
 Page 1

Intel® Xeon Phi™ Coprocessor

System Software Developers Guide

SKU# 328207-001EN
April, 2013

 Page 2

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.
EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly,
in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL
APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND
THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND
EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT
LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER
OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL
PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely
on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these
for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them. The information here is subject to change without notice. Do not finalize a design with this
information.

The Intel® MIC Architecture coprocessors described in this document may contain design defects or errors known as
errata which may cause the product to deviate from published specifications. Current characterized errata are available
on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product
order.

Copies of documents which have an order number and are referenced in this document,
 Intel literature may be obtained by calling 1-800-548-4725, or go to:
http://www.intel.com/design/literature.htm

Intel, the Intel logo, Intel® Pentium®, Intel® Pentium® Pro, Xeon®, Intel® Xeon Phi™, Intel® Pentium® 4 Processor, Intel
Core™ Solo, Intel® Core™ Duo, Intel Core™ 2 Duo, Intel Atom™, MMX™, Intel® Streaming SIMD Extensions (Intel® SSE),
Intel® Advanced Vector Extensions (Intel® AVX), Intel® VTune™ Amplifier XE are trademarks or registered trademarks of
Intel Corporation or its subsidiaries in the United States and other countries. *Other names and brands may be claimed
as the property of others.

Copyright 2011-2013 Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

 Page 3

Table of Contents

Table of Contents ... 3

List of Figures ... 6

List of Tables .. 7

1 Introduction .. 9

1.1 Programming Model ... 9

1.1.1 Application Programming .. 9

1.1.2 System Programming .. 9

1.2 Section Overview .. 10

1.3 Related Technologies and Documents ... 10

2 Intel® Xeon Phi™ Coprocessor Architecture .. 12

2.1 Intel® Xeon Phi™ Coprocessor Architecture ... 12

2.1.1 Core ... 16

2.1.2 Instruction Decoder ... 18

2.1.3 Cache Organization and Hierarchy .. 19

2.1.4 Page Tables .. 22

2.1.5 Hardware Threads and Multithreading ... 23

2.1.6 Faults and Breakpoints .. 24

2.1.7 Performance Monitoring Unit and Events Monitor 24

2.1.8 System Interface .. 26

2.1.9 VPU and Vector Architecture .. 32

2.1.10 Intel® Xeon Phi™ Coprocessor Instructions .. 33

2.1.11 Multi-Card ... 33

2.1.12 Host and Intel® MIC Architecture Physical Memory Map 34

2.1.13 Power Management .. 35

2.2 Intel® Xeon Phi™ Coprocessor Software Architecture.. 36

2.2.1 Architectural Overview.. 36

2.2.2 Intel® Manycore Platform Software Stack (MPSS) 39

2.2.3 Bootstrap ... 41

2.2.4 Linux* Loader .. 42

2.2.5 The Coprocessor Operating System (coprocessor OS) 43

 Page 4

2.2.6 Symmetric Communication Interface (SCIF) ... 45

2.2.7 Host Driver... 45

2.2.8 Sysfs Nodes .. 51

2.2.9 Intel® Xeon Phi™ Coprocessor Software Stack for MPI Applications 53

2.2.10 Application Programming Interfaces... 64

3 Power Management, Virtualization, RAS .. 65

3.1 Power Management (PM) ... 65

3.1.1 Coprocessor OS Role in Power Management ... 66

3.1.2 Bootloader Role in Power Management ... 67

3.1.3 Host Driver Role in Power Management ... 67

3.1.4 Power Reduction ... 68

3.1.5 PM Software Event Handling Function ... 85

3.1.6 Power Management in the Intel® MPSS Host Driver 88

3.2 Virtualization ... 92

3.2.1 Hardware Assisted DMA Remapping .. 92

3.2.2 Hardware Assisted Interrupt Remapping .. 92

3.2.3 Shared Device Virtualization ... 92

3.3 Reliability Availability Serviceability (RAS) .. 92

3.3.1 Check Pointing ... 93

3.3.2 Berkeley Labs Check point and Restore (BLCR) 94

3.3.3 Machine Check Architecture (MCA) .. 96

3.3.4 Cache Line Disable ... 109

3.3.5 Core Disable .. 110

3.3.6 Machine Check Flows .. 110

3.3.7 Machine Check Handler .. 112

3.3.8 Error Injection.. 112

4 Operating System Support and Driver Writer’s Guide.. 114

4.1 Third Party OS Support ... 114

4.2 Intel® Xeon Phi™ Coprocessor Limitations for Shrink-Wrapped Operating Systems114

4.2.1 Intel x86 and Intel 64 ABI .. 114

4.2.2 PC-AT / I/O Devices ... 114

4.2.3 Long Mode Support ... 114

 Page 5

4.2.4 Custom Local APIC ... 114

4.2.5 Custom I/O APIC .. 115

4.2.6 Timer Hardware... 115

4.2.7 Debug Store ... 115

4.2.8 Power and Thermal Management .. 115

4.2.9 Pending Break Enable .. 116

4.2.10 Global Page Tables .. 116

4.2.11 CNXT-ID – L1 Context ID .. 116

4.2.12 Prefetch Instructions ... 116

4.2.13 PSE-36 .. 116

4.2.14 PSN (Processor Serial Number) ... 117

4.2.15 Machine Check Architecture ... 117

4.2.16 Virtual Memory Extensions (VMX) .. 117

4.2.17 CPUID ... 117

4.2.18 Unsupported Instructions ... 117

5 Application Programming Interfaces ... 120

5.1 The SCIF APIs ... 120

5.2 MicAccessAPI .. 123

5.3 Support for Industry Standards .. 126

5.3.1 TCP/IP Emulation ... 127

5.4 Intel® Xeon Phi™ Coprocessor Command Utilities ... 127

5.5 NetDev Virtual Networking ... 127

5.5.1 Introduction ... 127

5.5.2 Implementation ... 128

6 Compute Modes and Usage Models ... 130

6.1 Usage Models .. 130

6.2 MPI Programming Models .. 131

6.2.1 Offload Model ... 132

6.2.2 Coprocessor-Only Model ... 133

6.2.3 Symmetric Model .. 133

6.2.4 Feature Summary .. 134

6.2.5 MPI Application Compilation and Execution ... 135

 Page 6

7 Intel® Xeon Phi™ Coprocessor Vector Architecture.. 136

7.1 Overview ... 136

8 Glossary and Abbreviations .. 137

9 References ... 141

Appendix: SBOX Control Register List ... 142

List of Figures

Figure 2-1. Basic building blocks of the Intel® Xeon Phi™ Coprocessor ... 13
Figure 2-2: Core Pipeline Components ... 17
Figure 2-3: Intel® Xeon Phi™ Coprocessor Core Architecture .. 18
Figure 2-4: MESI Protocol ... 20
Figure 2-5 Globally Owned Locally Shared (GOLS) Diagram ... 21
Figure 2-6. Multithreading Architectural Support in the Intel® Xeon Phi™ Coprocessor .. 23
Figure 2-7. DMA Channel Descriptor Ring plus Local Descriptor Queue ... 29
Figure 2-8. Descriptor Ring Attributes ... 30
Figure 2-9. Intel® Xeon Phi™ Coprocessor Address Format ... 30
Figure 2-10. Base Address Width Variations .. 31
Figure 2-11 Head and Tail Pointer Index Registers ... 31
Figure 2-12. Host and Intel® MIC Architecture Physical Memory Map .. 34
Figure 2-13. Intel® Xeon Phi™ Coprocessor Software Architecture ... 37
Figure 2-14. Intel® Xeon Phi™ Coprocessor Software Stack ... 40
Figure 2-15. The Linux* Coprocessor OS Block Diagram .. 44
Figure 2-16. Intel® Xeon Phi™ Coprocessor Host Driver Software Architecture Components ... 46
Figure 2-17. Control Panel Software Architecture .. 47
Figure 2-18. Ganglia* Monitoring System Data Flow Diagram .. 48
Figure 2-19: Ganglia* Monitoring System for a Cluster .. 48
Figure 2-20. Intel® Xeon Phi™ Coprocessor Ganglia* Support Diagram .. 49
Figure 2-21: MPSS Ganglia* Support .. 52
Figure 2-22 RDMA Transfer with CCL .. 54
Figure 2-23 MPI Application on CCL .. 55
Figure 2-24: OFED*/SCIF Modules .. 61
Figure 2-25. Supported Communication Fabrics ... 62
Figure 2-26. Extended SHM Fabric Structure .. 63
Figure 3-1. Intel® Xeon Phi™ Coprocessor Power Management Software Architecture.. 66
Figure 3-2. Power Reduction Flow .. 69
Figure 3-3. Core C6 Selection .. 73
Figure 3-4. Package C-state Selection Flow .. 76
Figure 3-5 CPU Idle State Transitions .. 79
Figure 3-6. Package C-state Transitions .. 82
Figure 3-7 Package C6 Entry and Exit Flow ... 84
Figure 3-8 Intel® MPSS Host Driver to Coprocessor OS Package State Interactions .. 91
Figure 5-1. SCIP Architectural Model .. 121
Figure 5-2 Intel® Xeon Phi™ Coprocessor SysMgmt MicAccessAPI Architecture Components Diagram 124
Figure 5-3 MicAccessAPI Flash Update Procedure ... 125
Figure 5-4 Linux* Network Stack .. 128
Figure 6-1 : A Scalar/Parallel Code Viewpoint of the Intel® MIC Architecture Enabled Compute Continuum 130
Figure 6-2: A Process Viewpoint of the Intel® MIC Architecture Enabled Compute Continuum 130
Figure 6-3: MPI Programming Models for the Intel® Xeon Phi™ Coprocessor ... 131

 Page 7

Figure 6-4. MPI on Host Devices with Offload to Coprocessors ... 132
Figure 6-5: MPI on the Intel® Xeon Phi™ coprocessors Only .. 133
Figure 6-6: MPI Processes on Both the Intel® Xeon® Nodes and the Intel® MIC Architecture Devices 134
Figure 6-7. Compiling and Executing a MPI Application ... 135
Figure 7-1: VPU Registers .. 136
Figure 7-2. Vector Organization When Operating on 16 Elements of 32-bit Data ... 136
Figure 7-3. Vector Register Lanes 3...0 .. 136
Figure 7-4. Vector Elements D...A Within a Lane .. 136
Figure 7-5. Vector Elements P...A Across the Entire Vector Register .. 136
Figure 7-6. Basic Vector Operation Without Write Masking Specified ... 136
Figure 7-7. Basic Vector Operation With a Write Masking Specified ... 136
Figure 7-8. Effect of Write Mask Values on Result ... 136
Figure 7-9. A Native (Non-Optimal) Newton-Raphson Approximation Using a Write-Mask to Determine a Square Root 136
Figure 7-10. Partial Microarchitecture Design for Swizzle Support .. 136
Figure 7-11. The Complete Microarchitecture Design for Swizzle Support .. 136
Figure 7-12. Register-Register Swizzle Operation: Source Selection .. 136
Figure 7-13. Register-Register Swizzle Operation: Element Muxes .. 136
Figure 7-15. Register-Register Swizzle Operation: Complete Swizzle Result .. 136
Figure 7-14. Register-Register Swizzle Operation: First Lane Completion ... 136
Figure 7-16. The 1-to-16 Register Memory Swizzle Operation ... 136
Figure 7-17. The 4-to-16 Register-Memory Swizzle Operation ... 136
Figure 7-18. The uint8 Data Conversion Register-Memory Swizzle Operation .. 136
Figure 7-19. Trivial Implementation of a Horizontal Add Operation Within One Vector Lane .. 136
Figure 7-20. Trivial Implementation of a 3x3 Matrix Cross-Product Within One Vector Lane ... 136
Figure 7-21. The Behavior of the Vector Load Instruction With a Write Mask ... 136
Figure 7-22. The Behavior of the Vector Store Instruction With a Write Mask ... 136
Figure 7-23. Compiler Extension to Force Memory Alignment Boundaries in C or C++ Tools ... 136
Figure 7-24. The Behavior of the Vector Unpack Instruction ... 136
Figure 7-25: The Behavior of the Vector Pack Instruction .. 136

List of Tables

Table 1-1. Related Industry Standards .. 10
Table 1-2. Related Documents .. 10
Table 2-1. Description of Coprocessor Components .. 15
Table 2-2. L2 Cache States .. 20
Table 2-3. Tag Directory States ... 21
Table 2-4. Cache Hierarchy ... 22
Table 2-5. L1 and L2 Caches Characteristics ... 23
Table 2-6. Supported and Unsupported Faults on Intel® Xeon Phi™ Coprocessor .. 24
Table 2-7: Core PMU Instructions ... 25
Table 2-8. Core PMU Control Registers .. 25
Table 2-9. Examples of Base Address Ranges Based on Descriptor Ring Size .. 31
Table 2-10. Coprocessor Memory Map .. 32
Table 2-11. LSB Core Libraries ... 44
Table 2-12. Intel® MIC Architecture commands ... 51
Table 2-13. Kernel to User Space Mappings ... 51
Table 2-14. SYSFS Nodes ... 52
Table 2-15: Vendor Drivers Bypassing IB* Core for User-Mode Access ... 56
Table 2-16: Summary of Vendor Driver Characteristics.. 57
Table 3-1. Routines Common to All Package Idle States .. 78

file:///C:/Documents%20and%20Settings/mcasscle/Desktop/USBKeyBackup/XeonPhiDocs/SDG/Source/IntelXeonPhi_SystemSoftwareDeveloperGuide2.02MP.docx%23_Toc340149116
file:///C:/Documents%20and%20Settings/mcasscle/Desktop/USBKeyBackup/XeonPhiDocs/SDG/Source/IntelXeonPhi_SystemSoftwareDeveloperGuide2.02MP.docx%23_Toc340149118
file:///C:/Documents%20and%20Settings/mcasscle/Desktop/USBKeyBackup/XeonPhiDocs/SDG/Source/IntelXeonPhi_SystemSoftwareDeveloperGuide2.02MP.docx%23_Toc340149120

 Page 8

Table 3-2 Package Idle State Behavior in the Intel® Xeon Phi™ Coprocessor .. 79
Table 3-3. Events and Conditions Handled by the Coprocessor OS .. 87
Table 3-4. Power Management Messages .. 89
Table 3-5. Control and Error Reporting Registers ... 99
Table 3-6. MCi_CTL Register Description .. 99
Table 3-7. MCI_STATUS Register Description ... 100
Table 3-8. MCi_ADDR Register Description .. 101
Table 3-9. Machine Check Registers ... 101
Table 3-10. Sources of Uncore Machine-Check Events .. 104
Table 3-11. SBox Machine Check Registers .. 104
Table 3-12. SBox Error Descriptions .. 105
Table 3-13. Correctable PCIe Fabric Error Signal .. 107
Table 3-14. Uncorrectable PCIe Fabric Error Signal .. 107
Table 3-15. GBox Errors .. 107
Table 3-16. TD Errors .. 108
Table 3-17. GBox Error Registers .. 109
Table 5-1 Summary of SCIF Functions ... 122
Table 5-2. MicAccessAPI Library APIs ... 126
Table 5-3. Intel® Xeon Phi™ Coprocessor Command Utilities .. 127
Table 7-1 Bidirectional Up/Down Conversion Table ... 136
Table 7-2 Throughput Cycle of Transcendental Functions ... 136
Table 7-3. The Scale-and-Bias Instruction vfmadd233ps on 32-bit Data .. 136
Table 7-4. The vmovaps Instruction Support for Data Conversion and Data Replication Modifiers 136
Table 7-5. The Floating-Point Data Type Encodings Supported .. 136
Table 7-6: Memory Alignment Requirements for Load and Store Operations ... 136
Table 7-7. L1 Prefetch Instructions ... 136
Table 7-8. L2 Prefetch Instructions ... 136
Table 7-9. Mask Manipulation Instructions .. 136
Table 7-10. Packed Typeless Instructions ... 136
Table 7-11. New Packed DP FP Instructions ... 136
Table 7-12. Packed Int32 Instructions... 136

 Page 9

1 Introduction

1.1 Programming Model

As with most computing systems, the Intel® Many Integrated Core (Intel® MIC) Architecture programming model can be
divided into two categories: application programming and system programming.

1.1.1 Application Programming

 In this guide, application programming refers to developing user applications or codes using either the Intel® Composer
XE 2013 or 3rd party software development tools. These tools typically contain a development environment that includes
compilers, libraries, and assorted other tools.

Application programming will not be covered here; consult the Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK
START GUIDE for information on how to quickly write application code and run applications on a development platform
including the Intel® Many Integrated Core Architecture (Intel® MIC Architecture). It also describes the available tools and
gives some simple examples to show how to get C/C++ and Fortran-based programs up and running.

The development environment includes the following compilers and libraries, which are available at
https://registrationcenter.intel.com:

 Intel® C/C++ Compiler XE 2013 including Intel® MIC Architecture for building applications that run on Intel® 64 and
Intel® MIC Architectures

 Intel® Fortran Compiler XE 2013 including Intel® MIC Architecture for building applications that run on Intel® 64 and
Intel® MIC Architectures

Libraries for use with the offload compiler include:

 Intel® Math Kernel Library (Intel® MKL) optimized for Intel® MIC Architecture

 Intel® Threading Building Blocks

The development environment includes the following tools:

 Debugger
 Intel® Debugger for applications including Intel® MIC Architecture
 Intel® Debugger for applications running on Intel® Architecture (IA)

 Profiling
 SEP enables performance data collection from the Intel® Xeon Phi™ coprocessor. This feature is included as

part of the VTune™ Amplifier XE 2013 tool.
 Performance data can be analyzed using VTune™ Amplifier XE 2013

1.1.2 System Programming

System programming here explains how to use the Intel® MIC Architecture, its low level APIs (e.g. SCIF), and the
contents of the Intel® Many Integrated Core Architecture Platform Software Stack (MPSS). Detailed information on these
low-level APIs can be found in Section 5 of this document.

https://registrationcenter.intel.com/

 Page 10

1.2 Section Overview

The information in this guide is organized as follows:

 Section 2 contains a high-level description of the Intel® Xeon Phi™ coprocessor hardware and software
architecture.

 Section Error! Reference source not found. covers power management from the software perspective. It also
covers virtualization support in the Intel® Xeon Phi™ coprocessor and some Reliability Accessibility and
Serviceability (RAS) features such as BLCR* and MCA.

 Section 4 covers Operating System support.

 Section 5 covers the low level APIs (e.g. SCIF) available with the Intel® Xeon Phi™ coprocessor software stack.

 Section 6 illustrates the usage models and the various operating modes for platforms with the Intel® Xeon Phi™
coprocessors in the compute continuum.

 Section 7 provides in-depth details of the Intel® Xeon Phi™ coprocessor Vector Processing Unit architecture.

 Glossary of terms and abbreviations used can be found in Section 8.

 References are collated in Section 9.

1.3 Related Technologies and Documents

This section lists some of the related documentation that you might find useful for finding information not covered here.

Industry specification for standards (i.e., OpenMP*, OpenCL*, MPI, OFED*, and POSIX* threads) are not covered in this
document. For this information, consult relevant specifications published by their respective owning organizations:

Table 1-1. Related Industry Standards

Technology Location
OpemMP* http://openmp.org/

OpenCL* http://www.khronos.org/opencl/

MPI http://www.mpi-forum.org/

OFED* Overview http://www.openfabrics.org/

You should also consult relevant published documents which cover the Intel® software development tools not covered
here:

Table 1-2. Related Documents

Document Location
Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START
GUIDE

http://software.intel.com/en-us/mic-developer

Intel® Many Integrated Core Platform Software Stack http://software.intel.com/en-us/mic-developer

Intel® Xeon Phi™ Coprocessor Instruction Set Architecture
Reference Manual

http://software.intel.com/en-us/mic-developer

An Overview of Programming for Intel® Xeon® processors
and Intel® Xeon Phi™ coprocessors

http://software.intel.com/en-us/mic-developer

Debugging Intel® Xeon Phi™ Coprocessor: Command-Line
Debugging

http://software.intel.com/en-us/mic-developer

Building Native Applications for Intel® Xeon
Phi™ Coprocessor

http://software.intel.com/en-us/mic-developer

Programming and Compiling for Intel® Many Integrated
Core Architecture

http://software.intel.com/en-us/mic-developer

http://openmp.org/
http://www.khronos.org/opencl/
http://www.mpi-forum.org/
http://www.openfabrics.org/
http://software.intel.com/en-us/mic-developer
http://software.intel.com/en-us/mic-developer
http://software.intel.com/en-us/mic-developer
http://software.intel.com/en-us/mic-developer
http://software.intel.com/en-us/mic-developer
http://software.intel.com/en-us/mic-developer
http://software.intel.com/en-us/mic-developer

 Page 11

Document Location
Intel® Xeon Phi™ coprocessor Micro-architecture Software
Stack

http://software.intel.com/en-us/mic-developer

Intel® Xeon Phi™ coprocessor Micro-architecture Overview http://software.intel.com/en-us/mic-developer

Intel® MPI Library http://www.intel.com/go/mpi

Intel® MIC SCIF API Reference Manual for Kernel Mode
Linux*

http://intel.com/software/mic

Intel® MIC SCIF API Reference Manual for User Mode
Linux*

http://intel.com/software/mic

http://software.intel.com/en-us/mic-developer
http://software.intel.com/en-us/mic-developer
http://www.intel.com/go/mpi
http://intel.com/software/mic
http://intel.com/software/mic

 Page 12

2 Intel® Xeon Phi™ Coprocessor Architecture

This Section explains both the hardware and the software architecture of the Intel® Xeon Phi™ coprocessor. It covers the
major micro-architectural features such as the core, the vector processing unit (VPU), the high-performance on-die
bidirectional interconnect, fully coherent L2 caches, and how the various units interact. Particular emphasis is placed on
the key parameters necessary to understand program optimization, such as cache organization and memory bandwidth.

2.1 Intel® Xeon Phi™ Coprocessor Architecture

The Intel® Xeon Phi™ coprocessor comprises of up to sixty-one (61) processor cores connected by a high performance
on-die bidirectional interconnect. In addition to the IA cores, there are 8 memory controllers supporting up to 16 GDDR5
channels delivering up to 5.5 GT/s, and special function devices such as the PCI Express* system interface.

Each core is a fully functional, in-order core, which supports fetch and decode instructions from four hardware thread
execution contexts. In order to reduce hot-spot contention for data among the cores, a distributed tag directory is
implemented so that every physical address the coprocessor can reach is uniquely mapped through a reversible one-to-
one address hashing function. This hashing function not only maps each physical address to a tag directory, but also
provides a framework for more elaborate coherence protocol mechanisms than the individual cores could provide.

Each memory controller is based on the GDDR5 specification, and supports two channels per memory controller. At up
to 5.5 GT/s transfer speed, this provides a theoretical aggregate bandwidth of 352 GB/s (gigabytes per second) directly
connected to the Intel® Xeon Phi™ coprocessor.

At a high level, Intel® Xeon Phi™ coprocessor silicon is consists of up to 61 dual-issue in-order cores, where each core
includes:

 512 bit wide vector processor unit (VPU)

 The Core Ring Interface (CRI)

 Interfaces to the Core and the Ring Interconnect

 The L2 Cache (including the tag, state, data and LRU arrays) and the L2 pipeline and associated arbitration logic

 The Tag Directory (TD) which is a portion of the distributed duplicate tag directory infrastructure

 Asynchronous Processor Interrupt Controller (APIC) which receives interrupts (IPIs, or externally generated) and
must redirect the core to respond in a timely manner.
 Memory controllers (GBOX), which access external memory devices (local physical memory on the coprocessor

card) to read and write data. Each memory controller has 2 channel controllers, which together can operate
two 32-bit memory channels.

 A Gen2 PCI Express* client logic (SBOX), which is the system interface to the host CPU or PCI Express* switch,
supporting x8 and x16 configurations.

 The Ring Interconnect connecting all of the aforementioned components together on the chip.

 Page 13

Sbox
(PCIe)

Core

VPU

CRI

L2

Core

VPU

CRI

L2

Core

VPU

CRI

L2

Core

VPU

CRI

L2
Ring Interconnect

TD TD TD TD

. . . .

Dbox
(Display
Engine)

.

Gbox
(Mem

Ctl)

R

I

N

G

C

O

N

N

E

C

T

O

R

R

I

N

G

C

O

N

N

E

C

T

O

R

Gen2 PCIe

Debug

2x32 Mem Ch. .

Core

VPU

CRI

L2

Core

VPU

CRI

L2

Core

VPU

CRI

L2

Core

VPU

CRI

L2
Ring Interconnect

TD TD TD TD

. . . .Gbox
(Mem

Ctl)

2x32 Mem Ch. .

Core

VPU

CRI

L2

Core

VPU

CRI

L2

Core

VPU

CRI

L2

Core

VPU

CRI

L2

TD TD

Ring Interconnect

TD TD

. . . .Gbox
(Mem

Ctl)

2x32 Mem Ch. .

Ring Interconnect

.

.

.

Figure 2-1. Basic building blocks of the Intel® Xeon Phi™ Coprocessor

 Page 14

Table 2-1 gives a high-level description of each component.

 Page 15

Table 2-1. Description of Coprocessor Components

Name Description

Core The processor core. It fetches and decodes instructions from four hardware thread
execution contexts. It supports a 32-bit and 64-bit execution environment similar to
those found in the Intel64® Intel® Architecture Software Developer’s Manual, along
with the Intel Initial Many Core Instructions. . It contains a 32KB, 8-Way set associative
L1 Icache and Dcache, and interfaces with the CRI/L2 block to request access to
memory. The core can execute 2 instructions per clock cycle, one on the U-pipe, and
one on the V-pipe. The V-pipe cannot execute all instruction types, and simultaneous
execution is governed by pairing rules. The core does not support Intel® Streaming
SIMD Extensions (Intel® SSE) or MMX™ instruction execution.

VPU The Vector Processor Unit includes the EMU (extended math unit) and executes 16
single-precision floating point, 16 32bit integer operations per clock cycle, or 8 double-
precision floating-point operations per cycle. Each operation can be a floating-point
multiply-add, giving 32 single precision floating-point operations per cycle. The VPU
contains the vector register file (32 registers per thread context), and can read one of
its operands directly from memory, including data format conversion on the fly.
Broadcast and swizzle instructions are also available. The EMU can perform base-2
exponential, base-2 logarithm, reciprocal, and reciprocal square root of single
precision floating-point values.

L2/CRI The Core-Ring Interface hosts the 512KB, 8-way, L2 cache and connects each core to
an Intel® Xeon Phi™ coprocessor Ring Stop. Primarily, it comprises the core-private L2
cache itself plus all of the off-core transaction tracking queues and transaction / data
routing logic. Two other major blocks also live in the CRI: the R-Unit (APIC) and the Tag
Directory (TD).

TD Distributed duplicate tag directory for cross-snooping L2 caches in all cores. The CPU
L2 caches are kept fully coherent with each other by the TDs, which are referenced
after an L2 cache miss. A TD tag contains the address, state, and an ID for the owner
(one of the L2 caches) of the cache line. The TD that is referenced is not necessarily the
one co-located with the core that generated the miss, but is based upon address (each
TD gets an equal portion of the address space). A request is sent from the core that
suffered the memory miss to the correct TD via the ring interconnect.

GBOX The Intel® Xeon Phi™ coprocessor memory controller comprises three main units: the
FBOX (interface to the ring interconnect), the MBOX (request scheduler) and the PBOX
(physical layer that interfaces with the GDDR devices). The MBOX comprises two CMCs
(or Channel Memory Controllers) that are completely independent from each other.
The MBOX provides the connection between agents in the system and the DRAM I/O
block. It is connected to the PBOX and to the FBOX. Each CMC operates independently
from the other CMCs in the system.

SBOX PCI Express* client logic: DMA engine, limited power management capabilities

Ring Ring Interconnect, including component interfaces, ring stops, ring turns, addressing,
and flow control. Intel® Xeon Phi™ coprocessor has 2 each of these rings – one
travelling each direction. There is no queuing on the ring or in the ring turns; once a
message is on the ring it will continue deterministically to its destination. In some
cases, the destination does not have room to accept the message and may leave it on
the ring and pick it up the next time it goes by. This is known as bouncing.

 Page 16

Name Description

PBOX The PBOX is the analog interface component of the GBOX that communicates with the
GDDR memory device. Besides the analog blocks, the PBOX contains the input/output
FIFO buffers, part of the training state machines and mode registers to trim the analog
interface. The analog interface consists of the actual I/O pads for DQs, Address and
Command and the clocking structure. The PBOX also includes the GPLL which defines
the clock domain for each PBOX and the respective MBOX/CBOX.

PMU Performance Monitoring Unit. This performance monitoring feature allows data to be
collected from all units in the architecture, utilizing a P6-style programming interface
to configure and access performance counters. Implements an Intel® Xeon Phi™
coprocessor SPFLT which allows user-level code to filter the core events that its
thread generates. Does not implement some advanced features found in mainline IA
cores (e.g. precise event-based sampling, etc.).

Clock The clock generation on Intel® Xeon Phi™ coprocessor supplies clocks to each of the
four main clock domains. The core domain supports from 600 MHz to the part's
maximum frequency in steps of 25 MHz Ratio changes in the core happen seamlessly
and can be controlled through both software and internal hardware (using information
from the thermal and current sensors on the card.) The GDDR supports frequencies
that enable between 2.8 GT/s and the part's maximum frequency with a minimum step
size of 50 MT/s. Intel® Xeon Phi™ coprocessors support frequency changes without
requiring a reset. PCI Express* clock modes support both Gen1 and Gen2 operation.
The external clock buffer has been incorporated into the Intel® Xeon Phi™ coprocessor
die, and the clocks are sourced from two 100 MHz PCI Express* reference clocks.

2.1.1 Core

Each in-order execution core provides a 64 bit execution environment similar to that found in the Intel64® Intel®
Architecture Software Developer’s Guide, in addition to introducing support for Intel Initial Many Core Instructions.
There is no support for MMX™ instructions, Intel Advanced Vector Extensions (Intel® AVX), or any of the Intel®
Streaming SIMD Extensions (Intel® SSE). A full list of the instructions supported by the Intel® Xeon Phi™ coprocessor can
be found in the following document (Intel® Xeon Phi™ Coprocessor Instruction Set Architecture Reference Manual
(Reference Number: 327364)). New vector instructions provided by the Intel® Xeon Phi™ Coprocessor Instruction Set
utilize a dedicated 512-bit wide vector floating-point unit (VPU) that is provided for each of the cores.

Each core is connected to a Ring Interconnect via the Core Ring Interface (CRI), which is comprised of the L2 cache
control and the Tag Directory (TD). The Tag Directory contains the tags for a portion of the overall L2 cache. The Core
and L2 Slices are interconnected on a ring based interconnect along with additional ring agents on the die. Each agent on
the ring, whether a core/L2 Slice, memory controller, or the system (SBOX), implements a ring stop that enables
requests and responses to be sent on the ring bus.

The core can execute 2 instructions per clock cycle, one on the U-pipe and one on the V-pipe. The V-pipe cannot execute
all instruction types, and simultaneous execution is governed by pairing rules. Vector instructions can only be executed
on the U-pipe.

 Page 17

Figure 2-2: Core Pipeline Components

 Page 18

Figure 2-3: Intel® Xeon Phi™ Coprocessor Core Architecture

 Most integer and mask instructions have a 1-clock latency, while most vector instructions have 4-clock latency with a 1
clock throughput. Dependent store- to-load latency is 4 clocks for simple vector operations. “Shuffles” and “Swizzles”
increase this latency. The store-to-load penalty for the L1 is approximately 12 clocks. Kunit (data cache) bounces cause 2
dead clocks (bank conflicts, U-pipe/V-pipe conflicts with higher-priority replacements, invalidations). Prefix decodes are
available with 0-cycle “fast”: 62, c4, c5, REX, 0f, and a 2-cycle “slow”: operand size 66, address size 67, lock, segment,
REP.

2.1.2 Instruction Decoder

One of the changes made to simplify the core was to modify the instruction decoder to be a two-cycle unit. While fully
pipelined, the result of this change is that the core cannot issue instructions from the same hardware context in back-to-
back cycles. That is, if in cycle N the core issued instructions from context 1, then in cycle N +1 the core can issue
instructions from any context except context 1. This allows for a significant increase in the maximum core frequency,
resulting in a net performance gain even for single-threaded SPEC* benchmarks.

For maximum chip utilization, at least two hardware contexts or threads must be run on each core. Since the scheduler
cannot issue instructions in back-to-back cycles from the same hardware context, running one thread on a core will
result in, at best, 50% utilization of the core potential.

 Page 19

2.1.3 Cache Organization and Hierarchy

The Level One (L1) cache accommodates higher working set requirements for four hardware contexts per core. It has a
32 KB L1 instruction cache and 32 KB L1 data cache. Associativity was increased to 8-way, with a 64 byte cache line. The
bank width is 8 bytes. Data return can now be out-of-order. The L1 cache has a load-to-use latency of 1 cycle -- an
integer value loaded from the cache can be used in the next clock by an integer instruction. Note, however, that vector
instructions experience different latencies than integer instructions. The L1 cache has an address generation interlock
with at least a 3-clock cycle latency. A GPR register must be produced three or more clocks prior to being used as a base
or index register in an address computation. The register set-up time for base and index has the same 3-clock cycle
latency.

Another new feature is the 512 KB unified Level Two (L2) cache unit. The L2 organization comprises 64 bytes per way
with 8-way associativity, 1024 sets, 2 banks, 32GB (35 bits) of cacheable address range and a raw latency of 11 clocks.
The expected idle access time is approximately 80 cycles. The L2 cache has a streaming hardware prefetcher that can
selectively prefetch code, read, and RFO (Read-For-Ownership) cache lines into the L2 cache. There are 16 streams that
can bring in up to a 4-KB page of data. Once a stream direction is detected, the prefetcher can issue up to 4 multiple
prefetch requests. The L2 in Intel® Xeon Phi™ coprocessor supports ECC, and power states such as the core C1 (shuts off
clocks to the core and the VPU), C6 (shuts off clocks and power to the core and the VPU), and the package C3 states. The
replacement algorithm for both the L1 and L2 caches is based on a pseudo-LRU implementation.

The L2 cache is part of the Core-Ring Interface block. This block also houses the tag directory (TD) and the Ring Stop (RS),
which connects to the interprocessor core network. Within these sub-blocks is the Transaction Protocol Engine which is
an interface to the RS and is equivalent to a front side bus unit. The RS handles all traffic coming on and off the ring. The
TDs, which are physically distributed, filter and forward requests to appropriate agents on the ring. They are also
responsible for initiating communications with the GDDR5 memory via the on-die memory controllers.

In the in-order Intel® Pentium® processor design, any miss to the cache hierarchy would be a core-stalling event such
that the program would not continue executing until the missing data were fetched and ready for processing. In the
Intel® Xeon Phi™ coprocessor cores, a miss in the L1 or L2 cache does not stall the entire core. Misses to the cache will
not stall the requesting hardware context of a core unless it is a load miss. Upon encountering a load miss, the hardware
context with the instruction triggering the miss will be suspended until the data are brought into the cache for
processing. This allows the other hardware contexts in the core to continue execution. Both the L1 and L2 caches can
also support up to about 38 outstanding requests per core (combined read and write). The system agent (containing the
PCI Express* agent and the DMA controller) can also generate 128 outstanding requests (read and write) for a total of
38*(number of cores) + 128. This allows software to prefetch data aggressively and avoids triggering a dependent stall
condition in the cache. When all possible access routes to the cache are in use, new requests may cause a core stall until
a slot becomes available.

Both the L1 and L2 caches use the standard MESI protocol for maintaining the shared state among cores. The normal
MESI state diagram is shown in Figure 2-4 and the cache states are listed in Table 2-2. L2 Cache States.

 Page 20

Figure 2-4: MESI Protocol

Table 2-2. L2 Cache States

L2 Cache State State Definition

M Modified. Cacheline is updated relative to memory (GDDR). Only
one core may have a given line in M-state at a time.

E Exclusive. Cacheline is consistent with memory. Only one core may
have a given line in E-state at a time.

S Shared. Cacheline is shared and consistent with other cores, but may
not be consistent with memory. Multiple cores may have a given
line in S-state at the same time.

I Invalid. Cacheline is not present in this core’s L2 or L1.

To address potential performance limitations resulting from the lack of an O (Owner) state found in the MOESI protocol,
the Intel® Xeon Phi™ coprocessor coherence system has an ownership tag directory (TD) similar to that implemented in
many multiprocessor systems. The tag directory implements the GOLS3 protocol. By supplementing the individual core
MESI protocols with the TD’s GOLS protocol, it becomes possible to emulate the missing O-state and to achieve the
benefits of the full MOESI protocol without the cost of redesigning the local cache blocks. The TD is also useful for
controlling other behaviors in the Intel® Xeon Phi™ coprocessor design and is used for more than this emulation
behavior. The modified coherence diagrams for the core MESI protocol and the tag directory GOLS protocol are shown
in Figure 2-5.

 Page 21

Figure 2-5 Globally Owned Locally Shared (GOLS) Diagram

Table 2-3. Tag Directory States

Tag Directory State State Definition

GOLS Globally Owned, Locally Shared. Cacheline is present in
one or more cores, but is not consistent with memory.

GS Globally Shared. Cacheline is present in one or more
cores and consistent with memory.

GE/GM Globally Exclusive/Modified. Cacheline is owned by one
and only one core and may or may not be consistent
with memory. The Tag Directory does not know
whether the core has actually modified the line.

GI Globally Invalid. Cacheline is not present in any core.

 Page 22

The tag directory is not centralized but is broken up into 64 distributed tag directories (DTDs). Each DTD is responsible
for maintaining the global coherence state in the chip for its assigned cache lines. The basic L1 and L2 cache parameters
are summarized in Table 2-4. Two unusual fields in this table are the Duty Cycle and Ports designations, which are
specific only to the Intel® Xeon Phi™ coprocessor design. The L1 cache can be accessed each clock, whereas the L2 can
only be accessed every other clock. Additionally, on any given clock software can either read or write the L1 or L2, but it
cannot read and write in the same clock. This design artifact has implications when software is trying to access a cache
while evictions are taking place.

Table 2-4. Cache Hierarchy

Parameter L1 L2

Coherence MESI MESI

Size 32 KB + 32 KB 512 KB

Associativity 8-way 8-way

Line Size 64 bytes 64 bytes

Banks 8 8

Access Time 1 cycle 11 cycles

Policy pseudo LRU pseudo LRU

Duty Cycle 1 per clock 1 per clock

Ports Read or Write Read or Write

The L2 cache organization per core is inclusive of the L1 data and instruction caches. How all cores work together to
make a large, shared, L2 global cache (up to 31 MB) may not be clear at first glance. Since each core contributes 512 KB
of L2 to the total shared cache storage, it may appear as though a maximum of 31 MB of common L2 cache is available.
However, if two or more cores are sharing data, the shared data is replicated among the individual cores’ various L2
caches. That is, if no cores share any data or code, then the effective total L2 size of the chip is 31 MB. Whereas, if every
core shares exactly the same code and data in perfect synchronization, then the effective total L2 size of the chip is only
512 KB. The actual size of the workload-perceived L2 storage is a function of the degree of code and data sharing among
cores and thread.

A simplified way to view the many cores in Intel® Xeon Phi™ coprocessor is as a chip-level symmetric multiprocessor
(SMP). Each core acts as a stand-alone core with 512 KB of total cache space, and up to 62 such cores share a high-speed
interconnect on-die. While not particularly accurate compared to a real SMP implementation, this simple mental model
is useful when considering the question of how much total L2 capacity may be used by a given workload on the Intel®
Xeon Phi™ coprocessor card.

2.1.4 Page Tables

The Intel® Xeon Phi™ coprocessor supports 32-bit physical addresses in 32-bit mode, 36-bit physical address extension
(PAE) in 32-bit mode, and 40-bit physical address in 64-bit mode.

It supports 4-KB and 2-MB page sizes. It also supports the Execute Disable (NX) bit. But there is no support for the Global
Page bit, unlike other Intel® Architecture microprocessors. On a TLB miss, a four-level page table walk is performed as
usual, and the INVLPG instruction works as expected. The advantage of this approach is that there are no restrictions for
mixing the page sizes (4 KB, 2MB) within a single address block (2MB). However, undefined behavior will occur if the 16
underlying 4-KB page-table entries are not consistent.

Each L1 data TLB (dTLB) has 64 entries for 4 KB pages and 8 entries for 2MB pages. Each core also has one instruction
TLB (iTLB), which only has 32 entries for 4 KB pages. No support for larger page sizes is present in the instruction TLB. For
L2, the 4-way dTLB has 64 entries, usable as second-level TLB for 2M pages or as a page directory entry (PDE) cache for

 Page 23

4K. TLBs can share entries among threads that have the same values for the following registers: CR3, CR0.PG, CR4.PAE,
CR4.PSE, EFER.LMA.

Table 2-5. L1 and L2 Caches Characteristics

 Page Size Entries Associativity Maps

L1 Data TLB
4K 64 4-way 256K

2M 8 4-way 16M

L1 Instruction TLB 4K 32 4-way 128K

L2 TLB 4K, 2M 64 4-way 128M

The Intel® Xeon Phi™ coprocessor core implements two types of memory: uncacheable (UC) and write-back (WB). The
other three memory forms [write-through (WT), write-combining (WC), and write-protect (WP)] are mapped internally
to microcontroller behavior. No other memory type is legal or supported.

2.1.5 Hardware Threads and Multithreading

Figure 2-6 presents a high-level view of the major impacts for hardware multithreading support, such as architectural,
pipeline, and cache interactions. This includes replicating complete architectural state 4 times: the GPRs, ST0-7, segment
registers, CR, DR, EFLAGS, and EIP. Certain micro-architectural states are also replicated four times like the prefetch
buffers, the instruction pointers, the segment descriptors, and the exception logic. “Thread specific” changes include
adding thread ID bits to shared structures (iTLB, dTLB, BTB), converting memory stall to thread-specific flush, and the
introduction of thread wakeup/sleep mechanisms through microcode and hardware support. Finally, the Intel® Xeon
Phi™ coprocessor implements a “smart” round-robin multithreading.

Figure 2-6. Multithreading Architectural Support in the Intel® Xeon Phi™ Coprocessor

Each of four hardware threads shown above in the grey shaded region has a “ready to run” buffer consisting of two
instruction bundles. Since each core is capable of issuing two instructions per clock cycle, each bundle represents two

 Page 24

instructions. If the executing thread has a control transfer to a target that is not contained in this buffer, it will trigger a
miss to the instruction cache, which flushes the context buffer and loads the appropriate target instructions. If the
instruction cache does not have the control transfer point, a core stall will be initiated, which may result in performance
penalties. In general, whichever hardware context issues instructions in a given clock cycle has priority for fetching the
next instruction(s) from the instruction cache. Another significant function is the picker function (PF) that chooses the
next hardware context to execute. The PF behaves in a round-robin manner, issuing instructions during any one clock
cycle from the same hardware context only. In cycle N, if the PF issues instruction(s) from Context 3, then in cycle N + 1
the PF will try to issue instructions from Context 0, Context 1, or Context 2 – in that order. As previously noted it is not
possible to issue instructions from the same context (Context 3 in this example) in back-to-back cycles.

