intel.

Intel® Resource Director
Technology (Intel® RDT)
Architecture Specification

December 2025

Revision 1.3

Document Number: 356688-004US

intel

Notice: This document contains information on products in the design phase of development. The information here is
subject to change without notice. Do not finalize a design with this information.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software, or service
activation. Learn more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages
resulting from such losses.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel
products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted
which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. The
products described may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

This document contains information on products, services and/or processes in development. All information provided here is subject
to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for
a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or
usage in trade.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or

configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your
purchase. For more complete information about performance and benchmark results, visit http://www.intel.com/performance.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and
configurations, may affect future costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or
cost reduction.

Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling and provided to you
for informational purposes. Any differences in your system hardware, software or configuration may affect your actual performance.

Intel is a sponsor and member of the Benchmark XPRT Development Community and was the major developer of the XPRT family of
benchmarks. Principled Technologies is the publisher of the XPRT family of benchmarks. You should consult other information and
performance tests to assist you in fully evaluating your contemplated purchases.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725
or by visiting www.intel.com/design/literature.htm.

Intel, the Intel logo, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others
Copyright © 2023-2025, Intel Corporation. All Rights Reserved.

2 Document Number: 356688-004US, Revision: 1.3

http://www.intel.com/performance
http://www.intel.com/design/literature.htm

Contents

1

13 oo e [¥ T ot f o Y o T 12
1.1 High Level Usage ModelS......ciiiiiiiiiiii it 12
1.2 1S (o] o =P 13
1.3 FANE Lo =T o ol PP 14
1.4 R O CES vttt it e 14
Intel® Resource Director Technology OvervieW......cccocoiiereimininnnnsanaes 15
2.1 (6001 210 110 a T = [« = 15
2.2 Enumeration of Supported Features.......ccoiiiiiiiiiiiiiiiiiiic e 16
2.3 L3 ConfigUrations uuiii i i e e e 16
2.4 Intel® RDT Monitoring TechnNologies......vuvviviiiiiiiiieiiieeeen e 18
2.4.1 Intel® RDT Monitoring Key Ingredients........cccvcveveinirininennnen. 18
2.4.2 Shared-L3 versus Multiple-L3 Configuration..............c.ceene.. 19
2.5 Intel® RDT Allocation Technologiesvuvevviiiiiiiiiiiiiiiieeneee 20
2.5.1 Intel® RDT Allocation Key Ingredients........ccocvveinininiiiiinennns 20
2.5.2 Shared-L3 versus Multiple-L3 Configuration.............c.cocoeveis 21
Intel® Resource Director Technology for CPU Agents......cccccveinnnnranees 23
3.1 Intel® RDT Monitoring FEAtUreS....uvviuiiiiiiieiiii e ee e 23
3.1.1 Common FrameworKioviieeiiiiiie i i aae e nae s 23
3.1.2 Memory REGIONS ...iiiiiiii i i i e eee s e e neeas 25
3.1.3 Cache Occupancy Monitoring Technologyc.cciviiiiiiiinnnn. 26
3.1.4 Memory Bandwidth Monitoring.......c.ccoviiiiiiiii e 26
3.2 Intel® RDT Allocation FEAtUIEScvvviuiiiiii e e e, 27
3.2.1 Common FrameWoOrK ...oivieeiieiiiieiieiiernernerneennsnnsnnennsanenneenes 27
G T2 /=1 g Yo YA 2 =T | 1o o 1= PP 28
3.2.3 Cache Occupancy Allocation Technologiesc.ccvvivvinnnnn. 29
3.2.4 Memory Bandwidth Allocationcciiiiiiiiiiiiii e 30
3.2.5 Cache Bandwidth Allocation........ccoiviiiiiiiiiiii e 40
Intel® Resource Director Technology for Non-CPU Agents 44
4.1 INErOdUCEION L e 44
4.2 LTS L = PP 45
4.3 ENUMIEratioN . e 45
4.4 |1 0} (=] o = [ol IO 46
4.5 (6] .91 01970 0 TR =T 1= 48
4.6 I/O Blocks and Channels .uvvieiiiiiiiiiii i i iee e riae e s rnnneernneeennnes 48
4.7 I/0 Block Configuration.....cviiiiiii i e e e 49
4.8 Shared-L3 Configurationcooeiiiiiii e 50
4.8.1 SOftWAre FIOWvieiiiiiiii i s neeneeas 50
4.8.2 Monitoring: Data Flows for RMIDScocviiiiiiiiiiiiiiiiinaenans 51
4.8.3 Allocation: CLOS-based Control Interfaces..........cccvvvvvinnennnn. 52
4.9 CXL-Specific ConsiderationS......ovviiiiii i enaeaens 53
4.9.1 CXL block Interfacing Fundamentalsccooiiiiiiiiiiiinnnns 53
4.9.2 Integrated Accelerators. ..o 53
2 O U = < T < 54

Document Number: 356688-004US, Revision: 1.3 3

intel

BIOS Considerationsccvciviirierrmrsrsmasssssssssssssssessessnssnssnssnssnnsansnnss 58
5.1 Introduction to Enhanced RDT Interfacesccovvviviiniiiiiiiinnnnnnnnns. 58
5.2 ERDT Table Structure Layoutc.oiiiiiiiiiii i aae e 58
5.3 MRRM Table Structure Layoulcovvviiiiiiiiiic e aes 60
5.4 ERDT Table Structure Details......ccvvviiiiiiiiiiiiccnccce e 61
5.4.1 ERDT Structure Format and Field Descriptions 61
5.4.2 Valid ERDT Sub-structure Types.....c.cevvviiiiiiiiiiiiiiiieienaenes 62
5.4.3 Resource Management Domain Description Structure 63
5.4.4 CPU Agent Collection Description Structure.............c.covvivennn. 66
5.4.5 Device Agent Collection Description Structure...................... 66
5.4.6 Cache Monitoring Registers for CPU Agents Description
1) o o] < 68
5.4.7 Memory Bandwidth Monitoring Registers for CPU Agents
Description StruCtUre....coiiiiiii e 69
5.4.8 Memory Bandwidth Allocation Registers for CPU Agents
Description StruCtUre....ooiiiiiiii e 71
5.4.9 Cache Monitoring Registers for Device Agents Description
SEUCEUINE et e 73
5.4.10 I0 Bandwidth Monitoring Registers for Device Agents
Description StruCtUre....coiiiiiii e 74
5.4.11 Cache Allocation Registers for Device Agents Description
SErUCTUNE oo e 77
5.4.12 Fixed-Point 32-bit Format for Correction Factor.................... 78
5.5 Memory Range and Region Mapping (MRRM) Structure Details......... 79
5.5.1 Memory Range Entry (MRE) Structure.........ccoooviiiiiiiiiininnnne. 81
5.6 Architectural Intel® RDT Features for Non-CPU Agents (IRDT).......... 82
5.6.1 RMID/CLOS tagging - ACPI Enumerationcccvivivvinvnnnnnns 83
5.7 Model-Specific Intel® RDT Features for CPU Agentscoevvvvvvinnnen. 94
5.7.1 BIOS Configuration for Resource Aware MBAcevvvenne. 94
6 MMIO Register DescriptionS ..civcciierierierre s s ssanssanssanssanssanssansnnnsns 96
6.1 Enhanced Intel® RDT Register LOCationccvvveviiriririiiiiiiieininenenenen. 96
6.1.1 Software Access to Registersccocviiiiiiiiiiiiiiiiiee 96
6.1.2 Register Attributes ... i 96
6.1.3 Register DesCriptionso.viiiiiiiiiii i 96
6.2 Non-CPU Agent Intel® RDT Register Locationcocvvvvinininnennnns 123
6.2.1 Software Access to Registersccooeviiiiiiiiiiiiiiiiiiciie, 123
6.2.2 Register Descriptions for Non-CPU Agentsc.cooevvvnennnne. 123
7 Programming GUidelinesS ..cuvcuvirirmrmramramrsmssesse s s srassassnssnnsnnsnnsnnsas 126
7.1 Intel® RDT Monitoring Software Flows for CPU Agents................... 126
7.1.1 Intel® RDT Monitoring Software Flows for CPU Agents......... 126
7.1.2 Native OS EnVIironmentsoovviiiiiiiii e ree e ae s 131
7.1.3 Virtualization SCenarios.....ccvivviiiiiiiiiii i iirerereaeeees 131
7.2 Intel® RDT Allocation Software Flows for CPU AgentS..........cocuvunee. 133
7.2.1 Intel® RDT Software Allocation Flows for CPU Agents.......... 133
7.3 Intel® RDT Software Flows for Non-CPU Agents........cccevuvevenenennnnn. 134
7.4 Assembling a Complete View of System Memorycccovviviininnnnn. 135
7.5 Establishing Correlation between the DACD and IRDT tables.......... 145
A Intel® RDT Feature Detailsc...ovceuiimieiimieininnn e 148
4 Document Number: 356688-004US, Revision: 1.3

Figures

intel

A.l Intel® RDT Feature EVOIULIONcvvieiiiiiiiiiec e 148
A.2 Intel® RDT Architectural Features and Supported Products 150
A.3 Intel® RDT Model-Specific Features and Supported Products.......... 154
A.4 Feature Mapping: CPU Agents, Non-CPU Agents in Different L3
CoNfigUIatioNS .. .viiii i 154
A.5 Architectural MSRs used with Intel® RDT Features...........ccccvvuenenns 156
A.6 Model-Specific Registers for Intel® RDT Model Specific Features..... 156
Model-Specific Intel® RDT Features......cccvvmrmrmrmrmrararsnsmsmsmsesasassnsnsnns 157
B.1 Model-Specific Intel® RDT Features for CPU Agents 157
B.1.1 Resource Aware MBA ... 157
B.1.2 Intel® RDT and Sub-NUMA Clustering Compatibility 159
B.1.3 STLB QOS . iiuiiiiiiiiiiiiii ittt 167
B.1.4 L3 Cache Allocation Technologycccoviiiiiiiiiiiiiiiiiiiiienann 169

Figure 2-1. Shared-L3 Configuration System Model and Presence of Intel®

D I =T Y o 1 <1 17
Figure 2-2. Multiple-L3 Configuration System Model and Presence of Intel ®

N I I ==Y o] =P 17
Figure 2-3. Intel® RDT Monitoring — Enabling RMID-Based Monitoring for

Shared RESOUICES ..iiviiiriiieiie i e e e e rar e sareaaneaaneans 18
Figure 2-4. Intel® RDT Allocation - Enabling CLOS-based Allocation for Shared

=] 01U o] PP 20
Figure 3-1. Resource Monitoring IDs (RMIDs) Assignment Flow.................. 24
Figure 3-2. IA32_PQR_ASSOC MSR t0 SEt RMIDcciviiiiiiiiiiiiieienee e 24
Figure 3-3. IA32_QM_EVTSEL and IA32_QM_CTR MSRS.....ccviviriinninennnnnens 25
Figure 3-4. Classes of Service (CLOS) Association FIOWcccvvvviviniinnnnnns 28
Figure 3-5. The IA32_PQR_ASSOC MSR t0 Set CLOSccviviiiiiniininennennens 28

Figure 3-6. A High-Level Overview of the First-Generation MBA Feature...... 32
Figure 3-7. Second Generation MBA, Including a Fast-Responding Hardware

(@00 o o1 = ol PP 35
Figure 3-8. High-Level Overview of the Third Generation MBA Feature........ 37
Figure 3-9. High-Level Overview of the Region Aware MBA..........ccoevvivinnens 38

Figure 3-10. Example of CBA Bandwidth Control between L2 and L3 caches 42
Figure 4-1. Non-CPU Agent Building Atop CPU Agent Intel® RDT Features ... 44
Figure 4-2. The IA32_L3_I0_QOS_CFG MSR for Enabling Non-CPU Agent

|1 = LG U 46
Figure 4-3. Tagging for PCIe and CXL DeVICES......icviviiiiiiiieiieiieinninnennennns 48
Figure 4-4. Mapping of Channels in the I/O Domain (PCle Example)........... 49
Figure 4-5. Mapping of Channels in the I/O Domain (CXL Example)............ 49

Figure 4-6. Resource Monitoring and Control for PCIe and CXL Endpoints.... 50
Figure 4-7. Reuse of the IA32_L3_QOS_MASK_n MSRs for L3 CAT Control .. 53
Figure 4-8. Device Traffic Tagging Model with PCle as the Sole Traffic Path . 54
Figure 4-9. PCle Device Example, with Traffic on a Channel Tagged with an

RMID @nd CLOS ...t ettt e e e e e e e e e e e e enenes 54
Figure 4-10. CXL Example of Device Tagging Model with CXL.IO and
CXL.Cache Traffic Pathscccoiiiiiii e 55

Document Number: 356688-004US, Revision: 1.3 5

intel

Figure 4-11. Example of Controlling Two Different PCle Devices................. 55
Figure 4-12. Example of Controlling a CXL Accelerator........cccovvviiiiiinnnnen. 56
Figure 4-13. Example of Controlling a High-Bandwidth Integrated Accelerator
.. 56
Figure 4-14. MBA to Control a CXL.Mem Pooling Deviceccvvvviiiiiinnnnnnn. 57
Figure 5-1. Top-level Structure of ERDT ACPI Enumeration.............ccccvvue. 60
Figure 5-2. Top-level Structure of MRRM ACPI Enumeration..............couvvvees 61
Figure 5-3. Non-CPU Agent Intel® RDT ACPI Enumerationcccceeueennes 84
Figure 5-4. ACPI Enumeration - Detail of DSS and RCS Structures
Downstream from an RMUDccooviiiiiiiiiiiis s ne e aeeaes 85
Figure 5-5. Mapping from RCS Structures to MMIO Addresses for Per-link
CONEIOl i e 86
Figure 5-6. CXL Enumeration Example with CXL.IO and CXL.Cache Links 86
Figure 6-1. RDT Control Register....cciiiiiiiiiiiiii e 98
Figure 6-2. CMT ReEGISTN ..ttt i i e a e r e a e e annes 99
Figure 6-3. Per Region Per RMID MBM Register........ccvvviiiiiiiiininiiiniinnns, 101
Figure 6-6-4. Interleaved RMID MBM Registerc.covviiiiiiiiiiiiiiniiiinnenn, 103
Figure 6-5. MBA Optimal Bandwidth Register..........ccciiiiiiiiiiiiiiiiiic e, 106
Figure 6-6. Sequential CLOS arrangement in MBA Register...................... 109
Figure 6-7. Minimum MBA Register.....cciiiiiiiiiiiii i e e 109
Figure 6-8. Sequential CLOS arrangement in MBA Register............cocvvvene. 112
Figure 6-9. Maximum MBA Register......cciciiiiiiiiiiiiiiiii e 112
Figure 6-10. Sequential CLOS arrangement in MBA Register.................... 115
Figure 6-11. CMT ReGISTOI c.uiiiiiii it i i e s i r e nineeaaas 115
Figure 6-12. Total I/O Bandwidth Register........cccoiiiiiiiiiiiiiiiiii e, 117
Figure 6-13. I/O Miss Bandwidth Register........c.cccvviiiiiiiiiiii e 119
Figure 6-14. CAT_IO_REG Register.....c.cciiiiiiiiiiiiiiiiicicccccin e 121
Figure 7-1. RMIDs Assigned t0 VCPUScviiiiiiiiiii i 132
Figure 7-2. MRRM, SRAT, HMAT and CEDT Correlationcccccevvinvinnnnn. 136
Figure 7-3. Memory Configuration Examplec.cooiiiiiiiiiiiiiiin i 140
Figure 7-4. SRAT, MRRM Summary HMAT MPD Attribute Structure. 141
Figure 7-5. HMAT System Locality and Bandwidth Information Structure
11811 21 01 1=1 VPP 142
Figure 7-6. Memory Configuration Examplecccooiiiiiiiiiiiiiiiiiiicc e, 142
Figure 7-7. SRAT, MRRM Summary HMAT MPD Attribute Structure. 144
Figure 7-8. HMAT System Locality and Bandwidth Information Structure
118 [0.0 T= Y/ 145

Figure 7-9 shows an example of the RMUD mapping to DSS (device-level) and
RCS (link-level) structures along with ERDT sub-structures. Each
device attached to an I/0 block is described by a DSS, and has one or
more links, with properties described in the RCS structures. The RCS
structures contain pointers to MMIO locations (in absolute address
form, not BAR-relative) to allow software to configure the RMID/CLOS
tags and related properties in an I/O Block.ccooviviiiiiiiiiiiennnns 146

Figure 7-10. IRDT and ERDT ACPI Mapping.coocvieiieiiiiieiniiiennennnennennenns 146

Figure 7-11. High-Level Overview of the Resource Aware MBA (MBA 4.0).. 158

Figure 7-12. The MBA_CFG MSR for Enabling Resource Aware MBA Feature

Figure 7-13. Default Mode Demonstrating SNC-4 and RMID Distribution ... 161

Document Number: 356688-004US, Revision: 1.3

Tables

intel

Figure 7-14. The RMID_SNC_CONFIG MSR for Enabling RMID Sharing Mode

.. 161
Figure 7-15. RMID Sharing Mode Demonstrating SNC-4 and RMID Distribution

.. 162
Table 0-1. GlOSSAIY uitiitiitiitiii ittt st et e s s aaearaaseaneaneaneanens 10
Table 1-1. Re @M CES vttt e et s e aneaneanens 14
Table 3-1. MBA_CFG MSR Definitionoovviiiiiiiiiiirivsesseenennennennennennens 36
Table 5-1. Enhanced Resource Director Technology (ERDT) Top-Level ACPI

1) o 8 o o B < PP 61
Table 5-2. Valid ERDT Sub-structure TYPES ...icciiiiiiiiiiiiiiiiiiiiiinieeeeeaea 62
Table 5-3. Resource Management Domain Description (RMDD) Structure.... 63
Table 5-4. Valid Sub-structure Types within the scope of an RMDD............. 65
Table 5-5. CPU Agent Collection Description (CACD) Structure................... 66
Table 5-6. Device Agent Collection Description (DACD) Structure............... 66
Table 5-7. Device Agent Scope Entry (DASE) Structure.........ccovviiiiininnnns 67
Table 5-8. Cache Monitoring Registers for CPU Agents Description (CMRC)

1) o 8 o o B < PP 68
Table 5-9. Memory Bandwidth Monitoring Registers for CPU Agents

Description (MMRC) StrUCtUM ... cviiii i e e 70
Table 5-10. Memory Bandwidth Allocation Registers for CPU Agents

Description (MARC) SErUCEUIe ...oviiiii e 71
Table 5-11. Cache Monitoring Registers for Device Agents Description (CMRD)

1)1 8 B <P 73
Table 5-12. IO Bandwidth Monitoring Registers for Device Agents Description

(IBRD) SErUCEUIE ..t ae e aes 74
Table 5-13. Cache Allocation Registers for Device Agents Description (CARD)

1515 8 o B <P 77
Table 5-14. Memory Range and Region Mapping (MRRM) Structure............. 80
Table 5-15. Memory Range Entry (MRE) Structure........ccccoiiiiiiiiiiiinnnnnns 81
Table 5-16. IRDT Table Format (Variable Length)........ccoiviiiiiiiiiinens 87
Table 5-17. RMUD Table Format (Variable length)ccocviiiiiiiiinns 88
Table 5-18. DSS Table Format (Variable length).......ccooviiiiiiiiins 90
Table 5-19. RCS Table Format (v1, Currently 40B) ...covvviriiiiiiiiiiiieieeaens 91
Table 5-20. RCS Table Format (v2, Currently 40B) ...c.ovviiriiiiiiiiiiiieneeaens 92
Table 6-1. Register Attributes Definitionscccvviiiiiiiiiii e 96
Table 6-2. Memory-Mapped Register Block Referencecccovvviviivinnnnns 97
Table 6-3. MMIO Table Format....ccoiviiiiiiiii i e aees 124
Table 7-1. Example CMT and MBM Counter Valuescccocviiiiiiiiiiinnnnn 130
Table 7-2. ACPI Table Cross-Referenceooviiiiiiiiiiii i i ceaee 138
Table 7-3. High-level software component responsibilities 139
Table 7-4. IRDT and ERDT ACPI Mapping. c.ccciveiiiiiiiieiiniieninnineinennennennenns 146
Table 7-5. SNC Enabled and RMID Distribution Mode Summary................ 163
Table 7-6. Local and Total Count Incrementccociiiiiiiiiiiiiie e, 166

Document Number: 356688-004US, Revision: 1.3 7

intel

Table 7-7. Local and Total Bandwidth Example........cccoiiviiiiiiiiiniii i, 166
Table 7-8. STLB QoS Enumeration in IA32_CORE_CAPABILITIES MSR 168
Table 7-9. STLB_QOS_INFO MSR Definitioncccooviiiiiiiiiii i 168
Table 7-10. STLB_QOS_MASK_N MSR Definitionccvoeviiiiiiiiiiiiennenn, 169
Table 7-11. STLB_FILL_TRANSLATION MSR Definitionccocvvvveiiinninnnnns 169
Table 7-12. Processor support liSt ...oiviiiiiiii i e 170

Document Number: 356688-004US, Revision: 1.3

Revision History

intel

?qivniﬁ;:': Description Date

1.0 Initial release of the document. September 2023

1.1 Adding details of hardware feature support in future Intel Processors January 2025

1.2 Minor clarifications & discussion of Hybrid CPUID enumeration and March 2025
feature interactions

1.3 Added details about assembling a complete view of system memory, December 2025
and usage of features introduced on future Intel Processors, with
certain minor clarifications

Document Number: 356688-004US, Revision: 1.3

intel
Glossary

Table 0-1. Glossary

Acronym Term Description
ACPI Advanced Configuration Advanced Configuration and Power Interface is an
and Power Interface open standard that operating systems can use to
discover and configure computer hardware
components, to perform power management, auto
configuration, and status monitoring.

CAT Cache Allocation Software-guided redistribution of cache capacity is

Technology enabled by CAT, enabling important data center VMs,
containers or applications to benefit from improved
cache capacity and reduced cache contention. CAT
may be used to enhance runtime determinism and
prioritize important applications.

CDP Code and Data As a specialized extension of CAT, Code and Data

Prioritization Prioritization (CDP) enables separate control over
code and data placement in the L2 cache and the
last-level (L3) cache. Certain specialized types of
workloads may benefit with increased runtime
determinism, enabling greater predictability in
application performance.

CH Channel An I/0 device channel, used to communicate between
a device and an I/O Block and onto the coherent
fabric.

CLOS Class(es) of Service A fundamental tag in RDT used for resource controls

- Clump A group of associated register fields within a larger
register space (such as a 4KB page)

CMT Cache Monitoring Monitors the last-level cache (L3) utilization by

Technology individual threads, applications, or Virtual Machines,
CMT improves workload characterization, enables
advanced resource-aware scheduling decisions, aids
“noisy neighbor” detection and improves performance
debugging.

ERDT Enhanced RDT An ACPI object (ERDT) which defines details about
Region Aware MBA and MBM

- Hybrid Term used to refer to processors supporting more
than one logical processor type, potentially with
differing feature support or attributes details

Intel® RDT Intel® Resource Director | Intel® RDT is the “umbrella” technology name for

Technology Intel’s Platform Quality of Service technologies,
including CPU Agents and Non-CPU Agents.

1/0 Intel® 1/0 Device Intel® Intel RDT technologies specifically focusing on I/O

Resource Resource Director devices including PCIe, CXL and integrated

Director Technology accelerators. Enumerated through the ACPI IRDT

Technology object.

(Intel® RDT)

MBA Memory Bandwidth MBA enables approximate and indirect control over

Allocation memory bandwidth available to workloads, enabling
new levels of interference mitigation and bandwidth
shaping for “noisy neighbors” present on the system.

10

Document Number: 356688-004US, Revision: 1.3

intel

Acronym

Term

Description

MBM

Memory Bandwidth
Monitoring

Multiple VMs or applications can be tracked
independently via Memory Bandwidth Monitoring
(MBM), which provides memory bandwidth monitoring
for each running thread simultaneously. Benefits
include detection of noisy neighbors, characterization
and debugging of performance for bandwidth-
sensitive applications, and more effective non-uniform
memory access (NUMA)-aware scheduling.

MMIO

Memory Mapped I/0

I/0 Intel RDT defines a series of MMIO-mapped
interfaces to enable association of I/O devices to
RMIDs and CLOS for monitoring and control.

MRRM

Memory Range and
Region Mapping

An ACPI object which describes memory regions, used
with Enhanced RDT (ERDT) and other features.

PQR

PQR

A shorthand for the IA32_PQR_ASSOC MSR, which
associates IA threads to RMID and CLOS tags.

RMD

Resource Management
Domain

A set of features defined within a particular cache
domain, such as an L3 cache supporting a number of
logical processors.

RTD

Resource Telemetry
Domain

A Resource Management Domain within which one or
more resource monitoring (telemetry) controls are
supported

RAD

Resource Allocation
Domain

A Resource Management Domain within which one or
more resource allocation controls are supported

RMID

Resource Monitoring ID(s)

A fundamental tag used for resource monitoring in
Intel RDT.

SoC or SOC

System-on-Chip

An integrated chip composed of host processors,
accelerators, memory, and I/O agents.

TC

Traffic Class

A PCI Express feature that allows differentiation of
transactions to apply appropriate servicing policies.

VvC

Virtual Channel

A PCI Express feature for differential bandwidth
allocation. Virtual channels have dedicated physical
resources (buffering, flow control management, and
so on) across the hierarchy.

VMM

Virtual Machine Monitor

A software layer that controls virtualization.

Document Number: 356688-004US, Revision: 1.3

11

intel

1

Introduction

1.1

This document defines the architecture of the Intel® Resource Director
Technology (Intel® RDT) feature set. The goal of Intel RDT is to bring new
levels of monitoring and control over how shared platform resources such as
last-level cache (L3) and main memory (typically DRAM) bandwidth are utilized
by CPU Agents and non-CPU Agents. The monitoring and allocation are not
necessarily applied across the entire system but are applied to a Resource
Management Domain (RMD) which corresponds to a set of agents sharing a set
of system resources, such as L2 cache capacity, L3 cache capacity, memory
bandwidth, and I/O devices. A Resource Management Domain (RMD) consists
of a collection of CPU agents or non-CPU agents. The set of CPU agents consist
of one or more logical processors associating an RMID and/or CLOS tag with a
software thread. Non-CPU agents include PCI Express* (PCle*)/Compute
Express Link (CXL)* devices and integrated accelerators, thus broadly
encompassing the set of agents which read from and write to either caches or
memory, excluding IA cores.

The Intel RDT feature set provides a series of monitoring and allocation
capabilities such as Cache Monitoring Technology (CMT), Memory Bandwidth
Monitoring (MBM), Cache Allocation Technology (CAT), Code and Data
Prioritization (CDP), Memory Bandwidth Allocation (MBA) and others. These
technologies enable monitoring and control of shared platform resources, such
as the L3 cache capacity or main memory bandwidth, which may be in use by
many applications, containers or VMs running on the platform concurrently. As
described in subsequent chapters, these features enable deterministic behavior
and fairness in communications, real-time and other usages, and are initially
introduced in Section 1.3.

The Intel RDT features are based on a set of architectural tags, described in the
following section, and fundamental capabilities for enabling monitoring and
control over shared platform resources under the control of an operating
system (OS) or virtual machine monitor (VMM), as described in the chapter on
Reference Software Architecture.

High Level Usage Models

A wide variety of industry deployment models find value in either enhanced
visibility into system resource utilization, or control over shared resources. As a
result, a broad set of customer usage models are observed with Intel RDT,
including but not limited to:

e Cloud Hosting in the datacenter - Prioritizing important Virtual
Machines (VMs) and containing or mitigating “noisy neighbors”.

e Public/Private Cloud - Isolating an important infrastructure VM which
provides networking services such as a VPN to bridge the private cloud to
the public cloud.

12

Document Number: 356688-004US, Revision: 1.3

intel

Datacenter Infrastructure - Protecting virtual switches which provide
local networking.

Communications - Ensuring consistent performance and containing
background tasks on a network appliance built atop an Intel® Xeon® Server
Platform.

Content Delivery Networks (CDNs) - Prioritizing key parts of the
content serving application in order to improve throughput.

Networking - Containing the impact of consolidated or co-located
containers to help reduce jitter and reduce packet loss in noisy scenarios,
and protecting high-performance applications based on the Dataplane
Development Kit (DPDK).

Industrial Control and Robotics - Prioritizing important sections of code
to help meet real-time requirements.

Varying usage models drive differing requirements. Datacenter usages may
require control over relative container prioritization and management of tail
latencies, for instance, while industrial control usages may require strict
management of control loop cycle times, including the use of model-specific
extended Intel RDT features. A humber of example use cases are described in
more detail based on abstracted examples of real-world deployments in the
chapter on Reference Software Architecture.

1.2 Scope

Broadly, this document discusses the following topics:

An introduction to key Intel RDT architectural concepts and design
philosophy.

Details of architectural Intel RDT monitoring and allocation features for CPU
agents and non-CPU agents.

Details of model-specific Intel RDT monitoring and allocation features for
CPU agents and non-CPU agents.

Considerations for BIOS writers, and those consuming ACPI enumeration
tables generated by BIOS.

An overview of various real-world software usages of Intel RDT features
that have been observed, and recommended software enabling strategies.

The following topics are not covered (or are covered in a limited context):

Intel RDT for CPU Agents and non-CPU Agents architectural details -
feature enumeration and interfaces using CPUID and configuration using
MSRs. These details are provided in the Intel® 64 Architecture Software
Developer’s Manual (SDM), Volume 3B, Chapter Title: Debug, Branch
Profile, TSC, and Intel® Resource Director Technology (Intel® RDT)
Features [1], and the document entitled Intel® Architecture Instruction Set
Extensions and Future Features [2], as applicable.

Document Number: 356688-004US, Revision: 1.3 13

intel.
1.3 Audience

The intended audience for this specification includes Intel RDT consumers,
users and implementers, across OS/VMM software, resource management
driver and control loop developers, administrators, managers of datacenter
infrastructure, workload owners and embedded and communications
developers. Additionally, this specification may be of interest to those
developing utilities, BIOS routines, administrative libraries and orchestration
frameworks.

1.4 References

Table 1-1. References

Description

[1] Intel® 64 and IA-32 Architectures Software Developer’s Manual.
Volume 3B, Chapters 18.18 and 18.19.
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html

[2] Intel® Architecture Instruction Set Extensions and Future Features.
Instruction Set Architecture (intel.com)

[3] Intel® Virtualization Technology for Directed I/O Specification.

http://www.intel.com/content/www/us/en/embedded/technology/virtualization/vt-directed-io-
spec.html

[4] Unified Extensible Firmware Interface Forum - Links to ACPI-Related Documents (incudes
IRDT table title and signature).

https://uefi.org/acpi

[5] PCle Express Specification, v5.0 or newer.
https://pcisig.com/specifications

[6] Compute Express Link Specification, v1.0 or newer.
https://www.computeexpresslink.org/download-the-specification

[7] User space software for Intel® Resource Director Technology
https://github.com/intel/intel-cmt-cat

[8] ACPI Software Programming Model

https://uefi.org/htmlispecs/ACPI Spec 6 4 html/05 ACPI Software Programming Model/ACPI
Software Programming Model.html#system-resource-affinity-table-srat

[9] Intel® Platform Monitoring Technology (Intel® PMT) - External Specification
https://www.intel.com/content/www/us/en/content-details/710389

14 Document Number: 356688-004US, Revision: 1.3

https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/tools/isa-extensions/overview.html
http://www.intel.com/content/www/us/en/embedded/technology/virtualization/vt-directed-io-spec.html
http://www.intel.com/content/www/us/en/embedded/technology/virtualization/vt-directed-io-spec.html
https://uefi.org/acpi
https://pcisig.com/specifications
https://www.computeexpresslink.org/download-the-specification
https://github.com/intel/intel-cmt-cat
https://uefi.org/htmlspecs/ACPI_Spec_6_4_html/05_ACPI_Software_Programming_Model/ACPI_Software_Programming_Model.html#system-resource-affinity-table-srat
https://uefi.org/htmlspecs/ACPI_Spec_6_4_html/05_ACPI_Software_Programming_Model/ACPI_Software_Programming_Model.html#system-resource-affinity-table-srat
https://www.intel.com/content/www/us/en/content-details/710389

intel

2 Intel® Resource Director
Technology Overview

This chapter provides an overview of Intel® RDT features, including goals, key
ingredients, and the architectural framework, which are discussed in more
detail in the chapters that follow.

2.1 Common Tags

Intel RDT provides a layer of abstraction between applications and logical
processors through the use of numeric tags. Both CPU agents and non-CPU
agents use the following tags for resource monitoring and allocation,
respectively:

e Resource Monitoring IDs (RMIDs) are used for monitoring of shared
platform resource utilization.

e Classes of Service (CLOS) are used for control of shared platform
resources, such as L3 cache occupancy or memory bandwidth.

The RMID and CLOS tags are described in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3B. RMID and CLOS tags
are independent. Usage of RMID tags does not affect CLOS, and vice versa
(however, when CLOS tags are used to affect resource allocations, the effects
may be observed with RMID-based monitoring features.) An RMID-based
monitoring feature does not incur hardware overhead or affect a CLOS-based
allocation feature. A product may be built to implement RMID-based monitoring
features, CLOS-based control features, or both.

For CPU agents, RMIDs and CLOS tags are associated with the operation of a
logical processor through the IA32_PQR_ASSOC MSR.

For non-CPU agents, a series of MMIO interfaces is used to associate upstream
traffic from I/O devices with RMID and CLOS tags, and the numerical
interpretation of the tags is the same as for processor traffic. (For example, the
RMID value “5” used to track processor thread resource consumption means
the same thing as when the RMID value “5” is used to track the cache fill
behavior of a PCle device.) These MMIO interfaces for tagging non-CPU agents
are discovered using an ACPI structure called I/0O Intel RDT, that is, IRDT. (See
Chapter 5.)

Other features may utilize RDT tags, such as Resource Monitoring IDs, to track
and report other telemetry events in the processor. Examples include per-RMID
telemetry available both in-band and out-of-band as specified in the Intel®
Platform Monitoring Technology (Intel® PMT) specification [9] and associated
platform-specific telemetry events lists.

Document Number: 356688-004US, Revision: 1.3 15

intel

2.2

2.3

Enumeration of Supported Features

Software enumeration of supported RDT features is enabled through the CPUID
instruction for CPU-centric features, and through the Advanced Configuration
and Power Interface (ACPI) for platform-centric features.

Further enumeration details of CPUID-enumerated features, including Hybrid
processor support, are provided in the Intel® 64 Architecture Software
Developer’'s Manual (SDM), Volume 3B, Chapter Title: Debug, Branch Profile,
TSC, and Intel® Resource Director Technology (Intel® RDT) Features [1] and
the document entitled Intel® Architecture Instruction Set Extensions and
Future Features [2], as applicable.

Details on ACPI-enumerated features are provided in subsequent sections of
this document.

L3 Configurations

This specification describes two types of high level L3 configurations that may
support Intel RDT features:

1. Shared-L3 Configuration: There is a common shared L3 cache for all
the agents in the SoC, as shown in Figure 2-1. This SoC configuration
supports interfaces for Intel RDT features based on the CPUID instruction
for feature enumeration and Model-Specific Registers (MSRs) for feature
configuration and telemetry retrieval.

16

Document Number: 356688-004US, Revision: 1.3

intel

Figure 2-1. Shared-L3 Configuration System Model and Presence of Intel® RDT

Features
Multi-Core Processor
-
Core O Core 1 Coren
[Private L2 !] [Private L2!] | Private L2 °
N\
I I
-
Shared Interconnect Shargd
10 Devices
N 1 °
(L]
L3 Cache
A t ° A
s T ~
Shared Memory Bandwidth
[]
A A

® System Components that Supportintel® RDT Features

2. Multiple-L3 Configuration: There may be more than one L3 cache
instances that are local to CPU Agents or non-CPU Agents respectively, as
shown in Figure 2-2.

Figure 2-2. Multiple-L3 Configuration System Model and Presence of Intel ® RDT
Features

Shared
10 Devices

L3 Cache
L]

f

Core 0

L3 Domain 0

Core 1

N '

Core 0

Coren

L3 Domain N

Core 1

™~

Coren

~N s ~N
Shared Interconnect Shared Interconnect
> 1 N i J
4 i ™ 4 ! ™
L3 Cache L3 Cache
\ . L °
/ -

Shared

10 Devices

Shared Memory Bandwidth

L3 Cache °

® System Components that Supportintel® RDT Features

A set of features defined within a particular cache domain, such as an L3 cache
supporting a number of logical processors, may be referred to as a Resource

Document Number: 356688-004US, Revision: 1.3

17

intel

2.4

2.4.1

Telemetry Domain (RTD, for monitoring features) or a Resource Allocation
Domain (RAD, for allocation features). More generally, a resource which
supports Intel RDT monitoring features, allocation features or both may be
referred to as a Resource Management Domain (RMD).Figure 2-2 shows an
example of multiple RMDs.

In Shared-L3 configurations RMIDs and CLOS are shared and uniform from the
perspective of all processors in that domain. In Multiple-L3 configurations,
RMIDs and CLOS have scope defined and enumerated independently within
each domain. In this case, behavior for interactions of RMIDs and CLOS across
independent domains is model-specific.

Refer to Section A.4 for specific examples.

See Appendix A.4 for Intel RDT feature mapping for CPU agents and non-CPU
agents in different SoC configurations.

Intel® RDT Monitoring Technologies

Intel® RDT Monitoring Key Ingredients

Intel RDT Monitoring enables monitoring shared platform resources, such as L3
cache occupancy and memory bandwidth, based on software-defined Resource
Monitoring IDs (RMIDs) that are tagged to applications or VMs on a per-thread
basis (Figure 2-3). For CPU Agents, each logical processor exposes the
IA32_PQR_ASSOC MSR to allow the OS/VMM to specify an RMID when an
application, thread or VM is scheduled on a core.

Resource monitoring for the indicated application/thread/VM is then performed
by hardware based on the RMID with which it is associated, and software can
read back the L3 cache occupancy for a given RMID via counter registers (if the
CMT feature is supported for instance). Each thread of an application may be
tracked with a distinct RMID, or threads may be grouped into a single RMID,
based on the granularity of monitoring required. Threads within a VM, apps
within a VM, entire VMs or groups of VMs can similarly be tracked with RMIDs
with variable granularity as needed.

Figure 2-3. Intel® RDT Monitoring — Enabling RMID-Based Monitoring for

Shared Resources

Expose pool of
RMIDs per Resource OSNMM OSNMM
(Shared LLC and memory

) bandwidth etc.) (2) | RMID assignment 3) | Metrics (Shared cache

(Example: each SW thread occupancy and memory

Enumerates supported ~ CPU agents) bandwidth per RMID)
events and details \d

Platform Platform Platform

18

Document Number: 356688-004US, Revision: 1.3

intel

e CPUID and/or ACPI constructs to indicate support for Intel RDT Monitoring
and sub-features (CMT, MBM, and so on) for Resource Telemetry Domains
(RTD).

e Enumeration of the total number of RMIDs that can be tracked in the given
RTD.

The basic ingredients of Intel RDT Monitoring are as follows:

e Mechanisms to allow system software (OS/VMM) to specify the RMID of
software threads and non-CPU agents.

e Mechanisms to allow system software to retrieve collected metrics on a
per-RMID basis via architectural MSRs or MMIO interfaces.

The first ingredient to make use of Intel RDT Monitoring is to enumerate the
set of monitoring capabilities provided on the given Resource Management
domain via CPUID or ACPI and determine the number of RMIDs available for
tracking on a particular Resource Telemetry Domain (RTD, that is, caching
domain). This will allow the OS/VMM to determine how many unique IDs it may
use. Given that certain processor topologies may include heterogenous
capabilities which vary per-processor, it is recommended that software
enumerate Intel RDT CPUID leaves from the perspective of each logical
processor (LP) to construct the list of supported capabilities and which
resources (such as L3 cache) may be shared among various LPs.

The second ingredient (Intel RDT Monitoring association) allows the OS/VMM to
specify the RMID of the running software thread to the platform for CPU
agents. The OS/VMM can also specify the RMID for upstream traffic and
operation of non-CPU agents.

The third ingredient (Intel RDT marking and associated hardware support)
enables each memory request from the CPU agents and non-CPU agents to be
tagged with the RMID provided by the OS/VMM.

The fourth ingredient is Intel RDT Monitoring reporting. When the monitoring
data retrieval register is programmed with the RMID and the specific event
code of interest (L3 Cache Occupancy for example), this information is
appropriately retrieved and provided back.

Multiple Intel RDT Monitoring features may exist within a platform, but the
software should not assume that the presence of one Intel RDT Monitoring
feature implies the existence of any others. Intel RDT features are
independently enumerated in the sequence described in the Intel® 64 and IA-
32 Architectures Software Developer’'s Manual, Volume 3B, Section 18.18.4, in
order to avoid ambiguous situations.

2.4.2 Shared-L3 versus Multiple-L3 Configuration

Intel RDT Monitoring features may have different scope definitions depending
on L3 configuration. With the shared-L3 configuration, CPU agents and non-
CPU agents allocate into a shared L3 cache. Hence, all monitoring features
have a consistent definition for CPU agents and non-CPU agents.

Document Number: 356688-004US, Revision: 1.3 19

intel

2.5

2.5.1

With the multiple-L3 configuration, non-CPU agents may have a separate
nearby L3 cache which is distinct from CPU agents’ L3 cache. Hence,
monitoring features may have different definitions for CPU agents and non-CPU
agents. For example, in certain implementations, non-CPU agents with a near
L3 cache implementation may report memory bandwidth monitoring data from
the near cache only.

Intel® RDT Allocation Technologies

Intel® RDT Allocation Key Ingredients

Intel RDT Allocation enables resource allocation based on Class of Service
(CLOS) tags. The processor exposes Classes of Services into which applications
(or individual threads) and traffic from I/O devices may be assigned. A CLOS
may have multiple associated resource allocation properties. For example,
there may exist controls for each CLOS to specify L2 capacity available to that
CLOS, L3 capacity available, memory bandwidth available, and other properties
(Figure 2-4).

In the case of L3 capacity control features, for instance, such as Cache
Allocation Technology (CAT), the cache allocation for a given thread is
restricted based on the class with which they are associated. Similarly, in
certain implementations supporting non-CPU agent controls, context-associated
and upstream traffic from I/O devices may be controlled as it utilizes shared
system resources. Each CLOS can be configured using bitmasks which
represent capacity, and the degree of overlap and isolation between classes in
allocation features which influence the SOC caches.

For CPU agents, each logical processor exposes the IA32_PQR_ASSOC MSR to
allow the OS/VMM to specify a CLOS when an application, thread or VM is
scheduled. Cache Allocation for the application/thread/VM is then controlled
based on the CLOS and the associated bitmask.

