

Intel® Architecture
Memory Encryption Technologies

Specification

Ref: #336907-002US

Rev: 1.2

April 2019

Ref: #336907-002US 2

Disclaimers

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. No license (express or implied, by estoppel or otherwise) to
any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-
infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice.
Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current
characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting
www.intel.com/design/literature.htm.

Intel, the Intel logo, Intel processors, Intel Ultra Path Interconnect, and Intel UPI are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others

Copyright © 2019, Intel Corporation. All rights reserved.

Ref: #336907-002US 3

Terminology

1. Total Memory Encryption (TME) – this is a baseline capability for memory encryption with a

single ephemeral key.
2. MKTME – Add support to use multiple keys for page granular memory encryption with

additional support for software provisioned keys.

Ref: #336907-002US 4

1 Introduction
This document is a work in progress and is subject to change based on customer feedback and
internal analysis. This document does not imply any product commitment from Intel to anything in
terms of features and/or behaviors.

This document describes the memory encryption support targeting future Intel® processors. Note
that Intel platforms support many different types of memory and not all SOC implementations will
support this capability for all types of memory. Initial implementation is likely to focus on traditional
DRAM and NVRAM.

Total Memory Encryption (TME) – provides the capability to encrypt the entirety of the physical
memory of a system. This capability is typically enabled in the very early stages of the boot
process with a small change to BIOS, and once configured and locked, will encrypt all the data on
external memory buses of an SOC using the NIST standard AES-XTS algorithm with 128-bit keys.
The encryption key used for TME uses a hardware random number generator implemented in the
Intel SOC, and the keys are not accessible by software or by using external interfaces to the Intel
SOC. TME capability is intended to provide protections of AES-XTS to external memory buses
and DIMMs. The architecture is flexible and will support additional memory protection schemes in
the future. This capability, when enabled, is intended to support (unmodified) existing system and
application software. Overall performance impact of this capability is likely to be relatively small
and is highly dependent on workload.

Multi-Key Total Memory Encryption (MKTME) builds on TME and adds support for multiple
encryption keys. The SOC implementation will support a fixed number of encryption keys, and
software can configure an SOC to use a subset of available keys. Software manages the use of
keys and can use each of the available keys for encrypting any page of the memory. Thus,
MKTME allows page granular encryption of memory. By default MKTME uses the TME encryption
key unless explicitly specified by software. In addition to supporting a CPU generated ephemeral
key (not accessible by software or by using external interfaces to an SOC), MKTME also supports
software provided keys. Software provided keys are particularly useful when used with non-
volatile memory or when combined with attestation mechanisms and/or used with key provisioning
services. In a virtualization scenario, we anticipate VMM or hypervisor to manage the use of keys
to transparently support legacy operating systems without any changes (thus, MKTME can also
be viewed as TME virtualization in such a deployment scenario). An OS may be enabled to take
additional advantage of MKTME capability, both in native and virtualized environments. When
properly enabled, MKTME is available to each guest OS in a virtualized environment, and the
guest OS can take advantage of MKTME in the same ways as a native OS.

Ref: #336907-002US 5

2 Introduction to Total Memory Encryption
(TME)
The diagram below shows the idea of total memory encryption in a two-socket configuration;
actual implementation may vary.

Figure 1: Memory Encryption in a Two-Socket Configuration

The AES XTS encryption engine is in the direct data path to external memory buses and
therefore, all the memory data entering and/or leaving the SOC on memory buses is encrypted
using AES XTS. The data inside the SOC (in caches, etc.) remains plain text and therefore,
supports all the existing software and I/O models.

In a typical deployment, the encryption key is generated by the CPU and is not visible to the
software. When the system is configured with NVRAM, if the NVRAM is to be treated as DRAM,
then it can also use CPU generated keys. However, if the NVRAM is to be treated as non-volatile
memory, there is an option to be able to have the same key generated/reused across platform
power cycles/reboots.

Ref: #336907-002US 6

3 Introduction to Multi-Key Total Memory
Encryption (MKTME)

3.1 High Level Architecture
The high level architecture of MKTME is shown in the figure below.

Page table entry of physical address

VM1
KeyID: 0, 1, 3

VM2
KeyID: 0, 2, 3

VMM
Uses KeyID 0 for its pages

Manages KeyID for all memory

Core

Cache

AES XTS AES XTS

DRAM
Controller

NVRAM
Controller

0000101000110100010010010001

Encrypted
using

AES XTS 0 2 0 1 3 2 0 1 1 2

KeyID Physical Address

Pages in physical memory
Number inside page indicates KeyID

Figure 2: MKTME High Level Architecture

Ref: #336907-002US 7

Figure 2 shows the basic architecture of MKTME, which shares basic hardware architecture with
TME with the exception that AES XTS now supports multiple keys. On the right, the figure shows
use of MKTME in a virtualized environment, though architecture supports use of MKTME in a
native OS deployment scenario as well. In this example, one hypervisor/VMM and two VMs are
shown. By default, hypervisor uses KeyID 0 (same as TME) though it can use a different KeyID for
its own memory as well. VM1 uses KeyID1 for its own private pages, and VM2 is using KeyID 2
for its own private pages. In addition, VM1 can always use KeyID 0 (TME KeyID) for any page and
may also use KeyID 3 for shared memory between itself and VM2. The KeyID is included in the
Page Table Entry as upper bits of the physical address field. In this example, KeyID 2 is shown.
The remainder of the bits in the physical address field are used to address bits in the memory.
The figure shows one possible page assignment along with KeyID for illustration purposes, though
in this case hypervisor has full freedom to use any KeyID with any pages for itself or any of its
guest VM. Note that the idea of oversubscribing physical address bits in the page table extends to
other page tables as well, including IA page tables and IOMMU page tables. The KeyID remains
part of the physical address bits everywhere in the SOC, with the exception of tweaks for AES
XTS and on external memory buses. KeyID is not used outside of the SOC, or in tweaks for AES
XTS.

Ref: #336907-002US 8

4 TME & MKTME: Enumeration and Control
Registers
This information is applicable only to CPUs that enumerate TME and/or MKTME capabilities.