2.1.6 Faults and Breakpoints

The Intel® Xeon Phi™ coprocessor supports the fault types shown in Table 2-6 below. For complete details of fault
behavior, please consult the (Intel® 64 and IA-32 Architectures Software Developer Manuals).

Breakpoint support required the widening of DR0-DR3 for Intel® 64 instruction compatibility and is now for 1, 2, 4, or 8
bytes. The length was not extended to support 16, 32, or 64 bytes. Also, breakpoints in the Intel® Xeon Phi™ coprocessor
instructions occur regardless of any conditional execution status indicated by mask registers.

Table 2-6. Supported and Unsupported Faults on Intel® Xeon Phi™ Coprocessor

Fault Type Supported Comments

#PF Yes Page Fault

#SS Yes For non-canonical and referencing SS segment

#GP Yes Address is not canonical or not aligned to operand size

#UD Yes
If CR0.EM[2] = 1, or LOCK or REX prefix used; also triggered
on IN or OUT instructions

#XF No No unmasked exceptions in SIMD

#AC No GP fault always takes priority

#NM No CR0.TS[3] = 1

2.1.7 Performance Monitoring Unit and Events Monitor

The Intel® Xeon Phi™ coprocessor includes a performance monitoring unit (abbreviated as PMU) like the original Intel®
Pentium® processor core. Most of the 42 event types from the original Intel® Pentium® processor exist, although the
PMU interface has been updated to reflect more recent programming interfaces. Particular Intel® Xeon Phi™
coprocessor-centric events have been added to measure memory controller events, vector processing unit utilization
and statistics, local and remote cache read/write statistics, and more.

The Intel® Xeon Phi™ coprocessor comes with support for performance monitoring at the individual thread level. Each
thread has two performance counters and two event select registers. The events supported for performance monitoring
are a combination of the legacy Intel® Pentium® processor events and new Intel® Xeon Phi™ coprocessor-centric events.

The Intel® Xeon Phi™ coprocessor switched to the Intel® Pentium® Pro processor style of PMU interface, which allows
user-space (ring three) applications to directly interface with and use the PMU features via specialized instructions such
as RDPMC4. In this model, Ring 0 still controls the PMU but Ring 3 is capable of interacting with exposed features for
optimization.

Table 2-7 lists the instructions used by Ring 0 and Ring 3 code used to control and query the core PMU.

 Page 25

Table 2-7: Core PMU Instructions

Instruction
Name

Description
Privilege

Mode
(CPL)

Thread-
Specific

Input Output

RDMSR Read model specific register.
Used by Ring 0 code to read
any core PMU register.

Ring 0 Yes ECX: Address of MSR EDX:EAX = 64-bit MSR
value

WRMSR Write model specific register.
Used by Ring 0 code to write
to any core PMU register.

Ring 0 Yes EDX:EAX = 64-bit
MSR value

ECX: Address of MSR

None

RDTSC Read timestamp counter.
Reads the current timestamp
counter value.

Ring 0-3 No None EDX:EAX = 64-bit
timestamp value

RDPMC Read performance-monitoring
counter. Reads the counts of
any of the performance
monitoring counters, including
the PMU filtered counters.

Ring 0-3 Yes ECX: Counter #

0x0: IA32_PerfCntr0
0x1: IA32_PerfCntr1

EDX:EAX = Zero-extended
40-bit counter value

SPFLT Set user preference flag to
indicate counter
enable/disable.

Ring 0-3 Yes Any GPR[0]:
0x0: Clear (disable)
0x1: Set (enable)

Set/clear USER_PREF bit in
PERF_SPFLT_CONTROL.

The instructions RDMSR, WRMSR, RDTSC, and RDPMC are well-documented in the (Intel® 64 and IA-32 Architectures
Software Developer Manuals). The only Intel® MIC Architecture-specific notes are that RDTSC has been enhanced to
execute in 4-5 clock cycles and that a mechanism has been implemented to synchronize timestamp counters across the
chip.

SPFLT is unique because it allows software threads fine-grained control in enabling/disabling the performance counters.
The anticipated usage model for this instruction is for instrumented code to enable/disable counters around desired
portions of code. Note that software can only specify its preference for enabling/disabling counters and does not have
control over which specific counters are affected (this behavior supports virtualization). The SPFLT instruction can only
be executed while the processor is in Intel® 64-bit mode.

Table 2-8 lists the model-specific registers used to program the operation of the core PMU.

Table 2-8. Core PMU Control Registers

Register
Address Name Description Threaded? Width

Hex Dec

0x10 16 MSR_TIME_STAMP_COUNTER Timestamp Counter No 64

0x20 32 MSR _PerfCntr0 Events Counted, core PMU counter 0 Yes 40

0x21 33 MSR _PerfCntr1 Events Counted, core PMU counter 1 Yes 40

0x28 40 MSR _PerfEvtSel0
Performance Event Selection and configuration
register for IA32_PerfCntr0.

Yes 32

0x29 41 MSR _PerfEvtSel1
Performance Event Selection and configuration
register for IA32_PerfCntr1.

Yes 32

0x2C 44 MSR_PERF_SPFLT_CONTROL

SPFLT Control Register. This MSR controls the
effect of the SPFLT instruction and whether it will
allow software fine-grained control to
enable/disable IA32_PerfCntrN.

Yes 64

0x2D 45 MSR _PERF_GLOBAL_STATUS

Counter Overflow Status. This read-only MSR
displays the overflow status of all the counters.
Each bit is implemented as a sticky bit, set by a
counter overflow.

Yes 32

 Page 26

Register
Address

Name Description Threaded? Width

0x2E 46 MSR _PERF_GLOBAL_OVF_CTRL

Counter Overflow Control. This write-only MSR
clears the overflow indications in the Counter
Overflow Status register. For each bit that is set,
the corresponding overflow status is cleared.

Yes 32

0x2F 47 MSR _PERF_GLOBAL_CTRL

Master PMU Enable. Global PMU enable /
disable. When these bits are set, the core PMU is
permitted to count events as configured by each of
the Performance Event Selection registers (which
can each be independently enabled or disabled).
When these bits are cleared, performance
monitoring is disabled. The operation of the
Timestamp Counter is not affected by this register.

Yes 32

For a description of the complete set of Intel® Xeon Phi™ coprocessor PMU and EMON registers and its performance
monitoring facilities, please see the document (Intel® Xeon Phi™ Coprocessor Performance Monitoring Units, Document
Number: 327357-001, 2012).

2.1.7.1 Timestamp Counter (TSC)

The RDTSC instruction that is used to access IA32_TIMESTAMP_COUNTER can be enabled for Ring 3 (user code) by
setting CR4[2].

This behavior enables software (including user code) to use IA32_TIMESTAMP_COUNTER as a wall clock timer. The Intel®
Xeon Phi™ coprocessor only supports this behavior in a limited configuration (P1 only) and not across different P-states.
The Intel® Xeon Phi™ coprocessor will increment IA32_TIMESTAMP_COUNTER based on the current core frequency but
the Intel® Xeon Phi™ coprocessor will not scale such MSRs across package C-states.

For Intel® Xeon Phi™ coprocessor performance analysis, the IA32_TIMESTAMP_COUNTER feature always works on P1
and standard behavior is expected so that any new or pre-existing code using RDTSC will obtain consistent results.
However, P-states and package C-states must be disabled during fine-grained performance analysis.

2.1.8 System Interface

The System Interface consists of two major units: the Intel® Xeon Phi™ coprocessor System Interface and the
Transaction Control Unit (TCU). The SI contains all of the PCI Express* logic, which includes the PCI Express* protocol
engine, SPI for flash and coprocessor OS loading, I2C for fan control, and the APIC logic. The TCU bridges the coprocessor
SI to the Intel® Xeon Phi™ coprocessor internal ring, and contains the hardware support for DMA and buffering with
transaction control flow. This block includes the DMA controllers, the encryption/decryption engine, MMIO registers,
and various flow-control queuing instructions that allow internal interface to the ring transaction protocol engine.

2.1.8.1 PCI Express

The Intel® Xeon Phi™ coprocessor card complies with the Gen2x16 PCI Express* and supports 64 to 256 byte packet. PCI
Express* peer-to-peer writes and reads are also supported.

 Page 27

The following registers show the Intel® Xeon Phi™ coprocessor PCI Express configuration setting:

 PCIE_PCIE_CAPABILITY Register (SBOX MMIO offset 0x584C)

 Bits Type Reset Description

23:20

RO 0x0 Device/Port Type

 other bits unmodified

 PCIE_BAR_ENABLE Register (SBOX MMIO offset 0x5CD4)

 Bits Type Reset Description

 0 RW 1 MEMBAR0 (Aperture) Enable

 1 RW 1 MEMBAR1 (MMIO Registers) Enable

 2 RW 0 I/O BAR Enable

 3 RW 0 EXPROM BAR Enable

 31:4 Rsvd 0

2.1.8.2 Memory Controller

There are 8 on-die GDDR5-based memory controllers in the Intel® Xeon Phi™ coprocessor. Each can operate two 32-bit
channels for a total of 16 memory channels that are capable of delivering up to 5.5 GT/s per channel. The memory
controllers directly interface to the ring interconnect at full speed, receiving complete physical addresses with each
request. It is responsible for reading data from and writing data to GDDR memory, translating the memory read and
write requests into GDDR commands. All the requests coming from the ring interface are scheduled by taking into
account the timing restrictions of the GDDR memory and its physical organization to maximize the effective bandwidth
that can be obtained from the GDDR memory. The memory controller guarantees a bounded latency for special requests
arriving from the SBOX. The bandwidth guaranteed to the SBOX is 2 GB/s. The MBOX communicates to the FBOX (the
ring interface) and the PBOX (the physical interface to the GDDR). The MBOX is also responsible for issuing all the refresh
commands to the GDDR.

The GDDR5 interface supports an optional software-based ECC data integrity feature.

2.1.8.2.1 DMA Capabilities

Direct Memory Access (DMA) is a common hardware function within a computer system that is used to relieve the CPU
from the burden of copying large blocks of data. To move a block of data, the CPU constructs and fills a buffer, if one
doesn’t already exist, and then writes a descriptor into the DMA Channel’s Descriptor Ring. A descriptor describes details
such as the source and target memory addresses and the length of data in cache lines. The following data transfers are
supported:

 Intel® Xeon Phi™ coprocessor to Intel® Xeon Phi™ coprocessor GDDR5 space (aperture)

 Intel® Xeon Phi™ coprocessor GDDR5 to host System Memory

 Host System Memory to Intel® Xeon Phi™ coprocessor GDDR5 (aperture or non-aperture)

 Intra-GDDR5 Block Transfers within Intel® Xeon Phi™ coprocessor

A DMA Descriptor Ring is programmed by either the coprocessor OS or the Host Driver. Up to eight Descriptor Rings can
be opened by software; each being referred to as a DMA Channel. The coprocessor OS or Host Driver can open a DMA
Channel in either system or GDDR5 memory respectively; that is, all descriptor rings owned by the host driver must exist
in system memory while rings owned by the coprocessor OS must exist in GDDR5 memory. A programmable arbitration

 Page 28

scheme resolves access conflicts when multiple DMA Channels vie for system or Intel® Xeon Phi™ coprocessor
resources.

The Intel® Xeon Phi™ coprocessor supports host-initiated or device-initiated PCI Express* Gen2/Gen1 memory, I/O, and
configuration transactions. The Intel® Xeon Phi™ coprocessor device-initiated memory transactions can be generated
either from execution cores directly or by using the DMA engine in the SBOX.

In summary, the DMA controller has the following capabilities:

 8 DMA channels operating simultaneously, each with its own independent hardware ring buffer that can live in
either local or system memory

 Supports transfers in either direction (host / Intel® Xeon Phi™ coprocessor devices)

 Supports transfers initiated by either side

 Always transfers using physical addresses

 Interrupt generation upon completion

 64-byte granularity for alignment and size

 Writing completion tags to either local or system memory

The DMA block operates at the core clock frequency. There are 8 independent channels which can move data:

 From GDDR5 Memory to System Memory

 From System Memory to GDDR5 Memory

 From GDDR5 Memory to GDDR5 Memory

The Intel® Xeon Phi™ coprocessor not only supports 64-bytes (1 cache line) per PCI Express* transaction, but up to a
maximum of 256 bytes for each DMA-initiated transaction. This requires that the Root-Complex support 256 byte
transactions. Programming the MAX_PAYLOAD_SIZE in the PCI_COMMAND_STATUS register sets the actual size of each
transaction.

Note: Quiescing of DMA channels is not supported in the Xeon Phi DMA engine.

2.1.8.2.1.1 DMA Channel Arbitration

There is no notion of priority between descriptors within a DMA Channel; descriptors are fetched, and operated on, in a
sequential order. Priority between descriptors is resolved by opening multiple DMA channels and performing arbitration
between DMA channels in a round-robin fashion.

2.1.8.2.1.2 Descriptor Ring Overview

A Descriptor Ring is a circular buffer as shown in Figure 2-7. The length of a Descriptor Ring can be up to 128K entries,
and must align to the nearest cache line boundary. Software manages the ring by advancing a Head Pointer as it fills the
ring with descriptors. When the descriptors have been copied, it writes this updated Header Pointer into the DMA Head
Pointer Register (DHPR0 – DHPR7) for the appropriate DMA Channel. Each DMA Channel contains a Tail Pointer that
advances as descriptors are fetched into a channel’s Local Descriptor Queue. The Descriptor Queue is 64 entries, and can
be thought of as a sliding window over the Descriptor Ring. The Tail Pointer is periodically written back to memory so
that software can track its progress. Upon initialization, software sets both the Head Pointer and Tail Pointer to point to
the base of the Descriptor Ring. From the DMA Channel perspective, an empty state is approached when the Tail Pointer
approaches the Head Pointer. From a software perspective, a full condition is approached when the Head Pointer
approaches the Tail Pointer.

 The Head and Tail Pointers are 40-bit Intel® Xeon Phi™ coprocessor addresses. If the high-order bit is a 1, the
descriptors reside in system memory; otherwise they reside in the Intel® Xeon Phi™ coprocessor memory. Descriptors
come in five different formats and are 16 bytes in length. There are no alignment restrictions when writing descriptors

 Page 29

into the ring. However, performance is optimized when descriptors start and end on cache line boundaries because
memory accesses are performed on cache line granularities, four descriptors at a time.

Descriptor Ring

Head Pointer

Tail Pointer

Descriptor Queue

64

Figure 2-7. DMA Channel Descriptor Ring plus Local Descriptor Queue

2.1.8.2.1.3 Descriptor Ring Setup

Figure 2-8 shows how the Descriptor Ring Attributes Register or DRAR sets ups the Descriptor Ring in each DMA channel.
Because a descriptor ring can vary in size, the Base Address (BA) represents a 36-bit index. The Tail Pointer Index is
concatenated to the BA field to form up a Tail Pointer to the GDDR space. If the descriptor ring resides in system
memory, BA[35] and BA[34] will be truncated to correspond with the 16GB system-memory page as shown in Figure 2-9.
The Sys bit must be set along with a valid system-memory page number.

 Page 30

35

Base Address (BA)

3663

Size (SZ)

52

RESD

53

DRAR – Descriptor Ring Attributes Register

Descriptor Ring

Head PointerTail Pointer

0

0 0 0 0

4 3 2 1

Page#

5758

0 0

56

0 0

3738
Begin on CL

boundary

Size in increments of 4

descriptors forces integer

multiples of CLs

Figure 2-8. Descriptor Ring Attributes

KNC

38 039

64GB Size0

3536

Page#

38 039

16GB Size1

3334

Figure 2-9. Intel® Xeon Phi™ Coprocessor Address Format

Because the size of the Descriptor Ring can vary, the Base Address must provide adequate space for concatenation of
the Tail Pointer Index by zeroing out all the low-order bits that correspond to the size as shown in Figure 2-9. Table 2-9
gives some examples of the base address ranges based on the size of the descriptor ring.

Because the Head Pointer Index is updated by software, checks are made to determine if the index falls within the range

specified by the size. An error will be generated if the range is exceeded.

 Page 31

Table 2-9. Examples of Base Address Ranges Based on Descriptor Ring Size

Size Base Address Range Tail Pointer Range

0x0004 (4) 0x0_0000_0000 : 0xF_FFFF_FFFC 0x0_0000 : 0x0003

0x0008 (8) 0x0_0000_0000 : 0xF_FFFF_FFF8 0x0_0000 : 0x0007

0x000C (12) 0x0_0000_0000 : 0xF_FFFF_FFF0 0x0_0000 : 0x000B

0x0010 (16) 0x0_0000_0000 : 0xF_FFFF_FFF0 0x0_0000 : 0x000F

0x0018 (24) 0x0_0000_0000 : 0xF_FFFF_FFE0 0x0_0000 : 0x0017

0x0100 (256) 0x0_0000_0000 : 0xF_FFFF_FF00 0x0_0000 : 0x00FF

0x0400 (1024) 0x0_0000_0000 : 0xF_FFFF_FC00 0x0_0000 : 0x03FF

0x1000 (4096) 0x0_0000_0000 : 0xF_FFFF_F000 0x0_0000 : 0x0FFF

35

Base Address (BA)

0

0 0 0 0

4 3 2 1

0 0

56

All 0s

nn+1

Size

Figure 2-10. Base Address Width Variations

Figure 2-11 shows the Head and Tail Pointer index registers used to access the descriptor ring. Both pointers are indexes
into the descriptor ring relative to the base, not to Intel® Xeon Phi™ coprocessor addresses. Both indexes are on
descriptor boundaries and are the same width as the Size field in the DRAR. For the Tail Pointer Address, the DMA uses
the TPI along with the Sys bit, Page, and Base Address in the DRAR.

031

Head Pointer Index (HPI)RESD

1617

031

Tail Pointer Index (TPI)RESD

1617

Figure 2-11 Head and Tail Pointer Index Registers

2.1.8.2.2 Interrupt Handling

There are three different types of interrupt flows that are supported in the Intel® Xeon Phi™ coprocessor:
Local Interrupts – These are the interrupts that are destined for one (or more) of the Intel® Xeon Phi™ coprocessor cores
located on the originating device. They appear in the form of APIC messages on the APIC serial bus.
Remote Interrupts – These are the interrupts which are destined for one (or more) of the Intel® Xeon Phi™ coprocessor
cores in other Intel® Xeon Phi™ coprocessor devices. They appear as MMIO accesses on the PEG port.
System Interrupts – These are the interrupts which are destined for the host processor(s). They appear as INTx/MSI/MSI-
X messages on the PEG port, depending upon the PCI configuration settings.

 Page 32

2.1.8.2.3 Intel® Xeon Phi™ Coprocessor Memory Space

Table 2-10 lists the starting addresses assigned to specific functions.

Table 2-10. Coprocessor Memory Map

Function Starting Address Size (Bytes) Comment
GDDR5 Memory 00_0000_0000 Variable

System Memory Variable Addresses translated through SMPT

Flash Memory 00_FFF8_5000 364K
Actual size of flash varies, Some parts are not

accessible through the normal memory path

MMIO Registers 00_007D_0000 64K Accessibility from the host is limited

Boot ROM 00_FFFF_0000 64K
New for Intel® Xeon Phi™ coprocessor. Overlays

FBOOT0 image in flash

Fuse Block 00_FFF8_4000 4K New for Intel® Xeon Phi™ coprocessor memory space

2.1.8.2.3.1 Host-Visible Intel® Xeon Phi™ Coprocessor Memory Space

After Reset, all GDDR5 memory sits inside “stolen memory” (that is, memory not accessible by the Host). Stolen memory
(CP_MEM_BASE/TOP) has precedence over the PCI Express* aperture. FBOOT1 code will typically shrink stolen memory
or remove it. The aperture is programmed by the host or the coprocessor OS to create a flat memory space.

2.1.8.2.3.2 Intel® Xeon Phi™ Coprocessor Boot ROM

The Intel® Xeon Phi™ coprocessor software boot process is summarized below:

1. After Reset: Boot-Strap Processor (BSP) executes code directly from the 1st-Stage Boot-Loader Image (FBOOT0).
2. FBOOT0 authenticates 2nd-Stage Boot-Loader (FBOOT1) and jumps to FBOOT1.
3. FBOOT1 sets up/trains GDDR5 and basic memory map.
4. FBOOT1 tells host to upload coprocessor OS image to GDDR5.
5. FBOOT1 authenticates coprocessor OS image. If authentication fails, FBOOT1 locks out specific features.
6. FBOOT1 jumps to coprocessor OS.

2.1.8.2.3.3 SBOX MMIO Register Space

The SBOX contains 666 MMIO (Memory-Mapped I/O) registers (12 K bytes) that are used for configuration, status and
debug of the SBOX and other parts of the rest of Intel® Xeon Phi™ coprocessor. These are sometimes referred to as
CSR’s and are not part of the PCI Express* configuration space. The SBOX MMIO space is located at 08_007D_0000h-
08_007D_FFFFh in the Intel® Xeon Phi™ coprocessor memory space. These MMIO registers are not contiguous, but are
split between various functional blocks within the SBOX. Accessibility is always allowed to the coprocessor OS while
accessibility by the host is limited to a subset for security.

2.1.9 VPU and Vector Architecture

The Intel® Xeon Phi™ coprocessor has a new SIMD 512-bit wide VPU with a corresponding vector instruction set. The
VPU can be used to process 16 single precision or 8 double precision elements. There are 32 vector registers (8 mask
registers with per lane predicated execution). Prime (hint) instructions for scatter/gather are available. Load operation
comes from 2-3 sources to 1 destination. There are new SP transcendental instructions supported in hardware for
exponent, logarithm, reciprocal, and square root operations. The VPUs are mostly IEEE 754 2008 floating-point
compliant with added SP, DP-denorm, and SAE support for IEEE compliance and improved performance on fdiv/sqrt.
Streaming stores (no read for ownership before write) are available with the vmovaps/pd.nr and vmovaps/pd.ngo
instructions.

 Page 33

Section 7 contains more detailed information on the vector architecture.

2.1.10 Intel® Xeon Phi™ Coprocessor Instructions

The Intel® Xeon Phi™ coprocessor instruction set includes new vector instructions that are an extension of the existing
Intel® 64 ISA. However, they do not support the Intel Architecture family of vector architecture models (MMX™
instructions, Intel® Streaming SIMD Extensions, or Intel® Advanced Vector Extensions).

The major features of the Intel® Xeon Phi™ coprocessor vector ISA extensions are:

 A new instruction repertoire specifically tailored to boost the performance of High Performance Computing (HPC)
applications. The instructions provide native support for both float32 and int32 operations while providing a rich
set of conversions for common high performance computing native data types. Additionally, the Intel® Xeon Phi™
coprocessor ISA supports float64 arithmetic and int64 logic operations.

 There are 32 new vector registers. Each is 512 bits wide, capable of packing 16 32-bit elements or 8 64-bit elements
of floating point or integer values. A large and uniform vector register file helps in generating high performance
code and covering longer latencies.

 Ternary instructions with two sources and different destinations. There are also Fused Multiply and Add (FMA)
instructions which are ternary with three sources, one of which is also the destination.

 Intel® Xeon Phi™ coprocessor instructions introduce 8 vector mask registers that allow conditional execution over
the 16 elements in a vector instruction and merged results to the original destination. Masks allow vectorizing
loops that contain conditional statements. Additionally, support is provided for updating the value of the vector
masks with special vector instructions such as vcmpps.

 The vector architecture supports a coherent memory model wherein the new set of instructions operates in the
same memory address space as the standard Intel® 64 instructions. This feature eases the process of developing
vector code.

 Specific gather/scatter instructions manipulate irregular data patterns in memory (by fetching sparse locations of
memory into a dense vector register or vice-versa) thus enabling vectorization of algorithms with complex data
structures.

Consult the (Intel® Xeon Phi™ Coprocessor Instruction Set Architecture Reference Manual (Reference Number: 327364))
for complete details on the Intel® Xeon Phi™ coprocessor instructions.

2.1.11 Multi-Card

Each Intel® Xeon Phi™ coprocessor device is treated as an independent computing environment. The host OS
enumerates all the cards in the system at boot time and launches separate instances of the coprocessor OS and the SCIF
driver. See the SCIF documentation for more details about intercard communication.

 Page 34

2.1.12 Host and Intel® MIC Architecture Physical Memory Map

Figure 2-12. Host and Intel® MIC Architecture Physical Memory Map

The Intel® Xeon Phi™ coprocessor memory space supports 40-bit physical addresses, which translates into 1024 GiB of
addressable memory space that is split into 3 high-level ranges:

 Local address range: 0x00_0000_0000 to 0x0F_FFFF_FFFF (64 GiB)

 Reserved: 0x10_0000_0000 to 0x7F_FFFF_FFFF (448 GiB)

 System (Host) address range 0x80_0000_0000 to 0xFF_FFFF_FFFF (512 GiB)

The Local Address Range 0x00_0000_0000 to 0x0F_FFFF_FFFF (64 GiB) is further divided into 4 equal size ranges:

 0x00_0000_0000 to 0x03_FFFF_FFFF (16 GiB)
 GDDR (Low) Memory
 Local APIC Range (relocatable) 0x00_FEE0_0000 to 0x00_FEE0_0FFF (4 kB)
 Boot Code (Flash) and Fuse (via SBOX) 0x00_FF00_0000 to 0x00_FFFF_FFFF (16 MB)
 0x04_0000_0000 to 0x07_FFFF_FFFF (16 GB)

 GDDR Memory (up to PHY_GDDR_TOP)
 0x08_0000_0000 to 0x0B_FFFF_FFFF (16 GB)

 Memory mapped registers

 DBOX registers 0x08_007C_0000 to 0x08_007C_FFFF (64 kB)

 SBOX registers 0x08_007D_0000 to 0x08_007D_FFFF (64 kB)

 Reserved 0x0C_0000_0000 to 0x0F_FFFF_FFFF (16 GB)

 Page 35

The System address range 0x80_0000_0000 to 0xFF_FFFF_FFFF (512 GB) contains 32 pages of 16 GB each:

 Sys 0: 0x80_0000_0000 to 0x83_FFFF_FFFF (16 GB)

 Sys 1: 0x84_0000_0000 to 0x87_FFFF_FFFF (16 GB)
. . .

 Sys 31: 0xFC_0000_0000 to 0xFF_FFFF_FFFF (16 GB)

These are used to access System Physical Memory addresses and can access up to 512 GiB at any given time. Remote
Intel® Xeon Phi™ coprocessor devices are also accessed through System addresses. All requests over PCI Express* to
Host are generated through this range. A System Memory Page Table (SMPT) expands the 40-bit local address to 64-bit
System address.

Accesses to host memory are snooped by the host if the No-snoop bit in the SMPT register is not set. The SCIF driver
(see Sections 2.2.5.1 and 5.1) does not set this bit so host accesses are always snooped. Host accesses to Intel® Xeon
Phi™ coprocessor memory are snooped if to cacheable memory.

The System (Host) address map of Intel® Xeon Phi™ coprocessor memory is represented by two base address registers:

 MEMBAR0
 Relocatable in 64-bit System Physical Memory Address space
 Prefetchable
 32 GiB (max) down to 256 MiB (min)
 Programmable in Flash
 Offset into Intel® Xeon Phi™ coprocessor Physical Memory Address space
 Programmable in APR_PHY_BASE register
 Default is 0

 MEMBAR1
 Relocatable in 64b System Physical Memory Address space
 Non-prefetchable
 128 KiB
 Covers DBOX0 & SBOX Memory-mapped registers
 DBOX at offset 0x0_0000
 SBOX at offset 0x1_0000

2.1.13 Power Management

Intel® Xeon Phi™ coprocessor power management supports Turbo Mode and other P-states. Turbo mode is an
opportunistic capability that allows the CPU to take advantage of thermal and power delivery headroom to increase the
operating frequency and voltage, depending on the number of active cores. Unlike the multicore family of Intel® Xeon®
processors, there is no hardware-level power control unit (PCU); power management is controlled by the coprocessor
OS. Please see Section 3.1 for more information on the power management scheme.

Below is a short description of the different operating modes and power states. For additional details, see the “Intel®
Xeon Phi™ Coprocessor Datasheet,” Document Number 488073.

 Core C1 State – Core and VPU are clock gated (all 4 threads have halted)

 Core C6 State– Core and VPU are power gated (C1 + time threshold)

 Package C3 State

 All Cores Clock or Power Gated

 The Ring and Uncore are Clock Gated (MCLK gated (auto), VccP reduced (Deep))
 Package C6 State – The VccP is Off (Cores/Ring/Uncore Off)
 Memory States

 M1 – Clock Gating

 Page 36

 M2 – GDDR in Self Refresh

 M3 – M2 + Shut off
 GMClk PLL
 SBOX States– L1 (PCI Express* Link States), SBOX Clock Gating

2.2 Intel® Xeon Phi™ Coprocessor Software Architecture

The software architecture for Intel® Xeon Phi™ coprocessor products accelerates highly parallel applications that take
advantage of hundreds of independent hardware threads and large local memory. Intel® Xeon Phi™ coprocessor
product software enables easy integration into system platforms that support the PCI Express* interconnect and running
either a Linux* or Windows* operating system.

2.2.1 Architectural Overview

Intel® Xeon Phi™ coprocessor products are implemented as a tightly integrated, large collection of processor cores
(Intel® Many Integrated Core (MIC) Architecture) on a PCI Express* form-factor add-in card. As such, Intel® Xeon Phi™
coprocessor products comply as a PCI Express* endpoint, as described in the PCI Express* specification. Therefore, each
Intel® Xeon Phi™ coprocessor card implements the three required address spaces (configuration, memory, and I/O) and
responds to requests from the host to enumerate and configure the card. The host OS loads a device driver that must
conform to the OS driver architecture and behavior customary for the host operating system running on the platform
(e.g., interrupt handling, thread safe, security, ACPI power states, etc.).

From the software prospective, each Intel® Xeon Phi™ coprocessor add-in card represents a separate Symmetric Multi-
Processing (SMP) computing domain that is loosely-coupled to the computing domain represented by the OS running on
the host platform. Because the Intel® Xeon Phi™ coprocessor cards appear as local resources attached to PCI Express*,
it is possible to support several different programming models using the same hardware implementation. For example,
a programming model requiring shared memory can be implemented using SCIF messaging for communication. Highly
parallel applications utilize a range of programming models, so it is advantageous to offer flexibility in choosing a
programming model.

In order to support a wide range of tools and applications for High-Performance Computing (HPC), several Application
Programming Interfaces (APIs) are provided. The standard APIs provided are sockets over TCP/IP*, MPI, and OpenCL*.
Some Intel proprietary interfaces are also provided to create a suitable abstraction layer for internal tools and
applications. The SCIF APIs provide a common transport over which the other APIs communicate between host and
Intel® Xeon Phi™ coprocessor devices across the platform’s PCI Express hardware. Error! Reference source not found.
illustrates the relative relationship of each of these APIs in the overall Intel® MIC Architecture Manycore Platform
Software Stack (MPSS).

As shown, the executable files and runtimes of a set of software development tools targeted at highly parallel
programming are layered on top of and utilize various subsets of the proprietary APIs.

 Page 37

Figure 2-13. Intel® Xeon Phi™ Coprocessor Software Architecture

The left side of the figure shows the host stack layered on a standard Linux* kernel. A similar configuration for an Intel®
Xeon Phi™ coprocessor card is illustrated on the right side of the figure; the Linux*-based kernel has some Intel® Xeon
Phi™ coprocessor specific modifications.

This depicts the normal runtime state of the system well after the platform’s system BIOS has executed and caused the
host OS to be loaded. [Note: The host platform’s system BIOS is outside the scope of this document and will not be
discussed further.] Each Intel® Xeon Phi™ coprocessor card’s local firmware, referred to as the “Bootstrap”, runs after
reset. The Bootstrap configures the card’s hardware, and then waits for the host driver to signal what is to be done
next. It is at this point that the coprocessor OS and the rest of the card’s software stack is loaded, completing the
normal configuration of the software stack.

The software architecture is intended to directly support the application programming models described earlier. Support
for these models requires that the operating environment (coprocessor OS, flash, bootstrap) for a specific Intel® Xeon
Phi™ coprocessor is responsible for managing all of the memory and threads for that card. Although giving the host OS
such a responsibility may be appropriate for host based applications (a kind of forward acceleration model), the host OS
is not in a position to perform those services where work may be offloaded from any device to any other device.

 Page 38

Supporting the application programming models necessitates that communications between host and Intel® Xeon Phi™
coprocessor devices, after boot, is accomplished via the SCIF driver or a higher level API layered on SCIF. SCIF is designed
for very low latency, low overhead communication and provides independent communication streams between SCIF
clients.

A virtual network interface on top of the SCIF Ring 0 driver creates an IP-based network between the Intel® Xeon Phi™
coprocessor devices and the host. This network may be bridged to additional networks via host/user configuration.

Given this base architecture, developers and development environments are able to create usage models specific to
their needs by adding user-installed drivers or abstractions on top of SCIF. For example, the MPI stack is layered on SCIF
to implement the various MPI communications models (send/receive, one sided, two sided) .

 Page 39

2.2.2 Intel® Manycore Platform Software Stack (MPSS)

Ring0

Ring3

Intel® Xeon Phi™ Board

Bootstrap

fboot1: GDDR Init,

Auth, MP Init, ELF

loader

fboot0: fboot1 Auth

Tools & Applications

Coprocessor

SCIF Driver
I2C

Controller

Driver

Modified

8250 driver

Power Mgmt

Driver

PCIe Bus

TCP UDP

IP

Linux NetDev

OFED Verbs

OFED Core

MPI

DAPL

User - SCIF

Sockets

COI

MYO

OpenCL

SPI Flash

Device

Optional

User-installable

SPU & Sampler

Driver

SPU &

Sampler HW

Optional User-

installable SEP

Driver

Linux Kernel

Subsystems

Drivers

PMU

Counters
PM HW

SMC

BLCR Kernel

Module

MC Exception

Handler

MC HW

BLCR Library

CR_Checkpoint

App

CR_Restore

App

VM

Filesystem

Fan VRs
PWR

monitoring

Temp

Sensors

I2C Bus

HW

Optional POST Board

RS232
7 Segment

Display

IDB Server

Core Kernel

Syscall interface

Memory

Controllers

I2C Bus

I2C API

HCA Lib

HCA Driver/

SCIF

Host Add-in

Cards

SMC

Responder

System

Monitor

Ganglia

Monitor

Maintenance Mode

Stock /dev/

mem

Infiniband

HCA

Figure 2-14 outlines the high level pieces that comprise the Intel® Manycore Platform Software Stack, or MPSS.

 Page 40

Ring0

Ring3

Intel® Xeon Phi™ Board

Bootstrap

fboot1: GDDR Init,

Auth, MP Init, ELF

loader

fboot0: fboot1 Auth

Tools & Applications

Coprocessor

SCIF Driver
I2C

Controller

Driver

Modified

8250 driver

Power Mgmt

Driver

PCIe Bus

TCP UDP

IP

Linux NetDev

OFED Verbs

OFED Core

MPI

DAPL

User - SCIF

Sockets

COI

MYO

OpenCL

SPI Flash

Device

Optional

User-installable

SPU & Sampler

Driver

SPU &

Sampler HW

Optional User-

installable SEP

Driver

Linux Kernel

Subsystems

Drivers

PMU

Counters
PM HW

SMC

BLCR Kernel

Module

MC Exception

Handler

MC HW

BLCR Library

CR_Checkpoint

App

CR_Restore

App

VM

Filesystem

Fan VRs
PWR

monitoring

Temp

Sensors

I2C Bus

HW

Optional POST Board

RS232
7 Segment

Display

IDB Server

Core Kernel

Syscall interface

Memory

Controllers

I2C Bus

I2C API

HCA Lib

HCA Driver/

SCIF

Host Add-in

Cards

SMC

Responder

System

Monitor

Ganglia

Monitor

Maintenance Mode

Stock /dev/

mem

Infiniband

HCA

Figure 2-14. Intel® Xeon Phi™ Coprocessor Software Stack

 Page 41

2.2.3 Bootstrap

Since the Intel® Xeon Phi™ coprocessor cores are x86 Intel Architecture cores, the bootstrap resembles a System BIOS at
POST. The bootstrap runs when the board first gets power, but can also run when reset by the host due to a
catastrophic failure. The bootstrap is responsible for card initialization and booting the coprocessor OS.

The bootstrap consists of two separate blocks of code, called fboot0 and fboot1. The fboot0 block resides in ROM
memory on the die and cannot be upgraded, while fboot1 is upgradeable in the field and resides in the flash memory.

2.2.3.1 fboot0

When the card comes out of reset, the fboot0 instruction is executed first. This block of code is the root of trust because
it cannot be modified in the field. Its purpose is to authenticate the second stage, fboot1, by passing the root of trust to
fboot1. If authentication fails, fboot0 will remove power from the ring and cores, preventing any further action. The only
recovery mechanism from this state is to put the card into “zombie mode” by manually changing a jumper on the card.
Zombie mode allows the host to reprogram the flash chip, recovering from a bad fboot1 block.

The fboot0 execution flow is as follows:

1. Setup CAR mode to reduce execution time.
2. Transition to 64-bit protected mode.
3. Authenticate fboot1.
4. If authentication fails, shut down card.
5. If authentication passes, hand control to fboot1.

2.2.3.2 fboot1

Fboot1 is responsible for configuring the card and booting the coprocessor OS. The card configuration involves
initializing all of the cores, uncore units, and memory. This includes implementing any silicon workarounds since the
hardware does not support microcode patching like a typical x86 core. The cores must be booted into 64-bit protected
mode to be able to access the necessary configuration registers.

When booting a 3rd party coprocessor OS, including the MPSS Linux*-based coprocessor OS, the root of trust is not
passed any further. The root of trust is only passed when booting into maintenance mode since privileged operations
are performed while in maintenance mode. Maintenance mode is where some locked registers are re-written for
hardware failure recovery.

Authentication determines which coprocessor OS type is booting (3rd party or maintenance). Fboot1 calls back into
fboot0 to run the authentication routine using the public key also embedded in fboot0. Only the maintenance
coprocessor OS is signed with a private key, and all other images must remain unsigned. If authentication passes, the
maintenance coprocessor OS boots. If authentication fails, the process is assumed to be a 3rd party coprocessor OS and
the Linux* boot protocol is followed, locking out access to sensitive registers, protects intellectual property.

 The fboot1 execution flow is as follows:

1. Set memory frequency then reset the card.
2. Perform core initialization.
3. Initialize GDDR5 memory

a. Use training parameters stored in the flash if memory has been trained earlier.
b. If no training parameters are stored, or these parameters do not match the current configuration, perform the

normal training routine and store training values in the flash.
4. Shadow fboot1 into GDDR5 to improve execution time.
5. Perform uncore initialization.
6. Perform CC6 register initialization.

 Page 42

7. Boot APs.
8. AP’s transition to 64-bit protected mode.
9. AP’s perform core initialization.
10. AP’s perform CC6 register initialization.
11. AP’s reach the end of the AP flow and wait for further instructions.
12. Wait for coprocessor OS download from host.
13. Authenticate coprocessor OS. All cores participate in authentication to minimize execution time.
14. If authentication passes, it is a maintenance coprocessor OS. Boot maintenance coprocessor OS.
15. If authentication fails, it is a 3rd party coprocessor OS (see Linux* loader section below).

a. Lock out register access.
b. Create boot parameter structure.
c. Transition to 32-bit protected mode with paging disabled.
d. Hand control to the coprocessor OS.

2.2.4 Linux* Loader

The Intel® Xeon Phi™ coprocessor boots Linux*-based coprocessor OS images. It is capable of booting any 3rd party OS
developed for the Intel® Xeon Phi™ coprocessor. Previously, an untrusted coprocessor OS would result in a card
shutdown; however, the Intel® Xeon Phi™ coprocessor considers the Intel developed Linux*-based coprocessor OS to be
untrusted. For this reason, it becomes simple to support 3rd party coprocessor OS images.

To boot a Linux* OS, the bootstrap has to conform to a certain configuration as documented in the Linux* kernel. There
are 3 potential entry points into the kernel: 16-bit, 32-bit, and 64-bit entry points. Each entry point requires increasingly
more data structures to be configured. The Intel® Xeon Phi™ coprocessor uses the 32-bit mode entry point.

2.2.4.1 16-bit Entry Point

The 16-bit entry point does not require any data structures to be created prior to entering the kernel; however it
requires that there be support for system BIOS callbacks. The Intel® Xeon Phi™ coprocessor does not support this mode.

2.2.4.2 32-bit Entry Point

The 32-bit entry point requires a boot parameter (or zero page) structure and a structure defining the number of cores
and other hardware (either an MP Table or SFI – Simple Firmware Interface - table). The Linux* documentation in
boot.txt states “the CPU must be in 32-bit protected mode with paging disabled; a GDT must be loaded with the
descriptors for selectors __BOOT_CS(0x10) and __BOOT_DS(0x18); both descriptors must be 4G flat segment;
__BOOT_CS must have execute/read permission, and __BOOT_DS must have read/write permission; CS must be
__BOOT_CS and DS, ES, SS must be __BOOT_DS; interrupt must be disabled; %esi must hold the base address of the
struct boot_params; %ebp, %edi and %ebx must be zero.”

There exists a field in the boot parameter structure (load flags) that tells the kernel whether it should use the segments
setup by the bootstrap or to load new ones. If the kernel loads new ones, it uses the above settings. The bootstrap,
however, does not have the segment descriptors in the same order as required by this documentation; and therefore
sets the boot parameter flag to tell the kernel to continue using the segments already setup by the bootstrap.
Everything about the bootstrap descriptors matches the documentation except for the offset location in the GDT, so it is
safe to continue using them.

The bootstrap also uses the SFI tables to report the number of cores, memory map, and other hardware configurations.
This is a relatively new format designed by Intel and adheres to SFI version 0.7 (http://simplefirmware.org). SFI support
was initially added to the Linux* kernel in version 2.6.32. The Intel® Xeon Phi™ coprocessor supports booting a Linux*
kernel by using the 32-bit entry point.

http://simplefirmware.org/

 Page 43

2.2.4.3 64-bit Entry Point

The Intel® Xeon Phi™ coprocessor does not support this mode.