Figure 2-4. Intel® RDT Allocation - Enabling CLOS-based Allocation for Shared

Resources
Expose pool of
CLOSs per Resource 0S/VMM 0S/VMM
(Shared LLC and memaory T
) bandwidth etc.) (2) | cLOS assignment (3) | Resource Allocation
(Example: each SW thread Control (Per CLOS)
Enumerates suppo.rted —CPU agents)
resources and details
Platform Platform Platform

The basic ingredients of Intel RDT Allocation are as follows:

20

Document Number: 356688-004US, Revision: 1.3

2.5.2

intel

e CPUID or ACPI constructs to indicate whether Intel RDT Allocation and sub-
features (CAT, MBA, and so on) for Resource Allocation Domains (RADs)
are supported and enumerate the total number of CLOS that may be
associated to shared platform resources on the platform.

e Mechanisms to allow system software (0OS/VMM) to specify the CLOS of
software threads and non-CPU agents.

e Mechanisms to allow system software to configure the shared platform
resource levels available to each CLOS via architectural MSRs or MMIO
interfaces.

The first ingredient to make use of Intel RDT Allocation is to enumerate the
level of allocation capability provided on the given Resource Allocation Domain
via CPUID and/or ACPI and determine the number of CLOSs available for
allocating shared platform resources on a particular RAD (that is, a certain L3
caching domain). This will allow the OS/VMM to determine how many unique
IDs it may use. Given that certain processor topologies may include
heterogenous capabilities which vary per-processor, it is recommended that
software enumerate Intel RDT CPUID leaves from the perspective of each
logical processor (LP) to construct the list of supported capabilities and which
resources (such as L3 cache) may be shared among various LPs.

The second ingredient (Intel RDT Allocation association) allows the OS/VMM to
specify the CLOS of the running software thread to the platform for CPU
agents. The OS/VMM can also specify the CLOS for upstream traffic and
operation of non-CPU agents.

The third ingredient (Intel RDT marking and associated hardware support)
enables each memory request from CPU agents and non-CPU agents to be
tagged with the CLOS provided by the OS/VMM.

The fourth ingredient is Intel RDT Allocation control, when the allocation
register is programmed with the CLOS and allocation control is performed by
the specific shared platform resource (L3 Cache capacity for example).

Multiple Intel RDT Allocation features may exist within a platform. The software
should not assume that the presence of one RDT Allocation feature implies the
existence of any others. Intel RDT features are independently enumerated in
the sequence described in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3B, in order to avoid ambiguous situations.

Shared-L3 versus Multiple-L3 Configuration

Intel RDT Allocation features may have different definitions depending on L3
configuration. With the shared-L3 configuration, CPU agents and non-CPU
agents allocate into a shared-L3 cache. Hence, all allocation features have a
consistent definition for CPU agents and non-CPU agents. With the multiple-L3
configuration, non-CPU agents may have a separate near L3 cache which is
different from the CPU agents’ L3 cache. Hence, allocation features may have
different definitions for CPU agents and non-CPU agents. For example, non-CPU
agents with a near L3 cache implementation provide separate interfaces for
cache capacity allocation for the near L3 cache.

Document Number: 356688-004US, Revision: 1.3 21

intel.

Chapter 3 and Chapter 4 provide details about each Intel RDT Monitoring and
Allocation features for CPU agents and non-CPU agents.

§

22 Document Number: 356688-004US, Revision: 1.3

intel

Intel® Resource Director
Technology for CPU Agents

3.1

3.1.1

This chapter contains an overview of the Intel RDT features for CPU agents.
Chapter 4 describes details about features for non-CPU agents.

Intel® RDT Monitoring Features

The Intel RDT Monitoring architecture enables monitoring of the utilization level
of critical shared platform resources and provides this data directly to the
Hypervisor, Operating System or other privileged software. Intel RDT
Monitoring supports three event codes: 1) L3 cache occupancy 2) L3 Total
External bandwidth 3) L3 Local External bandwidth. This allows more efficient
scheduling based on resource use, as well as application tuning and
performance prediction based on resource use characterization, and optionally
better reporting and billback. This functionality complements Intel RDT
Allocation, which provides control over shared platform resources available to
CPU agents.

Common Framework

The following mechanisms are shared by Intel RDT Monitoring features:

e CPUID feature bits to enumerate the presence of the Intel RDT Monitoring
capabilities and the details of each sub feature.

e The IA32_PQR_ASSOC MSR, which the OS or Hypervisor uses to specify
the RMID for each software thread scheduled to run on a logical processor.
See Figure 3-2.

e The IA32_QM_EVTSEL and IA32_QM_CTR MSRs, to read cache occupancy
and bandwidth statistics. See Figure 3-3.

Software may flexibly associate RMIDs with threads, applications, VMs, or
containers. (See Figure 3-1). If multiple logical processors within a Resource
Telemetry Domain (RTD) are assigned the same RMID, the total resource
monitoring telemetry by these logical processors will be accumulated together
and the total reported by hardware.

Monitoring data is retrieved using a window-based interface. Software writes
an event ID and RMID to the IA32_QM_EVTSEL MSR and hardware provides
the resulting data back in the IA32_QM_CTR MSR.

Refer to Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B, for details on CPUID and MSR usage.

Document Number: 356688-004US, Revision: 1.3 23

intel

Figure 3-1. Resource Monitoring IDs (RMIDs) Assignment Flow

Threads(s)) ' VM(s) '

Flexible N:M Mapping
(Orchestrater, administrator or OS/VMM assigned)

\ l /

Resource Monitoring IDs (RMIDs)
(Logical Construct)

l

Hardware Monitor Resource utilization per RMID

Figure 3-2. IA32_PQR_ASSOC MSR to Set RMID

Privileged Software

IA32_PQR_ASSOC MSR (64b length)

63 32 |31 0

Reserved CLOS Field Reserved RMID Field

Width of IA32_PQR_ASSOC.RMID: Log, ((CPUID.(EAX=0FH, ECX=0H).EBX[31:0]) + 1)
Width of IA32_PQR_ASSOC.CLOS: Log, ((CPUID.(EAX=10H, ECX=2H)EDX[15:0]) + 1)

Thread-Scope MSR to set RMID

24 Document Number: 356688-004US, Revision: 1.3

intel

Figure 3-3. IA32_QM_EVTSEL and IA32_QM_CTR MSRs

Privileged Software

IA32_QM_EVTSEL MSR (64b length) IA32_QM_CTR MSR (64b length)
63 32131 0ol 63 62 61 60 0
Reserved RMID Reserved Event ID E|U]O Resource Monitoring Data
RMID Field Width: Event ID Field Width: 8b Bit E=0,U=0 and 0=0 Resource Monitoring Data: 62b field
Matches IA32_PQR_ASSOC if datais valid.

Package-Scope MSRs to retrieve data

3.1.2 Memory Regions

Certain processors support a system-level enumeration of Memory Regions,

which are part of the common infrastructure defined by the RDT feature set.
Other feature sets may also make use of the Memory Region definition which
RDT establishes.

A Memory Region is defined as comprising one or more physically-addressed
memory ranges. Certain processors support a system-level enumeration of
Memory Regions.

Multiple Memory Regions may be defined by the platform to independently
describe physical addresses backed by a particular type of memory, which may
exhibit varying capacity, latency, bandwidth, and locality characteristics.
Examples includes DRAM or CXL-attached memories, whether attached locally
or to a different processor over a coherent interconnect link.

The Memory Regions populated on a particular processor are described by the
system BIOS in the ACPI Memory Range and Region Mapping (MRRM) table,
which is described in Chapter 5, BIOS Considerations. This information may be
combined with other ACPI tables, such as HMAT, SRAT and CEDT, to gain more
insight regarding memory types connected to a certain processor.

For a modern platform, it becomes advantageous for the processor to provide a
capability to directly measure and allocate memory bandwidth across these
multiple memory regions simultaneously. Such processor capabilities, when
enabled, allow software to gather usage telemetry, adjust Memory Bandwidth
Allocation (MBA) policies, and build control loops to ensure performance goals
are met. As described below, Intel provides these capabilities as Region-Aware
Memory Bandwidth Monitoring and Allocation which are described in their
respective sections.

Document Number: 356688-004US, Revision: 1.3 25

intel

3.1.3

3.1.3.1

3.1.4

3.1.4.1

3.1.4.2

Cache Occupancy Monitoring Technology

Intel RDT Cache Occupancy Monitoring Technologies provide visibility into
cache utilization. Features such as Cache Monitoring Technology (CMT) provide
occupancy counters on a per-RMID basis such that cache occupancy by each
RMID may be tracked and read back in real-time during system operation.

More specific feature details about CMT are provided in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3B. Note that the MSRs are
listed in Appendix A.5. See Appendix A.2 for CMT feature supported product
details.

L3 Cache Monitoring Technology

L3 Cache Monitoring Technology (CMT) allows an Operating System, Hypervisor
or similar system management agent to determine the usage of L3 cache of
the Resource Telemetry Domain (RTD) by applications running on the platform.

Memory Bandwidth Monitoring

Memory Bandwidth Monitoring (MBM) provides monitoring of bandwidth from
one level of the cache or resource hierarchy to the next, allowing bandwidth-
aware scheduling decisions, inter-RTD scheduling optimization, and enabling
feedback to bandwidth allocation features which allow control over memory
bandwidth.

More specific feature details about MBM are provided in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3B. Note that the MSRs are
listed in Appendix A.5. See Appendix A.2 for MBM feature supported product
details.

L3 Total and Local External Memory Bandwidth Monitoring

L3 Total and Local External Memory Bandwidth Monitoring allows system
software to monitor the use of bandwidth between L3 cache and local or
remote memory. In certain implementations, MBM is not guaranteed to track
directory, Extended Prediction Table (XPT) prefetcher or related types of traffic.

Region Aware Memory Bandwidth Monitoring

The Region Aware Memory Bandwidth Monitoring (MBM) feature provides a set
of counters simultaneously indexed by RMID and Region to measure the
memory bandwidth utilization of an RDT Resource Monitoring ID (RMID -
typically mapped to software threads, applications, containers or virtual
machines) to a Memory Region in the system. Typical hardware feature support
for Region Aware MBM includes the ability to independently track many RMIDs
simultaneously accessing several Memory Regions. Unlike prior generations of
MBM, the Region Aware MBM feature primarily uses an MMIO-based interface.

26

Document Number: 356688-004US, Revision: 1.3

3.2

3.2.1

intel

Software may consult the Enhanced Resource Director Technology (ERDT) ACPI
table for enumeration of specific capabilities of this feature on a given
processor generation. The ERDT table defined in Chapter 5, BIOS
Considerations, provides information regarding capabilities and architectural
parameters such as the number of RMIDs supported. See Chapter 6, MMIO
Register Descriptions for details of the register interfaces used.

Intel® RDT Allocation Features

The Intel RDT Allocation architecture enables control over utilization level of
critically shared platform resources and provides this control directly to the
Hypervisor or Operating System. This allows more efficient resource usage as
well as application prioritization and determinism restoration based on resource
repartitioning. The implementation of Intel RDT Allocation features may be
product-specific or architectural. These capabilities complement Intel RDT
monitoring, which provides insight into shared platform resource utilization by
CPU agents.

Common Framework

The following mechanisms are shared by Intel RDT allocation features:

e CPUID feature bits to enumerate the presence of Intel RDT Allocation
capabilities and the details of each sub feature.

e The IA32_PQR_ASSOC MSR which software uses to specify the CLOS for
each software thread. See Figure 3-5.

e Mechanisms in hardware to specify resource usage to apply to each Class
of Service.

Software can flexibly associate Classes of Service with threads, applications,
VMs, or containers (see Figure 3-4). CLOS values are shared across all
allocation features. A particular numeric CLOS value has the same meaning
from the viewpoint of all cores. Each CLOS has an associated set of mask
registers as described later to associate that CLOS with a fraction of the shared
platform resources. If multiple logical processors within a Resource Allocation
Domain (RAD) are assigned the same CLOS, then resource allocations
associated with that CLOS will be shared among that set of logical processors.

Document Number: 356688-004US, Revision: 1.3 27

intel

Figure 3-4. Classes of Service (CLOS) Association Flow

Threads(s) ' ' »

Flexible N:M Mapping
(Orchestrator, administrator or OS/VMM assigned)

\ ! /

Class of Service (CLOS)
(Logical Construct)

Y

Hardware Enforces Resource Guidelines per CLOS

Figure 3-5. The IA32_PQR_ASSOC MSR to Set CLOS

Privileged Software

s

IA32_PQR_ASSOC MSR (64b length)

63 32131 0

Reserved CLOS Field Reserved RMID Field

CLOS Field Width: Log, (1 + MaxCLOS)

Thread-Scope MSR to set CLOS

For each resource, a block of registers is defined for software to configure the
allocation values for each CLOS. The definition of the register fields depends on
the type of resource being managed and is discussed in subsequent sections.

3.2.2 Memory Regions

See Section 3.1.2 for a discussion of Memory Regions which are a shared
infrastructure component used across both RDT Allocation and RDT Monitoring
technologies, in particular Region Aware MBM and Region Aware MBA.

28 Document Number: 356688-004US, Revision: 1.3

3.2.3

3.2.3.1

3.2.3.2

3.2.3.3

3.2.3.4

intel

Cache Occupancy Allocation Technologies

A family of Cache Occupancy Allocation Technologies allows control over shared
cache space on a per-CLOS basis, enabling configurable isolation or overlap for
potentially improved throughput, fairness, determinism and/or differentiation.
These features are known as Cache Allocation Technology (CAT), which is the
term used in this document. Certain processors may support architectural or
model-specific forms of CAT depending on the product generation. Model-
specific implementations are discussed in Appendix B.1.4.

More specific feature details about CAT are provided in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3B. Note that the MSRs are
listed in Appendix A.5. See Appendix A.2 for CAT feature supported product
details.

L2 Cache Allocation Technology

L2 Cache Allocation Technology (L2 CAT) allows system software to specify the
amount of L2 cache space of the Resource Allocation Domain into which an
application can fill.

L2 Cache Code and Data Prioritization

L2 Code Data Prioritization (L2 CDP) provides differentiation between code and
data for L2 cache usage by a single Class of Service. In a case where an
application has a large code footprint which can overwhelm data in the cache,
or vice versa, the ability to separately prioritize code and data is valuable.

L2 CDP provides a pair of allocation bitmasks for each Class of Service (rather
than a single bitmask per CLOS as in L2 CAT), to allow system software to
independently configure the amount of L2 cache available to code and data.

L3 Cache Allocation Technology

L3 Cache Allocation Technology (L3 CAT) allows an Operating System (0OS), a
Hypervisor, Virtual Machine Manager (VMM), or similar system service
management agent to specify the amount of L3 cache space within a Resource
Allocation Domain (RAD) into which a CLOS may fill.

L3 Cache and Data Prioritization

L3 Code Data Prioritization (L3 CDP) provides differentiation between code and
data for L3 usage by a single Class of Service. In a case where an application
has a large code footprint which can overwhelm data in the cache, or vice
versa, the ability to separately prioritize code and data is valuable.

L3 CDP provides a pair of allocation bitmasks for each Class of Service (rather
than a single bitmask per CLOS as in L3 CAT), to allow system software to
independently configure the amount of L3 cache available to code and data.

Document Number: 356688-004US, Revision: 1.3 29

intel

3.2.4

Memory Bandwidth Allocation

Memory Bandwidth Allocation (MBA) allows the system software to control
access bandwidth to memory. It allows slowing “noisy neighbor” threads which
may be overutilizing bandwidth and enables the creation of closed-loop control
systems (monitoring and control combined) by exposing control over a credit-
based throttling mechanism.

More specific feature details about MBA are provided in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3B. Note that the MSRs are
listed in Appendix A.5. See Appendix A.2 for MBA feature supported product
details.

There are multiple generations of MBA, each extending additional capabilities:

1. First Generation MBA (Interface Scope) - This is the initial
implementation of the MBA feature which provides indirect and
approximate control over memory bandwidth available per-core. See
Section 3.2.3.1 for implementation details and see the Intel® 64 and IA-
32 Architectures Software Developer’s Manual, Volume 3B, for legacy
enumeration, interface and per-CLOS delay value resolution details.

2. Second Generation MBA (Interface Scope) - This enhanced MBA
capability provides improved efficiency and accuracy in bandwidth control,
along with providing increased system throughput. Rather than a strict
bandwidth control mechanism, a dynamic hardware controller is
implemented, which can react to changing bandwidth conditions at the
microsecond level. Before using the second-generation MBA feature, the
MBA hardware controller requires a BIOS-assisted calibration process that
may include inputs such as the number of memory channels populated
and other system parameters; this is a change from the first generation of
MBA.

Intel’s BIOS reference code includes a default configuration that is
recommended for general usage, and BIOS profiles may be created with
alternate tuning values to optimize for certain usages (such as stricter
bandwidth control). See Section 3.2.3.2 for implementation details and
Intel® 64 and the IA-32 Architectures Software Developer’s Manual,
Volume 3B, for legacy enumeration and interface details.

3. Third Generation MBA (Agent Scope) - The third generation MBA
feature on future processors based on the codename Granite Rapids
microarchitecture further enhances MBA with per-logical-processor control
and a further improved controller design. Total memory bandwidth (all L3
miss traffic) is now managed by MBA. This implementation follows the
prior MBA precedent of delivering significant enhancements without a
major software overhaul, and while preserving backward compatibility.
See Section 3.2.3.3 for implementation details and the Intel® 64 and the
IA-32 Architectures Software Developer’s Manual, Volume 3B, for legacy
enumeration and interface details.

MBA performance properties change over time, for instance enhancing system-
level efficiency. Software should not assume that performance properties or
specific tunings of MBA remain identical across product generations. Third
generation MBA shifts from interface-scope to agent-scope bandwidth control

30

Document Number: 356688-004US, Revision: 1.3

intel

support, and scheduler re-tuning to take advantage of this enhancement may
be beneficial.

Note that in implementations of MBA which expose fine-grained steps (e.g., 1-
255 control window range), the throttling behavior is not guaranteed to be
monotonic, and may be subject to noise or skew due to interactions with other
processor features, so control software should not rely on monotonic behavior.
In implementations of Region Aware MBA, regions may support different
maximum amounts of bandwidth, so the linearity and saturation properties of
the control interface may differ across memory regions. For example, in a DDR
memory region, max bandwidth might be achieved at a bandwidth control
window value of 100, while lower-bandwidth CXL.mem may saturate at a
bandwidth control value of 50, while the architectural interface supports a
maximum (enumerated “Q") of 255.

Legacy architectural implementations of MBA are enumerated in the sequence
described in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3B, in order to avoid ambiguous situations.

The MBA feature provides the following architectural components:

¢ A mechanism to enumerate the MBA capability to control the bandwidth
from each level of the cache (for example, L2, L3) to the next level.

e A mechanism for the OS or Hypervisor to configure the amount of
bandwidth available to a particular Class of Service via a bandwidth control
(throttling) value as discussed later.

e Mechanisms for the OS or Hypervisor to specify the Class of Service to
which a thread belongs.

e Hardware mechanisms to guide and enforce the delay value at each level
of the cache hierarchy when an application has been designated to belong
to a specific Class of Service.

Note that in some usages such as those seeking bandwidth control in MB/s,
MBA may require either application-level performance feedback or
complementary Memory Bandwidth Monitoring (MBM) to use in the most
optimal way. Backward compatibility of the software interfaces is preserved,
and enhanced MBA generational changes manifest as enhancements atop the
MBA feature baseline.

3.2.4.1 First Generation Memory Bandwidth Allocation

The Memory Bandwidth Allocation (MBA) feature provides indirect and
approximate control over memory bandwidth available per-core and was
introduced on the Intel® Xeon® Scalable Processor Family. This feature
provides a method to control applications which may be over-utilizing
bandwidth relative to their priority in environments such as the datacenter.

The MBA feature uses existing constructs from the Intel RDT feature set
including Classes of Service (CLOS). A given CLOS used for L3 CAT for instance
means the same thing as a CLOS used for MBA. Infrastructure such as the MSR
used to associate a thread with a CLOS (the IA32_PQR_ASSOC_MSR) and

Document Number: 356688-004US, Revision: 1.3 31

intel

some elements of the CPUID enumeration (such as CPUID leaf 10H [Cache
Allocation Technology Enumeration Leaf]) are shared.

The high-level implementation of Memory Bandwidth Allocation is shown in
Figure 3-6.

Figure 3-6. A High-Level Overview of the First-Generation MBA Feature

Multi-Core Processor

Core[0] Core[n]

T

Programmable First Generation MBA
Request Rate Feature
Controller

_

< High-Speed Interconnect >— Memory Controller

Shared L3 Cache -With CAT

A

Programmable

Request Rate
Controller

A

Cache space available to
high-priority application

<«——1— Cache space available to
low-priority application

As shown here, the MBA feature introduces a programmable request rate
controller between the cores and the high-speed interconnect, enabling indirect
control over memory bandwidth for cores over-utilizing bandwidth relative to
their priority. For instance, high-priority cores may be run un-throttled, but
lower priority cores generating an excessive amount of traffic may be throttled
to enable more bandwidth availability for the high-priority cores.

Because the MBA uses a programmable rate controller between the cores and
the interconnect, higher-level shared caches and memory controller, bandwidth
to these caches may also be reduced, so care should be taken to throttle only
bandwidth-intense applications which do not use the off-core caches
effectively.

The bandwidth control (throttling) values exposed by MBA are approximate and
are calibrated to specific traffic patterns. As workload characteristics vary, the
bandwidth control values provided may affect each workload differently. In
cases where precise control is needed, the Memory Bandwidth Monitoring

32

Document Number: 356688-004US, Revision: 1.3

3.2.4.1.1

3.2.4.2

intel

(MBM) feature can be used as input to a software controller which makes
decisions about the MBA bandwidth control level to apply.

Legacy enumeration and configuration details are discussed in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3B.

Usage Considerations

As the memory bandwidth control that MBA provides is indirect and
approximate, using the feature with a closed-loop controller to also monitor
memory bandwidth and how effectively the applications use the cache (via the
Cache Monitoring Technology feature) may provide additional value. This
approach also allows administrators to provide a bandwidth target or set point
which a controller could use to guide MBA bandwidth control (throttling) values
applied, and this allows bandwidth control independent of the execution
characteristics of the application.

As control is provided per processor core (the max of the delay values of the
per-thread CLOS applied to the core), the user should take care in scheduling
threads so as to not inadvertently place a high-priority thread (with zero
intended MBA throttling) next to a low-priority thread (with MBA throttling
intended), which would lead to inadvertent throttling of the high-priority
thread, as the maximum resolved throttling value is applied.

Second Generation Memory Bandwidth Allocation

The second generation of Memory Bandwidth Allocation (MBA) is implemented
in the 3™ Gen Intel® Xeon® Scalable Processor Family, and related Intel Atom®
processors such as the P5000 Series. This enhanced MBA capability provides
improved efficiency and accuracy in bandwidth control, along with providing
increased system throughput. Rather than a strict bandwidth control
mechanism, a dynamic hardware controller is implemented, which can react to
changing bandwidth conditions at the microsecond level.

Before using the second-generation MBA feature, the MBA hardware controller
requires a BIOS-assisted calibration process that may include inputs such as
the number of memory channels populated and other system parameters; this
is a change from the first generation of MBA. Intel BIOS reference code
includes a default configuration that is recommended for general usage, and
BIOS profiles may be created with alternate tuning values to optimize for
certain usages (such as stricter bandwidth control) as described in the
subsequent BIOS Considerations chapter.

Second generation MBA moves from static bandwidth control (throttling) at the
core/uncore interface, to a more dynamic control method based on a hardware
controller that tracks actual main memory bandwidth. This allows software that
uses primarily the L3 cache to observe increased throughput for a given
bandwidth control level, or fine-grained throughput benefits for software that
exhibits L3-bound phases. Due to the closer consideration of memory
bandwidth loading, this enhancement may lead to an increase in system
efficiency when using second generation MBA relative to prior implementations
of the feature. Backward compatibility of the software interfaces is preserved,

Document Number: 356688-004US, Revision: 1.3 33

intel

3.2.4.2.1

and second-generation MBA changes manifest as enhancements atop the MBA
feature baseline.

As with the prior generation feature, the second generation MBA uses CPUID
for enumeration and throttling is performed using a mapping created from
software thread-to-CLOS (in the IA32_PQR_ASSOC MSR), which is then
mapped per-CLOS to delay values via the IA32_L2_QoS_Ext BW_Thrtl_n
MSRs. A privileged operating system or virtual machine manager software may
specify a per-CLOS delay value, 0-90% bandwidth throttling for instance,
though the max and granularity values are platform dependent and
enumerated in CPUID.

Second Generation MBA Advantages

Additional features added over first generation MBA are described next:

1. Previously, only the maximum delay value across two CLOS on a physical
core could be selected in MBA. Second generation MBA allows a minimum
delay value to be selected instead, which may enhance usage with Intel®
Hyper-Threading Technology.

2. Only a single preprogrammed calibration table was possible in first
generation MBA, meaning different memory configurations had the
potential for different linearity and percent delay value error values
depending on the configuration. This is addressed by the BIOS support in
the second generation of MBA, and certain BIOS implementations may
program a different calibration table per memory configuration, for
instance.

3. The second-generation MBA controller provides the ability to more closely
monitor the memory bandwidth loading and deliver more optimal results.

4. The new MBA hardware controller reduces the need for a fine-grained
software controller to manage application phases for optimal efficiency.
Note that a software controller may still be valuable to translate MBA
bandwidth control values to bandwidths in GB/s or application Service
Level Objectives (SLOs), such as performance targets.

34

Document Number: 356688-004US, Revision: 1.3

intel

Figure 3-7. Second Generation MBA, Including a Fast-Responding Hardware

Controller
Scoftware

i)

ThreadO Thread1

{ Issuerate)| (Issusrate)

7

. J
Bandwidth Target A adjust } Flow control { adjust) Bandwidth Target

Target B/ Target BW
Meter

Mermory B
usage signaling
per core module

Memory B
usage signaling
per core module

The second-generation MBA implementation is shown in Figure 3-7. The
feature operates through the use of an advanced hardware controller and
feedback mechanism, which allows automated hardware monitoring and control
around the user-provided delay value set point. This set point and associated
bandwidth control (throttling) value infrastructure remains unchanged from
prior generation MBA, preserving software compatibility.

MBA enhancements, in addition to the new hardware controller, include:

1. Configurable delay selection across threads.

— MBA 1.0 implementation statically picks the max MBA Throttling Level
(MBAThrotLvl) across the threads running on a core (by calculating
value = max(MBAThrotLvI(CLOS[thread0]),
MBAThrotLvI(CLOS[thread1]))).

— Software may have the option to pick either maximum or minimum
delay to be resolved and applied across the threads; maximum value
remains the default.

2. Increasing CLOS IDs from 8 to 15 in certain implementations (product-
specific, see CPUID)

— Previous certain implementations of the feature provided 8 CLOS tags
for MBA.

— The 3™ Gen Intel® Xeon® Scalable Processor Family and related Intel
Atom® processors, such as the P5000 Series, increase this value to
15 (also consistent with L3 CAT).

Document Number: 356688-004US, Revision: 1.3 35

intel

3.2.4.2.2 Software-Visible Changes

A new model specific MSR is introduced with second generation MBA to allow
software to select from the maximum (default) or minimum of resolved
bandwidth control (throttling) values (see the previous formula). This capability
is controlled via a bit in the new MBA_CFG MSR, shown in Table 3-1.

Table 3-1. MBA_CFG MSR Definition

Register Address Architectural MSR Name
- / Bit Fields Description
Hex Decimal
C84H 3204 MBA_CFG MBA Configuration Register
0 Min (1) or max (0) of per-thread MBA delays.
63:1 Reserved. Attempts to write to reserved bits
' result in a #GP(0).

Note that bit[0] for min/max configuration is supported in second generation
MBA but is removed (and reverts to reserved) in the third generation MBA
feature when the controller logic becomes capable of managing bandwidth
control values on a per-logical-processor or per-agent basis. The transient
nature of this enhancement is why the min/max control remains model specific.

To enumerate and manage support for the model-specific min/max feature,
software may use processor family/model/stepping as listed in Appendix A to
match supported products, then CPUID to later detect enhanced third
generation MBA support.

3.2.4.3 Third Generation Memory Bandwidth Allocation

The third-generation MBA feature on future processors based on the codename
Granite Rapids microarchitecture further enhances the feature with per-logical-
processor control and a further improved controller design. Total memory
bandwidth (all L3 miss traffic) is now managed by MBA.

This implementation follows the past MBA precedent of delivering significant
enhancements without a major software overhaul, and while preserving
backward compatibility.

3.2.4.3.1 Hardware Changes

The third generation of MBA builds upon the hardware controller introduced in
the previous generation, which enabled significant system-level benefits, while
providing the new capability to independently throttle logical processors, rather
than more coarse-grained per-core bandwidth control in prior generations.
Bandwidth control values are no longer selected as the "min” or "max” of the
two throttling values for the threads running on the core; instead, throttling
values are independently and directly applied to each logical processor. The
third generation MBA implementation is shown in Figure 3-8.

36

Document Number: 356688-004US, Revision: 1.3

intel

Figure 3-8. High-Level Overview of the Third Generation MBA Feature

Software

Threado ™ Thread 1
[(lssusrate) | (Issuerate)]
A

Bandwidth Target Flow control || Flow control Bandwidih Target

Targat BW Targst B\W
Meter Meter

I

[Memory BYW usage signaling per logical core j

While this enhancement means that more direct bandwidth control (throttling)
of threads is possible, re-tuning of software may be helpful to comprehend the
effects of Intel® Hyper-Threading Technology contention versus cache and
memory contention, and the effects on software performance.

3.2.4.3.2 Software-Visible Changes

In order to allow software to change its tuning behavior and detect that per-
logical-processor bandwidth control is supported on a particular product
generation, a CPUID bit is added to the MBA CPUID leaf to indicate support.
See “"CPUID—CPU Identification” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3B for details.

Despite another significant improvement of the hardware controller
infrastructure architecture and improved capabilities, controller responsiveness,
new internal microarchitecture, and transient-arresting capabilities, no new
software interface changes are required to make use of the third generation of
MBA relative to prior generations. Software previously using the second-
generation MBA min/max selection capability should discontinue the use of the
MBA_CFG MSR. The third-generation MBA capabilities are the default mode of
operation on the codename Granite Rapids server microarchitecture.

Note that the MBA MSRs are listed in Appendix A.5 for completeness, but
details of these legacy MSRs are available in Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3B. See Appendix A.2 for MBA feature
supported product details.

Document Number: 356688-004US, Revision: 1.3 37

intel

3.2.4.4

3.2.4.4.1

Region Aware Memory Bandwidth Allocation

Region Aware Memory Bandwidth Allocation (MBA) for CPU Agents extends the
existing third generation (per-thread bandwidth control) MBA capabilities to
include Region Aware bandwidth controls per RDT Class of Service (CLOS). The
Memory Region definitions used for Region Aware MBM and MBA are shared
across the features, as specified in the ACPI MRRM table, allowing simultaneous
and consistent monitoring and allocation of memory bandwidth.

With Region Aware MBA, independent bandwidth control (throttling) of per-
CLOS bandwidth to multiple regions is supported, allowing software to
dynamically rebalance bandwidth control limits across different Memory
Regions, which may have varying bandwidth, latency and capacity
characteristics. Example uses include rebalancing bandwidth between VMs of
different priority across a shared coherent interprocessor interconnect under
the direction of a software control loop, or rebalancing bandwidth for threads of
varying priorities across DRAM or CXL-backed memories. See Figure 3-9 for a
high-level overview of Region Aware MBA and the following sections for details.

Region Aware MBA Overview

Region Aware MBA allows per-thread, per-CLOS, and per-Region control of
Bandwidth to different regions — that is, enabling bandwidth control per-thread
and per region simultaneously. As in the third generation of MBA, each region
and thread are managed by a hardware controller which modulates the
bandwidth of each thread targeting particular downstream region around the
bandwidth targets set through the Intel RDT software interfaces.

The maximum number of regions is enumerable in the MRRM ACPI table
described in Chapter 5, BIOS Considerations. The high-level implementation of
Region Aware MBA is shown in Figure 3-9.

Figure 3-9. High-Level Overview of the Region Aware MBA

|

L

lzsue rate) [(lssue rate)

Bandwidth Target — Flow control || Flowcontrol K Bandwidth Target | :

Per-Region Bandwidth Control |
Loop o

—— Duplicated
| Per Region

Tja rget BW Target BW

L ! Per-Region Band width Control ! Meter Meter

Duplicated R
Per Region |

—_—— =

Memory BVW usage =signaling per logical core and per
region

38

Document Number: 356688-004US, Revision: 1.3

3.2.4.4.2

3.2.4.4.3

intel

Unlike prior generations of MBA, the Region Aware MBA feature primarily uses
an MMIO-based interface.

Enable MMIO Register

Region Aware MBA may be enabled by software via an MMIO configuration
register, after configuring per-thread, per-CLOS, and per-Region MBA
bandwidth control values. See the next section for details on default hardware
initialization state.

The RDT_CTRL MMIO register is used to control Region Aware MBA for CPU
agents. The definition of the RDT_CTRL register is shown in Section 6.1.3.1.
This register is scoped at the level of each Resource Management Domain,
defined in Chapter 5. It is expected that software will configure this register
consistently across all L3 caches present in the SoC.

The default value of the RDT_CTRL register is 0x4 (Region Aware MBA is
disabled by default).

Min, Max and Optimal Bandwidth Caps per CLOS

The Region Aware MBA feature introduces three types of bandwidth limits per
CLOS. Software may specify a minimum, maximum and optimal level of
bandwidth target per CLOS. The specified range allows hardware to
dynamically and autonomously manage bandwidth within the limits with fast
response to changing system conditions or application phases while maximizing
system throughput. From a usage standpoint, the min/optimal/max levels are
designed to allow software to guide resource allocation, and hardware can then
use that information to respond much quicker than a management software
control loop could. In some cases software may be allocated bandwidth that it
might not use, or might be used in a bursty fashion, depending on software
behaviors and policies applied.

Bandwidth settings are described as follows:

* Maximum Cap: Caps the maximum bandwidth for a CLOS and any
threads running in that CLOS. Allows the CLOS to switch to being
constrained by a Max BW cap (which is typically above the Optimal level
specified) if the resource (e.g., region) is underutilized (utilized at a
level less than a medium or optimal rate).

= Optimal Cap: The software-preferred bandwidth control level for a given
CLOS.

*» Min Cap: Allows the hardware to attempt to guarantee a minimum
amount of available bandwidth for a CLOS. Hardware may enforce this
Lower BW cap below the Optimal level specified if the resource is over-
utilized (typically at higher system region bandwidth utilization than
medium but less than an overload scenario). Minimums are not
necessarily guaranteed by hardware, as the sum of software requested
minimums for instance may exceed the bandwidth that hardware can
provide; as such, Min should be regarded as a best-effort minimum
under heavy system utilization levels.

Document Number: 356688-004US, Revision: 1.3 39

intel

3.2.5

The Optimal Cap should be programmed to be between or equal to the Min and
Max Cap levels. The Maximum Cap should be programmed to be greater than
or equal to the Minimum and Optimal caps. Undesirable and undefined
performance effects may result if cap programming guidelines are not followed.

The default hardware state is initialized with Max BW Cap == Optimal BW ==
Min BW Cap (and throttling is disabled by default).

Bandwidth control values in the MMIO-based feature interface (Chapter 6) are
specified from unthrottled (maximum value “Q"”) down to a value of one
(minimum bandwidth available, equivalent to maximum throttling). Bandwidth
control values are implementation-specific and may not have an effect if more
bandwidth is allowed than the processor is able to generate. Bandwidths may
vary depending on traffic types, for instance various mixes of read and write
traffic.

System software should consult the MARC sub-structure of the ERDT ACPI
table to discover platform support for these caps as described in Chapter 5.

Software may choose to implement combined MBM and MBA control loops per-
region to manage memory bandwidth of a set of processors, for instance
comprising a virtual machine, to shape the bandwidth available to achieve
goals such as prioritization or fairness.

Cache Bandwidth Allocation

Cache Bandwidth Allocation (CBA) allows an Operating System, Hypervisor, or
similar system management agent to control internal core and correspondingly
the downstream memory bandwidth for each of the logical processors. This
feature is complimentary to MBA and provides OS/VMMs with the ability to
throttle threads within the core.

The CBA feature along with the existing MBA feature provides a system-wide
mechanism to throttle the bandwidth across different caches in the system
including external memory, as well as control within a processor core or
module. In combination, CBA and MBA provide both deterministic control and
dynamic management of bandwidth resources to meet system Service Level
Objectives (SLOs). The CBA feature reuses and extends existing constructs
from the Intel RDT feature set including Classes of Service (CLOS).

A given CLOS used for L3 CAT for instance means the same thing as a CLOS
used for CBA. Infrastructure such as the MSR used to associate a thread with a
CLOS (the IA32_PQR_ASSOC_MSR) and some elements of the CPUID
enumeration (such as CPUID leaf 10H (Cache Allocation Technology
Enumeration Leaf)) are shared.

The Cache Bandwidth Allocation (CBA) feature provides control over bandwidth
available between Level 1 (L1) caches, Level 2 (L2) Caches, and Level 3 (L3)
Caches (as applicable) for each of the logical processors. Since reducing
upstream bandwidth coming from the core can also reduce bandwidth to
external memory, this also provides an indirect control of memory bandwidth.
This indirect control of external memory bandwidth can also reduce memory

40

Document Number: 356688-004US, Revision: 1.3

3.2.5.1

3.2.5.2

intel

bandwidth. The CBA feature along with the MBA provides a mechanism to
control the bandwidth of different applications.

Software should understand that the effective throttling applied to an
application may be the maximum of the two values requested through the CBA
and MBA bandwidth control interfaces (the maximum resolved amount of
throttling will be applied).

Similar to Intel RDT features, CBA includes the following key ingredients:

e A mechanism to enumerate the CBA capability to control the bandwidth
from each level of the cache (for example, L1, L2, L3) to the next level
(CPUID).

e A mechanism for the OS or Hypervisor to configure the amount of
bandwidth available to a logical processor with a particular Class of Service
via a throttle Level (MSRs, discussed later).

e Mechanisms for the OS or Hypervisor to signal the Class of Service to
which an application belongs (the PQR MSR).

e Hardware mechanisms to guide and enforce the bandwidth throttle level
across the cache hierarchy.

In some usages, the software may measure the memory bandwidth consumed
by a given thread, application, VM or container at different Levels of cache
hierarchy and external memory using performance monitor events and Memory
Bandwidth Monitoring (MBM). Once the memory bandwidth is measured
software can dynamically adjust the bandwidth control (throttling) level for the
Class of Service (CLOS) used by that application. In other usages, software
control loops may monitor application performance and adjust bandwidth
control levels dynamically to achieve certain performance targets.

Certain processors, including those without an L3 cache, may implement the
CBA feature without the presence of MBA. Other processors may choose to
implement MBA, CBA or both.

More specific feature details about CBA are provided in the Intel® Architecture
Instruction Set Extensions and Future Features. Note that the MSRs are listed
in Appendix A.5. See Appendix A.2 for CBA feature supported product details.

CBA Overview

The CBA feature implements a local hardware controller which when enabled
provides the capability to independently throttle memory bandwidth of the
logical processors across cache hierarchy and complements the MBA controller
which throttles the external memory bandwidth.

Example of CBA Bandwidth Control Mechanism

An example of the bandwidth control enforced between the L2 cache and L3
cache is the maximum of the bandwidth throttling from the local CBA controller
within the logical processor and the MBA hardware controller. An example CBA
implementation is shown in Figure 3-10.

Document Number: 356688-004US, Revision: 1.3 41

intel

Figure 3-10. Example of CBA Bandwidth Control between L2 and L3 caches

Software |

!

a) (@)
Local LOgi cal Local Logi cal
bandwidth Processor O bandwidth
control control Processor 1
local_bandwidth_throttling local_bandwidth_throttling
(local_bw_throttling) (local_bw_throttling)
N2 N2
Maximum of Maximum of
(ext_bw_throttling, Issue (ext_bw_throttling, Issue
local_bw_throttling) rate local_bw_throttling) rate
L T I |)
ext_bandwidth_throttling ext_bandwidth_throttling
(ext_bw_throttling) (ext_bw_throttling)
Bandwidth Target adjust Flow control Flow control adjust Bandwidth Target

0. 100 100,
: w

Memory BW usage signaling per logical core

Target BW
Meter

Target BW
Meter

3.2.5.3

Software Interface

In order to allow software to adapt its tuning behavior and detect that Cache

Bandwidth Allocation is supported on a particular product generation, a CPUID
bit is added to the Intel RDT Allocation CPUID leaf to indicate support (details
are provided in the Intel® Architecture Instruction Set Extensions Manual).

The IA32_PQR_ASSOC MSR specifies the Class of Service associated with each
logical processor. The CBA feature defines a set of MSRs known as
IA32_QoS_Core_BW_Thrtl_n which provide a byte-encoded field for each CLOS
to program the memory bandwidth throttle level. A higher value of throttling
level means more bandwidth throttling and lower number indicates lesser
throttling. The CPUID of the CBA feature enumerates the number of levels and
maximum level supported by the logical processor. The reset value of each of
the CLOS throttle values of the logical processor is 0 which indicates
unthrottled bandwidth (zero throttling).

Each of the fields in the CBA IA32_QoS_Core_BW_Thrtl_n MSRs may be
programmed from 0 to the maximum throttle level provided in the CPUID. If a
value beyond the range from 0 to maximum throttle level is programmed, it
will cause a #GP(0) fault. The Resource Management Domain (RMD) for CBA is
per logical processor and thus the IA32_QoS_Core_BW_Thrl_n MSRs are logical

42

Document Number: 356688-004US, Revision: 1.3

3.2.5.4

intel

processor scope. Further details are provided in the Intel® Architecture
Instruction Set Extensions and Future Features Programming reference
manual.

Software Usage

The next sequence of steps provides a typical software usage of CBA feature:
1. System is setup with the desired workloads.

2. The software can use the performance counters along with MBM counters
when available to profile and understand the bandwidth characteristics of
the application.

3. The system administrator sets up the bandwidth control (throttling) level
field in the IA32_QoS_Core_BW_Thrtl_n MSR (for example, in the VMM)
to enforce the desired limits and the CLOS for each application. They can
also monitor the bandwidth to confirm the setting is appropriate and
adjust when needed.

In some cases, a specialized application software such as in embedded or
communications usages will be able to communicate the memory bandwidth
and latency requirements. This information may be used be performance
management software to program the RDT features including CBA to meet the
software memory bandwidth and latency requirements.

§

Document Number: 356688-004US, Revision: 1.3

43

intel.

4

Intel® Resource Director
Technology for Non-CPU
Agents

4.1

This chapter details Intel RDT features for non-CPU agents. Discussion is
included on use cases and how Intel RDT monitoring, and controls are provided
for non-CPU agents through extensions to the foundational CPU Agent Intel
RDT features. Chapter 3 describes the components of the Intel RDT feature set
which are common.

Introduction

Intel RDT for non-CPU agents comprises a set of features to monitor and
control the resource utilization of non-CPU agents including PCI Express*
(PCIe*) [5] and Compute Express Link (CXL)* [6] devices and integrated
accelerators. The feature set enables monitoring usage of shared cache and
memory bandwidth and control of cache usage by non-CPU agents. This
feature set provides the equivalent CPU agent Intel RDT capabilities of CMT,
MBM, and CAT for I/O devices.

