
1-i

Multiprocessor
Specification

Version 1.1

September 1994



1-ii

Information in this document is provided solely to enable use of Intel products.  Intel assumes no liability whatsoever, including

infringement of any patent or copyright, for sale and use of Intel products except as provided in Intel's Terms and Conditions of

Sale for such products.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.

MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trademark

or products.

The Intel logo is a registered trademark, and Intel386, Intel387, Intel486, Intel487, IntelDX2, IntelDX4, IntelSX2, and Pentium

are trademarks of Intel Corporation.

*Other brands and names are the property of their respective owners.

printed on
recycled paper Copyright   1994, Intel Corporation, All Rights Reserved.



1-iii

Table of Contents

Chapter 1   Introduction

1.1 Goals..............................................................................................................................................1-1

1.2 Features of the Specification...........................................................................................................1-2

1.3 Scope .............................................................................................................................................1-2

1.4 Target Audience .............................................................................................................................1-3

1.5 Organization of This Document .......................................................................................................1-3

1.6 Conventions Used in This Document...............................................................................................1-4

1.7 For More Information ......................................................................................................................1-4

Chapter 2   System Overview

2.1 Hardware Overview ........................................................................................................................2-2

2.1.1 System Processors ..................................................................................................................2-2

2.1.2 Advanced Programmable Interrupt Controller ...........................................................................2-3

2.1.3 System Memory .......................................................................................................................2-4

2.1.4 I/O Expansion Bus ...................................................................................................................2-4

2.2 BIOS Overview ...............................................................................................................................2-5

2.3 Operating System Overview............................................................................................................2-5

Chapter 3   Hardware Specification

3.1 System Memory Configuration ........................................................................................................3-1

3.2 System Memory Cacheability and Shareability ................................................................................3-2

3.3 External Cashe Subsystem.............................................................................................................3-4

3.4 Locking ...........................................................................................................................................3-4

3.5 Posted Memory Write .....................................................................................................................3-5

3.6 Multiprocessor Interrupt Control ......................................................................................................3-5

3.6.1 APIC Architecture ....................................................................................................................3-5

3.6.2 Interrupt Modes........................................................................................................................3-6

3.6.3 Assignment of System Interrupts to the APIC Local Unit ........................................................3-12

3.6.4 Floating Point Exception Interrupt...........................................................................................3-12

3.6.5 APIC Memory Mapping ..........................................................................................................3-12

3.6.6 APIC Identification..................................................................................................................3-12

3.6.7 APIC Interval Timers ..............................................................................................................3-13

3.7 RESET Support ............................................................................................................................3-13

3.7.1 System-wide RESET..............................................................................................................3-14

3.7.2 System-wide INIT...................................................................................................................3-14

3.7.3 Processor-specific INIT ..........................................................................................................3-14

3.8 System Initial State .......................................................................................................................3-15

3.9 Support for Fault-resilient Booting .................................................................................................3-15



1-iv

Chapter 4   MP Configuration Table

4.1 MP Floating Pointer Structure .........................................................................................................4-2

4.2 MP Configuration Table Header ......................................................................................................4-4

4.3 MP Configuration Table Entries.......................................................................................................4-5

4.3.1 Processor Entries.....................................................................................................................4-6

4.3.2 Bus Entries ..............................................................................................................................4-9

4.3.3 I/O APIC Entries ....................................................................................................................4-10

4.3.4 I/O Interrupt Assignment Entries ............................................................................................4-11

4.3.5 Local Interrupt Assignment Entries .........................................................................................4-13

Chapter 5   Default Configurations

5.1 Discrete APIC Configurations..........................................................................................................5-2

5.2 Integrated APIC Configurations.......................................................................................................5-4

5.3 Assignment of I/O Interrupts to the APIC I/O Unit............................................................................5-6

5.3.1 EISA and IRQ13 ......................................................................................................................5-7

5.3.2 Level-triggered Interrupt Support ..............................................................................................5-7

5.4 Assignment of System Interrupts to the APIC Local Unit .................................................................5-7

 Appendix A   System BIOS Programming Guidelines

Appendix B   Operating System Programming Guidelines

Appendix C   System Compliance Checklist

Appendix D   Multiple I/O APIC Multiple PCI Bus Systems

Glossary



1-v

Figures

1-1.  Conceptual Overview ......................................................................................................... 1-1

1-2.  Memory Layout Conventions .............................................................................................. 1-4

2-1.  Multiprocessor System Architecture.................................................................................... 2-2

2-2.  APIC Configuration............................................................................................................. 2-3

3-1.  System Memory Address Map............................................................................................ 3-3

3-2.  PIC Mode........................................................................................................................... 3-8

3-3.  Virtual-Wire Mode via Local APIC....................................................................................... 3-9

3-4.  Virtual-Wire Mode via I/O APIC ........................................................................................ 3-10

3-5.  Symmetric I/O Mode ........................................................................................................ 3-11

4-1.  MP Configuration Data Structures ...................................................................................... 4-3

4-2.  MP Floating Pointer Structure............................................................................................. 4-3

4-3.  MP Configuration Table Header.......................................................................................... 4-4

4-4.  Processor Entry ................................................................................................................. 4-6

4-5.  Bus Entry ........................................................................................................................... 4-9

4-6.  I/O APIC Entry ................................................................................................................. 4-10

4-7.  I/O Interrupt Entry ............................................................................................................ 4-11

4-8.  Local Interrupt Entry......................................................................................................... 4-13

5-1.  Default Configuration for Discrete APIC .............................................................................. 5-3

5-2.  Default Configuration for Integrated APIC ........................................................................... 5-5



1-vi

Tables

*1-1.  Document Organization............................................................................................................. 1-3

3-1.  Memory Cacheability Map........................................................................................................... 3-3

3-2.  APIC Versions ............................................................................................................................ 3-6

4-1.  MP Floating Pointer Structure Fields ........................................................................................... 4-3

4-2.  MP Configuration Table Header Fields........................................................................................ 4-5

4-3.  MP Configuration Entry Types .................................................................................................... 4-6

4-4.  Processor Entry Fields................................................................................................................ 4-7

4-5.  Intel486™ and Pentium™ Processor Signatures......................................................................... 4-8

4-6.  Feature Flags from CPUID Instruction......................................................................................... 4-8

4-7.  Bus Entry Fields ......................................................................................................................... 4-9

4-8.  Bus Type String Values ............................................................................................................ 4-10

4-9.  I/O APIC Entry Fields................................................................................................................ 4-11

4-10.  I/O Interrupt Entry Fields......................................................................................................... 4-12

4-11.  Interrupt Type Values ............................................................................................................. 4-13

4-12.  Local Interrupt Entry Fields ..................................................................................................... 4-14

5-1.  Default Configurations ................................................................................................................ 5-2

5-2.  Default Configuration Interrupt Assignments ............................................................................... 5-5

5-3.  Assignment of System Interrupts to APIC Local Unit ................................................................... 5-6

B-1.  AP Startup Techniques...............................................................................................................B-3

Examples

A-1.  Programming Local APIC for Virtual-Wire Mode .....................................................................A-3



1-1

1 

Introduction

The MultiProcessor Specification, hereafter known as the “MP specification,” defines an

enhancement to the standard to which PC manufacturers design DOS-compatible systems.  MP-

capable operating systems will be able to run without special customization on multiprocessor

systems that comply with this specification.  End users who purchase a compliant multiprocessor

system will be able to run their choice of operating systems.

The MP specification covers PC/AT-compatible MP platform designs based on Intel processor

architectures and Advanced Programmable Interrupt Controller (APIC) architectures.  The term

“PC/AT-compatible” here refers to the software-visible components of the PC/AT, not to hardware

features, such as the bus implementation, that are not visible to software.  An implementation of

this specification may incorporate one or more industry standard buses, such as ISA, EISA, MCA,

PCI, or other OEM-specific buses.

1.1 Goals

The intent of this specification is to establish an MP Platform interface standard that extends the

performance of the existing PC/AT platform beyond the traditional single processor limit, while

maintaining 100% PC/AT binary compatibility.

The ultimate goal is to enable scalable, high-end workstations and enterprise server systems that

provide computer users with superior price/performance and have the ability to execute all existing

AT binaries, as well as MP-ready software packages on shrink-wrapped MP operating systems.

Figure 1-1 shows that at the heart of the specification are the data structures that define the

configuration of the MP system.  The BIOS constructs the MP configuration data structures,

presenting the hardware in a known format to the standard device drivers or to the hardware

abstraction layer of the operating system.  The specification details default hardware

configurations, and, for added flexibility, outlines extensions to the standard BIOS.

H AR D W AR E

DRIVER/
HARDWARE

ABSTRACTION LAYER

MP BIOS

OPERATING SYSTEM

MP
CONFIGURATION

DATA
STRUCTURES

Figure 1-1.  Conceptual Overview



1-2

1.2 Features of the Specification

The MP specification includes the following features:

• A multiprocessor extension to the PC/AT platform that runs all existing uniprocessor shrink-

wrapped binaries, as well as MP binaries.

• Support for symmetric multiprocessing with one or more processors that are Intel architecture

instruction set compatible, such as the CPUs in the Intel486™ and Pentium™ processor

family.

• Support for symmetric I/O interrupt handling with the APIC, a multiprocessor interrupt

controller.

• Flexibility to use a BIOS with minimal MP-specific support.

• An optional MP configuration table to communicate configuration information to an MP

operating system.

• Incorporation of ISA and other industry standard buses, such as EISA, MCA, VL and PCI

buses in MP-compliant systems.

• Requirements that make secondary cache and memory bus implementation transparent to

software.

1.3 Scope

There are many vendors building innovative MP systems based on Intel architectures today.  Intel

supports and encourages vendors to develop advanced approaches to the technological

requirements of today's computing environments.  In no way does the MP specification prevent

system manufacturers from adding their own unique value to MP systems.  This specification does

not define the only way that multiprocessor systems can be implemented.  Vendors may, for

example, create noncompliant, high-performance, scalable multiprocessor systems that do not have

the PC/AT compatibility required by this specification.  Hardware vendors will always have the

option of offering one or more customized operating systems that support the unique, value-added

capabilities that they have designed into their systems.  End users will be able to benefit from the

additional capabilities that these vendors offer.

The MP specification benefits PC vendors who wish to offer MP-enabled systems without having

to invest in the customization of one or more operating systems.  This specification focuses on

providing a standard mechanism to add MP support to personal computers built around the PC/AT

hardware standard.  With that goal, the specification covers only the minimum set of capabilities

required to extend the PC/AT platform to be MP-capable.  The hardware required to implement the

MP specification is kept to a minimum, as follows:

• One or more processors that are Intel architecture instruction set compatible, such as the CPUs

in the Intel486 or Pentium processor family.

• One or more APICs, such as the Intel 82489DX Advanced Programmable Interrupt Controller

or the integrated APIC on the Intel Pentium 735\90 and 815\100 processors.

• The necessary supporting electronics to duplicate the initialization and signaling protocol

described in this specification.

• PC/AT-compliant hardware.



1-3

In addition to the hardware requirements, this document also specifies MP features that are visible

to the BIOS and operating system.  However, it is important to understand that as hardware

technology progresses, the functions performed by the BIOS may change in accordance with the

hardware technology.  ONLY THE INTERFACE TO THE OPERATING SYSTEM LEVEL

IS EXPECTED TO REMAIN CONSTANT.

This specification does not address issues relating to the processor's System Management Mode

(SMM).

1.4 Target Audience

This document is intended for the following users:

• OEMs who will be creating PC/AT-compatible, MP-ready hardware based on this

specification.

• BIOS developers, either those who create general-purpose BIOS products or those who modify

these products to suit specific MP hardware.

• Operating-system developers who will be adapting MP operating systems to run on the class of

MP-ready platform specified here.

1.5 Organization of This Document

Table 1-1 shows the organization of this document.

Table 1-1.  Document Organization

Chapter Description

2 Overview of the MultiProcessor Specification

3 Specification of the MP hardware

4 Specification of MP configuration information available to OS

5 Specification of default hardware configurations

Appendix A Guidelines for MP BIOS programming

Appendix B Guidelines for MP operating system programming

Appendix C Checklist for hardware compliance to the specification

Glossary Definitions of specialized terms used in this document



1-4

1.6 Conventions Used in This Document

Signal names that are followed by the character # represent active low signals.  For example,

FERR# is active when at its low-voltage state.

Throughout this document, the Intel 82489DX APIC is referred to as the “discrete APIC.” The

term “integrated APIC” is used to refer to an APIC integrated with other system components, such

as the Pentium 735\90 and 815\100 processors.  This specification uses the term APIC to refer to

both discrete and integrated versions.

The processors of the Intel486 and Pentium processor family are “little endian” machines.  This

means that the low-order byte of a multibyte data item in memory is at the lowest address, while

the high-order byte is at the highest address.  Illustrations of data structures in memory show the

lowest addresses at the bottom and the highest addresses at the top of the illustration, as shown in

Figure 1-2.  Bit positions are numbered from right to left.

 

RESERVED

RESERVED

THREE-BYTE FIELD

RESERVED

00H

04H

08H

0CH

31 07815162324

31 07815162324

ONE-BYTE
FIELD

TWO-BYTE FIELD

LOW-ORDER BITSHIGH-ORDER BITS

INCREASING
ADDRESSES

Figure 1-2.  Memory Layout Conventions

In some memory layout descriptions, certain fields are marked RESERVED.  Software should

initialize these fields as binary zeros, but should otherwise treat them as having a future, though

unknown effect.  SOFTWARE SHOULD AVOID ANY DEPENDENCE ON THE VALUES

IN THE RESERVED FIELDS.

1.7 For More Information

For more information, refer to any of the following documents:

• 82489DX Advanced Programmable Interrupt Controller (data book), Intel order number

290446

• Intel486 Microprocessor Family Programmer's Reference Manual, Intel order number 240486

• Intel Processor Identification with the CPUID Instruction AP-485, Intel order number 241618

• Pentium Processor Users Manual, Intel order number 241428



2-1

2 

System Overview

In the realm of multiprocessor architectures, there are several conceptual models for tying together

computing elements, and there are a variety of interconnection schemes and details of

implementation.  Figure 2-1 shows the general structure of a design based on the MP specification.

The MP specification’s model of multiprocessor systems incorporates a tightly-coupled, shared-

memory architecture with a distributed interprocessor and I/O interrupt capability.  It is fully

symmetric; that is, all processors are functionally identical and of equal status, and each processor

can communicate with every other processor.  There is no hierarchy, no master-slave relationship,

no geometry that limits communication only to “neighboring” processors.  The model is symmetric

in two important respects:

• Memory symmetry.  Memory is symmetric when all processors share the same memory space

and access that space by the same addresses.  Memory symmetry offers a very important

feature—the ability for all processors to execute a single copy of the operating system.  Any

existing system and application software will execute the same, regardless of the number of

processors installed in a system.

• I/O symmetry.  I/O is symmetric when all processors share access to the same I/O subsystem

(including I/O ports and interrupt controllers) and any processor can receive interrupts from

any source.  Some multiprocessor systems that have symmetric access to memory are actually

asymmetric with regard to I/O interrupts, because they dedicate one processor to interrupt

functions.  I/O symmetry helps eliminate the potential of an I/O bottleneck, thereby increasing

system scalability.

