
5
Intel Architecture
MMX™ Instruction
Set

5-1

CHAPTER 5
INTEL ARCHITECTURE MMX™ INSTRUCTION

SET

This chapter presents the Intel Architecture MMX™ instructions in alphabetical order, with a
full description of each instruction.

The IA MMX technology defines fifty-seven new instructions. The instructions are grouped
into the following functional categories:

• Arithmetic Instructions

• Comparison Instructions

• Conversion Instructions

• Logical Instructions

• Shift Instructions

• Data Transfer Instructions

• Empty MMX State (EMMS) Instruction

Appendix A summarizes the MMX instructions grouped by categories of related functions.
Appendix B provides instruction formats and encodings, and Appendix C provides an
alphabetical list of instruction mnemonics, their source data types, encodings in hexadecimal,
and format. Appendix D provides an Opcode Map of the MMX instructions.

Many of the instructions have multiple variations depending on the data types they support.
Each variation has a different suffix. For example the PADD instruction has three variations:
PADDB, PADDW, and PADDD, where the letters B, W, and D represent byte, word, and
doubleword.

5.1. INSTRUCTION SYNTAX

Instructions vary by:

• Data type: packed bytes, packed words, packed doublewords or quadwords

• Signed - Unsigned numbers

• Wraparound - Saturate arithmetic

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-2

A typical MMX instruction has this syntax:

• Prefix: P for Packed

• Instruction operation: for example - ADD, CMP, or XOR

• Suffix:

 US for Unsigned Saturation

 S for Signed saturation

 B, W, D, Q for the data type: packed byte, packed word, packed doubleword, or
quadword.

Instructions that have different input and output data elements have two data-type suffixes.
For example, the conversion instruction converts from one data type to another. It has two
suffixes: one for the original data type and the second for the converted data type.

This is an example of an instruction mnemonic syntax :

PADDUSW (Packed Add Unsigned with Saturation for Word)

P = Packed

ADD = the instruction operation

US = Unsigned Saturation

W = Word

5.2. INSTRUCTION FORMAT

The IA MMX instructions use the existing IA instruction format. All instructions, except the
EMMS instruction, use the ModR/M format. All are preceded by the 0F prefix byte. For
more details about the ModR/M format refer to Pentium® Processor Family Developer’s
Manual Volume 3, Section 25.2.1.

For data-transfer instructions, the destination and source operands can reside in memory,
integer registers, or MMX registers. For all other IA MMX instructions, the destination
operands reside in MMX registers, and the source operands reside in memory, MMX
registers, or immediate operands.

All existing address modes are supported using the SIB (Scale Index Base) format.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-3

5.3. NOTATIONAL CONVENTIONS

The following conventions apply to all MMX instructions (except the EMMS instruction):

• The instructions reference and operate on two operands: the source and destination
operands. The right operand is the source and the left operand is the destination. The
destination operand may also supply one of the inputs for the operation. The instruction
overwrites the destination operand with the result.

• When one of the operands is a memory location, the linear address corresponds to the
address of the least significant byte of the referenced memory data.

• The MMX instructions do not affect the condition flags.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-4

5.4. HOW TO READ THE INSTRUCTION SET PAGES

The following is an example of the format used for each MMX instruction description in this
chapter:

PSLL—Packed Shift Left Logical
Opcode Instruction Description

0F F1 /r PSLLW mm, mm/m64 Shift all words in MMX register to left by an amount
specified in MMX register/memory, while shifting in
zeros.

The above table gives the instruction mnemonic and a brief description of the mnemonic.
The columns content are explained below.

Opcode Column

The "Opcode" column provides the complete opcode produced for each form of the
instruction.

 The codes are defined as hexadecimal bytes, in the same order in which they appear in
memory. Definitions of entries other than hexadecimal bytes are as follows:

• /digit: (digit is between 0 and 7) indicates that the ModR/M byte of the instruction
uses only the r/m (register or memory) operand. The reg field contains the digit that
provides a technology to the instruction’s opcode.

• /r: indicates that the ModR/M byte of the instruction contains both a register
operand and an r/m operand.

• ib: a 1-byte, immediate operand to the instruction that follows the opcode, ModR/M
bytes, and scale-indexing bytes. The opcode determines if the operand is a signed
value.

Instruction Column

The "Instruction" column contains the instruction syntax. The following is a list of the
symbols used to represent operands in the instruction statements:

• imm8: an immediate byte value, imm8 is a signed number between -128 and +127
inclusive.

• r/m32: a doubleword register or memory operand used for instructions whose
operand-size attribute is 32 bits.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-5

• mm/m32: indicates the lowest 32 bits of an MMX register or a 32-bit memory
location.

• mm/m64: indicates a 64-bit MMX register or a 64-bit memory location.

Description Column

The "Description" column briefly explains the instruction activity.

Operation

The "Operation" section contains an algorithmic description of the operation performed by
the instruction.

The register name or memory location implies the contents of the register or memory.

The bit values are written from high-order to low-order and indicate the address within the
register or memory. The bit addresses are specified along with the register name or memory
location in brackets. For example mm(7..0) represents the low-order 8 bits in an MMX
register.

The algorithms are composed of the following elements:

• Comments are enclosed with the symbol pairs “(*” and “*)”.

• Compound statements are enclosed between the keywords of the “if” statement (IF,
THEN, ELSE).

• A ← B; indicates that the value of B is assigned to A.

• The symbols =, <>, >, <, ≥, and ≤ are relational operators used to compare two values,
meaning equal, not equal, greater or equal, less or equal, respectively. A relational
expression such as A=B is TRUE if the value for A is equal to B; otherwise it is FALSE.

The following functions are used in the algorithmic descriptions:

• ZeroExtend (value) returns a value zero-extended to the operand-size attribute of the
instruction. For example, if OperandSize = 32, ZeroExtend of a byte value of -10
converts the byte from F6H to doubleword with hexadecimal value 000000F6H. If the
value passed to ZeroExtend and the operand-size attribute are the same size, ZeroExtend
returns the value unaltered.

• SignExtend (value) returns a value sign-extended to the operand-size attribute of the
instruction. For example, if OperandSize = 32, SignExtend of a byte containing the
value -10 converts the byte from F6H to doubleword with hexadecimal value
FFFFFFF6H. If the value passed to SignExtend and the operand-size attribute are the
same size, SignExtend returns the value unaltered.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-6

• SaturateSignedWordToSignedByte converts a signed 16-bit value to a signed 8-bit
value. If the signed 16-bit value is less than -128, it is represented by the saturated value
-128 (0x80). If it is greater than 127, it is represented by the saturated value 127 (0x7F).

• SaturateSignedDwordToSignedWord converts a signed 32-bit value to a signed 16-bit
value. If the signed 32-bit value is less than -32768, it is represented by the saturated
value -32768 (0x8000). If it is greater than 32767, it is represented by the saturated value
32767 (0x7FFF).

• SaturateSignedWordToUnsignedByte converts a signed 16-bit value to an unsigned
8-bit value. If the signed 16-bit value is less than zero it is represented by the saturated
value zero (0x00).If it is greater than 255 it is represented by the saturated value 255
(0xFF).

• SaturateToSignedByte represents the result of an operation as a signed 8-bit value. If
the result is less than -128, it is represented by the saturated value -128 (0x80). If it is
greater than 127, it is represented by the saturated value 127 (0x7F).