The non-CPU agent Intel RDT includes controls at the device level and channel-
level granularity in some cases. However, this granularity is fundamentally
coarser than for software threads. CPU cores may execute hundreds of threads,
all of which are tagged with RMIDs and CLOS, whereas an I/O device such as a
NIC may serve hundreds of software threads, but it may only be monitored and
controlled at a device level or channel level (see subsequent sections for details
on channel-level monitoring and controls.)

Figure 4-1. Non-CPU Agent Building Atop CPU Agent Intel® RDT Features

CPU Agents(Cores)

IA32_PQR_ASSOC

Non-CPU Agents Non-CPU Agents
(PCle1/O Block) (CXLInterface)

Non-CPU Agents
(Other Agents)

Channel Tagging Channel Tagging Channel Tagging

RMID

CLOS RMID CLOS RMID cLOS

RMID CLOS

High-Speed Fabric

44

Document Number: 356688-004US, Revision: 1.3

4.2

4.3

intel

Features

Cache Monitoring Technology (CMT) provides visibility into the cache (typically
L3 cache). CMT provides occupancy counters on a per-RMID basis for non-CPU
agents so cache occupancy (for example, capacity used by a particular RMID
for I/O agents) can be tracked and read back dynamically during system
operation. See Appendix A.2 for L3 CMT feature supported product details.

L3 Total and Local External Memory Bandwidth Monitoring (MBM) allows
system software to monitor the usage of bandwidth between L3 cache and local
or remote memory by non-CPU agents on a per-RMID basis. See Appendix A.2
for L3 Total and Local External MBM feature supported product details.

Cache Allocation Technology (CAT) allows control over shared cache capacity
on a per-CLOS basis for non-CPU agents, enabling both isolation and overlap
for better throughput, fairness, determinism and differentiation. See
Appendix A.2 for L3 CAT feature supported product details.

Enumeration

Intel RDT uses the CPUID instruction to enumerate supported features and
uses architectural Model-Specific Registers (MSRs) as interfaces to the
monitoring and allocation features as described in Chapter 3 and in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

There are no CPUID leaves or sub-leaves that are created for non-CPU agent
Intel RDT; rather, existing CPUID leaves are augmented. The following field in
the Shared Resource Monitoring Enumeration Leaf, CPUID.OFH.01H:EAX[10:9],
enumerates presence of CMT and MBM features for non-CPU agents. The field
in the Cache Allocation Technology Enumeration Leaf, CPUID.10H.01H:ECX[1],
enumerates the presence of the L3 CAT feature for non-CPU agents. Refer to
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, for
CPUID details.

Additional enumeration information for Intel RDT for non-CPU agents is
provided in the I/O Intel RDT table (IRDT), a vendor-specific extension to
Advanced Configuration and Power Interface (ACPI) [4]. The IRDT table
provides information on supported features, the structure of devices attached
to particular links behind I/0 blocks, the forms of tagging and controls
supported on each link, and the specific MMIO interfaces used to control a
given device. Details of IRDT are described in Chapter 5.

Confirming the presence of Intel RDT for CPU agents is a prerequisite for using
the equivalent non-CPU agent Intel RDT feature. A compatibility matrix is
provided in Appendix A.4. If a particular CPU agent Intel RDT feature is not
present, any attempt to use non-CPU agent Intel RDT equivalents will result in
a general protection fault in the MSR interface. Attempts to enable unsupported
features in the I/O complex will result in writes to the corresponding MMIO
enable or configuration interfaces being ignored.

Document Number: 356688-004US, Revision: 1.3 45

intel

4.4

Software may use the existing CPUID leaves to gather the maximum number of
RMID and CLOS tags for each resource level (for example, L3 cache), and non-
CPU agent Intel RDT is also subject to these limits.

Some platforms may support a mix of features, for instance supporting L3 CAT
and the non-CPU agent Intel RDT equivalent, but no CMT or MBM monitoring.

Interface

Before configuring non-CPU agent Intel RDT (through MMIO), the feature
should be enabled. The presence of one or more CPUID bits indicating support
for one or more non-CPU agent Intel RDT features implies the presence of the
IA32_L3_IO_RDT_CFG architectural MSR. This MSR is used to enable the non-
CPU agent Intel RDT features.

Two bits are defined in this MSR. IRAE (Bit[0]) enables non-CPU agent RDT
resource allocation features. IRME (Bit[1]) enables non-CPU agent RDT
monitoring features.

The non-CPU agent Intel RDT Monitoring bit is supported if CPUID indicates
that one or more non-CPU agent Intel RDT resource monitoring features are
present.

The non-CPU agent Intel RDT Allocation bit is supported if CPUID indicates that
one or more non-CPU agent Intel RDT resource allocation features are present.

The default value is 0x0 (both the monitoring and allocation features are
disabled by default). All bits not defined are reserved. Any writes to reserved
bits will generate a General Protection Fault (#GP(0)).

This MSR is die-scoped and is cleared on system reset. It is expected that
software will configure this MSR consistently across all L3 caches that may be
present on a particular SOC die.

The definition of the IA32_L3_IO_RDT_CFG MSR is shown in Figure 4-2, and its
MSR address is 0C83h.

Non-CPU agent RDT uses the RMID and CLOS tags in the same way that they
are used for CPU agents.

Figure 4-2. The IA32_L3_I0_QOS_CFG MSR for Enabling Non-CPU Agent

Intel® RDT

IA32_L3 10 RDT_CFG MSR(0C83H,64b length)
63 3231 1 0

Reserved Reserved M| A

Bit O = IRAE = L3 non-CPU agent RDT Allocation Enable
Bit 1 = IRME = L3 non-CPU agent RDT Monitoring Enable

46

Document Number: 356688-004US, Revision: 1.3

intel

MMIO interfaces, discussed in subsequent sections, are defined by non-CPU
agent Intel RDT to enable devices and/or channels to be tagged with RMIDs
and CLOS, as applicable.

An example of device tagging with RMIDs, and CLOS is shown in Figure 4-3,
where a PCle device and a CXL device are tagged for monitoring and control of
upstream resources in the L3 cache (shown within the fabric). Note that CPU
cores are also shown, and as defined in the CPU agent Intel RDT feature set,
their bandwidths may be controlled with the Memory Bandwidth Allocation
(MBA) feature set.

In the model of Figure 4-3, cores, PCle devices and CXL devices are
symmetrically arranged about the fabric and are symmetric in their ability to
use RMIDs and CLOS.

The Intel RDT monitoring data retrieval MSRs IA32_QM_EVTSEL and
IA32_QM_CTR are used for monitoring usage by non-CPU agents in the same
way that they are used for Intel RDT for CPU agents for shared-L3
configurations. In certain configurations, memory-mapped registers may be
provided to enable Intel RDT monitoring data retrieval for non-CPU agents.
These memory-mapped registers are enumerated via ERDT ACPI (see section
5.1).

The CPU cache capacity control MSR interfaces are also used for controlling I/0O
device access to the L3 cache. The CLOS assigned to the device and the
corresponding capacity bitmask in the IA32_L3_QO0OS_MASK_n MSR governs the
fraction of the L3 cache into which the data may be filled, as described in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.
Certain I/O data flows may be implemented in processors with a multiple-L3
configuration, which may use memory-mapped register interfaces enumerated
via ERDT ACPI (see section 5.1) for cache capacity control.

The CLOS tag retains the same meaning with regard to L3 fills for both CPU
agents and non-CPU agents. Other cache levels may also be applicable
depending on model-specific data flow patterns, which are governed by how
I/0 device data is filled into the cache in a model-specific fashion as governed
by a given product generation’s implementation of the DDIO (the Data Direct
I/0 feature).

Document Number: 356688-004US, Revision: 1.3 47

intel.

Figure 4-3. Tagging for PCIe and CXL Devices

CPU Agents (Cores)

MBA Controller

e CxL.Cache 23 Fabric
BN (| Mem LLC

DDR/
HBM

Mem
Controllers

Non-CPU agent PCleor CXL.IO
RDT: Tagging for IR
Channels with
RMID/CLOS

4.5 Common Tags

Non-CPU agent Intel RDT allows the traffic and operation of non-CPU agents to
be associated with RMIDs and CLOS. In CPU agent Intel RDT, RMIDs and CLOS
are numeric tags which may be associated with the operation of a thread
through the IA32_PQR_ASSOC MSR. In non-CPU agent Intel RDT, a series of
MMIO interfaces may be used to associate I/O devices with RMID and CLOS
tags, and the numerical interpretation of the tags remains the same.

To wit, a particular CLOS tag, such as CLOS[5], means the same thing from the
perspective of an CPU core or a non-CPU agent, and the same holds for RMIDs.
In this fashion, RMIDs and CLOS used for non-CPU agents are said to be drawn
from a “common pool” of RMID or CLOS tags, defined at the common L3
configuration level. Often these tags have specific meanings at a particular
level of resource such as the L3 cache.

With non-CPU agent Intel RDT, specific devices may be selected for monitoring
and control, and software enumeration and control are added to (1) enable
non-CPU agent Intel RDT to build atop CPU agent Intel RDT, and (2) to
comprehend the topology of devices behind I/0 links, such as PCle or CXL, and
(3) to enable association of devices with RMID and CLOS tags.

4.6 I/0 Blocks and Channels

I/0 interfacing blocks are used to bridge from the ordered, non-coherent
domain (such as PCle) to the unordered, coherent domain (for example, the

48 Document Number: 356688-004US, Revision: 1.3

intel

shared interconnect fabric hosting the L3 cache). The non-CPU agent Intel RDT
interface describes the devices connected behind each I/O complex (which may
contain downstream PCle root ports or CXL links) and enables configuration
RMID/CLOS tagging for the same.

The I/0 architecture is formalized as shown next. Channel mapping may occur
anywhere between the device and the I/0 block.

Figure 4-4. Mapping of Channels in the I/0 Domain (PCIe Example)

1/0 Block |] |
Coherent Fabric || (PC'ee?nisziZ;MMlo L ' LIL 1
(Unordered Domain) Required for 1/O RDT Root Port | L] PCle Device(s)
Enum & Control
“Channel” TC>VC
Mapping Mapping

Figure 4-5. Mapping of Channels in the I/0 Domain (CXL Example)

Coherent Fabric
(Unordered Domain)

1/0 Block
(PCle endpoint + MMIO
<> interface) CXL Device
Required for 1I/O RDT CXL.10 and/or
Enum & Control
CXL.Cache
Links

4.7

As shown in Figure 4-4, PClIe devices connected through a root port are routed
through an I/0 block, which applies non-CPU agent Intel RDT tagging (RMID
and CLOS tagging) before traffic reaches the coherent fabric. Device traffic
which is routed on various TCs and mapped to VCs, as defined in the PCle
specification [5], may be mapped to internal "Channels” between the root port
and the I/0 block. The non-CPU agent Intel RDT enumeration structures define
the mapping between PCIe VCs and the non-CPU agent Intel RDT Channels so
that software may perform tagging configuration based on Channels for
platforms which support this capability (see the following sections for more
detail).

An example with CXL [6] is shown in Figure 4-5. In this case a CXL.IO and
CXL.Cache link may be in use, and the I/0O block is again responsible for
tagging, if supported. The links (CXL.IO and CXL.Cache) are controlled
separately, through separate software interfaces. (See Chapter 7 for MMIO
control interfaces.)

I/0 Block Configuration

As described in the preceding section, PCle devices mapped through their VCs
to "Channels” may be configured on a per-Channel basis in the I/O Block. CXL

Document Number: 356688-004US, Revision: 1.3 49

intel

is a subset example of this, with the same configuration format, but only one
configuration entry (the equivalent of a single Channel).

An enumerated number of Channels are supported in IRDT ACPI and configured
through an MMIO interface to a "Mapping Table”, as shown in Figure 4-6. A
number of downstream PCle devices may be mapped to various channels, and
their traffic streams may be tagged, as applicable, through configuration of the
I/0 block.

Figure 4-6. Resource Monitoring and Control for PCIe and CXL Endpoints

4.8

4.8.1

No device

enablement
/ needed

Map 10 traffic Mapping
flows to table added Device
interconnect

_$ K PCle SSDs:
|/0 | [RMID/CLOS - 3GB/s+

to Channel

Mappin
Block| Eiek e

NICs:
10-100Gbps

Mapping Table

Channel | RMID RMID = Resource Monitoring ID

CLOS = Class of Service

RMIDs provide CLOS include
per-channel per-channel
monitoring control

Shared-L3 Configuration

The following sub-sections describe shared-L3 configuration and non-CPU agent
Intel RDT features interplay.

Software Flow

Key software actions required to utilize non-CPU agent Intel RDT include (1)
enumeration of the supported capabilities and details of that support, and (2)
usage of the features through architectural platform interfaces.

e The software may enumerate the presence of non-CPU agent Intel RDT
through a combination of parsing bit fields from CPUID and the IRDT ACPI
table. The CPUID infrastructure provides basic information on the level of

50

Document Number: 356688-004US, Revision: 1.3

4.8.2

intel

CPU agent Intel RDT and non-CPU agent Intel RDT support present, and
details of the common CLOS/RMID tags shared with CPU agent Intel RDT.
The IRDT ACPI extensions provide many more details on non-CPU agent
RDT specifically, such as which I/0O blocks support non-CPU agent Intel
RDT and where the control interfaces to configure the I/0O blocks are
located in MMIO space.

Once software has enumerated the presence of non-CPU agent Intel RDT,
configuration changes may be made through selecting a subset of
RMID/CLOS tags to use with non-CPU agent Intel RDT, and configuring
resource limits for those tags through MSRs for shared platform resources
such as L3 cache (for example, for I/O use of L3 CAT) may be configured
through the I/0O block MMIO interfaces (the location of which is enumerated
via IRDT ACPI).

After resource limits are associated, RMID/CLOS tagging may be applied to
the I/0 device upstream traffic by assigning each I/0 device into
RMID/CLOS tags through its mapping to channels (and corresponding
configuration through the MMIO interfaces for each I/0 block, the location
of which is enumerated via IRDT ACPI).

It should be noted that while upstream shared SoC resources like L3 cache
are monitored and controlled via shared RMID/CLOS tags, certain
resources which are closer to the I/O may be controlled locally within each
I/0 block. In this view, RMIDs and CLOS are used for upstream resources
which may be shared with CPU cores, but capabilities unique to the I/O
device domain are controlled through I/0O block-specific interfaces.

Once tags are assigned and resource limits are applied, upstream traffic
from I/O devices, though I/0 blocks are tagged with the corresponding
RMIDs/CLOS and such traffic is monitored and controlled within the shared
resources of the SoC, much as CPU agent resources are controlled against
these tags in CPU agent Intel RDT.

As the IRDT ACPI tables used to enumerate non-CPU agent Intel RDT are
generated by the BIOS, in the event of a hot-plug operation the OS or VMM
software should update its internal tracking of device mappings based on
newly added or removed device.

In the case of bifurcation of a set of PCle lanes, downstream devices which
may be mapped to individual Channels may still be separately tagged and
controlled, but devices sharing Channels will be mapped together against
the same RMID/CLOS tags. As CXL devices have no notion of Channels, in
the case of a bifurcated CXL link all downstream devices will be subject to
the same RMID/CLOS.

Monitoring: Data Flows for RMIDs

As previously described, once RMID tags are applied to non-CPU agent traffic,
all RMID-driven counter infrastructure in the platform may be used with non-
CPU agent Intel RDT. In the case of the features in Appendix A.2 for instance,
RMID-based cache occupancy and memory bandwidth overflow data is
collected for non-CPU agents and may be retrieved by software. For each
supported Cache Monitoring resource type, hardware supports only a finite

Document Number: 356688-004US, Revision: 1.3 51

intel

4.8.3

number of RMIDs. The following Shared Resource Monitoring Enumeration Leaf
CPUID.OFH.01H:ECX[31:0], enumerates the highest RMID value that can be
monitored with this resource type, see the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3B for details.

As the interfaces for CPU agent Intel RDT data retrieval for RMID-based
counters area already defined, the same interfaces are used, including MSR-
based data retrieval for the corresponding set of three Event IDs (EvtIDs)
defined for CPU agent Intel RDT's CMT and MBM features (See Chapter 3).

RMIDs are allocated to devices by software from the pool of RMIDs defined at
the L3 cache level, and the IA32_QM_EVTSEL / IA32_QM_CTR MSRs can be
used to specify RMIDs and Event IDs and retrieve data.

The MSR pair used to retrieve event data is shown in Figure 3-3, however as all
properties are inherited from CPU agent RDT (See Chapter 3 for details). All of
access rules and usage sequence, reserved bit properties, initial values, and
virtualization properties are inherited from CPU agent Intel RDT.

Allocation: CLOS-based Control Interfaces

The Intel RDT Allocation features for non-CPU agent use CLOS-based tagging
for control of cache at a given level, subject to where data fills from I/O devices
in a particular cache and SoC implementation. In common cases this will be the
last-level cache (L3) as described in the ACPI - specifically in the IRDT sub-
table known as RCS and its flags. Software may adjust the levels of cache that
it controls based on the expected level(s) of cache into which I/O data may fill
subject to flags in the RCS. This in turn may affect which CPU agent CAT
control masks software programs to control the data fills of non-CPU agents
and may vary depending on how a particular RCS is connected to shared
resources on a platform.

For each supported Cache Allocation resource type, the hardware supports only
a finite number of CLOS. The following field in the Cache Allocation Technology
Enumeration Leaf, CPUID.10H.02H:EDX[15:0], enumerates the maximum
CLOS supported for the resource (CLOS are zero-referenced, meaning a
reported value of "15” would indicate 16 total supported CLOS). Bits 31:16 are
reserved, see the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3B for details.

In a typical example, with a non-CPU agent (for example, a PCIe device) filling
data into an L3 cache, the RCS structure’s “Cache Level Bit Vector” would have
bit 17 set to indicate the L3 cache, and software may control the CPU agent
Intel RDT L3 CAT masks (in IA32_L3_QoS_MASK_n MSRs) to define the
amount of cache into which non-CPU agents may fill. As with RMID
management, the CLOS used in this context are drawn from the pool at the
applicable resource (L3 cache in this context).

If other cache levels are introduced or used in the future, incremental software
enabling may be required to comprehend fills into other cache levels.

52

Document Number: 356688-004US, Revision: 1.3

intel

As the masks used for control are drawn from the existing definitions of such
cache controls in the CPU agent Intel RDT definitions, details such as reserved
fields, initialization values, and so on, are defined in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3B. Figure 4-7 shows an
example of the CPU agent Intel RDT L3 CAT control MSRs.

Figure 4-7. Reuse of the IA32_L3_QOS_MASK_n MSRs for L3 CAT Control

4.9

4.9.1

4.9.2

Privileged Software

1A32_L3_QOS_MASK_n MSR Block
63 32 ‘ 31 v 0
Reserved L3 Cache Bitmask
Indexed Reserved L3 Cache Bitmask
Per
CLOS Reserved L3 Cache Bitmask
Reserved L3 Cache Bitmask

Existing Legacy Package-Scope MSRs to provide Resource Allocation

CXL-Specific Considerations

This section describes CXL-specific device considerations including
management of traffic on multiple links and CXL device types.

CXL block Interfacing Fundamentals

CXL devices may connect to an RMUD via multiple RCSes, and independent
control of each RCS may be required. See Chapter 5 for RMUD and RCS details.

Non-CPU agent Intel RDT features provide monitoring and controls for CXL.IO
and CXL.Cache link types. CXL.mem is not subject to controls in the I/O block
as it is viewed as a resource rather than an agent in Intel RDT terms. Instead
bandwidth to CXL.mem is controlled at the agent source (for example, using
MBA) as previously described and where supported.

Integrated Accelerators

Integrated accelerators, including those using integrated CXL links, may be
monitored and controlled using the semantics described in preceding sections.

Document Number: 356688-004US, Revision: 1.3 53

intel

4.10

Use Cases

A number of non-CPU agent Intel RDT use cases are described in this section
involving PCle, CXL, and integrated accelerators.

As an implementation of the architectural model shown in Figure 4-4 and
Figure 4-5, I/0 block tags upstream DMA traffic (such as PCle writes) as shown
in Figure 4-8, enabling the device’s resource utilization in the shared resources
of the fabric, such as L3 cache, to be monitored and controlled through Intel
RDT RMIDs and CLOS.

The applicable features for each tag are described in Appendix A.2, and
software may configure these tags as described in Chapter 5, which describes
the ACPI; see the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3B, for CPUID enumeration, and Section 4.8 and Chapter 7 for
how the software may actuate these controls.

Figure 4-8. Device Traffic Tagging Model with PCIe as the Sole Traffic Path

SOC Shared Resources and Fabric

|/O Block

RMID/CLOS to Channel ﬂ
Mapping Block cLos

PCle Traffic on an /O Channel

PCle Device

As a concrete example, Figure 4-9 shows a high-performance PCle SSD,
subject to tagging with CLOS (so that its L3 cache footprint may be controlled),
and RMIDs (so that its L3 cache occupancy and overflow bandwidth to memory
may be monitored).

Figure 4-9. PCle Device Example, with Traffic on a Channel Tagged with an

RMID and CLOS

SOC Shared Resources and Fabric

|/O Block

RMID/CLOS to Channel
Mapping Block

PCle Traffic on an /O Channel

PCle SSDs:

PCle Device 10GB/s+

54

Document Number: 356688-004US, Revision: 1.3

intel

An example with a CXL device is shown in Figure 4-10, in which two paths are
used for the device’s traffic, one over CXL.IO, and one over CXL.Cache,
through two separate I/0 blocks, and note that the CXL.Cache link defines only
one channel. In such a case, the software may configure RMID and CLOS
tagging separately for the links. The links operate independently.

Note that no controls are provided for CXL.Mem, as the use of CXL.Mem
resolves around accessing memory on a target device, and bandwidths from
logical processors may be controlled with Intel RDT’s Memory Bandwidth
Allocation (MBA) feature. A more detailed discussion of this case surrounds

Figure 4-14.

Figure 4-10. CXL Example of Device Tagging Model with CXL.IO and CXL.Cache

Traffic Paths

SOC Shared Resources and Fabric

|1/0 Block

CXL 1/0 Block |

RMID/CLOS to Channel
Mapping Block

CLos

RMID RMID
CLOS

RMID/CLOS to Channel
Mapping Block

CXL.10 Traffic

CXL.Cache/Mem Traffic

CXL Device

An example with multiple devices with different properties is shown in Figure
4-11, where a pair of PCle devices on separate I/O blocks may be controlled
independently, with separate RMID and CLOS tags. In this case a PCle SSD
which does not utilize the cache effectively may be limited, but a NIC which fills
into the cache for data to be consumed by CPU cores may be prioritized.

Figure 4-11. Example of Controlling Two Different PCIe Devices

e.g., Set CLOS[5]=5%

of L3 Cache

e.g., Set CLOS[6]=25%

of L3 Cache

esources and Fabric

|1/0 Block | [1/0 Block
RMID/CLOS to Channel RMID/CLOS to Channel
Mapping Block Mapping Block
PCle Traffic on an 1/0 Channel PCle Traffic on an I/O Channel
i PCle SSDs: NIC
i : 10GB i S
PCle Device /st PCle Device 400Ghps+

Document Number: 356688-004US, Revision: 1.3

55

intel.

The following image shows an example with one CXL accelerator, perhaps a
CXL-enabled FPGA card, utilizing CXL.IO and CXL.Cache, controlled
independently from an I/O block with a PCIe device attached.

Figure 4-12. Example of Controlling a CXL Accelerator

e.g., Set e.g., Set
CLOS[8]=10% of CLOS[3]=25% of
L3 Cache L3 Cache

SOC Shared Resources and Fabric

PCle I/O Block PCle 1/0 Block

RMID/CLOS to RMID/CLOS to
Channel Channel
Mapping Block Mapping Block

RMID/CLOS to
Channel RMID/CLOS Tagging

Mapping Block

RMID/CLOS
Tagging

CXL.Cache Traffic

RMID/CLOS Tagging

PCle Traffic

CXL.10 Traffic

BW Spikes but .
CXL Collaborates PCIe AOglGCb& N
Accelerator with Cores Device Pe

An example of tagging and controlling an integrated accelerator, the Data
Streaming Accelerator (DSA) alongside a PCle device is shown in Figure 4-13.
Depending on system load conditions and the DSA usage case, software may
choose to allocate non-overlapping portions of the cache to minimize cache
contention effects.

Figure 4-13. Example of Controlling a High-Bandwidth Integrated Accelerator

e.g., Set CLOS[15] =
1 CBM Bit in L3
Cache

e.g., Set CLOS[14]= non-
overlapping 25% of L3 Cache

SOC Shared Resources angWabric

11/0 Block ||1/0 Block
RMID/CLOS to Channel —Z 1 | || RMID/CLOS to Channel —L 1 o
Mapping Block Gles Mapping Block les
PCle Traffic on an I/O Channel PCle Traffic on an I/O Channel

Data Streamin _
2 30GB/s+ per PCle Device

Accelerator (DSA)

NICs:
400Gbps+

A complex example with multiple features in use is shown in Figure 4-14,
where various PCle devices are controlled with non-CPU agent Intel RDT, but a
CXL device is also present, using CXL.IO and CXL.Mem links. The CXL device
may be tagged and controlled on its CXL.IO interface.

56

Document Number: 356688-004US, Revision: 1.3

intel

As the main purpose of CXL.Mem is for host accesses to device memory,
however, traffic responses up through the CXL.mem path are not subject to
MBA bandwidth shaping, though they are sent with RMID and CLOS tags. If
bandwidth is constrained on this link and software seeks to redistribute
bandwidth across different priorities of accessing agents, such as CPU cores,
the MBA feature may be used to redistribute bandwidth and throttle at the
source of the requests (the agent’s traffic injection point).

This example shows that for comprehensive management of cache and
bandwidth resources on the platform, a combination of CPU agent Intel RDT
and non-CPU agent Intel RDT controls may be necessary.

Figure 4-14. MBA to Control a CXL.Mem Pooling Device

Noisy Neighbor Core High Priority Core Core accesses subject to IA L3 Cache
Masks; Cores throttled with MBA; No
MBA Bandwidth MBA Bandwidth upstream CXL.Mem BW Shaping as

Controls Controls CXL.Mem is a resource, not an agent

SOC Shared Resources and Fabric

PCle 1/0 Block CXL 1/0’Block PCle 1/0 Block

RMID/CLOS to RMID/CLOS to
BUD/CLoS Channel | | channel RMID/CLOS Tagging
Tagging Mapping Block Mapping Block

CXL.Mem Traffic PCle Traffic

RMID/CLOS to

Channel RMID/CLOS Tagging

Mapping Block

CXL.10 Traffic

3DXP Subject to BW Other 4 f
CXL.Mem Contention Devices
from Threads
Pool
§

Document Number: 356688-004US, Revision: 1.3 57

intel

5

BIOS Considerations

5.1

5.2

Software may query processor support of RDT shared resource monitoring and
allocation features by executing CPUID for the RDT features which are defined
per CPU Agent (independent of interface scope). ACPI structures may then be
consulted for further details on the Enhanced RDT (ERDT structure) features
support, memory range-to-region mapping (MRRM structure) and I/O RDT
RMID/CLOS (IRDT structure) topologies and tagging. These ACPI tables
enumerate the location of specific MMIO interfaces used to allocate or monitor
shared platform resources. All numeric values in ACPI-defined tables, blocks, and
structures are always encoded in little endian format. Signature values are stored
as fixed-length strings.

Introduction to Enhanced RDT Interfaces

Two new structures are defined to enumerate the Region Aware MBM and MBA
features and the shared infrastructure such as memory regions that they use:

1. Enhanced RDT (ERDT) ACPI structure: Describes the resource
management domains (RMDs) in an SoC and which agents are managed
within the scope of each resource management domain; this structure also
describes the architectural MMIO register locations for various resource
monitoring and allocation features.

2. Memory Range and Region Mapping (MRRM) ACPI structure:
Describes distinct memory ranges in the platform along with their Region-ID
mapping registers, in order to group ranges into regions for Region-Aware
Memory Bandwidth Allocation (MBA) and Memory Bandwidth Monitoring
(MBM). This structure may be used by other Intel product features which
utilize or reference the same consistent Region-IDs.

Features defined in ERDT are dependent on the regions defined within the MRRM
table. If ERDT is defined but not MRRM, software may assume that only one
memory region is defined, covering all system memory. If MRRM is defined but
not ERDT, software may assume that no region-aware RDT features are present.

The ERDT, IRDT and MRRM tables include a checksum value, which should be
calculated in accordance with ACPI table checksum generation norms.

ERDT Table Structure Layout

The top-level ACPI structure defined to support Enhanced RDT features is the
“ERDT"” structure. Figure 5-1 exemplifies the ERDT ACPI hierarchy. As
described in the following sections, the ERDT structure may include the
following defined sub-structures:

¢ Resource Management Domain Description Structure (RMDDs),

58

Document Number: 356688-004US, Revision: 1.3

intel

e CPU Agent Collection Description Structure (CACDs),

e Device Agent Collection Description Structure (DACDs),

e Cache Monitoring Registers for CPU Agents Description Structure
(CMRCs),

¢ Memory Bandwidth Monitoring Registers for CPU Agents Description
Structure (MMRCs),

¢ Memory Bandwidth Allocation Registers for CPU Agents Description
Structure (MARCs),

e Cache Allocation Registers for CPU Agents Description Structure
(CARCs),

e Cache Monitoring Registers for Device Agents Description Structure
(CMRDs),

e I/0 Bandwidth Monitoring Registers for Device Agents Description
Structure (IBRDs),

e Cache Allocation Registers for Device Agents Description Structure
(CARDs),

e I/0 bandwidth Allocation Registers for Device Agents Description
Structure (IBADs)

There exists only one instance of the ERDT table for a given platform. Each
RMDD structure within ERDT represents a resource management domain
(RMD). Thus, there will be as many RMDDs as the number of resource
management domains across all SoCs on the platform. For example, on a dual-
socket platform, where each socket hosts N resource management domains,
there will be 2*N RMDD sub-structures within ERDT.

CPU agents under the scope of each resource management domain (RMDD) are
enumerated (via their x2APIC physical APIC-ID [1]) through a CPU Agent
Collection Description (CACD) table. Similarly, non-CPU agents under the
scope of an RMDD are enumerated through a Device Agent Collection
Description (DACD) table. Each RMDD table has a unique Domain-ID, and the
CACD/DACD table instances correlate to the corresponding RMDD by
referencing the respective RMDD Domain-ID value.

As shown in Figure 5-1, the CMRC, MMRC and MARC sub-structures describe
the architectural MMIO register location and organization for the Cache
Monitoring Technology (CMT), Memory Bandwidth Monitoring (MBM) and
Memory Bandwidth Allocation (MBA) enhanced features in RMDDs which have
CPU agents within scope. Similarly, the CMRD, CARD and IBRD registers
describe the architectural MMIO register locations and organization for I/O
CMT, I/O CAT and I/O MBM registers in RMDDs with non-CPU agents within
scope. As feature support may differ across RMDDs, software should
individually enumerate all ERDT sub-structures to determine whether
asymmetric feature support is present.

See Section 5.4 for complete details about these structures.

Document Number: 356688-004US, Revision: 1.3 59

intel

Figure 5-1. Top-level Structure of ERDT ACPI Enumeration

5.3

Note: CACD and DACD
structures are embedded
within and reference RMDD
structures

List of
Structs

ERDT

Top-level ACPI
Enhanced RDT
Enumeration
Structure

/

Note: Single
Structure per
Platform that
includes all sub-
strucutres.

List of
Structs

»

CPU Agent Collection

CPU Agent Collection
Description Structure
(CACD)

‘ ResourdgManagement,

‘ Resourc anagemen

Resource Management
Domain Description
Structure
(RMDD)

Device Agent

Device Agent
Collection Description
Structure
(DACD)

L

Regource

Resource
Management Domain
Description Structure | |

(RMDD)

Sub-structure types within the
scope of this RMDD

Cache Monitoring Registers for
CPU Agents Description Structure
(CMRC)

Memory Bandwidth Monitoring
Registers for CPU Agents
Description Structure
(MMRC)

Memory Bandwidth Allocation
Registers for CPU Agents

Description Structure
(MARC)

Sub-structure types within the
scope of this RMDD

Cache Monitoring Registers for
Device Agents Description
Structure
(CMRD)

10 Bandwidth Monitoring
Registers for Device Agents
Description Structure
(IBRD)

Cache Allocation Registers for
Device Agents Description
Structure
(CARD)

Note: Distinct

set of CACD/

DACD/RMDD
structures exist

MRRM Table Structure Layout

Figure 5-2 shows the MRRM ACPI table structure which describes the memory

range to region mapping details. Each memory range entry in the MRRM

structure consists of a contiguous range of host physical address (HPA) space
along with the registers (if hardware and OS configuration of Region-IDs are
supported) for programming Region-ID for this memory range. Each memory
range may be configured with a Region-ID for local accesses and a Region-ID
for remote (cross-socket) accesses. The memory ranges are identical to the
memory ranges specified in the Memory Affinity Structure specified in the ACPI
SRAT structure [8] and may be cross-referenced by address as described in a
later chapter.

If the platform supports only static memory range to region mapping (as with
initial implementations), then the ‘Platform-assigned Static Local Region-ID’
and ‘Platform-assigned Static Remote Region-ID’ fields (Section 5.5.1) describe
local and remote Region-IDs allocated by platform firmware (BIOS) for that
memory range.

60

Document Number: 356688-004US, Revision: 1.3

intel

Figure 5-2. Top-level Structure of MRRM ACPI Enumeration

MRRM List of
Memory Range and |Structs
Region Mapping
Structure 1:.Q,
Q>=1

Note: Single
Structure per
Platform that

includes all
sub-strucutres.

5.4

5.4.1

/’ Memory Range Entry

Memory Range Entry

Memory Range Entry

Mem Range
RegionlD Programming
Register

ERDT Table Structure Details

™

Note: Distinct
set of Memory
Range Entry
structures
exist per SoC

ERDT Structure Format and Field Descriptions

The top-level ACPI table, known as the Enhanced Resource Director Technology
Structure (ERDT) is shown below. This table includes a unique signature, and
its enumerated length includes all sub-structures. The length of the ERDT table

is variable.

Table 5-1. Enhanced Resource Director Technology (ERDT) Top-Level ACPI

Structure
Field Byte Byte Offset Description
Length

Signature 4 0 "ERDT". Signature for the Enhanced
Resource Director Technology
Description structure.

Length 4 4 Length, in bytes, of the description table
including the length of the associated
sub-structures.

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID

OEM Table ID 8 16 For the ERDT structure, the Table ID is
the manufacturer model ID

OEM Revision 4 24 OEM Revision of the ERDT Table for OEM
Table ID.

Creator ID 4 28 Vendor ID of utility that created the
table.

Creator Revision 4 32 Revision of utility that created the table.

Document Number: 356688-004US, Revision: 1.3

61

intel

Field Byte Byte Offset Description
Length
Max CLOS 4 36 Maximum number of Classes Of Service

(CLOS) supported by the platform for
resource allocation management. The
CLOS values supported by the platform
are 0 through N, where N is the value
reported in this field.

Reserved 24 40 Reserved (0).

ERDT Sub-structures - 64 List of ERDT sub-structures. All sub-
structures have a type and length fields
at the beginning. The type field uniquely
identifies the type of sub-structure, and
the length field indicates the size of the
sub-structure including the size of any
subordinate structures it may include.
For forward compatibility, software is
expected to ignore and skip any sub-
structures that it does not recognize.
The following table lists the various sub-
structures defined.

5.4.2 Valid ERDT Sub-structure Types

All RDT Sub-structures start with a ‘Type’ field (two bytes) followed by a
‘Length’ field (two bytes) indicating the size in bytes of the structure (including
sub-structures).

Table 5-2. Valid ERDT Sub-structure Types

Type | Abbreviation Description

0 RMDD Resource Management Domain Description Structure

1 CACD CPU Agent Collection Description Structure

2 DACD Device Agent Collection Description Structure

3 CMRC Cache Monitoring Registers for CPU Agents Description Structure

4 MMRC Memory-bandwidth Monitoring Registers for CPU Agents Description
Structure

5 MARC Memory-bandwidth Allocation Registers for CPU Agents Description
Structure

6 CARC Cache Allocation Registers for CPU Agents Description Structure

7 CMRD Cache Monitoring Registers for Device Agents Description Structure

8 IBRD IO Bandwidth Monitoring Registers for Device Agents Description
Structure

62 Document Number: 356688-004US, Revision: 1.3

5.4.3

intel

Type | Abbreviation Description
9 IBAD IO bandwidth Allocation Registers for Device Agents Description
Structure
10 CARD Cache Allocation Registers for Device Agents Description Structure
>10 Reserved for future use. For forward compatibility, software skips

structures it does not comprehend by skipping the number of bytes
indicated by the Length field.

BIOS implementations should report these RDT Sub-structure types in
numerical order, that is, all RDT sub-structures of Type 0 (RMDD) enumerated
before remapping structures of Type 1 (CACD) and Type 2 (DACD). All of the
valid sub-structures which are under the scope of Type 0 (RMDD) should be
enumerated in numerical order, e.g., Type 1 (CACD), Type 2 (DACD), Type 3
(CMRC), Type 4 (MMRC) and so forth and then subsequent Type 0 (RMDD)
enumeration should take place. Defined in this fashion, not all of these are top-
level structures, some of these sub-structure types may exist under the scope
of other structure type such as an RMDD. See Section 5.4.3.1 for details.

Resource Management Domain Description
Structure

A Resource Management Domain Description (RMDD) structure describes a
RDT resource management domain. There must be at least one instance of this
structure present to represent one or more enhanced features such as CMT,
MBM and MBA if supported.

Table 5-3. Resource Management Domain Description (RMDD) Structure

Field Byte Length | Byte Offset Description
Type 2 0 0 - Resource Management Domain
Description (RMDD) structure.
Length 2 2 Total Length of this RMDD and all sub-
structures within the scope of this RMDD.
Flags 2 4 Bit 0: L3 Domain

o If Set, this RMDD represents a
resource-management domain hosting a
CPU L3 cache. The relevant registers are
described through CMRC, MMRC, MARC
and CARC register description structures.
CPU L3 cache details are reported through
CPUID. Please refer to the Intel SDM.

Bit 1: I/0 L3 Domain

e If Set, this RMDD represents a
resource-management domain hosting an
L3 cache into which I/O data may fill. The
relevant registers in this resource
management domain are described
through CMRD, IBRD and CARD register
description structures. I/0 L3 details are
reported in 'Number of I/O LLC slices’,
‘Number of I/O LLC sets' and 'Number of
I/0 LLC ways' fields which may align with
CPU caches but is not guaranteed. Cache
line size is the same for I/O L3 and CPU
caches, and is reported in

Document Number: 356688-004US, Revision: 1.3

63

intel

Field

Byte Length

Byte Offset

Description

CPUID.04H.EBX[11:0].
Bits 2-15: Reserved.

Number of I/O L3
slices

This field is valid only if bit 1 (indicating
I/0 L3 domain) is set in the flags field. A
value of Q in this field indicates the
number of slices forming this I/O L3
cache.

Number of I/O L3
sets

This field is valid only if bit 1 (indicating
I/O L3 domain) is set in flags field. A value
of N in this field indicates 2N number of
sets for the I/O L3 supported under this
Resource Management Domain's scope.

Number of I/O L3
ways

This field is valid only if bit 1 (indicating
I/O L3 domain) is set in flags field. A
value of Q in this field indicates the
number of I/0 L3 ways supported under
this Resource Management Domain's
scope.

Reserved

10

Reserved(0)

DomainlID

18

This field indicates a unique Domain ID for
the RMDD structure representing this
resource management domain. The CPU
and device agents under the scope of an
RMDD are enumerated through CACD and
DACD structures referencing the value in
this field.

Max RMID

20

Maximum Resource Monitoring IDs
(RMID) number supported by this
resource management domain. The value
reported is specific to the respective
domain. The RMID values supported are 0
through X, where X is the value reported
in this field. Max RMID is only valid if
monitoring sub-features are supported for
this domain.

Control Register
Base Address

24

4KB aligned host physical address of
control registers for this RDT Domain.

Control Register
Size

32

The size of the control register space for
this domain, in units of 4 KB pages.

64

Document Number: 356688-004US, Revision: 1.3

intel

Field

Byte Length

Byte Offset

Description

RMDD structures

34

A list of agent collection description
structures and register description
structures within the scope of this RMDD.
All sub-structures have a type and length
fields at the beginning. The type field
uniquely identifies the type of sub-
structure, and the length field indicates
the size of the sub-structure including the
size of any subordinate structures it may
include. For forward compatibility,
software is expected to ignore and skip
any sub-structure types that it does not

recognize. The Table 5-4 lists the
various sub-structure types defined.

5.4.3.1 Valid Sub-structure Types within the scope of this RMDD

All RDT Sub-structures start with a ‘Type’ field (two bytes) followed by a
‘Length’ field (two bytes) indicating the size in bytes of the structure (including

sub-structures).

Table 5-4. Valid Sub-structure Types within the scope of an RMDD

Type Abbreviation Description

1 CACD CPU Agent Collection Description
Structure

2 DACD Device Agent Collection Description
Structure

3 CMRC Cache Monitoring Registers for CPU
Agents Description Structure

4 MMRC Memory-bandwidth Monitoring Registers
for CPU Agents Description Structure

5 MARC Memory-bandwidth Allocation Registers
for CPU Agents Description Structure

6 CARC Cache Allocation Registers for CPU Agents
Description Structure

7 CMRD Cache Monitoring Registers for Device
Agents Description Structure

8 IBRD 10 Bandwidth Monitoring Registers for
Device Agents Description Structure

9 IBAD 10 bandwidth Allocation Registers for
Device Agents Description Structure

10 CARD Cache Allocation Registers for Device
Agents Description Structure

>10 Reserved for future use. For forward

compatibility, software skips structures it
does not comprehend by skipping the
number of bytes indicated by the Length
field.

Note that as described in Figure 5-1, ERDT may contain RMDD, CACD, DACD
and other sub-structures. The CACD and DACD structures are embedded within
and reference an RMDD.

BIOS implementations should report these sub-structure types in numerical
order. i.e., All RDT substructures of Type 0 (RMDD) enumerated before
remapping structures of Type 1 (CACD) and Type 2 (DACD). All the valid sub-

Document Number: 356688-004US, Revision: 1.3

65

intel

structures which are under the scope of Type 0 (RMDD) should be enumerated

in numerical order i.e., Type 1 (CACD), Type 2 (DACD), Type 3 (CMRC), Type 4
(MMRC) and so forth and then subsequent type 0 (RMDD) enumeration should

take place.

5.4.4 CPU Agent Collection Description Structure

A CPU Agent Collection Description (CACD) structure uniquely represents a
collection of logical processor agents on the platform managed by a common
RDT domain. There must be at least one instance of this structure for each RDT
domain supporting CPU agents.

