
3
Application
Programming Model

3-1

CHAPTER 3
APPLICATION PROGRAMMING MODEL

 This chapter describes the application programming environment as seen by compiler writers
and assembly-language programmers. It also describes the architectural features which
directly affect applications.

3.1. DATA FORMATS

3.1.1. Memory Data Formats

The Intel Architecture MMX™ technology introduces new packed data types, each 64 bits
long. The data elements can be:

• eight packed, consecutive 8-bit bytes

• four packed, consecutive 16-bit words

• two packed, consecutive 32-bit doublewords

 The 64 bits are numbered 0 through 63. Bit 0 is the least significant bit (LSB), and bit 63 is
the most significant bit (MSB).

 The low-order bits are the lower part of the data element and the high-order bits are the upper
part of the data element. For example, a word contains 16 bits numbered 0 through 15, the
byte containing bits 0-7 of the word is called the low byte, and the byte containing bits 8-15
is called the high byte.

 Bytes in a multi-byte format have consecutive memory addresses. The ordering is always
little endian. That is, the bytes with the lower addresses are less significant than the bytes
with the higher addresses.

APPLICATION PROGRAMMING MODEL

3-2

63 0

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

56 55 48 47 40 39 32 31 24 23 16 15 8 7

Memory Address 1008h Memory Address 1000h

3006045

Figure 3-1. Eight Packed Bytes in Memory (at address 1000H)

3.1.2. IA MMX™ Register Data Formats

Values in IA MMX registers have the same format as a 64-bit quantity in memory. MMX
registers have two data access modes: 64-bit access mode and 32-bit access mode.

 The 64-bit access mode is used for 64-bit memory access, 64-bit transfer between MMX
registers, all pack, logical and arithmetic instructions, and some unpack instructions.

 The 32-bit access mode is used for 32-bit memory access, 32-bit transfer between integer
registers and MMX registers, and some unpack instructions.

3.1.3. IA MMX™ Instructions and the Floating-Point Tag Word

After each MMX instruction, the entire floating-point tag word is set to Valid (00s). The
Empty MMX State (EMMS) instruction sets the entire floating-point tag word to Empty
(11s).

Section 4.3.2. describes the effects of floating-point and MMX instructions on the floating-
point tag word. For details on floating-point tag word, refer to the Pentium® Processor
Family Developer’s Manual, Volume 3, Section 6.2.1.4.

APPLICATION PROGRAMMING MODEL

3-3

3.2. PREFIXES

Table 3-1 details the effect of a prefix on IA MMX instructions.

Table 3-1. IA MMX™ Instruction Behavior with Prefixes Used by Application Programs

Prefix Type The Effect of Prefix on IA MMX™ Instructions

Address size (67H) Affects IA MMX instructions with a memory operand.

Ignored by IA MMX instructions without a memory operand.

Operand size (66H) Ignored.

Segment override Affects IA MMX instructions with a memory operand.

Ignored by IA MMX instructions without a memory operand.

Repeat Ignored.

Lock (F0H) Generates an invalid opcode exception.

See the Pentium® Processor Family Developer’s Manual, Volume 3, Section 3.4. for
information related to prefixes.

3.3. WRITING APPLICATIONS WITH IA MMX™ CODE

3.3.1. Detecting IA MMX™ Technology Existence Using the
CPUID Instruction

Use the CPUID instruction to determine whether the processor supports the IA MMX
instruction set (refer to the Pentium® Processor Family Developer’s Manual, Volume 3,
Chapter 25, for more detail on the CPUID instruction). When the IA MMX technology
support is detected by the CPUID instruction, it is signaled by setting bit 23 (IA MMX
technology bit) in the feature flags to 1. In general, two versions of the routine can be
created: one with scalar instructions and one with MMX instructions. The application will
call the appropriate routine depending on the results of the CPUID instruction. If MMX
technology support is detected, then the MMX routine is called; if no support for the MMX
technology exists, the application calls the scalar routine.

NOTE

The CPUID instruction will continue to report the existence of the IA MMX
technology if the CR0.EM bit is set (which signifies that the CPU is
configured to generate exception Int 7 that can be used to emulate floating

APPLICATION PROGRAMMING MODEL

3-4

point instructions). In this case, executing an MMX instruction results in an
invalid opcode exception.

Example 3-1 illustrates how to use the CPUID instruction. This example does not represent
the entire CPUID sequence, but shows the portion used for IA MMX technology detection.

Example 3-1. Partial sequence of IA MMX™ technology detection by CPUID

... ; identify existence of CPUID instruction

...

... ; identify Intel processor

....
mov EAX, 1 ; request for feature flags
CPUID ; 0Fh, 0A2h CPUID instruction
test EDX, 00800000h ; Is IA MMX technology bit (Bit 23 of EDX) in feature flags set?
jnz MMX_Technology_Found

3.3.2. The EMMS Instruction

When integrating the MMX routine into an application running under an existing operating
system (OS), programmers need to take special precautions, similar to those when writing
floating-point (FP) code.

When an MMX instruction executes, the floating-point tag word is marked valid (00s).
Subsequent floating-point instructions that will be executed may produce unexpected results
because the floating-point stack seems to contain valid data. The EMMS instruction marks
the floating-point tag word as empty. Therefore, it is imperative to use the EMMS instruction
at the end of every MMX routine.

The EMMS instruction must be used in each of the following cases:

• Application utilizing FP instructions calls an MMX technology library/DLL

• Application utilizing MMX instructions calls a FP library/DLL

• Switch between MMX code in a task/thread and other tasks/threads in cooperative
operating systems.

