

Document Number: 356688-004US

Intel® Resource Director
Technology (Intel® RDT)
Architecture Specification

December 2025

Revision 1.3

2 Document Number: 356688-004US, Revision: 1.3

Notice: This document contains information on products in the design phase of development. The information here is

subject to change without notice. Do not finalize a design with this information.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software, or service

activation. Learn more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages

resulting from such losses.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel

products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted

which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. The

products described may contain design defects or errors known as errata which may cause the product to deviate from published

specifications. Current characterized errata are available on request.

This document contains information on products, services and/or processes in development. All information provided here is subject

to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for

a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or

usage in trade.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or
configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your

purchase. For more complete information about performance and benchmark results, visit http://www.intel.com/performance.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and

configurations, may affect future costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or

cost reduction.

Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling and provided to you

for informational purposes. Any differences in your system hardware, software or configuration may affect your actual performance.

Intel is a sponsor and member of the Benchmark XPRT Development Community and was the major developer of the XPRT family of

benchmarks. Principled Technologies is the publisher of the XPRT family of benchmarks. You should consult other information and

performance tests to assist you in fully evaluating your contemplated purchases.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725

or by visiting www.intel.com/design/literature.htm.

Intel, the Intel logo, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others

Copyright © 2023-2025, Intel Corporation. All Rights Reserved.

http://www.intel.com/performance
http://www.intel.com/design/literature.htm

Document Number: 356688-004US, Revision: 1.3 3

Contents
1 Introduction .. 12

1.1 High Level Usage Models ... 12
1.2 Scope ... 13
1.3 Audience ... 14
1.4 References .. 14

2 Intel® Resource Director Technology Overview 15

2.1 Common Tags.. 15
2.2 Enumeration of Supported Features .. 16
2.3 L3 Configurations ... 16
2.4 Intel® RDT Monitoring Technologies .. 18

2.4.1 Intel® RDT Monitoring Key Ingredients 18
2.4.2 Shared-L3 versus Multiple-L3 Configuration 19

2.5 Intel® RDT Allocation Technologies ... 20
2.5.1 Intel® RDT Allocation Key Ingredients 20
2.5.2 Shared-L3 versus Multiple-L3 Configuration 21

3 Intel® Resource Director Technology for CPU Agents 23

3.1 Intel® RDT Monitoring Features .. 23
3.1.1 Common Framework .. 23
3.1.2 Memory Regions .. 25
3.1.3 Cache Occupancy Monitoring Technology 26
3.1.4 Memory Bandwidth Monitoring ... 26

3.2 Intel® RDT Allocation Features ... 27
3.2.1 Common Framework .. 27
3.2.2 Memory Regions .. 28
3.2.3 Cache Occupancy Allocation Technologies 29
3.2.4 Memory Bandwidth Allocation .. 30
3.2.5 Cache Bandwidth Allocation ... 40

4 Intel® Resource Director Technology for Non-CPU Agents 44

4.1 Introduction .. 44
4.2 Features ... 45
4.3 Enumeration .. 45
4.4 Interface ... 46
4.5 Common Tags.. 48
4.6 I/O Blocks and Channels ... 48
4.7 I/O Block Configuration ... 49
4.8 Shared-L3 Configuration ... 50

4.8.1 Software Flow .. 50
4.8.2 Monitoring: Data Flows for RMIDs 51
4.8.3 Allocation: CLOS-based Control Interfaces 52

4.9 CXL-Specific Considerations ... 53
4.9.1 CXL block Interfacing Fundamentals 53
4.9.2 Integrated Accelerators ... 53

4.10 Use Cases ... 54

4 Document Number: 356688-004US, Revision: 1.3

5 BIOS Considerations ... 58

5.1 Introduction to Enhanced RDT Interfaces 58
5.2 ERDT Table Structure Layout ... 58
5.3 MRRM Table Structure Layout .. 60
5.4 ERDT Table Structure Details ... 61

5.4.1 ERDT Structure Format and Field Descriptions 61
5.4.2 Valid ERDT Sub-structure Types ... 62
5.4.3 Resource Management Domain Description Structure 63
5.4.4 CPU Agent Collection Description Structure.......................... 66
5.4.5 Device Agent Collection Description Structure 66
5.4.6 Cache Monitoring Registers for CPU Agents Description

Structure .. 68
5.4.7 Memory Bandwidth Monitoring Registers for CPU Agents

Description Structure .. 69
5.4.8 Memory Bandwidth Allocation Registers for CPU Agents

Description Structure .. 71
5.4.9 Cache Monitoring Registers for Device Agents Description

Structure .. 73
5.4.10 IO Bandwidth Monitoring Registers for Device Agents

Description Structure .. 74
5.4.11 Cache Allocation Registers for Device Agents Description

Structure .. 77
5.4.12 Fixed-Point 32-bit Format for Correction Factor 78

5.5 Memory Range and Region Mapping (MRRM) Structure Details 79
5.5.1 Memory Range Entry (MRE) Structure 81

5.6 Architectural Intel® RDT Features for Non-CPU Agents (IRDT) 82
5.6.1 RMID/CLOS tagging - ACPI Enumeration 83

5.7 Model-Specific Intel® RDT Features for CPU Agents 94
5.7.1 BIOS Configuration for Resource Aware MBA 94

6 MMIO Register Descriptions .. 96

6.1 Enhanced Intel® RDT Register Location ... 96
6.1.1 Software Access to Registers ... 96
6.1.2 Register Attributes ... 96
6.1.3 Register Descriptions .. 96

6.2 Non-CPU Agent Intel® RDT Register Location 123
6.2.1 Software Access to Registers ... 123
6.2.2 Register Descriptions for Non-CPU Agents 123

7 Programming Guidelines ... 126

7.1 Intel® RDT Monitoring Software Flows for CPU Agents 126
7.1.1 Intel® RDT Monitoring Software Flows for CPU Agents 126
7.1.2 Native OS Environments ... 131
7.1.3 Virtualization Scenarios ... 131

7.2 Intel® RDT Allocation Software Flows for CPU Agents 133
7.2.1 Intel® RDT Software Allocation Flows for CPU Agents 133

7.3 Intel® RDT Software Flows for Non-CPU Agents 134
7.4 Assembling a Complete View of System Memory 135
7.5 Establishing Correlation between the DACD and IRDT tables 145

A Intel® RDT Feature Details .. 148

Document Number: 356688-004US, Revision: 1.3 5

A.1 Intel® RDT Feature Evolution ... 148
A.2 Intel® RDT Architectural Features and Supported Products 150
A.3 Intel® RDT Model-Specific Features and Supported Products 154
A.4 Feature Mapping: CPU Agents, Non-CPU Agents in Different L3

Configurations ... 154
A.5 Architectural MSRs used with Intel® RDT Features 156
A.6 Model-Specific Registers for Intel® RDT Model Specific Features 156

B Model-Specific Intel® RDT Features ... 157

B.1 Model-Specific Intel® RDT Features for CPU Agents 157
B.1.1 Resource Aware MBA .. 157
B.1.2 Intel® RDT and Sub-NUMA Clustering Compatibility 159
B.1.3 STLB QoS .. 167
B.1.4 L3 Cache Allocation Technology 169

Figures

Figure 2-1. Shared-L3 Configuration System Model and Presence of Intel®

RDT Features ... 17
Figure 2-2. Multiple-L3 Configuration System Model and Presence of Intel ®

RDT Features ... 17
Figure 2-3. Intel® RDT Monitoring – Enabling RMID-Based Monitoring for

Shared Resources .. 18
Figure 2-4. Intel® RDT Allocation – Enabling CLOS-based Allocation for Shared

Resources ... 20
Figure 3-1. Resource Monitoring IDs (RMIDs) Assignment Flow 24
Figure 3-2. IA32_PQR_ASSOC MSR to Set RMID 24
Figure 3-3. IA32_QM_EVTSEL and IA32_QM_CTR MSRs 25
Figure 3-4. Classes of Service (CLOS) Association Flow 28
Figure 3-5. The IA32_PQR_ASSOC MSR to Set CLOS 28
Figure 3-6. A High-Level Overview of the First-Generation MBA Feature 32
Figure 3-7. Second Generation MBA, Including a Fast-Responding Hardware

Controller .. 35
Figure 3-8. High-Level Overview of the Third Generation MBA Feature 37
Figure 3-9. High-Level Overview of the Region Aware MBA 38
Figure 3-10. Example of CBA Bandwidth Control between L2 and L3 caches 42
Figure 4-1. Non-CPU Agent Building Atop CPU Agent Intel® RDT Features ... 44
Figure 4-2. The IA32_L3_IO_QOS_CFG MSR for Enabling Non-CPU Agent

Intel® RDT .. 46
Figure 4-3. Tagging for PCIe and CXL Devices.. 48
Figure 4-4. Mapping of Channels in the I/O Domain (PCIe Example) 49
Figure 4-5. Mapping of Channels in the I/O Domain (CXL Example) 49
Figure 4-6. Resource Monitoring and Control for PCIe and CXL Endpoints 50
Figure 4-7. Reuse of the IA32_L3_QOS_MASK_n MSRs for L3 CAT Control .. 53
Figure 4-8. Device Traffic Tagging Model with PCIe as the Sole Traffic Path . 54
Figure 4-9. PCIe Device Example, with Traffic on a Channel Tagged with an

RMID and CLOS ... 54
Figure 4-10. CXL Example of Device Tagging Model with CXL.IO and

CXL.Cache Traffic Paths .. 55

6 Document Number: 356688-004US, Revision: 1.3

Figure 4-11. Example of Controlling Two Different PCIe Devices 55
Figure 4-12. Example of Controlling a CXL Accelerator 56
Figure 4-13. Example of Controlling a High-Bandwidth Integrated Accelerator

.. 56
Figure 4-14. MBA to Control a CXL.Mem Pooling Device 57
Figure 5-1. Top-level Structure of ERDT ACPI Enumeration 60
Figure 5-2. Top-level Structure of MRRM ACPI Enumeration 61
Figure 5-3. Non-CPU Agent Intel® RDT ACPI Enumeration 84
Figure 5-4. ACPI Enumeration – Detail of DSS and RCS Structures

Downstream from an RMUD ... 85
Figure 5-5. Mapping from RCS Structures to MMIO Addresses for Per-link

Control ... 86
Figure 5-6. CXL Enumeration Example with CXL.IO and CXL.Cache Links 86
Figure 6-1. RDT Control Register .. 98
Figure 6-2. CMT Register ... 99
Figure 6-3. Per Region Per RMID MBM Register 101
Figure 6-6-4. Interleaved RMID MBM Register 103
Figure 6-5. MBA Optimal Bandwidth Register ... 106
Figure 6-6. Sequential CLOS arrangement in MBA Register 109
Figure 6-7. Minimum MBA Register ... 109
Figure 6-8. Sequential CLOS arrangement in MBA Register 112
Figure 6-9. Maximum MBA Register .. 112
Figure 6-10. Sequential CLOS arrangement in MBA Register 115
Figure 6-11. CMT Register ... 115
Figure 6-12. Total I/O Bandwidth Register ... 117
Figure 6-13. I/O Miss Bandwidth Register .. 119
Figure 6-14. CAT_IO_REG Register ... 121
Figure 7-1. RMIDs Assigned to vCPUs ... 132
Figure 7-2. MRRM, SRAT, HMAT and CEDT Correlation 136
Figure 7-3. Memory Configuration Example ... 140
Figure 7-4. SRAT, MRRM Summary HMAT MPD Attribute Structure 141
Figure 7-5. HMAT System Locality and Bandwidth Information Structure

Summary .. 142
Figure 7-6. Memory Configuration Example ... 142
Figure 7-7. SRAT, MRRM Summary HMAT MPD Attribute Structure 144
Figure 7-8. HMAT System Locality and Bandwidth Information Structure

Summary .. 145
Figure 7-9 shows an example of the RMUD mapping to DSS (device-level) and

RCS (link-level) structures along with ERDT sub-structures. Each

device attached to an I/O block is described by a DSS, and has one or

more links, with properties described in the RCS structures. The RCS

structures contain pointers to MMIO locations (in absolute address

form, not BAR-relative) to allow software to configure the RMID/CLOS

tags and related properties in an I/O Block. 146
Figure 7-10. IRDT and ERDT ACPI Mapping. .. 146
Figure 7-11. High-Level Overview of the Resource Aware MBA (MBA 4.0) .. 158
Figure 7-12. The MBA_CFG MSR for Enabling Resource Aware MBA Feature

.. 159
Figure 7-13. Default Mode Demonstrating SNC-4 and RMID Distribution ... 161

Document Number: 356688-004US, Revision: 1.3 7

Figure 7-14. The RMID_SNC_CONFIG MSR for Enabling RMID Sharing Mode

.. 161
Figure 7-15. RMID Sharing Mode Demonstrating SNC-4 and RMID Distribution

.. 162

Tables

Table 0-1. Glossary .. 10
Table 1-1. References ... 14
Table 3-1. MBA_CFG MSR Definition ... 36
Table 5-1. Enhanced Resource Director Technology (ERDT) Top-Level ACPI

Structure .. 61
Table 5-2. Valid ERDT Sub-structure Types ... 62
Table 5-3. Resource Management Domain Description (RMDD) Structure 63
Table 5-4. Valid Sub-structure Types within the scope of an RMDD 65
Table 5-5. CPU Agent Collection Description (CACD) Structure 66
Table 5-6. Device Agent Collection Description (DACD) Structure 66
Table 5-7. Device Agent Scope Entry (DASE) Structure 67
Table 5-8. Cache Monitoring Registers for CPU Agents Description (CMRC)

Structure .. 68
Table 5-9. Memory Bandwidth Monitoring Registers for CPU Agents

Description (MMRC) Structure .. 70
Table 5-10. Memory Bandwidth Allocation Registers for CPU Agents

Description (MARC) Structure .. 71
Table 5-11. Cache Monitoring Registers for Device Agents Description (CMRD)

Structure .. 73
Table 5-12. IO Bandwidth Monitoring Registers for Device Agents Description

(IBRD) Structure .. 74
Table 5-13. Cache Allocation Registers for Device Agents Description (CARD)

Structure .. 77
Table 5-14. Memory Range and Region Mapping (MRRM) Structure 80
Table 5-15. Memory Range Entry (MRE) Structure 81
Table 5-16. IRDT Table Format (Variable Length) 87
Table 5-17. RMUD Table Format (Variable length) 88
Table 5-18. DSS Table Format (Variable length) 90
Table 5-19. RCS Table Format (v1, Currently 40B) 91
Table 5-20. RCS Table Format (v2, Currently 40B) 92
Table 6-1. Register Attributes Definitions .. 96
Table 6-2. Memory-Mapped Register Block Reference 97
Table 6-3. MMIO Table Format ... 124
Table 7-1. Example CMT and MBM Counter Values 130
Table 7-2. ACPI Table Cross-Reference ... 138
Table 7-3. High-level software component responsibilities 139
Table 7-4. IRDT and ERDT ACPI Mapping. ... 146
Table 7-5. SNC Enabled and RMID Distribution Mode Summary................ 163
Table 7-6. Local and Total Count Increment .. 166

8 Document Number: 356688-004US, Revision: 1.3

Table 7-7. Local and Total Bandwidth Example....................................... 166
Table 7-8. STLB QoS Enumeration in IA32_CORE_CAPABILITIES MSR 168
Table 7-9. STLB_QOS_INFO MSR Definition ... 168
Table 7-10. STLB_QOS_MASK_N MSR Definition 169
Table 7-11. STLB_FILL_TRANSLATION MSR Definition 169
Table 7-12. Processor support list .. 170

Document Number: 356688-004US, Revision: 1.3 9

Revision History
Revision
Number

Description Date

1.0 • Initial release of the document. September 2023

1.1 • Adding details of hardware feature support in future Intel Processors January 2025

1.2 • Minor clarifications & discussion of Hybrid CPUID enumeration and

feature interactions

March 2025

1.3 • Added details about assembling a complete view of system memory,

and usage of features introduced on future Intel Processors, with

certain minor clarifications

December 2025

10 Document Number: 356688-004US, Revision: 1.3

Glossary
Table 0-1. Glossary

Acronym Term Description

ACPI Advanced Configuration

and Power Interface

Advanced Configuration and Power Interface is an

open standard that operating systems can use to

discover and configure computer hardware

components, to perform power management, auto

configuration, and status monitoring.

CAT Cache Allocation

Technology

Software-guided redistribution of cache capacity is

enabled by CAT, enabling important data center VMs,

containers or applications to benefit from improved

cache capacity and reduced cache contention. CAT

may be used to enhance runtime determinism and

prioritize important applications.

CDP Code and Data

Prioritization

As a specialized extension of CAT, Code and Data

Prioritization (CDP) enables separate control over

code and data placement in the L2 cache and the

last-level (L3) cache. Certain specialized types of

workloads may benefit with increased runtime

determinism, enabling greater predictability in

application performance.

CH Channel An I/O device channel, used to communicate between

a device and an I/O Block and onto the coherent

fabric.

CLOS Class(es) of Service A fundamental tag in RDT used for resource controls

- Clump A group of associated register fields within a larger

register space (such as a 4KB page)

CMT Cache Monitoring

Technology

Monitors the last-level cache (L3) utilization by

individual threads, applications, or Virtual Machines,

CMT improves workload characterization, enables

advanced resource-aware scheduling decisions, aids

“noisy neighbor” detection and improves performance

debugging.

ERDT Enhanced RDT An ACPI object (ERDT) which defines details about

Region Aware MBA and MBM

- Hybrid Term used to refer to processors supporting more

than one logical processor type, potentially with

differing feature support or attributes details

Intel® RDT Intel® Resource Director

Technology

Intel® RDT is the “umbrella” technology name for

Intel’s Platform Quality of Service technologies,

including CPU Agents and Non-CPU Agents.

I/O Intel®

Resource

Director

Technology

(Intel® RDT)

I/O Device Intel®

Resource Director

Technology

Intel RDT technologies specifically focusing on I/O

devices including PCIe, CXL and integrated

accelerators. Enumerated through the ACPI IRDT

object.

MBA Memory Bandwidth

Allocation

MBA enables approximate and indirect control over

memory bandwidth available to workloads, enabling

new levels of interference mitigation and bandwidth

shaping for “noisy neighbors” present on the system.

Document Number: 356688-004US, Revision: 1.3 11

Acronym Term Description

MBM Memory Bandwidth

Monitoring

Multiple VMs or applications can be tracked

independently via Memory Bandwidth Monitoring

(MBM), which provides memory bandwidth monitoring

for each running thread simultaneously. Benefits

include detection of noisy neighbors, characterization

and debugging of performance for bandwidth-

sensitive applications, and more effective non-uniform

memory access (NUMA)-aware scheduling.

MMIO Memory Mapped I/O I/O Intel RDT defines a series of MMIO-mapped

interfaces to enable association of I/O devices to

RMIDs and CLOS for monitoring and control.

MRRM Memory Range and

Region Mapping

An ACPI object which describes memory regions, used

with Enhanced RDT (ERDT) and other features.

PQR PQR A shorthand for the IA32_PQR_ASSOC MSR, which

associates IA threads to RMID and CLOS tags.

RMD Resource Management

Domain

A set of features defined within a particular cache

domain, such as an L3 cache supporting a number of

logical processors.

RTD Resource Telemetry

Domain

A Resource Management Domain within which one or

more resource monitoring (telemetry) controls are

supported

RAD Resource Allocation

Domain

A Resource Management Domain within which one or

more resource allocation controls are supported

RMID Resource Monitoring ID(s) A fundamental tag used for resource monitoring in

Intel RDT.

SoC or SOC System-on-Chip An integrated chip composed of host processors,

accelerators, memory, and I/O agents.

TC Traffic Class A PCI Express feature that allows differentiation of

transactions to apply appropriate servicing policies.

VC Virtual Channel A PCI Express feature for differential bandwidth

allocation. Virtual channels have dedicated physical

resources (buffering, flow control management, and

so on) across the hierarchy.

VMM Virtual Machine Monitor A software layer that controls virtualization.

12 Document Number: 356688-004US, Revision: 1.3

1 Introduction

This document defines the architecture of the Intel® Resource Director

Technology (Intel® RDT) feature set. The goal of Intel RDT is to bring new

levels of monitoring and control over how shared platform resources such as

last-level cache (L3) and main memory (typically DRAM) bandwidth are utilized

by CPU Agents and non-CPU Agents. The monitoring and allocation are not

necessarily applied across the entire system but are applied to a Resource

Management Domain (RMD) which corresponds to a set of agents sharing a set

of system resources, such as L2 cache capacity, L3 cache capacity, memory

bandwidth, and I/O devices. A Resource Management Domain (RMD) consists

of a collection of CPU agents or non-CPU agents. The set of CPU agents consist

of one or more logical processors associating an RMID and/or CLOS tag with a

software thread. Non-CPU agents include PCI Express* (PCIe*)/Compute

Express Link (CXL)* devices and integrated accelerators, thus broadly

encompassing the set of agents which read from and write to either caches or

memory, excluding IA cores.

The Intel RDT feature set provides a series of monitoring and allocation

capabilities such as Cache Monitoring Technology (CMT), Memory Bandwidth

Monitoring (MBM), Cache Allocation Technology (CAT), Code and Data

Prioritization (CDP), Memory Bandwidth Allocation (MBA) and others. These

technologies enable monitoring and control of shared platform resources, such

as the L3 cache capacity or main memory bandwidth, which may be in use by

many applications, containers or VMs running on the platform concurrently. As

described in subsequent chapters, these features enable deterministic behavior

and fairness in communications, real-time and other usages, and are initially

introduced in Section 1.3.

The Intel RDT features are based on a set of architectural tags, described in the

following section, and fundamental capabilities for enabling monitoring and

control over shared platform resources under the control of an operating

system (OS) or virtual machine monitor (VMM), as described in the chapter on

Reference Software Architecture.

1.1 High Level Usage Models

A wide variety of industry deployment models find value in either enhanced

visibility into system resource utilization, or control over shared resources. As a

result, a broad set of customer usage models are observed with Intel RDT,

including but not limited to:

• Cloud Hosting in the datacenter – Prioritizing important Virtual

Machines (VMs) and containing or mitigating “noisy neighbors”.

• Public/Private Cloud – Isolating an important infrastructure VM which

provides networking services such as a VPN to bridge the private cloud to

the public cloud.

Document Number: 356688-004US, Revision: 1.3 13

• Datacenter Infrastructure – Protecting virtual switches which provide

local networking.

• Communications – Ensuring consistent performance and containing

background tasks on a network appliance built atop an Intel® Xeon® Server

Platform.

• Content Delivery Networks (CDNs) – Prioritizing key parts of the

content serving application in order to improve throughput.

• Networking – Containing the impact of consolidated or co-located

containers to help reduce jitter and reduce packet loss in noisy scenarios,

and protecting high-performance applications based on the Dataplane

Development Kit (DPDK).

• Industrial Control and Robotics – Prioritizing important sections of code

to help meet real-time requirements.

Varying usage models drive differing requirements. Datacenter usages may

require control over relative container prioritization and management of tail

latencies, for instance, while industrial control usages may require strict

management of control loop cycle times, including the use of model-specific

extended Intel RDT features. A number of example use cases are described in

more detail based on abstracted examples of real-world deployments in the

chapter on Reference Software Architecture.

1.2 Scope

Broadly, this document discusses the following topics:

• An introduction to key Intel RDT architectural concepts and design

philosophy.

• Details of architectural Intel RDT monitoring and allocation features for CPU

agents and non-CPU agents.

• Details of model-specific Intel RDT monitoring and allocation features for

CPU agents and non-CPU agents.

• Considerations for BIOS writers, and those consuming ACPI enumeration

tables generated by BIOS.

• An overview of various real-world software usages of Intel RDT features

that have been observed, and recommended software enabling strategies.

The following topics are not covered (or are covered in a limited context):

• Intel RDT for CPU Agents and non-CPU Agents architectural details -

feature enumeration and interfaces using CPUID and configuration using

MSRs. These details are provided in the Intel® 64 Architecture Software

Developer’s Manual (SDM), Volume 3B, Chapter Title: Debug, Branch

Profile, TSC, and Intel® Resource Director Technology (Intel® RDT)

Features [1], and the document entitled Intel® Architecture Instruction Set

Extensions and Future Features [2], as applicable.

14 Document Number: 356688-004US, Revision: 1.3

1.3 Audience

The intended audience for this specification includes Intel RDT consumers,

users and implementers, across OS/VMM software, resource management

driver and control loop developers, administrators, managers of datacenter

infrastructure, workload owners and embedded and communications

developers. Additionally, this specification may be of interest to those

developing utilities, BIOS routines, administrative libraries and orchestration

frameworks.

1.4 References

Table 1-1. References

Description

[1] Intel® 64 and IA-32 Architectures Software Developer’s Manual.

Volume 3B, Chapters 18.18 and 18.19.

https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html

[2] Intel® Architecture Instruction Set Extensions and Future Features.

Instruction Set Architecture (intel.com)

[3] Intel® Virtualization Technology for Directed I/O Specification.

http://www.intel.com/content/www/us/en/embedded/technology/virtualization/vt-directed-io-

spec.html

[4] Unified Extensible Firmware Interface Forum – Links to ACPI-Related Documents (incudes

IRDT table title and signature).

https://uefi.org/acpi

[5] PCIe Express Specification, v5.0 or newer.

https://pcisig.com/specifications

[6] Compute Express Link Specification, v1.0 or newer.

https://www.computeexpresslink.org/download-the-specification

[7] User space software for Intel® Resource Director Technology

https://github.com/intel/intel-cmt-cat

[8] ACPI Software Programming Model

https://uefi.org/htmlspecs/ACPI_Spec_6_4_html/05_ACPI_Software_Programming_Model/ACPI

_Software_Programming_Model.html#system-resource-affinity-table-srat

[9] Intel® Platform Monitoring Technology (Intel® PMT) - External Specification

https://www.intel.com/content/www/us/en/content-details/710389

§

https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/tools/isa-extensions/overview.html
http://www.intel.com/content/www/us/en/embedded/technology/virtualization/vt-directed-io-spec.html
http://www.intel.com/content/www/us/en/embedded/technology/virtualization/vt-directed-io-spec.html
https://uefi.org/acpi
https://pcisig.com/specifications
https://www.computeexpresslink.org/download-the-specification
https://github.com/intel/intel-cmt-cat
https://uefi.org/htmlspecs/ACPI_Spec_6_4_html/05_ACPI_Software_Programming_Model/ACPI_Software_Programming_Model.html#system-resource-affinity-table-srat
https://uefi.org/htmlspecs/ACPI_Spec_6_4_html/05_ACPI_Software_Programming_Model/ACPI_Software_Programming_Model.html#system-resource-affinity-table-srat
https://www.intel.com/content/www/us/en/content-details/710389

Document Number: 356688-004US, Revision: 1.3 15

2 Intel® Resource Director
Technology Overview

This chapter provides an overview of Intel® RDT features, including goals, key

ingredients, and the architectural framework, which are discussed in more

detail in the chapters that follow.

2.1 Common Tags

Intel RDT provides a layer of abstraction between applications and logical

processors through the use of numeric tags. Both CPU agents and non-CPU

agents use the following tags for resource monitoring and allocation,

respectively:

• Resource Monitoring IDs (RMIDs) are used for monitoring of shared

platform resource utilization.

• Classes of Service (CLOS) are used for control of shared platform

resources, such as L3 cache occupancy or memory bandwidth.

The RMID and CLOS tags are described in the Intel® 64 and IA-32

Architectures Software Developer’s Manual, Volume 3B. RMID and CLOS tags

are independent. Usage of RMID tags does not affect CLOS, and vice versa

(however, when CLOS tags are used to affect resource allocations, the effects

may be observed with RMID-based monitoring features.) An RMID-based

monitoring feature does not incur hardware overhead or affect a CLOS-based

allocation feature. A product may be built to implement RMID-based monitoring

features, CLOS-based control features, or both.

For CPU agents, RMIDs and CLOS tags are associated with the operation of a

logical processor through the IA32_PQR_ASSOC MSR.

For non-CPU agents, a series of MMIO interfaces is used to associate upstream

traffic from I/O devices with RMID and CLOS tags, and the numerical

interpretation of the tags is the same as for processor traffic. (For example, the

RMID value “5” used to track processor thread resource consumption means

the same thing as when the RMID value “5” is used to track the cache fill

behavior of a PCIe device.) These MMIO interfaces for tagging non-CPU agents

are discovered using an ACPI structure called I/O Intel RDT, that is, IRDT. (See

Chapter 5.)

Other features may utilize RDT tags, such as Resource Monitoring IDs, to track

and report other telemetry events in the processor. Examples include per-RMID

telemetry available both in-band and out-of-band as specified in the Intel®

Platform Monitoring Technology (Intel® PMT) specification [9] and associated

platform-specific telemetry events lists.

16 Document Number: 356688-004US, Revision: 1.3

2.2 Enumeration of Supported Features

Software enumeration of supported RDT features is enabled through the CPUID

instruction for CPU-centric features, and through the Advanced Configuration

and Power Interface (ACPI) for platform-centric features.

Further enumeration details of CPUID-enumerated features, including Hybrid

processor support, are provided in the Intel® 64 Architecture Software

Developer’s Manual (SDM), Volume 3B, Chapter Title: Debug, Branch Profile,

TSC, and Intel® Resource Director Technology (Intel® RDT) Features [1] and

the document entitled Intel® Architecture Instruction Set Extensions and

Future Features [2], as applicable.

Details on ACPI-enumerated features are provided in subsequent sections of

this document.

2.3 L3 Configurations

This specification describes two types of high level L3 configurations that may

support Intel RDT features:

1. Shared-L3 Configuration: There is a common shared L3 cache for all

the agents in the SoC, as shown in Figure 2-1. This SoC configuration

supports interfaces for Intel RDT features based on the CPUID instruction

for feature enumeration and Model-Specific Registers (MSRs) for feature

configuration and telemetry retrieval.

Document Number: 356688-004US, Revision: 1.3 17

Figure 2-1. Shared-L3 Configuration System Model and Presence of Intel® RDT

Features

2. Multiple-L3 Configuration: There may be more than one L3 cache

instances that are local to CPU Agents or non-CPU Agents respectively, as

shown in Figure 2-2.

Figure 2-2. Multiple-L3 Configuration System Model and Presence of Intel ® RDT

Features

A set of features defined within a particular cache domain, such as an L3 cache

supporting a number of logical processors, may be referred to as a Resource

18 Document Number: 356688-004US, Revision: 1.3

Telemetry Domain (RTD, for monitoring features) or a Resource Allocation

Domain (RAD, for allocation features). More generally, a resource which

supports Intel RDT monitoring features, allocation features or both may be

referred to as a Resource Management Domain (RMD).Figure 2-2 shows an

example of multiple RMDs.

In Shared-L3 configurations RMIDs and CLOS are shared and uniform from the

perspective of all processors in that domain. In Multiple-L3 configurations,

RMIDs and CLOS have scope defined and enumerated independently within

each domain. In this case, behavior for interactions of RMIDs and CLOS across

independent domains is model-specific.

Refer to Section A.4 for specific examples.

See Appendix A.4 for Intel RDT feature mapping for CPU agents and non-CPU

agents in different SoC configurations.

2.4 Intel® RDT Monitoring Technologies

2.4.1 Intel® RDT Monitoring Key Ingredients

Intel RDT Monitoring enables monitoring shared platform resources, such as L3

cache occupancy and memory bandwidth, based on software-defined Resource

Monitoring IDs (RMIDs) that are tagged to applications or VMs on a per-thread

basis (Figure 2-3). For CPU Agents, each logical processor exposes the

IA32_PQR_ASSOC MSR to allow the OS/VMM to specify an RMID when an

application, thread or VM is scheduled on a core.

Resource monitoring for the indicated application/thread/VM is then performed

by hardware based on the RMID with which it is associated, and software can

read back the L3 cache occupancy for a given RMID via counter registers (if the

CMT feature is supported for instance). Each thread of an application may be

tracked with a distinct RMID, or threads may be grouped into a single RMID,

based on the granularity of monitoring required. Threads within a VM, apps

within a VM, entire VMs or groups of VMs can similarly be tracked with RMIDs

with variable granularity as needed.

Figure 2-3. Intel® RDT Monitoring – Enabling RMID-Based Monitoring for

Shared Resources

Document Number: 356688-004US, Revision: 1.3 19

The basic ingredients of Intel RDT Monitoring are as follows:

• CPUID and/or ACPI constructs to indicate support for Intel RDT Monitoring

and sub-features (CMT, MBM, and so on) for Resource Telemetry Domains

(RTD).

• Enumeration of the total number of RMIDs that can be tracked in the given

RTD.

• Mechanisms to allow system software (OS/VMM) to specify the RMID of

software threads and non-CPU agents.

• Mechanisms to allow system software to retrieve collected metrics on a

per-RMID basis via architectural MSRs or MMIO interfaces.

The first ingredient to make use of Intel RDT Monitoring is to enumerate the

set of monitoring capabilities provided on the given Resource Management

domain via CPUID or ACPI and determine the number of RMIDs available for

tracking on a particular Resource Telemetry Domain (RTD, that is, caching

domain). This will allow the OS/VMM to determine how many unique IDs it may

use. Given that certain processor topologies may include heterogenous

capabilities which vary per-processor, it is recommended that software

enumerate Intel RDT CPUID leaves from the perspective of each logical

processor (LP) to construct the list of supported capabilities and which

resources (such as L3 cache) may be shared among various LPs.

The second ingredient (Intel RDT Monitoring association) allows the OS/VMM to

specify the RMID of the running software thread to the platform for CPU

agents. The OS/VMM can also specify the RMID for upstream traffic and

operation of non-CPU agents.

The third ingredient (Intel RDT marking and associated hardware support)

enables each memory request from the CPU agents and non-CPU agents to be

tagged with the RMID provided by the OS/VMM.

The fourth ingredient is Intel RDT Monitoring reporting. When the monitoring

data retrieval register is programmed with the RMID and the specific event

code of interest (L3 Cache Occupancy for example), this information is

appropriately retrieved and provided back.

Multiple Intel RDT Monitoring features may exist within a platform, but the

software should not assume that the presence of one Intel RDT Monitoring

feature implies the existence of any others. Intel RDT features are

independently enumerated in the sequence described in the Intel® 64 and IA-

32 Architectures Software Developer’s Manual, Volume 3B, Section 18.18.4, in

order to avoid ambiguous situations.

2.4.2 Shared-L3 versus Multiple-L3 Configuration

Intel RDT Monitoring features may have different scope definitions depending

on L3 configuration. With the shared-L3 configuration, CPU agents and non-

CPU agents allocate into a shared L3 cache. Hence, all monitoring features

have a consistent definition for CPU agents and non-CPU agents.

20 Document Number: 356688-004US, Revision: 1.3

With the multiple-L3 configuration, non-CPU agents may have a separate

nearby L3 cache which is distinct from CPU agents’ L3 cache. Hence,

monitoring features may have different definitions for CPU agents and non-CPU

agents. For example, in certain implementations, non-CPU agents with a near

L3 cache implementation may report memory bandwidth monitoring data from

the near cache only.

2.5 Intel® RDT Allocation Technologies

2.5.1 Intel® RDT Allocation Key Ingredients

Intel RDT Allocation enables resource allocation based on Class of Service

(CLOS) tags. The processor exposes Classes of Services into which applications

(or individual threads) and traffic from I/O devices may be assigned. A CLOS

may have multiple associated resource allocation properties. For example,

there may exist controls for each CLOS to specify L2 capacity available to that

CLOS, L3 capacity available, memory bandwidth available, and other properties

(Figure 2-4).

In the case of L3 capacity control features, for instance, such as Cache

Allocation Technology (CAT), the cache allocation for a given thread is

restricted based on the class with which they are associated. Similarly, in

certain implementations supporting non-CPU agent controls, context-associated

and upstream traffic from I/O devices may be controlled as it utilizes shared

system resources. Each CLOS can be configured using bitmasks which

represent capacity, and the degree of overlap and isolation between classes in

allocation features which influence the SOC caches.

For CPU agents, each logical processor exposes the IA32_PQR_ASSOC MSR to

allow the OS/VMM to specify a CLOS when an application, thread or VM is

scheduled. Cache Allocation for the application/thread/VM is then controlled

based on the CLOS and the associated bitmask.

Figure 2-4. Intel® RDT Allocation – Enabling CLOS-based Allocation for Shared

Resources

The basic ingredients of Intel RDT Allocation are as follows:

Document Number: 356688-004US, Revision: 1.3 21

• CPUID or ACPI constructs to indicate whether Intel RDT Allocation and sub-

features (CAT, MBA, and so on) for Resource Allocation Domains (RADs)

are supported and enumerate the total number of CLOS that may be

associated to shared platform resources on the platform.

• Mechanisms to allow system software (OS/VMM) to specify the CLOS of

software threads and non-CPU agents.

• Mechanisms to allow system software to configure the shared platform

resource levels available to each CLOS via architectural MSRs or MMIO

interfaces.

The first ingredient to make use of Intel RDT Allocation is to enumerate the

level of allocation capability provided on the given Resource Allocation Domain

via CPUID and/or ACPI and determine the number of CLOSs available for

allocating shared platform resources on a particular RAD (that is, a certain L3

caching domain). This will allow the OS/VMM to determine how many unique

IDs it may use. Given that certain processor topologies may include

heterogenous capabilities which vary per-processor, it is recommended that

software enumerate Intel RDT CPUID leaves from the perspective of each

logical processor (LP) to construct the list of supported capabilities and which

resources (such as L3 cache) may be shared among various LPs.

The second ingredient (Intel RDT Allocation association) allows the OS/VMM to

specify the CLOS of the running software thread to the platform for CPU

agents. The OS/VMM can also specify the CLOS for upstream traffic and

operation of non-CPU agents.

The third ingredient (Intel RDT marking and associated hardware support)

enables each memory request from CPU agents and non-CPU agents to be

tagged with the CLOS provided by the OS/VMM.

The fourth ingredient is Intel RDT Allocation control, when the allocation

register is programmed with the CLOS and allocation control is performed by

the specific shared platform resource (L3 Cache capacity for example).

Multiple Intel RDT Allocation features may exist within a platform. The software

should not assume that the presence of one RDT Allocation feature implies the

existence of any others. Intel RDT features are independently enumerated in

the sequence described in the Intel® 64 and IA-32 Architectures Software

Developer’s Manual, Volume 3B, in order to avoid ambiguous situations.

2.5.2 Shared-L3 versus Multiple-L3 Configuration

Intel RDT Allocation features may have different definitions depending on L3

configuration. With the shared-L3 configuration, CPU agents and non-CPU

agents allocate into a shared-L3 cache. Hence, all allocation features have a

consistent definition for CPU agents and non-CPU agents. With the multiple-L3

configuration, non-CPU agents may have a separate near L3 cache which is

different from the CPU agents’ L3 cache. Hence, allocation features may have

different definitions for CPU agents and non-CPU agents. For example, non-CPU

agents with a near L3 cache implementation provide separate interfaces for

cache capacity allocation for the near L3 cache.

22 Document Number: 356688-004US, Revision: 1.3

Chapter 3 and Chapter 4 provide details about each Intel RDT Monitoring and

Allocation features for CPU agents and non-CPU agents.

§

Document Number: 356688-004US, Revision: 1.3 23

3 Intel® Resource Director
Technology for CPU Agents

This chapter contains an overview of the Intel RDT features for CPU agents.

Chapter 4 describes details about features for non-CPU agents.

3.1 Intel® RDT Monitoring Features

The Intel RDT Monitoring architecture enables monitoring of the utilization level

of critical shared platform resources and provides this data directly to the

Hypervisor, Operating System or other privileged software. Intel RDT

Monitoring supports three event codes: 1) L3 cache occupancy 2) L3 Total

External bandwidth 3) L3 Local External bandwidth. This allows more efficient

scheduling based on resource use, as well as application tuning and

performance prediction based on resource use characterization, and optionally

better reporting and billback. This functionality complements Intel RDT

Allocation, which provides control over shared platform resources available to

CPU agents.

3.1.1 Common Framework

The following mechanisms are shared by Intel RDT Monitoring features:

• CPUID feature bits to enumerate the presence of the Intel RDT Monitoring

capabilities and the details of each sub feature.

• The IA32_PQR_ASSOC MSR, which the OS or Hypervisor uses to specify

the RMID for each software thread scheduled to run on a logical processor.

See Figure 3-2.

• The IA32_QM_EVTSEL and IA32_QM_CTR MSRs, to read cache occupancy

and bandwidth statistics. See Figure 3-3.

Software may flexibly associate RMIDs with threads, applications, VMs, or

containers. (See Figure 3-1). If multiple logical processors within a Resource

Telemetry Domain (RTD) are assigned the same RMID, the total resource

monitoring telemetry by these logical processors will be accumulated together

and the total reported by hardware.

Monitoring data is retrieved using a window-based interface. Software writes

an event ID and RMID to the IA32_QM_EVTSEL MSR and hardware provides

the resulting data back in the IA32_QM_CTR MSR.

Refer to Intel® 64 and IA-32 Architectures Software Developer’s Manual,

Volume 3B, for details on CPUID and MSR usage.