With both memory and I/O symmetry, a system that complies with the MP specification can

achieve hardware scalability as well as support software standardization.  Based on this kind of

scalable architecture, systems developers can produce systems that span a wide range of price and

performance, and that all execute the same binaries.



2-2

 

HIGH-BANDWIDTH MEMORY BUS

APIC ADVANCED PROGRAMMABLE
INTERRUPT CONTROLLER

ICC INTERRUPT CONTROLLER
COMMUNICATIONS

CPU

M
E

M
O

R
Y

 B
U

S

C
O

N
T

R
O

L
L

E
R

C
A

C
H

E

C
O

N
T

R
O

L
L

E
R

C
A

C
H

E

M
E

M
O

R
Y

A
P

IC

CPU

M
E

M
O

R
Y

 B
U

S

C
O

N
T

R
O

L
L

E
R

C
A

C
H

E

C
O

N
T

R
O

L
L

E
R

C
A

C
H

E

M
E

M
O

R
Y

A
P

IC

CPU

M
E

M
O

R
Y

 B
U

S

C
O

N
T

R
O

L
L

E
R

C
A

C
H

E

C
O

N
T

R
O

L
L

E
R

C
A

C
H

E

M
E

M
O

R
Y

A
P

IC

SHARED
MEMORY
MODULE

GRAPHICS
FRAME
BUFFER

I/O
INTERFACE

APIC

I/O
INTERFACE

APIC

I/O EXPANSION BUS I/O EXPANSION BUS

ICC BUS

Figure 2-1.  Multiprocessor System Architecture

2.1 Hardware Overview

The MP specification defines a system architecture based on the following hardware components:

• One or more processors that are Intel architecture instruction set compatible, such as the CPUs

in the Intel486 and Pentium processor family.

• One or more APICs, such as the Intel 82489DX Advanced Programmable Interrupt Controller

or the integrated APIC on the Pentium 735\90 and 815\100 processors.

• Software-transparent cache and shared memory subsystem.

• Software-visible components of the PC/AT platform.

2.1.1 System Processors

To maintain compatibility with existing PC/AT software products, this specification is based on

the Intel486 and Pentium processor family.  To achieve a minimum level of MP system

performance, two or more processors that are Intel architecture instruction set compatible are

required.

Figure 2-2 gives a different point of view of a compliant system, showing the configuration of the

APICs with respect to the CPUs.  While all processors in a compliant system are functionally

identical, this specification classifies them into two types: the bootstrap processor (BSP) and the

application processors (AP).  Which processor is the BSP is determined by the hardware or by the

hardware in conjunction with the BIOS.  This differentiation is for convenience and is in effect

only



2-3

during the initialization and shutdown processes.  The BSP is responsible for initializing the

system and for booting the operating system; APs are activated only after the operating system is

up and running.  CPU1 is designated as the BSP.  CPU2, CPU3, and so on, are designated as the

APs.

 

ICC BUS

LOCAL
APIC

1

CPU 1

LOCAL
APIC

2

LOCAL
APIC

3

CPU 2 CPU 3

REG.
MARK

BSP AP1 AP2

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

I/O
APIC

INTERRUPT
REQUESTS

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

I/O
APIC

INTERRUPT
REQUESTS

Figure 2-2.  APIC Configuration

2.1.2 Advanced Programmable Interrupt Controller

The Advanced Programmable Interrupt Controller (APIC) is based on a distributed architecture

in which interrupt control functions are distributed between two basic functional units, the local

unit and the I/O unit.  The local and I/O units communicate through a bus called the Interrupt

Controller Communications (ICC) bus, as shown in  Figure 2-2.

In a multiprocessor system, multiple local and I/O APIC units operate together as a single entity,

communicating with one another over the ICC bus.  The APIC units are collectively responsible

for delivering interrupts from interrupt sources to interrupt destinations throughout the

multiprocessor system.

The APICs help achieve the goal of scalability by doing the following:

• Off-loading interrupt-related traffic from the memory bus, making the memory bus more

available for processor use.

• Helping processors share the interrupt processing load with other processors.

The APICs help achieve the goal of AT-compatibility by cooperating with 8259A-equivalent PICs

in the system.



2-4

The local APIC units also provide interprocessor interrupts (IPIs), which allow any processor to

interrupt any other processor or set of processors.  There are several types of IPIs.  Among them,

the INIT IPI and the STARTUP IPI are specifically designed for system startup and shutdown.

Each local APIC has a Local Unit ID Register and each I/O APIC has an I/O Unit ID Register.

The ID serves as a physical name for each APIC unit.  It is used by software to specify destination

information for I/O interrupts and interprocessor interrupts, and is also used internally for accessing

the ICC bus.

Due to the distributed architecture, the APIC local and I/O units can be implemented in either a

single chip, such as Intel’s 82489DX interrupt controller, or they can be integrated with other parts

of the system’s components.  For example, the local APIC may be integrated with the CPU chip,

such as Intel’s Pentium processors (735\90, 815\100), and the I/O APIC may be integrated with the

I/O chipset, such as Intel’s 82430 PCI-EISA bridge chipset.

2.1.3 System Memory

A system that complies with the MP specification uses the standard AT memory architecture.  All

memory is allocated for system memory with the exception of addresses 0A_0000h through

0F_FFFFh and 0FFFE_0000h through 0FFFF_FFFFh, which are reserved for I/O devices and the

BIOS.

Compared to a uniprocessor system, a symmetric multiprocessor system imposes a high demand

for memory bus bandwidth.  The demand is proportional to the number of processors on the

memory bus.  To reduce memory bus bandwidth limitations, an implementation of this

specification should use a secondary cache that has high-performance features, such as a write-back

update policy and a snooping cache-consistency protocol.  A secondary cache can push the

scalability limit upward by reducing bus traffic and increasing bus bandwidth.

While both secondary caches and memory bus controllers are critical components for high

performance in a symmetric multiprocessor system, this specification does not detail their

implementation, requiring only that they be totally software transparent.

2.1.4 I/O Expansion Bus

The MP specification provides a multiprocessor extension to the industry-standard PC/AT

platform.  The term “industry-standard PC/AT platform” here refers to the software-visible

components of the PC/AT.  The standard does not designate a specific bus architecture.  All

industry-standard buses, such as ISA, EISA, MCA, VL, and PCI, can be incorporated in the

design.  Systems developers can implement one or more bus types in their designs, depending on

the systems’ I/O performance or capacity requirements.



2-5

2.2 BIOS Overview

A BIOS functions as an insulator between the hardware on one hand, and the operating system and

applications software on the other.  A standard uniprocessor BIOS performs the following

functions:

• Tests system components.

• Builds configuration tables to be used by the operating system.

• Initializes the processor and the rest of the system to a known state.

• Provides run-time device-oriented services.

For a multiprocessor system, the BIOS may perform the following additional functions:

• Pass configuration information to the operating system that identifies all processors and other

multiprocessing components of the system.

• Initialize all processors and the rest of the multiprocessing components to a known state.

This specification allows a wide range of capability in the BIOS.  At the minimal end of the

capability scale, the system developer can simply insert an MP floating pointer structure in the

standard BIOS.  The cost of this level of simplicity in the BIOS, however, is that the system

developer has less flexibility in the design of the hardware.  At the maximal end of the BIOS

capability scale might be a BIOS that dynamically configures the system to provide resilience in

the face of component malfunctions.

BIOS developers should read Chapters 3, 4, 5, and Appendix A to understand the trade-offs

between hardware and BIOS capabilities.

2.3 Operating System Overview

Enabling the creation of shrink-wrapped MP operating systems is one of the principal goals of this

specification.  This goal is achieved by allowing a flexible balance between the capabilities of the

hardware and those of the BIOS.  The potentially vast variety of hardware configurations is

reduced by the BIOS to a few simple scenarios that can be readily handled by the low-level boot-

up phase of the operating system.

Operating-system developers should read Chapters 3, 4, and 5, and Appendixes A and B to fully

understand the interface between the BIOS and the operating system.





3-1

3 

Hardware Specification

This section outlines the minimal set of common hardware features necessary for the operating

system to operate on multiple hardware platforms.  The MP hardware specification defines how the

components mentioned in Chapter 2 are implemented.  Compliance to the specification involves

the following aspects of hardware implementation:

• System memory configuration

• System memory cacheability and shareability

• External cache implementation requirements

• Control of memory contention (locking)

• Ordering of posted memory writes

• Multiprocessor interrupt control

• Reset support

• Interval timer usage

• Support for fault-resilient booting

While the bulk of the MP hardware specification pertains to multiprocessor interrupt control, other

areas also require some attention.  The following sections take up each of these topics in turn.

3.1 System Memory Configuration

The MP memory specifications are based on the standard PC/AT memory map, which currently

has a physical memory space of four gigabytes, as shown in see Figure 3-1.  Physical memory

should begin at 0 and be contiguous.  Memory-mapped I/O devices should be mapped at the top of

physical memory.  The APIC default base memory addresses defined by this specification are

0FEC0_0000h and 0FEE0_0000h.



3-2

SYSTEM BASED
MEMORY

VIDEO BUFFER

ROM  EXTENSIONS

EXPANSION ROM

SHADOWED
EXPANSION BIOS

SHADOWED BIOS

EXTENDED
MEMORY REGION

I/O APIC

LOCAL APIC

BIOS PROM

0000_0000H

000A_0000H

000C_0000H

000D_0000H

000E_0000H

000F_0000H

0010_0000H

0FEC0_0000H

0FED0_0000H

0FEE0_0000H

0FEF0_0000H

0FFFE_0000H

0FFFF_FFFFH

640K

1MB

4GB

MEMORY MAPPED
I/O SPACE

PART OF THIS SPECIFICATION

UNSHADED ADDRESS REGIONS ARE FOR REFERENCE ONLY AND SHOULD NOT BE CONSTRUED AS THE SOLE

DEFINITION OF A PC/AT-COMPATIBLE ADDRESS SPACE.

Figure 3-1.  System Memory Address Map

3.2 System Memory Cacheability and Shareability

The cacheability and shareability of the physical memory space are defined in Table 3-1.  The

address space reserved for the local APIC is used by each processor to access its own local APIC.

The address space reserved for the I/O APIC must be shareable by all processors to permit dynamic

reconfiguration.



3-3

Table 3-1.  Memory Cacheability Map

Addresses

(in hex) Size Description

Shared by All

Processors? Cacheable? Comment

0000_0000h –

0009_FFFFh

640KB Main memory Yes Yes

000A_0000h –

000B_FFFFh

128KB Display buffer for

video adaptors

Yes No

000C_0000h –

000D_FFFFh

128KB ROM BIOS for add-on

cards

Yes Yes

000E_0000h –

000F_FFFFh

128KB System ROM BIOS Yes Yes

0010_0000h –

0FEBF_FFFFh

Main memory Yes Yes Maximum address

depends on total memory

installed in the system.

Not specified. Memory-mapped I/O

devices

Yes* Not

specified

Top unused memory

0FEC0_0000h –

0FECF_FFFFh

APIC I/O unit Yes No Refer to the register

description in the APIC

data book.

0FED0_0000h –

0FEDF_FFFFh

Reserved for

memory-mapped I/O

devices

Yes* Not

specified

0FEE0_0000h –

0FEEF_FFFFh

APIC Local Unit No No Refer to the register

description in the APIC

data book.

0FEF0_0000h –

0FFFD_FFFFh

Reserved for

memory-mapped I/O

devices

Yes* Not

specified

0FFFE_0000h –

0FFFF_FFFFh

128KB Initialization ROM Yes Not

specified

NOTES:

Shaded rows are part of this specification.  The unshaded address regions are shown for reference only, and should not be
construed as the sole definition of a PC/AT-compatible address space format or cache.

* Any memory-mapped device should be shareable unless the nature of the device is that there is one device per processor.



3-4

3.3 External Cashe Subsystem

Intel-compatible processors support multiprocessing both on the processor bus and on a memory

bus, both with and without secondary cache units.  Due to the high bandwidth demands of

multiprocessor systems, external caches are often employed to improve performance.  The

existence and implementation details of external caches are not a part of this specification.

However, when external caches are used, they must conform to certain requirements with regard to

the following design issues:

• Maintaining cache coherency—When one processor accesses data cached in another

processor’s cache, it must not receive incorrect data.  If it modifies data, all other processors

that access that data also must not receive stale data.  External caches must maintain coherency

among themselves, and with the main memory, internal caches, and other bus master DMA

devices.

• Cache flushing—The processor can generate special flush and write-back bus cycles that must

be used by external caches in a manner that maintains cache coherency.  The actual responses

are implementation-specific and may vary from design to design.  A program can initiate

hardware cache flushing by executing a WBINVD instruction.  This instruction is only

guaranteed to flush the caches of the local processor.  See Appendix B for system-wide

flushing mechanisms.  Given that cache coherency is maintained by hardware, there is no need

for software to issue cache flush instructions under normal circumstances.

• Reliable communication—All processors must be able to communicate with each other in a

way that eliminates interference when more than one processor accesses the same area in

memory simultaneously.  The processor uses the LOCK# signal for this purpose.  External

caches must ensure that all locked operations are visible to other processors.

• Write ordering—In some circumstances, it is important that memory writes be observed

externally in precisely the same order as programmed.  External write buffers must maintain

the write ordering of the processor.

3.4 Locking

To protect the integrity of certain critical memory operations, Intel-compatible processors provide

an output signal called LOCK#.  For any given memory access, LOCK# is asserted once, but may

remain asserted for as many memory bus cycles as required to complete the memory operation.  It

is the responsibility of the system hardware designers to use this signal to control memory accesses

among processors.

A compliant system in multiprocessor mode must guarantee atomicity of locked-aligned memory

operations; however, the implementation is not specified in this specification.  A compliant system

must lock at least the area of memory defined by the destination operand.  A specific

implementation may lock a broader area—it may even lock the entire bus.  Therefore, software

must consider this behavior.

To guarantee AT compatibility, locking of misaligned memory operations over other AT-

compatible buses in the compliant system must be strictly implemented in accordance with the bus

specifications.  A compliant system may not be not required to support the misaligned memory

operations over its internal shared memory bus, if it is AT compatible.  Operating system and

software developers must make sure that locked data is aligned because the misaligned data

locking operation may not be guaranteed to work.



3-5

3.5 Posted Memory Write

When controlling I/O devices, it is important that memory and I/O operations be carried out in the

order programmed.  Intel-compatible processors do not buffer I/O writes; thus, strict ordering

among I/O operations is enforced by the processors.

To optimize memory performance, processors and chipsets often implement write buffers and

writeback caches.  Intel-compatible processors guarantee processor ordering on all internal cache

and write buffer accesses.  However, chipsets must also guarantee processor ordering on all

external memory accesses.

For systems based on the integrated APIC, posting of memory writes may result in spurious

interrupts for memory-mapped I/O devices using level-triggered interrupts.  I/O device drivers

must serialize instructions to ensure that the device interrupt clear command reaches the device

before the EOI command reaches the APIC and handles the spurious interrupt in case one occurs.

3.6 Multiprocessor Interrupt Control

In an MP-compliant system, interrupts are controlled through the APIC.  The following sections

describe the APIC architecture and the three interrupt modes allowed in an MP-compliant system.

3.6.1 APIC Architecture

The Intel Advanced Programmable Interrupt Controller (APIC) is based on a distributed

architecture.  Interrupt control functions are distributed between two basic functional units: the

local unit and the I/O unit.  The local and I/O units communicate through a bus called the ICC bus.