2.2.5 The Coprocessor Operating System (coprocessor OS)

The Intel® Xeon Phi™ coprocessor establishes the basic execution foundation that the remaining elements of the Intel®
Xeon Phi™ coprocessor card’s software stack rest upon. The Intel® Xeon Phi™ coprocessor OS is based on a standard
Linux* kernel source code (from kernel.org) with as few changes to the standard kernel as possible. While some areas of
the kernel are designed, by the Linux* development community, to be tailored for specific architectures, this is not the
general case. Therefore, additional modifications to the kernel have been made to compensate for hardware normally
found on PC platforms, but missing from Intel® Xeon Phi™ coprocessor cards.

The coprocessor OS provides typical capabilities such as process/task creation, scheduling, and memory management. It
also provides configuration, power, and server management. Intel® Xeon Phi™ coprocessor-specific hardware is only
accessible through a device driver written for the coprocessor OS environment.

The Intel® Xeon Phi™ coprocessor Linux* kernel can be extended with loadable kernel modules (LKMs); LKMs may be
added or removed with modprobe. These modules may include both Intel supplied modules, such as the idb server and
SEP sampling collector, and end-user supplied modules.

 Page 44

Ring0

Ring3

Bootstrap

fboot1: GDDR Init,

Auth, MP Init, ELF

loader

fboot0: fboot1 Auth

Tools & Applications

Coprocessor

SCIF Driver
I2C

Controller

Driver

Modified

8250 driver

Power Mgmt

Driver

PCIe Bus

TCP UDP

IP

Linux NetDev

OFED Verbs

OFED Core

MPI

DAPL

User - SCIF

Sockets

COI

MYO

OpenCL

SPI Flash

Device

Optional

User-installable

SPU & Sampler

Driver

SPU &

Sampler HW

Optional User-

installable SEP

Driver

Linux Kernel

Subsystems

Drivers

PMU

Counters
PM HW

SMC

BLCR Kernel

Module

MC Exception

Handler

MC HW

BLCR Library

CR_Checkpoint

App

CR_Restore

App

VM

Filesystem

Fan VRs
PWR

monitoring

Temp

Sensors

I2C Bus

HW

Optional POST Board

RS232
7 Segment

Display

IDB Server

Core Kernel

Syscall interface

Memory

Controllers

I2C Bus

I2C API

HCA Lib

HCA Driver/

SCIF

Infiniband

HCA

SMC

Responder

System

Monitor

Ganglia

Monitor

Maintenance Mode

Stock /dev/

mem

Figure 2-15. The Linux* Coprocessor OS Block Diagram

The Intel® Xeon Phi™ coprocessor Linux*-based coprocessor OS is a minimal, embedded Linux* environment ported to
the Intel® MIC Architecture with the Linux* Standard Base (LSB) Core libraries. It is also an unsigned OS. It implements
the Busybox* minimal shell environment. Table 2-11 lists the LSB components.

Table 2-11. LSB Core Libraries

Component Description

glibc the GNU C standard library

libc the C standard library

libm the math library

libdl programmatic interface to the dynamic linking loader

librt POSIX real-time library (POSIX shared memory, clock and time functions, timers)

libcrypt password and data encryption library

libutil library of utility functions

 Page 45

Component Description

libstdc++ the GNU C++ standard library

libgcc_s a low-level runtime library

libz a lossless data compression library

libcurses a terminal-independent method of updating character screens

libpam the Pluggable Authentication Module (PAM) interfaces allow applications to request authentication via a
system administrator defined mechanism

2.2.5.1 CPUID Enumeration

CPUID enumeration can be obtained via the Linux* OS APIs that report information about the topology as listed in
/sys/devices/system/cpu/cpu*/topology/*.

2.2.6 Symmetric Communication Interface (SCIF)

SCIF is the communication backbone between the host processors and the Intel® Xeon Phi™ coprocessors in a
heterogeneous computing environment. It provides communication capabilities within a single platform. SCIF enables
communications between host and Intel® Xeon Phi™ coprocessor cards, and between Intel® Xeon Phi™ coprocessor
cards within the platform. It provides a uniform API for communicating across the platform’s PCI Express* system busses
while delivering the full capabilities of the PCI Express* transport hardware. SCIF directly exposes the DMA capabilities
of Intel® Xeon Phi™ coprocessor for high bandwidth transfer of large data segments, as well as the ability to map
memory of the host or an Intel® Xeon Phi™ coprocessor device into the address space of a process running on the host
or on any Intel® Xeon Phi™ coprocessor device.

Communication between SCIF node pairs is based on direct peer-to-peer access of the physical memory of the peer
node. In particular, SCIF communication is not reflected through system memory when both nodes are Intel® Xeon Phi™
coprocessor cards.

SCIF’s messaging layers take advantage of the PCI Express*’s inherent reliability, and operates as a simple data-only
network without the need for any intermediate packet inspection. Messages are not numbered, nor is error checking
performed. Due to the data-only nature of the interface, it is not a direct replacement for higher level communication
APIs, but rather provides a level of abstraction from the system hardware for these other APIs. Each API that wishes to
take advantage of SCIF will need to adapt to this new proprietary interface directly or through the use of a shim layer.

A more detailed description of the SCIF API can be found in Section 5.3.

2.2.7 Host Driver

The host driver is a collection of host-side drivers and servers including SCIF, power management, and RAS and server
management. The primary job of the host driver is to initialize the Intel® Xeon Phi™ coprocessor card(s); this includes
loading the coprocessor OS and its required boot parameters for each of the cards. Following successful booting, the
primary responsibility of the host driver is to serve as the root of the SCIF network. Additional responsibilities revolve
around serving as the host-side interface for power management, device management, and configuration. However, the
host driver does not directly support any type of user interface or remote process API. These are implemented by other
user-level programs or by communication protocols built on top of the driver or SCIF (e.g. Sockets, MPI, etc.).

DMA support is an asynchronous operation. Host initiated DMA is expected to have less latency compared to the proxy
DMA from the card. Applications have the option to pick between memory copy and DMA, or to let the driver choose
the best method. Memory copy is optimized to be multiple threaded, which makes use of the multi-core to parallelize
the operation at the limit of the PCI Express* bandwidth. When there is a need to lower the host CPU load, or when the
transfer size is above threshold, DMA is the preferred method.

 Page 46

Interrupts based on MSI/x (Message Signaled Interrupts) are supported by the host driver with these benefits:

 Eliminates dedicated hardware interrupt line connection

 No interrupt sharing with other device(s)

 With optimized hardware design, no need for the interrupt routine to read back from hardware which will improve
the efficiency of the interrupt handling

 The device can target different CPU cores when triggering, thus making full use of the multicore for interrupt
handling.

Common

PM

Kernel

User

Coprocessor

Access Layer

Linux Windows

Driver Interface

Linux Windows

OSAL

Linux Windows

Adapter Interface

SCIF

Network

Driver

RAS

Kernel SCIF Interface

HAL

User SCIF Interface

Other

Other

Other

OSI (OSAL interface)

Interface

OS specific code

common code

Linux specific code

Windows specific code

legend

Figure 2-16. Intel® Xeon Phi™ Coprocessor Host Driver Software Architecture Components

2.2.7.1 Intel® Xeon Phi™ Coprocessor SMC Control Panel

The SMC Control Panel (micsmc), located in /opt/intel/mic/bin after installing Intel® MPSS, is the local host-side user
interface for system management. The Control Panel is more practical for smaller setups like a workstation environment
rather than for a large-scale cluster deployment. The Control Panel is mainly responsible for:

 Monitoring Intel® Xeon Phi™ coprocessor card status, parameters, power, thermal, etc.

 Monitoring system performance, core usage, memory usage, process information

 Monitoring overall system health, critical errors, or events

 Hardware configuration and setting, ECC, turbo mode, power plan setting, etc.

Control Panel applications rely on the MicAccessSDK to access card parameters. The MicAccessSDK exposes a set of APIs
enabling applications to access the Intel® MIC Architecture hardware. The Ring 3 system management agent running on
the card handles the queries from the host and returns results to the host through the SCIF interface.

The host RAS agent captures the MCA error report from the card and takes proper action for different error categories.
The host RAS agent determines the error exposed to the end-user based on the error filter and Maintenance mode
test/repair result. Then the error/failure is shown to end users on the Control Panel.

 Page 47

IOCTLs

Host SCIF Driver

Sysfs

Coprocessor SCIF Driver

Host Coprocessor

IOCTLs

PCIe Bus

MIC Access SDK

Control Panel

System Management Agent

User SCIF

ODM Tools

User SCIF

SysMgmt SCIF Interface

Monitoring

Thread

Host RAS Agent

MCA

Handler

Figure 2-17. Control Panel Software Architecture

2.2.7.2 Ganglia* Support

Ganglia* is a scalable, distributed monitoring system for high-performance computing systems such as clusters and
grids. The implementation of Ganglia* is robust, has been ported to an extensive set of operating systems and processor
architectures, and is currently in use on thousands of clusters around the world.

Briefly, the Ganglia* system has a daemon running on each computing node or machine. The data from these daemons
is collected by another daemon and placed in an rrdtool database. Ganglia* then uses PHP scripts on a web server to
generate graphs as directed by the user. The typical Ganglia* data flow is illustrated in Figure 2-18.

 Page 48

Figure 2-18. Ganglia* Monitoring System Data Flow Diagram

The cluster level deployment of Ganglia* is illustrated in Figure 2-19.

Figure 2-19: Ganglia* Monitoring System for a Cluster

For integration with system management and monitoring systems like Ganglia*, the Manycore Platform Software Stack
(MPSS) :

 Provides an interface for the Ganglia* monitoring agent to collect monitoring state or data: sysfs or /proc virtual file
system exposed by the Linux*-based coprocessor OS on each Intel® Xeon Phi™ coprocessor device.

 Page 49

 Provides a plug-in for custom made metrics about the nodes (that is, Intel® Xeon Phi™ coprocessor cards) that are
being monitored by Ganglia*.

 Serves as a reference implementation for the whole Ganglia* monitoring environment setup.

In the Ganglia* reference implementation shown in Figure 2-20, each Intel® Xeon Phi™ coprocessor card can be treated
as an independent computing node. Because Intel® Xeon Phi™ coprocessor is running a Linux*-based OS on the card,
one can run gmond monitoring agent on the card as-is. Gmond supports configuration files and plug-ins so it is easy to
add customized metrics.

For workstation configuration or for a remote server in a cluster environment, gmetad can be run on the host. For
gmetad, no customization is needed. All the front-end tools like rrdtool, scripts should be standard Ganglia*
configuration.

Coprocessor1
Host

PCIe Bus

Monitoring

Thread

rrdtool

gmetad

Sysfs / Proc

gmond

MCA

Error

Handler

Monitoring

Thread

Sysfs / Proc

gmond

MCA

Error

Handler

Coprocessor2

Sysfs / Proc

gmond

Figure 2-20. Intel® Xeon Phi™ Coprocessor Ganglia* Support Diagram

All of the daemons in Ganglia* talk to each other over TCP/IP. Intel® Xeon Phi™ coprocessor devices are accessible via a
TCP/IP subnet off the host, in which the IP component is layered on SCIF.

By default, Ganglia* collects the following metrics:

 cpu_num
 cpu_speed

 Page 50

 mem_total
 swap_total
 boottime
 machine_type
 os_name
 os_release
 location
 gexec
 cpu_user
 cpu_system
 cpu_idle
 cpu_nice
 cpu_aidle
 cpu_wio
 cpu_intr
 cpu_sintr
 load_one
 load_five
 load_fifteen
 proc_run
 proc_total
 mem_free
 mem_shared
 mem_buffers
 mem_cached
 swap_free
 bytes_out
 bytes_in
 pkts_in
 pkts_out
 disk_total
 disk_free
 part_max_used

In addition to these default metrics, the following metrics can be collected on the Intel® Xeon Phi™ coprocessor:

 Intel® Xeon Phi™ coprocessor device utilization
 Memory utilization
 Core utilization
 Die temperature
 Board temperature
 Core frequency
 Memory frequency
 Core voltage
 Memory voltage
 Power consumption
 Fan speed
 Active core number (CPU number is standard)

To collect additional metrics follow these steps:

1. Write a script or C/C++ program which retrieves the information. The script can be written in any scripting
language. Python is used to retrieve default metrics. In case of a C/C++ program, the .so files are needed.

 Page 51

2. Register the program with the Ganglia* daemon (gmond) by issuing the Ganglia* command gmetric.
3. Make the registration persistent by adding the modification to the configuration file: /etc/ganglia/gmond.conf.

2.2.7.3 Intel® Manycore Platform Software Stack (MPSS) Service

The Linux* mechanism for controlling system services is used to boot and shut down Intel® Xeon Phi™ coprocessor
cards. This service will start (load) and stop (unload) the MPSS to and from the card (e.g. “service mpss start/stop”). This
replaces the micstart command utility described in the next section. Please see the README file included in the MPSS tar
packages for instructions on how to use this service.

2.2.7.4 Intel® MIC Architecture Commands

This section provides a short summary of available Intel® MIC Architecture commands. More detailed information of
each command can be obtained by issuing the ‘–help’ option with each command.

Table 2-12. Intel® MIC Architecture commands

Command Description

micflash A command utility normally used to update the Intel® Xeon Phi™ coprocessor
PCI Express* card on-board flash. It can also be used to list the various device
characteristics.

micinfo Displays the physical settings and parameters of the card including the driver
versions.

micsmc The Control Panel that displays the card thermal, electrical, and usage
parameters. Examples include Core Temperature, Core Usage, Memory Usage,
etc. An API for this utility is also available to OEMs under the MicAccess SDK as
mentioned previously in the section on the Control Panel.

miccheck A utility that performs a set of basic checks to confirm that MPSS is correctly
installed, all communications links between the host and coprocessor(s), and
between coprocessors are functional.

2.2.8 Sysfs Nodes

Sysfs is a Linux* 2.6 virtual file system. It exports information about devices and drivers from the kernel device model to
user space; and is similar to the sysctl mechanism found in BSD systems, albeit implemented as a file system. As such,
some Intel® Xeon Phi™ coprocessor device characteristics can be obtained from sysfs. Characteristics such as core/cpu
utilization, process/thread details and system memory usage are better presented from standard /proc interfaces. The
purpose of these sysfs nodes is to present information not otherwise available. The organization of the file system
directory hierarchy is strict and is based on the internal organization of kernel data structures.

Sysfs is a mechanism for representing kernel objects, their attributes, and their relationships with each other. It provides
two components: a kernel programming interface for exporting these items via sysfs, and a user interface to view and
manipulate these items that maps back to the kernel objects they represent. Table 2-13 shows the mapping between
internal (kernel) constructs and their external (user space) Sysfs mappings.

Table 2-13. Kernel to User Space Mappings

Internal External

Kernel Objects Directories

Object Attributes Regular Files

Object Relationships Symbolic Links

 Page 52

The currently enabled sysfs nodes are listed in Table 2-14.

Table 2-14. SYSFS Nodes

Node Description

clst Number of known cores

fan Fan state

freq Core frequencies

gddr GDDR device info

gfreq GDDR frequency

gvolt GDDR voltage

hwinf hardware info (revision, stepping, …)

temp Temperature sensor readings

vers Version string

volt Core voltage

Coprocessor SCIF Driver Host SCIF Driver

Coprocessor Host

IOCTLs

PCIe Bus

Monitoring Thread

Card SysMgmt Agent

MIC Card Access SDK

User SCIF

Sysfs / Proc

3
rd

 party Management Agent

Ganglia Gmond

Power Thermal
Performance

Load
Configuration

MCA

Error Handler
PM

IOCTLs
IOCTLs

Figure 2-21: MPSS Ganglia* Support

Sysfs is a core piece of the kernel infrastructure that provides a relatively simple interface to perform a simple task.
Some popular system monitoring software like Ganglia* uses /proc or the sysfs interface to fetch system status

 Page 53

information. Since the Intel® Xeon Phi™ coprocessor can expose card information through sysfs, a single interface can be
maintained for both local and server management.

2.2.9 Intel® Xeon Phi™ Coprocessor Software Stack for MPI Applications

This section covers the architecture of the Intel® Xeon Phi™ coprocessor software stack components to enable µDAPL
and IB verbs support for MPI. Given the significant role of MPI in high-performance computing, the Intel® Xeon Phi™
coprocessor has built-in support for OFED* (Open Fabrics Enterprise Edition) which is widely used in high performance
computing for applications that require high efficiency computing, wire-speed messaging, and microsecond latencies.
OFED* is also the preferred communications stack for the Intel® MPI Library, allowing Intel® MIC Architecture to take
advantage of remote direct memory access (RDMA) capable transport that it exposes. The Intel® MPI Library for Intel®
MIC Architecture on OFED* can use SCIF or physical InfiniBand* HCA (Host Channel Adapter) for communications
between Intel® Xeon Phi™ coprocessor devices and between an Intel® Xeon Phi™ coprocessor and the host; in this way,
Intel® Xeon Phi™ coprocessor devices are treated as stand-alone nodes in an MPI network.

There are two implementations that cover internode and intranode communications through the InfiniBand* HCA:

 CCL (Coprocessor Communication Link). A proxy driver that allows access to a hardware InfiniBand* HCA from the
Intel® Xeon Phi™ coprocessor.

 OFED*/SCIF. A software-based InfiniBand*-like device that allows communication within the box.

This guide only covers the first level decomposition of the software into its major components and describes how these
components are used. This information is based on the OpenFabrics Alliance* (OFA*) development effort. Because
open source code is constantly changing and evolving, developers are responsible for monitoring the OpenFabrics
Alliance* to ensure compatibility.

2.2.9.1 Coprocessor Communication Link (CCL)

To efficiently communicate with remote systems, applications running on Intel® Many Integrated Core Architecture
(Intel® MIC Architecture) coprocessors require direct access to RDMA devices in the host platform. This section
describes an architecture providing this capability (called CCL) that is targeted for internode communication.

In a heterogeneous computing environment, it is desirable to have efficient communication mechanisms from all
processors, whether they are the host system CPUs or Intel® Xeon Phi™ coprocessor cores. Providing a common,
standards-based, programming and communication model, especially for clustered system applications is an important
goal of the Intel® Xeon Phi™ coprocessor software. A consistent model not only simplifies development and
maintenance of applications, but allows greater flexibility for using a system to take full advantage of its performance.

RDMA architectures such as InfiniBand* have been highly successful in improving performance of HPC cluster
applications by reducing latency and increasing the bandwidth of message passing operations. RDMA architectures
improve performance by moving the network interface closer to the application, allowing kernel bypass, direct data
placement, and greater control of I/O operations to match application requirements. RDMA architectures allow process
isolation, protection, and address translation to be implemented in hardware. These features are well-suited to the
Intel® Xeon Phi™ coprocessor environment where host and coprocessor applications execute in separate address
domains.

CCL brings the benefits of RDMA architecture to the Intel® Xeon Phi™ coprocessor. In contrast, without CCL,
communications into and out of attached processors must incur an additional data copy into host memory, substantially
impacting both message latency and achievable bandwidth. Figure 2-22 illustrates the operation of an RDMA transfer
with CCL and an Intel® Xeon Phi™ coprocessor add-in PCI Express* card.

 Page 54

MIC
Memory

MICChipset

CPU
System

Memory

RDMA
Device

PCIe

Coprocessor

PCIe

Figure 2-22 RDMA Transfer with CCL

CCL allows RDMA device hardware to be shared between Linux*-based host and Intel® Xeon Phi™ coprocessor
applications. Figure 2-23 illustrates an MPI application using CCL.

 Page 55

IB uverbs

IB core

Vendor Library

IB Verbs Library

IB Proxy Server

SCIF

PCIe

RDMA Device

User / Kernel Mode

IB uverbs

IB core

Vendor Proxy Driver

Vendor Library

IB Verbs Library

IB Proxy Client

SCIF

User / Kernel Mode

MPI Application

µDAPL

MPI Application

µDAPL

Host

C
o

p
ro

ce
ss

o
r

Vendor Driver

IB Proxy Daemon

Figure 2-23 MPI Application on CCL

Figure 2-23 highlights the primary software modules (bolded rounded components) responsible for CCL. The host
system contains a PCI Express* interface with one or more RDMA devices and one or more Intel® Xeon Phi™ coprocessor
add-in cards. Software modules on the host and Intel® Xeon Phi™ coprocessor communicate with each other and access
RDMA devices across the PCI Express* bus. The software uses a split-driver model to proxy operations across PCI
Express* to manage RDMA device resources allocated by the Vendor Driver on the host. These modules include the IB*
Proxy Daemon, the IB* Proxy Server, the IB* Proxy Client, the Vendor Proxy Drivers, and SCIF.

RDMA operations are performed by a programming interface known as verbs. Verbs are categorized into privileged and
non-privileged classes. Privileged verbs are used to allocate and manage RDMA resources. Once these resources have

 Page 56

been initialized, non-privileged verbs are used to perform I/O operations. I/O operations can be executed directly to
and from user-mode applications on the Intel® Xeon Phi™ coprocessor concurrently with host I/O operations, with
kernel-mode bypass, and with direct data placement. The RDMA device provides process isolation and performs
address translation needed for I/O operations. CCL proxies privileged verb operations between host and Intel® Xeon
Phi™ coprocessor systems such that each Intel® Xeon Phi™ coprocessor PCI Express* card appears as if it were another
“user-mode” process above the host IB* core stack.

2.2.9.1.1 IB* Core Modifications

The IB* core module defines the kernel-mode verbs interface layer and various support functions. Support functions
that allow vendor drivers to access user-mode data are:

 ib_copy_to_udata()
 ib_copy_from_udata()
 ib_umem_get()
 ib_umem_page_count()
 ib_umem_release()

These functions may be used by vendor drivers for privileged verb operations. Since the implementation of these
functions assumes that data is always in host system user-space, modifications allowed redirection of these functions for
CCL. The IB* Proxy Server overrides the default implementation of these functions to transfer data to or from the Intel®
Xeon Phi™ coprocessor as needed. To be effective, vendor drivers must use the support functions provided by IB* core.

2.2.9.1.2 Vendor Driver Requirements

The IB* core module provides support functions that allow Vendor Drivers to access user-mode data. Instead of using
the IB* core support functions, however, some Vendor Driver implementations call user-mode access routines directly.
Table 2-15 lists drivers that require modification to work with CCL. Currently, only the Mellanox HCAs are supported.

Table 2-15: Vendor Drivers Bypassing IB* Core for User-Mode Access

 amso1100* cxgb3* cxgb4* ehca* ipath* mlx4* mthca* nes* qib*

copy_to_user X X

copy_from_user X X

get_user_pages X X X

Beyond utilizing the IB* core interface support functions, there are additional requirements for enabling Vendor Drivers
to take full advantage of CCL. Table 2-16 shows that RDMA is divided into two distinct architectures, InfiniBand* and
iWARP*.

The underlying process for establishing a connection differs greatly between InfiniBand* and iWARP* architectures.
Although InfiniBand* architecture defines a connection management protocol, it is possible to exchange information
out-of-band and directly modify a queue pair to the connected state. µDAPL implements a socket CM (SCM) protocol
that utilizes this technique and only requires user-mode verbs access through CCL. For iWARP* architecture, however,
this requires the rdma_cm kernel module to invoke special iWARP* CM verbs. Therefore, to support iWARP* devices,
CCL must proxy rdma_cm calls between the host and the Intel® Xeon Phi™ coprocessor.

As shown in Table 2-16, the IBM* eHCA* device is not supported on x86 architecture; it requires a PowerPC* system
architecture, which is not supported by Intel® Xeon Phi™ coprocessor products.

QLogic* provides ipath* and qib* drivers, which are hybrid hardware/software implementations of InfiniBand* that in
some cases use memcpy() to transfer data and that do not provide full kernel bypass.

 Page 57

Table 2-16: Summary of Vendor Driver Characteristics

Driver Vendor RDMA Type x86 Support Kernel Bypass

cxgb3* Chelsio Communications* iWARP* yes yes

cxgb4* Chelsio Communications* iWARP* yes yes

ehca* IBM Corporation* InfiniBand* no yes

ipath* QLogic* InfiniBand* yes no

mlx4* Mellanox Technologies* InfiniBand* yes yes

mthca* Mellanox Technologies* InfiniBand* yes yes

nes* Intel Corporation iWARP* yes yes

qib* QLogic* InfiniBand* yes no

2.2.9.1.3 IB* Proxy Daemon

The IB* Proxy Daemon is a host user-mode application. It provides a user-mode process context for IB* Proxy Server
calls (through the IB* core) to the underlying vendor drivers. A user-mode process context is needed to perform
memory mappings without modifying the existing vendor drivers. Vendor drivers typically map RDMA device MMIO
memory into the calling user-mode process virtual address space with ioremap(), which requires a valid user-mode
current->mm structure pointer.

An instance of the IB* Proxy Daemon is started via a udev “run” rule for each Intel® Xeon Phi™ coprocessor device added
by the IB* Proxy Server. The IB* Proxy Daemon is straightforward. It immediately forks to avoid blocking the udev
device manager thread. The parent process exits while the child examines the action type for device add notifications;
all other notifications are ignored and the daemon simply exits. If a device add notification is received, the device is
opened followed by zero byte write. It is this call to write that provides the user-mode process context used by the IB*
Proxy Server. When the IB* Proxy Server relinquishes the thread, the write completes, and the IB* Proxy Daemon closes
the device and exits.

2.2.9.1.4 IB* Proxy Server

The IB* Proxy Server is a host kernel module. It provides communication and command services for Intel® Xeon Phi™
coprocessor IB* Proxy Clients. The IB* Proxy Server listens for client connections and relays RDMA device add, remove,
and event notification messages. The IB* Proxy Server initiates kernel-mode IB* verbs calls to the host IB* core layer on
behalf of Intel® Xeon Phi™ coprocessor IB* Proxy Clients and returns their results.

Upon initialization, the IB* Proxy Server registers with the host IB* core for RDMA device add and remove callbacks, and
creates a kernel thread that listens for Intel® Xeon Phi™ coprocessor connections through SCIF. The IB* Proxy Server
maintains a list of data structures for each side of its interface. One list maintains RDMA device information from IB*
core add and remove callbacks, while another list maintains connections to IB* Proxy Clients running on the Intel® Xeon
Phi™ coprocessor. Together these lists preserve the state of the system so that RDMA device add and remove messages
are forwarded to IB* Proxy Clients.

When an IB* Proxy Client connection is established through SCIF, the IB* Proxy Server creates a device that represents
the interface. The device exists until the SCIF connection is lost or is destroyed by unloading the driver. The Linux*
device manager generates udev events for the device to launch the IB* Proxy Daemon. The IB* Proxy Server uses the IB*
Proxy Daemon device write thread to send add messages for existing RDMA devices to the IB* Proxy Client, and enters a
loop to receive and process client messages. Any RDMA device add or remove notifications that occur after the IB*
Proxy Client SCIF connections are established are sent from the IB* core callback thread. In addition, the IB* Proxy

 Page 58

Server forwards asynchronous event and completion queue notification messages from IB* core to IB* Proxy Clients.
These messages are also sent from the IB* core callback thread.

The IB* Proxy Server performs verbs on behalf of IB* Proxy Clients. Received messages are dispatched to an appropriate
verb handler where they are processed to generate a verb response message. Verbs are synchronous calls directed to
specific Vendor Drivers through the IB* core interface. The IB* Proxy Server performs pre- and post-processing
operations as required for each verb, and maintains the state required to teardown resources should a SCIF connection
abruptly terminate. Privileged verbs provide access to user-mode data to Vendor Drivers through IB* core support
functions. The IB* Proxy Server overrides the default implementation of these functions to transfer data to or from
Intel® Xeon Phi™ coprocessors as needed.

2.2.9.1.5 IB* Proxy Client

The IB* Proxy Client is an Intel® Xeon Phi™ coprocessor kernel module. The IB* Proxy Client provides a programming
interface to vendor proxy drivers to perform IB* verbs calls on the host. The interface abstracts the details of formatting
commands and performing the communication. The IB* Proxy Client invokes callbacks for device add, remove, and
event notifications to registered Intel® Xeon Phi™ coprocessor Vendor Proxy Drivers.

Upon initialization, the IB* Proxy Client creates a kernel thread to establish a connection to the IB* Proxy Server through
SCIF. The IB* Proxy Client maintains a list of data structures for each side of its interface. One list maintains RDMA
device information received from IB* Server add and remove messages, while another list maintains Vendor Proxy
Drivers that have registered with the IB* Proxy Client. Together, these lists preserve the state of the system so that
RDMA device add and remove callbacks are forwarded to Vendor Proxy Drivers as required.

When a connection to the IB* Proxy Server is established through SCIF, the IB* Proxy Client enters a loop to receive and
process server messages. With the exception of verb response messages, all device add, remove, asynchronous event,
and completion queue notification messages are queued for processing on a Linux work queue. Processing these
messages on a separate thread is required to avoid a potential communication deadlock with the receive thread. Device
add and remove message callbacks are matched to registered Vendor Proxy Drivers using PCI vendor and device ID
information. Asynchronous event and completion queue notifications are dispatched to callback handlers provided
upon resource creation or to the Intel® Xeon Phi™ coprocessor IB* core layer.

The IB* Proxy Client provides a verbs command interface for use by Vendor Proxy Drivers. This interface is modeled
after the IB* Verbs Library command interface provided for user-mode Vendor Libraries. A Vendor Proxy Driver uses
this interface to perform IB* verbs calls to the Vendor Driver on the host. The interface abstracts the details of
formatting commands and performing the communication through SCIF. Verbs are synchronous calls; the calling thread
will block until the corresponding verb response message is received to complete the operation.

2.2.9.1.6 Vendor Proxy Driver

A vendor proxy driver is an Intel® Xeon Phi™ coprocessor kernel module. Different vendor proxy drivers may be
installed to support specific RDMA devices. Upon initialization, each Vendor Proxy Driver registers with the IB* Proxy
Client for RDMA device add and remove notifications for the PCI vendor and device IDs that it supports. The Vendor
Proxy Driver uses the programming interface provided by the IB* Proxy Client to perform kernel-mode IB* verbs calls.
The Vendor Proxy Driver handles the transfer and interpretation of any private data shared between the vendor library
on the Intel® Xeon Phi™ coprocessor and vendor driver on the host.

A vendor proxy driver announces that a device is ready for use when it calls the IB* core ib_register_device() function.
All initialization must be complete before this call. The device must remain usable until the call to ib_unregister_device()
has returned, which removes the device from the IB* core layer. The Vendor Proxy Driver must call ib_register_device()
and ib_unregister_device() from process context. It must not hold any semaphores that could cause deadlock if a
consumer calls back into the driver across these calls.

 Page 59

Upper level protocol consumers registered with the IB* core layer receive an add method callback indicating that a new
device is available. Upper-level protocols may begin using a device as soon as the add method is called for the device.
When a remove method callback is received, consumers must clean up and free all resources relating to a device before
returning from the remove method. A consumer is permitted to sleep in the add and remove methods. When a Vendor
Proxy Driver call to ib_unregister_device() has returned, all consumer allocated resources have been freed.

Each vendor proxy driver provides verb entry points through an ib_device structure pointer in the ib_register_device()
call. All of the methods in the ib_device structure exported by drivers must be fully reentrant. Drivers are required to
perform all synchronization necessary to maintain consistency, even if multiple function calls using the same object are
run simultaneously. The IB* core layer does not perform any serialization of verb function calls.

The vendor proxy drivers use the programming interface provided by the IB* Proxy Client to perform IB* verbs calls to
the vendor driver on the host. Each vendor proxy driver is responsible for the transfer and interpretation of any private
data shared between the vendor library on the Intel® Xeon Phi™ coprocessor and the vendor driver on the host.
Privileged verb operations use the default IB* core support functions to transfer data to or from user-mode as needed.
The interpretation of this data is vendor specific.

2.2.9.2 OFED*/SCIF

The Symmetric Communications Interface (SCIF) provides the mechanism for internode communication within a single
platform, where a node is an Intel® Xeon Phi™ coprocessor device or a host processor complex. SCIF abstracts the details
of communicating over PCI Express* (and controlling related coprocessor hardware) while providing an API that is
symmetric between the host and the Intel® Xeon Phi™ coprocessor.

MPI (http://www.mpi-forum.org) (Message-Passing Interface) on the Intel® Xeon Phi™ coprocessor can use either the
TCP/IP or the OFED* stack to communicate with other MPI nodes. The OFED*/SCIF driver enables a hardware
InfiniBand* Host Communications Adapter (IBHCA) on the PCI Express* bus to access physical memory on an Intel® Xeon
Phi™ coprocessor device. When there is no IBHCA in the platform, the OFED*/SCIF driver emulates an IBHCA, enabling
MPI applications on the Intel® Xeon Phi™ coprocessor devices in the platform.

OFED*/SCIF implements a software-emulated InfiniBand* HCA to allow OFED*-based applications, such as the Intel®
MPI Library for Intel® MIC Architecture, to run on Intel® MIC Architecture without the presence of a physical HCA.
OFED*/SCIF is only used for intranode communication whereas CCL is used for internode communication.

OFED* provides an industrial standard low-latency, high-bandwidth communication package for HPC applications,
leveraging the RDMA-based high performance communication capabilities of modem fabrics such as InfiniBand*. SCIF is
a communication API (sections 2.2.5.1 and 5.1) for the Intel® Many Integrated Core Architecture (Intel® MIC
Architecture) device that defines an efficient and consistent interface for point-to-point communication between Intel®
Xeon Phi™ coprocessor nodes, as well as between it and the host. By layering OFED* on top of SCIF, many OFED*-based
HPC applications become readily available to Intel® MIC Architecture.

The OFED* software stack consists of multiple layers, from user-space applications and libraries to kernel drivers. Most
of the layers are common code shared across hardware from different vendors. Vendor dependent code is confined in
the vendor-specific hardware driver and the corresponding user-space library (to allow kernel bypass). Figure 2-24
shows the architecture of the OFED*/SCIF stack. Since SCIF provides the same API for Intel® Xeon Phi™ coprocessor and
the host, the architecture applies to both cases.

The rounded bold blocks in Figure 2-24 are the modules specific to OFED*/SCIF. These modules include the IB-SCIF
Library, IB-SCIF Driver, and SCIF (the kernel space driver only).

http://www.mpi-forum.org/

 Page 60

2.2.9.2.1 IB-SCIF Library

The IB-SCIF Library is a user-space library that is required by the IB Verbs Library to work with the IB-SCIF Driver. It
defines a set of routines that the IB Verbs Library calls to complete the corresponding functions defined by the user-
mode IB Verbs API. This allows vendor specific optimization (including kernel bypass) to be implemented in user space.
The IB-SCIF Library, however, does not provide kernel bypass; it relays user-mode requests to the kernel-mode driver
through the interface exposed by the IB uverbs driver.

2.2.9.2.2 IB-SCIF Driver

The IB-SCIF Driver is a kernel module that implements a software-based RDMA device. At initialization, it sets up one
connection between each pair of SCIF nodes, and registers to the IB core driver as an “iWARP” device (to avoid MAD
related functions being used). For certain OFED* operations (plain RDMA read/write), data is transmitted directly using
the SCIF RMA functions. For all other OFED* operations, data is transmitted as packets, with headers that identify the
communication context so that a single connection between two SCIF nodes is sufficient to support an arbitrary number
of logical connections. Under the packet protocol, small-sized data is transmitted with the scif_send() and scif_recv()
functions; and large-sized data is transmitted with the SCIF RMA functions after a hand shaking. When both ends of the
logical connection are on the same SCIF node (i.e. loopback), data is copied directly from the source to the destination
without involving SCIF.

2.2.9.2.3 SCIF (See also Section 5.1)

The SCIF kernel module provides a communication API between Intel® Xeon Phi™ coprocessors and between an Intel®
Xeon Phi™ coprocessor and the host. SCIF itself is not part of OFED*/SCIF. OFED*/SCIF uses SCIF as the only internode
communication channel (in SCIF terminology, the host is a node, and each Intel® Xeon Phi™ coprocessor card is a
separate node). Although there is a SCIF library that provides similar API in the user space, that library is not used by
OFED*/SCIF.

 Page 61

IB uverbs

IB core

IB Verbs Library

IB-SCIF driver

SCIF

User / Kernel Mode

MPI Application

µDAPL

Host / Coprocessor

IB-SCIF Library

Figure 2-24: OFED*/SCIF Modules

 Page 62

2.2.9.3 Intel® MPI Library for Intel® MIC Architecture

The Intel® MPI Library for Intel® MIC Architecture provides only the Hydra process manager (PM). Each node and each
coprocessor are identified using their unique symbolic or IP addresses. Both external (e.g., command line) and internal
(e.g., MPI_Comm_Spawn) methods of process creation and addressing capabilities to place executables explicitly on the
nodes and the coprocessors are available. This enables you to match the target architecture and the respective
executables.

Within the respective units (host nodes and coprocessors), the MPI processes are placed and pinned according to the
default and eventual explicit settings as described in the Intel® MPI Library documentation. The application should be
able to identify the platform it is running on (host or coprocessor) at runtime.

The Intel® MPI Library for Intel® MIC Architecture supports the communication fabrics shown in Figure 2-25.

Figure 2-25. Supported Communication Fabrics

2.2.9.3.1 Shared Memory

This fabric can be used within any coprocessor, between the coprocessors attached to the same node, and between a
specific coprocessor and the host CPUs on the node that the coprocessor is attached to. The intracoprocessor
communication is performed using the normal mmap(2) system call (shared memory approach). All other
communication is performed in a similar way based on the scif_mmap(2) system call of the Symmetric Communication
Interface (SCIF). This fabric can be used exclusively or combined with any other fabric, typically for higher performance.

 Page 63

Figure 2-26. Extended SHM Fabric Structure

The overall structure of the extended SHM fabric is illustrated in Figure 2-26. The usual shared memory (SHM)
communication complements the SCIF SHM extension that supports multisocket platforms, each socketed
processor having a PCI Express* interface. SCIF-based SHM extensions can be used between any host processor
and any Intel® Xeon Phi™ coprocessor, and between any two such coprocessors connected to separate PCI
Express* buses.

2.2.9.3.2 DAPL/OFA*

This fabric is accessible thru two distinct interfaces inside the Intel® MPI Library: the Direct Application Programming
Library (DAPL*) and the Open Fabrics Association (OFA*) verbs [also known as Open Fabrics Association Enterprise
Distribution (OFED*) verbs] of the respective Host Channel Adaptor (HCA). In both cases, the typical Remote Memory
Access (RMA) protocols are mapped upon the appropriate parts of the underlying system software layers; in this case,
scif_writeto(2) and scif_readfrom(2) SCIF system calls.

2.2.9.3.3 TCP

This fabric is normally the slowest of all fabrics available. This fabric is normally used as a fallback communication
channel when the higher performance fabrics mentioned previously cannot be used for some reason.

2.2.9.3.4 Mixed Fabrics

All these fabrics can be used in reasonable combinations for the sake of better performance; for example, shm:dapl,
shm:OFA*, and shm:tcp. All the default and eventual explicit settings described in the Intel® MPI Library documentation
are inherited by the Intel® MPI Library for Intel® MIC Architecture. This also holds for the possibility of intranode use of
both the shared memory and RDMA interfaces such as DAPL or OFA*.

2.2.9.3.5 Standard Input and Output

Finally, the Intel® MPI Library for Intel® MIC Architecture supports the following types of input/output (I/O):

 Standard file I/O. The usual standard I/O streams (stdin, stdout, stderr) are supported through the Hydra PM as
usual. All typical features work as expected within the respective programming model. The same is true for the file
I/O.

 MPI I/O. All MPI I/O features specified by the MPI standard are available to all processes if the underlying file
system(s) support it.

Please consult the (Intel® MPI Library for Intel® MIC Architecture, 2011-2012) user guide for details on how to set up and
get MPI applications running on systems with Intel® Xeon Phi™ coprocessors.

 Page 64

2.2.10 Application Programming Interfaces

Several application programming interfaces (APIs) aid in porting applications to the Intel® Xeon Phi™ coprocessor
system. They are the sockets networking interface, the Message Passing Interface (MPI), and the Open Computing
Language (OpenCL*), and are industry standards that can be found in multiple execution environments. Additionally, the
SCIF APIs have been developed for the Intel® Xeon Phi™ coprocessor.

2.2.10.1 SCIF API

SCIF serves as the backbone for intraplatform communication and exposes low-level APIs that developers can program
to. A more detailed description of the SCIF API can be found in Section 5.

2.2.10.2 NetDev Virtual Networking

The virtual network driver provides a network stack connection across the PCI Express* bus. The NetDev device driver
emulates a hardware network driver and provides a TCP/IP network stack across the PCI Express* bus. The Sockets API
and library provide parallel applications with a means of end-to-end communication between computing agents (nodes)
that is based on a ubiquitous industry standard. This API implemented upon the TCP/IP protocol stack simplifies
application portability and scalability. Other standard networking services, such as NFS, can be supported through this
networking stack. See Section 5 for more details.

 Page 65

3 Power Management, Virtualization, RAS

The server management and control panel component of the Intel® Xeon Phi™ coprocessor software architecture
provides the system administrator with the runtime status of the Intel® Xeon Phi™ coprocessor card(s) installed into a
given system. There are two use cases that are of interest. The first is the rack-mounted server that is managed
remotely and that relies on 3rd-party management software. The second is a stand-alone pedestal or workstation
system that uses a local control panel application to access information stored on the system. Applications of this type
are designed to execute in a specific OS environment, and solutions for both the Linux* and the Windows operating
systems are available. Although these implementations may utilize common modules, each must address the particular
requirements of the target host OS.

There are two access methods by which the System Management (SM)/control panel component may obtain status
information from the Intel® Xeon Phi™ coprocessor devices. The “in-band” method uses the SCIF network and the
capabilities designed into the coprocessor OS and the host driver; delivers Intel® Xeon Phi™ coprocessor card status to
the user; and provides a limited ability to control hardware behavior. The same information can be obtained using the
“out-of-band” method. This method starts with the same capabilities in the coprocessors, but sends the information to
the Intel® Xeon Phi™ coprocessor card’s System Management Controller (SMC). The SMC can then respond to queries
from the platform’s BMC using the IPMB protocol to pass the information upstream to the user.

3.1 Power Management (PM)

Today’s power management implementations increasingly rely on multiple software pieces working cooperatively with
hardware to improve the power and performance of the platform, while minimizing the impact on performance. Intel®
MIC Architecture based platforms are no exception; power management for Intel® Xeon Phi™ coprocessors involves
multiple software levels.

Power management for the Intel® Xeon Phi™ coprocessor is predominantly performed in the background. The power
management infrastructure collects the necessary data to select performance states and target idle states, while the
rest of the Intel® Manycore Platform Software Stack (MPSS) goes about the business of processing tasks for the host OS.
In periods of idleness, the PM software places Intel® Xeon Phi™ coprocessor hardware into one of the low-power idle
states to reduce the average power consumption.

Intel® Xeon Phi™ coprocessor power management software is organized into two major blocks. One is integrated into
the coprocessor OS running locally on the Intel® Xeon Phi™ coprocessor hardware. The other is part of the host driver
running on the host. Each contributes uniquely to the overall PM solution.