24 Document Number: 356688-004US, Revision: 1.3

Figure 3-1. Resource Monitoring IDs (RMIDs) Assignment Flow

Figure 3-2. IA32_PQR_ASSOC MSR to Set RMID

Document Number: 356688-004US, Revision: 1.3 25

Figure 3-3. IA32_QM_EVTSEL and IA32_QM_CTR MSRs

3.1.2 Memory Regions

Certain processors support a system-level enumeration of Memory Regions,

which are part of the common infrastructure defined by the RDT feature set.

Other feature sets may also make use of the Memory Region definition which

RDT establishes.

A Memory Region is defined as comprising one or more physically-addressed

memory ranges. Certain processors support a system-level enumeration of

Memory Regions.

Multiple Memory Regions may be defined by the platform to independently

describe physical addresses backed by a particular type of memory, which may

exhibit varying capacity, latency, bandwidth, and locality characteristics.

Examples includes DRAM or CXL-attached memories, whether attached locally

or to a different processor over a coherent interconnect link.

The Memory Regions populated on a particular processor are described by the

system BIOS in the ACPI Memory Range and Region Mapping (MRRM) table,

which is described in Chapter 5, BIOS Considerations. This information may be

combined with other ACPI tables, such as HMAT, SRAT and CEDT, to gain more

insight regarding memory types connected to a certain processor.

For a modern platform, it becomes advantageous for the processor to provide a

capability to directly measure and allocate memory bandwidth across these

multiple memory regions simultaneously. Such processor capabilities, when

enabled, allow software to gather usage telemetry, adjust Memory Bandwidth

Allocation (MBA) policies, and build control loops to ensure performance goals

are met. As described below, Intel provides these capabilities as Region-Aware

Memory Bandwidth Monitoring and Allocation which are described in their

respective sections.

26 Document Number: 356688-004US, Revision: 1.3

3.1.3 Cache Occupancy Monitoring Technology

Intel RDT Cache Occupancy Monitoring Technologies provide visibility into

cache utilization. Features such as Cache Monitoring Technology (CMT) provide

occupancy counters on a per-RMID basis such that cache occupancy by each

RMID may be tracked and read back in real-time during system operation.

More specific feature details about CMT are provided in the Intel® 64 and IA-32

Architectures Software Developer’s Manual, Volume 3B. Note that the MSRs are

listed in Appendix A.5. See Appendix A.2 for CMT feature supported product

details.

3.1.3.1 L3 Cache Monitoring Technology

L3 Cache Monitoring Technology (CMT) allows an Operating System, Hypervisor

or similar system management agent to determine the usage of L3 cache of

the Resource Telemetry Domain (RTD) by applications running on the platform.

3.1.4 Memory Bandwidth Monitoring

Memory Bandwidth Monitoring (MBM) provides monitoring of bandwidth from

one level of the cache or resource hierarchy to the next, allowing bandwidth-

aware scheduling decisions, inter-RTD scheduling optimization, and enabling

feedback to bandwidth allocation features which allow control over memory

bandwidth.

More specific feature details about MBM are provided in the Intel® 64 and IA-32

Architectures Software Developer’s Manual, Volume 3B. Note that the MSRs are

listed in Appendix A.5. See Appendix A.2 for MBM feature supported product

details.

3.1.4.1 L3 Total and Local External Memory Bandwidth Monitoring

L3 Total and Local External Memory Bandwidth Monitoring allows system

software to monitor the use of bandwidth between L3 cache and local or

remote memory. In certain implementations, MBM is not guaranteed to track

directory, Extended Prediction Table (XPT) prefetcher or related types of traffic.

3.1.4.2 Region Aware Memory Bandwidth Monitoring

The Region Aware Memory Bandwidth Monitoring (MBM) feature provides a set

of counters simultaneously indexed by RMID and Region to measure the

memory bandwidth utilization of an RDT Resource Monitoring ID (RMID –

typically mapped to software threads, applications, containers or virtual

machines) to a Memory Region in the system. Typical hardware feature support

for Region Aware MBM includes the ability to independently track many RMIDs

simultaneously accessing several Memory Regions. Unlike prior generations of

MBM, the Region Aware MBM feature primarily uses an MMIO-based interface.

Document Number: 356688-004US, Revision: 1.3 27

Software may consult the Enhanced Resource Director Technology (ERDT) ACPI

table for enumeration of specific capabilities of this feature on a given

processor generation. The ERDT table defined in Chapter 5, BIOS

Considerations, provides information regarding capabilities and architectural

parameters such as the number of RMIDs supported. See Chapter 6, MMIO

Register Descriptions for details of the register interfaces used.

3.2 Intel® RDT Allocation Features

The Intel RDT Allocation architecture enables control over utilization level of

critically shared platform resources and provides this control directly to the

Hypervisor or Operating System. This allows more efficient resource usage as

well as application prioritization and determinism restoration based on resource

repartitioning. The implementation of Intel RDT Allocation features may be

product-specific or architectural. These capabilities complement Intel RDT

monitoring, which provides insight into shared platform resource utilization by

CPU agents.

3.2.1 Common Framework

The following mechanisms are shared by Intel RDT allocation features:

• CPUID feature bits to enumerate the presence of Intel RDT Allocation

capabilities and the details of each sub feature.

• The IA32_PQR_ASSOC MSR which software uses to specify the CLOS for

each software thread. See Figure 3-5.

• Mechanisms in hardware to specify resource usage to apply to each Class

of Service.

Software can flexibly associate Classes of Service with threads, applications,

VMs, or containers (see Figure 3-4). CLOS values are shared across all

allocation features. A particular numeric CLOS value has the same meaning

from the viewpoint of all cores. Each CLOS has an associated set of mask

registers as described later to associate that CLOS with a fraction of the shared

platform resources. If multiple logical processors within a Resource Allocation

Domain (RAD) are assigned the same CLOS, then resource allocations

associated with that CLOS will be shared among that set of logical processors.

28 Document Number: 356688-004US, Revision: 1.3

Figure 3-4. Classes of Service (CLOS) Association Flow

Figure 3-5. The IA32_PQR_ASSOC MSR to Set CLOS

For each resource, a block of registers is defined for software to configure the

allocation values for each CLOS. The definition of the register fields depends on

the type of resource being managed and is discussed in subsequent sections.

3.2.2 Memory Regions

See Section 3.1.2 for a discussion of Memory Regions which are a shared

infrastructure component used across both RDT Allocation and RDT Monitoring

technologies, in particular Region Aware MBM and Region Aware MBA.

Document Number: 356688-004US, Revision: 1.3 29

3.2.3 Cache Occupancy Allocation Technologies

A family of Cache Occupancy Allocation Technologies allows control over shared

cache space on a per-CLOS basis, enabling configurable isolation or overlap for

potentially improved throughput, fairness, determinism and/or differentiation.

These features are known as Cache Allocation Technology (CAT), which is the

term used in this document. Certain processors may support architectural or

model-specific forms of CAT depending on the product generation. Model-

specific implementations are discussed in Appendix B.1.4.

More specific feature details about CAT are provided in the Intel® 64 and IA-32

Architectures Software Developer’s Manual, Volume 3B. Note that the MSRs are

listed in Appendix A.5. See Appendix A.2 for CAT feature supported product

details.

3.2.3.1 L2 Cache Allocation Technology

L2 Cache Allocation Technology (L2 CAT) allows system software to specify the

amount of L2 cache space of the Resource Allocation Domain into which an

application can fill.

3.2.3.2 L2 Cache Code and Data Prioritization

L2 Code Data Prioritization (L2 CDP) provides differentiation between code and

data for L2 cache usage by a single Class of Service. In a case where an

application has a large code footprint which can overwhelm data in the cache,

or vice versa, the ability to separately prioritize code and data is valuable.

L2 CDP provides a pair of allocation bitmasks for each Class of Service (rather

than a single bitmask per CLOS as in L2 CAT), to allow system software to

independently configure the amount of L2 cache available to code and data.

3.2.3.3 L3 Cache Allocation Technology

L3 Cache Allocation Technology (L3 CAT) allows an Operating System (OS), a

Hypervisor, Virtual Machine Manager (VMM), or similar system service

management agent to specify the amount of L3 cache space within a Resource

Allocation Domain (RAD) into which a CLOS may fill.

3.2.3.4 L3 Cache and Data Prioritization

L3 Code Data Prioritization (L3 CDP) provides differentiation between code and

data for L3 usage by a single Class of Service. In a case where an application

has a large code footprint which can overwhelm data in the cache, or vice

versa, the ability to separately prioritize code and data is valuable.

L3 CDP provides a pair of allocation bitmasks for each Class of Service (rather

than a single bitmask per CLOS as in L3 CAT), to allow system software to

independently configure the amount of L3 cache available to code and data.

30 Document Number: 356688-004US, Revision: 1.3

3.2.4 Memory Bandwidth Allocation

Memory Bandwidth Allocation (MBA) allows the system software to control

access bandwidth to memory. It allows slowing “noisy neighbor” threads which

may be overutilizing bandwidth and enables the creation of closed-loop control

systems (monitoring and control combined) by exposing control over a credit-

based throttling mechanism.

More specific feature details about MBA are provided in the Intel® 64 and IA-32

Architectures Software Developer’s Manual, Volume 3B. Note that the MSRs are

listed in Appendix A.5. See Appendix A.2 for MBA feature supported product

details.

There are multiple generations of MBA, each extending additional capabilities:

1. First Generation MBA (Interface Scope) – This is the initial

implementation of the MBA feature which provides indirect and

approximate control over memory bandwidth available per-core. See

Section 3.2.3.1 for implementation details and see the Intel® 64 and IA-

32 Architectures Software Developer’s Manual, Volume 3B, for legacy

enumeration, interface and per-CLOS delay value resolution details.

2. Second Generation MBA (Interface Scope) - This enhanced MBA

capability provides improved efficiency and accuracy in bandwidth control,

along with providing increased system throughput. Rather than a strict

bandwidth control mechanism, a dynamic hardware controller is

implemented, which can react to changing bandwidth conditions at the

microsecond level. Before using the second-generation MBA feature, the

MBA hardware controller requires a BIOS-assisted calibration process that

may include inputs such as the number of memory channels populated

and other system parameters; this is a change from the first generation of

MBA.

Intel’s BIOS reference code includes a default configuration that is

recommended for general usage, and BIOS profiles may be created with

alternate tuning values to optimize for certain usages (such as stricter

bandwidth control). See Section 3.2.3.2 for implementation details and

Intel® 64 and the IA-32 Architectures Software Developer’s Manual,

Volume 3B, for legacy enumeration and interface details.

3. Third Generation MBA (Agent Scope) - The third generation MBA

feature on future processors based on the codename Granite Rapids

microarchitecture further enhances MBA with per-logical-processor control

and a further improved controller design. Total memory bandwidth (all L3

miss traffic) is now managed by MBA. This implementation follows the

prior MBA precedent of delivering significant enhancements without a

major software overhaul, and while preserving backward compatibility.

See Section 3.2.3.3 for implementation details and the Intel® 64 and the

IA-32 Architectures Software Developer’s Manual, Volume 3B, for legacy

enumeration and interface details.

MBA performance properties change over time, for instance enhancing system-

level efficiency. Software should not assume that performance properties or

specific tunings of MBA remain identical across product generations. Third

generation MBA shifts from interface-scope to agent-scope bandwidth control

Document Number: 356688-004US, Revision: 1.3 31

support, and scheduler re-tuning to take advantage of this enhancement may

be beneficial.

Note that in implementations of MBA which expose fine-grained steps (e.g., 1-

255 control window range), the throttling behavior is not guaranteed to be

monotonic, and may be subject to noise or skew due to interactions with other

processor features, so control software should not rely on monotonic behavior.

In implementations of Region Aware MBA, regions may support different

maximum amounts of bandwidth, so the linearity and saturation properties of

the control interface may differ across memory regions. For example, in a DDR

memory region, max bandwidth might be achieved at a bandwidth control

window value of 100, while lower-bandwidth CXL.mem may saturate at a

bandwidth control value of 50, while the architectural interface supports a

maximum (enumerated “Q”) of 255.

Legacy architectural implementations of MBA are enumerated in the sequence

described in the Intel® 64 and IA-32 Architectures Software Developer’s

Manual, Volume 3B, in order to avoid ambiguous situations.

The MBA feature provides the following architectural components:

• A mechanism to enumerate the MBA capability to control the bandwidth

from each level of the cache (for example, L2, L3) to the next level.

• A mechanism for the OS or Hypervisor to configure the amount of

bandwidth available to a particular Class of Service via a bandwidth control

(throttling) value as discussed later.

• Mechanisms for the OS or Hypervisor to specify the Class of Service to

which a thread belongs.

• Hardware mechanisms to guide and enforce the delay value at each level

of the cache hierarchy when an application has been designated to belong

to a specific Class of Service.

Note that in some usages such as those seeking bandwidth control in MB/s,

MBA may require either application-level performance feedback or

complementary Memory Bandwidth Monitoring (MBM) to use in the most

optimal way. Backward compatibility of the software interfaces is preserved,

and enhanced MBA generational changes manifest as enhancements atop the

MBA feature baseline.

3.2.4.1 First Generation Memory Bandwidth Allocation

The Memory Bandwidth Allocation (MBA) feature provides indirect and

approximate control over memory bandwidth available per-core and was

introduced on the Intel® Xeon® Scalable Processor Family. This feature

provides a method to control applications which may be over-utilizing

bandwidth relative to their priority in environments such as the datacenter.

The MBA feature uses existing constructs from the Intel RDT feature set

including Classes of Service (CLOS). A given CLOS used for L3 CAT for instance

means the same thing as a CLOS used for MBA. Infrastructure such as the MSR

used to associate a thread with a CLOS (the IA32_PQR_ASSOC_MSR) and

32 Document Number: 356688-004US, Revision: 1.3

some elements of the CPUID enumeration (such as CPUID leaf 10H [Cache

Allocation Technology Enumeration Leaf]) are shared.

The high-level implementation of Memory Bandwidth Allocation is shown in

Figure 3-6.

Figure 3-6. A High-Level Overview of the First-Generation MBA Feature

As shown here, the MBA feature introduces a programmable request rate

controller between the cores and the high-speed interconnect, enabling indirect

control over memory bandwidth for cores over-utilizing bandwidth relative to

their priority. For instance, high-priority cores may be run un-throttled, but

lower priority cores generating an excessive amount of traffic may be throttled

to enable more bandwidth availability for the high-priority cores.

Because the MBA uses a programmable rate controller between the cores and

the interconnect, higher-level shared caches and memory controller, bandwidth

to these caches may also be reduced, so care should be taken to throttle only

bandwidth-intense applications which do not use the off-core caches

effectively.

The bandwidth control (throttling) values exposed by MBA are approximate and

are calibrated to specific traffic patterns. As workload characteristics vary, the

bandwidth control values provided may affect each workload differently. In

cases where precise control is needed, the Memory Bandwidth Monitoring

Programmable
Request Rate

Controller

Core[0]
…..

Private L2

Multi-Core Processor

Core[n]

Private L2

First Generation MBA
Feature

Programmable
Request Rate

Controller

Shared L3 Cache –With CAT

Cache space available to
high-priority application

Cache space available to
low-priority application

High-Speed Interconnect Memory Controller

Document Number: 356688-004US, Revision: 1.3 33

(MBM) feature can be used as input to a software controller which makes

decisions about the MBA bandwidth control level to apply.

Legacy enumeration and configuration details are discussed in the Intel® 64

and IA-32 Architectures Software Developer’s Manual, Volume 3B.

3.2.4.1.1 Usage Considerations

As the memory bandwidth control that MBA provides is indirect and

approximate, using the feature with a closed-loop controller to also monitor

memory bandwidth and how effectively the applications use the cache (via the

Cache Monitoring Technology feature) may provide additional value. This

approach also allows administrators to provide a bandwidth target or set point

which a controller could use to guide MBA bandwidth control (throttling) values

applied, and this allows bandwidth control independent of the execution

characteristics of the application.

As control is provided per processor core (the max of the delay values of the

per-thread CLOS applied to the core), the user should take care in scheduling

threads so as to not inadvertently place a high-priority thread (with zero

intended MBA throttling) next to a low-priority thread (with MBA throttling

intended), which would lead to inadvertent throttling of the high-priority

thread, as the maximum resolved throttling value is applied.

3.2.4.2 Second Generation Memory Bandwidth Allocation

The second generation of Memory Bandwidth Allocation (MBA) is implemented

in the 3rd Gen Intel® Xeon® Scalable Processor Family, and related Intel Atom®

processors such as the P5000 Series. This enhanced MBA capability provides

improved efficiency and accuracy in bandwidth control, along with providing

increased system throughput. Rather than a strict bandwidth control

mechanism, a dynamic hardware controller is implemented, which can react to

changing bandwidth conditions at the microsecond level.

Before using the second-generation MBA feature, the MBA hardware controller

requires a BIOS-assisted calibration process that may include inputs such as

the number of memory channels populated and other system parameters; this

is a change from the first generation of MBA. Intel BIOS reference code

includes a default configuration that is recommended for general usage, and

BIOS profiles may be created with alternate tuning values to optimize for

certain usages (such as stricter bandwidth control) as described in the

subsequent BIOS Considerations chapter.

Second generation MBA moves from static bandwidth control (throttling) at the

core/uncore interface, to a more dynamic control method based on a hardware

controller that tracks actual main memory bandwidth. This allows software that

uses primarily the L3 cache to observe increased throughput for a given

bandwidth control level, or fine-grained throughput benefits for software that

exhibits L3-bound phases. Due to the closer consideration of memory

bandwidth loading, this enhancement may lead to an increase in system

efficiency when using second generation MBA relative to prior implementations

of the feature. Backward compatibility of the software interfaces is preserved,

34 Document Number: 356688-004US, Revision: 1.3

and second-generation MBA changes manifest as enhancements atop the MBA

feature baseline.

As with the prior generation feature, the second generation MBA uses CPUID

for enumeration and throttling is performed using a mapping created from

software thread-to-CLOS (in the IA32_PQR_ASSOC MSR), which is then

mapped per-CLOS to delay values via the IA32_L2_QoS_Ext_BW_Thrtl_n

MSRs. A privileged operating system or virtual machine manager software may

specify a per-CLOS delay value, 0-90% bandwidth throttling for instance,

though the max and granularity values are platform dependent and

enumerated in CPUID.

3.2.4.2.1 Second Generation MBA Advantages

Additional features added over first generation MBA are described next:

1. Previously, only the maximum delay value across two CLOS on a physical

core could be selected in MBA. Second generation MBA allows a minimum

delay value to be selected instead, which may enhance usage with Intel®

Hyper-Threading Technology.

2. Only a single preprogrammed calibration table was possible in first

generation MBA, meaning different memory configurations had the

potential for different linearity and percent delay value error values

depending on the configuration. This is addressed by the BIOS support in

the second generation of MBA, and certain BIOS implementations may

program a different calibration table per memory configuration, for

instance.

3. The second-generation MBA controller provides the ability to more closely

monitor the memory bandwidth loading and deliver more optimal results.

4. The new MBA hardware controller reduces the need for a fine-grained

software controller to manage application phases for optimal efficiency.

Note that a software controller may still be valuable to translate MBA

bandwidth control values to bandwidths in GB/s or application Service

Level Objectives (SLOs), such as performance targets.

Document Number: 356688-004US, Revision: 1.3 35

Figure 3-7. Second Generation MBA, Including a Fast-Responding Hardware

Controller

The second-generation MBA implementation is shown in Figure 3-7. The

feature operates through the use of an advanced hardware controller and

feedback mechanism, which allows automated hardware monitoring and control

around the user-provided delay value set point. This set point and associated

bandwidth control (throttling) value infrastructure remains unchanged from

prior generation MBA, preserving software compatibility.

MBA enhancements, in addition to the new hardware controller, include:

1. Configurable delay selection across threads.

⎯ MBA 1.0 implementation statically picks the max MBA Throttling Level

(MBAThrotLvl) across the threads running on a core (by calculating

value = max(MBAThrotLvl(CLOS[thread0]),

MBAThrotLvl(CLOS[thread1]))).

⎯ Software may have the option to pick either maximum or minimum

delay to be resolved and applied across the threads; maximum value

remains the default.

2. Increasing CLOS IDs from 8 to 15 in certain implementations (product-

specific, see CPUID)

⎯ Previous certain implementations of the feature provided 8 CLOS tags

for MBA.

⎯ The 3rd Gen Intel® Xeon® Scalable Processor Family and related Intel

Atom® processors, such as the P5000 Series, increase this value to

15 (also consistent with L3 CAT).

36 Document Number: 356688-004US, Revision: 1.3

3.2.4.2.2 Software-Visible Changes

A new model specific MSR is introduced with second generation MBA to allow

software to select from the maximum (default) or minimum of resolved

bandwidth control (throttling) values (see the previous formula). This capability

is controlled via a bit in the new MBA_CFG MSR, shown in Table 3-1.

Table 3-1. MBA_CFG MSR Definition

Register Address
Architectural MSR Name

/ Bit Fields
Description

Hex Decimal

C84H 3204 MBA_CFG MBA Configuration Register

0 Min (1) or max (0) of per-thread MBA delays.

63:1
Reserved. Attempts to write to reserved bits

result in a #GP(0).

Note that bit[0] for min/max configuration is supported in second generation

MBA but is removed (and reverts to reserved) in the third generation MBA

feature when the controller logic becomes capable of managing bandwidth

control values on a per-logical-processor or per-agent basis. The transient

nature of this enhancement is why the min/max control remains model specific.

To enumerate and manage support for the model-specific min/max feature,

software may use processor family/model/stepping as listed in Appendix A to

match supported products, then CPUID to later detect enhanced third

generation MBA support.

3.2.4.3 Third Generation Memory Bandwidth Allocation

The third-generation MBA feature on future processors based on the codename

Granite Rapids microarchitecture further enhances the feature with per-logical-

processor control and a further improved controller design. Total memory

bandwidth (all L3 miss traffic) is now managed by MBA.

This implementation follows the past MBA precedent of delivering significant

enhancements without a major software overhaul, and while preserving

backward compatibility.

3.2.4.3.1 Hardware Changes

The third generation of MBA builds upon the hardware controller introduced in

the previous generation, which enabled significant system-level benefits, while

providing the new capability to independently throttle logical processors, rather

than more coarse-grained per-core bandwidth control in prior generations.

Bandwidth control values are no longer selected as the “min” or “max” of the

two throttling values for the threads running on the core; instead, throttling

values are independently and directly applied to each logical processor. The

third generation MBA implementation is shown in Figure 3-8.

Document Number: 356688-004US, Revision: 1.3 37

Figure 3-8. High-Level Overview of the Third Generation MBA Feature

While this enhancement means that more direct bandwidth control (throttling)

of threads is possible, re-tuning of software may be helpful to comprehend the

effects of Intel® Hyper-Threading Technology contention versus cache and

memory contention, and the effects on software performance.

3.2.4.3.2 Software-Visible Changes

In order to allow software to change its tuning behavior and detect that per-

logical-processor bandwidth control is supported on a particular product

generation, a CPUID bit is added to the MBA CPUID leaf to indicate support.

See “CPUID—CPU Identification” in the Intel® 64 and IA-32 Architectures

Software Developer’s Manual, Volume 3B for details.

Despite another significant improvement of the hardware controller

infrastructure architecture and improved capabilities, controller responsiveness,

new internal microarchitecture, and transient-arresting capabilities, no new

software interface changes are required to make use of the third generation of

MBA relative to prior generations. Software previously using the second-

generation MBA min/max selection capability should discontinue the use of the

MBA_CFG MSR. The third-generation MBA capabilities are the default mode of

operation on the codename Granite Rapids server microarchitecture.

Note that the MBA MSRs are listed in Appendix A.5 for completeness, but

details of these legacy MSRs are available in Intel® 64 and IA-32 Architectures

Software Developer’s Manual, Volume 3B. See Appendix A.2 for MBA feature

supported product details.

38 Document Number: 356688-004US, Revision: 1.3

3.2.4.4 Region Aware Memory Bandwidth Allocation

Region Aware Memory Bandwidth Allocation (MBA) for CPU Agents extends the

existing third generation (per-thread bandwidth control) MBA capabilities to

include Region Aware bandwidth controls per RDT Class of Service (CLOS). The

Memory Region definitions used for Region Aware MBM and MBA are shared

across the features, as specified in the ACPI MRRM table, allowing simultaneous

and consistent monitoring and allocation of memory bandwidth.

With Region Aware MBA, independent bandwidth control (throttling) of per-

CLOS bandwidth to multiple regions is supported, allowing software to

dynamically rebalance bandwidth control limits across different Memory

Regions, which may have varying bandwidth, latency and capacity

characteristics. Example uses include rebalancing bandwidth between VMs of

different priority across a shared coherent interprocessor interconnect under

the direction of a software control loop, or rebalancing bandwidth for threads of

varying priorities across DRAM or CXL-backed memories. See Figure 3-9 for a

high-level overview of Region Aware MBA and the following sections for details.

3.2.4.4.1 Region Aware MBA Overview

Region Aware MBA allows per-thread, per-CLOS, and per-Region control of

Bandwidth to different regions — that is, enabling bandwidth control per-thread

and per region simultaneously. As in the third generation of MBA, each region

and thread are managed by a hardware controller which modulates the

bandwidth of each thread targeting particular downstream region around the

bandwidth targets set through the Intel RDT software interfaces.

The maximum number of regions is enumerable in the MRRM ACPI table

described in Chapter 5, BIOS Considerations. The high-level implementation of

Region Aware MBA is shown in Figure 3-9.

Figure 3-9. High-Level Overview of the Region Aware MBA

Document Number: 356688-004US, Revision: 1.3 39

Unlike prior generations of MBA, the Region Aware MBA feature primarily uses

an MMIO-based interface.

3.2.4.4.2 Enable MMIO Register

Region Aware MBA may be enabled by software via an MMIO configuration

register, after configuring per-thread, per-CLOS, and per-Region MBA

bandwidth control values. See the next section for details on default hardware

initialization state.

The RDT_CTRL MMIO register is used to control Region Aware MBA for CPU

agents. The definition of the RDT_CTRL register is shown in Section 6.1.3.1.

This register is scoped at the level of each Resource Management Domain,

defined in Chapter 5. It is expected that software will configure this register

consistently across all L3 caches present in the SoC.

The default value of the RDT_CTRL register is 0x4 (Region Aware MBA is

disabled by default).

3.2.4.4.3 Min, Max and Optimal Bandwidth Caps per CLOS

The Region Aware MBA feature introduces three types of bandwidth limits per

CLOS. Software may specify a minimum, maximum and optimal level of

bandwidth target per CLOS. The specified range allows hardware to

dynamically and autonomously manage bandwidth within the limits with fast

response to changing system conditions or application phases while maximizing

system throughput. From a usage standpoint, the min/optimal/max levels are

designed to allow software to guide resource allocation, and hardware can then

use that information to respond much quicker than a management software

control loop could. In some cases software may be allocated bandwidth that it

might not use, or might be used in a bursty fashion, depending on software

behaviors and policies applied.

Bandwidth settings are described as follows:

▪ Maximum Cap: Caps the maximum bandwidth for a CLOS and any

threads running in that CLOS. Allows the CLOS to switch to being

constrained by a Max BW cap (which is typically above the Optimal level

specified) if the resource (e.g., region) is underutilized (utilized at a

level less than a medium or optimal rate).

▪ Optimal Cap: The software-preferred bandwidth control level for a given

CLOS.

▪ Min Cap: Allows the hardware to attempt to guarantee a minimum

amount of available bandwidth for a CLOS. Hardware may enforce this

Lower BW cap below the Optimal level specified if the resource is over-

utilized (typically at higher system region bandwidth utilization than

medium but less than an overload scenario). Minimums are not

necessarily guaranteed by hardware, as the sum of software requested

minimums for instance may exceed the bandwidth that hardware can

provide; as such, Min should be regarded as a best-effort minimum

under heavy system utilization levels.

40 Document Number: 356688-004US, Revision: 1.3

The Optimal Cap should be programmed to be between or equal to the Min and

Max Cap levels. The Maximum Cap should be programmed to be greater than

or equal to the Minimum and Optimal caps. Undesirable and undefined

performance effects may result if cap programming guidelines are not followed.

The default hardware state is initialized with Max BW Cap == Optimal BW ==

Min BW Cap (and throttling is disabled by default).

Bandwidth control values in the MMIO-based feature interface (Chapter 6) are

specified from unthrottled (maximum value “Q”) down to a value of one

(minimum bandwidth available, equivalent to maximum throttling). Bandwidth

control values are implementation-specific and may not have an effect if more

bandwidth is allowed than the processor is able to generate. Bandwidths may

vary depending on traffic types, for instance various mixes of read and write

traffic.

System software should consult the MARC sub-structure of the ERDT ACPI

table to discover platform support for these caps as described in Chapter 5.

Software may choose to implement combined MBM and MBA control loops per-

region to manage memory bandwidth of a set of processors, for instance

comprising a virtual machine, to shape the bandwidth available to achieve

goals such as prioritization or fairness.

3.2.5 Cache Bandwidth Allocation

Cache Bandwidth Allocation (CBA) allows an Operating System, Hypervisor, or

similar system management agent to control internal core and correspondingly

the downstream memory bandwidth for each of the logical processors. This

feature is complimentary to MBA and provides OS/VMMs with the ability to

throttle threads within the core.

The CBA feature along with the existing MBA feature provides a system-wide

mechanism to throttle the bandwidth across different caches in the system

including external memory, as well as control within a processor core or

module. In combination, CBA and MBA provide both deterministic control and

dynamic management of bandwidth resources to meet system Service Level

Objectives (SLOs). The CBA feature reuses and extends existing constructs

from the Intel RDT feature set including Classes of Service (CLOS).

A given CLOS used for L3 CAT for instance means the same thing as a CLOS

used for CBA. Infrastructure such as the MSR used to associate a thread with a

CLOS (the IA32_PQR_ASSOC_MSR) and some elements of the CPUID

enumeration (such as CPUID leaf 10H (Cache Allocation Technology

Enumeration Leaf)) are shared.

The Cache Bandwidth Allocation (CBA) feature provides control over bandwidth

available between Level 1 (L1) caches, Level 2 (L2) Caches, and Level 3 (L3)

Caches (as applicable) for each of the logical processors. Since reducing

upstream bandwidth coming from the core can also reduce bandwidth to

external memory, this also provides an indirect control of memory bandwidth.

This indirect control of external memory bandwidth can also reduce memory

Document Number: 356688-004US, Revision: 1.3 41

bandwidth. The CBA feature along with the MBA provides a mechanism to

control the bandwidth of different applications.

Software should understand that the effective throttling applied to an

application may be the maximum of the two values requested through the CBA

and MBA bandwidth control interfaces (the maximum resolved amount of

throttling will be applied).

Similar to Intel RDT features, CBA includes the following key ingredients:

• A mechanism to enumerate the CBA capability to control the bandwidth

from each level of the cache (for example, L1, L2, L3) to the next level

(CPUID).

• A mechanism for the OS or Hypervisor to configure the amount of

bandwidth available to a logical processor with a particular Class of Service

via a throttle Level (MSRs, discussed later).

• Mechanisms for the OS or Hypervisor to signal the Class of Service to

which an application belongs (the PQR MSR).

• Hardware mechanisms to guide and enforce the bandwidth throttle level

across the cache hierarchy.

In some usages, the software may measure the memory bandwidth consumed

by a given thread, application, VM or container at different Levels of cache

hierarchy and external memory using performance monitor events and Memory

Bandwidth Monitoring (MBM). Once the memory bandwidth is measured

software can dynamically adjust the bandwidth control (throttling) level for the

Class of Service (CLOS) used by that application. In other usages, software

control loops may monitor application performance and adjust bandwidth

control levels dynamically to achieve certain performance targets.

Certain processors, including those without an L3 cache, may implement the

CBA feature without the presence of MBA. Other processors may choose to

implement MBA, CBA or both.

More specific feature details about CBA are provided in the Intel® Architecture

Instruction Set Extensions and Future Features. Note that the MSRs are listed

in Appendix A.5. See Appendix A.2 for CBA feature supported product details.

3.2.5.1 CBA Overview

The CBA feature implements a local hardware controller which when enabled

provides the capability to independently throttle memory bandwidth of the

logical processors across cache hierarchy and complements the MBA controller

which throttles the external memory bandwidth.

3.2.5.2 Example of CBA Bandwidth Control Mechanism

An example of the bandwidth control enforced between the L2 cache and L3

cache is the maximum of the bandwidth throttling from the local CBA controller

within the logical processor and the MBA hardware controller. An example CBA

implementation is shown in Figure 3-10.

42 Document Number: 356688-004US, Revision: 1.3

Figure 3-10. Example of CBA Bandwidth Control between L2 and L3 caches

3.2.5.3 Software Interface

In order to allow software to adapt its tuning behavior and detect that Cache

Bandwidth Allocation is supported on a particular product generation, a CPUID

bit is added to the Intel RDT Allocation CPUID leaf to indicate support (details

are provided in the Intel® Architecture Instruction Set Extensions Manual).

The IA32_PQR_ASSOC MSR specifies the Class of Service associated with each

logical processor. The CBA feature defines a set of MSRs known as

IA32_QoS_Core_BW_Thrtl_n which provide a byte-encoded field for each CLOS

to program the memory bandwidth throttle level. A higher value of throttling

level means more bandwidth throttling and lower number indicates lesser

throttling. The CPUID of the CBA feature enumerates the number of levels and

maximum level supported by the logical processor. The reset value of each of

the CLOS throttle values of the logical processor is 0 which indicates

unthrottled bandwidth (zero throttling).

Each of the fields in the CBA IA32_QoS_Core_BW_Thrtl_n MSRs may be

programmed from 0 to the maximum throttle level provided in the CPUID. If a

value beyond the range from 0 to maximum throttle level is programmed, it

will cause a #GP(0) fault. The Resource Management Domain (RMD) for CBA is

per logical processor and thus the IA32_QoS_Core_BW_Thrl_n MSRs are logical

Issue
rate

Flow controladjustBandwidth Target

0 100

Memory BW usage signaling per logical core

Target BW
Meter

Flow control adjust Bandwidth Target

0100

Target BW
Meter

Logical
Processor 0

Software

Maximum of
(ext_bw_throttling,

local_bw_throttling)

Local
bandwidth

control

Issue
rate

Logical
Processor 1

Maximum of
(ext_bw_throttling,

local_bw_throttling)

Local
bandwidth

control

local_bandwidth_throttling
(local_bw_throttling)

local_bandwidth_throttling
(local_bw_throttling)

ext_bandwidth_throttling
(ext_bw_throttling)

ext_bandwidth_throttling
(ext_bw_throttling)

Document Number: 356688-004US, Revision: 1.3 43

processor scope. Further details are provided in the Intel® Architecture

Instruction Set Extensions and Future Features Programming reference

manual.

3.2.5.4 Software Usage

The next sequence of steps provides a typical software usage of CBA feature:

1. System is setup with the desired workloads.

2. The software can use the performance counters along with MBM counters

when available to profile and understand the bandwidth characteristics of

the application.

3. The system administrator sets up the bandwidth control (throttling) level

field in the IA32_QoS_Core_BW_Thrtl_n MSR (for example, in the VMM)

to enforce the desired limits and the CLOS for each application. They can

also monitor the bandwidth to confirm the setting is appropriate and

adjust when needed.

In some cases, a specialized application software such as in embedded or

communications usages will be able to communicate the memory bandwidth

and latency requirements. This information may be used be performance

management software to program the RDT features including CBA to meet the

software memory bandwidth and latency requirements.

§

44 Document Number: 356688-004US, Revision: 1.3

4 Intel® Resource Director
Technology for Non-CPU

Agents

This chapter details Intel RDT features for non-CPU agents. Discussion is

included on use cases and how Intel RDT monitoring, and controls are provided

for non-CPU agents through extensions to the foundational CPU Agent Intel

RDT features. Chapter 3 describes the components of the Intel RDT feature set

which are common.

4.1 Introduction

Intel RDT for non-CPU agents comprises a set of features to monitor and

control the resource utilization of non-CPU agents including PCI Express*

(PCIe*) [5] and Compute Express Link (CXL)* [6] devices and integrated

accelerators. The feature set enables monitoring usage of shared cache and

memory bandwidth and control of cache usage by non-CPU agents. This

feature set provides the equivalent CPU agent Intel RDT capabilities of CMT,

MBM, and CAT for I/O devices.

The non-CPU agent Intel RDT includes controls at the device level and channel-

level granularity in some cases. However, this granularity is fundamentally

coarser than for software threads. CPU cores may execute hundreds of threads,

all of which are tagged with RMIDs and CLOS, whereas an I/O device such as a

NIC may serve hundreds of software threads, but it may only be monitored and

controlled at a device level or channel level (see subsequent sections for details

on channel-level monitoring and controls.)

Figure 4-1. Non-CPU Agent Building Atop CPU Agent Intel® RDT Features

Document Number: 356688-004US, Revision: 1.3 45

4.2 Features

Cache Monitoring Technology (CMT) provides visibility into the cache (typically

L3 cache). CMT provides occupancy counters on a per-RMID basis for non-CPU

agents so cache occupancy (for example, capacity used by a particular RMID

for I/O agents) can be tracked and read back dynamically during system

operation. See Appendix A.2 for L3 CMT feature supported product details.

L3 Total and Local External Memory Bandwidth Monitoring (MBM) allows

system software to monitor the usage of bandwidth between L3 cache and local

or remote memory by non-CPU agents on a per-RMID basis. See Appendix A.2

for L3 Total and Local External MBM feature supported product details.

Cache Allocation Technology (CAT) allows control over shared cache capacity

on a per-CLOS basis for non-CPU agents, enabling both isolation and overlap

for better throughput, fairness, determinism and differentiation. See

Appendix A.2 for L3 CAT feature supported product details.

4.3 Enumeration

Intel RDT uses the CPUID instruction to enumerate supported features and

uses architectural Model-Specific Registers (MSRs) as interfaces to the

monitoring and allocation features as described in Chapter 3 and in the Intel®

64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

There are no CPUID leaves or sub-leaves that are created for non-CPU agent

Intel RDT; rather, existing CPUID leaves are augmented. The following field in

the Shared Resource Monitoring Enumeration Leaf, CPUID.0FH.01H:EAX[10:9],

enumerates presence of CMT and MBM features for non-CPU agents. The field

in the Cache Allocation Technology Enumeration Leaf, CPUID.10H.01H:ECX[1],

enumerates the presence of the L3 CAT feature for non-CPU agents. Refer to

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, for

CPUID details.

Additional enumeration information for Intel RDT for non-CPU agents is

provided in the I/O Intel RDT table (IRDT), a vendor-specific extension to

Advanced Configuration and Power Interface (ACPI) [4]. The IRDT table

provides information on supported features, the structure of devices attached

to particular links behind I/O blocks, the forms of tagging and controls

supported on each link, and the specific MMIO interfaces used to control a

given device. Details of IRDT are described in Chapter 5.

Confirming the presence of Intel RDT for CPU agents is a prerequisite for using

the equivalent non-CPU agent Intel RDT feature. A compatibility matrix is

provided in Appendix A.4. If a particular CPU agent Intel RDT feature is not

present, any attempt to use non-CPU agent Intel RDT equivalents will result in

a general protection fault in the MSR interface. Attempts to enable unsupported

features in the I/O complex will result in writes to the corresponding MMIO

enable or configuration interfaces being ignored.

46 Document Number: 356688-004US, Revision: 1.3

Software may use the existing CPUID leaves to gather the maximum number of

RMID and CLOS tags for each resource level (for example, L3 cache), and non-

CPU agent Intel RDT is also subject to these limits.

Some platforms may support a mix of features, for instance supporting L3 CAT

and the non-CPU agent Intel RDT equivalent, but no CMT or MBM monitoring.

4.4 Interface

Before configuring non-CPU agent Intel RDT (through MMIO), the feature

should be enabled. The presence of one or more CPUID bits indicating support

for one or more non-CPU agent Intel RDT features implies the presence of the

IA32_L3_IO_RDT_CFG architectural MSR. This MSR is used to enable the non-

CPU agent Intel RDT features.

Two bits are defined in this MSR. IRAE (Bit[0]) enables non-CPU agent RDT

resource allocation features. IRME (Bit[1]) enables non-CPU agent RDT

monitoring features.

The non-CPU agent Intel RDT Monitoring bit is supported if CPUID indicates

that one or more non-CPU agent Intel RDT resource monitoring features are

present.

The non-CPU agent Intel RDT Allocation bit is supported if CPUID indicates that

one or more non-CPU agent Intel RDT resource allocation features are present.

The default value is 0x0 (both the monitoring and allocation features are

disabled by default). All bits not defined are reserved. Any writes to reserved

bits will generate a General Protection Fault (#GP(0)).

This MSR is die-scoped and is cleared on system reset. It is expected that

software will configure this MSR consistently across all L3 caches that may be

present on a particular SOC die.

The definition of the IA32_L3_IO_RDT_CFG MSR is shown in Figure 4-2, and its

MSR address is 0C83h.

Non-CPU agent RDT uses the RMID and CLOS tags in the same way that they

are used for CPU agents.

Figure 4-2. The IA32_L3_IO_QOS_CFG MSR for Enabling Non-CPU Agent

Intel® RDT

Document Number: 356688-004US, Revision: 1.3 47

MMIO interfaces, discussed in subsequent sections, are defined by non-CPU

agent Intel RDT to enable devices and/or channels to be tagged with RMIDs

and CLOS, as applicable.

