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Terminology 
 

TME (Total Memory Encryption): This is a baseline capability for memory encryption with a 
single ephemeral key.  

TME-MK (Total Memory Encryption-Multi-Key): Add support to use multiple keys for page 
granular memory encryption with additional support for software provisioned keys. 
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1 Introduction 
This document describes the memory encryption support available beginning with the 
3rd generation Intel® Xeon® Scalable Processor Family. Note that Intel platforms 
support many different types of memory and not all SoCs will support this capability for 
all types of memory. Initial implementation is focused on traditional DRAM. 

Total Memory Encryption (TME) – the capability to encrypt the entirety of physical 
memory of a system. This capability is typically enabled in the very early stages of the 
boot process with a small change to BIOS and once configured and locked, will encrypt 
all the data on external memory buses of an SoC using the NIST standard AES-XTS 
algorithm with 128-bit keys or 256-bit keys depending on the algorithm availability and 
selection. The encryption key used for TME uses a hardware random number generator 
implemented in the Intel SoC, and the keys are not accessible by software or using 
external interfaces to the Intel SoC. TME capability is intended to provide protections of 
AES-XTS to external memory buses and DIMMs. The architecture is flexible and will 
support additional memory protection schemes in the future. This capability, when 
enabled, is intended to support (unmodified) existing system and application software. 
Overall performance impact of this capability is likely to be relatively small and is highly 
dependent on workload.  

Total Memory Encryption-Multi-Key (TME-MK) builds on TME and adds support for 
multiple encryption keys. The SoC implementation supports a fixed number of 
encryption keys, and software can configure the SoC to use a subset of available keys. 
Software manages the use of keys and can use each of the available keys for encrypting 
any page of the memory. Thus, TME-MK allows page granular encryption of memory. By 
default, TME-MK uses the TME encryption key unless explicitly specified by software. In 
addition to supporting a CPU generated ephemeral key (not accessible by software or 
using external interfaces to the SoC), TME-MK also supports software provided keys. 
Software provided keys are particularly useful when used with non-volatile memory or 
when combined with attestation mechanisms and/or used with key provisioning services. 
In a virtualization scenario, we anticipate the VMM or hypervisor managing the use of 
keys to transparently support legacy operating systems without any changes (thus, 
TME-MK can also be viewed as TME virtualization in such a deployment scenario). An OS 
may be enabled to take additional advantage of the TME-MK capability both in native 
and in a virtualized environment. When properly enabled, TME-MK is available to each 
guest OS in a virtualized environment, and the guest OS can take advantage of TME-MK 
in the same way as a native OS.  
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2 Introduction to Total Memory 
Encryption (TME) 

The diagram below gives an overview of total memory encryption in a two-socket 
configuration. Actual implementation may vary. 

Figure 2-1. Two-Socket Configuration of TME 

 

The AES XTS encryption engine is in the direct data path to external memory buses and 
therefore, all the memory data entering and/or leaving the SoC on memory buses is 
encrypted using AES XTS. The data inside the SoC (in caches, etc.) remains plain text 
and supports all the existing software and I/O models. 

In a typical deployment, the encryption key is generated by the CPU and therefore is not 
visible to the software. When the system is configured with NVRAM, if the NVRAM is to 
be treated as DRAM, then it can also use CPU generated keys. However, if NVRAM is to 
be treated as non-volatile memory, there is an option to have the same key 
generated/reused across platform power cycles/reboots. 
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3 Introduction to Total Memory 
Encryption-Multi-Key (TME-
MK) 
 