 Page 66

PCIe Bus

Host User Mode

Host Kernel Mode
MIC Driver

Power
Management

Task

Comm. I/F

(SCIF)

Comm. I/F

(SCIF)

Coprocessor OS User Mode

Coprocessor OS Kernel Mode

Coprocessor OS Kernel Core

Tickless
Scheduler

Bootstrap

Clock
Infratructure

Timer
Infratructure

Coprocessor OS Power Mgmt

Core Idle StateP-State
Package

Idle State

PM State Selection

Core Idle StateP-State
Package

Idle State

PM State Implementation PM event
handker

PM console
 I/F

PM console
app

(SBOX PM MMIO)

Clock sources

(TSC, SBOX ETC)

Timer devices
(LAPIC)

SBOX PM MMIO
SBOX PM MMIO SMC

MIC Power Management Software Architecture

Figure 3-1. Intel® Xeon Phi™ Coprocessor Power Management Software Architecture

3.1.1 Coprocessor OS Role in Power Management

Because this code controls critical power and thermal management safeguards, modification of this code may void the
warranty for Intel® Xeon Phi™ coprocessor devices used with the modified code.

Power management capabilities within the coprocessor OS are performed in the kernel at ring0. The one exception is
that during PC6 exit, the bootloader plays an important role after loss of core power.

 Page 67

Primarily the coprocessor OS kernel code is responsible for managing:

 Selection and setting of the hardware’s performance level (P-states) including any “Turbo Mode” capability that
may be present.

 Data collection used to assess the level of device utilization; device thermal and power consumption readings must
be collected to support the P-state selection process.

 Modified P-state selection, which is based on externally imposed limits on card power consumption.

 Selection and setting of core idle states (C-states).

 Data collection to assess the level of device utilization that will be used to support core C-state selection.

 Save and restore CPU context on core C6 entry and exit.

 Orchestrate the entry and exit of the package to Auto C3 package state in order to ensure that the coprocessor OS
is able to meet the scheduled timer deadlines.

 Prepare the Intel® Xeon Phi™ coprocessor for entry into the PC6-state (that is, to make sure all work items are
completed before entering PC6-state), save and restore machine context before PC6 entry and after PC6 exit, and
return to full operation after PC6-state exit. The Bootloader then performs reset initialization and passes control to
the GDDR resident coprocessor OS kernel.

PM services executing at Ring0 provide the means to carry out many of the PM operations required by the coprocessor
OS. These services are invoked at key event boundaries in the OS kernel to manage power on the card. The active-to-
idle transition of the CPU in the kernel is one such event boundary that provides an opportunity for PM services in the
kernel to capture data critical for calculating processor utilization. In addition, idle routines use restricted instructions
(e.g. HLT or MWAIT) enabling processors to take advantage of hardware C-states. Other services perform or assist in
evaluating hardware utilization, selection, and execution of target P- and C-states. Finally, there are services that
directly support entry and exit from a particular C-state.

PC-state entry/exit refers to the dedicated execution paths or specific functions used during transition from a C0 state of
operation to a specific PC-state (entry) or from a specific PC-state back to the C0 state (exit). To minimize the time
required in transition, these dedicated execution paths must be tailored to the specific hardware need of the target PC-
state. Minimizing transition times enables PC-states to be used more frequently, thus reducing lower average power
consumption without any user-perceived impact on performance.

3.1.2 Bootloader Role in Power Management

The BootLoader is put into service during PC6 exit. This PC6-state lowers the VccP voltage to zero. As a result, the Intel®
Xeon Phi™ coprocessor cores begin code execution at the reset vector (i.e. FFFF_FFF0h) when the voltage and clocks are
restored to operational levels. However, unlike cycling power at the platform level or at a cold reset, an abbreviated
execution path designed specifically for PC6 state exit can be executed. This helps minimize the time required in
returning Intel® Xeon Phi™ coprocessor to full operation and prevents a full-scale boot process from destroying GDDR
contents that are retained under self-refresh. These shortened execution paths are enabled in part by hardware state
retention on sections that remain powered and through the use of a self-refresh mechanism for GDDR memory devices.

3.1.3 Host Driver Role in Power Management

The Host driver plays a central role in power management. Its primary power management responsibilities are:

 To monitor and manage the Intel® Xeon Phi™ coprocessor package idle states.

 To address server management queries.

 To drive the power management command/status interface between the host and the coprocessor OS.

 To interface with the host communication layer.

 Page 68

3.1.4 Power Reduction

The PM software reduces card power consumption by leveraging the Intel® Xeon Phi™ coprocessor hardware features
for voltage/core frequency scaling (P-states), core idle states, and package idle states. By careful selection of the
available P-states and idle states, the PM software opportunistically reduces power consumption without impacting the
application performance. For all the idle and P-states, software follows a two-step approach: state selection followed by
state control or setting. The architecture reflects this by grouping the modules as either state-selection or state-setting
modules.

3.1.4.1 P-State Selection

The PM software uses Demand Based Scaling (DBS) to select the P-state under which the cores operate. “Demand”
refers to the utilization of the CPUs over a periodic interval. An increase in CPU utilization is seen as a signal to raise the
core frequency (or to reduce the P-state) in order to meet the increase in demand. Conversely, a drop in utilization is
seen as an opportunity to reduce the core frequency and hence save power. The primary requirement of the P-state
selection algorithm is to be responsive to changes in workload conditions so that P-states track the workload
fluctuations and hence reduce power consumption with little or no performance impact. Given this sensitivity of the P-
state selection algorithm to workload characteristics, the algorithm undergoes extensive tuning to arrive at an optimum
set of parameters. The software architecture allows for extensive parameterization of the algorithms and even the
ability to switch algorithms on the fly. Some of the parameters that can be changed to affect the P-state selection are:

 Evaluation period over which utilization values are calculated.

 Utilization step size over which a P-state selection is effective.

 P-state step size that controls the P-state gradient between subsequent selections.

 Guard bands around utilization thresholds to create a hysteresis in the way the P-states are increased and
decreased. This prevents detrimental ping-pong behavior of the P-states.

The architecture supports user-supplied power policy choices that can map to a set of predefined parameters from the
list above. Other variables such as power budget for the Intel® Xeon Phi™ coprocessor hardware, current reading, and
thermal thresholds can factor into the P-state selection either as individual upper limits that cause the P-states to be
throttled automatically, or can be combined in more complex ways to feed into the selection algorithm.

The coprocessor OS has exclusive responsibility for P-state selection. The P-state selection module contains the
following routines:

 Initialization

 Evaluation task

 Notification handler

The P-state selection module has interfaces to the core coprocessor OS kernel, the P-state setting module, and the PM
Event Handler. The architecture keeps this module independent of the underlying hardware mechanisms for setting P-
states (i.e., detecting over-current or thermal conditions, etc.).

The P-state selection module registers a periodic timer task with the coprocessor OS core kernel. The “evaluation
period” parameter decides the interval between consecutive invocations of the evaluation task. Modern operating
system kernels maintain per-CPU running counters that keep track of the cumulative time that the CPU is idle, that the
CPU executes interrupt code, that the CPU executes kernel code, and so on. The evaluation task wakes up every
evaluation time period, reads from these per-CPU counters the total time the that CPU was idle during the last
evaluation window, and calculates the utilization for that CPU. For the purpose of calculating the target P-state, the
maximum utilization value across all CPUs is taken. Since the evaluation task runs in the background while the CPUs are
executing application code, it is important that software employs suitable methods to read an internally consistent value
for the per-CPU idle time counters without any interference to code execution on the CPUs.

 Page 69

Identify

Min_Avg_Idle_Time

of all threads

Clear all PM data

structures and set

initial conditions

Initialization

Set P-state based on

target P-state and

policy table Is (Temp <

Threshold)

No

Yes

Is (Icc <

threshold)

Decrease target

P-state

No

Yes

Is

(Max_Utilization <

ThD1)

No

Yes

Is

(Max_Utilization >

ThD2)

No

Identify

Max_Utilization value

of all threads

Is end of

evaluation

period?

No

Increase target

P-state

Set target Idle_State

Toggle to free data

structure and set initial

condition for next

evaluation period

Calculate for each

logical processor:

 Utilization

 Average Idle Time

Yes

Notify KMD as to the

new target Idle_State

Yes

No

A

A

Clear PM data

structures after

completing evaluation

Figure 3-2. Power Reduction Flow

 Page 70

Once the maximum utilization value (as a percentage of evaluation period) across all CPUs is computed, the evaluation
task has to map this value to a target P-state. There are a number of ways this can be accomplished. Figure 3-2 shows
one way this can be done. Thresholds ThD1 and ThD2 provide the hysteresis guard band within which the P-state
remains the same. The goal of this algorithm is to raise P-states (that is, lower core frequency) progressively till the
maximum utilization value is increased to a configurable threshold value (THD2) value. As workload demand increases
and the maximum utilization increases beyond this threshold, the algorithm decreases the target P-state (increase core
frequency) still keeping within power and thermal limits. The threshold values, P-state increase and decrease step size,
are all parameters that either map to a policy or set explicitly.

The P-state selection module has to handle notifications from the rest of the system and modify its algorithm
accordingly. The notifications are:

 Start and stop thermal throttling due to conditions such as CPUHOT.

 Changes to the card power budget.

 Thermal threshold crossings.

 Changes to power policy and P-state selection parameters.

The notifications bubble up from the PM Event Handler and can be totally asynchronous to the evaluation task. The
effect of these notifications can range from modifications to P-state selection to a complete pause or reset of the
evaluation task.

The host driver generally does not play an active role in the P-state selection process. However, the host driver
interfaces with the coprocessor OS P-state selection module to get P-state information, to set or get policy, and to set or
get parameters related to P-state selection.

3.1.4.2 P-State Control

The P-state control module implements the P-states on the target Intel® Xeon Phi™ coprocessor hardware. The process
of setting P-states in the hardware can vary between Intel® Xeon Phi™ coprocessor products. Hence the P-state module,
by hiding the details of this process from other elements of the PM software stack, makes it possible to reuse large parts
of the software between different generations of Intel® Xeon Phi™ coprocessors.

P-state control operations take place entirely within the coprocessor OS. The P-state control module has the following
main routines:

 P-state table generation routine

 P-state set/get routine

 SVID programming routine

 Notifier routine

The P-state control module exports:

 Get/set P-state

 Register notification

 Read current value

 Set core frequency/voltage fuse values

On Intel® Xeon Phi™ coprocessor devices (which do not have an architecturally defined mechanism to set P-states, like
an MSR write), the mapping of P-states to core frequency and voltage has to be generated explicitly by software and
stored in a table. The table generation routine takes as parameters:

 Core frequency and voltage pairs for a minimal set of guaranteed P-states (Pn, P1 and P0) from which other pairs
can be generated using linear interpolation.

 Core frequency step sizes for different ranges of the core frequency.

 Page 71

 Mapping between core frequency value and corresponding MCLK code.

 Mapping between voltage values and SVID codes.

There are hardware-specific mechanisms by which these P-states are made available to the coprocessor OS. In the
Intel® Xeon Phi™ coprocessor, these values are part of a preset configuration space that is read by the bootloader and
copied to flash MMIO registers and read by the P-state control module. This routine exports the “Set core
frequency/voltage fuse configuration” so that the coprocessor OS flash driver that initializes the MMIO registers
containing the fuse configuration can store them before they get initialized.

The P-state Get/Set routine uses the generated P-state table to convert P-states to core frequency and voltage pairs and
vice versa.

Other parts of the coprocessor OS may need to be notified of changes to core frequency. For example parts of the
coprocessor OS that use the Timestamp Counter (TSC) as a clock source to calculate time intervals must be notified of
core frequency changes so that the TSC can be recalibrated. The notifier routine exports a “register notification”
interface so that other routines in the coprocessor OS can call-in to register for notification. The routine sends a
notification any time a core frequency change occurs as a result of a P-state setting.

3.1.4.3 Idle State Selection

Prudent use of the core and package idle states enables the Intel® Xeon Phi™ coprocessor PM software to further
reduce card power consumption without incurring a performance penalty. The algorithm for idle state selection
considers two main factors: the expected idle residency and the idle state latency. In general, the deeper the idle state
(and hence the greater the power saving), the higher the latency. The formula for deciding the particular idle state to
enter is of the form:

Expected idle residency >= C * (ENTRY_LATENCYCx + EXIT_LATENCYCx)

Where:

- C is a constant that is always greater than one and determined by power policy. It can also be set
explicitly.

- ENTRY_LATENCYCx is the time required to enter the Cx idle state.
- Exit_LATENCYCx is the time required to exit the Cx idle state.

The comparison is performed for each of the supported idle states (Cx) and the deepest idle state that satisfies this
comparison is selected as the target idle state. If none of the comparisons are successful, then the target idle state is set
to C0 (no idle state).

The expected idle residency for a CPU is a function of several factors; some of which are deterministic such as
synchronous events like timers scheduled to happen on the CPU at certain times in the future (that will force the CPU
out of its idleness) and some of which are nondeterministic such as interprocessor interrupts.

In order to keep the idle-state selection module independent of the specific Intel® Xeon Phi™ coprocessor, the PM
software architecture includes data structures that are used to exchange information between the idle-state selection
and hardware-specific idle state control modules, such as the:

 Number of core idle states supported by the hardware

 Number of package idle states supported for each core and package idle state

 Name of the state (for user-mode interfaces)

 Entry and exit latency

 Entry point of the routine to call to set state

 Average historical residency of state

 Page 72

 TSC and LAPIC behavior in this idle state

 Bitmasks marking core CPUs that have selected this idle state

The idle-state control module fills in most of the information in these data structures.

3.1.4.3.1 Core Idle State Selection

The Intel® Xeon Phi™ coprocessor supports a Core C1 idle state and a deeper Core C6 idle state. Both core idle states are
a logical AND operations of the individual idle states of the CPUs that make up the core. While entry and exit into the
core C1 state needs no software intervention (except the individual CPUs executing a HALT), Core C6 entry and exit
require the CPU state to be saved/restored by software. Hence a deliberate choice has to be made by software running
on the CPU whether to allow the core (of which the CPU is part) transition to Core C6 state.

3.1.4.3.2 The coprocessor OS Role in Core Idle State Selection

Core idle state selection happens entirely in the coprocessor OS. As mentioned before, modern operating systems have
an architecturally defined CPU idle routine. Entry to and exit from idleness occurs within this routine. The core idle-
selection module interfaces with this routine to select the core idle state on entry and to collect idleness statistics on
exit (to be used for subsequent idle state selections). The core idle state selection module has the following main
routines:

 Core idle select

 Core idle update

 Core idle get and set parameter

Figure 3-2 shows the Core C6 selection process in the Intel® Xeon Phi™ coprocessor.

 Page 73

 Did CPU exit C6?

Skip Core C6.

Select C1 idle

state.

Yes

Is CPU bootstrap

processor or sibling?

 Set CoreC6Ready

state for CPU

 Prepare for C6

 Set Core C6 Enable

Minimum Idle time for core >

K6 * C6Latency ?

Yes Wait with timeout for

siblings to exit C6

Yes

Estimate wakeup timestamp for CPU.

Find smallest estimated wakeup

timestamp of all idle CPUs in Core.

ENTER Idle_State

Last CPU in core to go

idle ?

Yes

Insert core node structure into idle list

for Auto-C3 evaluation.

Store earliest wakeup time for

core in core node structure.

Set CPU idle state.

Get timestamp of next

scheduled timer event for CPU.

Enter core

idle state

select

routine

Note: The minimum idle time for core = Smallest wakeup

timestamp – Current timestamp.

*K6 is CoreC6 Latency multiplierNo

Is CPU bootstrap

processor?

Yes
Set Up Auto-C3.

Wake up bootstrap processor.

Last CPU to go idle ?
No

Yes

No

No

Figure 3-3. Core C6 Selection

 Page 74

3.1.4.3.2.1 Core Idle Select

This routine interfaces to the coprocessor OS CPU idle routine and gets control before the CPU executes the idle
instruction (HALT in the case of Intel® Xeon Phi™ coprocessor). The core idle select routine runs the algorithm to
compute the expected idle residency of the CPU. The main components in the idle residency calculation are the next
timer event time for the CPU and the historic idle residency values for the CPU.

In the case of core C6 for the Intel® Xeon Phi™ coprocessor, the algorithm running on the last CPU in the core to go idle
can optionally estimate the idle residency of the core by taking into account the expected idle residency of other idle
CPUs in the core and the time elapsed since the other CPUs went idle.

3.1.4.3.2.2 Core Idle Update

This routine interfaces to the coprocessor OS CPU idle routine and gets control after the CPU wakes up from idle. It
records the actual residency of the CPU in the idle state for use in the computation of the historic idle residency
component in the core idle selection.

3.1.4.3.2.3 Core Idle Get/Set Parameter

This routine provides interfaces to user-mode programs that allow them to get and set core idle state parameters such
as the latency constant C used in the equation to determine target core idle state.

3.1.4.3.3 Package Idle State Selection

The Intel® Xeon Phi™ coprocessor supports package idle states such as Auto-C3 (wherein all cores and other agents on
the ring are clock gated), Deeper-C3 (which further reduces the voltage to the package), and Package C6 (which
completely shuts off power to the package while keeping card memory in self-refresh). Some of the key differences
between the package idle states and the core (CPU) idle states are:

 One of the preconditions for all package idle states is that all the cores be idle.

 Unlike P-states and core idle states, package state entry and exit are controlled by the Intel® Xeon Phi™
coprocessor host driver (except in Intel® Xeon Phi™ coprocessor Auto-C3 where it is possible to enter and exit the
idle state without host driver intervention).

 Wake up from package idle states requires an external event such as PCI Express* traffic, external interrupts, or
active intervention by the Intel® Xeon Phi™ coprocessor driver.

 Idle residency calculations for the package states take into account the idle residency values of all the cores.

 Since the package idle states cause the Timestamp counter (TSC) and the local APIC timer to freeze, an external
reference timer like the SBox Elapsed Time Counter (ETC) on the Intel® Xeon Phi™ coprocessor can be used, on
wake up from idle, to synchronize any software timers that are based on the TSC or local APIC.

3.1.4.3.4 The coprocessor OS Role in Package Idle State Selection

The coprocessor OS plays a central role in selecting package idle states. The package idle state selection is facilitated in
the coprocessor OS by three main routines:

 package idle select

 package idle update

 get/set package idle parameter

3.1.4.3.4.1 Package Idle Select

The last CPU that is ready to go idle invokes the package idle-select routine. As with the core idle state selection
algorithm, the package idle-select algorithm bases its selection on the expected idle residency of the package and the

 Page 75

latency of the package idle state. The expected idle residency is calculated using the earliest scheduled timer event
across all cores and the historical data on package idleness.

On the Intel® Xeon Phi™ coprocessor, the coprocessor OS selects the PC3 and PC6 package states. Figure 3-4 shows the
software flow for package idle-state selection.

While selecting a package idle state, the coprocessor OS PM software can choose to disregard certain scheduled timer
events that are set up to accomplish housekeeping tasks in the OS. This ensures that such events do not completely
disallow deeper package idle states from consideration. It is also possible for the coprocessor OS package idle-state
selection algorithm to choose a deeper idle state (such as PC6), and still require that the package exit the deep idle state
in order to service a timer event. In such cases, the coprocessor OS informs the host PM software not only the target
package idle-state selected but also the desired wake up time from the idle state.

 Page 76

Entered only on the

BSP

All APs idle?

Yes

Get earliest wake up

time across all cores

Auto C3
selection
routine

Earliest wake up time

> Auto C3 latency?

Yes

Set C3WakeUpTimer count to exit
AutoC3 X µsecs before the

earliest wake up event.

Schedule AutoC3 exit task after
X µsecs.

Prepare for AutoC3.

Signal host driver.

Enter C1 idle state.

Auto C3 Entry Algorithm
Auto C3 Exit Algorithm (BSP)

 C3WakeUpTimer times out.
 Package exits AutoC3.
 Local APICs run again.
 BSP wakes up due to

AutoC3 wake up task.

Update current time

using ETC.

Wake up all idle APs

Reprogram BSP LAPIC

for next timer event

Exit AutoC3.

Auto C3 Exit Algorithm (AP)

BSP AutoC3 wake up
timer wakes up all idle
APs. APs enter AC3
exit routine.

Reprogram AP LAPIC

for next timer event.

Enter idle routine.

Earliest wake up time

> Package C6 latency?

GoTo Package C6 entry

No

Yes

No

No

Figure 3-4. Package C-state Selection Flow

 Page 77

3.1.4.3.4.2 Package Idle Update

This routine is invoked upon wake up from a package idle state. It records the actual time that the package was idle,
which is then used in the idle residency calculation. Since the TSC and the local APIC timers freeze during a package idle
state, this routine uses an external clock (such as the SBox ETC) on Intel® Xeon Phi™ coprocessor cards to measure the
package idle time.

3.1.4.3.5 Host Driver Role in Package Idle State Selection

The PM task in the host driver plays a key role in the package idle-state selection process. Though the coprocessor OS
selects the package idle state based on its assessment of the expected idle residency, there are other reasons that might
cause the host PM task to modify this selection. Some of these are:

 The coprocessor OS selects PC3 based on the expected residency of the cores. However, PC3 depends on the
idleness of both the core and the uncore parts of the package. So, it is possible for a PC3 selection by the
coprocessor OS to be overridden by the host driver if it determines that some part of the uncore chain is busy.

 If the idle residency estimate by the coprocessor OS for a certain package idle state turns out to be too
conservative and the package stays in the selected idle state longer than the estimated time, the host driver can
decide to select a deeper idle state than the one chosen by the coprocessor OS.

 Package idle states, such as DeepC3 and PC6 on the Intel® Xeon Phi™ coprocessor, require the active intervention
of the host driver to wake up the package so that it can respond to PCI Express* traffic from the host. Therefore,
these deeper idle states might be unsuitable in scenarios where the card memory is being accessed directly by a
host application that bypasses the host driver. The host driver should detect such situations and override the
deeper idle-state selections.

3.1.4.3.6 Coprocessor OS-to-Host Driver Interface for Package Idle Selection

The coprocessor OS and the host driver use two main interfaces to communicate their package idle state selections:

 The coprocessor OS-host communication interface through SCIF message.

 The PM state flags such as the µOSPMState and hostPMState. In the Intel® Xeon Phi™ coprocessor, these flags are
implemented as registers in the MMIO space. The µOSPMState is written by the coprocessor OS to indicate its state
selection, and read by the host driver and vice versa for the hostPMState flag.

The SCIF API and the package idle control API are implemented so as to be hardware independent.

3.1.4.4 Idle State Control

The idle state control function sets the cores (or the package) to the selected idle state. While controlling the core’s idle
state is primarily handled by the coprocessor OS, controlling the package idle state requires co-ordination between the
host driver and the bootstrap software.

3.1.4.4.1 Coprocessor OS Role in Idle State Control

The idle-state control module in the coprocessor OS implements the selected core or package idle state on the target
Intel® Xeon Phi™ coprocessor. It hides all the hardware details from the selection module. It initializes the data
structures that it shares with the idle-state selection module with information on idle states specific to the Intel® Xeon
Phi™ coprocessor. The interface to the selection module is mainly through these data structures. Table 3-1 lists some
low-level routines in this module that are common to all idle states.

 Page 78

Table 3-1. Routines Common to All Package Idle States

Routine Description

Save_CPU_State Saves the register state of the selected logical processor. The CPU state includes
basic program execution registers, x87 FPU registers, control registers, memory
management registers, debug registers, memory type range registers (MTRR), and
machine specific registers (MSR). The VPU register context is also saved.

Restore_CPU_State Restores the register state that was saved by the Save_CPU_State routine.

Save_Uncore_State Saves the Intel® Xeon Phi™ coprocessor hardware states that are not associated
with CPUs (e.g. SBox). This function is used to preserve the uncore context in
preparation for or during the PC6 entry sequence.

Restore_Uncore_State Restores the Intel® Xeon Phi™ coprocessor hardware state that was saved by the
Save_Uncore_State routine.

3.1.4.4.2 Core Idle State Control in the Coprocessor OS

There are two routines that control the idle state of the core (Core C6): CC6_Enter and CC6_Exit.

3.1.4.4.2.1 CC6_Enter

The CC6_Enter routine starts when Core C6 is selected to prepare the CPU for a CC6 entry. However, if one or more
other CPUs either are non-idle or did not enable C6, then the core might not enter the C6 idle state. The return from this
routine to the caller (that is, to the CPU idle routine) looks exactly the same as a return from a Core C1 (return from
HALT). The only way software using an Intel® Xeon Phi™ coprocessor can figure out that a CPU entered Core C6 is when
the CPU exits Core C6 and executes its designated CC6 exit routine. The essential sequence of actions in this routine is as
follows:

1. Start CC6_Enter.
2. Reset the count of CPUs that have exited CC6 (only for last CPU in core going idle).
3. Save CR3.
4. Switch page tables to the identity map of the lower 1MB memory region.
5. Run Save_CPU_State.
6. Enable CC6 for the selected CPU.
7. Enable interrupt and HALT.

The real mode trampoline code runs in lower memory (first MB of memory), and the CC6_Enter entry point is an address
in this memory range. The idle-state control driver copies the trampoline code to this memory area during its
initialization. It is also important to make sure that this memory range is not used by the bootloader program.

3.1.4.4.2.2 CC6_Exit

When cores exit from CC6 (as a result of an interrupt to one or more CPUs in the core), they come back from reset in
real mode and start executing code from an entry point that is programmed by the Enable_CC6 routine. The essential
sequence of actions in the CC6 exit routine is as follows:

1. Start CC6_Exit.
2. Run trampoline code to set up for 64-bit operation.
3. Detect the CPU number from the APIC identification number.
4. Restore the CPU state.
5. Restore CR3.
6. Increment the count of CPUs in the core that have exited CC6.
7. Enable interrupt and HALT.

 Page 79

As shown in Figure 3-5, it is possible for a CPU to exit CC6 while remaining HALTED and to go back to CC6 when the CC6
conditions are met again. If a CPU stays HALTED between entry and exit from CC6, it is not required that the CPU state
be saved every time it transitions to CC6.

C0

 (CPU active)

C1

(CPU Halted)

Core C6

CC6 enabled in CPUCC6 disabled in CPU

INTERRUPT

All CPUs enabled for CC6 and HALTEDINTERRUPT

Figure 3-5 CPU Idle State Transitions

3.1.4.4.3 Package Idle State Control

Table 3-2 Package Idle State Behavior in the Intel® Xeon Phi™ Coprocessor

Package
Idle State

Core State
Uncore
State

TSC/LAPIC C3WakeupTimer PCI Express* Traffic

PC3 Preserved Preserved Frozen
On expiration,
package exits PC3

Package exits PC3

Deep C3 Preserved Preserved Frozen No effect Times out

PC6 Lost Lost Reset No effect Time out

As shown in Table 3-2, the package idle states behave differently in ways that impact the PM software running both on
the card as well as on the host. The idle-state control driver handles the following key architectural issues:

 LAPIC behavior: The LAPIC timer stops counting forward when the package is in any idle state. Modern operating
systems support software timers (like the POSIX timer) that enable application and system programs to schedule
execution in terms of microseconds or ticks from the current time. On the Intel® Xeon Phi™ coprocessor, due to the
absence of platform hardware timers, the LAPIC timer is used to schedule timer interrupts that wake up the CPU to

 Page 80

service the software timer requests. When the LAPIC timer stops making forward progress during package idle
states, timer interrupts from the LAPIC are suspended. So, the software timers cannot be serviced when the
package is in an idle state. In order for the operating system to honor such software timer requests, the package
idle state control software enlists the services of hardware timers, such as the C3WakeupTimer in the Intel® Xeon
Phi™ coprocessor, or the host driver to wake up the card in time to service the scheduled timers.

 TSC behavior: On the Intel® Xeon Phi™ coprocessor, the TSC is used as the main clock source to maintain a running
clock of ticks in the system. When the TSC freezes during package idle states, the software must be able to rely on
an external reference clock to resynchronize the TSC based clock upon exit from the package idle state. On the
Intel® Xeon Phi™ coprocessor, the SBox Elapsed Time Counter can be used for this purpose.

 Effect of PCI Express* traffic: While PCI Express* traffic brings the card out of a Package C3 idle state, it does not
do so for deeper idle states such as DeepC3 or PC6. Also, the transition to DeepC3 or PC6 from PC3 does not
happen automatically but requires active intervention from host software. Consequently, when the host driver
places the card in one of these deep package idle states, it has to ensure that all subsequent PCI Express* traffic to
the card be directed through the host driver. This makes it possible for the host driver to bring the card out of one
of these deeper package idle states so that the card can respond to the subsequent PCI Express* traffic.

 Core and uncore states: While the core and uncore states are preserved across PC3 and DeeperC3 idle states entry
and exit, they are not preserved for PC6. So, when the host driver transitions the package to PC6 from PC3 or
DeepC3, it has to wake up the card and give the coprocessor OS a chance to save the CPU state as well as to flush
the L2 cache before it puts the package in PC6 idle state.

Package idle state control is implemented both in the coprocessor OS and in the host driver.

3.1.4.4.3.1 Package Idle State Control in the Coprocessor OS

The coprocessor OS role in package idle-state control is limited to the PC3 and PC6 idle states. DeepPC3 is controlled by
the host driver, and the coprocessor OS has no knowledge of it. Coprocessor OS package idle state control mainly
consists of the following activities:

 Prepare the coprocessor OS and the hardware to wake up from idle state in order to service timer interrupts.

 Save the core/uncore state and flush L2 cache, when necessary.

 On exit from package idle state reprogram LAPIC timers and synchronize timekeeping using an external reference
clock such as the ETC on the Intel® Xeon Phi™ coprocessor.

 Send and receive messages to the host driver, and update the µOSPMstate flag with package idle state as seen
from the coprocessor OS.

3.1.4.4.3.2 PC3_Entry

This function handles the package C3 idle state entry. As shown in Figure 3-6, this function is called from the core idle-
state control entry function of the last CPU in the system to go idle. The core idle-selection module selects the package
idle state in addition to the CPU idle state for the last CPU going idle and calls the core idle-state control entry function.
The sequence of actions this function executes is:

1. Start PC3_Entry.
2. The last CPU going idle sets up the C3WakeupTimer so that the package will exit PC3 in time to service the earliest

scheduled timer event across all CPUs.
3. Record current tick count and reference clock (ETC) time.
4. Set µOSPMState flag to PC3.
5. Send message to host driver with target state and wake up time.
6. CPU HALTS.

There might be conditions under which the time interval to the earliest scheduled timer event for the package is larger
than what can be programmed into the C3WakeupTimer. In such cases the coprocessor OS relies on the host driver to

 Page 81

wake up the package. The package idle-state readiness message that the coprocessor OS sends to the host PM software
could optionally include wake up time. The host driver will wake up the package at the requested time.

3.1.4.4.3.3 PC3_Exit

An exit from the package C3 idle state happens when the C3WakeupTimer expires and exits from PC3 or when PCI
Express* traffic arrives and causes the package to exit PC3. Figure 3-6 illustrates the former. It is important to remember
that in either case, when the package exits PC3, it triggers the GoalReached interrupt when the core frequency reaches
the set value. One possible sequence of events that can happen in this case is as follows:

1. The C3WakeupTimer expires and the package exits PC3.
2. The GoalReached interrupt wakes up BSP.
3. The BSP processes PC3 exit.

Although the package is set up for PC3 and all the CPUs are HALTED, there is no guarantee that the package actually
transitioned to PC3 idle. So, any CPU that wakes up after PC3_Entry is executed, must check to make sure that a
transition to PC3 idle did indeed take place. One way that this can be done is through the hostPMState flag that is set by
the host when it confirms that the package is in PC3 idle.

The sequence of steps taken by the PC3_Exit routine is as follows:

1. Start PC3_Exit.
2. Check the hostPMState flag to confirm transition to PC3.
3. If the hostPMState flag is not set, then set the µOSPMState flag to PC0.
4. Send UOS_PM_PC3_ABORT message to the host driver.
5. Return .
6. Read the ETC and calculate package residency in AutoC3.
7. Update kernel time counters.
8. Send AutoC3_wakeup IPI to all APs.
9. Reprogram the Boot Strap Processor (BSP) LAPIC timer for earliest timer event on BSP.
10. Set the µOSPMState flag to PC0.
11. Send UOS_PM_PC3_WAKEUP message to the host driver.
12. Return.

The sequence of steps taken by the AC3_wakeup_IPI _handler (on all Application Processors (APs)) is:

1. Reprogram LAPIC timer for earliest timer event on CPU
2. Return

 Page 82

Coprocessor
OS ready for

PC3

Package
exited PC3

Package in
PC3

All agents on ring idle

PCIe traffic (or)
C3 wake up timer

expired

Coprocessor
OS CPU
wakeup

GoalReached interrupt.
PCIe door bell interrupt

PCIe door bell interrupt

PCIe door bell interrupt

IPI, door bell interrupt

Coprocessor
OS in PC0

Figure 3-6. Package C-state Transitions

3.1.4.4.3.4 PC6_Entry

The coprocessor OS runs the PC6_Entry routine either when the coprocessor OS idle-state selection module selects PC6
as the target package idle state or when the host PM software decides that the package has been in PC3 long enough to
warrant a deeper idle state like PC6. In the latter case, the host software sends a PC6_Request message to the
coprocessor OS that invokes the PC6_Entry routine. Architecturally, the PC6 idle state is similar to the APCI S3 suspend
state, wherein the memory is in self refresh while the rest of the package is powered down. The sequence of actions
this routine executes consists of:

1. PC6_Entry (on BSP)
2. Save CR3.
3. Switch page tables (to identity map for lower 1MB memory region).
4. Send C6_Entry IPI to all APs.
5. Wait for APs to finish PC6 Entry preparation.
6. Save uncore context to memory.
7. Record the ETC value and current tick count.
8. Save BSP context to memory.
9. Flush cache.
10. Set the µOSPMState flag to PC6.

 Page 83

11. Send PC6 ready message to host.
12. HALT BootStrap Processor (BSP).
Or

13. PC6 Entry (on AP).
14. Save CR3.
15. Switch page tables (to identity map for lower 1MB memory region).
16. Save AP context to memory.
17. Set flag to mark PC6 Entry completion.
18. Flush cache.
19. HALT AP.

The PC6 entry implementation takes advantage of the fact that when the PC6 selection is made, it is more than likely
that most of the cores are already in Core C6, and therefore have already saved the CPU context. If the L2 cache is
flushed before the last CPU in every core prepares to go to Core C6, then the PC6 Entry algorithm might not need to
wake up CPUs (from core C6) only to flush the cache. This reduces the PC6 entry latencies and simplifies the design, but
the cost of doing a L2 cache flush every time a core is ready for CC6 has to be factored in.

3.1.4.4.3.5 PC6 Exit

The host driver PM software is responsible for bringing the package out of a PC6 idle state when the host software
attempts to communicate with the card. The implicit assumption in any host-initiated package idle-state exit is that after
the card enters a deep idle state, any further communication with the card has to be mediated through the host PM
software. Alternatively, the host PM software can bring the card out of a package idle state if the coprocessor OS on the
card has requested (as part of its idle entry process) that it be awakened after a certain time interval.

The sequence of actions this routine executes consists of:

1. PC6_Exit (BSP).
2. Begin BSP execution from the reset vector because of the VccP transition from 0 to minimum operational

voltage and the enabling of MCLK.
3. BootLoader determines that this is a PC6 Exit (as opposed to a cold reset).
4. BootLoader begins execution of specific PC6_Exit sequence.
5. Bootstrap passes control to _PC6_Exit_ entry point in GDDR resident coprocessor OS.
6. BSP restores processor context.
7. BSP restores uncore context.
8. BSP reads the SBox ETC and updates kernel time counters.
9. BSP wakes up APs.
10. BSP sets µOSPMState to PC0.
11. BSP sends coprocessor OS_Ready message to host driver .

Or

1. PC6_Exit (AP).
2. AP begins execution of trampoline code and switches to 64 bit mode.
3. AP restores processor state.
4. Signals PC6_Exit complete to BSP.

 Page 84

Entered from the
Auto C3 selection
routine

Broadcast PC6 command to

all CPUs

Enter C1 idle state

Package C6 entry
 (BSP)

Wait for all CPUs to signal

PC6 readiness

Save BSP context.

Save uncore context.

Flush cache.

Signal PC6 readiness to hos.t

Entered on AP due
to BSP command
(i.e., PC6_Entry IPI)

Save context.

Flush cache.

Enter C1 idle state

Signal PC6 readiness to BSP

Package C6 entry
 (AP)

Figure 3-7 Package C6 Entry and Exit Flow

3.1.4.4.3.6 Bootloader Role in Idle State Control

The bootloader program co-ordinates the exit from PC6 as well as facilitating the waking up of cores from CC6. The
Bootloader interfaces with both the coprocessor OS and the host Intel® MPSS driver to enable these transitions. The
main interfaces are:

 Interface to reserve memory in the first megabyte of GDDR to install Core C6 wake up code

 Interface with host Intel® MPSS driver to obtain PC6 entry point into the coprocessor OS kernel.

 Interface with the host Intel® MPSS driver to detect a PC6 exit as against a cold reset.

One Intel® Xeon Phi™ coprocessor implementation option is for the host Intel® MPSS driver to send the PC6 exit entry
point as part of a BootParam structure that is located in a region of GDDR memory at a well-known address between the
host Intel® MPSS driver and the Bootloader.

The hostPMState MMIO register could be used by the Bootloader to distinguish a PC6 exit from cold reset.

Every Intel® Xeon Phi™ coprocessor core has a block of registers that is initialized by the Bootloader, and then locked
against subsequent write access for security reasons. However, since these register contents are lost during CC6, the

 Page 85

Intel® Xeon Phi™ coprocessor reserves a block of SBox MMIO registers that are used to maintain a copy of these secure
register contents. It is the Bootloader’s responsibility to initialize this block with the contents of the control registers
during the boot up process. Subsequently, when a core wakes up from CC6, the µcode copies the contents of the SBox
register block back into the core registers.

3.1.5 PM Software Event Handling Function

One of the key roles for the Intel® MIC Architecture PM software is the handling of power and thermal events and
conditions that occur during the operation of the Intel® Xeon Phi™ coprocessor. These events and conditions are
handled primarily by the coprocessor OS PM Event Handler module. The number and priority of these events are
hardware dependent and implementation specific. However, these events fall into two basic categories: proactive and
reactive.

For example, the Intel® Xeon Phi™ coprocessor has the ability to notify the coprocessor OS when the die temperature
exceeds programmed thresholds, which allows the software to act proactively. On the other hand, the coprocessor OS
software acts reactively when an OverThermal condition occurs in the die by automatically throttling the core frequency
to a predetermined lower value and interrupting the CPU.

 Page 86

Table 2-1 lists the events and conditions that the coprocessor OS should handle for the Intel® Xeon Phi™ coprocessor,
their source, indications, and suggested software response.

 Page 87

Table 3-3. Events and Conditions Handled by the Coprocessor OS

Event or Condition Source Indication Suggested Coprocessor OS
Action

Remarks

CPUHOT Raised either
by the
sensors in the
die, the VR,
or the SMC

TMU interrupt
and MMIO
status register

Hardware automatically
throttles core frequency to a
low value. Coprocessor OS
resets its P-state evaluation
algorithm, programs
frequency and voltage to
correspond to configurable
values and enables the
GoalReached interrupt.

When the hardware
exits the CPUHOT
condition, it locks on
to the frequency
programmed by the
coprocessor OS, and
raises the
GoalReached
interrupt.
Coprocessor OS
restarts the P-state
evaluation algorithm.

SW Thermal
threshold 1 crossed
on the way up.

TMU TMU interrupt
and MMIO
status register

 Coprocessor OS sets max P-
state to P1. The new max P-
state takes effect during the
next P-state selection pass.

SW Thermal
threshold 2 crossed
on the way up.

TMU TMU interrupt
and MMIO
status register

 Coprocessor OS sets max P-
state to a configurable value
between P1 and Pn. Affects
P-state change immediately.

SW Thermal
threshold 1 crossed
on the way down.

TMU TMU interrupt
and MMIO
status register

 Coprocessor OS sets max P-
state to P0 (turbo). The new
max P-state takes effect
during the next P-state
selection pass.

PWRLIMIT SMC I2C interrupt Coprocessor OS reads SMC
power limit value and sets
low and high water mark
thresholds for power limit
alerting.

SMC will interrupt
the coprocessor OS
when it has a new
power limit setting
from the platform.

PWRALERT SMC TMU interrupt,
MMIO status
register

Raised when the card power
consumption crosses either
the low or the high threshold
set by the coprocessor OS.
The coprocessor OS adjusts
P-state accordingly.

Over current limit SVID Coprocessor OS P-state
evaluation algorithm reads
SVID current output and
compares it to preset limits
for modifying the P-state.

Fan speed SMC MMIO register Coprocessor OS P-state
evaluation algorithm reads
fan speed and compares it to
preset limits for modifying
the P-state.

 Page 88

3.1.6 Power Management in the Intel® MPSS Host Driver

The host driver power management (PM) component is responsible for performing PM activities in cooperation with the
coprocessor OS on an Intel® Xeon Phi™ coprocessor. These activities are performed after receiving events or
notifications from the control panel, the coprocessor OS, or the host operating system. The PM component in the host
driver and the PM component in the coprocessor OS communicate using the SCIF.

The Power Management for the host driver falls into four functional categories:

 Control panel (Ring3 module) interface

 Host OS power management

 Host-to-coprocessor OS communication and commands

 Package states handling

3.1.6.1 PM Interface to the Control Panel

The Host driver implements services to collect user inputs. It is an interface (e.g., Sysfs on Linux*) by which the control
panel reads PM status variables such as core frequency, VID, number of idle CPUs, power consumption, etc. The
interface can also be used by other PM tools and monitoring applications to set or get PM variables.

3.1.6.2 Host OS Power Management

Power management works on two levels. It can be applied to the system as a whole or to individual devices. The
operating system provides a power management interface to drivers in the form of entry points, support routines, and
I/O requests. The Intel® MPSS host drivers conform to operating system requirements and cooperate to manage power
for its devices. This allows the operating system to manage power events on a system wide. For example, when the OS
sets the system to state S3; it relies upon the Intel® MPSS host driver to put the device in the corresponding device
power state (D-state) and to return to the working state in a predictable fashion. Even if the Intel® MPSS host driver can
manage the Intel® Xeon Phi™ coprocessor’s sleep and wake cycles, it uses the operating system’s power management
capabilities to put the system as a whole into a sleep state.

The Intel® MPSS host driver interfaces with the host operating system for power management by doing the following:

 Reporting device power capabilities during PnP enumeration.

 Handling power I/O requests sent by the host OS or by another driver in the device stack (applicable to Windows
environment).

 Powering up the Intel® Xeon Phi™ coprocessor(s) as soon as it is needed after system startup or idle shutdown.

