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Glossary 
Table 0-1. Glossary 

Acronym Term Description 

ACPI Advanced Configuration 

and Power Interface 

Advanced Configuration and Power Interface is an 

open standard that operating systems can use to 

discover and configure computer hardware 

components, to perform power management, auto 

configuration, and status monitoring.  

CAT Cache Allocation 

Technology 

Software-guided redistribution of cache capacity is 

enabled by CAT, enabling important data center VMs, 

containers or applications to benefit from improved 

cache capacity and reduced cache contention. CAT 

may be used to enhance runtime determinism and 

prioritize important applications. 

CDP Code and Data 

Prioritization 

As a specialized extension of CAT, Code and Data 

Prioritization (CDP) enables separate control over 

code and data placement in the L2 cache and the 

last-level (L3) cache. Certain specialized types of 

workloads may benefit with increased runtime 

determinism, enabling greater predictability in 

application performance. 

CH Channel An I/O device channel, used to communicate between 

a device and an I/O Block and onto the coherent 

fabric. 

CLOS Class(es) of Service  A fundamental tag in RDT used for resource controls  

- Clump A group of associated register fields within a larger 

register space (such as a 4KB page) 

CMT Cache Monitoring 

Technology 

Monitors the last-level cache (L3) utilization by 

individual threads, applications, or Virtual Machines, 

CMT improves workload characterization, enables 

advanced resource-aware scheduling decisions, aids 

“noisy neighbor” detection and improves performance 

debugging. 

ERDT Enhanced RDT An ACPI object (ERDT) which defines details about 

Region Aware MBA and MBM  

- Hybrid Term used to refer to processors supporting more 

than one logical processor type, potentially with 

differing feature support or attributes details 

Intel® RDT Intel® Resource Director 

Technology 

Intel® RDT is the “umbrella” technology name for 

Intel’s Platform Quality of Service technologies, 

including CPU Agents and Non-CPU Agents. 

I/O Intel® 

Resource 

Director 

Technology 

(Intel® RDT) 

I/O Device Intel® 

Resource Director 

Technology 

Intel RDT technologies specifically focusing on I/O 

devices including PCIe, CXL and integrated 

accelerators. Enumerated through the ACPI IRDT 

object.  

MBA  Memory Bandwidth 

Allocation 

MBA enables approximate and indirect control over 

memory bandwidth available to workloads, enabling 

new levels of interference mitigation and bandwidth 

shaping for “noisy neighbors” present on the system. 
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Acronym Term Description 

MBM Memory Bandwidth 

Monitoring 

Multiple VMs or applications can be tracked 

independently via Memory Bandwidth Monitoring 

(MBM), which provides memory bandwidth monitoring 

for each running thread simultaneously. Benefits 

include detection of noisy neighbors, characterization 

and debugging of performance for bandwidth-

sensitive applications, and more effective non-uniform 

memory access (NUMA)-aware scheduling. 

MMIO Memory Mapped I/O  I/O Intel RDT defines a series of MMIO-mapped 

interfaces to enable association of I/O devices to 

RMIDs and CLOS for monitoring and control. 

MRRM Memory Range and 

Region Mapping 

An ACPI object which describes memory regions, used 

with Enhanced RDT (ERDT) and other features.  

PQR PQR A shorthand for the IA32_PQR_ASSOC MSR, which 

associates IA threads to RMID and CLOS tags. 

RMD Resource Management 

Domain 

A set of features defined within a particular cache 

domain, such as an L3 cache supporting a number of 

logical processors. 

RTD Resource Telemetry 

Domain 

A Resource Management Domain within which one or 

more resource monitoring (telemetry) controls are 

supported 

RAD Resource Allocation 

Domain 

A Resource Management Domain within which one or 

more resource allocation controls are supported 

RMID Resource Monitoring ID(s) A fundamental tag used for resource monitoring in 

Intel RDT. 

SoC or SOC System-on-Chip An integrated chip composed of host processors, 

accelerators, memory, and I/O agents. 

TC Traffic Class A PCI Express feature that allows differentiation of 

transactions to apply appropriate servicing policies. 

VC Virtual Channel A PCI Express feature for differential bandwidth 

allocation. Virtual channels have dedicated physical 

resources (buffering, flow control management, and 

so on) across the hierarchy. 

VMM Virtual Machine Monitor A software layer that controls virtualization. 
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1 Introduction 

This document defines the architecture of the Intel® Resource Director 

Technology (Intel® RDT) feature set. The goal of Intel RDT is to bring new 

levels of monitoring and control over how shared platform resources such as 

last-level cache (L3) and main memory (typically DRAM) bandwidth are utilized 

by CPU Agents and non-CPU Agents. The monitoring and allocation are not 

necessarily applied across the entire system but are applied to a Resource 

Management Domain (RMD) which corresponds to a set of agents sharing a set 

of system resources, such as L2 cache capacity, L3 cache capacity, memory 

bandwidth, and I/O devices. A Resource Management Domain (RMD) consists 

of a collection of CPU agents or non-CPU agents. The set of CPU agents consist 

of one or more logical processors associating an RMID and/or CLOS tag with a 

software thread. Non-CPU agents include PCI Express* (PCIe*)/Compute 

Express Link (CXL)* devices and integrated accelerators, thus broadly 

encompassing the set of agents which read from and write to either caches or 

memory, excluding IA cores. 

The Intel RDT feature set provides a series of monitoring and allocation 

capabilities such as Cache Monitoring Technology (CMT), Memory Bandwidth 

Monitoring (MBM), Cache Allocation Technology (CAT), Code and Data 

Prioritization (CDP), Memory Bandwidth Allocation (MBA) and others. These 

technologies enable monitoring and control of shared platform resources, such 

as the L3 cache capacity or main memory bandwidth, which may be in use by 

many applications, containers or VMs running on the platform concurrently. As 

described in subsequent chapters, these features enable deterministic behavior 

and fairness in communications, real-time and other usages, and are initially 

introduced in Section 1.3. 

The Intel RDT features are based on a set of architectural tags, described in the 

following section, and fundamental capabilities for enabling monitoring and 

control over shared platform resources under the control of an operating 

system (OS) or virtual machine monitor (VMM), as described in the chapter on 

Reference Software Architecture. 

1.1 High Level Usage Models 

A wide variety of industry deployment models find value in either enhanced 

visibility into system resource utilization, or control over shared resources. As a 

result, a broad set of customer usage models are observed with Intel RDT, 

including but not limited to: 

• Cloud Hosting in the datacenter – Prioritizing important Virtual 

Machines (VMs) and containing or mitigating “noisy neighbors”. 

• Public/Private Cloud – Isolating an important infrastructure VM which 

provides networking services such as a VPN to bridge the private cloud to 

the public cloud. 
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• Datacenter Infrastructure – Protecting virtual switches which provide 

local networking. 

• Communications – Ensuring consistent performance and containing 

background tasks on a network appliance built atop an Intel® Xeon® Server 

Platform. 

• Content Delivery Networks (CDNs) – Prioritizing key parts of the 

content serving application in order to improve throughput. 

• Networking – Containing the impact of consolidated or co-located 

containers to help reduce jitter and reduce packet loss in noisy scenarios, 

and protecting high-performance applications based on the Dataplane 

Development Kit (DPDK). 

• Industrial Control and Robotics – Prioritizing important sections of code 

to help meet real-time requirements. 

Varying usage models drive differing requirements. Datacenter usages may 

require control over relative container prioritization and management of tail 

latencies, for instance, while industrial control usages may require strict 

management of control loop cycle times, including the use of model-specific 

extended Intel RDT features. A number of example use cases are described in 

more detail based on abstracted examples of real-world deployments in the 

chapter on Reference Software Architecture. 

1.2 Scope 

Broadly, this document discusses the following topics: 

• An introduction to key Intel RDT architectural concepts and design 

philosophy. 

• Details of architectural Intel RDT monitoring and allocation features for CPU 

agents and non-CPU agents. 

• Details of model-specific Intel RDT monitoring and allocation features for 

CPU agents and non-CPU agents. 

• Considerations for BIOS writers, and those consuming ACPI enumeration 

tables generated by BIOS. 

• An overview of various real-world software usages of Intel RDT features 

that have been observed, and recommended software enabling strategies. 

The following topics are not covered (or are covered in a limited context): 

• Intel RDT for CPU Agents and non-CPU Agents architectural details - 

feature enumeration and interfaces using CPUID and configuration using 

MSRs. These details are provided in the Intel® 64 Architecture Software 

Developer’s Manual (SDM), Volume 3B, Chapter Title: Debug, Branch 

Profile, TSC, and Intel® Resource Director Technology (Intel® RDT) 

Features [1], and the document entitled Intel® Architecture Instruction Set 

Extensions and Future Features [2], as applicable. 
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1.3 Audience 

The intended audience for this specification includes Intel RDT consumers, 

users and implementers, across OS/VMM software, resource management 

driver and control loop developers, administrators, managers of datacenter 

infrastructure, workload owners and embedded and communications 

developers. Additionally, this specification may be of interest to those 

developing utilities, BIOS routines, administrative libraries and orchestration 

frameworks.  

1.4 References 

Table 1-1. References 

Description 

[1] Intel® 64 and IA-32 Architectures Software Developer’s Manual.  

Volume 3B, Chapters 18.18 and 18.19. 

https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html  

[2] Intel® Architecture Instruction Set Extensions and Future Features. 

Instruction Set Architecture (intel.com) 

[3] Intel® Virtualization Technology for Directed I/O Specification. 

http://www.intel.com/content/www/us/en/embedded/technology/virtualization/vt-directed-io-

spec.html  

[4] Unified Extensible Firmware Interface Forum – Links to ACPI-Related Documents (incudes 

IRDT table title and signature). 

https://uefi.org/acpi  

[5] PCIe Express Specification, v5.0 or newer. 

https://pcisig.com/specifications  

[6] Compute Express Link Specification, v1.0 or newer. 
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2 Intel® Resource Director 
Technology Overview 

This chapter provides an overview of Intel® RDT features, including goals, key 

ingredients, and the architectural framework, which are discussed in more 

detail in the chapters that follow. 

2.1 Common Tags 

Intel RDT provides a layer of abstraction between applications and logical 

processors through the use of numeric tags. Both CPU agents and non-CPU 

agents use the following tags for resource monitoring and allocation, 

respectively: 

• Resource Monitoring IDs (RMIDs) are used for monitoring of shared 

platform resource utilization. 

• Classes of Service (CLOS) are used for control of shared platform 

resources, such as L3 cache occupancy or memory bandwidth. 

The RMID and CLOS tags are described in the Intel® 64 and IA-32 

Architectures Software Developer’s Manual, Volume 3B. RMID and CLOS tags 

are independent. Usage of RMID tags does not affect CLOS, and vice versa 

(however, when CLOS tags are used to affect resource allocations, the effects 

may be observed with RMID-based monitoring features.) An RMID-based 

monitoring feature does not incur hardware overhead or affect a CLOS-based 

allocation feature. A product may be built to implement RMID-based monitoring 

features, CLOS-based control features, or both. 

For CPU agents, RMIDs and CLOS tags are associated with the operation of a 

logical processor through the IA32_PQR_ASSOC MSR. 

For non-CPU agents, a series of MMIO interfaces is used to associate upstream 

traffic from I/O devices with RMID and CLOS tags, and the numerical 

interpretation of the tags is the same as for processor traffic. (For example, the 

RMID value “5” used to track processor thread resource consumption means 

the same thing as when the RMID value “5” is used to track the cache fill 

behavior of a PCIe device.) These MMIO interfaces for tagging non-CPU agents 

are discovered using an ACPI structure called I/O Intel RDT, that is, IRDT. (See 

Chapter 5.) 

Other features may utilize RDT tags, such as Resource Monitoring IDs, to track 

and report other telemetry events in the processor. Examples include per-RMID 

telemetry available both in-band and out-of-band as specified in the Intel® 

Platform Monitoring Technology (Intel® PMT) specification [9] and associated 

platform-specific telemetry events lists.  
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2.2 Enumeration of Supported Features  

Software enumeration of supported RDT features is enabled through the CPUID 

instruction for CPU-centric features, and through the Advanced Configuration 

and Power Interface (ACPI) for platform-centric features.  

Further enumeration details of CPUID-enumerated features, including Hybrid 

processor support, are provided in the Intel® 64 Architecture Software 

Developer’s Manual (SDM), Volume 3B, Chapter Title: Debug, Branch Profile, 

TSC, and Intel® Resource Director Technology (Intel® RDT) Features [1] and 

the document entitled Intel® Architecture Instruction Set Extensions and 

Future Features [2], as applicable.  

Details on ACPI-enumerated features are provided in subsequent sections of 

this document.  

2.3 L3 Configurations 

This specification describes two types of high level L3 configurations that may 

support Intel RDT features: 

1. Shared-L3 Configuration: There is a common shared L3 cache for all 

the agents in the SoC, as shown in Figure 2-1. This SoC configuration 

supports interfaces for Intel RDT features based on the CPUID instruction 

for feature enumeration and Model-Specific Registers (MSRs) for feature 

configuration and telemetry retrieval. 
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Figure 2-1. Shared-L3 Configuration System Model and Presence of Intel® RDT 

Features 

 

2. Multiple-L3 Configuration: There may be more than one L3 cache 

instances that are local to CPU Agents or non-CPU Agents respectively, as 

shown in Figure 2-2. 

Figure 2-2. Multiple-L3 Configuration System Model and Presence of Intel ® RDT 

Features 

 

A set of features defined within a particular cache domain, such as an L3 cache 

supporting a number of logical processors, may be referred to as a Resource 
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Telemetry Domain (RTD, for monitoring features) or a Resource Allocation 

Domain (RAD, for allocation features). More generally, a resource which 

supports Intel RDT monitoring features, allocation features or both may be 

referred to as a Resource Management Domain (RMD).Figure 2-2 shows an 

example of multiple RMDs. 

In Shared-L3 configurations RMIDs and CLOS are shared and uniform from the 

perspective of all processors in that domain. In Multiple-L3 configurations, 

RMIDs and CLOS have scope defined and enumerated independently within 

each domain. In this case, behavior for interactions of RMIDs and CLOS across 

independent domains is model-specific.  

Refer to Section A.4 for specific examples.  

See Appendix A.4 for Intel RDT feature mapping for CPU agents and non-CPU 

agents in different SoC configurations. 

2.4 Intel® RDT Monitoring Technologies 

2.4.1 Intel® RDT Monitoring Key Ingredients 

Intel RDT Monitoring enables monitoring shared platform resources, such as L3 

cache occupancy and memory bandwidth, based on software-defined Resource 

Monitoring IDs (RMIDs) that are tagged to applications or VMs on a per-thread 

basis (Figure 2-3). For CPU Agents, each logical processor exposes the 

IA32_PQR_ASSOC MSR to allow the OS/VMM to specify an RMID when an 

application, thread or VM is scheduled on a core. 

Resource monitoring for the indicated application/thread/VM is then performed 

by hardware based on the RMID with which it is associated, and software can 

read back the L3 cache occupancy for a given RMID via counter registers (if the 

CMT feature is supported for instance). Each thread of an application may be 

tracked with a distinct RMID, or threads may be grouped into a single RMID, 

based on the granularity of monitoring required. Threads within a VM, apps 

within a VM, entire VMs or groups of VMs can similarly be tracked with RMIDs 

with variable granularity as needed. 

Figure 2-3. Intel® RDT Monitoring – Enabling RMID-Based Monitoring for 

Shared Resources 
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The basic ingredients of Intel RDT Monitoring are as follows: 

• CPUID and/or ACPI constructs to indicate support for Intel RDT Monitoring 

and sub-features (CMT, MBM, and so on) for Resource Telemetry Domains 

(RTD). 

• Enumeration of the total number of RMIDs that can be tracked in the given 

RTD. 

• Mechanisms to allow system software (OS/VMM) to specify the RMID of 

software threads and non-CPU agents. 

• Mechanisms to allow system software to retrieve collected metrics on a 

per-RMID basis via architectural MSRs or MMIO interfaces. 

The first ingredient to make use of Intel RDT Monitoring is to enumerate the 

set of monitoring capabilities provided on the given Resource Management 

domain via CPUID or ACPI and determine the number of RMIDs available for 

tracking on a particular Resource Telemetry Domain (RTD, that is, caching 

domain). This will allow the OS/VMM to determine how many unique IDs it may 

use. Given that certain processor topologies may include heterogenous 

capabilities which vary per-processor, it is recommended that software 

enumerate Intel RDT CPUID leaves from the perspective of each logical 

processor (LP) to construct the list of supported capabilities and which 

resources (such as L3 cache) may be shared among various LPs. 

The second ingredient (Intel RDT Monitoring association) allows the OS/VMM to 

specify the RMID of the running software thread to the platform for CPU 

agents. The OS/VMM can also specify the RMID for upstream traffic and 

operation of non-CPU agents. 

The third ingredient (Intel RDT marking and associated hardware support) 

enables each memory request from the CPU agents and non-CPU agents to be 

tagged with the RMID provided by the OS/VMM. 

The fourth ingredient is Intel RDT Monitoring reporting. When the monitoring 

data retrieval register is programmed with the RMID and the specific event 

code of interest (L3 Cache Occupancy for example), this information is 

appropriately retrieved and provided back. 

Multiple Intel RDT Monitoring features may exist within a platform, but the 

software should not assume that the presence of one Intel RDT Monitoring 

feature implies the existence of any others. Intel RDT features are 

independently enumerated in the sequence described in the Intel® 64 and IA-

32 Architectures Software Developer’s Manual, Volume 3B, Section 18.18.4, in 

order to avoid ambiguous situations. 

2.4.2 Shared-L3 versus Multiple-L3 Configuration 

Intel RDT Monitoring features may have different scope definitions depending 

on L3 configuration. With the shared-L3 configuration, CPU agents and non-

CPU agents allocate into a shared L3 cache. Hence, all monitoring features 

have a consistent definition for CPU agents and non-CPU agents. 



 

20  Document Number: 356688-004US, Revision: 1.3 

 

With the multiple-L3 configuration, non-CPU agents may have a separate 

nearby L3 cache which is distinct from CPU agents’ L3 cache. Hence, 

monitoring features may have different definitions for CPU agents and non-CPU 

agents. For example, in certain implementations, non-CPU agents with a near 

L3 cache implementation may report memory bandwidth monitoring data from 

the near cache only. 

2.5 Intel® RDT Allocation Technologies 

2.5.1 Intel® RDT Allocation Key Ingredients 

Intel RDT Allocation enables resource allocation based on Class of Service 

(CLOS) tags. The processor exposes Classes of Services into which applications 

(or individual threads) and traffic from I/O devices may be assigned. A CLOS 

may have multiple associated resource allocation properties. For example, 

there may exist controls for each CLOS to specify L2 capacity available to that 

CLOS, L3 capacity available, memory bandwidth available, and other properties 

(Figure 2-4). 

In the case of L3 capacity control features, for instance, such as Cache 

Allocation Technology (CAT), the cache allocation for a given thread is 

restricted based on the class with which they are associated. Similarly, in 

certain implementations supporting non-CPU agent controls, context-associated 

and upstream traffic from I/O devices may be controlled as it utilizes shared 

system resources. Each CLOS can be configured using bitmasks which 

represent capacity, and the degree of overlap and isolation between classes in 

allocation features which influence the SOC caches. 

For CPU agents, each logical processor exposes the IA32_PQR_ASSOC MSR to 

allow the OS/VMM to specify a CLOS when an application, thread or VM is 

scheduled. Cache Allocation for the application/thread/VM is then controlled 

based on the CLOS and the associated bitmask. 

Figure 2-4. Intel® RDT Allocation – Enabling CLOS-based Allocation for Shared 

Resources 

 

The basic ingredients of Intel RDT Allocation are as follows: 
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• CPUID or ACPI constructs to indicate whether Intel RDT Allocation and sub-

features (CAT, MBA, and so on) for Resource Allocation Domains (RADs) 

are supported and enumerate the total number of CLOS that may be 

associated to shared platform resources on the platform. 

• Mechanisms to allow system software (OS/VMM) to specify the CLOS of 

software threads and non-CPU agents. 

• Mechanisms to allow system software to configure the shared platform 

resource levels available to each CLOS via architectural MSRs or MMIO 

interfaces. 

The first ingredient to make use of Intel RDT Allocation is to enumerate the 

level of allocation capability provided on the given Resource Allocation Domain 

via CPUID and/or ACPI and determine the number of CLOSs available for 

allocating shared platform resources on a particular RAD (that is, a certain L3 

caching domain). This will allow the OS/VMM to determine how many unique 

IDs it may use. Given that certain processor topologies may include 

heterogenous capabilities which vary per-processor, it is recommended that 

software enumerate Intel RDT CPUID leaves from the perspective of each 

logical processor (LP) to construct the list of supported capabilities and which 

resources (such as L3 cache) may be shared among various LPs. 

The second ingredient (Intel RDT Allocation association) allows the OS/VMM to 

specify the CLOS of the running software thread to the platform for CPU 

agents. The OS/VMM can also specify the CLOS for upstream traffic and 

operation of non-CPU agents. 

The third ingredient (Intel RDT marking and associated hardware support) 

enables each memory request from CPU agents and non-CPU agents to be 

tagged with the CLOS provided by the OS/VMM.  

The fourth ingredient is Intel RDT Allocation control, when the allocation 

register is programmed with the CLOS and allocation control is performed by 

the specific shared platform resource (L3 Cache capacity for example). 

Multiple Intel RDT Allocation features may exist within a platform. The software 

should not assume that the presence of one RDT Allocation feature implies the 

existence of any others. Intel RDT features are independently enumerated in 

the sequence described in the Intel® 64 and IA-32 Architectures Software 

Developer’s Manual, Volume 3B, in order to avoid ambiguous situations. 

2.5.2 Shared-L3 versus Multiple-L3 Configuration 

Intel RDT Allocation features may have different definitions depending on L3 

configuration. With the shared-L3 configuration, CPU agents and non-CPU 

agents allocate into a shared-L3 cache. Hence, all allocation features have a 

consistent definition for CPU agents and non-CPU agents. With the multiple-L3 

configuration, non-CPU agents may have a separate near L3 cache which is 

different from the CPU agents’ L3 cache. Hence, allocation features may have 

different definitions for CPU agents and non-CPU agents. For example, non-CPU 

agents with a near L3 cache implementation provide separate interfaces for 

cache capacity allocation for the near L3 cache. 
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Chapter 3 and Chapter 4 provide details about each Intel RDT Monitoring and 

Allocation features for CPU agents and non-CPU agents. 

§ 
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3 Intel® Resource Director 
Technology for CPU Agents 

This chapter contains an overview of the Intel RDT features for CPU agents. 

Chapter 4 describes details about features for non-CPU agents.  

3.1 Intel® RDT Monitoring Features 

The Intel RDT Monitoring architecture enables monitoring of the utilization level 

of critical shared platform resources and provides this data directly to the 

Hypervisor, Operating System or other privileged software. Intel RDT 

Monitoring supports three event codes: 1) L3 cache occupancy 2) L3 Total 

External bandwidth 3) L3 Local External bandwidth. This allows more efficient 

scheduling based on resource use, as well as application tuning and 

performance prediction based on resource use characterization, and optionally 

better reporting and billback. This functionality complements Intel RDT 

Allocation, which provides control over shared platform resources available to 

CPU agents. 

3.1.1 Common Framework 

The following mechanisms are shared by Intel RDT Monitoring features: 

• CPUID feature bits to enumerate the presence of the Intel RDT Monitoring 

capabilities and the details of each sub feature. 

• The IA32_PQR_ASSOC MSR, which the OS or Hypervisor uses to specify 

the RMID for each software thread scheduled to run on a logical processor. 

See Figure 3-2. 

• The IA32_QM_EVTSEL and IA32_QM_CTR MSRs, to read cache occupancy 

and bandwidth statistics. See Figure 3-3. 

Software may flexibly associate RMIDs with threads, applications, VMs, or 

containers. (See Figure 3-1). If multiple logical processors within a Resource 

Telemetry Domain (RTD) are assigned the same RMID, the total resource 

monitoring telemetry by these logical processors will be accumulated together 

and the total reported by hardware. 

Monitoring data is retrieved using a window-based interface. Software writes 

an event ID and RMID to the IA32_QM_EVTSEL MSR and hardware provides 

the resulting data back in the IA32_QM_CTR MSR. 

Refer to Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 3B, for details on CPUID and MSR usage. 
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Figure 3-1. Resource Monitoring IDs (RMIDs) Assignment Flow 

 

Figure 3-2. IA32_PQR_ASSOC MSR to Set RMID 
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Figure 3-3. IA32_QM_EVTSEL and IA32_QM_CTR MSRs 

 

3.1.2 Memory Regions  

Certain processors support a system-level enumeration of Memory Regions, 

which are part of the common infrastructure defined by the RDT feature set. 

Other feature sets may also make use of the Memory Region definition which 

RDT establishes.  

A Memory Region is defined as comprising one or more physically-addressed 

memory ranges. Certain processors support a system-level enumeration of 

Memory Regions.  

Multiple Memory Regions may be defined by the platform to independently 

describe physical addresses backed by a particular type of memory, which may 

exhibit varying capacity, latency, bandwidth, and locality characteristics. 

Examples includes DRAM or CXL-attached memories, whether attached locally 

or to a different processor over a coherent interconnect link.  

The Memory Regions populated on a particular processor are described by the 

system BIOS in the ACPI Memory Range and Region Mapping (MRRM) table, 

which is described in Chapter 5, BIOS Considerations. This information may be 

combined with other ACPI tables, such as HMAT, SRAT and CEDT, to gain more 

insight regarding memory types connected to a certain processor.  

For a modern platform, it becomes advantageous for the processor to provide a 

capability to directly measure and allocate memory bandwidth across these 

multiple memory regions simultaneously. Such processor capabilities, when 

enabled, allow software to gather usage telemetry, adjust Memory Bandwidth 

Allocation (MBA) policies, and build control loops to ensure performance goals 

are met.  As described below, Intel provides these capabilities as Region-Aware 

Memory Bandwidth Monitoring and Allocation which are described in their 

respective sections.  
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3.1.3 Cache Occupancy Monitoring Technology 

Intel RDT Cache Occupancy Monitoring Technologies provide visibility into 

cache utilization. Features such as Cache Monitoring Technology (CMT) provide 

occupancy counters on a per-RMID basis such that cache occupancy by each 

RMID may be tracked and read back in real-time during system operation.  

More specific feature details about CMT are provided in the Intel® 64 and IA-32 

Architectures Software Developer’s Manual, Volume 3B. Note that the MSRs are 

listed in Appendix A.5. See Appendix A.2 for CMT feature supported product 

details. 

3.1.3.1 L3 Cache Monitoring Technology 

L3 Cache Monitoring Technology (CMT) allows an Operating System, Hypervisor 

or similar system management agent to determine the usage of L3 cache of 

the Resource Telemetry Domain (RTD) by applications running on the platform.  

3.1.4 Memory Bandwidth Monitoring 

Memory Bandwidth Monitoring (MBM) provides monitoring of bandwidth from 

one level of the cache or resource hierarchy to the next, allowing bandwidth-

aware scheduling decisions, inter-RTD scheduling optimization, and enabling 

feedback to bandwidth allocation features which allow control over memory 

bandwidth. 

More specific feature details about MBM are provided in the Intel® 64 and IA-32 

Architectures Software Developer’s Manual, Volume 3B. Note that the MSRs are 

listed in Appendix A.5. See Appendix A.2 for MBM feature supported product 

details. 

3.1.4.1 L3 Total and Local External Memory Bandwidth Monitoring 

L3 Total and Local External Memory Bandwidth Monitoring allows system 

software to monitor the use of bandwidth between L3 cache and local or 

remote memory. In certain implementations, MBM is not guaranteed to track 

directory, Extended Prediction Table (XPT) prefetcher or related types of traffic. 

3.1.4.2 Region Aware Memory Bandwidth Monitoring 

The Region Aware Memory Bandwidth Monitoring (MBM) feature provides a set 

of counters simultaneously indexed by RMID and Region to measure the 

memory bandwidth utilization of an RDT Resource Monitoring ID (RMID – 

typically mapped to software threads, applications, containers or virtual 

machines) to a Memory Region in the system. Typical hardware feature support 

for Region Aware MBM includes the ability to independently track many RMIDs 

simultaneously accessing several Memory Regions. Unlike prior generations of 

MBM, the Region Aware MBM feature primarily uses an MMIO-based interface.  
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Software may consult the Enhanced Resource Director Technology (ERDT) ACPI 

table for enumeration of specific capabilities of this feature on a given 

processor generation. The ERDT table defined in Chapter 5, BIOS 

Considerations, provides information regarding capabilities and architectural 

parameters such as the number of RMIDs supported. See Chapter 6, MMIO 

Register Descriptions for details of the register interfaces used.  

3.2 Intel® RDT Allocation Features 

The Intel RDT Allocation architecture enables control over utilization level of 

critically shared platform resources and provides this control directly to the 

Hypervisor or Operating System. This allows more efficient resource usage as 

well as application prioritization and determinism restoration based on resource 

repartitioning. The implementation of Intel RDT Allocation features may be 

product-specific or architectural. These capabilities complement Intel RDT 

monitoring, which provides insight into shared platform resource utilization by 

CPU agents. 

3.2.1 Common Framework 

The following mechanisms are shared by Intel RDT allocation features: 

• CPUID feature bits to enumerate the presence of Intel RDT Allocation 

capabilities and the details of each sub feature. 

• The IA32_PQR_ASSOC MSR which software uses to specify the CLOS for 

each software thread. See Figure 3-5. 

• Mechanisms in hardware to specify resource usage to apply to each Class 

of Service. 

Software can flexibly associate Classes of Service with threads, applications, 

VMs, or containers (see Figure 3-4). CLOS values are shared across all 

allocation features. A particular numeric CLOS value has the same meaning 

from the viewpoint of all cores. Each CLOS has an associated set of mask 

registers as described later to associate that CLOS with a fraction of the shared 

platform resources. If multiple logical processors within a Resource Allocation 

Domain (RAD) are assigned the same CLOS, then resource allocations 

associated with that CLOS will be shared among that set of logical processors. 
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Figure 3-4. Classes of Service (CLOS) Association Flow 

 

Figure 3-5. The IA32_PQR_ASSOC MSR to Set CLOS 

 

For each resource, a block of registers is defined for software to configure the 

allocation values for each CLOS. The definition of the register fields depends on 

the type of resource being managed and is discussed in subsequent sections. 

3.2.2 Memory Regions  

See Section 3.1.2 for a discussion of Memory Regions which are a shared 

infrastructure component used across both RDT Allocation and RDT Monitoring 

technologies, in particular Region Aware MBM and Region Aware MBA.  



 

Document Number: 356688-004US, Revision: 1.3  29 

  

3.2.3 Cache Occupancy Allocation Technologies  

A family of Cache Occupancy Allocation Technologies allows control over shared 

cache space on a per-CLOS basis, enabling configurable isolation or overlap for 

potentially improved throughput, fairness, determinism and/or differentiation. 

These features are known as Cache Allocation Technology (CAT), which is the 

term used in this document. Certain processors may support architectural or 

model-specific forms of CAT depending on the product generation. Model-

specific implementations are discussed in Appendix B.1.4. 

More specific feature details about CAT are provided in the Intel® 64 and IA-32 

Architectures Software Developer’s Manual, Volume 3B. Note that the MSRs are 

listed in Appendix A.5. See Appendix A.2 for CAT feature supported product  

details. 

3.2.3.1 L2 Cache Allocation Technology 

L2 Cache Allocation Technology (L2 CAT) allows system software to specify the 

amount of L2 cache space of the Resource Allocation Domain into which an 

application can fill. 

3.2.3.2 L2 Cache Code and Data Prioritization 

L2 Code Data Prioritization (L2 CDP) provides differentiation between code and 

data for L2 cache usage by a single Class of Service. In a case where an 

application has a large code footprint which can overwhelm data in the cache, 

or vice versa, the ability to separately prioritize code and data is valuable. 

L2 CDP provides a pair of allocation bitmasks for each Class of Service (rather 

than a single bitmask per CLOS as in L2 CAT), to allow system software to 

independently configure the amount of L2 cache available to code and data. 

3.2.3.3 L3 Cache Allocation Technology 

L3 Cache Allocation Technology (L3 CAT) allows an Operating System (OS), a 

Hypervisor, Virtual Machine Manager (VMM), or similar system service 

management agent to specify the amount of L3 cache space within a Resource 

Allocation Domain (RAD) into which a CLOS may fill. 

3.2.3.4 L3 Cache and Data Prioritization 

L3 Code Data Prioritization (L3 CDP) provides differentiation between code and 

data for L3 usage by a single Class of Service. In a case where an application 

has a large code footprint which can overwhelm data in the cache, or vice 

versa, the ability to separately prioritize code and data is valuable. 

L3 CDP provides a pair of allocation bitmasks for each Class of Service (rather 

than a single bitmask per CLOS as in L3 CAT), to allow system software to 

independently configure the amount of L3 cache available to code and data. 



 

30  Document Number: 356688-004US, Revision: 1.3 

 

3.2.4 Memory Bandwidth Allocation 

Memory Bandwidth Allocation (MBA) allows the system software to control 

access bandwidth to memory. It allows slowing “noisy neighbor” threads which 

may be overutilizing bandwidth and enables the creation of closed-loop control 

systems (monitoring and control combined) by exposing control over a credit-

based throttling mechanism. 

More specific feature details about MBA are provided in the Intel® 64 and IA-32 

Architectures Software Developer’s Manual, Volume 3B. Note that the MSRs are 

listed in Appendix A.5. See Appendix A.2 for MBA feature supported product 

details. 

There are multiple generations of MBA, each extending additional capabilities: 

1. First Generation MBA (Interface Scope) – This is the initial 

implementation of the MBA feature which provides indirect and 

approximate control over memory bandwidth available per-core. See 

Section 3.2.3.1 for implementation details and see the Intel® 64 and IA-

32 Architectures Software Developer’s Manual, Volume 3B, for legacy 

enumeration, interface and per-CLOS delay value resolution details. 

2. Second Generation MBA (Interface Scope) - This enhanced MBA 

capability provides improved efficiency and accuracy in bandwidth control, 

along with providing increased system throughput. Rather than a strict 

bandwidth control mechanism, a dynamic hardware controller is 

implemented, which can react to changing bandwidth conditions at the 

microsecond level. Before using the second-generation MBA feature, the 

MBA hardware controller requires a BIOS-assisted calibration process that 

may include inputs such as the number of memory channels populated 

and other system parameters; this is a change from the first generation of 

MBA. 

Intel’s BIOS reference code includes a default configuration that is 

recommended for general usage, and BIOS profiles may be created with 

alternate tuning values to optimize for certain usages (such as stricter 

bandwidth control). See Section 3.2.3.2 for implementation details and 

Intel® 64 and the IA-32 Architectures Software Developer’s Manual, 

Volume 3B, for legacy enumeration and interface details. 

3. Third Generation MBA (Agent Scope) - The third generation MBA 

feature on future processors based on the codename Granite Rapids 

microarchitecture further enhances MBA with per-logical-processor control 

and a further improved controller design. Total memory bandwidth (all L3 

miss traffic) is now managed by MBA. This implementation follows the 

prior MBA precedent of delivering significant enhancements without a 

major software overhaul, and while preserving backward compatibility. 

See Section 3.2.3.3 for implementation details and the Intel® 64 and the 

IA-32 Architectures Software Developer’s Manual, Volume 3B, for legacy 

enumeration and interface details. 

MBA performance properties change over time, for instance enhancing system-

level efficiency. Software should not assume that performance properties or 

specific tunings of MBA remain identical across product generations. Third 

generation MBA shifts from interface-scope to agent-scope bandwidth control 
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support, and scheduler re-tuning to take advantage of this enhancement may 

be beneficial.  

Note that in implementations of MBA which expose fine-grained steps (e.g., 1-

255 control window range), the throttling behavior is not guaranteed to be 

monotonic, and may be subject to noise or skew due to interactions with other 

processor features, so control software should not rely on monotonic behavior. 

In implementations of Region Aware MBA, regions may support different 

maximum amounts of bandwidth, so the linearity and saturation properties of 

the control interface may differ across memory regions. For example, in a DDR 

memory region, max bandwidth might be achieved at a bandwidth control 

window value of 100, while lower-bandwidth CXL.mem may saturate at a 

bandwidth control value of 50, while the architectural interface supports a 

maximum (enumerated “Q”) of 255.  

Legacy architectural implementations of MBA are enumerated in the sequence 

described in the Intel® 64 and IA-32 Architectures Software Developer’s 

Manual, Volume 3B, in order to avoid ambiguous situations. 

The MBA feature provides the following architectural components: 

• A mechanism to enumerate the MBA capability to control the bandwidth 

from each level of the cache (for example, L2, L3) to the next level. 

• A mechanism for the OS or Hypervisor to configure the amount of 

bandwidth available to a particular Class of Service via a bandwidth control 

(throttling) value as discussed later. 

• Mechanisms for the OS or Hypervisor to specify the Class of Service to 

which a thread belongs. 

• Hardware mechanisms to guide and enforce the delay value at each level 

of the cache hierarchy when an application has been designated to belong 

to a specific Class of Service. 