The I/O unit senses an interrupt input, addresses it to a local unit, and sends it over the ICC bus.

The local unit that is addressed accepts the message sent by the I/O unit.

In an MP-compliant system, one local APIC per CPU is required.  Depending on the total number

of interrupt lines in an MP system, one or more I/O APICs may be used.  The bus interrupt line

assignments can be implementation-specific and can be defined by the MP Configuration Table

described in Chapter 4.

The Intel 82489DX APIC is a “discrete APIC” implementation.  The programming interface of the

82489DX APIC units serves as the base of the MP specification.  Each APIC has a version register

that contains the version number of a specific APIC implementation.  The version register of the

82489DX family has a version number of “0x,” where x is a four-bit hexadecimal number.  Version

number “1x” refers to Pentium processors with integrated APICs, such as the Pentium 735\90 and

815\100 processors, and x is a four-bit hexadecimal number.

The integrated APIC maintains the same programming interface as the 82489DX APIC.  Table 3-2

describes the features specific to the integrated APIC.



3-6

Table 3-2.  APIC Versions

APIC Type

Local APIC Version

Register (hexadecimal) Integrated APIC Features

82489DX APIC 0x

Integrated APIC, i.e.,

Pentium™ processors

(735\90, 815\100)

1x STARTUP IPI. Refer to Appendix B.4.2 for

details.

Programmable interrupt input polarity

NOTE:

x is a 4-bit hexadecimal number.

To encourage future extendibility and innovation, the Intel APIC architecture definition is limited

to the programming interface of the APIC units.  The ICC bus protocol and electrical specifications

are considered implementation-specific.  That is, while different versions of APIC implementations

may execute the same binary software, different versions of APIC components may be

implemented with different bus protocols or electrical specifications.  Care must be taken when

using different versions of the APIC in a system.

The APIC architecture is designed to be scalable.  The 82489DX APIC has an 8-bit ID register that

can address from one to 255 APIC devices.  Furthermore, the Logical Destination register for the

82489DX APIC supports 32 bits, which can address up to 32 devices.  For small system

implementations, the APIC ID register can be reduced to the least significant 4 bits and the Logical

Destination register can be reduced to the most significant 8 bits.

To ensure software compatibility with all versions of APIC implementations, software developers

must follow the following programming guidelines:

1. Assign an 8-bit APIC ID starting from zero.

2. Assign logical destinations starting from the most significant byte of the 32-bit register.

3. Program the APIC spurious vector to hexadecimal “xF,” where x is a 4-bit hexadecimal

number.

The following features are only available in the integrated APIC:

1. The I/O APIC interrupt input signal polarity can be programmable.

2. A new interprocessor interrupt, STARTUP IPI is defined.

In general, the operating system must use the STARTUP IPI to wake up application processors in

systems with integrated APICs, but must use INIT IPI in systems with the 82489DX APIC.  Refer

to Appendix B, Section B.4, for application processor startup.

3.6.2 Interrupt Modes

The MP specification defines three different interrupt modes as follows:

1. PIC Mode—effectively bypasses all APIC components and forces the system to operate in

single-processor mode.

2. Virtual-Wire Mode—uses an APIC as a virtual wire, but otherwise operates the same as PIC

Mode.

3. Symmetric I/O Mode—enables the system to operate with more than one processor.



3-7

The first two interrupt modes, PIC Mode and Virtual-Wire Mode, provide PC/AT-compatibility.

At least one of these modes must be implemented in systems that comply with the MP

specification.  In these modes, full DOS compatibility with the uniprocessor PC/AT is provided by

using the APICs in conjunction with standard 8259A-equivalent programmable interrupt

controllers (PICs).

The third mode, Symmetric I/O Mode, must be implemented in addition to either PIC Mode or

Virtual-Wire Mode.  An MP operating system is booted under either one of the two PC/AT-

compatible modes.  Later the operating system switches to Symmetric I/O Mode as it enters

multiprocessor mode.

The interrupt modes are implemented by a combination of hardware and software.  The hardware

and programming specifications for each of these modes are further defined in the following

subsections.  BIOS programmers should refer to Appendix A, which includes information about

programming the APIC for Virtual-Wire Mode.  Operating system programmers should refer to

Appendix B, which provides more information about initializing the APIC for Symmetric I/O

Mode.

3.6.2.1 PIC Mode

PIC Mode is software compatible with the PC/AT because it actually employs the same hardware

interrupt configuration.  As Figure 3-2 illustrates, the hardware for PIC Mode bypasses the APIC

components by using an interrupt mode configuration register (IMCR).  This register controls

whether the interrupt signals that reach the BSP come from the master PIC or from the local APIC.

Before entering Symmetric I/O Mode, either the BIOS or the operating system must switch out of

PIC Mode by changing the IMCR.



3-8

 -

LINTIN0 LINTIN1

NMI

NMI

INTR

CPU 1

LINTIN0 LINTIN1 LINTIN0 LINTIN1

NMI INTR

CPU 2

NMI INTR

CPU 3

REG.
MARK

BSP AP1 AP2

LOCAL
APIC

1

LOCAL
APIC

2

LOCAL
APIC

3

RESET

LINTIN0

LINTIN1

ICC BUS

IMCR

E0

INTR

INTERRUPT INPUTS
I/O

APIC

8259A-
EQUIVALENT

PICS

SHADED AREAS INDICATE UNUSED CIRCUITS. DOTTED LINE SHOWS INTERRUPT PATH.

Figure 3-2.  PIC Mode

The IMCR is supported by two read/writable or write-only I/O ports, 22h and 23h, which receive

address and data respectively.  To access the IMCR, write a value of 70h to I/O port 22h, which

selects the IMCR.  Then write the data to I/O port 23h.  The power-on default value is zero, which

connects the NMI and 8259 INTR lines directly to the BSP.  Writing a value of 01h forces the

NMI and 8259 INTR signals to pass through the APIC.

The IMCR must be cleared after a system-wide INIT or RESET to enable the PIC Mode as default.

(Refer to Section 3.7 for information on the INIT and RESET signals.)

The IMCR is optional if PIC Mode is not implemented.  The IMCRP bit of the MP feature-

information bytes (refer to Chapter 4) enable the operating system to detect whether the IMCR is

implemented.



3-9

3.6.2.2 Virtual Wire Mode

Virtual-wire Mode provides a uniprocessor hardware environment capable of booting and running

all DOS shrink-wrapped software.

In Virtual-wire Mode, as shown in Figure 3-3, the 8259A-equivalent PIC fields all interrupts, and

the local APIC of the BSP becomes a virtual wire, which delivers interrupts from the PIC to the

BSP via the local APIC’s local interrupt 0 (LINTIN0).  The LINTIN0 pin of the local APIC is

programmed as ExtINT, specifying to the APIC that the PIC is to serve as an external interrupt

controller.  Whenever the local APIC finds that a particular interrupt is of type ExtINT, it asserts

the ExtINTA transaction along with the PINT interrupt to the processor.  In this case, the I/O APIC

is not used.

 

LINTIN0 LINTIN1

NMI

NMI

INTR

CPU 1

LINTIN0 LINTIN1 LINTIN0 LINTIN1

NMI INTR

CPU 2

NMI INTR

CPU 3

REG.
MARK

BSP AP1 AP2

LOCAL
APIC

1

LOCAL
APIC

2

LOCAL
APIC

3

RESET

LINTIN0

LINTIN1

ICC BUS

INTR

INTERRUPT INPUTS
I/O

APIC

8259A-
EQUIVALENT

PICS

SHADED AREAS INDICATE UNUSED CIRCUITS.  DOTTED LINE SHOWS INTERRUPT PATH.

Figure 3-3.  Virtual-wire Mode via Local APIC

Figure 3-3 shows how Virtual-wire Mode can be implemented through the BSP’s local APIC.  It is

also permissible to program the I/O APIC for Virtual-wire Mode, as shown in Figure 3-4.  In this

case the interrupt signal passes through both the I/O APIC and the BSP’s local APIC.



3-10

 

LINTIN0 LINTIN1

NMI

NMI

INTR

CPU 1

LINTIN0 LINTIN1 LINTIN0 LINTIN1

NMI INTR

CPU 2

NMI INTR

CPU 3

R E G.
M A R K

B S P AP1 AP2

LOCA L
A PIC

1

LOCA L
A PIC

2

LOCA L
A PIC

3

RESET

LINTIN0

LINTIN1

ICC BUS

INTR

INTERRUPT INPUTS
I/O

APIC

8259A-
EQUIVALENT

PICS

SHADED AREAS INDICATE UNUSED CIRCUITS.  DOTTED LINE SHOWS INTERRUPT PATH.

Figure 3-4.  Virtual-wire Mode via I/O APIC



3-11

3.6.2.3 Symmetric I/O Mode

Some MP operating systems operate in Symmetric I/O Mode.  This mode requires at least one I/O

APIC to operate.  In this mode, I/O interrupts are generated by the I/O APIC.  All 8259 interrupt

lines are either masked or work together with the I/O APIC in a mixed mode.  See Figure 3-5  for

an overview of Symmetric I/O Mode.

 

LINTIN0 LINTIN1

NMI

NMI

INTR

CPU 1

LINTIN0 LINTIN1 LINTIN0 LINTIN1

NMI INTR

CPU 2

NMI INTR

CPU 3

REG.
MARK

BSP AP1 AP2

LOCAL
APIC

1

LOCAL
APIC

2

LOCAL
APIC

3

RESET

LINTIN0

LINTIN1

ICC BUS

INTR

INTERRUPT INPUTS
I/O

APIC

8259A-
EQUIVALENT

PICS

SHADED AREAS INDICATE UNUSED CIRCUITS.  DOTTED LINE SHOWS INTERRUPT PATH.

Figure 3-5.  Symmetric I/O Mode

The APIC I/O unit has general-purpose interrupt inputs that can be individually programmed to

different operating modes.  The I/O APIC interrupt line assignments are system implementation

specific.  Refer to Chapter 4 for custom implementations and to Chapter 5 for default

configurations.



3-12

3.6.3 Assignment of System Interrupts to the APIC Local Unit

The APIC local unit has two general-purpose interrupt inputs, which are reserved for system

interrupts.  These interrupt inputs can be individually programmed to different operating modes.

Like the I/O APIC interrupt lines, the local APIC interrupt line assignments of a non-PC/AT-

compatible system are system implementation specific.  Refer to Chapter 4 for custom

implementations and to Chapter 5 for default configurations.

3.6.4 Floating Point Exception Interrupt

For PC/AT compatibility, the bootstrap processor must support DOS-compatible FPU execution

and exception handling while running in either of the PC/AT-compatible modes.  The BSP

forwards the unmasked floating point exception interrupt to the system interrupt request 13 signal,

IRQ13.  The floating-point error signals on the application processors (APs) are unused.

In multiprocessor mode, a compliant system supports only on-chip floating-point units, with error

signaling via interrupt vector 16.

3.6.5 APIC Memory Mapping

In a compliant system, all APICs must be implemented as memory-mapped I/O devices.  APIC

base addresses are at the top of the memory address space.  All APIC local units are mapped to the

same addresses, which are not shared.  Each processor accesses its local APIC via these memory

addresses.  The default base address for the local APICs is 0FEE0_0000h.

Unlike the local APICs, the I/O APICs are mapped to give shared access from all processors,

providing full symmetric I/O access.  The default base address for the first I/O APIC is

0FEC0_0000h.  Subsequent I/O APIC addresses are assigned in 4K increments.  For example, the

second I/O APIC is at 0FEC0_1000h.

Non-default APIC base addresses can be used if the MP Configuration Table is provided.  (Refer to

Chapter 4.)  However, the local APIC base address must be aligned on a 4K boundary, and the I/O

APIC base address must be aligned on a 1K boundary.

3.6.6 APIC Identification

Systems developers must assign APIC local unit IDs and ensure that all are unique.  There are two

acceptable ways to assign local APIC IDs, as follows:

• By hardware.  The ID of each APIC local unit is sampled from the appropriate pins at RESET.

• By the BIOS.  Software can override the APIC IDs assigned by hardware by writing to the

Local Unit ID Register.  This is possible only with help from the hardware; for example, using

board ID registers that the software can read to determine which board has the BSP.

Local APIC IDs must be assigned starting from zero, but need not be consecutive.

The MP operating system can use the local APIC ID to determine on which processor it is

executing.



3-13

The ID of each I/O APIC unit is set to zero during RESET.  It is the responsibility of the operating

system to verify the uniqueness of the I/O APIC ID and to assign a unique ID if a conflict is found.

The assignment of APIC IDs for I/O units must always begin from the lowest number that is

possible after the assignment of local APIC IDs.  The operating system must not attempt to change

the ID of an APIC I/O unit if the preset ID number is acceptable.

3.6.7 APIC Interval Timers

The 82489DX APIC local unit contains a 32-bit wide programmable timer with the following two

independent clock input sources:

1. The CLK pin provides the clock signal that drives the 82489DX APIC’s internal operation.

2. The TMBASE pin allows an independent clock signal to be connected to the 82489DX APIC

for use by the timer functions.

The interval timers of the integrated APIC have only one clock input source, CLK.  To maintain

consistency, developers of compliant systems based on the 82489DX must choose CLK as the

source of the 82489DX APIC timer clock.  TMBASE must be left disabled.  An MP operating

system may use the IRQ8 real-time clock as a reference to determine the actual APIC timer clock

speed.

Special consideration must be made for systems with stop clock (STPCLK#) capability.  Timer

interrupts are ignored while STPCLK# is asserted.  The system time-of-day clock may need to be

reset when STPCLK# is deasserted.

3.7 RESET Support

To bring all circuitry in a computer system to an initial state, computer systems require a system-

wide reset capability.  To support multiple processors, a compliant system requires a processor-

specific reset or initialization capability in addition to the typical system-wide reset and

initialization capabilities.

• The term “RESET” refers to the system-wide hard reset.  It refers to the RESET signal on both

Pentium and Intel486 processors or the RESET signal of the 82489DX APIC.  (See Section

3.7.1.)

• The term “INIT,” refers to either a system-wide soft reset/initialization or a processor-specific

initialization.  For example, the term “INIT” may refer to the INIT signal on the Pentium

processor or to the RESET signal on the Intel486 processor.  (See Sections 3.7.2. and 3.7.3.

below.)

Because the INIT signal is available on the Pentium processor but not on the Intel486 processor,

the remainder of this document uses the above-mentioned special definitions for the terms “INIT”

and “RESET”:



3-14

3.7.1 System-wide RESET

The system-wide RESET, as defined by this specification, refers to a hard or cold reset, which

sets all circuitry, including processor, coprocessor, add-in cards, and control logic, to an initial

state.  A hard reset is the reset signal that is sent to all components of the system during a power-on

or by the front panel reset button (if the system is so equipped).  This type of reset operates without

regard to cycle boundaries, and, for example, is connected to the RESET pin of Pentium

processors.

3.7.2 System-wide INIT

The system-wide INIT, as defined by this specification, refers to a soft or warm reset that

initializes only portions of the processor.  This type of reset initializes the microprocessor in such a

way that the reset does not corrupt any pending cycles, but waits instead for a cycle boundary, and

does not invalidate the contents of caches and floating-point registers.  This type of reset request is

connected to the INIT signal of newer processors, such as the Pentium processors.  On Intel486

processors, the RESET pin is used for this function, as well as for hard resets, but the RESET pin

does not provide the advantages of the INIT pin.  There are essentially two ways to assert the soft

reset, as follows:

1. A write either to a port of the 8042 Keyboard Controller or to some other port provided for the

same purpose by a chipset.

