

Document Number: 336907-005US

Intel® Architecture Memory
Encryption Technologies
Specification

October 2024

Revision 1.5

2 Document Number: 336907-005US, Revision: 1.5

Notices & Disclaimers

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis
concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any
patent claim thereafter drafted which includes subject matter disclosed herein.

All product plans and roadmaps are subject to change without notice.

The products described may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from
course of performance, course of dealing, or usage in trade.

Code names are used by Intel to identify products, technologies, or services that are in development and not
publicly available. These are not “commercial” names and not intended to function as trademarks.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document, with the sole exception that you may publish an unmodified copy. You may create software
implementations based on this document and in compliance with the foregoing that are intended to execute on
the Intel product(s) referenced in this document. No rights are granted to create modifications or derivatives of
this document.

Copies of documents which have an order number and are referenced in this document may be obtained by calling
1-800-548-4725 or by visiting www.intel.com/design/literature.htm.
© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its
subsidiaries. Other names and brands may be claimed as the property of others.

http://www.intel.com/design/literature.htm

Document Number: 336907-005US, Revision: 1.5 3

Contents
1 Introduction .. 7

2 Introduction to Total Memory Encryption (TME) 8

3 Introduction to Total Memory Encryption-Multi-Key (TME-MK) 9
3.1 High-level Architecture .. 9
3.2 TDX Enhancements ... 10

4 TME & TME-MK: Enumeration and Control Registers 11
4.1 Enumeration .. 11

4.1.1 TME ... 11
4.1.2 TME-Multi-key ... 12
4.1.3 Memory Encryption Capability MSR (IA32_TME_CAPABILITY) . 12
4.1.4 CPUID Reporting of MAX_PA_WIDTH 13

4.2 Memory Encryption Configuration and Status Registers 13
4.2.1 Activation MSR (IA32_TME_ACTIVATE) 13
4.2.2 IA32_TME_ACTIVATE WRMSR Response and Error Handling .. 15
4.2.3 Core Address Masking MSR (MK_TME_CORE_ACTIVATE) 16
4.2.4 IA32_MKTME_KEYID_PARTITIONING MSR 16
4.2.5 Exclusion Range MSRs .. 17

5 Runtime Behavior of TME-MK .. 19
5.1 Changes to Specification of Physical Address 19

5.1.1 Note that when IA Paging ... 20
5.1.2 EPT Paging ... 20
5.1.3 Other Physical Addresses .. 20
5.1.4 Range Register Considerations .. 20

6 TME-MK Key Programming .. 21
6.1 Overview ... 21
6.2 PCONFIG Instruction ... 21

7 Software Life Cycle: Managing Pages with KeyID 22
7.1 Overview ... 22
7.2 Restrictions and Cache Management ... 22
7.3 General Software Guidance for Dealing with Aliased Address Mappings

 ... 22
7.4 AddPage: Associating a KeyID to a Page 23
7.5 EvictPage: Disassociating a KeyID from a Page 23
7.6 Paging by OS/VMM Example... 24
7.7 OS/VMM Access to Guest Memory ... 24
7.8 I/O Interactions ... 24

Figures

Figure 2-1. Two-Socket Configuration of TME ... 8
Figure 3-1. High-level Architecture of TME-MK .. 9
Figure 5-1. KeyID Usage .. 19
Figure 6-1. TME-MK Engine Overview ... 21

4 Document Number: 336907-005US, Revision: 1.5

Tables

Table 4-1. IA32_TME_CAPABILITY MSR – Address 981H 12
Table 4-2. IA32_TME_ACTIVATE MSR – Address 982H 13
Table 4-3. IA32_TME_ACTIVATE WRMSR Response and Error Handling 15
Table 4-4. MK_TME_CORE_ACTIVATE MSR – Address 9FFH 16
Table 4-5. IA32_MKTME_KEYID_PARTITIONING MSR – Address 87H 17
Table 4-6. IA32_TME_EXCLUDE_MASK MSR – Address 983H 18
Table 4-7. IA32_TME_EXCLUDE_BASE MSR – Address 984H 18

Document Number: 336907-005US, Revision: 1.5 5

Revision History
Revision
Number Description Date

1.0 • Initial release of the document. December 2017

1.2 • Additional details added. April 2019

1.3 • Added support for 256b keys and KeyID0/TME encryption bypass. April 2021

1.4 • Naming change: MKTME is now known as TME-MK. August 2022

1.5 • PCONFIG changes to faulting behaviors, and the MTRR clarification
• Added Integrity bit information to Capability MSR, Activate MSR and

PCONFIG
• Added TDX info

October 2024

6 Document Number: 336907-005US, Revision: 1.5

Terminology

TME (Total Memory Encryption): This is a baseline capability for memory encryption with a
single ephemeral key.