Note that in some usages such as those seeking bandwidth control in MB/s, 

MBA may require either application-level performance feedback or 

complementary Memory Bandwidth Monitoring (MBM) to use in the most 

optimal way. Backward compatibility of the software interfaces is preserved, 

and enhanced MBA generational changes manifest as enhancements atop the 

MBA feature baseline. 

3.2.4.1 First Generation Memory Bandwidth Allocation 

The Memory Bandwidth Allocation (MBA) feature provides indirect and 

approximate control over memory bandwidth available per-core and was 

introduced on the Intel® Xeon® Scalable Processor Family. This feature 

provides a method to control applications which may be over-utilizing 

bandwidth relative to their priority in environments such as the datacenter. 

The MBA feature uses existing constructs from the Intel RDT feature set 

including Classes of Service (CLOS). A given CLOS used for L3 CAT for instance 

means the same thing as a CLOS used for MBA. Infrastructure such as the MSR 

used to associate a thread with a CLOS (the IA32_PQR_ASSOC_MSR) and 
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some elements of the CPUID enumeration (such as CPUID leaf 10H [Cache 

Allocation Technology Enumeration Leaf]) are shared. 

The high-level implementation of Memory Bandwidth Allocation is shown in 

Figure 3-6. 

Figure 3-6. A High-Level Overview of the First-Generation MBA Feature 

 

As shown here, the MBA feature introduces a programmable request rate 

controller between the cores and the high-speed interconnect, enabling indirect 

control over memory bandwidth for cores over-utilizing bandwidth relative to 

their priority. For instance, high-priority cores may be run un-throttled, but 

lower priority cores generating an excessive amount of traffic may be throttled 

to enable more bandwidth availability for the high-priority cores. 

Because the MBA uses a programmable rate controller between the cores and 

the interconnect, higher-level shared caches and memory controller, bandwidth 

to these caches may also be reduced, so care should be taken to throttle only 

bandwidth-intense applications which do not use the off-core caches 

effectively. 

The bandwidth control (throttling) values exposed by MBA are approximate and 

are calibrated to specific traffic patterns. As workload characteristics vary, the 

bandwidth control values provided may affect each workload differently. In 

cases where precise control is needed, the Memory Bandwidth Monitoring 
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(MBM) feature can be used as input to a software controller which makes 

decisions about the MBA bandwidth control level to apply. 

Legacy enumeration and configuration details are discussed in the Intel® 64 

and IA-32 Architectures Software Developer’s Manual, Volume 3B.  

3.2.4.1.1 Usage Considerations 

As the memory bandwidth control that MBA provides is indirect and 

approximate, using the feature with a closed-loop controller to also monitor 

memory bandwidth and how effectively the applications use the cache (via the 

Cache Monitoring Technology feature) may provide additional value. This 

approach also allows administrators to provide a bandwidth target or set point 

which a controller could use to guide MBA bandwidth control (throttling) values 

applied, and this allows bandwidth control independent of the execution 

characteristics of the application. 

As control is provided per processor core (the max of the delay values of the 

per-thread CLOS applied to the core), the user should take care in scheduling 

threads so as to not inadvertently place a high-priority thread (with zero 

intended MBA throttling) next to a low-priority thread (with MBA throttling 

intended), which would lead to inadvertent throttling of the high-priority 

thread, as the maximum resolved throttling value is applied. 

3.2.4.2 Second Generation Memory Bandwidth Allocation 

The second generation of Memory Bandwidth Allocation (MBA) is implemented 

in the 3rd Gen Intel® Xeon® Scalable Processor Family, and related Intel Atom® 

processors such as the P5000 Series. This enhanced MBA capability provides 

improved efficiency and accuracy in bandwidth control, along with providing 

increased system throughput. Rather than a strict bandwidth control 

mechanism, a dynamic hardware controller is implemented, which can react to 

changing bandwidth conditions at the microsecond level. 

Before using the second-generation MBA feature, the MBA hardware controller 

requires a BIOS-assisted calibration process that may include inputs such as 

the number of memory channels populated and other system parameters; this 

is a change from the first generation of MBA. Intel BIOS reference code 

includes a default configuration that is recommended for general usage, and 

BIOS profiles may be created with alternate tuning values to optimize for 

certain usages (such as stricter bandwidth control) as described in the 

subsequent BIOS Considerations chapter. 

Second generation MBA moves from static bandwidth control (throttling) at the 

core/uncore interface, to a more dynamic control method based on a hardware 

controller that tracks actual main memory bandwidth. This allows software that 

uses primarily the L3 cache to observe increased throughput for a given 

bandwidth control level, or fine-grained throughput benefits for software that 

exhibits L3-bound phases. Due to the closer consideration of memory 

bandwidth loading, this enhancement may lead to an increase in system 

efficiency when using second generation MBA relative to prior implementations 

of the feature. Backward compatibility of the software interfaces is preserved, 
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and second-generation MBA changes manifest as enhancements atop the MBA 

feature baseline. 

As with the prior generation feature, the second generation MBA uses CPUID 

for enumeration and throttling is performed using a mapping created from 

software thread-to-CLOS (in the IA32_PQR_ASSOC MSR), which is then 

mapped per-CLOS to delay values via the IA32_L2_QoS_Ext_BW_Thrtl_n 

MSRs. A privileged operating system or virtual machine manager software may 

specify a per-CLOS delay value, 0-90% bandwidth throttling for instance, 

though the max and granularity values are platform dependent and 

enumerated in CPUID. 

3.2.4.2.1 Second Generation MBA Advantages 

Additional features added over first generation MBA are described next: 

1. Previously, only the maximum delay value across two CLOS on a physical 

core could be selected in MBA. Second generation MBA allows a minimum 

delay value to be selected instead, which may enhance usage with Intel® 

Hyper-Threading Technology. 

2. Only a single preprogrammed calibration table was possible in first 

generation MBA, meaning different memory configurations had the 

potential for different linearity and percent delay value error values 

depending on the configuration. This is addressed by the BIOS support in 

the second generation of MBA, and certain BIOS implementations may 

program a different calibration table per memory configuration, for 

instance. 

3. The second-generation MBA controller provides the ability to more closely 

monitor the memory bandwidth loading and deliver more optimal results. 

4. The new MBA hardware controller reduces the need for a fine-grained 

software controller to manage application phases for optimal efficiency. 

Note that a software controller may still be valuable to translate MBA 

bandwidth control values to bandwidths in GB/s or application Service 

Level Objectives (SLOs), such as performance targets. 



 

Document Number: 356688-004US, Revision: 1.3  35 

  

Figure 3-7. Second Generation MBA, Including a Fast-Responding Hardware 

Controller 

 

The second-generation MBA implementation is shown in Figure 3-7. The 

feature operates through the use of an advanced hardware controller and 

feedback mechanism, which allows automated hardware monitoring and control 

around the user-provided delay value set point. This set point and associated 

bandwidth control (throttling) value infrastructure remains unchanged from 

prior generation MBA, preserving software compatibility. 

MBA enhancements, in addition to the new hardware controller, include: 

1. Configurable delay selection across threads. 

⎯ MBA 1.0 implementation statically picks the max MBA Throttling Level 

(MBAThrotLvl) across the threads running on a core (by calculating 

value = max(MBAThrotLvl(CLOS[thread0]), 

MBAThrotLvl(CLOS[thread1]))). 

⎯ Software may have the option to pick either maximum or minimum 

delay to be resolved and applied across the threads; maximum value 

remains the default. 

2. Increasing CLOS IDs from 8 to 15 in certain implementations (product-

specific, see CPUID)  

⎯ Previous certain implementations of the feature provided 8 CLOS tags 

for MBA. 

⎯ The 3rd Gen Intel® Xeon® Scalable Processor Family and related Intel 

Atom® processors, such as the P5000 Series, increase this value to 

15 (also consistent with L3 CAT). 
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3.2.4.2.2 Software-Visible Changes 

A new model specific MSR is introduced with second generation MBA to allow 

software to select from the maximum (default) or minimum of resolved 

bandwidth control (throttling) values (see the previous formula). This capability 

is controlled via a bit in the new MBA_CFG MSR, shown in Table 3-1. 

Table 3-1. MBA_CFG MSR Definition 

Register Address 
Architectural MSR Name 

/ Bit Fields 
Description 

Hex Decimal 

C84H 3204 MBA_CFG MBA Configuration Register 

0 Min (1) or max (0) of per-thread MBA delays. 

63:1 
Reserved. Attempts to write to reserved bits 

result in a #GP(0). 

Note that bit[0] for min/max configuration is supported in second generation 

MBA but is removed (and reverts to reserved) in the third generation MBA 

feature when the controller logic becomes capable of managing bandwidth 

control values on a per-logical-processor or per-agent basis. The transient 

nature of this enhancement is why the min/max control remains model specific. 

To enumerate and manage support for the model-specific min/max feature, 

software may use processor family/model/stepping as listed in Appendix A to 

match supported products, then CPUID to later detect enhanced third 

generation MBA support. 

3.2.4.3 Third Generation Memory Bandwidth Allocation 

The third-generation MBA feature on future processors based on the codename 

Granite Rapids microarchitecture further enhances the feature with per-logical-

processor control and a further improved controller design. Total memory 

bandwidth (all L3 miss traffic) is now managed by MBA. 

This implementation follows the past MBA precedent of delivering significant 

enhancements without a major software overhaul, and while preserving 

backward compatibility. 

3.2.4.3.1 Hardware Changes 

The third generation of MBA builds upon the hardware controller introduced in 

the previous generation, which enabled significant system-level benefits, while 

providing the new capability to independently throttle logical processors, rather 

than more coarse-grained per-core bandwidth control in prior generations. 

Bandwidth control values are no longer selected as the “min” or “max” of the 

two throttling values for the threads running on the core; instead, throttling 

values are independently and directly applied to each logical processor. The 

third generation MBA implementation is shown in Figure 3-8. 
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Figure 3-8. High-Level Overview of the Third Generation MBA Feature 

 

While this enhancement means that more direct bandwidth control (throttling) 

of threads is possible, re-tuning of software may be helpful to comprehend the 

effects of Intel® Hyper-Threading Technology contention versus cache and 

memory contention, and the effects on software performance. 

3.2.4.3.2 Software-Visible Changes 

In order to allow software to change its tuning behavior and detect that per-

logical-processor bandwidth control is supported on a particular product 

generation, a CPUID bit is added to the MBA CPUID leaf to indicate support. 

See “CPUID—CPU Identification” in the Intel® 64 and IA-32 Architectures 

Software Developer’s Manual, Volume 3B for details. 

Despite another significant improvement of the hardware controller 

infrastructure architecture and improved capabilities, controller responsiveness, 

new internal microarchitecture, and transient-arresting capabilities, no new 

software interface changes are required to make use of the third generation of 

MBA relative to prior generations. Software previously using the second-

generation MBA min/max selection capability should discontinue the use of the 

MBA_CFG MSR. The third-generation MBA capabilities are the default mode of 

operation on the codename Granite Rapids server microarchitecture. 

Note that the MBA MSRs are listed in Appendix A.5 for completeness, but 

details of these legacy MSRs are available in Intel® 64 and IA-32 Architectures 

Software Developer’s Manual, Volume 3B. See Appendix A.2 for MBA feature 

supported product details. 
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3.2.4.4 Region Aware Memory Bandwidth Allocation 

Region Aware Memory Bandwidth Allocation (MBA) for CPU Agents extends the 

existing third generation (per-thread bandwidth control) MBA capabilities to 

include Region Aware bandwidth controls per RDT Class of Service (CLOS). The 

Memory Region definitions used for Region Aware MBM and MBA are shared 

across the features, as specified in the ACPI MRRM table, allowing simultaneous 

and consistent monitoring and allocation of memory bandwidth.  

With Region Aware MBA, independent bandwidth control (throttling) of per-

CLOS bandwidth to multiple regions is supported, allowing software to 

dynamically rebalance bandwidth control limits across different Memory 

Regions, which may have varying bandwidth, latency and capacity 

characteristics. Example uses include rebalancing bandwidth between VMs of 

different priority across a shared coherent interprocessor interconnect under 

the direction of a software control loop, or rebalancing bandwidth for threads of 

varying priorities across DRAM or CXL-backed memories. See Figure 3-9 for a 

high-level overview of Region Aware MBA and the following sections for details.  

3.2.4.4.1 Region Aware MBA Overview 

Region Aware MBA allows per-thread, per-CLOS, and per-Region control of 

Bandwidth to different regions — that is, enabling bandwidth control per-thread 

and per region simultaneously. As in the third generation of MBA, each region 

and thread are managed by a hardware controller which modulates the 

bandwidth of each thread targeting particular downstream region around the 

bandwidth targets set through the Intel RDT software interfaces.  

The maximum number of regions is enumerable in the MRRM ACPI table 

described in Chapter 5, BIOS Considerations. The high-level implementation of 

Region Aware MBA is shown in Figure 3-9. 

Figure 3-9. High-Level Overview of the Region Aware MBA 
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Unlike prior generations of MBA, the Region Aware MBA feature primarily uses 

an MMIO-based interface.  

3.2.4.4.2 Enable MMIO Register 

Region Aware MBA may be enabled by software via an MMIO configuration 

register, after configuring per-thread, per-CLOS, and per-Region MBA 

bandwidth control values. See the next section for details on default hardware 

initialization state.   

The RDT_CTRL MMIO register is used to control Region Aware MBA for CPU 

agents. The definition of the RDT_CTRL register is shown in Section 6.1.3.1. 

This register is scoped at the level of each Resource Management Domain, 

defined in Chapter 5. It is expected that software will configure this register 

consistently across all L3 caches present in the SoC. 

The default value of the RDT_CTRL register is 0x4 (Region Aware MBA is 

disabled by default).  

3.2.4.4.3 Min, Max and Optimal Bandwidth Caps per CLOS 

The Region Aware MBA feature introduces three types of bandwidth limits per 

CLOS. Software may specify a minimum, maximum and optimal level of 

bandwidth target per CLOS. The specified range allows hardware to 

dynamically and autonomously manage bandwidth within the limits with fast 

response to changing system conditions or application phases while maximizing 

system throughput. From a usage standpoint, the min/optimal/max levels are 

designed to allow software to guide resource allocation, and hardware can then 

use that information to respond much quicker than a management software 

control loop could. In some cases software may be allocated bandwidth that it 

might not use, or might be used in a bursty fashion, depending on software 

behaviors and policies applied.  

Bandwidth settings are described as follows:  

▪ Maximum Cap: Caps the maximum bandwidth for a CLOS and any 

threads running in that CLOS. Allows the CLOS to switch to being 

constrained by a Max BW cap (which is typically above the Optimal level 

specified) if the resource (e.g., region) is underutilized (utilized at a 

level less than a medium or optimal rate). 

▪ Optimal Cap: The software-preferred bandwidth control level for a given 

CLOS.  

▪ Min Cap: Allows the hardware to attempt to guarantee a minimum 

amount of available bandwidth for a CLOS. Hardware may enforce this 

Lower BW cap below the Optimal level specified if the resource is over-

utilized (typically at higher system region bandwidth utilization than 

medium but less than an overload scenario). Minimums are not 

necessarily guaranteed by hardware, as the sum of software requested 

minimums for instance may exceed the bandwidth that hardware can 

provide; as such, Min should be regarded as a best-effort minimum 

under heavy system utilization levels. 
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The Optimal Cap should be programmed to be between or equal to the Min and 

Max Cap levels. The Maximum Cap should be programmed to be greater than 

or equal to the Minimum and Optimal caps. Undesirable and undefined 

performance effects may result if cap programming guidelines are not followed.  

The default hardware state is initialized with Max BW Cap == Optimal BW == 

Min BW Cap (and throttling is disabled by default).  

Bandwidth control values in the MMIO-based feature interface (Chapter 6) are 

specified from unthrottled (maximum value “Q”) down to a value of one 

(minimum bandwidth available, equivalent to maximum throttling). Bandwidth 

control values are implementation-specific and may not have an effect if more 

bandwidth is allowed than the processor is able to generate. Bandwidths may 

vary depending on traffic types, for instance various mixes of read and write 

traffic.  

System software should consult the MARC sub-structure of the ERDT ACPI 

table to discover platform support for these caps as described in Chapter 5.  

Software may choose to implement combined MBM and MBA control loops per-

region to manage memory bandwidth of a set of processors, for instance 

comprising a virtual machine, to shape the bandwidth available to achieve 

goals such as prioritization or fairness.  

3.2.5 Cache Bandwidth Allocation 

Cache Bandwidth Allocation (CBA) allows an Operating System, Hypervisor, or 

similar system management agent to control internal core and correspondingly 

the downstream memory bandwidth for each of the logical processors. This 

feature is complimentary to MBA and provides OS/VMMs with the ability to 

throttle threads within the core.  

The CBA feature along with the existing MBA feature provides a system-wide 

mechanism to throttle the bandwidth across different caches in the system 

including external memory, as well as control within a processor core or 

module. In combination, CBA and MBA provide both deterministic control and 

dynamic management of bandwidth resources to meet system Service Level 

Objectives (SLOs). The CBA feature reuses and extends existing constructs 

from the Intel RDT feature set including Classes of Service (CLOS). 

A given CLOS used for L3 CAT for instance means the same thing as a CLOS 

used for CBA. Infrastructure such as the MSR used to associate a thread with a 

CLOS (the IA32_PQR_ASSOC_MSR) and some elements of the CPUID 

enumeration (such as CPUID leaf 10H (Cache Allocation Technology 

Enumeration Leaf)) are shared. 

The Cache Bandwidth Allocation (CBA) feature provides control over bandwidth 

available between Level 1 (L1) caches, Level 2 (L2) Caches, and Level 3 (L3) 

Caches (as applicable) for each of the logical processors. Since reducing 

upstream bandwidth coming from the core can also reduce bandwidth to 

external memory, this also provides an indirect control of memory bandwidth. 

This indirect control of external memory bandwidth can also reduce memory 
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bandwidth. The CBA feature along with the MBA provides a mechanism to 

control the bandwidth of different applications. 

Software should understand that the effective throttling applied to an 

application may be the maximum of the two values requested through the CBA 

and MBA bandwidth control interfaces (the maximum resolved amount of 

throttling will be applied).  

Similar to Intel RDT features, CBA includes the following key ingredients: 

• A mechanism to enumerate the CBA capability to control the bandwidth 

from each level of the cache (for example, L1, L2, L3) to the next level 

(CPUID). 

• A mechanism for the OS or Hypervisor to configure the amount of 

bandwidth available to a logical processor with a particular Class of Service 

via a throttle Level (MSRs, discussed later). 

• Mechanisms for the OS or Hypervisor to signal the Class of Service to 

which an application belongs (the PQR MSR). 

• Hardware mechanisms to guide and enforce the bandwidth throttle level 

across the cache hierarchy. 

In some usages, the software may measure the memory bandwidth consumed 

by a given thread, application, VM or container at different Levels of cache 

hierarchy and external memory using performance monitor events and Memory 

Bandwidth Monitoring (MBM). Once the memory bandwidth is measured 

software can dynamically adjust the bandwidth control (throttling) level for the 

Class of Service (CLOS) used by that application. In other usages, software 

control loops may monitor application performance and adjust bandwidth 

control levels dynamically to achieve certain performance targets. 

Certain processors, including those without an L3 cache, may implement the 

CBA feature without the presence of MBA. Other processors may choose to 

implement MBA, CBA or both.  

More specific feature details about CBA are provided in the Intel® Architecture 

Instruction Set Extensions and Future Features. Note that the MSRs are listed 

in Appendix A.5. See Appendix A.2 for CBA feature supported product details. 

3.2.5.1 CBA Overview 

The CBA feature implements a local hardware controller which when enabled 

provides the capability to independently throttle memory bandwidth of the 

logical processors across cache hierarchy and complements the MBA controller 

which throttles the external memory bandwidth.  

3.2.5.2 Example of CBA Bandwidth Control Mechanism 

An example of the bandwidth control enforced between the L2 cache and L3 

cache is the maximum of the bandwidth throttling from the local CBA controller 

within the logical processor and the MBA hardware controller. An example CBA 

implementation is shown in Figure 3-10. 
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Figure 3-10. Example of CBA Bandwidth Control between L2 and L3 caches 

 

 

3.2.5.3 Software Interface 

In order to allow software to adapt its tuning behavior and detect that Cache 

Bandwidth Allocation is supported on a particular product generation, a CPUID 

bit is added to the Intel RDT Allocation CPUID leaf to indicate support (details 

are provided in the Intel® Architecture Instruction Set Extensions Manual). 

The IA32_PQR_ASSOC MSR specifies the Class of Service associated with each 

logical processor. The CBA feature defines a set of MSRs known as 

IA32_QoS_Core_BW_Thrtl_n which provide a byte-encoded field for each CLOS 

to program the memory bandwidth throttle level. A higher value of throttling 

level means more bandwidth throttling and lower number indicates lesser 

throttling. The CPUID of the CBA feature enumerates the number of levels and 

maximum level supported by the logical processor. The reset value of each of 

the CLOS throttle values of the logical processor is 0 which indicates 

unthrottled bandwidth (zero throttling).  

Each of the fields in the CBA IA32_QoS_Core_BW_Thrtl_n MSRs may be 

programmed from 0 to the maximum throttle level provided in the CPUID. If a 

value beyond the range from 0 to maximum throttle level is programmed, it 

will cause a #GP(0) fault. The Resource Management Domain (RMD) for CBA is 

per logical processor and thus the IA32_QoS_Core_BW_Thrl_n MSRs are logical 
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processor scope. Further details are provided in the Intel® Architecture 

Instruction Set Extensions and Future Features Programming reference 

manual. 

3.2.5.4 Software Usage 

The next sequence of steps provides a typical software usage of CBA feature: 

1. System is setup with the desired workloads. 

2. The software can use the performance counters along with MBM counters 

when available to profile and understand the bandwidth characteristics of 

the application. 

3. The system administrator sets up the bandwidth control (throttling) level 

field in the IA32_QoS_Core_BW_Thrtl_n MSR (for example, in the VMM) 

to enforce the desired limits and the CLOS for each application. They can 

also monitor the bandwidth to confirm the setting is appropriate and 

adjust when needed. 

In some cases, a specialized application software such as in embedded or 

communications usages will be able to communicate the memory bandwidth 

and latency requirements. This information may be used be performance 

management software to program the RDT features including CBA to meet the 

software memory bandwidth and latency requirements.  

§ 
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4 Intel® Resource Director 
Technology for Non-CPU 

Agents 

This chapter details Intel RDT features for non-CPU agents. Discussion is 

included on use cases and how Intel RDT monitoring, and controls are provided 

for non-CPU agents through extensions to the foundational CPU Agent Intel 

RDT features. Chapter 3 describes the components of the Intel RDT feature set 

which are common. 

4.1 Introduction 

Intel RDT for non-CPU agents comprises a set of features to monitor and 

control the resource utilization of non-CPU agents including PCI Express* 

(PCIe*) [5] and Compute Express Link (CXL)* [6] devices and integrated 

accelerators. The feature set enables monitoring usage of shared cache and 

memory bandwidth and control of cache usage by non-CPU agents. This 

feature set provides the equivalent CPU agent Intel RDT capabilities of CMT, 

MBM, and CAT for I/O devices. 

The non-CPU agent Intel RDT includes controls at the device level and channel-

level granularity in some cases. However, this granularity is fundamentally 

coarser than for software threads. CPU cores may execute hundreds of threads, 

all of which are tagged with RMIDs and CLOS, whereas an I/O device such as a 

NIC may serve hundreds of software threads, but it may only be monitored and 

controlled at a device level or channel level (see subsequent sections for details 

on channel-level monitoring and controls.) 

Figure 4-1. Non-CPU Agent Building Atop CPU Agent Intel® RDT Features 
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4.2 Features 

Cache Monitoring Technology (CMT) provides visibility into the cache (typically 

L3 cache). CMT provides occupancy counters on a per-RMID basis for non-CPU 

agents so cache occupancy (for example, capacity used by a particular RMID 

for I/O agents) can be tracked and read back dynamically during system 

operation. See Appendix A.2 for L3 CMT feature supported product details. 

L3 Total and Local External Memory Bandwidth Monitoring (MBM) allows 

system software to monitor the usage of bandwidth between L3 cache and local 

or remote memory by non-CPU agents on a per-RMID basis. See Appendix A.2 

for L3 Total and Local External MBM feature supported product details. 

Cache Allocation Technology (CAT) allows control over shared cache capacity 

on a per-CLOS basis for non-CPU agents, enabling both isolation and overlap 

for better throughput, fairness, determinism and differentiation. See 

Appendix A.2 for L3 CAT feature supported product details. 

4.3 Enumeration 

Intel RDT uses the CPUID instruction to enumerate supported features and 

uses architectural Model-Specific Registers (MSRs) as interfaces to the 

monitoring and allocation features as described in Chapter 3 and in the Intel® 

64 and IA-32 Architectures Software Developer’s Manual, Volume 3B. 

There are no CPUID leaves or sub-leaves that are created for non-CPU agent 

Intel RDT; rather, existing CPUID leaves are augmented. The following field in 

the Shared Resource Monitoring Enumeration Leaf, CPUID.0FH.01H:EAX[10:9], 

enumerates presence of CMT and MBM features for non-CPU agents. The field 

in the Cache Allocation Technology Enumeration Leaf, CPUID.10H.01H:ECX[1], 

enumerates the presence of the L3 CAT feature for non-CPU agents. Refer to 

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, for 

CPUID details. 

Additional enumeration information for Intel RDT for non-CPU agents is 

provided in the I/O Intel RDT table (IRDT), a vendor-specific extension to 

Advanced Configuration and Power Interface (ACPI) [4]. The IRDT table 

provides information on supported features, the structure of devices attached 

to particular links behind I/O blocks, the forms of tagging and controls 

supported on each link, and the specific MMIO interfaces used to control a 

given device. Details of IRDT are described in Chapter 5. 

Confirming the presence of Intel RDT for CPU agents is a prerequisite for using 

the equivalent non-CPU agent Intel RDT feature. A compatibility matrix is 

provided in Appendix A.4. If a particular CPU agent Intel RDT feature is not 

present, any attempt to use non-CPU agent Intel RDT equivalents will result in 

a general protection fault in the MSR interface. Attempts to enable unsupported 

features in the I/O complex will result in writes to the corresponding MMIO 

enable or configuration interfaces being ignored. 
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Software may use the existing CPUID leaves to gather the maximum number of 

RMID and CLOS tags for each resource level (for example, L3 cache), and non-

CPU agent Intel RDT is also subject to these limits. 

Some platforms may support a mix of features, for instance supporting L3 CAT 

and the non-CPU agent Intel RDT equivalent, but no CMT or MBM monitoring. 

4.4 Interface 

Before configuring non-CPU agent Intel RDT (through MMIO), the feature 

should be enabled. The presence of one or more CPUID bits indicating support 

for one or more non-CPU agent Intel RDT features implies the presence of the 

IA32_L3_IO_RDT_CFG architectural MSR. This MSR is used to enable the non-

CPU agent Intel RDT features.  

Two bits are defined in this MSR. IRAE (Bit[0]) enables non-CPU agent RDT 

resource allocation features. IRME (Bit[1]) enables non-CPU agent RDT 

monitoring features.  

The non-CPU agent Intel RDT Monitoring bit is supported if CPUID indicates 

that one or more non-CPU agent Intel RDT resource monitoring features are 

present.  

The non-CPU agent Intel RDT Allocation bit is supported if CPUID indicates that 

one or more non-CPU agent Intel RDT resource allocation features are present.  

The default value is 0x0 (both the monitoring and allocation features are 

disabled by default). All bits not defined are reserved. Any writes to reserved 

bits will generate a General Protection Fault (#GP(0)).  

This MSR is die-scoped and is cleared on system reset. It is expected that 

software will configure this MSR consistently across all L3 caches that may be 

present on a particular SOC die. 

The definition of the IA32_L3_IO_RDT_CFG MSR is shown in Figure 4-2, and its 

MSR address is 0C83h. 

Non-CPU agent RDT uses the RMID and CLOS tags in the same way that they 

are used for CPU agents. 

Figure 4-2. The IA32_L3_IO_QOS_CFG MSR for Enabling Non-CPU Agent 

Intel® RDT 
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MMIO interfaces, discussed in subsequent sections, are defined by non-CPU 

agent Intel RDT to enable devices and/or channels to be tagged with RMIDs 

and CLOS, as applicable.  

An example of device tagging with RMIDs, and CLOS is shown in Figure 4-3, 

where a PCIe device and a CXL device are tagged for monitoring and control of 

upstream resources in the L3 cache (shown within the fabric). Note that CPU 

cores are also shown, and as defined in the CPU agent Intel RDT feature set, 

their bandwidths may be controlled with the Memory Bandwidth Allocation 

(MBA) feature set.  

In the model of Figure 4-3, cores, PCIe devices and CXL devices are 

symmetrically arranged about the fabric and are symmetric in their ability to 

use RMIDs and CLOS.  

The Intel RDT monitoring data retrieval MSRs IA32_QM_EVTSEL and 

IA32_QM_CTR are used for monitoring usage by non-CPU agents in the same 

way that they are used for Intel RDT for CPU agents for shared-L3 

configurations. In certain configurations, memory-mapped registers may be 

provided to enable Intel RDT monitoring data retrieval for non-CPU agents. 

These memory-mapped registers are enumerated via ERDT ACPI (see section 

5.1).  

The CPU cache capacity control MSR interfaces are also used for controlling I/O 

device access to the L3 cache. The CLOS assigned to the device and the 

corresponding capacity bitmask in the IA32_L3_QOS_MASK_n MSR governs the 

fraction of the L3 cache into which the data may be filled, as described in the 

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B. 

Certain I/O data flows may be implemented in processors with a multiple-L3 

configuration, which may use memory-mapped register interfaces enumerated 

via ERDT ACPI (see section 5.1) for cache capacity control.  

The CLOS tag retains the same meaning with regard to L3 fills for both CPU 

agents and non-CPU agents. Other cache levels may also be applicable 

depending on model-specific data flow patterns, which are governed by how 

I/O device data is filled into the cache in a model-specific fashion as governed 

by a given product generation’s implementation of the DDIO (the Data Direct 

I/O feature). 
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Figure 4-3. Tagging for PCIe and CXL Devices 

 

4.5 Common Tags 

Non-CPU agent Intel RDT allows the traffic and operation of non-CPU agents to 

be associated with RMIDs and CLOS. In CPU agent Intel RDT, RMIDs and CLOS 

are numeric tags which may be associated with the operation of a thread 

through the IA32_PQR_ASSOC MSR. In non-CPU agent Intel RDT, a series of 

MMIO interfaces may be used to associate I/O devices with RMID and CLOS 

tags, and the numerical interpretation of the tags remains the same.  

To wit, a particular CLOS tag, such as CLOS[5], means the same thing from the 

perspective of an CPU core or a non-CPU agent, and the same holds for RMIDs. 

In this fashion, RMIDs and CLOS used for non-CPU agents are said to be drawn 

from a “common pool” of RMID or CLOS tags, defined at the common L3 

configuration level. Often these tags have specific meanings at a particular 

level of resource such as the L3 cache.  

With non-CPU agent Intel RDT, specific devices may be selected for monitoring 

and control, and software enumeration and control are added to (1) enable 

non-CPU agent Intel RDT to build atop CPU agent Intel RDT, and (2) to 

comprehend the topology of devices behind I/O links, such as PCIe or CXL, and 

(3) to enable association of devices with RMID and CLOS tags. 

4.6 I/O Blocks and Channels 

I/O interfacing blocks are used to bridge from the ordered, non-coherent 

domain (such as PCIe) to the unordered, coherent domain (for example, the 
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shared interconnect fabric hosting the L3 cache). The non-CPU agent Intel RDT 

interface describes the devices connected behind each I/O complex (which may 

contain downstream PCIe root ports or CXL links) and enables configuration 

RMID/CLOS tagging for the same. 

The I/O architecture is formalized as shown next. Channel mapping may occur 

anywhere between the device and the I/O block. 

Figure 4-4. Mapping of Channels in the I/O Domain (PCIe Example) 

 

Figure 4-5. Mapping of Channels in the I/O Domain (CXL Example) 

 

As shown in Figure 4-4, PCIe devices connected through a root port are routed 

through an I/O block, which applies non-CPU agent Intel RDT tagging (RMID 

and CLOS tagging) before traffic reaches the coherent fabric. Device traffic 

which is routed on various TCs and mapped to VCs, as defined in the PCIe 

specification [5], may be mapped to internal “Channels” between the root port 

and the I/O block. The non-CPU agent Intel RDT enumeration structures define 

the mapping between PCIe VCs and the non-CPU agent Intel RDT Channels so 

that software may perform tagging configuration based on Channels for 

platforms which support this capability (see the following sections for more 

detail). 

An example with CXL [6] is shown in Figure 4-5. In this case a CXL.IO and 

CXL.Cache link may be in use, and the I/O block is again responsible for 

tagging, if supported. The links (CXL.IO and CXL.Cache) are controlled 

separately, through separate software interfaces. (See Chapter 7 for MMIO 

control interfaces.)  

4.7 I/O Block Configuration 

As described in the preceding section, PCIe devices mapped through their VCs 

to “Channels” may be configured on a per-Channel basis in the I/O Block. CXL 
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is a subset example of this, with the same configuration format, but only one 

configuration entry (the equivalent of a single Channel).  

An enumerated number of Channels are supported in IRDT ACPI and configured 

through an MMIO interface to a “Mapping Table”, as shown in Figure 4-6. A 

number of downstream PCIe devices may be mapped to various channels, and 

their traffic streams may be tagged, as applicable, through configuration of the 

I/O block. 

Figure 4-6. Resource Monitoring and Control for PCIe and CXL Endpoints 

 

4.8 Shared-L3 Configuration 

The following sub-sections describe shared-L3 configuration and non-CPU agent 

Intel RDT features interplay. 

4.8.1 Software Flow  

Key software actions required to utilize non-CPU agent Intel RDT include (1) 

enumeration of the supported capabilities and details of that support, and (2) 

usage of the features through architectural platform interfaces.  

• The software may enumerate the presence of non-CPU agent Intel RDT 

through a combination of parsing bit fields from CPUID and the IRDT ACPI 

table. The CPUID infrastructure provides basic information on the level of 
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CPU agent Intel RDT and non-CPU agent Intel RDT support present, and 

details of the common CLOS/RMID tags shared with CPU agent Intel RDT. 

The IRDT ACPI extensions provide many more details on non-CPU agent 

RDT specifically, such as which I/O blocks support non-CPU agent Intel 

RDT and where the control interfaces to configure the I/O blocks are 

located in MMIO space. 

• Once software has enumerated the presence of non-CPU agent Intel RDT, 

configuration changes may be made through selecting a subset of 

RMID/CLOS tags to use with non-CPU agent Intel RDT, and configuring 

resource limits for those tags through MSRs for shared platform resources 

such as L3 cache (for example, for I/O use of L3 CAT) may be configured 

through the I/O block MMIO interfaces (the location of which is enumerated 

via IRDT ACPI).  

• After resource limits are associated, RMID/CLOS tagging may be applied to 

the I/O device upstream traffic by assigning each I/O device into 

RMID/CLOS tags through its mapping to channels (and corresponding 

configuration through the MMIO interfaces for each I/O block, the location 

of which is enumerated via IRDT ACPI).  

• It should be noted that while upstream shared SoC resources like L3 cache 

are monitored and controlled via shared RMID/CLOS tags, certain 

resources which are closer to the I/O may be controlled locally within each 

I/O block. In this view, RMIDs and CLOS are used for upstream resources 

which may be shared with CPU cores, but capabilities unique to the I/O 

device domain are controlled through I/O block-specific interfaces.  

• Once tags are assigned and resource limits are applied, upstream traffic 

from I/O devices, though I/O blocks are tagged with the corresponding 

RMIDs/CLOS and such traffic is monitored and controlled within the shared 

resources of the SoC, much as CPU agent resources are controlled against 

these tags in CPU agent Intel RDT. 

• As the IRDT ACPI tables used to enumerate non-CPU agent Intel RDT are 

generated by the BIOS, in the event of a hot-plug operation the OS or VMM 

software should update its internal tracking of device mappings based on 

newly added or removed device.  

• In the case of bifurcation of a set of PCIe lanes, downstream devices which 

may be mapped to individual Channels may still be separately tagged and 

controlled, but devices sharing Channels will be mapped together against 

the same RMID/CLOS tags. As CXL devices have no notion of Channels, in 

the case of a bifurcated CXL link all downstream devices will be subject to 

the same RMID/CLOS. 

4.8.2 Monitoring: Data Flows for RMIDs 

As previously described, once RMID tags are applied to non-CPU agent traffic, 

all RMID-driven counter infrastructure in the platform may be used with non-

CPU agent Intel RDT. In the case of the features in Appendix A.2 for instance, 

RMID-based cache occupancy and memory bandwidth overflow data is 

collected for non-CPU agents and may be retrieved by software. For each 

supported Cache Monitoring resource type, hardware supports only a finite 
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number of RMIDs. The following Shared Resource Monitoring Enumeration Leaf  

CPUID.0FH.01H:ECX[31:0], enumerates the highest RMID value that can be 

monitored with this resource type, see the Intel® 64 and IA-32 Architectures 

Software Developer’s Manual, Volume 3B for details. 