3.1 High-level Architecture 
The high-level architecture of TME-MK is shown in the figure below. 

Figure 3-1. High-level Architecture of TME-MK 
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Figure 3-1 shows the basic architecture of TME-MK which shares basic hardware 
architecture with TME, with the exception that AES XTS now supports multiple keys. The 
right side of the figure shows the use of TME-MK in a virtualized environment, though 
architecture supports use of TME-MK in a native OS deployment scenario as well. In this 
example we show one hypervisor/VMM and two VMs. By default, a hypervisor uses 
KeyID 0 (same as TME), though it can use a different KeyID for its own memory as well. 
VM1 uses KeyID1 for its own private pages, and VM2 is using KeyID 2 for its own private 
pages. Additionally, VM1 can always use KeyID 0 (TME KeyID) for any page and is also 
opting to use KeyID 3 for shared memory between itself and VM2. The KeyID is included 
in the Page Table Entry as upper bits of the physical address field. As in this example, 
KeyID 2 is shown. The remainder of the bits in the physical address field are used to 
actually address bits in the memory. The figure shows one possible page assignment 
along with the KeyID for illustration purposes, though in this case the hypervisor has full 
freedom to use any KeyID with any pages for itself or any of its guest VMs. Note that 
the idea of oversubscribing physical address bits in the page table extends to other page 
tables as well, including IA page tables and IOMMU page tables. The KeyID remains part 
of the physical address bits everywhere in the SoC, with the exception of a tweak for 
AES XTS and on external memory buses. The KeyID is not used outside of the SoC or in 
the tweak for AES XTS. 

3.2 TDX Enhancements 
The TME-MK hardware is also used by Intel® Trust Domain Extensions (TDX) as a way to 
protect the memory of a Trust Domain (TD).  To enable this usage, there are several 
extensions made to the hardware interface to allow for the TDX Module to maintain a 
separate pool of KeyIDs dedicated for TD usage. 

Since the same TME-MK encryption engine and KeyIDs are used for legacy TME-MK 
operation and for TDX operation, there is a need to enumerate and configure the 
allocation of activated KeyID space between the two technologies. 
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4 TME & TME-MK: Enumeration 
and Control Registers 

This information is applicable only to CPUs that enumerate TME and/or TME-MK 
capabilities. 

4.1 Enumeration 
TME and TME-MK capability is exposed to the BIOS/Software via the MSR described in 
this section. The maximum number of keys available/supported in the processor for 
TME-MK are enumerated. BIOS will need to activate this capability via an MSR 
(described later) and it must select the number of keys to be supported/used for TME-
MK, as well as TDX, during the early boot process. Upon activation, all memory (except 
memory in the TME Exclusion range) attached to the CPU/SoC is encrypted using AES-
XTS with a 128-bit or 256-bit ephemeral key (platform key) that is generated by the 
CPU on every boot. Note that this behavior is applicable only when TME encryption is not 
bypassed (using bit 31 in the IA32_TME_ACTIVATE MSR). If TME encryption is bypassed, 
all accesses with KeyID0 will bypass encryption/decryption. 

Intel processors support external memory controllers. These memory controllers may be 
attached to the processor via coherent buses such as the Intel® Ultra Path Interconnect 
(Intel® UPI) or Compute Express Link (CXL). TME-MK enumeration can be used to 
discover the capabilities of the Intel processor and some of the memory attached to the 
integrated memory controller, but does not necessarily represent external memory 
controller features, or some types of memory attached to the integrated controller. The 
memory regions that are capable of being protected by CPU cryptographic capabilities 
are communicated to the system software via a new UEFI memory attribute, 
EFI_MEMORY_CPU_CRYPTO, introduced in UEFI 2.8. If this flag is set, the memory 
region is capable of being protected with the CPU’s memory cryptographic capabilities. If 
this flag is cleared, the memory region is not capable of being protected with the CPU’s 
memory cryptographic capabilities or the CPU does not support CPU memory 
cryptographic capabilities. System software must consult the attribute to determine the 
ranges that can be encrypted using TME-MK. 

4.1.1 TME 
CPUID.TME (CPUID.(EAX=07H, ECX=0H): ECX[13]) enumerates the existence of these 
five architectural MSRs and their MSR addresses: 

• IA32_TME_CAPABILITY – Address 981H 

• IA32_TME_ACTIVATE – Address 982H 

• IA32_TME_EXCLUDE_MASK – Address 983H 

• IA32_TME_EXCLUDE_BASE – Address 984H 

• IA32_MKTME_KEYID_PARTITIONING – Address 87H 
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4.1.2 TME-Multi-key 
The CPUID.TME bit indicates the presence of the TME_CAPABILITY MSR, and that MSR 
will further enumerate the TME characteristics as well as the TME-MK availability and 
characteristics. TME-MK is enabled/configured by BIOS using  the  IA32_TME_ACTIVATE 
MSR. TME-MK requires TME and therefore cannot be enabled without enabling TME. 