 Powering down the Intel® Xeon Phi™ coprocessor at system at shutdown or putting system to sleep when idle.

Most of the power management operations are associated with installing and removing Intel® Xeon Phi™ coprocessors.
Hence, the Intel® MPSS host driver supports Plug and Play (PnP) to get power-management notifications.

3.1.6.2.1 Power Policies (applicable to Windows)

You can use the Windows control panel to set system power options. The Intel® MPSS host driver registers a callback
routine with the operating system to receive notification. As soon as a callback is registered by the driver during load,
the OS immediately calls the callback routine and passes the current value of the power policy. Later, the OS notifies the
host driver of the changes to the active power policy that were made through this callback. The driver then forwards the
policy change request and associated power settings to the coprocessor OS.

 Page 89

3.1.6.3 PM Communication with the coprocessor OS

A set of commands specifically for power management facilitate communication between the host driver and the
coprocessor OS. These commands initiate specific PM functions or tasks, and coordinate the exchange of PM
information.

The Intel® MPSS host driver uses the symmetric communication interface (SCIF) layer to create a channel to send
messages to the coprocessor OS PM component. SCIF provides networking and communication capabilities within a
single platform. In the SCIF context, the host driver and the coprocessor OS PM components are on different SCIF
nodes. The Intel® MPSS host driver creates a Ring0-to-Ring0 communication queue from its own node to a “known” SCIF
port (logical destination) on the coprocessor OS node. The message types are summarized in Table 3-4.

Table 3-4. Power Management Messages

Message Type Description

Status queries Messages passed to inquire about the current PM status; for example, core
voltage, frequency, power budget, etc. Most of this data is supplied to the control
panel.

Policy control Messages that control PM policies in the coprocessor OS. For example,
enable/disable turbo, enable/disable idle package states, etc.

Package state commands Messages used to monitor and handle package states. For example, get/set vccp,
get entry/exit latencies, etc.

Notifications from the
coprocessor OS

The coprocessor OS notifies the4 host driver when it is going to enter an idle state
because all the cores are idle.

3.1.6.4 Package States (PC States) Handling

One of the main PM responsibilities of the Intel® MPSS host driver is to monitor idle states. The host driver monitors the
amount of time that the coprocessor OS spends idle and makes decisions based on the timer’s expiration. When all the
CPUs in the Intel® Xeon Phi™ coprocessors are in core state (C1), the coprocessor OS notifies the host driver that the
devices are ready to enter package sleep states. At this stage, the coprocessor OS goes to auto PC3 state. The
coprocessor OS, on its own, cannot select the deeper idle states (deep PC3 and PC6). It is the responsibility of the host
driver to request that the coprocessor OS enter a deeper idle state when it believes that the coprocessor OS has spent
enough idle time in the current idle state (PC6 is the deepest possible idle state).

3.1.6.4.1 Power Control State Entry and Exit Sequences

This section summarizes the steps followed when the package enters the PC3 or the PC6 idle state.

_PC3_auto Entry_:

1. Receive idle state notification for auto PC3 entry from coprocessor OS.
2. Wait for Intel® Xeon Phi™ coprocessor Idle/Resume flag = PC3 code.
3. Verify hardware idle status.
4. Set HOST Idle/Resume flag = auto PC3 code.
5. Start host driver timer for auto PC3 state.

PC3 deep Entry_:

1. Make sure that the host driver auto PC3 timer has expired.
2. Verify hardware idle status.
3. Set VccP to minimum the retention voltage value.
4. Set HOST Idle/Resume flag = deep PC3 code.
5. Start the host driver timer for PC6 state.

 Page 90

_PC6_Entry_:

1. Make sure that the host driver PC6 timer has expired.
2. Executethw _PC3_deep_Exit_ algorithm.
3. Request that the coprocessor OS to enter PC6 state.
4. Receive readiness notification for PC6 entry from the coprocessor OS.
5. Wait for Intel® Xeon Phi™ coprocessor Idle/Resume flag = PC6 code.
6. Verify hardware idle status.
7. Set VccP to zero (0) volts.
8. Set HOST Idle/Resume flag = PC6 code.

PC3 deep Exit_:

1. Set VccP to the minimum operating voltage.
2. Wait for Intel® Xeon Phi™ coprocessor Idle/Resume flag = C0 code.
3. Set HOST Idle/Resume flag = C0 code.

_PC6_Exit_:

1. Set VccP to the minimum operating voltage.
2. Wait for LRB Idle/Resume flag = C0 code.
3. Set HOST Idle/Resume flag = C0 code.

3.1.6.4.2 Package State Handling and SCIF

SCIF is the interface used for communication between the host software and the coprocessor OS software running on
one or more Intel® Xeon Phi™ coprocessors. SCIF is also used for peer-to-peer communication between Intel® Xeon Phi™
coprocessors. This interface could potentially (for speed and efficiency reasons) be based on a distributed shared
memory architecture where peer entities on the host and the Intel® Xeon Phi™ coprocessor share messages by directly
writing to each other’s local memory (Remote Memory Access). The host driver takes into account the SCIF
communication channels that are open on an Intel® Xeon Phi™ coprocessor when deciding to put it into a deeper
package idle state.

3.1.6.4.3 Boot Loader to Host Driver Power Management Interface

The boot loader executes when power is first applied to the device, but can also run when exiting from PC6 idle states
due to the removal of the VccP power rail. The boot-loader component for Intel® Xeon Phi™ coprocessors has a PM-
aware abbreviated execution path designed specifically for exiting D3 and PC6 states, minimizing the time required to
return the Intel® Xeon Phi™ coprocessor to full operation from D3 and PC6. To support PC6 exit, the host driver interacts
with the boot loader via the scratchpad registers.

 Page 91

Package C0

Package Auto C3

Package Deep

C3

Package C6

Auto PC3 Ready Msg

from Coprocessor OS

Host Timer

for deep PC3 Expires

Host Timer

for PC6 Expires / PCI traffic

through host / Coprocessor

OS Wake Up Timer is about

to Expire

Auto PC3 Abort

msg from Coprocessor OS

Waiting for PC6

Confirmation from

Coprocessor OS

1. Set VccP to minimum

operating voltage

2. Set Host Idle Flag = Auto

PC3

3. Reset Host Timer for PC6

4. Update C3WakeupTimer to

wake up card if required

1. Set Host Idle Flag = Deep PC3

2. Set VccP to minimum retention voltage

value

3. Start Host Timer for PC6

4. Reset Host Timer for Deep PC3

1.Set Host Idle Flag = Auto PC3

2.Check the wake up timer in

Coprocessor OS and make a

decision for Deep C3.

3. if Yes, Start Host Timer for Deep

PC3

1.Set Host Idle Flag = PC6

2. Set VccP to Zero

3. Get C3WakeupTimer

value and Start Timer

1. Set Host Idle Flag = PC0

PC6 request to Coprocessor OS

as a result of PC6 timer expiry

Waiting for

HW Idle

Status for

PC3

HW Idle flag = TRUE

Idle State Wait

Timer Expires

PCI Traffic
Through Host / C3WakeupTimer

 is about to expire

1. Set HW Idle State Wait Timer

1. Send Auto PC3 abort
Msg to Coprocessor OS

1. Set Host Idle Flag = PC0

Waiting for HW

Idle Status for

PC6

HW Idle Flag = TRUE

Idle State Wait

Timer Expires

PC6 Ready Msg

from Coprocessor OS

PC6 abort Msg

from Coprocessor OS

PC6 Ready Msg

from Coprocessor OS

1. Set HW Idle State Wait Timer

1. Set HW Idle State
 Wait Timer

1. Send PC6 abort
Msg to Coprocessor OS

1. Set VccP to minimum operating

voltage

2. Trigger Bootstrap

3. Set Host Idle Flag = PC0

Figure 3-8 Intel® MPSS Host Driver to Coprocessor OS Package State Interactions

 Page 92

3.2 Virtualization

A platform that supports virtualization typically has a Virtual Machine Manager (VMM) that hosts multiple Virtual
Machines. Each virtual machine runs an OS (Guest OS) and application software. Different models exist for supporting
I/O devices in virtualized environments, and the Intel® Xeon Phi™ coprocessor supports the direct assignment model
wherein the VMM directly assigns the Intel® Xeon Phi™ coprocessor device to a particular VM and the driver within the
VM has full control with minimal intervention from the VMM. The coprocessor OS does not require any modifications to
support this model; however, the chipset and VMM are required to support the following Intel VT-d (Intel Virtualization
Technology for Direct I/O) features:

 Hardware-assisted DMA remapping

 Hardware-assisted interrupt remapping

 Shared device virtualization

3.2.1 Hardware Assisted DMA Remapping

In virtualized environments, guests have their own view of physical memory (guest physical addresses) that is distinct
from the host’s physical view of memory. The guest OS Intel® Xeon Phi™ coprocessor device driver (and thus the
coprocessor OS on the Intel® Xeon Phi™ coprocessor dedicated to the guest) only knows about guest physical addresses
that must be translated to host physical addresses before any system memory access. Intel VT-d (implemented in the
chipset) supports this translation for transactions that are initiated by an I/O device in a manner that is transparent to
the I/O device (i.e., the Intel® Xeon Phi™ coprocessor). It is the VMM’s responsibility to configure the VT-d hardware in
the chipset with the mappings from guest physical to host physical addresses when creating the VM. For details refer to
the Intel VT for Direct I/O Specification (Intel® Virtualization Technology for Directed I/O, 2011).

3.2.2 Hardware Assisted Interrupt Remapping

In a virtualized environment with direct access, it is the guest and not the host VMM that should handle an interrupt
from an I/O device. Without hardware support, interrupts would have to be routed to the host VMM first which then
injects the interrupt into the guest OS. Intel VT-d provides Interrupt remapping support in the chipset which the VMM
can use to route interrupts (either I/O APIC generated or MSIs) from specific devices to guest VMs. For details refer to
the Intel VT for Direct I/O specification.

3.2.3 Shared Device Virtualization

Each card in the system can be either dedicated to a guest OS or shared among multiple guest operating systems. This
option requires the highest level of support in the coprocessor OS as it can service multiple host operating systems
simultaneously.

3.3 Reliability Availability Serviceability (RAS)

RAS stands for reliability, availability, and serviceability. Specifically, reliability is defined as the ability of the system to
perform its actions correctly. Availability is the ability of the system to perform useful work. Serviceability is the ability of
the system to be repaired when failures occur. Given that HPC computing tasks may require large amounts of resources
both in processing power (count of processing entities or nodes) and in processing time, node reliability becomes a
limiting factor if not addressed by RAS strategies and policies. This section covers RAS strategies available in software on
Intel® Xeon Phi™ coprocessor and its host-side server.

In HPC compute clusters, reliability and availability are traditionally handled in a two-pronged approach: by deploying
hardware with advanced RAS features to reduce error rates (as exemplified in the Intel® Xeon® processors) and by
adapting fault tolerance in high-end system software or hardware. Common software-based methods of fault tolerance

 Page 93

are to deploy redundant cluster nodes or to implement snapshot and restore (check pointing) mechanisms that allow a
cluster manager to reduce data loss when a compute node fails by setting it to the state of last successful snapshot.
Fault tolerance, in this context, is about resuming from a failure with as much of the machine state intact as possible. It
does not imply that a cluster or individual compute nodes can absorb or handle failures without interrupting the task at
hand.

The Intel® Xeon Phi™ coprocessor addresses reliability and availability the same two ways. Hardware features have
been added that improve reliability; for example, ECC on GDDR and internal memory arrays that reduce error rates.
Fault tolerance on Intel® Xeon Phi™ coprocessor hardware improves failure detection (extended machine check
architecture, or MCA). Managed properly, the result is a controlled and limited degradation allowing a node to stay in
service after certain anticipated hardware failure modes manifest themselves. Fault tolerance in Intel® Xeon Phi™
coprocessor software is assisted by the Linux* coprocessor OS, which supports application-level snapshot and restore
features that are based on BLCR (Berkeley Labs Checkpoint Restart).

Intel® Xeon Phi™ coprocessor approach to serviceability is through software redundancy (that is, node management
removes failing compute nodes from the cluster), and has no true hardware redundancy. Instead software and firmware
features allow a compute node to reenter operation after failures at reduced capacity until the card can be replaced.
The rationale behind this ‘graceful’ degradation strategy is the assumption that an Intel® Xeon Phi™ coprocessor unit
with, say one less core, will be able to resume application snapshots and therefore is a better proposition to the cluster
than removing the node entirely.

A hardware failure requires the failing card to be temporarily removed from the compute cluster it is participating in.
After a reboot, the card may rejoin the cluster if cluster management policies allow for it.

The Intel® Xeon Phi™ coprocessor implements extended machine check architecture (MCA) features that allow software
to detect and act on detected hardware failures in a manner allowing a ‘graceful’ degradation of service when certain
components fail. Intel® Xeon Phi™ coprocessor hardware reads bits from programmable FLASH at boot time, which may
disable processor cores, cache lines, and tag directories that the MCA has reported as failing.

3.3.1 Check Pointing

In the context of RAS, check pointing is a mechanism to add fault tolerance to a system by saving its state at certain
intervals during execution of a task. If a non-recoverable error occurs on that system, the task can be resumed from the
last saved checkpoint, thereby reducing the loss caused by the failure to the work done since the last checkpoint. In HPC,
the system is the entire cluster, which is defined as all the compute nodes participating in a given HPC application.
Cluster management controls where and when checkpoints occur and locks down its compute nodes prior to the
checkpoint. The usual mode of operation is for checkpoints to occur at regular intervals or if system monitoring
determines that reinstating a checkpoint is the proper course of action. Individual compute nodes are responsible for
handling local checkpoint and restore (C/R) events, which have to be coordinated in order to establish a cluster-wide
coherent C/R. Conceptually check pointing can be handled in two ways:

 a checkpoint contains the state of the entire compute node, which includes all applications running on it (similar
to hibernate)

 or a checkpoint contains the state of a single program running on the compute node, which is referred to as system
or application checkpoints.

Application check pointing is by far the most widespread method; it is simpler to implement, produces smaller snapshot
images, and may have uses beyond fault tolerance, such as task migration (create snapshot of one system, terminate the
application, and restart it on another system) and gang scheduling. These alternate uses are limited to cluster nodes
running the same OS and running on similar hardware. System checkpoints are, for all practical purposes, locked to the
system it was taken on.

 Page 94

The remainder of this section addresses the basics of BLCR and its integration into the Intel® Xeon Phi™ coprocessor.
BLCR details are available at the following links:

 http://crd.lbl.gov/~jcduell/papers/blcr.pdf

 https://upc-bugs.lbl.gov//blcr/doc/html/FAQ.html#batch

 https://upc-bugs.lbl.gov//blcr/doc/html/BLCR_Admin_Guide.html

 https://upc-bugs.lbl.gov//blcr/doc/html/BLCR_Users_Guide.html

3.3.2 Berkeley Labs Check point and Restore (BLCR)

Due to the altered ABI required for the Linux* coprocessor OS, BLCR is recompiled specifically for the Intel® Xeon Phi™
coprocessor, but otherwise no changes are required for BLCR except for the kernel module. The kernel module
incorporates additional process states provided by Intel® Xeon Phi™ coprocessor hardware (the vector registers).

Beyond the enhanced register set, the BLCR kernel module is not different. A patch set for BLCR version 0.8.2 (the
latest) exists for the Linux* kernel 2.6.34 and has been shown to build correctly on a standard Linux* system.

BLCR software is, by design, limited to creating a checkpoint for a process (or process group) running under a single
operating system. In larger clusters, where the compute workload is spread over several cooperating systems, a
checkpoint of a single process does not result in any fault tolerance because the state of that process would soon be out
of synchronization with the rest of the cluster (due to inter process messaging). Therefore, a checkpoint within a cluster
must be coordinated carefully; e.g., by creating checkpoints of all participants in compute task simultaneously during a
lock-down of interprocess communications. Cluster management software must support C/R and implement a method
either for putting all participants into a quiescent state during the checkpoint (and to restore all if a participant fails to
create one) or for providing a protocol to put each node into a restorable state before the checkpoint occurs.

MPI stacks supporting BLCR have built-in protocols to shut down the IPC between compute nodes and to request a
checkpoint to be created on all participants of a ‘job’.

Locally, BLCR offers either a cooperative approach or a non-cooperative approach for very simple applications. With the
cooperative approach, the application is notified before and after a checkpoint is created. The cooperative approach is
intended to give checkpoint-aware applications a way to save the state of features known not to be preserved across a
C/R event. The design of BLCR deliberately leaves out the handling of process states that cannot be implemented well
(to avoid instability), such as TCP/IP sockets, System-V IPC, and asynchronous I/O. If any of these features are used by
the application, they must be brought into a state that allows the application to recreate them after a restore event.

BLCR relies on kernel-assisted (kernel module required) methods to retrieve a useful process state. A BLCR library must
be linked to the application in order to establish communication between the application and the kernel module, and to
run a private thread within the application that handles call-outs before and after C/R events.

An application process gets notification from the BLCR kernel module though a real time signal so that it can protect its
critical regions by registering callbacks to clean house before the checkpoint data is written to file. Upon restart, the
same callbacks allow the process to restore internal settings before resuming operations.

The result of a BLCR checkpoint is an image file containing all process state information necessary to restart it. A
checkpoint image can be quite large, potentially as large as the node’s available memory (swap plus RAM). The Intel®
Xeon Phi™ coprocessor does not have local persistent storage to hold checkpoint images, which means they must be
shipped to the host (or possibly beyond) over a networked file system to a disk device.

Analysis of BLCR implementations shows that I/O to the disk device is the most time consuming part of check pointing.
Assuming the checkpoint images go to the local host’s file system, the choice of file system and disk subsystem on the

http://crd.lbl.gov/~jcduell/papers/blcr.pdf
https://upc-bugs.lbl.gov/blcr/doc/html/FAQ.html#batch
https://upc-bugs.lbl.gov/blcr/doc/html/BLCR_Admin_Guide.html
https://upc-bugs.lbl.gov/blcr/doc/html/BLCR_Users_Guide.html

 Page 95

host become the key factors on checkpoint performance. Alternatives to spinning disks must be considered carefully,
though it does not impact the C/R capability and is outside the scope of BLCR.

The BLCR package provides three application programs and a library (plus includes) for building check pointing
applications. The BLCR library contains local threads that allow the application some control over when a checkpoint can
take place. A simple API lets parts of the application prepare for a checkpoint independently. The mechanism is to
register functions like the following with the BLCR library during process initialization:

Void my_callback(void *data_ptr)

{

 struct my_data *pdata = (struct my_data*) data_ptr;

 int did_restart;

 // do checkpoint-time shutdown logic

 // tell system to do the checkpoint

 did_restart = cr_checkpoint();

 if (did_restart)

 // we’ve been restarted from a checkpoint

 else

 // we’re continuing after being backed up

}

The local BLCR thread calls all registered callbacks before the kernel module checkpoints the application from a local
thread. Once all callbacks have called with cr_checkpoint(), the local BLCR thread signals the kernel module to proceed
with the checkpoint. After the checkpoint, cr_checkpoint() returns to the callback routines with information on
whether a restart or checkpoint took place.

3.3.2.1 BLCR and SCIF

SCIF is a new feature in the Linux* based coprocessor OS and so has no support in the current BLCR implementation.
SCIF has many features in common with sockets. Therefore, BLCR handling of open SCIF connections is treated the same
way as open sockets; that is, not preserved across C/R events.

The problem area for sockets is that part of the socket state might come from data present only in the kernel’s network
stack at the time of checkpoint. It is not feasible for the BLCR kernel module to retrieve this data and stuff it back during
a later restore.

The problems for SCIF are the distribution of data in the queue pair and the heavy use of references to physical
addresses in the PCI-Express* domain. It is not feasible to rely on physical locations of queue pairs being consistent
across a Linux* coprocessor OS reboot, and SCIF is not designed to be informed of the location of queue pairs.

3.3.2.2 Miscellaneous Options

Some aspects of BLCR on the Intel® Xeon Phi™ coprocessor are linked to the applied usage model. In the Intel® MIC
Architecture coprocessing mode, this requires a decision as to what a checkpoint covers. In this mode, only the host
participates (by definition) as a node in a compute cluster. If it is compatible with compute clusters and C/R is used
within the cluster, then only the host can be asked to create a checkpoint. The host must act as a proxy and delegate
BLCR checkpoints to the Intel® Xeon Phi™ coprocessor cards as appropriate and manage the checkpoint images from
Intel® Xeon Phi™ coprocessors in parallel with its own checkpoint file.

Another, and less complicated approach, is to terminate tasks on all Intel® Xeon Phi™ coprocessors before creating a
check point on itself. The tradeoff is between complexities vs. compute time to be redone, depending on the average
task length, as part of resuming from check pointing.

 Page 96

Intel® Xeon Phi™ coprocessors used in an Intel® Xeon® offload or autonomous mode do not face this problem because
each card is known to the cluster manager that dispatches check point requests to cards individually. The host is a
shared resource to the Intel® Xeon Phi™ coprocessors and is not likely to be part of the check pointing mechanism.

Check pointing speed has been identified as a potential problem, mostly because the kernel module that performs the
bulk of the state dump is single threaded. Work has been done in the MPI community to speed this up, but the
bottleneck appears to be the disk driver and disk I/O, not the single threading itself. Several references point to PCI-
Express*-based battery backed memory cards or to PCI-Express*-based Solid State Drive (SSD) disks as a faster medium
for storing checkpoint images. It is trivial to make the host use these devices to backup networked file systems used by
the Linux* coprocessor OS, but access still has to go through the host. It may be more effective to let the Intel® Xeon
Phi™ coprocessors access these devices directly over PCI-Express*, but that approach requires that the device be
independently accessible from multiple peer Intel® Xeon Phi™ coprocessors and that device space be divided
persistently between Intel® Xeon Phi™ coprocessors such that each has its own fast-access file system dedicated to
checkpoint images.

3.3.3 Machine Check Architecture (MCA)

Machine Check Architecture is a hardware feature enabling an Intel® Xeon Phi™ coprocessor card to report failures to
software by means of interrupts or exceptions. Failures in this context are conditions where logic circuits have detected
something out of order, which may have corrupted processor context or memory content. Failures are categorized by
severity as either DUEs or CEs:

 DUEs (Detected Unrecoverable Errors) are errors captured by the MC logic but the corruption cannot be
repaired and the system as a whole is compromised; for example, errors in L1 cache.

 CEs (Corrected Errors) are errors that have occurred and been corrected by the hardware, such as single bit
errors in L2 ECC memory.

3.3.3.1 MCA Hardware Design Overview

Standard IA systems implement MCA by providing two mechanisms to report MC events to software: MC exceptions
(#18) for events detected in the CPU core and NMI (#2) interrupts for events detected outside of the CPU core (uncore).

Specifics on occurred MC exceptions are presented in MSR banks, each representing up to 32 events. The processor
capability MSRs specify how many banks are supported by a given processor. The interpretation of data in MSR banks is
semi-standardized; that is, acquiring detailed raw data on an event is standardized but the interpretation of acquired
raw data is not. The Intel® Xeon Phi™ coprocessor provides three MC MSR banks.

MC events signaled through the NMI interrupt on standard IA systems come from the chipsets and represent failures in
memory or I/O paths. Newer CPUs with built-in memory controllers also provide a separate interrupt for CEs (CMCIs)
that have built-in counter dividers to throttle interrupt rates. This capability is not provided on the Intel® Xeon Phi™
coprocessor. Instead, the Intel® Xeon Phi™ coprocessor delivers both uncorrected and corrected errors that are
detected in the core domain via the standard MCA interrupt (#18). Machine check events that occur in the uncore
domain are delivered via the SBox, which can be programmed to generate an NMI interrupt targeted at one or all
threads. The Uncore Interrupt includes MC events related to the PCI-Express interface, Memory Controller (ECC and
link training errors), or other uncore units. There is no CE error rate throttle in the Intel® Xeon Phi™ coprocessor. The
only remedy against high error frequencies is to disable the interrupt at the source of the initiating unit (L2/L1 Cache,
Tag Directory, or GBox).

The NMI interrupt handler software must handle a diverse range of error types on Intel® Xeon Phi™ coprocessor.
Registers to control and report uncore MC events on Intel® Xeon Phi™ coprocessor differ significantly from registers on
standard IA chipsets, which means that stock operating systems have no support for uncore MC events on an Intel®
Xeon Phi™ coprocessor.

 Page 97

3.3.3.2 MCA Software Design Overview

Intel® Xeon Phi™ coprocessor RAS demands that the software perform MC event handling in two stages, event data
gathering and event post processing.

The first stage (which takes place in the Linux* coprocessor OS) receives MC event notifications, collects raw data, and
dispatches it to interested parties (i.e., an MCA agent running on the host and the on-card SMC controller). If the
coprocessor OS can resume operation, then its event handling is completed. Otherwise, the MC event handler notifies
the host separately that its internal state has been corrupted and a reboot is required.

An unrelated service for host-side monitoring of the Intel® Xeon Phi™ coprocessor card state will be added to the MCA
handling routines. This service will act as a gateway between host side ‘in-band’ platform management and the SMC
sub-system and respond to system state queries, such as memory statistics, free memory, temperatures, CPU states etc.
Host queries of the coprocessor OS MCA log is a part of the service too.

3.3.3.3 MC Event Capture in Linux* 2.6.34

The stock Linux* kernel has support for core MCs in a single dedicated exception handler. The handler expects MCA
exceptions to be broadcast to all processors in the system, and it will wait for all CPUs to line up at a rendezvous point
before every CPU inspects its own MCA banks and stores flagged events in a global MC event log (consisting of 32
entries). Then the handler on all CPUs lines up at a rendezvous point again and one CPU (the monarch, which is selected
as the first entering the MCA event handler) gets to grade the MCA events collected in the global MC event log and to
determine whether to panic or resume operation. This takes place in function monarch_reign(). If resumed, the MCA
handler may send BUS-ERROR signals to the processes affected by the error. Linux* has several kernel variables that
control sensitivity to MCA exceptions, ranging from always panic to always ignore them.

Linux* expects MC events to be broadcast to all CPUs. The rendezvous point uses CPU count versus event handler
entries as wait criteria. The wait loop is implemented as a spinlock with timeout, such that a defunct CPU cannot prevent
the handler from completing.

NMI interrupts on Linux* are treated one way for the boot processor (BP) and differently on the application processors
(AP). Signals from the chipset are expected to be routed only to the BP and only the BP will check chipset registers to
determine the NMI source. If chipset flags SERR# or IOCHK are set the BP NMI handler consults configurable control
variables to select panic or ignore the MC event. Otherwise, and on APs, the NMI handler will check for software
watchdog timers, call registered NMI handlers, or if not serviced then a configurable control variables to select panic or
ignore the unknown NMI.

3.3.3.4 MC Handling in the Intel® Xeon Phi™ Coprocessor Linux*-based coprocessor OS

The Linux* coprocessor OS MCA logic handles capture of core MC events on the Intel® Xeon Phi™ coprocessor without
modifications if events are broadcast to all CPUs the same way as on standard IA systems. A callout is required from
monarch_reign() to a new module for distribution of MC event reports to other interested parties (such as the SMC and
the host side MC agent). After distributing the MC events, the Linux* coprocessor OS uses the grading result to select
between CEs that resume operation immediately and DUEs that must request a reboot to maintenance mode and then
cease operation. Another callout from monarch_reign() is required for this part.

Handling of NMIs in the Linux* coprocessor OS requires new code because uncore MCA registers are completely
different from those of chipset MCA; for example, MMIO register banks vs. I/O registers. Uncore MCA registers are
organized similarly to core MCA banks, but the access method for 32-bit MMIO vs. 64-bit MSRs differs sufficiently to
make a merge into the MCA exception handler code unfeasible. However, the global MC event log, the use of
monarch_reign(), and the event signaling to the host side MCA agent should be the same for the NMI handler as it is for
the MC exception handler.

 Page 98

3.3.3.5 MCA Event Sources and Causes

MCA events are received from three sources on the ring: the CPU box, the GBox, and the SBox. For more information on
the encoding and controls available on the MCA features, refer to Section 3.3.3.8.

3.3.3.6 MCA Event Post-Processing (coprocessor OS Side Handling)

Once the MC event(s) has been collected into the global MC event log and graded, the failure has been classified as
either a DUE or CE. Both event types are distributed to the host and the SMC, potentially with some form of throttling or
discrimination based on user configurable settings (via the kernel command line as a boot parameter or at runtime
through the control panel).

On CE type failures, the Intel® Xeon Phi™ coprocessor will resume operation because the hardware state is intact. DUE
failures cannot be ignored and the next action is to signal the host for a reboot into maintenance mode.

These activities are initiated by callbacks from a special routine and the NMI exception handler. The processing context
is exception or interrupt. Both of these require careful coding because locking cannot be relied on for synchronization,
even to a separate handler thread. The stock Linux* reaction to a DUE is simply to panic. On the Intel® Xeon Phi™
coprocessor, the recorded events must be distributed to at least two parties, both of which are based on non-trivial APIs
(the I2C driver for reporting to the SMC and the SCIF driver for reporting to the host-side MC agent).

3.3.3.7 MCA Event Post-Processing (Host Side Handling)

There are several active proposals on what sort of processing is required for MC events. The Linux* coprocessor OS will
capture events in raw form and pass them to an agent on the host for further processing.

The host side MCA agent is a user space application using dedicated SCIF connections to communicate with the Intel®
Xeon Phi™ coprocessor Linux* coprocessor OS MCA kernel module. The agent is responsible for the following:

 Maintaining and providing access to a permanent MC event log on the host, preferably as a file on the host’s local
file system. This agent also handles the distribution of events beyond the host.

 Providing a means to reset (or to trigger a reset) of an Intel® Xeon Phi™ coprocessor card into maintenance mode
and passing the latest MC event. The card reset needs support by the host side Intel® Xeon Phi™ coprocessor driver
since ring0 access is required.

 Optionally providing access to the Intel® Xeon Phi™ coprocessors global MC event log

 Acting as the host side application; that is, the RAS defect analyzer providing an interface to dump MCA error
records from the EEPROM.

The design of the host side MCA agent is beyond the scope of this document. It must place as much content as possible
as a user mode application in order to keep the host side drivers as simple and portable as possible. It shall be noted
that it has been requested to have sysfs nodes on Linux* hosts present Intel® Xeon Phi™ coprocessor card properties,
including MC event logs and states. This may require a kernel agent on the host side to provide the sysfs nodes.

Beyond the overlap of features between driver and user mode agent, this also has issues with SCIF because only one
party can own a SCIF queue pair. Having separate SCIF links for the kernel driver and user space agent is not feasible.
The host side MCA agent may split into a kernel driver to provide the sysfs nodes and a user space application using the
sysfs nodes, where only the kernel driver use SCIF.

3.3.3.8 Core CPU MCA Registers (Encoding and Controls)

While the Intel® Xeon Phi™ coprocessor does support MCA and MCE capabilities, the CPUID feature bits used to identify
the processor supports for these features are not set on the Intel® Xeon Phi™ coprocessor.

 Page 99

The Intel® Xeon Phi™ coprocessor implements a mechanism for detecting and reporting hardware errors. Examples of
these errors include on-chip cache errors, memory CRC errors, and I/O (PCI Express) link errors. The Intel® Xeon Phi™
coprocessor uses sets of MSR registers to setup machine checking as well as to log detected errors.

Machine checks on the Intel® Xeon Phi™ coprocessor are broken down into two domains:

 Core machine check events, which are handled in a similar fashion to the IA MCA architecture definition
 System machine check events, which are handled in a similar fashion to chipset machine check events

Machine-check event delivery on the Intel® Xeon Phi™ coprocessor is not guaranteed to be synchronous with the
instruction execution that may have caused the event. Therefore, recovery from a machine check is not always possible.
Software is required to determine if recovery is possible, based on the information stored in the machine-check
registers.

The Intel® Xeon Phi™ coprocessor MCA implements one set of MC general registers per CPU (core control registers).
There are three banks of MCx registers per core. All hardware threads running on a core share the same set of registers.
These registers are for the L1 cache, the L2 cache and the Tag Directories. For the uncore sections, there is one bank of
registers per box (GBox, SBox, etc.), each of which is composed of eight 32-bit registers. All uncore events are sent over
a serial link to the SBox’s I/O APIC. From the I/O APIC, an interrupt is sent to a core, after which normal interrupt
processing occurs.

The machine check registers on the Intel® Xeon Phi™ coprocessor consist of a set of core control registers, error
reporting MSR register banks, and global system error reporting banks containing error status for the RAS agents. Most
core machine-check registers are shared amongst all the cores. The machine-check error reporting registers are listed in
Table 3-5.

Table 3-5. Control and Error Reporting Registers

Intel® Xeon Phi™ Coprocessor Machine Check Control Registers

Register Name Size (bits) Description

MCG_CAP 64 Core machine check capability register

MCG_STATUS 64 Core machine check status register

MCG_CTL 64 Core machine check control register (per thread
register)

Intel® Xeon Phi™ Coprocessor Machine Error Reporting Registers

Register Name Register Name Register Name

MCi_CTL 64 Machine check control register

MCi_STATUS 64 Machine check status register

MCi_ADDR 64 Machine check address register

MCi_MISC 32 Not Implemented in every MC bank

3.3.3.8.1 MCI_CTL MSR

The MCi_CTL MSR controls error reporting for specific errors produced by a particular hardware unit (or group of
hardware units). Each of the 64 flags (EEj) represents a potential error. Setting an EEj flag enables reporting of the
associated error, and clearing it disables reporting of the error. Writing the 64-bit value FFFFFFFFFFFFFFFFH to an
MCI_CTL register enables the logging of all errors. The coprocessor does not write changes to bits that are not
implemented.

Table 3-6. MCi_CTL Register Description

Field Name Bit Range Description Type

EEj 63:0 Error reporting enable flag (where j is 00 through
63)

R/W

 Page 100

3.3.3.8.2 MCi_STATUS MSR

The MCi_STATUS MSR contains information related to a machine check error if its VAL (valid) flag is set. Software is
responsible for clearing the MCi_STATUS register by writing it with all 0’s; writing 1’s to this register will cause a general-
protection exception to be generated. The fields in this register are as follows (see also Table 3-7):

 MCA (machine-check architecture) error code field, bits 0 through 15
Specifies the machine-check architecture defined error code for the machine-check error condition detected.

 Model-specific error code field, bits 16 through 31
Specifies the model-specific error code that uniquely identifies the machine-check error condition detected.

 Other information field, bits 32 through 56
The functions of the bits in this field are implementation specific and are not part of the machine-check
architecture.

 PCC (processor context corrupt) flag, bit 57
Indicates (when set) that the state of the processor might have been corrupted by the detected error condition
and that reliable restarting of the processor may not be possible. When clear, this flag indicates that the error
did not affect the processor’s state.

 ADDRV (MCi_ADDR register valid) flag, bit 58
Indicates (when set) that the MCi_ADDR register contains the address where the error occurred. When clear,
this flag indicates that the MCi_ADDR register does not contain the address where the error occurred.

 MISCV (MCi_MISC register valid) flag, bit 59
Indicates (when set) that the MCi_MISC register contains additional information regarding the error. When
clear, this flag indicates that the MCi_MISC register does not contain additional information regarding the
error.

 EN (error enabled) flag, bit 60
Indicates (when set) that the error was enabled by the associated EEj bit of the MCi_CTL register.

 UC (error uncorrected) flag, bit 61
Indicates (when set) that the processor did not or was not able to correct the error condition. When clear, this
flag indicates that the processor was able to correct the error condition.

 OVER (machine check overflow) flag, bit 62
Indicates (when set) that a machine-check error occurred while the results of a previous error were still in the
error-reporting register bank (that is, the VAL bit was already set in the MCi_STATUS register). The processor
sets the OVER flag and software is responsible for clearing it.

 VAL (MCi_STATUS register valid) flag, bit 63
Indicates (when set) that the information within the MCi_STATUS register is valid. When this flag is set, the
processor follows the rules given for the OVER flag in the MCi_STATUS register when overwriting previously
valid entries. The processor sets the VAL flag and software is responsible for clearing it.

The VAL bit is only set by hardware when an MC event is detected and the respective MC enable bit in the
MCi.CTL register is set as well. Software should clear the MC3_STATUS.VAL bit by writing all 0’s to the
MCi_STATUS register.

Table 3-7. MCI_STATUS Register Description

Field Name Bit Range Description Type

MCA Code 15:0 MCA error code field R/W

Model Code 31:16 Model specific error code R/W

Info 56:32 Other information field R/W

PCC 57 Processor context corrupt R/W

ADDRV 58 MCi_ADDR register valid R/W

MISCV 59 MCi_MISC register valid R/W

EN 60 Error enabled R/W

 Page 101

Field Name Bit Range Description Type

UC 61 Uncorrected error R/W

OVER 62 Error overflow R/W

VAL 63 MCi_STATUS register valid R/W

3.3.3.8.3 MCi_ADDR MSR

The MCi_ADDR MSR contains the address of the code or data memory location that produced the machine-check error if
the ADDRV flag in the MCi_STATUS register is set. The address returned is a physical address on the Intel® Xeon Phi™
coprocessor.

Table 3-8. MCi_ADDR Register Description

Field Name Bit Range Description Type

Address n:0 Address associated with error event R/W

Reserved 63:n Reserved (where n is implementation specific) R/W

3.3.3.8.4 MCi_MISC MSR

The MCi_MISC MSR contains additional information describing the machine-check error if the MISCV flag in the
MCi_STATUS register is set. This register is not implemented in the MC0 error-reporting register banks of the Intel®
Xeon Phi™ coprocessor.

3.3.3.8.5 Summary of Machine Check Registers

Table 3-9 describes the Intel® Xeon Phi™ Coprocessor MCA registers.