As the interfaces for CPU agent Intel RDT data retrieval for RMID-based 

counters area already defined, the same interfaces are used, including MSR-

based data retrieval for the corresponding set of three Event IDs (EvtIDs) 

defined for CPU agent Intel RDT’s CMT and MBM features (See Chapter 3).  

RMIDs are allocated to devices by software from the pool of RMIDs defined at 

the L3 cache level, and the IA32_QM_EVTSEL / IA32_QM_CTR MSRs can be 

used to specify RMIDs and Event IDs and retrieve data.  

The MSR pair used to retrieve event data is shown in Figure 3-3, however as all 

properties are inherited from CPU agent RDT (See Chapter 3 for details). All of 

access rules and usage sequence, reserved bit properties, initial values, and 

virtualization properties are inherited from CPU agent Intel RDT. 

4.8.3 Allocation: CLOS-based Control Interfaces 

The Intel RDT Allocation features for non-CPU agent use CLOS-based tagging 

for control of cache at a given level, subject to where data fills from I/O devices 

in a particular cache and SoC implementation. In common cases this will be the 

last-level cache (L3) as described in the ACPI – specifically in the IRDT sub-

table known as RCS and its flags. Software may adjust the levels of cache that 

it controls based on the expected level(s) of cache into which I/O data may fill 

subject to flags in the RCS. This in turn may affect which CPU agent CAT 

control masks software programs to control the data fills of non-CPU agents 

and may vary depending on how a particular RCS is connected to shared 

resources on a platform. 

For each supported Cache Allocation resource type, the hardware supports only 

a finite number of CLOS. The following field in the Cache Allocation Technology 

Enumeration Leaf, CPUID.10H.02H:EDX[15:0], enumerates the maximum 

CLOS supported for the resource (CLOS are zero-referenced, meaning a 

reported value of “15” would indicate 16 total supported CLOS). Bits 31:16 are 

reserved, see the Intel® 64 and IA-32 Architectures Software Developer’s 

Manual, Volume 3B for details. 

In a typical example, with a non-CPU agent (for example, a PCIe device) filling 

data into an L3 cache, the RCS structure’s “Cache Level Bit Vector” would have 

bit 17 set to indicate the L3 cache, and software may control the CPU agent 

Intel RDT L3 CAT masks (in IA32_L3_QoS_MASK_n MSRs) to define the 

amount of cache into which non-CPU agents may fill. As with RMID 

management, the CLOS used in this context are drawn from the pool at the 

applicable resource (L3 cache in this context).  

If other cache levels are introduced or used in the future, incremental software 

enabling may be required to comprehend fills into other cache levels. 
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As the masks used for control are drawn from the existing definitions of such 

cache controls in the CPU agent Intel RDT definitions, details such as reserved 

fields, initialization values, and so on, are defined in the Intel® 64 and IA-32 

Architectures Software Developer’s Manual, Volume 3B. Figure 4-7 shows an 

example of the CPU agent Intel RDT L3 CAT control MSRs. 

Figure 4-7. Reuse of the IA32_L3_QOS_MASK_n MSRs for L3 CAT Control 

 

4.9 CXL-Specific Considerations 

This section describes CXL-specific device considerations including 

management of traffic on multiple links and CXL device types. 

4.9.1 CXL block Interfacing Fundamentals 

CXL devices may connect to an RMUD via multiple RCSes, and independent 

control of each RCS may be required. See Chapter 5 for RMUD and RCS details. 

Non-CPU agent Intel RDT features provide monitoring and controls for CXL.IO 

and CXL.Cache link types. CXL.mem is not subject to controls in the I/O block 

as it is viewed as a resource rather than an agent in Intel RDT terms. Instead 

bandwidth to CXL.mem is controlled at the agent source (for example, using 

MBA) as previously described and where supported. 

4.9.2 Integrated Accelerators 

Integrated accelerators, including those using integrated CXL links, may be 

monitored and controlled using the semantics described in preceding sections.  
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4.10 Use Cases 

A number of non-CPU agent Intel RDT use cases are described in this section 

involving PCIe, CXL, and integrated accelerators. 

As an implementation of the architectural model shown in Figure 4-4 and 

Figure 4-5, I/O block tags upstream DMA traffic (such as PCIe writes) as shown 

in Figure 4-8, enabling the device’s resource utilization in the shared resources 

of the fabric, such as L3 cache, to be monitored and controlled through Intel 

RDT RMIDs and CLOS. 

The applicable features for each tag are described in Appendix A.2, and 

software may configure these tags as described in Chapter 5, which describes 

the ACPI; see the Intel® 64 and IA-32 Architectures Software Developer’s 

Manual, Volume 3B, for CPUID enumeration, and Section 4.8 and Chapter 7 for 

how the software may actuate these controls. 

Figure 4-8. Device Traffic Tagging Model with PCIe as the Sole Traffic Path 

 

As a concrete example, Figure 4-9 shows a high-performance PCIe SSD, 

subject to tagging with CLOS (so that its L3 cache footprint may be controlled), 

and RMIDs (so that its L3 cache occupancy and overflow bandwidth to memory 

may be monitored). 

Figure 4-9. PCIe Device Example, with Traffic on a Channel Tagged with an 

RMID and CLOS 
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An example with a CXL device is shown in Figure 4-10, in which two paths are 

used for the device’s traffic, one over CXL.IO, and one over CXL.Cache, 

through two separate I/O blocks, and note that the CXL.Cache link defines only 

one channel. In such a case, the software may configure RMID and CLOS 

tagging separately for the links. The links operate independently. 

Note that no controls are provided for CXL.Mem, as the use of CXL.Mem 

resolves around accessing memory on a target device, and bandwidths from 

logical processors may be controlled with Intel RDT’s Memory Bandwidth 

Allocation (MBA) feature. A more detailed discussion of this case surrounds 

Figure 4-14.  

Figure 4-10. CXL Example of Device Tagging Model with CXL.IO and CXL.Cache 

Traffic Paths 

 

An example with multiple devices with different properties is shown in Figure 

4-11, where a pair of PCIe devices on separate I/O blocks may be controlled 

independently, with separate RMID and CLOS tags. In this case a PCIe SSD 

which does not utilize the cache effectively may be limited, but a NIC which fills 

into the cache for data to be consumed by CPU cores may be prioritized. 

Figure 4-11. Example of Controlling Two Different PCIe Devices 
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The following image shows an example with one CXL accelerator, perhaps a 

CXL-enabled FPGA card, utilizing CXL.IO and CXL.Cache, controlled 

independently from an I/O block with a PCIe device attached. 

Figure 4-12. Example of Controlling a CXL Accelerator 

 

An example of tagging and controlling an integrated accelerator, the Data 

Streaming Accelerator (DSA) alongside a PCIe device is shown in Figure 4-13. 

Depending on system load conditions and the DSA usage case, software may 

choose to allocate non-overlapping portions of the cache to minimize cache 

contention effects.  

Figure 4-13. Example of Controlling a High-Bandwidth Integrated Accelerator 
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As the main purpose of CXL.Mem is for host accesses to device memory, 

however, traffic responses up through the CXL.mem path are not subject to 

MBA bandwidth shaping, though they are sent with RMID and CLOS tags. If 

bandwidth is constrained on this link and software seeks to redistribute 

bandwidth across different priorities of accessing agents, such as CPU cores, 

the MBA feature may be used to redistribute bandwidth and throttle at the 

source of the requests (the agent’s traffic injection point). 

This example shows that for comprehensive management of cache and 

bandwidth resources on the platform, a combination of CPU agent Intel RDT 

and non-CPU agent Intel RDT controls may be necessary.  

Figure 4-14. MBA to Control a CXL.Mem Pooling Device 
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5 BIOS Considerations 
Software may query processor support of RDT shared resource monitoring and 

allocation features by executing CPUID for the RDT features which are defined 

per CPU Agent (independent of interface scope). ACPI structures may then be 

consulted for further details on the Enhanced RDT (ERDT structure) features 

support, memory range-to-region mapping (MRRM structure) and I/O RDT 

RMID/CLOS (IRDT structure) topologies and tagging. These ACPI tables 

enumerate the location of specific MMIO interfaces used to allocate or monitor 

shared platform resources. All numeric values in ACPI-defined tables, blocks, and 

structures are always encoded in little endian format. Signature values are stored 

as fixed-length strings. 

5.1 Introduction to Enhanced RDT Interfaces 

Two new structures are defined to enumerate the Region Aware MBM and MBA 

features and the shared infrastructure such as memory regions that they use:  

 

1. Enhanced RDT (ERDT) ACPI structure: Describes the resource 

management domains (RMDs) in an SoC and which agents are managed 

within the scope of each resource management domain; this structure also 

describes the architectural MMIO register locations for various resource 

monitoring and allocation features. 

2. Memory Range and Region Mapping (MRRM) ACPI structure: 

Describes distinct memory ranges in the platform along with their Region-ID 

mapping registers, in order to group ranges into regions for Region-Aware 

Memory Bandwidth Allocation (MBA) and Memory Bandwidth Monitoring 

(MBM). This structure may be used by other Intel product features which 

utilize or reference the same consistent Region-IDs. 

Features defined in ERDT are dependent on the regions defined within the MRRM 

table. If ERDT is defined but not MRRM, software may assume that only one 

memory region is defined, covering all system memory. If MRRM is defined but 

not ERDT, software may assume that no region-aware RDT features are present.  

The ERDT, IRDT and MRRM tables include a checksum value, which should be 

calculated in accordance with ACPI table checksum generation norms.  

5.2 ERDT Table Structure Layout 

The top-level ACPI structure defined to support Enhanced RDT features is the 

“ERDT” structure. Figure 5-1 exemplifies the ERDT ACPI hierarchy. As 

described in the following sections, the ERDT structure may include the 

following defined sub-structures: 

 

• Resource Management Domain Description Structure (RMDDs),  
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• CPU Agent Collection Description Structure (CACDs),  

• Device Agent Collection Description Structure (DACDs),  

• Cache Monitoring Registers for CPU Agents Description Structure 

(CMRCs),  

• Memory Bandwidth Monitoring Registers for CPU Agents Description 

Structure (MMRCs),  

• Memory Bandwidth Allocation Registers for CPU Agents Description 

Structure (MARCs), 

• Cache Allocation Registers for CPU Agents Description Structure 

(CARCs), 

• Cache Monitoring Registers for Device Agents Description Structure 

(CMRDs),  

• I/O Bandwidth Monitoring Registers for Device Agents Description 

Structure (IBRDs), 

• Cache Allocation Registers for Device Agents Description Structure 

(CARDs), 

• I/O bandwidth Allocation Registers for Device Agents Description 

Structure (IBADs) 

There exists only one instance of the ERDT table for a given platform. Each 

RMDD structure within ERDT represents a resource management domain 

(RMD). Thus, there will be as many RMDDs as the number of resource 

management domains across all SoCs on the platform. For example, on a dual-

socket platform, where each socket hosts N resource management domains, 

there will be 2*N RMDD sub-structures within ERDT.  

CPU agents under the scope of each resource management domain (RMDD) are 

enumerated (via their x2APIC physical APIC-ID [1]) through a CPU Agent 

Collection Description (CACD) table.  Similarly, non-CPU agents under the 

scope of an RMDD are enumerated through a Device Agent Collection 

Description (DACD) table.  Each RMDD table has a unique Domain-ID, and the 

CACD/DACD table instances correlate to the corresponding RMDD by 

referencing the respective RMDD Domain-ID value. 

As shown in Figure 5-1, the CMRC, MMRC and MARC sub-structures describe 

the architectural MMIO register location and organization for the Cache 

Monitoring Technology (CMT), Memory Bandwidth Monitoring (MBM) and 

Memory Bandwidth Allocation (MBA) enhanced features in RMDDs which have 

CPU agents within scope. Similarly, the CMRD, CARD and IBRD registers 

describe the architectural MMIO register locations and organization for I/O 

CMT, I/O CAT and I/O MBM registers in RMDDs with non-CPU agents within 

scope. As feature support may differ across RMDDs, software should 

individually enumerate all ERDT sub-structures to determine whether 

asymmetric feature support is present.  

See Section 5.4 for complete details about these structures. 



 

60  Document Number: 356688-004US, Revision: 1.3 

 

Figure 5-1. Top-level Structure of ERDT ACPI Enumeration 

 

5.3 MRRM Table Structure Layout 

Figure 5-2 shows the MRRM ACPI table structure which describes the memory 

range to region mapping details. Each memory range entry in the MRRM 

structure consists of a contiguous range of host physical address (HPA) space 

along with the registers (if hardware and OS configuration of Region-IDs are 

supported) for programming Region-ID for this memory range.  Each memory 

range may be configured with a Region-ID for local accesses and a Region-ID 

for remote (cross-socket) accesses. The memory ranges are identical to the 

memory ranges specified in the Memory Affinity Structure specified in the ACPI 

SRAT structure [8] and may be cross-referenced by address as described in a 

later chapter.   

If the platform supports only static memory range to region mapping (as with 

initial implementations), then the ‘Platform-assigned Static Local Region-ID’ 

and ‘Platform-assigned Static Remote Region-ID’ fields (Section 5.5.1) describe 

local and remote Region-IDs allocated by platform firmware (BIOS) for that 

memory range.  
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Figure 5-2. Top-level Structure of MRRM ACPI Enumeration 

 

5.4 ERDT Table Structure Details 

5.4.1 ERDT Structure Format and Field Descriptions 

The top-level ACPI table, known as the Enhanced Resource Director Technology 

Structure (ERDT) is shown below. This table includes a unique signature, and 

its enumerated length includes all sub-structures. The length of the ERDT table 

is variable. 

Table 5-1. Enhanced Resource Director Technology (ERDT) Top-Level ACPI 

Structure 

Field Byte 
Length 

Byte Offset Description 

Signature 4 0 "ERDT". Signature for the Enhanced 

Resource Director Technology 

Description structure. 

Length 4 4 Length, in bytes, of the description table 

including the length of the associated 

sub-structures. 

Revision 1 8 1 

Checksum 1 9 Entire table must sum to zero. 

OEMID 6 10 OEM ID 

OEM Table ID 8 16 For the ERDT structure, the Table ID is 

the manufacturer model ID 

OEM Revision 4 24 OEM Revision of the ERDT Table for OEM 

Table ID. 

Creator ID 4 28 Vendor ID of utility that created the 

table. 

Creator Revision 4 32 Revision of utility that created the table. 
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Field Byte 
Length 

Byte Offset Description 

Max CLOS 4 36 Maximum number of Classes Of Service 

(CLOS) supported by the platform for 

resource allocation management.  The 

CLOS values supported by the platform 

are 0 through N, where N is the value 

reported in this field. 

Reserved 24 40 Reserved (0). 

ERDT Sub-structures - 64 List of ERDT sub-structures. All sub-

structures have a type and length fields 

at the beginning. The type field uniquely 

identifies the type of sub-structure, and 

the length field indicates the size of the 

sub-structure including the size of any 

subordinate structures it may include. 

For forward compatibility, software is 

expected to ignore and skip any sub-

structures that it does not recognize. 

The following table lists the various sub-

structures defined. 

5.4.2 Valid ERDT Sub-structure Types 
All RDT Sub-structures start with a ‘Type’ field (two bytes) followed by a 

‘Length’ field (two bytes) indicating the size in bytes of the structure (including 

sub-structures). 

Table 5-2. Valid ERDT Sub-structure Types 

Type Abbreviation Description 

0 RMDD Resource Management Domain Description Structure 

1 CACD CPU Agent Collection Description Structure 

2 DACD Device Agent Collection Description Structure 

3 CMRC Cache Monitoring Registers for CPU Agents Description Structure 

4 MMRC Memory-bandwidth Monitoring Registers for CPU Agents Description 

Structure 

5 MARC Memory-bandwidth Allocation Registers for CPU Agents Description 

Structure 

6 CARC Cache Allocation Registers for CPU Agents Description Structure 

7 CMRD Cache Monitoring Registers for Device Agents Description Structure 

8 IBRD IO Bandwidth Monitoring Registers for Device Agents Description 

Structure 
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Type Abbreviation Description 

9 IBAD IO bandwidth Allocation Registers for Device Agents Description 

Structure 

10 CARD Cache Allocation Registers for Device Agents Description Structure 

>10  Reserved for future use. For forward compatibility, software skips 

structures it does not comprehend by skipping the number of bytes 

indicated by the Length field. 

BIOS implementations should report these RDT Sub-structure types in 

numerical order, that is, all RDT sub-structures of Type 0 (RMDD) enumerated 

before remapping structures of Type 1 (CACD) and Type 2 (DACD). All of the 

valid sub-structures which are under the scope of Type 0 (RMDD) should be 

enumerated in numerical order, e.g., Type 1 (CACD), Type 2 (DACD), Type 3 

(CMRC), Type 4 (MMRC) and so forth and then subsequent Type 0 (RMDD) 

enumeration should take place. Defined in this fashion, not all of these are top-

level structures, some of these sub-structure types may exist under the scope 

of other structure type such as an RMDD. See Section 5.4.3.1 for details. 

5.4.3 Resource Management Domain Description 
Structure 

A Resource Management Domain Description (RMDD) structure describes a 

RDT resource management domain. There must be at least one instance of this 

structure present to represent one or more enhanced features such as CMT, 

MBM and MBA if supported. 

Table 5-3. Resource Management Domain Description (RMDD) Structure 

Field Byte Length Byte Offset Description 

Type 2 0 0 - Resource Management Domain 
Description (RMDD) structure. 

Length 2 2 Total Length of this RMDD and all sub-
structures within the scope of this RMDD. 

Flags 2 4 Bit 0: L3 Domain 
•  If Set, this RMDD represents a 
resource-management domain hosting a 
CPU L3 cache. The relevant registers are 
described through CMRC, MMRC, MARC 
and CARC register description structures. 

CPU L3 cache details are reported through 
CPUID. Please refer to the Intel SDM.                                                                                                                             
Bit 1: I/O L3 Domain 
•  If Set, this RMDD represents a 
resource-management domain hosting an 
L3 cache into which I/O data may fill. The 
relevant registers in this resource 
management domain are described 
through CMRD, IBRD and CARD register 
description structures. I/O L3 details are 
reported in 'Number of I/O LLC  slices', 
'Number of I/O LLC sets' and 'Number of 
I/O LLC ways' fields which may align with 
CPU caches but is not guaranteed. Cache 
line size is the same for I/O L3 and CPU 
caches, and is reported in 
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Field Byte Length Byte Offset Description 

CPUID.04H.EBX[11:0].   
Bits 2-15: Reserved. 

Number of I/O L3 
slices  

2 6 This field is valid only if bit 1 (indicating 
I/O L3 domain) is set in the flags field. A 
value of Q in this field indicates the 
number of slices forming this I/O L3 
cache. 

Number of I/O L3 
sets  

1 8 This field is valid only if bit 1 (indicating 
I/O L3 domain) is set in flags field. A value 
of N in this field indicates 2N number of 

sets for the I/O L3 supported under this 
Resource Management Domain's scope. 

Number of I/O L3 
ways  

1 9 This field is valid only if bit 1 (indicating 
I/O L3 domain) is set in flags field.  A 
value of Q in this field indicates the 
number of I/O L3 ways supported under 
this Resource Management Domain's 
scope.  

Reserved 8 10 Reserved(0) 

DomainID 2 18 This field indicates a unique Domain ID for 
the RMDD structure representing this 
resource management domain.  The CPU 
and device agents under the scope of an 
RMDD are enumerated through CACD and 
DACD structures referencing the value in 
this field. 

Max RMID 4 20 Maximum Resource Monitoring IDs 
(RMID) number supported by this 
resource management domain. The value 
reported is specific to the respective 
domain. The RMID values supported are 0 
through X, where X is the value reported 
in this field. Max RMID is only valid if 
monitoring sub-features are supported for 
this domain. 

Control Register 
Base Address 

8 24 4KB aligned host physical address of 
control registers for this RDT Domain. 

Control Register 
Size 

2 32 The size of the control register space for 
this domain, in units of 4 KB pages. 
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Field Byte Length Byte Offset Description 

RMDD structures - 34 A list of agent collection description 
structures and register description 
structures within the scope of this RMDD. 
All sub-structures have a type and length 
fields at the beginning. The type field 
uniquely identifies the type of sub-
structure, and the length field indicates 
the size of the sub-structure including the 
size of any subordinate structures it may 
include. For forward compatibility, 
software is expected to ignore and skip 
any sub-structure types that it does not 

recognize. The Table 5-4 lists the 

various sub-structure types defined. 

5.4.3.1 Valid Sub-structure Types within the scope of this RMDD 

All RDT Sub-structures start with a ‘Type’ field (two bytes) followed by a 

‘Length’ field (two bytes) indicating the size in bytes of the structure (including 

sub-structures). 

Table 5-4. Valid Sub-structure Types within the scope of an RMDD 

Type Abbreviation Description 

1 CACD CPU Agent Collection Description 
Structure 

2 DACD Device Agent Collection Description 
Structure 

3 CMRC Cache Monitoring Registers for CPU 
Agents Description Structure 

4 MMRC Memory-bandwidth Monitoring Registers 
for CPU Agents Description Structure 

5 MARC Memory-bandwidth Allocation Registers 
for CPU Agents Description Structure 

6 CARC Cache Allocation Registers for CPU Agents 
Description Structure 

7 CMRD Cache Monitoring Registers for Device 
Agents Description Structure 

8 IBRD IO Bandwidth Monitoring Registers for 
Device Agents Description Structure 

9 IBAD IO bandwidth Allocation Registers for 
Device Agents Description Structure 

10 CARD Cache Allocation Registers for Device 
Agents Description Structure 

>10   Reserved for future use. For forward 
compatibility, software skips structures it 
does not comprehend by skipping the 
number of bytes indicated by the Length 
field. 

Note that as described in Figure 5-1, ERDT may contain RMDD, CACD, DACD 

and other sub-structures. The CACD and DACD structures are embedded within 

and reference an RMDD.  

BIOS implementations should report these sub-structure types in numerical 

order. i.e., All RDT substructures of Type 0 (RMDD) enumerated before 

remapping structures of Type 1 (CACD) and Type 2 (DACD). All the valid sub-



 

66  Document Number: 356688-004US, Revision: 1.3 

 

structures which are under the scope of Type 0 (RMDD) should be enumerated 

in numerical order i.e., Type 1 (CACD), Type 2 (DACD), Type 3 (CMRC), Type 4 

(MMRC) and so forth and then subsequent type 0 (RMDD) enumeration should 

take place. 

5.4.4 CPU Agent Collection Description Structure 

A CPU Agent Collection Description (CACD) structure uniquely represents a 

collection of logical processor agents on the platform managed by a common 

RDT domain. There must be at least one instance of this structure for each RDT 

domain supporting CPU agents. 

Table 5-5. CPU Agent Collection Description (CACD) Structure 

Field Byte Length Byte Offset Description 

Type 2 0 1 - CPU Agent Collection Description 
(CACD) Structure 

Length 2 2 Varies (8 + size of Enumeration-IDs field) 

Reserved 2 4 Reserved(0) 

RMDD DomainID 2 6 This field specifies the Domain-ID for the 

resource management domain that 
monitors/enforces cache and memory 
bandwidth resourcing for agents in this 
collection. Resource management domains 
are enumerated through the RMDD 
structures. Each RMDD structure includes 
a unique Domain-ID. 

Enumeration-IDs [] - 8 Array of Enumeration-IDs, each 
representing a unique logical processor in 
this agent collection. Enumeration-ID of a 
logical processor is its 32-bit physical 
X2APIC ID as reported in the Processor 
Local x2APIC Affinity Structure in ACPI 
System Resource Affinity Table (SRAT). 

5.4.5 Device Agent Collection Description Structure 

A Device Agent Collection Description (DACD) structure uniquely represents a 

collection of device agents on the platform managed by a common RDT 

domain. There must be at least one instance of this structure for each RDT 

domain supporting devices. 

Table 5-6. Device Agent Collection Description (DACD) Structure 

Field Byte Length Byte Offset Description 

Type 2 0 2 - Device Agent Collection Description 
(DACD) Structure 

Length 2 2 Varies (8 + size of Device Agent Scope 
Entries field) 

Reserved 2 4 Reserved(0) 
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Field Byte Length Byte Offset Description 

RMDD DomainID 2 6 This field specifies the Domain-ID for the 
resource management domain that 
monitors/enforces cache and memory 
bandwidth resourcing for agents in this 
collection. Resource management domains 
are enumerated through the RMDD 
structures. Each RMDD structure includes 
a unique Domain-ID. 

Device Agent 
Scope Entries [] 

- 8 Array of one or more Device Agent Scope 
Entries that identify devices in this 
collection. Refer to Device Agent Scope 
Entry structure 

5.4.5.1 Device Agent Scope Entry Structure 

The Device Agent Structure is composed of Device Agent Scope Entries. Each 

Device Agent Scope Entry refers to either a PCI endpoint device or a PCI sub-

hierarchy. 

Table 5-7. Device Agent Scope Entry (DASE) Structure 

Field Byte Length Byte Offset Description 

Type 1 0 The following values are defined for this 
field. 
0x01: PCI Endpoint Device - The device 
identified by the ‘Path’ field is a PCI 
endpoint device.  
0x02: PCI Sub-hierarchy - The device 
identified by the ‘Path’ field is a PCI-PCI 
bridge. In this case, the specified bridge 
device and all its downstream devices are 
included in the scope. 
Other values for this field are reserved for 
future use. 

Length 1 1 Length of this Entry in Bytes. (6 + X), 
where X is the size in bytes of the “Path” 
field. 

Segment Number 2 2 The PCI Segment associated with this 
device agent 

Reserved 1 4 Reserved (0) 

Start Bus Number 1 5 This field describes the bus number (bus 
number of the first PCI Bus produced by 
the PCI Host Bridge) under which the 
device agent identified by this Device 
Agent Scope Entry resides. 
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Field Byte Length Byte Offset Description 

Path 2*N 6 For Device Agent Scope Entries with Type 
value of 0x1 or 0x2, this field describes 
the hierarchical path from the Host Bridge 
to the device specified by the Device 
Agent Scope Entry.  
For example, a device in a N-deep 
hierarchy is identified by N {PCI Device 
Number, PCI Function Number} pairs, 
where N is a positive integer. Even offsets 
contain the Device numbers, and odd 
offsets contain the Function numbers. 
The first {Device, Function} pair resides 
on the bus identified by the ‘Start Bus 
Number’ field. Each subsequent pair 
resides on the bus directly behind the bus 
of the device identified by the previous 
pair. The identity (Bus, Device, Function) 
of the target device is obtained by 
recursively walking down these N {Device, 
Function} pairs. 
If the ‘Path’ field length is 2 bytes (N=1), 
the Device Scope Entry identifies a ‘Root-
Complex Integrated Device’. The 

requester-id of ‘Root-Complex Integrated 
Devices’ are static and not impacted by 
system software bus rebalancing actions. 
If the ‘Path’ field length is more than 2 
bytes (N > 1), the Device Scope Entry 
identifies a device behind one or more 
system software visible PCI-PCI bridges. 
Bus rebalancing actions by system 
software modifying bus assignments of the 
device’s parent bridge impacts the bus 
number portion of device’s requester-id. 

5.4.6 Cache Monitoring Registers for CPU Agents 
Description Structure 

A Cache Monitoring Registers for CPU Agents Description (CMRC) structure 

describes cache monitoring registers for CPU Agents in a RDT domain. There 

must be at least one instance of this structure for each RDT domain which 

includes a cache that supports occupancy monitoring. This structure is always 

contained within an RMDD structure. 

Table 5-8. Cache Monitoring Registers for CPU Agents Description (CMRC) 

Structure 

Field Byte Length Byte Offset Description 

Type 2 0 3 - Cache Monitoring Registers for CPU 
Agents Description Structure 

Length 2 2 Fixed: 48B 

Reserved 4 4 Reserved(0) 
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Field Byte Length Byte Offset Description 

Flags 4 8 •  Bit 0: Unavailable Bit Support:  
If Set, indicates CMT data registers in this 
domain support the Unavailable bit, 
signaling that data may be unavailable. If 
Clear, indicates CMT Register does not 
support the Unavailable bit field. See 
Section 6.1.3.2 for the CMT Register 
Layout. 
•  Bits 1-31: Reserved. 

Register Indexing 
Function Version 

1 12 This field indicates Register Indexing 
Function Version Number. See 6.1.3.2 for 
details on the software usage guidance of 
this field. 

Reserved 11 13 Reserved(0) 

CMT Register Block 
Base Address for 
CPU 

8 24 4KB aligned Host Physical Address of 
MMIO Registers used for RMID-granular 
near Cache Monitoring Technology for CPU 
agents. 

CMT Register Block 
Size for CPU 

4 32 Size of cache monitoring register space in 
units of number of 4KB pages. CMT 
registers are located in the range 
(X):(X+Y*4096), where X is the value 
reported in the Register Block Base 
Address field and Y is the value in this 
field. Refer to Section 6.1.3.2 for details 
on the cache monitoring register layout 

CMT Register 
Clump Size for CPU 

2 36 The registers in the Register Block are 
organized in “Clumps”. Each Register 
Clump is a set of N adjacent 8-Byte sized 
registers, where N is the value specified in 
this field.  The size of a Register Clump is 
thus 8*N bytes. 

CMT Register 
Clump Stride for 
CPU 

2 38 The first Register Clump starts at the 
address specified by the base address field 
above. Each subsequent Register Clump 
starts at a fixed offset (stride) from the 
previous Register Clump.  The Stride value 
(S) is reported as number of bytes in this 
field. Thus, registers in a given Clump 'C' 
are located at byte offsets <C*S> to 
<C*S+8*N> 

CMT Counter 
Upscaling Factor 

8 40 Upscaling factor from reported CMT 
counter value to occupancy metric 
(bytes). See Intel® 64 Architecture 
Software Developer’s Manual (SDM), 
Volume 3B, Chapter Title: Debug, Branch 
Profile, TSC, and Intel® Resource Director 
Technology (Intel® RDT) Features for 
details on upscaling Factor. 

5.4.7 Memory Bandwidth Monitoring Registers for CPU 
Agents Description Structure 

A Memory Bandwidth Monitoring Registers for CPU Agents (MMRC) Description 

structure describes memory bandwidth monitoring registers for CPU Agents in 

a RDT domain. There must be at least one instance of this structure for each 
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RDT domain which supports monitoring of bandwidth to memory. This structure 

is always contained within an RMDD structure. 

Table 5-9. Memory Bandwidth Monitoring Registers for CPU Agents Description 

(MMRC) Structure 

Field Byte Length Byte Offset Description 

Type 2 0 4 - Memory-bandwidth Monitoring 
Registers for CPU Agents Description 
Structure 

Length 2 2 Varies (56 + size of MBM Correction Factor 
field) 

Reserved 4 4 Reserved(0) 

Flags 4 8 •  Bit 0: Unavailable Bit Support: 
If Set, indicates MBM data registers in this 
domain support the Unavailable bit, 
signaling that data may be unavailable. If 
Clear, indicates MBM Register does not 
support the Unavailable bit field. See 
Section 6.1.3.3 for the MBM Register 
Layout. 
•  Bit 1: Overflow Bit Support: 
If Set, indicates MBM data registers in this 
domain support the Overflow bit. If Clear, 
indicates MBM data registers do not 
support the Overflow bit field. See Section 
6.1.3.3  for discussion of MBM Register 
Layout and clear-on-read semantics. 
•  Bits 2-31: Reserved. 

Register Indexing 
Function Version 

1 12 This field indicates Register Indexing 
Function Version Number. See Section 
6.1.3.3 for details on the software usage 
guidance of this field. 

Reserved 11 13 Reserved(0) 

MBM Register Block 
Base Address 

8 24 4KB aligned Host Physical Address of 
MMIO Registers used for RMID-granular 
Memory Bandwidth Monitoring (MBM) 

MBM Register Block 
Size 

4 32 Size of Memory Bandwidth Monitoring 
register space in units of number of 4KB 
pages. MBM registers are located in the 
range (X):(X+Y*4096), where X is value 
reported in base address field and Y is the 
value in this field. Refer to Section 6.1.3.3 
for details on the Memory Bandwidth 
monitoring register layout. 

MBM Counter Width 1 36 A value Q indicates that Q-bit counter 
width is supported by underlying 
implementation. 

MBM Counter 
Upscaling Factor 

8 37 MBM data values read can be converted to 
bandwidth (in bytes) by multiplying with 
the Upscaling Factor. 

Reserved 7 45 Reserved(0) 
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Field Byte Length Byte Offset Description 

MBM Correction 
Factor List Length 

4 52 A value in this field defines MBM 
Correction Factor List Length. Below are 
the valid values for MBM Correction List 
Length: 
0: Do not apply a correction factor to the 
MBM values. 
1: Apply a single correction factor 
specified in MBM Correction Factor field to 
all the MBM values (uniformly apply this 
correction factor to all data values 
retrieved from counters for all RMIDs). 
Max RMID+1: If the value in this field 
matches the maximum supported RMID + 
1 for this domain (as RMIDs are zero-
indexed), indicated in RMDD:"Max RMID", 
apply the indicated indexed correction 
factor specified in MBM Correction Factor 
list to the corresponding the RMID value 
for MBM counter. 

MBM Correction 
Factor [] 

- 56 A list of MBM Correction Factors. The list 
will contain zero, one or Max RMID + 1 
entries. Fixed-point 32-bit format per 
entry in this list. See Section 5.4.12 for 
details for fixed-point 32-bit format 
details. Counter values may be multiplied 
by the correction factor to account for 
processor-specific implementation 
variations. 

5.4.8 Memory Bandwidth Allocation Registers for CPU 
Agents Description Structure 

A Memory Bandwidth Allocation Registers for CPU Agents Description (MARC) 

structure describes memory bandwidth allocation registers for CPU Agents in a 

RDT domain. There must be at least one instance of this structure for each RDT 

domain which supports Memory Bandwidth Allocation. This structure is always 

contained within an RMDD structure. 

Table 5-10. Memory Bandwidth Allocation Registers for CPU Agents Description 

(MARC) Structure 

Field Byte Length Byte Offset Description 

Type 2 0 5 - Memory-bandwidth Allocation 
Registers for CPU Agents Description 
Structure 

Length 2 2 Fixed: 48B 

Reserved 2 4 Reserved(0) 
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Field Byte Length Byte Offset Description 

MBA Flags  2 6 MBA Control Window Parameter Flags:  
Bit 0: 
MBA_OPTIMAL_CONTROL_WINDOW 
•  If Set, this domain supports the 
Optimal BW Window control. 
•  If Clear, this domain does not support 
Optimal BW Control Window.  
Bit 1: 
MBA_MINIMUM_CONTROL_WINDOW 
•  If Set, this domain supports the 
Minimum BW Window control 
•  If Clear, this domain does not support 
Minimum Control Window. 
Bit 2: 
MBA_MAXIMUM_CONTROL_WINDOW 
•  If Set, this domain supports the 
Maximum BW Window control 
•  If Clear, this domain does not support 
Maximum BW Control Window. 
Bit 3-15 : Reserved (0) 

Register Indexing 
Function Version 

1 8 This field indicates Register Indexing 
Function Version Number. See Sections 
6.1.3.4, 6.1.3.5, and 6.1.3.6 for details on 
the software usage guidance of this field. 

Reserved 7 9 Reserved(0)  

MBA Optimal BW 
Register Block Base 
Address 

8 16 If the MBA_OPTIMAL_CONTROL_WINDOW 
flag is set, this field specifies the base 
4KB-aligned Host Physical Address of the 
MMIO Registers used for Optimal Memory 
Bandwidth Allocation for each Class of 
Service  

MBA Minimum BW 
Register Block Base 
Address 

8 24 If MBA_MINIMUM_CONTROL_WINDOW 
flag is set, this field specifies the base 
4KB-aligned Host Physical Address of the 
MMIO Registers used for Minimum 
Memory Bandwidth Allocation for each 
Class of Service 

MBA Maximum BW 
Register Block Base 
Address 

8 32 If MBA_MAXIMUM_CONTROL_WINDOW 
flag is set, this field specifies the base 
4KB-aligned Host Physical Address of the 
MMIO Registers used for Maximum 
Memory Bandwidth Allocation for each 
Class of Service  

MBA Register Block 
Size 

4 40 Size of Memory Bandwidth Allocation 
registers in units of number of 4KB pages. 
A value of X in this field indicates X*4KB 
space for each of the optimal, minimum, 
and maximum register sets (if supported). 
Refer to Chapter 6 for details on the 
Memory Bandwidth Allocation register 
layout. 

MBA BW Control 
Window Range 

4 44 A value of Q in this field indicates the 
permitted bandwidth control window range 
of values that can be programmed into 
MBA registers is 1 through Q, where a 
value of 1 represents maximum throttling 
and Q represents minimal throttling 
(maximum bandwidth).  
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More details on the programming and interpretation of the MBA BW Control 

Window Range field are provided in Section 3.2.4.4, Region Aware Memory 

Bandwidth Allocation, and in Section 6.1.3, Register Descriptions. 