TME-MK (Total Memory Encryption-Multi-Key): Add support to use multiple keys for page
granular memory encryption with additional support for software provisioned keys.

Document Number: 336907-005US, Revision: 1.5 7

1 Introduction
This document describes the memory encryption support available beginning with the
3rd generation Intel® Xeon® Scalable Processor Family. Note that Intel platforms
support many different types of memory and not all SoCs will support this capability for
all types of memory. Initial implementation is focused on traditional DRAM.

Total Memory Encryption (TME) – the capability to encrypt the entirety of physical
memory of a system. This capability is typically enabled in the very early stages of the
boot process with a small change to BIOS and once configured and locked, will encrypt
all the data on external memory buses of an SoC using the NIST standard AES-XTS
algorithm with 128-bit keys or 256-bit keys depending on the algorithm availability and
selection. The encryption key used for TME uses a hardware random number generator
implemented in the Intel SoC, and the keys are not accessible by software or using
external interfaces to the Intel SoC. TME capability is intended to provide protections of
AES-XTS to external memory buses and DIMMs. The architecture is flexible and will
support additional memory protection schemes in the future. This capability, when
enabled, is intended to support (unmodified) existing system and application software.
Overall performance impact of this capability is likely to be relatively small and is highly
dependent on workload.

Total Memory Encryption-Multi-Key (TME-MK) builds on TME and adds support for
multiple encryption keys. The SoC implementation supports a fixed number of
encryption keys, and software can configure the SoC to use a subset of available keys.
Software manages the use of keys and can use each of the available keys for encrypting
any page of the memory. Thus, TME-MK allows page granular encryption of memory. By
default, TME-MK uses the TME encryption key unless explicitly specified by software. In
addition to supporting a CPU generated ephemeral key (not accessible by software or
using external interfaces to the SoC), TME-MK also supports software provided keys.
Software provided keys are particularly useful when used with non-volatile memory or
when combined with attestation mechanisms and/or used with key provisioning services.
In a virtualization scenario, we anticipate the VMM or hypervisor managing the use of
keys to transparently support legacy operating systems without any changes (thus,
TME-MK can also be viewed as TME virtualization in such a deployment scenario). An OS
may be enabled to take additional advantage of the TME-MK capability both in native
and in a virtualized environment. When properly enabled, TME-MK is available to each
guest OS in a virtualized environment, and the guest OS can take advantage of TME-MK
in the same way as a native OS.

8 Document Number: 336907-005US, Revision: 1.5

2 Introduction to Total Memory
Encryption (TME)

The diagram below gives an overview of total memory encryption in a two-socket
configuration. Actual implementation may vary.

Figure 2-1. Two-Socket Configuration of TME

The AES XTS encryption engine is in the direct data path to external memory buses and
therefore, all the memory data entering and/or leaving the SoC on memory buses is
encrypted using AES XTS. The data inside the SoC (in caches, etc.) remains plain text
and supports all the existing software and I/O models.

In a typical deployment, the encryption key is generated by the CPU and therefore is not
visible to the software. When the system is configured with NVRAM, if the NVRAM is to
be treated as DRAM, then it can also use CPU generated keys. However, if NVRAM is to
be treated as non-volatile memory, there is an option to have the same key
generated/reused across platform power cycles/reboots.

Document Number: 336907-005US, Revision: 1.5 9

3 Introduction to Total Memory
Encryption-Multi-Key (TME-
MK)

3.1 High-level Architecture
The high-level architecture of TME-MK is shown in the figure below.

Figure 3-1. High-level Architecture of TME-MK

10 Document Number: 336907-005US, Revision: 1.5

Figure 3-1 shows the basic architecture of TME-MK which shares basic hardware
architecture with TME, with the exception that AES XTS now supports multiple keys. The
right side of the figure shows the use of TME-MK in a virtualized environment, though
architecture supports use of TME-MK in a native OS deployment scenario as well. In this
example we show one hypervisor/VMM and two VMs. By default, a hypervisor uses
KeyID 0 (same as TME), though it can use a different KeyID for its own memory as well.
VM1 uses KeyID1 for its own private pages, and VM2 is using KeyID 2 for its own private
pages. Additionally, VM1 can always use KeyID 0 (TME KeyID) for any page and is also
opting to use KeyID 3 for shared memory between itself and VM2. The KeyID is included
in the Page Table Entry as upper bits of the physical address field. As in this example,
KeyID 2 is shown. The remainder of the bits in the physical address field are used to
actually address bits in the memory. The figure shows one possible page assignment
along with the KeyID for illustration purposes, though in this case the hypervisor has full
freedom to use any KeyID with any pages for itself or any of its guest VMs. Note that
the idea of oversubscribing physical address bits in the page table extends to other page
tables as well, including IA page tables and IOMMU page tables. The KeyID remains part
of the physical address bits everywhere in the SoC, with the exception of a tweak for
AES XTS and on external memory buses. The KeyID is not used outside of the SoC or in
the tweak for AES XTS.