Table 5-5. CPU Agent Collection Description (CACD) Structure

Field Byte Length | Byte Offset Description
Type 2 0 1 - CPU Agent Collection Description
(CACD) Structure
Length 2 2 Varies (8 + size of Enumeration-IDs field)
Reserved 2 4 Reserved(0)
RMDD DomainID 2 6 This field specifies the Domain-ID for the

resource management domain that
monitors/enforces cache and memory
bandwidth resourcing for agents in this
collection. Resource management domains
are enumerated through the RMDD
structures. Each RMDD structure includes
a unique Domain-ID.

Enumeration-IDs [] - 8 Array of Enumeration-IDs, each
representing a unique logical processor in
this agent collection. Enumeration-ID of a
logical processor is its 32-bit physical
X2APIC ID as reported in the Processor
Local x2APIC Affinity Structure in ACPI
System Resource Affinity Table (SRAT).

5.4.5 Device Agent Collection Description Structure

A Device Agent Collection Description (DACD) structure uniquely represents a
collection of device agents on the platform managed by a common RDT
domain. There must be at least one instance of this structure for each RDT
domain supporting devices.

Table 5-6. Device Agent Collection Description (DACD) Structure

Field Byte Length | Byte Offset Description
Type 2 0 2 - Device Agent Collection Description
(DACD) Structure
Length 2 2 Varies (8 + size of Device Agent Scope
Entries field)
Reserved 2 4 Reserved(0)

66 Document Number: 356688-004US, Revision: 1.3

5.4.5.1

intel

Field

Byte Length

Byte Offset

Description

RMDD DomainID

2

6

This field specifies the Domain-ID for the
resource management domain that
monitors/enforces cache and memory
bandwidth resourcing for agents in this
collection. Resource management domains
are enumerated through the RMDD
structures. Each RMDD structure includes
a unigue Domain-ID.

Device Agent
Scope Entries []

Array of one or more Device Agent Scope
Entries that identify devices in this
collection. Refer to Device Agent Scope
Entry structure

Device Agent Scope Entry Structure

The Device Agent Structure is composed of Device Agent Scope Entries. Each
Device Agent Scope Entry refers to either a PCI endpoint device or a PCI sub-
hierarchy.

Table 5-7. Device Agent Scope Entry (DASE) Structure

Field

Byte Length

Byte Offset

Description

Type

1

0

The following values are defined for this
field.

0x01: PCI Endpoint Device - The device
identified by the ‘Path’ field is a PCI
endpoint device.

0x02: PCI Sub-hierarchy - The device
identified by the ‘Path’ field is a PCI-PCI
bridge. In this case, the specified bridge
device and all its downstream devices are
included in the scope.

Other values for this field are reserved for
future use.

Length

Length of this Entry in Bytes. (6 + X),
where X is the size in bytes of the “Path”
field.

Segment Number

The PCI Segment associated with this
device agent

Reserved

Reserved (0)

Start Bus Number

This field describes the bus number (bus
number of the first PCI Bus produced by
the PCI Host Bridge) under which the
device agent identified by this Device
Agent Scope Entry resides.

Document Number: 356688-004US, Revision: 1.3

67

intel

Field

Byte Length

Byte Offset

Description

Path

2*N

6

For Device Agent Scope Entries with Type
value of 0x1 or 0x2, this field describes
the hierarchical path from the Host Bridge
to the device specified by the Device
Agent Scope Entry.

For example, a device in a N-deep
hierarchy is identified by N {PCI Device
Number, PCI Function Number?} pairs,
where N is a positive integer. Even offsets
contain the Device numbers, and odd
offsets contain the Function numbers.
The first {Device, Function} pair resides
on the bus identified by the ‘Start Bus
Number’ field. Each subsequent pair
resides on the bus directly behind the bus
of the device identified by the previous
pair. The identity (Bus, Device, Function)
of the target device is obtained by
recursively walking down these N {Device,
Function} pairs.

If the ‘Path’ field length is 2 bytes (N=1),
the Device Scope Entry identifies a ‘Root-
Complex Integrated Device’. The
requester-id of ‘Root-Complex Integrated
Devices’ are static and not impacted by
system software bus rebalancing actions.
If the ‘Path’ field length is more than 2
bytes (N > 1), the Device Scope Entry
identifies a device behind one or more
system software visible PCI-PCI bridges.
Bus rebalancing actions by system
software modifying bus assignments of the
device’s parent bridge impacts the bus
number portion of device’s requester-id.

5.4.6

Description Structure

Cache Monitoring Registers for CPU Agents

A Cache Monitoring Registers for CPU Agents Description (CMRC) structure
describes cache monitoring registers for CPU Agents in a RDT domain. There
must be at least one instance of this structure for each RDT domain which
includes a cache that supports occupancy monitoring. This structure is always
contained within an RMDD structure.

Table 5-8. Cache Monitoring Registers for CPU Agents Description (CMRC)

Structure
Field Byte Length | Byte Offset Description
Type 2 0 3 - Cache Monitoring Registers for CPU
Agents Description Structure
Length 2 2 Fixed: 48B
Reserved 4 4 Reserved(0)

68

Document Number: 356688-004US, Revision: 1.3

5.4.7

intel

Field

Byte Length

Byte Offset

Description

Flags

4

8

¢ Bit 0: Unavailable Bit Support:

If Set, indicates CMT data registers in this
domain support the Unavailable bit,
signaling that data may be unavailable. If
Clear, indicates CMT Register does not
support the Unavailable bit field. See
Section 6.1.3.2 for the CMT Register
Layout.

e Bits 1-31: Reserved.

Register Indexing
Function Version

12

This field indicates Register Indexing
Function Version Number. See 6.1.3.2 for
details on the software usage guidance of
this field.

Reserved

13

Reserved(0)

CMT Register Block
Base Address for
CPU

24

4KB aligned Host Physical Address of
MMIO Registers used for RMID-granular
near Cache Monitoring Technology for CPU
agents.

CMT Register Block
Size for CPU

32

Size of cache monitoring register space in
units of number of 4KB pages. CMT
registers are located in the range
(X):(X+Y*4096), where X is the value
reported in the Register Block Base
Address field and Y is the value in this
field. Refer to Section 6.1.3.2 for details
on the cache monitoring register layout

CMT Register
Clump Size for CPU

36

The registers in the Register Block are
organized in “Clumps”. Each Register
Clump is a set of N adjacent 8-Byte sized
registers, where N is the value specified in
this field. The size of a Register Clump is
thus 8*N bytes.

CMT Register
Clump Stride for
CPU

38

The first Register Clump starts at the
address specified by the base address field
above. Each subsequent Register Clump
starts at a fixed offset (stride) from the
previous Register Clump. The Stride value
(S) is reported as number of bytes in this
field. Thus, registers in a given Clump 'C'
are located at byte offsets <C*S> to
<C*S4+8*N>

CMT Counter
Upscaling Factor

40

Upscaling factor from reported CMT
counter value to occupancy metric
(bytes). See Intel® 64 Architecture
Software Developer’s Manual (SDM),
Volume 3B, Chapter Title: Debug, Branch
Profile, TSC, and Intel® Resource Director
Technology (Intel® RDT) Features for
details on upscaling Factor.

Memory Bandwidth Monitoring Registers for CPU
Agents Description Structure

A Memory Bandwidth Monitoring Registers for CPU Agents (MMRC) Description
structure describes memory bandwidth monitoring registers for CPU Agents in
a RDT domain. There must be at least one instance of this structure for each

Document Number: 356688-004US, Revision: 1.3

69

intel

RDT domain which supports monitoring of bandwidth to memory. This structure
is always contained within an RMDD structure.

(MMRC) Structure

Table 5-9. Memory Bandwidth Monitoring Registers for CPU Agents Description

Field

Byte Length

Byte Offset

Description

Type

2

0

4 - Memory-bandwidth Monitoring
Registers for CPU Agents Description
Structure

Length

Varies (56 + size of MBM Correction Factor
field)

Reserved

Reserved(0)

Flags

e Bit 0: Unavailable Bit Support:

If Set, indicates MBM data registers in this
domain support the Unavailable bit,
signaling that data may be unavailable. If
Clear, indicates MBM Register does not
support the Unavailable bit field. See
Section 6.1.3.3 for the MBM Register
Layout.

e Bit 1: Overflow Bit Support:

If Set, indicates MBM data registers in this
domain support the Overflow bit. If Clear,
indicates MBM data registers do not
support the Overflow bit field. See Section
6.1.3.3 for discussion of MBM Register
Layout and clear-on-read semantics.

e Bits 2-31: Reserved.

Register Indexing
Function Version

12

This field indicates Register Indexing
Function Version Number. See Section
6.1.3.3 for details on the software usage
guidance of this field.

Reserved

13

Reserved(0)

MBM Register Block
Base Address

24

4KB aligned Host Physical Address of
MMIO Registers used for RMID-granular
Memory Bandwidth Monitoring (MBM)

MBM Register Block
Size

32

Size of Memory Bandwidth Monitoring
register space in units of number of 4KB
pages. MBM registers are located in the
range (X):(X+Y*4096), where X is value
reported in base address field and Y is the
value in this field. Refer to Section 6.1.3.3
for details on the Memory Bandwidth
monitoring register layout.

MBM Counter Width

36

A value Q indicates that Q-bit counter
width is supported by underlying
implementation.

MBM Counter
Upscaling Factor

37

MBM data values read can be converted to
bandwidth (in bytes) by multiplying with
the Upscaling Factor.

Reserved

45

Reserved(0)

Document Number: 356688-004US, Revision: 1.3

intel

Field Byte Length | Byte Offset Description
MBM Correction 4 52 A value in this field defines MBM
Factor List Length Correction Factor List Length. Below are
the valid values for MBM Correction List
Length:
0: Do not apply a correction factor to the
MBM values.

1: Apply a single correction factor
specified in MBM Correction Factor field to
all the MBM values (uniformly apply this
correction factor to all data values
retrieved from counters for all RMIDs).
Max RMID+1: If the value in this field
matches the maximum supported RMID +
1 for this domain (as RMIDs are zero-
indexed), indicated in RMDD:"Max RMID",
apply the indicated indexed correction
factor specified in MBM Correction Factor
list to the corresponding the RMID value
for MBM counter.

MBM Correction - 56 A list of MBM Correction Factors. The list
Factor [] will contain zero, one or Max RMID + 1
entries. Fixed-point 32-bit format per
entry in this list. See Section 5.4.12 for
details for fixed-point 32-bit format
details. Counter values may be multiplied
by the correction factor to account for
processor-specific implementation
variations.

5.4.8 Memory Bandwidth Allocation Registers for CPU
Agents Description Structure

A Memory Bandwidth Allocation Registers for CPU Agents Description (MARC)
structure describes memory bandwidth allocation registers for CPU Agents in a
RDT domain. There must be at least one instance of this structure for each RDT
domain which supports Memory Bandwidth Allocation. This structure is always
contained within an RMDD structure.

Table 5-10. Memory Bandwidth Allocation Registers for CPU Agents Description
(MARC) Structure

Field Byte Length | Byte Offset Description
Type 2 0 5 - Memory-bandwidth Allocation
Registers for CPU Agents Description
Structure
Length 2 2 Fixed: 48B
Reserved 2 4 Reserved(0)

Document Number: 356688-004US, Revision: 1.3 71

intel

Field

Byte Length

Byte Offset

Description

MBA Flags

2

6

MBA Control Window Parameter Flags:
Bit O:
MBA_OPTIMAL_CONTROL_WINDOW
e If Set, this domain supports the
Optimal BW Window control.

e If Clear, this domain does not support
Optimal BW Control Window.

Bit 1:
MBA_MINIMUM_CONTROL_WINDOW
e If Set, this domain supports the
Minimum BW Window control

e If Clear, this domain does not support
Minimum Control Window.

Bit 2:
MBA_MAXIMUM_CONTROL_WINDOW
e If Set, this domain supports the
Maximum BW Window control

e If Clear, this domain does not support
Maximum BW Control Window.

Bit 3-15 : Reserved (0)

Register Indexing
Function Version

This field indicates Register Indexing
Function Version Number. See Sections
6.1.3.4, 6.1.3.5, and 6.1.3.6 for details on
the software usage guidance of this field.

Reserved

Reserved(0)

MBA Optimal BW
Register Block Base
Address

16

If the MBA_OPTIMAL_CONTROL_WINDOW
flag is set, this field specifies the base
4KB-aligned Host Physical Address of the
MMIO Registers used for Optimal Memory
Bandwidth Allocation for each Class of
Service

MBA Minimum BW
Register Block Base
Address

24

If MBA_MINIMUM_CONTROL_WINDOW
flag is set, this field specifies the base
4KB-aligned Host Physical Address of the
MMIO Registers used for Minimum
Memory Bandwidth Allocation for each
Class of Service

MBA Maximum BW
Register Block Base
Address

32

If MBA_MAXIMUM_CONTROL_WINDOW
flag is set, this field specifies the base
4KB-aligned Host Physical Address of the
MMIO Registers used for Maximum
Memory Bandwidth Allocation for each
Class of Service

MBA Register Block
Size

40

Size of Memory Bandwidth Allocation
registers in units of number of 4KB pages.
A value of X in this field indicates X*4KB
space for each of the optimal, minimum,
and maximum register sets (if supported).
Refer to Chapter 6 for details on the
Memory Bandwidth Allocation register
layout.

MBA BW Control
Window Range

44

A value of Q in this field indicates the
permitted bandwidth control window range
of values that can be programmed into
MBA registers is 1 through Q, where a
value of 1 represents maximum throttling
and Q represents minimal throttling
(maximum bandwidth).

72

Document Number: 356688-004US, Revision: 1.3

intel

More details on the programming and interpretation of the MBA BW Control
Window Range field are provided in Section 3.2.4.4, Region Aware Memory
Bandwidth Allocation, and in Section 6.1.3, Register Descriptions.

5.4.9 Cache Monitoring Registers for Device Agents
Description Structure

A Cache Monitoring Registers for Device Agents Description (CMRD) structure
describes near cache monitoring registers for Device Agents in a RDT domain.
There must be at least one instance of this structure for each RDT domain
which supports Cache Monitoring Technology (CMT). This structure is always
contained within an RMDD structure.

Table 5-11. Cache Monitoring Registers for Device Agents Description (CMRD)
Structure

Field Byte Length | Byte Offset Description

Type 2 0 7 - Cache Monitoring Registers for Device
Agents Description Structure
Length 2 2 Fixed: 48B

Reserved 4 4 Reserved(0)

Flags 4 8 e Bit 0: Unavailable Bit Support:

If Set, indicates CMT data registers in this
domain support the Unavailable bit,
signaling that data may be unavailable. If
Clear, indicates CMT Register does not
support the Unavailable bit field. See
Section 6.1.3.7 for the CMT Register
Layout.

e Bits 1-31: Reserved.

Register Indexing 1 12 This field indicates Register Indexing
Function Version Function Version Number. See Section
6.1.3.7 for details on the software usage
guidance of this field.

Reserved 11 13 Reserved(0)

Register Base 8 24 Base address of the Device Agent register
Address set for this CMRD.

This address must be aligned according to
the size of the register set size reported in
the Register Block Size field of this
structure.

Register Block Size 4 32 Size of register space in units of number
of 4KB pages. Registers are located in the
range (X):(X+Y*4096), where X is the
value reported in the Register Block Base
Address field and Y is the value in this
field. Refer to Section 6.1.3.7 for details
on the register layout.

CMT Register Offset 2 36 Bits 0-11: This field specifies the offset to
for I/O the CMT registers for I/0 in its
corresponding 4KB page.

If the register base address is X, and the
value reported in this field is Y, then the
first address for the CMT register for I/0 is
calculated as (X+Y). Each subsequent CMT
Register clump for I/O starts at the same

Document Number: 356688-004US, Revision: 1.3 73

intel

Field

Byte Length

Byte Offset

Description

CMT Register Offset for I/O in the next
consecutive 4KB page.
Bit 12-15: Reserved(0)

CMT Register

Clump Size for I/O

38

The registers in the Register Block are
organized in Clumps. Each Register Clump
is a set of N adjacent 8-Byte sized
registers, where N is the value specified in
this field. The size of a Register Clump is
thus 8*N bytes.

Each Register Clump is organized in
consecutive 4KB pages. Each Register
clump starts at an offset specified by CMT
Register Offset for I/0 field in its
corresponding 4KB page.

CMT Counter
Upscaling Factor

40

Upscaling factor from reported CMT
counter value to occupancy metric
(bytes). See Intel® 64 Architecture
Software Developer’s Manual (SDM),
Volume 3B, Chapter Title: Debug, Branch
Profile, TSC, and Intel® Resource Director
Technology (Intel® RDT) Features for
details on upscaling Factor.

5.4.10 IO Bandwidth Monitoring Registers for Device
Agents Description Structure

An IO Bandwidth Monitoring Registers for Device Agents Description (IBRD)
structure describes total I/O BW and I/O Miss registers for Device Agents in a
RDT domain. There must be at least one instance of this structure for each RDT
domain which supports I/O Bandwidth Monitoring. This structure is always
contained within an RMDD structure.

Table 5-12. I0 Bandwidth Monitoring Registers for Device Agents Description

(IBRD) Structure

Field Byte Length | Byte Offset Description
Type 2 0 8 - I0 Bandwidth monitoring Registers for
Device Agents Description Structure
Length 2 2 Varies (64 + size of I/O BW Correction
Factor field)
Reserved 4 4 Reserved(0)

74

Document Number: 356688-004US, Revision: 1.3

intel

Field

Byte Length

Byte Offset

Description

Flags

4

8

e Bit 0: Unavailable Bit Support:

If set, indicates IBRD counter registers
support the Unavailable bit field. If clear,
indicates that the IBRD Register does not
support the Unavailable bit field. See
Section 6.1.3.9 for IBRD Register Layout.
e Bit 1: Overflow Bit Support:

If set, indicates IBRD counter registers
support the Overflow bit field. If clear,
indicates that the IBRD Register does not
support the Overflow bit field. See Section
6.1.3.9 for IBRD Register Layout.

e Bits 2-31: Reserved.

Register Indexing
Function Version

12

This field indicates Register Indexing
Function Version Number. See Section
6.1.3.9 details on the software usage
guidance of this field.

Reserved

11

13

Reserved(0)

Register Base
Address

24

Base address of Device Agent register set
for this IBRD.

This address must be aligned according to
the size of the register set size reported in
the Register Block Size field of this
structure.

Register Block Size

32

Size of register space in units of humber
of 4KB pages. Registers are located in the
range (X):(X+Y*4096), where X is the
value reported in the Register Block Base
Address field and Y is the value in this
field. Refer to Chapter 6 for details on the
register layout.

Total I/0 BW
Register Offset

36

Bits 0-11: This field specifies the offset to
the Total I/O BW registers in its
corresponding 4KB page.

If the register base address is X, and the
value reported in this field is Y, the
address for the Total I/O BW registers is
calculated as (X+Y). Each subsequent
Total I/O BW registers clump starts at the
same Total I/O BW Register Offset in the
next consecutive 4KB page.

Bits 12-15: Reserved(0)

I/O Miss BW
Register Offset

38

Bit 0-11: This field specifies the offset to
the I/0 Miss BW registers in its
corresponding 4KB page.

If the register base address is X, and the
value reported in this field is Y, then the
first address for the I/O Miss BW registers
is calculated as (X+Y). Each subsequent
I/0 Miss BW registers starts at the same
I/0 Miss BW Register Offset in consecutive
4KB page.

Bit 12-15: Reserved(0)

Total I/O BW
Register Clump
Size

40

The registers in the Register Block are
organized in Clumps. Each Register Clump
is a set of N adjacent 8-Byte sized
registers, where N is the value specified in
this field. The size of a Register Clump is
thus 8*N bytes.

Each Register Clump is organized in
consecutive 4KB pages. Each Register

Document Number: 356688-004US, Revision: 1.3

75

intel

Field Byte Length | Byte Offset Description

clump starts at offset specified by Total
I/0O BW Register Offset for I/0 field in its
corresponding 4KB page.

I/O Miss Register 2 42 The registers in the Register Block are
Clump Size organized in “clumps”. Each register clump
is a set of N adjacent 8-Byte sized
registers, where N is the value specified in
this field. The size of a register clump is
thus 8*N bytes.

Each register clump is organized in
consecutive 4KB pages. Each register
clump starts at an offset specified by the
Total I/O BW Register Offset for I/0 field
in its corresponding 4KB page.

Reserved 7 44 Reserved(0)
I/O0 BW Counter 1 51 A value Q indicates that Q-bit counter
Width width is supported for Total I/O BW and

I/0 Miss BW counters by the underlying
implementation.

I/0 BW Counter 8 52 Total I/0 BW and I/O Miss BW Counter

Upscaling Factor value can be converted to bandwidth (in
bytes) using the reported Upscaling
Factor.

I/0 BW Counter 4 60 A value in this field defines I/O BW

Correction Factor Counter Correction Factor List Length.

List Length Below are the valid values for the

Correction Factor List Length:

0: Do not apply a correction factor to the
I/0 BW Counter values.

1: Apply a single correction factor
specified in I/0O BW Counter Correction
Factor field to all the I/O BW Counter
values (uniformly apply this correction
factor to all data values retrieved from
counters for all RMIDs).

Max RMID + 1: If the value in this field
matches the maximum supported RMID +
1 for this domain (as RMIDs are zero-
indexed), indicated in RMDD:"Max RMID",
apply the indicated indexed correction
factor specified in MBM Correction Factor
list to the corresponding the RMID value
for the I/O BW counter.

I/O BW Counter - 64 A list of I/O BW Counter Correction
Correction Factor [] Factors. The list will contain zero, one or
Max RMID + 1 entries. Fixed-point 32-bit
format per entry in this list. See Section
5.4.12 for details for fixed-point 32-bit
format details. Counter values may be
multiplied by the correction factor to
account for processor-specific
implementation variations.

76 Document Number: 356688-004US, Revision: 1.3

intel

5.4.11 Cache Allocation Registers for Device Agents
Description Structure

A Cache Allocation Registers for Device Agents Description (CARD) structure
describes near cache allocation registers for Device Agents in a RDT domain.
There must be at least one instance of this structure for each RDT domain
which supports I/0O Cache Allocation Technology (I/O CAT). This structure is
always contained within an RMDD structure.

Table 5-13. Cache Allocation Registers for Device Agents Description (CARD)

Structure
Field Byte Length | Byte Offset Description
Type 2 0 10 - Cache Allocation Registers for Device
Agents Description Structure
Length 2 2 Fixed: 40B
Reserved 4 4 Reserved(0)
Flags 4 8 e Bit 0: Contention Bitmask Valid:

If Set, indicates 'Contention Bitmask' field
is valid. Contention cache bitmask details
are reported in 'Contention Bitmask' field.
If Clear, indicates 'Contention Bitmask'
field is not valid.

e Bit 1: Non-Contiguous Bitmasks
Supported:

If Set, indicates non-contiguous capacity
bitmasks are supported. The bits that are
set in the various CAT Registers are not
required to be contiguous. If Clear, non-
contiguous bitmasks are not supported.

e Bit 2: Zero-length Bitmask:

If Set, indicates CAT Registers may be
programmed with a value of zero,
indicating zero Capacity Bitmask (CBM)
bits set, and the associated CLOS will be
prevented from allocating into the I/O L3
cache. If Clear, indicates CAT Registers do
not support zero-length bitmasks, and at
least one CBM bit must be set in the
programmed mask.

e Bits 3-31: Reserved.

Contention Bitmask 4 12 This field is valid if bit 0 (Contention
Bitmask Valid) is set in flags field. Each
set bit within the length of the bitmask (I0
L3 Ways) indicates the corresponding unit
(CBM bit) of the I/O L3 allocation may be
used by other entities in the platform
(e.g., an integrated graphics engine).
Each unset bit within the length of the
CBM indicates that the corresponding
allocation unit can be used by an OS/VMM
without interference from other integrated
hardware agents in the system which may
degrade determinism. Bits outside the
length of the capacity bitmask are

reserved.
Register Indexing 1 16 This field indicates Register Indexing
Function Version Function Version Number. See Section

Document Number: 356688-004US, Revision: 1.3 77

intel

Field Byte Length | Byte Offset Description

6.1.3.10 for details on the software usage
guidance of this field.

Reserved 7 17 Reserved(0)
Register Base 8 24 Base address of Device Agent register set
Address for this CARD.

This address must be aligned according to
the size of the register set size reported in
the Register Block Size field of this
structure.

Register Block Size 4 32 Size of register space in units of number
of 4KB pages. Registers are located in the
range (X):(X+Y*4096), where X is the
value reported in the Register Block Base
Address field and Y is the value in this
field. See Section 6.1.3.10 for details on
the register layout.

CAT Register Offset 2 36 Bits 0-11: This field specifies the offset to
for I/0 the Cache Allocation registers for I/0 in its
corresponding 4KB page.

If the register base address is X, and the
value reported in this field is Y, the
address for the CAT Registers for I/0 is
calculated as (X+Y). Each subsequent
Cache Allocation register clump starts at
the same Cache Allocation Register Offset
in consecutive 4KB pages.

Bits 12-15: Reserved(0)

CAT Register Block 2 38 Cache Allocation registers are a set of N
Size adjacent 8-Byte sized registers, where N is
the value specified in this field. The size of
a Cache Allocation Register Block Size is
thus 8*N bytes.

Each Cache Allocation Register Block is
organized in consecutive 4KB pages. Each
Register Block for Cache Allocation starts
at an offset specified by Cache Allocation
Register Offset for I/0O field in its
corresponding 4KB page.

5.4.12 Fixed-Point 32-bit Format for Correction Factor

This section describes the fixed-point 32-bit format that is used for *“"MBM
Correction Factor” and “I/O BW Counter Correction Factor” fields specified in
MMRC and IBRD substructures respectively. The high word (16 bits) represents
the integer (whole number) portion, while the lower word (16 bits) represents
the fractional (decimal) portion.

The following examples show the conversion algorithm for fixed-point 32-bit
format described above.

Example 1: Calculation steps for fixed-point 32-bit format based on 16:16
fixed-point representation of the number “1.2".

1. Multiply the number by the scaling factor: The scaling factor for the
fractional portion is 2N, where N is the number of fractional bits. For
16:16 representation, this is 216 =65536.

78 Document Number: 356688-004US, Revision: 1.3

1.2 x 65536 = 78,643.2

intel

2. Round or Truncate to an integer: The result gives 78,643.

3. Convert the integer to 32-bit hexadecimal and Binary number:

Hexadecimal Representation: 0001 3333H

Binary Representation:

0000 0000 0000 0001

0011 0011 0011 0011

Integer Portion

Fractional Portion

Hence, to represent Correction Factor for number “1.2"”, MMRC and IBRD

substructures may enumerate it as “0001 3333H".

Example 2: Calculation steps for fixed-point 32-bit format based on 16:16

fixed-point representation of the number “0.9”.

1. Multiply the number by the scaling factor: The scaling factor for the

fractional portion is 2 number of fractional bits For 16:16 representation,

this is 216 =65536.
0.9 x 65536 = 58,982.4

2. Round or Truncate to an integer: The result gives 58,982.

3. Convert the integer to 32-bit hexadecimal number:

Hexadecimal number: 0000 E666H

Binary Representation:

0000 0000 0000 0000

1110 0110 0110 0110

Integer Portion

Fractional Portion

Hence, to represent Correction Factor number for *0.9”, MMRC and IBRD

substructures may enumerate it as “0000 E666H".

5.5 Memory Range and Region Mapping (MRRM)

Structure Details

The top-level MRRM ACPI table is shown in the table below, and one instance of

this table is defined at the system level, generated by the system BIOS. This
table includes a unique signature and defines its variable length including all

sub-structures.

The MRRM top-level structure describes host physical memory address ranges

in the platform for region-ID mapping. The Region-Aware MBM and MBA

features use these region IDs to enable monitoring and control per region-ID.

Other features beyond RDT may use these same region numbers, that is, the

Document Number: 356688-004US, Revision: 1.3

79

intel

region ID (e.g., “"2") used for a particular RDT feature maps identically to the
region ID used for the other corresponding non-RDT feature, providing

definitional symmetry. Specific memory ranges are defined and numbered via
the Memory Range Entry (MRE) structure instances encoded within the MRRM

structure.

As the MRRM table is fundamental to RDT Region Aware feature operation, if
software encounters a Revision number that has not been enabled, then it

should cease to proceed forward and print an error message indicating that a
software update is required.

Table 5-14. Memory Range and Region Mapping (MRRM) Structure

Field Byte Length | Byte Offset Description

Signature 4 0 "MRRM". Signature for the Memory
Range and Region Mapping Structure

Length 4 4 Length, in bytes, of the description
table including the length of the
associated sub-structures.

Revision 1 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID

OEM Table ID 8 16 For MRRM structure, the Table ID is
the manufacturer model ID

OEM Revision 4 24 OEM Revision of MRRM Table for OEM
Table ID.

Creator ID 4 28 Vendor ID of utility that created the
table.

Creator Revision 4 32 Revision of utility that created the
table.

Max Memory Regions 1 36 Maximum number of memory

Supported regions that can be subject to
Performance Monitoring, and Region-
Aware Memory Bandwidth Monitoring
and Allocation. One or more memory
address ranges may be grouped to
form memory regions.

Flags 1 37 Bit O:

REGION_ASSIGNMENT_TYPE

e If Clear, platform assigns a static
region-ID for all memory ranges.
When this bit is reported as clear, the
Region-ID assigned for local accesses
and remote accesses are provided in
the Platform-assigned Local Region-
ID field and Platform-assigned
Remote Region-ID fields respectively
of each Memory Range Entry. When
this bit is reported as clear, the
Region-ID programming registers
field in each memory range entry
must be 0.

e If Set, platform supports the
capability for system software
(0OS/VMM) to assign region-1Ds for
local and remote accesses for each
memory range. The registers for
system software to program the
region-IDs are enumerated in the
Region-ID Programming Registers

80

Document Number: 356688-004US, Revision: 1.3

intel

Field

Byte Length

Byte Offset

Description

field of each Memory Range Entry. In
this case, any initial platform-
assigned Region-ID values may be
read by software from the respective
registers for each range.

Bits 1-7: Reserved(0).

Reserved

26

38

Reserved (0).

Memory Range Entry
List []

64

Array of one or more Memory Range
Entries that each identify a
contiguous host physical memory
range to which memory bandwidth
can be allocated and monitored. Refer
to the Memory Range Entry structure
definition.

5.5.1

Memory Range Entry (MRE) Structure

The Memory Range Entry (MRE) Structure hosts Memory Range Entries. Each
Memory Range Entry identifies a contiguous host physical memory range to
which memory bandwidth can be allocated and monitored. Each of these
memory range entries provides the MMIO location of registers for software to
configure Region-ID tagging for that memory range, if supported.

Table 5-15. Memory Range Entry (MRE) Structure

Field Byte Length | Byte Offset Description

Type 2 0 0 - Value of 0 in this field indicates this is
a Memory Range Entry

Length 2 2 32B + sizeof (Region-ID Programming
Registers[])

Reserved 4 4 Reserved(0)

Base Address Low 4 8 Low 32 Bits of the Base Address of the
memory range

Base Address High 4 12 High 32 Bits of the Base Address of the
memory range

Length Low 4 16 Low 32 Bits of the length of the memory
range

Length High 4 20 High 32 Bits of the length of the memory
range.

Region-ID Flags 2 24 Bit 0: Valid Local Region-ID

o If Set, this host physical address
memory range has valid Platform-assigned
Static Local Region-ID.

Bit 1: Valid Remote Region-ID

o If Set, this host physical address
memory range has valid Platform-assigned
Static Remote Region-ID.

Bits 2-15: Reserved.

Document Number: 356688-004US, Revision: 1.3

81

intel

Field Byte Length | Byte Offset Description
Platform-assigned 1 26 If REGION_ASSIGNMENT_TYPE bit in
Static Local MRRM.Flags field is 0 and Valid Local
Region-ID Region-ID Flags is 1, this field enumerates

the platform-assigned static region-ID for
local accesses to this memory range.

Platform-assigned 1 27 If REGION_ASSIGNMENT_TYPE bit in
Static Remote MRRM.Flags field is 0 and Valid Remote
Region-ID Region-ID Flags is 1, this field enumerates

the platform-assigned static region-ID for
remote accesses to this memory range.

Reserved 4 28 Reserved (0).

Region-ID - 32 If the REGION_ASSIGNMENT_TYPE bit in
Programming MRRM.Flags field is 1, this field specifies the
Registers[] registers to program Region-ID for this

memory range.
Host Physical Address of 8-Byte aligned
RDT MMIO registers used to program the
MBA/MBM Region-IDs of this range. Each
Memory Range can be assigned two
Region-IDs (a Local Region-ID for access by
local socket agents and a Remote Region-
ID for accesses by remote socket agents).
One or more memory ranges can be
grouped by into a region by assigning them
the same Region-ID. Thus Region-IDs
enable memory ranges to be organized into
a set of regions that can be subject to
Memory Bandwidth Monitoring and
Allocation. To support memory ranges that
may be spanning multiple memory
controllers, more than one register may be
specified in this field. All registers identified
in this field should be programmed
identically. Refer to subsequent sections for
further details and the architectural
definition of these MBA/MBM Region-ID
configuration registers.

Note that the base and length of each memory region may be used to cross-
reference with memory regions defined in other ACPI tables such as HMAT and
SRAT in a consistent fashion.

5.6 Architectural Intel® RDT Features for Non-
CPU Agents (IRDT)

This section describes ACPI enumeration for architectural Intel RDT features for
non-CPU agents. These features are predominantly enumerated via an ACPI
structure for I/O RDT features with signature “"IRDT”. Note that while the
existence of the IRDT object is sufficient to verify the presence of the I/O RDT
feature on a processor, the revision of the IRDT table may change over time as
the I/0 interface and I/0 bridge properties change. The encoded revision
numbers can be used to manage this change over time.

82 Document Number: 356688-004US, Revision: 1.3

5.6.1

5.6.1.1

5.6.1.2

intel

RMID/CLOS tagging - ACPI Enumeration

ACPI Definitional Goals

A number of goals are accomplished through the IRDT ACPI enumeration
definition in this chapter, including:

1. Providing top-level configuration information for the SoC, such as how
many RMID/CLOS tags non-CPU agent Intel RDT supports relative to CPU
agent Intel RDT (as enumerated by CPUID, see Chapter 3).

2. Providing a logical description of the control hierarchy - meaning which
MMIO address to use to configure a link’'s RMID/CLOS tagging.

3. Provide flexibility in the implementation topology of devices behind I/0O
blocks, and cover cases with discrete or integrated PCIe and CXL links,
and integrated accelerators.

4. Provide enhanced ease-of-use information for software, including device
topologies, TC/VC/Channel mapping information for advanced QoS usages
for forward-compatibility.

IRDT ACPI Enumeration Overview

This section provides a number of diagrams introducing key I/O Intel RDT
structures and their mapping to Intel SoC components. Section 5.6.1.4
provides table specifics.

The top-level ACPI structure defined to support I/O Intel RDT is the "IRDT”
structure. This is a vendor-specific extension to the ACPI table space [4]. The
named IRDT structure is generated by BIOS and contains all other non-CPU
agent Intel RDT ACPI enumeration structures and fields as described in this
chapter.

Document Number: 356688-004US, Revision: 1.3 83

intel

Figure 5-3. Non-CPU Agent Intel® RDT ACPI Enumeration

(VT-d equivalent: DMAR) (VT-d equivalent: DRHD) (VT-d equivalent: DSS)
}Z\;N’l IORNDT-RMILID
>= IORDT-RMLID LN,
ACPI 10 RDT Resource " 2 RD TR
System-Level Parameter] [ManagementUnit List of Specific Structures
Enumeration é’tsr Z‘C’/: : Descriptors Structs

. 3

Xeon SOC loser]

Associated CXL
SMEM Block

1/0 Block

ﬁ | —— PCle Device

1/0 Block

CXL Device

I/O Block 4= /O block may be
exposed as a PCle
ﬁ EP, with O/S driver

Note that all Reserved fields in IRDT structures should be initialized to 0 by
BIOS.

Under the IRDT structure in the hierarchy (embedded within the IRDT
structure) are the I/O Intel RDT Resource Management Unit Descriptors
(RMUDs.). The RMUDs typically map to I/O blocks within the system, though it
is possible that one RMUD may be defined at other levels (such as one RMUD
per SoC).

An example mapping is shown in Figure 5-3, showing ACPI details at the top,
and Intel® Xeon® SoC mappings to hardware blocks at the bottom. The IRDT
and RMUD relationships are shown for a typical implementation, in which
RMUDs describe the properties of an I/O block. The IRDT table defines zero or
more RMUDs, and an RMUD contains one of more RPs.

The RMUD structures contain two embedded structures, the Device Specific
Structures (DSSes) and Resource Control Structures (RCSes) which map to
devices and links and help describe the relationships regarding which I/0
devices are connected to particular links, and which I/0 links are in use by
which devices. Each RMUD defines one or more DSS and RCS structures.

In the example of Figure 5-3, one DSS exists per PCle, CXL or other non-CPU
agent device (including accelerators), subservient to an RMUD. A CXL device
may be expected to have multiple links (for example, CXL.Cache and CXL.IO)
and this topology is described by the associated DSS structure and multiple
RCS structures for the device and its links. Note that Figure 5-3 shows the DSS
structure downstream of the RMUD but does not show the RCS for simplicity.

84

Document Number: 356688-004US, Revision: 1.3

intel

Figure 5-4 shows an example of the RMUD mapping to DSS and RCS
structures. Each device attached to an I/O block is described by a DSS, and
has one or more links, with properties described in the RCS structures. The
RCS structures contain pointers to MMIO locations (in absolute address form,
not BAR-relative) to allow software to configure the RMID/CLOS tags and
bandwidth shaping properties, if supported, in an I/O Block.

Figure 5-4. ACPI Enumeration — Detail of DSS and RCS Structures Downstream

from an RMUD

IORDT-RMUD
10 RDT Resource
Management Unit
Descriptor

ACPI

tistof 1:N,
Structs N>=1

IORDT-DSS des a list of what devi
10 RDT Device- / Provi eiah{stdoth\{v ;'E/Iueglces
i are behin is
Specific Structures
IORDT-CHMS Fixed field: 1B per VC, with a
10 RDT Channel

count of how many entries
are there: Channel for each
indexed VC for the traffic
flows in this path, uppermost
bit is an enable

Mapping byte array

\

Contains a simple table:

IORDT-RCS Channel to RMID/CLOS
10 RD;- RMUD Control mapping controls location (for
tructures this link) = points to MMIO
I/O Block /
Devices
Xeon SOC | LWoRer] :'—
Optional: CXL ~— —————— Note: Distinct sets of channels
Block(s)

exist per path

Figure 5-5 shows a further layer of detail where devices mapped through I/0
blocks are described by the RMUDs, the DSS describes the properties of the
device, and the RCS provides a pointer to the MMIO locations used for
configuring the tagging and bandwidth shaping for a particular link.

Document Number: 356688-004US, Revision: 1.3

85

intel.

Figure 5-5. Mapping from RCS Structures to MMIO Addresses for Per-link

Control
List of 1IN,
structs N>=1 IORDT'D_SS Provides a list of what devices
" Q) (DI Dtsivree- are behind this RMUD
Specific Structures
IORDT-RMUD Enumerates TC/VC/Channel
10 RDT Resource f f :
mapping details of the traffic
ACPl Management Unit ppﬂgws in this path
Description Structure
Contains a simple table:
IORDT-RCS Channel to RMID/CLOS
e RD; RMUD Control mapping controls location (for
tructures this link) = points to MMIO
1/0 Block
T eviees
Xeon SOC [uoRer] | Devices
|
Optional: CXL — ———— —— Note: Distinct sets of channels
Block(s) exist per path

5.6.1.3 Example ACPI Enumeration Cases

Given the table hierarchy described in the preceding section, an example CXL
Type 1 (CXL.IO + CXL.Cache) device mapping is shown in Figure 5-6. The
device is described by one DSS behind an RMUD, while two RCSes are used,
one for each link type (CXL.IO and CXL.Cache).

Figure 5-6. CXL Enumeration Example with CXL.IO and CXL.Cache Links

|ORDT-DSS ——> Oneinstance in this example
IORDT-RMUD
> : |IORDT-RCS Two RCS instances,
Man'ag'ement Ll one for each port, in
Description Structure R
this example

ACPI IRDT IORDT-RCS
System-Level Parameter)
Enumeration List of

Structs

.

1/0 Block
Xeon SOC

CXL Device (A:B.C)

Associated CXL
1/0 Block

86 Document Number: 356688-004US, Revision: 1.3

5.6.1.4

5.6.1.4.1

5.6.1.4.2

intel

ACPI Feature Enumeration — Table Structure Details

Introduction and Notation

Given the previously described relationships of RMUD, DSS and RCS structures,
table format details are described in this section.

Using the ACPI table hierarchy shown earlier in this chapter, following are the
details of each table type and constituent fields. Field definitions are detailed in
the table, and the text covers interpretation, corner cases, and interactions
between fields.

IRDT Table Format and Field Descriptions

The top-level ACPI table, the I/O Resource Director Technology table (IRDT) is
shown in Table 5-16, and one instance of this table is defined at the system
level, generated by the system BIOS. This table includes a unique signature,
and length including all sub-structures, including embedded RMUDs. The length
of the IRDT table is variable.

Table 5-16. IRDT Table Format (Variable Length)

Field Byte Length | Byte Offset Description

“IRDT". Signature for the top-level I/O

Signature 4 0 Intel RDT Description Table.

Length, in bytes, of the description table
Length 4 4 including the length of the associated
remapping structures.

Revision 1 8 1
Checksum 1 9 Checksum: Entire table must sum to zero.
OEMID 6 10 OEM ID.

For IORDT description table, the Table ID is

OEM Table 1D 8 16 the manufacturer model ID.

OEM Revision 4 24 ;DDEM Revision of IRDT Table for OEM Table

Creator ID 4 28 Vendor ID of utility that created the table.

Creator revision 4 32 Revision of utility that created the table.
Bit 0: IO_PROTO_MON -- Set if I/O Intel
RDT Monitoring capabilities are supported
somewhere on the platform for I/O protocol
devices.

10 Protocol Flags 2 36 Bit 1: IO_PROTO_CTL -- Set if I/O Intel

RDT Allocation capabilities are supported
somewhere on the platform for I/O protocol
devices.

Bit 2-15 : Reserved.

Document Number: 356688-004US, Revision: 1.3 87

intel

Field

Byte Length

Byte Offset

Description

Bit 0: IO_COH_MON -- Set if I/O Intel RDT
Monitoring capabilities are supported
somewhere on the platform for coherent
non-IA agents.

Cache Protocol Flags 2 38 Bit 1: IO_COH_CTL -- Set if I/O Intel RDT
Allocation capabilities are supported
somewhere on the platform for coherent
non-CPU agents.

Bit 2-15 : Reserved.

Reserved 8 40 -

A list of structures. The list will contain one

Resource or more Resource Management Unit

Management - 48

Descriptors (RMUDs).

5.6.1.4.3

Hardware Blocks[]

The RMUD structure is described next.