5.4.9 Cache Monitoring Registers for Device Agents 
Description Structure 

A Cache Monitoring Registers for Device Agents Description (CMRD) structure 

describes near cache monitoring registers for Device Agents in a RDT domain. 

There must be at least one instance of this structure for each RDT domain 

which supports Cache Monitoring Technology (CMT). This structure is always 

contained within an RMDD structure. 

Table 5-11. Cache Monitoring Registers for Device Agents Description (CMRD) 

Structure 

Field Byte Length Byte Offset Description 

Type 2 0 7 - Cache Monitoring Registers for Device 
Agents Description Structure 

Length 2 2 Fixed: 48B 

Reserved 4 4 Reserved(0) 

Flags 4 8 •  Bit 0: Unavailable Bit Support:  
If Set, indicates CMT data registers in this 
domain support the Unavailable bit, 
signaling that data may be unavailable. If 
Clear, indicates CMT Register does not 
support the Unavailable bit field. See 
Section 6.1.3.7 for the CMT Register 
Layout. 
•  Bits 1-31: Reserved. 

Register Indexing 
Function Version 

1 12 This field indicates Register Indexing 
Function Version Number. See Section  
6.1.3.7 for details on the software usage 
guidance of this field. 

Reserved 11 13 Reserved(0) 

Register Base 
Address 

8 24 Base address of the Device Agent register 
set for this CMRD. 
This address must be aligned according to 
the size of the register set size reported in 
the Register Block Size field of this 
structure. 

Register Block Size 4 32 Size of register space in units of number 
of 4KB pages. Registers are located in the 
range (X):(X+Y*4096), where X is the 
value reported in the Register Block Base 
Address field and Y is the value in this 

field. Refer to Section 6.1.3.7 for details 
on the register layout.  

CMT Register Offset 
for I/O 

2 36 Bits 0-11: This field specifies the offset to 
the CMT registers for I/O in its 
corresponding 4KB page. 
If the register base address is X, and the 
value reported in this field is Y, then the 
first address for the CMT register for I/O is 
calculated as (X+Y). Each subsequent CMT 
Register clump for I/O starts at the same 
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Field Byte Length Byte Offset Description 

CMT Register Offset for I/O in the next 
consecutive 4KB page. 
Bit 12-15: Reserved(0) 

CMT Register 
Clump Size for I/O 

2 38 The registers in the Register Block are 
organized in Clumps. Each Register Clump 
is a set of N adjacent 8-Byte sized 
registers, where N is the value specified in 
this field.  The size of a Register Clump is 
thus 8*N bytes.  
Each Register Clump is organized in 
consecutive 4KB pages. Each Register 
clump starts at an offset specified by CMT 
Register Offset for I/O field in its 
corresponding 4KB page. 

CMT Counter 
Upscaling Factor 

8 40 Upscaling factor from reported CMT 
counter value to occupancy metric 
(bytes). See Intel® 64 Architecture 
Software Developer’s Manual (SDM), 
Volume 3B, Chapter Title: Debug, Branch 
Profile, TSC, and Intel® Resource Director 
Technology (Intel® RDT) Features for 
details on upscaling Factor. 

5.4.10 IO Bandwidth Monitoring Registers for Device 
Agents Description Structure 

An IO Bandwidth Monitoring Registers for Device Agents Description (IBRD) 

structure describes total I/O BW and I/O Miss registers for Device Agents in a 

RDT domain. There must be at least one instance of this structure for each RDT 

domain which supports I/O Bandwidth Monitoring. This structure is always 

contained within an RMDD structure. 

Table 5-12. IO Bandwidth Monitoring Registers for Device Agents Description 

(IBRD) Structure 

Field Byte Length Byte Offset Description 

Type 2 0 8 - IO Bandwidth monitoring Registers for 
Device Agents Description Structure 

Length 2 2 Varies (64 + size of I/O BW Correction 
Factor field) 

Reserved 4 4 Reserved(0) 
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Field Byte Length Byte Offset Description 

Flags 4 8 •  Bit 0: Unavailable Bit Support: 
If set, indicates IBRD counter registers 
support the Unavailable bit field. If clear, 
indicates that the IBRD Register does not 
support the Unavailable bit field. See 
Section 6.1.3.9  for IBRD Register Layout. 
•  Bit 1: Overflow Bit Support: 
If set, indicates IBRD counter registers 
support the Overflow bit field. If clear, 
indicates that the IBRD Register does not 
support the Overflow bit field. See Section 
6.1.3.9 for IBRD Register Layout. 
•  Bits 2-31: Reserved. 

Register Indexing 
Function Version 

1 12 This field indicates Register Indexing 
Function Version Number. See Section 
6.1.3.9 details on the software usage 

guidance of this field. 

Reserved 11 13 Reserved(0) 

Register Base 
Address 

8 24 Base address of Device Agent register set 
for this IBRD. 
This address must be aligned according to 
the size of the register set size reported in 
the Register Block Size field of this 
structure. 

Register Block Size 4 32 Size of register space in units of number 
of 4KB pages. Registers are located in the 
range (X):(X+Y*4096), where X is the 
value reported in the Register Block Base 
Address field and Y is the value in this 
field. Refer to Chapter 6 for details on the 
register layout.  

Total I/O BW 

Register Offset 

2 36 Bits 0-11: This field specifies the offset to 

the Total I/O BW registers in its 
corresponding 4KB page. 
If the register base address is X, and the 
value reported in this field is Y, the 
address for the Total I/O BW registers is 
calculated as (X+Y). Each subsequent 
Total I/O BW registers clump starts at the 
same Total I/O BW Register Offset in the 
next consecutive 4KB page. 
Bits 12-15: Reserved(0) 

I/O Miss BW 
Register Offset 

2 38 Bit 0-11: This field specifies the offset to 
the I/O Miss BW registers in its 
corresponding 4KB page. 
If the register base address is X, and the 
value reported in this field is Y, then the 
first address for the I/O Miss BW registers 
is calculated as (X+Y). Each subsequent 
I/O Miss BW registers starts at the same 
I/O Miss BW Register Offset in consecutive 
4KB page. 
Bit 12-15: Reserved(0) 

Total I/O BW 
Register Clump 
Size 

2 40 The registers in the Register Block are 
organized in Clumps. Each Register Clump 
is a set of N adjacent 8-Byte sized 
registers, where N is the value specified in 
this field.  The size of a Register Clump is 
thus 8*N bytes.  
Each Register Clump is organized in 
consecutive 4KB pages. Each Register 
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Field Byte Length Byte Offset Description 

clump starts at offset specified by Total 
I/O BW Register Offset for I/O field in its 
corresponding 4KB page. 

I/O Miss Register 
Clump Size 

2 42 The registers in the Register Block are 
organized in “clumps”. Each register clump 
is a set of N adjacent 8-Byte sized 
registers, where N is the value specified in 
this field.  The size of a register clump is 
thus 8*N bytes.  
Each register clump is organized in 
consecutive 4KB pages. Each register 
clump starts at an offset specified by the 
Total I/O BW Register Offset for I/O field 
in its corresponding 4KB page. 

Reserved 7 44 Reserved(0) 

I/O BW Counter 
Width 

1 51 A value Q indicates that Q-bit counter 
width is supported for Total I/O BW and 
I/O Miss BW counters by the underlying 
implementation. 

I/O BW Counter 
Upscaling Factor 

8 52 Total I/O BW and I/O Miss BW Counter 
value can be converted to bandwidth (in 
bytes) using the reported Upscaling 
Factor. 

I/O BW Counter 
Correction Factor 
List Length 

4 60 A value in this field defines I/O BW 
Counter Correction Factor List Length. 
Below are the valid values for the 
Correction Factor List Length: 
0: Do not apply a correction factor to the 
I/O BW Counter values. 
1: Apply a single correction factor 
specified in I/O BW Counter Correction 
Factor field to all the I/O BW Counter 
values (uniformly apply this correction 
factor to all data values retrieved from 
counters for all RMIDs). 

Max RMID + 1: If the value in this field 
matches the maximum supported RMID + 
1 for this domain (as RMIDs are zero-
indexed), indicated in RMDD:"Max RMID", 
apply the indicated indexed correction 
factor specified in MBM Correction Factor 
list to the corresponding the RMID value 
for the I/O BW counter. 

I/O BW Counter 
Correction Factor [] 

- 64 A list of I/O BW Counter Correction 
Factors. The list will contain zero, one or 
Max RMID + 1 entries. Fixed-point 32-bit 
format per entry in this list. See Section 
5.4.12 for details for fixed-point 32-bit 
format details. Counter values may be 
multiplied by the correction factor to 
account for processor-specific 
implementation variations. 
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5.4.11 Cache Allocation Registers for Device Agents 
Description Structure 

A Cache Allocation Registers for Device Agents Description (CARD) structure 

describes near cache allocation registers for Device Agents in a RDT domain. 

There must be at least one instance of this structure for each RDT domain 

which supports I/O Cache Allocation Technology (I/O CAT). This structure is 

always contained within an RMDD structure. 

Table 5-13. Cache Allocation Registers for Device Agents Description (CARD) 

Structure 

Field Byte Length Byte Offset Description 

Type 2 0 10 - Cache Allocation Registers for Device 
Agents Description Structure 

Length 2 2 Fixed: 40B 

Reserved 4 4 Reserved(0) 

Flags 4 8 •  Bit 0: Contention Bitmask Valid: 

If Set, indicates 'Contention Bitmask' field 
is valid. Contention cache bitmask details 
are reported in 'Contention Bitmask' field. 
If Clear, indicates 'Contention Bitmask' 
field is not valid. 
•  Bit 1: Non-Contiguous Bitmasks 
Supported: 
If Set, indicates non-contiguous capacity 
bitmasks are supported. The bits that are 
set in the various CAT Registers are not 
required to be contiguous. If Clear, non-
contiguous bitmasks are not supported.  
•  Bit 2: Zero-length Bitmask: 
If Set, indicates CAT Registers may be 
programmed with a value of zero, 
indicating zero Capacity Bitmask (CBM) 
bits set, and the associated CLOS will be 
prevented from allocating into the I/O L3 
cache. If Clear, indicates CAT Registers do 
not support zero-length bitmasks, and at 
least one CBM bit must be set in the 
programmed mask. 
•  Bits 3-31: Reserved. 

Contention Bitmask 4 12 This field is valid if bit 0 (Contention 
Bitmask Valid) is set in flags field. Each 
set bit within the length of the bitmask (IO 
L3 Ways) indicates the corresponding unit 
(CBM bit) of the I/O L3 allocation may be 
used by other entities in the platform 
(e.g., an integrated graphics engine). 
Each unset bit within the length of the 
CBM indicates that the corresponding 
allocation unit can be used by an OS/VMM 
without interference from other integrated 
hardware agents in the system which may 
degrade determinism. Bits outside the 
length of the capacity bitmask are 
reserved. 

Register Indexing 
Function Version 

1 16 This field indicates Register Indexing 
Function Version Number. See Section 
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Field Byte Length Byte Offset Description 

6.1.3.10 for details on the software usage 
guidance of this field. 

Reserved 7 17 Reserved(0) 

Register Base 
Address 

8 24 Base address of Device Agent register set 
for this CARD. 
This address must be aligned according to 
the size of the register set size reported in 
the Register Block Size field of this 
structure.  

Register Block Size 4 32 Size of register space in units of number 
of 4KB pages. Registers are located in the 
range (X):(X+Y*4096), where X is the 
value reported in the Register Block Base 
Address field and Y is the value in this 
field. See Section 6.1.3.10 for details on 
the register layout. 

CAT Register Offset 
for I/O 

2 36 Bits 0-11: This field specifies the offset to 
the Cache Allocation registers for I/O in its 
corresponding 4KB page. 
If the register base address is X, and the 
value reported in this field is Y, the 
address for the CAT Registers for I/O is 
calculated as (X+Y). Each subsequent 
Cache Allocation register clump starts at 
the same Cache Allocation Register Offset 
in consecutive 4KB pages. 
Bits 12-15: Reserved(0) 

CAT Register Block 
Size 

2 38 Cache Allocation registers are a set of N 
adjacent 8-Byte sized registers, where N is 
the value specified in this field. The size of 
a Cache Allocation Register Block Size is 
thus 8*N bytes.  
Each Cache Allocation Register Block is 
organized in consecutive 4KB pages. Each 

Register Block for Cache Allocation starts 
at an offset specified by Cache Allocation 
Register Offset for I/O field in its 
corresponding 4KB page. 

5.4.12 Fixed-Point 32-bit Format for Correction Factor 

This section describes the fixed-point 32-bit format that is used for “MBM 

Correction Factor” and “I/O BW Counter Correction Factor” fields specified in 

MMRC and IBRD substructures respectively. The high word (16 bits) represents 

the integer (whole number) portion, while the lower word (16 bits) represents 

the fractional (decimal) portion. 

The following examples show the conversion algorithm for fixed-point 32-bit 

format described above. 

Example 1: Calculation steps for fixed-point 32-bit format based on 16:16 

fixed-point representation of the number “1.2”. 

1. Multiply the number by the scaling factor: The scaling factor for the 

fractional portion is 2 N, where N is the number of fractional bits. For 

16:16 representation, this is 216 =65536. 
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1.2 x 65536 = 78,643.2 

2. Round or Truncate to an integer: The result gives 78,643. 

3. Convert the integer to 32-bit hexadecimal and Binary number:    

Hexadecimal Representation: 0001 3333H  

Binary Representation: 

0000 0000 0000 0001 0011 0011 0011 0011 

Integer Portion Fractional Portion 

Hence, to represent Correction Factor for number “1.2”, MMRC and IBRD 

substructures may enumerate it as “0001 3333H”. 

Example 2: Calculation steps for fixed-point 32-bit format based on 16:16 

fixed-point representation of the number “0.9”.  

1. Multiply the number by the scaling factor: The scaling factor for the 

fractional portion is 2 number of fractional bits. For 16:16 representation, 

this is 216 =65536. 

0.9 x 65536 = 58,982.4 

2. Round or Truncate to an integer: The result gives 58,982. 

3. Convert the integer to 32-bit hexadecimal number:   

Hexadecimal number: 0000 E666H 

Binary Representation: 

0000 0000 0000 0000 1110 0110 0110 0110 

Integer Portion Fractional Portion 

Hence, to represent Correction Factor number for “0.9”, MMRC and IBRD 

substructures may enumerate it as “0000 E666H”. 

5.5 Memory Range and Region Mapping (MRRM) 

Structure Details 

The top-level MRRM ACPI table is shown in the table below, and one instance of 

this table is defined at the system level, generated by the system BIOS. This 

table includes a unique signature and defines its variable length including all 

sub-structures. 

The MRRM top-level structure describes host physical memory address ranges 

in the platform for region-ID mapping. The Region-Aware MBM and MBA 

features use these region IDs to enable monitoring and control per region-ID. 

Other features beyond RDT may use these same region numbers, that is, the 
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region ID (e.g., “2”) used for a particular RDT feature maps identically to the 

region ID used for the other corresponding non-RDT feature, providing 

definitional symmetry. Specific memory ranges are defined and numbered via 

the Memory Range Entry (MRE) structure instances encoded within the MRRM 

structure.  

As the MRRM table is fundamental to RDT Region Aware feature operation, if 

software encounters a Revision number that has not been enabled, then it 

should cease to proceed forward and print an error message indicating that a 

software update is required. 

Table 5-14. Memory Range and Region Mapping (MRRM) Structure 

Field Byte Length Byte Offset Description 

Signature 4 0 "MRRM". Signature for the Memory 
Range and Region Mapping Structure 

Length 4 4 Length, in bytes, of the description 
table including the length of the 
associated sub-structures. 

Revision 1 8 1 

Checksum 1 9 Entire table must sum to zero. 

OEMID 6 10 OEM ID 

OEM Table ID 8 16 For MRRM structure, the Table ID is 
the manufacturer model ID 

OEM Revision 4 24 OEM Revision of MRRM Table for OEM 
Table ID. 

Creator ID 4 28 Vendor ID of utility that created the 
table. 

Creator Revision 4 32 Revision of utility that created the 
table. 

Max Memory Regions 
Supported 

1 36 Maximum number of memory 
regions that can be subject to 
Performance Monitoring, and Region-
Aware Memory Bandwidth Monitoring 
and Allocation. One or more memory 
address ranges may be grouped to 
form memory regions.  

Flags 1 37 Bit 0: 
REGION_ASSIGNMENT_TYPE 
• If Clear, platform assigns a static 
region-ID for all memory ranges. 
When this bit is reported as clear, the 
Region-ID assigned for local accesses 
and remote accesses are provided in 
the Platform-assigned Local Region-
ID field and Platform-assigned 
Remote Region-ID fields respectively 
of each Memory Range Entry.  When 
this bit is reported as clear, the 
Region-ID programming registers 
field in each memory range entry 
must be 0. 
• If Set, platform supports the 
capability for system software 
(OS/VMM) to assign region-IDs for 
local and remote accesses for each 
memory range. The registers for 
system software to program the 
region-IDs are enumerated in the 
Region-ID Programming Registers 
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Field Byte Length Byte Offset Description 

field of each Memory Range Entry. In 
this case, any initial platform-
assigned Region-ID values may be 
read by software from the respective 
registers for each range. 
Bits 1-7: Reserved(0). 

Reserved 26 38 Reserved (0). 

Memory Range Entry 
List [] 

- 64 Array of one or more Memory Range 
Entries that each identify a 
contiguous host physical memory 
range to which memory bandwidth 
can be allocated and monitored. Refer 
to the Memory Range Entry structure 
definition. 

5.5.1 Memory Range Entry (MRE) Structure 

The Memory Range Entry (MRE) Structure hosts Memory Range Entries. Each 

Memory Range Entry identifies a contiguous host physical memory range to 

which memory bandwidth can be allocated and monitored. Each of these 

memory range entries provides the MMIO location of registers for software to 

configure Region-ID tagging for that memory range, if supported. 

Table 5-15. Memory Range Entry (MRE) Structure 

Field Byte Length Byte Offset Description 

Type 2 0 0 - Value of 0 in this field indicates this is 
a Memory Range Entry 

Length 2 2 32B + sizeof (Region-ID Programming 
Registers[]) 

Reserved 4 4 Reserved(0) 

Base Address Low 4 8 Low 32 Bits of the Base Address of the 
memory range 

Base Address High 4 12 High 32 Bits of the Base Address of the 

memory range 

Length Low 4 16 Low 32 Bits of the length of the memory 
range 

Length High 4 20 High 32 Bits of the length of the memory 
range. 

Region-ID Flags 2 24 Bit 0: Valid Local Region-ID 
• If Set, this host physical address 
memory range has valid Platform-assigned 
Static Local Region-ID.                                                                                                                                
Bit 1: Valid Remote Region-ID 
• If Set, this host physical address 
memory range has valid Platform-assigned 
Static Remote Region-ID.  
Bits 2-15: Reserved. 
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Field Byte Length Byte Offset Description 

Platform-assigned 
Static Local 
Region-ID 

1 26 If REGION_ASSIGNMENT_TYPE bit in 
MRRM.Flags field is 0 and Valid Local 
Region-ID Flags is 1, this field enumerates 
the platform-assigned static region-ID for 
local accesses to this memory range.  

Platform-assigned 
Static Remote 
Region-ID 

1 27 If REGION_ASSIGNMENT_TYPE bit in 
MRRM.Flags field is 0 and Valid Remote 
Region-ID Flags is 1, this field enumerates 
the platform-assigned static region-ID for 
remote accesses to this memory range.  

Reserved 4 28 Reserved (0). 

Region-ID 
Programming 
Registers[] 

- 32 If the REGION_ASSIGNMENT_TYPE bit in 
MRRM.Flags field is 1, this field specifies the 
registers to program Region-ID for this 
memory range. 
Host Physical Address of 8-Byte aligned 
RDT MMIO registers used to program the 
MBA/MBM Region-IDs of this range. Each 
Memory Range can be assigned two 
Region-IDs (a Local Region-ID for access by 
local socket agents and a Remote Region-
ID for accesses by remote socket agents). 
One or more memory ranges can be 
grouped by into a region by assigning them 
the same Region-ID.  Thus Region-IDs 
enable memory ranges to be organized into 
a set of regions that can be subject to 
Memory Bandwidth Monitoring and 
Allocation. To support memory ranges that 
may be spanning multiple memory 
controllers, more than one register may be 
specified in this field. All registers identified 
in this field should be programmed 
identically. Refer to subsequent sections for 
further details and the architectural 
definition of these MBA/MBM Region-ID 
configuration registers. 

Note that the base and length of each memory region may be used to cross-

reference with memory regions defined in other ACPI tables such as HMAT and 

SRAT in a consistent fashion.  

5.6 Architectural Intel® RDT Features for Non-

CPU Agents (IRDT) 

This section describes ACPI enumeration for architectural Intel RDT features for 

non-CPU agents. These features are predominantly enumerated via an ACPI 

structure for I/O RDT features with signature “IRDT”. Note that while the 

existence of the IRDT object is sufficient to verify the presence of the I/O RDT 

feature on a processor, the revision of the IRDT table may change over time as 

the I/O interface and I/O bridge properties change. The encoded revision 

numbers can be used to manage this change over time.  
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5.6.1 RMID/CLOS tagging - ACPI Enumeration 

5.6.1.1 ACPI Definitional Goals 

A number of goals are accomplished through the IRDT ACPI enumeration 

definition in this chapter, including: 

1. Providing top-level configuration information for the SoC, such as how 

many RMID/CLOS tags non-CPU agent Intel RDT supports relative to CPU 

agent Intel RDT (as enumerated by CPUID, see Chapter 3). 

2. Providing a logical description of the control hierarchy – meaning which 

MMIO address to use to configure a link’s RMID/CLOS tagging. 

3. Provide flexibility in the implementation topology of devices behind I/O 

blocks, and cover cases with discrete or integrated PCIe and CXL links, 

and integrated accelerators. 

4. Provide enhanced ease-of-use information for software, including device 

topologies, TC/VC/Channel mapping information for advanced QoS usages 

for forward-compatibility. 

5.6.1.2 IRDT ACPI Enumeration Overview 

This section provides a number of diagrams introducing key I/O Intel RDT 

structures and their mapping to Intel SoC components. Section 5.6.1.4 

provides table specifics. 

The top-level ACPI structure defined to support I/O Intel RDT is the “IRDT” 

structure. This is a vendor-specific extension to the ACPI table space [4]. The 

named IRDT structure is generated by BIOS and contains all other non-CPU 

agent Intel RDT ACPI enumeration structures and fields as described in this 

chapter. 
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Figure 5-3. Non-CPU Agent Intel® RDT ACPI Enumeration 

 

Note that all Reserved fields in IRDT structures should be initialized to 0 by 

BIOS. 

Under the IRDT structure in the hierarchy (embedded within the IRDT 

structure) are the I/O Intel RDT Resource Management Unit Descriptors 

(RMUDs.). The RMUDs typically map to I/O blocks within the system, though it 

is possible that one RMUD may be defined at other levels (such as one RMUD 

per SoC). 

An example mapping is shown in Figure 5-3, showing ACPI details at the top, 

and Intel® Xeon® SoC mappings to hardware blocks at the bottom. The IRDT 

and RMUD relationships are shown for a typical implementation, in which 

RMUDs describe the properties of an I/O block. The IRDT table defines zero or 

more RMUDs, and an RMUD contains one of more RPs.  

The RMUD structures contain two embedded structures, the Device Specific 

Structures (DSSes) and Resource Control Structures (RCSes) which map to 

devices and links and help describe the relationships regarding which I/O 

devices are connected to particular links, and which I/O links are in use by 

which devices. Each RMUD defines one or more DSS and RCS structures.  

In the example of Figure 5-3, one DSS exists per PCIe, CXL or other non-CPU 

agent device (including accelerators), subservient to an RMUD. A CXL device 

may be expected to have multiple links (for example, CXL.Cache and CXL.IO) 

and this topology is described by the associated DSS structure and multiple 

RCS structures for the device and its links. Note that Figure 5-3 shows the DSS 

structure downstream of the RMUD but does not show the RCS for simplicity. 
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Figure 5-4 shows an example of the RMUD mapping to DSS and RCS 

structures. Each device attached to an I/O block is described by a DSS, and 

has one or more links, with properties described in the RCS structures. The 

RCS structures contain pointers to MMIO locations (in absolute address form, 

not BAR-relative) to allow software to configure the RMID/CLOS tags and 

bandwidth shaping properties, if supported, in an I/O Block.  

Figure 5-4. ACPI Enumeration – Detail of DSS and RCS Structures Downstream 

from an RMUD 

 

Figure 5-5 shows a further layer of detail where devices mapped through I/O 

blocks are described by the RMUDs, the DSS describes the properties of the 

device, and the RCS provides a pointer to the MMIO locations used for 

configuring the tagging and bandwidth shaping for a particular link. 
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Figure 5-5. Mapping from RCS Structures to MMIO Addresses for Per-link 

Control 

 

5.6.1.3 Example ACPI Enumeration Cases 

Given the table hierarchy described in the preceding section, an example CXL 

Type 1 (CXL.IO + CXL.Cache) device mapping is shown in Figure 5-6. The 

device is described by one DSS behind an RMUD, while two RCSes are used, 

one for each link type (CXL.IO and CXL.Cache). 

Figure 5-6. CXL Enumeration Example with CXL.IO and CXL.Cache Links 
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5.6.1.4 ACPI Feature Enumeration – Table Structure Details 

5.6.1.4.1 Introduction and Notation 

Given the previously described relationships of RMUD, DSS and RCS structures, 

table format details are described in this section.  

Using the ACPI table hierarchy shown earlier in this chapter, following are the 

details of each table type and constituent fields. Field definitions are detailed in 

the table, and the text covers interpretation, corner cases, and interactions 

between fields. 

5.6.1.4.2 IRDT Table Format and Field Descriptions 

The top-level ACPI table, the I/O Resource Director Technology table (IRDT) is 

shown in Table 5-16, and one instance of this table is defined at the system 

level, generated by the system BIOS. This table includes a unique signature, 

and length including all sub-structures, including embedded RMUDs. The length 

of the IRDT table is variable. 

Table 5-16. IRDT Table Format (Variable Length) 

Field Byte Length Byte Offset Description 

Signature 4 0 
“IRDT”. Signature for the top-level I/O 

Intel RDT Description Table. 

Length 4 4 

Length, in bytes, of the description table 

including the length of the associated 

remapping structures. 

Revision 1 8 1 

Checksum 1 9 Checksum: Entire table must sum to zero.  

OEMID  6 10 OEM ID. 

OEM Table ID  8 16 
For IORDT description table, the Table ID is 

the manufacturer model ID. 

OEM Revision  4 24 
OEM Revision of IRDT Table for OEM Table 

ID. 

Creator ID  4 28 Vendor ID of utility that created the table. 

Creator revision 4 32 Revision of utility that created the table. 

IO Protocol Flags 2 36 

Bit 0: IO_PROTO_MON -- Set if I/O Intel 

RDT Monitoring capabilities are supported 

somewhere on the platform for I/O protocol 

devices. 

Bit 1: IO_PROTO_CTL -- Set if I/O Intel 

RDT Allocation capabilities are supported 

somewhere on the platform for I/O protocol 

devices. 

Bit 2-15 : Reserved. 
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Field Byte Length Byte Offset Description 

Cache Protocol Flags 2 38 

Bit 0: IO_COH_MON -- Set if I/O Intel RDT 

Monitoring capabilities are supported 

somewhere on the platform for coherent 

non-IA agents. 

Bit 1: IO_COH_CTL -- Set if I/O Intel RDT 

Allocation capabilities are supported 

somewhere on the platform for coherent 

non-CPU agents. 

Bit 2-15 : Reserved. 

Reserved  8 40 - 

Resource 

Management 

Hardware Blocks[] 

- 48 

A list of structures. The list will contain one 

or more Resource Management Unit 

Descriptors (RMUDs). 

The RMUD structure is described next. 

A series of high-level flags allows the basic capabilities of monitoring and 

control for I/O links (for example, PCIe) and coherent links (for example, CXL) 

to be quickly extracted. Embedded within the IRDT table is a set of one or 

more Resource Management Unit Descriptor Structures (RMUDs), which are 

typically mapped to I/O blocks and define their properties. In some 

instantiations, one RMUD may be defined for the system, or in a finer-grained 

approach, one RMUDs may be defined for each downstream link and device 

combination, though this is expected to be an uncommon case.  

5.6.1.4.3 RMUD Table Format and Field Descriptions 

The Resource Management Unit Descriptor (RMUD) structure, definition is 

shown in Table 5-17, and includes a number of fields including length of the 

RMUD instance and all embedded sub-structures (DSS and RCS entries), an 

integration parameter that map to the SoC properties, including the minimum 

and maximum RMID and CLOS tags that are available for use in monitoring and 

controlling devices under this RMUD. While the common case is that these 

parameters would match the CPU agent Intel RDT parameters, there may be 

certain RMUDs which support a subset of the overall RMID and CLOS space. 

Table 5-17. RMUD Table Format (Variable length) 

Field Byte Length Byte Offset Description 

Type  1 0 

Type 0 = “RMUD”. Signature for the I/O 

Intel RDT Resource Management Unit 

Descriptor. 

Reserved  3 1 Reserved. 

Length 4 4 
Total length of this RMUD and all sub-

structures. 

Segment 2 8 
The PCI Segment containing this RMUD, 

and all of the devices that are within it.  

Reserved  3 10 Reserved. 
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Field Byte Length Byte Offset Description 

DSS and RCS 

Structures [] 
--- 13 

List of devices behind this RMUD, with one 

DSS table instance per device. 

Contains a list of DSS control structures 

and RCS control structures,  identified by 

their “Type” field at offset zero in the sub-

structures.  

The DSS and RCS structures described 

next. 

Each RMUD entry contains a number of embedded DSS and RCS structures, 

identified by their “Type” fields, which describe the devices and links behind a 

given RMUD. 

5.6.1.4.4 DSS Table Format and Field Descriptions 

The Device Scope Structures behind each RMUD describe the properties of a 

device, that is, each DSS maps 1:1 with a device behind a particular RMUD. 

The DSS table definition is shown in Table 5-18, including a “type” field (Type 

= 0 identifies a DSS), the length of the entry, device type, and an embedded 

channel management structure (CHMS). The CHMS defines which RCS(es) are 

applicable to controlling this device (DSS), and which internal I/O block 

Channels each of the link’s virtual channels (VCs) may map to (in the case of 

PCIe, up to eight VCs are supported, but only the first entry is valid in the case 

of CXL). Valid configurations for the CHMS include one entry per RCS (link). 

In the DSS Device Type field, a value of 0x02 denotes that a PCIe Sub-

hierarchy is described by this DSS. Each root port described by a DSS will have 

type 0x02. System software may use the enumerated devices found under 

such a root port to comprehend share bandwidth relationships in the channels 

under an RMUDS. 

DSS type 0x01 indicates the presence of a root complex integrated endpoint 

device (RCEIP), such as an accelerator. Note that a PCI sub-hierarchy may 

denote a root port, and for every DSS that corresponds to a root port it is 

expected that Device Type = 0x2. 

Note that the CHMS field contains a list of CHMS structures, which may 

describe for instances DSS entries which are capable of sending traffic over 

multiple channels (which are in turn described by unique RCS entries). 

Note that no discrete pluggable devices (for example, PCIe cards) are directly 

described by the DSS entries, rather the root ports are indicated (Device Type 

0x2). 

Fields described in this DSS table are only valid when the Revision value is 1 in 

the top-level IRDT structure. Refer to section 5.6.1.4.5 (DSS Table format) and 

following for cases when Revision value is 2 or above in the top-level IRDT 

structure. 
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Table 5-18. DSS Table Format (Variable length) 

Field Byte Length Byte Offset Description 

Type 2 0 0 = DSS  

Length  2 2 Length of this Entry in Bytes.  

Device Type  1 4 

The following values are defined for this 

field. 

0x01: Root Complex Integrated Endpoint 

(RCEIP) Device - The device identified by 

the ‘Path’ field is a root complex integrated 

PCI endpoint device. 

0x02: PCI Sub-hierarchy - The device 

identified by the ‘Path’ field is a PCI-PCI 

bridge. In this case, the specified bridge 

device and all its downstream devices are 

included in the scope. 

Other values for this field are reserved for 

future use. 

Enumeration ID  2 5 
If Device Type equals 1 or 2, this field lists 

the BDF  

Reserved  1 7 Reserved  

Structure: CHMS 

and RCS 

Enumeration []  

--- 8 

Packed as byte fields. 

One RCS may support multiple DSSes, and 

one DSS may have multiple RCSs (links), 

so this is an array, with size derivable from 

the DSS Length field. Within each entry: 

Byte 0: RCS Enumeration ID controlling 

this link. Corresponds to the enumeration 

ID of the RCS structure under this DSS.  

Bytes 1-8: Represents the index into the 

“RCS-CFG-Table” used by the 

corresponding VC. Byte 1 represents the 

channel for VC0, Byte 2 represents the 

channel for VC1, and so on. In this field, bit 

7 is a valid bit (entry is not valid if enable 

bit is cleared). Bit 6, when set, indicates 

that this channel is shared with another 

DSS. The number of valid bytes in this field 

is defined in the per-RCS “Channel Count” 

field, any unused bytes (for example, for a 

single-Channel CXL link) are Reserved. 

See text below for version-specific 

interpretation.  

Bytes 9-15: Reserved (padding) 

 

5.6.1.4.5 DSS Table Format for IRDT Table Revision 2 

When revision 2 is specified in the IRDT table, the Channel Count field in the 

RCS structure indicates how many links the RCS has been bifurcated into and   

the lowest number channel can be used to control lowest number BDF and so 

on. This controls register indexing pattern. 
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5.6.1.4.6 RCS Table Format and Field Descriptions 

The RCS structure provides details of the type of monitoring and controls 

supported for a particular link interface type, such as PCIe or CXL, and an 

MMIO location in which a table exists that can be used to apply monitoring and 

control features. The MMIO location provided is absolute location in MMIO 

space (64 bits), rather than hosted in a particular device and defined relative to 

a BAR.  

Table 5-19. RCS Table Format (v1, Currently 40B) 

Field Byte Length Byte Offset Description 

Type  2 0 RCS = 1. 

Length 2 2 

Length, in bytes, of the description table 

including the length of the associated 

remapping structures. 

Link Interface Type 2 4 

Type of link interface: 

0x0 = PCIe or CXL.IO 

0x1 = CXL.Cache 

0x2 and above: Reserved 

RCS Enumeration ID  1 6 
A unique identifier for this RCS under this 

RMUD. 

Channel Count  1 7 

Number of Channels defined for this link 

interface (affects the interpretation of the 

CHMS structure within the corresponding 

DSS). 

Flags 2 8 

Bit 0: Reserved. 

Bit 1: RTS: RMID Tagging supported. 

Bit 2: CTS: CLOS Tagging Supported. 

Bit 3: REGW: if set, the RMID and CLOS 

defined in the RCS Block MMIO locations 

are 2B registers. If clear, they are 8B 

registers. 

Bits 4-15: Reserved. 

RMID Block Offset 2 10 

Byte offset from the RCS Block MMIO 

Location where the RMID tagging fields 

begin. 

CLOS Block Offset 2 12 

Byte offset from the RCS Block MMIO 

Location where the CLOS  tagging fields 

begin. 

Reserved  18 14 Reserved. 

RCS Block MMIO 

Location 
8 32 

RCS Hosting I/O Block MMIO BAR Location 

defines an MMIO physical address. 

Fields mentioned in this RCS table are only valid when the Revision value is 1 

in top-level IRDT structure. Refer section 5.6.1.4.7 RCS Table format when 

Revision value 2 or above in top-level IRDT structure. 

Note that if CXL.IO and PCIe devices share the bandwidth of a certain RCS and 

its channels, then traffic for both protocols is carried on the same channel 

entries.   
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Note that in the enumeration the fields, the RMID offset, and CLOS offset are 

specified relative to the “RCS Block MMIO Location” field, meaning that the 

RMID and CLOS offsets may be relocatable within the MMIO space. The offset 

defines the block of a contiguous set of RMID or CLOS tagging fields, and the 

number of entries is defined by the “Channel Count” field (for example, a value 

of 8 channels may be common in certain PCIe tagging implementations). Note 

that if CXL.IO and PCIe devices share the bandwidth of a certain RCS and its 

channels, then traffic for both protocols is carried on the same channel entrie 

Note that in the enumeration the fields, the RMID offset, and CLOS offset are 

specified relative to the “RCS Block MMIO Location” field, meaning that the 

RMID and CLOS offsets may be relocatable within the MMIO space. The offset 

defines the block of a contiguous set of RMID or CLOS tagging fields, and the 

number of entries is defined by the “Channel Count” field (for example, a value 

of 8 channels may be common in certain PCIe tagging implementations).  

5.6.1.4.7 RCS Table Format for Revision 2 

These fields are only valid when the Revision value is 2 in top-level IRDT 

structure. 

Table 5-20. RCS Table Format (v2, Currently 40B) 

Field Byte Length Byte Offset Description 

Type  2 0 RCS = 1. 

Length 2 2 

Length, in bytes, of the description table 

including the length of the associated 

remapping structures. 

