 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Remote DMA 
register 

RDMASR6 B198 B198 4546
4 

2C66 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Remote DMA 
register 

RDMASR7 B19C B19C 4546
8 

2C67 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Remote DMA 
register 

C6_SCRATCH C000 C054 4915
2 

3000 32 22 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Scratch Pad registers 
for package-C6 

APR_PHY_BASE C11C C11C 4943
6 

3047 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU   

SBOX_RS_EMO
N_Selectors 

CC20 CC20 5225
6 

3308 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU SBox RS EMON 
selectors 

SBOX_EMON_C
NT_OVFL 

CC24 CC24 5226
0 

3309 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU This indicates if 
there's any overflow 
in any EMON counter 

EMON_CNT0 CC28 CC28 5226
4 

330A 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU EMON counter 0 
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EMON_CNT1 CC2C CC2C 5226
8 

330B 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU EMON counter 1 

EMON_CNT2 CC30 CC30 5227
2 

330C 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU EMON counter 2 

EMON_CNT3 CC34 CC34 5227
6 

330D 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU EMON counter 3 

SBQ_MISC CC38 CC38 5228
0 

330E 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU Misc register with 
sbq chicken bits, etc 

DBOX_BW_RES
ERVATION 

CC50 CC50 5230
4 

3314 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU 8-bits DBOX 
reservation slot value 
from SW 

EMON_TCU_CO
NTROL 

CC84 CC84 5235
6 

3321 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU TCU EMON Control 

Doorbell_INT CC90 CC9C 5236
8 

3324 32 4 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU System Doorbell 
Interrupt Command 
Register 0 to 3 

MarkerMessage
_Disable 

CCA0 CCA0 5238
4 

3328 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU 32-bits to disable 
interrupts 

MarkerMessage
_Assert 

CCA4 CCA4 5238
8 

3329 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU 32-bits to assert 
interrupts 

MarkerMessage
_Send 

CCA8 CCA8 5239
2 

332A 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET 

CRU 32-bits to log INTSCR 
field of Marker 
Message 

 