A series of high-level flags allows the basic capabilities of monitoring and
control for I/0 links (for example, PCIe) and coherent links (for example, CXL)
to be quickly extracted. Embedded within the IRDT table is a set of one or
more Resource Management Unit Descriptor Structures (RMUDs), which are
typically mapped to I/O blocks and define their properties. In some
instantiations, one RMUD may be defined for the system, or in a finer-grained
approach, one RMUDs may be defined for each downstream link and device
combination, though this is expected to be an uncommon case.

RMUD Table Format and Field Descriptions

The Resource Management Unit Descriptor (RMUD) structure, definition is
shown in Table 5-17, and includes a humber of fields including length of the
RMUD instance and all embedded sub-structures (DSS and RCS entries), an
integration parameter that map to the SoC properties, including the minimum
and maximum RMID and CLOS tags that are available for use in monitoring and
controlling devices under this RMUD. While the common case is that these
parameters would match the CPU agent Intel RDT parameters, there may be
certain RMUDs which support a subset of the overall RMID and CLOS space.

Table 5-17. RMUD Table Format (Variable length)

Field Byte Length | Byte Offset Description
Type 0 = "RMUD". Signature for the I/O
Type 1 0 Intel RDT Resource Management Unit
Descriptor.
Reserved 3 1 Reserved.
Length 4 a Total length of this RMUD and all sub-
structures.
The PCI Segment containing this RMUD,
Segment 2 8 and all of the devices that are within it.
Reserved 3 10 Reserved.

88

Document Number: 356688-004US, Revision: 1.3

5.6.1.4.4

intel

Field Byte Length | Byte Offset Description

List of devices behind this RMUD, with one
DSS table instance per device.

Contains a list of DSS control structures

DSS and RCS . 13 and RCS control structures, identified by
Structures [] their “Type” field at offset zero in the sub-
structures.
The DSS and RCS structures described
next.

Each RMUD entry contains a number of embedded DSS and RCS structures,
identified by their “"Type” fields, which describe the devices and links behind a
given RMUD.

DSS Table Format and Field Descriptions

The Device Scope Structures behind each RMUD describe the properties of a
device, that is, each DSS maps 1:1 with a device behind a particular RMUD.
The DSS table definition is shown in Table 5-18, including a “type” field (Type
= 0 identifies a DSS), the length of the entry, device type, and an embedded
channel management structure (CHMS). The CHMS defines which RCS(es) are
applicable to controlling this device (DSS), and which internal I/0O block
Channels each of the link’s virtual channels (VCs) may map to (in the case of
PCle, up to eight VCs are supported, but only the first entry is valid in the case
of CXL). Valid configurations for the CHMS include one entry per RCS (link).

In the DSS Device Type field, a value of 0x02 denotes that a PCle Sub-
hierarchy is described by this DSS. Each root port described by a DSS will have
type 0x02. System software may use the enumerated devices found under
such a root port to comprehend share bandwidth relationships in the channels
under an RMUDS.

DSS type 0x01 indicates the presence of a root complex integrated endpoint
device (RCEIP), such as an accelerator. Note that a PCI sub-hierarchy may
denote a root port, and for every DSS that corresponds to a root port it is
expected that Device Type = 0x2.

Note that the CHMS field contains a list of CHMS structures, which may
describe for instances DSS entries which are capable of sending traffic over
multiple channels (which are in turn described by unique RCS entries).

Note that no discrete pluggable devices (for example, PCle cards) are directly
described by the DSS entries, rather the root ports are indicated (Device Type
0x2).

Fields described in this DSS table are only valid when the Revision value is 1 in
the top-level IRDT structure. Refer to section 5.6.1.4.5 (DSS Table format) and
following for cases when Revision value is 2 or above in the top-level IRDT
structure.

Document Number: 356688-004US, Revision: 1.3

89

intel

Table 5-18. DSS Table Format (Variable length)

Field

Byte Length

Byte Offset

Description

Type

2

0

0 = DSS

Length

2

2

Length of this Entry in Bytes.

Device Type

The following values are defined for this
field.

0x01: Root Complex Integrated Endpoint
(RCEIP) Device - The device identified by
the ‘Path’ field is a root complex integrated
PCI endpoint device.

0x02: PCI Sub-hierarchy - The device
identified by the ‘Path’ field is a PCI-PCI
bridge. In this case, the specified bridge
device and all its downstream devices are
included in the scope.

Other values for this field are reserved for
future use.

Enumeration ID

If Device Type equals 1 or 2, this field lists
the BDF

Reserved

Reserved

Structure: CHMS
and RCS
Enumeration []

Packed as byte fields.

One RCS may support multiple DSSes, and
one DSS may have multiple RCSs (links),
so this is an array, with size derivable from
the DSS Length field. Within each entry:

Byte 0: RCS Enumeration ID controlling
this link. Corresponds to the enumeration
ID of the RCS structure under this DSS.

Bytes 1-8: Represents the index into the
“RCS-CFG-Table” used by the
corresponding VC. Byte 1 represents the
channel for VCO, Byte 2 represents the
channel for VC1, and so on. In this field, bit
7 is a valid bit (entry is not valid if enable
bit is cleared). Bit 6, when set, indicates
that this channel is shared with another
DSS. The number of valid bytes in this field
is defined in the per-RCS “Channel Count”
field, any unused bytes (for example, for a
single-Channel CXL link) are Reserved.

See text below for version-specific
interpretation.

Bytes 9-15: Reserved (padding)

5.6.1.4.5 DSS Table Format for IRDT Table Revision 2

When revision 2 is specified in the IRDT table, the Channel Count field in the
RCS structure indicates how many links the RCS has been bifurcated into and
the lowest number channel can be used to control lowest humber BDF and so

on. This controls register indexing pattern.

90

Document Number: 356688-004US, Revision: 1.3

intel

5.6.1.4.6 RCS Table Format and Field Descriptions

The RCS structure provides details of the type of monitoring and controls
supported for a particular link interface type, such as PCIe or CXL, and an
MMIO location in which a table exists that can be used to apply monitoring and
control features. The MMIO location provided is absolute location in MMIO
space (64 bits), rather than hosted in a particular device and defined relative to
a BAR.

Table 5-19. RCS Table Format (v1, Currently 40B)

Field Byte Length | Byte Offset Description

Type 2 0 RCS = 1.

Length, in bytes, of the description table
Length 2 2 including the length of the associated
remapping structures.

Type of link interface:
0x0 = PClIe or CXL.IO

Link Interface Type 2 4
0x1 = CXL.Cache
0x2 and above: Reserved
RCS Enumeration ID 1 6 A unique identifier for this RCS under this
RMUD.
Number of Channels defined for this link
Channel Count 1 7 interface (affects the interpretation of the

CHMS structure within the corresponding
DSS).

Bit 0: Reserved.
Bit 1: RTS: RMID Tagging supported.
Bit 2: CTS: CLOS Tagging Supported.

Flags 2 8 Bit 3: REGW: if set, the RMID and CLOS
defined in the RCS Block MMIO locations
are 2B registers. If clear, they are 8B
registers.

Bits 4-15: Reserved.

Byte offset from the RCS Block MMIO

RMID Block Offset 2 10 Location where the RMID tagging fields
begin.
Byte offset from the RCS Block MMIO
CLOS Block Offset 2 12 Location where the CLOS tagging fields
begin.
Reserved 18 14 Reserved.
RCS Block MMIO 8 32 RCS Hosting I/0 Block MMIO BAR Location
Location defines an MMIO physical address.

Fields mentioned in this RCS table are only valid when the Revision value is 1
in top-level IRDT structure. Refer section 5.6.1.4.7 RCS Table format when
Revision value 2 or above in top-level IRDT structure.

Note that if CXL.IO and PCle devices share the bandwidth of a certain RCS and
its channels, then traffic for both protocols is carried on the same channel
entries.

Document Number: 356688-004US, Revision: 1.3 91

intel

5.6.1.4.7

Note that in the enumeration the fields, the RMID offset, and CLOS offset are
specified relative to the “"RCS Block MMIO Location” field, meaning that the
RMID and CLOS offsets may be relocatable within the MMIO space. The offset
defines the block of a contiguous set of RMID or CLOS tagging fields, and the
number of entries is defined by the “"Channel Count” field (for example, a value
of 8 channels may be common in certain PCle tagging implementations). Note
that if CXL.IO and PCle devices share the bandwidth of a certain RCS and its
channels, then traffic for both protocols is carried on the same channel entrie

Note that in the enumeration the fields, the RMID offset, and CLOS offset are
specified relative to the “"RCS Block MMIO Location” field, meaning that the
RMID and CLOS offsets may be relocatable within the MMIO space. The offset
defines the block of a contiguous set of RMID or CLOS tagging fields, and the
number of entries is defined by the “Channel Count” field (for example, a value
of 8 channels may be common in certain PCIe tagging implementations).

RCS Table Format for Revision 2

These fields are only valid when the Revision value is 2 in top-level IRDT
structure.

Table 5-20. RCS Table Format (v2, Currently 40B)

Field Byte Length | Byte Offset Description

Type 2 0 RCS = 1.

Length, in bytes, of the description table
Length 2 2 including the length of the associated
remapping structures.

Type of link interface:
0x0 = PClIe or CXL.IO

Link Interface Type 2 4
0x1 = CXL.Cache
0x2 and above: Reserved
RCS Enumeration ID 1 6 A unique identifier for this RCS under this
RMUD.
Number of Channels defined for this link
Channel Count 1 7 interface (affects the interpretation of the

CHMS structure within the corresponding
DSS).

Bit 0: Reserved.
Bit 1: RTS: RMID Tagging supported.
Bit 2: CTS: CLOS Tagging Supported.

Bit 3: REGW: if set, the RMID and CLOS
defined in the RCS Block MMIO locations
are 2B registers. If clear, they are 4B
Flags 2 8 registers.

Bit 4: CXLD: if set, indicates that more
than one CXL device resides behind the I/0
link represented by this RCS, for instance
due to link bifurcation. This has
implications on the interpretation of the
Channel Count field. See the surrounding
text for details.

92

Document Number: 356688-004US, Revision: 1.3

intel

Field Byte Length | Byte Offset Description

Bits 5-15: Reserved.

Byte offset from the RCS Block MMIO

RMID Block Offset 2 10 Location where the RMID tagging fields
begin.
Byte offset from the RCS Block MMIO
CLOS Block Offset 2 12 Location where the CLOS tagging fields
begin.
Reserved 18 14 Reserved.
RCS Block MMIO 8 32 RCS Hosting I/0 Block MMIO BAR Location
Location defines an MMIO physical address.

Channel Count indicates how many links the RCS has been bifurcated into and
the lowest number channel can be used to control lowest humber BDF and so
on. This controls register indexing pattern. When set, RCS::Flags::CXLD (Bit 4)
is a special case, where Channel Count field means something specific for a
CXL bifurcated device in that if software detects more than one BDF within the
scope of this DSS and it is enumerated PCIe Bridge, then there will be multiple
devices under the scope of single RCS. In that case, these devices will be
implicitly sharing bandwidth in an some way, such as sharing a bifurcated CXL
physical interface. This bandwidth sharing may also apply to PCle physical
devices or functions within a single PCle physical device but is not represented
by the CXLD bit.

Document Number: 356688-004US, Revision: 1.3 93

intel

5.7

5.7.1

Model-Specific Intel® RDT Features for CPU
Agents

This section describes BIOS configuration options for Model-Specific Intel RDT
features for CPU agents.

BIOS Configuration for Resource Aware MBA

See Appendix A.3 for Resource Aware MBA processor support details. See
Appendix B.1.1 for Resource Aware MBA feature details. Note that Resource
Aware MBA is a distinct feature from Region Aware MBA.

The Resource-aware MBA feature is a model-specific extension to the Third
Generation of MBA (Chapter 3) which provides a set of extended capabilities to
better handle heterogenous memory types on complex modern SoCs. A model-
specific implementation is used as memory types may change significantly over
the course of time. A more detailed description of Resource Aware MBA is
provided in the next chapter.

To support Resource Aware MBA, the system BIOS shall support a legacy BW
profile configuration knob with a drop-down menu of three options as with
Second-Generation MBA.
e MBA BW profile

— Linear(default)

— Biased

— Legacy

Note: These BIOS profile names may change in the future.

In addition, BIOS shall add three knobs with a drop-down menu for Resource-
Aware MBA in particular. These scaling ratios enable tuning of MBA calibration
values to the typical bandwidth levels available from each type of
heterogeneous downstream memory type, and tuning values may be further
scaled by the number of memory channels or links populated with each type of
memory. An example implementation of this tuning code will be provided with
the Intel Reference BIOS implementation for each applicable platform.

1. Description: “PMM BW downscaling vs the baseline Total memory BW
profile. For example: picking 1/2x at results in scaling PMM BW throttling
in a 2:1 ratio versus DDR throttling.”

— PMM MBA BW downscale
o 1x (default)
o 1/2x
o 1/4x
o 1/8x
2. Description: "CXL (Type3) BW downscaling vs the baseline Total memory

BW profile. For example: picking 1/2x results in scaling CXL (Type3) BW
throttling in a 2:1 ratio versus DDR throttling.”

94

Document Number: 356688-004US, Revision: 1.3

intel

— CXL (Type3) MBA BW downscale
o 1x (default)
o 1/2x
o 1/4x
o 1/8x
3. Description: "Remote Target BW downscaling vs the baseline Total

memory BW profile. For example: picking 1/2x results in scaling Remote
Target BW throttling in a 2:1 ratio versus DDR throttling.”

— Remote Target MBA (UPI) BW downscale
o 1x (default)
o 1/2x
o 1/4x
o 1/8x

Document Number: 356688-004US, Revision: 1.3 95

intel

6

MMIO Register Descriptions

6.1

6.1.1

6.1.2

This chapter describes the Intel RDT related MMIO registers. As described in
previous chapters, traditional interfaces such as MSRs are discussed in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

Enhanced Intel® RDT Register Location

Referencing the ACPI object definitions of Chapter 5, the register set (MMIO
interfaces) for each Resource Monitoring Domain Description (RMDD) structure
in the platform is mapped in a 4KB-aligned memory mapped page. The exact
location of the register region for each feature is implementation dependent
and is communicated to system software by BIOS through the ACPI ERDT and
MRRM reporting structures (described in Chapter 5, BIOS Considerations).

Software Access to Registers

The following sections describe software access conventions to MMIO-based
RDT registers, including register indexing functions, bitfield definitions and
properties.

Register Attributes

The following table defines the attributes used in the RDT feature Registers.
The registers are discussed in Section 6.1.3.

Table 6-1. Register Attributes Definitions

Attribute Description
RW Read-Write field that may be either set or cleared by software to
the desired state.
RO Read-only field that cannot be directly altered by software
RsvdP “Reserved and Preserved” field that is reserved for future RW
implementations. Registers are read-only and must return 0
when read.
Important: Software must preserve the value read for
subsequent writes during read-modify-write (RMW) operations.
6.1.3 Register Descriptions

The following table summarizes the RDT feature memory-mapped registers.
The scope of these registers is per RMDD structure.

96

Document Number: 356688-004US, Revision: 1.3

intel

Table 6-2. Memory-Mapped Register Block Reference

Register Name Size(b) Description

RDT CTRL 64 Register to control RDT MBM and MBA features.

Cache Monitoring 64 Register reporting cache occupancy telemetry for

Register for CPU CPU Agents. MMIO Base address of this register is

Agents specified in CMRC sub-structure of ERDT APCI.
Field name: CMT Register Block Base Address for
CPU. See later sections for data interpretation.

Memory- 64 Register reporting memory bandwidth monitoring

bandwidth telemetry data for CPU Agents. MMIO Base address

Monitoring of this register is specified in MMRC sub-structure

Registers for CPU of ERDT APCI. Field name: MBM Register Block

Agents Base Address. See later sections for data
interpretation.

Optimum 64 Register to configure optimum memory bandwidth

Memory- allocation targets for CPU Agents. MMIO Base

bandwidth address of this register is specified in MARC sub-

Allocation structure of ERDT APCI. Field name: MBA Optimal

Registers for CPU BW Register Block Base Address.

Agents

Minimum 64 Register to configure minimum memory bandwidth

Memory- allocation targets for CPU Agents. MMIO Base

bandwidth address of this register is specified in MARC sub-

Allocation structure of ERDT APCI. Field name: MBA Minimum

Registers for CPU BW Register Block Base Address.

Agents

Maximum 64 Register to configure maximum memory bandwidth

Memory- allocation targets for CPU Agents. MMIO Base

bandwidth address of this register is specified in MARC sub-

Allocation structure of ERDT APCI. Field name: MBA

Registers for CPU Maximum BW Register Block Base Address.

Agents

Cache Monitoring 64 Register reporting cache occupancy telemetry for

Registers for Non-CPU Agents. MMIO Base address of this

Non-CPU Agents register is specified in CMRD sub-structure of ERDT
APCI. Field name: Register Base Address. See later
sections for data interpretation.

Cache Allocation 64 Register to configure cache allocation rules for CPU

Registers for
Non-CPU Agents

Agents. MMIO Base address of this register is
specified in CARD sub-structure of ERDT APCI.
Field name: Register Base Address.

Document Number: 356688-004US, Revision: 1.3 97

intel

Register Name Size(b) Description

9 Total I/0 64 Register reporting Total I/O bandwidth telemetry
Bandwidth for Non-CPU Agents. MMIO Base address of this
Registers for register is specified in IBRD sub-structure of ERDT

Non-CPU Agents

APCI. Field name: Register Base Address. See later
sections for data interpretation.

10 |I/O
Bandwidth
Registers

Miss 64

Non-CPU Agents

Register reporting I/O Miss bandwidth telemetry for
Non-CPU Agents. MMIO Base address of this

for register is specified in IBRD sub-structure of ERDT
APCI. Field name: Register Base Address. See later
sections for data interpretation.

11 Region-ID

Registers[]

Programming

Register to configure range to region mapping via
system software (OS/VMM). MMIO Base address of
this register is specified in MRRM ACPI. Field name:
Region-ID Programming Registers[].

6.1.3.1

RDT Control Register for CPU Agents

Figure 6-1. RDT Control Register

6
3

RsvdP1 RsydP

m=<-

Abbreviation

RDT_CTRL

General Description

Register to configure RDT features for CPU Agents

Indexing Function

N/A

Address RMDD.Control Register Base Address
Scope Per Resource Management Domain (Per RMDD)
Bits Access Default Field Description
63:3 RO Oh RsvdP1: Reserved
Reserved and
Preserved
Total Mode Enable:
2:2 RW 1h TME: Total 1: Indicates Total MBM and MBA Mode to
Mode En enable the Legacy MSR interfaces.
98 Document Number: 356688-004US, Revision: 1.3

intel

0: Indicates Per Region Aware MBM and
MBA to opt-in to using the MMIO Register
interfaces for Region Aware RDT features.

1:0

RO Oh RsvdPO: Reserved
Reserved and
Preserved

6.1.3.2

Software should enable region aware MBA and MBM to prior to usages of the
Region Aware MBA and MBM features, via the RDT CTRL register on a per-
RMDD basis. These registers should be programmed identically across all RMDD
instances (e.g., by programming each RDT_CTRL MMIO register indicated in
each RMDD) for CPU agents. It is recommended that software use Region
Aware MBM when Region Aware MBA is enabled and vice versa. Mixed mode
use (e.g., legacy MSR interfaces for MBM with Region Aware MBA or vice versa)
is not supported and may lead to inconsistent behavior.

For total bandwidth monitoring and allocation software may continue to use
MSR interfaces by setting the TME bit (Total Mode En Bit[2]) to 1. MSR
interfaces should not be used if Total Mode En Bit[2] is clear. Legacy MSR
interfaces do not offer Region Aware Memory bandwidth monitoring and
allocation.

Cache Monitoring Register for CPU Agents

Figure 6-2. CMT Register

66
32

U L3_CMT_Count

Abbreviation L3 _CMT_RMID n

n: Refer to ACPI ERDT for MAX RMID. RMIDs are zero-
referenced. Hence, this range will encompass 0 to ("MAX RMID"”
reported by RMDD sub-structure).

General Description Register to report Cache Occupancy for CPU Agents

Indexing Function See Section 6.1.3.2.1

RMID Address CMRC.CMT Register Block Size for CPU + Indexing function

mentioned above

Scope

Per Resource Management Domain (Per RMDD)

Document Number: 356688-004US, Revision: 1.3 99

intel

Bits Access Default Field Description

63

RO Oh U: Unavailable | e 0: Indicates data for this RMID is
available and monitored for the
resource or RMID.

e 1: Indicates data for this RMID is not
available or not monitored for the
resource or RMID, and bits(62:0)
should be ignored.

62:0

RO Oh L3_CMT_Count | The value in this field indicates Cache
Monitoring (occupancy) telemetry. See
later sections in Chapter 7, Programming
Guidelines, for data interpretation.

6.1.3.2.1

RMID Organization in CMT Register Block

Software should use the RMID indexing algorithm discussed in this section only
if the “Register Indexing Function Version” field value is 1 in the CMRC sub-
structure. Software should be upgraded to handle any versions > 1 in this field
which would be defined in future version of this specification.

RMIDs are organized in sequential fashion in the CMT Register Blocks. Software
may consult the CMRC sub-structure from ERDT in ACPI when retrieving CMT
telemetry using CMT Register Block Base Address for CPU, CMT Register Block
Size for CPU, CMT Register Clump Size for CPU CMT Register Clump Stride for
CPU fields of the CMRC sub-structure. Each block size is 4KB. CMT registers are
located in the range (CMT Register Block Base Address): (CMT Register Block
Base Address + CMT Register Block Size Value x 4096). To index RMIDs in
the block use the following pseudocode algorithm, where “%"” represents the
modulo operator and “/*** | ***/" is used to encapsulate comments):

MMIO_ADDRESS_for_RMID# = CMT Register Block Base Address +
((RMID# / CMT Register Clump Size for CPU) x CMT Register Clump
Stride for CPU) + ((RMID# % CMT Register Clump Size for CPU) x
8B);

/*** MMIO_ADDRESS_for_RMID# < (CMT Register Block Base Address +
CMT Register Block Size Value x 4096) ***/

Here,
Input Parameter: RMID#
Parameters for Indexing:

= “CMT Register Block Base Address” field reported by
CMRC sub-structure of ERDT ACPI.

100

Document Number: 356688-004US, Revision: 1.3

intel

= “CMT Register Block Size Value” reported by CMRC
sub-structure of ERDT ACPI.

* Max RMIDs supported on the platform reported by
RMDD sub-structure of ERDT ACPI.

= “CMT Register Clump Size for CPU” and “"CMT Register
Clump Stride for CPU” fields values to be enumerated
by CMRC sub-structure.

6.1.3.3 Memory Bandwidth Monitoring Registers for CPU Agents

Figure 6-3. Per Region Per RMID MBM Register

666

321

UIO| MBM_RMID_Count
Abbreviation MBM_Region_m_RMID_n

Variable "m”: Refer to ACPI MRRM to find out number of regions
supported. This range will be 0 to (*Max Memory Regions
Supported” reported by MRRM ACPI -1)

Variable “n”: Refer ACPI ERDT for MAX RMID. RMIDs are zero-
referenced. Hence, this range will be 0 to ("MAX RMID"” reported by
RMDD sub-structure).

General Description Register to report Memory Bandwidth Monitoring for CPU Agents.

Indexing Function See Section 6.1.3.3.1

RMID Address MMRC.MBM Register Block Base Address + Indexing function
mentioned above
Scope Per Resource Management Domain (Per RMDD)
Bits | Access | Default Field Description
63 RO Oh U: Unavailable e 0: Indicates data for this RMID is

available and monitored for the
resource or RMID.

1: Indicates data for this RMID is
not available or not monitored for
the resource or RMID, and
bits(61:0) should be ighored.

Document Number: 356688-004US, Revision: 1.3 101

intel

Bits Access | Default Field Description

62

RO Oh O: Overflow e 0: Indicates that there is no
overflow of the MBM counters

e 1: Indicates that there is overflow of
the MBM counters. It will be reset
upon read, enabling a variable
software-defined counter polling
interval for reduced sampling
overhead.

61:0

RO Oh MBM_RMID_Count | The value in this field indicates Memory
Bandwidth Monitoring telemetry. See
later sections in Chapter 7,
Programming Guidelines, for data
interpretation.

6.1.3.3.1

RMID Organization in MBM Register Block

Software should use the RMID indexing algorithm discussed in this section only
if "Register Indexing Function Version” field value is 1 in MMRC sub-structure.
Software should be upgraded to handle any versions > 1 in this field which
would be defined in future version of this specification.

RMIDs are organized in interleaved fashion in the MBM Register Blocks.
Software may consult the MMRC sub-structure from ERDT ACPI for retrieving
MBM registers using MBM Register Block Base Address and MBM Register Block
Size. Each block size is 4KB. MBM registers are located in the range (MBM
Register Block Base Address): (MBM Register Block Base Address + MBM
Register Block Size Value x 4096B). To index RMIDs in the block per Region
use the following pseudocode algorithm:

Block_to_locate RMID# = ((RMID# % 32) / 8) x 4 x 4@96B;

Offset_within_this_Block = ((((RMID#/32)x8)+RMID#%8) X
8B)+(Region# x 2048B);

MMIO_ADDRESS_for_ RMID#_Region# =

MBM Register Block Base Address + Block_to_locate RMID# +
Offset_within_this_Block;

/*** MMIO_ADDRESS_for_ RMID#_Region# < (MBM Register Block Base
Address + MBM Register Block Size Value *4096B) ***/

Here,

102

Document Number: 356688-004US, Revision: 1.3

Input Parameter: RMID# and Region#

Parameters for Indexing:

“"MBM Register Block Base Address” field reported by

MMRC sub-structure of ERDT ACPI.

intel

“MBM Register Block Size Value” reported by MMRC sub-

structure of ERDT ACPI.

Max RMIDs supported on the platform reported by RMDD

sub-structure of ERDT ACPI.

Max Regions support on the platform reported by MRRM

ACPI.

An example of MBM register blocks is described below in Figure 6-6-4.

Figure 6-6-4. Interleaved RMID MBM Register

Oh:

Region 0 - RMID 0

38h:

MBM

Register Block 0

Region 0 - RMID 7

40h:

MBM

Register Block 1

Region 0 - RMID 32

MBM

Register Block 2

78h:

MBM

Register Block 3

Region 0 - RMID 39

80h:

MBM

Register Block 4

Region 0 - RMID 64

MBM

Register Block 5

B8h:

MBM

Register Block 6

Region 0 - RMID 71

COh:

MBM

Register Block 7

Region 0 - RMID 96

MBM

Register Block 8

F8h:

MBM

Register Block 9

Region 0 - RMID 103

MBM

Register Block 10

100h:

Region 0 - RMID 128

MBM

Register Block 11

MBM

Register Block 12

138h:

Region 0 - RMID 135

MBM

Register Block 13

140h:

Region 0 - RMID 160

MBM

Register Block 14

MBM

Register Block 15

178h:

Region 0 - RMID 167

180h:

Region 0 - RMID 192

1B8h:

Region 0 - RMID 199

1COh:

Region 0 - RMID 224

1F8h:

Region 0 - RMID 231

200h-7FFh: Reserved for future

Document Number: 356688-004US, Revision: 1.3

103

intel

MBM

Register Block 0

MBM

Register Block 1

MBM

Register Block 2

MBM

Register Block 3

MBM

Register Block 4

MBM

Register Block 5

MBM

Register Block 6

MBM

Register Block 7

MBM

Register Block 8

MBM

Register Block 9

MBM

Register Block 10

MBM

Register Block 11

MBM

Register Block 12

MBM

Register Block 13

MBM

Register Block 14

MBM

Register Block 15

800h:

Region 1 - RMID 0

838h:

Region 1 - RMID 7

840h:

Region 1 - RMID 32

878h:

Region 1 - RMID 39

880h:

Region 1 - RMID 64

8B8h:

Region 1 - RMID 71

8COh:

Region 1 - RMID 96

8F8h:

Region 1 - RMID 103

900h:

Region 1 - RMID 128

938h:

Region 1 - RMID 135

940h:

Region 1 - RMID 160

978h:

Region 1 - RMID 167

980h:

Region 1 - RMID 192

9B8h:

Region 1 - RMID 199

9COh:

Region 1 - RMID 224

9F8h:

Region 1 - RMID 231

AOOh-FFFh: Reserved for future

104

Document Number: 356688-004US, Revision: 1.3

intel

MBM

Register Block 0

MBM

Register Block 1

MBM

Register Block 2

MBM

Register Block 3

MBM

Register Block 4

MBM

Register Block 5

MBM

Register Block 6

MBM

Register Block 7

MBM

Register Block 8

MBM

Register Block 9

MBM

Register Block 10

MBM

Register Block 11

MBM

Register Block 12

MBM

Register Block 13

MBM

Register Block 14

MBM

Register Block 15

1000h: Region 2 - RMID 0
1038h: Region 2 - RMID 7
1040h: Region 2 — RMID 32
1078h: Region 2 - RMID 39
1080h: Region 2 - RMID 64
10B8h: Region 2 - RMID 71
10CO0h: Region 2 - RMID 96
10F8h: Region 2 - RMID 103
1100h: Region 2 - RMID 128
1138h: Region 2 - RMID 135
1140h: Region 2 - RMID 160
1178h: Region 2 - RMID 167
1180h: Region 2 - RMID 192
11B8h: Region 2 - RMID 199
11COh: Region 2 - RMID 224
11F8h: Region 2 - RMID 231

1120h-17FFH: Reserved for future

Document Number: 356688-004US, Revision: 1.3

105

intel

MBM

Register Block 0

MBM

Register Block 1

MBM

Register Block 2

MBM

Register Block 3

MBM

Register Block 4

MBM

Register Block 5

MBM

Register Block 6

MBM

Register Block 7

MBM

Register Block 8

MBM

Register Block 9

MBM

Register Block 10

MBM

Register Block 11

MBM

Register Block 12

MBM

Register Block 13

MBM

Register Block 14

MBM

Register Block 15

1800h: Region 3 - RMID 0
1838h: Region 3 - RMID 7
1840h: Region 3 - RMID 32
1878h: Region 3 - RMID 39
1880h: Region 3 - RMID 64
18B8h: Region 3 - RMID 71
18CO0h: Region 3 - RMID 96
18F8h: Region 3 - RMID 103
1900h: Region 3 - RMID 128
1938h: Region 3 - RMID 135
1940h: Region 3 - RMID 160
1978h: Region 3 - RMID 167
1980h: Region 3 - RMID 192
19B8h: Region 3 - RMID 199
19CO0h: Region 3 - RMID 224
19F8h: Region 3 - RMID 231

1A00h-3FFFh: Reserved for future

6.1.3.4 Optimal Memory Bandwidth Allocation Register for CPU
Agents

Figure 6-5. MBA Optimal Bandwidth Register

6
3

55 4
76 8

4
7

4
1

4
0

NW

=W

uiN

AN

(o)1
U=

98

RsvdP3 BR3

RsvdP2

BR2

RsvdP1

BR1

RsvdPO BRO

Abbreviation

MBA_OPTIMAL_BW_n

n: Refer to ACPI ERDT for Max CLOS. CLOS are zero-referenced.
Hence, this range will be 0 to ("MAX CLOS" reported by the ERDT
top-level structure).

106

Document Number: 356688-004US, Revision: 1.3

intel

General Description

Register to configure Optimal Bandwidth Control Window for
Memory Bandwidth Allocation per CLOS.

Indexing Function

See Section 6.1.3.4.1

CLOS Address

MARC.MBA Register Block Base Address + Indexing function
mentioned above

Scope Per Resource Management Domain (Per RMDD)
Bits | Access | Default Field Description
63:57 RsvdP Oh RsvdP3: Reserved and Reserved.
Preserved
56:48 RW 1FFh BR3: Bandwidth_Target_ | Optimal Bandwidth Control Value
Region 3 for Region 3. Ranges from 001h
to 1FFh, with 001h as the
minimum BW and 1FFh as the
maximum BW.
47:41 RsvdP Oh RsvdP2: Reserved and Reserved.
Preserved
40:32 RW 1FFh BR2: Optimal Bandwidth Control Value
Bandwidth_Target_Region | for Region 2. Ranges from 001h
2 to 1FFh, with 001h as the
minimum BW and 1FFh as the
maximum BW.
31:25 RsvdP Oh RsvdP1: Reserved and Reserved.
Preserved
24:16 RW 1FFh BR1: Bandwidth_Target_ | Optimal Bandwidth Control Value
Region 1 for Region 1. Ranges from 001h
to 1FFh, with 001h as the
minimum BW and 1FFh as the
maximum BW.
15:9 RsvdP Oh RsvdPO: Reserved and Reserved.
Preserved
8:0 RW 1FFh BRO: Optimal Bandwidth Control Value

Bandwidth_Target_Region
0

for Region 0. Ranges from 001h
to 1FFh, with 001h as the
minimum BW 1FFh as the
maximum BW.

Document Number: 356688-004US, Revision: 1.3

107

intel

6.1.3.4.1 CLOS Organization in Optimal MBA Register Block

Software should use the CLOS indexing algorithm discussed in this section only
if “"Register Indexing Function Version” field value is 1 in MARC sub-structure.
Software should be upgraded to handle any versions > 1 in this field which
would be defined in future version of this specification.

Note that Region Aware MBA uses the same definition of “optimal”, *min” and
“max” bandwidth as described in earlier discussion in Section 3.2.4.4.3,
Optimal Bandwidth Caps per CLOS.

CLOSs are organized in sequential fashion in the Optimal MBA Register Blocks.
Software may consult the MARC sub-structure from ERDT ACPI for configuring
the per-agent per-region per-CLOS optimum target bandwidth using the MBA
Optimal BW Register Block Base Address and MBA Register Block Size fields of
MARC sub-structure. Each block size is 4KB. Optimum MBA registers are
located in the range (MBA Optimal BW Register Block Base Address): (MBA
Optimal BW Register Block Base Address + MBA Register Block Size x 4096.
To index CLOSs per region in the block use the following pseudocode
algorithm:

MMIO_ADDRESS_for_CLOS# = MBA Optimal BW Register Block Base
Address + (Region# / 4) x 512B + CLOS# x 8B.

/*** MMIO_ADDRESS_for_ CLOS# < (MBA Optimal BW Register Block Base
Address + MBA Register Block Size x 4096) ***/

Here,

Input Parameter: CLOS#, Region# (multiple banks for registers
15t bank is for Region 0 to 3 and consecutively Region 4 to 7 after every
512B). This formula supports up to 64 CLOSs and an arbitrary nhumber
of regions.

Parameters for indexing:

e "“MBA Optimal BW Register Block Base Address” field
reported by MARC sub-structure of ERDT ACPI

¢ "“MBA Register Block Size” reported by MARC sub-
structure of ERDT ACPI

e Max CLOSs supported on the platform reported by ERDT
ACPI.

¢ Max Regions support on the platform reported by MRRM
ACPI.

An example of Optimum MBA register blocks is described below in Figure 6-6.

108

Document Number: 356688-004US, Revision: 1.3

Figure 6-6. Sequential CLOS arrangement in MBA Register

Optimum MBA Register Block

—

intel

Oh: Region 0 - CLOS 0

02h: Region 1 - CLOS 0

04h: Region 2 - CLOS 0

06h: Region 3 - CLOS 0

08h: Region 0 - CLOS 1

OAh: Region 1 - CLOS 1

0Ch: Region 2 - CLOS 1

OEh: Region 3 - CLOS 1

78h: Region 0 - CLOS 15

7Ah: Region 1 - CLOS 15

7Ch: Region 2 - CLOS 15

7Eh: Region 3 - CLOS 15

80h-FFFh: Reserved for future

6.1.3.5 Minimum Memory Bandwidth Allocation Register for CPU

Agents

Figure 6-7. Minimum MBA Register

6

55 44
3 76 87

44
10

NW

=W

(6,18}
AN

(o)1
U=

98 0

RsvdP3 BR3 RsvdP2

BR2

RsvdP1

BR1

RsvdPO BRO

Abbreviation

MBA_MINIMUM_BW_n

n: Refer ACPI ERDT for Max CLOS. CLOSs are zero-referenced.
Hence, this range will be 0 to ("MAX CLOS” reported by ERDT top-
level structure).

General Description | Register to configure Minimum Bandwidth Control Window for
Memory Bandwidth Allocation per CLOS.

Indexing Function

See Section 6.1.3.5.1

CLOS Address

MBA Minimum BW Register Block Base Address + Indexing
function mentioned above

Scope Per Resource Management Domain (Per RMDD)

Document Number: 356688-004US, Revision: 1.3

109

intel

Bits Access Default Field Description
63:57 RsvdP Oh RsvdP3: Reserved and Reserved.
Preserved
56:48 RW 1FFh BR3: Bandwidth for Region 3 Minimum Bandwidth
Control Value for Region 3.
Ranges from 001h to 1FFh,
with 001h as the minimum
BW and 1FFh as the
maximum BW.
47:41 RsvdP Oh RsvdP2: Reserved and Reserved.
Preserved
40:32 RW 1FFh BR2: Bandwidth for Region 2 Minimum Bandwidth
Control Value for Region 2.
Ranges from 001h to 1FFh,
with 001h as the minimum
BW and 1FFh as the
maximum BW.
31:25 RsvdP Oh RsvdP1: Reserved and Reserved.
Preserved
24:16 RW 1FFh BR1: Bandwidth for Region 1 Minimum Bandwidth
Control Value for Region 1.
Ranges from 001h to 1FFh,
with 001h as the minimum
BW and 1FFh as the
maximum BW.
15:9 RsvdP Oh RsvdPO: Reserved and Reserved.
Preserved
8:0 RW 1FFh BRO: Bandwidth for Region O Minimum Bandwidth

Control Value for Region 0.
Ranges from 001h to 1FFh,
with 001h as the minimum
BW and 1FFh as the
maximum BW.

6.1.3.5.1 CLOS Organization in Minimum MBA Register Block

Software should use CLOS indexing algorithm discussed in this section only if
“Register Indexing Function Version” field value is 1 in MARC sub-structure.
Software should be upgraded to handle any versions > 1 in this field which
would be defined in future version of this specification.

Note that Region Aware MBA uses the same definition of “optimal”, "min” and
“max” bandwidth as described in earlier discussion in Section 3.2.4.4.3,
Optimal Bandwidth Caps per CLOS.

110

Document Number: 356688-004US, Revision: 1.3

intel

CLOSs are organized in sequential fashion in the Minimum MBA Register
Blocks. Software may consult the MARC sub-structure from ERDT ACPI for
configuring the per-agent per-region per-CLOS minimum target bandwidth
using the MBA Minimum BW Register Block Base Address and MBA Register
Block Size fields of the MARC sub-structure. Each block size is 4KB. Minimum
MBA registers are located in the range (MBA Minimum BW Register Block Base
Address): (MBA Minimum BW Register Block Base Address + MBA Register
Block Size x 4096). To index CLOSs per region in the block use the following
pseudocode algorithm:

MMIO_ADDRESS_for_CLOS# = MBA Minimum BW Register Block Base
Address + (Region# / 4) x 512B + CLOS# x 8B.

/*** MMIO_ADDRESS_for_ CLOS# < (MBA Minimum BW Register Block Base
Address + MBA Register Block Size x 4096) ***/

Here,

Input Parameter: CLOS#, Region# (multiple banks for registers
15t bank is for Region 0 to 3 and consecutively Region 3 to 7 after every
512B). This formula supports up to 64 CLOSs and an arbitrary nhumber
of regions.

Parameters for Indexing:

e "“MBA Minimum BW Register Block Base Address” field
reported by MARC sub-structure of ERDT ACPI

e "MBA Register Block Size” reported by MARC sub-
structure of ERDT ACPI

e Max CLOSs supported on the platform reported by ERDT
ACPI.

e Max Regions support on the platform reported by MRRM
ACPI.

An example of Minimum MBA register blocks is described below in Figure 6-8.

Document Number: 356688-004US, Revision: 1.3 111

intel

Figure 6-8. Sequential CLOS arrangement in MBA Register

~ |oh: Region0-CLOSO

02h: Region 1 - CLOS 0

04h: Region 2 - CLOS 0

Minimum MBA Register Block 06h: Region 3 - CLOS 0

08h: Region 0 - CLOS 1

OAh: Region 1 - CLOS 1

0Ch: Region 2 - CLOS 1

OEh: Region 3 - CLOS 1

78h: Region 0 - CLOS 15

7Ah: Region 1 - CLOS 15

7Ch: Region 2 - CLOS 15

7Eh: Region 3 - CLOS 15

80h-FFFh: Reserved for future

6.1.3.6 Maximum Memory Bandwidth Allocation Registers for CPU
Agents

Figure 6-9. Maximum MBA Register

6 55 44 44 33 22 11
3 76 87 10 21 54 65 98 0
RsvdP3 BR3 RsvdP2 BR2 RsvdP1 BR1 RsvdP0O BRO
Abbreviation MBA_MAXIMUM_BW _n

n: Refer to ACPI ERDT for Max CLOS. CLOSs are zero-referenced.
Hence, this range will be 0 to ("MAX CLOS” reported by ERDT top-
level structure).

General Description | Register to configure Maximum Bandwidth Control Window for
Memory Bandwidth Allocation per CLOS.

Indexing Function See Section 6.1.3.6.1

CLOS Address MBA Maximum BW Register Block Base Address + Indexing function
mentioned above.

Scope Per Resource Management Domain (Per RMDD)

112 Document Number: 356688-004US, Revision: 1.3

intel

Bits Access Default Field Description
63:57 RsvdP3 Oh RsvdP3: Reserved and Reserved.
Preserved
56:48 RW 1FFh BR3: Bandwidth for Region 3 Maximum Bandwidth
Control Value for Region 3.
Ranges from 001h to 1FFh,
with 001h as the minimum
BW and 1FFh as the
maximum BW.
47:41 RsvdP2 Oh RsvdP2: Reserved and Reserved.
Preserved
40:32 RW 1FFh BR2: Bandwidth for Region 2 Maximum Bandwidth
Control Value for Region 2.
Ranges from 001h to 1FFh,
with 001h as the minimum
BW and 1FFh as the
maximum BW.
31:25 RsvdP1 Oh RsvdP1: Reserved and Reserved.
Preserved
24:16 RW 1FFh BR1: Bandwidth for Region 1 Maximum Bandwidth
Control Value for Region 1.
Ranges from 001h to 1FFh,
with 001h as the minimum
BW and 1FFh as the
maximum BW.
15:9 RsvdPO Oh RsvdPO: Reserved and Reserved.
Preserved
8:0 RW 1FFh BRO: Bandwidth for Region O Maximum Bandwidth

Control Value for Region 0.
Ranges from 001h to 1FFh,
with 001h as the minimum
BW and 1FFh as the
maximum BW.

6.1.3.6.1 CLOS Organization in Maximum MBA Register Block

Software should use CLOS indexing algorithm discussed in this section only if
“Register Indexing Function Version” field value is 1 in MARC sub-structure.
Software should be upgraded to handle any versions > 1 in this field which
would be defined in future version of this specification.