4.1.3 Memory Encryption Capability MSR 
(IA32_TME_CAPABILITY) 

Table 4-1. IA32_TME_CAPABILITY MSR – Address 981H 

Register 
Address 

Architectural MSR 
Name and Bit Fields 

MSR/Bit Description Comment 

981H IA32_TME_CAPABILITY 
MSR 

Memory Encryption 
Capability MSR 

One MSR for TME and TME-MK. 

0 Support for AES-XTS 128-bit 
encryption algorithm. 

NIST standard. 

1 AES-XTS 128-bit encryption 
algorithm with at least 29b 
SHA-3 based integrity. 

 

2 Support for AES-XTS 256-bit 
encryption algorithm. 

NIST standard. 

3 AES-XTS 256-bit encryption 
algorithm with at least 29b 
SHA-3 based integrity. 

 

30:4 Reserved  

31 TME encryption bypass 
supported. 

 

35:32 MK_TME_MAX_KEYID_BITS 
Number of bits which can be 
allocated for usage as key 
identifiers for multi-key 
memory encryption. 
Zero if TME-MK is not 
supported. 

4 bits allow for a max value of 15, 
which can address 32K keys. 

50:36 MK_TME_MAX_KEYS 
Indicates the maximum 
number of keys which are 
available for usage. 
This value may not be a 
power of 2. 
Zero if TME-MK is not 
supported. 

KeyID 0 is specially reserved and is 
not accounted for in this field. 
Max value is 32K-1 keys. 

63:51 Reserved  
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4.1.4 CPUID Reporting of MAX_PA_WIDTH 
CPUID enumeration of MAX_PA_WIDTH (leaf 80000008.EAX) is unaffected by TME-MK 
activation and will continue to report the maximum number of physical address bits 
available for software to use, irrespective of the number of KeyID bits. 

4.2 Memory Encryption Configuration and Status 
Registers 

4.2.1 Activation MSR (IA32_TME_ACTIVATE) 
This MSR is used to lock the following MSRs. Any write to the following MSRs will be 
ignored after they are locked. The lock is reset when CPU is reset. 

• IA32_TME_ACTIVATE 

• IA32_TME_EXCLUDE_MASK 

• IA32_TME_EXCLUDE_BASE 

Note: IA32_TME_EXCLUDE_MASK and IA32_TME_EXCLUDE_BASE MSRs are 
expected to be configured before the IA32_TME_ACTIVATE MSR. 

To enable TME-MK, the Hardware Encryption Enable bit in the IA32_TME_ACTIVATE MSR 
must be set, and bits 35:32 must have a non-zero value (which will specify the number 
of KeyID bits configured for TME-MK). 

Table 4-2. IA32_TME_ACTIVATE MSR – Address 982H 

Register 
Address 

Architectural MSR 
Name and Bit 

Fields 

MSR/Bit Description Comment 

982H IA32_TME_ACTIVATE 
MSR 

Memory Encryption Activation 
MSR 

 

0 Lock RO – Will be set upon 
successful WRMSR (or first 
SMI); written value ignored. 

 

1 Hardware Encryption Enable 
(TME Enabled depending on 
TME Encryption Bypass Enable 
(bit 31)) 

This bit also enables TME-MK; TME-
MK cannot be enabled without 
enabling encryption hardware. 

2 Key Select: 
0 – Create a new TME key 
(expected cold/warm boot). 
1 – Restore the TME key from 
storage (expected when resume 
from standby). 

 

3 Save TME key for Standby: 
Save key into storage to be 
used when resume from 
standby. 

May not be supported in all CPUs. 
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Register 
Address 

Architectural MSR 
Name and Bit 

Fields 

MSR/Bit Description Comment 

7:4 TME Policy/Encryption 
Algorithm: 
Only algorithms enumerated in 
the IA32_TME_CAPABILITY  
MSR are allowed. 
For example: 
0000 – AES-XTS-128 
0010 – AES-XTS-256   
Other values are invalid. 