3.2 TDX Enhancements
The TME-MK hardware is also used by Intel® Trust Domain Extensions (TDX) as a way to
protect the memory of a Trust Domain (TD). To enable this usage, there are several
extensions made to the hardware interface to allow for the TDX Module to maintain a
separate pool of KeyIDs dedicated for TD usage.

Since the same TME-MK encryption engine and KeyIDs are used for legacy TME-MK
operation and for TDX operation, there is a need to enumerate and configure the
allocation of activated KeyID space between the two technologies.

Document Number: 336907-005US, Revision: 1.5 11

4 TME & TME-MK: Enumeration
and Control Registers

This information is applicable only to CPUs that enumerate TME and/or TME-MK
capabilities.

4.1 Enumeration
TME and TME-MK capability is exposed to the BIOS/Software via the MSR described in
this section. The maximum number of keys available/supported in the processor for
TME-MK are enumerated. BIOS will need to activate this capability via an MSR
(described later) and it must select the number of keys to be supported/used for TME-
MK, as well as TDX, during the early boot process. Upon activation, all memory (except
memory in the TME Exclusion range) attached to the CPU/SoC is encrypted using AES-
XTS with a 128-bit or 256-bit ephemeral key (platform key) that is generated by the
CPU on every boot. Note that this behavior is applicable only when TME encryption is not
bypassed (using bit 31 in the IA32_TME_ACTIVATE MSR). If TME encryption is bypassed,
all accesses with KeyID0 will bypass encryption/decryption.

Intel processors support external memory controllers. These memory controllers may be
attached to the processor via coherent buses such as the Intel® Ultra Path Interconnect
(Intel® UPI) or Compute Express Link (CXL). TME-MK enumeration can be used to
discover the capabilities of the Intel processor and some of the memory attached to the
integrated memory controller, but does not necessarily represent external memory
controller features, or some types of memory attached to the integrated controller. The
memory regions that are capable of being protected by CPU cryptographic capabilities
are communicated to the system software via a new UEFI memory attribute,
EFI_MEMORY_CPU_CRYPTO, introduced in UEFI 2.8. If this flag is set, the memory
region is capable of being protected with the CPU’s memory cryptographic capabilities. If
this flag is cleared, the memory region is not capable of being protected with the CPU’s
memory cryptographic capabilities or the CPU does not support CPU memory
cryptographic capabilities. System software must consult the attribute to determine the
ranges that can be encrypted using TME-MK.

4.1.1 TME
CPUID.TME (CPUID.(EAX=07H, ECX=0H): ECX[13]) enumerates the existence of these
five architectural MSRs and their MSR addresses:

• IA32_TME_CAPABILITY – Address 981H

• IA32_TME_ACTIVATE – Address 982H

• IA32_TME_EXCLUDE_MASK – Address 983H

• IA32_TME_EXCLUDE_BASE – Address 984H

• IA32_MKTME_KEYID_PARTITIONING – Address 87H

12 Document Number: 336907-005US, Revision: 1.5

4.1.2 TME-Multi-key
The CPUID.TME bit indicates the presence of the TME_CAPABILITY MSR, and that MSR
will further enumerate the TME characteristics as well as the TME-MK availability and
characteristics. TME-MK is enabled/configured by BIOS using the IA32_TME_ACTIVATE
MSR. TME-MK requires TME and therefore cannot be enabled without enabling TME.

4.1.3 Memory Encryption Capability MSR
(IA32_TME_CAPABILITY)

Table 4-1. IA32_TME_CAPABILITY MSR – Address 981H

Register
Address

Architectural MSR
Name and Bit Fields

MSR/Bit Description Comment

981H IA32_TME_CAPABILITY
MSR

Memory Encryption
Capability MSR

One MSR for TME and TME-MK.

0 Support for AES-XTS 128-bit
encryption algorithm.

NIST standard.

1 AES-XTS 128-bit encryption
algorithm with at least 29b
SHA-3 based integrity.

2 Support for AES-XTS 256-bit
encryption algorithm.

NIST standard.

3 AES-XTS 256-bit encryption
algorithm with at least 29b
SHA-3 based integrity.

30:4 Reserved

31 TME encryption bypass
supported.

35:32 MK_TME_MAX_KEYID_BITS
Number of bits which can be
allocated for usage as key
identifiers for multi-key
memory encryption.
Zero if TME-MK is not
supported.

4 bits allow for a max value of 15,
which can address 32K keys.

50:36 MK_TME_MAX_KEYS
Indicates the maximum
number of keys which are
available for usage.
This value may not be a
power of 2.
Zero if TME-MK is not
supported.

KeyID 0 is specially reserved and is
not accounted for in this field.
Max value is 32K-1 keys.