If the EMMS instruction is not used when trying to execute a floating-point instruction, the
following may occur:

• Depending on the exception mask bits of the floating-point control word, a floating-
point exception event may be generated.

APPLICATION PROGRAMMING MODEL

3-5

• A "soft exception" may occur. In this case floating-point code continues to execute, but
generates incorrect results. This happens when the floating-point exceptions are masked
and no visible exceptions occur. The internal exception handler (microcode, not user
visible) loads a NaN (Not a Number) with an exponent of 11..11B onto the floating-point
stack. The NaN is used for further calculations, yielding incorrect results.

• A potential error may occur only if the operating system does NOT manage floating-
point context across task switches. These operating systems are usually cooperative
operating systems. It is imperative that the EMMS instruction execute at the end of all
the MMX routines that may enable a task switch immediately after they end execution
(explicit yield API or implicit yield API).

3.3.3. Interfacing with IA MMX™ Technology Procedures and
Functions

The MMX technology enables direct access to all the MMX registers. This means that all
existing interface conventions that apply to the use of other general registers such as EAX,
EBX will also apply to the MMX register usage.

An efficient interface might pass parameters and return values via the pre-defined MMX
registers, or a combination of memory locations (via the stack) and MMX registers. This
interface would have to be written in assembly language since passing parameters through
MMX registers is not currently supported by any existing C compilers. Do not use the EMMS
instruction when the interface to the MMX code has been defined to retain values in the
MMX register.

If a high-level language, such as C, is used, the data types could be defined as a 64-bit
structure with packed data types.

When implementing usage of IA MMX instructions in high level languages other approaches
can be taken, such as:

• Passing MMX type parameters to a procedure by passing a pointer to a structure via the
integer stack.

• Returning a value from a function by returning the pointer to a structure.

3.3.4. Writing Code with IA MMX™ and Floating-Point Instructions

The MMX technology aliases the MMX registers on the floating-point registers. The main
reason for this is to enable MMX technology to be fully compatible and transparent to
existing software environments (operating systems and applications). This way operating

APPLICATION PROGRAMMING MODEL

3-6

systems will be able to include new applications and drivers that use the IA MMX
technology.

An application can contain both floating-point and MMX code. However, the user is
discouraged from causing frequent transitions between MMX and floating-point instructions
by mixing MMX code and floating-point code.

3.3.4.1. RECOMMENDATIONS AND GUIDELINES

Do not mix MMX code and floating-point code at the instruction level for the following
reasons:

• The TOS (top of stack) value of the floating-point status word is set to 0 after each MMX
instruction. This means that the floating-point code loses its pointer to its floating-point
registers if the code mixes MMX instructions within a floating-point routine.

• An MMX instruction write to an MMX 64-bit register writes ones (11s) to the exponent
part of the corresponding floating-point register.

• Floating-point code that uses register contents that were generated by the MMX
instructions may cause floating-point exceptions or incorrect results. These floating-point
exceptions are related to undefined floating-point values and floating-point stack usage.

• All MMX instructions (except EMMS) set the entire tag word to the valid state (00s in
all tag fields) without preserving the previous floating-point state.

• Frequent transitions between the MMX and floating-point instructions may result in
significant performance degradation in some implementations.

If the application contains floating-point and MMX instructions, follow these guidelines:

• Partition the MMX technology module and the floating-point module into separate
instruction streams (separate loops or subroutines) so that they contain only instructions
of one type.

• Do not rely on register contents across transitions.

• When the MMX state is not required, empty the MMX state using the EMMS instruction.

• Exit the floating-point code section with an empty stack.

APPLICATION PROGRAMMING MODEL

3-7

Example 3-2. Floating-point and MMX™ Code

 FP_code:
..
.. (*leave the FP stack empty*)

 MMX_code:
..
EMMS (*mark the FP tag word as empty*)

 FP_code 1:
..
.. (*leave the FP stack empty*)

3.3.5. Multitasking Operating System Environmen t

An application needs to identify the nature of the multitasking operating system on which it
runs. Each task retains its own state which must be saved when a task switch occurs. The
processor state (context) consists of the integer registers and floating-point and MMX
registers.

Operating systems can be classified into two types:

• Cooperative multitasking operating system

• Preemptive multitasking operating system

The behavior of the two operating system types in context switching is described in
Section 4.1.1.

3.3.5.1. COOPERATIVE MULTITASKING OPERATING SYSTEM

Cooperative multitasking operating systems do not save the FP or MMX state when
performing a context switch. Therefore, the application needs to save the relevant state
before relinquishing direct or indirect control to the operating system.

3.3.5.2. PREEMPTIVE MULTITASKING OPERATING SYSTEM

Preemptive multitasking operating systems are responsible for saving and restoring the FP
and MMX state when performing a context switch. Therefore, the application does not have
to save or restore the FP and MMX state.

APPLICATION PROGRAMMING MODEL

3-8

3.3.6. Exception Handling in IA MMX™ Application Code

MMX instructions generate the same type of memory-access exceptions as other Intel
Architecture instructions. Some examples are: page fault, segment not present, and limit
violations. Existing exception handlers can handle these types of exceptions. They do not
have to be modified.

Unless there is a pending floating-point exception, MMX instructions do not generate
numeric exceptions. Therefore, there is no need to modify existing exception handlers or add
new ones.

If a floating-point exception is pending, the subsequent MMX instruction generates a
numeric error exception (Int 16 and/or FERR#). The MMX instruction resumes execution
upon return from the exception handler.

3.3.7. Register Mapping

The IA MMX registers and their tags are mapped to physical locations of the floating-point
registers and their tags. Register aliasing and mapping is described in more detail in
Section 4.3.1.