TME Encryption algorithm to be 
used. 

30:8 Reserved  

31 TME Encryption Bypass Enable 
When encryption hardware is 
enabled: 
• Total Memory Encryption is 

enabled using CPU 
generated ephemeral key 
based on hardware random 
number generator when 
this bit is set to 0. 

• Total Memory Encryption is 
bypassed (no 
encryption/decryption for 
KeyID0) when this bit is set 
to 1. On some processors, 
bypassing TME encryption 
can provide performance 
benefits to accesses made 
with KeyID 0 by avoiding 
the latency of decryption or 
encryption and decryption. 

Software must inspect the 
Hardware Encryption Enable (bit 
1) and TME Encryption Bypass 
Enable (bit 31) to determine if 
TME encryption is enabled. 

 

35:32 Reserved if TME-MK is not 
enumerated. 

 

MK_TME_KEYID_BITS 
The number of key identifier 
bits to allocate to TME-MK 
usage. 
Writing a value greater than 
MK_TME_MAX_KEYID_BITS will 
result in #GP. 
Writing a non-zero value to this 
field will #GP if bit 1 of EAX 
(Hardware Encryption Enable) is 
not also set to ‘1, as encryption 
hardware must be enabled to 
use TME-MK. 
Example: To support 255 keys, 
this field would be set to a value 
of 8. 
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Register 
Address 

Architectural MSR 
Name and Bit 

Fields 

MSR/Bit Description Comment 

39:36 TDX_RESERVED_KEYID_BITS 
The number of key identifier 
bits to allocate to TDX usage, 
which are allocated from the 
most significant bit downward. 
Writing a value greater than 
MK_TME_KEYID_BITS will result 
in a #GP. 

Note: these bits are a subset of the 
overall KeyID bits which are 
declared by 
MK_TME_MAX_KEYID_BITS. 

47:40 Reserved  

63:48 MK_TME_CRYPTO_ALGS 
Bit 48: AES-XTS 128 
Bit 49: AES-XTS-128 with at 
least 29b integrity 
Bit 50: AES-XTS-256 
Bit 51: AES-XTS-256 with at 
least 29b integrity 
Bit 63:52: Reserved (#GP) 
Bitmask for BIOS to set which 
encryption algorithms are 
allowed for TME-MK, will be 
later enforced by the key 
loading ISA (‘1 = allowed). 

 

4.2.2 IA32_TME_ACTIVATE WRMSR Response and Error 
Handling 

Table 4-3. IA32_TME_ACTIVATE WRMSR Response and Error Handling 

Conditions Response 

WRMSR when not enumerated. #GP(0) 

WRMSR while lock status = 1. #GP(0) 

WRMSR with 63:8 (reserved) ≠ 0. #GP(0) 

WRMSR with Unsupported policy value 
(IA32_TME_CAPABILITY[IA32_TME_ACTIVATE[7:4]]=
0). 

#GP(0) 

WRMSR with enabled=0. TME disabled, MSR locked subsequent RDMSR 
returns x..x01b. 

WRMSR with enabled=1 and key select=0 (new key); 
RNG success. 

TME enabled and MSR locked subsequent RDMSR 
returns x..x011b. 

WRMSR with enabled=1 and key select=0; RNG fail Not enabled subsequent RDMSR returns x..x000b. 

WRMSR with enabled=1 and key select=1; Non-zero 
key restored from CPU. 

TME enabled and MSR locked subsequent RDMSR 
returns x..x111b. 

WRMSR with enabled=1 and key select=1; Fail - Zero 
key restored from CPU. 

Not enabled subsequent RDMSR returns x..x100b. 

WRMSR with any other legal values. Subsequent RDMSR returns written values + lock 
status=1. 

If MK_TME_KEYID_BITS > MK_TME_MAX_KEYID_BITS #GP(0) 
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If MK_TME_KEYID_BITS > 0 && (TME) Enable == 0 
(TME must be enabled at the same point as MK-TME). 

#GP(0) 

If MK_TME_KEYID_BITS > 0 and TME is not 
successfully activated (lock is not set). 