• SaturateToSignedWord represents the result of an operation as a signed 16-bit value. If
the result is less than -32768, it is represented by the saturated value -32768 (0x8000).If
it is greater than 32767, it is represented by the saturated value 32767 (0x7FFF).

• SaturateToUnsignedByte represents the result of an operation as a signed 8-bit value. If
the result is less than zero it is represented by the saturated value zero (0x00). If it is
greater than 255, it is represented by the saturated value 255 (0xFF).

• SaturateToUnsignedWord represents the result of an operation as a signed 16-bit value.
If the result is less than zero it is represented by the saturated value zero (0x00).I If it is
greater than 65535, it is represented by the saturated value 65535 (0xFFFF).

Description

The "Description" section describes the operation for all variations of the instruction.

Example

The “Example” section contains a graphical representation of the instruction's functional
behavior.

Exceptions

The "Exceptions" section lists the exceptions in the three different modes: Protected mode,
Real Address mode, and Virtual-8086 mode.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-7

Refer to Section 4.2 of this document for more detail on these exceptions. See also the
Pentium® Processor Family Manual, Volume 3, Section 9.4 and Chapter 14.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-8

EMMS—Empty MMX™ State
Opcode Instruction Description

0F 77 EMMS Set the FP tag word to empty.

Operation

TW ← 0xFFFF;

Description

The EMMS instruction sets the values of the floating-point (FP) tag word to empty (all ones).
EMMS marks the registers as available, so they can subsequently be used by floating-point
instructions.

If a floating-point instruction loads into one of the registers before it has been reset by the
EMMS instruction, a floating-point stack overflow can occur, which results in an FP
exception or incorrect result.

All other MMX instructions validate the entire FP tag word (all zeros).

NOTE

This instruction must be used to clear the MMX state at the end of all MMX
routines, and before calling other routines that may execute floating-point
instructions.

Figure 5-1 shows the format of the FP Tag Word.

15 0
I

FP tag(7)
I

FP tag(6)
I

FP tag(5)
I

FP tag(4)
I

FP tag(3)
I

FPtag(2)
I

FPtag(1)
I

FPtag(0)

Tag values: 00 = Valid 10 = Valid
01 = Valid 11 = Empty

3006047

Figure 5-1. Floating Point Tag Word Format

Flags Affected

None.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-9

Protected Mode Exceptions

#UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

#UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Virtual 8086 Mode Exceptions

#UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-10

MOVD—Move 32 Bits
Opcode Instruction Description

0F 6E /r MOVD mm, r/m32 Move 32 bits from integer register/memory to MMX register.
0F 7E /r MOVD r/m32, mm Move 32 bits from MMX register to integer register/memory.

Operation

IF destination = mm
THEN
 mm(63..0) ← ZeroExtend(r/m32);
ELSE
 r/m32 ← mm(31..0);

Description

The MOVD instruction copies 32 bits from the source operand to the destination operand.

The destination and source operands can be either MMX registers, 32-bit memory operands,
or 32-bit integer registers. The MOVD cannot transfer data from an MMX register to an
MMX register, from memory to memory, or from an integer register to an integer register.

When the destination operand is an MMX register, the 32-bit source operand is written to the
low-order 32 bits of the 64-bit destination register. The destination register is zero-extended
to 64 bits.

When the source operand is an MMX register, the low-order 32 bits of the MMX register are
written to the 32-bit integer register or 32-bit memory location.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-11

Example

MOVD m32, mm

MOVD mm, r32
63

31 0

32 31

mm

m32

15 0

0
00000000

b b b b r32

b b b b

63

mm

0
xxxxxxxx b b b

b b

b b

W

W

32 31

3 2 1 0

3

01

2 N+1

N+1

3 2 1 0

b3 2 1 0

3006010

Flags Affected

None.

Protected Mode Exceptions

#GP(0) if the destination is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is
a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-12

MOVQ—Move 64 Bits
Opcode Instruction Description

0F 6F /r MOVQ mm, mm/m64 Move 64 bits from MMX register/memory to MMX register.
0F 7F /r MOVQ mm/m64, mm Move 64 bits from MMX register to MMX register/memory.

Operation

IF destination = mm
THEN
 mm ← mm/m64;
ELSE
 mm/m64 ← mm;

Description

The MOVQ instruction copies 64 bits from the source operand to the destination operand.

The destination and source operands can be either MMX registers or 64-bit memory
operands. The MOVQ instruction cannot transfer data from memory to memory.

When the destination is an MMX register and the source is a 64-bit memory operand, the
64 bits of data at the memory location are copied into the MMX register.

When the destination is a 64-bit memory operand and the source is an MMX register, the
64 bits of data are copied from the MMX register into the memory location.

When the destination and source are both MMX registers, the contents of the MMX register
(source) are copied into an MMX register (destination).

Example

MOVQ mm, m64
63 48 47 32 31

mm

m64

15 0

1615 0
b7 b6 b5 b4 b3 b2 b1 b0

b7 b6

b5 b4

b3 b2

b1

W

W

W

Wb0
N+1

N+2

N+3

N+0

3006013

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-13

Flags Affected

None.

Protected Mode Exceptions

#GP(0) if the destination is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is
a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-14

PACKSSWB /PACKSSDW —Pack with Signed Saturation
Opcode Instruction Description

0F 63 /r PACKSSWB mm, mm/m64 Pack and saturate signed words from MMX register and MMX
register/memory into signed bytes in MMX register.

0F 6B /r PACKSSDW mm, mm/m64 Pack and saturate signed dwords from MMX register and MMX
register/memory into signed words in MMX register.

Operation

IF instruction is PACKSSWB
THEN {
 mm(7..0) ← SaturateSignedWordToSignedByte mm(15..0);
 mm(15..8) ← SaturateSignedWordToSignedByte mm(31..16);
 mm(23..16) ← SaturateSignedWordToSignedByte mm(47..32);
 mm(31..24) ← SaturateSignedWordToSignedByte mm(63..48);
 mm(39..32) ← SaturateSignedWordToSignedByte mm/m64(15..0);
 mm(47..40) ← SaturateSignedWordToSignedByte mm/m64(31..16);
 mm(55..48) ← SaturateSignedWordToSignedByte mm/m64(47..32);
 mm(63..56) ← SaturateSignedWordToSignedByte mm/m64(63..48);
 }
ELSE { (* instruction is PACKSSDW *)
 mm(15..0) ← SaturateSignedDwordToSignedWord mm(31..0);
 mm(31..16) ← SaturateSignedDwordToSignedWord mm(63..32);
 mm(47..32) ← SaturateSignedDwordToSignedWord mm/m64(31..0);
 mm(63..48) ← SaturateSignedDwordToSignedWord mm/m64(63..32);
 }

Description

The PACKSS instruction packs and saturates the signed data elements from the source and
the destination operands and writes the signed results to the destination operand.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

The PACKSSWB instruction packs four signed words from the source operand and four
signed words from the destination operand into eight signed bytes in the destination register.
If the signed value of a word is larger or smaller than the range of a signed byte, the value is
saturated (in the case of an overflow - to 0x7F, and in the case of an underflow - to 0x80).

The PACKSSDW instruction packs two signed doublewords from the source operand and
two signed doublewords from the destination operand into four signed words in the
destination register. If the signed value of a doubleword is larger or smaller than the range of

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-15

a signed word, the value is saturated (in the case of an overflow - to 0x7FFF, and in the case
of an underflow - to 0x8000).