4.1 Enumeration
TME and MKTME capability is exposed to the BIOS/software via MSRs described in this section.
The maximum number of keys available/supported in the processor for MKTME are enumerated.
BIOS will need to activate this capability via an MSR (described later) and it must select the
number of keys to be supported/used for MKTME during early boot process. Upon activation, all
memory (except in the TME exclusion range) attached to the CPU/SoC is encrypted using an
AES-XTS 128 bit ephemeral key (platform key) that is generated by the CPU on every boot.

Intel processors support external memory controllers. These memory controllers may be attached
to the processor via coherent buses such as Intel® Ultra Path Interconnect (Intel® UPI) or Compute
Express Link (CXL). MKTME enumeration can be used to discover the capabilities of the Intel
processor and some of the memory attached to the integrated memory controller, but do not
necessarily represent external memory controller features, or some types of memory attached to
the integrated controller. The memory regions that are capable of being protected by CPU
cryptographic capabilities are communicated to the system software via a new UEFI memory
attribute, EFI_MEMORY_CPU_CRYPTO, introduced in UEFI 2.8. If this flag is set, the memory
region is capable of being protected with the CPU’s memory cryptographic capabilities. If this flag
is clear, the memory region is not capable of being protected with the CPU’s memory
cryptographic capabilities, or the CPU does not support CPU memory cryptographic capabilities.
System software must consult the attribute to determine the ranges that can be encrypted using
MKTME.

4.1.1 TME

CPUID.TME (CPUID.7.0.ECX.13) enumerates the existence of four architectural MSRs and their
MSR addresses:

IA32_TME_CAPABILITY – 981H

IA32_TME_ACTIVATE – 982H

IA32_TME_EXCLUDE_MASK – 983H

IA32_TME_EXCLUDE_BASE – 984H

4.1.2 Multi-Key TME

The CPUID.TME bit indicates the presence of the TME_CAPABILITY MSR, and that MSR will
further enumerate the TME characteristics, as well as the MKTME availability and characteristics.

Ref: #336907-002US 9

MKTME is enabled/configured by BIOS using the IA32_TME_ACTIVATE MSRs. MKTME requires
TME and cannot be enabled without enabling TME.

4.1.3 Memory Encryption Capability MSR
IA32_TME_CAPABILITY MSR – 981H

Register
Address

Architectural MSR Name
and Bit Fields

MSR/Bit Description Comment

981H IA32_TME_CAPABILITY
MSR

Memory Encryption Capability MSR One MSR for TME
and MKTME.

 0 Support for AES-XTS 128 bit
encryption algorithm.

NIST standard

 15:1 [Reserved] For additional
encryption
algorithms.

 23:16 [Reserved]

 31:24 [Reserved] For future TME
usage.

 35:32 MK_TME_MAX_KEYID_BITS

Number of bits which can be
allocated for usage as key identifiers
for multi-key memory encryption.

Zero if MKTME is not supported.

4 bits allow for a
max value of 15,
which could
address 32K keys.

 50:36 MK_TME_MAX_KEYS

Indicates the maximum number of
keys which are available for usage.

This value may not be a power of 2.

This maximum value of this field will
be
(2^MK_TME_MAX_KEYID_BITS)-1

Zero if MKTME is not supported.

KeyID 0 is
reserved for TME
and this number
does not include
the TME key.

Max value is 32K-1
keys.

 63:51 [Reserved]

Ref: #336907-002US 10

4.1.4 Note on CPUID Reporting of MAX_PA_WIDTH

CPUID enumeration of MAX_PA_WIDTH (leaf 80000008.EAX) is unaffected by MKTME activation
and will continue to report the maximum number of physical address bits available for software to
use, irrespective of the number of KeyID bits.

4.2 Memory Encryption Configuration and Status Registers

4.2.1 ACTIVATION MSR

IA32_TME_ACTIVATE MSR – 982H

This MSR is used to lock the MSRs listed below. Any write to the following MSRs will be ignored
after they are locked. The lock is reset when CPU is reset.

• IA32_TME_ACTIVATE
• IA32_TME_EXCLUDE_MASK
• IA32_TME_EXCLUDE_BASE

Note that IA32_TME_EXCLUDE_MASK and IA32_TME_EXCLUDE_BASE must be configured
before IA32_TME_ACTIVATE.

To enable MKTME, the TME Enable RWL bit in the IA32_TME_ACTIVATE MSR must be set and
bits 35:32 must have a non-zero value (which will specify the number of KeyID bits configured for
MKTME).

Register
Address

Architectural MSR Name
and Bit Fields

MSR/Bit Description Comment

982H IA32_TME_ACTIVATE MSR

 0 Lock RO – Will be set upon
successful WRMSR (or first
SMI); written value ignored.

 1 TME Enable RWL – Enable Total
Memory encryption using CPU
generated ephemeral key based
on hardware random number
generator.

This bit also enables
and locks MKTME;
MKTME cannot be
enabled without
enabling TME.

 2 Key select

0 – Create a new TME key
(expected cold/warm boot).

1- Restore the TME key from
storage (Expected when resume
from standby).

Ref: #336907-002US 11

 3 Save TME key for standby – Save key into
storage to be used when resume from
standby.

May not be
supported in
all CPUs.

 7:4

TME policy/encryption algorithm

Only algorithms enumerated in
IA32_TME_CAPABILITY are allowed.

For example: 0000 – AES-XTS-128

Other values are invalid.

TME
Encryption
algorithm to
be used.

 31:8 Reserved

 35:32 Reserved if MKTME is not enumerated.

 MK_TME_KEYID_BITS

The number of key identifier bits to allocate
to MKTME usage. Similar to enumeration,
this is an encoded value.

Writing a value greater than
MK_TME_MAX_KEYID_BITS will result in
#GP

Writing a non-zero value to this field will
#GP if bit 1 of EAX (TME Enable) is not also
set to ‘1, as TME must be enabled to use
MKTME.

Example: To
support 255
keys, this
field would
be set to a
value of 8.