Write not committed. 

If MK_TME_CRYPTO_ALGS reserved bits are set. #GP(0) 

If TDX_RESERVED_KEYID_BITS > 
MK_TME_KEYID_BITS 

#GP(0) 

4.2.3 Core Address Masking MSR 
(MK_TME_CORE_ACTIVATE) 

This is a BIOS only MSR. 

After successful activation using the IA32_TME_ACTIVATE MSR, this register should be 
written on each physical core with a value of 0 in EDX:EAX; failure to do so may result in 
unpredictable behavior. Accesses to this MSR will #GP if TME-MK is not supported. 

BIOS is expected to write to this MSR on each core after doing TME-MK activation. The 
first SMI on each core will also cause this value to be synchronized with the package 
MSR value. 

Table 4-4. MK_TME_CORE_ACTIVATE MSR – Address 9FFH 

Register 
Address 

MSR Name and Bit 
Fields 

MSR/Bit Description Comment 

9FFH MK_TME_CORE_ACTIVATE 
MSR 

This MSR will #GP if TME-MK is 
not supported. 

 

31:0 Reserved  

35:32 MK_TME_KEYID_BITS (read only) 
The number of key identifier bits 
allocated to TME-MK usage. 
This is a read-only field. #GP on a 
non-zero write. 

Will be shadowed from the 
package MSR value on 
write. 

39:36 TDX_RESERVED_KEYID_BITS 
(read only) 
The number of key identifier bits 
allocated to TDX usage. 
This is a read-only field. #GP on a 
non-zero write. 

Will be shadowed from the 
package MSR value on 
write. 

63:40 Reserved  

4.2.4 IA32_MKTME_KEYID_PARTITIONING MSR 
This is a read-only MSR. 

After successful activation using the IA32_TME_ACTIVATE MSR, this register should be 
consulted by software when trying to determine the number of KeyIDs which are 
available for TME-MK or TDX.  It is important for platform software to use this MSR to 
determine the number of KeyIDs as there may be cases where KeyIDs are required to be 
reserved for internal usage and thus not be available for general usage. 
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Table 4-5. IA32_MKTME_KEYID_PARTITIONING MSR – Address 87H 

Register 
Address 

Architectural MSR 
Name and Bit 

Fields 

MSR/Bit Description Comment 

87H IA32_MKTME_KEYID
_PARTITIONING MSR 

TME-MK KeyID Partitioning MSR  

31:0 NUM_MKTME_KEYIDS Number of activated KeyIDs 
available for TME-MK use.  
Note: KeyID 0 is reserved for TME 
and will not be included. 

63:32 NUM_TDX_KEYIDS Number of activated KeyIDs 
available for TDX use. 
Note: KeyID 0 is reserved for TME 
and will not be included. 

4.2.5 Exclusion Range MSRs  
TME and TME-MK (for KeyID=0 only) support one exclusion range to be used for special 
cases. (Note: For all KeyIDs other than 0, the TME Exclusion Range does not apply to 
TME-MK.) The range of physical addresses specified in this MSR does not apply memory 
encryption described in this document. This range is primarily intended to be used for 
memory not available to the OS and typically configured by BIOS. However, TME/TME-
MK (for KeyID=0) architecture does not place any restrictions on the use of the 
exclusion range. The software is able to determine this range by reading the MSR. The 
definition of this range follows the definition of many range registers implemented in 
Intel processors. 
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Table 4-6. IA32_TME_EXCLUDE_MASK MSR – Address 983H 

Register 
Address 

MSR Name and Bit 
Fields 

MSR/Bit Description Comment 

983H IA32_TME_EXCLUDE_
MASK MSR 

  

10:0 Reserved  

11 Enable - When set to ‘1’, then 
IA32_TME_EXCLUDE_BASE 
and 
IA32_TME_EXCLUDE_MASK 
MSRs are used to define an 
exclusion region for 
TME/TME-MK (for KeyID=0). 

 

MAXPHYSADDR-1:12 TMEEMASK - This field 
indicates the bits that must 
match TMEEBASE in order to 
qualify as a TME/TME-MK (for 
KeyID=0) exclusion memory 
range access. 