An example of device tagging with RMIDs, and CLOS is shown in Figure 4-3,

where a PCIe device and a CXL device are tagged for monitoring and control of

upstream resources in the L3 cache (shown within the fabric). Note that CPU

cores are also shown, and as defined in the CPU agent Intel RDT feature set,

their bandwidths may be controlled with the Memory Bandwidth Allocation

(MBA) feature set.

In the model of Figure 4-3, cores, PCIe devices and CXL devices are

symmetrically arranged about the fabric and are symmetric in their ability to

use RMIDs and CLOS.

The Intel RDT monitoring data retrieval MSRs IA32_QM_EVTSEL and

IA32_QM_CTR are used for monitoring usage by non-CPU agents in the same

way that they are used for Intel RDT for CPU agents for shared-L3

configurations. In certain configurations, memory-mapped registers may be

provided to enable Intel RDT monitoring data retrieval for non-CPU agents.

These memory-mapped registers are enumerated via ERDT ACPI (see section

5.1).

The CPU cache capacity control MSR interfaces are also used for controlling I/O

device access to the L3 cache. The CLOS assigned to the device and the

corresponding capacity bitmask in the IA32_L3_QOS_MASK_n MSR governs the

fraction of the L3 cache into which the data may be filled, as described in the

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

Certain I/O data flows may be implemented in processors with a multiple-L3

configuration, which may use memory-mapped register interfaces enumerated

via ERDT ACPI (see section 5.1) for cache capacity control.

The CLOS tag retains the same meaning with regard to L3 fills for both CPU

agents and non-CPU agents. Other cache levels may also be applicable

depending on model-specific data flow patterns, which are governed by how

I/O device data is filled into the cache in a model-specific fashion as governed

by a given product generation’s implementation of the DDIO (the Data Direct

I/O feature).

48 Document Number: 356688-004US, Revision: 1.3

Figure 4-3. Tagging for PCIe and CXL Devices

4.5 Common Tags

Non-CPU agent Intel RDT allows the traffic and operation of non-CPU agents to

be associated with RMIDs and CLOS. In CPU agent Intel RDT, RMIDs and CLOS

are numeric tags which may be associated with the operation of a thread

through the IA32_PQR_ASSOC MSR. In non-CPU agent Intel RDT, a series of

MMIO interfaces may be used to associate I/O devices with RMID and CLOS

tags, and the numerical interpretation of the tags remains the same.

To wit, a particular CLOS tag, such as CLOS[5], means the same thing from the

perspective of an CPU core or a non-CPU agent, and the same holds for RMIDs.

In this fashion, RMIDs and CLOS used for non-CPU agents are said to be drawn

from a “common pool” of RMID or CLOS tags, defined at the common L3

configuration level. Often these tags have specific meanings at a particular

level of resource such as the L3 cache.

With non-CPU agent Intel RDT, specific devices may be selected for monitoring

and control, and software enumeration and control are added to (1) enable

non-CPU agent Intel RDT to build atop CPU agent Intel RDT, and (2) to

comprehend the topology of devices behind I/O links, such as PCIe or CXL, and

(3) to enable association of devices with RMID and CLOS tags.

4.6 I/O Blocks and Channels

I/O interfacing blocks are used to bridge from the ordered, non-coherent

domain (such as PCIe) to the unordered, coherent domain (for example, the

Document Number: 356688-004US, Revision: 1.3 49

shared interconnect fabric hosting the L3 cache). The non-CPU agent Intel RDT

interface describes the devices connected behind each I/O complex (which may

contain downstream PCIe root ports or CXL links) and enables configuration

RMID/CLOS tagging for the same.

The I/O architecture is formalized as shown next. Channel mapping may occur

anywhere between the device and the I/O block.

Figure 4-4. Mapping of Channels in the I/O Domain (PCIe Example)

Figure 4-5. Mapping of Channels in the I/O Domain (CXL Example)

As shown in Figure 4-4, PCIe devices connected through a root port are routed

through an I/O block, which applies non-CPU agent Intel RDT tagging (RMID

and CLOS tagging) before traffic reaches the coherent fabric. Device traffic

which is routed on various TCs and mapped to VCs, as defined in the PCIe

specification [5], may be mapped to internal “Channels” between the root port

and the I/O block. The non-CPU agent Intel RDT enumeration structures define

the mapping between PCIe VCs and the non-CPU agent Intel RDT Channels so

that software may perform tagging configuration based on Channels for

platforms which support this capability (see the following sections for more

detail).

An example with CXL [6] is shown in Figure 4-5. In this case a CXL.IO and

CXL.Cache link may be in use, and the I/O block is again responsible for

tagging, if supported. The links (CXL.IO and CXL.Cache) are controlled

separately, through separate software interfaces. (See Chapter 7 for MMIO

control interfaces.)

4.7 I/O Block Configuration

As described in the preceding section, PCIe devices mapped through their VCs

to “Channels” may be configured on a per-Channel basis in the I/O Block. CXL

Coherent Fabric
(Unordered Domain)

I/O Block
(PCIe endpoint + MMIO

interface)
Required for I/O RDT

Enum & Control

Root Port
PCIe Device(s)

PCIe Device(s)
PCIe Device(s)

PCIe Device(s)
PCIe Device(s)

“Channel”
Mapping

TC→VC
Mapping

Root Port
Root Port

Coherent Fabric
(Unordered Domain)

I/O Block
(PCIe endpoint + MMIO

interface)
Required for I/O RDT

Enum & Control

CXL Device

CXL.IO and/or
CXL.Cache

Links

50 Document Number: 356688-004US, Revision: 1.3

is a subset example of this, with the same configuration format, but only one

configuration entry (the equivalent of a single Channel).

An enumerated number of Channels are supported in IRDT ACPI and configured

through an MMIO interface to a “Mapping Table”, as shown in Figure 4-6. A

number of downstream PCIe devices may be mapped to various channels, and

their traffic streams may be tagged, as applicable, through configuration of the

I/O block.

Figure 4-6. Resource Monitoring and Control for PCIe and CXL Endpoints

4.8 Shared-L3 Configuration

The following sub-sections describe shared-L3 configuration and non-CPU agent

Intel RDT features interplay.

4.8.1 Software Flow

Key software actions required to utilize non-CPU agent Intel RDT include (1)

enumeration of the supported capabilities and details of that support, and (2)

usage of the features through architectural platform interfaces.

• The software may enumerate the presence of non-CPU agent Intel RDT

through a combination of parsing bit fields from CPUID and the IRDT ACPI

table. The CPUID infrastructure provides basic information on the level of

Document Number: 356688-004US, Revision: 1.3 51

CPU agent Intel RDT and non-CPU agent Intel RDT support present, and

details of the common CLOS/RMID tags shared with CPU agent Intel RDT.

The IRDT ACPI extensions provide many more details on non-CPU agent

RDT specifically, such as which I/O blocks support non-CPU agent Intel

RDT and where the control interfaces to configure the I/O blocks are

located in MMIO space.

• Once software has enumerated the presence of non-CPU agent Intel RDT,

configuration changes may be made through selecting a subset of

RMID/CLOS tags to use with non-CPU agent Intel RDT, and configuring

resource limits for those tags through MSRs for shared platform resources

such as L3 cache (for example, for I/O use of L3 CAT) may be configured

through the I/O block MMIO interfaces (the location of which is enumerated

via IRDT ACPI).

• After resource limits are associated, RMID/CLOS tagging may be applied to

the I/O device upstream traffic by assigning each I/O device into

RMID/CLOS tags through its mapping to channels (and corresponding

configuration through the MMIO interfaces for each I/O block, the location

of which is enumerated via IRDT ACPI).

• It should be noted that while upstream shared SoC resources like L3 cache

are monitored and controlled via shared RMID/CLOS tags, certain

resources which are closer to the I/O may be controlled locally within each

I/O block. In this view, RMIDs and CLOS are used for upstream resources

which may be shared with CPU cores, but capabilities unique to the I/O

device domain are controlled through I/O block-specific interfaces.

• Once tags are assigned and resource limits are applied, upstream traffic

from I/O devices, though I/O blocks are tagged with the corresponding

RMIDs/CLOS and such traffic is monitored and controlled within the shared

resources of the SoC, much as CPU agent resources are controlled against

these tags in CPU agent Intel RDT.

• As the IRDT ACPI tables used to enumerate non-CPU agent Intel RDT are

generated by the BIOS, in the event of a hot-plug operation the OS or VMM

software should update its internal tracking of device mappings based on

newly added or removed device.

• In the case of bifurcation of a set of PCIe lanes, downstream devices which

may be mapped to individual Channels may still be separately tagged and

controlled, but devices sharing Channels will be mapped together against

the same RMID/CLOS tags. As CXL devices have no notion of Channels, in

the case of a bifurcated CXL link all downstream devices will be subject to

the same RMID/CLOS.

4.8.2 Monitoring: Data Flows for RMIDs

As previously described, once RMID tags are applied to non-CPU agent traffic,

all RMID-driven counter infrastructure in the platform may be used with non-

CPU agent Intel RDT. In the case of the features in Appendix A.2 for instance,

RMID-based cache occupancy and memory bandwidth overflow data is

collected for non-CPU agents and may be retrieved by software. For each

supported Cache Monitoring resource type, hardware supports only a finite

52 Document Number: 356688-004US, Revision: 1.3

number of RMIDs. The following Shared Resource Monitoring Enumeration Leaf

CPUID.0FH.01H:ECX[31:0], enumerates the highest RMID value that can be

monitored with this resource type, see the Intel® 64 and IA-32 Architectures

Software Developer’s Manual, Volume 3B for details.

As the interfaces for CPU agent Intel RDT data retrieval for RMID-based

counters area already defined, the same interfaces are used, including MSR-

based data retrieval for the corresponding set of three Event IDs (EvtIDs)

defined for CPU agent Intel RDT’s CMT and MBM features (See Chapter 3).

RMIDs are allocated to devices by software from the pool of RMIDs defined at

the L3 cache level, and the IA32_QM_EVTSEL / IA32_QM_CTR MSRs can be

used to specify RMIDs and Event IDs and retrieve data.

The MSR pair used to retrieve event data is shown in Figure 3-3, however as all

properties are inherited from CPU agent RDT (See Chapter 3 for details). All of

access rules and usage sequence, reserved bit properties, initial values, and

virtualization properties are inherited from CPU agent Intel RDT.

4.8.3 Allocation: CLOS-based Control Interfaces

The Intel RDT Allocation features for non-CPU agent use CLOS-based tagging

for control of cache at a given level, subject to where data fills from I/O devices

in a particular cache and SoC implementation. In common cases this will be the

last-level cache (L3) as described in the ACPI – specifically in the IRDT sub-

table known as RCS and its flags. Software may adjust the levels of cache that

it controls based on the expected level(s) of cache into which I/O data may fill

subject to flags in the RCS. This in turn may affect which CPU agent CAT

control masks software programs to control the data fills of non-CPU agents

and may vary depending on how a particular RCS is connected to shared

resources on a platform.

For each supported Cache Allocation resource type, the hardware supports only

a finite number of CLOS. The following field in the Cache Allocation Technology

Enumeration Leaf, CPUID.10H.02H:EDX[15:0], enumerates the maximum

CLOS supported for the resource (CLOS are zero-referenced, meaning a

reported value of “15” would indicate 16 total supported CLOS). Bits 31:16 are

reserved, see the Intel® 64 and IA-32 Architectures Software Developer’s

Manual, Volume 3B for details.

In a typical example, with a non-CPU agent (for example, a PCIe device) filling

data into an L3 cache, the RCS structure’s “Cache Level Bit Vector” would have

bit 17 set to indicate the L3 cache, and software may control the CPU agent

Intel RDT L3 CAT masks (in IA32_L3_QoS_MASK_n MSRs) to define the

amount of cache into which non-CPU agents may fill. As with RMID

management, the CLOS used in this context are drawn from the pool at the

applicable resource (L3 cache in this context).

If other cache levels are introduced or used in the future, incremental software

enabling may be required to comprehend fills into other cache levels.

Document Number: 356688-004US, Revision: 1.3 53

As the masks used for control are drawn from the existing definitions of such

cache controls in the CPU agent Intel RDT definitions, details such as reserved

fields, initialization values, and so on, are defined in the Intel® 64 and IA-32

Architectures Software Developer’s Manual, Volume 3B. Figure 4-7 shows an

example of the CPU agent Intel RDT L3 CAT control MSRs.

Figure 4-7. Reuse of the IA32_L3_QOS_MASK_n MSRs for L3 CAT Control

4.9 CXL-Specific Considerations

This section describes CXL-specific device considerations including

management of traffic on multiple links and CXL device types.

4.9.1 CXL block Interfacing Fundamentals

CXL devices may connect to an RMUD via multiple RCSes, and independent

control of each RCS may be required. See Chapter 5 for RMUD and RCS details.

Non-CPU agent Intel RDT features provide monitoring and controls for CXL.IO

and CXL.Cache link types. CXL.mem is not subject to controls in the I/O block

as it is viewed as a resource rather than an agent in Intel RDT terms. Instead

bandwidth to CXL.mem is controlled at the agent source (for example, using

MBA) as previously described and where supported.

4.9.2 Integrated Accelerators

Integrated accelerators, including those using integrated CXL links, may be

monitored and controlled using the semantics described in preceding sections.

54 Document Number: 356688-004US, Revision: 1.3

4.10 Use Cases

A number of non-CPU agent Intel RDT use cases are described in this section

involving PCIe, CXL, and integrated accelerators.

As an implementation of the architectural model shown in Figure 4-4 and

Figure 4-5, I/O block tags upstream DMA traffic (such as PCIe writes) as shown

in Figure 4-8, enabling the device’s resource utilization in the shared resources

of the fabric, such as L3 cache, to be monitored and controlled through Intel

RDT RMIDs and CLOS.

The applicable features for each tag are described in Appendix A.2, and

software may configure these tags as described in Chapter 5, which describes

the ACPI; see the Intel® 64 and IA-32 Architectures Software Developer’s

Manual, Volume 3B, for CPUID enumeration, and Section 4.8 and Chapter 7 for

how the software may actuate these controls.

Figure 4-8. Device Traffic Tagging Model with PCIe as the Sole Traffic Path

As a concrete example, Figure 4-9 shows a high-performance PCIe SSD,

subject to tagging with CLOS (so that its L3 cache footprint may be controlled),

and RMIDs (so that its L3 cache occupancy and overflow bandwidth to memory

may be monitored).

Figure 4-9. PCIe Device Example, with Traffic on a Channel Tagged with an

RMID and CLOS

RMID/CLOS to Channel
Mapping Block

I/O Block

SOC Shared Resources and Fabric

CLOS
RMID

PCIe Traffic on an I/O Channel

PCIe Device

C
h

an
n

el

RMID/CLOS to Channel
Mapping Block

I/O Block

CLOS
RMID

PCIe Traffic on an I/O Channel

SOC Shared Resources and Fabric

PCIe Device
PCIe SSDs:
10GB/s+

C
h

an
n

el

Document Number: 356688-004US, Revision: 1.3 55

An example with a CXL device is shown in Figure 4-10, in which two paths are

used for the device’s traffic, one over CXL.IO, and one over CXL.Cache,

through two separate I/O blocks, and note that the CXL.Cache link defines only

one channel. In such a case, the software may configure RMID and CLOS

tagging separately for the links. The links operate independently.

Note that no controls are provided for CXL.Mem, as the use of CXL.Mem

resolves around accessing memory on a target device, and bandwidths from

logical processors may be controlled with Intel RDT’s Memory Bandwidth

Allocation (MBA) feature. A more detailed discussion of this case surrounds

Figure 4-14.

Figure 4-10. CXL Example of Device Tagging Model with CXL.IO and CXL.Cache

Traffic Paths

An example with multiple devices with different properties is shown in Figure

4-11, where a pair of PCIe devices on separate I/O blocks may be controlled

independently, with separate RMID and CLOS tags. In this case a PCIe SSD

which does not utilize the cache effectively may be limited, but a NIC which fills

into the cache for data to be consumed by CPU cores may be prioritized.

Figure 4-11. Example of Controlling Two Different PCIe Devices

SOC Shared Resources and Fabric

CXL.Cache/Mem TrafficCXL.IO Traffic

RMID/CLOS to Channel
Mapping Block

I/O Block

CLOS
RMID RMID/CLOS to Channel

Mapping Block

CXL I/O Block

CLOS
RMID

CXL Device

C
h

an
n

el

C
h

an
n

el

SOC Shared Resources and Fabric

RMID/CLOS to Channel
Mapping Block

I/O Block

CLOS
RMID

PCIe Traffic on an I/O Channel

PCIe Device
PCIe SSDs:
10GB/s+ PCIe Device NICs:

400Gbps+

RMID/CLOS to Channel
Mapping Block

I/O Block

CLOS
RMID

PCIe Traffic on an I/O Channel

e.g., Set CLOS[5]=5%
of L3 Cache

e.g., Set CLOS[6]=25%
of L3 Cache

C
h

an
n

el

C
h

an
n

e
l

56 Document Number: 356688-004US, Revision: 1.3

The following image shows an example with one CXL accelerator, perhaps a

CXL-enabled FPGA card, utilizing CXL.IO and CXL.Cache, controlled

independently from an I/O block with a PCIe device attached.

Figure 4-12. Example of Controlling a CXL Accelerator

An example of tagging and controlling an integrated accelerator, the Data

Streaming Accelerator (DSA) alongside a PCIe device is shown in Figure 4-13.

Depending on system load conditions and the DSA usage case, software may

choose to allocate non-overlapping portions of the cache to minimize cache

contention effects.

Figure 4-13. Example of Controlling a High-Bandwidth Integrated Accelerator

A complex example with multiple features in use is shown in Figure 4-14,

where various PCIe devices are controlled with non-CPU agent Intel RDT, but a

CXL device is also present, using CXL.IO and CXL.Mem links. The CXL device

may be tagged and controlled on its CXL.IO interface.

SOC Shared Resources and Fabric .

PCIe I/O Block

RMID/CLOS to
Channel
Mapping Block

RMID/CLOS to
Channel

Mapping Block

RMID/CLOS to
Channel
Mapping Block

PCIe I/O Block

RMID/CLOS Tagging

CXL.IO Traffic

CXL
Accelerator

BW Spikes but
Collaborates

with Cores

PCIe Traffic

RMID/CLOS Tagging

PCIe
Device

NICs:
400Gbps+

e.g., Set
CLOS[3]=25% of

L3 Cache

CXL I/O Block .

CXL.Cache Traffic

RMID/CLOS
Tagging

e.g., Set
CLOS[8]=10% of

L3 Cache

C
h

an
n

el

C
h

an
n

el

C
h

an
n

el

SOC Shared Resources and Fabric

Data Streaming
Accelerator (DSA)

DSA DMA Engine:
30GB/s+ per

instance
PCIe Device NICs:

400Gbps+

RMID/CLOS to Channel
Mapping Block

I/O Block

CLOS
RMID

PCIe Traffic on an I/O Channel

RMID/CLOS to Channel
Mapping Block

I/O Block

CLOS
RMID

PCIe Traffic on an I/O Channel

e.g., Set CLOS[15] =
1 CBM Bit in L3

Cache

e.g., Set CLOS[14]= non-
overlapping 25% of L3 Cache

C
h

an
n

el

C
h

an
n

el

Document Number: 356688-004US, Revision: 1.3 57

As the main purpose of CXL.Mem is for host accesses to device memory,

however, traffic responses up through the CXL.mem path are not subject to

MBA bandwidth shaping, though they are sent with RMID and CLOS tags. If

bandwidth is constrained on this link and software seeks to redistribute

bandwidth across different priorities of accessing agents, such as CPU cores,

the MBA feature may be used to redistribute bandwidth and throttle at the

source of the requests (the agent’s traffic injection point).

This example shows that for comprehensive management of cache and

bandwidth resources on the platform, a combination of CPU agent Intel RDT

and non-CPU agent Intel RDT controls may be necessary.

Figure 4-14. MBA to Control a CXL.Mem Pooling Device

 §

SOC Shared Resources and Fabric

PCIe I/O Block

RMID/CLOS to
Channel
Mapping Block

RMID/CLOS to
Channel

Mapping Block

RMID/CLOS to
Channel
Mapping Block

PCIe I/O Block

RMID/CLOS Tagging

CXL.IO Traffic PCIe Traffic

RMID/CLOS Tagging

CXL I/O Block .

CXL.Mem Traffic

RMID/CLOS
Tagging

3DXP
CXL.Mem
Pool

Subject to BW
Contention

from Threads

Core accesses subject to IA L3 Cache
Masks; Cores throttled with MBA; No

upstream CXL.Mem BW Shaping as
CXL.Mem is a resource, not an agent

Other
Devices

Noisy Neighbor Core

MBA Bandwidth
Controls

High Priority Core

MBA Bandwidth
Controls

C
h

an
n

el

C
h

an
n

el

C
h

an
n

el

58 Document Number: 356688-004US, Revision: 1.3

5 BIOS Considerations
Software may query processor support of RDT shared resource monitoring and

allocation features by executing CPUID for the RDT features which are defined

per CPU Agent (independent of interface scope). ACPI structures may then be

consulted for further details on the Enhanced RDT (ERDT structure) features

support, memory range-to-region mapping (MRRM structure) and I/O RDT

RMID/CLOS (IRDT structure) topologies and tagging. These ACPI tables

enumerate the location of specific MMIO interfaces used to allocate or monitor

shared platform resources. All numeric values in ACPI-defined tables, blocks, and

structures are always encoded in little endian format. Signature values are stored

as fixed-length strings.

5.1 Introduction to Enhanced RDT Interfaces

Two new structures are defined to enumerate the Region Aware MBM and MBA

features and the shared infrastructure such as memory regions that they use:

1. Enhanced RDT (ERDT) ACPI structure: Describes the resource

management domains (RMDs) in an SoC and which agents are managed

within the scope of each resource management domain; this structure also

describes the architectural MMIO register locations for various resource

monitoring and allocation features.

2. Memory Range and Region Mapping (MRRM) ACPI structure:

Describes distinct memory ranges in the platform along with their Region-ID

mapping registers, in order to group ranges into regions for Region-Aware

Memory Bandwidth Allocation (MBA) and Memory Bandwidth Monitoring

(MBM). This structure may be used by other Intel product features which

utilize or reference the same consistent Region-IDs.

Features defined in ERDT are dependent on the regions defined within the MRRM

table. If ERDT is defined but not MRRM, software may assume that only one

memory region is defined, covering all system memory. If MRRM is defined but

not ERDT, software may assume that no region-aware RDT features are present.

The ERDT, IRDT and MRRM tables include a checksum value, which should be

calculated in accordance with ACPI table checksum generation norms.

5.2 ERDT Table Structure Layout

The top-level ACPI structure defined to support Enhanced RDT features is the

“ERDT” structure. Figure 5-1 exemplifies the ERDT ACPI hierarchy. As

described in the following sections, the ERDT structure may include the

following defined sub-structures:

• Resource Management Domain Description Structure (RMDDs),

Document Number: 356688-004US, Revision: 1.3 59

• CPU Agent Collection Description Structure (CACDs),

• Device Agent Collection Description Structure (DACDs),

• Cache Monitoring Registers for CPU Agents Description Structure

(CMRCs),

• Memory Bandwidth Monitoring Registers for CPU Agents Description

Structure (MMRCs),

• Memory Bandwidth Allocation Registers for CPU Agents Description

Structure (MARCs),

• Cache Allocation Registers for CPU Agents Description Structure

(CARCs),

• Cache Monitoring Registers for Device Agents Description Structure

(CMRDs),

• I/O Bandwidth Monitoring Registers for Device Agents Description

Structure (IBRDs),

• Cache Allocation Registers for Device Agents Description Structure

(CARDs),

• I/O bandwidth Allocation Registers for Device Agents Description

Structure (IBADs)

There exists only one instance of the ERDT table for a given platform. Each

RMDD structure within ERDT represents a resource management domain

(RMD). Thus, there will be as many RMDDs as the number of resource

management domains across all SoCs on the platform. For example, on a dual-

socket platform, where each socket hosts N resource management domains,

there will be 2*N RMDD sub-structures within ERDT.

CPU agents under the scope of each resource management domain (RMDD) are

enumerated (via their x2APIC physical APIC-ID [1]) through a CPU Agent

Collection Description (CACD) table. Similarly, non-CPU agents under the

scope of an RMDD are enumerated through a Device Agent Collection

Description (DACD) table. Each RMDD table has a unique Domain-ID, and the

CACD/DACD table instances correlate to the corresponding RMDD by

referencing the respective RMDD Domain-ID value.

As shown in Figure 5-1, the CMRC, MMRC and MARC sub-structures describe

the architectural MMIO register location and organization for the Cache

Monitoring Technology (CMT), Memory Bandwidth Monitoring (MBM) and

Memory Bandwidth Allocation (MBA) enhanced features in RMDDs which have

CPU agents within scope. Similarly, the CMRD, CARD and IBRD registers

describe the architectural MMIO register locations and organization for I/O

CMT, I/O CAT and I/O MBM registers in RMDDs with non-CPU agents within

scope. As feature support may differ across RMDDs, software should

individually enumerate all ERDT sub-structures to determine whether

asymmetric feature support is present.

See Section 5.4 for complete details about these structures.

60 Document Number: 356688-004US, Revision: 1.3

Figure 5-1. Top-level Structure of ERDT ACPI Enumeration

5.3 MRRM Table Structure Layout

Figure 5-2 shows the MRRM ACPI table structure which describes the memory

range to region mapping details. Each memory range entry in the MRRM

structure consists of a contiguous range of host physical address (HPA) space

along with the registers (if hardware and OS configuration of Region-IDs are

supported) for programming Region-ID for this memory range. Each memory

range may be configured with a Region-ID for local accesses and a Region-ID

for remote (cross-socket) accesses. The memory ranges are identical to the

memory ranges specified in the Memory Affinity Structure specified in the ACPI

SRAT structure [8] and may be cross-referenced by address as described in a

later chapter.

If the platform supports only static memory range to region mapping (as with

initial implementations), then the ‘Platform-assigned Static Local Region-ID’

and ‘Platform-assigned Static Remote Region-ID’ fields (Section 5.5.1) describe

local and remote Region-IDs allocated by platform firmware (BIOS) for that

memory range.

ERDT
Top-level ACPI
Enhanced RDT
Enumeration

Structure

Cache Monitoring Registers for
CPU Agents Description Structure

(CMRC)

Memory Bandwidth Monitoring
Registers for CPU Agents

Description Structure
(MMRC)

Memory Bandwidth Allocation
Registers for CPU Agents

Description Structure
(MARC)

Cache Monitoring Registers for
Device Agents Description

Structure
(CMRD)

IO Bandwidth Monitoring
Registers for Device Agents

Description Structure
(IBRD)

Cache Allocation Registers for
Device Agents Description

Structure
(CARD)

CPU Agent Collection
Description StructureCPU Agent Collection

Description Structure
CACD List of

Structs

Resource Management
Domain Description

Structure
RMDD

Resource Management
Domain Description

Structure
RMDD

Resource Management
Domain Description

Structure
(RMDD)

List of
Structs

Resource
Management Domain
Description Structure

(RMDD)

Resource
Management Domain
Description Structure

(RMDD)

MMIO

MMIO

MMIO

MMIO

MMIO

MMIO

Device Agent
Collection Description

Structure
(DACD)

1:M,
M>=1

Device Agent
Collection Description

Structure
(DACD)

Note: Single
Structure per
Platform that

includes all sub-
strucutres.

Note: Distinct
set of CACD/
DACD/RMDD

structures exist
per SoC

1:K,
K>=1

CPU Agent Collection
Description Structure

(CACD)

Note: CACD and DACD
structures are embedded
within and reference RMDD
structures

Document Number: 356688-004US, Revision: 1.3 61

Figure 5-2. Top-level Structure of MRRM ACPI Enumeration

5.4 ERDT Table Structure Details

5.4.1 ERDT Structure Format and Field Descriptions

The top-level ACPI table, known as the Enhanced Resource Director Technology

Structure (ERDT) is shown below. This table includes a unique signature, and

its enumerated length includes all sub-structures. The length of the ERDT table

is variable.

Table 5-1. Enhanced Resource Director Technology (ERDT) Top-Level ACPI

Structure

Field Byte
Length

Byte Offset Description

Signature 4 0 "ERDT". Signature for the Enhanced

Resource Director Technology

Description structure.

Length 4 4 Length, in bytes, of the description table

including the length of the associated

sub-structures.

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID

OEM Table ID 8 16 For the ERDT structure, the Table ID is

the manufacturer model ID

OEM Revision 4 24 OEM Revision of the ERDT Table for OEM

Table ID.

Creator ID 4 28 Vendor ID of utility that created the

table.

Creator Revision 4 32 Revision of utility that created the table.

1:Q,
Q>=1

Mem Range
RegionID Programming

Register1:Q,
Q>=1

Mem Range
RegionID Programming

Register

MRRM
Memory Range and

Region Mapping
Structure 1:Q,

Q>=1

Mem Range
RegionID Programming

Register

MMIO

MMIO

MMIO

Note: Single
Structure per
Platform that

includes all
sub-strucutres.

Note: Distinct
set of Memory

Range Entry
structures

exist per SoC

List of
Structs

62 Document Number: 356688-004US, Revision: 1.3

Field Byte
Length

Byte Offset Description

Max CLOS 4 36 Maximum number of Classes Of Service

(CLOS) supported by the platform for

resource allocation management. The

CLOS values supported by the platform

are 0 through N, where N is the value

reported in this field.

Reserved 24 40 Reserved (0).

ERDT Sub-structures - 64 List of ERDT sub-structures. All sub-

structures have a type and length fields

at the beginning. The type field uniquely

identifies the type of sub-structure, and

the length field indicates the size of the

sub-structure including the size of any

subordinate structures it may include.

For forward compatibility, software is

expected to ignore and skip any sub-

structures that it does not recognize.

The following table lists the various sub-

structures defined.

5.4.2 Valid ERDT Sub-structure Types
All RDT Sub-structures start with a ‘Type’ field (two bytes) followed by a

‘Length’ field (two bytes) indicating the size in bytes of the structure (including

sub-structures).

Table 5-2. Valid ERDT Sub-structure Types

Type Abbreviation Description

0 RMDD Resource Management Domain Description Structure

1 CACD CPU Agent Collection Description Structure

2 DACD Device Agent Collection Description Structure

3 CMRC Cache Monitoring Registers for CPU Agents Description Structure

4 MMRC Memory-bandwidth Monitoring Registers for CPU Agents Description

Structure

5 MARC Memory-bandwidth Allocation Registers for CPU Agents Description

Structure

6 CARC Cache Allocation Registers for CPU Agents Description Structure

7 CMRD Cache Monitoring Registers for Device Agents Description Structure

8 IBRD IO Bandwidth Monitoring Registers for Device Agents Description

Structure

Document Number: 356688-004US, Revision: 1.3 63

Type Abbreviation Description

9 IBAD IO bandwidth Allocation Registers for Device Agents Description

Structure

10 CARD Cache Allocation Registers for Device Agents Description Structure

>10 Reserved for future use. For forward compatibility, software skips

structures it does not comprehend by skipping the number of bytes

indicated by the Length field.

BIOS implementations should report these RDT Sub-structure types in

numerical order, that is, all RDT sub-structures of Type 0 (RMDD) enumerated

before remapping structures of Type 1 (CACD) and Type 2 (DACD). All of the

valid sub-structures which are under the scope of Type 0 (RMDD) should be

enumerated in numerical order, e.g., Type 1 (CACD), Type 2 (DACD), Type 3

(CMRC), Type 4 (MMRC) and so forth and then subsequent Type 0 (RMDD)

enumeration should take place. Defined in this fashion, not all of these are top-

level structures, some of these sub-structure types may exist under the scope

of other structure type such as an RMDD. See Section 5.4.3.1 for details.

5.4.3 Resource Management Domain Description
Structure

A Resource Management Domain Description (RMDD) structure describes a

RDT resource management domain. There must be at least one instance of this

structure present to represent one or more enhanced features such as CMT,

MBM and MBA if supported.

Table 5-3. Resource Management Domain Description (RMDD) Structure

Field Byte Length Byte Offset Description

Type 2 0 0 - Resource Management Domain
Description (RMDD) structure.

Length 2 2 Total Length of this RMDD and all sub-
structures within the scope of this RMDD.

Flags 2 4 Bit 0: L3 Domain
• If Set, this RMDD represents a
resource-management domain hosting a
CPU L3 cache. The relevant registers are
described through CMRC, MMRC, MARC
and CARC register description structures.

CPU L3 cache details are reported through
CPUID. Please refer to the Intel SDM.
Bit 1: I/O L3 Domain
• If Set, this RMDD represents a
resource-management domain hosting an
L3 cache into which I/O data may fill. The
relevant registers in this resource
management domain are described
through CMRD, IBRD and CARD register
description structures. I/O L3 details are
reported in 'Number of I/O LLC slices',
'Number of I/O LLC sets' and 'Number of
I/O LLC ways' fields which may align with
CPU caches but is not guaranteed. Cache
line size is the same for I/O L3 and CPU
caches, and is reported in

64 Document Number: 356688-004US, Revision: 1.3

Field Byte Length Byte Offset Description

CPUID.04H.EBX[11:0].
Bits 2-15: Reserved.

Number of I/O L3
slices

2 6 This field is valid only if bit 1 (indicating
I/O L3 domain) is set in the flags field. A
value of Q in this field indicates the
number of slices forming this I/O L3
cache.

Number of I/O L3
sets

1 8 This field is valid only if bit 1 (indicating
I/O L3 domain) is set in flags field. A value
of N in this field indicates 2N number of

sets for the I/O L3 supported under this
Resource Management Domain's scope.

Number of I/O L3
ways

1 9 This field is valid only if bit 1 (indicating
I/O L3 domain) is set in flags field. A
value of Q in this field indicates the
number of I/O L3 ways supported under
this Resource Management Domain's
scope.

Reserved 8 10 Reserved(0)

DomainID 2 18 This field indicates a unique Domain ID for
the RMDD structure representing this
resource management domain. The CPU
and device agents under the scope of an
RMDD are enumerated through CACD and
DACD structures referencing the value in
this field.

Max RMID 4 20 Maximum Resource Monitoring IDs
(RMID) number supported by this
resource management domain. The value
reported is specific to the respective
domain. The RMID values supported are 0
through X, where X is the value reported
in this field. Max RMID is only valid if
monitoring sub-features are supported for
this domain.

Control Register
Base Address

8 24 4KB aligned host physical address of
control registers for this RDT Domain.

Control Register
Size

2 32 The size of the control register space for
this domain, in units of 4 KB pages.

Document Number: 356688-004US, Revision: 1.3 65

Field Byte Length Byte Offset Description

RMDD structures - 34 A list of agent collection description
structures and register description
structures within the scope of this RMDD.
All sub-structures have a type and length
fields at the beginning. The type field
uniquely identifies the type of sub-
structure, and the length field indicates
the size of the sub-structure including the
size of any subordinate structures it may
include. For forward compatibility,
software is expected to ignore and skip
any sub-structure types that it does not

recognize. The Table 5-4 lists the

various sub-structure types defined.

5.4.3.1 Valid Sub-structure Types within the scope of this RMDD

All RDT Sub-structures start with a ‘Type’ field (two bytes) followed by a

‘Length’ field (two bytes) indicating the size in bytes of the structure (including

sub-structures).

Table 5-4. Valid Sub-structure Types within the scope of an RMDD

Type Abbreviation Description

1 CACD CPU Agent Collection Description
Structure

2 DACD Device Agent Collection Description
Structure

3 CMRC Cache Monitoring Registers for CPU
Agents Description Structure

4 MMRC Memory-bandwidth Monitoring Registers
for CPU Agents Description Structure

5 MARC Memory-bandwidth Allocation Registers
for CPU Agents Description Structure

6 CARC Cache Allocation Registers for CPU Agents
Description Structure

7 CMRD Cache Monitoring Registers for Device
Agents Description Structure

8 IBRD IO Bandwidth Monitoring Registers for
Device Agents Description Structure

9 IBAD IO bandwidth Allocation Registers for
Device Agents Description Structure

10 CARD Cache Allocation Registers for Device
Agents Description Structure

>10 Reserved for future use. For forward
compatibility, software skips structures it
does not comprehend by skipping the
number of bytes indicated by the Length
field.

Note that as described in Figure 5-1, ERDT may contain RMDD, CACD, DACD

and other sub-structures. The CACD and DACD structures are embedded within

and reference an RMDD.

BIOS implementations should report these sub-structure types in numerical

order. i.e., All RDT substructures of Type 0 (RMDD) enumerated before

remapping structures of Type 1 (CACD) and Type 2 (DACD). All the valid sub-

66 Document Number: 356688-004US, Revision: 1.3

structures which are under the scope of Type 0 (RMDD) should be enumerated

in numerical order i.e., Type 1 (CACD), Type 2 (DACD), Type 3 (CMRC), Type 4

(MMRC) and so forth and then subsequent type 0 (RMDD) enumeration should

take place.

5.4.4 CPU Agent Collection Description Structure

A CPU Agent Collection Description (CACD) structure uniquely represents a

collection of logical processor agents on the platform managed by a common

RDT domain. There must be at least one instance of this structure for each RDT

domain supporting CPU agents.

Table 5-5. CPU Agent Collection Description (CACD) Structure

Field Byte Length Byte Offset Description

Type 2 0 1 - CPU Agent Collection Description
(CACD) Structure

Length 2 2 Varies (8 + size of Enumeration-IDs field)

Reserved 2 4 Reserved(0)

RMDD DomainID 2 6 This field specifies the Domain-ID for the

resource management domain that
monitors/enforces cache and memory
bandwidth resourcing for agents in this
collection. Resource management domains
are enumerated through the RMDD
structures. Each RMDD structure includes
a unique Domain-ID.

Enumeration-IDs [] - 8 Array of Enumeration-IDs, each
representing a unique logical processor in
this agent collection. Enumeration-ID of a
logical processor is its 32-bit physical
X2APIC ID as reported in the Processor
Local x2APIC Affinity Structure in ACPI
System Resource Affinity Table (SRAT).

5.4.5 Device Agent Collection Description Structure

A Device Agent Collection Description (DACD) structure uniquely represents a

collection of device agents on the platform managed by a common RDT

domain. There must be at least one instance of this structure for each RDT

domain supporting devices.

Table 5-6. Device Agent Collection Description (DACD) Structure

Field Byte Length Byte Offset Description

Type 2 0 2 - Device Agent Collection Description
(DACD) Structure

Length 2 2 Varies (8 + size of Device Agent Scope
Entries field)

Reserved 2 4 Reserved(0)

Document Number: 356688-004US, Revision: 1.3 67

Field Byte Length Byte Offset Description

RMDD DomainID 2 6 This field specifies the Domain-ID for the
resource management domain that
monitors/enforces cache and memory
bandwidth resourcing for agents in this
collection. Resource management domains
are enumerated through the RMDD
structures. Each RMDD structure includes
a unique Domain-ID.

Device Agent
Scope Entries []

- 8 Array of one or more Device Agent Scope
Entries that identify devices in this
collection. Refer to Device Agent Scope
Entry structure

5.4.5.1 Device Agent Scope Entry Structure

The Device Agent Structure is composed of Device Agent Scope Entries. Each

Device Agent Scope Entry refers to either a PCI endpoint device or a PCI sub-

hierarchy.

Table 5-7. Device Agent Scope Entry (DASE) Structure

Field Byte Length Byte Offset Description

Type 1 0 The following values are defined for this
field.
0x01: PCI Endpoint Device - The device
identified by the ‘Path’ field is a PCI
endpoint device.
0x02: PCI Sub-hierarchy - The device
identified by the ‘Path’ field is a PCI-PCI
bridge. In this case, the specified bridge
device and all its downstream devices are
included in the scope.
Other values for this field are reserved for
future use.

Length 1 1 Length of this Entry in Bytes. (6 + X),
where X is the size in bytes of the “Path”
field.

Segment Number 2 2 The PCI Segment associated with this
device agent

Reserved 1 4 Reserved (0)

Start Bus Number 1 5 This field describes the bus number (bus
number of the first PCI Bus produced by
the PCI Host Bridge) under which the
device agent identified by this Device
Agent Scope Entry resides.

68 Document Number: 356688-004US, Revision: 1.3

Field Byte Length Byte Offset Description

Path 2*N 6 For Device Agent Scope Entries with Type
value of 0x1 or 0x2, this field describes
the hierarchical path from the Host Bridge
to the device specified by the Device
Agent Scope Entry.
For example, a device in a N-deep
hierarchy is identified by N {PCI Device
Number, PCI Function Number} pairs,
where N is a positive integer. Even offsets
contain the Device numbers, and odd
offsets contain the Function numbers.
The first {Device, Function} pair resides
on the bus identified by the ‘Start Bus
Number’ field. Each subsequent pair
resides on the bus directly behind the bus
of the device identified by the previous
pair. The identity (Bus, Device, Function)
of the target device is obtained by
recursively walking down these N {Device,
Function} pairs.
If the ‘Path’ field length is 2 bytes (N=1),
the Device Scope Entry identifies a ‘Root-
Complex Integrated Device’. The

requester-id of ‘Root-Complex Integrated
Devices’ are static and not impacted by
system software bus rebalancing actions.
If the ‘Path’ field length is more than 2
bytes (N > 1), the Device Scope Entry
identifies a device behind one or more
system software visible PCI-PCI bridges.
Bus rebalancing actions by system
software modifying bus assignments of the
device’s parent bridge impacts the bus
number portion of device’s requester-id.