 47:36 [Reserved]

 63:48 Reserved if MKTME is not enumerated.

 MK_TME_CRYPTO_ALGS

Bit 48: AES-XTS 128
Bit 63:49: Reserved (#GP)

Bitmask for BIOS to set which encryption
algorithms are allowed for MKTME, would
be later enforced by the key loading ISA (‘1
= allowed).

4.2.2 IA32_TME_ACTIVATE WRMSR Response and Error Handling

Conditions Response

WRMSR when not enumerated #GP

Ref: #336907-002US 12

WRMSR while lock status=1 #GP

WRMSR with 63:8 (reserved) ≠ 0 #GP

WRMSR with Unsupported policy value
(IA32_TME_CAPABILITY[IA32_TME_ACTIVATE[7:4]]=0)

#GP

WRMSR with enabled=0 TME disabled, MSR locked
subsequent RDMSR returns x..x01b

WRMSR with enabled=1 and key select=0 (new key); RNG
success

TME enabled and MSR locked
subsequent RDMSR returns x..x011b

WRMSR with enabled=1 and key select=0; RNG fail Not enabled subsequent RDMSR
returns x..x000b

WRMSR with enabled=1 and key select=1; Non zero key
restored from CPU

TME enabled and MSR locked
subsequent RDMSR returns x..x111b

WRMSR with enabled=1 and key select=1; Fail - Zero key
restored from CPU

Not enabled subsequent RDMSR
returns x..x100b

WRMSR with any other legal values Subsequent RDMSR returns written
values + lock status=1

If MK_TME_KEYID_BITS > MK_TME_MAX_KEYID_BITS #GP

If MK_TME_KEYID_BITS > 0 && (TME) Enable == 0 (TME
must be enabled at the same point as MK-TME)

#GP

If MK_TME_KEYID_BITS > 0 and TME is not successfully
activated (lock is not set)

Write not committed

If MK_TME_CRYPTO_ALGS reserved bits are set #GP

4.2.3 Core Address Masking MSR

MK_TME_CORE_ACTIVATE – Addr TBD (BIOS only)

After successful activation using the IA32_TME_ACTIVATE MSR, this register should be written
on each physical core with a value of 0 in EDX:EAX; failure to do so may result in unpredictable
behavior. Accesses to this MSR will #GP if MKTME is not supported.

BIOS is expected to write to this MSR on each core after doing MKTME activation. The first SMI
on each core will also cause this value to be synchronized with the package MSR value.

Ref: #336907-002US 13

Register
Address

MSR Name and Bit Fields MSR/Bit Description Comment

TBD MK_TME_CORE_ACTIVATE
MSR

This MSR will #GP if MKTME is not
supported.

 31:0 Reserved

 35:32 MK_TME_KEYID_BITS (read-only)

The number of key identifier bits to
allocate to MKTME usage. Similar to
enumeration, this is an encoded value.

This is a read-only field. #GP on non-
zero write.

Will be shadowed
from the package
MSR value on
write.

 63:36 Reserved

4.2.4 Exclusion Range MSRs

TME and MKTME (for KeyID=0 only) supports one exclusion range to be used for special cases.
(Note: For all KeyIDs other than 0, TME Exclusion Range does not apply to MK-TME) The range
of physical addresses specified in this MSR does not apply memory encryption described in this
document. This range is primarily intended to be used for memory not available to OS and
typically configured by BIOS. However, TME/MKTME (for KeyID=0) architecture does not place
any restrictions on use of the exclusion range. The software is able to determine this range by
reading MSR. The definition of this range follows definition of many range registers implemented
in Intel processors.

Register
Address

MSR Name and Bit Fields MSR/Bit Description Comment

983H IA32_TME_EXCLUDE_MASK
MSR

 10:0 Reserved

 11 Enable - When set to ‘1’, then
TME_EXCLUDE_BASE and
TME_EXCLUDE_MASK are used to define
an exclusion region for TME/MKTME (for
KeyID=0).

 MAXPHYSADDR-1:12 TMEEMASK - This field indicates the bits
that must match TMEEBASE in order to
qualify as a TME/MKTME (for KeyID=0)
exclusion memory range access.

 63:MAXPHYSADDR Reserved – Must be Zero

Ref: #336907-002US 14

Register
Address

MSR Name and bit fields MSR/Bit Description Comment

984H IA32_TME_EXCLUDE_BA
SE MSR

 11:0 Reserved

 MAXPHYSADDR-1:12 TMEEBASE - Base physical address to
be excluded for TME/MKTME (for
KeyID=0) encryption.

 63:MAXPHYSADDR Reserved – Must be Zero

Note: Writing ‘1’ into bits above the max supported physical size will result in #GP.

IA32_TME_EXCLUDE_MASK must define a contiguous region

• WRMSR will #GP if the TMEEMASK field does not specify contiguous region.

These MSRs are locked by the TME_ACTIVATE MSR. If lock=1, then WRMSR to
TME_EXCLUDE_MASK/TME_RXCLUDE_BASE will result in #GP.

Ref: #336907-002US 15

5 Runtime Behavior of MKTME
After MKTME is activated by the BIOS, there are a number of changes to the runtime behavior of
the processor.

5.1 Changes to Specification of Physical Address
The most significant change for MKTME is the repurposing of physical address bits to
communicate the KeyID to the encryption engine(s) in the memory controller(s). This change
necessitates a number of other hardware and software changes in order to maintain proper
behavior.

When MKTME is activated, the upper bits of platform physical address (starting with the highest
order bit available as enumerated by the CPUID MAX_PA info) are repurposed for usage as a
KeyID as shown below.

KeyID Platform Addressable MemoryRSVD

Max_PA Max_PA - #KeyID

5.1.1 IA Paging

When IA paging is being used without EPT, the upper bits, starting with MAX_PA for each level of
the IA page table, are repurposed for usage as KeyID bits. Similarly, the upper bits of the physical
address in CR3 will be treated in the same manner.

Note that when EPT is active, IA paging does not generate/use platform physical addresses;
instead it produces/uses guest physical addresses. Guest physical addresses are not modified by
MKTME, and will continue to index into EPT page table walks as they did prior to MKTME.