2. A shutdown special bus cycle.  Usually a chipset senses a shutdown cycle and asserts a soft

reset to the processor.

In a compliant system, the standard PC/AT-platform resets mentioned above, both hard and soft,

must be directed to all processors in the system, except in the case of fault-tolerant MP systems, in

which a soft reset may be handled on a per-processor basis.

3.7.3 Processor-specific INIT

A processor-specific INIT is one of the basic multiprocessor support functions of a compliant

multiprocessor system, along with processor startup and shutdown.  With it, the BSP can

selectively initialize an AP for subsequent startup or recover an AP from a fatal system error.  This

type of INIT function is exclusively used by the MP operating system or BIOS self-test routine.

The system must be designed so that the processor-specific INIT can be initiated by software

programming; it is not necessary that it be initiated by hardware.

A compliant system supports the processor-specific INIT via a special interprocessor interrupt (IPI)

mechanism called INIT IPI.  For the 82489DX APIC, INIT IPI is an IPI that has the delivery mode

RESET, which delivers the signal to all processors listed in the destination by asserting/deasserting

the addressed APIC local unit’s PRST output pin.  When the PRST signal is connected to the INIT

pin of the Pentium processor or to the RESET pin of the Intel486 processor, the INIT IPI forces the

processor to begin executing at the reset vector.

For systems based on the Intel486 processor, the 82489DX APIC’s PRST line must be the only

line connected to the processor’s RESET input, so that the INIT IPI resets the targeted processor

only.  The system reset signal is connected to the local 82489DX APIC’s RESET input.  Assertion

of the system reset signal then causes all of the local 82489DX APICs to assert their PRST outputs,

thereby resetting all the processors.



3-15

For integrated APIC versions of the Pentium processor, INIT IPI asserts and deasserts the internal

INIT signal of the Pentium processor.

3.8 System Initial State

The system initial state is the state before the BIOS gives control to the operating system.  It is

identical to the system initial state of a typical PC/AT system, with the additional MP components

in the following state:

1. All local APICs are disabled, except for the local APIC of the BSP if the system starts in

Virtual-Wire Mode.

2. All pending I/O APIC interrupts are cleared and disabled.

3. If IMCR is present, it should be set to 0 or 1 depending on the interrupt mode chosen for

startup.

4. All APs are in Real Mode.

5. All APs are in HALT state or off the system bus.

The BIOS must disable interrupts to all processors and set the APICs to the system initial state

before giving control to the operating system.  The operating system is responsible for initializing

all of the APICs.

3.9 Support for Fault-resilient Booting

OEMs may choose not to implement a fault-resilient booting capability in their systems.  However,

if such a capability is provided, systems developers must observe the following guidelines:

• BSP determination may be performed by special hardware or by the BIOS, but it must be

totally transparent to the operating system.

• NMI and INTR must be connected to the BSP.

• FERR# and IGNNE# signals from the designated BSP must be used to support IRQ13.

• The A20M# signal from the designated BSP must be used to support the masking of physical

address bit 20 on the BSP (to support DOS compatibility).





4-1

4 

MP Configuration Table

The operating system must have access to some information about the multiprocessor

configuration.  The MP specification provides two methods for passing this information to the

operating system: a minimal method for configurations that conform to one of a set of common

hardware defaults, and a maximal method that provides the utmost flexibility in hardware design.

Figure 4-1 shows the general layout of the MP configuration data structures.

00H

PHYSICAL ADDRESS POINTER

FIXED-LENGTH
HEADER

31 0

ENTRY TYPE

ENTRY TYPE

ENTRY LENGTH DEPENDS ON ENTRY TYPE

ENTRY LENGTH DEPENDS ON ENTRY TYPE

VARIABLE NUMBER OF 
VARIABLE-LENGTH

ENTRIES

31 07815162324

31 07815162324

02CH

FLOATING
POINTER

STRUCTURE

MP
CONFIGURATION

TABLE

Figure 4-1.  MP Configuration Data Structures



4-2

The following two data structures are used:

1. The MP Floating Pointer Structure.  This structure contains a physical address pointer to the

MP Configuration Table and other MP feature information bytes.  When present, this structure

indicates that the system conforms to the MP specification.  This structure must be stored in at

least one of the following memory locations, because the operating system will search for the

MP floating pointer structure in the order described below:

a. In the first kilobyte of Extended BIOS Data Area (EBDA), or

b. Within the last kilobyte of system base memory (e.g., 639K-640K for systems with 640

KB of base memory or 511K-512K for systems with 512 KB of base memory) if the

EBDA segment is undefined, or

c. In the BIOS ROM address space between 0F0000h and 0FFFFFh.

2. The MP Configuration Table.  This table is optional.  It contains explicit configuration

information about APICs, processors, buses, and interrupts.  It consists of a header, followed

by a number of entries of various types.  The format and length of each entry depends on its

type.  When present, this configuration table must be stored either in a non-reported system

RAM or within the BIOS read-only memory space.  The following is a list of the suggested

memory spaces for the MP Configuration Table:

a. In the first kilobyte of Extended BIOS Data Area (EBDA), or

b. Within the last kilobyte of system base memory if the EBDA segment is undefined, or

c. At the top of system physical memory, or

d. In the BIOS read-only memory space between 0E0000h and 0FFFFFh.

The BIOS reports the base memory size in a two-byte location (40:13h) of the BIOS data area.

The base memory size is reported in kilobytes minus 1K, which is used by the EBDA segment or

for other purposes.

The exact starting address of the EBDA segment for EISA or MCA systems can be found in a two-

byte location (40:0Eh) of the BIOS data area.  If system memory is used, the BIOS must not report

this memory as part of the available memory space.

These two MP configuration data structures can be located in the ROM space only if the system is

not dynamically reconfigurable.

 The MP configuration information is intended to be read-only to the operating system.

Strings in the configuration tables are coded in ASCII.  The first character of the string is stored at

the lowest address of the string field.  If the string is shorter than its field, the extra character

locations are filled with space characters.  Strings are not null terminated.

4.1 MP Floating Pointer Structure

An MP-compliant system must implement the MP floating pointer structure, which is a variable

length data structure in multiples of 16 bytes.  Currently, only one 16-byte data structure is defined.

It must span a minimum of 16 contiguous bytes, beginning on a 16-byte boundary, and it must be

located within the physical address as specified in the previous section.  To determine whether the

system conforms to the MP specification, the operating system must search for the MP floating

pointer structure in the order specified in the previous section.  Figure 4-2 shows the format of this

structure, and Table 4-1 explains each of the fields.



4-3

 

SPEC_REV LENGTH

_ (5Fh)M (4Dh )

SIGNATURE
00H

04H

CHECKSUM 08

0CH

H

31 07815162324

31 07815162324

PHYSICAL ADDRESS POINTER

P (50h)_ (5Fh)

MP FEATURE
BYTE 1

MP FEATURE
BYTES 2-5

Figure 4-2.  MP Floating Pointer Structure

Table 4-1.  MP Floating Pointer Structure Fields

Field

Offset

(in bytes:bits)

Length

(in bits) Description

SIGNATURE 0 32 The ASCII string represented by “_MP_” which

serves as a search key for locating the pointer

structure.

PHYSICAL ADDRESS

POINTER

4 32 The address of the beginning of the MP

Configuration Table.  All zeros if the MP

Configuration Table does not exist.

LENGTH 8 8 The length of the floating pointer structure table

in paragraph (16-byte) units.  The structure is 16

bytes or 1 paragraph long; so this field contains

01h.

SPEC_REV 9 8 The version number of the MP specification

supported.  This initial version is 01h.

CHECKSUM 10 8 A checksum of the complete pointer structure.

All bytes specified by the length field, including

CHECKSUM and reserved bytes, must add up to

zero.

MP FEATURE

INFORMATION BYTE 1

11 8 Bits 0-7: MP System Configuration Type.

When these bits are all zeros, the MP

Configuration Table is present.  When nonzero,

the value indicates which default configuration (as

defined in Chapter 5) is implemented by the

system.

MP FEATURE

INFORMATION BYTE 2

12:0

12:7

7

1

Bits 0-6: Reserved for future MP definitions.

Bit 7: IMCRP.  When the IMCR presence bit is

set, the IMCR is present and PIC Mode is

implemented; otherwise, Virtual-Wire Mode is

implemented.

MP FEATURE

INFORMATION BYTES 3-5

13 24 Reserved for future MP definitions.  Must be

zero.



4-4

The MP feature-information byte 1 specifies the MP system default configuration type.  If nonzero,

the system configuration conforms to one of the default configurations.  The default configurations

are specified in Chapter 5.

Bit 7 of MP feature information byte 2, the IMCR present bit, is used by the operating system to

determine whether PIC Mode or Virtual-Wire Mode is implemented by the system.

The physical address pointer field contains the address of the beginning of the MP Configuration

Table.  If it is nonzero, the MP Configuration Table can be accessed at the physical address

provided in the pointer structure.  This field must be all zeros if the MP Configuration Table does

not exist.

4.2 MP Configuration Table Header

Figure 4-3 shows the format of the header of the MP Configuration Table, and Table 4-2 explains

each of the fields.

 

SPEC_REV TOTAL TABLE LENGTH

P (50h)P (50h) M (4Dh) C (43h)

SIGNATURE
00H

04HCHECKSUM

OEM ID STRING

 OEM TABLE POINTER

OEM TABLE SIZE

MEMORY-MAPPED ADDRESS OF LOCAL APIC

08

10H

1CH

20H

24H

H

31 07815162324

31 07815162324

OEMspace

IDspacespace

PROD

ID spacespace

ENTRY COUNT

28H

space space space space

PRODUCT ID STRING

RESERVED

Figure 4-3.  MP Configuration Table Header



4-5

Table 4-2.  MP Configuration Table Header Fields

Field

Offset

(in bytes)

Length

(in bits) Description

SIGNATURE 0 32 The ASCII string representation of “PCMP,” which

confirms the presence of the table.

TOTAL TABLE LENGTH 4 16 The length of the configuration table in bytes, starting

from offset 0.  This field aids in calculation of the

checksum.

SPEC_REV 6 8 The version number of the MP specification.  This

initial version is 01h.

CHECKSUM 7 8 A checksum of the entire MP Configuration Table.  All

bytes, including CHECKSUM and reserved bytes, must

add up to zero.

OEM ID 8 64 A string that identifies the manufacturer of the system

hardware.

PRODUCT ID 16 96 A string that identifies the product family.

OEM TABLE POINTER 28 32 A physical-address pointer to an OEM-defined

configuration table.  This table is optional; if not

present, this field is zero.

OEM TABLE SIZE 32 16 The size of the OEM table in bytes.  If the table is not

present, this field is zero.

ENTRY COUNT 34 16 The number of entries in the variable portion of the

table.  This field helps the software identify the end of

the table when stepping through the entries.

ADDRESS OF LOCAL APIC 36 32 The base address by which each processor accesses

its local APIC.

4.3 MP Configuration Table Entries

A variable number of variable length entries follow the header of the MP Configuration Table.

The first byte of each entry identifies the entry type.  Each entry type has a known, fixed length.

The total length of the MP Configuration Table depends upon the configuration of the system.

Software must step through each entry until it reaches ENTRY COUNT.  The entries are sorted on

ENTRY TYPE in ascending order.  Table 4-3 gives the meaning of each value of ENTRY TYPE.



4-6

Table 4-3.  MP Configuration Entry Types

Entry Description Entry Type Code*

Length

(in bytes) Comments

Processor 0 20 One entry per processor.

Bus 1 8 One entry per bus.

I/O APIC 2 8 One entry per I/O APIC.

I/O Interrupt Assignment 3 8 One entry per bus interrupt source.

Local Interrupt Assignment 4 8 One entry per system interrupt

source.

* All other type codes are reserved.

4.3.1 Processor Entries

Figure 4-4 shows the format of each processor entry, and Table 4-4 defines the fields.

 

RESERVED

RESERVED

31 037 4811121516192023242728

CPU SIGNATURE

LOCAL APIC ID
CPU FLAGS

FEATURE FLAGS

31 037 4811121516192023242728

00H

04H

08H

0CH

10H

LOCAL APIC
VERSION #

ENTRY TYPE
0E

NRESERVED
B
P

Figure 4-4.  Processor Entry

In systems that use the MP Configuration Table, the only restriction placed on the assignment of

APIC IDs is that they start from zero.  They do not need to be consecutive.  For example, it is

possible for only APIC IDs 0, 2, and 4 to be present.



4-7

Table 4-4.  Processor Entry Fields

Field

Offset

(in bytes:bits)

Length

(in bits) Description

ENTRY TYPE 0 8 A value of 0 identifies a processor entry.

LOCAL APIC ID 1 8 The local APIC ID number for the particular

processor.

LOCAL APIC VERSION # 2 8 Bits 0–7 of the local APIC’s version register.

CPU FLAGS: EN 3:0 1 If zero, this processor is unusable, and the

operating system should not attempt to access this

processor.

CPU FLAGS: BP 3:1 1 Set if specified processor is the bootstrap

processor.

CPU SIGNATURE:

    STEPPING 4:0 4 Refer to Table 4-5 for values.

    MODEL 4:4 4 Refer to Table 4-5 for values.

    FAMILY 5:0 4 Refer to Table 4-5 for values.

FEATURE FLAGS 8 32 The feature definition flags for the processor as

returned by the CPUID instruction.  Refer to

Table 4-6 for values.  If the processor does not

have a CPUID instruction, the BIOS must assign

values to FEATURE FLAGS according to the

features that it detects.

The configuration table is filled in by the BIOS after it executes a CPU identification procedure on

each of the processors in the system.  Whenever possible, the complete 32-bit CPU signature

should be filled with the values returned by the CPUID instruction.  The CPU signature includes

but is not limited to, the stepping, model, and family fields.  If the processor does not have a

CPUID instruction, the BIOS must fill these and future reserved fields with information returned

by the processor in the EDX register after a processor reset.  See the Pentium Processor Users

Manual and Intel Processor Identification with the CPUID Instruction (AP-485) for details on the

CPUID instruction.



4-8

Table 4-5.  Intel486™ and Pentium™ Processor Signatures

Family Model Steppinga Description

0000 0000 0000 Not a valid CPU signature.

0100 0000 and 0001 xxxx Intel486 DX Processor

0100 0010 xxxx Intel486 SX Processor

0100 0011 xxxx Intel487™ Processor

0100 0011 xxxx IntelDX2™ Processor

0100 0100 xxxx Intel486 SL Processor

0100 0101 xxxx IntelSX2™ Processor

0100 1000 xxxx IntelDX4™ Processor

0101 0001 xxxx Pentium Processors (510\60, 567\66)

0101 0010 xxxx Pentium Processors (735\90, 815\100)

Values not shown are reserved for future processors.

Refer to the documentation of each new processor for its family and model values.

1111 1111 1111 Not a valid CPU signature.  Indicates a processor that is not an

Intel architecture-compatible processor (a graphics controller,

for example)

a Intel releases information about stepping numbers as needed.

Table 4-6.  Feature Flags from CPUID Instruction

Bit Name Description Comments

0 FPU On-chip Floating

Point Unit

The processor contains an FPU that supports the Intel387™

processor floating point instruction set.