Table 3-9. Machine Check Registers

MSR/MMIO
Address

Register Name Size (bits) Description

Core MCA Registers

179H MCG_CAP 64 Core machine check capability register

17AH MCG_STATUS 64 Core machine check Status register

17BH MCG_CTL 64 Core machine check control register

400H MC0_CTL 64 Core machine check control register

401H MC0_STATUS 64 Core machine check status register

402H MC0_ADDR 64 Core machine check address register (Not Implemented)

403H MC0_MISC 32 Core machine check miscellaneous register (Not Implemented)

Intel® Xeon Phi™ coprocessor MCA Registers

404H MC1_CTL 32 L2 Cache machine check control register

405H MC1_STATUS 64 L2 Cache machine check status register

406H MC1_ADDR 64 L2 Cache machine check address register

407H MC1_MISC 32 L2 Cache machine check Misc register

TAG Directory MCA Registers

408H MC2_CTL 32 TAG Directory machine check control register

409H MC2_STATUS 64 TAG Directory machine check status register

40AH MC2_ADDR 64 TAG Directory machine check address register

40BH MC2_MISC 32 TAG Directory (Not Implemented)

Uncore MCA Registers (#18 MCA interrupt not generated. Signalling via local interrupt controller)

 Page 102

MSR/MMIO
Address

Register Name Size (bits) Description

SBox MCA Registers

0x8007D3090 MCX_CTL_LO 32 SBox machine check control register

0x8007D3094 MCX_CTL_HI 32 SBox machine check control register (Not implemented)

0x8007D3098 MCX_STATUS_LO 32 SBox machine check status register

0x8007D309C MCX_STATUS_HI 32 SBox machine check status register

0x8007D30A0 MCX_ADDR_LO 32 SBox machine check address register

0x8007D30A4 MCX_ADDR_HI 32 SBox machine check address register

0x8007D30A8 MCX_MISC 32 SBox Misc (timeout TID register)

0x8007D30AC MCX_MISC2 32 SBox Misc (timeout address register)

0x8007DAB00 MCA_INT_STAT 32 SBox MCA Interrupt Status Register (Not retained on warm reset)

0x8007DAB04 MCA_INT_EN 32 SBox MCA Interrupt Enable Register (Not retained on warm reset)

Standalone TAG Directory 0 MCA Registers

0x8007C0340 RTD_MCX_CTL 32 TAG Directory machine check control register

0x8007C0348 RTD_MCX_STATUS 64 TAG Directory machine check status register

0x8007C0350 RTD_MCX_ADDR 64 TAG Directory machine check address register

Standalone TAG Directory 1 MCA Registers

0x800620340 RTD_MCX_CTL 32 TAG Directory machine check control register

0x800620348 RTD_MCX_STATUS 64 TAG Directory machine check status register

0x800620350 RTD_MCX_ADDR 64 TAG Directory machine check address register

Memory Controller (Gbox0) MCA Registers

0x8007A005C MCX_CTL_LO 32 Gbox0 Fbox machine check control register

0x8007A0060 MCX_CTL_HI 32 Gbox0 Fbox machine check control register

0x8007A0064 MCX_STATUS_LO 32 Gbox0 Fbox machine check status register

0x8007A0068 MCX_STATUS_HI 32 Gbox0 Fbox machine check status register

0x8007A006C MCX_ADDR_LO 32 Gbox0 Fbox machine check address register

0x8007A0070 MCX_ADDR_HI 32 Gbox0 Fbox machine check address register

0x8007A0074 MCX_MISC 32 Gbox0 Fbox Misc (Transaction timeout register)

0x8007A017C MCA_CRC0_ADDR 32 Gbox0 Mbox0 CRC address capture register

0x8007A097C MCA_CRC1_ADDR 32 Gbox0 Mbox1 CRC address capture register

Memory Controller (Gbox1) MCA Registers

0x80079005C MCX_CTL_LO 32 Gbox1 Fbox machine check control register

0x800790060 MCX_CTL_HI 32 Gbox1 Fbox machine check control register

0x800790064 MCX_STATUS_LO 32 Gbox1 Fbox machine check status register

0x800790068 MCX_STATUS_HI 32 Gbox1 Fbox machine check status register

0x80079006C MCX_ADDR_LO 32 Gbox1 Fbox machine check address register

0x800790070 MCX_ADDR_HI 32 Gbox1 Fbox machine check address register

0x800790074 MCX_MISC 32 Gbox1 Fbox Misc (Transaction timeout register)

0x80079017C MCA_CRC0_ADDR 32 Gbox1 Mbox0 CRC address capture register

0x80079097C MCA_CRC1_ADDR 32 Gbox1 Mbox1 CRC address capture register

Memory Controller (Gbox2) MCA Registers

0x80070005C MCX_CTL_LO 32 Gbox2 Fbox machine check control register

0x800700060 MCX_CTL_HI 32 Gbox2 Fbox machine check control register

0x800700064 MCX_STATUS_LO 32 Gbox2 Fbox machine check status register

0x800700068 MCX_STATUS_HI 32 Gbox2 Fbox machine check status register

0x80070006C MCX_ADDR_LO 32 Gbox2 Fbox machine check address register

0x800700070 MCX_ADDR_HI 32 Gbox2 Fbox machine check address register

0x800700074 MCX_MISC 32 Gbox2 Fbox Misc (Transaction timeout register)

 Page 103

MSR/MMIO
Address

Register Name Size (bits) Description

0x80070017C MCA_CRC0_ADDR 32 Gbox2 Mbox0 CRC address capture register

0x80070097C MCA_CRC1_ADDR 32 Gbox2 Mbox1 CRC address capture register

Memory Controller (Gbox3) MCA Registers

0x8006F005C MCX_CTL_LO 32 Gbox3 Fbox machine check control register

0x8006F0060 MCX_CTL_HI 32 Gbox3 Fbox machine check control register

0x8006F0064 MCX_STATUS_LO 32 Gbox3 Fbox machine check status register

0x8006F0068 MCX_STATUS_HI 32 Gbox3 Fbox machine check status register

0x8006F006C MCX_ADDR_LO 32 Gbox3 Fbox machine check address register

0x8006F0070 MCX_ADDR_HI 32 Gbox3 Fbox machine check address register

0x8006F0074 MCX_MISC 32 Gbox3 Fbox Misc (Transaction timeout register)

0x8006F017C MCA_CRC0_ADDR 32 Gbox3 Mbox0 CRC address capture register

0x8006F097C MCA_CRC1_ADDR 32 Gbox3 Mbox1 CRC address capture register

Memory Controller (Gbox4) MCA Registers

0x8006D005C MCX_CTL_LO 32 Gbox4 Fbox machine check control register

0x8006D0060 MCX_CTL_HI 32 Gbox4 Fbox machine check control register

0x8006D0064 MCX_STATUS_LO 32 Gbox4 Fbox machine check status register

0x8006D0068 MCX_STATUS_HI 32 Gbox4 Fbox machine check status register

0x8006D006C MCX_ADDR_LO 32 Gbox4 Fbox machine check address register

0x8006D0070 MCX_ADDR_HI 32 Gbox4 Fbox machine check address register

0x8006D0074 MCX_MISC 32 Gbox4 Fbox Misc (Transaction timeout register)

0x8006D017C MCA_CRC0_ADDR 32 Gbox4 Mbox0 CRC address capture register

0x8006D097C MCA_CRC1_ADDR 32 Gbox4 Mbox1 CRC address capture register

Memory Controller (Gbox5) MCA Registers

0x8006C005C MCX_CTL_LO 32 Gbox5 Fbox machine check control register

0x8006C0060 MCX_CTL_HI 32 Gbox5 Fbox machine check control register

0x8006C0064 MCX_STATUS_LO 32 Gbox5 Fbox machine check status register

0x8006C0068 MCX_STATUS_HI 32 Gbox5 Fbox machine check status register

0x8006C006C MCX_ADDR_LO 32 Gbox5 Fbox machine check address register

0x8006C0070 MCX_ADDR_HI 32 Gbox5 Fbox machine check address register

0x8006C0074 MCX_MISC 32 Gbox5 Fbox Misc (Transaction timeout register)

0x8006C017C MCA_CRC0_ADDR 32 Gbox5 Mbox0 CRC address capture register

0x8006C097C MCA_CRC1_ADDR 32 Gbox5 Mbox1 CRC address capture register

Memory Controller (Gbox6) MCA Registers

0x8006B005C MCX_CTL_LO 32 Gbox6 Fbox machine check control register

0x8006B0060 MCX_CTL_HI 32 Gbox6 Fbox machine check control register

0x8006B0064 MCX_STATUS_LO 32 Gbox6 Fbox machine check status register

0x8006B0068 MCX_STATUS_HI 32 Gbox6 Fbox machine check status register

0x8006B006C MCX_ADDR_LO 32 Gbox6 Fbox machine check address register

0x8006B0070 MCX_ADDR_HI 32 Gbox6 Fbox machine check address register

0x8006B0074 MCX_MISC 32 Gbox6 Fbox Misc (Transaction timeout register)

0x8006B017C MCA_CRC0_ADDR 32 Gbox6 Mbox0 CRC address capture register

0x8006B097C MCA_CRC1_ADDR 32 Gbox6 Mbox1 CRC address capture register

Memory Controller (Gbox7) MCA Registers

0x8006A005C MCX_CTL_LO 32 Gbox7 Fbox machine check control register

0x8006A0060 MCX_CTL_HI 32 Gbox7 Fbox machine check control register

0x8006A0064 MCX_STATUS_LO 32 Gbox7 Fbox machine check status register

0x8006A0068 MCX_STATUS_HI 32 Gbox7 Fbox machine check status register

 Page 104

MSR/MMIO
Address

Register Name Size (bits) Description

0x8006A006C MCX_ADDR_LO 32 Gbox7 Fbox machine check address register

0x8006A0070 MCX_ADDR_HI 32 Gbox7 Fbox machine check address register

0x8006A0074 MCX_MISC 32 Gbox7 Fbox Misc (Transaction timeout register)

0x8006A017C MCA_CRC0_ADDR 32 Gbox7 Mbox0 CRC address capture register

0x8006A097C MCA_CRC1_ADDR 32 Gbox7 Mbox1 CRC address capture register

3.3.3.9 Uncore MCA Registers (Encoding and Controls)

The Intel® Xeon Phi™ coprocessor’s uncore agents (which are not part of the core CPU) signal their machine-check
events via the I/O APIC, and log error events via agent-specific error control and logging registers. These registers are
implemented as registers in Intel® Xeon Phi™ coprocessor MMIO space associated with each uncore agent that is
capable of generating machine-check events.

Once an error is detected by an uncore agent, it signals the interrupt controller located in the uncore system box (SBox).
The SBox logs the source of the error and generates an interrupt to the specified LRB programmed in the APIC
redirection tables.

Software must check all the uncore machine-check banks to identify the source of the uncore machine-check event. To
enable the generation of a machine-check event from a given source, the software should set the corresponding bit in
the SBox MCA Interrupt Enable Register (MCA_INT_EN). To disable the generation of machine-check events from a
given source, the software should clear the corresponding bit of the SBox MCA_INT_EN register.

Sources of uncore machine-check events in the Intel® Xeon Phi™ coprocessor uncore are listed in Table 3-10.

Table 3-10. Sources of Uncore Machine-Check Events

Uncore Agent Name number of instances Description

SBox 1 System agent

Tag Directory 2 Tag Directories not collocated with CPU slice

GBox 8 Memory controller

Each uncore agent capable of generating machine-check events contains event control and logging registers to facilitate
event detection and delivery.

3.3.3.9.1 System Agent (SBox) Error Logging Registers

The SBox contains a set of machine check registers similar to core bank registers, but implemented in MMIO (USR
register) for reporting errors. Machine check events from the SBox are routed to the OS running on a specified thread
via the local APIC in the SBox. The SBox local APIC redirection table assigned to MCA interrupts must be programmed
with a specific thread in order to service SBox (and other uncore) machine-check events. Errors related to DMA requests
are handled directly by the affected DMA Channel itself and are reported to the DMA SW Driver via the local I/O APIC or
by the System Interrupt logic, depending on the assigned ownership of the channel. All MCA errors detected by the
SBox are logged in the SBox MCA logging registers (MCx.STATUSx, MCx.MISCx, and MCx.ADDR) regardless of whether
the corresponding MCA_CTL bit is set, the exception being when the MCA_STATUS.EN bit is already set. Only errors
with their corresponding bit set in the MCx.CTL register can signal an error.

Table 3-11. SBox Machine Check Registers

Register Name Size (bits) Description

MCX_CTL_LO 32 Machine check control register

 Page 105

MCX_CTL_HI 32 Machine check control register (Reads 0, Writes
Dropped, Not implemented on coprocessor)

MCX_STATUS_LO 32 Machine check status register

MCX_STATUS_HI 32 Machine check status register

MCX_ADDR_LO 32 Machine check address register

MCX_ADDR_HI 32 Machine check address register

MCX_MISC 32 Misc (timeout TID register)

MCX_MISC2 32 Misc (timeout address register)

3.3.3.9.2 Multiple Errors and Errors Over Multiple Cycles

There are two cases in which the SBox may receive two or more errors before the software has a chance to process each
individual error:

5. Multiple errors (errors occurring simultaneously). This occurs when multiple error events are detected in the
same cycle. Essentially, this allows the hardware not to try and decode and prioritize multiple errors that occur
in the same cycle.

6. Errors occurring one after another over multiple cycles. This occurs when an existing error is already logged in
the MCx register and another error is received in a subsequent cycle.

3.3.3.9.3 SBox Error Events

Table 3-12 lists the value of the Model code associated with each individual error. The sections following the table
provide some additional information on a select set of these errors.

Table 3-12. SBox Error Descriptions

Error Class
MCX_CTL
Bit Error Name

Model
Code Description SBOX Behaviour

Unsuccessf
ul
Completio
n

9

Received
Configuration
Request
Retry Status
(CRS)

0x0006h A Completion with
Configuration Request Retry
Status was received for a
Request from a Ring Agent

All 1’s for data
returned to the
Ring

1
Received
Completer
Abort (CA)

0x0007h A Completion with Completer
Abort status was received for a
Request from a Ring Agent

All 1’s for data
returned to the
Ring

2

Received
Unsupported
Request (UR)

0x0008h A Completion with
Unsupported Request status
was received for a Request
from a Ring Agent

All 1’s for data
returned to the
Ring

Poisoned
Data

7

Received
Poisoned
Data in
Completion
(PD)

0x0040h A Successful Completion (SC)
with Poisoned Data was
received for a Request from a
Ring Agent

Data payload with
error is returned to
the Ring

Timeout

6

Upstream
Request
terminated
by
Completion
Timeout
(CTO)

0x0009h A Completion Timeout was
detected for a Request from a
Ring Agent

All 1’s for data
returned to the
Ring.

 Page 106

Error Class
MCX_CTL
Bit Error Name

Model
Code Description SBOX Behaviour

Illegal
Access

3

Downstream
Address
outside of
User
accessible
Range

0x0020h PCIE downstream attempt to
use indirect registers to access
illegal address ranges via the
I/O space

RD: Successful
Completion (SC)
with all 0’s for data
returned to PCIe
WR: Discard
transaction.
Successful
Completion (SC)
with no data
returned to PCIe.

8

Unclaimed
Address (UA)

0x0021h A Ring Agent Request to an
unclaimed address was
terminated by subtractive
decode

RD: All 1’s for data
returned to the
Ring.
WR: Request is
discarded.

PCIe
Error 4

PCIe
Correctable
Error

0x0030h A PCIe correctable error was
logged by the Endpoint

ERR_COR Message
transmitted on
PCIe

5

PCIe
Uncorrectabl
e Error

0x0031h A PCIe Uncorrectable error was
logged by the Endpoint

ERR_NONFATAL or
ERR_FATAL
Message
transmitted on
PCIe

3.3.3.9.3.1 Timeout Error

An upstream timeout occurs when the target fails to respond to an Intel® Xeon Phi™ coprocessor-initiated read request
within a programmable amount of time. The PCIE endpoint keeps track of these outstanding completions and will signal
the GHOST unit when it is okay to free up the buffers allocated to hold the timed out completion. To ensure that the
core subsystem within the Intel® Xeon Phi™ coprocessor doesn’t hang while waiting for a read that will never return, the
SBox generates a dummy completion back to the requesting thread. The payload of this completion (BAD66BAD) clearly
indicates that the completion is fake. As well as generating an MCA event that is logged in the MCX_STATUS register, a
portion of the completion header associated with the failing PCIe transaction is logged in the MCX_MISC register.

3.3.3.9.3.2 Unrecognized Transaction Error

This type of error indicates that a transaction was dropped by the SBox because it was of a type that is not handled by
Intel® Xeon Phi™ coprocessor. Transactions that fall into this category are usually vendor-specific messages that are not
recognized by the Intel® Xeon Phi™ coprocessor.

3.3.3.9.3.3 Illegal Access Error

An illegal access error indicates that the SBOX was unable to complete the transaction because the destination address
was not within the legal range. For inbound transactions initiated by PCIE, this can only happen via I/O read and write
cycles to the indirect address and data ports. If the user specifies an address above or below the range set aside for
MMIO host visibility, a machine check exception will be generated and key debug information will be logged for
software inspection.

 Page 107

Ring-initiated transactions can also result in an illegal access error if the coprocessor OS or Tag Directory contains flaws
in the coding or logic. The SBox microarchitecture will ensure that all EXT_RD and EXT_WR transactions are delivered to
the endpoint scheduler for inspection. If the destination address (an internal Intel® Xeon Phi™ coprocessor address)
does not match one of the direct-access ranges set aside for the Flash device or does not match one of the 32 available
system memory ranges, it will be terminated and a default value returned to the requester. If the ring traffic was routed
to the SBox in error, this will likely fail all built-in address range checks and will overload the platform as a result. To
guard against this possibility, the endpoint scheduling logic must explicitly match one of its valid address ranges before
driving PCI Express link. Outbound traffic that fails this check will result in the following explicit actions:

 EXT_WR transactions will be discarded, key debug information will be logged and an MCA exception will be
generated.

 EXT_RD transactions will complete and return data back to the requestor, key debug information will be logged,
and an MCA exception will be generated.

3.3.3.9.3.4 Correctable PCIe Fabric Error

Errors detected in the PCIe fabric will generate an MCA error and be logged in the MCX_STATUS register as an event. It
is the responsibility of the software handler to extract the error event from the PCIe standalone agent status registers as
well as from communication with the PCIe host. The SBox does not log any more information on this error than what is
contained in the MCX status register. These errors are signaled by the assertion of this endpoint interface signal.

Table 3-13. Correctable PCIe Fabric Error Signal

Signal Name Width Description

func0_rep_cor_err Scalar The end point has sent a correctable error message to the root complex

3.3.3.9.3.5 Uncorrectable PCIe Fabric Error

Errors detected in the PCIe fabric (GDA) will generate an MCA error and be logged in the MCX_STATUS register as an
event. It is the responsibility of the software handler to extract the error event from the PCIe standalone agent status
registers as well as from communication with the PCIe host. The SBox does not log any more information on this error
than is contained in the MCX status register. These errors are signaled by the assertion of this endpoint interface signal.

Table 3-14. Uncorrectable PCIe Fabric Error Signal

Signal Name Width Description

func0_rep_uncor_err Scalar The end point has sent an uncorrectable error message (fatal or
nonfatal) to the root complex

3.3.3.9.4 GBox Error Events

Table 3-15. GBox Errors

Error
Category

MCX_CTL
Bit Error Name Model Code Description GBOX Behaviour

ECC 2 Correctable ECC
Error Detected Ch
0

0x00000000
4h

Single bit ECC error
on channel 0

Log/Signal Event

3 Correctable ECC
Error Detected Ch
1

0x00000000
8h

Single bit ECC error
on channel 1

31 Uncorrectable ECC
Error Detected Ch
0

0x08000000
0h

Double bit ECC error
on channel 0

Log/Signal Event
“Corrupted” Data
may be returned to
consumer. 32 Uncorrectable ECC

Error Detected Ch
0x10000000 Double bit ECC error

 Page 108

Error
Category

MCX_CTL
Bit Error Name Model Code Description GBOX Behaviour

1 0h on channel 1

33 Illegal Access to
Reserved ECC
Memory Space

0x20000000
0h

Access to reserved
ECC memory

CAPE 4 CAPE Exceeded
Threshold Ch 0

0x00000001
0h

Memory Cape
threshold Exceeded
on Ch0

Log/Signal Event

5 CAPE Exceeded
Threshold Ch 1

0x00000002
0h

Memory Cape
threshold Exceeded
on Ch0

Training 0 Channel 0
retraining

0x00000000
1h

Channel 0 retraining
event

Log/Signal Event

1 Channel 1
retraining

0x00000000
2h

Channel 0 retraining
event

29 Training failure
after DM request
Ch 0

0x02000000
0h

Training failure after
DM request Ch 0

Log/Signal Event
Transaction halted

30 Training failure
after DM request
Ch 1

0x04000000
0h

Training failure after
DM request Ch 1

Proxy MCA 8 Standalone tag
directory Proxy
MCA event

0x00000010
0h

MCA event In
Standalone Tag
Directory

Log/Signal Event

Miscellaneou
s

6 Transaction
Received to an
Invalid Channel

0x00000004
0h

Memory transaction
with invalid channel
encountered

Log/Signal Event
“Corrupted” Data
may be returned to
consumer/Transactio
n halted

23 Channel 0 Write
Queue overflow

0x00080000
0h

Channel 0 Write
Queue overflow

Log/Signal Event
Unspecified
behaviour 24 Channel 1 Write

Queue overflow
0x00100000

0h

Channel 1 Write
Queue overflow

3.3.3.9.5 Tag Directory Error Events

Table 3-16. TD Errors

Error Category
MXC_CTL
Bit Error Name

Model
Code Description

Logging
Register

Tag-State UNCORR
Error

0
External

Transaction
0x0001h

A tag error occurred on an external
TD transaction

MC2_STATUS
MC2_ADDR

0
Internal

Transaction 0x0002h
A tag error occurred on an internal
TD transaction
(i.e. Victim)

MC2_STATUS
MC2_ADDR

Core-Valid
UNCORR Error

1
External

Transaction
0x0010h

A state error occurred on an
external TD transaction

MC2_STATUS
MC2_ADDR

1
Internal

Transaction 0x0011h
A State error occurred on an
internal TD transaction
(i.e. Victim)

MC2_STATUS
MC2_ADDR

Tag-State CORR 0 External 0x0100h A tag error occurred on an external MC2_STATUS

 Page 109

Error Category
MXC_CTL
Bit Error Name

Model
Code Description

Logging
Register

Error Transaction TD transaction MC2_ADDR

 0
Internal

Transaction 0x0101h
A tag error occurred on an internal
TD transaction
(i.e. Victim)

MC2_STATUS
MC2_ADDR

Core-Valid CORR
Error

1
External

Transaction
0x0110h

A state error occurred on an
external TD transaction

MC2_STATUS
MC2_ADDR

 1
Internal

Transaction 0x0111h
A State error occurred on an
internal TD transaction
(i.e. Victim)

MC2_STATUS
MC2_ADDR

3.3.3.9.6 Spare Tag Directory (TD) Logging Registers

The Spare Tag Directory contains a set of registers similar to core bank registers but implemented in MMIO (USR
register) space instead of the MSR space that co-located TD’s are assigned to.

3.3.3.9.7 Memory Controller (GBox) Error Logging Registers

The GBox contains a set of registers similar to core bank registers but implemented in MMIO (USR register) space
instead of as MSRs. The GBox signals two classes of events, CRC retry and Training failure. CRC retry is signaled when the
GBox attempts a predefined number of retries for a transaction (before initiating retraining). Training failure is signaled
when the GBox training logic fails or when a transaction incurs a CRC failure after retraining was initiated.

Table 3-17. GBox Error Registers

Register Name Size (bits) Description

MCX_CTL_LO 32 Machine Check control register

MCX_CTL_HI 32 Machine Check control register

MCX_STATUS_LO 32 Machine Check status register

MCX_STATUS_HI 32 Machine Check status register

MCX_ADDR_LO 32 Machine Check address register

MCX_ADDR_HI 32 Machine Check address register

MCX_MISC 32 MISC (Transaction timeout register)

3.3.3.10 Uncore MCA Signaling

Once a machine-check event has occurred in an uncore agent and has been logged in the error reporting register
(MCX_STATUS), the MCX_STATUS.VAL bit is sent from each agent to the SBox interrupt controller, which captures this
bit in the SBox MCA_INT_STAT register. Each bit of the SBox MCA_INT_STAT register represents an MCA/EMON event
of an uncore agent. When the corresponding bit of MCA_INT_EN is also set, then the SBox will generate an interrupt to
the specified Intel® Xeon Phi™ coprocessor core with the interrupt vector specified in the SBox interrupt controller’s
redirection table.

3.3.4 Cache Line Disable

A statistically significant number of SRAM cells can develop erratic and sticky bit failures over time. Burn-in can be used
to reduce these types of errors, but it is not sufficient to guarantee that there is statistically insignificant number of
these errors as has been the case in the past. These array errors also manifest more readily as a result of the
requirement for the product to run at low voltage in order to reduce power consumption. The Intel® Xeon Phi™
coprocessor operational voltage will need to find the right balance between power and reliable operation in this regard
and it must be assumed that SRAM arrays on Intel® Xeon Phi™ coprocessor can develop erratic and sticky bit failures.

 Page 110

As a result of the statistically significant SRAM array error sources outlined above, the Intel® Xeon Phi™ coprocessor
supports a mechanism known as Cache Line Disable (CLD) that is used to disable cache lines that develop erratic and
sticky bit failures. Intel® Xeon Phi™ coprocessor hardware detects these array errors and signals a machine check
exception to a machine check handler, which implements the error handling policy and which can (optionally) use CLD
to preclude these errors from occurring in the future. Since the cache line in question will no longer be allowed to
allocate a new line in the specific array that sourced the error, there may be a slight performance loss. Since the errors
can be sticky, and therefore persistent, the Intel® Xeon Phi™ coprocessor remembers the CLDs between cold boots and
reapplies the CLDs as part of the reset process before the cache is enabled. This is done through reset packets that are
generated in the SBox and delivered to all units with CLD capability.

3.3.5 Core Disable

Similar to Cache Line Disable (CLD), core disable enables the software (OS) to disable a segment of the Intel® Xeon Phi™
coprocessor. Core disable allows the OS to disable a particular Intel® Xeon Phi™ coprocessor core.

Core disable is achieved by writing a segment of the flash room with a core disable mask, and then initiating a cold or
warm reboot. The selected cores will not be enumerated.

Core Disable is intended to be used when it is determined that a particular core cannot function correctly due to specific
error events. When this case is detected, the coprocessor OS sends information to the host RAS agent corresponding to
the affected core. The RAS agent reboots the card into a special processing mode to disable the core, and then resets
the Intel® Xeon Phi™ coprocessor card.

On the next reboot, the core disable flash record will be used to disable the selected cores and prevent them from
becoming visible to the coprocessor OS for future scheduling. There will be no allocation into the CRI associated with
the disabled core, but the co-located TD will still function to maintain Intel® Xeon Phi™ coprocessor coherency.

3.3.6 Machine Check Flows

This section describes the physical sources of machine check events on the Intel® Xeon Phi™ coprocessor and the
hardware flows associated with them. It also suggests how software handlers should address these machine check
events.

3.3.6.1 Intel® Xeon Phi™ Coprocessor Core

Sources for machine check events are the L1 instruction and L1 data caches and their associated TLB’s as well as the
microcode ROM.

The L1 instruction cache is protected by parity bits. There is no loss of machine state when a cache parity error occurs.
MCA’s generated due to parity errors are informational only and are corrected in hardware. The intent is for software to
log the event.

Both TLB’s are protected by parity and contain architectural state. Errors in the TLB’s are uncorrected. It is up to the
software handler to decide if execution should continue.

The L1 data cache is parity protected, but it does contain modified cache lines that make recovery impossible in every
case. Also, it does not have any mechanism to convey its machine-check events in a synchronous fault. Hence,
instructions that encounter parity errors will consume the bad data from the cache. Software must decide if execution
should continue upon receiving a parity error. The reporting registers provided for this cache allow software to
invalidate or flush the cache index and way that encountered the parity error.

 Page 111

The Cache Ring Interface (CRI) L2 data cache is protected by ECC. While machine checks are delivered asynchronously
with respect to the instruction accessing the cache, single bit errors are corrected by hardware in-line with the data
delivery. The L2 tags are protected by parity.

If data integrity is desired, software should consider a mode where all Intel® Xeon Phi™ coprocessor uncorrected errors
are treated as fatal errors. To enable potential recovery from L2 cache errors, the address and way of the transaction
that encounters an error is logged in the Cache Ring Interface. Software may use the address to terminate applications
that use the affected memory addresses range and flush the affected line from cache. L2 cache errors may occur in the
Tag array or the data array. Errors in the Tag or data array are typically not corrected and result in incorrect data being
returned to the application.

In addition to the error reporting resources, the CRI also contains Cache Line Disable (CLD) registers. There registers are
programmed on the accumulation of multiple errors to the same cache set and way. Once written, the cache will not
allow allocations into the specified cache set and way.

The Intel® Xeon Phi™ coprocessor does not propagate a poison bit with cache-to-cache transfers. Hence the probability
of a bad line in the L2 propagating without a machine check is significantly higher. On a cache-to-cache transfer for a
line with bad parity, a machine check is going to be generated on the source L2’s core but the data is going to be
transferred and cached in the requesting L2 as a good line. As part of the MCA logging on a snoop operation, the
destination of data is logged; this information can be used by the error handler to contain the effect of an L2 error.

There are two special cases for snoops. The first is a snoop that encounters a Tag/State error that causes a miss in the
Tag. The second case is a snoop that misses in the tag without a Tag error (or a regular miss). In both cases, the CRI
should complete the snoop transaction. For snoop types that need a data response, the CRI returns data that may be
unrelated to the actual requested line. Snoops that incur a miss with a parity error report a TAG_MISS_UNCORR_ERR
error, but coherency snoops (from TD) that miss generate a SNP_MISS_UNCORR_ERR error.

The TD Tag-State (TS) and Core-Valid (CV) arrays are protected by ECC. For the Intel® Xeon Phi™ coprocessor all errors
detected in either the TS or CV arrays may generate a MCA event and are logged in the MCA logging register. Single bit
errors by the TD are corrected inline and do not change any TD flows for the affected transaction.

Software must decide if and when to try and recover from a TD error. To remove the error from the TD, software must
issue WBINVD instructions such that all cores evict all lines from all caches and then evict or flush all possible addresses
to the same set as the error address to regain coherency in the TDs as it is not obvious which lines are tracked in a
particular TD.

The TD allows one Cache-Line-Disable (CLD) register that software can program to disable allocation to a particular TD
set and way.

3.3.6.2 Memory Controller (GBox)

The GBox detects link CRC failures between the PBox and the GDDR devices. These CRC failures are delivered as
machine-check events to the SBox and are logged in the error reporting registers located in the GBox. In addition to
CRC, ECC protection of GDDR contents has been added. The GBox can detect single and double bit errors and can
correct single bit errors. Both single and double bit errors can be enabled to signal machine-check events.

For a read request that encounters a CRC training failure or a double bit ECC error, the GBox will generate a CRC training
failure or a double bit ECC error. The GBox will generate a fake completion of the request. On a write the GBox should
complete the transaction by dropping the write for failing link training or completing the write for a double bit error.

 Page 112

3.3.7 Machine Check Handler

A software machine check handler (implemented as a kernel module in the coprocessor OS) is required to resolve
hardware machine check events triggered during Intel® Xeon Phi™ coprocessor operation. The machine check handler is
responsible for logging hardware-corrected events (threshold controlled) and for communicating information to the
host RAS agent about uncorrected events and logging these events. The host RAS agent determines the correct action
to take on uncorrected events.

3.3.7.1 Basic Flow

Due to the reliability requirements on the Intel® Xeon Phi™ coprocessor and the unique nature of the hardware a
generic handler will not suffice and an Intel® Xeon Phi™ coprocessor specific handler is required. A machine-check
handler must perform following steps:

1. Stop all threads and divert them to the machine check handler via IPI.
2. Once all threads have reached, the machine check handler skips to step 4.
3. One or more threads may be hung. Trigger shutdown/checkpoint failure and jump to step 20.
4. Read MCA registers in each bank and log the information.
5. If uncorrected error (MCi.STATUS.UC || MCi.STATUS.PCC), then jump to step 9.
6. Write CLD field in flash, if necessary.
7. If the reliability threshold is met, then jump to step 9.
8. Exit handler.
9. Turn off all cache and disable MCA (MCi.CTL) for all MC banks.
10. Perform a WBINV to flush L2 contents.
11. Invalidate L1 instruction and data caches via test registers.
12. Turn on the caches, but not MCA.
13. On a selected thread/core, perform a read of the entire GDDR memory space.
14. Perform a WBINV to flush the contents of the selected core.
15. Clear MCi.STATUS registers for all MC banks.
16. If reliability testing is not enabled, jump to step 20.
17. Perform a targeted test of the caches.
18. Check the contents of the MCi_STATUS register for failure (note that MC.STATUS.VAL will not be set).
19. If failure is detected, then set CLD to disable affected lines, and then repeat steps 9-15.
20. Turn on MCA (enable MCi.CTL).
21. Asses the severity of the error and determine the action to be taken (i.e., shutdown application, if possible).
22. Clear the MCIP bit.
23. Exit handler.

3.3.8 Error Injection

There are two basic methods that system software can use to simulate machine-check events:

1. Dedicated Error Injection Registers.
2. Machine checks STATUS register.

3.3.8.1 Dedicated Error Injection Registers

Machine check events can be generated using dedicated error injection registers available for a limited number of
protected arrays. For Intel® Xeon Phi™ coprocessor, this is limited to the MC0 and MC1 error reporting banks.

3.3.8.2 Error Injection via MCi_STATUS Register

The last method of injecting MC events into the machine is via the MCi_STATUS register. For the MC1, MC2 and Uncore
MC Bank registers writing the MCx_STATUS.VAL bit will cause a machine check event to be generated from the targeted
error reporting bank.

 Page 113

3.3.8.3 List of API’s for RAS

The following interfaces provide communication between RAS features and other parts of the Intel® Xeon Phi™
coprocessor software:

 SCIF access from exception/interrupt context

 SCIF well known ports for the MCA agent and Linux* coprocessor OS MC event handlers

 SCIF message formats for MC events reported to host side agent

 Reboot to maintenance mode via IOCTL request

 SCIF message formats for Intel® Xeon Phi™ coprocessor system queries and controls

 Throttle mechanism for CEs

 I2C driver for the bus where SMC resides

 I2C identifiers for communicating with the SMC

 Data formats for MC events.

 Data formats for Intel® Xeon Phi™ coprocessor system queries (if any)

 Data formats for system environment changes (fan speeds, temp, etc.)

 Filter for which events to report to SMC

 Storage location in SMC for MC raw data

 Fuse override requests to maintenance mode

 Diagnostic mode entry to maintenance mode

 Data formats on the RAS log in Intel® Xeon Phi™ coprocessor EEPROM

Time reference in maintenance mode (Intel® Xeon Phi™ coprocessor cards have no time reference). If the RAS log
includes the timestamp, the host must provide a time base or a reference to a time counter.

 Page 114

4 Operating System Support and Driver Writer’s Guide

This section discusses the support features that the Intel® Xeon Phi™ coprocessor provides for the operating system and
device drivers.

4.1 Third Party OS Support

The Intel® MIC Architecture products support 3rd party operating systems such as modified versions of Linux* or
completely custom designs. The Linux* based coprocessor OS is treated like a 3rd party OS.

4.2 Intel® Xeon Phi™ Coprocessor Limitations for Shrink-Wrapped Operating Systems

This section is intended to help developers port an existing operating system that runs a platform built around an
Intel 64 processor to Intel® Xeon Phi™ coprocessor hardware.

4.2.1 Intel x86 and Intel 64 ABI

The Intel x86 and Intel 64 -bit ABI uses the SSE2 XMM registers, which do not exist in the Intel® Xeon Phi™ coprocessor.

4.2.2 PC-AT / I/O Devices

Because the Intel® Xeon Phi™ coprocessor does not have a PCH southbridge, many of the devices generally assumed to
exist on a PC platform do not exist. Intel® Xeon Phi™ coprocessor hardware supports a serial console using the serial
port device on the SBOX I2C bus. It is also possible to export a standard device, like an Ethernet interface, to the OS by
emulating it over system and GDDR memory shared with the host. This allows for higher level functionality, such as SSH
or Telnet consoles for interactive and NFS for file access.

4.2.3 Long Mode Support

Intel 64 Processors that support Long mode also support a compatibility submode within Long mode to handle existing
32-bit x86 applications without recompilation. The Intel® Xeon Phi™ coprocessor does not support the compatibility
submode.

4.2.4 Custom Local APIC

The local APIC registers have expanded fields for the APIC ID, Logical APIC ID, and APIC Destination ID. Refer to the SDM
Volume 3A System Programming Guide for details.

There is a local APIC (LAPIC) per hardware thread in the Intel® Xeon Phi™ coprocessor. In addition, the SBox contains
within it a LAPIC that has 8 Interrupt Command Registers (ICRs) to support host-to-coprocessor and inter-coprocessor
interrupts. To initiate an interrupt from the host to an Intel® Xeon Phi™ coprocessor or from one Intel® Xeon Phi™
coprocessor to another, the initiator must write to an ICR on the target Intel® Xeon Phi™ coprocessor. Since there are 8
ICRs, the system can have up to 8 Intel® Xeon Phi™ coprocessors that can be organized in a mesh topology along with
the host.

 Page 115

4.2.5 Custom I/O APIC

The Intel® Xeon Phi™ coprocessor I/O APIC has a fixed 64-bit base address. The base address of the I/O APIC on IA
platforms is communicated to the OS by the BIOS (Bootstrap) via MP, ACPI, or SFI table entries. The MP and ACPI table
entries use a 32-bit address for the base address of the I/O APIC, whereas the SFI table entry uses a 64-bit address.
Operating systems that assume a 32-bit address for the I/O APIC will need to be modified.

The I/O APIC pins (commonly known as irq0, irq1 and so on) on a PC-compatible platform are connected to ISA and PCI
device interrupts. None of these interrupt sources exist on the Intel® Xeon Phi™ coprocessor; instead the I/O APIC IRQs
are connected to interrupts generated by the Intel® Xeon Phi™ coprocessor SBox (e.g., DMA channel interrupts, thermal
interrupts, etc.).

4.2.6 Timer Hardware

Timer hardware devices like the programmable interval timer (PIT), the CMOS real time clock (RTC), the advanced
configuration and power interface (ACPI) timer, and the high-precision event timer (HPET) commonly found on PC
platforms are absent on the Intel® Xeon Phi™ coprocessor.

The lack of timer hardware means that the Intel® Xeon Phi™ coprocessor OS must use the LAPIC timer for all
timekeeping and scheduling activities. It still needs a mechanism to calibrate the LAPIC timer which is otherwise
calibrated using the PIT. It also needs an alternative solution to the continuously running time-of-day (TOD) clock, which
keeps time in year/month/day hour:minute:second format. The Intel® Xeon Phi™ coprocessor has a SBox MMIO register
that provides the current CPU frequency, which can be used to calibrate the LAPIC timer. The TOD clock has to be
emulated in software to query the host OS for the time at bootup and then using the LAPIC timer interrupt to update it.
Periodic synchronization with the host may be needed to compensate for timer drift.

4.2.7 Debug Store

The Intel® Xeon Phi™ coprocessor does not support the ability to write debug information to a memory resident buffer.
This feature is used by Branch Trace Store (BTS) and Precise Event Based Sampling (PEBS) facilities.

4.2.8 Power and Thermal Management

4.2.8.1 Thermal Monitoring

Thermal Monitoring of the Intel® Xeon Phi™ coprocessor die is implemented by a Thermal Monitoring Unit (TMU). The
TMU enforces throttling during thermal events by reducing core frequency ratio. Unlike TM2 thermal monitoring on
other Intel processors (where thermal events result in throttling of both core frequency and voltage), the Intel® Xeon
Phi™ coprocessor TMU does not automatically adjust the voltage. The Intel® Xeon Phi™ coprocessor TMU coordinates
with a software-based mechanism to adjust processor performance states (P-states). The TMU software interface
consists of a thermal interrupt routed through the SBox I/O APIC and SBox interrupt control and status MMIO registers.
For more information on the TMU and its software interface refer to the section on Intel® Xeon Phi™ Coprocessor Power
and Thermal Management.

4.2.8.2 ACPI Thermal Monitor and Software Controlled Clock Facilities

The processor implements internal MSRs (IA32_THERM_STATUS, IA32_THERM_INTERRUPT,
IA32_CLOCK_MODULATION) that allow the processor temperature to be monitored and the processor performance to
be modulated in predefined duty cycles under software control.

 Page 116

The Intel® Xeon Phi™ coprocessor supports non-ACPI based thermal monitoring through a dedicated TMU and a set of
thermal sensors. Thermal throttling of the core clock occurs automatically in hardware during a thermal event.
Additionally, OS power-management software is given an opportunity to modulate the core frequency and voltage in
response to the thermal event. These core frequency and voltage settings take effect when the thermal event ends. In
other words, Intel® Xeon Phi™ coprocessor hardware provides equivalent support for handling thermal events but
through different mechanisms.

4.2.8.2.1 Enhanced SpeedStep (EST)

ACPI defines performance states (P-state) that are used to facilitate system software’s ability to manage processor
power consumption. EST allows the software to dynamically change the clock speed of the processor (to different P-
states). The software makes P-state decisions based on P-state hardware coordination feedback provided by EST.

Again, the Intel® Xeon Phi™ coprocessor is not ACPI compliant. However, the hardware provides a means for the OS
power-management software to set core frequency and voltage that corresponds to the setting of P-states in the ACPI
domain. OS PM software in the Intel® Xeon Phi™ coprocessor (just as in the case of EST) dynamically changes the core
frequency and voltage of the processor cores based on core utilization, thereby reducing power consumption.
Additionally, the Intel® Xeon Phi™ coprocessor hardware provides feedback to the software when the changes in
frequency and voltage take effect. This is roughly equivalent to what exists for EST; except that there is a greater burden
on OS PM software to:

 generate a table of frequency/voltage pairs that correspond to P-states

 set core frequency and voltage to dynamically change P-states.

4.2.9 Pending Break Enable

The Intel® Xeon Phi™ coprocessor does not support this feature.

4.2.10 Global Page Tables

The Intel® Xeon Phi™ coprocessor does not support the global bit in Page Directory Entries (PDEs) and Page Table Entries
(PTEs). Operating systems typically detect the presence of this feature using the CPUID instruction. This feature is
enabled on processors that support it by writing to the PGE bit in CR4. On the Intel® Xeon Phi™ coprocessor, writing to
this bit results in a GP fault.

4.2.11 CNXT-ID – L1 Context ID

Intel® Xeon Phi™ coprocessor does not support this feature.

4.2.12 Prefetch Instructions

The Intel® Xeon Phi™ coprocessor’s prefetch instructions differ from those available on other Intel® processors that
support the MMX™ instructions or the Intel® Streaming SIMD Extensions. As a result, the PREFETCH instruction is not
supported. This set of instructions is replaced by VPREFETCH as described in the (Intel® Xeon Phi™ Coprocessor
Instruction Set Reference Manual (Reference Number: 327364)).

4.2.13 PSE-36

PSE-36 refers to an Intel processor feature (in 32-bit mode) that extends the physical memory addressing capabilities
from 32 bits to 36 bits. The Intel® Xeon Phi™ coprocessor has 40 bits of physical address space but only supports 32 bits
of physical address space in 32-bit mode. See also the (Intel® Xeon Phi™ Coprocessor Instruction Set Reference Manual
(Reference Number: 327364)).

 Page 117

4.2.14 PSN (Processor Serial Number)

The Intel® Xeon Phi™ coprocessor does not support this feature.

4.2.15 Machine Check Architecture

The Intel® Xeon Phi™ coprocessor does not support MCA as defined by the Intel® Pentium® Pro and later Intel
processors. However, MCEs on the Intel® Xeon Phi™ coprocessor are compatible with the Intel® Pentium® processor.

4.2.16 Virtual Memory Extensions (VMX)

The Intel® Xeon Phi™ coprocessor does not support the virtualization technology (VT) extensions available on some
Intel® 64 processors.

4.2.17 CPUID

The Intel® Xeon Phi™ coprocessor supports a highest-source operand value (also known as a CPUID leaf) of 4 for CPUID
basic information, 0x80000008 for extended function information, and 0x20000001 for graphics function information.

4.2.17.1 Always Running LAPIC Timer

The LAPIC timer on the Intel® Xeon Phi™ coprocessor keeps ticking even when the Intel® Xeon Phi™ coprocessor core is
in the C3 state. On other Intel processors, the OS detects the presence of this feature using the CPU ID leaf 6. The Intel®
Xeon Phi™ coprocessor does not support this leaf so any existing OS code that detects this feature must be modified to
support the Intel® Xeon Phi™ coprocessor.

4.2.18 Unsupported Instructions

For the details on supported and unsupported instructions, please consult the (Intel® Xeon Phi™ Coprocessor Instruction
Set Reference Manual (Reference Number: 327364)).

4.2.18.1 Memory Ordering Instructions

The Intel® Xeon Phi™ coprocessor memory model is the same as that of the Intel® Pentium processor. The reads and
writes always appear in programmed order at the system bus (or the ring interconnect in the case of the Intel® Xeon
Phi™ coprocessor); the exception being that read misses are permitted to go ahead of buffered writes on the system bus
when all the buffered writes are cached hits and are, therefore, not directed to the same address being accessed by the
read miss.

As a consequence of its stricter memory ordering model, the Intel® Xeon Phi™ coprocessor does not support the
SFENCE, LFENCE, and MFENCE instructions that provide a more efficient way of controlling memory ordering on other
Intel processors.

While reads and writes from an Intel® Xeon Phi™ coprocessor appear in program order on the system bus, the compiler
can still reorder unrelated memory operations while maintaining program order on a single Intel® Xeon Phi™
coprocessor (hardware thread). If software running on an Intel® Xeon Phi™ coprocessor is dependent on the order of
memory operations on another Intel® Xeon Phi™ coprocessor then a serializing instruction (e.g., CPUID, instruction with
a LOCK prefix) between the memory operations is required to guarantee completion of all memory accesses issued prior
to the serializing instruction before any subsequent memory operations are started.

 Page 118

4.2.18.2 Conditional Movs

Intel® Xeon Phi™ coprocessor does not support the Conditional Mov instructions. The OS can detect the lack of CMOVs
using CPUID.

4.2.18.3 IN and OUT

The Intel® Xeon Phi™ coprocessor does not support IN (IN, INS, INSB, INSW, INSD) and OUT (OUT, OUTS, OUTSB,
OUTSW, OUTSD) instructions. These instructions result in a GP fault. There is no use for these instructions on Intel® Xeon
Phi™ coprocessors; all I/O devices are accessed through MMIO registers.

4.2.18.4 SYSENTER and SYSEXIT

The Intel® Xeon Phi™ coprocessor does not support the SYSENTER and SYSEXIT instructions that are used by 32-bit Intel
processors (since the Pentium II) to implement system calls. However, the Intel® Xeon Phi™ coprocessor does support
the SYSCALL and SYSRET instructions that are supported by Intel 64 processors. Using CPUID, the OS can detect the lack
of SYSENTER and SYSEXIT and the presence of SYSCALL and SYSRET instructions.

4.2.18.5 MMX™ Technology and Streaming SIMD Extensions

The Intel® Xeon Phi™ coprocessor only supports SIMD vector registers that are 512 bits wide (zmm0-31) along with eight
16-bit wide vector mask registers.

The IA-32 architecture includes features by which an OS can avoid the time-consuming restoring of the floating- point
state when activating a user process that does not use the floating-point unit. It does this by setting the TS bit in control
register CR0. If a user process then tries to use the floating-point unit, a device-not-available fault (exception 7 = #NM)
occurs. The OS can respond to this by restoring the floating-point state and by clearing CR0.TS, which prevents the fault
from recurring.