Example

PACKSSDW mm, mm/m64

mm/m64 mm

D

C

D'

mm

C'

B'

A'

B

A

3006012

Flags Affected

None.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-16

PACKUSWB —Pack with Unsigned Saturation
Opcode Instruction Description

0F 67 /r PACKUSWB mm, mm/m64 Pack and saturate signed words from MMX register and MMX
register/memory into unsigned bytes in MMX register.

Operation

 mm(7..0) ← SaturateSignedWordToUnsignedByte mm(15..0);
 mm(15..8)← SaturateSignedWordToUnsignedByte mm(31..15);
 mm(23..16) ← SaturateSignedWordToUnsignedByte mm(47..32);
 mm(31..24) ← SaturateSignedWordToUnsignedByte mm(63..48);
 mm(39..32) ← SaturateSignedWordToUnsignedByte mm/m64(15..0);
 mm(47..40) ← SaturateSignedWordToUnsignedByte mm/m64(31..16);
 mm(55..48) ← SaturateSignedWordToUnsignedByte mm/m64(47..32);
 mm(63..56) ← SaturateSignedWordToUnsignedByte mm/m64(63..48);

Description:

The PACKUSWB packs and saturates four signed words of the source operand and four
signed words of the destination operand into eight unsigned bytes. The result is written to the
destination operand

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

If the signed value of the word is larger or smaller than the range of an unsigned byte, the
value is saturated (in the case of an overflow - to 0xFF and in the case of an underflow - to
0x00).

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-17

Example

PACKUSWB mm, mm/m64
mm/m64 mm

mm

H

G

F

E

H'

G'

F'

E'

D'

C'

B'

A'

D

C

B

A

3006014

Flags Affected

None.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-18

PADDB/PADDW/PADDD —Packed Add
Opcode Instruction Description

0F FC /r PADDB mm, mm/m64 Add packed byte from MMX register/memory to packed byte in
MMX register.

0F FD /r PADDW mm, mm/m64 Add packed word from MMX register/memory to packed word in
MMX register.

0F FE /r PADDD mm, mm/m64 Add packed dword from MMX register/memory to packed dword in
MMX register.

Operation

IF instruction is PADDB
THEN {
 mm(7..0) ← mm(7..0) + mm/m64(7..0);
 mm(15..8) ← mm(15..8) + mm/m64(15..8);
 mm(23..16) ← mm(23..16)+ mm/m64(23..16);
 mm(31..24) ← mm(31..24) + mm/m64(31..24);
 mm(39..32) ← mm(39..32) + mm/m64(39..32);
 mm(47..40) ← mm(47..40)+ mm/m64(47..40);
 mm(55..48) ← mm(55..48) + mm/m64(55..48);
 mm(63..56) ← mm(63..56) + mm/m64(63..56);
 }
IF instruction is PADDW
THEN {
 mm(15..0) ← mm(15..0) + mm/m64(15..0);
 mm(31..16) ← mm(31..16) + mm/m64(31..16);
 mm(47..32) ← mm(47..32) + mm/m64(47..32);
 mm(63..48) ← mm(63..48) + mm/m64(63..48);
 }
ELSE { (* instruction is PADDD *)
 mm(31..0) ← mm(31..0) + mm/m64(31..0);
 mm(63..32) ← mm(63..32) + mm/m64(63..32);
 }

Description

The PADD instructions add the data elements of the source operand to the data elements of
the destination register. The result is written to the destination register. If the result exceeds
the data-range limit for the data type, it wraps around.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-19

The PADDB instruction adds the bytes of the source operand to the bytes of the destination
operand and writes the results to the MMX register. When the result is too large to be
represented in a packed byte (overflow), the result wraps around and the lower 8 bits are
written to the destination register.

The PADDW instruction adds the words of the source operand to the words of the destination
operand and writes the results to the MMX register. When the result is too large to be
represented in a packed word (overflow), the result wraps around and the lower 16 bits are
written to the destination register.

The PADDD instruction adds the doublewords of the source operand to the doublewords of
the destination operand and writes the results to the MMX register. When the result is too
large to be represented in a packed doubleword (overflow), the result wraps around and the
lower 32 bits are written to the destination register.

Example

PADDW mm, mm/m64

mm

mm/m64

mm

1000000000000000 0111111100111000

+ ++ +
1111111111111111 0001011100000111

0111111111111111 1001011000111111

3006015

Flags Affected

None.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-20

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-21

PADDSB/PADDSW —Packed Add with Saturation
Opcode Instruction Description

0F EC /r PADDSB mm, mm/m64 Add signed packed byte from MMX register/memory to signed
packed byte in MMX register and saturate.

0F ED /r PADDSW mm, mm/m64 Add signed packed word from MMX register/memory to signed
packed word in MMX register and saturate.

Operation

IF instruction is PADDSB
THEN{
 mm(7..0) ← SaturateToSignedByte (mm(7..0) + mm/m64 (7..0)) ;
 mm(15..8) ← SaturateToSignedByte (mm(15..8) + mm/m64(15..8));
 mm(23..16) ← SaturateToSignedByte (mm(23..16)+ mm/m64(23..16));
 mm(31..24) ← SaturateToSignedByte (mm(31..24) + mm/m64(31..24));
 mm(39..32) ← SaturateToSignedByte (mm(39..32) + mm/m64(39..32));
 mm(47..40) ← SaturateToSignedByte (mm(47..40)+ mm/m64(47..40));
 mm(55..48) ← SaturateToSignedByte (mm(55..48) + mm/m64(55..48));
 mm(63..56) ← SaturateToSignedByte (mm(63..56) + mm/m64(63..56));
 }
ELSE { (* instruction is PADDW *)
 mm(15..0) ← SaturateToSignedWord (mm(15..0) + mm/m64(15..0));
 mm(31..16) ← SaturateToSignedWord (mm(31..16) + mm/m64(31..16));
 mm(47..32) ← SaturateToSignedWord (mm(47..32) + mm/m64(47..32));
 mm(63..48) ← SaturateToSignedWord (mm(63..48) + mm/m64(63..48));
 }

Description

The PADDS instructions add the packed signed data elements of the source operand to the
packed signed data elements of the destination operand and saturate the result. The result is
written to the destination operand.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

The PADDSB instruction adds the signed bytes of the source operand to the signed bytes of
the destination operand and writes the results to the MMX register. If the result is larger or
smaller than the range of a signed byte, the value is saturated (in the case of an overflow - to
0x7F, and in the case of an underflow - to 0x80).

The PADDSW instruction adds the signed words of the source operand to the signed words
of the destination operand and writes the results to the MMX register. If the result is larger or

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-22

smaller than the range of a signed word, the value is saturated (in the case of an overflow - to
0x7FFF, and in the case of an underflow - to 0x8000) .

Example

PADDSW mm, mm/m64

mm

mm/m64

mm

1000000000000000 0111111100111000

+ ++ +
1111111111111111 0001011100000111

1000000000000000 0111111111111111

3006016

Flags Affected

None.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-23

PADDUSB/PADDUSW —Packed Add Unsigned with
Saturation

Opcode Instruction Description

0F DC /r PADDUSB mm, mm/m64 Add unsigned packed byte from MMX register/memory to unsigned
packed byte in MMX register and saturate.