1–6 Reserved.

7 MCE Machine Check

Exception

Exception 18 is defined for machine checks, including CR4.MCE for

controlling the feature.  This feature does not define the model-

specific implementations of machine-check error logging reporting

and processor shutdowns.  Machine-check exception handlers may

have to depend on processor version to do model-specific

processing of the exception or test for the presence of the standard

machine-check feature.

8 CX8 CMPXCHG8B

Instruction

The 8 byte (64 bits) compare-and-exchange instruction is supported

(implicitly locked and atomic).  Introduced by the Pentium™

processor.

9 APIC On-chip APIC Indicates that an integrated APIC is present and hardware enabled.

(Software disabling does not affect this bit.)

10–31 Reserved.



4-9

4.3.2 Bus Entries

Bus entries identify the kinds of buses in the system.  Because there may be more than one bus in a

system, each bus is assigned a unique bus ID number by the BIOS.  The bus ID number is used by

the operating system to associate interrupt lines with specific buses.  Figure 4-5 shows the format

of a bus entry, and Table 4-7 explains the fields of each entry.

00H

04H

31 07815162324

31 07815162324

ENTRY TYPE
1

BUS ID

BUS TYPE STRING

Figure 4-5.  Bus Entry

Table 4-7.  Bus Entry Fields

Field

Offset

(in bytes)

Length

(in bits) Description

ENTRY TYPE 0 8 Entry type 1 identifies a bus entry.

BUS ID 1 8 An integer that identifies the bus entry.  The BIOS assigns

identifiers sequentially, starting at zero.

BUS TYPE STRING 2 48 A string that identifies the type of bus.  Refer to Table 4-8 for

values.  These are 6-character ASCII (blank-filled) strings

used by the MP specification.



4-10

Table 4-8.  Bus Type String Values

Bus Type String Description

CBUS Corollary CBus

CBUSII Corollary CBUS II

EISA Extended ISA

FUTURE IEEE FutureBus

INTERN Internal bus

ISA Industry Standard Architecture

MBI Multibus I

MBII Multibus II

MCA Micro Channel Architecture

MPI MPI

MPSA MPSA

NUBUS Apple Macintosh NuBus

PCI Peripheral Component Interconnect

PCMCIA PC Memory Card International Assoc.

TC DEC TurboChannel

VL VESA Local Bus

VME VMEbus

XPRESS Express System Bus

Local buses, such as VL and PCI, which are designed to work in conjunction with another bus.

These buses share all memory, I/O, and interrupt space with other buses, which must also be

assigned a unique ID and listed in the MP Configuration Table.

4.3.3 I/O APIC Entries

The configuration table contains one or more entries for I/O APICs.  Figure 4-6 shows the format

of each I/O APIC entry, and Table 4-9 explains each field.

 

00H

04H

31 07815162324

31 07815162324

ENTRY TYPE
2

I/O APIC ID
I/O APIC

VERSION #

MEMORY-MAPPED ADDRESS OF I/O APIC

I/O APIC FLAGS
E
NRESERVED

Figure 4-6.  I/O APIC Entry



4-11

Table 4-9.  I/O APIC Entry Fields

Field

Offset

(in bytes:bits)

Length

(in bits) Description

ENTRY TYPE 0 8 A value of 2 identifies an I/O APIC entry.

I/O APIC ID 1 8 The ID of this I/O APIC.

I/O APIC VERSION # 2 8 Bits 0–7 of the I/O APIC’s version register.

I/O APIC FLAGS: EN 3:0 1 If zero, this I/O APIC is unusable, and the

operating system should not attempt to access

this I/O APIC.

At least one I/O APIC must be enabled.

I/O APIC ADDRESS 4 32 Base address for this I/O APIC.

4.3.4 I/O Interrupt Assignment Entries

These entries indicate which interrupt source is connected to each I/O APIC interrupt input.  There

is one entry for each I/O APIC interrupt input that is connected.  Figure 4-7 shows the format of

each entry, and Table 4-10 explains each field.  Appendix D provides the semantics for encoding

PCI interrupts.

The MP specification enables significantly more interrupt sources than the standard AT

architecture by using I/O APICs.  When using I/O APICs, it is preferable that the buses do not

share interrupts with the other buses.  Bus implementations that share interrupts, such as the PCI

and VL local buses, support their bus interrupts by overloading them into another bus space.  These

buses can be supported in one of the following two ways:

1. Interrupt Assignment Entries for each of the bus interrupts are listed in the MP Configuration

Table.  Each interrupt destination matches the destination of another interrupt source interrupt

that this interrupt shares.  For example, if PCI-PIRQ0 has the same vector as ISA-IRQ2, then

both Interrupt Assignment Entries for these vectors would refer to the same destination I/O

APIC and INTIN#.

2. No Interrupt Assignment Entries are declared for any of the bus source interrupts, and the

operating system uses some other bus-specific knowledge of bus interrupt schemes in order to

support the bus.  This operating system bus-specific knowledge is beyond the scope of this

specification.

 

00H

04H

31 07815162324

ENTRY TYPE
3

INTERRUPT
TYPE

RESERVED

SOURCE
BUS ID

SOURCE BUS
IRQ

DESTINATION
I/O APIC ID

DESTINATION
I/O APIC INTIN#

P
O

E
L

31 07815162324

I/O INTERRUPT FLAG

Figure 4-7.  I/O Interrupt Entry



4-12

Table 4-10.  I/O Interrupt Entry Fields

Field

Offset

(in bytes:bits)

Length

(in bits) Description

ENTRY TYPE 0 8 Entry type 3 identifies an I/O interrupt

entry.

INTERRUPT TYPE 1 8 See Table 4-11 for values.

PO 2:0 2 Polarity of APIC I/O input signals:

00 = Conforms to

specifications of bus (for

example,EISA is active-

low for level-triggered

interrupts)

01 = Active high

10 = Reserved

11 = Active low

Must be 00 if the 82489DX is used.

EL 2:2 2 Trigger mode of APIC I/O input signals:

00 = Conforms to

specifications of bus (for

example, ISA is edge-

triggered)

01 = Edge-triggered

10 = Reserved

11 = Level-triggered

SOURCE BUS ID 4 8 Identifies the bus from which the interrupt

signal comes.

SOURCE BUS IRQ 5 8 Identifies the interrupt signal from the

source bus.  Values are mapped onto

source bus signals, starting from zero.  A

value of 0, for example, would indicate

IRQ0 of an ISA bus, PIRQ0 of a PCI bus,

or the INTR output of the first PIC of the

specified source bus.

DESTINATION I/O APIC ID 6 8 Identifies the I/O APIC to which the signal

is connected.  If the ID is 0FFh, the signal

is connected to all I/O APICs.

DESTINATION I/O APIC INTIN# 7 8 Identifies the INTINn pin to which the signal

is connected.



4-13

Table 4-11.  Interrupt Type Values

INTERRUPT TYPE* Description Comments

0 INT Signal is a vectored interrupt; vector is supplied by APIC redirection

table.

1 NMI Signal is a nonmaskable interrupt.

2 SMI Signal is a system management interrupt.

3 ExtINT Signal is a vectored interrupt; vector is supplied by external PIC.

For example, if an 8259 is used as the external PIC, the source is

the 8259 INTR output line, and the vector is supplied by the 8259.

* All other values are reserved.

4.3.5 Local Interrupt Assignment Entries

These configuration table entries tell what interrupt source is connected to each local interrupt

input of each local APIC.  Figure 4-8 shows the format of each entry, and Table 4-12 explains each

field.

 

00H

04H

31 07815162324

ENTRY TYPE
4

INTERRUPT
TYPE

RESERVED

SOURCE
BUS ID

SOURCE BUS
IRQ

DESTINATION
LOCAL APIC ID

DESTINATION
LOCAL APIC

LINTIN#

P
O

E
L

31 07815162324

LOCAL INTERRUPT FLAG

Figure 4-8.  Local Interrupt Entry



4-14

Table 4-12.  Local Interrupt Entry Fields

Field

Offset

(in bytes:bits)

Length

(in bits) Description

ENTRY TYPE 0 8 Entry type 4 identifies a local interrupt

entry.

INTERRUPT TYPE 1 8 See Table 4-11 for values

PO 2:0 2 Polarity of APIC local input signals:

00 = Conforms to

specifications of bus

(for example, EISA is

active-low for level

triggered interrupts)

01 = Active high

10 = Reserved

11 = Active low

Must be 00 if the 82489DX is used.

EL 2:2 2 Trigger mode of APIC local input signals:

00 = Conforms to

specifications of bus

(for example, ISA is

edge triggered)

01 = Edge-triggered

10 = Reserved

11 = Level-triggered

SOURCE BUS ID 4 8 Identifies the bus from which the interrupt

signal came.

SOURCE BUS IRQ 5 8 Identifies the interrupt signal from the

source bus.  Values are mapped onto

source bus signals, starting from zero.  A

value of 0, for example, would indicate

IRQ0 of an ISA bus, PIRQ0 of a PCI bus,

or the INTR output of the first PIC of the

specified source bus.

DESTINATION LOCAL APIC ID 6 8 Identifies the local APIC to which the

signal is connected.  If the ID is 0FFh, the

signal is connected to all local APICs.

DESTINATION LOCAL APIC LINTIN# 7 8 Identifies the LINTINn pin to which the

signal is connected, where n = 0 or 1.



5-1

5 

Default Configurations

The MP specification defines several default MP system configurations.  The purpose of these

defaults is to simplify BIOS design.  If a system conforms to one of the default configurations, the

BIOS will not need to provide the MP Configuration Table.  The operating system will have the

default MP Configuration Table predefined internally.

Default system configuration types are defined by MP feature-information byte 1, which is part of

the MP floating pointer structure.  The physical address pointer field of the MP floating pointer

structure must be zero if one of the default configurations is selected.  (Refer to Chapter 4 for a

detailed description of the MP floating pointer structure.)

To use a default configuration, a system must meet the following basic criteria:

1. The system supports two processors.

2. Both processors must execute the common Intel architecture instruction set.

3. The local APICs are located at base memory address 0FEE0_0000h.

4. The local APIC IDs are assigned consecutively by hardware starting from zero.

5. An I/O APIC is present at base memory address 0FEC0_0000h.

6. Either PIC Mode or Virtual-Wire Mode is implemented as the power-on default interrupt

mode.

The default system configurations include configurations that use the discrete APIC, such as the

Intel 82489DX or its equivalent, and configurations that use the integrated APIC, such as the

Pentium processors (735\90, 815\100).

Each default configuration has a unique code.  Table 5-1 specifies the configuration associated with

each code.



5-2

Table 5-1.  Default Configurations

Default

Config Code

Number

of CPUs

Bus

Type

APIC

Type Variant Schematic

1 2 ISA 82489DX As in Figure 5-1, but without

EISA logic.

2 2 EISA 82489DX Neither timer

IRQ8 nor DMA

chaining

As in Figure 5-1, but without

IRQ0 and IRQ13 connection to

the I/O APIC.

3 2 EISA 82489DX As in Figure 5-1.

4 2 MCA 82489DX As in Figure 5-1, but without

EISA bus logic, with inverters

before I/O APIC inputs 1-15.

5 2 ISA + PCI Integrated As in Figure 5-2, but without

EISA logic.

6 2 EISA + PCI Integrated As in Figure 5-2.

7 2 MCA + PCI Integrated As in Figure 5-2, but without

EISA bus logic, with inverters

before I/O APIC inputs 1-15.

8-255 Reserved for MP future use.

The default system configurations are designed to support dual-processor systems with fixed

configurations.  Systems with dynamically configurable components, for example, a uniprocessor

system with an upgrade socket for the second processor, must always generate the MP

Configuration Table.  Failure to do so may cause the operating system to install the wrong modules

due to erroneous configuration information.

5.1 Discrete APIC Configurations

Figure 5-1 shows the default configuration for systems that use the discrete 82489 APIC.  The

Intel486 processor is shown as an example; however, this configuration can also employ Pentium

processors.  In Pentium processor systems, PRST is connected to INIT instead of to RESET.



5-3

 

B

C

D

A

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0
1
2
3
4
5
6
7

IRQ1

0
1
2
3
4
5
6
7

I/O
82489DX

APIC

MASTER
8259A PIC

SLAVE
8259A PIC

IRQ8#

14
15

14
15

8254 TIMER

9
10
11

9
10
11

3
4
5
6
7

3
4
5
6
7

IRQ3-7,
9-12,14,15

IRQ13

EISA DMA CHAINING

FERR#

IGNNE#

ICC BUS

INTR

F ERR
SAMPLING

PRSTPNMI PINT

LINTIN0 LINTIN1

NMI RESET

NMI

RESET

INTR

LOCAL
82489DX APIC

CPU 1

NMI

INTR

PRSTPNMI PINT

LINTIN0 LINTIN1

LOCAL
82489DX APIC

NMI INTR

IMCR

I/O BUS

ExtINTA

INTA
TRAP

ExtINTA

INTA
TRAP

INT EL 486 �

RESET

GLUE

INT EL 486�

E 0

REG.
MARK

FROM BSP

INTA

BSP AP

EDGE/LEVEL TRIGGER
POLARITY CONTROL

12

ABFULL
(PS/2 MOUSE)

LITM3-7,
9-12,14,15

LITMx

IRQx

ABF UL L
SAMPLING

12

13

8

CPU 2

SHADED AREAS:

A: OPTIONAL IF VIRTUAL-WIRE MODE IS IMPLEMENTED

B,C: MAY NOT BE EXTERNALIZED WITH SOME EISA CHIPSETS

C,D: EISA BUS SPECIFIC

Figure 5-1.  Default Configuration for Discrete APIC



5-4

The INTA TRAP and GLUE in the figure are the additional hardware interface logic needed for the

82489DX APIC.  INTA TRAP conditions all interrupt acknowledge cycles with ExtINTA to steer

the vector either from the 8259A PIC or the APIC.  INTA TRAP is also responsible for preventing

the interrupt acknowledge cycle from reaching the 8259A PIC, in case ExtINTA is negated when

PINT is activated.  During an interrupt acknowledge cycle with ExtINTA active, the APIC does

not return RDY#.  Therefore, the ready generation logic should also take into consideration the

status of ExtINTA to steer the ready signal either from the APIC or from external bus logic,

depending upon the source of the interrupt vector.

The GLUE logic converts the INTR level-triggered interrupt output signal to a signal that is

acceptable to edge-triggered input pins, such as INTIN0 or LINTIN0.

If the AP used in these configurations does not automatically HALT after RESET or INIT, the AP

must be prevented from executing the BIOS by external hardware or by the BIOS itself.

5.2 Integrated APIC Configurations

Figure 5-2 shows the default configuration for systems that use processors with the integrated

APIC, such as Pentium processors (735\90 or 815\100).  The local APIC is configured as part of

the processor unit.  The APICEN input is used to enable or disable the internal local APIC.  If the

internal local APIC is used, the BIOS must initialize the APIC to Virtual-Wire Mode during

system initialization.

Both Pentium processors used in the dual-processor (DP) system design are identical.  The AP

functions exactly the same as the BSP processor, except that the AP will go to HALT after the

assertion of the RESET or INIT signals.  It will remain halted until the MP operating system sends

a STARTUP IPI to bring it on line.