 

63:MAXPHYSADDR Reserved; must be zero.  

 

Table 4-7. IA32_TME_EXCLUDE_BASE MSR – Address 984H 

Register 
Address 

MSR Name and Bit 
Fields 

MSR/Bit Description Comment 

984H IA32_TME_EXCLUDE_
BASE MSR 

  

11:0 Reserved  

MAXPHYSADDR-1:12 TMEEBASE - Base physical 
address to be excluded for 
TME/TME-MK (for KeyID=0) 
encryption. 

 

63:MAXPHYSADDR Reserved; must be zero.  

Note: Writing ‘1’ into bits above the max supported physical size will result in #GP. 

The IA32_TME_EXCLUDE_MASK MSR must define a contiguous region. WRMSR will #GP 
if the TMEEMASK field does not specify a contiguous region. 

These MSRs are locked by the IA32_TME_ACTIVATE MSR. If lock=1, then WRMSR to 
IA32_TME_EXCLUDE_MASK/IA32_TME_EXCLUDE_BASE MSRs will result in #GP. 
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5 Runtime Behavior of TME-MK 
After TME-MK is activated by the BIOS, there are a number of changes to the runtime 
behavior of the processor which are described in this section. 

5.1 Changes to Specification of Physical Address 
The most significant change for TME-MK is the repurposing of physical address bits to 
communicate the KeyID to the encryption engine(s) in the memory controller(s). This 
change necessitates a number of other hardware and software changes in order to 
maintain proper behavior. 

When TME-MK is activated, the upper bits of the platform physical address (starting with 
the highest order bit available as enumerated by the CPUID MAX_PA info) are 
repurposed for usage as a KeyID as shown below. 

Figure 5-1. KeyID Usage 

 

Additionally, when TDX KeyIDs have also been enabled, the KeyID space is further 
partitioned to accommodate KeyIDs which can only be used for TDX. KeyIDs are divided 
in up to 3 ranges:  

• A single key, with KeyID value 0, is the legacy TME key, used as a platform 
shared memory encryption key (or cleartext if in TME bypass mode). 

• A range of keys, with KeyID values 1 to NUM_MKTME_KEYIDS, used as legacy 
TME-MK keys. Note that a configuration may allocate all non-zero KeyIDs for TDX 
usage, in which case this range will be empty. 

• A range of keys, with KeyID values NUM_MKTME_KEYIDS+1 to 
NUM_MKTME_KEYIDS + NUM_TDX_KEYIDS,  used as TDX keys. Note that a 
configuration may allocate all non-zero KeyIDs for TME-MK usage, in which case 
this range will be empty. 

Additionally, outside of Secure Arbitration Mode (SEAM), physical address bits which are 
associated with TDX-specific KeyIDs are treated as reserved bits and cannot be used by 
software (i.e., on a CPU supporting 52-bit PA, if there are 4 bits for TME-MK and 3 of 
those bits are for TDX, then bits 51:49 would be treated as reserved bits outside of 
SEAM).  This ensures that only the SEAM module can create valid address references 
using TDX KeyIDs. 
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5.1.1 Note that when IA Paging 
When IA paging is being used without EPT, the upper bits starting with MAX_PA for each 
level of the IA page table are repurposed for usage as KeyID bits. Similarly, the upper 
bits of the physical address in CR3 will be treated in the same manner. 

Note that when EPT is active, IA paging does not generate/use platform physical 
addresses, instead it produces/uses guest physical addresses. Guest physical addresses 
are not modified by TME-MK and will continue to index into EPT page table walks as they 
did prior to enabling TME-MK. 

5.1.2 EPT Paging 
When EPT is enabled during VMX non-root operation, the upper bits for each level of EPT 
page walk are repurposed for usage as KeyID bits. Similarly, the upper bits of the 
physical address in EPTP will be treated in the same manner. Note that a guest OS may 
also use a KeyID in an IA page address, and full guest PA (including KeyID) is used by 
EPT.  