0F DD /r PADDUSW mm, mm/m64 Add unsigned packed word from MMX register/memory to unsigned
packed word in MMX register and saturate.

Operation

IF instruction is PADDUSB
THEN{
 mm(7..0) ← SaturateToUnsignedByte (mm(7..0) + mm/m64 (7..0));
 mm(15..8) ← SaturateToUnsignedByte (mm(15..8) + mm/m64(15..8));
 mm(23..16) ← SaturateToUnsignedByte (mm(23..16)+ mm/m64(23..16));
 mm(31..24) ← SaturateToUnsignedByte (mm(31..24) + mm/m64(31..24));
 mm(39..32) ← SaturateToUnsignedByte (mm(39..32) + mm/m64(39..32));
 mm(47..40) ← SaturateToUnsignedByte (mm(47..40)+ mm/m64(47..40));
 mm(55..48) ← SaturateToUnsignedByte (mm(55..48) + mm/m64(55..48));
 mm(63..56) ← SaturateToUnsignedByte (mm(63..56) + mm/m64(63..56));
 }
ELSE { (* instruction is PADDUSW *)
 mm(15..0) ← SaturateToUnsignedWord (mm(15..0) + mm/m64(15..0));
 mm(31..16) ← SaturateToUnsignedWord (mm(31..16) + mm/m64(31..16));
 mm(47..32) ← SaturateToUnsignedWord (mm(47..32) + mm/m64(47..32));
 mm(63..48) ← SaturateToUnsignedWord (mm(63..48) + mm/m64(63..48));
 }

Description

The PADDUS instructions add the packed unsigned data elements of the source operand to
the packed unsigned data elements of the destination operand and saturate the results. The
results are written to the destination operand.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

The PADDUSB instruction adds the unsigned bytes of the source operand to the unsigned
bytes of the destination operand and writes the results to the MMX register. When the result
is larger than the range of an unsigned byte (overflow), the value is saturated to 0xFF. When
the result is smaller than the range of an unsigned byte (underflow), the value is saturated to
0x00.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-24

The PADDUSW instruction adds the unsigned words of the source operand to the unsigned
words of the destination operand and writes the results to the MMX register. When the result
is larger than the range of an unsigned word (overflow), the value is saturated to 0xFFFF.
When the result is smaller than the range of an unsigned word (underflow), the value is
saturated to 0x0000.

Example

PADDUSB mm, mm/m64

mm

mm/m64

mm

10000000 01111111 00111000

11111111 00010111 00000111

11111111 10010110 00111111

+ ++ + + ++ +

3006017

Flags Affected

None.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-25

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-26

PAND—Bitwise Logical And
Opcode Instruction Description

0F DB /r PAND mm, mm/m64 AND 64 bits from MMX register/memory to MMX register.

Operation
mm ←mm AND mm/m64;

Description

The PAND instruction performs a bitwise logical AND on 64 bits of the source and
destination operands, and writes the result to the destination operand.

Each bit of the result of the PAND instruction is set to 1 if the corresponding bits of the
operands are 1. Otherwise, it is set to 0.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

Example

PAND mm, mm/m64

mm

mm/m64

mm

1111111111111000000000000000010110110101100010000111011101110111

0001000011011001010100000011000100011110111011110001010110010101

0001000011011000000000000000000100010100100010000001010100010101

&

3006019

Flags Affected

None.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-27

#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-28

PANDN—Bitwise Logical And Not
Opcode Instruction Description

0F DF /r PANDN mm, mm/m64 Invert the 64 bits in MMX register, AND inverted MMX register
with MMX register/memory.

Operation

mm ←(NOT mm) AND mm/m64;

Description

The PANDN instruction performs a bitwise logical NOT on the 64 bits of the destination
operand. The NOT inverts each of the 64 bits of the destination register so that every 1
becomes a 0, and visa versa.

The instruction then performs a bitwise logical AND on the inverted 64 bits of the
destination operand and on the source operand. Each bit of the result of the AND instruction
is set to 1 if the corresponding bits are 1. Otherwise, it is set to 0. The result is written to the
destination register.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

Example

~

&
m/m64

mm

mm 11111111111110000000000000000101101101010011101111000100010001000

11111111111110000000000000000101101101010011101111000100010001000

11111111111110000000000000000101101101010011101111000100010001000

PANDN mm, mm/m64

Flags Affected

None.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-29

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-30

PCMPEQB/PCMPEQW/PCMPEQD —Packed Compare for
Equal
Opcode Instruction Description

0F 74 /r PCMPEQB mm, mm/m64 Compare packed byte in MMX register/memory with packed byte in
MMX register for equality.

07, 75, /r PCMPEQW mm, mm/m64 Compare packed word in MMX register/memory with packed word
in MMX register for equality.

07, 76, /r PCMPEQD mm, mm/m64 Compare packed dword in MMX register/memory with packed
dword in MMX register for equality.

Operation

IF instruction is PCMPEQB
THEN {
 IF mm(7..0) = mm/m64(7..0)
 THEN mm(7 0) ← 0xFF;
 ELSE mm(7..0) ← 0;
 IF mm(15..8) = mm/m64(15.. 8)

 THEN mm(15..8) ← 0xFF;
 ELSE mm(15..8) ← 0;
 ...
 IF mm(63..56) = mm/m64(63..56)

 THEN mm(63..56) ← 0xFF;
 ELSE mm(63..56) ← 0;
 }
ELSE IF instruction is PCMPEQW
THEN {
 IF mm(15..0) = mm/m64(15..0)

 THEN mm(15..0) ← 0xFFFF;
 ELSE mm(15..0) ← 0;
 IF mm(31..16) = mm/m64(31..16)

 THEN mm(31..16) ← 0xFFFF;
 ELSE mm(31..16) ← 0;
 ...
 IF mm(63..48) = mm/m64(63..48)

 THEN mm(63..48) ← 0xFFFF;
 ELSE mm(63..48) ← 0;
 }

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-31

ELSE { (* instruction is PCMPEQD *)
 IF mm(31..0) = mm/m64(31..0)

 THEN mm(31..0) ← 0xFFFFFFFF;
 ELSE mm(31..0) ← 0;
 IF mm(63..32) = mm/m64(63..32)
 THEN mm(63..32) ← 0xFFFFFFFF;
 ELSE mm(63..32) ← 0;
 }

Description

The PCMPEQ instructions compare the data elements in the destination operand to the
corresponding data elements in the source operand. If the data elements are equal, the
corresponding data element in the destination register is set to all ones. If they are not equal,
the corresponding data element is set to all zeros.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

The PCMPEQB instruction compares the bytes in the destination operand to the bytes in the
source operand. The bytes in the destination operand are set accordingly.

The PCMPEQW instruction compares the words in the destination operand to the words in
the source operand. The words in the destination operand are set accordingly.

The PCMPEQD instruction compares the doublewords in the destination operand to the
doublewords in the source operand. The doublewords in the destination operand are set
accordingly.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-32

Example

PCMPEQW mm, mm/m64

mm

mm/m64

mm

0000000000000000

0000000000000000

1111111111111111

0000000000000001

0000000000000000

0000000000000000

0000000000000111

0111000111000111

0000000000000000

0111000111000111

0111000111000111

1111111111111111

True TrueFalse False

== ==== ==

3006020

Flags Affected

None:

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-33

PCMPGTB/PCMPGTW/PCMPGTD —Packed Compare for
Greater Than
Opcode Instruction Description

0F 64 /r PCMPGTB mm, mm/m64 Compare packed byte in MMX register with packed byte in MMX
register/memory for greater value.