63:51 Reserved

Document Number: 336907-005US, Revision: 1.5 13

4.1.4 CPUID Reporting of MAX_PA_WIDTH
CPUID enumeration of MAX_PA_WIDTH (leaf 80000008.EAX) is unaffected by TME-MK
activation and will continue to report the maximum number of physical address bits
available for software to use, irrespective of the number of KeyID bits.

4.2 Memory Encryption Configuration and Status
Registers

4.2.1 Activation MSR (IA32_TME_ACTIVATE)
This MSR is used to lock the following MSRs. Any write to the following MSRs will be
ignored after they are locked. The lock is reset when CPU is reset.

• IA32_TME_ACTIVATE

• IA32_TME_EXCLUDE_MASK

• IA32_TME_EXCLUDE_BASE

Note: IA32_TME_EXCLUDE_MASK and IA32_TME_EXCLUDE_BASE MSRs are
expected to be configured before the IA32_TME_ACTIVATE MSR.

To enable TME-MK, the Hardware Encryption Enable bit in the IA32_TME_ACTIVATE MSR
must be set, and bits 35:32 must have a non-zero value (which will specify the number
of KeyID bits configured for TME-MK).

Table 4-2. IA32_TME_ACTIVATE MSR – Address 982H

Register
Address

Architectural MSR
Name and Bit

Fields

MSR/Bit Description Comment

982H IA32_TME_ACTIVATE
MSR

Memory Encryption Activation
MSR

0 Lock RO – Will be set upon
successful WRMSR (or first
SMI); written value ignored.

1 Hardware Encryption Enable
(TME Enabled depending on
TME Encryption Bypass Enable
(bit 31))

This bit also enables TME-MK; TME-
MK cannot be enabled without
enabling encryption hardware.

2 Key Select:
0 – Create a new TME key
(expected cold/warm boot).
1 – Restore the TME key from
storage (expected when resume
from standby).

3 Save TME key for Standby:
Save key into storage to be
used when resume from
standby.

May not be supported in all CPUs.

14 Document Number: 336907-005US, Revision: 1.5

Register
Address

Architectural MSR
Name and Bit

Fields

MSR/Bit Description Comment

7:4 TME Policy/Encryption
Algorithm:
Only algorithms enumerated in
the IA32_TME_CAPABILITY
MSR are allowed.
For example:
0000 – AES-XTS-128
0010 – AES-XTS-256
Other values are invalid.

TME Encryption algorithm to be
used.

30:8 Reserved

31 TME Encryption Bypass Enable
When encryption hardware is
enabled:
• Total Memory Encryption is

enabled using CPU
generated ephemeral key
based on hardware random
number generator when
this bit is set to 0.

• Total Memory Encryption is
bypassed (no
encryption/decryption for
KeyID0) when this bit is set
to 1. On some processors,
bypassing TME encryption
can provide performance
benefits to accesses made
with KeyID 0 by avoiding
the latency of decryption or
encryption and decryption.

Software must inspect the
Hardware Encryption Enable (bit
1) and TME Encryption Bypass
Enable (bit 31) to determine if
TME encryption is enabled.

35:32 Reserved if TME-MK is not
enumerated.

MK_TME_KEYID_BITS
The number of key identifier
bits to allocate to TME-MK
usage.
Writing a value greater than
MK_TME_MAX_KEYID_BITS will
result in #GP.
Writing a non-zero value to this
field will #GP if bit 1 of EAX
(Hardware Encryption Enable) is
not also set to ‘1, as encryption
hardware must be enabled to
use TME-MK.
Example: To support 255 keys,
this field would be set to a value
of 8.

Document Number: 336907-005US, Revision: 1.5 15

Register
Address

Architectural MSR
Name and Bit

Fields

MSR/Bit Description Comment

39:36 TDX_RESERVED_KEYID_BITS
The number of key identifier
bits to allocate to TDX usage,
which are allocated from the
most significant bit downward.
Writing a value greater than
MK_TME_KEYID_BITS will result
in a #GP.

Note: these bits are a subset of the
overall KeyID bits which are
declared by
MK_TME_MAX_KEYID_BITS.

47:40 Reserved

63:48 MK_TME_CRYPTO_ALGS
Bit 48: AES-XTS 128
Bit 49: AES-XTS-128 with at
least 29b integrity
Bit 50: AES-XTS-256
Bit 51: AES-XTS-256 with at
least 29b integrity
Bit 63:52: Reserved (#GP)
Bitmask for BIOS to set which
encryption algorithms are
allowed for TME-MK, will be
later enforced by the key
loading ISA (‘1 = allowed).