5.1.3 Other Physical Addresses 
Other physically addressed structures such as VMCS pointers, physically addressed 
bitmaps, etc., will receive similar treatment with the upper bits of the address starting 
with MAX PA being repurposed as KeyID bits. Note that any reserved bit checking 
remains unchanged, which means that the checking of these addresses will only be 
based upon the CPUID MAX_PA value. 

5.1.4 Range Register Considerations 
Range registers, such as the Memory Type Range Register (MTRRs), use a combination of 
a physical address base and mask register to check for matches and apply memory 
attribute behaviors.  When programming these registers, it is important that the BIOS or 
system software understand the implications of KeyIDs in relation to these registers to 
ensure proper behavior. As an example, if an MTRR mask register is programmed with all 
of the KeyID bits set, the memory type for this range would only be applied for a single 
KeyID (likely KeyID 0) upon usage.  This creates potential issues if this memory region is 
used with a non-zero KeyID, as it will not match on the MTRR and can result in receiving 
the default memory type (likely UC) which may not be desirable.  In order to prevent 
this, KeyID bits should be cleared in the MTRR MASK register, which will allow it to be 
applied to an actual memory region regardless of KeyID. 
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6 TME-MK Key Programming 

6.1 Overview 
Figure 6-1 shows a high-level overview of the TME-MK engine meant to introduce the 
terminology that is used for the rest of the document and does not imply 
implementation. 

Figure 6-1. TME-MK Engine Overview 

 

The TME-MK engine maintains an internal key table not accessible by software to store 
the information (key and encryption mode) associated with each KeyID. Each KeyID 
may be associated with three encryption modes: Encryption using key specified, do not 
encrypt at all (memory will be plain text), or encrypt using TME Key. Future 
implementation may support additional encryption modes. PCONFIG is a new instruction 
that is used to program KeyID attributes for TME-MK. While initial implementation may 
only use PCONFIG for TME-MK, it may be extended in the future to support additional 
usages. Therefore, PCONFIG is enumerated separately from TME-MK. 

6.2 PCONFIG Instruction 
The PCONFIG instruction details are available in the latest Intel® Software Developers 
Manual. 
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7 Software Life Cycle: 
Managing Pages with KeyID  

7.1 Overview 
As mentioned earlier in the document, the KeyID is an integral part of the physical 
address, meaning it is not only present in page tables but is also present in the TLB, 
caches, etc. Therefore, software needs to be aware of this and must take appropriate 
steps to maintain correctness of operations and security.   

Note that while this section focuses on virtualization scenarios, the TME and TME-MK 
architecture is applicable to both native OS and virtualized environments, and for DRAM 
and NVRAM types of memory. 

7.2 Restrictions and Cache Management 
The hardware/CPU does not enforce coherency between mappings of the same physical 
page with different KeyIDs or encryption keys. System software is responsible for 
carefully managing the caches in regard to usage of key identifiers (KeyIDs) and 
maintaining cache coherency when the KeyID or a key associated with a physical page is 
changed by the software. Specifically, the CPU will treat two physical addresses that are 
identical except for the KeyID bits as two different physical addresses though these two 
addresses reference the same location in memory. Software must take necessary steps 
to ensure that this does not result in unpredictable or incorrect behavior or violate 
security properties desired. TME-MK retains the existing behavior of the caches and TLB 
for the entire physical address including the KeyID portion of the physical address and 
expects software to properly flush the caches and/or perform TLB shootdowns.  

The sections below are intended to give examples of algorithms that shouldn’t be used 
by software to ensure correctness and security. Please check the final version of this 
specification for any updated algorithms or requirements in this area. 

7.3 General Software Guidance for Dealing with 
Aliased Address Mappings   

The following list details some general guidelines for OS/VMM software vendors to 
consider when using TME-MK with more than the default single KeyID. 

1. Software should avoid mapping the same physical address with multiple KeyIDs. 
2. If software must map the same physical address with multiple KeyIDs, it should mark 

those pages as read-only, except for one KeyID. 
3. If software must map the same physical address with multiple KeyIDs as read-write, 

then software must ensure that all writes are done with a single KeyID (this includes 
locked and non-locked writes that do not modify the data). 
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7.4 AddPage: Associating a KeyID to a Page 
The following algorithm should be used by the OS/VMM when assigning a new KeyID to 
a physical page. 