0F 65 /r PCMPGTW mm, mm/m64 Compare packed word in MMX register with packed word in MMX
register/memory for greater value.

0F 66 /r PCMPGTD mm, mm/m64 Compare packed dword in MMX register with packed dword in MMX
register/memory for greater value.

Operation

IF instruction is PCMPGTB
THEN {
 IF mm(7..0) > mm/m64(7..0)
 THEN mm(7 0) ← 0xFF;
 ELSE mm(7..0) ← 0;
 IF mm(15..8) > mm/m64(15.. 8)

 THEN mm(15..8) ← 0xFF;
 ELSE mm(15..8) ← 0;
 ...
 IF mm(63..56) > mm/m64(63..56)

 THEN mm(63..56) ← 0xFF;
 ELSE mm(63..56) ← 0;
 }
 ELSE IF instruction is PCMPGTW
THEN {
 IF mm(15..0) > mm/m64(15..0)

 THEN mm(15..0) ← 0xFFFF;
 ELSE mm(15..0) ←0;
 IF mm(31..16) > mm/m64(31..16)

 THEN mm(31..16) ← 0xFFFF;
 ELSE mm(31..16) ← 0;
 ...
 IF mm(63..48) > mm/m64(63..48)

 THEN mm(63..48) ← 0xFFFF;
 ELSE mm(63..48) ← 0;
 }
ELSE { (* instruction is PCMPGTD *)
 IF mm(31..0) > mm/m64(31..0)

 THEN mm(31..0) ← 0xFFFFFFFF;
 ELSE mm(31..0) ← 0;
 IF mm(63..32) > mm/m64(63..32)

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-34

 THEN mm(63..32) ← 0xFFFFFFFF;
 ELSE mm(63..32) ← 0;
 }

Description

The PCMPGT instructions compare the signed data elements in the destination operand to
the signed data elements in the source operand. If the signed data elements in the destination
register are greater than those in the source operand, the corresponding data element in the
destination operand is set to all ones. Otherwise, it is set to all zeros.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

The PCMPGTB instruction compares the signed bytes in the destination operand to the
corresponding signed bytes in the source operand. The bytes in the destination register are set
accordingly.

The PCMPGTW instruction compares the signed words in the destination operand to the
corresponding signed words in the source operand. The words in the destination register are
set accordingly.

The PCMPGTD instruction compares the signed doublewords in the destination operand to
the corresponding signed words in the source operand. The doublewords in the destination
register are set accordingly.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-35

Example

PCMPGTW mm, mm/m64

mm

mm/m64

mm

0000000000000000

0000000000000000

0000000000000000

0000000000000001

0000000000000000

1111111111111111

0000000000000111

0111000111000111

0000000000000000

0111000111000111

0111000111000111

0000000000000000

False FalseTrue False

> >> >

3006021

Flags Affected

None.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-36

PMADDWD —Packed Multiply and Add
Opcode Instruction Description

0F F5 /r PMADDWD mm, mm/m64 Multiply the packed word in MMX register by the packed word in
MMX reg/memory. Add the 32-bit results pairwise and store in MMX
register as dword

Operation

 mm(31..0) ← mm(15..0) * mm/m64(15..0) + mm(31..16) * mm/m64(31..16);
 mm(63..32) ← mm(47..32) * mm/m64(47..32) + mm(63..48) * mm/m64(63..48);

Description

The PMADDWD instruction multiplies the four signed words of the destination operand by
the four signed words of the source operand. The result is two 32-bit doublewords. The two
high-order words are summed and stored in the upper doubleword of the destination operand.
The two low-order words are summed and stored in the lower doubleword of the destination
operand. This result is written to the destination operand.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

The PMADDWD instruction wraps around to 0x80000000 only when all four words of both
the source and destination operands are 0x8000.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-37

Example

PMADDWD mm, mm/m64

mm

mm/m64

mm

0111000111000111

1000000000000000

1100100011100011

0111000111000111

0000010000000000

+ +

* ** *

1001110000000000

3006023

Flags Affected

None.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-38

PMULHW —Packed Multiply High
Opcode Instruction Description

0F E5 /r PMULHW mm, mm/m64 Multiply the signed packed word in MMX register with the signed
packed word in MMX reg/memory, then store the high-order 16 bits of
the results in MMX register.

Operation

mm(15..0) ← (mm(15..0) * mm/m64(15..0)) (31..16);
mm(31..16)← (mm(31..16) * mm/m64(31..16)) (31..16);
mm(47..32) ← (mm(47..32) * mm/m64(47..32)) (31..16);
mm(63..48) ← (mm(63..48) * mm/m64(63..48)) (31..16);

Description

The PMULHW instruction multiplies the four signed words of the destination operand with
the four signed words of the source operand. The high-order 16 bits of the 32-bit intermediate
results are written to the destination operand.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

Example

PMULHW mm, mm/m64

mm

mm/m64

mm

0111000111000111

1000000000000000

1100011100011100

0111000111000111

0000010000000000

0000000111000111

High Order High OrderHigh Order High Order

* ** *

3006022

Flags Affected

None.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-39

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-40

PMULLW —Packed Multiply Low
Opcode Instruction Description

0F D5 /r PMULLW mm, mm/m64 Multiply the packed word in MMX register with the packed word in
MMX reg/memory, then store the low-order 16 bits of the results in
MMX register.

Operation

mm(15..0) ← (mm(15..0) * mm/m64(15..0)) (15..0);
mm(31..16) ← (mm(31..16) * mm/m64(31..16)) (15..0);
mm(47..32) ← (mm(47..32) * mm/m64(47..32)) (15..0);
mm(63..48) ← (mm(63..48) * mm/m64(63..48)) (15..0);

Description

The PMULLW instruction multiplies the four signed or unsigned words of the destination
operand with the four signed or unsigned words of the source operand. The low-order 16 bits
of the 32-bit intermediate results are written to the destination operand.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

Example

PMULLW mm, mm/m64

mm

mm/m64

mm

0111000111000111

1000000000000000

1000000000000000

0111000111000111

0000010000000000

0001110000000000

Low Order Low OrderLow Order Low Order

* ** *

3006025

Flags Affected

None.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-41

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-42

POR—Bitwise Logical Or
Opcode Instruction Description

0F EB /r POR mm, mm/m64 OR 64 bits from MMX reg/memory with MMX register.

Operation

mm ←mm OR mm/m64;

Description

The POR instruction performs a bitwise logical OR on 64 bits of the destination and source
operands, and writes the result to the destination register.

Each bit of the result is set to 0 if the corresponding bits of the two operands are 0.
Otherwise, the bit is 1.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

Example

POR mm, mm/m64

mm

mm/m64

mm

1111111111111000000000000000010110110101100010000111011101110111

0001000011011001010100000011000100011110111011110001010110010101

1111111111111001010100000011010110111111111011110111011111110111

3006024

Flags Affected

None.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-43

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-44

PSLLW/PSLLD/PSLLQ —Packed Shift Left Logical
Opcode Instruction Description

0F F1 /r PSLLW mm, mm/m64 Shift words in MMX register left by amount specified in MMX
reg/memory, while shifting in zeros.