4.2.2 IA32_TME_ACTIVATE WRMSR Response and Error
Handling

Table 4-3. IA32_TME_ACTIVATE WRMSR Response and Error Handling

Conditions Response

WRMSR when not enumerated. #GP(0)

WRMSR while lock status = 1. #GP(0)

WRMSR with 63:8 (reserved) ≠ 0. #GP(0)

WRMSR with Unsupported policy value
(IA32_TME_CAPABILITY[IA32_TME_ACTIVATE[7:4]]=
0).

#GP(0)

WRMSR with enabled=0. TME disabled, MSR locked subsequent RDMSR
returns x..x01b.

WRMSR with enabled=1 and key select=0 (new key);
RNG success.

TME enabled and MSR locked subsequent RDMSR
returns x..x011b.

WRMSR with enabled=1 and key select=0; RNG fail Not enabled subsequent RDMSR returns x..x000b.

WRMSR with enabled=1 and key select=1; Non-zero
key restored from CPU.

TME enabled and MSR locked subsequent RDMSR
returns x..x111b.

WRMSR with enabled=1 and key select=1; Fail - Zero
key restored from CPU.

Not enabled subsequent RDMSR returns x..x100b.

WRMSR with any other legal values. Subsequent RDMSR returns written values + lock
status=1.

If MK_TME_KEYID_BITS > MK_TME_MAX_KEYID_BITS #GP(0)

16 Document Number: 336907-005US, Revision: 1.5

If MK_TME_KEYID_BITS > 0 && (TME) Enable == 0
(TME must be enabled at the same point as MK-TME).

#GP(0)

If MK_TME_KEYID_BITS > 0 and TME is not
successfully activated (lock is not set).

Write not committed.

If MK_TME_CRYPTO_ALGS reserved bits are set. #GP(0)

If TDX_RESERVED_KEYID_BITS >
MK_TME_KEYID_BITS

#GP(0)

4.2.3 Core Address Masking MSR
(MK_TME_CORE_ACTIVATE)

This is a BIOS only MSR.

After successful activation using the IA32_TME_ACTIVATE MSR, this register should be
written on each physical core with a value of 0 in EDX:EAX; failure to do so may result in
unpredictable behavior. Accesses to this MSR will #GP if TME-MK is not supported.

BIOS is expected to write to this MSR on each core after doing TME-MK activation. The
first SMI on each core will also cause this value to be synchronized with the package
MSR value.

Table 4-4. MK_TME_CORE_ACTIVATE MSR – Address 9FFH

Register
Address

MSR Name and Bit
Fields

MSR/Bit Description Comment

9FFH MK_TME_CORE_ACTIVATE
MSR

This MSR will #GP if TME-MK is
not supported.

31:0 Reserved

35:32 MK_TME_KEYID_BITS (read only)
The number of key identifier bits
allocated to TME-MK usage.
This is a read-only field. #GP on a
non-zero write.

Will be shadowed from the
package MSR value on
write.

39:36 TDX_RESERVED_KEYID_BITS
(read only)
The number of key identifier bits
allocated to TDX usage.
This is a read-only field. #GP on a
non-zero write.

Will be shadowed from the
package MSR value on
write.

63:40 Reserved

4.2.4 IA32_MKTME_KEYID_PARTITIONING MSR
This is a read-only MSR.

After successful activation using the IA32_TME_ACTIVATE MSR, this register should be
consulted by software when trying to determine the number of KeyIDs which are
available for TME-MK or TDX. It is important for platform software to use this MSR to
determine the number of KeyIDs as there may be cases where KeyIDs are required to be
reserved for internal usage and thus not be available for general usage.

Document Number: 336907-005US, Revision: 1.5 17

Table 4-5. IA32_MKTME_KEYID_PARTITIONING MSR – Address 87H

Register
Address

Architectural MSR
Name and Bit

Fields

MSR/Bit Description Comment

87H IA32_MKTME_KEYID
_PARTITIONING MSR

TME-MK KeyID Partitioning MSR

31:0 NUM_MKTME_KEYIDS Number of activated KeyIDs
available for TME-MK use.
Note: KeyID 0 is reserved for TME
and will not be included.

63:32 NUM_TDX_KEYIDS Number of activated KeyIDs
available for TDX use.
Note: KeyID 0 is reserved for TME
and will not be included.

4.2.5 Exclusion Range MSRs
TME and TME-MK (for KeyID=0 only) support one exclusion range to be used for special
cases. (Note: For all KeyIDs other than 0, the TME Exclusion Range does not apply to
TME-MK.) The range of physical addresses specified in this MSR does not apply memory
encryption described in this document. This range is primarily intended to be used for
memory not available to the OS and typically configured by BIOS. However, TME/TME-
MK (for KeyID=0) architecture does not place any restrictions on the use of the
exclusion range. The software is able to determine this range by reading the MSR. The
definition of this range follows the definition of many range registers implemented in
Intel processors.