The Intel® Xeon Phi™ coprocessor does not include any explicit instruction to perform context a save and restore of the
Intel® Xeon Phi™ coprocessor state. To perform a context save and restore you can use:

 Vector loads and stores for vector registers

 A combination of vkmov plus scalar loads and stores for mask registers

 LDMXCSR and STMXCSR for MXCSR state register

4.2.18.6 Monitor and Mwait

The Intel® Xeon Phi™ coprocessor does not support the MONITOR and MWAIT instructions. The OS can use CPUID to
detect lack of support for these.

MONITOR and MWAIT are provided to improve synchronization between multiple agents. In the implementation for the
Intel® Pentium®4 processor with Streaming SIMD Extensions 3 (SSE3), MONITOR/MWAIT are targeted for use by system
software to provide more efficient thread synchronization primitives. MONITOR defines an address range used to
monitor write-back stores. MWAIT is used to indicate that the software thread is waiting for a write-back store to the
address range defined by the MONITOR instruction.

FCOMI, FCOMIP, FUCOMI, FUCOM, FCMOVcc
The Intel® Xeon Phi™ coprocessor does not support these floating-point instructions, which were introduced after the
Intel® Pentium® processor.

 Page 119

4.2.18.7 Pause

The Intel® Xeon Phi™ coprocessor does not support the pause instruction (introduced in the Intel® Pentium® 4 to
improve its performance in spin loops and to reduce the power consumed). The Intel® Pentium® 4 and the Intel® Xeon®
processors implement the PAUSE instruction as a pre-defined delay. The delay is finite and can be zero for some
processors. The equivalent Intel® Xeon Phi™ coprocessor instruction is DELAY, which has a programmable delay. Refer
to the programmer’s manual for further details.

 Page 120

5 Application Programming Interfaces

5.1 The SCIF APIs

SCIF provides a mechanism for internode communication within a single platform, where a node is either an Intel® Xeon
Phi™ coprocessor or the Xeon-based host processor complex. In particular, SCIF abstracts the details of communicating
over the PCI Express* bus (and controlling related Intel® Xeon Phi™ coprocessors) while providing an API that is
symmetric between the host and the Intel® Xeon Phi™ coprocessor. An important design objective for SCIF was to
deliver the maximum possible performance given the communication abilities of the hardware.

The Intel® MPSS supports a computing model in which the workload is distributed across both the Intel® Xeon® host
processors and the Intel® Xeon Phi™ coprocessor based add-in PCI Express* cards. An important property of SCIF is
symmetry; SCIF drivers should present the same interface on both the host processor and the Intel® Xeon Phi™
coprocessor so that software written to SCIF can be executed wherever is most appropriate. SCIF architecture is
operating system independent; that is, SCIF implementations on different operating systems are able to
intercommunicate. SCIF is also the transport layer that supports MPI, OpenCL*, and networking (TCP/IP).

This section defines the architecture of the Intel® MIC Symmetric Communications Interface (SCIF). It identifies all
external interfaces and each internal interface between the major system components.

The feature sets listed below are interdependent with SCIF.

 Reliability Availability Serviceability (RAS)Support
Because SCIF serves as the communication channel between the host and the Intel® Xeon Phi™ coprocessors, it
is used for RAS communication.

 Power Management
SCIF must deal with power state events such as a node entering or leaving package C6.

 Virtualization Considerations
The Intel® Xeon Phi™ coprocessor product supports the direct assignment virtualization model. The host
processor is virtualized, and each Intel® Xeon Phi™ coprocessor device is assigned exclusively to exactly one
VM. Under this model, each VM and its assigned Intel® Xeon Phi™ coprocessor devices can operate as a SCIF
network. Each SCIF network is separate from other SCIF networks in that no intercommunication is possible.

 Multi-card Support
The SCIF model, in principle, supports an arbitrary number of Intel® Xeon Phi™ coprocessor devices. The SCIF
implementation is optimized for up to 8 Intel® Xeon Phi™ coprocessor devices.

 Board Tools
The Intel® MPSS ships with some software tools commonly referred to as “board tools”. Some of these board
tools are layered on SCIF.

As SCIF provides the communication capability between host and the Intel® Xeon Phi™ coprocessors, there must be
implementations of SCIF on both the host and the Intel® Xeon Phi™ coprocessor. Multisocket platforms are supported
by providing each socketed processor with a physical PCI Express* interface. SCIF supports communication between
any host processor and any Intel® Xeon Phi™ coprocessor, and between any two Intel® Xeon Phi™ coprocessors
connected through separate physical PCI buses.

All of Intel® Xeon Phi™ coprocessor memory can be visible to the host or other Intel® Xeon Phi™ coprocessor devices.
The upper 512GB of the Intel® Xeon Phi™ coprocessor’s physical address space is divided into 32 16-GB ranges that map
through 32 corresponding SMPT registers to 16-GB ranges in host system address space. Each SMPT register can be
programmed to any multiple of 16-GB in the host’s 64-bit address space. The Intel® Xeon Phi™ coprocessor accesses the
host’s physical memory through these registers. It also uses these registers to access the memory space of other Intel®
Xeon Phi™ coprocessor devices for peer-to-peer communication since Intel® Xeon Phi™ coprocessor memory is mapped

 Page 121

into the host address space. Thus, there is an upper limit of 512 GB to the host system memory space that can be
addressed at any time. Up to seven SMPT registers (112 GB of this aperture) are needed to access the memory of seven
other Intel® Xeon Phi™ coprocessor devices in a platform, for a maximum of 8 Intel® Xeon Phi™ coprocessor devices
(assuming up to 16 GB per Intel® Xeon Phi™ coprocessor device). This leaves 25 SMPTs, which can map up to 400GB of
host memory. Overall, as the number of Intel® Xeon Phi™ coprocessor devices within a platform increases, the amount
of host memory that is visible to each Intel® Xeon Phi™ coprocessor device decreases.

Processor

IO I/F

Processor

Processor

IO I/F

Processor

IO I/F IO I/F

C
o

p
ro

cesso
r

C
o

p
ro

cesso
r

C
o

p
ro

cesso
r

C
o

p
ro

cesso
r

C
o

p
ro

cesso
r

C
o

p
ro

cesso
r

C
o

p
ro

ce
ss

o
r

C
o

p
ro

ce
ss

o
r

C
o

p
ro

ce
ss

o
r

C
o

p
ro

ce
ss

o
r

C
o

p
ro

ce
ss

o
r

C
o

p
ro

ce
ss

o
r

P
C

Ie

P
C

Ie

P
C

Ie

P
C

Ie

Memory
Interface

Memory
Interface

Memory
Interface

Memory
Interface

Figure 5-1. SCIP Architectural Model

Note that although SCIF supports peer-to-peer reads, the PCIe* root complex of some Intel client platforms do not.

 Page 122

The Intel® Xeon Phi™ coprocessor DMA engine begins DMAs on cache-line boundaries, and the DMA length is some
multiple of the cache-line length (64B). Many applications need finer granularity. SCIF uses various software techniques
to work compensate for this limitation. For example, when the source and destination base addresses are separated by
a multiple of 64B, but do not begin on a cache-line boundary, the transfer is performed as unaligned “head” and “tail”
read and write transfers (by the Intel® Xeon Phi™ coprocessor cores) and an aligned DMA “body” transfer. When the
source and destination base addresses are not separated by a multiple of 64B, SCIF may first perform a local memory-to-
memory copy of the buffer, followed by the head/body/tail transfer.

A SCIF implementation on a host or Intel® Xeon Phi™ coprocessor device includes both a user mode (Ring 3) library and
kernel mode (Ring 0) driver. The user mode (Ring 3) library and kernel mode (Ring 0) driver implementations are
designed to maximize portability across devices and operating systems. A kernel mode library facilitates accessing SCIF
facilities from kernel mode. Subsequent subsections briefly describe the major components layered on SCIF.

The kernel-mode SCIF API is similar to the user mode API and is documented in the Intel® MIC SCIF API Reference
Manual for Kernel Mode Linux*. Table 5-1 is a snapshot summary of the SCIF APIs. In the table, µSCIF indicates a function
in the user mode API, and kSCIF indicates a function in the kernel mode API. For complete details of the SCIF API and
architectural design, please consult the Intel® MIC SCIF API Reference Manual for User Mode Linux*.

Table 5-1 Summary of SCIF Functions

Group Function Mode

Connection scif_open µSCIF/kSCIF

scif_close µSCIF/kSCIF

scif_bind µSCIF/kSCIF

scif_listen µSCIF/kSCIF

scif_connect µSCIF/kSCIF

scif_accept µSCIF/kSCIF

Messaging scif_send µSCIF/kSCIF

scif_recv µSCIF/kSCIF

Registration
and Mapping

scif_register µSCIF/kSCIF

scif_unregister µSCIF/kSCIF

scif_mmap µSCIF

scif_munmap µSCIF

scif_pin_pages kSCIF

scif_unpin_pages kSCIF

scif_register_pinned_pages kSCIF

scif_get_pages kSCIF

scif_put_pages kSCIF

RMA scif_readfrom µSCIF/kSCIF

scif_writeto µSCIF/kSCIF

scif_vreadfrom µSCIF/kSCIF

scif_vwriteto µSCIF/kSCIF

scif_fence_mark µSCIF/kSCIF

scif_fence_wait µSCIF/kSCIF

scif_fence_signal µSCIF/kSCIF

Utility scif_event_register kSCIF

scif_poll µSCIF/kSCIF

scif_get_nodeIDs µSCIF/kSCIF

scif_get_fd µSCIF

 Page 123

The Connection API group enables establishing connections between processes on different nodes in the SCIF network,
and employs a socket-like connection procedure. Such connections are point-to-point, connecting a pair of processes,
and are the context in which communication between processes is performed.

The Messaging API group supports two-sided communication between connected processes and is intended for the
exchange of short, latency-sensitive messages such as commands and synchronization operations.

The Registration API group enables controlled access to ranges of the memory of one process by a process to which it is
connected. This group includes APIs for mapping the registered memory of a process in the address space of another
process.

The RMA API group supports one-sided communication between the registered memories of connected processes, and
is intended for the transfer of medium to large buffers. Both DMA and programmed I/O are supported by this group.
The RMA API group also supports synchronization to the completion of previously initiated RMAs.

Utility APIs provide a number of utility services.

5.2 MicAccessAPI

The MicAccessAPI is a C/C++ library that exposes a set of APIs for applications to monitor and configure several metrics
of the Intel® Xeon Phi™ coprocessor platform. It also allows communication with other agents, such as the System
Management Controller if it is present on the card. This library is in turn dependent on libscif.so. This library is required
in order to be able to connect to and communicate with the kernel components of the software stack. The libscif.so
library is installed as part of Intel® MPSS. Several tools, including MicInfo, MicCheck, MicSmc & MicFlash all of which are
located in /opt/intel/mic/bin after installing MPSS, rely heavily on MicAccessAPI.

Following a successful boot of the Intel® Xeon Phi™ coprocessor card(s), the primary responsibility of MicAccessAPI is to
establish connections with the host driver and the coprocessor OS, and subsequently allow software to
monitor/configure Intel® Xeon Phi™ coprocessor parameters. The host application and coprocessor OS communicate
using messages, which are sent via the underlying SCIF architecture using the Sysfs mechanism as indicated in the figure
below.

 Page 124

MicFlash

Host SCIF Driver Coprocessor SCIF Driver

Coprocessor OS

sysfs interface

PCIAccess/Linux

MemMap

HOST MIC-Device

User SCIF

MicSMC MicCheck MICInfo

Io
C

T
L

Coprocessor OS Monitoring
Thread

SysMgmt SCIF

Interface

User Application

MicAccessAPI

PCIe Bus

MCA Handler

Figure 5-2 Intel® Xeon Phi™ Coprocessor SysMgmt MicAccessAPI Architecture Components Diagram

Another important responsibility of MicAccessAPI is to update the Flash & SMC. In order to be able to perform this
update, the Intel® Xeon Phi™ coprocessor cards must be in the ‘ready’ mode. This can be accomplished using the
‘micctrl’ tool that comes with MPSS. The MicAccessAPI then enters into maintenance mode and interacts with the SPI
Flash and the SMC’s flash components via the maintenance mode handler to successfully complete the update process
as shown in the figure below.

 Page 125

Ring 3

Ring 0

 Host Driver Maintenance handler

 MicAccessApi

Flash API

Flash Access Layer (Host)

Ioctl Interface

Bootstrap host communication

module

Scratch Pad register

Ioctl Interface

Scratch Register Access

Flash CLI/UI

Host Intel® Xeon Phi™ Coprocessor Card

PCI BUS

M
M

IO

M
M

IO

IO
C

T
L

SPI Register Access I2C Register Access

SPI Flash

Component

S
P

I
B

u
s

SMC Flash

Component

I2
C

 B
u

s

SPI Register Access I2C Register Access

Figure 5-3 MicAccessAPI Flash Update Procedure

The various APIs included in the MicAccessAPI library can be classified into several broad categories as shown in Table
5-2.

 Page 126

Table 5-2. MicAccessAPI Library APIs

Group API Name

Initialization MicInitAPI, MicCloseAPI, MicInitAdapter, MicCloseAadpter

Flash MicGetFlashDeviceInfo, MicGetFlashInfo,
MicGetFlashVersion, MicUpdateFlash , MicSaveFlash,
MicWriteFlash, MicAbortFlashUpdate, MicDiffFlash,
MicFlashCompatibility, MicGetMicFlashStatus

Power management MicPowerManagementStatus, MicGetPowerUsage,
MicGetPowerLimit, MicPowerManagementEnable,
MicResetMaxPower

SMC MicGetSMCFWVersion, MicGetSMCHWRevision,
MicGetUUID, MicLedAlert

Thermal MicGetFanStatus, MicSetFanStatus, MicGetTemperature,
MicGetFSCInfo, MicGetFrequency, MicGetVoltage

Memory MicGetDevMemInfo, MicGetGDDRMemSize,
MicGetMemoryUtilization, MicMapMemory,
MicUnmapMemory, MicReadMem, MicWriteMem,
MicReadMemPhysical , MicWriteMemPhysical,
MicCopyGDDRToFile

PCI MicGetPcieLinkSpeed, MicGetPcieLinkWidth,
MicGetPcieMaxPayload, MicGetPcieMaxReadReq

Core MicGetCoreUtilization, MicGetNumCores

Turbo & ECC MicGetTurboMode, MicDeviceSupportsTurboMode,
MicEnableTurboMode, MicDisableTurboMode,
MicGetEccMode, MicEnableEcc, MicDisableEcc

Exception MicExceptionsEnableAPI, MicExceptionsDisableAPI,
MicThrowException

General Card Information MicGetDeviceID, MicGetPostCode, MicGetProcessorInfo,
MicGetRevisionID, MicGetSiSKU, MicGetSteppingID,
MicGetSubSystemID, MicCheckUOSDownloaded,
MicGetMicVersion, MicGetUsageMode, MicSetUsageMode,
MicCardReset

5.3 Support for Industry Standards

The Intel® MPSS supports industry standards like OpenMP™, OpenCL*, MPI, OFED*, and TCP/IP.

OpenMP™ is supported as part of the Intel® Composer XE software tools suite for the Intel® MIC Architecture.

MPI standards are supported through OFED* verbs development. See Section 2.2.9.2 for OFED* support offered in the
Intel® Xeon Phi™ coprocessor.

The support for the OpenCL* standard for programming heterogeneous computers consists of three components:

 Platform APIs used by a host program to enumerate compute resources and their capabilities.

 A set of Runtime APIs to control compute resources in a platform independent manner. The Runtime APIs are
responsible for memory allocations, copies, and launching kernels; and provide an event mechanism that allows
the host to query the status of or wait for the completion of a given call.

 A C-based programming language for writing programs for the compute devices.

 Page 127

For more information, consult the relevant specification published by the respective owning organizations:

 OpenMP™ (http://openmp.org/)

 OpenCL (http://www.khronos.org/opencl/)

 MPI (http://www.mpi-forum.org/)

 OFED* Overview (http://www.openfabrics.org)

5.3.1 TCP/IP Emulation

The NetDev drivers emulate an Ethernet device to the next higher layer (IP layer) of the networking stack. Drivers have
been developed specifically for the Linux* and Windows* operating systems. The host can be configured to bridge the
TCP/IP network (created by the NetDev drivers) to other networks that the host is connected to. The availability of such
a TCP/IP capability enables, among other things:

 remote access to Intel® Xeon Phi™ coprocessor devices via Telnet or SSH

 access to MPI on TCP/IP (as an alternative to MPI on OFED*)

 NFS access to the host or remote file systems (see Section 0).

5.4 Intel® Xeon Phi™ Coprocessor Command Utilities

Table 5-3 describes the utilities that are available to move data or execute commands or applications from the host to
the Intel® Xeon Phi™ coprocessors.

Table 5-3. Intel® Xeon Phi™ Coprocessor Command Utilities

Utility Description

micctrl This utility administers various Intel® Xeon Phi™ duties including initialization, resetting
and changing/setting the modes of any coprocessors installed on the platform.

 See the Intel® Xeon Phi™ Manycore Platform Software Stack (MPSS) Getting Started
Guide (document number 513523) for details on how to use this tool.

micnativeloadex Uploads an executable and any dependent libraries:
 from the host to a specified Intel® Xeon Phi™ coprocessor device
 from one Intel® Xeon Phi™ coprocessor device back to the host
 from one Intel® Xeon Phi™ coprocessor device to another Intel® Xeon Phi™

coprocessor device.
 A process is created on the target device to execute the code. The application
micnativeloadex can redirect (proxy) the process’s file I/O to or from a device on the host.
See the Intel® Xeon Phi™ Manycore Platform Software Stack (MPSS) Getting Started Guide
(document number 513523) for details on how to use this tool.

5.5 NetDev Virtual Networking

5.5.1 Introduction

The Linux* networking (see Figure 5-4) stack is made up of many layers. The application layer at the top consists of
entities that typically run in ring3 (e.g., FTP client, Telnet, etc.) but can include support from components that run in
ring0. The ring3 components typically use the services of the protocol layers via a system call interface like sockets. The
device agnostic transport layer consists of several protocols including the two most common ones – TCP and UDP. The
transport layer is responsible for maintaining peer-to-peer communications between two endpoints (commonly
identified by ports) on the same or on different nodes. The Network layer (layer 3) includes protocols such as IP, ICMP,
and ARP; and is responsible for maintaining communication between nodes, including making routing decisions. The Link
layer (layer 2) consists of a number of protocol agnostic device drivers that provide access to the Physical layer for a

http://openmp.org/
http://www.khronos.org/opencl/
http://www.mpi-forum.org/
http://www.openfabrics.org/

 Page 128

number of different mediums such as Ethernet or serial links. In the Linux* network driver model, the Network layer
talks to the device drivers via an indirection level that provides a common interface for access to various mediums.

Application Layer: FTP client, sockets

Transport Layer: TCP/UDP

Network Layer: IP

Link Layer: Linux Device Driver (Ethernet)

Figure 5-4 Linux* Network Stack

The focus of this section is to describe the virtual Ethernet driver that is used to communicate between various nodes in
the system, including between cards. The virtual Ethernet driver sends and receives Ethernet frames across the PCI
Express* bus and uses the DMA capability provided by the SBox on each card.

5.5.2 Implementation

A separate Linux* interface is created for each Intel® Xeon Phi™ coprocessor (mic0, mic1, and so on). It emulates a
Linux* hardware network driver underneath the network stack on both ends. Currently, the connections are class C
subnets local to the host system only. In the future, the class C subnets will be made available under the Linux* network
bridging system for outside of host access.

During initialization, the following steps are followed:

1. Descriptor ring is created in host memory.
2. Host provides receive buffer space in the descriptor ring using Linux* skbuffs
3. Card maps to the host descriptor ring.
4. During host transmit, the host posts transmit skbuffs to the card OS in descriptor ring.
5. Card polls for changes in descriptor host transmit ring
6. Card allocates skbuff and copies host transmit data
7. Card sends new skbuff to card side TCP/IP stack.
8. At card transmit, card copies transmit skbuff to receive buffer provided at initialization.
9. Card increments descriptor pointer.
10. Host polls for changes in transmit ring.
11. Host sends receive buffer to TCP/IP stack.

In a future implementation, during initialization, Host will create a descriptor ring for controlling transfers, Host will
allocate and post a number of receive buffers to the card, card will allocate and post a number of receive buffers to the
host. At Host Transmit, Host DMAs data to receive skbuff posted by Intel® Xeon Phi™ coprocessor, Host interrupts card,
Card interrupt routine sends skbuff to tcp/ip stack, card allocates and posts new empty buffer for host use. At Card

 Page 129

Transmit, Card DMAs data to receive skbuff posted by Host, Card interrupts host, Host interrupt routine sends skbuff to
tcp/ip stack, Host allocates and posts new empty buffer for card use.

 Page 130

6 Compute Modes and Usage Models

The architecture of the Intel® Xeon Phi™ coprocessor enables a wide continuum of compute paradigms far beyond what
is currently available. This flexibility allows a dynamic range of solution to address your computing needs – from highly
scalar processing to highly parallel processing, and a combination of both in between. There are three general categories
of compute modes supported with the Intel® Xeon Phi™ coprocessor, which can be combined to develop applications
that are optimal for the problem at hand.

6.1 Usage Models

The following two diagrams illustrate the compute spectrum enabled and supported by the Intel® Xeon® processor-
Intel® Xeon Phi™ coprocessor coupling. Depending on the application’s compute needs, a portion of its compute
processes can either be processed by the Intel® Xeon® processor host CPUs or by the Intel® Xeon Phi™ coprocessor. The
application can also be started or hosted by either the Intel® Xeon® processor host or by the Intel® Xeon Phi™
coprocessor. Depending on the computational load, an application will run within the range of this spectrum for optimal
performance.

Figure 6-1 : A Scalar/Parallel Code Viewpoint of the Intel® MIC Architecture Enabled Compute Continuum

Figure 6-2: A Process Viewpoint of the Intel® MIC Architecture Enabled Compute Continuum

 Page 131

6.2 MPI Programming Models

The Intel® MPI Library for Intel® MIC Architecture plans to provide all of the traditional Intel® MPI Library features on
any combination of the Intel® Xeon® and the Intel® Xeon Phi™ coprocessors. The intention is to extend the set of
architectures supported by the Intel® MPI Library for the Linux* OS, thus providing a uniform program development and
execution environment across all supported platforms.

The Intel® MPI Library for Linux* OS is a multi-fabric message-passing library based on ANL* MPICH2* and OSU*
MVAPICH2*. The Intel® MPI Library for Linux* OS implements the Message Passing Interface, version 2.1* (MPI-2.1)
specification.

The Intel® MPI Library for Intel® MIC Architecture supports the programming models shown in Figure 6-3.

Figure 6-3: MPI Programming Models for the Intel® Xeon Phi™ Coprocessor

In the Offload mode, either the Intel® Xeon Phi™ coprocessors or the host CPUs are considered to be coprocessors.
There are two possible scenarios:

1. Xeon® hosted with Intel® Xeon Phi™ coprocessors, where the MPI processors run on the host Xeon® CPUs, while
the offload is directed towards the Intel® Xeon Phi™ coprocessors. This model is supported by the Intel® MPI
Library for Linux* OS as of version 4.0. Update 3.

2. Intel® Xeon Phi™ coprocessor hosted with Xeon® coprocessing, where the MPI processes run on the Intel® Xeon
Phi™ coprocessors while the offload is directed to the host Xeon® CPU.

Both models make use of the offload capabilities of the products like Intel® C, C++, Fortran Compiler for Intel® MIC
Architecture, and Intel® Math Kernel Library (MKL). The second scenario is not supported currently due to absence of
the respective offload capabilities in the aforementioned collateral products.

In the MPI mode, the host Xeon® CPUs and the Intel® Xeon Phi™ coprocessors are considered to be peer nodes, so that
the MPI processes may reside on both or either of the host Xeon® CPUs and Intel® Xeon Phi™ coprocessors in any
combination. There are three major models:

 Symmetric model
 The MPI processes reside on both the host and the Intel® Xeon Phi™ coprocessors. This is the most general MPI
view of an essentially heterogeneous cluster.

http://pat.intel.com/w/images/1/1b/MPI_Models.png

 Page 132

 Coprocessor-only model
All MPI processes reside only on the Intel® Xeon Phi™ coprocessors. This can be seen as a specific case of the
symmetric model previously described. Also, this model has a certain affinity to the Intel® Xeon Phi™
coprocessor hosted with Xeon® coprocessing model because the host CPUs may, in principle, be used for offload
tasks.

 Host-only model (not depicted)
All MPI processes reside on the host CPUs and the presence of the Intel® Xeon Phi™ coprocessors is basically
ignored. Again, this is a specific case of the symmetric model. It has certain affinity to the Xeon® hosted with
Intel® MIC Architecture model, since the Intel® Xeon Phi™ coprocessors can in principle be used for offload. This
model is already supported by the Intel MPI Library as of version 4.0.3.

6.2.1 Offload Model

This model is characterized by the MPI communications taking place only between the host processors. The
coprocessors are used exclusively thru the offload capabilities of the products like Intel® C, C++, and Fortran Compiler
for Intel® MIC Architecture, Intel® Math Kernel Library (MKL), etc. This mode of operation is already supported by the
Intel® MPI Library for Linux* OS as of version 4.0. Update 3. Using MPI calls inside offloaded code is not supported.

It should be noted that the total size of the offload code and data is limited to 85% of the amount of GDDR memory on
the coprocessor.

Data

Data

Offload

Offload

N
e

tw
o

rk

CPU

CPU
Coprocessor

Coprocessor

MPI

Figure 6-4. MPI on Host Devices with Offload to Coprocessors

 Page 133

6.2.2 Coprocessor-Only Model

In this model (also known as the “Intel® MIC architecture native” model), the MPI processes reside solely inside the
coprocessor. MPI libraries, the application, and other needed libraries are uploaded to the coprocessors. Then an
application can be launched from the host or from the coprocessor.

N
e

tw
o

rk

CPU

CPU
Coprocessor

Coprocessor

MPI

Data

Data

Figure 6-5: MPI on the Intel® Xeon Phi™ coprocessors Only

6.2.3 Symmetric Model

In this model, the host CPUs and the coprocessors are involved in the execution of the MPI processes and the related
MPI communications. Message passing is supported inside the coprocessor, inside the host node, and between the
coprocessor and the host via the shm and shm:tcp fabrics. The shm:tcp fabric is chosen by default; however, using shm
for communication between the coprocessor and the host provides better MPI performance than TCP. To enable shm
for internode communication, set the environment variable: I_MPI_SSHM_SCIF={enable|yes|on|1}.

 Page 134

N
e

tw
o

rk

CPU

CPU
Coprocessor

Coprocessor

MPI

Data

Data

Data

Data

Figure 6-6: MPI Processes on Both the Intel® Xeon® Nodes and the Intel® MIC Architecture Devices

The following is an example of the symmetric model:

Symmetric model:

 mpiexec.hydra is started on host,

 launches 4 processes on host with 4 threads in each process,

 and 2 processes on “mic0” coprocessor with 16 threads in each process

(host)$mpiexec.hydra –host $(hostname)-n 4 –env OMP_NUM_THREADS 4 ./test.exe.host: \

-host mic0 –n 2 –env OMP_NUM_THREADS 16 –wdir /tmp /tmp/test.exe.mic

6.2.4 Feature Summary

The Intel® MPI Library requires the presence of the /dev/shm device in the system. To avoid failures related to the
inability to create a shared memory segment, the /dev/shm device must be set up correctly.

Message passing is supported inside the coprocessor, inside the host node, between the coprocessors, and between the
coprocessor and the host via the shm and shm:tcp fabrics. The shm:tcp fabric is chosen by default.

The Intel® MPI Library pins processes automatically. The environment variable I_MPI_PIN and related variables are used
to control process pinning. The number of the MPI processes is limited only by the available resources. The memory
limitation may manifest itself as an ‘lseek’ or ‘cannot register the bufs’ error in an MPI application. The environment
variable I_MPI_SSHM_BUFFER_SIZE set to a value smaller than 64 KB may work around this issue.

The current release of the Intel® MPI Library for Intel® MIC Architecture for Linux* OS does not support certain parts of
the MPI-2.1 standard specification:

 Dynamic process management

 MPI file I/O

 Passive target one-sided communication when the target process does not call any MPI functions

 Page 135

The current release of the Intel® MPI Library for Intel® MIC Architecture for Linux* OS also does not support certain
features of the Intel® MPI Library 4.0 Update 3 for Linux* OS:

 ILP64 mode

 gcc support

 IPM Statistic

 Automatic Tuning Utility

 Fault Tolerance

 mpiexec –perhost option

6.2.5 MPI Application Compilation and Execution

 The typical steps of compiling an MPI application and executing it using mpiexec.hydra are canonically shown in Figure
6-7.

Figure 6-7. Compiling and Executing a MPI Application

For detailed information about installing and running Intel® MPI Library for Intel® MIC Architecture with the Intel® Xeon
Phi™ coprocessors, please see the Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE.

 Page 136

7 Intel® Xeon Phi™ Coprocessor Vector Architecture

7.1 Overview

The Intel® Xeon Phi™ coprocessor includes a new vector processing unit (VPU) with a new SIMD instruction set. These
new instructions do not support prior vector architecture models like MMX™, Intel® SSE, or Intel® AVX.

The Intel® Xeon Phi™ coprocessor VPU is a 16-wide floating-point/integer SIMD engine. It is designed to operate
efficiently on SOA (Structures of Array) data, i.e. [x0, x1, x2, x3, …, x15], [y0, y1, y2, y3, …, y15], [z0, z1, z2, z3, …, z15],
and [w0, w1, w2, w3, …, w15] as opposed to[x0, y0, z0, w0], [x1, y1, z1, w1], [x2, y2, z2, w2], [x3, y3, z3, w3], …, [x15, 15,
z15, w15].

The Intel® Xeon Phi™ vector architecture is defined in more detail in the Intel® Xeon Phi™ Coprocessor Instruction Set
Architecture Reference Manual, reference number 327364-001.

 Page 137

8 Glossary and Abbreviations

Term Description
ABI Application Binary Interface

I Autonomous Compute Node

AGI Address Generation Interlock

AP Application Program

API Application Programming Interface

APIC Advanced Programmable Interrupt Controller

BA Base Address

BLCR* Berkeley Lab Checkpoint Restore

BMC Baseboard Management Controller

BSP Bootstrap Processor

CL* open Computing Language

CLD Cache Line Disable

CMC Channel Memory Controller

COI Coprocessing Offload Infrastructure

CPI Carry-Propagate Instructions

CPU Central Processing Unit

CPUID Central Processing Unit Identification

C/R Check and Restore

CRI Core Ring Interface

C-state Core idle state

CSR Configuration Status Register

DAPL Direct Access Programming Library

DBS Demand-Based Scaling

DMA Direct Memory Access

DRAR Descriptor Ring Attributes Register

DTD Distributed Tag Directory

DP Dual Precision

ECC Error Correction Code

EMU Extended Math Unit

EMON Event Monitoring

ETC Elapsed Time Counter

FBox Part of the GBox, the FBox is the interface to the ring interconnect.

FIFO First In, First Out

FMA Fused Multiply and Add

FMS Fused Multiply Subtract

FPU Floating Point Unit

GBox memory controller

GDDR Graphics Double Data Rate

GDDR5 Graphics Double Data Rate, version 5

GDT Global Descriptor Table

GOLS Globally Owned, Locally Shared protocol

GP General Protection

HCA Host Channel Adaptor

HPC High Performance Computing

 Page 138

Term Description
HPI Head Pointer Index

I²C (“i-squared cee” or “i-two cee”) Inter-Integrated Circuit

IA Intel Architecture

IB InfiniBand*

IBHCA InfiniBand* Host Communication Adapter

ID Identification

INVLPG Invalidate TBL Entry

IpoIB Internet Protocol over InfiniBand*

IPMI Intelligent Platform Management Interface

iWARP Internet Wide Area RDMA Protocol

Intel® MPSS Intel® Manycore Platform Software Stack

I/O Input/Output

IOAPIC Input/Output Advanced Programmable Interrupt Controller

ISA Instruction Set Architecture

LAPIC Local Advanced Programmable Interrupt Controller

LKM Loadable Kernel Modules

LRU Least Recently Used

LSB Linux* Standard Base

MBox The request scheduler of the GBox.

MCA Machine Check Architecture

MCE Machine Check Exception

MESI Modified, Exclusive, Shared, Invalid states

MOESI Modified, Owner, Exclusive, Shared, Invalid states

MKL Intel® Math Kernel Library

MMIO Memory-Mapped Input/Output

MMX

MPI Message Passing Interface

MPSS Intel® Many Integrated Core Architecture Platform Software Stack

MRU Most Recently Used

MSI/x

MSR Model-Specific Register or Machine-Specific Register

NT Non-Temporal

MTRR Memory Type Range Register

mux multiplexor

MYO Intel® Mine Yours Ours Shared Virtual Memory

NFS Network File System

OpenCL* Open Computing Language

OFA* Open Fabrics Alliance

OFED* Open Fabrics Enterprise Distribution

PBox

PC Power Control

PCH Platform Controller Hub

PCI Express* Peripheral Component Interconnect Express

PCU Power Control Unit

PEG port

 Page 139

Term Description
PDE Psge Directory Entry

PF Picker Function

PHP scripts

P54C Intel® Pentium® Processor

PM Power Management or Process Manager

PMON Performance Monitoring

PMU Performance Monitoring Unit

PnP Plug and Play

POST Power-On Self-Test

P-state Performance level states

RAS Reliability Accessibility Serviceability

RDMA Remote Direct Memory Access

RFO Read For Ownership

RMA Remote Memory Access

RS Ring Stack

SAE Suppress All Exceptions

SBox System Box (Gen2 PCI Express* client logic)

SCIF Symmetric Communication Interface

SC (SCM) protocol Socket Connection Management

SDP Software Development Platform

SDV Software Development Vehicle

SEP SEP is a utility that provides the sampling functionality used by VTune analyzer

SHM Shared Memory

SI Intel® Xeon Phi™ Coprocessor System Interface

SIMD Single Instructions, Multiple Data

SM Server Management

SMC System Management Controller

SMP Symmetric Multiprocessor

SMPY System Memory Page Table

SP Single Precision

SSE Streaming SIMD Extensions

SSH Secure Shell

SVID System V Interface Definition

Sysfs a virtual file system provided by Linux*

TCU Transaction Control Unit

TPI Tail Pointer Index

TSC Timestamp Counter

TD Tag Directory

TLB Translation Lookaside Buffer

TMU Thermal Monitoring Unit

TSC Timestamp Counter

UC Uncacheable

µDAPL User DAPL

 coprocessor OS Micro Operating System

verbs A programming interface

VIA Virtual Interface Architecture

VMM Virtual Machine Manager

 Page 140

Term Description
VPU Vector Processing Unit

VT-d Intel® Virtualization Technology for Directed I/O

WB Write Back

WC Write Combining

WP Write Protect

WT Write Through

 Page 141

9 References

1. Institute of Electrical and Electronics Engineers Standard for Floating Point Arithmetic. (2008). www.ieee.org.
2. Intel® Virtualization Technology for Directed I/O. (2011). Intel.
3. Intel® MPI Library for Intel® MIC Architecture. (2011-2012).
4. Intel® Xeon Phi™ Coprocessor Performance Monitoring Units, Document Number: 327357-001. (2012). Intel.
5. Aubrey Isle New Instruction Set Reference Manual Version 1.0. (n.d.).
6. Aubrey Isle Software Developer’s Guide Version 1.1. (n.d.).
7. Bratin Saha, X. Z. (2009). Programming model for a heterogeneous x86 platform (Vol. 44). Proceedings of the

2009 ACM SIGPLAN conference on Programming language design and implementation.
8. http://crd.lbl.gov/~jcduell/papers/blcr.pdf . (n.d.).
9. https://upc-bugs.lbl.gov//blcr/doc/html/BLCR_Admin_Guide.html . (n.d.).
10. https://upc-bugs.lbl.gov//blcr/doc/html/BLCR_Users_Guide.html. (n.d.).
11. https://upc-bugs.lbl.gov//blcr/doc/html/FAQ.html#batch. (n.d.).
12. Intel. (n.d.). Intel® 64 Architecture Processor Topology Enumeration.
13. Intel® 64 and IA-32 Architectures Software Developer Manuals. (n.d.). Intel Corporation.
14. Intel® COI API Reference Manual Version 1.0. (n.d.).
15. Intel® Composer XE for Linux* Alpha including Intel(R) MIC Architecture Installation Guide and Release Notes for

MIC (Release_Notes_mic_nnn.pdf). (n.d.).
16. Intel® Many Integrated Core (Intel® MIC) Profiling Guide White Paper (MIC_Profiling_Guide_nnnnn_rev1.pdf).

(n.d.).
17. Intel® Many Integrated Core Architecture (Intel® MIC Architecture) Optimization Guide White Paper

(Intel_MIC_Architecture_Optimization Guide_xxx.pdf). (n.d.).
18. Intel® MIC Quick Start Developers Guide - Alpha 9.pdf. (n.d.).
19. Intel® SCIF API Reference Manual Version 1.0. (n.d.).
20. Intel® Xeon Phi™ Coprocessor Instruction Set Reference Manual (Reference Number: 327364). (n.d.). Intel.
21. MPI overview and specification - http://www.mpi-forum.org/. (n.d.).
22. MPI, I. (n.d.). [TBD] Intel® MPI with the Intel® Xeon Phi™ coprocessors.
23. OFED --- http://www.openfabrics.org/. (n.d.).
24. OpenCL™ -- http://www.khronos.org/opencl/. (n.d.).
25. OpenMPI--- http://www.open-mpi.org/. (n.d.).
26. OpenMP™ -- http://openmp.org/. (n.d.).

 Page 142

Appendix: SBOX Control Register List

Register Name MMI
O

Start

MMIO
End

Dec
Offse

t

Dword
Offset

Size Numbe
r

Protectio
n Level

Protectio
n
Method

Host
Vis?

Copr
ocess
or
Vis?

Init’d
By

Reset
Domain

Register
Acess

Description

OC_I2C_ICR 1000 1000 4096 0400 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

TRM,I2C I2C Control Register
for LRB Over-clocking
Unit

OC_I2C_ISR 1004 1004 4100 0401 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

TRM,I2C I2C Status Register
for LRB Over-clocking
Unit

OC_I2C_ISAR 1008 1008 4104 0402 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

TRM,I2C I2C Slave Address
Register for LRB
Over-clocking Unit

OC_I2C_IDBR 100C 100C 4108 0403 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

TRM,I2C I2C Data Buffer
Register for LRB
Over-clocking Unit

OC_I2C_IDMR 1010 1010 4112 0404 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

TRM,I2C I2C Bus Monitor
Register for LRB
Over-clocking Unit

THERMAL_STAT
US

1018 1018 4120 0406 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

TRM Status and Log info
for all the thermal
interrupts

THERMAL_INTE
RRUPT_ENABLE

101C 101C 4124 0407 32 1 Ring 0 Paging YES YES RTL GRPA_P
WRGD,H
OT_RESE
T

TRM Register that controls
the interrupt
response to thermal
events

MICROCONTRO
LLER_FAN_STAT
US

1020 1020 4128 0408 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

TRM Upto data Status
information from the
Fan microcontroller

STATUS_FAN1 1024 1024 4132 0409 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

TRM 32 bit Status of Fan
#1

STATUS_FAN2 1028 1028 4136 040A 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

TRM 32 bit Status of Fan
#2

SPEED_OVERRI
DE_FAN

102C 102C 4140 040B 32 1 Ring 0 Paging YES YES RTL GRPA_P
WRGD,H
OT_RESE
T

TRM 32 bit Status of Fan
#2

BOARD_TEMP1 1030 1030 4144 040C 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

TRM Temperature from
Sensors 1 and 2 on
LRB Card

BOARD_TEMP2 1034 1034 4148 040D 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

TRM Temperature from
Sensors 3 and 4 on
LRB Card

BOARD_VOLTA
GE_SENSE

1038 1038 4152 040E 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

TRM Digitized value of
Voltage sense input
to LRB

CURRENT_DIE_T
EMP0

103C 103C 4156 040F 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

TRM Consists of Current
Die Temperatures of
sensors 0 thru 2

CURRENT_DIE_T
EMP1

1040 1040 4160 0410 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

TRM Consists of Current
Die Temperatures of
sensors 3 thru 5

CURRENT_DIE_T
EMP2

1044 1044 4164 0411 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

TRM Consists of Current
Die Temperatures of
sensors 6 thru 8

MAX_DIE_TEMP
0

1048 1048 4168 0412 32 1 Ring 0 Paging YES YES RTL GRPA_P
WRGD

TRM Consists of Maximum
Die Temperatures of
sensors 0 thru 2

MAX_DIE_TEMP
1

104C 104C 4172 0413 32 1 Ring 0 Paging YES YES RTL GRPA_P
WRGD

TRM Consists of Maximum
Die Temperatures of
sensors 3 thru 5

 Page 143

MAX_DIE_TEMP
2

1050 1050 4176 0414 32 1 Ring 0 Paging YES YES RTL GRPA_P
WRGD

TRM Consists of Maximum
Die Temperatures of
sensors 6 thru 8

MIN_DIE_TEMP
0

1054 1054 4180 0415 32 1 Ring 0 Paging YES YES RTL GRPA_P
WRGD

TRM Consists of Minimum
Die Temperatures of
sensors 0 thru 2

MIN_DIE_TEMP
1

1058 1058 4184 0416 32 1 Ring 0 Paging YES YES RTL GRPA_P
WRGD

TRM Consists of Minimum
Die Temperatures of
sensors 3 thru 5

MIN_DIE_TEMP
2

105C 105C 4188 0417 32 1 Ring 0 Paging YES YES RTL GRPA_P
WRGD

TRM Consists of Minimum
Die Temperatures of
sensors 6 thru 8

NOM_PERF_MO
N

106C 106C 4204 041B 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

TRM Nominal
Performance
Monitors

PMU_PERIOD_S
EL

1070 1070 4208 041C 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

TRM PMU period

ELAPSED_TIME_
LOW

1074 1074 4212 041D 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

TRM "Elapsed Time Clock"
Timer - lower 32 bits

ELAPSED_TIME_
HIGH

1078 1078 4216 041E 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

TRM "Elapsed Time Clock"
Timer - higher 32 bits

THERMAL_STAT
US_INTERRUPT

107C 107C 4220 041F 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

TRM Status and Log info
for lrb2 new thermal
interrupts

THERMAL_STAT
US_2

1080 1080 4224 0420 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

TRM Thermal Status for
LRB2

EXT_TEMP_SET
TINGS0

1090 1090 4240 0424 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

TRM External Thermal
Sensor Setting -
Sensor #0

EXT_TEMP_SET
TINGS1

1094 1094 4244 0425 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

TRM External Thermal
Sensor Setting -
Sensor #1

EXT_TEMP_SET
TINGS2

1098 1098 4248 0426 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

TRM External Thermal
Sensor Setting -
Sensor #2

EXT_TEMP_SET
TINGS3

109C 109C 4252 0427 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

TRM External Thermal
Sensor Setting -
Sensor #3

EXT_TEMP_SET
TINGS4

10A0 10A0 4256 0428 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

TRM External Thermal
Sensor Setting -
Sensor #4

EXT_TEMP_SET
TINGS5

10A4 10A4 4260 0429 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

TRM External Thermal
Sensor Setting -
Sensor #5

EXT_CONTROLP
ARAMS0

10A8 10A8 4264 042A 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

TRM External Thermal
Sensor Parameters -
Sensor #0

EXT_CONTROLP
ARAMS1

10AC 10AC 4268 042B 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

TRM External Thermal
Sensor Parameters -
Sensor #1

EXT_CONTROLP
ARAMS2

10B0 10B0 4272 042C 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

TRM External Thermal
Sensor Parameters -
Sensor #2

EXT_CONTROLP
ARAMS3

10B4 10B4 4276 042D 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

TRM External Thermal
Sensor Parameters -
Sensor #3

EXT_CONTROLP
ARAMS4

10B8 10B8 4280 042E 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

TRM External Thermal
Sensor Parameters -
Sensor #4

EXT_CONTROLP
ARAMS5

10BC 10BC 4284 042F 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

TRM External Thermal
Sensor Parameters -
Sensor #5

EXT_TEMP_STA
TUS0

10C0 10C0 4288 0430 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

TRM External Thermal
Sensor Status -
Sensor #0 ~ #2

 Page 144

EXT_TEMP_STA
TUS1

10C4 10C4 4292 0431 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

TRM External Thermal
Sensor Status -
Sensor #3 ~ #5

INT_FAN_STAT
US

10C8 10C8 4296 0432 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

TRM Interl Thermal Sensor
Status

INT_FAN_CONT
ROL0

10CC 10CC 4300 0433 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

TRM Internal Thermal
Sensor
Setting/Parameters
and FCU
Configuration - 0

INT_FAN_CONT
ROL1

10D0 10D0 4304 0434 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

TRM Internal Thermal
Sensor
Setting/Parameters
and FCU
Configuration - 1

INT_FAN_CONT
ROL2

10D4 10D4 4308 0435 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

TRM Internal Thermal
Sensor
Setting/Parameters
and FCU
Configuration - 2

FAIL_SAFE_STAT
US

2000 2000 8192 0800 32 1 Ring 0 Paging YES YES FLAS
H

CSR_RES
ET

TRM Fail Safe Image and
Repair Status register

FAIL_SAFE_OFFS
ET

2004 2004 8196 0801 32 1 Ring 0 Paging YES YES FLAS
H

CSR_RES
ET

TRM Fail Safe Offset
register

SW_OVR_CORE
_DISABLE

2008 2008 8200 0802 32 1 Ring 0 Paging YES YES OTHE
R

HOT_RES
ET

TRM Software controlled
Core Disable register
that says how many
cores are disabled -
deprecated

CORE_DISABLE_
STATUS

2010 2010 8208 0804 32 1 Ring 0 Paging YES YES FLAS
H

CSR_RES
ET

TRM Core Disable status
register

FLASH_COMPO
NENT

2018 2018 8216 0806 32 1 Ring 0 Paging YES YES FLAS
H

CSR_RES
ET

TRM Flash Component
register

INVALID_INSTR
0

2020 2020 8224 0808 32 1 Ring 0 Paging YES YES FLAS
H

CSR_RES
ET

TRM Invalid Instruction
register

INVALID_INSTR
1

2024 2024 8228 0809 32 1 Ring 0 Paging YES YES FLAS
H

CSR_RES
ET

TRM Invalid Instruction
register

JEDECID 2030 2030 8240 080C 32 1 Ring 0 Paging YES YES FLAS
H

CSR_RES
ET

TRM JEDEC ID register.
This is a SW only
register, SPI
Controller reads
these bits from the
flash descriptor and
reports the values in
this register.