0F 71 /6, ib PSLLW mm, imm8 Shift words in MMX register left by Imm8, while shifting in zeros.
0F F2 /r PSLLD mm, mm/m64 Shift dwords in MMX register left by amount specified in MMX

reg/memory, while shifting in zeros.
0F 72 /6 ib PSLLD mm, imm8 Shift dwords in MMX register by Imm8, while shifting in zeros..
0F F3 /r PSLLQ mm, mm/m64 Shift MMX register left by amount specified in MMX reg/memory,

while shifting in zeros.
0F 73 /6 ib PSLLQ mm, imm8 Shift MMX register left by Imm8, while shifting in zeros.

Operation

IF the second operand is imm8
THEN
 temp ← imm8;
ELSE (* second operand is mm/m64 *)
 temp ← mm/m64;
IF instruction is PSLLW
THEN {
 mm(15..0) ← mm(15..0) << temp;
 mm(31..16) ← mm(31..16) << temp;
 mm(47..32) ← mm(47..32) << temp;
 mm(63..48) ← mm(63..48) << temp;
 }
ELSE IF instruction is PSLLD
THEN {
 mm(31..0) ← mm(31..0) << temp;
 mm(63..32) ← mm(63..32) << temp;
 }
ELSE (* instruction is PSLLQ *)
 mm ← mm << temp;

Description

The PSLL instructions shift the bits of the first operand to the left by the amount of bits
specified in the count operand. The result of the shift operation is written to the destination
register. The empty low-order bits are cleared (set to zero). If the value specified by the
second operand is greater than 15 (for words), 31 (for doublewords), or 63 (for quadwords),
then the destination is set to all zeros.

The destination operand is an MMX register. The count operand (source operand) can be
either an MMX register, a 64-bit memory operand, or an immediate 8-bit operand.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-45

The PSLLW instruction shifts each of the four words of the destination register to the left by
the number of bits specified in the count operand. The low-order bit positions (of each word)
are filled with zeros.

The PSLLD instruction shifts each of the two doublewords of the destination register to the
left by the number of bits specified in the count operand. The low-order bit positions (of each
doubleword) are filled with zeros.

The PSLLQ instruction shifts the 64-bit quadword in the destination register to the left by the
number of bits specified in the count operand. The low-order bit positions are filled with
zeros.

Example

PSLLW mm, 2

mm

mm

1111111111111100

1111111111110000

0001000111000111

0100011100011100

shift left

shift left shift left shift left

3006026

Flags Affected

None.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-46

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-47

PSRAW/PSRAD —Packed Shift Right Arithmetic
Opcode Instruction Description

0F E1 /r PSRAW mm, mm/m64 Shift words in MMX register right by amount specified in MMX
reg/memory while shifting in sign bits.

0F 71 /4 ib PSRAW mm, imm8 Shift words in MMX register right by Imm8 while shifting in sign bits
0F E2 /r PSRAD mm, mm/m64 Shift dwords in MMX register right by amount specified in MMX

reg/memory while shifting in sign bits.
0F 72 /4 ib PSRAD mm, imm8 Shift dwords in MMX register right by Imm8 while shifting in sign bits.

Operation

IF the second operand is imm8
THEN
 temp ← imm8;
ELSE (* second operand is mm/m64 *)
 temp ← mm/m64;
IF instruction is PSRAW
THEN {
 mm(15..0) ← SignExtend (mm(15..0) >>temp);
 mm(31..16) ← SignExtend (mm(31..16) >> temp);
 mm(47..32) ← SignExtend (mm(47..32) >> temp);
 mm(63..48) ← SignExtend (mm(63..48) >> temp);
 }
ELSE { (*instruction is PSRAD *)
 mm(31..0) ← SignExtend (mm(31..0) >> temp);
 mm(63..32) ← SignExtend (mm(63..32) >> temp);
 }

Description

The PSRA instructions shift the bits of the first operand to the right by the amount of bits
specified in the count operand. The result of the shift operation is written to the destination
register. The empty high-order bits of each element are filled with the initial value of the sign
bit of the data element. If the value specified by the second operand is greater than 15 (for
words), or 31 (for doublewords), each destination element is filled with the initial value of
the sign bit of the element.

The destination operand is an MMX register. The count operand (source operand) can be
either an MMX register, a 64-bit memory operand, or an immediate 8-bit operand.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-48

The PSRAW instruction shifts each of the four words in the destination register to the right
by the number of bits specified in the count operand. The initial value of the sign bit of the
data elements in the destination operand is copied into the most significant bits of the data
element.

The PSRAD instruction shifts each of the two doublewords in the destination register to the
right by the number of bits specified in the count operand. The initial value of the sign bit of
the data elements in the destination operand is copied into the most significant bits of the
data element.

Example

PSRAW mm, 2

mm

mm

1111111111111100

1111111111111111

1101000111000111

1111010001110001

shift right shift rightshift right shift right

3006048

Flags Affected

None.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-49

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-50

PSRLW/PSRLD/PSRLQ —Packed Shift Right Logical
Opcode Instruction Description

0F D1 /r PSRLW mm, mm/m64 Shift words in MMX register right by amount specified in MMX
reg/memory while shifting in zeros.

0F 71 /2 ib PSRLW mm, imm8 Shift words in MMX register right by Imm8.
0F D2 /r PSRLD mm, mm/m64 Shift dwords in MMX register right by amount specified in MMX

reg/memory while shifting in zeros.
0F 72 /2 ib PSRLD mm, imm8 Shift dwords in MMX register right by Imm8 .
0F D3 /r PSRLQ mm, mm/m64 Shift MMX register right by amount specified in MMX reg/memory while

shifting in zeros.
0F 73 /2 ib PSRLQ mm, imm8 Shift MMX register right by Imm8 while shifting in zeros.

Operation

IF the second operand is imm8
THEN
 temp ← imm8;
ELSE (* second operand is mm/m64 *)
 temp ← mm/m64;
IF instruction is PSRLW
THEN {
 mm(15..0) ← mm(15..0) >> temp;
 mm(31..16) ← mm(31..16) >> temp;
 mm(47..32) ← mm(47..32) >> temp;
 mm(63..48) ← mm(63..48) >> temp;
 }
ELSE IF instruction is PSRLD
THEN {
 mm(31..0) ← mm(31..0) >> temp;
 mm(63..32) ← mm(63..32) >> temp;
 }
ELSE (* instruction is PSRLQ *)
 mm ← mm >> temp;

Description

The PSRL instructions shift the bits of the first operand to the right by the amount of bits
specified in the count operand. The result of the shift operation is written to the destination
register. The empty high-order bits are cleared (set to zero). If the value specified by the
second operand is greater than 15 (for words), or 31 (for doublewords), or 63 (for
quadwords), then the destination is set to all zeros.

The destination operand is an MMX register. The count operand (source operand) can be
either an MMX register, a 64-bit memory operand, or an immediate 8-bit operand.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-51

The PSRLW instruction shifts each of the four words in the destination register to the right
by the number of bits specified in the count operand. The empty high-order bits (of each
word) are filled with zeros.

The PSLLD instruction shifts each of the two doublewords in the destination register to the
right by the number of bits specified in the count operand. The empty high-order bits (of
each doubleword) are filled with zeros.