5.1.2 EPT Paging

When EPT is enabled during VMX non-root operation, the upper bits for each level of EPT page
walk are repurposed for usage as KeyID bits. Similarly, the upper bits of the physical address in
EPTP will be treated in the same manner. Note that a guest OS may also use the KeyID in the IA
page address, and full guest PA (including KeyID) is used by EPT.

5.1.3 Other Physical Addresses

Other physically addressed structures such as VMCS pointers, physically addressed bitmaps,
etc., will receive similar treatment, with the upper bits of the address starting with MAX PA being
repurposed as KeyID bits. Note that any reserved bit checking remains unchanged, which means
that checking of these addresses will only be based upon the CPUID MAX_PA value.

Ref: #336907-002US 16

6 MKTME Key Programming

6.1 Overview
Figure 3 shows a high-level overview of the MKTME engine meant to introduce the terminology
that we will be using for the rest of the discussion and does not imply implementation.

Physical Address
(carries KeyID)

Multi-Key Total Memory
Encryption (MKTME) Engine

Physical address
(KeyID optional)

KeyID Key Encryption Mode

Key Table

Figure 3: MKTME Engine Overview

The MKTME engine maintains an internal key table not accessible by software to store the
information (key and encryption mode) associated with each KeyID. Each KeyID may be
associated with three encryption modes: encryption using key specified, do not encrypt at all
(memory will be plain text), or encrypt using TME Key. Future implementation may support
additional encryption modes. PCONFIG is a new instruction that is used to program KeyID
attributes for MKTME. While initial implementation may only use PCONFIG for MKTME, it may be
extended in the future to support additional usages. PCONFIG is enumerated separately from
MKTME.

Ref: #336907-002US 17

6.2 PCONFIG Instruction
Opcode Instruction Description
0F 01 C5 PCONFIG This instruction is used to execute functions for configuring

platform features.

EAX: Leaf function to be invoked.

RBX/RCX/RDX: Leaf-specific purpose.

6.2.1 PCONFIG Description

The PCONFIG instruction is invoked by software for configuring platform features. PCONFIG
supports multiple leaves and a leaf function is invoked by setting the appropriate leaf value in
EAX. RBX, RCX, and RDX have a leaf-specific purpose. An attempt to execute an undefined leaf
results in a #GP(0). PCONFIG is a package scoped instruction and likewise, needs to be
executed once per physical package to configure the desired platform feature.

Addresses and operands are 32 bits outside 64-bit mode (IA32_EFER.LMA = 0 || CS.L = 0) and
are 64 bits in 64-bit mode (IA32_EFER.LMA = 1 && CS.L = 1). CS.D value has no impact on
address calculation. The DS segment is used to create linear addresses.

Table 1 shows the leaf encodings for PCONFIG.

Table 1: PCONFIG Leaf Encodings

Leaf Encoding Description
MKTME_KEY_PROGRAM 0x00000000 This leaf is used to program the key

and encryption mode associated with
a KeyID.

RESERVED 0x00000001-0xFFFFFFFF Reserved for future use (#GP(0) if
used).

A PCONFIG target is defined as any hardware block on the platform which can be configured
using PCONFIG. PCONFIG currently only supports one target, MKTME. Table 2 shows the
supported targets for PCONFIG.

Table 2: PCONFIG Targets

Target Identifier Value Description

INVALID_TARGET 0x00000000 Invalid Target Identifier

MKTME 0x00000001 Multi-Key Total Memory Encryption
Engine

RESERVED 0x00000002-0xFFFFFFFF Reserved for Future Use

Ref: #336907-002US 18

6.2.1.1 MKTME_KEY_PROGRAM Leaf

The MKTME_KEY_PROGRAM leaf of PCONFIG is used by software to manage the key
associated with a KeyID. The leaf function is invoked by setting the leaf value of ‘0 in EAX and the
address of MKTME_KEY_PROGRAM_STRUCT in RBX. Successful execution of the leaf clears
RAX (set to zero) and ZF, CF, PF, AF, OF, and SF are cleared. In case of failure, the failure
reason is indicated in RAX with ZF set to 1 and CF, PF, AF, OF, and SF are cleared. The
MKTME_KEY_PROGRAM leaf works using the MKTME_KEY_PROGRAM_STRUCT in memory,
shown in Table 3.

Table 3: MKTME_KEY_PROGRAM_STRUCT Format

Field Offset
(bytes)

Size
(bytes)

Comments

KEYID 0 2 Key Identifier

KEYID_CTRL 2 4 KeyID control:
- Bits [7:0]: COMMAND
- Bits [23:8]: CRYPTO_ALG
- Bits [31:24]: RSVD, MBZ

RSVD 6 58 RSVD, MBZ

KEY_FIELD_1 64 64 Software supplied KeyID data key or
entropy for KeyID data key

KEY_FIELD_2 128 64 Software supplied KeyID tweak key or
entropy for KeyID tweak key

The following sub-sections provide a description of each of the fields in
MKTME_KEY_PROGRAM_STRUCT.

KEYID
 Key Identifier being programmed to the MKTME engine.

KEYID_CTRL
The KEYID_CTRL field carries two sub-fields used by software to control the behavior of a KeyID:
Command and KeyID encryption algorithm.

The command used controls the encryption mode for a KeyID. Table 4 provides a summary of the
commands supported.

Ref: #336907-002US 19

Table 4: Supported Key Programming Commands

Command Encoding Description

KEYID_SET_KEY_DIRECT 0 Software uses this mode to directly program a key for use
with KeyID.

KEYID_SET_KEY_RANDOM 1 CPU generates and assigns an ephemeral key for use with a
KeyID. Each time the instruction is executed, the CPU
generates a new key using hardware random number
generator and the keys are discarded on reset.

KEYID_CLEAR_KEY 2 Clear the (software programmed) key associated with the
KeyID. On execution of this command, the KeyID gets TME
behavior (encrypt with platform TME key).

KEYID_NO_ENCRYPT 3 Do not encrypt memory when this KeyID is in use.