Link Interface Type 2 4 

Type of link interface: 

0x0 = PCIe or CXL.IO 

0x1 = CXL.Cache 

0x2 and above: Reserved 

RCS Enumeration ID  1 6 
A unique identifier for this RCS under this 

RMUD. 

Channel Count  1 7 

Number of Channels defined for this link 

interface (affects the interpretation of the 

CHMS structure within the corresponding 

DSS). 

Flags 2 8 

Bit 0: Reserved. 

Bit 1: RTS: RMID Tagging supported. 

Bit 2: CTS: CLOS Tagging Supported. 

Bit 3: REGW: if set, the RMID and CLOS 

defined in the RCS Block MMIO locations 

are 2B registers. If clear, they are 4B 

registers. 

Bit 4: CXLD: if set, indicates that more 

than one CXL device resides behind the I/O 

link represented by this RCS, for instance 

due to link bifurcation. This has 

implications on the interpretation of the 

Channel Count field. See the surrounding 

text for details. 
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Field Byte Length Byte Offset Description 

Bits 5-15: Reserved. 

RMID Block Offset 2 10 

Byte offset from the RCS Block MMIO 

Location where the RMID tagging fields 

begin. 

CLOS Block Offset 2 12 

Byte offset from the RCS Block MMIO 

Location where the CLOS tagging fields 

begin. 

Reserved  18 14 Reserved. 

RCS Block MMIO 

Location 
8 32 

RCS Hosting I/O Block MMIO BAR Location 

defines an MMIO physical address. 

Channel Count indicates how many links the RCS has been bifurcated into and 

the lowest number channel can be used to control lowest number BDF and so 

on. This controls register indexing pattern. When set, RCS::Flags::CXLD (Bit 4) 

is a special case, where Channel Count field means something specific for a 

CXL bifurcated device in that if software detects more than one BDF within the 

scope of this DSS and it is enumerated PCIe Bridge, then there will be multiple 

devices under the scope of single RCS. In that case, these devices will be 

implicitly sharing bandwidth in an some way, such as sharing a bifurcated CXL 

physical interface. This bandwidth sharing may also apply to PCIe physical 

devices or functions within a single PCIe physical device but is not represented 

by the CXLD bit. 
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5.7 Model-Specific Intel® RDT Features for CPU 

Agents 

This section describes BIOS configuration options for Model-Specific Intel RDT 

features for CPU agents. 

5.7.1 BIOS Configuration for Resource Aware MBA  

See Appendix A.3 for Resource Aware MBA processor support details. See 

Appendix B.1.1 for Resource Aware MBA feature details. Note that Resource 

Aware MBA is a distinct feature from Region Aware MBA.  

The Resource-aware MBA feature is a model-specific extension to the Third 

Generation of MBA (Chapter 3) which provides a set of extended capabilities to 

better handle heterogenous memory types on complex modern SoCs. A model-

specific implementation is used as memory types may change significantly over 

the course of time. A more detailed description of Resource Aware MBA is 

provided in the next chapter.  

To support Resource Aware MBA, the system BIOS shall support a legacy BW 

profile configuration knob with a drop-down menu of three options as with 

Second-Generation MBA.  

• MBA BW profile  

⎯ Linear(default) 

⎯ Biased 

⎯ Legacy 

Note: These BIOS profile names may change in the future.  

In addition, BIOS shall add three knobs with a drop-down menu for Resource-

Aware MBA in particular. These scaling ratios enable tuning of MBA calibration 

values to the typical bandwidth levels available from each type of 

heterogeneous downstream memory type, and tuning values may be further 

scaled by the number of memory channels or links populated with each type of 

memory. An example implementation of this tuning code will be provided with 

the Intel Reference BIOS implementation for each applicable platform. 

1. Description: “PMM BW downscaling vs the baseline Total memory BW 

profile. For example: picking 1/2x at results in scaling PMM BW throttling 

in a 2:1 ratio versus DDR throttling.” 

⎯ PMM MBA BW downscale 

o 1x (default) 

o 1/2x 

o 1/4x 

o 1/8x 

2. Description: “CXL (Type3) BW downscaling vs the baseline Total memory 

BW profile. For example: picking 1/2x results in scaling CXL (Type3) BW 

throttling in a 2:1 ratio versus DDR throttling.” 
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⎯ CXL (Type3) MBA BW downscale 

o 1x (default) 

o 1/2x 

o 1/4x 

o 1/8x 

3. Description: “Remote Target BW downscaling vs the baseline Total 

memory BW profile. For example: picking 1/2x results in scaling Remote 

Target BW throttling in a 2:1 ratio versus DDR throttling.” 

⎯ Remote Target MBA (UPI) BW downscale 

o 1x (default) 

o 1/2x 

o 1/4x 

o 1/8x 

  

§ 
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6 MMIO Register Descriptions 

This chapter describes the Intel RDT related MMIO registers. As described in 

previous chapters, traditional interfaces such as MSRs are discussed in the 

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B. 

6.1 Enhanced Intel® RDT Register Location 

Referencing the ACPI object definitions of Chapter 5, the register set (MMIO 

interfaces) for each Resource Monitoring Domain Description (RMDD) structure 

in the platform is mapped in a 4KB-aligned memory mapped page. The exact 

location of the register region for each feature is implementation dependent 

and is communicated to system software by BIOS through the ACPI ERDT and 

MRRM reporting structures (described in Chapter 5, BIOS Considerations).  

6.1.1 Software Access to Registers 

The following sections describe software access conventions to MMIO-based 

RDT registers, including register indexing functions, bitfield definitions and 

properties.  

6.1.2 Register Attributes 

The following table defines the attributes used in the RDT feature Registers. 

The registers are discussed in Section 6.1.3.  

Table 6-1. Register Attributes Definitions 

6.1.3 Register Descriptions 

The following table summarizes the RDT feature memory-mapped registers. 

The scope of these registers is per RMDD structure. 

Attribute Description 

RW Read-Write field that may be either set or cleared by software to 

the desired state. 

RO Read-only field that cannot be directly altered by software 

RsvdP “Reserved and Preserved” field that is reserved for future RW 

implementations. Registers are read-only and must return 0 

when read.  

Important: Software must preserve the value read for 

subsequent writes during read-modify-write (RMW) operations.  
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Table 6-2. Memory-Mapped Register Block Reference 

 Register Name Size(b) Description 

1 RDT CTRL  64 Register to control RDT MBM and MBA features. 

2 Cache Monitoring 

Register for CPU 

Agents 

64 Register reporting cache occupancy telemetry for 

CPU Agents. MMIO Base address of this register is 

specified in CMRC sub-structure of ERDT APCI. 

Field name: CMT Register Block Base Address for 

CPU. See later sections for data interpretation. 

3 Memory-

bandwidth 

Monitoring 

Registers for CPU 

Agents 

64 Register reporting memory bandwidth monitoring 

telemetry data for CPU Agents. MMIO Base address 

of this register is specified in MMRC sub-structure 

of ERDT APCI. Field name: MBM Register Block 

Base Address. See later sections for data 

interpretation. 

4 Optimum 

Memory-

bandwidth 

Allocation 

Registers for CPU 

Agents 

64 Register to configure optimum memory bandwidth 

allocation targets for CPU Agents. MMIO Base 

address of this register is specified in MARC sub-

structure of ERDT APCI. Field name: MBA Optimal 

BW Register Block Base Address. 

5 Minimum 

Memory-

bandwidth 

Allocation 

Registers for CPU 

Agents 

64 Register to configure minimum memory bandwidth 

allocation targets for CPU Agents. MMIO Base 

address of this register is specified in MARC sub-

structure of ERDT APCI. Field name: MBA Minimum 

BW Register Block Base Address. 

6 Maximum 

Memory-

bandwidth 

Allocation 

Registers for CPU 

Agents 

64 Register to configure maximum memory bandwidth 

allocation targets for CPU Agents. MMIO Base 

address of this register is specified in MARC sub-

structure of ERDT APCI. Field name: MBA 

Maximum BW Register Block Base Address. 

7 Cache Monitoring 

Registers for 

Non-CPU Agents 

64 Register reporting cache occupancy telemetry for 

Non-CPU Agents. MMIO Base address of this 

register is specified in CMRD sub-structure of ERDT 

APCI. Field name: Register Base Address. See later 

sections for data interpretation. 

8 Cache Allocation 

Registers for 

Non-CPU Agents 

64 Register to configure cache allocation rules for CPU 

Agents. MMIO Base address of this register is 

specified in CARD sub-structure of ERDT APCI. 

Field name: Register Base Address. 
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 Register Name Size(b) Description 

9 Total I/O 

Bandwidth 

Registers for 

Non-CPU Agents 

64 Register reporting Total I/O bandwidth telemetry 

for Non-CPU Agents. MMIO Base address of this 

register is specified in IBRD sub-structure of ERDT 

APCI. Field name: Register Base Address. See later 

sections for data interpretation. 

10 I/O Miss 

Bandwidth 

Registers for 

Non-CPU Agents 

64 Register reporting I/O Miss bandwidth telemetry for 

Non-CPU Agents. MMIO Base address of this 

register is specified in IBRD sub-structure of ERDT 

APCI. Field name: Register Base Address. See later 

sections for data interpretation. 

11 Region-ID 

Programming 

Registers[] 

 Register to configure range to region mapping via 

system software (OS/VMM). MMIO Base address of 

this register is specified in MRRM ACPI. Field name: 

Region-ID Programming Registers[]. 

6.1.3.1 RDT Control Register for CPU Agents 

Figure 6-1. RDT Control Register 

 

 

 

Abbreviation RDT_CTRL 

General Description Register to configure RDT features for CPU Agents 

Indexing Function  N/A 

Address RMDD.Control Register Base Address 

Scope Per Resource Management Domain (Per RMDD) 

 

Bits Access Default Field Description 

63:3 RO 0h RsvdP1: 

Reserved and 

Preserved 

Reserved 

2:2 RW 1h TME: Total 

Mode En 

Total Mode Enable: 

1: Indicates Total MBM and MBA Mode to 

enable the Legacy MSR interfaces. 

3
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0
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0: Indicates Per Region Aware MBM and 

MBA to opt-in to using the MMIO Register 

interfaces for Region Aware RDT features.  

1:0 RO 0h RsvdP0: 

Reserved and 

Preserved 

Reserved 

Software should enable region aware MBA and MBM to prior to usages of the 

Region Aware MBA and MBM features, via the RDT CTRL register on a per-

RMDD basis. These registers should be programmed identically across all RMDD 

instances (e.g., by programming each RDT_CTRL MMIO register indicated in 

each RMDD) for CPU agents. It is recommended that software use Region 

Aware MBM when Region Aware MBA is enabled and vice versa. Mixed mode 

use (e.g., legacy MSR interfaces for MBM with Region Aware MBA or vice versa) 

is not supported and may lead to inconsistent behavior.  

For total bandwidth monitoring and allocation software may continue to use 

MSR interfaces by setting the TME bit (Total Mode En Bit[2]) to 1. MSR 

interfaces should not be used if Total Mode En Bit[2] is clear. Legacy MSR 

interfaces do not offer Region Aware Memory bandwidth monitoring and 

allocation.  

6.1.3.2 Cache Monitoring Register for CPU Agents 

Figure 6-2. CMT Register 

 

 

 

Abbreviation L3_CMT_RMID_n 

n: Refer to ACPI ERDT for MAX RMID. RMIDs are zero-

referenced. Hence, this range will encompass 0 to (“MAX RMID” 

reported by RMDD sub-structure). 

General Description Register to report Cache Occupancy for CPU Agents 

Indexing Function  See Section 6.1.3.2.1 

RMID Address CMRC.CMT Register Block Size for CPU + Indexing function 

mentioned above 

Scope Per Resource Management Domain (Per RMDD) 

 

6
3

U

0
6
2

L3_CMT_Count
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Bits Access Default Field Description 

63 RO 0h U: Unavailable • 0: Indicates data for this RMID is 

available and monitored for the 

resource or RMID. 

• 1: Indicates data for this RMID is not 

available or not monitored for the 

resource or RMID, and bits(62:0) 

should be ignored. 

62:0 RO 0h L3_CMT_Count  The value in this field indicates Cache 

Monitoring (occupancy) telemetry. See 

later sections in Chapter 7, Programming 

Guidelines, for data interpretation. 

6.1.3.2.1 RMID Organization in CMT Register Block 

Software should use the RMID indexing algorithm discussed in this section only 

if the “Register Indexing Function Version” field value is 1 in the CMRC sub-

structure. Software should be upgraded to handle any versions > 1 in this field 

which would be defined in future version of this specification.  

RMIDs are organized in sequential fashion in the CMT Register Blocks. Software 

may consult the CMRC sub-structure from ERDT in ACPI when retrieving CMT 

telemetry using CMT Register Block Base Address for CPU, CMT Register Block 

Size for CPU, CMT Register Clump Size for CPU CMT Register Clump Stride for 

CPU fields of the CMRC sub-structure. Each block size is 4KB. CMT registers are 

located in the range (CMT Register Block Base Address): (CMT Register Block 

Base Address + CMT Register Block Size Value x 4096). To index RMIDs in 

the block use the following pseudocode algorithm, where “%” represents the 

modulo operator and “/*** … ***/”  is used to encapsulate comments): 

 
MMIO_ADDRESS_for_RMID# = CMT Register Block Base Address + 

((RMID# / CMT Register Clump Size for CPU) x CMT Register Clump 

Stride for CPU) + ((RMID# % CMT Register Clump Size for CPU) x 

8B);  

 

/*** MMIO_ADDRESS_for_RMID# < (CMT Register Block Base Address + 

CMT Register Block Size Value x 4096) ***/ 

 

Here,   

Input Parameter: RMID# 

Parameters for Indexing:   

▪ “CMT Register Block Base Address” field reported by 

CMRC sub-structure of ERDT ACPI. 
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▪ “CMT Register Block Size Value” reported by CMRC 

sub-structure of ERDT ACPI. 

▪ Max RMIDs supported on the platform reported by 

RMDD sub-structure of ERDT ACPI. 

▪ “CMT Register Clump Size for CPU” and “CMT Register 

Clump Stride for CPU” fields values to be enumerated 

by CMRC sub-structure. 

6.1.3.3 Memory Bandwidth Monitoring Registers for CPU Agents 

Figure 6-3. Per Region Per RMID MBM Register 

 

 

Abbreviation MBM_Region_m_RMID_n 

Variable “m”: Refer to ACPI MRRM to find out number of regions 

supported. This range will be 0 to (“Max Memory Regions 

Supported” reported by MRRM ACPI -1) 

Variable “n”: Refer ACPI ERDT for MAX RMID. RMIDs are zero-

referenced. Hence, this range will be 0 to (“MAX RMID” reported by 

RMDD sub-structure). 

General Description Register to report Memory Bandwidth Monitoring for CPU Agents. 

Indexing Function See Section 6.1.3.3.1 

RMID Address  MMRC.MBM Register Block Base Address + Indexing function 

mentioned above 

Scope Per Resource Management Domain (Per RMDD) 

 

Bits Access Default Field Description 

63 RO 0h U: Unavailable • 0: Indicates data for this RMID is 

available and monitored for the 

resource or RMID. 

1: Indicates data for this RMID is 

not available or not monitored for 

the resource or RMID, and 

bits(61:0) should be ignored. 

6
3

U

6
2

O

0
6
1

MBM_RMID_Count
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Bits Access Default Field Description 

62 RO 0h O: Overflow • 0: Indicates that there is no 

overflow of the MBM counters 

• 1: Indicates that there is overflow of 

the MBM counters. It will be reset 

upon read, enabling a variable 

software-defined counter polling 

interval for reduced sampling 

overhead. 

61:0 RO 0h 

 

MBM_RMID_Count The value in this field indicates Memory 

Bandwidth Monitoring telemetry. See 

later sections in Chapter 7, 

Programming Guidelines, for data 

interpretation. 

6.1.3.3.1 RMID Organization in MBM Register Block 

Software should use the RMID indexing algorithm discussed in this section only 

if “Register Indexing Function Version” field value is 1 in MMRC sub-structure. 

Software should be upgraded to handle any versions > 1 in this field which 

would be defined in future version of this specification.   

RMIDs are organized in interleaved fashion in the MBM Register Blocks. 

Software may consult the MMRC sub-structure from ERDT ACPI for retrieving 

MBM registers using MBM Register Block Base Address and MBM Register Block 

Size. Each block size is 4KB. MBM registers are located in the range (MBM 
Register Block Base Address): (MBM Register Block Base Address + MBM 

Register Block Size Value x 4096B). To index RMIDs in the block per Region 

use the following pseudocode algorithm: 

 
Block_to_locate_RMID# = ((RMID# % 32) / 8) x 4 x 4096B; 

Offset_within_this_Block = ((((RMID#/32)x8)+RMID#%8) x 

8B)+(Region# x 2048B); 

 

MMIO_ADDRESS_for_RMID#_Region# =  

MBM Register Block Base Address + Block_to_locate_RMID# + 

Offset_within_this_Block;  

 

/*** MMIO_ADDRESS_for_RMID#_Region# < (MBM Register Block Base 

Address + MBM Register Block Size Value *4096B) ***/ 

 

Here,   
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Input Parameter: RMID# and Region# 

Parameters for Indexing:  

• “MBM Register Block Base Address” field reported by 

MMRC sub-structure of ERDT ACPI. 

•  “MBM Register Block Size Value” reported by MMRC sub-

structure of ERDT ACPI. 

• Max RMIDs supported on the platform reported by RMDD 

sub-structure of ERDT ACPI. 

• Max Regions support on the platform reported by MRRM 

ACPI. 

An example of MBM register blocks is described below in Figure 6-6-4.  

Figure 6-6-4. Interleaved RMID MBM Register 

 

0h:       Region 0 – RMID 0

…

38h:       Region 0 – RMID 7

40h:       Region 0 – RMID 32

…

78h:       Region 0 – RMID 39

80h:       Region 0 – RMID 64

…

B8h:       Region 0 – RMID 71

C0h:       Region 0 – RMID 96

…

F8h:       Region 0 – RMID 103

100h:     Region 0 – RMID 128

…

138h:     Region 0 – RMID 135

140h:     Region 0 – RMID 160

…

178h:     Region 0 – RMID 167

180h:     Region 0 – RMID 192

…

1B8h:     Region 0 – RMID 199

1C0h:     Region 0 – RMID 224

…

1F8h:     Region 0 – RMID 231

200h-7FFh: Reserved for future

MBM Register Block 0

MBM Register Block 1

MBM Register Block 2

MBM Register Block 3

MBM Register Block 4

MBM Register Block 5

MBM Register Block 6

MBM Register Block 7

MBM Register Block 8

MBM Register Block 9

MBM Register Block 10

MBM Register Block 11

MBM Register Block 12

MBM Register Block 13

MBM Register Block 14

MBM Register Block 15
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800h:     Region 1 – RMID 0

…

838h:     Region 1 – RMID 7

840h:     Region 1 – RMID 32

…

878h:      Region 1 – RMID 39

880h:      Region 1 – RMID 64

…

8B8h:       Region 1 – RMID 71

8C0h:       Region 1 – RMID 96

…

8F8h:       Region 1 – RMID 103

900h:       Region 1 – RMID 128

…

938h:       Region 1 – RMID 135

940h:       Region 1 – RMID 160

…

978h:       Region 1 – RMID 167

980h:       Region 1 – RMID 192

…

9B8h:      Region 1 – RMID 199

9C0h:      Region 1 – RMID 224

…

9F8h:       Region 1 – RMID 231

A00h-FFFh: Reserved for future

MBM Register Block 0

MBM Register Block 1

MBM Register Block 2

MBM Register Block 3

MBM Register Block 4

MBM Register Block 5

MBM Register Block 6

MBM Register Block 7

MBM Register Block 8

MBM Register Block 9

MBM Register Block 10

MBM Register Block 11

MBM Register Block 12

MBM Register Block 13

MBM Register Block 14

MBM Register Block 15
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1000h:     Region 2 – RMID 0

…

1038h:     Region 2 – RMID 7

1040h:     Region 2 – RMID 32

…

1078h:      Region 2 – RMID 39

1080h:      Region 2 – RMID 64

…

10B8h:       Region 2 – RMID 71

10C0h:       Region 2 – RMID 96

…

10F8h:       Region 2 – RMID 103

1100h:       Region 2 – RMID 128

…

1138h:       Region 2 – RMID 135

1140h:       Region 2 – RMID 160

…

1178h:       Region 2 – RMID 167

1180h:       Region 2 – RMID 192

…

11B8h:      Region 2 – RMID 199

11C0h:      Region 2 – RMID 224

…

11F8h:       Region 2 – RMID 231

1120h-17FFH: Reserved for future

MBM Register Block 0

MBM Register Block 1

MBM Register Block 2

MBM Register Block 3

MBM Register Block 4

MBM Register Block 5

MBM Register Block 6

MBM Register Block 7

MBM Register Block 8

MBM Register Block 9

MBM Register Block 10

MBM Register Block 11

MBM Register Block 12

MBM Register Block 13

MBM Register Block 14

MBM Register Block 15
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6.1.3.4 Optimal Memory Bandwidth Allocation Register for CPU 
Agents 

Figure 6-5. MBA Optimal Bandwidth Register 

 

 

 

Abbreviation MBA_OPTIMAL_BW_n 

n: Refer to ACPI ERDT for Max CLOS. CLOS are zero-referenced. 

Hence, this range will be 0 to (“MAX CLOS” reported by the ERDT 

top-level structure). 

1800h:     Region 3 – RMID 0

…

1838h:     Region 3 – RMID 7

1840h:     Region 3 – RMID 32

…

1878h:      Region 3 – RMID 39

1880h:      Region 3 – RMID 64

…

18B8h:       Region 3 – RMID 71

18C0h:       Region 3 – RMID 96

…

18F8h:       Region 3 – RMID 103

1900h:       Region 3 – RMID 128

…

1938h:       Region 3 – RMID 135

1940h:       Region 3 – RMID 160

…

1978h:       Region 3 – RMID 167

1980h:       Region 3 – RMID 192

…

19B8h:      Region 3 – RMID 199

19C0h:      Region 3 – RMID 224

…

19F8h:       Region 3 – RMID 231

1A00h-3FFFh: Reserved for future

MBM Register Block 0

MBM Register Block 1

MBM Register Block 2

MBM Register Block 3

MBM Register Block 4

MBM Register Block 5

MBM Register Block 6

MBM Register Block 7

MBM Register Block 8

MBM Register Block 9

MBM Register Block 10

MBM Register Block 11

MBM Register Block 12

MBM Register Block 13

MBM Register Block 14

MBM Register Block 15
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General Description Register to configure Optimal Bandwidth Control Window for 

Memory Bandwidth Allocation per CLOS. 

Indexing Function See Section 6.1.3.4.1 

CLOS Address MARC.MBA Register Block Base Address + Indexing function 

mentioned above 

Scope  Per Resource Management Domain (Per RMDD) 

 

Bits Access Default Field Description 

63:57 RsvdP 0h RsvdP3: Reserved and 

Preserved 

Reserved. 

56:48 RW 1FFh BR3: Bandwidth_Target_ 

Region 3 

Optimal Bandwidth Control Value 

for Region 3. Ranges from 001h 

to 1FFh, with 001h as the 

minimum BW and 1FFh as the 

maximum BW.  

47:41 RsvdP 0h RsvdP2: Reserved and 

Preserved 

Reserved. 

40:32 RW 1FFh BR2: 

Bandwidth_Target_Region 

2 

Optimal Bandwidth Control Value 

for Region 2. Ranges from 001h 

to 1FFh, with 001h as the 

minimum BW and 1FFh as the 

maximum BW.  

31:25 RsvdP 0h RsvdP1: Reserved and 

Preserved 

Reserved. 

24:16 RW 1FFh BR1: Bandwidth_Target_ 

Region 1 

Optimal Bandwidth Control Value 

for Region 1. Ranges from 001h 

to 1FFh, with 001h as the 

minimum BW and 1FFh as the 

maximum BW. 

15:9 RsvdP 0h RsvdP0: Reserved and 

Preserved 

Reserved. 

8:0 RW 1FFh BR0: 

Bandwidth_Target_Region 

0 

Optimal Bandwidth Control Value 

for Region 0. Ranges from 001h 

to 1FFh, with 001h as the 

minimum BW 1FFh as the 

maximum BW. 
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6.1.3.4.1 CLOS Organization in Optimal MBA Register Block 

Software should use the CLOS indexing algorithm discussed in this section only 

if “Register Indexing Function Version” field value is 1 in MARC sub-structure. 

Software should be upgraded to handle any versions > 1 in this field which 

would be defined in future version of this specification. 

Note that Region Aware MBA uses the same definition of “optimal”, “min” and 

“max” bandwidth as described in earlier discussion in Section 3.2.4.4.3, 

Optimal Bandwidth Caps per CLOS.  

CLOSs are organized in sequential fashion in the Optimal MBA Register Blocks. 

Software may consult the MARC sub-structure from ERDT ACPI for configuring 

the per-agent per-region per-CLOS optimum target bandwidth using the MBA 

Optimal BW Register Block Base Address and MBA Register Block Size fields of 

MARC sub-structure. Each block size is 4KB. Optimum MBA registers are 

located in the range (MBA Optimal BW Register Block Base Address): (MBA 

Optimal BW Register Block Base Address + MBA Register Block Size x 4096. 

To index CLOSs per region in the block use the following pseudocode 

algorithm: 

 
MMIO_ADDRESS_for_CLOS# = MBA Optimal BW Register Block Base 

Address + (Region# / 4) x 512B + CLOS# x 8B.  

/*** MMIO_ADDRESS_for_CLOS# < (MBA Optimal BW Register Block Base 

Address + MBA Register Block Size x 4096) ***/ 

Here,   

Input Parameter: CLOS#, Region# (multiple banks for registers 

1st bank is for Region 0 to 3 and consecutively Region 4 to 7 after every 

512B). This formula supports up to 64 CLOSs and an arbitrary number 

of regions.  

Parameters for indexing: 

• “MBA Optimal BW Register Block Base Address” field 

reported by MARC sub-structure of ERDT ACPI 

•  “MBA Register Block Size” reported by MARC sub-

structure of ERDT ACPI  

• Max CLOSs supported on the platform reported by ERDT 

ACPI. 

• Max Regions support on the platform reported by MRRM 

ACPI. 

 

An example of Optimum MBA register blocks is described below in Figure 6-6. 



 

Document Number: 356688-004US, Revision: 1.3  109 

  

Figure 6-6. Sequential CLOS arrangement in MBA Register 

 

6.1.3.5 Minimum Memory Bandwidth Allocation Register for CPU 

Agents 

Figure 6-7. Minimum MBA Register 

 

 

Abbreviation MBA_MINIMUM_BW_n 

n: Refer ACPI ERDT for Max CLOS. CLOSs are zero-referenced. 

Hence, this range will be 0 to (“MAX CLOS” reported by ERDT top-

level structure). 

General Description Register to configure Minimum Bandwidth Control Window for 

Memory Bandwidth Allocation per CLOS. 

Indexing Function See Section 6.1.3.5.1 

CLOS Address MBA Minimum BW Register Block Base Address + Indexing 

function mentioned above 

Scope Per Resource Management Domain (Per RMDD) 

 

0h:       Region 0 – CLOS 0

02h:     Region 1 – CLOS 0

04h:     Region 2 – CLOS 0

06h:     Region 3 – CLOS 0

08h:     Region 0 – CLOS 1

0Ah:     Region 1 – CLOS 1

0Ch:     Region 2 – CLOS 1

0Eh:     Region 3 – CLOS 1

...

78h:     Region 0 – CLOS 15

7Ah:     Region 1 – CLOS 15

7Ch:     Region 2 – CLOS 15

7Eh:     Region 3 – CLOS 15

80h-FFFh: Reserved for future

Optimum MBA Register Block
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Bits Access Default Field Description 

63:57 RsvdP 0h RsvdP3: Reserved and 

Preserved 

Reserved. 

56:48 RW 1FFh BR3: Bandwidth for Region 3 Minimum Bandwidth 

Control Value for Region 3. 

Ranges from 001h to 1FFh, 

with 001h as the minimum 

BW and 1FFh as the 

maximum BW. 

47:41 RsvdP 0h RsvdP2: Reserved and 

Preserved 

Reserved. 

40:32 RW 1FFh BR2: Bandwidth for Region 2 Minimum Bandwidth 

Control Value for Region 2. 

Ranges from 001h to 1FFh, 

with 001h as the minimum 

BW and 1FFh as the 

maximum BW. 

31:25 RsvdP 0h RsvdP1: Reserved and 

Preserved 

Reserved. 

24:16 RW 1FFh BR1: Bandwidth for Region 1 Minimum Bandwidth 

Control Value for Region 1. 

Ranges from 001h to 1FFh, 

with 001h as the minimum 

BW and 1FFh as the 

maximum BW.  

15:9 RsvdP 0h RsvdP0: Reserved and 

Preserved 

Reserved. 

8:0 RW 1FFh BR0: Bandwidth for Region 0 Minimum Bandwidth 

Control Value for Region 0. 

Ranges from 001h to 1FFh, 

with 001h as the minimum 

BW and 1FFh as the 

maximum BW. 

6.1.3.5.1 CLOS Organization in Minimum MBA Register Block 

Software should use CLOS indexing algorithm discussed in this section only if 

“Register Indexing Function Version” field value is 1 in MARC sub-structure. 

Software should be upgraded to handle any versions > 1 in this field which 

would be defined in future version of this specification. 

Note that Region Aware MBA uses the same definition of “optimal”, “min” and 

“max” bandwidth as described in earlier discussion in Section 3.2.4.4.3, 

Optimal Bandwidth Caps per CLOS.  
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CLOSs are organized in sequential fashion in the Minimum MBA Register 

Blocks. Software may consult the MARC sub-structure from ERDT ACPI for 

configuring the per-agent per-region per-CLOS minimum target bandwidth 

using the MBA Minimum BW Register Block Base Address and MBA Register 

Block Size fields of the MARC sub-structure. Each block size is 4KB. Minimum 

MBA registers are located in the range (MBA Minimum BW Register Block Base 
Address): (MBA Minimum BW Register Block Base Address + MBA Register 

Block Size x 4096). To index CLOSs per region in the block use the following 

pseudocode algorithm: 

 
MMIO_ADDRESS_for_CLOS# = MBA Minimum BW Register Block Base 

Address + (Region# / 4) x 512B + CLOS# x 8B.  

/*** MMIO_ADDRESS_for_CLOS# < (MBA Minimum BW Register Block Base 

Address + MBA Register Block Size x 4096) ***/ 

Here,   

Input Parameter: CLOS#, Region# (multiple banks for registers 

1st bank is for Region 0 to 3 and consecutively Region 3 to 7 after every 

512B). This formula supports up to 64 CLOSs and an arbitrary number 

of regions.  

Parameters for Indexing: 

• “MBA Minimum BW Register Block Base Address” field 

reported by MARC sub-structure of ERDT ACPI 

• “MBA Register Block Size” reported by MARC sub-

structure of ERDT ACPI  

• Max CLOSs supported on the platform reported by ERDT 

ACPI. 

• Max Regions support on the platform reported by MRRM 

ACPI. 

An example of Minimum MBA register blocks is described below in Figure 6-8. 
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Figure 6-8. Sequential CLOS arrangement in MBA Register 

 

6.1.3.6 Maximum Memory Bandwidth Allocation Registers for CPU 

Agents 

Figure 6-9. Maximum MBA Register 

 

 

Abbreviation MBA_MAXIMUM_BW_n 

n: Refer to ACPI ERDT for Max CLOS. CLOSs are zero-referenced. 

Hence, this range will be 0 to (“MAX CLOS” reported by ERDT top-

level structure). 

General Description Register to configure Maximum Bandwidth Control Window for 

Memory Bandwidth Allocation per CLOS. 

Indexing Function See Section 6.1.3.6.1 

CLOS Address MBA Maximum BW Register Block Base Address + Indexing function 

mentioned above. 

Scope Per Resource Management Domain (Per RMDD) 

 

 

0h:       Region 0 – CLOS 0

02h:     Region 1 – CLOS 0

04h:     Region 2 – CLOS 0

06h:     Region 3 – CLOS 0

08h:     Region 0 – CLOS 1

0Ah:     Region 1 – CLOS 1

0Ch:     Region 2 – CLOS 1

0Eh:     Region 3 – CLOS 1

...

78h:     Region 0 – CLOS 15

7Ah:     Region 1 – CLOS 15

7Ch:     Region 2 – CLOS 15

7Eh:     Region 3 – CLOS 15

80h-FFFh: Reserved for future
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Bits Access Default Field Description 

63:57 RsvdP3 0h RsvdP3: Reserved and 

Preserved 

Reserved. 

56:48 RW 1FFh BR3: Bandwidth for Region 3 Maximum Bandwidth 

Control Value for Region 3. 

Ranges from 001h to 1FFh, 

with 001h as the minimum 

BW and 1FFh as the 

maximum BW. 

47:41 RsvdP2 0h RsvdP2: Reserved and 

Preserved 

Reserved. 

40:32 RW 1FFh BR2: Bandwidth for Region 2 Maximum Bandwidth 

Control Value for Region 2. 

Ranges from 001h to 1FFh, 

with 001h as the minimum 

BW and 1FFh as the 

maximum BW. 

31:25 RsvdP1 0h RsvdP1: Reserved and 

Preserved 

Reserved. 

24:16 RW 1FFh BR1: Bandwidth for Region 1 Maximum Bandwidth 

Control Value for Region 1. 

Ranges from 001h to 1FFh, 

with 001h as the minimum 

BW and 1FFh as the 

maximum BW. 

15:9 RsvdP0 0h RsvdP0: Reserved and 

Preserved 

Reserved. 

8:0 RW 1FFh BR0: Bandwidth for Region 0 Maximum Bandwidth 

Control Value for Region 0. 

Ranges from 001h to 1FFh, 

with 001h as the minimum 

BW and 1FFh as the 

maximum BW.  

6.1.3.6.1 CLOS Organization in Maximum MBA Register Block 

Software should use CLOS indexing algorithm discussed in this section only if 

“Register Indexing Function Version” field value is 1 in MARC sub-structure. 

Software should be upgraded to handle any versions > 1 in this field which 

would be defined in future version of this specification. 

Note that Region Aware MBA uses the same definition of “optimal”, “min” and 

“max” bandwidth as described in earlier discussion in Section 3.2.4.4.3, 

Optimal Bandwidth Caps per CLOS.  



 

114  Document Number: 356688-004US, Revision: 1.3 

 

CLOSs are organized in sequential fashion in the Maximum MBA Register 

Blocks. Software may consult the MARC sub-structure from the ERDT ACPI for 

configuring per-agent per-region per-CLOS maximum target bandwidth using 

the MBA Maximum BW Register Block Base Address and MBA Register Block 

Size fields of the MARC sub-structure. Each block size is 4KB. Maximum MBA 

registers are located in the range (MBA Maximum BW Register Block Base 
Address): (MBA Maximum BW Register Block Base Address + MBA Register 

Block Size x 4096). To index CLOS per region in the block use the following 

pseudocode algorithm: 
 

MMIO_ADDRESS_for_CLOS# = MBA Maximum BW Register Block Base 

Address + (Region# / 4) x 512B + CLOS# x 8B.  

/*** MMIO_ADDRESS_for_CLOS# < (MBA Maximum BW Register Block Base 

Address + MBA Register Block Size x 4096) ***/ 

Here,   

Input Parameter: CLOS#, Region# (multiple banks for registers 

1st bank is for Region 0 to 3 and consecutively Region 3 to 7 after every 

512B). This formula supports up to 64 CLOSs and an arbitrary number 

of regions. 

Parameters for Indexing: 

• “MBA Maximum BW Register Block Base Address” field 

reported by MARC sub-structure of ERDT ACPI 

• “MBA Register Block Size” reported by MARC sub-

structure of ERDT ACPI  

• Max CLOSs supported on the platform reported by ERDT 

ACPI. 

• Max Regions support on the platform reported by MRRM 

ACPI. 

An example of Maximum MBA register blocks is described below in Figure 6-10. 
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Figure 6-10. Sequential CLOS arrangement in MBA Register 

 

 

6.1.3.7 Cache Monitoring Registers for Non-CPU Agents 

Figure 6-11. CMT Register 

 

 

Abbreviation IOL3_CMT_RMID_n 

n: Refer ACPI ERDT for MAX RMID. RMIDs are zero-referenced. 

Hence, this range will be 0 to (“MAX RMID” reported by RMDD 

sub-structure). 

General Description Register to report Cache Occupancy for Non-CPU Agents 

Indexing Function See Section 6.1.3.7.1 

RMID Address CMRD.Register Base Address + Indexing function mentioned 

above. 

Scope Per Resource Management Domain (Per RMDD) 

 

 

Maximum MBA Register Block

0h:       Region 0 – CLOS 0

02h:     Region 1 – CLOS 0

04h:     Region 2 – CLOS 0

06h:     Region 3 – CLOS 0

08h:     Region 0 – CLOS 1

0Ah:     Region 1 – CLOS 1

0Ch:     Region 2 – CLOS 1

0Eh:     Region 3 – CLOS 1

...