The PSLLQ instruction shifts the 64-bit quadword in the destination register to the right by
the number of bits specified in the count operand. The empty high-order bits are filled with
zeros.

Example

PSRLW mm, 2

mm

mm

1111111111111100

0011111111111111

0001000111000111

0000010001110001

shift right shift rightshift right shift right

3006027

Flags Affected

None.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-52

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-53

PSUBB/PSUBW/PSUBD —Packed Subtract
Opcode Instruction Description

0F F8 /r PSUBB mm, mm/m64 Subtract packed byte in MMX reg/memory from packed byte in
MMX register.

0F F9 /r PSUBW mm, mm/m64 Subtract packed word in MMX reg/memory from packed word in
MMX register.

0F FA /r PSUBD mm, mm/m64 Subtract packed dword in MMX reg/memory from packed dword in
MMX register.

Operation

IF instruction is PSUBB
 THEN {
 mm(7..0) ← mm(7..0) - mm/m64(7..0);
 mm(15..8) ← mm(15..8) - mm/m64(15..8);
 mm(23..16) ← mm(23..16) - mm/m64(23..16);
 mm(31..24) ← mm(31..24) - mm/m64(31..24);
 mm(39..32) ← mm(39..32) - mm/m64(39..32);
 mm(47..40) ← mm(47..40) - mm/m64(47..40);
 mm(55..48) ← mm(55..48) - mm/m64(55..48);
 mm(63..56) ← mm(63..56) - mm/m64(63..56);
 }
IF instruction is PSUBW
THEN {
 mm(15..0) ← mm(15..0) - mm/m64(15..0);
 mm(31..16) ← mm(31..16) - mm/m64(31..16);
 mm(47..32) ← mm(47..32) - mm/m64(47..32);
 mm(63..48) ← mm(63..48) - mm/m64(63..48);
 }
ELSE { (* instruction is PSUBD *)
 mm(31..0) ← mm(31..0) - mm/m64(31..0);
 mm(63..32) ← mm(63..32) - mm/m64(63..32);
 }

Description

The PSUB instructions subtract the data elements of the source operand from the data
elements of the destination operand. The result is written to the destination register. If the
result is larger or smaller than the data-range limit for the data type, it wraps around.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-54

The PSUBB instruction subtracts the bytes of the source operand from the bytes of the
destination operand. The result is written to the MMX register. When the result is too large
or too small to be represented in a byte, the result wraps around and the lower 8 bits are
written to the destination register.

The PSUBW instruction subtracts the words of the source operand from the words of the
destination operand. The result is written to the MMX register. When the result is too large
or too small to be represented in a word, the result wraps around and the lower 16 bits are
written to the destination register.

The PSUBD instruction subtracts the doublewords of the source operand from the
doublewords of the destination operand. The result is written to the MMX register. When the
result is too large or too small to be represented in a doubleword, the result wraps around and
the lower 32 bits are written to the destination register.

Example

PSUBW mm, mm/m64

mm

mm/m64

mm

1000000000000000

0000000000000001

0111111111111111

0111111100111000

1110100011111001

1001011000111111

– –– –

3006028

Flags Affected

None.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-55

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-56

PSUBSB/PSUBSW —Packed Subtract with Saturation
Opcode Instruction Description

0F E8 /r PSUBSB mm, mm/m64 Subtract signed packed byte in MMX reg/memory from signed packed
byte in MMX register and saturate.

0F E9 /r PSUBSW mm, mm/m64 Subtract signed packed word in MMX reg/memory from signed
packed word in MMX register and saturate.

Operation

IF instruction is PSUBSB
 THEN{
 mm(7..0) ← SaturateToSignedByte (mm(7..0) - mm/m64 (7..0));
 mm(15..8) ← SaturateToSignedByte (mm(15..8) - mm/m64(15..8));
 mm(23..16) ← SaturateToSignedByte (mm(23..16) - mm/m64(23..16));
 mm(31..24) ← SaturateToSignedByte (mm(31..24) - mm/m64(31..24));
 mm(39..32) ← SaturateToSignedByte (mm(39..32) - mm/m64(39..32));
 mm(47..40) ← SaturateToSignedByte (mm(47..40) - mm/m64(47..40));
 mm(55..48) ← SaturateToSignedByte (mm(55..48) - mm/m64(55..48));
 mm(63..56) ← SaturateToSignedByte (mm(63..56) - mm/m64(63..56))
 }
ELSE { (* instruction is PSUBSW *)
 mm(15..0) ← SaturateToSignedWord (mm(15..0) - mm/m64(15..0));
 mm(31..16) ← SaturateToSignedWord (mm(31..16) - mm/m64(31..16));
 mm(47..32) ← SaturateToSignedWord (mm(47..32) - mm/m64(47..32));
 mm(63..48) ← SaturateToSignedWord (mm(63..48) - mm/m64(63..48));
 }

Description

The PSUBS instructions subtract the data elements of the source operand from the data
elements of the destination operand. The results are saturated to the limits of a signed data
element and written to the destination operand.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

The PSUBB instruction subtracts the signed bytes of the source operand from the signed
bytes of the destination operand, and writes the results to the destination register. If the result
is larger or smaller than the range of a signed byte, the value is saturated; in the case of an
overflow - to 0x7F, and in the case of an underflow - to 0x80.

The PSUBW instruction subtracts the signed words of the source operand from the signed
words of the destination operand and writes the results to the destination register. If the result

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-57

is larger or smaller than the range of a signed word, the value is saturated; in the case of an
overflow to 0x7FFF, and in the case of an underflow to 0x8000.

Example

PSUBSW mm, mm/m64

mm

mm/m64

mm

1000000000000000

0000000000000001

1000000000000000

0111111100111000

1110100011111001

0111111111111111

– –– –

3006029

Flags Affected

None.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-58

PSUBUSB/PSUBSW —Packed Subtract Unsigned with
Saturation
Opcode Instruction Description

0F D8 /r PSUBUSB mm, mm/m64 Subtract unsigned packed byte in MMX reg/memory from unsigned
packed byte in MMX register and saturate.

0F D9 /r PSUBUSW mm, mm/m64 Subtract unsigned packed word in MMX reg/memory from
unsigned packed word in MMX register and saturate.

Operation

IF instruction is PSUBUSB
 THEN{
 mm(7..0) ← SaturateToUnsignedByte (mm(7..0) - mm/m64 (7..0));
 mm(15..8) ← SaturateToUnsignedByte (mm(15..8) - mm/m64(15..8));
 mm(23..16) ← SaturateToUnsignedByte (mm(23..16) - mm/m64(23..16));
 mm(31..24) ← SaturateToUnsignedByte (mm(31..24) - mm/m64(31..24));
 mm(39..32) ← SaturateToUnsignedByte (mm(39..32) - mm/m64(39..32));
 mm(47..40) ← SaturateToUnsignedByte (mm(47..40) - mm/m64(47..40));
 mm(55..48) ← SaturateToUnsignedByte (mm(55..48) - mm/m64(55..48));
 mm(63..56) ← SaturateToUnsignedByte (mm(63..56) - mm/m64(63..56));
 }
ELSE { (* instruction is PSUBUSW *)
 mm(15..0) ← SaturateToUnsignedWord (mm(15..0) - mm/m64(15..0));
 mm(31..16) ← SaturateToUnsignedWord (mm(31..16) - mm/m64(31..16));
 mm(47..32) ← SaturateToUnsignedWord (mm(47..32) - mm/m64(47..32));
 mm(63..48) ← SaturateToUnsignedWord (mm(63..48) - mm/m64(63..48));
 }

Description

The PSUBUS instructions subtract the data elements of the source operand from the data
elements of the destination register. The results are saturated to the limits of an unsigned data
element and written to the destination operand.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

The PSUBUSB instruction subtracts the bytes of the source operand from the bytes of the
destination operand and writes the results to the destination register. If the result element is
less than zero (a negative value), it is saturated to 0x00.