5-5

 

A

B

C

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0
1
2
3
4
5
6
7

IRQ1

0
1
2
3
4
5
6
7

I/O
APIC

MASTER
8259A PIC

SLAVE
8259A PIC

IRQ8# INT8

14
15

14
15

8254 TIMER

9
10
11

9
10
11

3
4
5
6
7

3
4
5
6
7

INTR

NMI

REG.
MARK

LOCAL

APIC

LOCAL

APIC
APICEN

PENTIUM (735\90, 815\100)
CPU2

BSP AP

INIT

SMI#

ICC BUS

INTR/LINT0

NMI/LINT1

INIT

SMI#

IMCR

E0

IRQ3-7,
9-12,14,15

IRQ13

EISA DMA CHAINING

FERR#

IGNNE#
FERR

SAMPLING

FROM BSP

EDGE/LEVEL TRIGGER
POLARITY CONTROL

12

ABFULL
(PS/2 MOUSE)

LITM3-7,
9-12,14,15

LITMx

IRQx

ABFULL
SAMPLING

12

13

PIRQ
MAPPING

PIRQ0-3

3-7,9-11,14,15

D

PENTIIUM (735\90, 815\100)

 CPU1

APICEN

SHADED AREAS:

A,B: MAY NOT BE EXTERNALIZED WITH SOME EISA CHIPSETS

B,C: EISA BUS SPECIFIC

D: PCI BUS SPECIFIC

Figure 5-2.  Default Configuration for Integrated APIC

Two local interrupt input pins, LINT0 and LINT1, are shared with the INTR and NMI pins,

respectively.  The LINT0, LINT1, SMI# and INIT signals are switched by APICEN, and they



5-6

should be cross-connected between the BSP and AP processors.  Although the INIT pin is cross-

connected between BSP and AP, a targeted INIT IPI initializes only the targeted processor, because

the INIT IPI does not cause the INIT pin to change state.

The interconnection of I/O APIC interrupt lines is the same as for the 82489DX APIC

configuration.  However, for PCI system implementations based on the Intel PCI chipset, the PCI

PIRQx lines are mapped to the ISA IRQx via a mapping register.  This type of implementation will

make PCI interrupt lines appear as ISA interrupt lines, which are transparent to the operating

system.  All PCI systems defined in the default configurations are of this type.  No I/O interrupt

assignment entries are declared for PCI interrupts, as described in Section 4.3.4.

5.3 Assignment of I/O Interrupts to the APIC I/O Unit

The typical APIC I/O unit has 16 general-purpose interrupt inputs.  Table 5-2 shows how the

interrupt request line (IRQ) assignments are connected to the I/O APIC in each of the default

configurations.

Table 5-2.  Default Configuration Interrupt Assignments

First I/O

APIC

INTINx

Config

1

Config

2

Config

3

Config

4

Config

5

Config

6

Config

7 Comments

INTIN0 8259A

INTR

8259A

INTR

8259A

INTR

8259A

INTR

8259A

INTR

8259A

INTR

N/C INTR output from

master 8259A or

equivalent

INTIN1 IRQ1 IRQ1 IRQ1 IRQ1 IRQ1 IRQ1 IRQ1 Keyboard

controller buffer

full

INTIN2 IRQ0 N/C IRQ0 IRQ0 IRQ0 IRQ0 IRQ0 8254 Timer

INTIN3 IRQ3 IRQ3 IRQ3 IRQ3 IRQ3 IRQ3 IRQ3

INTIN4 IRQ4 IRQ4 IRQ4 IRQ4 IRQ4 IRQ4 IRQ4

INTIN5 IRQ5 IRQ5 IRQ5 IRQ5 IRQ5 IRQ5 IRQ5

INTIN6 IRQ6 IRQ6 IRQ6 IRQ6 IRQ6 IRQ6 IRQ6

INTIN7 IRQ7 IRQ7 IRQ7 IRQ7 IRQ7 IRQ7 IRQ7

INTIN8 IRQ8 IRQ8 IRQ8 IRQ8 IRQ8 IRQ8 IRQ8 Real time clock

INTIN9 IRQ9 IRQ9 IRQ9 IRQ9 IRQ9 IRQ9 IRQ9

INTIN10 IRQ10 IRQ10 IRQ10 IRQ10 IRQ10 IRQ10 IRQ10

INTIN11 IRQ11 IRQ11 IRQ11 IRQ11 IRQ11 IRQ11 IRQ11

INTIN12 IRQ12 IRQ12 IRQ12 IRQ12 IRQ12 IRQ12 IRQ12

INTIN13 IRQ13 N/C IRQ13 IRQ13 IRQ13 IRQ13 IRQ13 Floating-point

exception and

DMA chaining

INTIN14 IRQ14 IRQ14 IRQ14 IRQ14 IRQ14 IRQ14 IRQ14

INTIN15 IRQ15 IRQ15 IRQ15 IRQ15 IRQ15 IRQ15 IRQ15

NOTE:
N/C designates not connected.



5-7

Certain EISA chipsets do not bring out the IRQ0, 8254 timer interrupt, and IRQ13 EISA DMA

chaining interrupt signals.  If these signals are not directly available, INTIN2 and INTIN13 should

be disabled.  Refer to Section 5.3.1 for more details.

5.3.1 EISA and IRQ13

IRQ13 is a shared interrupt as defined in the EISA bus specification.  Because a compliant system

supports only the on-chip floating-point unit, IRQ13 carries only the EISA chaining interrupt.

If IRQ13 is not connected to the I/O APIC, the EISA chaining interrupt may be handled as a

mixed-mode operation.  Mixed mode means that the APIC and 8259A-equivalent PIC are

connected in a cascading manner via INTIN0, and INTIN0 is programmed for ExtINT and edge-

triggered mode.  If all other interrupts are masked off in the PIC, INTIN0 only receives the DMA

chaining interrupt.

An MP operating system should disable the I/O APIC INTIN13 and configure the I/O APIC to

mixed mode if the EISA DMA chaining signal is not available at the I/O APIC.

5.3.2 Level-triggered Interrupt Support

Several AT-compatible buses, such as EISA and MCA, support active-low, level-triggered

interrupts.  If these types of buses are to be incorporated in a compliant system, external inverters

must be implemented to ensure that signals presented to the 82489DX APIC are active-high and

level-triggered.  See Section 4.3.4 on I/O Interrupt Assignment Flags.

For EISA implementations, the external interrupt polarity control inverters must be controlled by

the EISA edge/level-triggered polarity control registers (4D0h-4D1h).  MCA does not have this

register.  To convert an active-high trigger to an active-low trigger, an inverter for each interrupt

line must be implemented.

The integrated APIC has programmable polarity control.  Therefore, the external inverter may not

be needed.

5.4 Assignment of System Interrupts to the APIC Local Unit

The APIC local unit has two general-purpose interrupt inputs that are reserved for system

interrupts.  Table 5-3 shows how the interrupt request line (IRQ) assignments are connected to the

local APIC in each of the default configurations.

Table 5-3  Assignment of System Interrupts to APIC Local Unit

All Local

APICs

LINTINx

Config

1

Config

2

Config

3

Config

4

Config

5

Config

6

Config

7 Comments

LINTIN0 8259A

INTR

8259A

INTR

8259A

INTR

8259A

INTR

8259A

INTR

8259A

INTR

8259A

INTR

INTR output from

master 8259A or

equivalent

LINTIN1 NMI NMI NMI NMI NMI NMI NMI Nonmaskable

interrupt



5-8

The 8259A INTR output signal is connected to the LINTIN0 of all local APICs, which makes

INTR dynamically routable via software.  NMI is connected to the LINTIN1 of all local APICs,

which makes NMI dynamically routable via software.

In PIC-Mode configurations, the NMI signal is delivered to the local interrupt input 1 (LINTIN1)

of all local APICs and the input of a 2-to-1 MUX.  When the system is operated in PIC Mode, the

NMI is sent to the BSP directly via the MUX.  The BIOS and the operating system must leave the

LINTIN1 of all local APICs disabled to ensure that the BSP is the only processor that receives the

NMI.

In PIC-Mode configurations, the 8259 INTR signal also follows the same convention, connecting

to the local interrupt line 0 (LINTIN0) of all local APICs and the input of the second 2-to-1 MUX.

When the system is operated in PIC Mode, the 8259 INTR is sent to the BSP directly via the

MUX.  The BIOS and the operating system must leave the LINTIN0 of all local APICs disabled to

ensure that the BSP is the only processor that receives the 8259 INTR signal.

When the system is operated in Symmetric I/O Mode, the operating system may enable the

LINTIN0 and LINTIN1 of any or all local APICs as necessary.



A-1

A

System BIOS

Programming Guidelines

Depending on the MP components in a multiprocessor system, the system BIOS may have the

following additional responsibilities:

1. Put the APs to sleep, so that they do not all try to execute the same BIOS code as the BSP.

This is necessary, because BIOS code is not typically multithreaded for multiprocessing.

2. Initialize the APICs and other MP components (if any).

3. Build the MP Configuration Table to communicate information to the operating system about

the APICs and APs.

Note that the above activities can be implemented by the hardware.  The BIOS is not required to

perform these activities if the hardware makes them unnecessary.  For example, the system BIOS

for one of the default configurations defined in Chapter 5 needs to ensure only that the MP feature-

information bytes identify the configuration.  In all other respects, the BIOS can be the same as a

standard PC/AT BIOS.

Support for the shutdown status byte (0Fh) of the PC/AT CMOS RAM is required.  The startup of

APs by the operating system depends on the jump to warm reset vector (40:67h) capability, as

defined by the shutdown status byte.  Appendix B explains this in more detail.

A.1  BIOS Post Initialization

Once system power is applied or the reset button is pressed (if the system is so equipped), a

hardware circuit generates a system RESET sequence to put all the system hardware into an initial

state.  All active processors start to execute instructions and enter the POST (power-on self test)

procedure of the BIOS, which is responsible for initializing all components in a system to a known

state and for constructing various system tables in the BIOS data area (400h-4FFh) for the

operating system to use.

For compliant systems that match one of the default configurations listed in Chapter 5, the work

performed by the BIOS POST is minimal.  The MP feature information bytes must identify the

default configuration type and determine whether PIC Mode or Virtual-Wire Mode is implemented.

During the system INIT or soft reset cycle, both local and I/O APICs must be reinitialized by the

INIT signal and by the BIOS.  This is required because the operating system will always assume

that all components in the system are initialized to a known state.  For the APIC, this means that

all APIC registers are cleared and the local APIC ID register is initialized by the BIOS or the

hardware.

Upon warm reset, the BIOS must initialize all APICs to the power on state if the warm reset signal

does not physically reset the APICs.



A-2

A.2  Controlling the Application Processors

Provision must be made to prevent all processors from executing the BIOS after a power-on

RESET.  System developers may choose to do this by the hardware alone or by cooperation

between hardware and the BIOS.  In the latter case, the BIOS may be used for selecting the BSP

and placing all APs to sleep after POST.  The BIOS may use the APIC ID as a means by which to

identify each processor and select the proper code sequence to execute.  Only the selected BSP

continues to load the operating system after the POST routine.

A.3  Programming the APIC for Virtual-wire Mode

The APICs do not require BIOS programming if the default interrupt mode at start-up is PIC

Mode.  Special programming is needed only if the startup interrupt mode is Virtual-Wire Mode.

Because Virtual-Wire Mode must run all existing uniprocessor software, the system BIOS must

initialize and enable the BSP’s APIC first.  The local unit must be programmed to function as a

“virtual wire,” which delivers the CPU interrupt from the 8259A-equivalent PIC to the BSP via its

local APIC.

The External Interrupt (ExtINT) delivery mode must be used so that the APICs and 8259A-

equivalent PICs can function together in the same system.  For interrupts that are programmed for

ExtINT delivery mode, there is no need to issue an EOI to the APIC; only the 8259A PIC requires

an EOI as usual.  Also, because the 8259A delivers the vector to the processor for ExtINT delivery

mode, the interrupt vector in the APIC’s redirection table is ignored.

To program the APIC to Virtual-Wire Mode, the system BIOS must program the APIC to enable

the LINT0 of the BSP’s local APIC for edge-triggered ExtINT delivery mode, and LINT1 for

level-triggered NMI delivery mode.  There is no need to program the I/O APIC if it is not used in

Virtual-Wire Mode.

Example A-1 is an example of programming the LINTIN0 and LINTIN1 to support Virtual-Wire

Mode.



A-3

;-----------------------------------------------------------------------;

; InitLocalAPIC( )                                                      ;

;-----------------------------------------------------------------------;

;                                                                       ;

;           Initialize the local APIC to virtual wire mode.             ;

;                                                                       ;

;-----------------------------------------------------------------------;

SVR             equ     0FEE000F0H

LVT1            equ     0FEE00350H

LVT2            equ     0FEE00360H

APIC_ENABLED    equ     000000100H

        public  InitLocalAPIC

InitLocalAPIC   proc    near

        push    ds                      ; save regs used for APIC init

        push    es

        push    esi

        mov     al,080h                 ; ensure NMI disabled

        out     070h,al

        in      al,021h                 ; read primary imr

        push    ax                      ; save settings

        mov     al,0ffh                 ; mask all off

        out     021h,al

        in      al,0a1h                 ; read secondary imr

        push    ax                      ; save settings

        mov     al,0ffh                 ; mask all off

        out     0a1h,al

        extrn   pmode_on : near

        call    pmode_on                ; switch into real big mode

;

; The APIC spurious interrupt must point to a vector whose lower

; nibble is 0F, that is 0xF, where x is 0 - F. Here we use Int 00FH,

; which handles spurious interrupts and supplies the necessary IRET.

; This vector is assumed to have already been initialized in memory.

;

; Enable the APIC via SVR and set the spurious interrupt to use Int 00F

;

        mov     esi,SVR

        mov     eax,[esi]               ; read SVR

        and     eax,0FFFFFF0FH          ; clear spurious vector (use vector

                                          00FH)

        or      eax,APIC_ENABLED        ; bit 8 = 1

        mov     [esi],eax               ; write SVR

;

; Program LVT1 as ExtInt, which delivers the signal to the INTR signal of all

; processors' cores listed in the destination as an interrupt that originated

; in an externally-connected interrupt controller.

;

Example A-1.  Programming Local APIC for Virtual-Wire Mode



A-4

        mov     esi,LVT1

        mov     eax,[esi]               ; read LVT1

        and     eax,0FFFE58FFH          ; not masked, edge, active high

        or      eax,000000700H          ; ExtInt

        mov     [esi],eax               ; write LVT1

;

; Program LVT2 as NMI, which delivers the signal on the NMI signal of all

; processors' cores listed in the destination.

;

        mov     esi,LVT2

        mov     eax,[esi]               ; read LVT2

        and     eax,0FFFE58FFH          ; not masked, edge, active high

        or      eax,0ffff0400H          ; NMI

        mov     [esi],eax               ; write LVT2

        extrn   pmode_off : near

        call    pmode_off               ; switch back to real mode

        pop     ax                      ; restore imr settings

        out     0a1h,al                 ; restore secondary imr

        pop     ax

        out     021h,al                 ; restore primary imr

                                        ; this routine leaves NMI disabled

        pop     esi                     ; restore regs used in APIC init

        pop     es                      ; (unless also saved for CPUID)

        pop     ds

InitLocalAPIC   endp

Example A-1.  Programming Local APIC for Virtual-Wire Mode (continued)

A.4  Constructing the MP Configuration Table

For a compliant system, one of the main functions of the system BIOS is to construct the MP

Floating Pointer Structure and the MP Configuration Table.  Because the MP Configuration Table

is optional, the BIOS must set the MP feature-information bytes in the MP Floating Pointer

Structure to indicate whether an MP Configuration Table is present.