78h:     Region 0 – CLOS 15

7Ah:     Region 1 – CLOS 15

7Ch:     Region 2 – CLOS 15

7Eh:     Region 3 – CLOS 15

80h-FFFh: Reserved for future
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Bits Access Default Field Description 

63 RO 0h U: Unavailable • 0: Indicates data for this RMID is available 

and monitored for the resource or RMID. 

• 1: Indicates data for this RMID is not 

available or not monitored for the 

resource or RMID, and bits(62:0) should 

be ignored. 

62:0 RO 0h IOL3_CMT_Count The value in this field indicates Cache 

Monitoring (occupancy) telemetry for Non-

CPU agents. See later sections in Chapter 7, 

Programming Guidelines, for data 

interpretation. 

6.1.3.7.1 RMID Organization in CMT Register Blocks 

Software should use RMID indexing algorithm discussed in this section only if 

the “Register Indexing Function Version” field value is 1 in the CMRD sub-

structure. Software should be upgraded to handle any versions > 1 in this field 

which would be defined in future version of this specification.  

RMIDs are organized in sequential fashion in the CMT Register Blocks. Software 

may consult the CMRD sub-structure from ERDT ACPI for retrieving CMT 

telemetry using the the Register Base Address, Register Block Size, CMT 

Register Offset for I/O and CMT Register Clump Size for I/O fields of the CMRD 

sub-structure. Each block size is 4KB. CMT registers are located in the range 

(X):(X+Y x 4096), where X is value reported in Register Base Address field and 

Y is the value reported in Register Block Size field. To index RMIDs in the block 

the following pseudocode algorithm may be used:  

 
MMIO_ADDRESS_for_RMID# = Register Base Address + ((RMID# / CMT 

Register Clump Size for I/O) x 4096B) + CMT Register Offset for 

I/O + ((RMID# % CMT Register Clump Size for I/O) x 8B);  

/*** MMIO_ADDRESS_for_RMID# < (Register Base Address + Register 

Block Size x 4096) ***/ 

Here,   

 Input Parameter: RMID# 

 Parameters for Indexing: 

• “Register Base Address” field reported by CMRD sub-

structure of ERDT ACPI 

• “Register Block Size” reported by CMRD sub-structure of 

ERDT ACPI 

• Max RMID supported on the platform reported by RMDD 

sub-structure of ERDT ACPI. 
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• “CMT Register Offset for I/O” and “CMT Register Clump 

Size for I/O” fields value reported by CMRD sub-structure 

of ERDT ACPI 

6.1.3.8 Total I/O Bandwidth Monitoring Registers for Non-CPU 
Agents 

Figure 6-12. Total I/O Bandwidth Register 

 

 

Abbreviation Total_IO_BW_RMID_n 

n: Refer ACPI ERDT for MAX RMID. RMIDs are zero-referenced. 

Hence, this range will be 0 to (“MAX RMID” reported by RMDD 

sub-structure). 

General Description Register to report Per RMID Total IO Bandwidth to the near 

cache. 

Indexing Function See Section 6.1.3.8.1 

RMID Address IBRD.Register Base Address + Indexing function mentioned 

above. 

Scope Per Resource Management Domain (Per RMDD) 

 

Bits Access Default Field Description 

63 RO 0h U: Unavailable • 0: Indicates data for this RMID is available 

and monitored for the resource or RMID. 

• 1: Indicates data for this RMID is not 

available or not monitored for the 

resource or RMID, and bits(61:0) should 

be ignored. 

62 RO 0h O:Overflow • 0: Indicates that there is no overflow of 

the Total IO BW counters. 

• 1: Indicates that there is overflow of the 

Total IO BW counters. It will be reset 

upon read, enabling a variable software-

defined counter polling interval for 

reduced sampling overhead. 

6
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Bits Access Default Field Description 

61:0 RO 0h TBRC: 

Total_IO_BW_RMI

D_Count 

The value in this field indicates Total IO 

Bandwidth telemetry. See later sections in 

Chapter 7, Programming Guidelines, for data 

interpretation. 

6.1.3.8.1 RMID Organization in Total I/O BW Register Blocks 

Software should use the RMID indexing algorithm discussed in this section only 

if the “Register Indexing Function Version” field value is 1 in IBRD sub-

structure. Software should be upgraded to handle any versions > 1 in this field 

which would be defined in future version of this specification. 

RMIDs are organized in sequential fashion in the Total I/O BW Register Blocks. 

Software may consult the IBRD sub-structure from ERDT ACPI for retrieving 

Total I/O BW telemetry using the Register Base Address, Register Block Size, 

Total I/O BW Register Offset and Total I/O BW Register Clump Size fields of the 

IBRD sub-structure. Each block size is 4KB. Total I/O BW registers are located 

in the range (X):(X+Y*4096), where X is value reported in the Register Base 

Address field and Y is the value reported in Register Block Size field. To index 

RMIDs in the block the following pseudocode algorithm may be used:   

 
MMIO_ADDRESS_for_RMID# = Register Base Address + ((RMID#/ “Total 

I/O BW Register Clump Size”) x 4096B) + “Total I/O BW Register 

Offset” + ((RMID# % “Total I/O BW Register Clump Size”) x 8B);  

/*** MMIO_ADDRESS_for_RMID# < (Register Base Address + Register 

Block Size x 4096) ***/ 

Here,   

 Input Parameter: RMID# 

 Parameters for Indexing: 

• “Register Base Address” field reported by IBRD sub-

structure of ERDT ACPI 

• “Register Block Size” reported by IBRD sub-structure of 

ERDT ACPI 

• Max RMID supported on the platform reported by RMDD 

sub-structure of ERDT ACPI. 

• Total I/O BW Register Offset and Total I/O BW Register 

Clump Size fields value reported by IBRD sub-structure of 

ERDT ACPI 
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6.1.3.9 I/O Miss Bandwidth Monitoring Registers for Non-CPU 
Agents 

Figure 6-13. I/O Miss Bandwidth Register 

 

 

Abbreviation IO_MISS_BW_RMID_n 

n: Refer ACPI ERDT for MAX RMID. RMIDs are zero-refenced. 

Hence, this range will be 0 to (“MAX RMID” reported by RMDD 

sub-structure). 

General Description Register to report Per RMID IO Bandwidth monitoring for Misses 

from the near cache. 

Indexing Function  See Section 6.1.3.9.1 

RMID Address IBRD.Register Base Address + Indexing function mentioned 

above. 

Scope Per Resource Management Domain (Per RMDD) 
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Bits Access Default Field Description 

63 RO 0h U: Unavailable • 0: Indicates data for this RMID is available 

and monitored for the resource or RMID. 

1: Indicates data for this RMID is not 

available or not monitored for the 

resource or RMID, and bits(61:0) should 

be ignored. 

62 RO 0h O:Overflow • 0: Indicates that there is no overflow of 

the IO BW Miss counters. 

• 1: Indicates that there is 

overflow of the IO BW Miss 

counters. It will be reset upon 

read, enabling a variable 

software-defined counter 

polling interval for reduced 

sampling overhead. 

61:0 RO 0h IMBRC: 

IO_MISS_BW_RMI

D_Count 

The value in this field indicates I/O Miss 

Bandwidth telemetry. See later sections in 

Chapter 7, Programming Guidelines, for 

data interpretation. 

6.1.3.9.1 RMID Organization in I/O Miss BW Register Blocks 

Software should use the RMID indexing algorithm discussed in this section only 

if the “Register Indexing Function Version” field value is 1 in IBRD sub-

structure. Software should be upgraded to handle any versions > 1 in this field 

which would be defined in future version of this specification. 

RMIDs are organized in sequential fashion in the I/O Miss BW Register Blocks. 

Software may consult the IBRD sub-structure from ERDT ACPI for retrieving 

Total I/O BW telemetry using the Register Base Address, Register Block Size, 

I/O Miss BW Register Offset and I/O Miss Register Clump Size fields of the 

IBRD sub-structure. Each block size is 4KB. I/O Miss BW registers are located 

in the range (X):(X+Y*4096), where X is value reported in Register Base 

Address field and Y is the value reported in Register Block Size field. To index 

RMIDs in the block the following pseudocode algorithm may be used: 

 
MMIO_ADDRESS_for_RMID# = Register Base Address + ((RMID#/ “I/O 

Miss Register Clump Size”) x 4096B) + “I/O Miss BW Register 

Offset” + ((RMID# %  “I/O Miss Register Clump Size”) x 8B);  

/*** MMIO_ADDRESS_for_RMID# < (Register Base Address + Register 

Block Size x 4096) *** 

Here,   

 Input Parameter: RMID# 
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Parameters for Indexing: 

• “Register Base Address” field reported by IBRD sub-

structure of ERDT ACPI 

• “Register Block Size” reported by IBRD sub-structure of 

ERDT ACPI 

• Max RMIDs supported on the platform reported by RMDD 

sub-structure of ERDT ACPI. 

• I/O Miss BW Register Offset and I/O Miss Register Clump 

Size fields value reported by IBRD sub-structure of ERDT 

ACPI 

6.1.3.10 Cache Allocation Registers for Non-CPU Agents 

Figure 6-14. CAT_IO_REG Register 

 

 

Abbreviation IOL3_MASK_n 

n: Refer to ACPI ERDT for Max CLOS. CLOSs are zero-

referenced. Hence, this range will be 0 to (“MAX CLOS” reported 

by ERDT top-level structure). 

General Description Register to configure I/O L3 cache way mask per CLOS. 

Indexing Function See Section 6.1.3.10.1 

CLOS Address CARD.Register Base Address + Indexing Function mentioned 

above. 

Scope Per Resource Management Domain (Per RMDD) 

 

Bits Access Default Field Description 

63:32 RW xxh CBM: Capacity Bit 

Mask  

Software may use this field to update 

cache capacity bitmask per CLOS. Bitmask 

length can be determined via Field 

“Number of IO L3 ways” in the ERDT ACPI 

table. 

31:0 

 

RsvdP 0h RsvdP: Reserved 

and Preserved: 

Reserved 

Reserved. 
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6.1.3.10.1  CLOS Organization in CAT Register Blocks 

Software should use the CLOS indexing algorithm discussed in this section only 

if “Register Indexing Function Version” field value is 1 in the MARC sub-

structure. Software should be upgraded to handle any versions > 1 in this field 

which would be defined in future version of this specification.  

CLOS are organized in sequential fashion in the register blocks. Software may 

consult the CARD sub-structure from ERDT ACPI for retrieving CAT 

configuration details includign Register Base Address, Register Block Size, CAT 

Register Offset for I/O and CAT Register Block Size fields of CARD sub-

structure. Each block size is 4KB. CAT registers are located in the range 

(X):(X+Y x 4096), where X is the value reported in the Register Base Address 

field and Y is the value reported in Register Block Size field. To index CLOS in 

the block the following pseudocode algorithm may be used: 

Note: All the MMIO registers identified for the CLOS# should be programmed 

identically in each block. 

For ( i = 0 to Register Block Size) 

{ 

 if (CLOS# <= CAT Register Block Size) 

{ 

ARRAY_OF_MMIO_ADDRESS_for_CLOS#[] = Register Base Address + “CAT 
Register Offset for I/O” + (CLOS# x 8B) + (4096 x i) 

} 

}  
 

Here, 

   Input Parameter: CLOS# 

    Parameters for Indexing: 

• “Register Base Address” field reported by CARD sub-

structure of ERDT ACPI 

• “Register Block Size” reported by CARD sub-structure of 

ERDT ACPI 

• Max CLOSs supported on the platform reported by ERDT 

ACPI. 

• CAT Register Offset for I/O and CAT Register Block Size 

fields value reported by CARD sub-structure of ERDT ACPI 

6.1.3.11 Region-ID Programming Registers[] 

Not defined. The Region ID Programming Registers field in MRRM is unused. 
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6.2 Non-CPU Agent Intel® RDT Register Location 

The Non-CPU agent Intel RDT related register set (MMIO interfaces) must 

reside on at least one 4 KB-aligned memory mapped page. The exact location 

for the register region is implementation-dependent and is communicated to 

system software by BIOS through the IRDT ACPI structure (see Chapter 5). 

Multiple RCSes could be mapped to the same 4 KB-aligned page, or distinct 

pages. No other unrelated registers may be present in the pages used for non-

CPU agent Intel RDT. A Virtual Machine Monitor (VMM) or operating system 

may use page-based access controls to ensure that only designated entities 

may use the non-CPU agent Intel RDT controls.  

When accessing non-CPU agent Intel RDT MMIO interfaces, note that writes to 

reserved fields, writes to reserved offsets within the MMIO space, or writes of 

values greater than the supported maximum for a field will be ignored by 

hardware. 

6.2.1 Software Access to Registers 

Software interacts with the non-CPU agent Intel RDT features by reading and 

writing memory-mapped registers. The following requirements are defined for 

software access to these registers. 

• When updating registers through multiple accesses (whether in software or 

due to hardware disassembly), certain registers may have specific 

requirements on how the accesses should be ordered for proper behavior. 

These are documented as part of the respective register descriptions. 

• Locked operations to non-CPU agent Intel RDT related registers are not 

supported. Software should not issue locked operations to non-CPU agent 

Intel RDT feature hardware registers. 

6.2.2 Register Descriptions for Non-CPU Agents 

6.2.2.1 Link Interface Type RMID/CLOS Tagging MMIO Interfaces 

The IRDT ACPI structures defined in Chapter 4 define MMIO interfaces for 

configuring the RMID/CLOS for each link interface type, as defined in the RCS 

structures. An MMIO pointer defined in the RCS fields describes where the 

configuration interface exists for a particular link interface type. The MMIO 

locations are specified as absolute physical addresses. 

Table 6-3 shows the MMIO field layout for RMID and CLOS tagging, and 

bandwidth shaping. A common format is used for all RCS types, including for 

instance RCS instances that support PCIe or CXL use the same field layout.  

Common table format across all RCS-Enumerated MMIO. 



 

124  Document Number: 356688-004US, Revision: 1.3 

 

Table 6-3. MMIO Table Format 

Register Name Mem Offset Length (B) Comments 

IO RDT Reserved 0x0000 Variable Reserved 

IO_PQR_CLOS0 RCS ::  CLOS Block 

Offset 

RCS :: REGW Common across all 

RCS types 

IO_PQR_CLOS1 IO_PQR_CLOS0 + RCS 

:: REGW 

RCS :: REGW Per-channel 

IO_PQR_CLOS2 IO_PQR_CLOS0 + RCS 

:: REGW*2 

RCS :: REGW Per-channel 

… Variable Variable - 

Reserved Variable Variable - 

IO_PQR_RMID0 RCS :: RMID Block 

Offset 

RCS :: REGW Common across all 

RCS types 

IO_PQR_RMID1 IO_PQR_RMID0 + RCS 

:: REGW 

RCS :: REGW Per-channel 

IO_PQR_RMID2 IO_PQR_RMID0 + RCS 

:: REGW*2 

RCS :: REGW Per-channel 

… Variable Variable - 

Reserved Variable Variable - 

IO_RDT Reserved Variable Variable Remainder of the page 

Note that the RCS :: REGW field indicates the register access width of the fields 

in Table 6-3, either 2B or 8B. Depending on the implementation, this width 

may be 2 bytes or 8 bytes. The width is indicated by the REGW field in the RCS 

Table (Section 0). 

Note that the base of the RMID and CLOS fields are enumerated in the RCS 

structure, and the size of these fields varies with the number of supported 

channels. The set of configurable RMIDs and CLOSs are organized as 

contiguous blocks of 4B registers. 

The “PQR” fields starting at the enumerated offset (RCS :: CLOS Block Offset) 

are defined with enumerated register field spacing of RCS :: REGW, which may 

require either 2B or 8B register accesses. A block of CLOS registers exists, 

followed by a block of RMID registers, indexed per Channel. That is, setting a 

value in the IO_PQR_CLOS0 field will specify the CLOS to be used for 

Channel[0] on this RCS. 

The valid field width for RMID and CLOS is defined via CPUID leaves (see Intel® 

64 and IA-32 Architectures Software Developer’s Manual, Volume 3B for 

details) for shared-L3 configuration. 

Higher offsets allow multiple Channels to be programmed (above Channel 0) if 

supported. Given that PCIe supports multiple VCs, multiple channels may be 

supported in the case of PCIe links, but CXL links support only two entries, one 

at IA_PQR_CLOS0 and one at IO_PQR_RMID0 in this table. 
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The RMID and CLOS fields are interpreted as numeric tags, exactly as they are 

in the CPU agent Intel RDT feature set, and software may assign RMID and 

CLOS values as needed. 

Software may reconfigure RMID and CLOS field values at any point during 

runtime, and values may be read back at any time. As all architectural CPU 

agent Intel RDT infrastructure, it is dynamically reconfigurable, this enables 

control loops to work across the capabilities sets collaboratively and 

consistently. 

§ 
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7 Programming Guidelines  

7.1 Intel® RDT Monitoring Software Flows for 

CPU Agents 

Intel RDT Monitoring software flows for CPU agents in certain example software 

implementations are briefly described in this section to provide context for how 

an end-user could view and use the RDT features. While this chapter provides 

examples and recommended flows, it is in no way limiting to use models once 

enumeration and configuration capabilities are enabled in software, and many 

varied software implementations and usages of RDT beyond the listed 

examples have been observed.  

7.1.1 Intel® RDT Monitoring Software Flows for CPU 
Agents 

Software should first verify the existence of the RDT Monitoring feature(s) 

before attempting to configure them and read back monitoring data. Periodic 

management by software may also be required to maintain the proper RMID 

mapping on a logical thread when context switching or receiving an interrupt 

for instance (see Section 3.1.1 for details). 

7.1.1.1 Step 1 – Enumeration 

Before attempting to read or write MSRs associated with the Intel RDT 

Monitoring feature software should first execute the CPUID instruction and 

parse its output to ensure that Intel RDT Monitoring and any sub-features to be 

used (for example, CMT, MBM) are supported on the platform, otherwise 

General Protection (#GP(0)) faults will be generated. 

As discussed in the Intel® 64 and IA-32 Architectures Software Developer’s 

Manual, Volume 3B, if CPUID feature flag for Structured Extended Feature, 

CPUID.07H.00H:EBX[12], is set to ‘1’ then Intel RDT Monitoring is generally 

supported on the platform.  

Once Intel RDT Monitoring support has been verified software should use the 

Shared Resource Monitoring Enumeration leaf, CPUID.0FH.00H:EDX[1] to 

examine which platform resources support monitoring. After the call to CPUID, 

the EBX register will indicate the maximum RMID supported on the current 

socket (though particular resources may support fewer RMIDs and this can be 

enumerated on a per-resource basis as described next). 

Software may use the Shared Resource Monitoring Enumeration 

leaf).CPUID.0FH.ResID to determine the number of RMIDs supported for the 

specific resource in question, the event type bitmask to program into 

IA32_QM_EVTSEL to retrieve the data for that event in IA32_QM_CTR, and the 

upscaling factor as discussed in the feature-specific chapters. Software may 
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optionally choose to build a record of these enumeration responses for each 

resource to reduce overhead from repeated CPUID calls. 

Given that certain processors may support multiple L2 caches, multiple L3 

caches, and a variety of logical processor types, it is recommended that 

software use CPUID from the perspective of each logical processor to 

comprehend any asymmetric resource support which may be present.  

Software should parse Processor Family, Model and Stepping (FMS) to verify 

that a particular processor includes support for a given model-specific feature. 

To find out which features are supported on which specific products, refer to 

Appendix A.3. 

7.1.1.2 Step 2 – RMID Association 

After verifying that the platform supports Intel RDT Monitoring, software should 

associate each logical thread or VM of interest with an RMID such that resource 

utilization by the threads can be tracked. It is expected in general that if an OS 

or VMM moves an application from one core or socket to another that the 

RMIDs will be updated (moved along with the app or remapped onto another 

socket as needed) to maintain an accurate mapping between the applications 

of interest and the RMIDs programmed onto a logical thread. 

Threads by default are initialized to RMID[0], which provides insight into 

memory bandwidths for the system but not necessarily cache occupancy 

(which would read 100% occupied in a non-idle system). 

7.1.1.3 Step 3 – Event Selection Setup 

After associating RMIDs with threads and updating the IA32_PQR_ASSOC 

register for each thread as needed while running (to account for context swaps 

and thread migration between cores), software may execute for an arbitrary 

period of time while hardware tracks occupancy before polling for the resulting 

occupancy. 

After applications have executed for the desired time period software may 

program an RMID and event code into the IA32_QM_EVTSEL MSR, which will 

cause the corresponding data to be available in the IA32_QM_CTR MSR 

(discussed in the following section). 

7.1.1.4 Step 4 – Data Sampling 

After the IA32_QM_EVTSEL MSR has been programmed with an RMID / Event 

ID combination the corresponding event data can be read back from the 

IA32_QM_CTR MSR, which has a bit field layout as defined in Section 3.1.1. 

Software must check both the Error bit and the Unavailable bit to verify that 

the data returned is valid (along with the Overflow bit if supported) – if an 

error is indicated the monitoring data reported back must not be used. 

As described in Section 3.1.1 the Error bit will be set if an RMID greater than 

the global maximum (specified in CPUID) is programmed into 

IA32_QM_EVTSEL, or an unknown/unsupported Event ID is programmed. 
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Similarly, the Unavailable bit is set when data is requested for an RMID that 

does not support that particular resource or does not support an RMID value 

that high. 

An example is if occupancy monitoring of resource “A” supported four RMIDs, 

and resource “B” supported 2 RMIDs. If software requested the occupancy of 

either Resource A or B for RMIDs 0 or 1 then valid data would be reported 

back. If occupancy data for RMIDs 2 or 3 was requested for resource “B” 

however data would not be reported, and the Unavailable bit would be set.  

The Overflow bit, if supported, is set when an overflow of an incrementing 

counter is triggered, allowing software to correct or discard errant values that 

may lead to erroneous bandwidth calculations.  

If an error is indicated, it will be cleared automatically once valid values are 

programmed into IA32_QM_EVTSEL and any hardware conditions preventing 

accurate monitoring are resolved. The Overflow bit, if implemented, is cleared 

on a read of IA32_QM_CTR.  

7.1.1.5 Step 5 – Sample CMT/MBM Data Collection and Analysis 

Once CMT and MBM data has been collected it can be interpreted as described 

in the following example.  

Consider the case where CMT and MBM are supported on a platform, and a 

large number of RMIDs are available. On this platform the user seeks to profile 

two threads within an application, so both threads are assigned individual 

RMIDs and run on separate physical cores for a period of one second, then 

occupancy and bandwidths are read back via the MSR interface 

(IA32_QM_EVTSEL and IA32_QM_CTR). In this example, the following 

parameters are key to interpreting the results: 

• System topology – two Intel® Xeon™ CPUs with 14 cores per socket, and a 

3-level cache subsystem, where the last-level cache totals 35 MB per 

socket. 

• The last-level cache is verified using CPUID leaf 0x4 as the last level cache 

between the cores and memory, meaning L3 external bandwidth values 

can be used to measure memory bandwidth. 

• As enumerated via CPUID the upscaling factor the Shared Resource 

Monitoring Enumeration Leaf, CPUID.0FH.01H:EBX[31:0], to convert 

counter values to final values in bytes is 0xE000 (decimal 57344). 

• Since the total L3 cache size is 36700160 bytes and the upscaling factor is 

57344, we know that the maximum possible CMT occupancy counter value 

reported by the system will be total cache size divided by the conversion 

factor, or 36700160/57344 = 640. 

⎯ As the threads are profiled, we can compare the reported occupancy 

to the maximum occupancy counter value, giving an indication of 

what fraction of the total cache an application is using without 

needing to convert to bytes first.  

Suppose that the threads are configured as follows: 
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• Associate thread[0] with RMID[1]. 

• Associate thread[1] with RMID[2]. 

• Leave all other threads in the system with the default RMID[0] association.  

In order to profile memory bandwidth an initial sampling of the free-running 

MBM counters is required: 

• Program IA32_QM_EVTSEL with RMID[1] for the first thread and event 

code 0x2 for total L3 external bandwidth, then read the corresponding data 

from IA32_QM_CTR (and verify that the Unavailable and Error bits in 

IA32_QM_CTR are not set so the data is valid). 

• Program IA32_QM_EVTSEL with RMID[1] for the first thread and event 

code 0x3 for local L3 external bandwidth, then read the corresponding data 

from IA32_QM_CTR (and verify that the Unavailable and Error bits in 

IA32_QM_CTR are not set so the data is valid). 

• Repeat these steps with RMID[2] for the second thread. 

Note that we assume that RMID[1] and RMID[2] have previously been used for 

profiling other applications, so they may initially contain nonzero occupancy 

and bandwidth counter values.  

Note that in this example we assume that RMID[1] and RMID[2] are set up 

exclusively for the use of the two threads being profiled, and that these threads 

are not currently scheduled, and they have no data in the L3 cache, so the 

bandwidth counters, even if they contain initial values, are not changing. The 

occupancy counters may change even if no threads are scheduled using 

RMID[1] and RMID[2] however if they have previously run and have data in 

the L3 cache as other threads on the system run and cache space is 

dynamically redistributed due to evictions and standard cache LRU policies.  

Note that if the threads in RMID[1] and RMID[2] are running while we measure 

initial counter values then skew may appear in the counter values, proportional 

to the time delay between reading each of the event codes (which should be 

minimized) and the bandwidths consumed by the application (which may vary 

significantly based on application behavior).  

Now that initial MBM counter values have been established, the program can be 

left to run for a period of time, in this case one second. The Intel RDT 

Monitoring data can then be read back as follows: 

• Program IA32_QM_EVTSEL with RMID[1] for the first thread and event 

code 0x1 for L3 cache occupancy, then read the corresponding data from 

IA32_QM_CTR (and verify that the Unavailable and Error bits in 

IA32_QM_CTR are not set so the data is valid). 

• Program IA32_QM_EVTSEL with RMID[1] and the event code for total L3 

external bandwidth (0x2), read the data from IA32_QM_CTR and again 

verify that the “U” and “E” bits are not set. 

• Similarly read back local L3 external bandwidth using the event code 0x3 

and verify that the data is valid.  
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• Repeat the previous three steps with RMID[1] to read back the Intel RDT 

monitoring metrics for the second thread.  

Example data read back after profiling for one second is shown in the following 

table. 

Table 7-1. Example CMT and MBM Counter Values 

 Thread 0 Thread 1 

Event Type First Sample Second Sample First Sample Second Sample 

L3 Cache Occupancy N/A 0x25 N/A 0x180 

Total L3 External Bandwidth 0x00FE985E 0x00FEBC14 0x00002541 0x0000D9F7 

Local L3 External Bandwidth 0x0A8C9512 0x0A8CB5ED 0x00000314 0x0000AC5D 

Note that in the previous sample data the counter values are shown as 32-bit 

values, implying that the upper fields in the counter MSR were either zeroes or 

not changing and can be disregarded – this may not always be the case 

however when bandwidths are high, or in the case of future counters which 

may increment quickly.  

In the example, the final cache occupancy for the threads can be calculated as 

follows: 

• Thread[0]: CounterValue * UpscalingFactor = 37*57344  = 2121728 bytes 

(roughly 2.02 MB). 

• Thread[1]: CounterValue * UpscalingFactor = 22020096 bytes = 21 MB. 

Thus, based on the CMT profiling of the two example threads, we see that 

Thread[0] consumes around 2MB of cache space, and Thread[1] consumes 

around 21MB, over 10x more, which indicates that it likely has a larger data 

working set or it may be partly streaming through memory. Software should 

also consider memory bandwidth readings to determine whether Thread[1] is 

simply cache-friendly or whether it is a streaming application.  

Total memory bandwidth values for the two threads can be determined as 

follows: 

• Thread[0]: (Second counter reading – First counter 

reading)*UpscalingFactor = (0x00FEBC14-0x00FE985E)*57344 = 

9142*57344 = 524238848 bytes/second, or around 500 MB/s since we 

sampled for one second.  

• Thread[1]: (Second counter reading – First counter 

reading)*UpscalingFactor = (0x0000D9F7-0x00002541)*57344 = 

46262*57344 = 2652848128 bytes/second, or around 2.5 GB/s.  

Local memory bandwidth values for the two threads can be determined as 

follows: 

• Thread[0]: (Second counter reading – First counter 

reading)*UpscalingFactor = (0x0A8CB5ED-0x0A8C9512)*57344 = 

8411*57344 = 482320384 bytes/second, or around 460 MB/s. 
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• Thread[1]: (Second counter reading – First counter 

reading)*UpscalingFactor = (0x0000AC5D-0x00000314)*57344 = 

43337*57344 = 2485116928 bytes/second, or around 2.3 GB/s. 

Based on the prior calculations we observe that Thread[0] has low memory 

bandwidth demands at roughly 500 MB/s, and Thread[1] uses more bandwidth 

at 2.5 GB/s, but not enough to classify it as a streaming thread. With its 21 MB 

cache occupancy and moderate memory bandwidth, Thread[1] is best classified 

as a cache-friendly thread, though observing its behavior over a longer period 

of time and sampling other system metrics to better understand its time-

variant behavior and compute requirements is recommended if detailed 

profiling is the goal. 

Note that in this example most of the bandwidth demands of the threads are 

satisfied by the memory controller on the local CPU, meaning bandwidth 

associated with the QPI link and other sources is low, implying that the NUMA-

aware OS properly located the memory allocation for the threads on the same 

socket as the running threads. 

This may not always be the case however, and if a bandwidth imbalance is 

detected then we may choose to either move the compute threads to the other 

CPU (closer to the data in memory) or move the data in memory to another 

address range within the scope of the local CPU memory controller for better 

performance. 

7.1.2 Native OS Environments 

In a non-virtualized environment, the RMIDs can be associated with 

applications or application threads. The OS may even choose to associate 

different parts of a single application to be associated with different RMIDs if 

needed. But a typical usage would save and restore the RMIDs along with the 

context information during the context switch. 

For multi-threaded applications, multiple threads can share the same RMID. 

The implications stated earlier also apply to multi-threaded applications with 

the following additional considerations for shared code/data. For example, if 

app0 was multi-threaded (for example, two threads per application), then we 

can get occupancy information for each thread of application. The only 

additional implication here is that the occupancy of the threads that share data 

will be associated to the thread that filled the shared data. Heuristics that 

minimize contention in the shared cache for single threaded workloads to 

optimize total system throughput and to provide QoS will also be effective for 

the multi-threaded workloads.  

7.1.3 Virtualization Scenarios 

In case of virtualization, RMIDs can be allocated in different ways. The VMM 

can choose to allocate the RMIDs to different VMs or vCPUs. The current 

planned implementations do not support reporting individual occupancies of 

applications running within a VM unless the VMM and guest OS are both 
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enabled to support Intel RDT. The RMID assignment at VM and VCPU level are 

described next. 

RMIDs assigned to Virtual Machines (VMs): In this usage case RMIDs are 

assigned to VMs instead of applications and the occupancy reported is on a per 

VM basis. Multiple applications running within a VM will have a consolidated 

occupancy which will be reported by the RMID. Profiling of workloads and 

heuristics that optimize for overall system throughput and for providing QoS 

based on SLAs would be based in the granularity of VMs. Hence to provide 

QoS, HP applications can be mapped to a VM with a high priority so that 

scheduling decisions to minimize contention will treat all applications running in 

the HP VM as high priority. The heuristics that work on occupancy monitoring 

based on contention in the shared cache will still be effective but will work in 

the granularity of VMs. When scheduling VMs, the VMM can use the occupancy 

monitoring information available for the VMs from the RMIDs. There are no 

other additional implications for VMs. 

RMIDs assigned to vCPUs within VMs: In this usage case scenario, RMIDs 

are assigned to vCPUs within a VM. Since there maybe multiple applications 

within a VM running on the vCPUs, the occupancy reported by the RMID for a 

vCPU will represent the consolidated occupancy of the applications running on 

that vCPU. As an example, if there are two VMs with 2 vCPUs each and there 

are four applications in each VM as shown in Figure 7-1. 

Figure 7-1. RMIDs Assigned to vCPUs 

 

The occupancy reported by the RMID assigned to vCPU0 will represent the 

consolidated occupancy of App0 and App1. Similarly, only the consolidated 

occupancy of App2 and App3 is what will be reported and so on. Hence 

optimizations for system throughput, QoS and application profiling would have 

to be at the granularity of vCPUs. The OS running within a VM will have its own 

scheduling policy that would determine how applications are scheduled to the 

vCPUs. 

When applications migrate within a VM from one vCPU to another, the 

consolidated occupancy reported will also be affected as it would depend on the 

nature of the applications scheduled to a vCPU. Hence any policy or heuristic 

that is implemented should be in the granularity of VCPU profiling. The 

recommended approach is to profile the workload at a vCPU level and then 

design heuristics based on vCPU profiles to optimize for throughput and provide 

QoS.  
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7.2 Intel® RDT Allocation Software Flows for 

CPU Agents 

RDT Allocation software flows for CPU agents are briefly described in this 

section to provide context for how and end-user may view the feature. 

7.2.1 Intel® RDT Software Allocation Flows for CPU 
Agents  

7.2.1.1 Step 1 – Enumeration 

Before attempting to read or write MSRs associated with the Intel RDT 

Allocation feature software should first poll CPUID to ensure that Intel RDT 

Allocation and any sub-features to be used (for example, L3 CAT, L2 CAT, MBA) 

are supported on the platform, otherwise General Protection (#GP(0)) faults 

will be generated. As discussed in Section 3.2, if CPUID feature flag for 

Structured Extended Feature, CPUID.07H.00H:EBX[15] is set to ‘1’ then Intel 

RDT Allocation is generally supported on the platform. 

Once Intel RDT Allocation support has been verified software should poll and 

examine CPUID.10H.00H:EBX to examine which platform resources support 

allocation. After the call to CPUID, the EBX register will indicate the supported 

Intel RDT Allocation features on the current socket. 

Software may use CPUID.10H.ResID to determine the number of CLOS 

supported for the specific resource in question, the max length of the CAT 

bitmask, the max MBA delay value, and so on, and presence of sub-features 

like CDP on top of CAT for a given level of the cache. Software may optionally 

choose to build a record of these enumeration responses for each resource to 

reduce overhead from repeated CPUID calls. 

Software should parse Processor Family, Model and Stepping (FMS) to verify 

that a particular processor includes support for a given model-specific feature. 

To find out which features are supported on which specific products, refer to 

Appendix A.3. 

Note that it is important that software enumerate the Intel RDT Monitoring 

capabilities of the platform in the order specified in Section 3.1.1. 

7.2.1.2 Step 2 – Optionally Enable CDP 

If software wants to use CDP, enable it via the IA32_PQOS_CFG MSR. 

7.2.1.3 Step 3 – Mask and Bandwidth Control Setup 

After determining the presence of hardware Intel RDT Allocation support 

software should configure the CAT masks and MBA delay values if supported to 

provide capacity allocation/bandwidth hints to the hardware via the 

IA32_ResourceType_QOS_MASK_n MSRs and IA32_L2_QOS_Ext_BW_Thrtl_n 
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MSRs, depending on the usage model specified in Section 3.1.1 and the 

number of CLOS available (enumerated in feature-specific ResID sub-leaves). 

It is considered good practice to first verify that IA32_L3_QOS_MASK_0 

contains all “1” to the length of the bitmask (such that CLOS0 can access the 

entire cache) and that all threads are in CLOS0 before making changes to the 

masks (which may otherwise result in rapidly changing cache available to 

applications, which may lead to performance variation, though no functional 

errors are possible). Also verify that no bandwidth enforcement is configured in 

the IA32_L2_QOS_Ext_BW_Thrtl_n MSRs. It is also considered best practice to 

set up CLOS[0] as the highest priority CLOS with a large fraction of the cache, 

CLOS1 as the next highest, and so on. 

7.2.1.4 Step 4 – CLOS Association 

After the CAT/CDP per-CLOS mask MSRs are set up to known values, whether 

overlapped, shared or a combination depending on application needs and goals, 

and after MBA delay values are set up, each of the threads should be 

associated into a desired Class of Service via the IA32_PQR_ASSOC MSR. This 

MSR may be read or written at any time. 

As part of some implementations an OS may choose to set up masks then 

change the IA32_PQR_ASSOC MSR on context switches (to associate a portion 

of the cache with an application or thread for instance). 

7.3 Intel® RDT Software Flows for Non-CPU 

Agents 

This section describes software architecture considerations for Intel RDT 

features for non-CPU agents, recommended usage flows and related 

considerations. This builds upon the architectural concepts and software usage 

examples discussed in Chapter 4. 

Software seeking to use RDT for non-CPU agents has a number of tasks to 

comprehend:  

• Enumeration of the capabilities of  Intel RDT for CPU agents (through 

CPUID) and Intel RDT for non-CPU agents (through CPUID and ACPI). 

• Reservation of (or comprehension of the sharing implications of using) 

RMIDs and CLOS from the pools available at each resource level and 

subject to the RMID and CLOS management best practices on a particular 

processor. 

• Pre-configuration of any resource limits to be used for modulating device 

activity, such as a cache mask for a CLOS intended to be used with a 

device. 