18 Document Number: 336907-005US, Revision: 1.5

Table 4-6. IA32_TME_EXCLUDE_MASK MSR – Address 983H

Register
Address

MSR Name and Bit
Fields

MSR/Bit Description Comment

983H IA32_TME_EXCLUDE_
MASK MSR

10:0 Reserved

11 Enable - When set to ‘1’, then
IA32_TME_EXCLUDE_BASE
and
IA32_TME_EXCLUDE_MASK
MSRs are used to define an
exclusion region for
TME/TME-MK (for KeyID=0).

MAXPHYSADDR-1:12 TMEEMASK - This field
indicates the bits that must
match TMEEBASE in order to
qualify as a TME/TME-MK (for
KeyID=0) exclusion memory
range access.

63:MAXPHYSADDR Reserved; must be zero.

Table 4-7. IA32_TME_EXCLUDE_BASE MSR – Address 984H

Register
Address

MSR Name and Bit
Fields

MSR/Bit Description Comment

984H IA32_TME_EXCLUDE_
BASE MSR

11:0 Reserved

MAXPHYSADDR-1:12 TMEEBASE - Base physical
address to be excluded for
TME/TME-MK (for KeyID=0)
encryption.

63:MAXPHYSADDR Reserved; must be zero.

Note: Writing ‘1’ into bits above the max supported physical size will result in #GP.

The IA32_TME_EXCLUDE_MASK MSR must define a contiguous region. WRMSR will #GP
if the TMEEMASK field does not specify a contiguous region.

These MSRs are locked by the IA32_TME_ACTIVATE MSR. If lock=1, then WRMSR to
IA32_TME_EXCLUDE_MASK/IA32_TME_EXCLUDE_BASE MSRs will result in #GP.

Document Number: 336907-005US, Revision: 1.5 19

5 Runtime Behavior of TME-MK
After TME-MK is activated by the BIOS, there are a number of changes to the runtime
behavior of the processor which are described in this section.

5.1 Changes to Specification of Physical Address
The most significant change for TME-MK is the repurposing of physical address bits to
communicate the KeyID to the encryption engine(s) in the memory controller(s). This
change necessitates a number of other hardware and software changes in order to
maintain proper behavior.

When TME-MK is activated, the upper bits of the platform physical address (starting with
the highest order bit available as enumerated by the CPUID MAX_PA info) are
repurposed for usage as a KeyID as shown below.

Figure 5-1. KeyID Usage

Additionally, when TDX KeyIDs have also been enabled, the KeyID space is further
partitioned to accommodate KeyIDs which can only be used for TDX. KeyIDs are divided
in up to 3 ranges:

• A single key, with KeyID value 0, is the legacy TME key, used as a platform
shared memory encryption key (or cleartext if in TME bypass mode).

• A range of keys, with KeyID values 1 to NUM_MKTME_KEYIDS, used as legacy
TME-MK keys. Note that a configuration may allocate all non-zero KeyIDs for TDX
usage, in which case this range will be empty.

• A range of keys, with KeyID values NUM_MKTME_KEYIDS+1 to
NUM_MKTME_KEYIDS + NUM_TDX_KEYIDS, used as TDX keys. Note that a
configuration may allocate all non-zero KeyIDs for TME-MK usage, in which case
this range will be empty.

Additionally, outside of Secure Arbitration Mode (SEAM), physical address bits which are
associated with TDX-specific KeyIDs are treated as reserved bits and cannot be used by
software (i.e., on a CPU supporting 52-bit PA, if there are 4 bits for TME-MK and 3 of
those bits are for TDX, then bits 51:49 would be treated as reserved bits outside of
SEAM). This ensures that only the SEAM module can create valid address references
using TDX KeyIDs.

20 Document Number: 336907-005US, Revision: 1.5

5.1.1 Note that when IA Paging
When IA paging is being used without EPT, the upper bits starting with MAX_PA for each
level of the IA page table are repurposed for usage as KeyID bits. Similarly, the upper
bits of the physical address in CR3 will be treated in the same manner.

Note that when EPT is active, IA paging does not generate/use platform physical
addresses, instead it produces/uses guest physical addresses. Guest physical addresses
are not modified by TME-MK and will continue to index into EPT page table walks as they
did prior to enabling TME-MK.

5.1.2 EPT Paging
When EPT is enabled during VMX non-root operation, the upper bits for each level of EPT
page walk are repurposed for usage as KeyID bits. Similarly, the upper bits of the
physical address in EPTP will be treated in the same manner. Note that a guest OS may
also use a KeyID in an IA page address, and full guest PA (including KeyID) is used by
EPT.

5.1.3 Other Physical Addresses
Other physically addressed structures such as VMCS pointers, physically addressed
bitmaps, etc., will receive similar treatment with the upper bits of the address starting
with MAX PA being repurposed as KeyID bits. Note that any reserved bit checking
remains unchanged, which means that the checking of these addresses will only be
based upon the CPUID MAX_PA value.