If the MP Configuration Table is required, the BIOS constructs it in conjunction with the BSP and

APs.  The BIOS is responsible for synchronizing the activities of the APs during the construction

of the table.  The BIOS may need some synchronization during processor initialization so that each

processor may be brought up in the proper order.  The mechanism for synchronization is not

specified; however, the procedure described in the following paragraphs of this section uses AP

status flags as an example of a synchronization mechanism.  This procedure also initializes the APs

serially.  System developers may employ other mechanisms and may initialize all processors in

parallel to minimize the system start-up time.

The BIOS maintains an initialized AP status flag for each AP.  Each AP will begin executing the

same BIOS code as the BSP, but will eventually be put in a HALT state or held in a loop until the

BSP enables its AP status flag.



A-5

The BSP is responsible for positioning the MP Configuration Table.  The table can be located

within any unreported, hidden system memory space or within the BIOS ROM region.  The BIOS

can select any unused space in those regions.  For example, some PC/AT systems implement the

Extended BIOS Data Segment, a 1-Kbyte block usually positioned at the top of the PC’s 640K

base memory.  The configuration table may be placed in this portion of the memory map if enough

free space is available.

The BIOS initializes the floating table pointer with the configuration table’s memory address.

Then the BSP constructs the MP Configuration Table based on the total number of processors,

buses, I/O APICs, and interrupt sources in the system.  It sets all AP processor entry bits to zero.

Next, the BSP enables each AP in turn by setting its AP status flag.  Each AP follows these steps:

1. It executes a CPU identification procedure, reads its local APIC ID from the Local Unit ID

Register, and uses this information to complete its entry in the MP Configuration Table.

2. Just prior to exiting the BIOS, the AP clears its status flag to signal the BSP to enable the next

AP initialization process.

3. The AP, which is in Real Mode with interrupts disabled, executes a HLT instruction, and

enters the HALT state.

After the APs complete the initialization process, the BSP continues filling in the rest of the MP

Configuration Table entries.  For I/O interrupt assignment entries, each line should have its trigger

mode and polarity configured according to the device installed.

Once the MP table configuration process is complete, the BSP must calculate the checksum for the

MP Configuration Table.  The MP Configuration Table should be fully populated at this point.  A

disabled processor entry indicates that an AP failed in the initialization self-test.  System

developers may choose either to suspend system start up or to continue with the partially functional

system.

The BSP is the only processor that is responsible for loading the operating system.  It is up to the

MP operating system to decide when to bring the APs on-line.





B-1

B

Operating System

Programming Guidelines

The goal of the MP specification is to transfer enough information about the hardware environment

to the operating system that a single, shrink-wrapped, operating-system binary can boot-up and

fully utilize a wide variety of multiprocessor systems.  The following sections explain how the

operating system can take advantage of this specification to handle these operations:

1. Operating-system boot-up.

2. Self configuration.

3. Interrupt mode initialization.

4. Application processor startup.

5. Application processor shutdown.

6. Support for unequal processors.

B.1  Operating System Boot-up

While all processors in an MP-compliant system are functionally identical, one of the processors

will be designated as the boot processor (BSP) at system initialization by the system hardware or

by the system hardware in conjunction with the BIOS.  The rest of the processors are designated as

the application processors (APs).  The BSP is responsible for booting the operating system.  Once

the MP operating system is up and running, the BSP functions as an AP.

Usually a processor is designated as the BSP because it is capable of controlling all system

hardware, including AP startup and shutdown.  The operating system must determine and

remember which processor is designated as the BSP by its APIC ID, so it can keep the BSP

operating as the last running processor during system shutdown.  The BSP is not necessarily the

first processor, especially in fault-tolerant MP systems in which any available processor can be

designated as the BSP.

At the time that the first instruction of the operating system is executed, the APs are in the

following state:

• The APs have been restrained (either by the BIOS or by the hardware) from executing

operating system code.  In other words, the executing processor is the BSP.

• The local APICs of the APs are disabled.  This means that the APICs are passively monitoring

the bus and will respond only to the interprocessor interrupts INIT IPI and STARTUP IPI.

The first thing the operating system should do is determine whether the system conforms to the MP

specification.  This is done by searching for the MP floating pointer structure.  If found, it indicates

that the system is MP compliant, and the operating system should continue to look for the MP

Configuration Table.  If the system is not MP compliant, the operating system may attempt other

means of MP system detection, if it is capable of doing so, or treat the system as a uniprocessor

system.



B-2

B.2  Operating System Booting and Self-configuration

An MP Configuration Table is required by the MP specification except for the default system

configurations defined in Chapter 5.  The table is read-only to the operating system.  If the MP

Configuration Table exists, the BSP should access the processor entries in the table to configure

the operating system.

The BSP should later configure the operating system based on the bus, I/O APIC, IRQs, and

system interrupt assignment entries of the configuration table.  Note that certain types of buses are

mutually exclusive, such as EISA with MCA, or ISA with MCA.  The operating system may report

such errors in the configuration table, if they occur.

If the MP Configuration Table does not exist, the BSP may configure the operating system for the

default system configuration selected by the default configuration bits of the MP feature-

information bytes.  In this case, only two processors and one I/O APIC exist in the system; both

processors have the same type and features.

For MP-compliant systems using the default configurations, the operating system must have a set

of MP configuration tables predefined internally must use the internal MP configuration table

instead.

For dual processor systems, the MP specification requires that the local APIC IDs of the processors

begin with zero.  The BSP in a dual-processor system can determine the AP’s local APIC ID by

reading its own local APIC ID while still in uniprocessor mode.  When the APIC ID of the BSP is

one, the APIC ID of the AP is zero, and vice versa.  Depending on which type of APIC is used in

the system, the BSP may use either the STARTUP IPI or INIT IPI to wake up the AP.

B.3  Interrupt Mode Initialization and Handling

At the time the operating system boots, the interrupt structure is configured for DOS compatibility.

The system may be running either in PIC Mode or in Virtual-Wire Mode.  If it is in PIC Mode, the

NMI and INTR will bypass the BSP’s local APIC when the Interrupt Mode Configuration Register

(IMCR) has a value of zero.  The operating system should not try to read the IMCR because it may

not exist.

The operating system should switch over to Symmetric I/O Mode to start multiprocessor operation.

If the IMCRP bit of the MP feature information bytes is set, the operating system must set the

IMCR to APIC mode.  The operating system should not write to the IMCR unless the IMCRP bit

is set.

Then the operating system should enable its own local APIC, thereby allowing IPI communications

with other APIC-based processors.  At this time, the APs’ local APICs have interrupts disabled.

Interrupts must remain disabled at the APs’ local APICs while the BSP is enabling the I/O APIC

and bringing the system to the normal operating state.  Otherwise, an I/O interrupt may be

delivered to the uninitialized AP, resulting in the loss of the interrupt.

It is the responsibility of the operating system to assign unique IDs to APIC I/O units.



B-3

B.4  Application Processor Startup

An AP may be started either by the BSP or by another active AP.  The operating system causes

application processors to start executing their initial tasks in the operating system code by using

one of the two techniques indicated in Table B-1: either INIT IPI or STARTUP IPI.  Because the

STARTUP IPI is ignored by the 82489DX APIC, the operating system should attempt to start up

the AP using the STARTUP IPI first.  If the AP fails to start up, then the operating system should

try using the INIT IPI.

Table B-1.  AP Startup Techniques

APIC Type

Local APIC Version Register

(hexadecimal) Technique

82489DX APIC 0x Targeted INIT IPIs combined with the warm reset

feature of the BIOS.

Integrated APIC, i.e.,

Pentium™ (735\90,

815\100) processors

1x Targeted STARTUP IPIs.

NOTE

x = any 4-bit hexadecimal number

If the MP Configuration Table exists, it provides the IDs of the application processor APICs.

These IDs should be used as the destination addresses in targeted IPIs.

If the MP Configuration Table does not exist, the system must be a dual processor system.

Because the MP specification requires, in this case, that the local APIC IDs of the processors begin

with zero, the BSP in a dual-processor system can determine the AP’s local APIC ID by simply

reading its own local APIC ID while still in uniprocessor mode.  This is important, because a BSP

cannot start up an AP unless it already knows the local APIC ID.

Both INIT IPI and STARTUP IPI are open-ended commands.  It is the operating system’s

responsibility to determine whether the command is received by the targeted AP and executed

successfully.  The operating system could, for example, define a status flag for each processor.

After being awakened, a processor would set its status flag, indicating to the operating system that

it is present and running.  If the status flag did not change value after a certain time, the operating

system would treat the processor as not present or the APIC for that processor does not support the

type of IPI used.

B.4.1   INIT IPI With Warm Reset

This startup technique is used with systems based on the 82489DX APIC.

An INIT IPI is an IPI that has its delivery mode set to RESET.  Upon receiving an INIT IPI, a local

APIC causes an INIT at its processor.  The processor resets its state, except that caches, floating-

point unit, and write-buffers are not cleared.  Then the processor starts executing from a fixed

location, which is the reset vector location.  To cause the processor to jump to a different location,

the INIT IPI must be used as part of a warm-reset.



B-4

The warm reset is a feature of every standard PC/AT BIOS.  It allows the INIT signal to be

asserted without actually causing the processor to run through its entire BIOS initialization

procedure (POST).  This feature is used, for example, to return an 80286 processor to Real Mode.

The key components of warm reset are the following:

• Shutdown code.  One of the first actions of the BIOS POST procedure is to read the shutdown

code from location 0Fh of the CMOS RAM.  This code can have any of several values that

indicate the reason that an INIT was performed.  A value of 0Ah indicates a warm reset.

• Warm-reset vector.  When POST finds a shutdown code of 0Ah, it executes an indirect jump

via the warm-reset vector, which is a doubleword pointer in system RAM location 40:67h.

By putting an appropriate pointer in the warm-reset vector, setting the shutdown code to 0Ah, then

causing an INIT, the BIOS (or the operating system) can cause the current processor to jump

immediately to any location.  Because all processors in an MP system share the same system

memory, and because the INIT IPI gives one processor the power to cause an INIT at another, the

operating system can cause any processor to jump immediately to any location.

To wake up an AP, the operating system places the address of its AP initialization routine into the

warm-reset vector, sets the CMOS shutdown code to 0Ah, then sends an INIT IPI to the AP.  The

INIT IPI causes the AP to enter the BIOS POST routine, where it immediately jumps to the warm-

reset vector and begins executing the operating system’s AP initialization routine.  Only one

processor may be executing the startup routine at any given time, due to the use of the shutdown

code.

B.4.2   STARTUP IPI

This startup technique is used with systems based on version 1.x or higher of the local APIC.

These APICs recognize the STARTUP IPI, which is an APIC Interprocessor Interrupt with trigger

mode set to edge and delivery mode set to “110” (bits 8 through 10 of the interprocessor interrupt

register).

The STARTUP IPI causes the target processor to start executing in Real Mode from address

000VV000h, where VV is an 8-bit vector that is part of the IPI message.  Startup vectors are

limited to a 4KB page boundary in the first megabyte of the address space.  Vectors A0-BF are

reserved; do not use vectors in this range.  STARTUP IPIs are not maskable, do not cause any

change of state in the target processor (except for the change to the instruction pointer), and can be

issued at any time.  A STARTUP IPI neither requires the targeted APIC to be enabled nor the

interrupt table to be programmed.  If the target processor is in the HALT state, a STARTUP IPI

causes it to leave that state and start executing.  If the target processor is running in Protected

Mode, a STARTUP IPI causes it to switch to Real Mode.  If it is already in Real Mode, it remains

in Real Mode.  In either case, CS:IP is set to VV00:0000h.

For an operating system to use a STARTUP IPI to wake up an AP, the address of the AP

initialization routine (or of a branch to that routine) must be in the form of 000VV000h.  Sending a

STARTUP IPI with VV as its vector causes the AP to jump immediately to and begin executing

the operating system’s AP initialization routine.

The operating system should not issue a STARTUP IPI to an 82489DX.  A STARTUP IPI will be

ignored instead of forcing the targeted processor to execute from the given address.



B-5

B.5  Shutdown Handling

An AP may be shut down by itself, by the BSP, or by another active AP.  Shutting down an AP

with an active task or a bound device driver is not permitted.  Only the BSP may shut itself down,

and it must be the last processor to shut down.

The same method that is used to cause APs to execute their startup procedures is also used to cause

them to execute their shutdown procedures, as described below.  The operating system should use

the configuration table to determine the IDs of application processor APICs.  To cause a shutdown,

these IDs should be used as destination addresses in targeted IPIs.  If the configuration table does

not exist, the operating system can use the IDs determined during its startup procedure.

• INIT IPI with Warm Restart.  The operating system places the address of its AP shutdown

routine into the warm-reset vector (40:67), sets the CMOS shutdown code to 0Ah, then sends

an INIT IPI to the AP.  The INIT IPI causes the AP to enter the BIOS POST routine, where it

immediately jumps to the warm-reset vector and begins executing the operating system’s AP

shutdown routine.  Only one processor may be executing the shutdown routine at any given

time (due to the use of the shutdown code).

• STARTUP IPI.  The address of the AP shutdown routine (or of a branch to that routine) must

be in the form of 000VV000h.  Sending a STARTUP IPI with VV as its vector, causes the AP

to jump immediately to and begin executing the operating system’s AP shutdown routine.

B.6  Other IPI Applications

The operating system may use IPIs for other run-time duties, such as handling the various

processor caches.

B.6.1   Cache Flush

The PC+MP specification requires that hardware maintain cache coherency.  Cache flushing by the

operating system should not be required under normal circumstances.  The only need for cache

flushing by the operating system is prior to powering-down a processor.

Should a system-wide cache flush be necessary, the operating system should use the broadcast IPI

mechanism to request that each of the processors write back and invalidate its own cache

subsystem and then synchronize upon the completion of that activity.

B.6.2   Handling TLB Invalidation

The operating system should use the broadcast IPI mechanism to request that each of the

processors invalidate its TLBs.  The BSP and APs should synchronize the completion of their

actions either via memory-based semaphores or via targeted return IPIs.  The actual IPI vector is

operating-system dependent.

B.6.3   Handling PTE Invalidation

The operating system should use the broadcast IPI mechanism to request that each processor

invalidate a specific page-table entry (PTE) if it is cached in that processor’s TLBs.  The BSP and

APs should synchronize the completion of their actions either via memory-based semaphores or via

targeted return IPIs.  The actual IPI vector is operating-system dependent.



B-6

B.7  Spurious APIC Interrupts

For the 8259, there is a time window in which a spurious interrupt may be misinterpreted as a

genuine interrupt  For example, if an interrupt goes inactive just after the first INTA cycle but

before the second INTA cycle, the 8259 will also signal this spurious interrupt as a genuine

interrupt.  The distributed APIC architecture, by its nature, is more vulnerable to spurious interrupt,

because the device interrupt may be latched and recognized without the INTA cycle

To ensure that spurious interrupts are handled properly, it is strongly recommended that the device

drivers must read the status register before servicing the device.  In cases where spurious interrupts

do occur, the device drivers may simply ignore them.