Note that Region Aware MBA uses the same definition of “optimal”, "min” and
“max” bandwidth as described in earlier discussion in Section 3.2.4.4.3,
Optimal Bandwidth Caps per CLOS.

Document Number: 356688-004US, Revision: 1.3

113

intel

CLOSs are organized in sequential fashion in the Maximum MBA Register
Blocks. Software may consult the MARC sub-structure from the ERDT ACPI for
configuring per-agent per-region per-CLOS maximum target bandwidth using
the MBA Maximum BW Register Block Base Address and MBA Register Block
Size fields of the MARC sub-structure. Each block size is 4KB. Maximum MBA
registers are located in the range (MBA Maximum BW Register Block Base
Address): (MBA Maximum BW Register Block Base Address + MBA Register
Block Size x 4096). To index CLOS per region in the block use the following
pseudocode algorithm:

MMIO_ADDRESS_for_CLOS# = MBA Maximum BW Register Block Base
Address + (Region# / 4) x 512B + CLOS# x 8B.

/*** MMIO_ADDRESS_for_CLOS# < (MBA Maximum BW Register Block Base
Address + MBA Register Block Size x 4096) ***/

Here,

Input Parameter: CLOS#, Region# (multiple banks for registers
15t bank is for Region 0 to 3 and consecutively Region 3 to 7 after every
512B). This formula supports up to 64 CLOSs and an arbitrary number
of regions.

Parameters for Indexing:

¢ “MBA Maximum BW Register Block Base Address” field
reported by MARC sub-structure of ERDT ACPI

e "“MBA Register Block Size” reported by MARC sub-
structure of ERDT ACPI

e Max CLOSs supported on the platform reported by ERDT
ACPI.

¢ Max Regions support on the platform reported by MRRM
ACPI.

An example of Maximum MBA register blocks is described below in Figure 6-10.

114 Document Number: 356688-004US, Revision: 1.3

Figure 6-10. Sequential CLOS arrangement in MBA Register

—

Maximum MBA Register Block

intel

Oh: Region 0 - CLOS 0

02h: Region 1 - CLOS 0

04h: Region 2 - CLOS 0

06h: Region 3 - CLOS 0

08h: Region 0 - CLOS 1

OAh: Region 1 - CLOS 1

0Ch: Region 2 - CLOS 1

OEh: Region 3 - CLOS 1

78h: Region 0 - CLOS 15

7Ah: Region 1 - CLOS 15

7Ch: Region 2 - CLOS 15

7Eh: Region 3 - CLOS 15

80h-FFFh: Reserved for future

6.1.3.7 Cache Monitoring Registers for Non-CPU Agents

Figure 6-11. CMT Register

66
32

IOL3_CMT_Count

Abbreviation

IOL3_CMT_RMID_n

n: Refer ACPI ERDT for MAX RMID. RMIDs are zero-referenced.
Hence, this range will be 0 to ("MAX RMID"” reported by RMDD

sub-structure).

General Description

Register to report Cache Occupancy for Non-CPU Agents

Indexing Function

See Section 6.1.3.7.1

RMID Address

CMRD.Register Base Address + Indexing function mentioned

above.

Scope

Per Resource Management Domain (Per RMDD)

Document Number: 356688-004US, Revision: 1.3

115

intel

Bits Access Default Field Description

63

RO Oh U: Unavailable e 0: Indicates data for this RMID is available
and monitored for the resource or RMID.

e 1: Indicates data for this RMID is not
available or not monitored for the

be ignored.

62:0

RO Oh IOL3_CMT_Count | The value in this field indicates Cache
Monitoring (occupancy) telemetry for Non-

Programming Guidelines, for data
interpretation.

6.1.3.7.1

RMID Organization in CMT Register Blocks

Software should use RMID indexing algorithm discussed in this section only if
the “Register Indexing Function Version” field value is 1 in the CMRD sub-
structure. Software should be upgraded to handle any versions > 1 in this field
which would be defined in future version of this specification.

RMIDs are organized in sequential fashion in the CMT Register Blocks. Software
may consult the CMRD sub-structure from ERDT ACPI for retrieving CMT
telemetry using the the Register Base Address, Register Block Size, CMT
Register Offset for I/O and CMT Register Clump Size for I/0 fields of the CMRD
sub-structure. Each block size is 4KB. CMT registers are located in the range
(X):(X+Y x 4096), where X is value reported in Register Base Address field and
Y is the value reported in Register Block Size field. To index RMIDs in the block
the following pseudocode algorithm may be used:

MMIO_ADDRESS_for_ RMID# = Register Base Address + ((RMID# /CMT
Register Clump Size for I/0) x 4096B) + CMT Register Offset for
I/0 + ((RMID# % CMT Register Clump Size for I/0) x 8B);

/*** MMIO_ADDRESS_for_RMID# < (Register Base Address + Register
Block Size x 4096) ***/

Here,
Input Parameter: RMID#
Parameters for Indexing:

e "“Register Base Address” field reported by CMRD sub-
structure of ERDT ACPI

e “Register Block Size” reported by CMRD sub-structure of
ERDT ACPI

¢ Max RMID supported on the platform reported by RMDD
sub-structure of ERDT ACPI.

116

Document Number: 356688-004US, Revision: 1.3

resource or RMID, and bits(62:0) should

CPU agents. See later sections in Chapter 7,

intel

e “CMT Register Offset for I/0” and “CMT Register Clump
Size for I/0O” fields value reported by CMRD sub-structure
of ERDT ACPI

6.1.3.8 Total I/0 Bandwidth Monitoring Registers for Non-CPU

Agents

Figure 6-12. Total I/0 Bandwidth Register

666
321

U|O]

TBRC

Abbreviation

Total_IO_BW_RMID_n

n: Refer ACPI ERDT for MAX RMID. RMIDs are zero-referenced.
Hence, this range will be 0 to ("MAX RMID"” reported by RMDD
sub-structure).

General Description

Register to report Per RMID Total I0 Bandwidth to the near
cache.

Indexing Function

See Section 6.1.3.8.1

RMID Address

IBRD.Register Base Address + Indexing function mentioned
above.

Scope

Per Resource Management Domain (Per RMDD)

Bits Access Default Field Description

63 RO Oh

U: Unavailable e 0: Indicates data for this RMID is available
and monitored for the resource or RMID.

e 1: Indicates data for this RMID is not
available or not monitored for the
resource or RMID, and bits(61:0) should
be ignored.

62 RO Oh

O:Overflow e 0: Indicates that there is no overflow of
the Total I0 BW counters.

¢ 1: Indicates that there is overflow of the
Total I0 BW counters. It will be reset
upon read, enabling a variable software-
defined counter polling interval for
reduced sampling overhead.

Document Number: 356688-004US, Revision: 1.3 117

intel

Bits Access Default Field Description

61:0 Oh TBRC: The value in this field indicates Total 10
Total_IO_BW_RMI | Bandwidth telemetry. See later sections in
D_Count Chapter 7, Programming Guidelines, for data

interpretation.

6.1.3.8.1 RMID Organization in Total I/O BW Register Blocks

Software should use the RMID indexing algorithm discussed in this section only
if the “"Register Indexing Function Version” field value is 1 in IBRD sub-
structure. Software should be upgraded to handle any versions > 1 in this field
which would be defined in future version of this specification.

RMIDs are organized in sequential fashion in the Total I/O BW Register Blocks.
Software may consult the IBRD sub-structure from ERDT ACPI for retrieving
Total I/O BW telemetry using the Register Base Address, Register Block Size,
Total I/O BW Register Offset and Total I/O BW Register Clump Size fields of the
IBRD sub-structure. Each block size is 4KB. Total I/O BW registers are located
in the range (X):(X+Y*4096), where X is value reported in the Register Base
Address field and Y is the value reported in Register Block Size field. To index
RMIDs in the block the following pseudocode algorithm may be used:

MMIO_ADDRESS_for_RMID# = Register Base Address + ((RMID#/ “Total
I/0 BW Register Clump Size”) x 4096B) + “Total I/O BW Register
Offset” + ((RMID# % “Total I/O BW Register Clump Size”) x 8B);

/*** MMIO_ADDRESS_for_ RMID# < (Register Base Address + Register
Block Size x 4096) ***/

Here,
Input Parameter: RMID#
Parameters for Indexing:

e "“Register Base Address” field reported by IBRD sub-
structure of ERDT ACPI

e "“Register Block Size” reported by IBRD sub-structure of
ERDT ACPI

¢ Max RMID supported on the platform reported by RMDD
sub-structure of ERDT ACPI.

e Total I/O BW Register Offset and Total I/O BW Register
Clump Size fields value reported by IBRD sub-structure of
ERDT ACPI

118

Document Number: 356688-004US, Revision: 1.3

intel

6.1.3.9 I/0 Miss Bandwidth Monitoring Registers for Non-CPU
Agents

Figure 6-13. I/0 Miss Bandwidth Register

666
321

U|O] IMBRC

Abbreviation I0_MISS BW_RMID _n

n: Refer ACPI ERDT for MAX RMID. RMIDs are zero-refenced.
Hence, this range will be 0 to ("MAX RMID"” reported by RMDD
sub-structure).

General Description | Register to report Per RMID 10 Bandwidth monitoring for Misses
from the near cache.

Indexing Function See Section 6.1.3.9.1

RMID Address IBRD.Register Base Address + Indexing function mentioned
above.
Scope Per Resource Management Domain (Per RMDD)

Document Number: 356688-004US, Revision: 1.3 119

intel

Bits Access Default Field Description

63 RO Oh U: Unavailable e 0: Indicates data for this RMID is available
and monitored for the resource or RMID.

1: Indicates data for this RMID is not
available or not monitored for the
resource or RMID, and bits(61:0) should
be ignored.

62 RO Oh O:Overflow e 0: Indicates that there is no overflow of
the IO BW Miss counters.

e 1: Indicates that there is
overflow of the I0 BW Miss
counters. It will be reset upon
read, enabling a variable
software-defined counter
polling interval for reduced
sampling overhead.

61:0 RO Oh IMBRC: The value in this field indicates I/O Miss
I0_MISS_BW_RMI | Bandwidth telemetry. See later sections in
D_Count Chapter 7, Programming Guidelines, for

data interpretation.

6.1.3.9.1 RMID Organization in I/0 Miss BW Register Blocks

Software should use the RMID indexing algorithm discussed in this section only
if the “Register Indexing Function Version” field value is 1 in IBRD sub-
structure. Software should be upgraded to handle any versions > 1 in this field
which would be defined in future version of this specification.

RMIDs are organized in sequential fashion in the I/O Miss BW Register Blocks.
Software may consult the IBRD sub-structure from ERDT ACPI for retrieving
Total I/O BW telemetry using the Register Base Address, Register Block Size,
I/O Miss BW Register Offset and I/O Miss Register Clump Size fields of the
IBRD sub-structure. Each block size is 4KB. I/O Miss BW registers are located
in the range (X):(X+Y*4096), where X is value reported in Register Base
Address field and Y is the value reported in Register Block Size field. To index
RMIDs in the block the following pseudocode algorithm may be used:

MMIO_ADDRESS_for_RMID# = Register Base Address + ((RMID#/“I/O
Miss Register Clump Size”) x 4096B) + “I/0 Miss BW Register
Offset” + ((RMID# % “I/O Miss Register Clump Size”) x 8B);

/*** MMIO_ADDRESS_for_RMID# < (Register Base Address + Register
Block Size x 4096) ***

Here,

Input Parameter: RMID#

120 Document Number: 356688-004US, Revision: 1.3

intel

Parameters for Indexing:

e "“Register Base Address” field reported by IBRD sub-
structure of ERDT ACPI

e “Register Block Size” reported by IBRD sub-structure of
ERDT ACPI

e Max RMIDs supported on the platform reported by RMDD
sub-structure of ERDT ACPI.

e I/O Miss BW Register Offset and I/O Miss Register Clump
Size fields value reported by IBRD sub-structure of ERDT
ACPI

6.1.3.10 Cache Allocation Registers for Non-CPU Agents

Figure 6-14. CAT_IO_REG Register

6
3

NW
=W

CBM RsvdP

Abbreviation

IOL3_MASK_n

n: Refer to ACPI ERDT for Max CLOS. CLOSs are zero-
referenced. Hence, this range will be 0 to ("MAX CLOS” reported
by ERDT top-level structure).

General Description Register to configure I/0O L3 cache way mask per CLOS.

Indexing Function See Section 6.1.3.10.1

CLOS Address

CARD.Register Base Address + Indexing Function mentioned

above.
Scope Per Resource Management Domain (Per RMDD)
Bits Access Default Field Description
63:32 | RW xxh CBM: Capacity Bit Software may use this field to update
Mask cache capacity bitmask per CLOS. Bitmask
length can be determined via Field
“Number of I0 L3 ways” in the ERDT ACPI
table.
31:0 | RsvdP Oh RsvdP: Reserved Reserved.
and Preserved:
Reserved

Document Number: 356688-004US, Revision: 1.3 121

intel

6.1.3.10.1 CLOS Organization in CAT Register Blocks

Software should use the CLOS indexing algorithm discussed in this section only
if “"Register Indexing Function Version” field value is 1 in the MARC sub-
structure. Software should be upgraded to handle any versions > 1 in this field
which would be defined in future version of this specification.

CLOS are organized in sequential fashion in the register blocks. Software may
consult the CARD sub-structure from ERDT ACPI for retrieving CAT
configuration details includign Register Base Address, Register Block Size, CAT
Register Offset for I/O and CAT Register Block Size fields of CARD sub-
structure. Each block size is 4KB. CAT registers are located in the range
(X):(X+Y x 4096), where X is the value reported in the Register Base Address
field and Y is the value reported in Register Block Size field. To index CLOS in
the block the following pseudocode algorithm may be used:

Note: All the MMIO registers identified for the CLOS# should be programmed
identically in each block.

For (i = @ to Register Block Size)

{

if (CLOS# <= CAT Register Block Size)

{

ARRAY_OF_MMIO_ADDRESS for_ CLOS#[] = Register Base Address + “CAT
Register Offset for I/0” + (CLOS# x 8B) + (4096 x i)

}

Here,
Input Parameter: CLOS#
Parameters for Indexing:

e “Register Base Address” field reported by CARD sub-
structure of ERDT ACPI

e "“Register Block Size” reported by CARD sub-structure of
ERDT ACPI

e Max CLOSs supported on the platform reported by ERDT
ACPI.

e CAT Register Offset for I/O and CAT Register Block Size
fields value reported by CARD sub-structure of ERDT ACPI

6.1.3.11 Region-ID Programming Registers[]

Not defined. The Region ID Programming Registers field in MRRM is unused.

122 Document Number: 356688-004US, Revision: 1.3

6.2

6.2.1

6.2.2

6.2.2.1

intel

Non-CPU Agent Intel® RDT Register Location

The Non-CPU agent Intel RDT related register set (MMIO interfaces) must
reside on at least one 4 KB-aligned memory mapped page. The exact location
for the register region is implementation-dependent and is communicated to
system software by BIOS through the IRDT ACPI structure (see Chapter 5).
Multiple RCSes could be mapped to the same 4 KB-aligned page, or distinct
pages. No other unrelated registers may be present in the pages used for non-
CPU agent Intel RDT. A Virtual Machine Monitor (VMM) or operating system
may use page-based access controls to ensure that only designated entities
may use the non-CPU agent Intel RDT controls.

When accessing non-CPU agent Intel RDT MMIO interfaces, note that writes to
reserved fields, writes to reserved offsets within the MMIO space, or writes of
values greater than the supported maximum for a field will be ignored by
hardware.

Software Access to Registers

Software interacts with the non-CPU agent Intel RDT features by reading and
writing memory-mapped registers. The following requirements are defined for
software access to these registers.

e When updating registers through multiple accesses (whether in software or
due to hardware disassembly), certain registers may have specific
requirements on how the accesses should be ordered for proper behavior.
These are documented as part of the respective register descriptions.

e Locked operations to non-CPU agent Intel RDT related registers are not
supported. Software should not issue locked operations to non-CPU agent
Intel RDT feature hardware registers.

Register Descriptions for Non-CPU Agents

Link Interface Type RMID/CLOS Tagging MMIO Interfaces

The IRDT ACPI structures defined in Chapter 4 define MMIO interfaces for
configuring the RMID/CLOS for each link interface type, as defined in the RCS
structures. An MMIO pointer defined in the RCS fields describes where the
configuration interface exists for a particular link interface type. The MMIO
locations are specified as absolute physical addresses.

Table 6-3 shows the MMIO field layout for RMID and CLOS tagging, and
bandwidth shaping. A common format is used for all RCS types, including for
instance RCS instances that support PCIe or CXL use the same field layout.

Common table format across all RCS-Enumerated MMIO.

Document Number: 356688-004US, Revision: 1.3 123

intel

Table 6-3. MMIO Table Format

Register Name Mem Offset Length (B) Comments
10 RDT Reserved 0x0000 Variable Reserved
I0_PQR_CLOSO RCS :: CLOS Block RCS :: REGW Common across all
Offset RCS types
1I0_PQR_CLOS1 I0_PQR_CLOSO + RCS |RCS :: REGW Per-channel
:: REGW
I0_PQR_CLOS2 I0_PQR_CLOSO + RCS |RCS :: REGW Per-channel
:: REGW*2
Variable Variable -
Reserved Variable Variable -
I0_PQR_RMIDO RCS :: RMID Block RCS :: REGW Common across all
Offset RCS types
I0_PQR_RMID1 I0_PQR_RMIDO + RCS | RCS :: REGW Per-channel
:: REGW
I0_PQR_RMID2 I0_PQR_RMIDO + RCS | RCS :: REGW Per-channel
1 REGW*2
Variable Variable -
Reserved Variable Variable -
IO_RDT Reserved Variable Variable Remainder of the page

Note that the RCS :: REGW field indicates the register access width of the fields
in Table 6-3, either 2B or 8B. Depending on the implementation, this width
may be 2 bytes or 8 bytes. The width is indicated by the REGW field in the RCS
Table (Section 0).

Note that the base of the RMID and CLOS fields are enumerated in the RCS
structure, and the size of these fields varies with the number of supported
channels. The set of configurable RMIDs and CLOSs are organized as
contiguous blocks of 4B registers.

The “"PQR” fields starting at the enumerated offset (RCS :: CLOS Block Offset)
are defined with enumerated register field spacing of RCS :: REGW, which may
require either 2B or 8B register accesses. A block of CLOS registers exists,
followed by a block of RMID registers, indexed per Channel. That is, setting a
value in the IO_PQR_CLOSO field will specify the CLOS to be used for
Channel[0] on this RCS.

The valid field width for RMID and CLOS is defined via CPUID leaves (see Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3B for
details) for shared-L3 configuration.

Higher offsets allow multiple Channels to be programmed (above Channel 0) if
supported. Given that PClIe supports multiple VCs, multiple channels may be
supported in the case of PCle links, but CXL links support only two entries, one
at IA_PQR_CLOSO0 and one at I0_PQR_RMIDO in this table.

124

Document Number: 356688-004US, Revision: 1.3

intel

The RMID and CLOS fields are interpreted as numeric tags, exactly as they are
in the CPU agent Intel RDT feature set, and software may assign RMID and
CLOS values as needed.

Software may reconfigure RMID and CLOS field values at any point during
runtime, and values may be read back at any time. As all architectural CPU
agent Intel RDT infrastructure, it is dynamically reconfigurable, this enables
control loops to work across the capabilities sets collaboratively and
consistently.

§

Document Number: 356688-004US, Revision: 1.3 125

intel

7

Programming Guidelines

7.1

7.1.1

7.1.1.1

Intel® RDT Monitoring Software Flows for
CPU Agents

Intel RDT Monitoring software flows for CPU agents in certain example software
implementations are briefly described in this section to provide context for how
an end-user could view and use the RDT features. While this chapter provides
examples and recommended flows, it is in no way limiting to use models once
enumeration and configuration capabilities are enabled in software, and many
varied software implementations and usages of RDT beyond the listed
examples have been observed.

Intel® RDT Monitoring Software Flows for CPU
Agents

Software should first verify the existence of the RDT Monitoring feature(s)
before attempting to configure them and read back monitoring data. Periodic
management by software may also be required to maintain the proper RMID
mapping on a logical thread when context switching or receiving an interrupt
for instance (see Section 3.1.1 for details).

Step 1 - Enumeration

Before attempting to read or write MSRs associated with the Intel RDT
Monitoring feature software should first execute the CPUID instruction and
parse its output to ensure that Intel RDT Monitoring and any sub-features to be
used (for example, CMT, MBM) are supported on the platform, otherwise
General Protection (#GP(0)) faults will be generated.

As discussed in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3B, if CPUID feature flag for Structured Extended Feature,

CPUID.07H.00H:EBX[12], is set to ‘1’ then Intel RDT Monitoring is generally
supported on the platform.

Once Intel RDT Monitoring support has been verified software should use the
Shared Resource Monitoring Enumeration leaf, CPUID.0OFH.00H:EDX[1] to
examine which platform resources support monitoring. After the call to CPUID,
the EBX register will indicate the maximum RMID supported on the current
socket (though particular resources may support fewer RMIDs and this can be
enumerated on a per-resource basis as described next).

Software may use the Shared Resource Monitoring Enumeration
leaf).CPUID.OFH.ResID to determine the number of RMIDs supported for the
specific resource in question, the event type bitmask to program into
IA32_QM_EVTSEL to retrieve the data for that event in IA32_QM_CTR, and the
upscaling factor as discussed in the feature-specific chapters. Software may

126

Document Number: 356688-004US, Revision: 1.3

7.1.1.2

7.1.1.3

7.1.1.4

intel

optionally choose to build a record of these enumeration responses for each
resource to reduce overhead from repeated CPUID calls.

Given that certain processors may support multiple L2 caches, multiple L3
caches, and a variety of logical processor types, it is recommended that
software use CPUID from the perspective of each logical processor to
comprehend any asymmetric resource support which may be present.

Software should parse Processor Family, Model and Stepping (FMS) to verify
that a particular processor includes support for a given model-specific feature.
To find out which features are supported on which specific products, refer to

Appendix A.3.

Step 2 - RMID Association

After verifying that the platform supports Intel RDT Monitoring, software should
associate each logical thread or VM of interest with an RMID such that resource
utilization by the threads can be tracked. It is expected in general that if an OS
or VMM moves an application from one core or socket to another that the
RMIDs will be updated (moved along with the app or remapped onto another
socket as needed) to maintain an accurate mapping between the applications
of interest and the RMIDs programmed onto a logical thread.

Threads by default are initialized to RMID[0], which provides insight into
memory bandwidths for the system but not necessarily cache occupancy
(which would read 100% occupied in a non-idle system).

Step 3 - Event Selection Setup

After associating RMIDs with threads and updating the IA32_PQR_ASSOC
register for each thread as needed while running (to account for context swaps
and thread migration between cores), software may execute for an arbitrary
period of time while hardware tracks occupancy before polling for the resulting
occupancy.

After applications have executed for the desired time period software may
program an RMID and event code into the IA32_QM_EVTSEL MSR, which will
cause the corresponding data to be available in the IA32_QM_CTR MSR
(discussed in the following section).

Step 4 - Data Sampling

After the IA32_QM_EVTSEL MSR has been programmed with an RMID / Event
ID combination the corresponding event data can be read back from the
IA32_QM_CTR MSR, which has a bit field layout as defined in Section 3.1.1.
Software must check both the Error bit and the Unavailable bit to verify that
the data returned is valid (along with the Overflow bit if supported) - if an
error is indicated the monitoring data reported back must not be used.

As described in Section 3.1.1 the Error bit will be set if an RMID greater than
the global maximum (specified in CPUID) is programmed into
IA32_QM_EVTSEL, or an unknown/unsupported Event ID is programmed.

Document Number: 356688-004US, Revision: 1.3 127

intel

Similarly, the Unavailable bit is set when data is requested for an RMID that
does not support that particular resource or does not support an RMID value
that high.

An example is if occupancy monitoring of resource “A” supported four RMIDs,
and resource “"B” supported 2 RMIDs. If software requested the occupancy of
either Resource A or B for RMIDs 0 or 1 then valid data would be reported
back. If occupancy data for RMIDs 2 or 3 was requested for resource “B”
however data would not be reported, and the Unavailable bit would be set.

The Overflow bit, if supported, is set when an overflow of an incrementing
counter is triggered, allowing software to correct or discard errant values that
may lead to erroneous bandwidth calculations.

If an error is indicated, it will be cleared automatically once valid values are
programmed into IA32_QM_EVTSEL and any hardware conditions preventing
accurate monitoring are resolved. The Overflow bit, if implemented, is cleared
on a read of IA32_QM_CTR.

7.1.1.5 Step 5 - Sample CMT/MBM Data Collection and Analysis

Once CMT and MBM data has been collected it can be interpreted as described
in the following example.

Consider the case where CMT and MBM are supported on a platform, and a
large number of RMIDs are available. On this platform the user seeks to profile
two threads within an application, so both threads are assigned individual
RMIDs and run on separate physical cores for a period of one second, then
occupancy and bandwidths are read back via the MSR interface
(IA32_QM_EVTSEL and IA32_QM_CTR). In this example, the following
parameters are key to interpreting the results:

e System topology - two Intel® Xeon™ CPUs with 14 cores per socket, and a
3-level cache subsystem, where the last-level cache totals 35 MB per
socket.

e The last-level cache is verified using CPUID leaf 0x4 as the last level cache
between the cores and memory, meaning L3 external bandwidth values
can be used to measure memory bandwidth.

e As enumerated via CPUID the upscaling factor the Shared Resource
Monitoring Enumeration Leaf, CPUID.0OFH.01H:EBX[31:0], to convert
counter values to final values in bytes is OXE0O0O0 (decimal 57344).

e Since the total L3 cache size is 36700160 bytes and the upscaling factor is
57344, we know that the maximum possible CMT occupancy counter value
reported by the system will be total cache size divided by the conversion
factor, or 36700160/57344 = 640.

— As the threads are profiled, we can compare the reported occupancy
to the maximum occupancy counter value, giving an indication of
what fraction of the total cache an application is using without
needing to convert to bytes first.

Suppose that the threads are configured as follows:

128 Document Number: 356688-004US, Revision: 1.3

intel

e Associate thread[0] with RMID[1].
e Associate thread[1] with RMID[2].

e Leave all other threads in the system with the default RMID[0] association.

In order to profile memory bandwidth an initial sampling of the free-running
MBM counters is required:

e Program IA32_QM_EVTSEL with RMID[1] for the first thread and event
code 0x2 for total L3 external bandwidth, then read the corresponding data
from IA32_QM_CTR (and verify that the Unavailable and Error bits in
IA32_QM_CTR are not set so the data is valid).

e Program IA32_QM_EVTSEL with RMID[1] for the first thread and event
code 0x3 for local L3 external bandwidth, then read the corresponding data
from IA32_QM_CTR (and verify that the Unavailable and Error bits in
IA32_QM_CTR are not set so the data is valid).

e Repeat these steps with RMID[2] for the second thread.

Note that we assume that RMID[1] and RMID[2] have previously been used for
profiling other applications, so they may initially contain nonzero occupancy
and bandwidth counter values.

Note that in this example we assume that RMID[1] and RMID[2] are set up
exclusively for the use of the two threads being profiled, and that these threads
are not currently scheduled, and they have no data in the L3 cache, so the
bandwidth counters, even if they contain initial values, are not changing. The
occupancy counters may change even if no threads are scheduled using
RMID[1] and RMID[2] however if they have previously run and have data in
the L3 cache as other threads on the system run and cache space is
dynamically redistributed due to evictions and standard cache LRU policies.

Note that if the threads in RMID[1] and RMID[2] are running while we measure
initial counter values then skew may appear in the counter values, proportional
to the time delay between reading each of the event codes (which should be
minimized) and the bandwidths consumed by the application (which may vary
significantly based on application behavior).

Now that initial MBM counter values have been established, the program can be
left to run for a period of time, in this case one second. The Intel RDT
Monitoring data can then be read back as follows:

e Program IA32_QM_EVTSEL with RMID[1] for the first thread and event
code 0x1 for L3 cache occupancy, then read the corresponding data from
IA32_QM_CTR (and verify that the Unavailable and Error bits in
IA32_QM_CTR are not set so the data is valid).

e Program IA32_QM_EVTSEL with RMID[1] and the event code for total L3
external bandwidth (0x2), read the data from IA32_QM_CTR and again
verify that the “U” and “E” bits are not set.

e Similarly read back local L3 external bandwidth using the event code 0x3
and verify that the data is valid.

Document Number: 356688-004US, Revision: 1.3 129

intel

e Repeat the previous three steps with RMID[1] to read back the Intel RDT
monitoring metrics for the second thread.

Example data read back after profiling for one second is shown in the following
table.

Table 7-1. Example CMT and MBM Counter Values

Thread 0 Thread 1
Event Type First Sample Second Sample | First Sample Second Sample
L3 Cache Occupancy N/A 0x25 N/A 0x180

Total L3 External Bandwidth | OXxOOFE985E 0x00FEBC14 0x00002541 0x0000D9F7

Local L3 External Bandwidth | 0OXOA8C9512 0x0A8CB5ED 0x00000314 0x0000AC5D

Note that in the previous sample data the counter values are shown as 32-bit
values, implying that the upper fields in the counter MSR were either zeroes or
not changing and can be disregarded - this may not always be the case
however when bandwidths are high, or in the case of future counters which
may increment quickly.

In the example, the final cache occupancy for the threads can be calculated as
follows:

e Thread[0]: CounterValue * UpscalingFactor = 37*¥57344 = 2121728 bytes
(roughly 2.02 MB).

e Thread[1]: CounterValue * UpscalingFactor = 22020096 bytes = 21 MB.

Thus, based on the CMT profiling of the two example threads, we see that
Thread[0] consumes around 2MB of cache space, and Thread[1] consumes
around 21MB, over 10x more, which indicates that it likely has a larger data
working set or it may be partly streaming through memory. Software should
also consider memory bandwidth readings to determine whether Thread[1] is
simply cache-friendly or whether it is a streaming application.

Total memory bandwidth values for the two threads can be determined as
follows:

e Thread[0]: (Second counter reading — First counter
reading)*UpscalingFactor = (OXOOFEBC14-0x00FE985E)*57344 =
9142*57344 = 524238848 bytes/second, or around 500 MB/s since we
sampled for one second.

e Thread[1]: (Second counter reading — First counter
reading)*UpscalingFactor = (0x0000D9F7-0x00002541)*57344 =
46262*57344 = 2652848128 bytes/second, or around 2.5 GB/s.

Local memory bandwidth values for the two threads can be determined as
follows:

e Thread[0]: (Second counter reading - First counter
reading)*UpscalingFactor = (OxOA8CB5ED-0x0A8C9512)*57344 =
8411*57344 = 482320384 bytes/second, or around 460 MB/s.

Document Number: 356688-004US, Revision: 1.3

7.1.2

7.1.3

e Thread[1]: (Second counter reading - First counter
reading)*UpscalingFactor = (0x0000AC5D-0x00000314)*57344 =
43337*57344 = 2485116928 bytes/second, or around 2.3 GB/s.

Based on the prior calculations we observe that Thread[0] has low memory
bandwidth demands at roughly 500 MB/s, and Thread[1] uses more bandwidth
at 2.5 GB/s, but not enough to classify it as a streaming thread. With its 21 MB
cache occupancy and moderate memory bandwidth, Thread[1] is best classified
as a cache-friendly thread, though observing its behavior over a longer period
of time and sampling other system metrics to better understand its time-
variant behavior and compute requirements is recommended if detailed
profiling is the goal.

Note that in this example most of the bandwidth demands of the threads are
satisfied by the memory controller on the local CPU, meaning bandwidth
associated with the QPI link and other sources is low, implying that the NUMA-
aware OS properly located the memory allocation for the threads on the same
socket as the running threads.

This may not always be the case however, and if a bandwidth imbalance is
detected then we may choose to either move the compute threads to the other
CPU (closer to the data in memory) or move the data in memory to another
address range within the scope of the local CPU memory controller for better
performance.

Native OS Environments

In a non-virtualized environment, the RMIDs can be associated with
applications or application threads. The OS may even choose to associate
different parts of a single application to be associated with different RMIDs if
needed. But a typical usage would save and restore the RMIDs along with the
context information during the context switch.

For multi-threaded applications, multiple threads can share the same RMID.
The implications stated earlier also apply to multi-threaded applications with
the following additional considerations for shared code/data. For example, if
app0 was multi-threaded (for example, two threads per application), then we
can get occupancy information for each thread of application. The only
additional implication here is that the occupancy of the threads that share data
will be associated to the thread that filled the shared data. Heuristics that
minimize contention in the shared cache for single threaded workloads to
optimize total system throughput and to provide QoS will also be effective for
the multi-threaded workloads.

Virtualization Scenarios

In case of virtualization, RMIDs can be allocated in different ways. The VMM
can choose to allocate the RMIDs to different VMs or vCPUs. The current
planned implementations do not support reporting individual occupancies of
applications running within a VM unless the VMM and guest OS are both

Document Number: 356688-004US, Revision: 1.3 131

intel.

enabled to support Intel RDT. The RMID assignment at VM and VCPU level are
described next.

RMIDs assigned to Virtual Machines (VMs): In this usage case RMIDs are
assigned to VMs instead of applications and the occupancy reported is on a per
VM basis. Multiple applications running within a VM will have a consolidated
occupancy which will be reported by the RMID. Profiling of workloads and
heuristics that optimize for overall system throughput and for providing QoS
based on SLAs would be based in the granularity of VMs. Hence to provide
QoS, HP applications can be mapped to a VM with a high priority so that
scheduling decisions to minimize contention will treat all applications running in
the HP VM as high priority. The heuristics that work on occupancy monitoring
based on contention in the shared cache will still be effective but will work in
the granularity of VMs. When scheduling VMs, the VMM can use the occupancy
monitoring information available for the VMs from the RMIDs. There are no
other additional implications for VMs.

RMIDs assigned to vCPUs within VMs: In this usage case scenario, RMIDs
are assigned to vCPUs within a VM. Since there maybe multiple applications
within a VM running on the vCPUs, the occupancy reported by the RMID for a
vCPU will represent the consolidated occupancy of the applications running on
that vCPU. As an example, if there are two VMs with 2 vCPUs each and there
are four applications in each VM as shown in Figure 7-1.

Figure 7-1. RMIDs Assigned to vCPUs

The occupancy reported by the RMID assigned to vCPUO will represent the
consolidated occupancy of App0O and Appl. Similarly, only the consolidated
occupancy of App2 and App3 is what will be reported and so on. Hence
optimizations for system throughput, QoS and application profiling would have
to be at the granularity of vCPUs. The OS running within a VM will have its own
scheduling policy that would determine how applications are scheduled to the
vCPUs.

When applications migrate within a VM from one vCPU to another, the
consolidated occupancy reported will also be affected as it would depend on the
nature of the applications scheduled to a vCPU. Hence any policy or heuristic
that is implemented should be in the granularity of VCPU profiling. The
recommended approach is to profile the workload at a vCPU level and then
design heuristics based on vCPU profiles to optimize for throughput and provide
QoS.

132

Document Number: 356688-004US, Revision: 1.3

7.2

7.2.1

7.2.1.1

7.2.1.2

7.2.1.3

intel

Intel® RDT Allocation Software Flows for
CPU Agents

RDT Allocation software flows for CPU agents are briefly described in this
section to provide context for how and end-user may view the feature.

Intel® RDT Software Allocation Flows for CPU
Agents

Step 1 - Enumeration

Before attempting to read or write MSRs associated with the Intel RDT
Allocation feature software should first poll CPUID to ensure that Intel RDT
Allocation and any sub-features to be used (for example, L3 CAT, L2 CAT, MBA)
are supported on the platform, otherwise General Protection (#GP(0)) faults
will be generated. As discussed in Section 3.2, if CPUID feature flag for
Structured Extended Feature, CPUID.07H.00H:EBX[15] is set to ‘1’ then Intel
RDT Allocation is generally supported on the platform.

Once Intel RDT Allocation support has been verified software should poll and
examine CPUID.10H.00H:EBX to examine which platform resources support
allocation. After the call to CPUID, the EBX register will indicate the supported
Intel RDT Allocation features on the current socket.

Software may use CPUID.10H.ResID to determine the number of CLOS
supported for the specific resource in question, the max length of the CAT
bitmask, the max MBA delay value, and so on, and presence of sub-features
like CDP on top of CAT for a given level of the cache. Software may optionally
choose to build a record of these enumeration responses for each resource to
reduce overhead from repeated CPUID calls.

Software should parse Processor Family, Model and Stepping (FMS) to verify
that a particular processor includes support for a given model-specific feature.
To find out which features are supported on which specific products, refer to
Appendix A.3.

Note that it is important that software enumerate the Intel RDT Monitoring
capabilities of the platform in the order specified in Section 3.1.1.

Step 2 - Optionally Enable CDP

If software wants to use CDP, enable it via the IA32_PQOS_CFG MSR.

Step 3 - Mask and Bandwidth Control Setup

After determining the presence of hardware Intel RDT Allocation support
software should configure the CAT masks and MBA delay values if supported to
provide capacity allocation/bandwidth hints to the hardware via the
IA32_ResourceType_QOS_MASK_n MSRs and IA32_L2_QOS_Ext_BW_Thrtl_n

Document Number: 356688-004US, Revision: 1.3 133

intel

MSRs, depending on the usage model specified in Section 3.1.1 and the
number of CLOS available (enumerated in feature-specific ResID sub-leaves).

It is considered good practice to first verify that IA32_L3_Q0OS_MASK_0
contains all *1” to the length of the bitmask (such that CLOSO can access the
entire cache) and that all threads are in CLOSO before making changes to the
masks (which may otherwise result in rapidly changing cache available to
applications, which may lead to performance variation, though no functional
errors are possible). Also verify that no bandwidth enforcement is configured in
the IA32_L2_QOS_Ext_BW_Thrtl_n MSRs. It is also considered best practice to
set up CLOS[0] as the highest priority CLOS with a large fraction of the cache,
CLOS1 as the next highest, and so on.

7.2.1.4 Step 4 - CLOS Association

After the CAT/CDP per-CLOS mask MSRs are set up to known values, whether
overlapped, shared or a combination depending on application needs and goals,
and after MBA delay values are set up, each of the threads should be
associated into a desired Class of Service via the IA32_PQR_ASSOC MSR. This
MSR may be read or written at any time.

As part of some implementations an OS may choose to set up masks then
change the IA32_PQR_ASSOC MSR on context switches (to associate a portion
of the cache with an application or thread for instance).

7.3 Intel® RDT Software Flows for Non-CPU
Agents

This section describes software architecture considerations for Intel RDT
features for non-CPU agents, recommended usage flows and related
considerations. This builds upon the architectural concepts and software usage
examples discussed in Chapter 4.

Software seeking to use RDT for non-CPU agents has a number of tasks to
comprehend:

e Enumeration of the capabilities of Intel RDT for CPU agents (through
CPUID) and Intel RDT for non-CPU agents (through CPUID and ACPI).

e Reservation of (or comprehension of the sharing implications of using)
RMIDs and CLOS from the pools available at each resource level and
subject to the RMID and CLOS management best practices on a particular
processor.

e Pre-configuration of any resource limits to be used for modulating device
activity, such as a cache mask for a CLOS intended to be used with a
device.

e Configuration of each device’s tagging properties through the MMIO
interface described by the ACPI structures, such as associating a device
with a particular RMID, CLOS and bandwidth limit, as applicable.

134 Document Number: 356688-004US, Revision: 1.3

intel

e Enabling the Intel RDT features for non-CPU agents through the enable
MSR infrastructure -- the IA32_L3_I0_QoS_CFG MSR is shown in Figure
4-2, at MSR address 0xC83.

e Periodically adjusting resource limits subject to software policies and any
control loops which may be present.

e Comprehending the implications of Sub-NUMA clustering (SNC) if present
and enabled.

7.4 Assembling a Complete View of System
Memory

Through combining the data in multiple ACPI tables, software can identify
memory types installed on the platform and their basic properties. This process
involves using memory ranges and Region-ID mappings and gathering data
from the MRRM, SRAT, HMAT, and CEDT ACPI tables. The following information
in Table 7-2 and Figure 7-2 may be used by software to construct higher-level
summary data structures that aid usability by mapping memory regions to the
memory type populated in the platform for each region.

The MRRM ACPI table structure (Section 5.3) describes the memory range to
region mapping details. Each memory range entry (MRE) in the MRRM
structure consists of a contiguous range in host physical address space along
with a platform-assigned static local and remote Region-ID. Importantly,
memory ranges specified for a region in MRRM are identical to memory ranges
specified in the Memory Affinity Structure within the ACPI SRAT structure?,
allowing cross-mapping with SRAT and other ACPI structures as described in
this section. Specific examples are presented in Section 7.4.1.1.1 and beyond.

If the platform supports only static memory range to region mapping, then
‘Platform-assigned Static Local Region-ID’ and ‘Platform-assigned Static
Remote Region-ID’ fields describe local and remote Region-ID values allocated
by platform firmware (BIOS) for that memory range.

If the platform supports OS configuration of Region-IDs, then each MRE in the
MRRM structure specifies a set of registers for programming RegionID for each
memory range. Each memory range can then be configured with a Region-ID
for local accesses and a Region-ID for remote (cross-socket) accesses.

Document Number: 356688-004US, Revision: 1.3 135

intel

Figure 7-2. MRRM, SRAT, HMAT and CEDT Correlation

L J

Memary
Ranges

Figure 7-2 shows the relationship between ACPI tables referenced in this

Memaory
v Ranges
SRAT - ' ,
Proximity Domain 1 = = = = Proximity
Proximity Domain 2 ! Domains
Proximity
— : Doman # Memory
Procamity Domain n T
Domain “
Attribubes
Structures(s)
System
Locality a
Laterncy and Memory
Bandwidth Praximity Domains
Information
Heterogeneous Structure(s)
Memaory
Aftributes
Table (HMAT) Memory Side
Cache
Information
Structure(s)
CXL Early
| Discovery -
Table (EDT)

section. The SRAT table defines proximity domains, while sub-tables of HMAT
define bandwidth and latency properties for each region (defined in terms of
bandwidth from initiators to targets). The CEDT table provides information
about whether a memory region is hosted in (backed by) CXL or not. A 1:1
correspondence between the memory regions defined in the MRRM table and
HMAT may be created by comparing memory range limits, allowing bandwidth
and latency information to be gathered, along with whether the memory is

hosted in CXL. Similarly, memory on different processor sockets can be

described by regions in MRRM, with their properties enumerated in HMAT sub-

structures.

The following section uses the terminology “"1LM” to refer to single-level DRAM
memory. The term “2LM" refers to two-level memory, and “Flat 2LM"” is a mode
in which hardware combines CXL.mem and DRAM regions, presenting a single
region to software, while transparently using DRAM as a cache for CXL.mem.

Regions such as DRAM, CXL.mem or remote socket memory may be directly
exposed as regions to software. Flat 2LM is presented to software as a single

region.