1. Program a new key for the KeyID, if not already programmed (using the PCONFIG 
instruction). 

2. Map the physical page to the VMM’s address space (with the new KeyID) by updating 
its paging structure entries (IA-PT), if not already mapped. 

3. Ensure that the step 1 has successfully completed. 
4. Zero-page contents via the new mapping (with new KeyID) to avoid data leakage 

between KeyID domains. 
5. Make the page available to a new VM with the new KeyID set in the EPT page-table 

entry. 

This will ensure against data leakage between KeyID domains, such as VMs with KeyIDs,  
when the KeyID is changed for a physical page (but the data is in clear in the CPU 
caches). The assumption is that before using this algorithm to assign a new KeyID, the 
software/VMM makes sure that the page was evicted correctly from the previous KeyID 
(using the algorithm defined in the next section). 

Note: Guidance for usage of the PCONFIG instruction: PCONFIG is package scope and 
hence software is expected to execute PCONFIG on one LP on each 
package/socket. Software can use CPUID Leaf 0BH to determine the topology of 
the system which will indicate the physical packages present on the system. 

7.5 EvictPage: Disassociating a KeyID from a 
Page 

The following algorithm should be used by the OS/VMM when changing the KeyID of a 
physical page so that the current KeyID is no longer used with the page. 

1. Steps to be completed before changing the KeyID: 

a) Make the physical page not accessible to the VM (by updating the EPT page-table 
entry). 

b) Invalidate all page mappings/aliases (the INVEPT instruction and IOMMU (VT-d) 
invalidation if page was mapped as device accessible) from the TLB (across the 
logical processors, with the old KeyID). 

c) Map the page to VMM address space (with the old KeyID) by updating its paging 
structure entries (IA-PT) if not already mapped. 

d) OS/VMM flushes dirty cache lines (for page using old KeyID) to prevent aliasing 
overwrite/data corruption. 

 Options: CLFLUSH, CLWB+fence, CLFLUSHOPT+fence or WBINVD. 
 Software can optionally avoid doing these flushes if it tracks page 

modification using EPT page-modification logging or accessed and dirty 
flags for EPT (optimization). 

2. The page is now ready to be used with a new KeyID (example, using steps in the 
previous section). 
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This will ensure that no cache lines aliased by physical address exist in the CPU caches 
when the KeyID of the physical page is changed. 

Note: Guidance for usage of the WBINVD instruction: The WBINVD instruction should 
be run on each socket if those invalidate all coherent caches on the sockets.  

7.6 Paging by OS/VMM Example 
Below is an example of a software sequence where the OS/VMM is reallocating a page 
from VM2 to VM3. VM2 memory uses KeyID2, and VM3 memory uses KeyID3. 

1. Evict a page with KeyID2 from VM2 using the EvictPage algorithm described in section 
7.5. 

2. The OS/VMM reads the evicted page with KeyID2, encrypts the page contents with 
the Full Disk Encryption key (optional), and writes the page to disk/stores on a swap 
file (or in OS/VMM memory, using the VMM KeyID=0). 

3. Add the evicted page to VM3 KeyID3 using the AddPage algorithm in section 7.4. 

7.7 OS/VMM Access to Guest Memory 
The OS/VMM can access guest memory (in clear) for emulation purposes (MMIO) by 
setting the guest KeyID bits in its paging structure entries (IA-PT). Note: OS/VMM 
should not program KeyID for MMIO pages (for TME-MK usages). 

7.8 I/O Interactions 
The OS/VMM can use the TME key (KeyID=0) to set up shared memory between the 
Guest VM and the VMM as needed for I/O purposes. For directed I/O (e.g., SR-IOV), 
the OS/VMM should program the KeyID as part of the physical addresses in IOMMU 
(VT-d) page tables corresponding to the KeyID as part of the physical addresses in EPT 
(for the Guest VM). This will allow DMAs to be able to access memory in clear without 
requiring changes to I/O devices and/or I/O drivers in the guest VM or OS/VMM. 
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