5.4.6 Cache Monitoring Registers for CPU Agents
Description Structure

A Cache Monitoring Registers for CPU Agents Description (CMRC) structure

describes cache monitoring registers for CPU Agents in a RDT domain. There

must be at least one instance of this structure for each RDT domain which

includes a cache that supports occupancy monitoring. This structure is always

contained within an RMDD structure.

Table 5-8. Cache Monitoring Registers for CPU Agents Description (CMRC)

Structure

Field Byte Length Byte Offset Description

Type 2 0 3 - Cache Monitoring Registers for CPU
Agents Description Structure

Length 2 2 Fixed: 48B

Reserved 4 4 Reserved(0)

Document Number: 356688-004US, Revision: 1.3 69

Field Byte Length Byte Offset Description

Flags 4 8 • Bit 0: Unavailable Bit Support:
If Set, indicates CMT data registers in this
domain support the Unavailable bit,
signaling that data may be unavailable. If
Clear, indicates CMT Register does not
support the Unavailable bit field. See
Section 6.1.3.2 for the CMT Register
Layout.
• Bits 1-31: Reserved.

Register Indexing
Function Version

1 12 This field indicates Register Indexing
Function Version Number. See 6.1.3.2 for
details on the software usage guidance of
this field.

Reserved 11 13 Reserved(0)

CMT Register Block
Base Address for
CPU

8 24 4KB aligned Host Physical Address of
MMIO Registers used for RMID-granular
near Cache Monitoring Technology for CPU
agents.

CMT Register Block
Size for CPU

4 32 Size of cache monitoring register space in
units of number of 4KB pages. CMT
registers are located in the range
(X):(X+Y*4096), where X is the value
reported in the Register Block Base
Address field and Y is the value in this
field. Refer to Section 6.1.3.2 for details
on the cache monitoring register layout

CMT Register
Clump Size for CPU

2 36 The registers in the Register Block are
organized in “Clumps”. Each Register
Clump is a set of N adjacent 8-Byte sized
registers, where N is the value specified in
this field. The size of a Register Clump is
thus 8*N bytes.

CMT Register
Clump Stride for
CPU

2 38 The first Register Clump starts at the
address specified by the base address field
above. Each subsequent Register Clump
starts at a fixed offset (stride) from the
previous Register Clump. The Stride value
(S) is reported as number of bytes in this
field. Thus, registers in a given Clump 'C'
are located at byte offsets <C*S> to
<C*S+8*N>

CMT Counter
Upscaling Factor

8 40 Upscaling factor from reported CMT
counter value to occupancy metric
(bytes). See Intel® 64 Architecture
Software Developer’s Manual (SDM),
Volume 3B, Chapter Title: Debug, Branch
Profile, TSC, and Intel® Resource Director
Technology (Intel® RDT) Features for
details on upscaling Factor.

5.4.7 Memory Bandwidth Monitoring Registers for CPU
Agents Description Structure

A Memory Bandwidth Monitoring Registers for CPU Agents (MMRC) Description

structure describes memory bandwidth monitoring registers for CPU Agents in

a RDT domain. There must be at least one instance of this structure for each

70 Document Number: 356688-004US, Revision: 1.3

RDT domain which supports monitoring of bandwidth to memory. This structure

is always contained within an RMDD structure.

Table 5-9. Memory Bandwidth Monitoring Registers for CPU Agents Description

(MMRC) Structure

Field Byte Length Byte Offset Description

Type 2 0 4 - Memory-bandwidth Monitoring
Registers for CPU Agents Description
Structure

Length 2 2 Varies (56 + size of MBM Correction Factor
field)

Reserved 4 4 Reserved(0)

Flags 4 8 • Bit 0: Unavailable Bit Support:
If Set, indicates MBM data registers in this
domain support the Unavailable bit,
signaling that data may be unavailable. If
Clear, indicates MBM Register does not
support the Unavailable bit field. See
Section 6.1.3.3 for the MBM Register
Layout.
• Bit 1: Overflow Bit Support:
If Set, indicates MBM data registers in this
domain support the Overflow bit. If Clear,
indicates MBM data registers do not
support the Overflow bit field. See Section
6.1.3.3 for discussion of MBM Register
Layout and clear-on-read semantics.
• Bits 2-31: Reserved.

Register Indexing
Function Version

1 12 This field indicates Register Indexing
Function Version Number. See Section
6.1.3.3 for details on the software usage
guidance of this field.

Reserved 11 13 Reserved(0)

MBM Register Block
Base Address

8 24 4KB aligned Host Physical Address of
MMIO Registers used for RMID-granular
Memory Bandwidth Monitoring (MBM)

MBM Register Block
Size

4 32 Size of Memory Bandwidth Monitoring
register space in units of number of 4KB
pages. MBM registers are located in the
range (X):(X+Y*4096), where X is value
reported in base address field and Y is the
value in this field. Refer to Section 6.1.3.3
for details on the Memory Bandwidth
monitoring register layout.

MBM Counter Width 1 36 A value Q indicates that Q-bit counter
width is supported by underlying
implementation.

MBM Counter
Upscaling Factor

8 37 MBM data values read can be converted to
bandwidth (in bytes) by multiplying with
the Upscaling Factor.

Reserved 7 45 Reserved(0)

Document Number: 356688-004US, Revision: 1.3 71

Field Byte Length Byte Offset Description

MBM Correction
Factor List Length

4 52 A value in this field defines MBM
Correction Factor List Length. Below are
the valid values for MBM Correction List
Length:
0: Do not apply a correction factor to the
MBM values.
1: Apply a single correction factor
specified in MBM Correction Factor field to
all the MBM values (uniformly apply this
correction factor to all data values
retrieved from counters for all RMIDs).
Max RMID+1: If the value in this field
matches the maximum supported RMID +
1 for this domain (as RMIDs are zero-
indexed), indicated in RMDD:"Max RMID",
apply the indicated indexed correction
factor specified in MBM Correction Factor
list to the corresponding the RMID value
for MBM counter.

MBM Correction
Factor []

- 56 A list of MBM Correction Factors. The list
will contain zero, one or Max RMID + 1
entries. Fixed-point 32-bit format per
entry in this list. See Section 5.4.12 for
details for fixed-point 32-bit format
details. Counter values may be multiplied
by the correction factor to account for
processor-specific implementation
variations.

5.4.8 Memory Bandwidth Allocation Registers for CPU
Agents Description Structure

A Memory Bandwidth Allocation Registers for CPU Agents Description (MARC)

structure describes memory bandwidth allocation registers for CPU Agents in a

RDT domain. There must be at least one instance of this structure for each RDT

domain which supports Memory Bandwidth Allocation. This structure is always

contained within an RMDD structure.

Table 5-10. Memory Bandwidth Allocation Registers for CPU Agents Description

(MARC) Structure

Field Byte Length Byte Offset Description

Type 2 0 5 - Memory-bandwidth Allocation
Registers for CPU Agents Description
Structure

Length 2 2 Fixed: 48B

Reserved 2 4 Reserved(0)

72 Document Number: 356688-004US, Revision: 1.3

Field Byte Length Byte Offset Description

MBA Flags 2 6 MBA Control Window Parameter Flags:
Bit 0:
MBA_OPTIMAL_CONTROL_WINDOW
• If Set, this domain supports the
Optimal BW Window control.
• If Clear, this domain does not support
Optimal BW Control Window.
Bit 1:
MBA_MINIMUM_CONTROL_WINDOW
• If Set, this domain supports the
Minimum BW Window control
• If Clear, this domain does not support
Minimum Control Window.
Bit 2:
MBA_MAXIMUM_CONTROL_WINDOW
• If Set, this domain supports the
Maximum BW Window control
• If Clear, this domain does not support
Maximum BW Control Window.
Bit 3-15 : Reserved (0)

Register Indexing
Function Version

1 8 This field indicates Register Indexing
Function Version Number. See Sections
6.1.3.4, 6.1.3.5, and 6.1.3.6 for details on
the software usage guidance of this field.

Reserved 7 9 Reserved(0)

MBA Optimal BW
Register Block Base
Address

8 16 If the MBA_OPTIMAL_CONTROL_WINDOW
flag is set, this field specifies the base
4KB-aligned Host Physical Address of the
MMIO Registers used for Optimal Memory
Bandwidth Allocation for each Class of
Service

MBA Minimum BW
Register Block Base
Address

8 24 If MBA_MINIMUM_CONTROL_WINDOW
flag is set, this field specifies the base
4KB-aligned Host Physical Address of the
MMIO Registers used for Minimum
Memory Bandwidth Allocation for each
Class of Service

MBA Maximum BW
Register Block Base
Address

8 32 If MBA_MAXIMUM_CONTROL_WINDOW
flag is set, this field specifies the base
4KB-aligned Host Physical Address of the
MMIO Registers used for Maximum
Memory Bandwidth Allocation for each
Class of Service

MBA Register Block
Size

4 40 Size of Memory Bandwidth Allocation
registers in units of number of 4KB pages.
A value of X in this field indicates X*4KB
space for each of the optimal, minimum,
and maximum register sets (if supported).
Refer to Chapter 6 for details on the
Memory Bandwidth Allocation register
layout.

MBA BW Control
Window Range

4 44 A value of Q in this field indicates the
permitted bandwidth control window range
of values that can be programmed into
MBA registers is 1 through Q, where a
value of 1 represents maximum throttling
and Q represents minimal throttling
(maximum bandwidth).

Document Number: 356688-004US, Revision: 1.3 73

More details on the programming and interpretation of the MBA BW Control

Window Range field are provided in Section 3.2.4.4, Region Aware Memory

Bandwidth Allocation, and in Section 6.1.3, Register Descriptions.

5.4.9 Cache Monitoring Registers for Device Agents
Description Structure

A Cache Monitoring Registers for Device Agents Description (CMRD) structure

describes near cache monitoring registers for Device Agents in a RDT domain.

There must be at least one instance of this structure for each RDT domain

which supports Cache Monitoring Technology (CMT). This structure is always

contained within an RMDD structure.

Table 5-11. Cache Monitoring Registers for Device Agents Description (CMRD)

Structure

Field Byte Length Byte Offset Description

Type 2 0 7 - Cache Monitoring Registers for Device
Agents Description Structure

Length 2 2 Fixed: 48B

Reserved 4 4 Reserved(0)

Flags 4 8 • Bit 0: Unavailable Bit Support:
If Set, indicates CMT data registers in this
domain support the Unavailable bit,
signaling that data may be unavailable. If
Clear, indicates CMT Register does not
support the Unavailable bit field. See
Section 6.1.3.7 for the CMT Register
Layout.
• Bits 1-31: Reserved.

Register Indexing
Function Version

1 12 This field indicates Register Indexing
Function Version Number. See Section
6.1.3.7 for details on the software usage
guidance of this field.

Reserved 11 13 Reserved(0)

Register Base
Address

8 24 Base address of the Device Agent register
set for this CMRD.
This address must be aligned according to
the size of the register set size reported in
the Register Block Size field of this
structure.

Register Block Size 4 32 Size of register space in units of number
of 4KB pages. Registers are located in the
range (X):(X+Y*4096), where X is the
value reported in the Register Block Base
Address field and Y is the value in this

field. Refer to Section 6.1.3.7 for details
on the register layout.

CMT Register Offset
for I/O

2 36 Bits 0-11: This field specifies the offset to
the CMT registers for I/O in its
corresponding 4KB page.
If the register base address is X, and the
value reported in this field is Y, then the
first address for the CMT register for I/O is
calculated as (X+Y). Each subsequent CMT
Register clump for I/O starts at the same

74 Document Number: 356688-004US, Revision: 1.3

Field Byte Length Byte Offset Description

CMT Register Offset for I/O in the next
consecutive 4KB page.
Bit 12-15: Reserved(0)

CMT Register
Clump Size for I/O

2 38 The registers in the Register Block are
organized in Clumps. Each Register Clump
is a set of N adjacent 8-Byte sized
registers, where N is the value specified in
this field. The size of a Register Clump is
thus 8*N bytes.
Each Register Clump is organized in
consecutive 4KB pages. Each Register
clump starts at an offset specified by CMT
Register Offset for I/O field in its
corresponding 4KB page.

CMT Counter
Upscaling Factor

8 40 Upscaling factor from reported CMT
counter value to occupancy metric
(bytes). See Intel® 64 Architecture
Software Developer’s Manual (SDM),
Volume 3B, Chapter Title: Debug, Branch
Profile, TSC, and Intel® Resource Director
Technology (Intel® RDT) Features for
details on upscaling Factor.

5.4.10 IO Bandwidth Monitoring Registers for Device
Agents Description Structure

An IO Bandwidth Monitoring Registers for Device Agents Description (IBRD)

structure describes total I/O BW and I/O Miss registers for Device Agents in a

RDT domain. There must be at least one instance of this structure for each RDT

domain which supports I/O Bandwidth Monitoring. This structure is always

contained within an RMDD structure.

Table 5-12. IO Bandwidth Monitoring Registers for Device Agents Description

(IBRD) Structure

Field Byte Length Byte Offset Description

Type 2 0 8 - IO Bandwidth monitoring Registers for
Device Agents Description Structure

Length 2 2 Varies (64 + size of I/O BW Correction
Factor field)

Reserved 4 4 Reserved(0)

Document Number: 356688-004US, Revision: 1.3 75

Field Byte Length Byte Offset Description

Flags 4 8 • Bit 0: Unavailable Bit Support:
If set, indicates IBRD counter registers
support the Unavailable bit field. If clear,
indicates that the IBRD Register does not
support the Unavailable bit field. See
Section 6.1.3.9 for IBRD Register Layout.
• Bit 1: Overflow Bit Support:
If set, indicates IBRD counter registers
support the Overflow bit field. If clear,
indicates that the IBRD Register does not
support the Overflow bit field. See Section
6.1.3.9 for IBRD Register Layout.
• Bits 2-31: Reserved.

Register Indexing
Function Version

1 12 This field indicates Register Indexing
Function Version Number. See Section
6.1.3.9 details on the software usage

guidance of this field.

Reserved 11 13 Reserved(0)

Register Base
Address

8 24 Base address of Device Agent register set
for this IBRD.
This address must be aligned according to
the size of the register set size reported in
the Register Block Size field of this
structure.

Register Block Size 4 32 Size of register space in units of number
of 4KB pages. Registers are located in the
range (X):(X+Y*4096), where X is the
value reported in the Register Block Base
Address field and Y is the value in this
field. Refer to Chapter 6 for details on the
register layout.

Total I/O BW

Register Offset

2 36 Bits 0-11: This field specifies the offset to

the Total I/O BW registers in its
corresponding 4KB page.
If the register base address is X, and the
value reported in this field is Y, the
address for the Total I/O BW registers is
calculated as (X+Y). Each subsequent
Total I/O BW registers clump starts at the
same Total I/O BW Register Offset in the
next consecutive 4KB page.
Bits 12-15: Reserved(0)

I/O Miss BW
Register Offset

2 38 Bit 0-11: This field specifies the offset to
the I/O Miss BW registers in its
corresponding 4KB page.
If the register base address is X, and the
value reported in this field is Y, then the
first address for the I/O Miss BW registers
is calculated as (X+Y). Each subsequent
I/O Miss BW registers starts at the same
I/O Miss BW Register Offset in consecutive
4KB page.
Bit 12-15: Reserved(0)

Total I/O BW
Register Clump
Size

2 40 The registers in the Register Block are
organized in Clumps. Each Register Clump
is a set of N adjacent 8-Byte sized
registers, where N is the value specified in
this field. The size of a Register Clump is
thus 8*N bytes.
Each Register Clump is organized in
consecutive 4KB pages. Each Register

76 Document Number: 356688-004US, Revision: 1.3

Field Byte Length Byte Offset Description

clump starts at offset specified by Total
I/O BW Register Offset for I/O field in its
corresponding 4KB page.

I/O Miss Register
Clump Size

2 42 The registers in the Register Block are
organized in “clumps”. Each register clump
is a set of N adjacent 8-Byte sized
registers, where N is the value specified in
this field. The size of a register clump is
thus 8*N bytes.
Each register clump is organized in
consecutive 4KB pages. Each register
clump starts at an offset specified by the
Total I/O BW Register Offset for I/O field
in its corresponding 4KB page.

Reserved 7 44 Reserved(0)

I/O BW Counter
Width

1 51 A value Q indicates that Q-bit counter
width is supported for Total I/O BW and
I/O Miss BW counters by the underlying
implementation.

I/O BW Counter
Upscaling Factor

8 52 Total I/O BW and I/O Miss BW Counter
value can be converted to bandwidth (in
bytes) using the reported Upscaling
Factor.

I/O BW Counter
Correction Factor
List Length

4 60 A value in this field defines I/O BW
Counter Correction Factor List Length.
Below are the valid values for the
Correction Factor List Length:
0: Do not apply a correction factor to the
I/O BW Counter values.
1: Apply a single correction factor
specified in I/O BW Counter Correction
Factor field to all the I/O BW Counter
values (uniformly apply this correction
factor to all data values retrieved from
counters for all RMIDs).

Max RMID + 1: If the value in this field
matches the maximum supported RMID +
1 for this domain (as RMIDs are zero-
indexed), indicated in RMDD:"Max RMID",
apply the indicated indexed correction
factor specified in MBM Correction Factor
list to the corresponding the RMID value
for the I/O BW counter.

I/O BW Counter
Correction Factor []

- 64 A list of I/O BW Counter Correction
Factors. The list will contain zero, one or
Max RMID + 1 entries. Fixed-point 32-bit
format per entry in this list. See Section
5.4.12 for details for fixed-point 32-bit
format details. Counter values may be
multiplied by the correction factor to
account for processor-specific
implementation variations.

Document Number: 356688-004US, Revision: 1.3 77

5.4.11 Cache Allocation Registers for Device Agents
Description Structure

A Cache Allocation Registers for Device Agents Description (CARD) structure

describes near cache allocation registers for Device Agents in a RDT domain.

There must be at least one instance of this structure for each RDT domain

which supports I/O Cache Allocation Technology (I/O CAT). This structure is

always contained within an RMDD structure.

Table 5-13. Cache Allocation Registers for Device Agents Description (CARD)

Structure

Field Byte Length Byte Offset Description

Type 2 0 10 - Cache Allocation Registers for Device
Agents Description Structure

Length 2 2 Fixed: 40B

Reserved 4 4 Reserved(0)

Flags 4 8 • Bit 0: Contention Bitmask Valid:

If Set, indicates 'Contention Bitmask' field
is valid. Contention cache bitmask details
are reported in 'Contention Bitmask' field.
If Clear, indicates 'Contention Bitmask'
field is not valid.
• Bit 1: Non-Contiguous Bitmasks
Supported:
If Set, indicates non-contiguous capacity
bitmasks are supported. The bits that are
set in the various CAT Registers are not
required to be contiguous. If Clear, non-
contiguous bitmasks are not supported.
• Bit 2: Zero-length Bitmask:
If Set, indicates CAT Registers may be
programmed with a value of zero,
indicating zero Capacity Bitmask (CBM)
bits set, and the associated CLOS will be
prevented from allocating into the I/O L3
cache. If Clear, indicates CAT Registers do
not support zero-length bitmasks, and at
least one CBM bit must be set in the
programmed mask.
• Bits 3-31: Reserved.

Contention Bitmask 4 12 This field is valid if bit 0 (Contention
Bitmask Valid) is set in flags field. Each
set bit within the length of the bitmask (IO
L3 Ways) indicates the corresponding unit
(CBM bit) of the I/O L3 allocation may be
used by other entities in the platform
(e.g., an integrated graphics engine).
Each unset bit within the length of the
CBM indicates that the corresponding
allocation unit can be used by an OS/VMM
without interference from other integrated
hardware agents in the system which may
degrade determinism. Bits outside the
length of the capacity bitmask are
reserved.

Register Indexing
Function Version

1 16 This field indicates Register Indexing
Function Version Number. See Section

78 Document Number: 356688-004US, Revision: 1.3

Field Byte Length Byte Offset Description

6.1.3.10 for details on the software usage
guidance of this field.

Reserved 7 17 Reserved(0)

Register Base
Address

8 24 Base address of Device Agent register set
for this CARD.
This address must be aligned according to
the size of the register set size reported in
the Register Block Size field of this
structure.

Register Block Size 4 32 Size of register space in units of number
of 4KB pages. Registers are located in the
range (X):(X+Y*4096), where X is the
value reported in the Register Block Base
Address field and Y is the value in this
field. See Section 6.1.3.10 for details on
the register layout.

CAT Register Offset
for I/O

2 36 Bits 0-11: This field specifies the offset to
the Cache Allocation registers for I/O in its
corresponding 4KB page.
If the register base address is X, and the
value reported in this field is Y, the
address for the CAT Registers for I/O is
calculated as (X+Y). Each subsequent
Cache Allocation register clump starts at
the same Cache Allocation Register Offset
in consecutive 4KB pages.
Bits 12-15: Reserved(0)

CAT Register Block
Size

2 38 Cache Allocation registers are a set of N
adjacent 8-Byte sized registers, where N is
the value specified in this field. The size of
a Cache Allocation Register Block Size is
thus 8*N bytes.
Each Cache Allocation Register Block is
organized in consecutive 4KB pages. Each

Register Block for Cache Allocation starts
at an offset specified by Cache Allocation
Register Offset for I/O field in its
corresponding 4KB page.

5.4.12 Fixed-Point 32-bit Format for Correction Factor

This section describes the fixed-point 32-bit format that is used for “MBM

Correction Factor” and “I/O BW Counter Correction Factor” fields specified in

MMRC and IBRD substructures respectively. The high word (16 bits) represents

the integer (whole number) portion, while the lower word (16 bits) represents

the fractional (decimal) portion.

The following examples show the conversion algorithm for fixed-point 32-bit

format described above.

Example 1: Calculation steps for fixed-point 32-bit format based on 16:16

fixed-point representation of the number “1.2”.

1. Multiply the number by the scaling factor: The scaling factor for the

fractional portion is 2 N, where N is the number of fractional bits. For

16:16 representation, this is 216 =65536.

Document Number: 356688-004US, Revision: 1.3 79

1.2 x 65536 = 78,643.2

2. Round or Truncate to an integer: The result gives 78,643.

3. Convert the integer to 32-bit hexadecimal and Binary number:

Hexadecimal Representation: 0001 3333H

Binary Representation:

0000 0000 0000 0001 0011 0011 0011 0011

Integer Portion Fractional Portion

Hence, to represent Correction Factor for number “1.2”, MMRC and IBRD

substructures may enumerate it as “0001 3333H”.

Example 2: Calculation steps for fixed-point 32-bit format based on 16:16

fixed-point representation of the number “0.9”.

1. Multiply the number by the scaling factor: The scaling factor for the

fractional portion is 2 number of fractional bits. For 16:16 representation,

this is 216 =65536.

0.9 x 65536 = 58,982.4

2. Round or Truncate to an integer: The result gives 58,982.

3. Convert the integer to 32-bit hexadecimal number:

Hexadecimal number: 0000 E666H

Binary Representation:

0000 0000 0000 0000 1110 0110 0110 0110

Integer Portion Fractional Portion

Hence, to represent Correction Factor number for “0.9”, MMRC and IBRD

substructures may enumerate it as “0000 E666H”.

5.5 Memory Range and Region Mapping (MRRM)

Structure Details

The top-level MRRM ACPI table is shown in the table below, and one instance of

this table is defined at the system level, generated by the system BIOS. This

table includes a unique signature and defines its variable length including all

sub-structures.

The MRRM top-level structure describes host physical memory address ranges

in the platform for region-ID mapping. The Region-Aware MBM and MBA

features use these region IDs to enable monitoring and control per region-ID.

Other features beyond RDT may use these same region numbers, that is, the

80 Document Number: 356688-004US, Revision: 1.3

region ID (e.g., “2”) used for a particular RDT feature maps identically to the

region ID used for the other corresponding non-RDT feature, providing

definitional symmetry. Specific memory ranges are defined and numbered via

the Memory Range Entry (MRE) structure instances encoded within the MRRM

structure.

As the MRRM table is fundamental to RDT Region Aware feature operation, if

software encounters a Revision number that has not been enabled, then it

should cease to proceed forward and print an error message indicating that a

software update is required.

Table 5-14. Memory Range and Region Mapping (MRRM) Structure

Field Byte Length Byte Offset Description

Signature 4 0 "MRRM". Signature for the Memory
Range and Region Mapping Structure

Length 4 4 Length, in bytes, of the description
table including the length of the
associated sub-structures.

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID

OEM Table ID 8 16 For MRRM structure, the Table ID is
the manufacturer model ID

OEM Revision 4 24 OEM Revision of MRRM Table for OEM
Table ID.

Creator ID 4 28 Vendor ID of utility that created the
table.

Creator Revision 4 32 Revision of utility that created the
table.

Max Memory Regions
Supported

1 36 Maximum number of memory
regions that can be subject to
Performance Monitoring, and Region-
Aware Memory Bandwidth Monitoring
and Allocation. One or more memory
address ranges may be grouped to
form memory regions.

Flags 1 37 Bit 0:
REGION_ASSIGNMENT_TYPE
• If Clear, platform assigns a static
region-ID for all memory ranges.
When this bit is reported as clear, the
Region-ID assigned for local accesses
and remote accesses are provided in
the Platform-assigned Local Region-
ID field and Platform-assigned
Remote Region-ID fields respectively
of each Memory Range Entry. When
this bit is reported as clear, the
Region-ID programming registers
field in each memory range entry
must be 0.
• If Set, platform supports the
capability for system software
(OS/VMM) to assign region-IDs for
local and remote accesses for each
memory range. The registers for
system software to program the
region-IDs are enumerated in the
Region-ID Programming Registers

Document Number: 356688-004US, Revision: 1.3 81

Field Byte Length Byte Offset Description

field of each Memory Range Entry. In
this case, any initial platform-
assigned Region-ID values may be
read by software from the respective
registers for each range.
Bits 1-7: Reserved(0).

Reserved 26 38 Reserved (0).

Memory Range Entry
List []

- 64 Array of one or more Memory Range
Entries that each identify a
contiguous host physical memory
range to which memory bandwidth
can be allocated and monitored. Refer
to the Memory Range Entry structure
definition.

5.5.1 Memory Range Entry (MRE) Structure

The Memory Range Entry (MRE) Structure hosts Memory Range Entries. Each

Memory Range Entry identifies a contiguous host physical memory range to

which memory bandwidth can be allocated and monitored. Each of these

memory range entries provides the MMIO location of registers for software to

configure Region-ID tagging for that memory range, if supported.

Table 5-15. Memory Range Entry (MRE) Structure

Field Byte Length Byte Offset Description

Type 2 0 0 - Value of 0 in this field indicates this is
a Memory Range Entry

Length 2 2 32B + sizeof (Region-ID Programming
Registers[])

Reserved 4 4 Reserved(0)

Base Address Low 4 8 Low 32 Bits of the Base Address of the
memory range

Base Address High 4 12 High 32 Bits of the Base Address of the

memory range

Length Low 4 16 Low 32 Bits of the length of the memory
range

Length High 4 20 High 32 Bits of the length of the memory
range.

Region-ID Flags 2 24 Bit 0: Valid Local Region-ID
• If Set, this host physical address
memory range has valid Platform-assigned
Static Local Region-ID.
Bit 1: Valid Remote Region-ID
• If Set, this host physical address
memory range has valid Platform-assigned
Static Remote Region-ID.
Bits 2-15: Reserved.

82 Document Number: 356688-004US, Revision: 1.3

Field Byte Length Byte Offset Description

Platform-assigned
Static Local
Region-ID

1 26 If REGION_ASSIGNMENT_TYPE bit in
MRRM.Flags field is 0 and Valid Local
Region-ID Flags is 1, this field enumerates
the platform-assigned static region-ID for
local accesses to this memory range.

Platform-assigned
Static Remote
Region-ID

1 27 If REGION_ASSIGNMENT_TYPE bit in
MRRM.Flags field is 0 and Valid Remote
Region-ID Flags is 1, this field enumerates
the platform-assigned static region-ID for
remote accesses to this memory range.

Reserved 4 28 Reserved (0).

Region-ID
Programming
Registers[]

- 32 If the REGION_ASSIGNMENT_TYPE bit in
MRRM.Flags field is 1, this field specifies the
registers to program Region-ID for this
memory range.
Host Physical Address of 8-Byte aligned
RDT MMIO registers used to program the
MBA/MBM Region-IDs of this range. Each
Memory Range can be assigned two
Region-IDs (a Local Region-ID for access by
local socket agents and a Remote Region-
ID for accesses by remote socket agents).
One or more memory ranges can be
grouped by into a region by assigning them
the same Region-ID. Thus Region-IDs
enable memory ranges to be organized into
a set of regions that can be subject to
Memory Bandwidth Monitoring and
Allocation. To support memory ranges that
may be spanning multiple memory
controllers, more than one register may be
specified in this field. All registers identified
in this field should be programmed
identically. Refer to subsequent sections for
further details and the architectural
definition of these MBA/MBM Region-ID
configuration registers.

Note that the base and length of each memory region may be used to cross-

reference with memory regions defined in other ACPI tables such as HMAT and

SRAT in a consistent fashion.

5.6 Architectural Intel® RDT Features for Non-

CPU Agents (IRDT)

This section describes ACPI enumeration for architectural Intel RDT features for

non-CPU agents. These features are predominantly enumerated via an ACPI

structure for I/O RDT features with signature “IRDT”. Note that while the

existence of the IRDT object is sufficient to verify the presence of the I/O RDT

feature on a processor, the revision of the IRDT table may change over time as

the I/O interface and I/O bridge properties change. The encoded revision

numbers can be used to manage this change over time.

Document Number: 356688-004US, Revision: 1.3 83

5.6.1 RMID/CLOS tagging - ACPI Enumeration

5.6.1.1 ACPI Definitional Goals

A number of goals are accomplished through the IRDT ACPI enumeration

definition in this chapter, including:

1. Providing top-level configuration information for the SoC, such as how

many RMID/CLOS tags non-CPU agent Intel RDT supports relative to CPU

agent Intel RDT (as enumerated by CPUID, see Chapter 3).

2. Providing a logical description of the control hierarchy – meaning which

MMIO address to use to configure a link’s RMID/CLOS tagging.

3. Provide flexibility in the implementation topology of devices behind I/O

blocks, and cover cases with discrete or integrated PCIe and CXL links,

and integrated accelerators.

4. Provide enhanced ease-of-use information for software, including device

topologies, TC/VC/Channel mapping information for advanced QoS usages

for forward-compatibility.

5.6.1.2 IRDT ACPI Enumeration Overview

This section provides a number of diagrams introducing key I/O Intel RDT

structures and their mapping to Intel SoC components. Section 5.6.1.4

provides table specifics.

The top-level ACPI structure defined to support I/O Intel RDT is the “IRDT”

structure. This is a vendor-specific extension to the ACPI table space [4]. The

named IRDT structure is generated by BIOS and contains all other non-CPU

agent Intel RDT ACPI enumeration structures and fields as described in this

chapter.

84 Document Number: 356688-004US, Revision: 1.3

Figure 5-3. Non-CPU Agent Intel® RDT ACPI Enumeration

Note that all Reserved fields in IRDT structures should be initialized to 0 by

BIOS.

Under the IRDT structure in the hierarchy (embedded within the IRDT

structure) are the I/O Intel RDT Resource Management Unit Descriptors

(RMUDs.). The RMUDs typically map to I/O blocks within the system, though it

is possible that one RMUD may be defined at other levels (such as one RMUD

per SoC).

An example mapping is shown in Figure 5-3, showing ACPI details at the top,

and Intel® Xeon® SoC mappings to hardware blocks at the bottom. The IRDT

and RMUD relationships are shown for a typical implementation, in which

RMUDs describe the properties of an I/O block. The IRDT table defines zero or

more RMUDs, and an RMUD contains one of more RPs.

The RMUD structures contain two embedded structures, the Device Specific

Structures (DSSes) and Resource Control Structures (RCSes) which map to

devices and links and help describe the relationships regarding which I/O

devices are connected to particular links, and which I/O links are in use by

which devices. Each RMUD defines one or more DSS and RCS structures.

In the example of Figure 5-3, one DSS exists per PCIe, CXL or other non-CPU

agent device (including accelerators), subservient to an RMUD. A CXL device

may be expected to have multiple links (for example, CXL.Cache and CXL.IO)

and this topology is described by the associated DSS structure and multiple

RCS structures for the device and its links. Note that Figure 5-3 shows the DSS

structure downstream of the RMUD but does not show the RCS for simplicity.

Xeon SOC

I/O Block

I/O Block

I/O Block

…

I/O RDT

I/O RDT

I/O RDT

ACPI

IORDT-RMUD
IO RDT Resource

Management Unit
Description Structure

IRDT
System-Level Parameter

Enumeration

PCIe Device

CXL Device

1:N,
N>=1

List of
Structs

IORDT-RMUD
IO RDT Resource

Management Unit
Description Structure

IORDT-RMUD
IO RDT Resource

Management Unit
Descriptors

1:N,
N>=1

List of
Structs

Associated CXL
$MEM Block

I/O block may be
exposed as a PCIe
EP, with O/S driver

(VT-d equivalent: DRHD)(VT-d equivalent: DMAR) (VT-d equivalent: DSS)

IORDT-DSS
IO RDT Device-

Specific Structures

Document Number: 356688-004US, Revision: 1.3 85

Figure 5-4 shows an example of the RMUD mapping to DSS and RCS

structures. Each device attached to an I/O block is described by a DSS, and

has one or more links, with properties described in the RCS structures. The

RCS structures contain pointers to MMIO locations (in absolute address form,

not BAR-relative) to allow software to configure the RMID/CLOS tags and

bandwidth shaping properties, if supported, in an I/O Block.

Figure 5-4. ACPI Enumeration – Detail of DSS and RCS Structures Downstream

from an RMUD

Figure 5-5 shows a further layer of detail where devices mapped through I/O

blocks are described by the RMUDs, the DSS describes the properties of the

device, and the RCS provides a pointer to the MMIO locations used for

configuring the tagging and bandwidth shaping for a particular link.

Xeon SOC

I/O Block

…

I/O RDT

ACPI

Devices

IORDT-RMUD
IO RDT Resource

Management Unit
Descriptor

IORDT-DSS
IO RDT Device-

Specific Structures

1:N,
N>=1

List of
Structs

Optional: CXL
Block(s)

IORDT-CHMS
IO RDT Channel

Mapping byte array

IORDT-RCS
IO RDT RMUD Control

Structures

Contains a simple table:
Channel to RMID/CLOS

mapping controls location (for
this link) → points to MMIO

Fixed field: 1B per VC, with a
count of how many entries
are there: Channel for each

indexed VC for the traffic
flows in this path, uppermost

bit is an enable

Provides a list of what devices
are behind this RMUD

Note: Distinct sets of channels
exist per path

86 Document Number: 356688-004US, Revision: 1.3

Figure 5-5. Mapping from RCS Structures to MMIO Addresses for Per-link

Control

5.6.1.3 Example ACPI Enumeration Cases

Given the table hierarchy described in the preceding section, an example CXL

Type 1 (CXL.IO + CXL.Cache) device mapping is shown in Figure 5-6. The

device is described by one DSS behind an RMUD, while two RCSes are used,

one for each link type (CXL.IO and CXL.Cache).

Figure 5-6. CXL Enumeration Example with CXL.IO and CXL.Cache Links

Xeon SOC

I/O Block

…

I/O RDT

ACPI

Devices

IORDT-DSS
IO RDT Device-

Specific Structures

1:N,
N>=1

List of
Structs

Optional: CXL
Block(s)

Contains a simple table:
Channel to RMID/CLOS

mapping controls location (for
this link) → points to MMIO

Enumerates TC/VC/Channel
mapping details of the traffic

flows in this path

Provides a list of what devices
are behind this RMUD

Note: Distinct sets of channels
exist per path

MMIO

IORDT-RCS
IO RDT RMUD Control

Structures

IORDT-RMUD
IO RDT Resource

Management Unit
Description Structure

ACPI

Xeon SOC
I/O Block

I/O RDT

IRDT
System-Level Parameter

Enumeration

CXL Device (A:B.C)

List of
Structs

IORDT-RMUD
IO RDT Resource

Management Unit
Description Structure

Associated CXL
I/O Block

IORDT-DSS

Two RCS instances,
one for each port, in

this example

One instance in this example

MMIO

MMIO

IORDT-RCS

IORDT-RCS

Document Number: 356688-004US, Revision: 1.3 87

5.6.1.4 ACPI Feature Enumeration – Table Structure Details

5.6.1.4.1 Introduction and Notation

Given the previously described relationships of RMUD, DSS and RCS structures,

table format details are described in this section.

Using the ACPI table hierarchy shown earlier in this chapter, following are the

details of each table type and constituent fields. Field definitions are detailed in

the table, and the text covers interpretation, corner cases, and interactions

between fields.

5.6.1.4.2 IRDT Table Format and Field Descriptions

The top-level ACPI table, the I/O Resource Director Technology table (IRDT) is

shown in Table 5-16, and one instance of this table is defined at the system

level, generated by the system BIOS. This table includes a unique signature,

and length including all sub-structures, including embedded RMUDs. The length

of the IRDT table is variable.

Table 5-16. IRDT Table Format (Variable Length)

Field Byte Length Byte Offset Description

Signature 4 0
“IRDT”. Signature for the top-level I/O

Intel RDT Description Table.

Length 4 4

Length, in bytes, of the description table

including the length of the associated

remapping structures.

Revision 1 8 1

Checksum 1 9 Checksum: Entire table must sum to zero.

OEMID 6 10 OEM ID.

OEM Table ID 8 16
For IORDT description table, the Table ID is

the manufacturer model ID.

OEM Revision 4 24
OEM Revision of IRDT Table for OEM Table

ID.

Creator ID 4 28 Vendor ID of utility that created the table.

Creator revision 4 32 Revision of utility that created the table.

IO Protocol Flags 2 36

Bit 0: IO_PROTO_MON -- Set if I/O Intel

RDT Monitoring capabilities are supported

somewhere on the platform for I/O protocol

devices.

Bit 1: IO_PROTO_CTL -- Set if I/O Intel

RDT Allocation capabilities are supported

somewhere on the platform for I/O protocol

devices.

Bit 2-15 : Reserved.

88 Document Number: 356688-004US, Revision: 1.3

Field Byte Length Byte Offset Description

Cache Protocol Flags 2 38

Bit 0: IO_COH_MON -- Set if I/O Intel RDT

Monitoring capabilities are supported

somewhere on the platform for coherent

non-IA agents.

Bit 1: IO_COH_CTL -- Set if I/O Intel RDT

Allocation capabilities are supported

somewhere on the platform for coherent

non-CPU agents.

Bit 2-15 : Reserved.

Reserved 8 40 -

Resource

Management

Hardware Blocks[]

- 48

A list of structures. The list will contain one

or more Resource Management Unit

Descriptors (RMUDs).

The RMUD structure is described next.

A series of high-level flags allows the basic capabilities of monitoring and

control for I/O links (for example, PCIe) and coherent links (for example, CXL)

to be quickly extracted. Embedded within the IRDT table is a set of one or

more Resource Management Unit Descriptor Structures (RMUDs), which are

typically mapped to I/O blocks and define their properties. In some

instantiations, one RMUD may be defined for the system, or in a finer-grained

approach, one RMUDs may be defined for each downstream link and device

combination, though this is expected to be an uncommon case.

5.6.1.4.3 RMUD Table Format and Field Descriptions

The Resource Management Unit Descriptor (RMUD) structure, definition is

shown in Table 5-17, and includes a number of fields including length of the

RMUD instance and all embedded sub-structures (DSS and RCS entries), an

integration parameter that map to the SoC properties, including the minimum

and maximum RMID and CLOS tags that are available for use in monitoring and

controlling devices under this RMUD. While the common case is that these

parameters would match the CPU agent Intel RDT parameters, there may be

certain RMUDs which support a subset of the overall RMID and CLOS space.

Table 5-17. RMUD Table Format (Variable length)

Field Byte Length Byte Offset Description

Type 1 0

Type 0 = “RMUD”. Signature for the I/O

Intel RDT Resource Management Unit

Descriptor.

Reserved 3 1 Reserved.

Length 4 4
Total length of this RMUD and all sub-

structures.

Segment 2 8
The PCI Segment containing this RMUD,

and all of the devices that are within it.

Reserved 3 10 Reserved.

Document Number: 356688-004US, Revision: 1.3 89

Field Byte Length Byte Offset Description

DSS and RCS

Structures []
--- 13

List of devices behind this RMUD, with one

DSS table instance per device.

Contains a list of DSS control structures

and RCS control structures, identified by

their “Type” field at offset zero in the sub-

structures.

The DSS and RCS structures described

next.

Each RMUD entry contains a number of embedded DSS and RCS structures,

identified by their “Type” fields, which describe the devices and links behind a

given RMUD.

5.6.1.4.4 DSS Table Format and Field Descriptions

The Device Scope Structures behind each RMUD describe the properties of a

device, that is, each DSS maps 1:1 with a device behind a particular RMUD.