5.1.4 Range Register Considerations
Range registers, such as the Memory Type Range Register (MTRRs), use a combination of
a physical address base and mask register to check for matches and apply memory
attribute behaviors. When programming these registers, it is important that the BIOS or
system software understand the implications of KeyIDs in relation to these registers to
ensure proper behavior. As an example, if an MTRR mask register is programmed with all
of the KeyID bits set, the memory type for this range would only be applied for a single
KeyID (likely KeyID 0) upon usage. This creates potential issues if this memory region is
used with a non-zero KeyID, as it will not match on the MTRR and can result in receiving
the default memory type (likely UC) which may not be desirable. In order to prevent
this, KeyID bits should be cleared in the MTRR MASK register, which will allow it to be
applied to an actual memory region regardless of KeyID.

Document Number: 336907-005US, Revision: 1.5 21

6 TME-MK Key Programming

6.1 Overview
Figure 6-1 shows a high-level overview of the TME-MK engine meant to introduce the
terminology that is used for the rest of the document and does not imply
implementation.

Figure 6-1. TME-MK Engine Overview

The TME-MK engine maintains an internal key table not accessible by software to store
the information (key and encryption mode) associated with each KeyID. Each KeyID
may be associated with three encryption modes: Encryption using key specified, do not
encrypt at all (memory will be plain text), or encrypt using TME Key. Future
implementation may support additional encryption modes. PCONFIG is a new instruction
that is used to program KeyID attributes for TME-MK. While initial implementation may
only use PCONFIG for TME-MK, it may be extended in the future to support additional
usages. Therefore, PCONFIG is enumerated separately from TME-MK.

6.2 PCONFIG Instruction
The PCONFIG instruction details are available in the latest Intel® Software Developers
Manual.

22 Document Number: 336907-005US, Revision: 1.5

7 Software Life Cycle:
Managing Pages with KeyID

7.1 Overview
As mentioned earlier in the document, the KeyID is an integral part of the physical
address, meaning it is not only present in page tables but is also present in the TLB,
caches, etc. Therefore, software needs to be aware of this and must take appropriate
steps to maintain correctness of operations and security.

Note that while this section focuses on virtualization scenarios, the TME and TME-MK
architecture is applicable to both native OS and virtualized environments, and for DRAM
and NVRAM types of memory.

7.2 Restrictions and Cache Management
The hardware/CPU does not enforce coherency between mappings of the same physical
page with different KeyIDs or encryption keys. System software is responsible for
carefully managing the caches in regard to usage of key identifiers (KeyIDs) and
maintaining cache coherency when the KeyID or a key associated with a physical page is
changed by the software. Specifically, the CPU will treat two physical addresses that are
identical except for the KeyID bits as two different physical addresses though these two
addresses reference the same location in memory. Software must take necessary steps
to ensure that this does not result in unpredictable or incorrect behavior or violate
security properties desired. TME-MK retains the existing behavior of the caches and TLB
for the entire physical address including the KeyID portion of the physical address and
expects software to properly flush the caches and/or perform TLB shootdowns.

The sections below are intended to give examples of algorithms that shouldn’t be used
by software to ensure correctness and security. Please check the final version of this
specification for any updated algorithms or requirements in this area.

7.3 General Software Guidance for Dealing with
Aliased Address Mappings

The following list details some general guidelines for OS/VMM software vendors to
consider when using TME-MK with more than the default single KeyID.

1. Software should avoid mapping the same physical address with multiple KeyIDs.
2. If software must map the same physical address with multiple KeyIDs, it should mark

those pages as read-only, except for one KeyID.
3. If software must map the same physical address with multiple KeyIDs as read-write,

then software must ensure that all writes are done with a single KeyID (this includes
locked and non-locked writes that do not modify the data).

Document Number: 336907-005US, Revision: 1.5 23

7.4 AddPage: Associating a KeyID to a Page
The following algorithm should be used by the OS/VMM when assigning a new KeyID to
a physical page.

1. Program a new key for the KeyID, if not already programmed (using the PCONFIG
instruction).

2. Map the physical page to the VMM’s address space (with the new KeyID) by updating
its paging structure entries (IA-PT), if not already mapped.

3. Ensure that the step 1 has successfully completed.
4. Zero-page contents via the new mapping (with new KeyID) to avoid data leakage

between KeyID domains.
5. Make the page available to a new VM with the new KeyID set in the EPT page-table

entry.

This will ensure against data leakage between KeyID domains, such as VMs with KeyIDs,
when the KeyID is changed for a physical page (but the data is in clear in the CPU
caches). The assumption is that before using this algorithm to assign a new KeyID, the
software/VMM makes sure that the page was evicted correctly from the previous KeyID
(using the algorithm defined in the next section).