• Configuration of each device’s tagging properties through the MMIO 

interface described by the ACPI structures, such as associating a device 

with a particular RMID, CLOS and bandwidth limit, as applicable. 
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• Enabling the Intel RDT features for non-CPU agents through the enable 

MSR infrastructure -- the IA32_L3_IO_QoS_CFG MSR is shown in Figure 

4-2, at MSR address 0xC83. 

• Periodically adjusting resource limits subject to software policies and any 

control loops which may be present. 

• Comprehending the implications of Sub-NUMA clustering (SNC) if present 

and enabled. 

7.4 Assembling a Complete View of System 

Memory 

Through combining the data in multiple ACPI tables, software can identify 

memory types installed on the platform and their basic properties. This process 

involves using memory ranges and Region-ID mappings and gathering data 

from the MRRM, SRAT, HMAT, and CEDT ACPI tables. The following information 

in Table 7-2 and Figure 7-2 may be used by software to construct higher-level 

summary data structures that aid usability by mapping memory regions to the 

memory type populated in the platform for each region.  

The MRRM ACPI table structure (Section 5.3) describes the memory range to 

region mapping details. Each memory range entry (MRE) in the MRRM 

structure consists of a contiguous range in host physical address space along 

with a platform-assigned static local and remote Region-ID. Importantly, 

memory ranges specified for a region in MRRM are identical to memory ranges 

specified in the Memory Affinity Structure within the ACPI SRAT structure2, 

allowing cross-mapping with SRAT and other ACPI structures as described in 

this section. Specific examples are presented in Section 7.4.1.1.1 and beyond.  

If the platform supports only static memory range to region mapping, then 

‘Platform-assigned Static Local Region-ID’ and ‘Platform-assigned Static 

Remote Region-ID’ fields describe local and remote Region-ID values allocated 

by platform firmware (BIOS) for that memory range. 

If the platform supports OS configuration of Region-IDs, then each MRE in the 

MRRM structure specifies a set of registers for programming RegionID for each 

memory range. Each memory range can then be configured with a Region-ID 

for local accesses and a Region-ID for remote (cross-socket) accesses. 
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Figure 7-2. MRRM, SRAT, HMAT and CEDT Correlation 

 

Figure 7-2 shows the relationship between ACPI tables referenced in this 

section. The SRAT table defines proximity domains, while sub-tables of HMAT 

define bandwidth and latency properties for each region (defined in terms of 

bandwidth from initiators to targets). The CEDT table provides information 

about whether a memory region is hosted in (backed by) CXL or not. A 1:1 

correspondence between the memory regions defined in the MRRM table and 

HMAT may be created by comparing memory range limits, allowing bandwidth 

and latency information to be gathered, along with whether the memory is 

hosted in CXL. Similarly, memory on different processor sockets can be 

described by regions in MRRM, with their properties enumerated in HMAT sub-

structures.  

The following section uses the terminology “1LM” to refer to single-level DRAM 

memory. The term “2LM” refers to two-level memory, and “Flat 2LM” is a mode 

in which hardware combines CXL.mem and DRAM regions, presenting a single 

region to software, while transparently using DRAM as a cache for CXL.mem.  

Regions such as DRAM, CXL.mem or remote socket memory may be directly 

exposed as regions to software. Flat 2LM is presented to software as a single 

region.  



 

Document Number: 356688-004US, Revision: 1.3  137 

  

To identify various memory types behind memory ranges enumerated by the 

ACPI SRAT table, software may follow the following guidelines: 

• CXL memory: All memory addresses decoded by (hosted in) CXL 

memory are described in the ACPI CEDT table. The CXL Fixed Memory 

Window Structure (CFMWS) sub-structure3 allows software to detect 

different coherency characteristics, interleaving, persistency, etc.. 

• Flat 2LM: If F2LM FM is behind CXL, it will appear in the CXL Fixed 

Memory Window Structure (CFMWS) structure with Windows 

Restriction[4]=1 (Fixed Device Configuration). 

• DRAM: Any DRAM (e.g., DDR 1LM) memory range present will appear 

in the ACPI HMAT table as a region without a memory-side cache. DRAM 

addresses will never be covered by CFMWS since single-level DDR (as 

an example) is not attached to CXL. 

• For all the memory ranges enumerated by BIOS, the ACPI HMAT table 

will provide a view of basic performance characteristics. The values 

published in HMAT are typically static “roofline” (maximum or typical) 

values but in some cases may be based on BIOS characterization. 

See the Compute Express Link Specification 3.0 specification for more details 

[6]. 

The SRAT, HMAT and MRRM tables are a prerequisite and need to be present 

for software to be able to use this section to assemble a complete view of 

system memory.  

While Figure 7-2 provides an overview of the applicable ACPI tables, Table 7-2 

provides more detail on applicable bit fields within each ACPI table to complete 

the mapping guidelines.  

The following sections provide more detail, with examples.  
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Table 7-2. ACPI Table Cross-Reference 

MRRM Memory 

Range Entry (MRE) 

Fields  

SRAT Memory Affinity 

Fields 

CEDT 

CFMWS 

Field 

HMAT Memory 

Proximity 

Domain 

Attributes 

Field 

Memory Type / Config 

1. Base Address Low 

2. Base Address High 

3. Length Low 

4. Length High 

 
*For Platform 

assigned: 

5. Platform-assigned 

Static Local Region-ID 

6. Platform-assigned 

Static Remote Region-

ID 

 

*For software 
supported region 

programming: 

7. Region-ID 

Programming 

Registers[] 

1. Base Address Low 

2. Base Address High 

3. Length Low 

4. Length High 

5. Proximity Domain 
6. Enabled: SET 

N/A  

 

 

 

 
 

Memory 

Proximity 

Domain 

DDR 1LM memory range will appear in 

ACPI HMAT table as one region without a 

memory side cache. DDR 1LM addresses 

will never be covered by CFMWS since 

DDR 1LM is not attached to CXL. 

N/A Flat 2LM (F2LM) or legacy 2LM memory 

range will be associated with a memory 

side cache in ACPI HMAT table. 

1. Base Address Low 

2. Base Address High 

3. Length Low 

4. Length High 

5. Proximity Domain 

6. Enabled: SET 

7. HotPluggable: Platform 

specific 
8. NonVolatile: CLEAR 

 

CXL Fixed Memory Window 

Structure (CFMWS) 

structure with Windows 

Restriction[4]=1 (Fixed 

Device Configuration). 

Flat 2LM: All memory addresses decoded 

by CXL are described in ACPI CEDT table. 

If F2LM Fixed Memory is behind CXL. 

System Firmware is responsible for 

creating SRAT memory range entries for 

every portion of the CMFWS. 

Flat 2LM is not hot pluggable. The CFMWS 

will report a fixed device configuration for 
Flat 2LM.  

The CFMWS for Flat2LM includes both the 

DDR and CXL memory. 

 

1. Base Address Low 

2. Base Address High 

3. Length Low 

4. Length High 

5. Proximity Domain 

6. Enabled: SET 

 

CXL Fixed Memory Window 

Structure (CFMWS) 

structure with Windows 

Restriction[4]=1 (Fixed 

Device Configuration). 

CXL Type 3 memory (CXL.mem): All 

memory addresses decoded by CXL are 

described in ACPI CEDT table.  

BIOS sets the Fixed Device Configuration 

bit for CXL Type 3 device set up as Flat 

2LM mode.  OS can quiescence these 

devices and possibly move them to a 
different address. 

There are CFMWS ranges published for 

CXL hot pluggable ranges. 

N/A   CXL host bridge 

  

7.4.1 Memory Hierarchy and Bandwidth Enumeration 

The Heterogeneous Memory Attributes Table (HMAT), introduced in the revision 

6.2 of ACPI specification [4] which should be available on future platforms to 

describe complex memory hierarchies. 

Using terminology from the HMAT specification, platform vendors may expose 

in this table theoretical latency and bandwidth between initiators (e.g., a set of 

cores) and the memory targets (e.g., memory organized within or hosted by 

certain NUMA nodes). For instance, on a platform with both CXL and DRAM, 

cores could access their local DRAM at BW1 GB/s with LAT1 latency (typically in 

nanoseconds), or their local CXL at BW2 GB/s with LAT2 latency, while other 

cores (CPU agents) access this CXL BW3 GB/s and LAT3 latency. Such latencies 

and bandwidths are specified for read and write accesses. For more details, 

refer to the System Locality Latency and Bandwidth Information Structure 
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(SLLBIS) structure specified as a component of the ACPI HMAT table 

specification.   

7.4.1.1 High-level Software Component Responsibilities 

This section describes software responsibilities when booting the system, or 

managing hotplug (hot-add, hot-remove) events.  

In its most basic form, the delineation of software components responsibilities 

is as follows:  

1. The System Firmware (e.g., BIOS) is responsible for enumerating and 

configuring memory types that are present at boot. 

2. The OS or VMM components are responsible for enumerating and 

configuring all topologies not covered by the previous System Firmware. 

The following table describes these high-level roles and responsibilities for 

major software components in more detail. 

Table 7-3. High-level software component responsibilities 

ACPI 

Table 

System Firmware 

Responsibilities 

OS/Software utilities 

Responsibilities 

System 

State 

SRAT 
•  Create proximity 

domains for CPUs, 

attached memory types 

using Affinity Type 

•  No SRAT entries for 

intermediate switches 

(CXL) 

• Build Memory Affinity 

Structures for each 

volatile proximity domain 

with the SRAT Enable flag 

set. 

Consume SRAT as needed 

for volatile memory capacity 

for legacy functionality (in 

CXL terminology). 

 

At Boot 

HMAT 

and 

CDAT 

For memory devices 

containing volatile 

capacity: 

• Parse device and switch 

CDAT and create HMAT 

entries for CPU and 

volatile memory proximity 

domains found in the 

SRAT 

For all persistent capacity: 

Utilize memory device 

CDAT, switch CDATs, and 

Generic Port entries to 

calculate total BW and 

Latency for the path from 

the CXL Host Bridge to each 

device. 

At Boot 

SRAT 
Indicate hot pluggable 

proximity domains with 

Memory Affinity Structure 

HotPluggable indicator 

Manage hot plug events  Hot Add 

HMAT N/A (static after boot) 
Hot added volatile and 

persistent memory devices: 

• Utilize memory device 

CDAT, switch CDATs, and 

CXL Host Bridge HMAT 

Hot Add 
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information to calculate total 

BW and Latency for the path 

from the CXL Host Bridge to 

the new device  

  

System Firmware should construct and report the ACPI SRAT and HMAT tables 

to the OS or VMM with the various memory types that may be present. These 

memory types will have memory ranges which are associated with proximity 

domains. These proximity domains can be referenced in HMAT for obtaining 

performance values to understand basic characterization of memory target 

latencies and bandwidths.  

 

CXL Early discovery: 

Each HDM (host managed device memory) range is later exposed to the OS as 

a separate, memory-only NUMA node via ACPI SRAT. 

System Firmware obtains CDAT from the UEFI device driver or directly from the 

device via Table Access DOE and then uses this information during construction 

of the memory map, ACPI SRAT, and ACPI HMAT. See the ACPI CDAT 

Specification, and UEFI Specification [4] for further details. 

7.4.1.1.1 Example with DDR memory 

Figure 7-3. Memory Configuration Example 

 

Figure 7-3 represents a system configuration where each Xeon CPU includes a 

local memory controller with two DDR channels and one DIMM attached to each 

channel. Memory regions as enumerated in RDT’s ACPI MRRM table are shown 

in various colors. Note that accelerator-hosted memory is discussed in the 

following section.  

In this example, it is assumed that read latency is always equal to the write 

latency for every data path and read bandwidth is always equal to the write 

bandwidth for every data path. S1 and S2 represent CPU sockets. An example 

table mapping cross-referencing SRAT and MRRM is shown in Figure 7-4 (a 

simplified view).  
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Information known to system firmware (apriori knowledge):  

▪ DIMM1, DIMM2, DIMM3, DIMM4 size = 128GB  

▪ DDR Read/Write Latency = 50ns 

▪ DDR Bandwidth = 20GB/s/DDR channel  

▪ S1 to S2 access latency = 50ns  

▪ S1 to S2 bandwidth = 30GB/s  

Figure 7-4. SRAT, MRRM Summary HMAT MPD Attribute Structure 

 

The system firmware is also able to calculate the approximate latency from any 

initiator to any target by simply adding the latency contribution of every hop in 

the data path. Similarly, the system firmware is also able to calculate the 

bandwidth from any initiator to any target by selecting the smallest value 

among the bandwidth associated with various hops in the data path. It is 

assumed that 2-way interleaving across DDR channels doubles the effective 

bandwidth. The results are shown in Figure 7-5, which would be placed in an 

HMAT sub-structure called SLLBIS (System Locality Latency and Bandwidth 

Information Structure). In this nomenclature, initiators (e.g., processors) may 

generate bandwidth to targets (e.g., a particular type of memory).  

Proximity 

Domain Type SPA Base Length Note

0 Processor S1

0 Memory 0 256GB DIMM1, DIMM2

1 Processor S2

1 Memory 256GB 256GB DIMM3, DIMM4

SRAT

S1 APIC IDs

S2 APIC IDs

Flags

Initiator 

Proximity 

Domain

Memory

Proximity

Domain 

IPD Valid 0 0

IPD Valid 1 1

Memory Proximity Domain Attributes

Base Address 

Low/High Length Low/High

Local 

Region-ID

Remote 

Region-ID

0 256GB 0 1

256GB 256GB 0 1

MRRM
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Figure 7-5. HMAT System Locality and Bandwidth Information Structure 

Summary 

 

7.4.1.1.2 Example with Heterogeneous Memory (DDR and Coherent 
Accelerators) 

Figure 7-6. Memory Configuration Example 

 

Figure 7-6 represents a system configuration where two coherent accelerators, 

namely ACC1 and ACC2 are attached to CPU S1 via a coherent interconnect 

such as CXL. Two accelerators, ACC3 and ACC4 are connected to CPU S2 via 

the same coherent interconnect. Each CPU also has a local memory controller 

with two DDR channels and one DIMM attached to each channel. 

The system firmware may combine the information it has about the CPU and 

various CPU connections to DDR from HMAT alongside CDAT information 

extracted from BIOS generated information associated with each of the 

coherent accelerators.  

In this example, it is assumed that read latency is always equal to the write 

latency for every data path and read bandwidth is always equal to the write 

bandwidth for every data path. 
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Information known to system firmware (apriori knowledge):  

▪ DIMM1, DIMM2, DIMM3, DIMM4 size = 128GB  

▪ DDR Read/Write Latency = 50ns 

▪ DDR Bandwidth = 20GB/s/DDR channel  

▪ S1 to S2 access latency = 50ns  

▪ S1 to S2 bandwidth = 30GB/s  

▪ Coherent Interconnect Latency = 40 ns  

▪ Coherent Interconnect Bandwidth = 30 GB/s 

System firmware is aware that ACC1 memory is mapped starting at System 

Physical Address (SPA) of 256 GB. ACC2 memory base SPA is at 272 GB and 

ACC4 memory base SPA is at 536 GB. 

 

ACC1 returns the following CDAT entries 

▪ One DSMAS Entry, DPA Base = 0, DPA Length = 16 GB, handle = 0  

▪ One DSIS entry, associated DSMAS Handle =0  

▪ DSLBIS entries which state latency for all 3 data paths is 60 ns and 

bandwidth for all 3 data paths is 80 GB/s  

 

ACC2 returns the following CDAT entries  

▪ One DSMAS Entry, DPA Base = 0, DPA Length = 8 GB, handle = 0  

▪ One DSIS entry, associated DSMAS Handle =0  

▪ DSLBIS entries which state latency for all 3 data paths is 60 ns and 

bandwidth for all 3 data paths is 80 GB/s  

 

ACC3 returns the following CDAT entries  

▪ One DSIS entry which is not associated with any DSMAS 

▪ DSLBIS entries which state latency for the ingress to the initiator data 

path is 60 ns and bandwidth for the ingress to the initiator data path is 

80 GB/s  

ACC4 returns the following CDAT entries  

▪ One DSMAS Entry, DPA Base = 0, DPA Length = 32 GB, handle = 0 • 

One DSIS entry, associated DSMAS Handle =0 

▪ DSLBIS entries which state latency for all 3 data paths is 60 ns and 

bandwidth for all 3 data paths is 80 GB/s 

Using the above information, the system firmware concludes that each 

accelerator should be described as a separate proximity domain in SRAT. ACC1, 

ACC2 and ACC4 each have a Generic Initiator as well as memory associated 

with them, whereas ACC3 appears as a Generic Initiator-only proximity 

domain. The system firmware constructs the memory range to region mapping 

structure (MRRM) that maps each SPA to local and remote RegionID for use 

with RDT and other features. The system firmware is also able to construct the 

Memory Proximity Domain Attributes Structure (MPDAS) in HMAT which in turn 

can be mapped across memory range, RegionID and proximity domain. This is 

illustrated in Figure 7-7. 
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Figure 7-7. SRAT, MRRM Summary HMAT MPD Attribute Structure 

 

The system firmware is also able to calculate the latency from any initiator to 

any target by adding the latency contribution of every hop in the data path. 

Similarly, the system firmware is able to calculate the bandwidth from any 

initiator to any target by selecting the smallest value among the bandwidth 

associated with various hops in the data path. It is assumed that 2-way 

interleaving across DDR channels doubles the effective bandwidth. The results 

are shown in Figure 7-8. In this nomenclature, initiators (e.g., processors) may 

generate bandwidth to targets (e.g., a particular type of memory). 
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Figure 7-8. HMAT System Locality and Bandwidth Information 

Structure Summary 

 

If ACC1 is removed from the system, software may wish to remove ACC1 

related entries from these structures. Software may use bus-specific 

mechanisms to determine that the ACC1 memory base is 256 GB and its size is 

16 GB. By matching these addresses against the SRAT entries, software can 

unambiguously determine that proximity domain 1 represents ACC1. Software 

may then map domain 1 entries in SRAT as invalid and purge the 

corresponding entries from HMAT. 

If another ACC3-like device is dynamically added to the system, the Operating 

System may extract CDAT information from that device and insert new entries 

in the OS internal structure that is equivalent to SRAT and a new row in the OS 

internal structure that is equivalent to HMAT using an algorithm like the one 

used by the system firmware. 

7.5 Establishing Correlation between the DACD 

and IRDT tables 

Note that in this section “I/O RDT” is used as a shorthand to refer to Intel RDT 

for Non-CPU Agents, as introduced in Chapter 4. 

This section discusses Intel I/O RDT structure mapping (ACPI IRDT) to 

Enhanced RDT (ACPI ERDT) structures. The I/O RDT (IRDT) and ERDT feature 

enumeration tables provide complimentary information, which software may 

use to assemble a view of system memory (Section 7.4), and how devices and 

processors are organized, including sharing certain caching domains. Section 

5.1 provides ERDT table definition details. 

The top-level ACPI structure defined to support Intel I/O RDT is the “IRDT” 

structure. This is a vendor-specific extension to the ACPI table space. The 

named IRDT structure is generated by BIOS and contains all other non-CPU 

agent Intel RDT ACPI enumeration structures and fields as described in Chapter 

4. 
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Figure 7-9 shows an example of the RMUD mapping to DSS (device-level) and 

RCS (link-level) structures along with ERDT sub-structures. Each device 

attached to an I/O block is described by a DSS, and has one or more links, with 

properties described in the RCS structures. The RCS structures contain pointers 

to MMIO locations (in absolute address form, not BAR-relative) to allow 

software to configure the RMID/CLOS tags and related properties in an I/O 

Block. 

Figure 7-10. IRDT and ERDT ACPI Mapping. 

 

The following table summarizes the IRDT and ERDT ACPI structure fields that 

software needs to consider in order to map devices that are under the scope of 

RMD.  

Table 7-4. IRDT and ERDT ACPI Mapping. 

IRDT ERDT Comments 

IRDT.RMUD.Segment ERDT.DACD-

DASE.Segment 

These fields should match 

to map devices that are 

enumerated per I/O 

Monitoring Domain. 

IRDT.DSS.Device Type ERDT.DACD-DASE.Type - 
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IRDT.DSS.Enumeration ID ERDT.DACD-DASE.Start 

Bus Number+Path (See 

psuedocode below) 

- 

ERDT → DACD → DAS entry: 
n = (DeviceAgentScope.Length - 6) / 2; // number of entries in the 
‘Path’ field 
type = DeviceAgentScope.Type; // type of device 
bus = DeviceAgentScope.StartBusNum; // starting bus number 
dev = DeviceAgentScope.Path[0].Device; // starting device number 
func = DeviceAgentScope.Path[0].Function; // starting function number 
i = 1; 
while (--n) { 

bus = read_secondary_bus_reg(bus, dev, func);// secondary 
bus# from config reg. 
dev = DeviceAgentScope.Path[i].Device; // read next 
device number 
func = DeviceAgentScope.Path[i].Function; // read next 
function number 
i++; 

  } 
source_id = [bus,dev,func]; 
target_device = {type, source_id}; 

§ 
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A Intel® RDT Feature Details 

A.1 Intel® RDT Feature Evolution 

This section describes various generations of product and Intel RDT feature 

intercepts. Intel RDT provides a number of monitoring and control capabilities 

for shared resources in multiprocessor systems. This section covers updates to 

the feature that are available in current and future Intel processors, starting 

with brief descriptions followed by tables with details. 

1. Intel® RDT on the 3rd Gen Intel® Xeon® Scalable Processor Family. 

The 3rd Gen Intel® Xeon® Scalable Processor Family, based on Ice Lake 

server microarchitecture, adds the following Intel RDT enhancements: 

⎯ 32-bit MBM counters (versus 24-bit in prior generations), and new 

CPUID enumeration capabilities for counter width. 

⎯ Second generation Memory Bandwidth Allocation (MBA): Introduces 

an advanced hardware feedback controller that operates at 

microsecond timescales, and software-selectable min/max throttling 

value resolution capabilities. Baseline descriptions of the MBA 

“throttling values” applied to the threads running on a core are 

described in the Intel® 64 and IA-32 Architectures Software 

Developer’s Manual, Volume 3B. 

Second generation MBA capabilities also add a work-conserving 

feature in which applications that frequently access the L3 cache may 

be throttled by a lesser amount until they exceed the user-specified 

memory bandwidth usage threshold, enhancing system throughput 

and efficiency, in addition to adding more precise calibration and 

controls. Certain BIOS implementations may further aid flexibility by 

providing selectable calibration profiles for various usages. 

⎯ 15 MBA / L3 CAT CLOS: Improved feature consistency and interface 

flexibility. The previous generation of processors supported 16 L3 CAT 

Class of Service tags (CLOS), but only 8 MBA CLOS. The changes in 

enumerated CLOS counts per-feature are enumerated in the 

processor as before, via CPUID. 

2. Intel® RDT on Intel Atom® Processors, Including the P5000 Series. 

Intel Atom® processors, such as the P5000 series, based on Tremont 

microarchitecture add the following Intel RDT enhancements: 

⎯ L2 CAT/CDP: L2 CAT/CDP and L3 CAT/CDP may be enabled 

simultaneously on supported processors. As these are existing 

features defined in the Intel® 64 and IA-32 Architectures Software 

Developer’s Manual, Volume 3B, no new software enabling should be 

required. 

⎯ Supported processors match the capabilities of the 3rd Gen Intel Xeon 

Scalable Processor Family based on Ice Lake Server 

microarchitecture, including traditional Intel RDT uncore features: L3 

CAT/CDP, CMT, MBM, and second-generation MBA. As these features 

are architectural, no new software enabling is required. Related 

enhancements in Intel Xeon processors also carry forward to 
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supported Intel Atom processors, with consistent software enabling. 

These features include 32-bit MBM counters, second generation MBA, 

and 15 MBA/L3 CAT CLOS. 

3. Intel® RDT in processors based on the 4th Gen Intel® Xeon® 

Scalable Processor Family. 

Processors based on 4th Gen Intel® Xeon® Scalable Processor Family add 

the following Intel RDT enhancements: 

⎯ STLB QoS: Model-specific capability to manage the second-level 

translation lookaside buffer structure within the core (STLB) in a 

manner quite similar to CAT (CLOS-based, with capacity masks). This 

may enable software that is sensitive to TLB performance to achieve 

better determinism. This is a model-specific feature due to the 

microarchitectural nature of the STLB structure. The code regions of 

interest should be manually accessed. 

4. Intel® RDT in Processors Based on the 5th Gen Intel® Xeon® 

Product Family. 

Processors based on 5th Gen Intel® Xeon® Processors add the following 

Intel RDT enhancements: 

⎯ L2 CAT and CDP: Includes control over the L2 cache and the ability to 

partition the L2 cache into separate code and data virtual caches. No 

new software enabling is required; this is the same architectural 

feature described in the Intel® 64 and IA-32 Architectures Software 

Developer’s Manual, Volume 3B. 

5. Intel® RDT in Processors Based on the 6th Gen Intel® Xeon® 

Product Family. 

Processors based on 6th Gen Intel® Xeon® Processors add the following 

Intel RDT enhancements: 

⎯ Third generation Memory Bandwidth Allocation (MBA): new per-

logical-processor capability for bandwidth control (rather than the 

more coarse-grained core-level throttling value resolution in prior 

generations). This capability enables more precise bandwidth shaping 

and noisy neighbor control. Some portions of the control 

infrastructure now operate at core frequencies for controls that are 

responsive at the nanosecond level. 

⎯ Intel® RDT features support for non-CPU agents, enabling advanced 

monitoring and control capabilities for PCIe and CXL devices, as well 

as integrated processor accelerators.  

6. Future Intel® RDT. 

Future processors add the following Intel RDT enhancements: 

⎯ Region Aware Memory Bandwidth Monitoring (MBM) and Region 

Aware Memory Bandwidth Allocation (MBA). 
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A.2 Intel® RDT Architectural Features and 
Supported Products 
 

 Intel RDT 
Feature 

Category 

Shared 
Resource 

Agent Intel RDT Sub-
Feature 

Intel RDT 
Scope 

Supported Products 

M
o

n
it

o
r
in

g
 

Cache 

Monitoring 

Technology 

(CMT) 

L3 CPU L3 CMT for CPU 

agents 

Per-thread 

RMID-

based 

Intel® Xeon® E5/E7 

v3,v4, Intel® Xeon® D, 

Intel® Xeon® Scalable 

Processor, 2nd Gen 

Intel® Xeon® Scalable 

Processor, 3rd Gen 

Intel® Xeon® Scalable 

Processor, 4th Gen 

Intel® Xeon® Scalable 

processor, 5th Gen 

Intel® Xeon® Scalable 

processor, Intel Atom® 

Processor P5000 Series, 

Intel® Xeon® processors 

(codename Granite 

Rapids), Intel® Xeon® 

processors (codename 

Sierra Forest) 

L3 I/O L3 CMT for non-CPU 

agents 

Per-agent 

RMID-

based 

Intel® Xeon® processors 

(codename Granite 

Rapids), Intel® Xeon® 

processors (codename 

Sierra Forest) 

Memory 

Bandwidth 

Monitoring 

(MBM) 

- CPU MBM Local for CPU 

agents 

Per-thread 

RMID-

based 

Intel® Xeon® E5/E7 v4, 

Intel® Xeon® D, Intel® 

Xeon® Scalable 

Processor, 2nd Gen 

Intel® Xeon® Scalable 

Processor, 3rd Gen 

Intel® Xeon® Scalable 

Processor, 4th Gen 

Intel® Xeon® Scalable 

processor, 5th Gen 

Intel® Xeon® Scalable 

processor, Intel Atom® 

Processor P5000 Series, 

Intel® Xeon® processors 

(codename Granite 

Rapids), Intel® Xeon® 

processors (codename 

Sierra Forest) 
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 Intel RDT 
Feature 

Category 

Shared 
Resource 

Agent Intel RDT Sub-
Feature 

Intel RDT 
Scope 

Supported Products 

CPU MBM Total for CPU 

agents 

Per-thread 

RMID-

based 

Intel® Xeon® E5/E7 v4, 

Intel® Xeon® D, Intel® 

Xeon® Scalable 

Processor, 2nd Gen 

Intel® Xeon® Scalable 

Processor, 3rd Gen 

Intel® Xeon® Scalable 

Processor, 4th Gen 

Intel® Xeon® Scalable 

processor, 5th Gen 

Intel® Xeon® Scalable 

processor, Intel Atom® 

Processor P5000 Series 

(Selected Processors), 

Intel® Xeon® processors 

(codename Granite 

Rapids), Intel® Xeon® 

processors (codename 

Sierra Forest) 

CPU Region Aware MBM 

for CPU agents 

Per-RMID 

and per- 

Region 

based 

Future Intel® 

Processors 

I/O MBM Local for non-

CPU agents 

Per-agent 

RMID-

based 

Intel® Xeon® processors 

(codename Granite 

Rapids), Intel® Xeon® 

processors (codename 

Sierra Forest) 

I/O MBM Total for non-

CPU agents 

Per-agent 

RMID-

based 

Intel® Xeon® processors 

(codename Granite 

Rapids), Intel® Xeon® 

processors (codename 

Sierra Forest) 
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 Intel RDT 
Feature 

Category 

Shared 
Resource 

Agent Intel RDT Sub-
Feature 

Intel RDT 
Scope 

Supported Products 
A

ll
o

c
a
ti

o
n

 

Cache 

Allocation 

Technology 

(CAT) 

L2 CPU  L2 CAT for CPU 

agents 

Per-thread 

CLOS-based 

Atom Server C3000, 5th 

Gen Intel® Xeon® 

Scalable processor, 

Intel Atom® Processor 

P5000 Series, Intel® 

Xeon® Scalable 

processor (codename 

Granite Rapids), Intel® 

Xeon® processors 

(codename Sierra 

Forest) 

L2 CDP for CPU 

agents 

Per-thread 

CLOS-based 

5th Gen Intel® Xeon® 

Scalable processor, 

Intel Atom® Processor 

P5000 Series, Intel® 

Xeon® Scalable 

processor(codename 

Granite Rapids), Intel® 

Xeon® processors 

(codename Sierra 

Forest) 

L3 CPU L3 CAT for CPU 

agents 

Per-thread 

CLOS-

based 

Intel Atom® X Series 

(Selected Processors), 

Intel® Xeon® E5/E7 v3 

(Selected Processors), 

Intel® Xeon® E5/E7 v4 , 

Intel® Xeon® D, Intel® 

Xeon® Scalable, 2nd Gen 

Intel® Xeon® Scalable 

Processor, 3rd Gen 

Intel® Xeon® Scalable 

Processor, 4th Gen 

Intel® Xeon® Scalable 

processor, 5th Gen 

Intel® Xeon® Scalable 

processor, Intel® Xeon® 

W, Intel Atom® 

Processor P5000 Series, 

Intel® Xeon® Scalable 

processor(codename 

Granite Rapids), Intel® 

Xeon® processors 

(codename Sierra 

Forest) 
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 Intel RDT 
Feature 

Category 

Shared 
Resource 

Agent Intel RDT Sub-
Feature 

Intel RDT 
Scope 

Supported Products 

L3 CDP for CPU 

agents 

Per-thread 

CLOS-

based 

Intel® Xeon® E5/E7 v4, 

Intel® Xeon® Scalable 

Processor, 2nd Gen 

Intel® Xeon® Scalable 

Processor, 3rd Gen 

Intel® Xeon® Scalable 

Processor, 5th Gen 

Intel® Xeon® Scalable 

processor, Intel Atom® 

Processor P5000 Series,  

Intel® Xeon® Scalable 

processor(codename 

Granite Rapids), Intel® 

Xeon® processors 

(codename Sierra 

Forest) 

I/O L3 CAT for non-CPU 

agents 

Per-agent, 

CLOS-

based 

Intel® Xeon® processors 

(codename Granite 

Rapids), Intel® Xeon® 

processors (codename 

Sierra Forest) 

Memory 

Bandwidth 

Allocation 

(MBA) 

 

L3 

external 

bandwidth 

 

CPU MBA for CPU agents 

(First Generation 

MBA) 

Per-

interface, 

CLOS-

based 

Intel® Xeon® Scalable 

Processor, 2nd Gen 

Intel® Xeon® Scalable 

Processor, 3rd Gen 

Intel® Xeon® Scalable 

Processor formerly 

codenamed Cooper 

Lake 

CPU MBA for CPU agents 

(Second Generation 

MBA) 

Per-

interface, 

CLOS-

based 

3rd Gen Intel® Xeon® 

Scalable Processor 

(excluding codename 

Cooper Lake), 4th Gen 

Intel® Xeon® Scalable 

processor, 5th Gen 

Intel® Xeon® Scalable 

processor, Intel Atom® 

Processor P5000 Series, 

Future Intel® Xeon® 

Scalable processor 

(codename Granite 

Rapids), Future Intel® 

Xeon® processors 

(codename Sierra 

Forest) 

CPU MBA for CPU agents 

(Third Generation 

MBA) 

Per-agent, 

CLOS-

based 

Future Intel® Xeon® 

processors (codename 

Granite Rapids), Future 

Intel® Xeon® processors 

(codename Sierra 

Forest) 

CPU Region Aware MBA 

for CPU Agents 

Per-agent, 

CLOS-

based and 

per- Region 

based 

Future Intel® 

Processors 
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 Intel RDT 
Feature 

Category 

Shared 
Resource 

Agent Intel RDT Sub-
Feature 

Intel RDT 
Scope 

Supported Products 

Cache 

Bandwidth 

Allocation 

(CBA) 

- CPU CBA for CPU agents Per-Logical 

Processor 

based 

Future Intel® 

Processors  

A.3 Intel® RDT Model-Specific Features and 
Supported Products 
 

Intel RDT Feature Category Supported Products 

Resource Aware MBA (MBA4.0) • Intel® Xeon® processors (codename Granite Rapids). 

• Intel® Xeon® processors (codename Sierra Forest). 

Intel® RDT and Sub-NUMA 

Clustering (SNC) Compatibility 

• 3rd Gen Intel® Xeon® processors. 

• 4th Gen Intel® Xeon® processors. 

• 5th Gen Intel® Xeon® processors. 

STLB QoS 4th Gen Intel® Xeon® processors. 

The following product generations on SKUs with Intel® Time 

Coordinated Computing (Intel® TCC) support: 

• 11th Gen Intel® Core™ Processors (UP3-Series). 

• Intel® Xeon® W Processors (TGL-H). 

• 12th Gen Intel® Core™ Processors (S-Series). 

• 13th Gen Intel® Core™ Processors (P-Series). 

• 13 Gen Intel® Core™ Processors (S-Series). 

• Intel Atom® x7000E Series Processors. 

A.4 Feature Mapping: CPU Agents, Non-CPU 
Agents in Different L3 Configurations 
 

Configuration Intel RDT 
Feature 

CPU Agents Intel RDT 
Scope 

Non-CPU 
Agents Intel 
RDT Scope 

Comments  

Shared-L3 Cache Monitoring 

Technology (CMT) 

Per-thread RMID-based  Per-agent RMID-

based 

Unified per-RMID 

counters across CPU 

Agents and non-CPU 

Agents. 

Shared-L3 Memory 

Bandwidth 

Monitoring (MBM) 

Per-thread RMID-based Per-agent RMID-

based 

Unified per-RMID 

counters across CPU 

Agents and non-CPU 

Agents. 

Shared-L3 Cache Allocation 

Technology (CAT)  

Per-thread CLOS-based Per-agent CLOS-

based 

Unified per-CLOS controls 

across CPU Agents and 

non-CPU Agents. 

Shared-L3 Code and Data 

Prioritization 

(CDP) 

Per-thread CLOS-based N/A CDP is not supported for 

non-CPU Agents. 
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Configuration Intel RDT 
Feature 

CPU Agents Intel RDT 
Scope 

Non-CPU 
Agents Intel 
RDT Scope 

Comments  

Shared-L3 Memory 

Bandwidth 

Allocation (MBA) 

Per-agent MBA throttling 

(MBA3.0 and higher) or 

Per-interface MBA throttling 

(MBA1.0-2.0) 

N/A MBA is not supported for 

non-CPU Agents. 
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A.5 Architectural MSRs used with Intel® RDT 
Features 

The following architectural Model-Specific Registers are used with Intel® RDT 

features. 

 

MSR Name Comments 

IA32_PQR_ASSOC Set the RMID and CLOS pair. 

IA32_QM_EVTSEL Set event codes and RMID to be monitored. 

IA32_QM_CTR Reports monitoring telemetry data. 

IA32_L3_MASK_n Bitmask to assign L3 cache ways for each CLOS. “n” registers, 

one register per CLOS. 

IA32_L2_QoS_Ext_BW_Thrtl_n Set valid throttling levels. “n” registers, one register per CLOS 

IA32_L2_QOS_MASK_n Bitmask to assign L2 cache ways for each CLOS. “n” registers, 

one register per CLOS. 

IA32_L3_IO_QOS_CFG Set to enable Allocation and Monitoring for non-CPU Agents 

IA32_QoS_Core_BW_Thrtl_n Set valid throttling levels, one byte per CLOS. “n = 0 to 

(((CLOS_MAX+1)/8) -1)” registers 

A.6 Model-Specific Registers for Intel® RDT 
Model Specific Features 

The following notable non-architectural Model-Specific Registers are used with 

Intel® RDT features and will be expanded over time. Others are discussed in 

preceding model-specific chapters. 