The cryptographic algorithm field (CRYPTO_ALG) allows software to select one of the activated
cryptographic algorithms for the KeyID. As discussed previously, the BIOS can activate a set of
algorithms to allow for use when programming keys using the IA32_TME_ACTIVATE MSR (does
not apply to KeyID 0 which uses TME policy). The ISA checks to ensure that the algorithm
selected by software is one of the algorithms that has been activated by the BIOS. Note that
software is required to provide one of the activated algorithms in this field, even for
KEYID_CLEAR_KEY and KEYID_NO_ENCRYPT commands.

KEY_FIELD_1
This field carries the software supplied data key to be used for the KeyID if the direct key
programming option is used (KEYID_SET_KEY_DIRECT). When the random key programming
option is used (KEYID_SET_KEY_RANDOM), this field carries software supplied entropy to be
mixed in the CPU generated random data key. It is software’s responsibility to ensure that the key
supplied for the direct programming option or the entropy supplied for the random programming
option does not result in weak keys. There are no explicit checks in the instruction to detect or
prevent weak keys. When AES XTS-128 is used, the upper 48B are treated as reserved and must
be zeroed out by software before executing the instruction.

KEY_FIELD_2
This field carries the software supplied tweak key to be used for the KeyID if the direct key
programming option is used (KEYID_SET_KEY_DIRECT). When the random key programming
option is used (KEYID_SET_KEY_RANDOM), this field carries software supplied entropy to be
mixed in the CPU generated random tweak key. It is software’s responsibility to ensure that the
key supplied for the direct programming option or the entropy supplied for the random
programming option does not result in weak keys. There are no explicit checks in the instruction to
detect or prevent weak keys. When AES XTS-128 is used, the upper 48B are treated as reserved
and must be zeroed out by software before executing the instruction.

All KeyIDs use the TME key on MKTME activation. Software can at any point decide to change
keys for a KeyID using the PCONFIG instruction. Change of keys for a KeyID does NOT change
state of TLB, caches, or memory pipeline. It is software’s responsibility to take appropriate actions
to ensure correct behavior. Example of software flows are provided in section 7.

Ref: #336907-002US 20

Table 5 shows the return values associated with the MKTME_KEY_PROGRAM leaf of PCONFIG.
On instruction execution, RAX is populated with the return value.

Table 5: Programming Status for MKTME_KEY_PROGRAM

Return Value Encoding Description

PROG_SUCCESS 0 KeyID was successfully programmed.

INVALID_PROG_CMD 1 Invalid KeyID programming command.

ENTROPY_ERROR 2 Insufficient entropy.

INVALID_KEYID 3 KeyID not valid.

INVALID_CRYPTO_ALG 4 Invalid cryptographic algorithm chosen (not supported).

DEVICE_BUSY 5 Failure to access key table (Section 6.2.4).

6.2.2 PCONFIG Virtualization

Software in VMX root mode can control the execution of PCONFIG in VMX non-root mode using
the following execution controls introduced for PCONFIG:

• PCONFIG_ENABLE: This control is a single bit control and enables the PCONFIG
instruction in VMX non-root mode. If 0, the execution of PCONFIG in VMX non-root mode
causes #UD; else, execution of PCONFIG works according to PCONFIG_EXITING. VM-
exit control 27 of secondary execution control is assigned to PCONFIG_ENABLE.

• PCONFIG_EXITING: This is a 64b control and allows VMX root mode to cause a VM-exit
for various leaf functions of PCONFIG. This control does not have any effect if the
PCONFIG_ENABLE control is clear. VMCS index 0x203E/0x203F (64b control field)
assigned to PCONFIG_EXITING.

6.2.3 PCONFIG Enumeration

PCONFIG is enumerated in extended features (CPUID.7.0.EDX[18]). When 0, PCONFIG will
#UD. A new CPUID leaf, PCONFIG_LEAF (leaf encoding, 0x1B), returns PCONFIG information.
More specifically, sub-leaf n (n>=0) returns information about targets supported on the platform.
The software developer manual will define the sub-leaf types and information returned. Software
is expected to scan all sub-leaves to get the information about all targets supported on the
platform. It should also be noted that the sub-leaves of the same target need not be consecutive.

Ref: #336907-002US 21

CPUID.PCONFIG_LEAF.n (n>=0)
Returns information about supported targets on the platform. The information returned is shown
below:

• EAX: Sub-leaf type
o Bits 11:0: 0: Invalid sub-leaf, 1: Target Identifier

• If EAX[11:0] == 0
o EAX:EBX:ECX:EDX = 0
o Sub-leafs m>n return all 0s

• If EAX[11:0] == 1
o EAX[31:12] = 0
o EBX: Target_ID_1
o ECX: Target_ID_2
o EDX: Target_ID_3

Software is expected to scan all sub-leaves until an invalid sub-leaf is returned. All sub-leaves
after the first invalid sub-leaf are invalid as well.

6.2.4 PCONFIG Concurrency

In a scenario where the MKTME_KEY_PROGRAM leaf of PCONFIG is executed concurrently on
multiple logical processors, only one logical processor will succeed in updating the key table.
PCONFIG execution will return with an error code (DEVICE_BUSY) on other logical processors
and software must retry. In cases where the instruction execution fails with a DEVICE_BUSY error
code, the key table is not updated, thereby ensuring that either the key table is updated in its
entirety with the information for a KeyID, or it is not updated at all. In order to accomplish this, the
MKTME_KEY_PROGRAM leaf of PCONFIG maintains a writer lock for updating the key table.
This lock is referred to as the key table lock and denoted in the instruction flows as
KEY_TABLE_LOCK. The lock can either be unlocked, when no logical processor is holding the
lock (also the initial state of the lock), or be in an exclusive state where a logical processor is
trying to update the key table. There can be only one logical processor holding the lock in an
exclusive state. The lock, being exclusive, can only be acquired when the lock is in an unlocked
state.