The DSS table definition is shown in Table 5-18, including a “type” field (Type

= 0 identifies a DSS), the length of the entry, device type, and an embedded

channel management structure (CHMS). The CHMS defines which RCS(es) are

applicable to controlling this device (DSS), and which internal I/O block

Channels each of the link’s virtual channels (VCs) may map to (in the case of

PCIe, up to eight VCs are supported, but only the first entry is valid in the case

of CXL). Valid configurations for the CHMS include one entry per RCS (link).

In the DSS Device Type field, a value of 0x02 denotes that a PCIe Sub-

hierarchy is described by this DSS. Each root port described by a DSS will have

type 0x02. System software may use the enumerated devices found under

such a root port to comprehend share bandwidth relationships in the channels

under an RMUDS.

DSS type 0x01 indicates the presence of a root complex integrated endpoint

device (RCEIP), such as an accelerator. Note that a PCI sub-hierarchy may

denote a root port, and for every DSS that corresponds to a root port it is

expected that Device Type = 0x2.

Note that the CHMS field contains a list of CHMS structures, which may

describe for instances DSS entries which are capable of sending traffic over

multiple channels (which are in turn described by unique RCS entries).

Note that no discrete pluggable devices (for example, PCIe cards) are directly

described by the DSS entries, rather the root ports are indicated (Device Type

0x2).

Fields described in this DSS table are only valid when the Revision value is 1 in

the top-level IRDT structure. Refer to section 5.6.1.4.5 (DSS Table format) and

following for cases when Revision value is 2 or above in the top-level IRDT

structure.

90 Document Number: 356688-004US, Revision: 1.3

Table 5-18. DSS Table Format (Variable length)

Field Byte Length Byte Offset Description

Type 2 0 0 = DSS

Length 2 2 Length of this Entry in Bytes.

Device Type 1 4

The following values are defined for this

field.

0x01: Root Complex Integrated Endpoint

(RCEIP) Device - The device identified by

the ‘Path’ field is a root complex integrated

PCI endpoint device.

0x02: PCI Sub-hierarchy - The device

identified by the ‘Path’ field is a PCI-PCI

bridge. In this case, the specified bridge

device and all its downstream devices are

included in the scope.

Other values for this field are reserved for

future use.

Enumeration ID 2 5
If Device Type equals 1 or 2, this field lists

the BDF

Reserved 1 7 Reserved

Structure: CHMS

and RCS

Enumeration []

--- 8

Packed as byte fields.

One RCS may support multiple DSSes, and

one DSS may have multiple RCSs (links),

so this is an array, with size derivable from

the DSS Length field. Within each entry:

Byte 0: RCS Enumeration ID controlling

this link. Corresponds to the enumeration

ID of the RCS structure under this DSS.

Bytes 1-8: Represents the index into the

“RCS-CFG-Table” used by the

corresponding VC. Byte 1 represents the

channel for VC0, Byte 2 represents the

channel for VC1, and so on. In this field, bit

7 is a valid bit (entry is not valid if enable

bit is cleared). Bit 6, when set, indicates

that this channel is shared with another

DSS. The number of valid bytes in this field

is defined in the per-RCS “Channel Count”

field, any unused bytes (for example, for a

single-Channel CXL link) are Reserved.

See text below for version-specific

interpretation.

Bytes 9-15: Reserved (padding)

5.6.1.4.5 DSS Table Format for IRDT Table Revision 2

When revision 2 is specified in the IRDT table, the Channel Count field in the

RCS structure indicates how many links the RCS has been bifurcated into and

the lowest number channel can be used to control lowest number BDF and so

on. This controls register indexing pattern.

Document Number: 356688-004US, Revision: 1.3 91

5.6.1.4.6 RCS Table Format and Field Descriptions

The RCS structure provides details of the type of monitoring and controls

supported for a particular link interface type, such as PCIe or CXL, and an

MMIO location in which a table exists that can be used to apply monitoring and

control features. The MMIO location provided is absolute location in MMIO

space (64 bits), rather than hosted in a particular device and defined relative to

a BAR.

Table 5-19. RCS Table Format (v1, Currently 40B)

Field Byte Length Byte Offset Description

Type 2 0 RCS = 1.

Length 2 2

Length, in bytes, of the description table

including the length of the associated

remapping structures.

Link Interface Type 2 4

Type of link interface:

0x0 = PCIe or CXL.IO

0x1 = CXL.Cache

0x2 and above: Reserved

RCS Enumeration ID 1 6
A unique identifier for this RCS under this

RMUD.

Channel Count 1 7

Number of Channels defined for this link

interface (affects the interpretation of the

CHMS structure within the corresponding

DSS).

Flags 2 8

Bit 0: Reserved.

Bit 1: RTS: RMID Tagging supported.

Bit 2: CTS: CLOS Tagging Supported.

Bit 3: REGW: if set, the RMID and CLOS

defined in the RCS Block MMIO locations

are 2B registers. If clear, they are 8B

registers.

Bits 4-15: Reserved.

RMID Block Offset 2 10

Byte offset from the RCS Block MMIO

Location where the RMID tagging fields

begin.

CLOS Block Offset 2 12

Byte offset from the RCS Block MMIO

Location where the CLOS tagging fields

begin.

Reserved 18 14 Reserved.

RCS Block MMIO

Location
8 32

RCS Hosting I/O Block MMIO BAR Location

defines an MMIO physical address.

Fields mentioned in this RCS table are only valid when the Revision value is 1

in top-level IRDT structure. Refer section 5.6.1.4.7 RCS Table format when

Revision value 2 or above in top-level IRDT structure.

Note that if CXL.IO and PCIe devices share the bandwidth of a certain RCS and

its channels, then traffic for both protocols is carried on the same channel

entries.

92 Document Number: 356688-004US, Revision: 1.3

Note that in the enumeration the fields, the RMID offset, and CLOS offset are

specified relative to the “RCS Block MMIO Location” field, meaning that the

RMID and CLOS offsets may be relocatable within the MMIO space. The offset

defines the block of a contiguous set of RMID or CLOS tagging fields, and the

number of entries is defined by the “Channel Count” field (for example, a value

of 8 channels may be common in certain PCIe tagging implementations). Note

that if CXL.IO and PCIe devices share the bandwidth of a certain RCS and its

channels, then traffic for both protocols is carried on the same channel entrie

Note that in the enumeration the fields, the RMID offset, and CLOS offset are

specified relative to the “RCS Block MMIO Location” field, meaning that the

RMID and CLOS offsets may be relocatable within the MMIO space. The offset

defines the block of a contiguous set of RMID or CLOS tagging fields, and the

number of entries is defined by the “Channel Count” field (for example, a value

of 8 channels may be common in certain PCIe tagging implementations).

5.6.1.4.7 RCS Table Format for Revision 2

These fields are only valid when the Revision value is 2 in top-level IRDT

structure.

Table 5-20. RCS Table Format (v2, Currently 40B)

Field Byte Length Byte Offset Description

Type 2 0 RCS = 1.

Length 2 2

Length, in bytes, of the description table

including the length of the associated

remapping structures.

Link Interface Type 2 4

Type of link interface:

0x0 = PCIe or CXL.IO

0x1 = CXL.Cache

0x2 and above: Reserved

RCS Enumeration ID 1 6
A unique identifier for this RCS under this

RMUD.

Channel Count 1 7

Number of Channels defined for this link

interface (affects the interpretation of the

CHMS structure within the corresponding

DSS).

Flags 2 8

Bit 0: Reserved.

Bit 1: RTS: RMID Tagging supported.

Bit 2: CTS: CLOS Tagging Supported.

Bit 3: REGW: if set, the RMID and CLOS

defined in the RCS Block MMIO locations

are 2B registers. If clear, they are 4B

registers.

Bit 4: CXLD: if set, indicates that more

than one CXL device resides behind the I/O

link represented by this RCS, for instance

due to link bifurcation. This has

implications on the interpretation of the

Channel Count field. See the surrounding

text for details.

Document Number: 356688-004US, Revision: 1.3 93

Field Byte Length Byte Offset Description

Bits 5-15: Reserved.

RMID Block Offset 2 10

Byte offset from the RCS Block MMIO

Location where the RMID tagging fields

begin.

CLOS Block Offset 2 12

Byte offset from the RCS Block MMIO

Location where the CLOS tagging fields

begin.

Reserved 18 14 Reserved.

RCS Block MMIO

Location
8 32

RCS Hosting I/O Block MMIO BAR Location

defines an MMIO physical address.

Channel Count indicates how many links the RCS has been bifurcated into and

the lowest number channel can be used to control lowest number BDF and so

on. This controls register indexing pattern. When set, RCS::Flags::CXLD (Bit 4)

is a special case, where Channel Count field means something specific for a

CXL bifurcated device in that if software detects more than one BDF within the

scope of this DSS and it is enumerated PCIe Bridge, then there will be multiple

devices under the scope of single RCS. In that case, these devices will be

implicitly sharing bandwidth in an some way, such as sharing a bifurcated CXL

physical interface. This bandwidth sharing may also apply to PCIe physical

devices or functions within a single PCIe physical device but is not represented

by the CXLD bit.

94 Document Number: 356688-004US, Revision: 1.3

5.7 Model-Specific Intel® RDT Features for CPU

Agents

This section describes BIOS configuration options for Model-Specific Intel RDT

features for CPU agents.

5.7.1 BIOS Configuration for Resource Aware MBA

See Appendix A.3 for Resource Aware MBA processor support details. See

Appendix B.1.1 for Resource Aware MBA feature details. Note that Resource

Aware MBA is a distinct feature from Region Aware MBA.

The Resource-aware MBA feature is a model-specific extension to the Third

Generation of MBA (Chapter 3) which provides a set of extended capabilities to

better handle heterogenous memory types on complex modern SoCs. A model-

specific implementation is used as memory types may change significantly over

the course of time. A more detailed description of Resource Aware MBA is

provided in the next chapter.

To support Resource Aware MBA, the system BIOS shall support a legacy BW

profile configuration knob with a drop-down menu of three options as with

Second-Generation MBA.

• MBA BW profile

⎯ Linear(default)

⎯ Biased

⎯ Legacy

Note: These BIOS profile names may change in the future.

In addition, BIOS shall add three knobs with a drop-down menu for Resource-

Aware MBA in particular. These scaling ratios enable tuning of MBA calibration

values to the typical bandwidth levels available from each type of

heterogeneous downstream memory type, and tuning values may be further

scaled by the number of memory channels or links populated with each type of

memory. An example implementation of this tuning code will be provided with

the Intel Reference BIOS implementation for each applicable platform.

1. Description: “PMM BW downscaling vs the baseline Total memory BW

profile. For example: picking 1/2x at results in scaling PMM BW throttling

in a 2:1 ratio versus DDR throttling.”

⎯ PMM MBA BW downscale

o 1x (default)

o 1/2x

o 1/4x

o 1/8x

2. Description: “CXL (Type3) BW downscaling vs the baseline Total memory

BW profile. For example: picking 1/2x results in scaling CXL (Type3) BW

throttling in a 2:1 ratio versus DDR throttling.”

Document Number: 356688-004US, Revision: 1.3 95

⎯ CXL (Type3) MBA BW downscale

o 1x (default)

o 1/2x

o 1/4x

o 1/8x

3. Description: “Remote Target BW downscaling vs the baseline Total

memory BW profile. For example: picking 1/2x results in scaling Remote

Target BW throttling in a 2:1 ratio versus DDR throttling.”

⎯ Remote Target MBA (UPI) BW downscale

o 1x (default)

o 1/2x

o 1/4x

o 1/8x

§

96 Document Number: 356688-004US, Revision: 1.3

6 MMIO Register Descriptions

This chapter describes the Intel RDT related MMIO registers. As described in

previous chapters, traditional interfaces such as MSRs are discussed in the

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

6.1 Enhanced Intel® RDT Register Location

Referencing the ACPI object definitions of Chapter 5, the register set (MMIO

interfaces) for each Resource Monitoring Domain Description (RMDD) structure

in the platform is mapped in a 4KB-aligned memory mapped page. The exact

location of the register region for each feature is implementation dependent

and is communicated to system software by BIOS through the ACPI ERDT and

MRRM reporting structures (described in Chapter 5, BIOS Considerations).

6.1.1 Software Access to Registers

The following sections describe software access conventions to MMIO-based

RDT registers, including register indexing functions, bitfield definitions and

properties.

6.1.2 Register Attributes

The following table defines the attributes used in the RDT feature Registers.

The registers are discussed in Section 6.1.3.

Table 6-1. Register Attributes Definitions

6.1.3 Register Descriptions

The following table summarizes the RDT feature memory-mapped registers.

The scope of these registers is per RMDD structure.

Attribute Description

RW Read-Write field that may be either set or cleared by software to

the desired state.

RO Read-only field that cannot be directly altered by software

RsvdP “Reserved and Preserved” field that is reserved for future RW

implementations. Registers are read-only and must return 0

when read.

Important: Software must preserve the value read for

subsequent writes during read-modify-write (RMW) operations.

Document Number: 356688-004US, Revision: 1.3 97

Table 6-2. Memory-Mapped Register Block Reference

 Register Name Size(b) Description

1 RDT CTRL 64 Register to control RDT MBM and MBA features.

2 Cache Monitoring

Register for CPU

Agents

64 Register reporting cache occupancy telemetry for

CPU Agents. MMIO Base address of this register is

specified in CMRC sub-structure of ERDT APCI.

Field name: CMT Register Block Base Address for

CPU. See later sections for data interpretation.

3 Memory-

bandwidth

Monitoring

Registers for CPU

Agents

64 Register reporting memory bandwidth monitoring

telemetry data for CPU Agents. MMIO Base address

of this register is specified in MMRC sub-structure

of ERDT APCI. Field name: MBM Register Block

Base Address. See later sections for data

interpretation.

4 Optimum

Memory-

bandwidth

Allocation

Registers for CPU

Agents

64 Register to configure optimum memory bandwidth

allocation targets for CPU Agents. MMIO Base

address of this register is specified in MARC sub-

structure of ERDT APCI. Field name: MBA Optimal

BW Register Block Base Address.

5 Minimum

Memory-

bandwidth

Allocation

Registers for CPU

Agents

64 Register to configure minimum memory bandwidth

allocation targets for CPU Agents. MMIO Base

address of this register is specified in MARC sub-

structure of ERDT APCI. Field name: MBA Minimum

BW Register Block Base Address.

6 Maximum

Memory-

bandwidth

Allocation

Registers for CPU

Agents

64 Register to configure maximum memory bandwidth

allocation targets for CPU Agents. MMIO Base

address of this register is specified in MARC sub-

structure of ERDT APCI. Field name: MBA

Maximum BW Register Block Base Address.

7 Cache Monitoring

Registers for

Non-CPU Agents

64 Register reporting cache occupancy telemetry for

Non-CPU Agents. MMIO Base address of this

register is specified in CMRD sub-structure of ERDT

APCI. Field name: Register Base Address. See later

sections for data interpretation.

8 Cache Allocation

Registers for

Non-CPU Agents

64 Register to configure cache allocation rules for CPU

Agents. MMIO Base address of this register is

specified in CARD sub-structure of ERDT APCI.

Field name: Register Base Address.

98 Document Number: 356688-004US, Revision: 1.3

 Register Name Size(b) Description

9 Total I/O

Bandwidth

Registers for

Non-CPU Agents

64 Register reporting Total I/O bandwidth telemetry

for Non-CPU Agents. MMIO Base address of this

register is specified in IBRD sub-structure of ERDT

APCI. Field name: Register Base Address. See later

sections for data interpretation.

10 I/O Miss

Bandwidth

Registers for

Non-CPU Agents

64 Register reporting I/O Miss bandwidth telemetry for

Non-CPU Agents. MMIO Base address of this

register is specified in IBRD sub-structure of ERDT

APCI. Field name: Register Base Address. See later

sections for data interpretation.

11 Region-ID

Programming

Registers[]

 Register to configure range to region mapping via

system software (OS/VMM). MMIO Base address of

this register is specified in MRRM ACPI. Field name:

Region-ID Programming Registers[].

6.1.3.1 RDT Control Register for CPU Agents

Figure 6-1. RDT Control Register

Abbreviation RDT_CTRL

General Description Register to configure RDT features for CPU Agents

Indexing Function N/A

Address RMDD.Control Register Base Address

Scope Per Resource Management Domain (Per RMDD)

Bits Access Default Field Description

63:3 RO 0h RsvdP1:

Reserved and

Preserved

Reserved

2:2 RW 1h TME: Total

Mode En

Total Mode Enable:

1: Indicates Total MBM and MBA Mode to

enable the Legacy MSR interfaces.

3
6
3

RsvdP1

2

T
M
E

01

RsvdP
0

Document Number: 356688-004US, Revision: 1.3 99

0: Indicates Per Region Aware MBM and

MBA to opt-in to using the MMIO Register

interfaces for Region Aware RDT features.

1:0 RO 0h RsvdP0:

Reserved and

Preserved

Reserved

Software should enable region aware MBA and MBM to prior to usages of the

Region Aware MBA and MBM features, via the RDT CTRL register on a per-

RMDD basis. These registers should be programmed identically across all RMDD

instances (e.g., by programming each RDT_CTRL MMIO register indicated in

each RMDD) for CPU agents. It is recommended that software use Region

Aware MBM when Region Aware MBA is enabled and vice versa. Mixed mode

use (e.g., legacy MSR interfaces for MBM with Region Aware MBA or vice versa)

is not supported and may lead to inconsistent behavior.

For total bandwidth monitoring and allocation software may continue to use

MSR interfaces by setting the TME bit (Total Mode En Bit[2]) to 1. MSR

interfaces should not be used if Total Mode En Bit[2] is clear. Legacy MSR

interfaces do not offer Region Aware Memory bandwidth monitoring and

allocation.

6.1.3.2 Cache Monitoring Register for CPU Agents

Figure 6-2. CMT Register

Abbreviation L3_CMT_RMID_n

n: Refer to ACPI ERDT for MAX RMID. RMIDs are zero-

referenced. Hence, this range will encompass 0 to (“MAX RMID”

reported by RMDD sub-structure).

General Description Register to report Cache Occupancy for CPU Agents

Indexing Function See Section 6.1.3.2.1

RMID Address CMRC.CMT Register Block Size for CPU + Indexing function

mentioned above

Scope Per Resource Management Domain (Per RMDD)

6
3

U

0
6
2

L3_CMT_Count

100 Document Number: 356688-004US, Revision: 1.3

Bits Access Default Field Description

63 RO 0h U: Unavailable • 0: Indicates data for this RMID is

available and monitored for the

resource or RMID.

• 1: Indicates data for this RMID is not

available or not monitored for the

resource or RMID, and bits(62:0)

should be ignored.

62:0 RO 0h L3_CMT_Count The value in this field indicates Cache

Monitoring (occupancy) telemetry. See

later sections in Chapter 7, Programming

Guidelines, for data interpretation.

6.1.3.2.1 RMID Organization in CMT Register Block

Software should use the RMID indexing algorithm discussed in this section only

if the “Register Indexing Function Version” field value is 1 in the CMRC sub-

structure. Software should be upgraded to handle any versions > 1 in this field

which would be defined in future version of this specification.

RMIDs are organized in sequential fashion in the CMT Register Blocks. Software

may consult the CMRC sub-structure from ERDT in ACPI when retrieving CMT

telemetry using CMT Register Block Base Address for CPU, CMT Register Block

Size for CPU, CMT Register Clump Size for CPU CMT Register Clump Stride for

CPU fields of the CMRC sub-structure. Each block size is 4KB. CMT registers are

located in the range (CMT Register Block Base Address): (CMT Register Block

Base Address + CMT Register Block Size Value x 4096). To index RMIDs in

the block use the following pseudocode algorithm, where “%” represents the

modulo operator and “/*** … ***/” is used to encapsulate comments):

MMIO_ADDRESS_for_RMID# = CMT Register Block Base Address +

((RMID# / CMT Register Clump Size for CPU) x CMT Register Clump

Stride for CPU) + ((RMID# % CMT Register Clump Size for CPU) x

8B);

/*** MMIO_ADDRESS_for_RMID# < (CMT Register Block Base Address +

CMT Register Block Size Value x 4096) ***/

Here,

Input Parameter: RMID#

Parameters for Indexing:

▪ “CMT Register Block Base Address” field reported by

CMRC sub-structure of ERDT ACPI.

Document Number: 356688-004US, Revision: 1.3 101

▪ “CMT Register Block Size Value” reported by CMRC

sub-structure of ERDT ACPI.

▪ Max RMIDs supported on the platform reported by

RMDD sub-structure of ERDT ACPI.

▪ “CMT Register Clump Size for CPU” and “CMT Register

Clump Stride for CPU” fields values to be enumerated

by CMRC sub-structure.

6.1.3.3 Memory Bandwidth Monitoring Registers for CPU Agents

Figure 6-3. Per Region Per RMID MBM Register

Abbreviation MBM_Region_m_RMID_n

Variable “m”: Refer to ACPI MRRM to find out number of regions

supported. This range will be 0 to (“Max Memory Regions

Supported” reported by MRRM ACPI -1)

Variable “n”: Refer ACPI ERDT for MAX RMID. RMIDs are zero-

referenced. Hence, this range will be 0 to (“MAX RMID” reported by

RMDD sub-structure).

General Description Register to report Memory Bandwidth Monitoring for CPU Agents.

Indexing Function See Section 6.1.3.3.1

RMID Address MMRC.MBM Register Block Base Address + Indexing function

mentioned above

Scope Per Resource Management Domain (Per RMDD)

Bits Access Default Field Description

63 RO 0h U: Unavailable • 0: Indicates data for this RMID is

available and monitored for the

resource or RMID.

1: Indicates data for this RMID is

not available or not monitored for

the resource or RMID, and

bits(61:0) should be ignored.

6
3

U

6
2

O

0
6
1

MBM_RMID_Count

102 Document Number: 356688-004US, Revision: 1.3

Bits Access Default Field Description

62 RO 0h O: Overflow • 0: Indicates that there is no

overflow of the MBM counters

• 1: Indicates that there is overflow of

the MBM counters. It will be reset

upon read, enabling a variable

software-defined counter polling

interval for reduced sampling

overhead.

61:0 RO 0h

MBM_RMID_Count The value in this field indicates Memory

Bandwidth Monitoring telemetry. See

later sections in Chapter 7,

Programming Guidelines, for data

interpretation.

6.1.3.3.1 RMID Organization in MBM Register Block

Software should use the RMID indexing algorithm discussed in this section only

if “Register Indexing Function Version” field value is 1 in MMRC sub-structure.

Software should be upgraded to handle any versions > 1 in this field which

would be defined in future version of this specification.

RMIDs are organized in interleaved fashion in the MBM Register Blocks.

Software may consult the MMRC sub-structure from ERDT ACPI for retrieving

MBM registers using MBM Register Block Base Address and MBM Register Block

Size. Each block size is 4KB. MBM registers are located in the range (MBM
Register Block Base Address): (MBM Register Block Base Address + MBM

Register Block Size Value x 4096B). To index RMIDs in the block per Region

use the following pseudocode algorithm:

Block_to_locate_RMID# = ((RMID# % 32) / 8) x 4 x 4096B;

Offset_within_this_Block = ((((RMID#/32)x8)+RMID#%8) x

8B)+(Region# x 2048B);

MMIO_ADDRESS_for_RMID#_Region# =

MBM Register Block Base Address + Block_to_locate_RMID# +

Offset_within_this_Block;

/*** MMIO_ADDRESS_for_RMID#_Region# < (MBM Register Block Base

Address + MBM Register Block Size Value *4096B) ***/

Here,

Document Number: 356688-004US, Revision: 1.3 103

Input Parameter: RMID# and Region#

Parameters for Indexing:

• “MBM Register Block Base Address” field reported by

MMRC sub-structure of ERDT ACPI.

• “MBM Register Block Size Value” reported by MMRC sub-

structure of ERDT ACPI.

• Max RMIDs supported on the platform reported by RMDD

sub-structure of ERDT ACPI.

• Max Regions support on the platform reported by MRRM

ACPI.

An example of MBM register blocks is described below in Figure 6-6-4.

Figure 6-6-4. Interleaved RMID MBM Register

0h: Region 0 – RMID 0

…

38h: Region 0 – RMID 7

40h: Region 0 – RMID 32

…

78h: Region 0 – RMID 39

80h: Region 0 – RMID 64

…

B8h: Region 0 – RMID 71

C0h: Region 0 – RMID 96

…

F8h: Region 0 – RMID 103

100h: Region 0 – RMID 128

…

138h: Region 0 – RMID 135

140h: Region 0 – RMID 160

…

178h: Region 0 – RMID 167

180h: Region 0 – RMID 192

…

1B8h: Region 0 – RMID 199

1C0h: Region 0 – RMID 224

…

1F8h: Region 0 – RMID 231

200h-7FFh: Reserved for future

MBM Register Block 0

MBM Register Block 1

MBM Register Block 2

MBM Register Block 3

MBM Register Block 4

MBM Register Block 5

MBM Register Block 6

MBM Register Block 7

MBM Register Block 8

MBM Register Block 9

MBM Register Block 10

MBM Register Block 11

MBM Register Block 12

MBM Register Block 13

MBM Register Block 14

MBM Register Block 15

104 Document Number: 356688-004US, Revision: 1.3

800h: Region 1 – RMID 0

…

838h: Region 1 – RMID 7

840h: Region 1 – RMID 32

…

878h: Region 1 – RMID 39

880h: Region 1 – RMID 64

…

8B8h: Region 1 – RMID 71

8C0h: Region 1 – RMID 96

…

8F8h: Region 1 – RMID 103

900h: Region 1 – RMID 128

…

938h: Region 1 – RMID 135

940h: Region 1 – RMID 160

…

978h: Region 1 – RMID 167

980h: Region 1 – RMID 192

…

9B8h: Region 1 – RMID 199

9C0h: Region 1 – RMID 224

…

9F8h: Region 1 – RMID 231

A00h-FFFh: Reserved for future

MBM Register Block 0

MBM Register Block 1

MBM Register Block 2

MBM Register Block 3

MBM Register Block 4

MBM Register Block 5

MBM Register Block 6

MBM Register Block 7

MBM Register Block 8

MBM Register Block 9

MBM Register Block 10

MBM Register Block 11

MBM Register Block 12

MBM Register Block 13

MBM Register Block 14

MBM Register Block 15

Document Number: 356688-004US, Revision: 1.3 105

1000h: Region 2 – RMID 0

…

1038h: Region 2 – RMID 7

1040h: Region 2 – RMID 32

…

1078h: Region 2 – RMID 39

1080h: Region 2 – RMID 64

…

10B8h: Region 2 – RMID 71

10C0h: Region 2 – RMID 96

…

10F8h: Region 2 – RMID 103

1100h: Region 2 – RMID 128

…

1138h: Region 2 – RMID 135

1140h: Region 2 – RMID 160

…

1178h: Region 2 – RMID 167

1180h: Region 2 – RMID 192

…

11B8h: Region 2 – RMID 199

11C0h: Region 2 – RMID 224

…

11F8h: Region 2 – RMID 231

1120h-17FFH: Reserved for future

MBM Register Block 0

MBM Register Block 1

MBM Register Block 2

MBM Register Block 3

MBM Register Block 4

MBM Register Block 5

MBM Register Block 6

MBM Register Block 7

MBM Register Block 8

MBM Register Block 9

MBM Register Block 10

MBM Register Block 11

MBM Register Block 12

MBM Register Block 13

MBM Register Block 14

MBM Register Block 15

106 Document Number: 356688-004US, Revision: 1.3

6.1.3.4 Optimal Memory Bandwidth Allocation Register for CPU
Agents

Figure 6-5. MBA Optimal Bandwidth Register

Abbreviation MBA_OPTIMAL_BW_n

n: Refer to ACPI ERDT for Max CLOS. CLOS are zero-referenced.

Hence, this range will be 0 to (“MAX CLOS” reported by the ERDT

top-level structure).

1800h: Region 3 – RMID 0

…

1838h: Region 3 – RMID 7

1840h: Region 3 – RMID 32

…

1878h: Region 3 – RMID 39

1880h: Region 3 – RMID 64

…

18B8h: Region 3 – RMID 71

18C0h: Region 3 – RMID 96

…

18F8h: Region 3 – RMID 103

1900h: Region 3 – RMID 128

…

1938h: Region 3 – RMID 135

1940h: Region 3 – RMID 160

…

1978h: Region 3 – RMID 167

1980h: Region 3 – RMID 192

…

19B8h: Region 3 – RMID 199

19C0h: Region 3 – RMID 224

…

19F8h: Region 3 – RMID 231

1A00h-3FFFh: Reserved for future

MBM Register Block 0

MBM Register Block 1

MBM Register Block 2

MBM Register Block 3

MBM Register Block 4

MBM Register Block 5

MBM Register Block 6

MBM Register Block 7

MBM Register Block 8

MBM Register Block 9

MBM Register Block 10

MBM Register Block 11

MBM Register Block 12

MBM Register Block 13

MBM Register Block 14

MBM Register Block 15

5
7

6
3

RsvdP3

4
8

5
6

BR3

4
1

4
7

RsvdP2

3
2

4
0

BR2

2
5

3
1

RsvdP1

1
6

2
4

BR1

9
1
5

RsvdP0

08

BR0

Document Number: 356688-004US, Revision: 1.3 107

General Description Register to configure Optimal Bandwidth Control Window for

Memory Bandwidth Allocation per CLOS.

Indexing Function See Section 6.1.3.4.1

CLOS Address MARC.MBA Register Block Base Address + Indexing function

mentioned above

Scope Per Resource Management Domain (Per RMDD)

Bits Access Default Field Description

63:57 RsvdP 0h RsvdP3: Reserved and

Preserved

Reserved.

56:48 RW 1FFh BR3: Bandwidth_Target_

Region 3

Optimal Bandwidth Control Value

for Region 3. Ranges from 001h

to 1FFh, with 001h as the

minimum BW and 1FFh as the

maximum BW.

47:41 RsvdP 0h RsvdP2: Reserved and

Preserved

Reserved.

40:32 RW 1FFh BR2:

Bandwidth_Target_Region

2

Optimal Bandwidth Control Value

for Region 2. Ranges from 001h

to 1FFh, with 001h as the

minimum BW and 1FFh as the

maximum BW.

31:25 RsvdP 0h RsvdP1: Reserved and

Preserved

Reserved.

24:16 RW 1FFh BR1: Bandwidth_Target_

Region 1

Optimal Bandwidth Control Value

for Region 1. Ranges from 001h

to 1FFh, with 001h as the

minimum BW and 1FFh as the

maximum BW.

15:9 RsvdP 0h RsvdP0: Reserved and

Preserved

Reserved.

8:0 RW 1FFh BR0:

Bandwidth_Target_Region

0

Optimal Bandwidth Control Value

for Region 0. Ranges from 001h

to 1FFh, with 001h as the

minimum BW 1FFh as the

maximum BW.

108 Document Number: 356688-004US, Revision: 1.3

6.1.3.4.1 CLOS Organization in Optimal MBA Register Block

Software should use the CLOS indexing algorithm discussed in this section only

if “Register Indexing Function Version” field value is 1 in MARC sub-structure.

Software should be upgraded to handle any versions > 1 in this field which

would be defined in future version of this specification.

Note that Region Aware MBA uses the same definition of “optimal”, “min” and

“max” bandwidth as described in earlier discussion in Section 3.2.4.4.3,

Optimal Bandwidth Caps per CLOS.

CLOSs are organized in sequential fashion in the Optimal MBA Register Blocks.

Software may consult the MARC sub-structure from ERDT ACPI for configuring

the per-agent per-region per-CLOS optimum target bandwidth using the MBA

Optimal BW Register Block Base Address and MBA Register Block Size fields of

MARC sub-structure. Each block size is 4KB. Optimum MBA registers are

located in the range (MBA Optimal BW Register Block Base Address): (MBA

Optimal BW Register Block Base Address + MBA Register Block Size x 4096.

To index CLOSs per region in the block use the following pseudocode

algorithm:

MMIO_ADDRESS_for_CLOS# = MBA Optimal BW Register Block Base

Address + (Region# / 4) x 512B + CLOS# x 8B.

/*** MMIO_ADDRESS_for_CLOS# < (MBA Optimal BW Register Block Base

Address + MBA Register Block Size x 4096) ***/

Here,

Input Parameter: CLOS#, Region# (multiple banks for registers

1st bank is for Region 0 to 3 and consecutively Region 4 to 7 after every

512B). This formula supports up to 64 CLOSs and an arbitrary number

of regions.

Parameters for indexing:

• “MBA Optimal BW Register Block Base Address” field

reported by MARC sub-structure of ERDT ACPI

• “MBA Register Block Size” reported by MARC sub-

structure of ERDT ACPI

• Max CLOSs supported on the platform reported by ERDT

ACPI.

• Max Regions support on the platform reported by MRRM

ACPI.

An example of Optimum MBA register blocks is described below in Figure 6-6.

Document Number: 356688-004US, Revision: 1.3 109

Figure 6-6. Sequential CLOS arrangement in MBA Register

6.1.3.5 Minimum Memory Bandwidth Allocation Register for CPU

Agents

Figure 6-7. Minimum MBA Register

Abbreviation MBA_MINIMUM_BW_n

n: Refer ACPI ERDT for Max CLOS. CLOSs are zero-referenced.

Hence, this range will be 0 to (“MAX CLOS” reported by ERDT top-

level structure).

General Description Register to configure Minimum Bandwidth Control Window for

Memory Bandwidth Allocation per CLOS.

Indexing Function See Section 6.1.3.5.1

CLOS Address MBA Minimum BW Register Block Base Address + Indexing

function mentioned above

Scope Per Resource Management Domain (Per RMDD)

0h: Region 0 – CLOS 0

02h: Region 1 – CLOS 0

04h: Region 2 – CLOS 0

06h: Region 3 – CLOS 0

08h: Region 0 – CLOS 1

0Ah: Region 1 – CLOS 1

0Ch: Region 2 – CLOS 1

0Eh: Region 3 – CLOS 1

...

78h: Region 0 – CLOS 15

7Ah: Region 1 – CLOS 15

7Ch: Region 2 – CLOS 15

7Eh: Region 3 – CLOS 15

80h-FFFh: Reserved for future

Optimum MBA Register Block

5
7

6
3

RsvdP3

4
8

5
6

BR3

4
1

4
7

RsvdP2

3
2

4
0

BR2

2
5

3
1

RsvdP1

1
6

2
4

BR1

9
1
5

RsvdP0

08

BR0

110 Document Number: 356688-004US, Revision: 1.3

Bits Access Default Field Description

63:57 RsvdP 0h RsvdP3: Reserved and

Preserved

Reserved.

56:48 RW 1FFh BR3: Bandwidth for Region 3 Minimum Bandwidth

Control Value for Region 3.

Ranges from 001h to 1FFh,

with 001h as the minimum

BW and 1FFh as the

maximum BW.

47:41 RsvdP 0h RsvdP2: Reserved and

Preserved

Reserved.

40:32 RW 1FFh BR2: Bandwidth for Region 2 Minimum Bandwidth

Control Value for Region 2.

Ranges from 001h to 1FFh,

with 001h as the minimum

BW and 1FFh as the

maximum BW.

31:25 RsvdP 0h RsvdP1: Reserved and

Preserved

Reserved.

24:16 RW 1FFh BR1: Bandwidth for Region 1 Minimum Bandwidth

Control Value for Region 1.

Ranges from 001h to 1FFh,

with 001h as the minimum

BW and 1FFh as the

maximum BW.

15:9 RsvdP 0h RsvdP0: Reserved and

Preserved

Reserved.

8:0 RW 1FFh BR0: Bandwidth for Region 0 Minimum Bandwidth

Control Value for Region 0.

Ranges from 001h to 1FFh,

with 001h as the minimum

BW and 1FFh as the

maximum BW.

6.1.3.5.1 CLOS Organization in Minimum MBA Register Block

Software should use CLOS indexing algorithm discussed in this section only if

“Register Indexing Function Version” field value is 1 in MARC sub-structure.

Software should be upgraded to handle any versions > 1 in this field which

would be defined in future version of this specification.

Note that Region Aware MBA uses the same definition of “optimal”, “min” and

“max” bandwidth as described in earlier discussion in Section 3.2.4.4.3,

Optimal Bandwidth Caps per CLOS.

Document Number: 356688-004US, Revision: 1.3 111

CLOSs are organized in sequential fashion in the Minimum MBA Register

Blocks. Software may consult the MARC sub-structure from ERDT ACPI for

configuring the per-agent per-region per-CLOS minimum target bandwidth

using the MBA Minimum BW Register Block Base Address and MBA Register

Block Size fields of the MARC sub-structure. Each block size is 4KB. Minimum

MBA registers are located in the range (MBA Minimum BW Register Block Base
Address): (MBA Minimum BW Register Block Base Address + MBA Register

Block Size x 4096). To index CLOSs per region in the block use the following

pseudocode algorithm:

MMIO_ADDRESS_for_CLOS# = MBA Minimum BW Register Block Base

Address + (Region# / 4) x 512B + CLOS# x 8B.

/*** MMIO_ADDRESS_for_CLOS# < (MBA Minimum BW Register Block Base

Address + MBA Register Block Size x 4096) ***/

Here,

Input Parameter: CLOS#, Region# (multiple banks for registers

1st bank is for Region 0 to 3 and consecutively Region 3 to 7 after every

512B). This formula supports up to 64 CLOSs and an arbitrary number

of regions.

Parameters for Indexing:

• “MBA Minimum BW Register Block Base Address” field

reported by MARC sub-structure of ERDT ACPI

• “MBA Register Block Size” reported by MARC sub-

structure of ERDT ACPI

• Max CLOSs supported on the platform reported by ERDT

ACPI.

• Max Regions support on the platform reported by MRRM

ACPI.

An example of Minimum MBA register blocks is described below in Figure 6-8.

112 Document Number: 356688-004US, Revision: 1.3

Figure 6-8. Sequential CLOS arrangement in MBA Register

6.1.3.6 Maximum Memory Bandwidth Allocation Registers for CPU

Agents

Figure 6-9. Maximum MBA Register

Abbreviation MBA_MAXIMUM_BW_n

n: Refer to ACPI ERDT for Max CLOS. CLOSs are zero-referenced.

Hence, this range will be 0 to (“MAX CLOS” reported by ERDT top-

level structure).

General Description Register to configure Maximum Bandwidth Control Window for

Memory Bandwidth Allocation per CLOS.

Indexing Function See Section 6.1.3.6.1

CLOS Address MBA Maximum BW Register Block Base Address + Indexing function

mentioned above.

Scope Per Resource Management Domain (Per RMDD)

0h: Region 0 – CLOS 0

02h: Region 1 – CLOS 0

04h: Region 2 – CLOS 0

06h: Region 3 – CLOS 0

08h: Region 0 – CLOS 1

0Ah: Region 1 – CLOS 1

0Ch: Region 2 – CLOS 1

0Eh: Region 3 – CLOS 1

...

78h: Region 0 – CLOS 15

7Ah: Region 1 – CLOS 15

7Ch: Region 2 – CLOS 15

7Eh: Region 3 – CLOS 15

80h-FFFh: Reserved for future

Minimum MBA Register Block

5
7

6
3

RsvdP3

4
8

5
6

BR3

4
1

4
7

RsvdP2

3
2

4
0

BR2

2
5

3
1

RsvdP1

1
6

2
4

BR1

9
1
5

RsvdP0

08

BR0

Document Number: 356688-004US, Revision: 1.3 113

Bits Access Default Field Description

63:57 RsvdP3 0h RsvdP3: Reserved and

Preserved

Reserved.

56:48 RW 1FFh BR3: Bandwidth for Region 3 Maximum Bandwidth

Control Value for Region 3.

Ranges from 001h to 1FFh,

with 001h as the minimum

BW and 1FFh as the

maximum BW.

47:41 RsvdP2 0h RsvdP2: Reserved and

Preserved

Reserved.

40:32 RW 1FFh BR2: Bandwidth for Region 2 Maximum Bandwidth

Control Value for Region 2.

Ranges from 001h to 1FFh,

with 001h as the minimum

BW and 1FFh as the

maximum BW.

31:25 RsvdP1 0h RsvdP1: Reserved and

Preserved

Reserved.

24:16 RW 1FFh BR1: Bandwidth for Region 1 Maximum Bandwidth

Control Value for Region 1.

Ranges from 001h to 1FFh,

with 001h as the minimum

BW and 1FFh as the

maximum BW.

15:9 RsvdP0 0h RsvdP0: Reserved and

Preserved

Reserved.

8:0 RW 1FFh BR0: Bandwidth for Region 0 Maximum Bandwidth

Control Value for Region 0.

Ranges from 001h to 1FFh,

with 001h as the minimum

BW and 1FFh as the

maximum BW.

6.1.3.6.1 CLOS Organization in Maximum MBA Register Block

Software should use CLOS indexing algorithm discussed in this section only if

“Register Indexing Function Version” field value is 1 in MARC sub-structure.

Software should be upgraded to handle any versions > 1 in this field which

would be defined in future version of this specification.

Note that Region Aware MBA uses the same definition of “optimal”, “min” and

“max” bandwidth as described in earlier discussion in Section 3.2.4.4.3,

Optimal Bandwidth Caps per CLOS.