136 Document Number: 356688-004US, Revision: 1.3

intel

To identify various memory types behind memory ranges enumerated by the
ACPI SRAT table, software may follow the following guidelines:

e CXL memory: All memory addresses decoded by (hosted in) CXL
memory are described in the ACPI CEDT table. The CXL Fixed Memory
Window Structure (CFMWS) sub-structure3 allows software to detect
different coherency characteristics, interleaving, persistency, etc..

e Flat 2LM: If F2LM FM is behind CXL, it will appear in the CXL Fixed
Memory Window Structure (CFMWS) structure with Windows
Restriction[4]=1 (Fixed Device Configuration).

¢ DRAM: Any DRAM (e.g., DDR 1LM) memory range present will appear
in the ACPI HMAT table as a region without a memory-side cache. DRAM
addresses will never be covered by CFMWS since single-level DDR (as
an example) is not attached to CXL.

e For all the memory ranges enumerated by BIOS, the ACPI HMAT table
will provide a view of basic performance characteristics. The values
published in HMAT are typically static “roofline” (maximum or typical)
values but in some cases may be based on BIOS characterization.

See the Compute Express Link Specification 3.0 specification for more details

[6].

The SRAT, HMAT and MRRM tables are a prerequisite and need to be present
for software to be able to use this section to assemble a complete view of
system memory.

While Figure 7-2 provides an overview of the applicable ACPI tables, Table 7-2
provides more detail on applicable bit fields within each ACPI table to complete
the mapping guidelines.

The following sections provide more detail, with examples.

Document Number: 356688-004US, Revision: 1.3 137

intel

Table 7-2. ACPI Table Cross-Reference

MRRM Memory SRAT Memory Affinity CEDT HMAT Memory | Memory Type / Config
Range Entry (MRE) Fields CFMWS Proximity
Fields Field Domain
Attributes
Field
1. Base Address Low 1. Base Address Low N/A DDR 1LM memory range will appear in
2. Base Address High 2. Base Address High ACPI HMAT table as one region without a
3. Length Low 3. Length Low memory side cache. DDR 1LM addresses
4. Length High 4. Length High will never be covered by CFMWS since
5. Proximity Domain DDR 1LM is not attached to CXL.
*For Platform 6. Enabled: SET
assigned: Memory
5. Platform-assigned Proximity
Static Local Region-ID Domain
6. Platform-assigned
Static Remote Region-
ID
*For software
supported region N/A Flat 2LM (F2LM) or legacy 2LM memory
programming: range will be associated with a memory
7. Region-ID side cache in ACPI HMAT table.
Programming 1. Base Address Low CXL Fixed Memory Window Flat 2LM: All memory addresses decoded
Registers[] 2. Base Address High Structure (CFMWS) by CXL are described in ACPI CEDT table.
3. Length Low structure with Windows If F2LM Fixed Memory is behind CXL.
4. Length High Restriction[4]=1 (Fixed System Firmware is responsible for
5. Proximity Domain Device Configuration). creating SRAT memory range entries for
6. Enabled: SET every portion of the CMFWS.
7. HotPluggable: Platform Flat 2LM is not hot pluggable. The CFMWS
specific will report a fixed device configuration for

8. NonVolatile: CLEAR

Flat 2LM.
The CFMWS for Flat2LM includes both the
DDR and CXL memory.

1. Base Address Low CXL Fixed Memory Window CXL Type 3 memory (CXL.mem): All

2. Base Address High Structure (CFMWS) memory addresses decoded by CXL are

3. Length Low structure with Windows described in ACPI CEDT table.

4. Length High Restriction[4]=1 (Fixed BIOS sets the Fixed Device Configuration

5. Proximity Domain Device Configuration). bit for CXL Type 3 device set up as Flat

6. Enabled: SET 2LM mode. OS can quiescence these
devices and possibly move them to a
different address.
There are CFMWS ranges published for
CXL hot pluggable ranges.

N/A CXL host bridge

7.4.1

Memory Hierarchy and Bandwidth Enumeration

The Heterogeneous Memory Attributes Table (HMAT), introduced in the revision
6.2 of ACPI specification [4] which should be available on future platforms to
describe complex memory hierarchies.

Using terminology from the HMAT specification, platform vendors may expose
in this table theoretical latency and bandwidth between initiators (e.g., a set of
cores) and the memory targets (e.g., memory organized within or hosted by
certain NUMA nodes). For instance, on a platform with both CXL and DRAM,
cores could access their local DRAM at BW: GB/s with LAT: latency (typically in
nanoseconds), or their local CXL at BW> GB/s with LAT> latency, while other
cores (CPU agents) access this CXL BW3 GB/s and LAT3 latency. Such latencies
and bandwidths are specified for read and write accesses. For more details,
refer to the System Locality Latency and Bandwidth Information Structure

138

Document Number: 356688-004US, Revision: 1.3

7.4.1.1

intel

(SLLBIS) structure specified as a component of the ACPI HMAT table
specification.

High-level Software Component Responsibilities

This section describes software responsibilities when booting the system, or
managing hotplug (hot-add, hot-remove) events.

In its most basic form, the delineation of software components responsibilities

is as follows:

1. The System Firmware (e.g., BIOS) is responsible for enumerating and
configuring memory types that are present at boot.

2. The OS or VMM components are responsible for enumerating and
configuring all topologies not covered by the previous System Firmware.

The following table describes these high-level roles and responsibilities for
major software components in more detail.

Table 7-3. High-level software component responsibilities

ACPI System Firmware 0OS/Software utilities System
Table Responsibilities Responsibilities State

- Create proximity Consume SRAT as needed At Boot
SRAT domains for CPUs, for volatile memory capacity

attached memory types for legacy functionality (in

using Affinity Type CXL terminology).

« No SRAT entries for
intermediate switches
(CXL)

« Build Memory Affinity
Structures for each
volatile proximity domain
with the SRAT Enable flag

set.

For memory devices For all persistent capacity: At Boot
HMAT | containing volatile Utilize memory device
and capacity: CDAT, switch CDATSs, and

CDAT . Parse device and switch | Generic Port entries to
CDAT and create HMAT calculate total BW and

entries for CPU and Latency for the path from
volatile memory proximity | the CXL Host Bridge to each
domains found in the device.
SRAT
Indicate hot pluggable
SRAT proximity domains with Manage hot plug events Hot Add

Memory Affinity Structure
HotPluggable indicator

Hot added volatile and
HMAT N/A (static after boot) persistent memory devices: Hot Add
- Utilize memory device
CDAT, switch CDATs, and
CXL Host Bridge HMAT

Document Number: 356688-004US, Revision: 1.3 139

intel

information to calculate total
BW and Latency for the path
from the CXL Host Bridge to
the new device

System Firmware should construct and report the ACPI SRAT and HMAT tables
to the OS or VMM with the various memory types that may be present. These
memory types will have memory ranges which are associated with proximity
domains. These proximity domains can be referenced in HMAT for obtaining
performance values to understand basic characterization of memory target
latencies and bandwidths.

CXL Early discovery:
Each HDM (host managed device memory) range is later exposed to the OS as
a separate, memory-only NUMA node via ACPI SRAT.

System Firmware obtains CDAT from the UEFI device driver or directly from the
device via Table Access DOE and then uses this information during construction
of the memory map, ACPI SRAT, and ACPI HMAT. See the ACPI CDAT
Specification, and UEFI Specification [4] for further details.

7.4.1.1.1 Example with DDR memory

Figure 7-3. Memory Configuration Example

_ (51 Region Mappin UI-EW:\
ODR
—i DImMImML zio Region 2
‘ DDR Memory |:| Region 0 D eglol

[Interleaved) . L
DDR DIMM2 [|:| Region 1 |:| EEIDN 3

ACC1.MEM D._
ACC2 MEM D_-—

52 Repion Mapping View:

-— ——] oimm3 l
| IMN Region 2
DDR Memory D i |:| cglon
DOR DIMMA j {Interleaved) D Region 1 D Region 3

ACCEMEM D._ - \ j

Figure 7-3 represents a system configuration where each Xeon CPU includes a
local memory controller with two DDR channels and one DIMM attached to each
channel. Memory regions as enumerated in RDT’s ACPI MRRM table are shown
in various colors. Note that accelerator-hosted memory is discussed in the
following section.

In this example, it is assumed that read latency is always equal to the write
latency for every data path and read bandwidth is always equal to the write
bandwidth for every data path. S1 and S2 represent CPU sockets. An example
table mapping cross-referencing SRAT and MRRM is shown in Figure 7-4 (a
simplified view).

140

Document Number: 356688-004US, Revision: 1.3

= DIMM1, DIMM2, DIMM3, DIMM4 size = 128GB

= DDR Read/Write Latency = 50ns

= DDR Bandwidth = 20GB/s/DDR channel

= S1 to S2 access latency = 50ns

= S1 to S2 bandwidth = 30GB/s

intel

Information known to system firmware (apriori knowledge):

Figure 7-4. SRAT, MRRM Summary HMAT MPD Attribute Structure
SRAT
MRRM

Proximity

Domain Type |SPABase| Length Note Base Address Local Remote
0 Processor S1APIC IDs S1 Low/High | Length Low/High | Region-ID Region-ID
0 Memory 0 256GB DIMML,DIMM2__ ——*| 0 256GB 0 1
1 Processor S2 APIC IDs S2 4,—» 256GB 256GB 0 1
1 Memory 256GB 256GB DIMM3, DIMM4+

Memory Proximity Domain Attributes
Initiator Memory
Proximity Proximity
Flags Domain Domain
IPD Valid 0 0
IPD Valid 1 1

The system firmware is also able to calculate the approximate latency from any

initiator to any target by simply adding the latency contribution of every hop in

the data path. Similarly, the system firmware is also able to calculate the
bandwidth from any initiator to any target by selecting the smallest value
among the bandwidth associated with various hops in the data path. It is
assumed that 2-way interleaving across DDR channels doubles the effective

bandwidth. The results are shown in Figure 7-5, which would be placed in an

HMAT sub-structure called SLLBIS (System Locality Latency and Bandwidth

Information Structure). In this nomenclature, initiators (e.g., processors) may

generate bandwidth to targets (e.g., a particular type of memory).

Document Number: 356688-004US, Revision: 1.3

141

intel.

Figure 7-5. HMAT System Locality and Bandwidth Information Structure

Summary
System Locality Latency and Bandwidth | nformative Structure
Number MNumber 50
of of 100
Initiator Target Entry Base
Flags Data Type PDs PDs Unit
Memory Read Latency 2 2 1000 (ps)
Memory Read Bandwidth 2 2 1024{MB/s) i 40
30

PD = Proximity Domain
|IDP = Proximity Domain for the Initiator
Gl = Generic Initiator

7.4.1.1.2 Example with Heterogeneous Memory (DDR and Coherent
Accelerators)

Figure 7-6. Memory Configuration Example

_ (Sl Region Mapping View:\

DDR Memory D Region 0 I:l neglon &

(Interleaved) . o
DIMM2 |:| eglon L D WEEIDN S

DimMmM1

ACC1.MEM D.—
ACC2 MEM Dr

52 Region Mapping View:

DDR Memory D neglon © D Region 2

DIMMA {Interleaved) D Region 1 I:l Region 3
ACCA MEM |:|_-_ \)

Figure 7-6 represents a system configuration where two coherent accelerators,
namely ACC1 and ACC2 are attached to CPU S1 via a coherent interconnect
such as CXL. Two accelerators, ACC3 and ACC4 are connected to CPU S2 via
the same coherent interconnect. Each CPU also has a local memory controller
with two DDR channels and one DIMM attached to each channel.

DIMM3 [

DOR
DOR
DOR
DOR

The system firmware may combine the information it has about the CPU and
various CPU connections to DDR from HMAT alongside CDAT information
extracted from BIOS generated information associated with each of the
coherent accelerators.

In this example, it is assumed that read latency is always equal to the write
latency for every data path and read bandwidth is always equal to the write
bandwidth for every data path.

142 Document Number: 356688-004US, Revision: 1.3

intel

Information known to system firmware (apriori knowledge):
» DIMM1, DIMM2, DIMM3, DIMM4 size = 128GB
= DDR Read/Write Latency = 50ns
= DDR Bandwidth = 20GB/s/DDR channel
= S1 to S2 access latency = 50ns
= S1 to S2 bandwidth = 30GB/s
= Coherent Interconnect Latency = 40 ns
= Coherent Interconnect Bandwidth = 30 GB/s

System firmware is aware that ACC1 memory is mapped starting at System
Physical Address (SPA) of 256 GB. ACC2 memory base SPA is at 272 GB and
ACC4 memory base SPA is at 536 GB.

ACCI1 returns the following CDAT entries
= One DSMAS Entry, DPA Base = 0, DPA Length = 16 GB, handle = 0
* One DSIS entry, associated DSMAS Handle =0
= DSLBIS entries which state latency for all 3 data paths is 60 ns and
bandwidth for all 3 data paths is 80 GB/s

ACC2 returns the following CDAT entries
= One DSMAS Entry, DPA Base = 0, DPA Length = 8 GB, handle = 0
= One DSIS entry, associated DSMAS Handle =0
= DSLBIS entries which state latency for all 3 data paths is 60 ns and
bandwidth for all 3 data paths is 80 GB/s

ACC3 returns the following CDAT entries
= One DSIS entry which is not associated with any DSMAS
= DSLBIS entries which state latency for the ingress to the initiator data
path is 60 ns and bandwidth for the ingress to the initiator data path is
80 GB/s

ACC4 returns the following CDAT entries
= One DSMAS Entry, DPA Base = 0, DPA Length = 32 GB, handle = 0 e
One DSIS entry, associated DSMAS Handle =0
= DSLBIS entries which state latency for all 3 data paths is 60 ns and
bandwidth for all 3 data paths is 80 GB/s

Using the above information, the system firmware concludes that each
accelerator should be described as a separate proximity domain in SRAT. ACC1,
ACC2 and ACC4 each have a Generic Initiator as well as memory associated
with them, whereas ACC3 appears as a Generic Initiator-only proximity
domain. The system firmware constructs the memory range to region mapping
structure (MRRM) that maps each SPA to local and remote RegionID for use
with RDT and other features. The system firmware is also able to construct the
Memory Proximity Domain Attributes Structure (MPDAS) in HMAT which in turn
can be mapped across memory range, RegionID and proximity domain. This is
illustrated in Figure 7-7.

Document Number: 356688-004US, Revision: 1.3 143

intel

Figure 7-7. SRAT,

MRRM Summary HMAT MPD Attribute Structure

SRAT
P rosd mity
Domain Type SPA Base | Lensth Note
0 Frocessor S1APIC IDs 51 MRRM
[1] e oy [1] 256GE | DIMMI, DIMM2
1 Gl Acci Base Address Local Remote
1 Memory 2568 166 ACC1.MEM Low/High |[Llength Low/High| Region-ID [Region-ID
2 Gl ACC2 1] 256GB] 2
2 Memory = 272GB BGB ACC2.MEM » 256GB 16GB 1 3
3 Processor S2ZAPIC IDs 52 272GE BGE 1 3
3 e mory 2B0GE 256GE DIMM3, DIMMG ¥ 280GE 56GE 1] 2
4 Gl ACrC4d - S36GE 32GB 1 3
4 e mory 536GE 32GB ACC4 MEM —g
5 Gl ACC3

The system firmware is also able to calculate the latency from any initiator to

Memory Proximity Domain Attributes
Initiator Memory
Proximity Proximity

Flags Domain Domain

IPD Valid 1] 0

IPD Valid 1 1

IPD Valid 2 2

IPD Valid 3 3

IPD Valid 4 4

any target by adding the latency contribution of every hop in the data path.
Similarly, the system firmware is able to calculate the bandwidth from any

initiator to any target by selecting the smallest value among the bandwidth
associated with various hops in the data path. It is assumed that 2-way

interleaving across DDR channels doubles the effective bandwidth. The results

are shown in Figure 7-8. In this nomenclature, initiators (e.g., processors) may
generate bandwidth to targets (e.qg., a particular type of memory).

144

Document Number: 356688-004US, Revision: 1.3

7.5

intel

Figure 7-8. HMAT System Locality and Bandwidth Information
Structure Summary

System Locality Latency and Bandwidth Informative Structure
Number Number
of of
Initiator Target Entry Base
Flags Data Type PDs PDs Unit
Memory Read Latency 6 5 1000 (ps)
Memory Read Bandwidth 6 5 1024(MB/'s)

PD = Proximity Domain
IDP = Proximity Domain for the Initiator
Gl = Generic Initator

40 30 30 30 30
30 30 30 30 30
30 30 30 40 30
30 30 30 30 80
30 30 30 30 30

If ACC1 is removed from the system, software may wish to remove ACC1
related entries from these structures. Software may use bus-specific
mechanisms to determine that the ACC1 memory base is 256 GB and its size is
16 GB. By matching these addresses against the SRAT entries, software can
unambiguously determine that proximity domain 1 represents ACC1. Software
may then map domain 1 entries in SRAT as invalid and purge the
corresponding entries from HMAT.

If another ACC3-like device is dynamically added to the system, the Operating
System may extract CDAT information from that device and insert new entries
in the OS internal structure that is equivalent to SRAT and a new row in the OS
internal structure that is equivalent to HMAT using an algorithm like the one
used by the system firmware.

Establishing Correlation between the DACD
and IRDT tables

Note that in this section “I/O RDT” is used as a shorthand to refer to Intel RDT
for Non-CPU Agents, as introduced in Chapter 4.

This section discusses Intel I/O RDT structure mapping (ACPI IRDT) to
Enhanced RDT (ACPI ERDT) structures. The I/O RDT (IRDT) and ERDT feature
enumeration tables provide complimentary information, which software may
use to assemble a view of system memory (Section 7.4), and how devices and
processors are organized, including sharing certain caching domains. Section
5.1 provides ERDT table definition details.

The top-level ACPI structure defined to support Intel I/O RDT is the “"IRDT”
structure. This is a vendor-specific extension to the ACPI table space. The
named IRDT structure is generated by BIOS and contains all other non-CPU
agent Intel RDT ACPI enumeration structures and fields as described in Chapter
4.

Document Number: 356688-004US, Revision: 1.3 145

intel.

Figure 7-9 shows an example of the RMUD mapping to DSS (device-level) and
RCS (link-level) structures along with ERDT sub-structures. Each device
attached to an I/0 block is described by a DSS, and has one or more links, with
properties described in the RCS structures. The RCS structures contain pointers
to MMIO locations (in absolute address form, not BAR-relative) to allow
software to configure the RMID/CLOS tags and related properties in an I/O

Block.

Figure 7-10. IRDT and ERDT ACPI Mapping.

(VT-d equivalent: DMAR)
([Enhanced ROT eqguivalent: ERDT)

(WT-d equivalent: DRHD)

(Enhanced ROT equivalent: DACD)

(WT-d equivalent: DSS)
(Enhanced ROT equivalent: DAS)

1/O Block 4 ————
[voror |

f\f’N*j IORMT-RMILID
z INRNT-RAALIN i,
> MN==1 -
IRDT -, IORDT-RMUD ¥~ IORDT-DSS
ACPI | || == 10 RDT Resource I IOEQTDEWGE—
System-Level Parameter _ AT Lt of Specific Structures
Enumeration Lo '
1/0 Block
— CXL Device
Xeon SOC [Lvoror]
Associated CXL
SMEM Block

/O block may be
exposed as a PCle
EP, with O/S driver

The following table summarizes the IRDT and ERDT ACPI structure fields that
software needs to consider in order to map devices that are under the scope of

RMD.

Table 7-4. IRDT and ERDT ACPI Mapping.

IRDT

ERDT

Comments

IRDT.RMUD.Segment

ERDT.DACD-
DASE.Segment

These fields should match
to map devices that are
enumerated per I/0
Monitoring Domain.

IRDT.DSS.Device Type

ERDT.DACD-DASE.Type

146

Document Number: 356688-004US, Revision: 1.3

intel

IRDT.DSS.Enumeration ID | ERDT.DACD-DASE.Start -
Bus Number+Path (See
psuedocode below)

ERDT -> DACD - DAS entry:
n = (DeviceAgentScope.Length - 6) / 2; // number of entries in the
‘Path’ field
type = DeviceAgentScope.Type; // type of device
bus = DeviceAgentScope.StartBusNum; // starting bus number
dev = DeviceAgentScope.Path[@].Device; // starting device number
func = DeviceAgentScope.Path[@].Function; // starting function number
i=1;
while (--n) {
bus = read_secondary_bus_reg(bus, dev, func);// secondary
bus# from config reg.
dev = DeviceAgentScope.Path[i].Device; // read next
device number
func = DeviceAgentScope.Path[i].Function; // read next
function number
i++;
}
source_id = [bus,dev,func];
target_device = {type, source_id};

Document Number: 356688-004US, Revision: 1.3 147

intel

A

Intel® RDT Feature Details

A.1

Intel® RDT Feature Evolution

This section describes various generations of product and Intel RDT feature
intercepts. Intel RDT provides a number of monitoring and control capabilities
for shared resources in multiprocessor systems. This section covers updates to
the feature that are available in current and future Intel processors, starting
with brief descriptions followed by tables with details.

1. Intel® RDT on the 3" Gen Intel® Xeon® Scalable Processor Family.
The 3™ Gen Intel® Xeon® Scalable Processor Family, based on Ice Lake
server microarchitecture, adds the following Intel RDT enhancements:

— 32-bit MBM counters (versus 24-bit in prior generations), and new
CPUID enumeration capabilities for counter width.

— Second generation Memory Bandwidth Allocation (MBA): Introduces
an advanced hardware feedback controller that operates at
microsecond timescales, and software-selectable min/max throttling
value resolution capabilities. Baseline descriptions of the MBA
“throttling values” applied to the threads running on a core are
described in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3B.

Second generation MBA capabilities also add a work-conserving
feature in which applications that frequently access the L3 cache may
be throttled by a lesser amount until they exceed the user-specified
memory bandwidth usage threshold, enhancing system throughput
and efficiency, in addition to adding more precise calibration and
controls. Certain BIOS implementations may further aid flexibility by
providing selectable calibration profiles for various usages.

— 15 MBA / L3 CAT CLOS: Improved feature consistency and interface
flexibility. The previous generation of processors supported 16 L3 CAT
Class of Service tags (CLOS), but only 8 MBA CLOS. The changes in
enumerated CLOS counts per-feature are enumerated in the
processor as before, via CPUID.

2. Intel® RDT on Intel Atom® Processors, Including the P5000 Series.
Intel Atom® processors, such as the P5000 series, based on Tremont
microarchitecture add the following Intel RDT enhancements:

— L2 CAT/CDP: L2 CAT/CDP and L3 CAT/CDP may be enabled
simultaneously on supported processors. As these are existing
features defined in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3B, no new software enabling should be
required.

— Supported processors match the capabilities of the 3™ Gen Intel Xeon
Scalable Processor Family based on Ice Lake Server
microarchitecture, including traditional Intel RDT uncore features: L3
CAT/CDP, CMT, MBM, and second-generation MBA. As these features
are architectural, no new software enabling is required. Related
enhancements in Intel Xeon processors also carry forward to

148

Document Number: 356688-004US, Revision: 1.3

intel

supported Intel Atom processors, with consistent software enabling.
These features include 32-bit MBM counters, second generation MBA,
and 15 MBA/L3 CAT CLOS.

3. Intel® RDT in processors based on the 4™ Gen Intel® Xeon®
Scalable Processor Family.
Processors based on 4t Gen Intel® Xeon® Scalable Processor Family add
the following Intel RDT enhancements:

— STLB QoS: Model-specific capability to manage the second-level
translation lookaside buffer structure within the core (STLB) in a
manner quite similar to CAT (CLOS-based, with capacity masks). This
may enable software that is sensitive to TLB performance to achieve
better determinism. This is a model-specific feature due to the
microarchitectural nature of the STLB structure. The code regions of
interest should be manually accessed.

4. Intel® RDT in Processors Based on the 5" Gen Intel® Xeon®
Product Family.
Processors based on 5™ Gen Intel® Xeon® Processors add the following
Intel RDT enhancements:

— L2 CAT and CDP: Includes control over the L2 cache and the ability to
partition the L2 cache into separate code and data virtual caches. No
new software enabling is required; this is the same architectural
feature described in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3B.

5. Intel® RDT in Processors Based on the 6 Gen Intel® Xeon®
Product Family.
Processors based on 6% Gen Intel® Xeon® Processors add the following
Intel RDT enhancements:

— Third generation Memory Bandwidth Allocation (MBA): new per-
logical-processor capability for bandwidth control (rather than the
more coarse-grained core-level throttling value resolution in prior
generations). This capability enables more precise bandwidth shaping
and noisy neighbor control. Some portions of the control
infrastructure now operate at core frequencies for controls that are
responsive at the nanosecond level.

— Intel® RDT features support for non-CPU agents, enabling advanced
monitoring and control capabilities for PCle and CXL devices, as well
as integrated processor accelerators.

6. Future Intel® RDT.

Future processors add the following Intel RDT enhancements:

— Region Aware Memory Bandwidth Monitoring (MBM) and Region
Aware Memory Bandwidth Allocation (MBA).

Document Number: 356688-004US, Revision: 1.3 149

intel

A.2

Supported Products

Intel® RDT Architectural Features and

Intel RDT
Feature
Category

Shared
Resource

Agent

Intel RDT Sub-
Feature

Intel RDT
Scope

Supported Products

Monitoring

Cache
Monitoring
Technology
(CMT)

L3

CPU

L3 CMT for CPU
agents

Per-thread
RMID-
based

Intel® Xeon® E5/E7
v3,v4, Intel® Xeon® D,
Intel® Xeon® Scalable
Processor, 2™ Gen
Intel® Xeon® Scalable
Processor, 3™ Gen
Intel® Xeon® Scalable
Processor, 4" Gen
Intel® Xeon® Scalable
processor, 5" Gen
Intel® Xeon® Scalable
processor, Intel Atom®
Processor P5000 Series,
Intel® Xeon® processors
(codename Granite
Rapids), Intel® Xeon®
processors (codename
Sierra Forest)

L3

I/0

L3 CMT for non-CPU
agents

Per-agent
RMID-
based

Intel® Xeon® processors
(codename Granite
Rapids), Intel® Xeon®
processors (codename
Sierra Forest)

Memory
Bandwidth
Monitoring
(MBM)

CPU

MBM Local for CPU
agents

Per-thread
RMID-
based

Intel® Xeon® E5/E7 v4,
Intel® Xeon® D, Intel®
Xeon® Scalable
Processor, 2" Gen
Intel® Xeon® Scalable
Processor, 3 Gen
Intel® Xeon® Scalable
Processor, 4" Gen
Intel® Xeon® Scalable
processor, 5™ Gen
Intel® Xeon® Scalable
processor, Intel Atom®
Processor P5000 Series,
Intel® Xeon® processors
(codename Granite
Rapids), Intel® Xeon®
processors (codename
Sierra Forest)

150

Document Number: 356688-004US, Revision: 1.3

intel

Intel RDT Shared Agent Intel RDT Sub- Intel RDT | Supported Products
Feature Resource Feature Scope
Category
CPU MBM Total for CPU Per-thread |Intel® Xeon® E5/E7 v4,
agents RMID- Intel® Xeon® D, Intel®
based Xeon® Scalable
Processor, 2™ Gen
Intel® Xeon® Scalable
Processor, 3 Gen
Intel® Xeon® Scalable
Processor, 4" Gen
Intel® Xeon® Scalable
processor, 5" Gen
Intel® Xeon® Scalable
processor, Intel Atom®
Processor P5000 Series
(Selected Processors),
Intel® Xeon® processors
(codename Granite
Rapids), Intel® Xeon®
processors (codename
Sierra Forest)
CPU Region Aware MBM Per-RMID Future Intel®
for CPU agents and per- Processors
Region
based
I/0 MBM Local for non- Per-agent Intel® Xeon® processors
CPU agents RMID- (codename Granite
based Rapids), Intel® Xeon®
processors (codename
Sierra Forest)
1/0 MBM Total for non- Per-agent Intel® Xeon® processors
CPU agents RMID- (codename Granite
based Rapids), Intel® Xeon®

processors (codename
Sierra Forest)

Document Number: 356688-004US, Revision: 1.3

151

intel

Intel RDT
Feature
Category

Shared
Resource

Agent

Intel RDT Sub-
Feature

Intel RDT
Scope

Supported Products

Allocation

Cache
Allocation
Technology
(CAT)

L2

CPU

L2 CAT for CPU
agents

Per-thread
CLOS-based

Atom Server C3000, 5%
Gen Intel® Xeon®
Scalable processor,
Intel Atom® Processor
P5000 Series, Intel®
Xeon® Scalable
processor (codename
Granite Rapids), Intel®
Xeon® processors
(codename Sierra
Forest)

L2 CDP for CPU
agents

Per-thread
CLOS-based

5t Gen Intel® Xeon®
Scalable processor,
Intel Atom® Processor
P5000 Series, Intel®
Xeon® Scalable
processor(codename
Granite Rapids), Intel®
Xeon® processors
(codename Sierra
Forest)

L3

CPU

L3 CAT for CPU
agents

Per-thread
CLOS-
based

Intel Atom® X Series
(Selected Processors),
Intel® Xeon® E5/E7 v3
(Selected Processors),
Intel® Xeon® E5/E7 v4 ,
Intel® Xeon® D, Intel®
Xeon® Scalable, 2" Gen
Intel® Xeon® Scalable
Processor, 3 Gen
Intel® Xeon® Scalable
Processor, 4" Gen
Intel® Xeon® Scalable
processor, 5™ Gen
Intel® Xeon® Scalable
processor, Intel® Xeon®
W, Intel Atom®
Processor P5000 Series,
Intel® Xeon® Scalable
processor(codename
Granite Rapids), Intel®
Xeon® processors
(codename Sierra
Forest)

152

Document Number: 356688-004US, Revision: 1.3

intel

Intel RDT Shared Agent Intel RDT Sub- Intel RDT | Supported Products
Feature Resource Feature Scope
Category
L3 CDP for CPU Per-thread |Intel® Xeon® E5/E7 v4,
agents CLOS- Intel® Xeon® Scalable
based Processor, 2" Gen
Intel® Xeon® Scalable
Processor, 3™ Gen
Intel® Xeon® Scalable
Processor, 5" Gen
Intel® Xeon® Scalable
processor, Intel Atom®
Processor P5000 Series,
Intel® Xeon® Scalable
processor(codename
Granite Rapids), Intel®
Xeon® processors
(codename Sierra
Forest)
I/0 L3 CAT for non-CPU | Per-agent, |Intel® Xeon® processors
agents CLOS- (codename Granite
based Rapids), Intel® Xeon®
processors (codename
Sierra Forest)
Memory L3 CPU MBA for CPU agents | Per- Intel® Xeon® Scalable
Bandwidth | external (First Generation interface, Processor, 2" Gen
Allocation | bandwidth MBA) CLOS- Intel® Xeon® Scalable
(MBA) based Processor, 3™ Gen
Intel® Xeon® Scalable
Processor formerly
codenamed Cooper
Lake
CPU MBA for CPU agents | Per- 3 Gen Intel® Xeon®
(Second Generation | interface, Scalable Processor
MBA) CLOS- (excluding codename
based Cooper Lake), 4" Gen
Intel® Xeon® Scalable
processor, 5% Gen
Intel® Xeon® Scalable
processor, Intel Atom®
Processor P5000 Series,
Future Intel® Xeon®
Scalable processor
(codename Granite
Rapids), Future Intel®
Xeon® processors
(codename Sierra
Forest)
CPU MBA for CPU agents | Per-agent, | Future Intel® Xeon®
(Third Generation CLOS- processors (codename
MBA) based Granite Rapids), Future
Intel® Xeon® processors
(codename Sierra
Forest)
CPU Region Aware MBA Per-agent, | Future Intel®
for CPU Agents CLOS- Processors
based and
per- Region
based

Document Number: 356688-004US, Revision: 1.3

153

intel

Intel RDT Shared Agent Intel RDT Sub- Intel RDT | Supported Products
Feature Resource Feature Scope

Category

Cache - CPU CBA for CPU agents | Per-Logical | Future Intel®

Bandwidth Processor Processors

Allocation based

(CBA)

A.3 Intel® RDT Model-Specific Features and

Supported Products

Intel RDT Feature Category Supported Products

Resource Aware MBA (MBA4.0) ¢ Intel® Xeon® processors (codename Granite Rapids).
o Intel® Xeon® processors (codename Sierra Forest).
Intel® RDT and Sub-NUMA e 3™ Gen Intel® Xeon® processors.

Clustering (SNC) Compatibility e 4% Gen Intel® Xeon® processors.

e 5% Gen Intel® Xeon® processors.

STLB QoS 4t Gen Intel® Xeon® processors.

The following product generations on SKUs with Intel® Time
Coordinated Computing (Intel® TCC) support:

e 11t Gen Intel® Core™ Processors (UP3-Series).
¢ Intel® Xeon® W Processors (TGL-H).

e 12t Gen Intel® Core™ Processors (S-Series).

e 13% Gen Intel® Core™ Processors (P-Series).

e 13 Gen Intel® Core™ Processors (S-Series).

e Intel Atom® x7000E Series Processors.

A.4

Feature Mapping: CPU Agents, Non-CPU

Agents in Different L3 Configurations

Configuration Intel RDT CPU Agents Intel RDT Non-CPU Comments
Feature Scope Agents Intel
RDT Scope
Shared-L3 Cache Monitoring | Per-thread RMID-based Per-agent RMID- | Unified per-RMID
Technology (CMT) based counters across CPU
Agents and non-CPU
Agents.
Shared-L3 Memory Per-thread RMID-based Per-agent RMID- | Unified per-RMID
Bandwidth based counters across CPU
Monitoring (MBM) Agents and non-CPU
Agents.
Shared-L3 Cache Allocation Per-thread CLOS-based Per-agent CLOS- | Unified per-CLOS controls
Technology (CAT) based across CPU Agents and
non-CPU Agents.
Shared-L3 Code and Data Per-thread CLOS-based N/A CDP is not supported for
Prioritization non-CPU Agents.
(CDP)
154 Document Number: 356688-004US, Revision: 1.3

intel

Configuration Intel RDT CPU Agents Intel RDT Non-CPU Comments
Feature Scope Agents Intel
RDT Scope
Shared-L3 Memory Per-agent MBA throttling N/A MBA is not supported for
Bandwidth (MBA3.0 and higher) or non-CPU Agents.

Allocation (MBA)

Per-interface MBA throttling
(MBA1.0-2.0)

Document Number: 356688-004US, Revision: 1.3

155

intel

A.5 Architectural MSRs used with Intel® RDT

Features
The following architectural Model-Specific Registers are used with Intel® RDT
features.

MSR Name Comments

IA32_PQR_ASSOC

Set the RMID and CLOS pair.

IA32_QM_EVTSEL

Set event codes and RMID to be monitored.

IA32_QM_CTR

Reports monitoring telemetry data.

IA32_L3_MASK_n

W

Bitmask to assign L3 cache ways for each CLOS. “n” registers,
one register per CLOS.

IA32_L2_QoS_Ext_BW_Thrtl_n

W7

Set valid throttling levels. “n” registers, one register per CLOS

IA32_L2_QOS_MASK_n

W

Bitmask to assign L2 cache ways for each CLOS. “n” registers,
one register per CLOS.

IA32_L3_I0_QOS_CFG

Set to enable Allocation and Monitoring for non-CPU Agents

IA32_QoS_Core_BW_Thrtl_n

Set valid throttling levels, one byte per CLOS. “*n = 0 to
(((CLOS_MAX+1)/8) -1)" registers

A.6 Model-Specific Registers for Intel® RDT
Model Specific Features

The following notable non-architectural Model-Specific Registers are used with
Intel® RDT features and will be expanded over time. Others are discussed in
preceding model-specific chapters.

MSR Name

Comments

MBA_CFG

Set the RMID and CLOS pair.

RMID_SNC_CONFIG

Clear to enable RMID Sharing Mode.

STLB_QOS_INFO

Discover STLB QOS parameters

STLB_QOS_MASK_N

STLB QOS Capacity Bitmasks

STLB_FILL_TRANSLATION

Fill a logical address into the STLB

PQR_ASSOC

Resource Association Register

L3_QOS_MASK_N

L3 Class of Service Mask

156

Document Number: 356688-004US, Revision:

1.3

intel

Model-Specific Intel® RDT
Features

B.1

B.1.1

B.1.1.1

Model-Specific Intel® RDT Features for CPU
Agents

This section gives an overview of non-architectural features that are
implemented on specific products. To find out which features are supported on
which specific products, refer to Appendix A.3.

In certain cases, model-specific features may be implemented rather than
architectural features in cases where the cache or memory hierarchies are
rapidly evolving, or in cases where usages are specialized and require intricate
software enabling and tuning, or in cases where a subset of special-purpose
processors are enabled with certain features within a broader product line.

Support for a certain model-specific feature in a particular product generation
does not imply that future products will support the same model-specific
feature; furthermore, this does not guarantee software forward-compatibility.
Software should use Processor Family, Model and Stepping (FMS) to verify that
a particular processor includes support for a given model-specific feature.

Resource Aware MBA

Resource Aware MBA (MBA 4.0) for CPU-agent was formerly known as Fourth
Generation MBA (MBA 4.0) which supports over Third Generation MBA
capabilities as Bandwidth management support is implemented to support up
to three different resources - DDR Memory, CXL links, and UPI Links on a pre
thread basis. Third generation MBA capabilities (see Section 3.2.3.3) are the
default mode of operation, with Resource Aware MBA being opt-in. See
Appendix A.3 for Resource Aware MBA feature intercept details.

Overview

Resource Aware MBA allows per-thread tracking and control of Bandwidth to
different resources - that is, enabling bandwidth control per-thread and per-
resource simultaneously. As in the third generation of MBA, each resource and
thread are managed by a hardware controller which modulates the bandwidth
of each thread targeting a particular downstream resource around a bandwidth
target set by Intel RDT software interfaces.

The resource types that are managed are:

1. DDR - All traffic towards DDR Memory regardless of location of location
(local, remote or CXL).

2. CXL - All traffic towards CXL resources such as CXL.mem pools including
remote.

Document Number: 356688-004US, Revision: 1.3 157

intel

3. UPI - All traffic that utilizes the Intel® Ultra Path Interconnect (Intel® UPI)
link(s) for cross socket data transfer regardless of target on the remote
socket.

The high-level implementation of Resource Aware MBA is shown in Figure 7-11.

Figure 7-11. High-Level Overview of the Resource Aware MBA (MBA 4.0)

Software

ThreadO Thread1
(_Issuerate) | (Issuerate)

Bandwidth Target Flow control | | Flow control

'iFarge‘. Bw Target B‘“ Per-resource Bandwidth Control
i Meter Metef Loop i

Duplicated
Per
Resource

n—— T

| Resource

—_— 4

Memory BYW usage signaling per logical core and per
resource

B.1.1.2 Enable MSR

Resource Aware MBA (MBA 4.0) is opt-in feature. Before configuring MBA
throttling values per-thread and per-resource, the feature should be enabled
(through a configuration MSR). The MBA_CFG MSR is used to enable the
Resource Aware MBA feature for CPU agents.

One bit is defined in this MBA_CFG MSR, bit[2], which when set enables the
Resource Aware MBA feature and switches between third-generation MBA and
Resource Aware MBA modes.

The default value is 0x0 (Resource Aware MBA is disabled by default), and all
bits not defined are reserved. Any writes to reserved bits will generate a
General Protection Fault (#GP(0)).

This MSR is scoped at the die level and is cleared on system reset. It is
expected that software will configure this MSR consistently across all L3 caches
that may be present in the SoC.

The definition of the MBA_CFG MSR is shown in Figure 7-12, and its MSR
address is 0xC84.

158 Document Number: 356688-004US, Revision: 1.3

intel

Figure 7-12. The MBA_CFG MSR for Enabling Resource Aware MBA Feature

B.1.2

B.1.2.1

B.1.2.2

MBA CFG MSR (0C84H,64b length)
63 32 131

Reserved 1 Reserved M

M
]

Bit 0,71, Bit 3 -63 = Reserved
Bit 2 = RAMBAE = Resource Aware MBA Enable

Reference BIOS implementations supporting Resource Aware MBA will extend
the legacy bandwidth profile knobs from Second Generation MBA with a drop-
down menu of three options (see Section 5.2 for details)

Intel® RDT and Sub-NUMA Clustering Compatibility

The following sub-sections describe Intel RDT and Sub-NUMA Clustering (SNC)
compatibility enabling components. Utilizing SNC and RDT simultaneously may
provide resource contention isolation benefits but requires incremental
software enabling with the introduction of SNC.

Introduction

Following sub-sections describe Intel RDT monitoring features behavior in the
presence of either multiple NUMA domains per socket, other product
implementations in which multiple NUMA domains may appear per processor,
due to either logical or physical resource partitioning. This section references
Intel RDT features such as MBA, MBM, CMT and CAT for CPU agents and non-
CPU agents described in Chapter 3 and Chapter 4 respectively.

The Sub-NUMA Clustering (SNC) feature creates localization domains within a
processor by mapping addresses from a local memory controller to a subset of
the L3 slices that are at a reduced distance to nearby memory controller(s),
reducing latency, and increasing equivalent traffic isolation across memory
channels controllers.

MBA usage is not affected in presence SNC; bandwidth targets apply globally
across all SNC domains. L3 CAT and Monitoring features (L3 CMT and MBM)
usage is affected in the presence of SNC. Following sections provide details.
See Appendix A.3 for Intel RDT and Sub-Numa Clustering (SNC) Compatibility
feature supported product details (for example, products where the features
are simultaneously supported).

SNC Enabled and L3 Cache Allocation Technology

L3 Cache Allocation Technology (L3 CAT) allows an Operating System (OS),
Hypervisor / Virtual Machine Manager (VMM) or similar system service
management agent to specify the amount of L3 cache capacity of the Resource
Allocation Domain (RAD) into which an application can fill.

Document Number: 356688-004US, Revision: 1.3 159

intel

B.1.2.3

B.1.2.3.1

In the presence of SNC, cache capacity bitmasks are still die-scoped and apply
across multiple-L3 domains. Each bit in the cache capacity bitmask manages all
clusters and dictates the portion of each SNC cluster available for a given
Resource Management Domain. For example, each bit in cache capacity
bitmask represents half as much L3 cache capacity at each cluster when SNC2
is enabled, or one-quarter as much L3 cache capacity at each cluster when
SNC4 is enabled and so on. Note that total L3 cache capacity does not change.

Software may choose to apply consistent policies across SNC domains utilizing
this property, such as CLOS[0] having full access to the cache across any SNC
domain in which it may run, but CLOS[1] having access to only half of the
cache, implying that it contains a set of lower-priority threads.

SNC Enabled and RMID Distribution Modes

There are two modes available to control Resource Monitoring ID (RMID)
distribution when SNC is enabled: Default mode and RMID Sharing.

Software should consider and select the mode in which RMIDs are distributed
or shared across the SoC and SNC domains depending on its usage needs.

Default Mode

When SNC is enabled the available pool of RMIDS are distributed across all the
L3 slices. RMIDs are distributed across the cores in the same fashion as done
when SNC is not enabled, see Figure 7-13.