PCONFIG uses the following syntax to acquire KEY_TABLE_LOCK in exclusive mode and
release the lock:

KEY_TABLE_LOCK.ACQUIRE(WRITE)

KEY_TABLE_LOCK.RELEASE()

Ref: #336907-002US 22

6.2.5 PCONFIG Operation

Variable Name Type Size
(Bytes)

Description

TMP_KEY_PROGRAM_STR
UCT

MKTME_KEY_PROGRAM_S
TRUCT

192 Structure holding the key
programming structure.

TMP_RND_DATA_KEY UINT128 16 Random data key generated
for random key
programming option.

TMP_RND_TWEAK_KEY UINT128 16 Random tweak key
generated for random key
programming option.

(* #UD if PCONFIG is not enumerated or CPL>0 *)
if (CPUID.7.0:EDX[18] == 0 OR CPL > 0) #UD;

if (in VMX non-root mode)
{

if (VMCS.PCONFIG_ENABLE == 1)
{

if ((EAX > 62 AND VMCS.PCONFIG_EXITING[63] ==1) OR
 (EAX < 63 AND VMCS.PCONFIG_EXITING[EAX] == 1))

{
Set VMCS.EXIT_REASON = PCONFIG; //No Exit qualification
Deliver VMEXIT;

}
 }

else
{

#UD
}

}

(* #GP(0) for an unsupported leaf *)
if(EAX != 0) #GP(0)

(* KEY_PROGRAM leaf flow *)
if (EAX == 0)
{

(* #GP(0) if TME_ACTIVATE MSR is not locked or does not enable TME or
multiple keys are not enabled *)
if (IA32_TME_ACTIVATE.LOCK != 1 OR IA32_TME_ACTIVATE.ENABLE != 1 OR
IA32_TME_ACTIVATE.MK_TME_KEYID_BITS == 0) #GP(0)

 (* Check MKTME_KEY_PROGRAM_STRUCT is 256B aligned *)
 if(DS:RBX is not 256B aligned) #GP(0);

Ref: #336907-002US 23

 (* Check that MKTME_KEY_PROGRAM_STRUCT is read accessible *)
 <<DS: RBX should be read accessible>>

 (* Copy MKTME_KEY_PROGRAM_STRUCT to a temporary variable *)
 TMP_KEY_PROGRAM_STRUCT = DS:RBX.*;

 (* RSVD field check *)
 if(TMP_KEY_PROGRAM_STRUCT.RSVD != 0) #GP(0);

 if(TMP_KEY_PROGRAM_STRUCT.KEYID_CTRL.RSVD !=0) #GP(0);

if(TMP_KEY_PROGRAM_STRUCT.KEY_FIELD_1.BYTES[63:16] != 0) #GP(0);

if(TMP_KEY_PROGRAM_STRUCT.KEY_FIELD_2.BYTES[63:16] != 0) #GP(0);

(* Check for a valid command *)
if(TMP_KEY_PROGRAM_STRUCT. KEYID_CTRL.COMMAND is not a valid command)
{
 RFLAGS.ZF = 1;
 RAX = INVALID_PROG_CMD;

 goto EXIT;
}
(* Check that the KEYID being operated upon is a valid KEYID *)
if(TMP_KEY_PROGRAM_STRUCT.KEYID >

2^IA32_TME_ACTIVATE.MK_TME_KEYID_BITS – 1
OR TMP_KEY_PROGRAM_STRUCT.KEYID >

IA32_TME_CAPABILITY.MK_TME_MAX_KEYS
OR TMP_KEY_PROGRAM_STRUCT.KEYID == 0)

{
RFLAGS.ZF = 1;

 RAX = INVALID_KEYID;
 goto EXIT;

}

(* Check that only one algorithm is requested for the KeyID and it is
 One of the activated algorithms *)
if(NUM_BITS(TMP_KEY_PROGRAM_STRUCT.KEYID_CTRL.CRYPTO_ALG) != 1 ||

(TMP_KEY_PROGRAM_STRUCT.KEYID_CTRL.CRYPTO_ALG &
IA32_TME_ACTIVATE. MK_TME_CRYPTO_ALGS == 0))

{
RFLAGS.ZF = 1;

 RAX = INVALID_CRYPTO_ALG;
 goto EXIT;

}
(* Try to acquire exclusive lock *)
if (NOT KEY_TABLE_LOCK.ACQUIRE(WRITE))
{
 //PCONFIG failure
 RFLAGS.ZF = 1;
 RAX = DEVICE_BUSY;
 goto EXIT;

Ref: #336907-002US 24

}

(* Lock is acquired and key table will be updated as per the command

Before this point no changes to the key table are made *)

switch(TMP_KEY_PROGRAM_STRUCT.KEYID_CTRL.COMMAND)
{
case KEYID_SET_KEY_DIRECT:
 <<Write

DATA_KEY=TMP_KEY_PROGRAM_STRUCT.KEY_FIELD_1,
TWEAK_KEY=TMP_KEY_PROGRAM_STRUCT.KEY_FIELD_2,
ENCRYPTION_MODE=ENCRYPT_WITH_KEYID_KEY,
to MKTME Key table at index TMP_KEY_PROGRAM_STRUCT.KEYID

>>
 break;

case KEYID_SET_KEY_RANDOM:

TMP_RND_DATA_KEY = <<Generate a random key using hardware RNG>>
 if (NOT ENOUGH ENTROPY)
 {

RFLAGS.ZF = 1;
 RAX = ENTROPY_ERROR;
 goto EXIT;

}
TMP_RND_TWEAK_KEY = <<Generate a random key using hardware RNG>>

 if (NOT ENOUGH ENTROPY)
 {

RFLAGS.ZF = 1;
 RAX = ENTROPY_ERROR;
 goto EXIT;

}
(* Mix user supplied entropy to the data key and tweak key *)
TMP_RND_DATA_KEY = TMP_RND_KEY XOR

TMP_KEY_PROGRAM_STRUCT.KEY_FIELD_1.BYTES[15:0];
TMP_RND_TWEAK_KEY = TMP_RND_TWEAK_KEY XOR

TMP_KEY_PROGRAM_STRUCT.KEY_FIELD_2.BYTES[15:0];