114 Document Number: 356688-004US, Revision: 1.3

CLOSs are organized in sequential fashion in the Maximum MBA Register

Blocks. Software may consult the MARC sub-structure from the ERDT ACPI for

configuring per-agent per-region per-CLOS maximum target bandwidth using

the MBA Maximum BW Register Block Base Address and MBA Register Block

Size fields of the MARC sub-structure. Each block size is 4KB. Maximum MBA

registers are located in the range (MBA Maximum BW Register Block Base
Address): (MBA Maximum BW Register Block Base Address + MBA Register

Block Size x 4096). To index CLOS per region in the block use the following

pseudocode algorithm:

MMIO_ADDRESS_for_CLOS# = MBA Maximum BW Register Block Base

Address + (Region# / 4) x 512B + CLOS# x 8B.

/*** MMIO_ADDRESS_for_CLOS# < (MBA Maximum BW Register Block Base

Address + MBA Register Block Size x 4096) ***/

Here,

Input Parameter: CLOS#, Region# (multiple banks for registers

1st bank is for Region 0 to 3 and consecutively Region 3 to 7 after every

512B). This formula supports up to 64 CLOSs and an arbitrary number

of regions.

Parameters for Indexing:

• “MBA Maximum BW Register Block Base Address” field

reported by MARC sub-structure of ERDT ACPI

• “MBA Register Block Size” reported by MARC sub-

structure of ERDT ACPI

• Max CLOSs supported on the platform reported by ERDT

ACPI.

• Max Regions support on the platform reported by MRRM

ACPI.

An example of Maximum MBA register blocks is described below in Figure 6-10.

Document Number: 356688-004US, Revision: 1.3 115

Figure 6-10. Sequential CLOS arrangement in MBA Register

6.1.3.7 Cache Monitoring Registers for Non-CPU Agents

Figure 6-11. CMT Register

Abbreviation IOL3_CMT_RMID_n

n: Refer ACPI ERDT for MAX RMID. RMIDs are zero-referenced.

Hence, this range will be 0 to (“MAX RMID” reported by RMDD

sub-structure).

General Description Register to report Cache Occupancy for Non-CPU Agents

Indexing Function See Section 6.1.3.7.1

RMID Address CMRD.Register Base Address + Indexing function mentioned

above.

Scope Per Resource Management Domain (Per RMDD)

Maximum MBA Register Block

0h: Region 0 – CLOS 0

02h: Region 1 – CLOS 0

04h: Region 2 – CLOS 0

06h: Region 3 – CLOS 0

08h: Region 0 – CLOS 1

0Ah: Region 1 – CLOS 1

0Ch: Region 2 – CLOS 1

0Eh: Region 3 – CLOS 1

...

78h: Region 0 – CLOS 15

7Ah: Region 1 – CLOS 15

7Ch: Region 2 – CLOS 15

7Eh: Region 3 – CLOS 15

80h-FFFh: Reserved for future

6
3

U

0
6
2

IOL3_CMT_Count

116 Document Number: 356688-004US, Revision: 1.3

Bits Access Default Field Description

63 RO 0h U: Unavailable • 0: Indicates data for this RMID is available

and monitored for the resource or RMID.

• 1: Indicates data for this RMID is not

available or not monitored for the

resource or RMID, and bits(62:0) should

be ignored.

62:0 RO 0h IOL3_CMT_Count The value in this field indicates Cache

Monitoring (occupancy) telemetry for Non-

CPU agents. See later sections in Chapter 7,

Programming Guidelines, for data

interpretation.

6.1.3.7.1 RMID Organization in CMT Register Blocks

Software should use RMID indexing algorithm discussed in this section only if

the “Register Indexing Function Version” field value is 1 in the CMRD sub-

structure. Software should be upgraded to handle any versions > 1 in this field

which would be defined in future version of this specification.

RMIDs are organized in sequential fashion in the CMT Register Blocks. Software

may consult the CMRD sub-structure from ERDT ACPI for retrieving CMT

telemetry using the the Register Base Address, Register Block Size, CMT

Register Offset for I/O and CMT Register Clump Size for I/O fields of the CMRD

sub-structure. Each block size is 4KB. CMT registers are located in the range

(X):(X+Y x 4096), where X is value reported in Register Base Address field and

Y is the value reported in Register Block Size field. To index RMIDs in the block

the following pseudocode algorithm may be used:

MMIO_ADDRESS_for_RMID# = Register Base Address + ((RMID# / CMT

Register Clump Size for I/O) x 4096B) + CMT Register Offset for

I/O + ((RMID# % CMT Register Clump Size for I/O) x 8B);

/*** MMIO_ADDRESS_for_RMID# < (Register Base Address + Register

Block Size x 4096) ***/

Here,

 Input Parameter: RMID#

 Parameters for Indexing:

• “Register Base Address” field reported by CMRD sub-

structure of ERDT ACPI

• “Register Block Size” reported by CMRD sub-structure of

ERDT ACPI

• Max RMID supported on the platform reported by RMDD

sub-structure of ERDT ACPI.

Document Number: 356688-004US, Revision: 1.3 117

• “CMT Register Offset for I/O” and “CMT Register Clump

Size for I/O” fields value reported by CMRD sub-structure

of ERDT ACPI

6.1.3.8 Total I/O Bandwidth Monitoring Registers for Non-CPU
Agents

Figure 6-12. Total I/O Bandwidth Register

Abbreviation Total_IO_BW_RMID_n

n: Refer ACPI ERDT for MAX RMID. RMIDs are zero-referenced.

Hence, this range will be 0 to (“MAX RMID” reported by RMDD

sub-structure).

General Description Register to report Per RMID Total IO Bandwidth to the near

cache.

Indexing Function See Section 6.1.3.8.1

RMID Address IBRD.Register Base Address + Indexing function mentioned

above.

Scope Per Resource Management Domain (Per RMDD)

Bits Access Default Field Description

63 RO 0h U: Unavailable • 0: Indicates data for this RMID is available

and monitored for the resource or RMID.

• 1: Indicates data for this RMID is not

available or not monitored for the

resource or RMID, and bits(61:0) should

be ignored.

62 RO 0h O:Overflow • 0: Indicates that there is no overflow of

the Total IO BW counters.

• 1: Indicates that there is overflow of the

Total IO BW counters. It will be reset

upon read, enabling a variable software-

defined counter polling interval for

reduced sampling overhead.

6
3

U

6
2

O

0
6
1

TBRC

118 Document Number: 356688-004US, Revision: 1.3

Bits Access Default Field Description

61:0 RO 0h TBRC:

Total_IO_BW_RMI

D_Count

The value in this field indicates Total IO

Bandwidth telemetry. See later sections in

Chapter 7, Programming Guidelines, for data

interpretation.

6.1.3.8.1 RMID Organization in Total I/O BW Register Blocks

Software should use the RMID indexing algorithm discussed in this section only

if the “Register Indexing Function Version” field value is 1 in IBRD sub-

structure. Software should be upgraded to handle any versions > 1 in this field

which would be defined in future version of this specification.

RMIDs are organized in sequential fashion in the Total I/O BW Register Blocks.

Software may consult the IBRD sub-structure from ERDT ACPI for retrieving

Total I/O BW telemetry using the Register Base Address, Register Block Size,

Total I/O BW Register Offset and Total I/O BW Register Clump Size fields of the

IBRD sub-structure. Each block size is 4KB. Total I/O BW registers are located

in the range (X):(X+Y*4096), where X is value reported in the Register Base

Address field and Y is the value reported in Register Block Size field. To index

RMIDs in the block the following pseudocode algorithm may be used:

MMIO_ADDRESS_for_RMID# = Register Base Address + ((RMID#/ “Total

I/O BW Register Clump Size”) x 4096B) + “Total I/O BW Register

Offset” + ((RMID# % “Total I/O BW Register Clump Size”) x 8B);

/*** MMIO_ADDRESS_for_RMID# < (Register Base Address + Register

Block Size x 4096) ***/

Here,

 Input Parameter: RMID#

 Parameters for Indexing:

• “Register Base Address” field reported by IBRD sub-

structure of ERDT ACPI

• “Register Block Size” reported by IBRD sub-structure of

ERDT ACPI

• Max RMID supported on the platform reported by RMDD

sub-structure of ERDT ACPI.

• Total I/O BW Register Offset and Total I/O BW Register

Clump Size fields value reported by IBRD sub-structure of

ERDT ACPI

Document Number: 356688-004US, Revision: 1.3 119

6.1.3.9 I/O Miss Bandwidth Monitoring Registers for Non-CPU
Agents

Figure 6-13. I/O Miss Bandwidth Register

Abbreviation IO_MISS_BW_RMID_n

n: Refer ACPI ERDT for MAX RMID. RMIDs are zero-refenced.

Hence, this range will be 0 to (“MAX RMID” reported by RMDD

sub-structure).

General Description Register to report Per RMID IO Bandwidth monitoring for Misses

from the near cache.

Indexing Function See Section 6.1.3.9.1

RMID Address IBRD.Register Base Address + Indexing function mentioned

above.

Scope Per Resource Management Domain (Per RMDD)

6
3

U

6
2

O

0
6
1

IMBRC

120 Document Number: 356688-004US, Revision: 1.3

Bits Access Default Field Description

63 RO 0h U: Unavailable • 0: Indicates data for this RMID is available

and monitored for the resource or RMID.

1: Indicates data for this RMID is not

available or not monitored for the

resource or RMID, and bits(61:0) should

be ignored.

62 RO 0h O:Overflow • 0: Indicates that there is no overflow of

the IO BW Miss counters.

• 1: Indicates that there is

overflow of the IO BW Miss

counters. It will be reset upon

read, enabling a variable

software-defined counter

polling interval for reduced

sampling overhead.

61:0 RO 0h IMBRC:

IO_MISS_BW_RMI

D_Count

The value in this field indicates I/O Miss

Bandwidth telemetry. See later sections in

Chapter 7, Programming Guidelines, for

data interpretation.

6.1.3.9.1 RMID Organization in I/O Miss BW Register Blocks

Software should use the RMID indexing algorithm discussed in this section only

if the “Register Indexing Function Version” field value is 1 in IBRD sub-

structure. Software should be upgraded to handle any versions > 1 in this field

which would be defined in future version of this specification.

RMIDs are organized in sequential fashion in the I/O Miss BW Register Blocks.

Software may consult the IBRD sub-structure from ERDT ACPI for retrieving

Total I/O BW telemetry using the Register Base Address, Register Block Size,

I/O Miss BW Register Offset and I/O Miss Register Clump Size fields of the

IBRD sub-structure. Each block size is 4KB. I/O Miss BW registers are located

in the range (X):(X+Y*4096), where X is value reported in Register Base

Address field and Y is the value reported in Register Block Size field. To index

RMIDs in the block the following pseudocode algorithm may be used:

MMIO_ADDRESS_for_RMID# = Register Base Address + ((RMID#/ “I/O

Miss Register Clump Size”) x 4096B) + “I/O Miss BW Register

Offset” + ((RMID# % “I/O Miss Register Clump Size”) x 8B);

/*** MMIO_ADDRESS_for_RMID# < (Register Base Address + Register

Block Size x 4096) ***

Here,

 Input Parameter: RMID#

Document Number: 356688-004US, Revision: 1.3 121

Parameters for Indexing:

• “Register Base Address” field reported by IBRD sub-

structure of ERDT ACPI

• “Register Block Size” reported by IBRD sub-structure of

ERDT ACPI

• Max RMIDs supported on the platform reported by RMDD

sub-structure of ERDT ACPI.

• I/O Miss BW Register Offset and I/O Miss Register Clump

Size fields value reported by IBRD sub-structure of ERDT

ACPI

6.1.3.10 Cache Allocation Registers for Non-CPU Agents

Figure 6-14. CAT_IO_REG Register

Abbreviation IOL3_MASK_n

n: Refer to ACPI ERDT for Max CLOS. CLOSs are zero-

referenced. Hence, this range will be 0 to (“MAX CLOS” reported

by ERDT top-level structure).

General Description Register to configure I/O L3 cache way mask per CLOS.

Indexing Function See Section 6.1.3.10.1

CLOS Address CARD.Register Base Address + Indexing Function mentioned

above.

Scope Per Resource Management Domain (Per RMDD)

Bits Access Default Field Description

63:32 RW xxh CBM: Capacity Bit

Mask

Software may use this field to update

cache capacity bitmask per CLOS. Bitmask

length can be determined via Field

“Number of IO L3 ways” in the ERDT ACPI

table.

31:0

RsvdP 0h RsvdP: Reserved

and Preserved:

Reserved

Reserved.

3
2

6
3

CBM

0
3
1

RsvdP

122 Document Number: 356688-004US, Revision: 1.3

6.1.3.10.1 CLOS Organization in CAT Register Blocks

Software should use the CLOS indexing algorithm discussed in this section only

if “Register Indexing Function Version” field value is 1 in the MARC sub-

structure. Software should be upgraded to handle any versions > 1 in this field

which would be defined in future version of this specification.

CLOS are organized in sequential fashion in the register blocks. Software may

consult the CARD sub-structure from ERDT ACPI for retrieving CAT

configuration details includign Register Base Address, Register Block Size, CAT

Register Offset for I/O and CAT Register Block Size fields of CARD sub-

structure. Each block size is 4KB. CAT registers are located in the range

(X):(X+Y x 4096), where X is the value reported in the Register Base Address

field and Y is the value reported in Register Block Size field. To index CLOS in

the block the following pseudocode algorithm may be used:

Note: All the MMIO registers identified for the CLOS# should be programmed

identically in each block.

For (i = 0 to Register Block Size)

{

 if (CLOS# <= CAT Register Block Size)

{

ARRAY_OF_MMIO_ADDRESS_for_CLOS#[] = Register Base Address + “CAT
Register Offset for I/O” + (CLOS# x 8B) + (4096 x i)

}

}

Here,

 Input Parameter: CLOS#

 Parameters for Indexing:

• “Register Base Address” field reported by CARD sub-

structure of ERDT ACPI

• “Register Block Size” reported by CARD sub-structure of

ERDT ACPI

• Max CLOSs supported on the platform reported by ERDT

ACPI.

• CAT Register Offset for I/O and CAT Register Block Size

fields value reported by CARD sub-structure of ERDT ACPI

6.1.3.11 Region-ID Programming Registers[]

Not defined. The Region ID Programming Registers field in MRRM is unused.

Document Number: 356688-004US, Revision: 1.3 123

6.2 Non-CPU Agent Intel® RDT Register Location

The Non-CPU agent Intel RDT related register set (MMIO interfaces) must

reside on at least one 4 KB-aligned memory mapped page. The exact location

for the register region is implementation-dependent and is communicated to

system software by BIOS through the IRDT ACPI structure (see Chapter 5).

Multiple RCSes could be mapped to the same 4 KB-aligned page, or distinct

pages. No other unrelated registers may be present in the pages used for non-

CPU agent Intel RDT. A Virtual Machine Monitor (VMM) or operating system

may use page-based access controls to ensure that only designated entities

may use the non-CPU agent Intel RDT controls.

When accessing non-CPU agent Intel RDT MMIO interfaces, note that writes to

reserved fields, writes to reserved offsets within the MMIO space, or writes of

values greater than the supported maximum for a field will be ignored by

hardware.

6.2.1 Software Access to Registers

Software interacts with the non-CPU agent Intel RDT features by reading and

writing memory-mapped registers. The following requirements are defined for

software access to these registers.

• When updating registers through multiple accesses (whether in software or

due to hardware disassembly), certain registers may have specific

requirements on how the accesses should be ordered for proper behavior.

These are documented as part of the respective register descriptions.

• Locked operations to non-CPU agent Intel RDT related registers are not

supported. Software should not issue locked operations to non-CPU agent

Intel RDT feature hardware registers.

6.2.2 Register Descriptions for Non-CPU Agents

6.2.2.1 Link Interface Type RMID/CLOS Tagging MMIO Interfaces

The IRDT ACPI structures defined in Chapter 4 define MMIO interfaces for

configuring the RMID/CLOS for each link interface type, as defined in the RCS

structures. An MMIO pointer defined in the RCS fields describes where the

configuration interface exists for a particular link interface type. The MMIO

locations are specified as absolute physical addresses.

Table 6-3 shows the MMIO field layout for RMID and CLOS tagging, and

bandwidth shaping. A common format is used for all RCS types, including for

instance RCS instances that support PCIe or CXL use the same field layout.

Common table format across all RCS-Enumerated MMIO.

124 Document Number: 356688-004US, Revision: 1.3

Table 6-3. MMIO Table Format

Register Name Mem Offset Length (B) Comments

IO RDT Reserved 0x0000 Variable Reserved

IO_PQR_CLOS0 RCS :: CLOS Block

Offset

RCS :: REGW Common across all

RCS types

IO_PQR_CLOS1 IO_PQR_CLOS0 + RCS

:: REGW

RCS :: REGW Per-channel

IO_PQR_CLOS2 IO_PQR_CLOS0 + RCS

:: REGW*2

RCS :: REGW Per-channel

… Variable Variable -

Reserved Variable Variable -

IO_PQR_RMID0 RCS :: RMID Block

Offset

RCS :: REGW Common across all

RCS types

IO_PQR_RMID1 IO_PQR_RMID0 + RCS

:: REGW

RCS :: REGW Per-channel

IO_PQR_RMID2 IO_PQR_RMID0 + RCS

:: REGW*2

RCS :: REGW Per-channel

… Variable Variable -

Reserved Variable Variable -

IO_RDT Reserved Variable Variable Remainder of the page

Note that the RCS :: REGW field indicates the register access width of the fields

in Table 6-3, either 2B or 8B. Depending on the implementation, this width

may be 2 bytes or 8 bytes. The width is indicated by the REGW field in the RCS

Table (Section 0).

Note that the base of the RMID and CLOS fields are enumerated in the RCS

structure, and the size of these fields varies with the number of supported

channels. The set of configurable RMIDs and CLOSs are organized as

contiguous blocks of 4B registers.

The “PQR” fields starting at the enumerated offset (RCS :: CLOS Block Offset)

are defined with enumerated register field spacing of RCS :: REGW, which may

require either 2B or 8B register accesses. A block of CLOS registers exists,

followed by a block of RMID registers, indexed per Channel. That is, setting a

value in the IO_PQR_CLOS0 field will specify the CLOS to be used for

Channel[0] on this RCS.

The valid field width for RMID and CLOS is defined via CPUID leaves (see Intel®

64 and IA-32 Architectures Software Developer’s Manual, Volume 3B for

details) for shared-L3 configuration.

Higher offsets allow multiple Channels to be programmed (above Channel 0) if

supported. Given that PCIe supports multiple VCs, multiple channels may be

supported in the case of PCIe links, but CXL links support only two entries, one

at IA_PQR_CLOS0 and one at IO_PQR_RMID0 in this table.

Document Number: 356688-004US, Revision: 1.3 125

The RMID and CLOS fields are interpreted as numeric tags, exactly as they are

in the CPU agent Intel RDT feature set, and software may assign RMID and

CLOS values as needed.

Software may reconfigure RMID and CLOS field values at any point during

runtime, and values may be read back at any time. As all architectural CPU

agent Intel RDT infrastructure, it is dynamically reconfigurable, this enables

control loops to work across the capabilities sets collaboratively and

consistently.

§

126 Document Number: 356688-004US, Revision: 1.3

7 Programming Guidelines

7.1 Intel® RDT Monitoring Software Flows for

CPU Agents

Intel RDT Monitoring software flows for CPU agents in certain example software

implementations are briefly described in this section to provide context for how

an end-user could view and use the RDT features. While this chapter provides

examples and recommended flows, it is in no way limiting to use models once

enumeration and configuration capabilities are enabled in software, and many

varied software implementations and usages of RDT beyond the listed

examples have been observed.

7.1.1 Intel® RDT Monitoring Software Flows for CPU
Agents

Software should first verify the existence of the RDT Monitoring feature(s)

before attempting to configure them and read back monitoring data. Periodic

management by software may also be required to maintain the proper RMID

mapping on a logical thread when context switching or receiving an interrupt

for instance (see Section 3.1.1 for details).

7.1.1.1 Step 1 – Enumeration

Before attempting to read or write MSRs associated with the Intel RDT

Monitoring feature software should first execute the CPUID instruction and

parse its output to ensure that Intel RDT Monitoring and any sub-features to be

used (for example, CMT, MBM) are supported on the platform, otherwise

General Protection (#GP(0)) faults will be generated.

As discussed in the Intel® 64 and IA-32 Architectures Software Developer’s

Manual, Volume 3B, if CPUID feature flag for Structured Extended Feature,

CPUID.07H.00H:EBX[12], is set to ‘1’ then Intel RDT Monitoring is generally

supported on the platform.

Once Intel RDT Monitoring support has been verified software should use the

Shared Resource Monitoring Enumeration leaf, CPUID.0FH.00H:EDX[1] to

examine which platform resources support monitoring. After the call to CPUID,

the EBX register will indicate the maximum RMID supported on the current

socket (though particular resources may support fewer RMIDs and this can be

enumerated on a per-resource basis as described next).

Software may use the Shared Resource Monitoring Enumeration

leaf).CPUID.0FH.ResID to determine the number of RMIDs supported for the

specific resource in question, the event type bitmask to program into

IA32_QM_EVTSEL to retrieve the data for that event in IA32_QM_CTR, and the

upscaling factor as discussed in the feature-specific chapters. Software may

Document Number: 356688-004US, Revision: 1.3 127

optionally choose to build a record of these enumeration responses for each

resource to reduce overhead from repeated CPUID calls.

Given that certain processors may support multiple L2 caches, multiple L3

caches, and a variety of logical processor types, it is recommended that

software use CPUID from the perspective of each logical processor to

comprehend any asymmetric resource support which may be present.

Software should parse Processor Family, Model and Stepping (FMS) to verify

that a particular processor includes support for a given model-specific feature.

To find out which features are supported on which specific products, refer to

Appendix A.3.

7.1.1.2 Step 2 – RMID Association

After verifying that the platform supports Intel RDT Monitoring, software should

associate each logical thread or VM of interest with an RMID such that resource

utilization by the threads can be tracked. It is expected in general that if an OS

or VMM moves an application from one core or socket to another that the

RMIDs will be updated (moved along with the app or remapped onto another

socket as needed) to maintain an accurate mapping between the applications

of interest and the RMIDs programmed onto a logical thread.

Threads by default are initialized to RMID[0], which provides insight into

memory bandwidths for the system but not necessarily cache occupancy

(which would read 100% occupied in a non-idle system).

7.1.1.3 Step 3 – Event Selection Setup

After associating RMIDs with threads and updating the IA32_PQR_ASSOC

register for each thread as needed while running (to account for context swaps

and thread migration between cores), software may execute for an arbitrary

period of time while hardware tracks occupancy before polling for the resulting

occupancy.

After applications have executed for the desired time period software may

program an RMID and event code into the IA32_QM_EVTSEL MSR, which will

cause the corresponding data to be available in the IA32_QM_CTR MSR

(discussed in the following section).

7.1.1.4 Step 4 – Data Sampling

After the IA32_QM_EVTSEL MSR has been programmed with an RMID / Event

ID combination the corresponding event data can be read back from the

IA32_QM_CTR MSR, which has a bit field layout as defined in Section 3.1.1.

Software must check both the Error bit and the Unavailable bit to verify that

the data returned is valid (along with the Overflow bit if supported) – if an

error is indicated the monitoring data reported back must not be used.

As described in Section 3.1.1 the Error bit will be set if an RMID greater than

the global maximum (specified in CPUID) is programmed into

IA32_QM_EVTSEL, or an unknown/unsupported Event ID is programmed.

128 Document Number: 356688-004US, Revision: 1.3

Similarly, the Unavailable bit is set when data is requested for an RMID that

does not support that particular resource or does not support an RMID value

that high.

An example is if occupancy monitoring of resource “A” supported four RMIDs,

and resource “B” supported 2 RMIDs. If software requested the occupancy of

either Resource A or B for RMIDs 0 or 1 then valid data would be reported

back. If occupancy data for RMIDs 2 or 3 was requested for resource “B”

however data would not be reported, and the Unavailable bit would be set.

The Overflow bit, if supported, is set when an overflow of an incrementing

counter is triggered, allowing software to correct or discard errant values that

may lead to erroneous bandwidth calculations.

If an error is indicated, it will be cleared automatically once valid values are

programmed into IA32_QM_EVTSEL and any hardware conditions preventing

accurate monitoring are resolved. The Overflow bit, if implemented, is cleared

on a read of IA32_QM_CTR.

7.1.1.5 Step 5 – Sample CMT/MBM Data Collection and Analysis

Once CMT and MBM data has been collected it can be interpreted as described

in the following example.

Consider the case where CMT and MBM are supported on a platform, and a

large number of RMIDs are available. On this platform the user seeks to profile

two threads within an application, so both threads are assigned individual

RMIDs and run on separate physical cores for a period of one second, then

occupancy and bandwidths are read back via the MSR interface

(IA32_QM_EVTSEL and IA32_QM_CTR). In this example, the following

parameters are key to interpreting the results:

• System topology – two Intel® Xeon™ CPUs with 14 cores per socket, and a

3-level cache subsystem, where the last-level cache totals 35 MB per

socket.

• The last-level cache is verified using CPUID leaf 0x4 as the last level cache

between the cores and memory, meaning L3 external bandwidth values

can be used to measure memory bandwidth.

• As enumerated via CPUID the upscaling factor the Shared Resource

Monitoring Enumeration Leaf, CPUID.0FH.01H:EBX[31:0], to convert

counter values to final values in bytes is 0xE000 (decimal 57344).

• Since the total L3 cache size is 36700160 bytes and the upscaling factor is

57344, we know that the maximum possible CMT occupancy counter value

reported by the system will be total cache size divided by the conversion

factor, or 36700160/57344 = 640.

⎯ As the threads are profiled, we can compare the reported occupancy

to the maximum occupancy counter value, giving an indication of

what fraction of the total cache an application is using without

needing to convert to bytes first.

Suppose that the threads are configured as follows:

Document Number: 356688-004US, Revision: 1.3 129

• Associate thread[0] with RMID[1].

• Associate thread[1] with RMID[2].

• Leave all other threads in the system with the default RMID[0] association.

In order to profile memory bandwidth an initial sampling of the free-running

MBM counters is required:

• Program IA32_QM_EVTSEL with RMID[1] for the first thread and event

code 0x2 for total L3 external bandwidth, then read the corresponding data

from IA32_QM_CTR (and verify that the Unavailable and Error bits in

IA32_QM_CTR are not set so the data is valid).

• Program IA32_QM_EVTSEL with RMID[1] for the first thread and event

code 0x3 for local L3 external bandwidth, then read the corresponding data

from IA32_QM_CTR (and verify that the Unavailable and Error bits in

IA32_QM_CTR are not set so the data is valid).

• Repeat these steps with RMID[2] for the second thread.

Note that we assume that RMID[1] and RMID[2] have previously been used for

profiling other applications, so they may initially contain nonzero occupancy

and bandwidth counter values.

Note that in this example we assume that RMID[1] and RMID[2] are set up

exclusively for the use of the two threads being profiled, and that these threads

are not currently scheduled, and they have no data in the L3 cache, so the

bandwidth counters, even if they contain initial values, are not changing. The

occupancy counters may change even if no threads are scheduled using

RMID[1] and RMID[2] however if they have previously run and have data in

the L3 cache as other threads on the system run and cache space is

dynamically redistributed due to evictions and standard cache LRU policies.

Note that if the threads in RMID[1] and RMID[2] are running while we measure

initial counter values then skew may appear in the counter values, proportional

to the time delay between reading each of the event codes (which should be

minimized) and the bandwidths consumed by the application (which may vary

significantly based on application behavior).

Now that initial MBM counter values have been established, the program can be

left to run for a period of time, in this case one second. The Intel RDT

Monitoring data can then be read back as follows:

• Program IA32_QM_EVTSEL with RMID[1] for the first thread and event

code 0x1 for L3 cache occupancy, then read the corresponding data from

IA32_QM_CTR (and verify that the Unavailable and Error bits in

IA32_QM_CTR are not set so the data is valid).

• Program IA32_QM_EVTSEL with RMID[1] and the event code for total L3

external bandwidth (0x2), read the data from IA32_QM_CTR and again

verify that the “U” and “E” bits are not set.

• Similarly read back local L3 external bandwidth using the event code 0x3

and verify that the data is valid.

130 Document Number: 356688-004US, Revision: 1.3

• Repeat the previous three steps with RMID[1] to read back the Intel RDT

monitoring metrics for the second thread.

Example data read back after profiling for one second is shown in the following

table.

Table 7-1. Example CMT and MBM Counter Values

 Thread 0 Thread 1

Event Type First Sample Second Sample First Sample Second Sample

L3 Cache Occupancy N/A 0x25 N/A 0x180

Total L3 External Bandwidth 0x00FE985E 0x00FEBC14 0x00002541 0x0000D9F7

Local L3 External Bandwidth 0x0A8C9512 0x0A8CB5ED 0x00000314 0x0000AC5D

Note that in the previous sample data the counter values are shown as 32-bit

values, implying that the upper fields in the counter MSR were either zeroes or

not changing and can be disregarded – this may not always be the case

however when bandwidths are high, or in the case of future counters which

may increment quickly.

In the example, the final cache occupancy for the threads can be calculated as

follows:

• Thread[0]: CounterValue * UpscalingFactor = 37*57344 = 2121728 bytes

(roughly 2.02 MB).

• Thread[1]: CounterValue * UpscalingFactor = 22020096 bytes = 21 MB.

Thus, based on the CMT profiling of the two example threads, we see that

Thread[0] consumes around 2MB of cache space, and Thread[1] consumes

around 21MB, over 10x more, which indicates that it likely has a larger data

working set or it may be partly streaming through memory. Software should

also consider memory bandwidth readings to determine whether Thread[1] is

simply cache-friendly or whether it is a streaming application.

Total memory bandwidth values for the two threads can be determined as

follows:

• Thread[0]: (Second counter reading – First counter

reading)*UpscalingFactor = (0x00FEBC14-0x00FE985E)*57344 =

9142*57344 = 524238848 bytes/second, or around 500 MB/s since we

sampled for one second.

• Thread[1]: (Second counter reading – First counter

reading)*UpscalingFactor = (0x0000D9F7-0x00002541)*57344 =

46262*57344 = 2652848128 bytes/second, or around 2.5 GB/s.

Local memory bandwidth values for the two threads can be determined as

follows:

• Thread[0]: (Second counter reading – First counter

reading)*UpscalingFactor = (0x0A8CB5ED-0x0A8C9512)*57344 =

8411*57344 = 482320384 bytes/second, or around 460 MB/s.

Document Number: 356688-004US, Revision: 1.3 131

• Thread[1]: (Second counter reading – First counter

reading)*UpscalingFactor = (0x0000AC5D-0x00000314)*57344 =

43337*57344 = 2485116928 bytes/second, or around 2.3 GB/s.

Based on the prior calculations we observe that Thread[0] has low memory

bandwidth demands at roughly 500 MB/s, and Thread[1] uses more bandwidth

at 2.5 GB/s, but not enough to classify it as a streaming thread. With its 21 MB

cache occupancy and moderate memory bandwidth, Thread[1] is best classified

as a cache-friendly thread, though observing its behavior over a longer period

of time and sampling other system metrics to better understand its time-

variant behavior and compute requirements is recommended if detailed

profiling is the goal.

Note that in this example most of the bandwidth demands of the threads are

satisfied by the memory controller on the local CPU, meaning bandwidth

associated with the QPI link and other sources is low, implying that the NUMA-

aware OS properly located the memory allocation for the threads on the same

socket as the running threads.

This may not always be the case however, and if a bandwidth imbalance is

detected then we may choose to either move the compute threads to the other

CPU (closer to the data in memory) or move the data in memory to another

address range within the scope of the local CPU memory controller for better

performance.

7.1.2 Native OS Environments

In a non-virtualized environment, the RMIDs can be associated with

applications or application threads. The OS may even choose to associate

different parts of a single application to be associated with different RMIDs if

needed. But a typical usage would save and restore the RMIDs along with the

context information during the context switch.

For multi-threaded applications, multiple threads can share the same RMID.

The implications stated earlier also apply to multi-threaded applications with

the following additional considerations for shared code/data. For example, if

app0 was multi-threaded (for example, two threads per application), then we

can get occupancy information for each thread of application. The only

additional implication here is that the occupancy of the threads that share data

will be associated to the thread that filled the shared data. Heuristics that

minimize contention in the shared cache for single threaded workloads to

optimize total system throughput and to provide QoS will also be effective for

the multi-threaded workloads.

7.1.3 Virtualization Scenarios

In case of virtualization, RMIDs can be allocated in different ways. The VMM

can choose to allocate the RMIDs to different VMs or vCPUs. The current

planned implementations do not support reporting individual occupancies of

applications running within a VM unless the VMM and guest OS are both

132 Document Number: 356688-004US, Revision: 1.3

enabled to support Intel RDT. The RMID assignment at VM and VCPU level are

described next.

RMIDs assigned to Virtual Machines (VMs): In this usage case RMIDs are

assigned to VMs instead of applications and the occupancy reported is on a per

VM basis. Multiple applications running within a VM will have a consolidated

occupancy which will be reported by the RMID. Profiling of workloads and

heuristics that optimize for overall system throughput and for providing QoS

based on SLAs would be based in the granularity of VMs. Hence to provide

QoS, HP applications can be mapped to a VM with a high priority so that

scheduling decisions to minimize contention will treat all applications running in

the HP VM as high priority. The heuristics that work on occupancy monitoring

based on contention in the shared cache will still be effective but will work in

the granularity of VMs. When scheduling VMs, the VMM can use the occupancy

monitoring information available for the VMs from the RMIDs. There are no

other additional implications for VMs.

RMIDs assigned to vCPUs within VMs: In this usage case scenario, RMIDs

are assigned to vCPUs within a VM. Since there maybe multiple applications

within a VM running on the vCPUs, the occupancy reported by the RMID for a

vCPU will represent the consolidated occupancy of the applications running on

that vCPU. As an example, if there are two VMs with 2 vCPUs each and there

are four applications in each VM as shown in Figure 7-1.

Figure 7-1. RMIDs Assigned to vCPUs

The occupancy reported by the RMID assigned to vCPU0 will represent the

consolidated occupancy of App0 and App1. Similarly, only the consolidated

occupancy of App2 and App3 is what will be reported and so on. Hence

optimizations for system throughput, QoS and application profiling would have

to be at the granularity of vCPUs. The OS running within a VM will have its own

scheduling policy that would determine how applications are scheduled to the

vCPUs.

When applications migrate within a VM from one vCPU to another, the

consolidated occupancy reported will also be affected as it would depend on the

nature of the applications scheduled to a vCPU. Hence any policy or heuristic

that is implemented should be in the granularity of VCPU profiling. The

recommended approach is to profile the workload at a vCPU level and then

design heuristics based on vCPU profiles to optimize for throughput and provide

QoS.

Document Number: 356688-004US, Revision: 1.3 133

7.2 Intel® RDT Allocation Software Flows for

CPU Agents

RDT Allocation software flows for CPU agents are briefly described in this

section to provide context for how and end-user may view the feature.

7.2.1 Intel® RDT Software Allocation Flows for CPU
Agents

7.2.1.1 Step 1 – Enumeration

Before attempting to read or write MSRs associated with the Intel RDT

Allocation feature software should first poll CPUID to ensure that Intel RDT

Allocation and any sub-features to be used (for example, L3 CAT, L2 CAT, MBA)

are supported on the platform, otherwise General Protection (#GP(0)) faults

will be generated. As discussed in Section 3.2, if CPUID feature flag for

Structured Extended Feature, CPUID.07H.00H:EBX[15] is set to ‘1’ then Intel

RDT Allocation is generally supported on the platform.

Once Intel RDT Allocation support has been verified software should poll and

examine CPUID.10H.00H:EBX to examine which platform resources support

allocation. After the call to CPUID, the EBX register will indicate the supported

Intel RDT Allocation features on the current socket.

Software may use CPUID.10H.ResID to determine the number of CLOS

supported for the specific resource in question, the max length of the CAT

bitmask, the max MBA delay value, and so on, and presence of sub-features

like CDP on top of CAT for a given level of the cache. Software may optionally

choose to build a record of these enumeration responses for each resource to

reduce overhead from repeated CPUID calls.

Software should parse Processor Family, Model and Stepping (FMS) to verify

that a particular processor includes support for a given model-specific feature.

To find out which features are supported on which specific products, refer to

Appendix A.3.

Note that it is important that software enumerate the Intel RDT Monitoring

capabilities of the platform in the order specified in Section 3.1.1.

7.2.1.2 Step 2 – Optionally Enable CDP

If software wants to use CDP, enable it via the IA32_PQOS_CFG MSR.

7.2.1.3 Step 3 – Mask and Bandwidth Control Setup

After determining the presence of hardware Intel RDT Allocation support

software should configure the CAT masks and MBA delay values if supported to

provide capacity allocation/bandwidth hints to the hardware via the

IA32_ResourceType_QOS_MASK_n MSRs and IA32_L2_QOS_Ext_BW_Thrtl_n

134 Document Number: 356688-004US, Revision: 1.3

MSRs, depending on the usage model specified in Section 3.1.1 and the

number of CLOS available (enumerated in feature-specific ResID sub-leaves).

It is considered good practice to first verify that IA32_L3_QOS_MASK_0

contains all “1” to the length of the bitmask (such that CLOS0 can access the

entire cache) and that all threads are in CLOS0 before making changes to the

masks (which may otherwise result in rapidly changing cache available to

applications, which may lead to performance variation, though no functional

errors are possible). Also verify that no bandwidth enforcement is configured in

the IA32_L2_QOS_Ext_BW_Thrtl_n MSRs. It is also considered best practice to

set up CLOS[0] as the highest priority CLOS with a large fraction of the cache,

CLOS1 as the next highest, and so on.

7.2.1.4 Step 4 – CLOS Association

After the CAT/CDP per-CLOS mask MSRs are set up to known values, whether

overlapped, shared or a combination depending on application needs and goals,

and after MBA delay values are set up, each of the threads should be

associated into a desired Class of Service via the IA32_PQR_ASSOC MSR. This

MSR may be read or written at any time.

As part of some implementations an OS may choose to set up masks then

change the IA32_PQR_ASSOC MSR on context switches (to associate a portion

of the cache with an application or thread for instance).

7.3 Intel® RDT Software Flows for Non-CPU

Agents

This section describes software architecture considerations for Intel RDT

features for non-CPU agents, recommended usage flows and related

considerations. This builds upon the architectural concepts and software usage

examples discussed in Chapter 4.

Software seeking to use RDT for non-CPU agents has a number of tasks to

comprehend:

• Enumeration of the capabilities of Intel RDT for CPU agents (through

CPUID) and Intel RDT for non-CPU agents (through CPUID and ACPI).

• Reservation of (or comprehension of the sharing implications of using)

RMIDs and CLOS from the pools available at each resource level and

subject to the RMID and CLOS management best practices on a particular

processor.

• Pre-configuration of any resource limits to be used for modulating device

activity, such as a cache mask for a CLOS intended to be used with a

device.

• Configuration of each device’s tagging properties through the MMIO

interface described by the ACPI structures, such as associating a device

with a particular RMID, CLOS and bandwidth limit, as applicable.

Document Number: 356688-004US, Revision: 1.3 135

• Enabling the Intel RDT features for non-CPU agents through the enable

MSR infrastructure -- the IA32_L3_IO_QoS_CFG MSR is shown in Figure

4-2, at MSR address 0xC83.

• Periodically adjusting resource limits subject to software policies and any

control loops which may be present.

• Comprehending the implications of Sub-NUMA clustering (SNC) if present

and enabled.

7.4 Assembling a Complete View of System

Memory

Through combining the data in multiple ACPI tables, software can identify

memory types installed on the platform and their basic properties. This process

involves using memory ranges and Region-ID mappings and gathering data

from the MRRM, SRAT, HMAT, and CEDT ACPI tables. The following information

in Table 7-2 and Figure 7-2 may be used by software to construct higher-level

summary data structures that aid usability by mapping memory regions to the

memory type populated in the platform for each region.

The MRRM ACPI table structure (Section 5.3) describes the memory range to

region mapping details. Each memory range entry (MRE) in the MRRM

structure consists of a contiguous range in host physical address space along

with a platform-assigned static local and remote Region-ID. Importantly,

memory ranges specified for a region in MRRM are identical to memory ranges

specified in the Memory Affinity Structure within the ACPI SRAT structure2,

allowing cross-mapping with SRAT and other ACPI structures as described in

this section. Specific examples are presented in Section 7.4.1.1.1 and beyond.

If the platform supports only static memory range to region mapping, then

‘Platform-assigned Static Local Region-ID’ and ‘Platform-assigned Static

Remote Region-ID’ fields describe local and remote Region-ID values allocated

by platform firmware (BIOS) for that memory range.

If the platform supports OS configuration of Region-IDs, then each MRE in the

MRRM structure specifies a set of registers for programming RegionID for each

memory range. Each memory range can then be configured with a Region-ID

for local accesses and a Region-ID for remote (cross-socket) accesses.