This distribution scheme allows the RMIDS enumerated by CPUID to be directly
used. Software should be aware of the distribution of RMIDs between the SNC
domains. For instance, if there are 320 RMIDs available which is enumerated
via Shared Resource Monitoring Leaf, CPUID.OFH.OH and an SNC-4
configuration is selected, four localization domains exist within a processor.

These 320 RMIDs can be dived into four groups of 80 RMIDS with first 80
allocated to SNC domain 0, the next 80 to SNC domain 1 and so forth. Due to
this distribution policy, RMIDs may be visualized as localized to SNC domains,
and there maybe cases where bandwidth is not counted. Consider for instance
the case where thread with RMID 0 accesses will generate counts only for
traffic in SNC domain 0. Any traffic from this thread that accesses other SNC
domains will not increment any of the other counters. In other words, each
SNC domain will get an equal nhumber of distinct RMIDS from the global pool of
RMIDS that are not shared.

160

Document Number: 356688-004US, Revision: 1.3

Figure 7-13. Default Mode Demonstrating SNC-4 and RMID Distribution

intel

RMID[79:0]

Core

Core

Core

SNC domain O

Core

SNC domain 1
RMID [159:80]

$

$ =Shared L3

SNC domain 2
RMID[239:160]

$

Core

$ Core

SNC domain 3
RMID[240:319]

$

B.1.2.3.2 RMID Sharing Mode

RMID sharing mode allows the same RMID to be distributed with traffic

accessing any and all SNC domains, but at the cost of a reduced number of
SoC-level RMIDs available. This model-specific mode aims to mitigate the

disadvantage of the Default mode where software should be aware of the RMID
distribution per SNC domain (and NUMA-aware) and where traffic tagged with
an RMID in one domain will not be counted if it accesses resources in another

SNC domain. RMID sharing mode allows same RMID to sample across SNC

domains, thus ensuring a complete count.

e This is an opt-in mode and requires that the software clears an enable bit
defined in the following MSR 0XCAO, bit[0], see Figure 7-14. Note that as a
model-specific capability, this mode is not guaranteed to be supported on
all processors (see Appendix A.3 for support details).

Figure 7-14. The RMID_SNC_CONFIG MSR for Enabling RMID Sharing Mode

63

RMID_SNC CONFIG MSR (OCAOH, 64b length)

32

371

Reserved

Reserved

dNATH | O

Bit O = RLDME = RMID_LOCALIZED_DISTRIBUTION_MODE_ENABLE

In this mode the number of RMIDs are distributed across all the L3 slices

effectively reducing the number of RMIDs by the number of SNC domains.

the case of four SNC domains, the number of RMIDs are divided by four.
Number of valid RMIDs = (Highest RMID value/#SNC_clusters)

In

Document Number: 356688-004US, Revision: 1.3

161

intel.

Using the previous example of 320 RMIDs, in this mode with SNC-2 enabled
there would be (320/2), that is, 160 RMIDs, with SNC-4 enabled there would
be (320/4), that is, 80 RMIDs.

Note: In SNC4 mode, to determine the count for RMIDO, the count for RMIDO,
RMID80, RMID160, and RMID240 should be read and added to provide the
total count for RMIDO.

Note: It is the responsibility of software to read the values from each of the
counters and calculate and interpret the sum using the output of the
IA32_QM_CTR MSR. This is illustrated in Figure 7-15.

Figure 7-15. RMID Sharing Mode Demonstrating SNC-4 and RMID Distribution

$ = Shared LLC

SNC domain O SNC domain 1 SNC domain 2 SNC domain 3
RMID [79:0] RMID [79:0] RMID [79:0] RMID [79:0]

$ $

Core Core

Core Core |$ Core | $

$
$

Initialize a per-cpu RMID offset value. Use this to calculate
O the value to write to the IA32_QM_EVTSEL MSR when
reading RMID event values.

B.1.2.4 Intel® RDT Software Considerations

Depending on its preferred use model and whether this model-specific
capability is supported on a particular processor, software may select either the
mode in which RMIDs are distributed or shared across the SoC and SNC
domains. The default mode where each SNC cluster has a defined group of
RMIDs or the opt-in mode which shares the same RMID across the SNC
domains.

e Without SNC mode enabled the Remote Memory Bandwidth can be
calculated by:

— Remote Memory BW = (Total Memory BW - Local Memory BW) *
Scaling Factor.

e With SNC Mode enabled software should scale the measured BW depending
on the SNC_RMID Mode.

e CMT is similarly affected.

162 Document Number: 356688-004US, Revision: 1.3

intel

Table 7-5. SNC Enabled and RMID Distribution Mode Summary

Default Mode

Opt-In : RMID Sharing Mode

Key highlights

e RMID_SNC_CONFIG MSR is Set.

e Each SNC domain has its own
group of RMIDs.

e RMID_SNC_CONFIG MSR is Clear.

o Number of RMIDs divided by the number of
SNC Domains.

e Opt-In mode is enabled by software setting
the MSR 0xCAOQ[0] = 0.

Example:

RMID Distribution
per SNC Example
for each Mode:
SNC-4 config and
Max 320 RMIDs

1. For each SNC domain, the software
should select an RMID from the range
mentioned next to program
IA32_PQR_ASSOC MSR. This range will
be dependent on NUMA cluster you
choose:

e SNC_Domain_0 : RMID[79:0]

e SNC_Domain_1 : RMID[159: 80]

e SNC_Domain_2 : RMID[239:160]

e SNC_Domain_3 : RMID[319:240]

2. To obtain monitoring data read via
IA32_QM_EVTSEL, MSR uses only the
RMID value to read counter value.

1. Number of Valid RMIDs =
(#RMIDS/#SNC_Domains).

Choose d in {0...79} in this example.

**This range is used to program RMID field in the
IA32_PQR_ASSOC MSR so that the appropriate
hardware counters within the SNC domain are
updated.

2. To obtain monitoring data via IA32_QM_EVTSEL
MSR read 4 counter value from using the next
formula:

MAX_VALID_RMID = #RMIDS/#SNC_DOMAINS
SNC_DOMAIN_0: RMID[0+d]

SNC_DOMAIN_1: RMID[MAX_VALID_RMID*1 + d]
SNC_DOMAIN_2: RMID[MAX_VALID_RMID*2 + d]
SNC_DOMAIN_3: RMID[MAX_VALID_RMID*3 + d]
For this example:

SNC_DOMAIN_0: RMID[0+d]

SNC_DOMAIN_1: RMID[80+d]

SNC_DOMAIN_2: RMID[160+d]

SNC_DOMAIN_3: RMID[240+d]

Differences

e Same number of RMIDS across
SoC.

o RMIDS divided down by the number of SNC
Domains and hence reduced number of
RMIDS available for use.

Differences

e Miss traffic count due to software
that traverses SNC domains. This
can lead to inaccurate counts for
CMT/MBM.

e Counts traffic that traverses SNC domains.

Differences

e Software needs to know the
distribution of RMIDS to SNC
domains.

o Software required to read all the RMID
counters in the SNC domains and add up the
individual count to get the final count.

Note:

Only the monitoring features of Intel RDT are affected by the SNC feature.

The allocation features, that is, CAT and MBA are not affected. Bit masks and
BW targets apply globally across all domains. See Table 7-5 for SNC enabled
and RMID distribution summary.

B.1.2.5

Scaling Factor Adjustment

CPUID-provided scaling factor (CPUID(0xF(Shared Resource Monitoring
Enumeration leaf).0x1).EBX[31:0]), which software will use to convert MBM
counts into bandwidth figures, needs adjustment in software when the system
is configured in SNC mode. Moreover, calculating different types of bandwidths,
such as local, total, or remote, also needs special considerations. This section
describes how software needs to handle these special cases.

Document Number: 356688-004US, Revision: 1.3

163

intel

B.1.2.6

B.1.2.7

When using scaling factor under SNC mode, the scaling factor provided by
CPUID will not account for the reduced number of L3 slices that will be handling
local traffic. The scaling factor value will remain the same as any other
clustering mode. software will then need to adjust the scaling factor. For this
purpose, we define:

AdjustedScalingFactor = ScalingFactor / SNCClusterCount

SNC and Intel® RDT for Non-CPU Agent Implications

Intel RDT for non-CPU agents is affected similarly to traditional Intel RDT
features in the presence of SNC. To obtain a correct CMT or MBM data sampling
software should either localize I/O device memory allocations to a given cluster
or sum RMID counts periodically, depending on the RMID localization mode
selected.

In cases where multiple contexts are present on a device (SR-IOV, SIOV, with
attached VMs that may span multiple SNC domains for their execution or
multiple devices are behind an IOSF channel, if memory accesses are
distributed across SNC clusters, then monitoring accuracy decreases
considerably, and the risk of missing cache occupancy or memory bandwidth
increases considerably.

SNC also affects I/0 traffic. Software seeking to monitor I/O capacity or
overflow BW to memory (I/0O equivalent of CMT or MBM), should determine
which SNC cluster a given address falls into using NUMA-aware supporting
constructs (for example, ACPI HMAT, SLIT tables [4]) and pick a corresponding
RMID for that cluster. As an example, if a device DMA write assigned to an
RMID which does not land in the same SNC cluster as the address and its
memory controller will not be tracked.

Calculating Local MBM Bandwidth per Cluster

When MSR 0xCAO is set to 1 (Default Mode) software will be able to monitor
local BW only from one SNC cluster. If MSR OxCAO is set to 0 (RMID Sharing
Mode) then software will be able to monitor Local BW from all SNC clusters.
Independent of the value in MSR 0xCAQ, Local MBM Counts from a given SNC
cluster can be converted to BW figures using the adjusted scaling factor
following the same mechanism used under non-SNC modes:

LocalMbmBwClusterN = (LocalMbmCountDeltaClusterN * AdjustedScalingFactor) /

B.1.2.8

SampleTime

Where:

e ‘LocalMbmCountDeltaClusterN’ = (Second Sample of LocalMbmCounter
value (ClusterN) - First sample of LocalMbmCounter value (ClusterN).

e ‘AdjustedScalingFactor’ = ScalingFactor / SNCClusterCount.

Calculating Local MBM Bandwidth for Entire Socket

While operating under any non-SNC mode Local MBM BW will correspond to all
the total traffic within the full socket. To obtain the same metric under SNC

164

Document Number: 356688-004US, Revision: 1.3

intel

mode software may add up the Local BW from each cluster. This can be
achieved only when MSR 0xCAQO is set to 0. Otherwise, software will only be
able to capture the local BW from a single cluster.

LocalMbmBwSocket = ((LocalMbmCountDeltaClusterO + ... LocalMbmCountDeltaClusterN) *

B.1.2.9

AdjustedScalingFactor) / SampleTime

Where:

e ‘'LocalMbmCountDeltaClusterQ’ = (Second Sample of LocalMbmCounter
value (ClusterQ) - First Sample of LocalMbmCounter value (Cluster0)...
Similarly, delta for for each 1,2,...N.

e ‘'AdjustedScalingFactor’ = ScalingFactor / SNCClusterCount.

Calculating Total MBM Bandwidth for the Socket

Calculating the Total MBM BW for the full socket, including the traffic from all
clusters, will require that MSR 0xCAO is set to 0.

TotalMbmBwSocket = ((TotalMbmCountDeltaClusterO + ... TotalMbmCountDeltaClusterN) *

B.1.2.10

B.1.2.11

AdjustedScalingFactor) / SampleTime

Where:

e ‘TotalMbmCountDeltaCluster0’ = (Second Sample of TotalMbmCounter
value (Cluster0Q) - First Sample of TotalIMbmCounter value (Cluster0)...
Similarly, delta for each 1,2,...N.

¢ ‘'AdjustedScalingFactor’ = ScalingFactor / SNCClusterCount.

Estimating Remote Traffic

As with Non-SNC modes, remote traffic can be estimated out of the socket’s
Total MBM BW and Local MBM BW with this simple relation:

RemoteMbmBwSocket = TotalMbmBwSocket — LocalMbmBwSocket

Calculating both TotalMbmBwSocket and LocalMbmBwSocket will require MSR
OxCAO to be set to 0. However, if software decides to keep MSR 0xCAO set to
“1”, its default value, an alternative mechanism exists to calculate the socket’s
MBM Remove BW as described in the following section.

Estimating Remote Bandwidth with MSR OxCAOQO set to 1

If software decides not to switch MSR 0xCAO to value 0 (for example, out of
Default mode) the mechanism described earlier to calculate the socket remote
traffic will not work. However, it is still possible to estimate the remote traffic
of the entire socket by using MBM counts from a single cluster.

RemoteMbmBwSocket = (TotalMbmBwClusterN - LocalMbmBwClusterN) * SNCClusterCount

B.1.2.12 Example for Local and Total MBM Bandwidth

In this example, software runs on a system configured in SNC-4 mode where
CPUID(0OxF(Shared Resource Monitoring Enumeration leaf).0x1).EBX[31:0]

Document Number: 356688-004US, Revision: 1.3 165

intel

reads Ox1EO000 (ScalingFactor). AdjustedScalingFactor is then calculated to be
0x7800. If the system is configured with MSR 0xCAO0=0 (RMID Distribution
Mode) then software will have the ability to sample BW across all four clusters
in this example. After sampling MBM counts with a delay of one second the
following MBM Count increments are observed:

Table 7-6. Local and Total Count Increment

Cluster Local MBM Count Increment Total MBM Count Increment
0 174762 192238
1 43690 61166
2 0 17476
3 0 17476

Software can then calculate Local Bandwidth (BW), Total Bandwidth(BW) and
Remote Bandwidth(BW) following these steps.

1. Calculate Local BW for Cluster 0 using the formula for LocalMbmBw
described earlier:
LocalMbmBwCluster0 = (LocalMbmCountDeltaClusterQ *
AdjustedScalingFactor) / SampleTime
LocalMbmBwCluster0 = (174762 * 0x7800) / 1
LocalMbmBwCluster0 = 5368688640 B/s ~= 5GB/s

2. Calculate Total BW for Cluster 0 using the formula for TotalMbmBw
described earlier:
TotalMbmBwCluster0 = (TotalIMbmCountDeltaClusterQ *
AdjustedScalingFactor) / SampleTime
TotalMbmBwCluster0 = (192238* 0x7800) / 1
TotalMbmBwCluster0 = 5905551360B/s ~= 5.5GB/s

3. Following the same procedure Local and Total BWs for the different
clusters may be calculated as shown in Table 7-7.

Table 7-7. Local and Total Bandwidth Example

Cluster LocalMbmBwClusterN TotalMbmBwClusterN
0 5 GB/s 5.5 GB/s
1 1.25 GB/s 1.75 GB/s
2 0 0.5 GB/s
0 0.5 GB/s

4. We can also calculate the socket Local and Total BWs:
LocalIMbmBwSocket =((LocalMbmCountDeltaClusterO + ...
LocalMbmCountDeltaClusterN) * AdjustedScalingFactor) /
SampleTime
LocalMbmBwSocket = ((174762 + 43690 + 0 + 0) * 0x7800) / 1
LocalMbmBwSocket = 6710845440B/s ~= 6.25GB/s
TotalMbmBwSocket =((TotalMbmCountDeltaClusterQ + ...
TotalMbmCountDeltaClusterN) * AdjustedScalingFactor) /
SampleTime

166 Document Number: 356688-004US, Revision: 1.3

intel

TotalMbmBwSocket = ((192238 + 61166 + 17476 + 17476) *
0x7800) / 1

TotalMbmBwSocket = 8858296320B/s ~= 8.25GB/s

5. Finally, the remote BW for the socket can be estimated:
RemoteMbmBwSocket = TotalMbmBwSocket - LocalMbmBwSocket
RemoteMbmBwSocket = 8.25GB/s - 6.25GB/s ~= 2GB/s

We can also use this example to show to estimate the socket’s remote BW if
MSR 0xCAO is set to 1 (Default mode). Under such conditions only MBM counts
from a single cluster can be obtained. Assuming that the software has picked
and RMID from cluster 0, we can use the values calculated earlier for
LocalMbmBwCluster0 and TotaIMbmBwClusterQ. Then:

RemoteMbmBwSocket = (TotalMbmBwCluster0-

LocalMbmBwClusterQ) * SNCClusterCount

RemoteMbmBwSocket = (5.5GB/s - 5.0GB/s) * 4 ~= 2GB/s

Note that the value for RemoteMbmBwSocket obtained through this mechanism
matches that obtained by using the MBM counts from all clusters.

By analyzing the results from this example, we can conclude, from the thread
or threads assigned to the selected RMID that:

e Thread(s) are generating 5 GB/s of traffic towards cluster 0.

e Thread(s) are generating 1.25 GB/s of traffic towards cluster 1.

e Thread(s) are not generating local traffic towards clusters 2 or 3.

e Thread(s) are generating 2 GB/s of traffic towards a remote socket.
e Each SNC cluster is handling 0.5 GB/s of that remote traffic.

B.1.3 STLB QoS

Translation Lookaside Buffer (TLB) misses can cause costly execution delays
due to page walks. Considered from a capacity management perspective, STLB
QoS behaves in a similar manner as Cache Allocation Technology (CAT) does
on the data caches, by giving software the ability to provide hints to hardware
that guide the placement of translations in the STLB. This control can provide
fair sharing or improved isolation of TLB resources between applications
organized by Classes of Service.

Note: This model-specific feature is intended for use primarily with specialized real-
time operating systems that provide extensions to bound the number of tasks
running on a core and thus sharing a TLB. Depending on the software
environment, additional runtime restrictions and software optimizations may
be needed to observe the potential performance benefits of STLB QoS.
Contact your Intel representative for additional details.

Refer to Appendix A.3 for supported product details, which vary across
generation and processor type.

Document Number: 356688-004US, Revision: 1.3 167

intel

B.1.3.1

Enumerating Support for STLB QoS

STLB QoS is model specific and support for it is enumerated through the
IA32_CORE_CAPABILITIES MSR. To determine if the processor supports the
IA32_CORE_CAPABILITIES MSR, software can check whether the CPUID
Extended Feature flag at CPUID.07H.00H:EDX[30] is set to '1’.

If CPUID.07H.00H:EDX[30] is ‘1’, then support for STLB QoS can be confirmed
via the IA32_CORE_CAPABILITIES MSR as defined next.

Table 7-8. STLB QoS Enumeration in IA32_CORE_CAPABILITIES MSR

Name Address Scope Bit RW Bit Name Description

IA32_CORE_CAPABILITIES | CFh Core 0 RO STLB_QOS | When set to 1, processor

supports STLB QoS

B.1.3.2

STLB QoS Register Interfaces

This section contains the register interfaces for configuring STLB QoS. Software
should first read the STLB_QOS_INFO to determine the maximum number of
classes of service and capacity bitmask length and may then proceed to
partitioning the STLB using the STLB_QOS_MASK_n registers.

B.1.3.2.1 STLB_QOS_INFO

Software may discover the necessary information for configuring STLB QoS via
the STLB_QOS_INFO MSR as defined next.

Table 7-9. STLB_QOS_INFO MSR Definition

Name Address | Scope | Bit | RW Bit Name Description
5.0 RO | NCLOS Number of CFLOS §upported fqr STLB
resource using minus-1 notation.
19:16 |RO | 4K_2M_CBM Length of capauty_ bitmask for_4K and
2M pages using minus-1 notation.
STLB_QOS_INFO 1A8Fh Core STLB FILL

MSR interface to fill STLB translations

29:29 | RO | TRANSLATION
supported.

_MSR_SUPPORTED

Indicates that 4K/2M pages alias into

30:30 | RO | 4K_2M_ALIAS
the same structure.

B.1.3.2.2 STLB_QOS_MASK_N

STLB_QOS_MASK_n registers define the capacity bitmask to be applied when
filling new translations into the STLB. The mask used will depend on the core’s
current Class of Service at the time of TLB miss, as configured via the
IA32_PQR_ASSOC MSR (covered in Chapter 3.2 Intel RDT Allocation Common
Framework). The STLB_QOS_MASK_n registers are dynamic and may be
changed at runtime.

Software should limit the number of mask registers used to the number of
supported STLB QoS CLOS. For example, if STLB_QOS_INFO[NCLOS] returns

168

Document Number: 356688-004US, Revision: 1.3

intel

0x7, then a total of eight classes of service are supported and valid
STLB_QOS_MASK_n registers would be 1A90h — 1A97h as defined in Table
7-10. Attempts to use unsupported STLB QoS mask registers will generate
#GP(0).

Table 7-10. STLB_QOS_MASK_N MSR Definition

Name Address | Scope Bit | RW | Bit Name Description

STLB_QOS_MASK_n | 1A90h Core 7:0 RW WAY_MASK | STLB QoS mask for CLOS
n. The number of mask
bits is enumerated in MSR
1ASFh STLB_QOS_INFO.

‘1 in bit indicates
allocation to the way is
allowed. ‘0 indicates
allocation to the way i' not
allowed.'?

NOTES: 1. Mask values must be contiguous 1s.
2. Way mask only applies to 4K/2M STLB.

B.1.3.2.3 STLB_FILL_TRANSLATION

As a further specialized extension to STLB QoS, certain processors support a
mechanism to manually populate entries in the STLB, rather than requiring that
pages of interest be accessed by software as part of a TLB fill flow to populate
the entries. Note that this capability is not guaranteed to be supported on all
future processors which support STLB QoS.

If STLB_QOS_INFO[STLB_FILL_TRANSLATION_MSR_SUPPORTED] is ‘1’,
software may populate entries in the STLB directly by writing the logical
address (LA) and Class of Service to use for the fill to
STLB_FILL_TRANSLATION as defined next.

Table 7-11. STLB_FILL_TRANSLATION MSR Definition

Name Address | Scope Bit RW Bit Description
Name
STLB_FILL_ 1A8Eh Core 3:0 WO | CLOS Class of service to use for the fill.
TRANSLATION .
10:10 WO | X Set to 1 when LA is to an
executable page.
11:11 | WO |RW Set to 1 when LA is to a writeable
page.
63:12 | WO | LA Logical address to use for fill.

Note: The STLB_FILL_TRANSLATION MSR should not be used in the VMX load list as

B.1.4

a #GP(0) will occur.

L3 Cache Allocation Technology

Certain Intel® Core™ and Intel Atom® processors with support for Intel® Time
Coordinated Computing (Intel® TCC), and certain communications related
Intel® Xeon® processors implement a model specific, non-architectural version

Document Number: 356688-004US, Revision: 1.3 169

intel

B.1.4

of L3 Cache Allocation Technology (L3 CAT). In model-specific
implementations, parameters such as CBM bitmask length and number of
supported CLOS are specified on a per-processor basis rather than in CPUID
(see the following section).

The non-architectural implementations of L3 CAT behave similarly to the
architectural implementation, however under certain circumstances the
performance characteristics may vary. Intel recommends evaluating overall
system performance with model-specific non-architectural L3 CAT to verify
performance targets are met.

.1 Processor Support List

The following table can be used to identify which processors support the model
specific non-architectural implementation of L3 CAT. Registers for programming
the capacity bitmask for a given CLOS follow the same location and definition
of the IA32_L3_MASK_n MSR’s as defined in the Intel® Software Developer’s
Manual.

Table 7-12. Processor support list

Processor Brand String # L3 Classes of Capacity Bitmask
Service (CLOS) Length (CBM)
Intel Atom® x6427FE Processor 16
Intel Atom® x6425RE Processor 16
Intel Atom® x6414RE Processor 16
Intel Atom® x6212RE Processor 4 16
Intel Atom® x6200FE Processor 8
Intel Atom® Processors
Intel Atom® X6416RE Processor 16
Intel Atom® X6214RE Processor 16
Intel Atom® x7211E Processor 12
Intel Atom® x7425E Processor 16 12
Intel Atom® x7213E Processor 12
Intel® Core™ i7-1185GRE Processor 12
® ™
11 Gen Intel® Core . Intel® Core™ i5-1145GRE Processor 4 8
Processors (UP3-Series)
Intel® Core™ i3-1115GRE Processor 12
Intel® Xeon® W-11865MRE Processor 12
Intel® Xeon® W-11865MLE Processor 12
Intel® Xeon® W Processors Intel® Xeon® W-11555MRE Processor 8
4
(TGL-H) Intel® Xeon® W-11555MLE Processor 8
Intel® Xeon® W-11155MRE Processor 8
Intel® Xeon® W-11155MLE Processor 8
Intel® Core™ i9-12900E Processor 12
® ™
12 Gen Intel™ Core Intel® Core™ i7-12700E Processor 16 10
Processors (S-Series)
Intel® Core™ i5-12500E Processor 12

170

Document Number: 356688-004US, Revision: 1.3

intel

Processor

Brand String

L3 Classes of
Service (CLOS)

Capacity Bitmask
Length (CBM)

Intel® Core™ i3-12100E Processor 12
Intel® Core™ i7-1365UE Processor 12
Intel® Core™ i7-1365URE Processor 12
Intel® Core™ i5-1345UE Processor 12
Intel® Core™ i5-1345URE Processor 12
Intel® Core™ i3-1335UE Processor 12
Intel® Core™ i3-1315UE Processor 10
Intel® Core™ i3-1315URE Processor 10
Intel® Core™ i7-1370PE Processor 12
Intel® Core™ i7-1370PRE Processor 12
13 Gen Intel® Core™ Intel® Core™ i5-1350PE Processor 16 8
Processors (P-Series) Intel® Core™ i5-1350PRE Processor 8
Intel® Core™ i3-1340PE Processor 8
Intel® Core™ i3-1320PE Processor 8
Intel® Core™ i3-1320PRE Processor 8
Intel® Core™ i7-13800HE Processor 12
Intel® Core™ i7-13800HRE Processor 12
Intel® Core™ i5-13600HE Processor 12
Intel® Core™ i5-13600HRE Processor 12
Intel® Core™ i3-13300HE Processor 8
Intel® Core™ i3-13300HRE Processor 8
Intel® Core™ i9-13900E Processor 12
Intel® Core™ i9-13900TE Processor 12
Intel® Core™ i7-13700E Processor 12
Intel® Core™ i7-13700TE Processor 12
éfoffsr;;ge(fgg;ﬁaz) Intel® Core™ i5-13500E Processor 16 12
Intel® Core™ i5-13500TE Processor 12
Intel® Core™ i5-13400E Processor 10
Intel® Core™ i3-13100E Processor 12
Intel® Core™ i3-13100TE Processor 12

NOTES: 1. L3 CDP is not supported on any Intel® Core™ or Intel® Atom™ processors that

B.1.4.2

implement model specific L3 CAT.
2. Communications-oriented processors from the Intel® Xeon® E5 v3 Family also support
a form of model-specific L3 CAT.

Register Definitions

This section identifies deltas in the register definitions for programming model
specific L3 CAT. The deltas are derived against the architectural equivalent

Document Number: 356688-004US, Revision: 1.3

171

intel

B.1.4.2.1

B.1.4.2.2

B.1.4.3

B.1.4.4

register as documented in the Intel® 64 Architecture Software Developer's
Manual (SDM), Volume 4: Chapter Title: MSRS IN THE 6TH GENERATION, 7TH
GENERATION, 8TH GENERATION, 9TH GENERATION, 10TH GENERATION, 11TH
GENERATION, 12TH GENERATION, AND 13TH GENERATION INTEL® CORE™
PROCESSORS, INTEL® XEON® SCALABLE PROCESSOR FAMILY, 2ND, 3RD, AND
4TH GENERATION INTEL® XEON® SCALABLE PROCESSOR FAMILY, 8TH
GENERATION INTEL® CORE™ I3 PROCESSORS, AND INTEL® XEON® E
PROCESSORS.

The naming convention for model specific L3 CAT registers mirrors the
architectural L3 CAT registers without the “IA32_" prefix, for example,
PQR_ASSOC (model specific) versus IA32_PQR_ASSOC (architectural).

The following deltas are consistent across all platforms that support model
specific L3 CAT:

e Resource Monitoring ID’s (RMIDs) are not guaranteed to be supported
unless indicated by CPUID.

e L3 CDP is not supported.

PQR_ASSOC

The PQR_ASSOC MSR closely follows the IA32_PQR_ASSOC definition with
exception of RMID. Platforms that support model specific L3 CAT typically do
not support RDT Monitoring, with the exception of the Intel® Xeon® E5 v3
Family, and software should carefully consult CPUID before assuming support
for any RDT Monitoring features.

L3_QOS_MASK_n

The L3_QOS_MASK_N MSRs are identical in definition to the
IA32_L3_QOS_MASK_N for architectural L3 CAT. For the number of mask
registers supported and acceptable CBM bit vector lengths, refer to Table 7-12
for the processor support list.

Shareable Bit Mask

Processors with an integrated GPU may be configured, by default, to allow the
GPU full access to the L3 cache in certain performance modes. This behavior
remains consistent independent of the values written to the L3_QO0OS_MASK_n
registers, as these mask registers do not affect the cache policy for
transactions initiated from the GPU. Software should consider all L3 cache ways
as shared with the GPU.

For processors that support Intel® Time Coordinated Computing (Intel® TCC),
optimizations are available for those that require improved isolation in the L3
cache. Contact your Intel representative for additional details.

Software considerations

Software that discovers enumerated support for architectural L3 CAT using
shared extended feature flag, CPUID.07H.00H will not automatically work with

172

Document Number: 356688-004US, Revision: 1.3

intel

the non-architectural implementation. This section will cover known nuances
and recommendations for working with the model specific non-architectural L3
CAT.

Note: Processors that support both L2 CAT and L3 CAT may have a delta in the
number of CLOS supported between the L2 and L3. Intel recommends limiting
software to use no more classes of service than the lesser of the two values.

B.1.4.4.1 Linux* Resource Control Groups (/sys/fs/resctrl)

Intel enables support for Intel RDT features in the Linux* kernel via Resource
Control (CONFIG_X86_CPU_RESCTRL). Resource control provides an OS
interface for configuring and using Cache Allocation Technology (CAT), Cache
Monitoring Technology (CMT), Memory Bandwidth Monitoring (MBM), and
Memory Bandwidth Allocation (MBA).

Resource Control leverages CPUID to detect hardware support for the various
Intel RDT sub-features. On processors that support model specific non-
architectural L3 CAT, CPUID.07H.00H will not enumerate support and therefore
Resource Control will not support L3 CAT. Configuring of the L3_MASK_n
registers will not be possible through the resctr! interface and must be completed
through direct MSR access.

One feature of Resource Control is being able to associate a Class of Service
with a Process Identifier (PID), and having the kernel automatically update the
CLOS on context switch. If using a CPU that supports model specific non-
architectural L3 CAT and updating the class of service on context switch is
desired, it is possible to achieve this if the platform also supports L2 CAT.
Resource Control would be utilized to configure L2 CAT and create the
appropriate PID to CLOS mapping, while the L3 masks would need to be
configured out-of-band (for example, direct MSR programming).

B.1.4.4.2 Intel-cmt-cat Tool (Intel RDT Utility)

The Intel RDT software package intel-cmt-cat is a software library that
supports the Allocation and Monitoring features of Intel RDT. It can work with
or without kernel support for RDT, which makes intel-cmt-cat a useful tool
when working with model specific non-architectural L3 CAT.

The latest versions of the RDT Utility also include specialized print functions as
command line options, which can be used to more easily decode the mapping
of I/0 devices to I/O RDT Channels for instance.

Intel-cmt-cat provides a pqgos utility which access to the Intel RDT features
through a command line interface. pqos can be used to program the
L3_MASK_n registers on platforms that support non-architecture L3 CAT. Use
the *--iface=msr’ parameter to force enumeration and programming to be
completed through MSR interfaces and not the OS interfaces.

The Intel RDT Utility is available at Github*:

https://qgithub.com/intel/intel-cmt-cat

Document Number: 356688-004US, Revision: 1.3 173

https://github.com/intel/intel-cmt-cat

intel.

Note also that the RDT Utility includes a wiki with detailed discussion,
command line usage information and examples:

https://github.com/intel/intel-cmt-cat/wiki/

§

174 Document Number: 356688-004US, Revision: 1.3

https://github.com/intel/intel-cmt-cat/wiki/

	1 Introduction
	1.1 High Level Usage Models
	1.2 Scope
	1.3 Audience
	1.4 References

	2 Intel® Resource Director Technology Overview
	2.1 Common Tags
	2.2 Enumeration of Supported Features
	2.3 L3 Configurations
	2.4 Intel® RDT Monitoring Technologies
	2.4.1 Intel® RDT Monitoring Key Ingredients
	2.4.2 Shared-L3 versus Multiple-L3 Configuration

	2.5 Intel® RDT Allocation Technologies
	2.5.1 Intel® RDT Allocation Key Ingredients
	2.5.2 Shared-L3 versus Multiple-L3 Configuration

	3 Intel® Resource Director Technology for CPU Agents
	3.1 Intel® RDT Monitoring Features
	3.1.1 Common Framework
	3.1.2 Memory Regions
	3.1.3 Cache Occupancy Monitoring Technology
	3.1.3.1 L3 Cache Monitoring Technology

	3.1.4 Memory Bandwidth Monitoring
	3.1.4.1 L3 Total and Local External Memory Bandwidth Monitoring
	3.1.4.2 Region Aware Memory Bandwidth Monitoring

	3.2 Intel® RDT Allocation Features
	3.2.1 Common Framework
	3.2.2 Memory Regions
	3.2.3 Cache Occupancy Allocation Technologies
	3.2.3.1 L2 Cache Allocation Technology
	3.2.3.2 L2 Cache Code and Data Prioritization
	3.2.3.3 L3 Cache Allocation Technology
	3.2.3.4 L3 Cache and Data Prioritization

	3.2.4 Memory Bandwidth Allocation
	3.2.4.1 First Generation Memory Bandwidth Allocation
	3.2.4.1.1 Usage Considerations

	3.2.4.2 Second Generation Memory Bandwidth Allocation
	3.2.4.2.1 Second Generation MBA Advantages
	3.2.4.2.2 Software-Visible Changes

	3.2.4.3 Third Generation Memory Bandwidth Allocation
	3.2.4.3.1 Hardware Changes
	3.2.4.3.2 Software-Visible Changes

	3.2.4.4 Region Aware Memory Bandwidth Allocation
	3.2.4.4.1 Region Aware MBA Overview
	3.2.4.4.2 Enable MMIO Register
	3.2.4.4.3 Min, Max and Optimal Bandwidth Caps per CLOS

	3.2.5 Cache Bandwidth Allocation
	3.2.5.1 CBA Overview
	3.2.5.2 Example of CBA Bandwidth Control Mechanism
	3.2.5.3 Software Interface
	3.2.5.4 Software Usage

	4 Intel® Resource Director Technology for Non-CPU Agents
	4.1 Introduction
	4.2 Features
	4.3 Enumeration
	4.4 Interface
	4.5 Common Tags
	4.6 I/O Blocks and Channels
	4.7 I/O Block Configuration
	4.8 Shared-L3 Configuration
	4.8.1 Software Flow
	4.8.2 Monitoring: Data Flows for RMIDs
	4.8.3 Allocation: CLOS-based Control Interfaces

	4.9 CXL-Specific Considerations
	4.9.1 CXL block Interfacing Fundamentals
	4.9.2 Integrated Accelerators

	4.10 Use Cases

	5 BIOS Considerations
	5.1 Introduction to Enhanced RDT Interfaces
	5.2 ERDT Table Structure Layout
	5.3 MRRM Table Structure Layout
	5.4 ERDT Table Structure Details
	5.4.1 ERDT Structure Format and Field Descriptions
	5.4.2 Valid ERDT Sub-structure Types
	5.4.3 Resource Management Domain Description Structure
	5.4.3.1 Valid Sub-structure Types within the scope of this RMDD

	5.4.4 CPU Agent Collection Description Structure
	5.4.5 Device Agent Collection Description Structure
	5.4.5.1 Device Agent Scope Entry Structure

	5.4.6 Cache Monitoring Registers for CPU Agents Description Structure
	5.4.7 Memory Bandwidth Monitoring Registers for CPU Agents Description Structure
	5.4.8 Memory Bandwidth Allocation Registers for CPU Agents Description Structure
	5.4.9 Cache Monitoring Registers for Device Agents Description Structure
	5.4.10 IO Bandwidth Monitoring Registers for Device Agents Description Structure
	5.4.11 Cache Allocation Registers for Device Agents Description Structure
	5.4.12 Fixed -Point 32-bit Format for Correction Factor

	5.5 Memory Range and Region Mapping (MRRM) Structure Details
	5.5.1 Memory Range Entry (MRE) Structure

	5.6 Architectural Intel® RDT Features for Non-CPU Agents (IRDT)
	5.6.1 RMID/CLOS tagging - ACPI Enumeration
	5.6.1.1 ACPI Definitional Goals
	5.6.1.2 IRDT ACPI Enumeration Overview
	5.6.1.3 Example ACPI Enumeration Cases
	5.6.1.4 ACPI Feature Enumeration – Table Structure Details
	5.6.1.4.1 Introduction and Notation
	5.6.1.4.2 IRDT Table Format and Field Descriptions
	5.6.1.4.3 RMUD Table Format and Field Descriptions
	5.6.1.4.4 DSS Table Format and Field Descriptions
	5.6.1.4.5 DSS Table Format for IRDT Table Revision 2
	5.6.1.4.6 RCS Table Format and Field Descriptions
	5.6.1.4.7 RCS Table Format for Revision 2

	5.7 Model-Specific Intel® RDT Features for CPU Agents
	5.7.1 BIOS Configuration for Resource Aware MBA

	6 MMIO Register Descriptions
	6.1 Enhanced Intel® RDT Register Location
	6.1.1 Software Access to Registers
	6.1.2 Register Attributes
	6.1.3 Register Descriptions
	6.1.3.1 RDT Control Register for CPU Agents
	6.1.3.2 Cache Monitoring Register for CPU Agents
	6.1.3.2.1 RMID Organization in CMT Register Block

	6.1.3.3 Memory Bandwidth Monitoring Registers for CPU Agents
	6.1.3.3.1 RMID Organization in MBM Register Block

	6.1.3.4 Optimal Memory Bandwidth Allocation Register for CPU Agents
	6.1.3.4.1 CLOS Organization in Optimal MBA Register Block

	6.1.3.5 Minimum Memory Bandwidth Allocation Register for CPU Agents
	6.1.3.5.1 CLOS Organization in Minimum MBA Register Block

	6.1.3.6 Maximum Memory Bandwidth Allocation Registers for CPU Agents
	6.1.3.6.1 CLOS Organization in Maximum MBA Register Block

	6.1.3.7 Cache Monitoring Registers for Non-CPU Agents
	6.1.3.7.1 RMID Organization in CMT Register Blocks

	6.1.3.8 Total I/O Bandwidth Monitoring Registers for Non-CPU Agents
	6.1.3.8.1 RMID Organization in Total I/O BW Register Blocks

	6.1.3.9 I/O Miss Bandwidth Monitoring Registers for Non-CPU Agents
	6.1.3.9.1 RMID Organization in I/O Miss BW Register Blocks

	6.1.3.10 Cache Allocation Registers for Non-CPU Agents
	6.1.3.10.1 CLOS Organization in CAT Register Blocks

	6.1.3.11 Region-ID Programming Registers[]

	6.2 Non-CPU Agent Intel® RDT Register Location
	6.2.1 Software Access to Registers
	6.2.2 Register Descriptions for Non-CPU Agents
	6.2.2.1 Link Interface Type RMID/CLOS Tagging MMIO Interfaces

	7 Programming Guidelines
	7.1 Intel® RDT Monitoring Software Flows for CPU Agents
	7.1.1 Intel® RDT Monitoring Software Flows for CPU Agents
	7.1.1.1 Step 1 – Enumeration
	7.1.1.2 Step 2 – RMID Association
	7.1.1.3 Step 3 – Event Selection Setup
	7.1.1.4 Step 4 – Data Sampling
	7.1.1.5 Step 5 – Sample CMT/MBM Data Collection and Analysis

	7.1.2 Native OS Environments
	7.1.3 Virtualization Scenarios

	7.2 Intel® RDT Allocation Software Flows for CPU Agents
	7.2.1 Intel® RDT Software Allocation Flows for CPU Agents
	7.2.1.1 Step 1 – Enumeration
	7.2.1.2 Step 2 – Optionally Enable CDP
	7.2.1.3 Step 3 – Mask and Bandwidth Control Setup
	7.2.1.4 Step 4 – CLOS Association

	7.3 Intel® RDT Software Flows for Non-CPU Agents
	7.4 Assembling a Complete View of System Memory
	7.4.1 Memory Hierarchy and Bandwidth Enumeration
	7.4.1.1 High-level Software Component Responsibilities
	7.4.1.1.1 Example with DDR memory
	7.4.1.1.2 Example with Heterogeneous Memory (DDR and Coherent Accelerators)

	7.5 Establishing Correlation between the DACD and IRDT tables

	A Intel® RDT Feature Details
	A.1 Intel® RDT Feature Evolution
	A.2 Intel® RDT Architectural Features and Supported Products
	A.3 Intel® RDT Model-Specific Features and Supported Products
	A.4 Feature Mapping: CPU Agents, Non-CPU Agents in Different L3 Configurations
	A.5 Architectural MSRs used with Intel® RDT Features
	A.6 Model-Specific Registers for Intel® RDT Model Specific Features

	B Model-Specific Intel® RDT Features
	B.1 Model-Specific Intel® RDT Features for CPU Agents
	B.1.1 Resource Aware MBA
	B.1.1.1 Overview
	B.1.1.2 Enable MSR

	B.1.2 Intel® RDT and Sub-NUMA Clustering Compatibility
	B.1.2.1 Introduction
	B.1.2.2 SNC Enabled and L3 Cache Allocation Technology
	B.1.2.3 SNC Enabled and RMID Distribution Modes
	B.1.2.3.1 Default Mode
	B.1.2.3.2 RMID Sharing Mode

	B.1.2.4 Intel® RDT Software Considerations
	B.1.2.5 Scaling Factor Adjustment
	B.1.2.6 SNC and Intel® RDT for Non-CPU Agent Implications
	B.1.2.7 Calculating Local MBM Bandwidth per Cluster
	B.1.2.8 Calculating Local MBM Bandwidth for Entire Socket
	B.1.2.9 Calculating Total MBM Bandwidth for the Socket
	B.1.2.10 Estimating Remote Traffic
	B.1.2.11 Estimating Remote Bandwidth with MSR 0xCA0 set to 1
	B.1.2.12 Example for Local and Total MBM Bandwidth

	B.1.3 STLB QoS
	B.1.3.1 Enumerating Support for STLB QoS
	B.1.3.2 STLB QoS Register Interfaces
	B.1.3.2.1 STLB_QOS_INFO
	B.1.3.2.2 STLB_QOS_MASK_N
	B.1.3.2.3 STLB_FILL_TRANSLATION

	B.1.4 L3 Cache Allocation Technology
	B.1.4.1 Processor Support List
	B.1.4.2 Register Definitions
	B.1.4.2.1 PQR_ASSOC
	B.1.4.2.2 L3_QOS_MASK_n

	B.1.4.3 Shareable Bit Mask
	B.1.4.4 Software considerations
	B.1.4.4.1 Linux* Resource Control Groups (/sys/fs/resctrl)
	B.1.4.4.2 Intel-cmt-cat Tool (Intel RDT Utility)