<<Write
DATA_KEY=TMP_RND_DATA_KEY,
TWEAK_KEY=TMP_RND_TWEAK_KEY,
ENCRYPTION_MODE=ENCRYPT_WITH_KEYID_KEY,
to MKTME_KEY_TABLE at index TMP_KEY_PROGRAM_STRUCT.KEYID

>>
 break;

case KEYID_CLEAR_KEY:
 <<Write

DATA_KEY=’0,
 TWEAK_KEY=’0,

ENCRYPTION_MODE = ENCRYPT_WITH_TME_KEY,
to MKTME_KEY_TABLE at index TMP_KEY_PROGRAM_STRUCT.KEYID
>>

Ref: #336907-002US 25

 break;
case KEYID_NO_ENCRYPT:
 <<Write

 DATA_KEY=’0,
 TWEAK_KEY=’0,

ENCRYPTION_MODE=NO_ENCRYPTION,
to MKTME_KEY_TABLE at index TMP_KEY_PROGRAM_STRUCT.KEYID

>>
 break;
}

RAX = 0;
RFLAGS.ZF = 0;

//Release Lock
KEY_TABLE_LOCK(RELEASE);

EXIT:
RFLAGS.CF=0;
RFLAGS.PF=0;
RFLAGS.AF=0;
RFLAGS.OF=0;
RFLAGS.SF=0;

}

end_of_flow

6.2.6 Flags Affected

ZF Cleared if instruction completes successfully.
Set if error occurred. RAX is set to the error code.

CF, PF, AF, OF, SF Cleared

6.2.7 Use of prefixes

LOCK Causes #UD

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)

Operand size Causes #UD

VEX Causes #UD

Segment overrides Ignored

Address size Ignored

REX Ignored

Ref: #336907-002US 26

6.2.8 Protected Mode Exceptions
#UD If any of the LOCK/REP/OSIZE/VEX prefix is used.

If current privilege level is not 0.
If CPUID.7.0:EDX[18] = 0
If in VMX non-root mode and VMCS.PCONFIG_ENABLE = 0.

#GP(0) If input value in EAX encodes an unsupported leaf.
 If IA32_TME_ACTIVATE MSR is not locked.
 If TME and MKTME capability is not enabled in IA32_TME_ACTIVATE MSR.

If memory operand is not 256B aligned.
If any of the reserved bits in MKTME_KEY_PROGRAM_STRUCT are set.
If a memory operand effective address is outside the DS segment limit.

#PF(fault code) If a page fault occurs in accessing memory operands.

6.2.9 Real-Address Mode Exceptions
#UD If any of the LOCK/REP/OSIZE/VEX prefix is used.

If current privilege level is not 0.
If CPUID.7.0:EDX[PCONFIG_BIT] = 0.
If in VMX non-root mode and VMCS.PCONFIG_ENABLE = 0.

#GP(0) If input value in EAX encodes an unsupported leaf.
 If IA32_TME_ACTIVATE MSR is not locked.
 If TME and MKTME capability is not enabled in IA32_TME_ACTIVATE MSR.

If memory operand is not 256B aligned.
If any of the reserved bits in MKTME_KEY_PROGRAM_STRUCT are set.

6.2.10 Virtual-8086 Mode Exceptions

#UD PCONFIG instruction is not recognized in virtual-8086 mode.

6.2.11 Compatibility Mode Exceptions

Same exceptions as in protected mode.

6.2.12 64-Bit Mode Exceptions
#UD If any of the LOCK/REP/OSIZE/VEX prefix is used.

If current privilege level is not 0.
If CPUID.7.0:EDX[18] = 0.
If in VMX non-root mode and VMCS.PCONFIG_ENABLE = 0.

Ref: #336907-002US 27

#GP(0) If input value in EAX encodes an unsupported leaf.
 If IA32_TME_ACTIVATE MSR is not locked.
 If TME and MKTME capability is not enabled in IA32_TME_ACTIVATE MSR.

If memory operand is not 256B aligned.
If any of the reserved bits in MKTME_KEY_PROGRAM_STRUCT are set.
If a memory operand is non-canonical form.

#PF(fault code) If a page fault occurs in accessing memory operands.

Ref: #336907-002US 28

7 Software Life Cycle: Managing Pages
with KeyID

7.1 Overview
As mentioned earlier in the document, the KeyID is an integral part of the physical address;
meaning it is not only present in page tables but is also present in the TLB, caches, etc.
Therefore, software needs be aware of this and must take appropriate steps to maintain
correctness of operations and security.

Note that while this section focuses on virtualization scenarios, the TME and MKTME architecture
is applicable to both native OS and virtualized environments, and for DRAM and NVRAM types of
memory.

7.2 Restrictions and Cache Management
The hardware/CPU does not enforce coherency between mappings of the same physical page
with different KeyIDs or encryption keys. System software is responsible for carefully managing
the caches in regard to usage of key identifiers (KeyIDs) and maintaining cache coherency when
the KeyID or a key associated with a physical page is changed by the software. Specifically, the
CPU will treat two physical addresses that are identical except for the KeyID bits as two different
physical addresses, though these two addresses reference the same location in memory.
Software must take necessary steps to ensure that this does not result in unpredictable or
incorrect behavior, or violate security properties desired. MKTME retains the existing behavior of
the caches and TLB for the entire physical address, including the KeyID portion of the physical
address, and expects software to properly flush the caches and/or perform TLB shootdowns.

The sections below are intended to give examples of algorithms that should be used by software
to ensure correctness and security. Please check the final version of this specification for any
updated algorithms or requirements in this area.

7.3 General Software Guidance for Dealing with Aliased Address
Mappings
The following are some general guidelines for OS/VMM software vendors to consider when using
MKTME with more than the default single KeyID.

1. Software should avoid mapping the same physical address with multiple KeyIDs.

2. If software must map the same physical address with multiple KeyIDs, it should mark
those pages as read-only, except for one KeyID.

Ref: #336907-002US 29

3. If software must map the same physical address with multiple KeyIDs as read-write, then
software must ensure that all writes are done with single KeyID (this includes locked and
non-locked writes that do not modify the data).