136 Document Number: 356688-004US, Revision: 1.3

Figure 7-2. MRRM, SRAT, HMAT and CEDT Correlation

Figure 7-2 shows the relationship between ACPI tables referenced in this

section. The SRAT table defines proximity domains, while sub-tables of HMAT

define bandwidth and latency properties for each region (defined in terms of

bandwidth from initiators to targets). The CEDT table provides information

about whether a memory region is hosted in (backed by) CXL or not. A 1:1

correspondence between the memory regions defined in the MRRM table and

HMAT may be created by comparing memory range limits, allowing bandwidth

and latency information to be gathered, along with whether the memory is

hosted in CXL. Similarly, memory on different processor sockets can be

described by regions in MRRM, with their properties enumerated in HMAT sub-

structures.

The following section uses the terminology “1LM” to refer to single-level DRAM

memory. The term “2LM” refers to two-level memory, and “Flat 2LM” is a mode

in which hardware combines CXL.mem and DRAM regions, presenting a single

region to software, while transparently using DRAM as a cache for CXL.mem.

Regions such as DRAM, CXL.mem or remote socket memory may be directly

exposed as regions to software. Flat 2LM is presented to software as a single

region.

Document Number: 356688-004US, Revision: 1.3 137

To identify various memory types behind memory ranges enumerated by the

ACPI SRAT table, software may follow the following guidelines:

• CXL memory: All memory addresses decoded by (hosted in) CXL

memory are described in the ACPI CEDT table. The CXL Fixed Memory

Window Structure (CFMWS) sub-structure3 allows software to detect

different coherency characteristics, interleaving, persistency, etc..

• Flat 2LM: If F2LM FM is behind CXL, it will appear in the CXL Fixed

Memory Window Structure (CFMWS) structure with Windows

Restriction[4]=1 (Fixed Device Configuration).

• DRAM: Any DRAM (e.g., DDR 1LM) memory range present will appear

in the ACPI HMAT table as a region without a memory-side cache. DRAM

addresses will never be covered by CFMWS since single-level DDR (as

an example) is not attached to CXL.

• For all the memory ranges enumerated by BIOS, the ACPI HMAT table

will provide a view of basic performance characteristics. The values

published in HMAT are typically static “roofline” (maximum or typical)

values but in some cases may be based on BIOS characterization.

See the Compute Express Link Specification 3.0 specification for more details

[6].

The SRAT, HMAT and MRRM tables are a prerequisite and need to be present

for software to be able to use this section to assemble a complete view of

system memory.

While Figure 7-2 provides an overview of the applicable ACPI tables, Table 7-2

provides more detail on applicable bit fields within each ACPI table to complete

the mapping guidelines.

The following sections provide more detail, with examples.

138 Document Number: 356688-004US, Revision: 1.3

Table 7-2. ACPI Table Cross-Reference

MRRM Memory

Range Entry (MRE)

Fields

SRAT Memory Affinity

Fields

CEDT

CFMWS

Field

HMAT Memory

Proximity

Domain

Attributes

Field

Memory Type / Config

1. Base Address Low

2. Base Address High

3. Length Low

4. Length High

*For Platform

assigned:

5. Platform-assigned

Static Local Region-ID

6. Platform-assigned

Static Remote Region-

ID

*For software
supported region

programming:

7. Region-ID

Programming

Registers[]

1. Base Address Low

2. Base Address High

3. Length Low

4. Length High

5. Proximity Domain
6. Enabled: SET

N/A

Memory

Proximity

Domain

DDR 1LM memory range will appear in

ACPI HMAT table as one region without a

memory side cache. DDR 1LM addresses

will never be covered by CFMWS since

DDR 1LM is not attached to CXL.

N/A Flat 2LM (F2LM) or legacy 2LM memory

range will be associated with a memory

side cache in ACPI HMAT table.

1. Base Address Low

2. Base Address High

3. Length Low

4. Length High

5. Proximity Domain

6. Enabled: SET

7. HotPluggable: Platform

specific
8. NonVolatile: CLEAR

CXL Fixed Memory Window

Structure (CFMWS)

structure with Windows

Restriction[4]=1 (Fixed

Device Configuration).

Flat 2LM: All memory addresses decoded

by CXL are described in ACPI CEDT table.

If F2LM Fixed Memory is behind CXL.

System Firmware is responsible for

creating SRAT memory range entries for

every portion of the CMFWS.

Flat 2LM is not hot pluggable. The CFMWS

will report a fixed device configuration for
Flat 2LM.

The CFMWS for Flat2LM includes both the

DDR and CXL memory.

1. Base Address Low

2. Base Address High

3. Length Low

4. Length High

5. Proximity Domain

6. Enabled: SET

CXL Fixed Memory Window

Structure (CFMWS)

structure with Windows

Restriction[4]=1 (Fixed

Device Configuration).

CXL Type 3 memory (CXL.mem): All

memory addresses decoded by CXL are

described in ACPI CEDT table.

BIOS sets the Fixed Device Configuration

bit for CXL Type 3 device set up as Flat

2LM mode. OS can quiescence these

devices and possibly move them to a
different address.

There are CFMWS ranges published for

CXL hot pluggable ranges.

N/A CXL host bridge

7.4.1 Memory Hierarchy and Bandwidth Enumeration

The Heterogeneous Memory Attributes Table (HMAT), introduced in the revision

6.2 of ACPI specification [4] which should be available on future platforms to

describe complex memory hierarchies.

Using terminology from the HMAT specification, platform vendors may expose

in this table theoretical latency and bandwidth between initiators (e.g., a set of

cores) and the memory targets (e.g., memory organized within or hosted by

certain NUMA nodes). For instance, on a platform with both CXL and DRAM,

cores could access their local DRAM at BW1 GB/s with LAT1 latency (typically in

nanoseconds), or their local CXL at BW2 GB/s with LAT2 latency, while other

cores (CPU agents) access this CXL BW3 GB/s and LAT3 latency. Such latencies

and bandwidths are specified for read and write accesses. For more details,

refer to the System Locality Latency and Bandwidth Information Structure

Document Number: 356688-004US, Revision: 1.3 139

(SLLBIS) structure specified as a component of the ACPI HMAT table

specification.

7.4.1.1 High-level Software Component Responsibilities

This section describes software responsibilities when booting the system, or

managing hotplug (hot-add, hot-remove) events.

In its most basic form, the delineation of software components responsibilities

is as follows:

1. The System Firmware (e.g., BIOS) is responsible for enumerating and

configuring memory types that are present at boot.

2. The OS or VMM components are responsible for enumerating and

configuring all topologies not covered by the previous System Firmware.

The following table describes these high-level roles and responsibilities for

major software components in more detail.

Table 7-3. High-level software component responsibilities

ACPI

Table

System Firmware

Responsibilities

OS/Software utilities

Responsibilities

System

State

SRAT
• Create proximity

domains for CPUs,

attached memory types

using Affinity Type

• No SRAT entries for

intermediate switches

(CXL)

• Build Memory Affinity

Structures for each

volatile proximity domain

with the SRAT Enable flag

set.

Consume SRAT as needed

for volatile memory capacity

for legacy functionality (in

CXL terminology).

At Boot

HMAT

and

CDAT

For memory devices

containing volatile

capacity:

• Parse device and switch

CDAT and create HMAT

entries for CPU and

volatile memory proximity

domains found in the

SRAT

For all persistent capacity:

Utilize memory device

CDAT, switch CDATs, and

Generic Port entries to

calculate total BW and

Latency for the path from

the CXL Host Bridge to each

device.

At Boot

SRAT
Indicate hot pluggable

proximity domains with

Memory Affinity Structure

HotPluggable indicator

Manage hot plug events Hot Add

HMAT N/A (static after boot)
Hot added volatile and

persistent memory devices:

• Utilize memory device

CDAT, switch CDATs, and

CXL Host Bridge HMAT

Hot Add

140 Document Number: 356688-004US, Revision: 1.3

information to calculate total

BW and Latency for the path

from the CXL Host Bridge to

the new device

System Firmware should construct and report the ACPI SRAT and HMAT tables

to the OS or VMM with the various memory types that may be present. These

memory types will have memory ranges which are associated with proximity

domains. These proximity domains can be referenced in HMAT for obtaining

performance values to understand basic characterization of memory target

latencies and bandwidths.

CXL Early discovery:

Each HDM (host managed device memory) range is later exposed to the OS as

a separate, memory-only NUMA node via ACPI SRAT.

System Firmware obtains CDAT from the UEFI device driver or directly from the

device via Table Access DOE and then uses this information during construction

of the memory map, ACPI SRAT, and ACPI HMAT. See the ACPI CDAT

Specification, and UEFI Specification [4] for further details.

7.4.1.1.1 Example with DDR memory

Figure 7-3. Memory Configuration Example

Figure 7-3 represents a system configuration where each Xeon CPU includes a

local memory controller with two DDR channels and one DIMM attached to each

channel. Memory regions as enumerated in RDT’s ACPI MRRM table are shown

in various colors. Note that accelerator-hosted memory is discussed in the

following section.

In this example, it is assumed that read latency is always equal to the write

latency for every data path and read bandwidth is always equal to the write

bandwidth for every data path. S1 and S2 represent CPU sockets. An example

table mapping cross-referencing SRAT and MRRM is shown in Figure 7-4 (a

simplified view).

Document Number: 356688-004US, Revision: 1.3 141

Information known to system firmware (apriori knowledge):

▪ DIMM1, DIMM2, DIMM3, DIMM4 size = 128GB

▪ DDR Read/Write Latency = 50ns

▪ DDR Bandwidth = 20GB/s/DDR channel

▪ S1 to S2 access latency = 50ns

▪ S1 to S2 bandwidth = 30GB/s

Figure 7-4. SRAT, MRRM Summary HMAT MPD Attribute Structure

The system firmware is also able to calculate the approximate latency from any

initiator to any target by simply adding the latency contribution of every hop in

the data path. Similarly, the system firmware is also able to calculate the

bandwidth from any initiator to any target by selecting the smallest value

among the bandwidth associated with various hops in the data path. It is

assumed that 2-way interleaving across DDR channels doubles the effective

bandwidth. The results are shown in Figure 7-5, which would be placed in an

HMAT sub-structure called SLLBIS (System Locality Latency and Bandwidth

Information Structure). In this nomenclature, initiators (e.g., processors) may

generate bandwidth to targets (e.g., a particular type of memory).

Proximity

Domain Type SPA Base Length Note

0 Processor S1

0 Memory 0 256GB DIMM1, DIMM2

1 Processor S2

1 Memory 256GB 256GB DIMM3, DIMM4

SRAT

S1 APIC IDs

S2 APIC IDs

Flags

Initiator

Proximity

Domain

Memory

Proximity

Domain

IPD Valid 0 0

IPD Valid 1 1

Memory Proximity Domain Attributes

Base Address

Low/High Length Low/High

Local

Region-ID

Remote

Region-ID

0 256GB 0 1

256GB 256GB 0 1

MRRM

142 Document Number: 356688-004US, Revision: 1.3

Figure 7-5. HMAT System Locality and Bandwidth Information Structure

Summary

7.4.1.1.2 Example with Heterogeneous Memory (DDR and Coherent
Accelerators)

Figure 7-6. Memory Configuration Example

Figure 7-6 represents a system configuration where two coherent accelerators,

namely ACC1 and ACC2 are attached to CPU S1 via a coherent interconnect

such as CXL. Two accelerators, ACC3 and ACC4 are connected to CPU S2 via

the same coherent interconnect. Each CPU also has a local memory controller

with two DDR channels and one DIMM attached to each channel.

The system firmware may combine the information it has about the CPU and

various CPU connections to DDR from HMAT alongside CDAT information

extracted from BIOS generated information associated with each of the

coherent accelerators.

In this example, it is assumed that read latency is always equal to the write

latency for every data path and read bandwidth is always equal to the write

bandwidth for every data path.

Document Number: 356688-004US, Revision: 1.3 143

Information known to system firmware (apriori knowledge):

▪ DIMM1, DIMM2, DIMM3, DIMM4 size = 128GB

▪ DDR Read/Write Latency = 50ns

▪ DDR Bandwidth = 20GB/s/DDR channel

▪ S1 to S2 access latency = 50ns

▪ S1 to S2 bandwidth = 30GB/s

▪ Coherent Interconnect Latency = 40 ns

▪ Coherent Interconnect Bandwidth = 30 GB/s

System firmware is aware that ACC1 memory is mapped starting at System

Physical Address (SPA) of 256 GB. ACC2 memory base SPA is at 272 GB and

ACC4 memory base SPA is at 536 GB.

ACC1 returns the following CDAT entries

▪ One DSMAS Entry, DPA Base = 0, DPA Length = 16 GB, handle = 0

▪ One DSIS entry, associated DSMAS Handle =0

▪ DSLBIS entries which state latency for all 3 data paths is 60 ns and

bandwidth for all 3 data paths is 80 GB/s

ACC2 returns the following CDAT entries

▪ One DSMAS Entry, DPA Base = 0, DPA Length = 8 GB, handle = 0

▪ One DSIS entry, associated DSMAS Handle =0

▪ DSLBIS entries which state latency for all 3 data paths is 60 ns and

bandwidth for all 3 data paths is 80 GB/s

ACC3 returns the following CDAT entries

▪ One DSIS entry which is not associated with any DSMAS

▪ DSLBIS entries which state latency for the ingress to the initiator data

path is 60 ns and bandwidth for the ingress to the initiator data path is

80 GB/s

ACC4 returns the following CDAT entries

▪ One DSMAS Entry, DPA Base = 0, DPA Length = 32 GB, handle = 0 •

One DSIS entry, associated DSMAS Handle =0

▪ DSLBIS entries which state latency for all 3 data paths is 60 ns and

bandwidth for all 3 data paths is 80 GB/s

Using the above information, the system firmware concludes that each

accelerator should be described as a separate proximity domain in SRAT. ACC1,

ACC2 and ACC4 each have a Generic Initiator as well as memory associated

with them, whereas ACC3 appears as a Generic Initiator-only proximity

domain. The system firmware constructs the memory range to region mapping

structure (MRRM) that maps each SPA to local and remote RegionID for use

with RDT and other features. The system firmware is also able to construct the

Memory Proximity Domain Attributes Structure (MPDAS) in HMAT which in turn

can be mapped across memory range, RegionID and proximity domain. This is

illustrated in Figure 7-7.

144 Document Number: 356688-004US, Revision: 1.3

Figure 7-7. SRAT, MRRM Summary HMAT MPD Attribute Structure

The system firmware is also able to calculate the latency from any initiator to

any target by adding the latency contribution of every hop in the data path.

Similarly, the system firmware is able to calculate the bandwidth from any

initiator to any target by selecting the smallest value among the bandwidth

associated with various hops in the data path. It is assumed that 2-way

interleaving across DDR channels doubles the effective bandwidth. The results

are shown in Figure 7-8. In this nomenclature, initiators (e.g., processors) may

generate bandwidth to targets (e.g., a particular type of memory).

Document Number: 356688-004US, Revision: 1.3 145

Figure 7-8. HMAT System Locality and Bandwidth Information

Structure Summary

If ACC1 is removed from the system, software may wish to remove ACC1

related entries from these structures. Software may use bus-specific

mechanisms to determine that the ACC1 memory base is 256 GB and its size is

16 GB. By matching these addresses against the SRAT entries, software can

unambiguously determine that proximity domain 1 represents ACC1. Software

may then map domain 1 entries in SRAT as invalid and purge the

corresponding entries from HMAT.

If another ACC3-like device is dynamically added to the system, the Operating

System may extract CDAT information from that device and insert new entries

in the OS internal structure that is equivalent to SRAT and a new row in the OS

internal structure that is equivalent to HMAT using an algorithm like the one

used by the system firmware.

7.5 Establishing Correlation between the DACD

and IRDT tables

Note that in this section “I/O RDT” is used as a shorthand to refer to Intel RDT

for Non-CPU Agents, as introduced in Chapter 4.

This section discusses Intel I/O RDT structure mapping (ACPI IRDT) to

Enhanced RDT (ACPI ERDT) structures. The I/O RDT (IRDT) and ERDT feature

enumeration tables provide complimentary information, which software may

use to assemble a view of system memory (Section 7.4), and how devices and

processors are organized, including sharing certain caching domains. Section

5.1 provides ERDT table definition details.

The top-level ACPI structure defined to support Intel I/O RDT is the “IRDT”

structure. This is a vendor-specific extension to the ACPI table space. The

named IRDT structure is generated by BIOS and contains all other non-CPU

agent Intel RDT ACPI enumeration structures and fields as described in Chapter

4.

146 Document Number: 356688-004US, Revision: 1.3

Figure 7-9 shows an example of the RMUD mapping to DSS (device-level) and

RCS (link-level) structures along with ERDT sub-structures. Each device

attached to an I/O block is described by a DSS, and has one or more links, with

properties described in the RCS structures. The RCS structures contain pointers

to MMIO locations (in absolute address form, not BAR-relative) to allow

software to configure the RMID/CLOS tags and related properties in an I/O

Block.

Figure 7-10. IRDT and ERDT ACPI Mapping.

The following table summarizes the IRDT and ERDT ACPI structure fields that

software needs to consider in order to map devices that are under the scope of

RMD.

Table 7-4. IRDT and ERDT ACPI Mapping.

IRDT ERDT Comments

IRDT.RMUD.Segment ERDT.DACD-

DASE.Segment

These fields should match

to map devices that are

enumerated per I/O

Monitoring Domain.

IRDT.DSS.Device Type ERDT.DACD-DASE.Type -

Document Number: 356688-004US, Revision: 1.3 147

IRDT.DSS.Enumeration ID ERDT.DACD-DASE.Start

Bus Number+Path (See

psuedocode below)

-

ERDT → DACD → DAS entry:
n = (DeviceAgentScope.Length - 6) / 2; // number of entries in the
‘Path’ field
type = DeviceAgentScope.Type; // type of device
bus = DeviceAgentScope.StartBusNum; // starting bus number
dev = DeviceAgentScope.Path[0].Device; // starting device number
func = DeviceAgentScope.Path[0].Function; // starting function number
i = 1;
while (--n) {

bus = read_secondary_bus_reg(bus, dev, func);// secondary
bus# from config reg.
dev = DeviceAgentScope.Path[i].Device; // read next
device number
func = DeviceAgentScope.Path[i].Function; // read next
function number
i++;

 }
source_id = [bus,dev,func];
target_device = {type, source_id};

§

148 Document Number: 356688-004US, Revision: 1.3

A Intel® RDT Feature Details

A.1 Intel® RDT Feature Evolution

This section describes various generations of product and Intel RDT feature

intercepts. Intel RDT provides a number of monitoring and control capabilities

for shared resources in multiprocessor systems. This section covers updates to

the feature that are available in current and future Intel processors, starting

with brief descriptions followed by tables with details.

1. Intel® RDT on the 3rd Gen Intel® Xeon® Scalable Processor Family.

The 3rd Gen Intel® Xeon® Scalable Processor Family, based on Ice Lake

server microarchitecture, adds the following Intel RDT enhancements:

⎯ 32-bit MBM counters (versus 24-bit in prior generations), and new

CPUID enumeration capabilities for counter width.

⎯ Second generation Memory Bandwidth Allocation (MBA): Introduces

an advanced hardware feedback controller that operates at

microsecond timescales, and software-selectable min/max throttling

value resolution capabilities. Baseline descriptions of the MBA

“throttling values” applied to the threads running on a core are

described in the Intel® 64 and IA-32 Architectures Software

Developer’s Manual, Volume 3B.

Second generation MBA capabilities also add a work-conserving

feature in which applications that frequently access the L3 cache may

be throttled by a lesser amount until they exceed the user-specified

memory bandwidth usage threshold, enhancing system throughput

and efficiency, in addition to adding more precise calibration and

controls. Certain BIOS implementations may further aid flexibility by

providing selectable calibration profiles for various usages.

⎯ 15 MBA / L3 CAT CLOS: Improved feature consistency and interface

flexibility. The previous generation of processors supported 16 L3 CAT

Class of Service tags (CLOS), but only 8 MBA CLOS. The changes in

enumerated CLOS counts per-feature are enumerated in the

processor as before, via CPUID.

2. Intel® RDT on Intel Atom® Processors, Including the P5000 Series.

Intel Atom® processors, such as the P5000 series, based on Tremont

microarchitecture add the following Intel RDT enhancements:

⎯ L2 CAT/CDP: L2 CAT/CDP and L3 CAT/CDP may be enabled

simultaneously on supported processors. As these are existing

features defined in the Intel® 64 and IA-32 Architectures Software

Developer’s Manual, Volume 3B, no new software enabling should be

required.

⎯ Supported processors match the capabilities of the 3rd Gen Intel Xeon

Scalable Processor Family based on Ice Lake Server

microarchitecture, including traditional Intel RDT uncore features: L3

CAT/CDP, CMT, MBM, and second-generation MBA. As these features

are architectural, no new software enabling is required. Related

enhancements in Intel Xeon processors also carry forward to

Document Number: 356688-004US, Revision: 1.3 149

supported Intel Atom processors, with consistent software enabling.

These features include 32-bit MBM counters, second generation MBA,

and 15 MBA/L3 CAT CLOS.

3. Intel® RDT in processors based on the 4th Gen Intel® Xeon®

Scalable Processor Family.

Processors based on 4th Gen Intel® Xeon® Scalable Processor Family add

the following Intel RDT enhancements:

⎯ STLB QoS: Model-specific capability to manage the second-level

translation lookaside buffer structure within the core (STLB) in a

manner quite similar to CAT (CLOS-based, with capacity masks). This

may enable software that is sensitive to TLB performance to achieve

better determinism. This is a model-specific feature due to the

microarchitectural nature of the STLB structure. The code regions of

interest should be manually accessed.

4. Intel® RDT in Processors Based on the 5th Gen Intel® Xeon®

Product Family.

Processors based on 5th Gen Intel® Xeon® Processors add the following

Intel RDT enhancements:

⎯ L2 CAT and CDP: Includes control over the L2 cache and the ability to

partition the L2 cache into separate code and data virtual caches. No

new software enabling is required; this is the same architectural

feature described in the Intel® 64 and IA-32 Architectures Software

Developer’s Manual, Volume 3B.

5. Intel® RDT in Processors Based on the 6th Gen Intel® Xeon®

Product Family.

Processors based on 6th Gen Intel® Xeon® Processors add the following

Intel RDT enhancements:

⎯ Third generation Memory Bandwidth Allocation (MBA): new per-

logical-processor capability for bandwidth control (rather than the

more coarse-grained core-level throttling value resolution in prior

generations). This capability enables more precise bandwidth shaping

and noisy neighbor control. Some portions of the control

infrastructure now operate at core frequencies for controls that are

responsive at the nanosecond level.

⎯ Intel® RDT features support for non-CPU agents, enabling advanced

monitoring and control capabilities for PCIe and CXL devices, as well

as integrated processor accelerators.

6. Future Intel® RDT.

Future processors add the following Intel RDT enhancements:

⎯ Region Aware Memory Bandwidth Monitoring (MBM) and Region

Aware Memory Bandwidth Allocation (MBA).

150 Document Number: 356688-004US, Revision: 1.3

A.2 Intel® RDT Architectural Features and
Supported Products

 Intel RDT
Feature

Category

Shared
Resource

Agent Intel RDT Sub-
Feature

Intel RDT
Scope

Supported Products

M
o

n
it

o
r
in

g

Cache

Monitoring

Technology

(CMT)

L3 CPU L3 CMT for CPU

agents

Per-thread

RMID-

based

Intel® Xeon® E5/E7

v3,v4, Intel® Xeon® D,

Intel® Xeon® Scalable

Processor, 2nd Gen

Intel® Xeon® Scalable

Processor, 3rd Gen

Intel® Xeon® Scalable

Processor, 4th Gen

Intel® Xeon® Scalable

processor, 5th Gen

Intel® Xeon® Scalable

processor, Intel Atom®

Processor P5000 Series,

Intel® Xeon® processors

(codename Granite

Rapids), Intel® Xeon®

processors (codename

Sierra Forest)

L3 I/O L3 CMT for non-CPU

agents

Per-agent

RMID-

based

Intel® Xeon® processors

(codename Granite

Rapids), Intel® Xeon®

processors (codename

Sierra Forest)

Memory

Bandwidth

Monitoring

(MBM)

- CPU MBM Local for CPU

agents

Per-thread

RMID-

based

Intel® Xeon® E5/E7 v4,

Intel® Xeon® D, Intel®

Xeon® Scalable

Processor, 2nd Gen

Intel® Xeon® Scalable

Processor, 3rd Gen

Intel® Xeon® Scalable

Processor, 4th Gen

Intel® Xeon® Scalable

processor, 5th Gen

Intel® Xeon® Scalable

processor, Intel Atom®

Processor P5000 Series,

Intel® Xeon® processors

(codename Granite

Rapids), Intel® Xeon®

processors (codename

Sierra Forest)

Document Number: 356688-004US, Revision: 1.3 151

 Intel RDT
Feature

Category

Shared
Resource

Agent Intel RDT Sub-
Feature

Intel RDT
Scope

Supported Products

CPU MBM Total for CPU

agents

Per-thread

RMID-

based

Intel® Xeon® E5/E7 v4,

Intel® Xeon® D, Intel®

Xeon® Scalable

Processor, 2nd Gen

Intel® Xeon® Scalable

Processor, 3rd Gen

Intel® Xeon® Scalable

Processor, 4th Gen

Intel® Xeon® Scalable

processor, 5th Gen

Intel® Xeon® Scalable

processor, Intel Atom®

Processor P5000 Series

(Selected Processors),

Intel® Xeon® processors

(codename Granite

Rapids), Intel® Xeon®

processors (codename

Sierra Forest)

CPU Region Aware MBM

for CPU agents

Per-RMID

and per-

Region

based

Future Intel®

Processors

I/O MBM Local for non-

CPU agents

Per-agent

RMID-

based

Intel® Xeon® processors

(codename Granite

Rapids), Intel® Xeon®

processors (codename

Sierra Forest)

I/O MBM Total for non-

CPU agents

Per-agent

RMID-

based

Intel® Xeon® processors

(codename Granite

Rapids), Intel® Xeon®

processors (codename

Sierra Forest)

152 Document Number: 356688-004US, Revision: 1.3

 Intel RDT
Feature

Category

Shared
Resource

Agent Intel RDT Sub-
Feature

Intel RDT
Scope

Supported Products
A

ll
o

c
a
ti

o
n

Cache

Allocation

Technology

(CAT)

L2 CPU L2 CAT for CPU

agents

Per-thread

CLOS-based

Atom Server C3000, 5th

Gen Intel® Xeon®

Scalable processor,

Intel Atom® Processor

P5000 Series, Intel®

Xeon® Scalable

processor (codename

Granite Rapids), Intel®

Xeon® processors

(codename Sierra

Forest)

L2 CDP for CPU

agents

Per-thread

CLOS-based

5th Gen Intel® Xeon®

Scalable processor,

Intel Atom® Processor

P5000 Series, Intel®

Xeon® Scalable

processor(codename

Granite Rapids), Intel®

Xeon® processors

(codename Sierra

Forest)

L3 CPU L3 CAT for CPU

agents

Per-thread

CLOS-

based

Intel Atom® X Series

(Selected Processors),

Intel® Xeon® E5/E7 v3

(Selected Processors),

Intel® Xeon® E5/E7 v4 ,

Intel® Xeon® D, Intel®

Xeon® Scalable, 2nd Gen

Intel® Xeon® Scalable

Processor, 3rd Gen

Intel® Xeon® Scalable

Processor, 4th Gen

Intel® Xeon® Scalable

processor, 5th Gen

Intel® Xeon® Scalable

processor, Intel® Xeon®

W, Intel Atom®

Processor P5000 Series,

Intel® Xeon® Scalable

processor(codename

Granite Rapids), Intel®

Xeon® processors

(codename Sierra

Forest)

Document Number: 356688-004US, Revision: 1.3 153

 Intel RDT
Feature

Category

Shared
Resource

Agent Intel RDT Sub-
Feature

Intel RDT
Scope

Supported Products

L3 CDP for CPU

agents

Per-thread

CLOS-

based

Intel® Xeon® E5/E7 v4,

Intel® Xeon® Scalable

Processor, 2nd Gen

Intel® Xeon® Scalable

Processor, 3rd Gen

Intel® Xeon® Scalable

Processor, 5th Gen

Intel® Xeon® Scalable

processor, Intel Atom®

Processor P5000 Series,

Intel® Xeon® Scalable

processor(codename

Granite Rapids), Intel®

Xeon® processors

(codename Sierra

Forest)

I/O L3 CAT for non-CPU

agents

Per-agent,

CLOS-

based

Intel® Xeon® processors

(codename Granite

Rapids), Intel® Xeon®

processors (codename

Sierra Forest)

Memory

Bandwidth

Allocation

(MBA)

L3

external

bandwidth

CPU MBA for CPU agents

(First Generation

MBA)

Per-

interface,

CLOS-

based

Intel® Xeon® Scalable

Processor, 2nd Gen

Intel® Xeon® Scalable

Processor, 3rd Gen

Intel® Xeon® Scalable

Processor formerly

codenamed Cooper

Lake

CPU MBA for CPU agents

(Second Generation

MBA)

Per-

interface,

CLOS-

based

3rd Gen Intel® Xeon®

Scalable Processor

(excluding codename

Cooper Lake), 4th Gen

Intel® Xeon® Scalable

processor, 5th Gen

Intel® Xeon® Scalable

processor, Intel Atom®

Processor P5000 Series,

Future Intel® Xeon®

Scalable processor

(codename Granite

Rapids), Future Intel®

Xeon® processors

(codename Sierra

Forest)

CPU MBA for CPU agents

(Third Generation

MBA)

Per-agent,

CLOS-

based

Future Intel® Xeon®

processors (codename

Granite Rapids), Future

Intel® Xeon® processors

(codename Sierra

Forest)

CPU Region Aware MBA

for CPU Agents

Per-agent,

CLOS-

based and

per- Region

based

Future Intel®

Processors

154 Document Number: 356688-004US, Revision: 1.3

 Intel RDT
Feature

Category

Shared
Resource

Agent Intel RDT Sub-
Feature

Intel RDT
Scope

Supported Products

Cache

Bandwidth

Allocation

(CBA)

- CPU CBA for CPU agents Per-Logical

Processor

based

Future Intel®

Processors

A.3 Intel® RDT Model-Specific Features and
Supported Products

Intel RDT Feature Category Supported Products

Resource Aware MBA (MBA4.0) • Intel® Xeon® processors (codename Granite Rapids).

• Intel® Xeon® processors (codename Sierra Forest).

Intel® RDT and Sub-NUMA

Clustering (SNC) Compatibility

• 3rd Gen Intel® Xeon® processors.

• 4th Gen Intel® Xeon® processors.

• 5th Gen Intel® Xeon® processors.

STLB QoS 4th Gen Intel® Xeon® processors.

The following product generations on SKUs with Intel® Time

Coordinated Computing (Intel® TCC) support:

• 11th Gen Intel® Core™ Processors (UP3-Series).

• Intel® Xeon® W Processors (TGL-H).

• 12th Gen Intel® Core™ Processors (S-Series).

• 13th Gen Intel® Core™ Processors (P-Series).

• 13 Gen Intel® Core™ Processors (S-Series).

• Intel Atom® x7000E Series Processors.

A.4 Feature Mapping: CPU Agents, Non-CPU
Agents in Different L3 Configurations

Configuration Intel RDT
Feature

CPU Agents Intel RDT
Scope

Non-CPU
Agents Intel
RDT Scope

Comments

Shared-L3 Cache Monitoring

Technology (CMT)

Per-thread RMID-based Per-agent RMID-

based

Unified per-RMID

counters across CPU

Agents and non-CPU

Agents.

Shared-L3 Memory

Bandwidth

Monitoring (MBM)

Per-thread RMID-based Per-agent RMID-

based

Unified per-RMID

counters across CPU

Agents and non-CPU

Agents.

Shared-L3 Cache Allocation

Technology (CAT)

Per-thread CLOS-based Per-agent CLOS-

based

Unified per-CLOS controls

across CPU Agents and

non-CPU Agents.

Shared-L3 Code and Data

Prioritization

(CDP)

Per-thread CLOS-based N/A CDP is not supported for

non-CPU Agents.

Document Number: 356688-004US, Revision: 1.3 155

Configuration Intel RDT
Feature

CPU Agents Intel RDT
Scope

Non-CPU
Agents Intel
RDT Scope

Comments

Shared-L3 Memory

Bandwidth

Allocation (MBA)

Per-agent MBA throttling

(MBA3.0 and higher) or

Per-interface MBA throttling

(MBA1.0-2.0)

N/A MBA is not supported for

non-CPU Agents.

156 Document Number: 356688-004US, Revision: 1.3

A.5 Architectural MSRs used with Intel® RDT
Features

The following architectural Model-Specific Registers are used with Intel® RDT

features.

MSR Name Comments

IA32_PQR_ASSOC Set the RMID and CLOS pair.

IA32_QM_EVTSEL Set event codes and RMID to be monitored.

IA32_QM_CTR Reports monitoring telemetry data.

IA32_L3_MASK_n Bitmask to assign L3 cache ways for each CLOS. “n” registers,

one register per CLOS.

IA32_L2_QoS_Ext_BW_Thrtl_n Set valid throttling levels. “n” registers, one register per CLOS

IA32_L2_QOS_MASK_n Bitmask to assign L2 cache ways for each CLOS. “n” registers,

one register per CLOS.

IA32_L3_IO_QOS_CFG Set to enable Allocation and Monitoring for non-CPU Agents

IA32_QoS_Core_BW_Thrtl_n Set valid throttling levels, one byte per CLOS. “n = 0 to

(((CLOS_MAX+1)/8) -1)” registers

A.6 Model-Specific Registers for Intel® RDT
Model Specific Features

The following notable non-architectural Model-Specific Registers are used with

Intel® RDT features and will be expanded over time. Others are discussed in

preceding model-specific chapters.

MSR Name Comments

MBA_CFG Set the RMID and CLOS pair.

RMID_SNC_CONFIG Clear to enable RMID Sharing Mode.

STLB_QOS_INFO Discover STLB QOS parameters

STLB_QOS_MASK_N STLB QOS Capacity Bitmasks

STLB_FILL_TRANSLATION Fill a logical address into the STLB

PQR_ASSOC Resource Association Register

L3_QOS_MASK_N L3 Class of Service Mask

§

Document Number: 356688-004US, Revision: 1.3 157

B Model-Specific Intel® RDT
Features

B.1 Model-Specific Intel® RDT Features for CPU
Agents

This section gives an overview of non-architectural features that are

implemented on specific products. To find out which features are supported on

which specific products, refer to Appendix A.3.

In certain cases, model-specific features may be implemented rather than

architectural features in cases where the cache or memory hierarchies are

rapidly evolving, or in cases where usages are specialized and require intricate

software enabling and tuning, or in cases where a subset of special-purpose

processors are enabled with certain features within a broader product line.

Support for a certain model-specific feature in a particular product generation

does not imply that future products will support the same model-specific

feature; furthermore, this does not guarantee software forward-compatibility.

Software should use Processor Family, Model and Stepping (FMS) to verify that

a particular processor includes support for a given model-specific feature.

B.1.1 Resource Aware MBA

Resource Aware MBA (MBA 4.0) for CPU-agent was formerly known as Fourth

Generation MBA (MBA 4.0) which supports over Third Generation MBA

capabilities as Bandwidth management support is implemented to support up

to three different resources – DDR Memory, CXL links, and UPI Links on a pre

thread basis. Third generation MBA capabilities (see Section 3.2.3.3) are the

default mode of operation, with Resource Aware MBA being opt-in. See

Appendix A.3 for Resource Aware MBA feature intercept details.

B.1.1.1 Overview

Resource Aware MBA allows per-thread tracking and control of Bandwidth to

different resources – that is, enabling bandwidth control per-thread and per-

resource simultaneously. As in the third generation of MBA, each resource and

thread are managed by a hardware controller which modulates the bandwidth

of each thread targeting a particular downstream resource around a bandwidth

target set by Intel RDT software interfaces.

The resource types that are managed are:

1. DDR – All traffic towards DDR Memory regardless of location of location

(local, remote or CXL).

2. CXL – All traffic towards CXL resources such as CXL.mem pools including

remote.

158 Document Number: 356688-004US, Revision: 1.3

3. UPI - All traffic that utilizes the Intel® Ultra Path Interconnect (Intel® UPI)

link(s) for cross socket data transfer regardless of target on the remote

socket.

The high-level implementation of Resource Aware MBA is shown in Figure 7-11.

Figure 7-11. High-Level Overview of the Resource Aware MBA (MBA 4.0)

B.1.1.2 Enable MSR

Resource Aware MBA (MBA 4.0) is opt-in feature. Before configuring MBA

throttling values per-thread and per-resource, the feature should be enabled

(through a configuration MSR). The MBA_CFG MSR is used to enable the

Resource Aware MBA feature for CPU agents.

One bit is defined in this MBA_CFG MSR, bit[2], which when set enables the

Resource Aware MBA feature and switches between third-generation MBA and

Resource Aware MBA modes.

The default value is 0x0 (Resource Aware MBA is disabled by default), and all

bits not defined are reserved. Any writes to reserved bits will generate a

General Protection Fault (#GP(0)).

This MSR is scoped at the die level and is cleared on system reset. It is

expected that software will configure this MSR consistently across all L3 caches

that may be present in the SoC.

The definition of the MBA_CFG MSR is shown in Figure 7-12, and its MSR

address is 0xC84.

Document Number: 356688-004US, Revision: 1.3 159

Figure 7-12. The MBA_CFG MSR for Enabling Resource Aware MBA Feature

Reference BIOS implementations supporting Resource Aware MBA will extend

the legacy bandwidth profile knobs from Second Generation MBA with a drop-

down menu of three options (see Section 5.2 for details)

B.1.2 Intel® RDT and Sub-NUMA Clustering Compatibility

The following sub-sections describe Intel RDT and Sub-NUMA Clustering (SNC)

compatibility enabling components. Utilizing SNC and RDT simultaneously may

provide resource contention isolation benefits but requires incremental

software enabling with the introduction of SNC.

B.1.2.1 Introduction

Following sub-sections describe Intel RDT monitoring features behavior in the

presence of either multiple NUMA domains per socket, other product

implementations in which multiple NUMA domains may appear per processor,

due to either logical or physical resource partitioning. This section references

Intel RDT features such as MBA, MBM, CMT and CAT for CPU agents and non-

CPU agents described in Chapter 3 and Chapter 4 respectively.

The Sub-NUMA Clustering (SNC) feature creates localization domains within a

processor by mapping addresses from a local memory controller to a subset of

the L3 slices that are at a reduced distance to nearby memory controller(s),

reducing latency, and increasing equivalent traffic isolation across memory

channels controllers.

MBA usage is not affected in presence SNC; bandwidth targets apply globally

across all SNC domains. L3 CAT and Monitoring features (L3 CMT and MBM)

usage is affected in the presence of SNC. Following sections provide details.

See Appendix A.3 for Intel RDT and Sub-Numa Clustering (SNC) Compatibility

feature supported product details (for example, products where the features

are simultaneously supported).

B.1.2.2 SNC Enabled and L3 Cache Allocation Technology

L3 Cache Allocation Technology (L3 CAT) allows an Operating System (OS),

Hypervisor / Virtual Machine Manager (VMM) or similar system service

management agent to specify the amount of L3 cache capacity of the Resource

Allocation Domain (RAD) into which an application can fill.

160 Document Number: 356688-004US, Revision: 1.3

In the presence of SNC, cache capacity bitmasks are still die-scoped and apply

across multiple-L3 domains. Each bit in the cache capacity bitmask manages all

clusters and dictates the portion of each SNC cluster available for a given

Resource Management Domain. For example, each bit in cache capacity

bitmask represents half as much L3 cache capacity at each cluster when SNC2

is enabled, or one-quarter as much L3 cache capacity at each cluster when

SNC4 is enabled and so on. Note that total L3 cache capacity does not change.

Software may choose to apply consistent policies across SNC domains utilizing

this property, such as CLOS[0] having full access to the cache across any SNC

domain in which it may run, but CLOS[1] having access to only half of the

cache, implying that it contains a set of lower-priority threads.

B.1.2.3 SNC Enabled and RMID Distribution Modes

There are two modes available to control Resource Monitoring ID (RMID)

distribution when SNC is enabled: Default mode and RMID Sharing.

Software should consider and select the mode in which RMIDs are distributed

or shared across the SoC and SNC domains depending on its usage needs.

B.1.2.3.1 Default Mode

When SNC is enabled the available pool of RMIDS are distributed across all the

L3 slices. RMIDs are distributed across the cores in the same fashion as done

when SNC is not enabled, see Figure 7-13.

This distribution scheme allows the RMIDS enumerated by CPUID to be directly

used. Software should be aware of the distribution of RMIDs between the SNC

domains. For instance, if there are 320 RMIDs available which is enumerated

via Shared Resource Monitoring Leaf, CPUID.0FH.0H and an SNC-4

configuration is selected, four localization domains exist within a processor.

These 320 RMIDs can be dived into four groups of 80 RMIDS with first 80

allocated to SNC domain 0, the next 80 to SNC domain 1 and so forth. Due to

this distribution policy, RMIDs may be visualized as localized to SNC domains,

and there maybe cases where bandwidth is not counted. Consider for instance

the case where thread with RMID 0 accesses will generate counts only for

traffic in SNC domain 0. Any traffic from this thread that accesses other SNC

domains will not increment any of the other counters. In other words, each

SNC domain will get an equal number of distinct RMIDS from the global pool of

RMIDS that are not shared.