Note: Guidance for usage of the PCONFIG instruction: PCONFIG is package scope and
hence software is expected to execute PCONFIG on one LP on each
package/socket. Software can use CPUID Leaf 0BH to determine the topology of
the system which will indicate the physical packages present on the system.

7.5 EvictPage: Disassociating a KeyID from a
Page

The following algorithm should be used by the OS/VMM when changing the KeyID of a
physical page so that the current KeyID is no longer used with the page.

1. Steps to be completed before changing the KeyID:

a) Make the physical page not accessible to the VM (by updating the EPT page-table
entry).

b) Invalidate all page mappings/aliases (the INVEPT instruction and IOMMU (VT-d)
invalidation if page was mapped as device accessible) from the TLB (across the
logical processors, with the old KeyID).

c) Map the page to VMM address space (with the old KeyID) by updating its paging
structure entries (IA-PT) if not already mapped.

d) OS/VMM flushes dirty cache lines (for page using old KeyID) to prevent aliasing
overwrite/data corruption.

 Options: CLFLUSH, CLWB+fence, CLFLUSHOPT+fence or WBINVD.
 Software can optionally avoid doing these flushes if it tracks page

modification using EPT page-modification logging or accessed and dirty
flags for EPT (optimization).

2. The page is now ready to be used with a new KeyID (example, using steps in the
previous section).

24 Document Number: 336907-005US, Revision: 1.5

This will ensure that no cache lines aliased by physical address exist in the CPU caches
when the KeyID of the physical page is changed.

Note: Guidance for usage of the WBINVD instruction: The WBINVD instruction should
be run on each socket if those invalidate all coherent caches on the sockets.

7.6 Paging by OS/VMM Example
Below is an example of a software sequence where the OS/VMM is reallocating a page
from VM2 to VM3. VM2 memory uses KeyID2, and VM3 memory uses KeyID3.

1. Evict a page with KeyID2 from VM2 using the EvictPage algorithm described in section
7.5.

2. The OS/VMM reads the evicted page with KeyID2, encrypts the page contents with
the Full Disk Encryption key (optional), and writes the page to disk/stores on a swap
file (or in OS/VMM memory, using the VMM KeyID=0).

3. Add the evicted page to VM3 KeyID3 using the AddPage algorithm in section 7.4.

7.7 OS/VMM Access to Guest Memory
The OS/VMM can access guest memory (in clear) for emulation purposes (MMIO) by
setting the guest KeyID bits in its paging structure entries (IA-PT). Note: OS/VMM
should not program KeyID for MMIO pages (for TME-MK usages).

7.8 I/O Interactions
The OS/VMM can use the TME key (KeyID=0) to set up shared memory between the
Guest VM and the VMM as needed for I/O purposes. For directed I/O (e.g., SR-IOV),
the OS/VMM should program the KeyID as part of the physical addresses in IOMMU
(VT-d) page tables corresponding to the KeyID as part of the physical addresses in EPT
(for the Guest VM). This will allow DMAs to be able to access memory in clear without
requiring changes to I/O devices and/or I/O drivers in the guest VM or OS/VMM.

	1 Introduction
	2 Introduction to Total Memory Encryption (TME)
	3 Introduction to Total Memory Encryption-Multi-Key (TME-MK)
	3.1 High-level Architecture
	3.2 TDX Enhancements

	4 TME & TME-MK: Enumeration and Control Registers
	4.1 Enumeration
	4.1.1 TME
	4.1.2 TME-Multi-key
	4.1.3 Memory Encryption Capability MSR (IA32_TME_CAPABILITY)
	4.1.4 CPUID Reporting of MAX_PA_WIDTH

	4.2 Memory Encryption Configuration and Status Registers
	4.2.1 Activation MSR (IA32_TME_ACTIVATE)
	4.2.2 IA32_TME_ACTIVATE WRMSR Response and Error Handling
	4.2.3 Core Address Masking MSR (MK_TME_CORE_ACTIVATE)
	4.2.4 IA32_MKTME_KEYID_PARTITIONING MSR
	4.2.5 Exclusion Range MSRs

	5 Runtime Behavior of TME-MK
	5.1 Changes to Specification of Physical Address
	5.1.1 Note that when IA Paging
	5.1.2 EPT Paging
	5.1.3 Other Physical Addresses
	5.1.4 Range Register Considerations

	6 TME-MK Key Programming
	6.1 Overview
	6.2 PCONFIG Instruction

	7 Software Life Cycle: Managing Pages with KeyID
	7.1 Overview
	7.2 Restrictions and Cache Management
	7.3 General Software Guidance for Dealing with Aliased Address Mappings
	7.4 AddPage: Associating a KeyID to a Page
	7.5 EvictPage: Disassociating a KeyID from a Page
	7.6 Paging by OS/VMM Example
	7.7 OS/VMM Access to Guest Memory
	7.8 I/O Interactions