7.4 AddPage: Associating a KeyID to a Page
The following algorithm should be used by OS/VMM when assigning a new KeyID to a physical
page.

1. Program a new key for the KeyID, if not already programmed (using the PCONFIG
instruction).

2. Map the physical page to the VMM’s address space (with the new KeyID) by updating its
paging structure entries (IA-PT), if not already mapped.

3. Ensure that the step 1 has successfully completed.

4. Zero page contents via the new mapping (with the new KeyID) to avoid data leakage
between KeyID domains.

5. Make the page available to a new VM with the new KeyID set in the EPT page-table entry.

This will ensure against data leakage between KeyID domains, such as VMs with KeyIDs, when
the KeyID is changed for a physical page (but the data is in clear in the CPU caches). The
assumption is that before using this algorithm to assign a new KeyID, software/VMM makes sure
that the page was evicted correctly from the previous KeyID (using the algorithm defined in the
next section).

Note - Guidance for usage of the PCONFIG instruction: PCONFIG is package scope and hence
software is expected to execute PCONFIG on one LP on each package/socket. Software can use
CPUID Leaf B to determine the topology of the system which will indicate the physical packages
present on the system.

7.5 EvictPage: Disassociating a KeyID from a Page
The following algorithm should be used by OS/VMM when changing the KeyID of a physical page
so that the current KeyID is no longer used with the page.

1) Steps to be completed before changing the KeyID.

a) Make the physical page not accessible to the VM (by updating the EPT page-table entry).

b) Invalidate all page mappings/aliases (the INVEPT instruction and IOMMU (VT-d)
invalidation if page was mapped as device accessible) from the TLB (across the logical
processors, with the old KeyID).

c) Map the page to the VMM address space (with the old KeyID) by updating its paging
structure entries (IA-PT) if not already mapped.

Ref: #336907-002US 30

d) OS/VMM flushes dirty cache lines (for page using old KeyID) to prevent aliasing
overwrite/data corruption.

i) Options: CLFLUSH, CLWB+fence, CLFLUSHOPT+fence, or WBINVD.

ii) Software can optionally avoid doing this flushing if it tracks page modification using
EPT page-modification logging or accessed and dirty flags for EPT (optimization).

2) The page is now ready to be used with a new KeyID (example, using steps in the previous
section).

This will ensure that no cache lines aliased by the physical address exist in the CPU caches,
when the KeyID of the physical page is changed.

Note - Guidance for usage of the WBINVD instruction: the WBINVD instruction should be run on
each socket if those invalidates invalidate all coherent caches on the sockets.

7.6 Paging by OS/VMM Example
Below is an example of a software sequence where OS/VMM is reallocating a page from VM2 to
VM3. VM2 memory uses KeyID2, and VM3 memory uses KeyID3.

1. Evict a page with KeyID2 from VM2 using the EvictPage algorithm described in section
7.5.

2. OS/VMM reads the evicted page with KeyID2, encrypts the page contents with Full Disk
Encryption key (optional), and writes the page to disk/stores on a swap file (or in OS/VMM
memory, using the VMM KeyID=0).

3. Add the evicted page to VM3 KeyID3 using the AddPage algorithm in section 7.4.

7.7 OS/VMM Access to Guest Memory
OS/VMM can access guest memory (in clear) for emulation purposes (MMIO) by setting the guest
KeyID bits in its paging structure entries (IA-PT).

7.8 I/O Interactions
OS/VMM can use the TME key (KeyID=0) to set up shared memory between a Guest VM and the
VMM as needed for I/O purposes. For directed I/O (e.g., SR-IOV), OS/VMM should program the
KeyID as part of the physical addresses in IOMMU (VT-d) page tables corresponding to the KeyID
as part of physical addresses in EPT (for the Guest VM). This will allow DMAs to be able to
access memory in clear without requiring changes to I/O devices and/or I/O drivers in the guest
VM or OS/VMM.

	Disclaimers
	Terminology
	1 Introduction
	2 Introduction to Total Memory Encryption (TME)
	3 Introduction to Multi-Key Total Memory Encryption (MKTME)
	3.1 High Level Architecture

	4 TME & MKTME: Enumeration and Control Registers
	4.1 Enumeration
	4.1.1 TME
	4.1.2 Multi-Key TME
	4.1.3 Memory Encryption Capability MSR
	4.1.4 Note on CPUID Reporting of MAX_PA_WIDTH

	4.2 Memory Encryption Configuration and Status Registers
	4.2.1 ACTIVATION MSR
	4.2.2 IA32_TME_ACTIVATE WRMSR Response and Error Handling
	4.2.3 Core Address Masking MSR
	4.2.4 Exclusion Range MSRs

	5 Runtime Behavior of MKTME
	5.1 Changes to Specification of Physical Address
	5.1.1 IA Paging
	5.1.2 EPT Paging
	5.1.3 Other Physical Addresses

	6 MKTME Key Programming
	6.1 Overview
	6.2 PCONFIG Instruction
	6.2.1 PCONFIG Description
	6.2.1.1 MKTME_KEY_PROGRAM Leaf

	6.2.2 PCONFIG Virtualization
	6.2.3 PCONFIG Enumeration
	6.2.4 PCONFIG Concurrency
	6.2.5 PCONFIG Operation
	6.2.6 Flags Affected
	6.2.7 Use of prefixes
	6.2.8 Protected Mode Exceptions
	6.2.9 Real-Address Mode Exceptions
	6.2.10 Virtual-8086 Mode Exceptions
	6.2.11 Compatibility Mode Exceptions
	6.2.12 64-Bit Mode Exceptions

	7 Software Life Cycle: Managing Pages with KeyID
	7.1 Overview
	7.2 Restrictions and Cache Management
	7.3 General Software Guidance for Dealing with Aliased Address Mappings
	7.4 AddPage: Associating a KeyID to a Page
	7.5 EvictPage: Disassociating a KeyID from a Page
	7.6 Paging by OS/VMM Example
	7.7 OS/VMM Access to Guest Memory
	7.8 I/O Interactions