Document Number: 356688-004US, Revision: 1.3 161

Figure 7-13. Default Mode Demonstrating SNC-4 and RMID Distribution

B.1.2.3.2 RMID Sharing Mode

RMID sharing mode allows the same RMID to be distributed with traffic

accessing any and all SNC domains, but at the cost of a reduced number of

SoC-level RMIDs available. This model-specific mode aims to mitigate the

disadvantage of the Default mode where software should be aware of the RMID

distribution per SNC domain (and NUMA-aware) and where traffic tagged with

an RMID in one domain will not be counted if it accesses resources in another

SNC domain. RMID sharing mode allows same RMID to sample across SNC

domains, thus ensuring a complete count.

• This is an opt-in mode and requires that the software clears an enable bit

defined in the following MSR 0XCA0, bit[0], see Figure 7-14. Note that as a

model-specific capability, this mode is not guaranteed to be supported on

all processors (see Appendix A.3 for support details).

Figure 7-14. The RMID_SNC_CONFIG MSR for Enabling RMID Sharing Mode

In this mode the number of RMIDs are distributed across all the L3 slices

effectively reducing the number of RMIDs by the number of SNC domains. In

the case of four SNC domains, the number of RMIDs are divided by four.

Number of valid RMIDs = (Highest RMID value/#SNC_clusters)

162 Document Number: 356688-004US, Revision: 1.3

Using the previous example of 320 RMIDs, in this mode with SNC-2 enabled

there would be (320/2), that is, 160 RMIDs, with SNC-4 enabled there would

be (320/4), that is, 80 RMIDs.

Note: In SNC4 mode, to determine the count for RMID0, the count for RMID0,

RMID80, RMID160, and RMID240 should be read and added to provide the

total count for RMID0.

Note: It is the responsibility of software to read the values from each of the

counters and calculate and interpret the sum using the output of the

IA32_QM_CTR MSR. This is illustrated in Figure 7-15.

Figure 7-15. RMID Sharing Mode Demonstrating SNC-4 and RMID Distribution

B.1.2.4 Intel® RDT Software Considerations

Depending on its preferred use model and whether this model-specific

capability is supported on a particular processor, software may select either the

mode in which RMIDs are distributed or shared across the SoC and SNC

domains. The default mode where each SNC cluster has a defined group of

RMIDs or the opt-in mode which shares the same RMID across the SNC

domains.

• Without SNC mode enabled the Remote Memory Bandwidth can be

calculated by:

⎯ Remote Memory BW = (Total Memory BW – Local Memory BW) *

Scaling Factor.

• With SNC Mode enabled software should scale the measured BW depending

on the SNC_RMID Mode.

• CMT is similarly affected.

Document Number: 356688-004US, Revision: 1.3 163

Table 7-5. SNC Enabled and RMID Distribution Mode Summary

 Default Mode Opt-In : RMID Sharing Mode

Key highlights

• RMID_SNC_CONFIG MSR is Set.

• Each SNC domain has its own

group of RMIDs.

• RMID_SNC_CONFIG MSR is Clear.

• Number of RMIDs divided by the number of

SNC Domains.

• Opt-In mode is enabled by software setting

the MSR 0xCA0[0] = 0.

Example:

RMID Distribution

per SNC Example

for each Mode:

SNC-4 config and

Max 320 RMIDs

1. For each SNC domain, the software

should select an RMID from the range

mentioned next to program

IA32_PQR_ASSOC MSR. This range will

be dependent on NUMA cluster you

choose:

• SNC_Domain_0 : RMID[79:0]

• SNC_Domain_1 : RMID[159: 80]

• SNC_Domain_2 : RMID[239:160]

• SNC_Domain_3 : RMID[319:240]

2. To obtain monitoring data read via

IA32_QM_EVTSEL, MSR uses only the

RMID value to read counter value.

1. Number of Valid RMIDs =

(#RMIDS/#SNC_Domains).

Choose d in {0...79} in this example.

**This range is used to program RMID field in the

IA32_PQR_ASSOC MSR so that the appropriate

hardware counters within the SNC domain are

updated.

2. To obtain monitoring data via IA32_QM_EVTSEL

MSR read 4 counter value from using the next

formula:

MAX_VALID_RMID = #RMIDS/#SNC_DOMAINS

SNC_DOMAIN_0: RMID[0+d]

SNC_DOMAIN_1: RMID[MAX_VALID_RMID*1 + d]

SNC_DOMAIN_2: RMID[MAX_VALID_RMID*2 + d]

SNC_DOMAIN_3: RMID[MAX_VALID_RMID*3 + d]

For this example:

SNC_DOMAIN_0: RMID[0+d]

SNC_DOMAIN_1: RMID[80+d]

SNC_DOMAIN_2: RMID[160+d]

SNC_DOMAIN_3: RMID[240+d]

Differences
• Same number of RMIDS across

SoC.

• RMIDS divided down by the number of SNC

Domains and hence reduced number of

RMIDS available for use.

Differences

• Miss traffic count due to software

that traverses SNC domains. This

can lead to inaccurate counts for

CMT/MBM.

• Counts traffic that traverses SNC domains.

Differences
• Software needs to know the

distribution of RMIDS to SNC

domains.

• Software required to read all the RMID

counters in the SNC domains and add up the

individual count to get the final count.

Note: Only the monitoring features of Intel RDT are affected by the SNC feature.

The allocation features, that is, CAT and MBA are not affected. Bit masks and

BW targets apply globally across all domains. See Table 7-5 for SNC enabled

and RMID distribution summary.

B.1.2.5 Scaling Factor Adjustment

CPUID-provided scaling factor (CPUID(0xF(Shared Resource Monitoring

Enumeration leaf).0x1).EBX[31:0]), which software will use to convert MBM

counts into bandwidth figures, needs adjustment in software when the system

is configured in SNC mode. Moreover, calculating different types of bandwidths,

such as local, total, or remote, also needs special considerations. This section

describes how software needs to handle these special cases.

164 Document Number: 356688-004US, Revision: 1.3

When using scaling factor under SNC mode, the scaling factor provided by

CPUID will not account for the reduced number of L3 slices that will be handling

local traffic. The scaling factor value will remain the same as any other

clustering mode. software will then need to adjust the scaling factor. For this

purpose, we define:

AdjustedScalingFactor = ScalingFactor / SNCClusterCount

B.1.2.6 SNC and Intel® RDT for Non-CPU Agent Implications

Intel RDT for non-CPU agents is affected similarly to traditional Intel RDT

features in the presence of SNC. To obtain a correct CMT or MBM data sampling

software should either localize I/O device memory allocations to a given cluster

or sum RMID counts periodically, depending on the RMID localization mode

selected.

In cases where multiple contexts are present on a device (SR-IOV, SIOV, with

attached VMs that may span multiple SNC domains for their execution or

multiple devices are behind an IOSF channel, if memory accesses are

distributed across SNC clusters, then monitoring accuracy decreases

considerably, and the risk of missing cache occupancy or memory bandwidth

increases considerably.

SNC also affects I/O traffic. Software seeking to monitor I/O capacity or

overflow BW to memory (I/O equivalent of CMT or MBM), should determine

which SNC cluster a given address falls into using NUMA-aware supporting

constructs (for example, ACPI HMAT, SLIT tables [4]) and pick a corresponding

RMID for that cluster. As an example, if a device DMA write assigned to an

RMID which does not land in the same SNC cluster as the address and its

memory controller will not be tracked.

B.1.2.7 Calculating Local MBM Bandwidth per Cluster

When MSR 0xCA0 is set to 1 (Default Mode) software will be able to monitor

local BW only from one SNC cluster. If MSR 0xCA0 is set to 0 (RMID Sharing

Mode) then software will be able to monitor Local BW from all SNC clusters.

Independent of the value in MSR 0xCA0, Local MBM Counts from a given SNC

cluster can be converted to BW figures using the adjusted scaling factor

following the same mechanism used under non-SNC modes:

LocalMbmBwClusterN = (LocalMbmCountDeltaClusterN * AdjustedScalingFactor) /

SampleTime

Where:

• ‘LocalMbmCountDeltaClusterN’ = (Second Sample of LocalMbmCounter

value (ClusterN) – First sample of LocalMbmCounter value (ClusterN).

• ‘AdjustedScalingFactor’ = ScalingFactor / SNCClusterCount.

B.1.2.8 Calculating Local MBM Bandwidth for Entire Socket

While operating under any non-SNC mode Local MBM BW will correspond to all

the total traffic within the full socket. To obtain the same metric under SNC

Document Number: 356688-004US, Revision: 1.3 165

mode software may add up the Local BW from each cluster. This can be

achieved only when MSR 0xCA0 is set to 0. Otherwise, software will only be

able to capture the local BW from a single cluster.

LocalMbmBwSocket = ((LocalMbmCountDeltaCluster0 + ... LocalMbmCountDeltaClusterN) *

AdjustedScalingFactor) / SampleTime

Where:

• ‘LocalMbmCountDeltaCluster0’ = (Second Sample of LocalMbmCounter

value (Cluster0) – First Sample of LocalMbmCounter value (Cluster0)…

Similarly, delta for for each 1,2,…N.

• ‘AdjustedScalingFactor’ = ScalingFactor / SNCClusterCount.

B.1.2.9 Calculating Total MBM Bandwidth for the Socket

Calculating the Total MBM BW for the full socket, including the traffic from all

clusters, will require that MSR 0xCA0 is set to 0.

TotalMbmBwSocket = ((TotalMbmCountDeltaCluster0 + ... TotalMbmCountDeltaClusterN) *

AdjustedScalingFactor) / SampleTime

Where:

• ‘TotalMbmCountDeltaCluster0’ = (Second Sample of TotalMbmCounter

value (Cluster0) – First Sample of TotalMbmCounter value (Cluster0)…

Similarly, delta for each 1,2,…N.

• ‘AdjustedScalingFactor’ = ScalingFactor / SNCClusterCount.

B.1.2.10 Estimating Remote Traffic

As with Non-SNC modes, remote traffic can be estimated out of the socket’s

Total MBM BW and Local MBM BW with this simple relation:

RemoteMbmBwSocket = TotalMbmBwSocket – LocalMbmBwSocket

Calculating both TotalMbmBwSocket and LocalMbmBwSocket will require MSR

0xCA0 to be set to 0. However, if software decides to keep MSR 0xCA0 set to

“1”, its default value, an alternative mechanism exists to calculate the socket’s

MBM Remove BW as described in the following section.

B.1.2.11 Estimating Remote Bandwidth with MSR 0xCA0 set to 1

If software decides not to switch MSR 0xCA0 to value 0 (for example, out of

Default mode) the mechanism described earlier to calculate the socket remote

traffic will not work. However, it is still possible to estimate the remote traffic

of the entire socket by using MBM counts from a single cluster.

RemoteMbmBwSocket = (TotalMbmBwClusterN - LocalMbmBwClusterN) * SNCClusterCount

B.1.2.12 Example for Local and Total MBM Bandwidth

In this example, software runs on a system configured in SNC-4 mode where

CPUID(0xF(Shared Resource Monitoring Enumeration leaf).0x1).EBX[31:0]

166 Document Number: 356688-004US, Revision: 1.3

reads 0x1E000 (ScalingFactor). AdjustedScalingFactor is then calculated to be

0x7800. If the system is configured with MSR 0xCA0=0 (RMID Distribution

Mode) then software will have the ability to sample BW across all four clusters

in this example. After sampling MBM counts with a delay of one second the

following MBM Count increments are observed:

Table 7-6. Local and Total Count Increment

Cluster Local MBM Count Increment Total MBM Count Increment

0 174762 192238

1 43690 61166

2 0 17476

3 0 17476

Software can then calculate Local Bandwidth (BW), Total Bandwidth(BW) and

Remote Bandwidth(BW) following these steps.

1. Calculate Local BW for Cluster 0 using the formula for LocalMbmBw

described earlier:

LocalMbmBwCluster0 = (LocalMbmCountDeltaCluster0 *

AdjustedScalingFactor) / SampleTime

LocalMbmBwCluster0 = (174762 * 0x7800) / 1

LocalMbmBwCluster0 = 5368688640 B/s ~= 5GB/s

2. Calculate Total BW for Cluster 0 using the formula for TotalMbmBw

described earlier:

TotalMbmBwCluster0 = (TotalMbmCountDeltaCluster0 *

AdjustedScalingFactor) / SampleTime

TotalMbmBwCluster0 = (192238* 0x7800) / 1

TotalMbmBwCluster0 = 5905551360B/s ~= 5.5GB/s

3. Following the same procedure Local and Total BWs for the different

clusters may be calculated as shown in Table 7-7.

Table 7-7. Local and Total Bandwidth Example

Cluster LocalMbmBwClusterN TotalMbmBwClusterN

0 5 GB/s 5.5 GB/s

1 1.25 GB/s 1.75 GB/s

2 0 0.5 GB/s

 0 0.5 GB/s

4. We can also calculate the socket Local and Total BWs:

LocalMbmBwSocket =((LocalMbmCountDeltaCluster0 + ...

LocalMbmCountDeltaClusterN) * AdjustedScalingFactor) /

SampleTime

LocalMbmBwSocket = ((174762 + 43690 + 0 + 0) * 0x7800) / 1

LocalMbmBwSocket = 6710845440B/s ~= 6.25GB/s

TotalMbmBwSocket =((TotalMbmCountDeltaCluster0 + ...

TotalMbmCountDeltaClusterN) * AdjustedScalingFactor) /

SampleTime

Document Number: 356688-004US, Revision: 1.3 167

TotalMbmBwSocket = ((192238 + 61166 + 17476 + 17476) *

0x7800) / 1

TotalMbmBwSocket = 8858296320B/s ~= 8.25GB/s

5. Finally, the remote BW for the socket can be estimated:

RemoteMbmBwSocket = TotalMbmBwSocket – LocalMbmBwSocket

RemoteMbmBwSocket = 8.25GB/s - 6.25GB/s ~= 2GB/s

We can also use this example to show to estimate the socket’s remote BW if

MSR 0xCA0 is set to 1 (Default mode). Under such conditions only MBM counts

from a single cluster can be obtained. Assuming that the software has picked

and RMID from cluster 0, we can use the values calculated earlier for

LocalMbmBwCluster0 and TotalMbmBwCluster0. Then:

RemoteMbmBwSocket = (TotalMbmBwCluster0-

LocalMbmBwCluster0) * SNCClusterCount

RemoteMbmBwSocket = (5.5GB/s – 5.0GB/s) * 4 ~= 2GB/s

Note that the value for RemoteMbmBwSocket obtained through this mechanism

matches that obtained by using the MBM counts from all clusters.

By analyzing the results from this example, we can conclude, from the thread

or threads assigned to the selected RMID that:

• Thread(s) are generating 5 GB/s of traffic towards cluster 0.

• Thread(s) are generating 1.25 GB/s of traffic towards cluster 1.

• Thread(s) are not generating local traffic towards clusters 2 or 3.

• Thread(s) are generating 2 GB/s of traffic towards a remote socket.

• Each SNC cluster is handling 0.5 GB/s of that remote traffic.

B.1.3 STLB QoS

Translation Lookaside Buffer (TLB) misses can cause costly execution delays

due to page walks. Considered from a capacity management perspective, STLB

QoS behaves in a similar manner as Cache Allocation Technology (CAT) does

on the data caches, by giving software the ability to provide hints to hardware

that guide the placement of translations in the STLB. This control can provide

fair sharing or improved isolation of TLB resources between applications

organized by Classes of Service.

Note: This model-specific feature is intended for use primarily with specialized real-

time operating systems that provide extensions to bound the number of tasks

running on a core and thus sharing a TLB. Depending on the software

environment, additional runtime restrictions and software optimizations may

be needed to observe the potential performance benefits of STLB QoS.

Contact your Intel representative for additional details.

Refer to Appendix A.3 for supported product details, which vary across

generation and processor type.

168 Document Number: 356688-004US, Revision: 1.3

B.1.3.1 Enumerating Support for STLB QoS

STLB QoS is model specific and support for it is enumerated through the

IA32_CORE_CAPABILITIES MSR. To determine if the processor supports the

IA32_CORE_CAPABILITIES MSR, software can check whether the CPUID

Extended Feature flag at CPUID.07H.00H:EDX[30] is set to ‘1’.

If CPUID.07H.00H:EDX[30] is ‘1’, then support for STLB QoS can be confirmed

via the IA32_CORE_CAPABILITIES MSR as defined next.

Table 7-8. STLB QoS Enumeration in IA32_CORE_CAPABILITIES MSR

Name Address Scope Bit RW Bit Name Description

IA32_CORE_CAPABILITIES CFh Core 0 RO STLB_QOS When set to 1, processor

supports STLB QoS

B.1.3.2 STLB QoS Register Interfaces

This section contains the register interfaces for configuring STLB QoS. Software

should first read the STLB_QOS_INFO to determine the maximum number of

classes of service and capacity bitmask length and may then proceed to

partitioning the STLB using the STLB_QOS_MASK_n registers.

B.1.3.2.1 STLB_QOS_INFO

Software may discover the necessary information for configuring STLB QoS via

the STLB_QOS_INFO MSR as defined next.

Table 7-9. STLB_QOS_INFO MSR Definition

Name Address Scope Bit RW Bit Name Description

STLB_QOS_INFO 1A8Fh Core

5:0 RO NCLOS
Number of CLOS supported for STLB

resource using minus-1 notation.

19:16 RO 4K_2M_CBM
Length of capacity bitmask for 4K and

2M pages using minus-1 notation.

29:29 RO

STLB_FILL_

TRANSLATION

_MSR_SUPPORTED

MSR interface to fill STLB translations

supported.

30:30 RO 4K_2M_ALIAS
Indicates that 4K/2M pages alias into

the same structure.

B.1.3.2.2 STLB_QOS_MASK_N

STLB_QOS_MASK_n registers define the capacity bitmask to be applied when

filling new translations into the STLB. The mask used will depend on the core’s

current Class of Service at the time of TLB miss, as configured via the

IA32_PQR_ASSOC MSR (covered in Chapter 3.2 Intel RDT Allocation Common

Framework). The STLB_QOS_MASK_n registers are dynamic and may be

changed at runtime.

Software should limit the number of mask registers used to the number of

supported STLB QoS CLOS. For example, if STLB_QOS_INFO[NCLOS] returns

Document Number: 356688-004US, Revision: 1.3 169

0x7, then a total of eight classes of service are supported and valid

STLB_QOS_MASK_n registers would be 1A90h – 1A97h as defined in Table

7-10. Attempts to use unsupported STLB QoS mask registers will generate

#GP(0).

Table 7-10. STLB_QOS_MASK_N MSR Definition

Name Address Scope Bit RW Bit Name Description

STLB_QOS_MASK_n 1A90h

-

1A9Fh

Core 7:0 RW WAY_MASK STLB QoS mask for CLOS

n. The number of mask

bits is enumerated in MSR

STLB_QOS_INFO.

‘1 in bit indicates

allocation to the way is

allowed. ‘0 indicates

allocation to the way i‘ not

allowed.1,2

NOTES: 1. Mask values must be contiguous 1s.

 2. Way mask only applies to 4K/2M STLB.

B.1.3.2.3 STLB_FILL_TRANSLATION

As a further specialized extension to STLB QoS, certain processors support a

mechanism to manually populate entries in the STLB, rather than requiring that

pages of interest be accessed by software as part of a TLB fill flow to populate

the entries. Note that this capability is not guaranteed to be supported on all

future processors which support STLB QoS.

If STLB_QOS_INFO[STLB_FILL_TRANSLATION_MSR_SUPPORTED] is ‘1’,

software may populate entries in the STLB directly by writing the logical

address (LA) and Class of Service to use for the fill to

STLB_FILL_TRANSLATION as defined next.

Table 7-11. STLB_FILL_TRANSLATION MSR Definition

Name Address Scope Bit RW Bit
Name

Description

STLB_FILL_

TRANSLATION

1A8Eh Core 3:0 WO CLOS Class of service to use for the fill.

10:10 WO X Set to 1 when LA is to an

executable page.

11:11 WO RW Set to 1 when LA is to a writeable

page.

63:12 WO LA Logical address to use for fill.

Note: The STLB_FILL_TRANSLATION MSR should not be used in the VMX load list as

a #GP(0) will occur.

B.1.4 L3 Cache Allocation Technology

Certain Intel® Core™ and Intel Atom® processors with support for Intel® Time

Coordinated Computing (Intel® TCC), and certain communications related

Intel® Xeon® processors implement a model specific, non-architectural version

170 Document Number: 356688-004US, Revision: 1.3

of L3 Cache Allocation Technology (L3 CAT). In model-specific

implementations, parameters such as CBM bitmask length and number of

supported CLOS are specified on a per-processor basis rather than in CPUID

(see the following section).

The non-architectural implementations of L3 CAT behave similarly to the

architectural implementation, however under certain circumstances the

performance characteristics may vary. Intel recommends evaluating overall

system performance with model-specific non-architectural L3 CAT to verify

performance targets are met.

B.1.4.1 Processor Support List

The following table can be used to identify which processors support the model

specific non-architectural implementation of L3 CAT. Registers for programming

the capacity bitmask for a given CLOS follow the same location and definition

of the IA32_L3_MASK_n MSR’s as defined in the Intel® Software Developer’s

Manual.

Table 7-12. Processor support list

Processor Brand String # L3 Classes of
Service (CLOS)

Capacity Bitmask
Length (CBM)

Intel Atom® Processors

Intel Atom® x6427FE Processor

4

16

Intel Atom® x6425RE Processor 16

Intel Atom® x6414RE Processor 16

Intel Atom® x6212RE Processor 16

Intel Atom® x6200FE Processor 8

Intel Atom® X6416RE Processor 16

Intel Atom® X6214RE Processor 16

Intel Atom® x7211E Processor

16

12

Intel Atom® x7425E Processor 12

Intel Atom® x7213E Processor 12

11 Gen Intel® Core™

Processors (UP3-Series)

Intel® Core™ i7-1185GRE Processor

4

12

Intel® Core™ i5-1145GRE Processor 8

Intel® Core™ i3-1115GRE Processor 12

Intel® Xeon® W Processors

(TGL-H)

Intel® Xeon® W-11865MRE Processor

4

12

Intel® Xeon® W-11865MLE Processor 12

Intel® Xeon® W-11555MRE Processor 8

Intel® Xeon® W-11555MLE Processor 8

Intel® Xeon® W-11155MRE Processor 8

Intel® Xeon® W-11155MLE Processor 8

12 Gen Intel® Core™

Processors (S-Series)

Intel® Core™ i9-12900E Processor

16

12

Intel® Core™ i7-12700E Processor 10

Intel® Core™ i5-12500E Processor 12

Document Number: 356688-004US, Revision: 1.3 171

Processor Brand String # L3 Classes of
Service (CLOS)

Capacity Bitmask
Length (CBM)

Intel® Core™ i3-12100E Processor 12

13 Gen Intel® Core™

Processors (P-Series)

Intel® Core™ i7-1365UE Processor

16

12

Intel® Core™ i7-1365URE Processor 12

Intel® Core™ i5-1345UE Processor 12

Intel® Core™ i5-1345URE Processor 12

Intel® Core™ i3-1335UE Processor 12

Intel® Core™ i3-1315UE Processor 10

Intel® Core™ i3-1315URE Processor 10

Intel® Core™ i7-1370PE Processor 12

Intel® Core™ i7-1370PRE Processor 12

Intel® Core™ i5-1350PE Processor 8

Intel® Core™ i5-1350PRE Processor 8

Intel® Core™ i3-1340PE Processor 8

Intel® Core™ i3-1320PE Processor 8

Intel® Core™ i3-1320PRE Processor 8

Intel® Core™ i7-13800HE Processor 12

Intel® Core™ i7-13800HRE Processor 12

Intel® Core™ i5-13600HE Processor 12

Intel® Core™ i5-13600HRE Processor 12

Intel® Core™ i3-13300HE Processor 8

Intel® Core™ i3-13300HRE Processor 8

13 Gen Intel® Core™

Processors (S-Series)

Intel® Core™ i9-13900E Processor

16

12

Intel® Core™ i9-13900TE Processor 12

Intel® Core™ i7-13700E Processor 12

Intel® Core™ i7-13700TE Processor 12

Intel® Core™ i5-13500E Processor 12

Intel® Core™ i5-13500TE Processor 12

Intel® Core™ i5-13400E Processor 10

Intel® Core™ i3-13100E Processor 12

Intel® Core™ i3-13100TE Processor 12

NOTES: 1. L3 CDP is not supported on any Intel® Core™ or Intel® Atom™ processors that

implement model specific L3 CAT.

 2. Communications-oriented processors from the Intel® Xeon® E5 v3 Family also support

a form of model-specific L3 CAT.

B.1.4.2 Register Definitions

This section identifies deltas in the register definitions for programming model

specific L3 CAT. The deltas are derived against the architectural equivalent

172 Document Number: 356688-004US, Revision: 1.3

register as documented in the Intel® 64 Architecture Software Developer's

Manual (SDM), Volume 4: Chapter Title: MSRS IN THE 6TH GENERATION, 7TH

GENERATION, 8TH GENERATION, 9TH GENERATION, 10TH GENERATION, 11TH

GENERATION, 12TH GENERATION, AND 13TH GENERATION INTEL® CORE™

PROCESSORS, INTEL® XEON® SCALABLE PROCESSOR FAMILY, 2ND, 3RD, AND

4TH GENERATION INTEL® XEON® SCALABLE PROCESSOR FAMILY, 8TH

GENERATION INTEL® CORE™ I3 PROCESSORS, AND INTEL® XEON® E

PROCESSORS.

The naming convention for model specific L3 CAT registers mirrors the

architectural L3 CAT registers without the “IA32_” prefix, for example,

PQR_ASSOC (model specific) versus IA32_PQR_ASSOC (architectural).

The following deltas are consistent across all platforms that support model

specific L3 CAT:

• Resource Monitoring ID’s (RMIDs) are not guaranteed to be supported

unless indicated by CPUID.

• L3 CDP is not supported.

B.1.4.2.1 PQR_ASSOC

The PQR_ASSOC MSR closely follows the IA32_PQR_ASSOC definition with

exception of RMID. Platforms that support model specific L3 CAT typically do

not support RDT Monitoring, with the exception of the Intel® Xeon® E5 v3

Family, and software should carefully consult CPUID before assuming support

for any RDT Monitoring features.

B.1.4.2.2 L3_QOS_MASK_n

The L3_QOS_MASK_N MSRs are identical in definition to the

IA32_L3_QOS_MASK_N for architectural L3 CAT. For the number of mask

registers supported and acceptable CBM bit vector lengths, refer to Table 7-12

for the processor support list.

B.1.4.3 Shareable Bit Mask

Processors with an integrated GPU may be configured, by default, to allow the

GPU full access to the L3 cache in certain performance modes. This behavior

remains consistent independent of the values written to the L3_QOS_MASK_n

registers, as these mask registers do not affect the cache policy for

transactions initiated from the GPU. Software should consider all L3 cache ways

as shared with the GPU.

For processors that support Intel® Time Coordinated Computing (Intel® TCC),

optimizations are available for those that require improved isolation in the L3

cache. Contact your Intel representative for additional details.

B.1.4.4 Software considerations

Software that discovers enumerated support for architectural L3 CAT using

shared extended feature flag, CPUID.07H.00H will not automatically work with

Document Number: 356688-004US, Revision: 1.3 173

the non-architectural implementation. This section will cover known nuances

and recommendations for working with the model specific non-architectural L3

CAT.

Note: Processors that support both L2 CAT and L3 CAT may have a delta in the

number of CLOS supported between the L2 and L3. Intel recommends limiting

software to use no more classes of service than the lesser of the two values.

B.1.4.4.1 Linux* Resource Control Groups (/sys/fs/resctrl)

Intel enables support for Intel RDT features in the Linux* kernel via Resource

Control (CONFIG_X86_CPU_RESCTRL). Resource control provides an OS

interface for configuring and using Cache Allocation Technology (CAT), Cache

Monitoring Technology (CMT), Memory Bandwidth Monitoring (MBM), and

Memory Bandwidth Allocation (MBA).

Resource Control leverages CPUID to detect hardware support for the various

Intel RDT sub-features. On processors that support model specific non-

architectural L3 CAT, CPUID.07H.00H will not enumerate support and therefore

Resource Control will not support L3 CAT. Configuring of the L3_MASK_n

registers will not be possible through the resctrl interface and must be completed

through direct MSR access.

One feature of Resource Control is being able to associate a Class of Service

with a Process Identifier (PID), and having the kernel automatically update the

CLOS on context switch. If using a CPU that supports model specific non-

architectural L3 CAT and updating the class of service on context switch is

desired, it is possible to achieve this if the platform also supports L2 CAT.

Resource Control would be utilized to configure L2 CAT and create the

appropriate PID to CLOS mapping, while the L3 masks would need to be

configured out-of-band (for example, direct MSR programming).

B.1.4.4.2 Intel-cmt-cat Tool (Intel RDT Utility)

The Intel RDT software package intel-cmt-cat is a software library that

supports the Allocation and Monitoring features of Intel RDT. It can work with

or without kernel support for RDT, which makes intel-cmt-cat a useful tool

when working with model specific non-architectural L3 CAT.

The latest versions of the RDT Utility also include specialized print functions as

command line options, which can be used to more easily decode the mapping

of I/O devices to I/O RDT Channels for instance.

Intel-cmt-cat provides a pqos utility which access to the Intel RDT features

through a command line interface. pqos can be used to program the

L3_MASK_n registers on platforms that support non-architecture L3 CAT. Use

the ‘--iface=msr’ parameter to force enumeration and programming to be

completed through MSR interfaces and not the OS interfaces.

The Intel RDT Utility is available at Github*:

https://github.com/intel/intel-cmt-cat

https://github.com/intel/intel-cmt-cat

174 Document Number: 356688-004US, Revision: 1.3

Note also that the RDT Utility includes a wiki with detailed discussion,

command line usage information and examples:

https://github.com/intel/intel-cmt-cat/wiki/

§

https://github.com/intel/intel-cmt-cat/wiki/

	1 Introduction
	1.1 High Level Usage Models
	1.2 Scope
	1.3 Audience
	1.4 References

	2 Intel® Resource Director Technology Overview
	2.1 Common Tags
	2.2 Enumeration of Supported Features
	2.3 L3 Configurations
	2.4 Intel® RDT Monitoring Technologies
	2.4.1 Intel® RDT Monitoring Key Ingredients
	2.4.2 Shared-L3 versus Multiple-L3 Configuration

	2.5 Intel® RDT Allocation Technologies
	2.5.1 Intel® RDT Allocation Key Ingredients
	2.5.2 Shared-L3 versus Multiple-L3 Configuration

	3 Intel® Resource Director Technology for CPU Agents
	3.1 Intel® RDT Monitoring Features
	3.1.1 Common Framework
	3.1.2 Memory Regions
	3.1.3 Cache Occupancy Monitoring Technology
	3.1.3.1 L3 Cache Monitoring Technology

	3.1.4 Memory Bandwidth Monitoring
	3.1.4.1 L3 Total and Local External Memory Bandwidth Monitoring
	3.1.4.2 Region Aware Memory Bandwidth Monitoring

	3.2 Intel® RDT Allocation Features
	3.2.1 Common Framework
	3.2.2 Memory Regions
	3.2.3 Cache Occupancy Allocation Technologies
	3.2.3.1 L2 Cache Allocation Technology
	3.2.3.2 L2 Cache Code and Data Prioritization
	3.2.3.3 L3 Cache Allocation Technology
	3.2.3.4 L3 Cache and Data Prioritization

	3.2.4 Memory Bandwidth Allocation
	3.2.4.1 First Generation Memory Bandwidth Allocation
	3.2.4.1.1 Usage Considerations

	3.2.4.2 Second Generation Memory Bandwidth Allocation
	3.2.4.2.1 Second Generation MBA Advantages
	3.2.4.2.2 Software-Visible Changes

	3.2.4.3 Third Generation Memory Bandwidth Allocation
	3.2.4.3.1 Hardware Changes
	3.2.4.3.2 Software-Visible Changes

	3.2.4.4 Region Aware Memory Bandwidth Allocation
	3.2.4.4.1 Region Aware MBA Overview
	3.2.4.4.2 Enable MMIO Register
	3.2.4.4.3 Min, Max and Optimal Bandwidth Caps per CLOS

	3.2.5 Cache Bandwidth Allocation
	3.2.5.1 CBA Overview
	3.2.5.2 Example of CBA Bandwidth Control Mechanism
	3.2.5.3 Software Interface
	3.2.5.4 Software Usage

	4 Intel® Resource Director Technology for Non-CPU Agents
	4.1 Introduction
	4.2 Features
	4.3 Enumeration
	4.4 Interface
	4.5 Common Tags
	4.6 I/O Blocks and Channels
	4.7 I/O Block Configuration
	4.8 Shared-L3 Configuration
	4.8.1 Software Flow
	4.8.2 Monitoring: Data Flows for RMIDs
	4.8.3 Allocation: CLOS-based Control Interfaces

	4.9 CXL-Specific Considerations
	4.9.1 CXL block Interfacing Fundamentals
	4.9.2 Integrated Accelerators

	4.10 Use Cases

	5 BIOS Considerations
	5.1 Introduction to Enhanced RDT Interfaces
	5.2 ERDT Table Structure Layout
	5.3 MRRM Table Structure Layout
	5.4 ERDT Table Structure Details
	5.4.1 ERDT Structure Format and Field Descriptions
	5.4.2 Valid ERDT Sub-structure Types
	5.4.3 Resource Management Domain Description Structure
	5.4.3.1 Valid Sub-structure Types within the scope of this RMDD

	5.4.4 CPU Agent Collection Description Structure
	5.4.5 Device Agent Collection Description Structure
	5.4.5.1 Device Agent Scope Entry Structure

	5.4.6 Cache Monitoring Registers for CPU Agents Description Structure
	5.4.7 Memory Bandwidth Monitoring Registers for CPU Agents Description Structure
	5.4.8 Memory Bandwidth Allocation Registers for CPU Agents Description Structure
	5.4.9 Cache Monitoring Registers for Device Agents Description Structure
	5.4.10 IO Bandwidth Monitoring Registers for Device Agents Description Structure
	5.4.11 Cache Allocation Registers for Device Agents Description Structure
	5.4.12 Fixed -Point 32-bit Format for Correction Factor

	5.5 Memory Range and Region Mapping (MRRM) Structure Details
	5.5.1 Memory Range Entry (MRE) Structure

	5.6 Architectural Intel® RDT Features for Non-CPU Agents (IRDT)
	5.6.1 RMID/CLOS tagging - ACPI Enumeration
	5.6.1.1 ACPI Definitional Goals
	5.6.1.2 IRDT ACPI Enumeration Overview
	5.6.1.3 Example ACPI Enumeration Cases
	5.6.1.4 ACPI Feature Enumeration – Table Structure Details
	5.6.1.4.1 Introduction and Notation
	5.6.1.4.2 IRDT Table Format and Field Descriptions
	5.6.1.4.3 RMUD Table Format and Field Descriptions
	5.6.1.4.4 DSS Table Format and Field Descriptions
	5.6.1.4.5 DSS Table Format for IRDT Table Revision 2
	5.6.1.4.6 RCS Table Format and Field Descriptions
	5.6.1.4.7 RCS Table Format for Revision 2

	5.7 Model-Specific Intel® RDT Features for CPU Agents
	5.7.1 BIOS Configuration for Resource Aware MBA

	6 MMIO Register Descriptions
	6.1 Enhanced Intel® RDT Register Location
	6.1.1 Software Access to Registers
	6.1.2 Register Attributes
	6.1.3 Register Descriptions
	6.1.3.1 RDT Control Register for CPU Agents
	6.1.3.2 Cache Monitoring Register for CPU Agents
	6.1.3.2.1 RMID Organization in CMT Register Block

	6.1.3.3 Memory Bandwidth Monitoring Registers for CPU Agents
	6.1.3.3.1 RMID Organization in MBM Register Block

	6.1.3.4 Optimal Memory Bandwidth Allocation Register for CPU Agents
	6.1.3.4.1 CLOS Organization in Optimal MBA Register Block

	6.1.3.5 Minimum Memory Bandwidth Allocation Register for CPU Agents
	6.1.3.5.1 CLOS Organization in Minimum MBA Register Block

	6.1.3.6 Maximum Memory Bandwidth Allocation Registers for CPU Agents
	6.1.3.6.1 CLOS Organization in Maximum MBA Register Block

	6.1.3.7 Cache Monitoring Registers for Non-CPU Agents
	6.1.3.7.1 RMID Organization in CMT Register Blocks

	6.1.3.8 Total I/O Bandwidth Monitoring Registers for Non-CPU Agents
	6.1.3.8.1 RMID Organization in Total I/O BW Register Blocks

	6.1.3.9 I/O Miss Bandwidth Monitoring Registers for Non-CPU Agents
	6.1.3.9.1 RMID Organization in I/O Miss BW Register Blocks

	6.1.3.10 Cache Allocation Registers for Non-CPU Agents
	6.1.3.10.1 CLOS Organization in CAT Register Blocks

	6.1.3.11 Region-ID Programming Registers[]

	6.2 Non-CPU Agent Intel® RDT Register Location
	6.2.1 Software Access to Registers
	6.2.2 Register Descriptions for Non-CPU Agents
	6.2.2.1 Link Interface Type RMID/CLOS Tagging MMIO Interfaces

	7 Programming Guidelines
	7.1 Intel® RDT Monitoring Software Flows for CPU Agents
	7.1.1 Intel® RDT Monitoring Software Flows for CPU Agents
	7.1.1.1 Step 1 – Enumeration
	7.1.1.2 Step 2 – RMID Association
	7.1.1.3 Step 3 – Event Selection Setup
	7.1.1.4 Step 4 – Data Sampling
	7.1.1.5 Step 5 – Sample CMT/MBM Data Collection and Analysis

	7.1.2 Native OS Environments
	7.1.3 Virtualization Scenarios

	7.2 Intel® RDT Allocation Software Flows for CPU Agents
	7.2.1 Intel® RDT Software Allocation Flows for CPU Agents
	7.2.1.1 Step 1 – Enumeration
	7.2.1.2 Step 2 – Optionally Enable CDP
	7.2.1.3 Step 3 – Mask and Bandwidth Control Setup
	7.2.1.4 Step 4 – CLOS Association

	7.3 Intel® RDT Software Flows for Non-CPU Agents
	7.4 Assembling a Complete View of System Memory
	7.4.1 Memory Hierarchy and Bandwidth Enumeration
	7.4.1.1 High-level Software Component Responsibilities
	7.4.1.1.1 Example with DDR memory
	7.4.1.1.2 Example with Heterogeneous Memory (DDR and Coherent Accelerators)

	7.5 Establishing Correlation between the DACD and IRDT tables

	A Intel® RDT Feature Details
	A.1 Intel® RDT Feature Evolution
	A.2 Intel® RDT Architectural Features and Supported Products
	A.3 Intel® RDT Model-Specific Features and Supported Products
	A.4 Feature Mapping: CPU Agents, Non-CPU Agents in Different L3 Configurations
	A.5 Architectural MSRs used with Intel® RDT Features
	A.6 Model-Specific Registers for Intel® RDT Model Specific Features

	B Model-Specific Intel® RDT Features
	B.1 Model-Specific Intel® RDT Features for CPU Agents
	B.1.1 Resource Aware MBA
	B.1.1.1 Overview
	B.1.1.2 Enable MSR

	B.1.2 Intel® RDT and Sub-NUMA Clustering Compatibility
	B.1.2.1 Introduction
	B.1.2.2 SNC Enabled and L3 Cache Allocation Technology
	B.1.2.3 SNC Enabled and RMID Distribution Modes
	B.1.2.3.1 Default Mode
	B.1.2.3.2 RMID Sharing Mode

	B.1.2.4 Intel® RDT Software Considerations
	B.1.2.5 Scaling Factor Adjustment
	B.1.2.6 SNC and Intel® RDT for Non-CPU Agent Implications
	B.1.2.7 Calculating Local MBM Bandwidth per Cluster
	B.1.2.8 Calculating Local MBM Bandwidth for Entire Socket
	B.1.2.9 Calculating Total MBM Bandwidth for the Socket
	B.1.2.10 Estimating Remote Traffic
	B.1.2.11 Estimating Remote Bandwidth with MSR 0xCA0 set to 1
	B.1.2.12 Example for Local and Total MBM Bandwidth

	B.1.3 STLB QoS
	B.1.3.1 Enumerating Support for STLB QoS
	B.1.3.2 STLB QoS Register Interfaces
	B.1.3.2.1 STLB_QOS_INFO
	B.1.3.2.2 STLB_QOS_MASK_N
	B.1.3.2.3 STLB_FILL_TRANSLATION

	B.1.4 L3 Cache Allocation Technology
	B.1.4.1 Processor Support List
	B.1.4.2 Register Definitions
	B.1.4.2.1 PQR_ASSOC
	B.1.4.2.2 L3_QOS_MASK_n

	B.1.4.3 Shareable Bit Mask
	B.1.4.4 Software considerations
	B.1.4.4.1 Linux* Resource Control Groups (/sys/fs/resctrl)
	B.1.4.4.2 Intel-cmt-cat Tool (Intel RDT Utility)