VENDOR_COMP
_CAPP

2034 2034 8244 080D 32 1 Ring 0 Paging YES YES FLAS
H

CSR_RES
ET

TRM Vendor Specific
component
capabilities register.
This is a SW only
register, SPI
Controller reads
these bits from the
flash descriptor and
reports the values in
this register.

POWER_ON_ST
ATUS

2038 2038 8248 080E 32 1 Ring 0 Paging YES YES FLAS
H

CSR_RES
ET

TRM Power On status
register

VALID_INSTR0 2040 2040 8256 0810 32 1 Ring 0 Paging YES YES FLAS
H

CSR_RES
ET

TRM Scratch

VALID_INSTR1 2044 2044 8260 0811 32 1 Ring 0 Paging YES YES FLAS
H

CSR_RES
ET

TRM Scratch

VALID_INSTR2 2048 2048 8264 0812 32 1 Ring 0 Paging YES YES FLAS
H

CSR_RES
ET

TRM Scratch

VALID_INSTR_T
YP0

2050 2050 8272 0814 32 1 Ring 0 Paging YES YES FLAS
H

CSR_RES
ET

TRM Scratch

VALID_INSTR_T
YP1

2054 2054 8276 0815 32 1 Ring 0 Paging YES YES FLAS
H

CSR_RES
ET

TRM Scratch

VALID_INSTR_T
YP2

2058 2058 8280 0816 32 1 Ring 0 Paging YES YES FLAS
H

CSR_RES
ET

TRM Scratch

 Page 145

HW_SEQ_STAT
US

2070 2070 8304 081C 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

TRM HW Sequence Flash
Status Register

FAIL_SAFE_REP
AIR_OFFSET

20CC 20CC 8396 0833 32 1 Ring 0 Paging YES YES FLAS
H

CSR_RES
ET

TRM Fail Safe Offset for
Repair Sector
register

AGENT_DISABLE
_FLASH0

20D0 20D0 8400 0834 32 1 Ring 0 Paging YES YES FLAS
H

CSR_RES
ET

TRM Agent Disable Value
from Flash register

AGENT_DISABLE
_FLASH1

20D4 20D4 8404 0835 32 1 Ring 0 Paging YES YES FLAS
H

CSR_RES
ET

TRM Agent Disable Value
from Flash register

AGENT_DISABLE
_FLASH2

20D8 20D8 8408 0836 32 1 Ring 0 Paging YES YES FLAS
H

CSR_RES
ET

TRM Agent Disable Value
from Flash register

AGENT_DISABLE
_FLASH3

20DC 20DC 8412 0837 32 1 Ring 0 Paging YES YES FLAS
H

CSR_RES
ET

TRM Agent Disable Value
from Flash register

AGENT_DISABLE
_FLASH4

20E0 20E0 8416 0838 32 1 Ring 0 Paging YES YES FLAS
H

CSR_RES
ET

TRM Agent Disable Value
from Flash register

AGENT_DISABLE
_FLASH5

20E4 20E4 8420 0839 32 1 Ring 0 Paging YES YES FLAS
H

CSR_RES
ET

TRM Agent Disable Value
from Flash register

SPI_FSM 2100 2100 8448 0840 32 1 Ring 0 Paging YES YES FLAS
H

CSR_RES
ET

TRM SPI FSM Status
register

GH_SCRATCH 303C 303C 1234
8

0C0F 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

CRU,TR
M

Scratch register

MCX_CTL_LO 3090 3090 1243
2

0C24 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

CRU,TR
M

MCX CTL LOW

MCX_STATUS_L
O

3098 3098 1244
0

0C26 32 1 Ring 0 Paging YES YES RTL GRPA_P
WRGD

CRU,TR
M

MCX Status

MCX_STATUS_H
I

309C 309C 1244
4

0C27 32 1 Ring 0 Paging YES YES RTL GRPA_P
WRGD

CRU,TR
M

MCX Status HI

MCX_ADDR_LO 30A0 30A0 1244
8

0C28 32 1 Ring 0 Paging YES YES RTL GRPA_P
WRGD

CRU,TR
M

MCX Addr Low

MCX_ADDR_HI 30A4 30A4 1245
2

0C29 32 1 Ring 0 Paging YES YES RTL GRPA_P
WRGD

CRU,TR
M

MCX Addr High

MCX_MISC 30A8 30A8 1245
6

0C2A 32 1 Ring 0 Paging YES YES RTL GRPA_P
WRGD

CRU,TR
M

Machine Check
Miscellaneous #1

MCX_MISC2 30AC 30AC 1246
0

0C2B 32 1 Ring 0 Paging YES YES RTL GRPA_P
WRGD

CRU,TR
M

Machine Check
Miscellaneous #2

SMPT00 3100 3100 1254
4

0C40 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

CRU,TR
M

System Memory
Page Table, Page 00.

SMPT01 3104 3104 1254
8

0C41 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

CRU,TR
M

System Memory
Page Table, Page 01.

SMPT02 3108 3108 1255
2

0C42 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

CRU,TR
M

System Memory
Page Table, Page 02.

SMPT03 310C 310C 1255
6

0C43 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

CRU,TR
M

System Memory
Page Table, Page 03.

SMPT04 3110 3110 1256
0

0C44 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

CRU,TR
M

System Memory
Page Table, Page 04.

SMPT05 3114 3114 1256
4

0C45 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

CRU,TR
M

System Memory
Page Table, Page 05.

SMPT06 3118 3118 1256
8

0C46 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

CRU,TR
M

System Memory
Page Table, Page 06.

SMPT07 311C 311C 1257
2

0C47 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

CRU,TR
M

System Memory
Page Table, Page 07.

SMPT08 3120 3120 1257
6

0C48 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

CRU,TR
M

System Memory
Page Table, Page 08.

SMPT09 3124 3124 1258
0

0C49 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

CRU,TR
M

System Memory
Page Table, Page 09.

 Page 146

SMPT10 3128 3128 1258
4

0C4A 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

CRU,TR
M

System Memory
Page Table, Page 10.

SMPT11 312C 312C 1258
8

0C4B 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

CRU,TR
M

System Memory
Page Table, Page 11.

SMPT12 3130 3130 1259
2

0C4C 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

CRU,TR
M

System Memory
Page Table, Page 12.

SMPT13 3134 3134 1259
6

0C4D 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

CRU,TR
M

System Memory
Page Table, Page 13.

SMPT14 3138 3138 1260
0

0C4E 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

CRU,TR
M

System Memory
Page Table, Page 14.

SMPT15 313C 313C 1260
4

0C4F 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

CRU,TR
M

System Memory
Page Table, Page 15.

SMPT16 3140 3140 1260
8

0C50 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

CRU,TR
M

System Memory
Page Table, Page 16.

SMPT17 3144 3144 1261
2

0C51 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

CRU,TR
M

System Memory
Page Table, Page 17.

SMPT18 3148 3148 1261
6

0C52 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

CRU,TR
M

System Memory
Page Table, Page 18.

SMPT19 314C 314C 1262
0

0C53 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

CRU,TR
M

System Memory
Page Table, Page 19.

SMPT20 3150 3150 1262
4

0C54 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

CRU,TR
M

System Memory
Page Table, Page 20.

SMPT21 3154 3154 1262
8

0C55 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

CRU,TR
M

System Memory
Page Table, Page 21.

SMPT22 3158 3158 1263
2

0C56 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

CRU,TR
M

System Memory
Page Table, Page 22.

SMPT23 315C 315C 1263
6

0C57 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

CRU,TR
M

System Memory
Page Table, Page 23.

SMPT24 3160 3160 1264
0

0C58 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

CRU,TR
M

System Memory
Page Table, Page 24.

SMPT25 3164 3164 1264
4

0C59 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

CRU,TR
M

System Memory
Page Table, Page 25.

SMPT26 3168 3168 1264
8

0C5A 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

CRU,TR
M

System Memory
Page Table, Page 26.

SMPT27 316C 316C 1265
2

0C5B 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

CRU,TR
M

System Memory
Page Table, Page 27.

SMPT28 3170 3170 1265
6

0C5C 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

CRU,TR
M

System Memory
Page Table, Page 28.

SMPT29 3174 3174 1266
0

0C5D 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

CRU,TR
M

System Memory
Page Table, Page 29.

SMPT30 3178 3178 1266
4

0C5E 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

CRU,TR
M

System Memory
Page Table, Page 30.

SMPT31 317C 317C 1266
8

0C5F 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

CRU,TR
M

System Memory
Page Table, Page 31.

RGCR 4010 4010 1640
0

1004 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

TRM Reset Global Control

 Page 147

DSTAT 4014 4014 1640
4

1005 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

TRM Device Status
Register

PWR_TIMEOUT 4018 4018 1640
8

1006 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

TRM Timeout value used
in the reset engine to
timeout various reset
external events. Slot
Power, GrpBPwrGd
assertion, Connector
status timeout
period. The number
in this register is
used to shift 1 N
places. N has to be
less than 32

CurrentRatio 402C 402C 1642
8

100B 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

TRM The expected MCLK
Ratio that is sent to
the corepll

IccOverClock0 4040 4040 1644
8

1010 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

TRM Core Overclocking
Only, protected by
overclocking disable
fuse (OverclockDis)

IccOverClock1 4044 4044 1645
2

1011 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

TRM Mem Overclocking
Only, protected by
overclocking disable
fuse (OverclockDis)

IccOverClock2 4048 4048 1645
6

1012 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

TRM Display Bend1,
Always open, no fuse
protection

IccOverClock3 404C 404C 1646
0

1013 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

TRM Display Bend2,
Always open, no fuse
protection

COREFREQ 4100 4100 1664
0

1040 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

SNARF Core Frequency

COREVOLT 4104 4104 1664
4

1041 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

SNARF Core Voltage

MEMORYFREQ 4108 4108 1664
8

1042 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

SNARF Memory Frequency

MEMVOLT 410C 410C 1665
2

1043 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

SNARF Memory Voltage

SVIDControl 4110 4110 1665
6

1044 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

SNARF SVID VR12/MVP7
Control Interace
Register

PCUControl 4114 4114 1666
0

1045 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

SNARF Power Control Unit
Register

HostPMState 4118 4118 1666
4

1046 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

SNARF Host PM scratch
registers

uOSPMState 411C 411C 1666
8

1047 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

SNARF uOS PM Scratch
registers

C3WakeUp_Tim
er

4120 4120 1667
2

1048 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

SNARF C3 WakeUp Timer
Control for autoC3

L1_Entry_Timer 4124 4124 1667
6

1049 32 1 Ring 0 Paging YES YES RTL,
OTHE
R

CSR_RES
ET,HOT_
RESET

SNARF L1 Entry Timer

C3_Timers 4128 4128 1668
0

104A 32 1 Ring 0 Paging YES YES RTL,
OTHE
R

HOT_RES
ET

SNARF C3 Entry and Exit
Timers

uOS_PCUCONTR
OL

412C 412C 1668
4

104B 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

SNARF uOS PCU Control
CSR.. i.e. not for host
consumption

SVIDSTATUS 4130 4130 1668
8

104C 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

SNARF SVID Status

COMPONENTID 4134 4134 1669
2

104D 32 1 Ring 0 Paging YES YES CSR_RES
ET

SNARF COMPONENTID

GboxPMControl 413C 413C 1670
0

104F 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

SNARF GBOX PM Control

 Page 148

GPIO_Input_Sta
tus

4140 4140 1670
4

1050 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,OTHE
R

SNARF GPIO Input Status

GPIO_Output_C
ontrol

4144 4144 1670
8

1051 32 1 Ring 0 Paging YES YES RTL HOT_RES
ET

SNARF GPIO Output Control

EMON_Control 4160 4160 1673
6

1058 32 1 Ring 0 Paging YES YES RTL HOT_RES
ET

SNARF EMON Control
Register

EMON_Counter
0

4164 4164 1674
0

1059 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET

SNARF EMON Counter 0

PCIE_VENDOR_I
D_DEVICE_ID

5800 5800 2252
8

1600 32 1 Ring 0 Paging YES YES

PCIE_PCI_COM
MAND_AND_ST
ATUS

5804 5804 2253
2

1601 32 1 Ring 0 Paging YES YES

PCIE_PCI_REVISI
ON_ID_AND_C_
0X8

5808 5808 2253
6

1602 32 1 Ring 0 Paging YES YES

PCIE_PCI_CACH
E_LINE_SIZE_L_
0XC

580C 580C 2254
0

1603 32 1 Ring 0 Paging YES YES

PCIE_MEMORY_
BAR_0

5810 5810 2254
4

1604 32 1 Ring 0 Paging YES YES

PCIE_UPPER_D
WORD_OF_ME
MOR_0X14

5814 5814 2254
8

1605 32 1 Ring 0 Paging YES YES

PCIE_IO_BAR_2 5818 5818 2255
2

1606 32 1 Ring 0 Paging YES YES

PCIE_MEMORY_
BAR_1

5820 5820 2256
0

1608 32 1 Ring 0 Paging YES YES

PCIE_UPPER_D
WORD_OF_ME
MOR_0X24

5824 5824 2256
4

1609 32 1 Ring 0 Paging YES YES

PCIE_PCI_SUBSY
STEM

582C 582C 2257
2

160B 32 1 Ring 0 Paging YES YES

PCIE_EXPANSIO
N_ROM_BAR

5830 5830 2257
6

160C 32 1 Ring 0 Paging YES YES

PCIE_PCI_CAPA
BILITIES_POINT
ER

5834 5834 2258
0

160D 32 1 Ring 0 Paging YES YES

PCIE_PCI_INTER
RUPT_LINE_PIN

583C 583C 2258
8

160F 32 1 Ring 0 Paging YES YES

PCIE_PCI_PM_C
APABILITY

5844 5844 2259
6

1611 32 1 Ring 0 Paging YES YES

PCIE_PM_STAT
US_AND_CONT
RO_0X48

5848 5848 2260
0

1612 32 1 Ring 0 Paging YES YES

PCIE_PCIE_CAP
ABILITY

584C 584C 2260
4

1613 32 1 Ring 0 Paging YES YES

PCIE_DEVICE_C
APABILITY

5850 5850 2260
8

1614 32 1 Ring 0 Paging YES YES

PCIE_DEVICE_C
ONTROL_AND_
STATUS

5854 5854 2261
2

1615 32 1 Ring 0 Paging YES YES

PCIE_LINK_CAP
ABILITY

5858 5858 2261
6

1616 32 1 Ring 0 Paging YES YES

PCIE_LINK_CON
TROL_AND_STA
_0X5C

585C 585C 2262
0

1617 32 1 Ring 0 Paging YES YES

PCIE_DEVICE_C
APABILITY_2

5870 5870 2264
0

161C 32 1 Ring 0 Paging YES YES

PCIE_DEVICE_C
ONTROL_AND_
S_0X74

5874 5874 2264
4

161D 32 1 Ring 0 Paging YES YES

PCIE_LINK_CON
TROL_AND_STA
TUS_2

587C 587C 2265
2

161F 32 1 Ring 0 Paging YES YES

PCIE_MSI_CAPA
BILITY

5888 5888 2266
4

1622 32 1 Ring 0 Paging YES YES

 Page 149

PCIE_MESSAGE
_ADDRESS

588C 588C 2266
8

1623 32 1 Ring 0 Paging YES YES

PCIE_MESSAGE
_UPPER_ADDRE
SS

5890 5890 2267
2

1624 32 1 Ring 0 Paging YES YES

PCIE_MESSAGE
_DATA

5894 5894 2267
6

1625 32 1 Ring 0 Paging YES YES

PCIE_MSIX_CAP
ABILITY

5898 5898 2268
0

1626 32 1 Ring 0 Paging YES YES

PCIE_MSIX_TAB
LE_OFFSET_BIR

589C 589C 2268
4

1627 32 1 Ring 0 Paging YES YES

PCIE_PBA_OFFS
ET_BIR

58A0 58A0 2268
8

1628 32 1 Ring 0 Paging YES YES

PCIE_ADVANCE
D_ERROR_CAPA
BILITY

5900 5900 2278
4

1640 32 1 Ring 0 Paging YES YES

PCIE_UNCORRE
CTABLE_ERROR
_0X104

5904 5904 2278
8

1641 32 1 Ring 0 Paging YES YES

PCIE_UNCORRE
CTABLE_ERROR
_MASK

5908 5908 2279
2

1642 32 1 Ring 0 Paging YES YES

PCIE_UNCORRE
CTABLE_ERROR
_0X10C

590C 590C 2279
6

1643 32 1 Ring 0 Paging YES YES

PCIE_CORRECTA
BLE_ERROR_ST
ATUS

5910 5910 2280
0

1644 32 1 Ring 0 Paging YES YES

PCIE_CORRECTA
BLE_ERROR_MA
SK

5914 5914 2280
4

1645 32 1 Ring 0 Paging YES YES

PCIE_ADVANCE
D_ERROR_CAPA
_0X118

5918 5918 2280
8

1646 32 1 Ring 0 Paging YES YES

PCIE_ERROR_HE
ADER_LOG_DW
ORD_0

591C 591C 2281
2

1647 32 1 Ring 0 Paging YES YES

PCIE_ERROR_HE
ADER_LOG_DW
ORD_1

5920 5920 2281
6

1648 32 1 Ring 0 Paging YES YES

PCIE_ERROR_HE
ADER_LOG_DW
ORD_2

5924 5924 2282
0

1649 32 1 Ring 0 Paging YES YES

PCIE_ERROR_HE
ADER_LOG_DW
ORD_3

5928 5928 2282
4

164A 32 1 Ring 0 Paging YES YES

MSIXRAM 7000 7000 2867
2

1C00 32 1 Ring 0 Paging YES YES RTL OTHER TRM MSI-X RAM

sysint_debug 9000 9000 3686
4

2400 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

TRM SYSINT Debug
Register

 Page 150

int_status 9004 9004 3686
8

2401 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

TRM System Interrupt
Status Register -
Note: This register
contains the status
for all of the System
Interrupt sources.
When an Interrupt
event occurs, the bit
corresponding to the
source shall be set in
this register. If SW
clears an System
Interrupt Status
Register bit in the
same clock as a HW
event wants to set it,
the clear shall have
precedence over the
set. NOTE: While this
behavior may seem
counter-intuitive and
that the HW may risk
losing Interrupts, it is
actually the
preferred
implementation
because the SW flow
must already prevent
a race condition.
Otherwise, the same
problem could occur
if the HW event
came one clock
before the SW clear.
Therefore, SW
always services
Interrupts after
clearing the status. If
the SW clear did not
have precedence, an
additional Interrupt
would be generated
for this condition
even though SW had
already handled the
Interrupt event,
which would lead to
an additional call of
the ISR to clear the
status. NOTE: Clear
on Read functionality
is not supported on
this register at the
request of SW and
HW debug support
teams. This results in
a slight performance
degradation in legacy
INTx mode due to
the additional UC
Write required to
clear any status bits
that were set.

 Page 151

int_status_set 9008 9008 3687
2

2402 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

TRM System Interrupt
Status Set Register -
Note: This register is
used for SW testing
and HW debug only.
The intent of this
register is for SW to
create the
appearance of a HW
interrupt event for
testing and debug.
Writing a '1' to a bit
in this register shall
result in the
corresponding bit in
the System Interrupt
Status register to be
set along with the
same behavior as if
that HW interrupt
event had occurred.
Writing a '0' to a bit
in this register shall
have no effect.

int_enable 900C 900C 3687
6

2403 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

TRM System Interrupt
Enable Register -
hhThis register is
used to enable
individual Interrupt
sources. An Interrupt
source, captured in
the System Interrupt
Status register, shall
be enabled to
generate Interrupt
messages when the
value of the
corresponding bit in
this register is '1',
and disabled when
'0'. SW enables a
particular Interrupt
source by writing a
'1' to the
corresponding bit
this register. Writing
a '0' to any bit has no
effect. NOTE: If SW
wants to disable any
previously enabled
Interrupt sources
from generating
Interrupt messages,
it should use the
System Interrupt
Disable register
instead. NOTE: The
value of the bits in
this register does not
affect the System
interrupt Status
register. They only
affect the generation
of the Interrupt
messages.
WARNING: The
following should be
true to avoid a hang
condition: 1.SW will
always acknowledge
an Interrupt Vector

 Page 152

(clear status bit)
before re-enabling it.
2.SW will not blindly
re-enable Vectors for
which it did not
receive an Interrupt
* For the unlikely
event that these
rules need to be
violated, you will
need to defeature
ordering checks to
avoid the hang
condition.

int_disable 9010 9010 3688
0

2404 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

TRM System Interrupt
Disable - This register
is used to disable
individual Interrupt
sources. Writing a '1'
to a bit of this
register clears the
corresponding bit in
the INTENB register.
Writing a '0' to any
bit has no effect.
NOTE: The reason
that the Interrupt
enables are split into
two separate HW
register interfaces is
to prevent the need
for a Read-Modify-
Write operation (and
potential locks) when
different pieces of
SW are handling
separate Interrupt
sources.

 Page 153

int_status_auto
_clear

9014 9014 3688
4

2405 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

TRM System Interrupt
Status Auto-Clear - In
systems that support
MSI-X, the interrupt
vector allows the ISR
to know which
interrupt without
reading the System
Interrupt Status
register when a
vector is uniquely
assigned to an
interrupt. In this
case, the software
overhead of a read
or write transaction
can be avoided by
setting the auto-clear
bits in this register.
When auto-clear is
enabled for an
interrupt, the
corresponding bit in
the System Interrupt
Status register will be
set when an event
occurs, and the MSI-
X message will be
sent on PCI- Express.
Then the
corresponding bit in
the System Interrupt
Status register is
cleared and can be
asserted on a new
event. The vector in
the MSI-X message
indicates which
interrupt caused the
event ad defined by
the MSI Vector
Assignment Regsiter.
NOTE: To clarify the
definition of SENT,
the correspsonding
bit will be cleared
once the Endpoint
accepts the
messages which
either means it was
sent or the vector
was masked. NOTE: If
interrupts are not
uniquely defined to a
vector, those
interrupts should not
use auto-clear. If
auto-clear is enabled
on an interrupt once
the vector is sent, all
interrupts assocated
to that vector will be
cleared.

itp_doorbell 9030 9030 3691
2

240C 32 1 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

TRM System Interrupt ITP
Doorbell

 Page 154

msi_vector 9044 9080 3693
2

2411 32 16 Ring 0 Paging YES YES RTL CSR_RES
ET,HOT_
RESET

TRM MSI(-X) Vector
Assignment Register
0-15 - Each of these
registers assigns
Interrupt sources
from the System
Interrupt Status
register to one of the
16 possible MSI(-X)
Vectors. The bits set
in a given register
shall define the
collection of
Interrupt sources
(from System
Interrupt Status
register) that are
assigned to a
particular Interrupt
Vector. Register 0
shall assign Interrupt
sources to Vector 0,
Register 1 shall
assign Interrupt
sources to Vector 1,
and so on. NOTE: SW
must ensure that no
interrupts are
enabled (in System
Interrupt Disable)
before modifying the
value of any MSI(-X)
Vector Assignment
register, otherwise
the behavior is
undefined. NOTE: SW
shall be responsible
for assigning each
interrupt source to
an unique Vector, or
otherwise must
handle multiple
interrupts for a given
source. NOTE: SW
must ensure that
interrupts sharing
the same vector have
the correpsonding
bits disabled System
Interrupt Status
Auto-clear register,
otherwise the
behavior is
undefined.

DCAR_0 A000 A000 4096
0

2800 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Channel
Attributes Register

DHPR_0 A004 A004 4096
4

2801 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Descriptor Head
Pointer Register

DTPR_0 A008 A008 4096
8

2802 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Descriptor Tail
Pointer Register

DAUX_LO_0 A00C A00C 4097
2

2803 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Auxiliary
Register 0

DAUX_HI_0 A010 A010 4097
6

2804 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Auxiliary
Register 0

DRAR_LO_0 A014 A014 4098
0

2805 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Descriptor Ring
Attributes Register

DRAR_HI_0 A018 A018 4098
4

2806 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Descriptor Ring
Attributes Register

DITR_0 A01C A01C 4098
8

2807 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Interrupt Timer
Register

 Page 155

DMA_DSTAT_0 A020 A020 4099
2

2808 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Channel Status
Register

DSTATWB_LO_0 A024 A024 4099
6

2809 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Tail Pointer
Write Back Register
Lo

DSTATWB_HI_0 A028 A028 4100
0

280A 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Tail Pointer
Write Back Register

DCHERR_0 A02C A02C 4100
4

280B 32 1 Ring 0 Paging YES YES RTL GRPB_P
WRGD

CRU DMA Channel Error
Register

DCHERRMSK_0 A030 A030 4100
8

280C 32 1 Ring 0 Paging YES YES RTL GRPB_P
WRGD

CRU DMA Channel Error
Register

DCAR_1 A040 A040 4102
4

2810 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Channel
Attributes Register

DHPR_1 A044 A044 4102
8

2811 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Descriptor Head
Pointer Register

DTPR_1 A048 A048 4103
2

2812 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Descriptor Tail
Pointer Register

DAUX_LO_1 A04C A04C 4103
6

2813 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Auxiliary
Register 0

DAUX_HI_1 A050 A050 4104
0

2814 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Auxiliary
Register 0

DRAR_LO_1 A054 A054 4104
4

2815 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Descriptor Ring
Attributes Register

DRAR_HI_1 A058 A058 4104
8

2816 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Descriptor Ring
Attributes Register

DITR_1 A05C A05C 4105
2

2817 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Interrupt Timer
Register

DMA_DSTAT_1 A060 A060 4105
6

2818 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Channel Status
Register

DSTATWB_LO_1 A064 A064 4106
0

2819 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Tail Pointer
Write Back Register
Lo

DSTATWB_HI_1 A068 A068 4106
4

281A 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Tail Pointer
Write Back Register

DCHERR_1 A06C A06C 4106
8

281B 32 1 Ring 0 Paging YES YES RTL GRPB_P
WRGD

CRU DMA Channel Error
Register

DCHERRMSK_1 A070 A070 4107
2

281C 32 1 Ring 0 Paging YES YES RTL GRPB_P
WRGD

CRU DMA Channel Error
Register

DCAR_2 A080 A080 4108
8

2820 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Channel
Attributes Register

DHPR_2 A084 A084 4109
2

2821 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Descriptor Head
Pointer Register

DTPR_2 A088 A088 4109
6

2822 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Descriptor Tail
Pointer Register

DAUX_LO_2 A08C A08C 4110
0

2823 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Auxiliary
Register 0

DAUX_HI_2 A090 A090 4110
4

2824 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Auxiliary
Register 0

DRAR_LO_2 A094 A094 4110
8

2825 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Descriptor Ring
Attributes Register

DRAR_HI_2 A098 A098 4111
2

2826 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Descriptor Ring
Attributes Register

DITR_2 A09C A09C 4111
6

2827 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Interrupt Timer
Register

DMA_DSTAT_2 A0A0 A0A0 4112
0

2828 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Channel Status
Register

DSTATWB_LO_2 A0A4 A0A4 4112
4

2829 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Tail Pointer
Write Back Register
Lo

DSTATWB_HI_2 A0A8 A0A8 4112
8

282A 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Tail Pointer
Write Back Register

DCHERR_2 A0AC A0AC 4113
2

282B 32 1 Ring 0 Paging YES YES RTL GRPB_P
WRGD

CRU DMA Channel Error
Register

DCHERRMSK_2 A0B0 A0B0 4113
6

282C 32 1 Ring 0 Paging YES YES RTL GRPB_P
WRGD

CRU DMA Channel Error
Register

DCAR_3 A0C0 A0C0 4115
2

2830 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Channel
Attributes Register

 Page 156

DHPR_3 A0C4 A0C4 4115
6

2831 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Descriptor Head
Pointer Register

DTPR_3 A0C8 A0C8 4116
0

2832 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Descriptor Tail
Pointer Register

DAUX_LO_3 A0CC A0CC 4116
4

2833 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Auxiliary
Register 0

DAUX_HI_3 A0D0 A0D0 4116
8

2834 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Auxiliary
Register 0

DRAR_LO_3 A0D4 A0D4 4117
2

2835 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Descriptor Ring
Attributes Register

DRAR_HI_3 A0D8 A0D8 4117
6

2836 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Descriptor Ring
Attributes Register

DITR_3 A0DC A0DC 4118
0

2837 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Interrupt Timer
Register

DMA_DSTAT_3 A0E0 A0E0 4118
4

2838 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Channel Status
Register

DSTATWB_LO_3 A0E4 A0E4 4118
8

2839 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Tail Pointer
Write Back Register
Lo

DSTATWB_HI_3 A0E8 A0E8 4119
2

283A 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Tail Pointer
Write Back Register

DCHERR_3 A0EC A0EC 4119
6

283B 32 1 Ring 0 Paging YES YES RTL GRPB_P
WRGD

CRU DMA Channel Error
Register

DCHERRMSK_3 A0F0 A0F0 4120
0

283C 32 1 Ring 0 Paging YES YES RTL GRPB_P
WRGD

CRU DMA Channel Error
Register

DCAR_4 A100 A100 4121
6

2840 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Channel
Attributes Register

DHPR_4 A104 A104 4122
0

2841 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Descriptor Head
Pointer Register

DTPR_4 A108 A108 4122
4

2842 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Descriptor Tail
Pointer Register

DAUX_LO_4 A10C A10C 4122
8

2843 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Auxiliary
Register 0

DAUX_HI_4 A110 A110 4123
2

2844 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Auxiliary
Register 0

DRAR_LO_4 A114 A114 4123
6

2845 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Descriptor Ring
Attributes Register

DRAR_HI_4 A118 A118 4124
0

2846 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Descriptor Ring
Attributes Register

DITR_4 A11C A11C 4124
4

2847 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Interrupt Timer
Register

DMA_DSTAT_4 A120 A120 4124
8

2848 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Channel Status
Register

DSTATWB_LO_4 A124 A124 4125
2

2849 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Tail Pointer
Write Back Register
Lo

DSTATWB_HI_4 A128 A128 4125
6

284A 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Tail Pointer
Write Back Register

DCHERR_4 A12C A12C 4126
0

284B 32 1 Ring 0 Paging YES YES RTL GRPB_P
WRGD

CRU DMA Channel Error
Register

DCHERRMSK_4 A130 A130 4126
4

284C 32 1 Ring 0 Paging YES YES RTL GRPB_P
WRGD

CRU DMA Channel Error
Register

DCAR_5 A140 A140 4128
0

2850 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Channel
Attributes Register

DHPR_5 A144 A144 4128
4

2851 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Descriptor Head
Pointer Register

DTPR_5 A148 A148 4128
8

2852 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Descriptor Tail
Pointer Register

DAUX_LO_5 A14C A14C 4129
2

2853 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Auxiliary
Register 0

DAUX_HI_5 A150 A150 4129
6

2854 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Auxiliary
Register 0

DRAR_LO_5 A154 A154 4130
0

2855 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Descriptor Ring
Attributes Register

DRAR_HI_5 A158 A158 4130
4

2856 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Descriptor Ring
Attributes Register

DITR_5 A15C A15C 4130
8

2857 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Interrupt Timer
Register

 Page 157

DMA_DSTAT_5 A160 A160 4131
2

2858 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Channel Status
Register

DSTATWB_LO_5 A164 A164 4131
6

2859 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Tail Pointer
Write Back Register
Lo

DSTATWB_HI_5 A168 A168 4132
0

285A 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Tail Pointer
Write Back Register

DCHERR_5 A16C A16C 4132
4

285B 32 1 Ring 0 Paging YES YES RTL GRPB_P
WRGD

CRU DMA Channel Error
Register

DCHERRMSK_5 A170 A170 4132
8

285C 32 1 Ring 0 Paging YES YES RTL GRPB_P
WRGD

CRU DMA Channel Error
Register

DCAR_6 A180 A180 4134
4

2860 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Channel
Attributes Register

DHPR_6 A184 A184 4134
8

2861 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Descriptor Head
Pointer Register

DTPR_6 A188 A188 4135
2

2862 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Descriptor Tail
Pointer Register

DAUX_LO_6 A18C A18C 4135
6

2863 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Auxiliary
Register 0

DAUX_HI_6 A190 A190 4136
0

2864 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Auxiliary
Register 0

DRAR_LO_6 A194 A194 4136
4

2865 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Descriptor Ring
Attributes Register

DRAR_HI_6 A198 A198 4136
8

2866 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Descriptor Ring
Attributes Register

DITR_6 A19C A19C 4137
2

2867 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Interrupt Timer
Register

DMA_DSTAT_6 A1A0 A1A0 4137
6

2868 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Channel Status
Register

DSTATWB_LO_6 A1A4 A1A4 4138
0

2869 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Tail Pointer
Write Back Register
Lo

DSTATWB_HI_6 A1A8 A1A8 4138
4

286A 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Tail Pointer
Write Back Register

DCHERR_6 A1AC A1AC 4138
8

286B 32 1 Ring 0 Paging YES YES RTL GRPB_P
WRGD

CRU DMA Channel Error
Register

DCHERRMSK_6 A1B0 A1B0 4139
2

286C 32 1 Ring 0 Paging YES YES RTL GRPB_P
WRGD

CRU DMA Channel Error
Register

DCAR_7 A1C0 A1C0 4140
8

2870 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Channel
Attributes Register

DHPR_7 A1C4 A1C4 4141
2

2871 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Descriptor Head
Pointer Register

DTPR_7 A1C8 A1C8 4141
6

2872 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Descriptor Tail
Pointer Register

DAUX_LO_7 A1CC A1CC 4142
0

2873 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Auxiliary
Register 0

DAUX_HI_7 A1D0 A1D0 4142
4

2874 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Auxiliary
Register 0

DRAR_LO_7 A1D4 A1D4 4142
8

2875 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Descriptor Ring
Attributes Register

DRAR_HI_7 A1D8 A1D8 4143
2

2876 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Descriptor Ring
Attributes Register

DITR_7 A1DC A1DC 4143
6

2877 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Interrupt Timer
Register

DMA_DSTAT_7 A1E0 A1E0 4144
0

2878 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Channel Status
Register

DSTATWB_LO_7 A1E4 A1E4 4144
4

2879 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Tail Pointer
Write Back Register
Lo

DSTATWB_HI_7 A1E8 A1E8 4144
8

287A 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Tail Pointer
Write Back Register

DCHERR_7 A1EC A1EC 4145
2

287B 32 1 Ring 0 Paging YES YES RTL GRPB_P
WRGD

CRU DMA Channel Error
Register

DCHERRMSK_7 A1F0 A1F0 4145
6

287C 32 1 Ring 0 Paging YES YES RTL GRPB_P
WRGD

CRU DMA Channel Error
Register

DCR A280 A280 4160
0

28A0 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU DMA Configuration
Register

 Page 158

DQAR A284 A284 4160
4

28A1 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Descriptor Queue
Access Register

DQDR_TL A288 A288 4160
8

28A2 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Descriptor Queue
Data Register Top
Left

DQDR_TR A28C A28C 4161
2

28A3 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Descriptor Queue
Data Register Top
Right

DQDR_BL A290 A290 4161
6

28A4 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Descriptor Queue
Data Register Bottom
Left

DQDR_BR A294 A294 4162
0

28A5 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Descriptor Queue
Data Register Bottom
Right

DMA_MISC A2A4 A2A4 4163
6

28A9 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Misc bits such as
chicken bits -- etc...

DMA_LOCK A400 A400 4198
4

2900 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Master Lock register

APICIDR A800 A800 4300
8

2A00 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU APIC Identification
Register

APICVER A804 A804 4301
2

2A01 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU APIC Version Register

APICAPR A808 A808 4301
6

2A02 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU APIC Priority Register

APICRT A840 A908 4307
2

2A10 64 26 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU APIC Redirection
Table

APICICR A9D0 AA08 4347
2

2A74 64 8 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU APIC Interrupt
Command Register 0
to 7

MCA_INT_STAT AB00 AB00 4377
6

2AC0 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU MCA Interrupt Status
Register

MCA_INT_EN AB04 AB04 4378
0

2AC1 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU MCA Interrupt
Enable Register

SCRATCH AB20 AB5C 4380
8

2AC8 32 16 Ring 0 Paging YES YES RTL GRPB_P
WRGD

CRU Scratch Registers for
Software

CONCAT_CORE_
HALTED

AC0C AC0C 4404
4

2B03 64 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Concatenated core
halted status

CORE_HALTED AC4C AD40 4410
8

2B13 32 62 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Core of same
number writes a 1
just before halting

RDMASR0 B180 B180 4544
0

2C60 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Remote DMA
register

RDMASR1 B184 B184 4544
4

2C61 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Remote DMA
register

RDMASR2 B188 B188 4544
8

2C62 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Remote DMA
register

RDMASR3 B18C B18C 4545
2

2C63 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Remote DMA
register

RDMASR4 B190 B190 4545
6

2C64 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Remote DMA
register

RDMASR5 B194 B194 4546
0

2C65 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Remote DMA
register

RDMASR6 B198 B198 4546
4

2C66 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Remote DMA
register

RDMASR7 B19C B19C 4546
8

2C67 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Remote DMA
register

C6_SCRATCH C000 C054 4915
2

3000 32 22 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Scratch Pad registers
for package-C6

APR_PHY_BASE C11C C11C 4943
6

3047 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU

SBOX_RS_EMO
N_Selectors

CC20 CC20 5225
6

3308 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU SBox RS EMON
selectors

SBOX_EMON_C
NT_OVFL

CC24 CC24 5226
0

3309 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU This indicates if
there's any overflow
in any EMON counter

EMON_CNT0 CC28 CC28 5226
4

330A 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU EMON counter 0

 Page 159

EMON_CNT1 CC2C CC2C 5226
8

330B 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU EMON counter 1

EMON_CNT2 CC30 CC30 5227
2

330C 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU EMON counter 2

EMON_CNT3 CC34 CC34 5227
6

330D 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU EMON counter 3

SBQ_MISC CC38 CC38 5228
0

330E 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU Misc register with
sbq chicken bits, etc

DBOX_BW_RES
ERVATION

CC50 CC50 5230
4

3314 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU 8-bits DBOX
reservation slot value
from SW

EMON_TCU_CO
NTROL

CC84 CC84 5235
6

3321 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU TCU EMON Control

Doorbell_INT CC90 CC9C 5236
8

3324 32 4 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU System Doorbell
Interrupt Command
Register 0 to 3

MarkerMessage
_Disable

CCA0 CCA0 5238
4

3328 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU 32-bits to disable
interrupts

MarkerMessage
_Assert

CCA4 CCA4 5238
8

3329 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU 32-bits to assert
interrupts

MarkerMessage
_Send

CCA8 CCA8 5239
2

332A 32 1 Ring 0 Paging YES YES RTL GRPB_RE
SET

CRU 32-bits to log INTSCR
field of Marker
Message