The PSUBUSW instruction subtracts the words of the source operand from the words of the
destination operand and writes the results to the destination register. If the result element is
less than zero (a negative value), it is saturated to 0x0000.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-59

Example

PSUBUSB mm, mm/m64

mm

mm/m64

mm

10000000

11111111

00000000

01111111

00010111

01101000

11111000

00000111

11110001

– –––––– –

3006030

Flags Affected

None.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-60

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ —Unpack
High Packed Data

Opcode Instruction Description

0F 68 /r PUNPCKHBW mm, mm/m64 Interleave bytes from the high halves of MMX register and MMX
reg/memory into MMX register.

0F 69 /r PUNPCKHWD mm, mm/m64 Interleave words from the high halves of MMX register and MMX
reg/memory into MMX register.

0F 6A /r PUNPCKHDQ mm, mm/m64 Interleave dwords from the high halves of MMX register and MMX
reg/memory into MMX register.

Operation

IF instruction is PUNPCKHBW
THEN {
 mm(63..56) ← mm/m64(63..56);
 mm(55..48) ← mm(63..56);
 mm(47..40) ← mm/m64(55..48);
 mm(39..32) ← mm(55..48);
 mm(31..24) ← mm/m64(47..40);
 mm(23..16) ← mm(47..40);
 mm(15..8) ← mm/m64(39..32);
 mm(7..0) ← mm(39..32);
ELSE IF instruction is PUNPCKHW
THEN {
 mm(63..48) ← mm/m64(63..48);
 mm(47..32) ← mm(63..48);
 mm(31..16) ← mm/m64(47..32);
 mm(15..0) ← mm(47..32);
 }
ELSE { (* instruction is PUNPCKHDQ *)
 mm(63..32) ← mm/m64(63..32);
 mm(31..0) ← mm(63..32)
 }

Description

The PUNPCKH instructions unpack and interleave the high-order data elements of the
destination and source operands into the destination operand. The low-order data elements
are ignored.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-61

When unpacking from a memory operand, the full 64-bit operand is accessed from memory.
The instruction uses only the high-order 32 bits.

The PUNPCKHBW instruction interleaves the four high-order bytes of the source operand
and the four high-order bytes of the destination operand and writes them to the MMX
register.

The PUNPCKHWD instruction interleaves the two high-order words of the source operand
and the two high-order words of the destination operand and writes them to the MMX
register.

The PUNPCKHDQ instruction interleaves the high-order 32 bits of the doubleword of the
source operand and the high-order 32-bits of the doubleword of the destination operand and
writes them to the MMX register.

Note

If the source operand is all zeros, the result is a zero extension of the high order elements of
the destination operand. When using the PUNPCKHBW instruction the bytes are zero
extended, or unpacked into unsigned words. When using the PUNPCKHWD instruction, the
words are zero exended, or unpacked into unsigned doublewords.

Example

PUNPCKHBW mm, mm/m64
mm/m64 mm

1 1 1 1 1 1 1 12 2 2 2 2 2 2 2

mm
2 1 2 1 2 1 2 1

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

7 7 6 6 5 5 4 4

3006031

Flags Affected

None.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-62

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-63

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ —Unpack Low
Packed Data

Opcode Instruction Description

0F 60 /r PUNPCKLBW mm, mm/m32 Interleave bytes from the low halves of MMX register and MMX
reg/memory into MMX register.

0F 61 /r PUNPCKLWD mm, mm/m32 Interleave words from the low halves of MMX register and MMX
reg/memory into MMX register.

0F 62 /r PUNPCKLDQ mm, mm/m32 Interleave dwords from the low halves of MMX register and MMX
reg/memory into MMX register.

Operation

IF instruction is PUNPCKLBW
THEN {
 mm(63..56) ←mm/m32(31..24);
 mm(55..48) ← mm(31..24);
 mm(47..40) ← mm/m32(23..16);
 mm(39..32) ← mm(23..16);
 mm(31..24) ← mm/m32(15..8);
 mm(23..16) ←mm(15..8);
 mm(15..8) ← mm/m32(7..0);
 mm(7..0) ← mm(7..0);
 }
ELSE IF instruction is PUNPCKLWD
THEN {
 mm(63..48) ← mm/m32(31..16);
 mm(47..32) ← mm(31..16);
 mm(31..16) ← mm/m32(15..0);
 mm(15..0) ← mm(15..0);
 }
ELSE{ (* instruction is PUNPCKLDQ *)
 mm(63..32) ← mm/m32(31..0);
 mm(31..0) ← mm(31..0);
 }

Description

The PUNPCKL instructions unpack and interleave the low-order data elements of the
destination and source operands into the destination operand.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 32-bit memory operand. When the source data comes from 64-bit registers, the
upper 32 bits are ignored.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-64

When unpacking from a memory operand, only 32 bits are accessed. The instruction uses all
32 bits.

The PUNPCKLBW instruction interleaves the four low-order bytes of the source operand and
the four low-order bytes of the destination operand and writes them to the MMX register.

The PUNPCKLWD instruction interleaves the two low-order words of the source operand
and the two low-order words of the destination operand and writes them to the MMX
register.

The PUNPCKLDQ instruction interleaves the low-order doubleword of the source operand
and the low-order doubleword of the destination operand and writes them to the MMX
register.

Note

If the source operand has a value of all zeros, the result is a zero extension of the low order
elements of the destination operand. When using the PUNPCKLBW instruction the bytes are
zero extended, or unpacked into unsigned words. When using the PUNPCKLWD instruction,
the words are zero extended, or unpacked into unsigned doublewords.

Example

PUNPCKLBW mm, mm/m32
mm/m32 mm

1 1 1 1 1 1 1 12 2 2 2

mm
2 1 2 1 2 1 2 13 3 2 2 1 1 0 0

3 2 1 0 7 6 5 4 3 2 1 0

3006032

Flags Affected

None.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-65

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-66

PXOR—Bitwise Logical Exclusive OR
Opcode Instruction Description

0F EF /r PXOR mm, mm/m64 XOR 64 bits from MMX reg/memory to MMX register.

Operation

mm ←mm XOR mm/m64;

Description

The PXOR instruction performs a bitwise logical XOR on the 64 bits of the destination with
the source operands and writes the result to destination register.

Each bit of the result is 1 if the corresponding bits of the two operands are different. Each bit
is 0 if the corresponding bits of the operands are the same.

The source operand can either be an MMX register or a 64 bit memory operand.

Example

PXOR mm, mm/m64

mm

mm/m64

mm

1111111111111000000000000000010110110101100010000111011101110111

0001000011011001010100000011000100011110111011110001010110010101

1110111100100001010100000011010010101011011001110110001011100010

^

3006033

Flags Affected

None.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-67

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