B.8  Supporting Unequal Processors

Some MP operating systems that exist today do not support processors of different types, speeds,

or capabilities.  However, as processor lifetimes increase and new generations of processors arrive,

the potential for dissimilarity among processors increases.  The MP specification addresses this

potential by providing an MP Configuration Table to help the operating system configure itself.

Operating system writers should factor in processor variations, such as processor type, family,

model and features, to arrive at a configuration that maximizes overall system performance.  At a

minimum, the MP operating system should remain operational and should support the common

features of unequal processors.



C-1

C

System Compliance Checklist

Any "NO" answer indicates non-compliance.

Condition YES NO

1. PC/AT Compatibility

    Does system contain all necessary MP-compatible circuitry?

    Will system boot and run DOS and Microsoft Windows?

2. Memory Subsystem

    Are system memory address map, cacheability, and shareability consistent with
          definitions in Table 3-1?

    Are memory-mapped I/O devices located at the top of the memory address space?

    If the system has external cache:

          Is cache coherence maintained by hardware?

          Is cache flushing supported by hardware?

          Is cache flushing limited to the local caches?

          Are all locked operations visible to all processors?

          Are locked operations guaranteed on aligned memory operations?

          Are memory writes observed externally in same order as programmed?

3. Multiprocessor Interrupt Control

    Does each processor have its own local APIC?

    Is there a processor designated for booting?

    Does system support either PIC Mode or Virtual-Wire Mode at power-on?

    Is Symmetric I/O Mode implemented?

    Are all APIC IDs unique?

    Are all local APIC IDs assigned by hardware or BIOS?

    Do local APIC IDs begin with zero?

4. Reset Support

    Does system implement software-initiated processor-specific INIT (INIT IPI)?

    Do system soft and hard resets reset all processors?

5. APIC Interval Timer

     On 82489DX, is CLK the only clock source of the APIC timer?

6. Fault Resilient Booting

     If fault resilient booting feature is implemented:

         Is fault resilient booting feature software transparent?

         Are system signals: NMI, INTR, FERR#, IGNNE#, and A20M connected to BSP?

7. MP Floating Pointer Structure and MP Configuration Table

     Is the MP floating pointer structure implemented?

     If the MP feature byte 1 (default configuration type) is nonzero:

          Does the system correctly implement one of the default configurations?

     If the MP feature byte 1 (default configuration type) is zero:

          Has the system created a correct MP configuration table?

     If the IMCR presence bit is set, is PIC Mode implemented?

     If the IMCR presence bit is not set, is Virtual-Wire Mode implemented?





D-1

D

Multiple I/O APIC

Multiple PCI Bus Systems

The information in this specification describes the majority of multiprocessor systems.  This

appendix provides clarifications for implementors who are considering designs with more than one

I/O APIC.  In particular, a number of proposed systems will incorporate multiple I/O APICs in

order to support multiple PCI buses.  This appendix provides guidance for implementors who wish

to be sure that their designs comply with this specification.

D.1  Interrupt Routing with Multiple APICs

Two basic approaches to routing interrupts can be used when the system has more than one I/O

APIC:

• The fixed routing scheme uses the same routing in both PIC or virtual wire mode and

symmetric I/O mode.

• The variable approach changes the routing when switching to symmetric I/O mode.

This section applies when a PCI interrupt is connected both to an I/O APIC input of its own and to

the I/O APIC input of the EISA/ISA IRQ to which the interrupt is routed when in PIC or virtual

wire mode.  This double routing is typically used to preserve PC AT compatibility at system start-

up, allowing a system to boot from a disk connected to a PCI controller on a second PCI bus, for

example.  To prevent double delivery of this PCI interrupt once the system switches to symmetric

I/O mode for an MP operating system, the duplicate routing must either be turned off or concealed

from the operating system.  If a PCI interrupt is only connected via an EISA/ISA IRQ, the

EISA/ISA entry in the MP configuration table is sufficient to describe the routing.

The variable routing method described below is preferred since it is more flexible and offers best

use of available system resources.  Fixed routing is described here for compatibility with existing

systems that do not implement a variable routing strategy.

D.1.1   Variable Interrupt Routing

In systems with variable interrupt routing, all PCI interrupts map to EISA/ISA IRQs when in PIC

or virtual wire mode.  When switched to symmetric I/O mode, the system disables this routing and

delivers the PCI interrupt through I/O APIC inputs different from those used by the EISA/ISA

IRQs.

If IMCR is implemented, the hardware design can use this bit to enable/disable the routing of the

PCI interrupts to EISA/ISA IRQs.  On systems with IMCR, this operation might be the only one

that is required of the operating system when switching to symmetric I/O mode, other than the

actual programming of the I/O and Local APICs.



D-2

If IMCR is implemented but the system includes one or more I/O APICs that are not controlled

through IMCR, the hardware must accomplish routing changes for such I/O APICs by some other

means when the system switches into symmetric I/O mode.  These routing changes must be done

without requiring any additional intervention from software.

For systems without the IMCR register, the routing of the PCI interrupts to the EISA/ISA IRQ

must be automatically disabled as the I/O APICs are programmed.  Therefore, when the operating

system programs the I/O APICs in accordance with the MP configuration table, the hardware must

detect this operation and disable the routing mechanism without additional intervention by the

operating system.  This operation can be done globally for an entire system as soon as any APIC

interrupts are enabled or it can be done on an interrupt-by-interrupt basis.

D.1.2   Fixed Interrupt Routing

Several implementations of fixed interrupt routing are possible, depending on hard wiring, via

jumpers for example, or software means, such as chipset-specific registers.  Since these

implementations have no mechanism to disable the PCI interrupt to EISA/ISA IRQ routing, the

MP configuration table must be set up carefully to avoid problems with duplicate interrupt

mappings in symmetric I/O mode.

To avoid such problems on systems with fixed routing, PIC or virtual wire mode interrupt routings

must not be used by software when the system is in symmetric mode, since these routings cannot

be disabled or altered.  This situation implies two restrictions that must be placed on the way PCI

interrupts are routed to EISA/ISA IRQs and on that way the MP configuration table is built:

• If a PCI interrupt is routed to an EISA/ISA IRQ that is used by an EISA/ISA device, that PCI

interrupt must be delivered through the same I/O APIC input as that EISA/ISA IRQ.  The

connection from the PCI interrupt to the additional I/O APIC input must not be entered in the

MP configuration table.

• If a PCI interrupt is routed to an EISA/ISA IRQ which is NOT used by an EISA/ISA device,

that PCI interrupt must be delivered through its individual I/O APIC connection, and the

connection of that EISA/ISA IRQ to its I/O APIC input should not be entered in the MP

configuration table.

As an example, take a system with two I/O APICs, a PCI bus, and an EISA bus.  Each EISA IRQ

is connected to an input of one I/O APIC and each PCI interrupt is connected to the other I/O

APIC.  A fixed interrupt routing design could connect all PCI interrupts to a single EISA interrupt.

This design does not give optimum performance, because PCI interrupts must be shareable, but it

does allow all interrupts to be properly handled.

If an EISA device is connected to the same interrupt, the MP configuration table would not contain

any entries for the second I/O APIC.  The second I/O APIC is not used.

If no EISA device uses that interrupt, however, the MP configuration table could contain an entry

for each PCI interrupt, describing its connection to the second I/O APIC.  The EISA IRQ used by

the PCI interrupts in PIC mode would not have an entry in the table.  All other EISA IRQs would

have an entry in the table describing connections to the first I/O APIC.



D-3

Fixed interrupt routing also implies a restriction on software that is implicit but important in the

context of systems with more than one I/O APIC.  The operating system must program I/O APICs

to handle only the interrupts for which the MP configuration table contains no corresponding I/O

interrupt assignment entries.  If the configuration table contains no entry for a given I/O APIC

input, that interrupt must be left in the masked state.

D.2  Bus Entries in Systems with More Than One PCI Bus

To accommodate systems with more than one PCI bus within the confines of version 1.1 of this

specification, construction of the bus entries on the MP configuration table must be handled in a

very particular sequence:

1. Begin with bus entries for the PCI buses.  Start at bus zero, using the actual PCI bus number as

the bus ID for the bus entry.

2. Add entries for other buses.  These entries can use bus ID numbers left vacant by the PCI bus

entries.

This sequence implies that bus ID numbers do not have to increase sequentially by increments of

one; the requirement is that they must appear in ascending order by bus ID number.  This specific

interpretation of the information presented in Table 4-7 ensures consistency between the

information in the MP configuration table and the model for systems with multiple PCI buses that

is presented in the formal PCI specification, which allows for more flexibility in bus numbering.

This numbering scheme requires bus entries in the MP configuration table to be sorted

appropriately.  For example, bus entries should appear in the order PCI (0), EISA (1), and PCI(4)

in a system with three buses, two PCI buses numbered 0 and 4, and a single EISA bus numbered as

1.

D.3   I/O Interrupt Assignment Entries for PCI Devices

Section 4.3.4 defines the format of interrupt assignment entries.  The example presented there does

not, however, completely explain the semantics of the source bus IRQ field for PCI devices.

For PCI devices, the semantics for encoding PCI interrupts should mirror the PCI specification as

follows:

Table D-1.  I/O Interrupt Entry Source Bus IRQ Field for PCI Devices

Field Offset

(in bytes:bits)

Length

(in bits)

Description

SOURCE BUS IRQ 5:0 2 Identifies the PCI interrupt signal, where

0x0 corresponds to INT_A#, 0x1 to

INT_B#, 0x2 to INT_C# and 0x3 to

INT_D#.

SOURCE BUS IRQ 5:2 5 Gives the PCI Device Number where the

interrupt originates.

RESERVED 5:7 1 Reserved for future use.



Glossary

82489DX: The 82489DX Advanced Programmable Interrupt Controller (APIC).

8259A: The 8259A Programmable Interrupt Controller (PIC) or its equivalent.

AP: Application processor, one of the processors not responsible for system initialization.

APIC: Advanced Programmable Interrupt Controller, either the 82489DX APIC or the integrated

APIC on Pentium processors.

BIOS: Basic Input/Output Subsystem.

BSP: Bootstrap processor, the processor responsible for system initialization.

Cache coherency: A property of a cache/memory system that guarantees that a request for an item

from memory will retrieve the most up-to-date value of that item, regardless of what cache or

memory location currently holds that value.

CMOS RAM: The battery backed-up configuration memory of the PC/AT motherboard.

DP: A dual processor system is one with two processors.

ExtINT: A delivery mode of the Local Vector Table of a local APIC that causes delivery of a

signal to the INT pin of the processor as an interrupt that originated in an externally connected

8259A-equivalent PIC.  The ExtINTA output signal is also asserted.  The INTA cycle that

corresponds to the ExtINT delivery should be routed to the external PIC that is expected to supply

the vector.

Flush: Write back all modified lines of a cache.

INIT: Unless otherwise specified, the processor-specific reset or system-wide soft reset functions.

This definition is functional and sometimes bears no relationship to the actual signal name.  For

example, the term "INIT" may refer to the INIT signal on the Pentium processor or to the RESET

signal on the Intel486 processor.

INIT IPI: A type of APIC interprocessor interrupt whose delivery mode is set to RESET.  Upon

delivery to the specified destinations, the destination APICs assert their PRST output signals.

When the PRST lines are connected to the INIT or RESET inputs of their respective processors, an

INIT IPI causes reinitialization of the destination processors.

Invalidate: Change the state of a cache line to the Invalid state.

IPI: Interprocessor interrupt.

MESI: A cache coherency protocol named after the states that cache lines may have: Modified,

Exclusive, Shared, Invalid.

MP: A multiprocessor system is one with two or more porcessors.

PIC: Programmable Interrupt Controller.



PIC Mode: One of three interrupt modes defined by the MP specification.  In this mode the APICs

are effectively disabled, while interrupts are generated by 8259A-equivalent PICs and delivered

directly to the BSP.  This is a uniprocessor compatibility mode.

POST: Power-On Self Test, the first BIOS procedure executed after a RESET or INIT.

RESET: The system-wide hard reset.  This definition is functional.  It may refer to the RESET

signal on both Pentium and Intel486 processors or the RESET signal of the 82489DX APIC.

Shutdown code: The value of CMOS RAM location 0Fh, which indicates that reason that a

RESET was performed.

STARTUP IPI: A type of APIC interprocessor interrupt that is similar to an NMI with an

embedded vector.  It does not cause any change of state, but merely causes the targeted processor

to start executing in Real Mode from address 000VV000h, VV being an 8-bit vector which is part

of the IPI message.  Startup vectors are limited to a 4K page boundary in the first 1 MB of the

address space.  STARTUP IPIs are not maskable, and can be issued at any time.  The benefit of

STARTUP-IPI compared to NMI is that it does not require the targeted APIC to be enabled, and it

does not require the interrupt table to be programmed.  Thus, the operating system's initialization

procedure can use it to wake up an AP that has been sleeping since RESET or INIT.  The

STARTUP IPI is not supported by the 82489DX APIC.

Symmetric I/O Mode: One of three interrupt modes defined by the MP specification.  In this

mode, the APICs are fully functional, and interrupts are generated and delivered to the processors

by the APICs.  Any interrupt can be delivered to any processor.  This is the only multiprocessor

interrupt mode.

Symmetry: The relationship of equality among components of a multiprocessor system in which

no processor is special with respect to its access to memory, interrupts, or I/O.  For interrupts,

symmetry means that any interrupt from any source can be routed to any processor and handled

there.  For I/O, it means that all I/O control registers, be they in memory space, I/O space, or some

other special address space, are accessible to all processors.  Per-processor control hardware, such

as interrupt controllers or processor identification registers, must be at the same physical address

for all processors.

Virtual-Wire Mode: One of three interrupt modes defined by the MP specification.  In this mode

interrupts are generated by the 8259A-equivalent PICs, but delivered to the BSP by an APIC that is

programmed to act as a "virtual wire"; that is, the APIC is logically indistinguishable from a

hardwired connection.  This is a uniprocessor compatibility mode.

Warm reset: A technique that allows the RESET or INIT signal to be asserted without actually

causing the BIOS to run through its entire initialization procedure.  If a value of 0Ah is placed in

the shutdown code, the first instructions of the BIOS POST procedure read the warm-reset vector

from system RAM location 40:67h, and jump to that address.

Write-back: A cache update policy wherein a modified cache line is not written back to main

memory until the last possible instant—when another processor needs to access the data or when

its location in the cache is needed for other data.





Revision History

Revision Revision History Date

Pre-release Version 1.0.  Formerly called “PC+MP Specification” 10/27/93

-001 Version 1.1.  Resolves conflicts with MCA-based systems.  The following

changes have been made:

1.  Two MP feature information bytes were moved from the BIOS System

Configuration Table to the RESERVED area of the MP Floating Pointer

Structure.

2.  If the MP Floating Pointer Structure is present, it indicates that the system

is MP-compliant, in accordance with this specification.  (Previously, this was

indicated by bit 0 of MP Feature Information Byte 1.)

3.  One more hardware default system configuration was added for MCA+PCI

with the integrated APIC.

4/11/94

-002 Minor technical corrections. 6/1/94

-003 Added Appendix D:  Multiple I/O APIC Multiple PCI Bus Systems. 9/1/94





1-3

Order Number:  242016-003

Printed in U.S.A.