 

MSR Name Comments 

MBA_CFG Set the RMID and CLOS pair. 

RMID_SNC_CONFIG  Clear to enable RMID Sharing Mode. 

STLB_QOS_INFO Discover STLB QOS parameters 

STLB_QOS_MASK_N STLB QOS Capacity Bitmasks 

STLB_FILL_TRANSLATION Fill a logical address into the STLB 

PQR_ASSOC Resource Association Register 

L3_QOS_MASK_N L3 Class of Service Mask 

§ 
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B Model-Specific Intel® RDT 
Features 

B.1 Model-Specific Intel® RDT Features for CPU 
Agents 

This section gives an overview of non-architectural features that are 

implemented on specific products. To find out which features are supported on 

which specific products, refer to Appendix A.3. 

In certain cases, model-specific features may be implemented rather than 

architectural features in cases where the cache or memory hierarchies are 

rapidly evolving, or in cases where usages are specialized and require intricate 

software enabling and tuning, or in cases where a subset of special-purpose 

processors are enabled with certain features within a broader product line. 

Support for a certain model-specific feature in a particular product generation 

does not imply that future products will support the same model-specific 

feature; furthermore, this does not guarantee software forward-compatibility. 

Software should use Processor Family, Model and Stepping (FMS) to verify that 

a particular processor includes support for a given model-specific feature.  

B.1.1 Resource Aware MBA 

Resource Aware MBA (MBA 4.0) for CPU-agent was formerly known as Fourth 

Generation MBA (MBA 4.0) which supports over Third Generation MBA 

capabilities as Bandwidth management support is implemented to support up 

to three different resources – DDR Memory, CXL links, and UPI Links on a pre 

thread basis. Third generation MBA capabilities (see Section 3.2.3.3) are the 

default mode of operation, with Resource Aware MBA being opt-in. See 

Appendix A.3 for Resource Aware MBA feature intercept details. 

B.1.1.1 Overview 

Resource Aware MBA allows per-thread tracking and control of Bandwidth to 

different resources – that is, enabling bandwidth control per-thread and per-

resource simultaneously. As in the third generation of MBA, each resource and 

thread are managed by a hardware controller which modulates the bandwidth 

of each thread targeting a particular downstream resource around a bandwidth 

target set by Intel RDT software interfaces. 

The resource types that are managed are: 

1. DDR – All traffic towards DDR Memory regardless of location of location 

(local, remote or CXL). 

2. CXL – All traffic towards CXL resources such as CXL.mem pools including 

remote. 
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3. UPI - All traffic that utilizes the Intel® Ultra Path Interconnect (Intel® UPI) 

link(s) for cross socket data transfer regardless of target on the remote 

socket.  

The high-level implementation of Resource Aware MBA is shown in Figure 7-11. 

Figure 7-11. High-Level Overview of the Resource Aware MBA (MBA 4.0) 

 

B.1.1.2 Enable MSR 

Resource Aware MBA (MBA 4.0) is opt-in feature. Before configuring MBA 

throttling values per-thread and per-resource, the feature should be enabled 

(through a configuration MSR). The MBA_CFG MSR is used to enable the 

Resource Aware MBA feature for CPU agents. 

One bit is defined in this MBA_CFG MSR, bit[2], which when set enables the 

Resource Aware MBA feature and switches between third-generation MBA and 

Resource Aware MBA modes. 

The default value is 0x0 (Resource Aware MBA is disabled by default), and all 

bits not defined are reserved. Any writes to reserved bits will generate a 

General Protection Fault (#GP(0)).  

This MSR is scoped at the die level and is cleared on system reset. It is 

expected that software will configure this MSR consistently across all L3 caches 

that may be present in the SoC. 

The definition of the MBA_CFG MSR is shown in Figure 7-12, and its MSR 

address is 0xC84.  
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Figure 7-12. The MBA_CFG MSR for Enabling Resource Aware MBA Feature 

 

Reference BIOS implementations supporting Resource Aware MBA will extend 

the legacy bandwidth profile knobs from Second Generation MBA with a drop-

down menu of three options (see Section 5.2 for details) 

B.1.2 Intel® RDT and Sub-NUMA Clustering Compatibility 

The following sub-sections describe Intel RDT and Sub-NUMA Clustering (SNC) 

compatibility enabling components. Utilizing SNC and RDT simultaneously may 

provide resource contention isolation benefits but requires incremental 

software enabling with the introduction of SNC.  

B.1.2.1 Introduction 

Following sub-sections describe Intel RDT monitoring features behavior in the 

presence of either multiple NUMA domains per socket, other product 

implementations in which multiple NUMA domains may appear per processor, 

due to either logical or physical resource partitioning. This section references 

Intel RDT features such as MBA, MBM, CMT and CAT for CPU agents and non-

CPU agents described in Chapter 3 and Chapter 4 respectively. 

The Sub-NUMA Clustering (SNC) feature creates localization domains within a 

processor by mapping addresses from a local memory controller to a subset of 

the L3 slices that are at a reduced distance to nearby memory controller(s), 

reducing latency, and increasing equivalent traffic isolation across memory 

channels controllers. 

MBA usage is not affected in presence SNC; bandwidth targets apply globally 

across all SNC domains. L3 CAT and Monitoring features (L3 CMT and MBM) 

usage is affected in the presence of SNC. Following sections provide details. 

See Appendix A.3 for Intel RDT and Sub-Numa Clustering (SNC) Compatibility 

feature supported product details (for example, products where the features 

are simultaneously supported). 

B.1.2.2 SNC Enabled and L3 Cache Allocation Technology 

L3 Cache Allocation Technology (L3 CAT) allows an Operating System (OS), 

Hypervisor / Virtual Machine Manager (VMM) or similar system service 

management agent to specify the amount of L3 cache capacity of the Resource 

Allocation Domain (RAD) into which an application can fill.  
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In the presence of SNC, cache capacity bitmasks are still die-scoped and apply 

across multiple-L3 domains. Each bit in the cache capacity bitmask manages all 

clusters and dictates the portion of each SNC cluster available for a given 

Resource Management Domain. For example, each bit in cache capacity 

bitmask represents half as much L3 cache capacity at each cluster when SNC2 

is enabled, or one-quarter as much L3 cache capacity at each cluster when 

SNC4 is enabled and so on. Note that total L3 cache capacity does not change. 

Software may choose to apply consistent policies across SNC domains utilizing 

this property, such as CLOS[0] having full access to the cache across any SNC 

domain in which it may run, but CLOS[1] having access to only half of the 

cache, implying that it contains a set of lower-priority threads. 

B.1.2.3 SNC Enabled and RMID Distribution Modes 

There are two modes available to control Resource Monitoring ID (RMID) 

distribution when SNC is enabled: Default mode and RMID Sharing. 

Software should consider and select the mode in which RMIDs are distributed 

or shared across the SoC and SNC domains depending on its usage needs. 

B.1.2.3.1 Default Mode 

When SNC is enabled the available pool of RMIDS are distributed across all the 

L3 slices. RMIDs are distributed across the cores in the same fashion as done 

when SNC is not enabled, see Figure 7-13. 

This distribution scheme allows the RMIDS enumerated by CPUID to be directly 

used. Software should be aware of the distribution of RMIDs between the SNC 

domains. For instance, if there are 320 RMIDs available which is enumerated 

via Shared Resource Monitoring Leaf, CPUID.0FH.0H and an SNC-4 

configuration is selected, four localization domains exist within a processor. 

These 320 RMIDs can be dived into four groups of 80 RMIDS with first 80 

allocated to SNC domain 0, the next 80 to SNC domain 1 and so forth. Due to 

this distribution policy, RMIDs may be visualized as localized to SNC domains, 

and there maybe cases where bandwidth is not counted. Consider for instance 

the case where thread with RMID 0 accesses will generate counts only for 

traffic in SNC domain 0. Any traffic from this thread that accesses other SNC 

domains will not increment any of the other counters. In other words, each 

SNC domain will get an equal number of distinct RMIDS from the global pool of 

RMIDS that are not shared.  
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Figure 7-13. Default Mode Demonstrating SNC-4 and RMID Distribution 

 

B.1.2.3.2 RMID Sharing Mode 

RMID sharing mode allows the same RMID to be distributed with traffic 

accessing any and all SNC domains, but at the cost of a reduced number of 

SoC-level RMIDs available. This model-specific mode aims to mitigate the 

disadvantage of the Default mode where software should be aware of the RMID 

distribution per SNC domain (and NUMA-aware) and where traffic tagged with 

an RMID in one domain will not be counted if it accesses resources in another 

SNC domain. RMID sharing mode allows same RMID to sample across SNC 

domains, thus ensuring a complete count. 

• This is an opt-in mode and requires that the software clears an enable bit 

defined in the following MSR 0XCA0, bit[0], see Figure 7-14. Note that as a 

model-specific capability, this mode is not guaranteed to be supported on 

all processors (see Appendix A.3 for support details). 

Figure 7-14. The RMID_SNC_CONFIG MSR for Enabling RMID Sharing Mode 

 

In this mode the number of RMIDs are distributed across all the L3 slices 

effectively reducing the number of RMIDs by the number of SNC domains. In 

the case of four SNC domains, the number of RMIDs are divided by four. 

Number of valid RMIDs = (Highest RMID value/#SNC_clusters) 
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Using the previous example of 320 RMIDs, in this mode with SNC-2 enabled 

there would be (320/2), that is, 160 RMIDs, with SNC-4 enabled there would 

be (320/4), that is, 80 RMIDs. 

Note: In SNC4 mode, to determine the count for RMID0, the count for RMID0, 

RMID80, RMID160, and RMID240 should be read and added to provide the 

total count for RMID0. 

Note: It is the responsibility of software to read the values from each of the 

counters and calculate and interpret the sum using the output of the 

IA32_QM_CTR MSR. This is illustrated in Figure 7-15. 

Figure 7-15. RMID Sharing Mode Demonstrating SNC-4 and RMID Distribution 

 

B.1.2.4 Intel® RDT Software Considerations 

Depending on its preferred use model and whether this model-specific 

capability is supported on a particular processor, software may select either the 

mode in which RMIDs are distributed or shared across the SoC and SNC 

domains. The default mode where each SNC cluster has a defined group of 

RMIDs or the opt-in mode which shares the same RMID across the SNC 

domains. 

• Without SNC mode enabled the Remote Memory Bandwidth can be 

calculated by: 

⎯ Remote Memory BW = (Total Memory BW – Local Memory BW) * 

Scaling Factor. 

• With SNC Mode enabled software should scale the measured BW depending 

on the SNC_RMID Mode. 

• CMT is similarly affected. 
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Table 7-5. SNC Enabled and RMID Distribution Mode Summary 

 Default Mode Opt-In : RMID Sharing Mode 

Key highlights  

• RMID_SNC_CONFIG MSR is Set. 

• Each SNC domain has its own 

group of RMIDs. 

• RMID_SNC_CONFIG MSR is Clear. 

• Number of RMIDs divided by the number of 

SNC Domains. 

• Opt-In mode is enabled by software setting 

the MSR 0xCA0[0] = 0. 

Example: 

RMID Distribution 

per SNC Example 

for each Mode: 

SNC-4 config and 

Max 320 RMIDs 

1. For each SNC domain, the software 

should select an RMID from the range 

mentioned next to program 

IA32_PQR_ASSOC MSR. This range will 

be dependent on NUMA cluster you 

choose: 

• SNC_Domain_0 : RMID[79:0] 

• SNC_Domain_1 : RMID[159: 80] 

• SNC_Domain_2 : RMID[239:160] 

• SNC_Domain_3 : RMID[319:240] 

2. To obtain monitoring data read via 

IA32_QM_EVTSEL, MSR uses only the 

RMID value to read counter value. 

1. Number of Valid RMIDs = 

(#RMIDS/#SNC_Domains). 

Choose d in {0...79} in this example. 

**This range is used to program RMID field in the 

IA32_PQR_ASSOC MSR so that the appropriate 

hardware counters within the SNC domain are 

updated. 

2. To obtain monitoring data via IA32_QM_EVTSEL 

MSR read 4 counter value from using the next 

formula: 

MAX_VALID_RMID = #RMIDS/#SNC_DOMAINS 

SNC_DOMAIN_0: RMID[0+d] 

SNC_DOMAIN_1: RMID[MAX_VALID_RMID*1 + d] 

SNC_DOMAIN_2: RMID[MAX_VALID_RMID*2 + d]  

SNC_DOMAIN_3: RMID[MAX_VALID_RMID*3 + d] 

For this example: 

SNC_DOMAIN_0: RMID[0+d] 

SNC_DOMAIN_1: RMID[80+d] 

SNC_DOMAIN_2: RMID[160+d] 

SNC_DOMAIN_3: RMID[240+d] 

Differences 
• Same number of RMIDS across 

SoC. 

• RMIDS divided down by the number of SNC 

Domains and hence reduced number of 

RMIDS available for use. 

Differences 

• Miss traffic count due to software 

that traverses SNC domains. This 

can lead to inaccurate counts for 

CMT/MBM. 

• Counts traffic that traverses SNC domains. 

Differences 
• Software needs to know the 

distribution of RMIDS to SNC 

domains. 

• Software required to read all the RMID 

counters in the SNC domains and add up the 

individual count to get the final count. 

Note: Only the monitoring features of Intel RDT are affected by the SNC feature. 

The allocation features, that is, CAT and MBA are not affected. Bit masks and 

BW targets apply globally across all domains. See Table 7-5 for SNC enabled 

and RMID distribution summary. 

B.1.2.5 Scaling Factor Adjustment 

CPUID-provided scaling factor (CPUID(0xF(Shared Resource Monitoring 

Enumeration leaf).0x1).EBX[31:0]), which software will use to convert MBM 

counts into bandwidth figures, needs adjustment in software when the system 

is configured in SNC mode. Moreover, calculating different types of bandwidths, 

such as local, total, or remote, also needs special considerations. This section 

describes how software needs to handle these special cases. 
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When using scaling factor under SNC mode, the scaling factor provided by 

CPUID will not account for the reduced number of L3 slices that will be handling 

local traffic. The scaling factor value will remain the same as any other 

clustering mode. software will then need to adjust the scaling factor. For this 

purpose, we define: 

AdjustedScalingFactor = ScalingFactor / SNCClusterCount 

B.1.2.6 SNC and Intel® RDT for Non-CPU Agent Implications 

Intel RDT for non-CPU agents is affected similarly to traditional Intel RDT 

features in the presence of SNC. To obtain a correct CMT or MBM data sampling 

software should either localize I/O device memory allocations to a given cluster 

or sum RMID counts periodically, depending on the RMID localization mode 

selected. 

In cases where multiple contexts are present on a device (SR-IOV, SIOV, with 

attached VMs that may span multiple SNC domains for their execution or 

multiple devices are behind an IOSF channel, if memory accesses are 

distributed across SNC clusters, then monitoring accuracy decreases 

considerably, and the risk of missing cache occupancy or memory bandwidth 

increases considerably.  

SNC also affects I/O traffic. Software seeking to monitor I/O capacity or 

overflow BW to memory (I/O equivalent of CMT or MBM), should determine 

which SNC cluster a given address falls into using NUMA-aware supporting 

constructs (for example, ACPI HMAT, SLIT tables [4]) and pick a corresponding 

RMID for that cluster. As an example, if a device DMA write assigned to an 

RMID which does not land in the same SNC cluster as the address and its 

memory controller will not be tracked. 

B.1.2.7 Calculating Local MBM Bandwidth per Cluster 

When MSR 0xCA0 is set to 1 (Default Mode) software will be able to monitor 

local BW only from one SNC cluster. If MSR 0xCA0 is set to 0 (RMID Sharing 

Mode) then software will be able to monitor Local BW from all SNC clusters. 

Independent of the value in MSR 0xCA0, Local MBM Counts from a given SNC 

cluster can be converted to BW figures using the adjusted scaling factor 

following the same mechanism used under non-SNC modes: 

LocalMbmBwClusterN = (LocalMbmCountDeltaClusterN * AdjustedScalingFactor) / 

SampleTime 

Where: 

• ‘LocalMbmCountDeltaClusterN’  = (Second Sample of LocalMbmCounter 

value (ClusterN) – First sample of LocalMbmCounter value (ClusterN). 

• ‘AdjustedScalingFactor’ = ScalingFactor / SNCClusterCount. 

B.1.2.8 Calculating Local MBM Bandwidth for Entire Socket 

While operating under any non-SNC mode Local MBM BW will correspond to all 

the total traffic within the full socket. To obtain the same metric under SNC 
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mode software may add up the Local BW from each cluster. This can be 

achieved only when MSR 0xCA0 is set to 0. Otherwise, software will only be 

able to capture the local BW from a single cluster. 

LocalMbmBwSocket = ((LocalMbmCountDeltaCluster0 + ...  LocalMbmCountDeltaClusterN) * 

AdjustedScalingFactor) / SampleTime 

Where: 

• ‘LocalMbmCountDeltaCluster0’  = (Second Sample of LocalMbmCounter 

value (Cluster0) – First Sample of LocalMbmCounter value (Cluster0)… 

Similarly, delta for for each 1,2,…N. 

• ‘AdjustedScalingFactor’ = ScalingFactor / SNCClusterCount. 

B.1.2.9 Calculating Total MBM Bandwidth for the Socket 

Calculating the Total MBM BW for the full socket, including the traffic from all 

clusters, will require that MSR 0xCA0 is set to 0. 

TotalMbmBwSocket = ((TotalMbmCountDeltaCluster0 + ...  TotalMbmCountDeltaClusterN) * 

AdjustedScalingFactor) / SampleTime 

Where: 

•  ‘TotalMbmCountDeltaCluster0’  = (Second Sample of TotalMbmCounter 

value (Cluster0) – First Sample of TotalMbmCounter value (Cluster0)… 

Similarly, delta for each 1,2,…N. 

• ‘AdjustedScalingFactor’ = ScalingFactor / SNCClusterCount. 

B.1.2.10 Estimating Remote Traffic 

As with Non-SNC modes, remote traffic can be estimated out of the socket’s 

Total MBM BW and Local MBM BW with this simple relation: 

RemoteMbmBwSocket = TotalMbmBwSocket – LocalMbmBwSocket 

Calculating both TotalMbmBwSocket and LocalMbmBwSocket will require MSR 

0xCA0 to be set to 0. However, if software decides to keep MSR 0xCA0 set to 

“1”, its default value, an alternative mechanism exists to calculate the socket’s 

MBM Remove BW as described in the following section. 

B.1.2.11 Estimating Remote Bandwidth with MSR 0xCA0 set to 1 

If software decides not to switch MSR 0xCA0 to value 0 (for example, out of 

Default mode) the mechanism described earlier to calculate the socket remote 

traffic will not work. However, it is still possible to estimate the remote traffic 

of the entire socket by using MBM counts from a single cluster. 

RemoteMbmBwSocket = (TotalMbmBwClusterN - LocalMbmBwClusterN) * SNCClusterCount 

B.1.2.12 Example for Local and Total MBM Bandwidth 

In this example, software runs on a system configured in SNC-4 mode where 

CPUID(0xF(Shared Resource Monitoring Enumeration leaf).0x1).EBX[31:0] 
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reads 0x1E000 (ScalingFactor). AdjustedScalingFactor is then calculated to be 

0x7800. If the system is configured with MSR 0xCA0=0 (RMID Distribution 

Mode) then software will have the ability to sample BW across all four clusters 

in this example. After sampling MBM counts with a delay of one second the 

following MBM Count increments are observed: 

Table 7-6. Local and Total Count Increment 

Cluster Local MBM Count Increment Total MBM Count Increment 

0 174762 192238 

1 43690 61166 

2 0 17476 

3 0 17476 

Software can then calculate Local Bandwidth (BW), Total Bandwidth(BW) and 

Remote Bandwidth(BW) following these steps. 

1. Calculate Local BW for Cluster 0 using the formula for LocalMbmBw 

described earlier: 

LocalMbmBwCluster0 = (LocalMbmCountDeltaCluster0 * 

AdjustedScalingFactor) / SampleTime 

LocalMbmBwCluster0 = (174762 * 0x7800) / 1 

LocalMbmBwCluster0 = 5368688640 B/s ~= 5GB/s 

2. Calculate Total BW for Cluster 0 using the formula for TotalMbmBw 

described earlier: 

TotalMbmBwCluster0 = (TotalMbmCountDeltaCluster0 * 

AdjustedScalingFactor) / SampleTime 

TotalMbmBwCluster0 = (192238* 0x7800) / 1 

TotalMbmBwCluster0 = 5905551360B/s ~= 5.5GB/s 

3. Following the same procedure Local and Total BWs for the different 

clusters may be calculated as shown in Table 7-7.  

Table 7-7. Local and Total Bandwidth Example 

Cluster LocalMbmBwClusterN TotalMbmBwClusterN 

0 5 GB/s 5.5 GB/s 

1 1.25 GB/s 1.75 GB/s 

2 0 0.5 GB/s 

 0 0.5 GB/s 

4. We can also calculate the socket Local and Total BWs: 

LocalMbmBwSocket =((LocalMbmCountDeltaCluster0 + ...  

LocalMbmCountDeltaClusterN) * AdjustedScalingFactor) / 

SampleTime 

LocalMbmBwSocket = ((174762 + 43690 + 0 + 0) * 0x7800) / 1 

LocalMbmBwSocket = 6710845440B/s ~= 6.25GB/s 

TotalMbmBwSocket =((TotalMbmCountDeltaCluster0 + ...  

TotalMbmCountDeltaClusterN) * AdjustedScalingFactor) / 

SampleTime 
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TotalMbmBwSocket = ((192238 + 61166 + 17476 + 17476) * 

0x7800) / 1 

TotalMbmBwSocket = 8858296320B/s ~= 8.25GB/s 

5. Finally, the remote BW for the socket can be estimated: 

RemoteMbmBwSocket = TotalMbmBwSocket – LocalMbmBwSocket 

RemoteMbmBwSocket = 8.25GB/s - 6.25GB/s ~= 2GB/s 

We can also use this example to show to estimate the socket’s remote BW if 

MSR 0xCA0 is set to 1 (Default mode). Under such conditions only MBM counts 

from a single cluster can be obtained. Assuming that the software has picked 

and RMID from cluster 0, we can use the values calculated earlier for 

LocalMbmBwCluster0 and TotalMbmBwCluster0. Then: 

RemoteMbmBwSocket = (TotalMbmBwCluster0- 

LocalMbmBwCluster0) * SNCClusterCount 

RemoteMbmBwSocket = (5.5GB/s – 5.0GB/s) * 4 ~= 2GB/s 

Note that the value for RemoteMbmBwSocket obtained through this mechanism 

matches that obtained by using the MBM counts from all clusters. 

By analyzing the results from this example, we can conclude, from the thread 

or threads assigned to the selected RMID that: 

• Thread(s) are generating 5 GB/s of traffic towards cluster 0. 

• Thread(s) are generating 1.25 GB/s of traffic towards cluster 1. 

• Thread(s) are not generating local traffic towards clusters 2 or 3. 

• Thread(s) are generating 2 GB/s of traffic towards a remote socket. 

• Each SNC cluster is handling 0.5 GB/s of that remote traffic. 

B.1.3 STLB QoS 

Translation Lookaside Buffer (TLB) misses can cause costly execution delays 

due to page walks. Considered from a capacity management perspective, STLB 

QoS behaves in a similar manner as Cache Allocation Technology (CAT) does 

on the data caches, by giving software the ability to provide hints to hardware 

that guide the placement of translations in the STLB. This control can provide 

fair sharing or improved isolation of TLB resources between applications 

organized by Classes of Service. 

Note: This model-specific feature is intended for use primarily with specialized real-

time operating systems that provide extensions to bound the number of tasks 

running on a core and thus sharing a TLB. Depending on the software 

environment, additional runtime restrictions and software optimizations may 

be needed to observe the potential performance benefits of STLB QoS. 

Contact your Intel representative for additional details. 

Refer to Appendix A.3 for supported product details, which vary across 

generation and processor type. 
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B.1.3.1 Enumerating Support for STLB QoS 

STLB QoS is model specific and support for it is enumerated through the 

IA32_CORE_CAPABILITIES MSR. To determine if the processor supports the 

IA32_CORE_CAPABILITIES MSR, software can check whether the CPUID 

Extended Feature flag at CPUID.07H.00H:EDX[30] is set to ‘1’. 

If CPUID.07H.00H:EDX[30] is ‘1’, then support for STLB QoS can be confirmed 

via the IA32_CORE_CAPABILITIES MSR as defined next. 

Table 7-8. STLB QoS Enumeration in IA32_CORE_CAPABILITIES MSR 

Name Address Scope Bit RW Bit Name Description 

IA32_CORE_CAPABILITIES CFh Core 0 RO STLB_QOS When set to 1, processor 

supports STLB QoS 

B.1.3.2 STLB QoS Register Interfaces 

This section contains the register interfaces for configuring STLB QoS. Software 

should first read the STLB_QOS_INFO to determine the maximum number of 

classes of service and capacity bitmask length and may then proceed to 

partitioning the STLB using the STLB_QOS_MASK_n registers. 

B.1.3.2.1 STLB_QOS_INFO 

Software may discover the necessary information for configuring STLB QoS via 

the STLB_QOS_INFO MSR as defined next. 

Table 7-9. STLB_QOS_INFO MSR Definition 

Name Address Scope Bit RW Bit Name Description 

STLB_QOS_INFO 1A8Fh Core 

5:0 RO NCLOS 
Number of CLOS supported for STLB 

resource using minus-1 notation. 

19:16 RO 4K_2M_CBM 
Length of capacity bitmask for 4K and 

2M pages using minus-1 notation. 

29:29 RO 

STLB_FILL_ 

TRANSLATION 

_MSR_SUPPORTED 

MSR interface to fill STLB translations 

supported. 

30:30 RO 4K_2M_ALIAS 
Indicates that 4K/2M pages alias into 

the same structure. 

B.1.3.2.2 STLB_QOS_MASK_N 

STLB_QOS_MASK_n registers define the capacity bitmask to be applied when 

filling new translations into the STLB. The mask used will depend on the core’s 

current Class of Service at the time of TLB miss, as configured via the 

IA32_PQR_ASSOC MSR (covered in Chapter 3.2 Intel RDT Allocation Common 

Framework). The STLB_QOS_MASK_n registers are dynamic and may be 

changed at runtime. 

Software should limit the number of mask registers used to the number of 

supported STLB QoS CLOS. For example, if STLB_QOS_INFO[NCLOS] returns 
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0x7, then a total of eight classes of service are supported and valid 

STLB_QOS_MASK_n registers would be 1A90h – 1A97h as defined in Table 

7-10. Attempts to use unsupported STLB QoS mask registers will generate 

#GP(0). 

Table 7-10. STLB_QOS_MASK_N MSR Definition 

Name Address Scope Bit RW Bit Name Description 

STLB_QOS_MASK_n 1A90h 

- 

1A9Fh 

Core 7:0 RW WAY_MASK STLB QoS mask for CLOS 

n. The number of mask 

bits is enumerated in MSR 

STLB_QOS_INFO.  

‘1 in bit indicates 

allocation to the way is 

allowed. ‘0 indicates 

allocation to the way i‘ not 

allowed.1,2 

NOTES: 1. Mask values must be contiguous 1s. 

 2. Way mask only applies to 4K/2M STLB. 

B.1.3.2.3 STLB_FILL_TRANSLATION 

As a further specialized extension to STLB QoS, certain processors support a 

mechanism to manually populate entries in the STLB, rather than requiring that 

pages of interest be accessed by software as part of a TLB fill flow to populate 

the entries. Note that this capability is not guaranteed to be supported on all 

future processors which support STLB QoS.  

If STLB_QOS_INFO[STLB_FILL_TRANSLATION_MSR_SUPPORTED] is ‘1’, 

software may populate entries in the STLB directly by writing the logical 

address (LA) and Class of Service to use for the fill to 

STLB_FILL_TRANSLATION as defined next. 

Table 7-11. STLB_FILL_TRANSLATION MSR Definition 

Name Address Scope Bit RW Bit 
Name 

Description 

STLB_FILL_ 

TRANSLATION 

1A8Eh Core 3:0 WO CLOS Class of service to use for the fill. 

10:10 WO X Set to 1 when LA is to an 

executable page. 

11:11 WO RW Set to 1 when LA is to a writeable 

page. 

63:12 WO LA Logical address to use for fill. 

Note: The STLB_FILL_TRANSLATION MSR should not be used in the VMX load list as 

a #GP(0) will occur. 

B.1.4 L3 Cache Allocation Technology 

Certain Intel® Core™ and Intel Atom® processors with support for Intel® Time 

Coordinated Computing (Intel® TCC), and certain communications related 

Intel® Xeon® processors implement a model specific, non-architectural version 
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of L3 Cache Allocation Technology (L3 CAT). In model-specific 

implementations, parameters such as CBM bitmask length and number of 

supported CLOS are specified on a per-processor basis rather than in CPUID 

(see the following section). 

The non-architectural implementations of L3 CAT behave similarly to the 

architectural implementation, however under certain circumstances the 

performance characteristics may vary. Intel recommends evaluating overall 

system performance with model-specific non-architectural L3 CAT to verify 

performance targets are met. 

B.1.4.1 Processor Support List 

The following table can be used to identify which processors support the model 

specific non-architectural implementation of L3 CAT. Registers for programming 

the capacity bitmask for a given CLOS follow the same location and definition 

of the IA32_L3_MASK_n MSR’s as defined in the Intel® Software Developer’s 

Manual. 

Table 7-12. Processor support list 

Processor Brand String # L3 Classes of 
Service (CLOS) 

Capacity Bitmask 
Length (CBM) 

Intel Atom® Processors 

Intel Atom® x6427FE Processor 

4 

16 

Intel Atom® x6425RE Processor 16 

Intel Atom® x6414RE Processor 16 

Intel Atom® x6212RE Processor 16 

Intel Atom® x6200FE Processor 8 

Intel Atom® X6416RE Processor 16 

Intel Atom® X6214RE Processor 16 

Intel Atom® x7211E Processor 

16 

12 

Intel Atom® x7425E Processor 12 

Intel Atom® x7213E Processor 12 

11 Gen Intel® Core™ 

Processors (UP3-Series) 

Intel® Core™ i7-1185GRE Processor 

4 

12 

Intel® Core™ i5-1145GRE Processor 8 

Intel® Core™ i3-1115GRE Processor 12 

Intel® Xeon® W Processors 

(TGL-H) 

Intel® Xeon® W-11865MRE Processor 

4 

12 

Intel® Xeon® W-11865MLE Processor 12 

Intel® Xeon® W-11555MRE Processor 8 

Intel® Xeon® W-11555MLE Processor 8 

Intel® Xeon® W-11155MRE Processor 8 

Intel® Xeon® W-11155MLE Processor 8 

12 Gen Intel® Core™ 

Processors (S-Series) 

Intel® Core™ i9-12900E Processor 

16 

12 

Intel® Core™ i7-12700E Processor 10 

Intel® Core™ i5-12500E Processor 12 
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Processor Brand String # L3 Classes of 
Service (CLOS) 

Capacity Bitmask 
Length (CBM) 

Intel® Core™ i3-12100E Processor 12 

13 Gen Intel® Core™ 

Processors (P-Series) 

Intel® Core™ i7-1365UE Processor 

16 

12 

Intel® Core™ i7-1365URE Processor 12 

Intel® Core™ i5-1345UE Processor 12 

Intel® Core™ i5-1345URE Processor 12 

Intel® Core™ i3-1335UE Processor 12 

Intel® Core™ i3-1315UE Processor 10 

Intel® Core™ i3-1315URE Processor 10 

Intel® Core™ i7-1370PE Processor 12 

Intel® Core™ i7-1370PRE Processor 12 

Intel® Core™ i5-1350PE Processor 8 

Intel® Core™ i5-1350PRE Processor 8 

Intel® Core™ i3-1340PE Processor 8 

Intel® Core™ i3-1320PE Processor 8 

Intel® Core™ i3-1320PRE Processor 8 

Intel® Core™ i7-13800HE Processor 12 

Intel® Core™ i7-13800HRE Processor 12 

Intel® Core™ i5-13600HE Processor 12 

Intel® Core™ i5-13600HRE Processor 12 

Intel® Core™ i3-13300HE Processor 8 

Intel® Core™ i3-13300HRE Processor 8 

13 Gen Intel® Core™ 

Processors (S-Series) 

Intel® Core™ i9-13900E Processor 

16 

12 

Intel® Core™ i9-13900TE Processor 12 

Intel® Core™ i7-13700E Processor 12 

Intel® Core™ i7-13700TE Processor 12 

Intel® Core™ i5-13500E Processor 12 

Intel® Core™ i5-13500TE Processor 12 

Intel® Core™ i5-13400E Processor 10 

Intel® Core™ i3-13100E Processor 12 

Intel® Core™ i3-13100TE Processor 12 

NOTES: 1. L3 CDP is not supported on any Intel® Core™ or Intel® Atom™ processors that 

implement model specific L3 CAT. 

 2. Communications-oriented processors from the Intel® Xeon® E5 v3 Family also support 

a form of model-specific L3 CAT. 

B.1.4.2 Register Definitions 

This section identifies deltas in the register definitions for programming model 

specific L3 CAT. The deltas are derived against the architectural equivalent 



 

172  Document Number: 356688-004US, Revision: 1.3 

 

register as documented in the Intel® 64 Architecture Software Developer's 

Manual (SDM), Volume 4: Chapter Title: MSRS IN THE 6TH GENERATION, 7TH 

GENERATION, 8TH GENERATION, 9TH GENERATION, 10TH GENERATION, 11TH 

GENERATION, 12TH GENERATION, AND 13TH GENERATION INTEL® CORE™ 

PROCESSORS, INTEL® XEON® SCALABLE PROCESSOR FAMILY, 2ND, 3RD, AND 

4TH GENERATION INTEL® XEON® SCALABLE PROCESSOR FAMILY, 8TH 

GENERATION INTEL® CORE™ I3 PROCESSORS, AND INTEL® XEON® E 

PROCESSORS. 

The naming convention for model specific L3 CAT registers mirrors the 

architectural L3 CAT registers without the “IA32_” prefix, for example, 

PQR_ASSOC (model specific) versus IA32_PQR_ASSOC (architectural). 

The following deltas are consistent across all platforms that support model 

specific L3 CAT: 

• Resource Monitoring ID’s (RMIDs) are not guaranteed to be supported 

unless indicated by CPUID. 

• L3 CDP is not supported. 

B.1.4.2.1 PQR_ASSOC 

The PQR_ASSOC MSR closely follows the IA32_PQR_ASSOC definition with 

exception of RMID. Platforms that support model specific L3 CAT typically do 

not support RDT Monitoring, with the exception of the Intel® Xeon® E5 v3 

Family, and software should carefully consult CPUID before assuming support 

for any RDT Monitoring features. 

B.1.4.2.2 L3_QOS_MASK_n 

The L3_QOS_MASK_N MSRs are identical in definition to the 

IA32_L3_QOS_MASK_N for architectural L3 CAT. For the number of mask 

registers supported and acceptable CBM bit vector lengths, refer to Table 7-12 

for the processor support list. 

B.1.4.3 Shareable Bit Mask 

Processors with an integrated GPU may be configured, by default, to allow the 

GPU full access to the L3 cache in certain performance modes. This behavior 

remains consistent independent of the values written to the L3_QOS_MASK_n 

registers, as these mask registers do not affect the cache policy for 

transactions initiated from the GPU. Software should consider all L3 cache ways 

as shared with the GPU. 

For processors that support Intel® Time Coordinated Computing (Intel® TCC), 

optimizations are available for those that require improved isolation in the L3 

cache. Contact your Intel representative for additional details. 

B.1.4.4 Software considerations 

Software that discovers enumerated support for architectural L3 CAT using 

shared extended feature flag, CPUID.07H.00H will not automatically work with 



 

Document Number: 356688-004US, Revision: 1.3  173 

  

the non-architectural implementation. This section will cover known nuances 

and recommendations for working with the model specific non-architectural L3 

CAT. 

Note: Processors that support both L2 CAT and L3 CAT may have a delta in the 

number of CLOS supported between the L2 and L3. Intel recommends limiting 

software to use no more classes of service than the lesser of the two values. 

B.1.4.4.1 Linux* Resource Control Groups (/sys/fs/resctrl) 

Intel enables support for Intel RDT features in the Linux* kernel via Resource 

Control (CONFIG_X86_CPU_RESCTRL). Resource control provides an OS 

interface for configuring and using Cache Allocation Technology (CAT), Cache 

Monitoring Technology (CMT), Memory Bandwidth Monitoring (MBM), and 

Memory Bandwidth Allocation (MBA). 

Resource Control leverages CPUID to detect hardware support for the various 

Intel RDT sub-features. On processors that support model specific non-

architectural L3 CAT, CPUID.07H.00H will not enumerate support and therefore 

Resource Control will not support L3 CAT. Configuring of the L3_MASK_n 

registers will not be possible through the resctrl interface and must be completed 

through direct MSR access. 

One feature of Resource Control is being able to associate a Class of Service 

with a Process Identifier (PID), and having the kernel automatically update the 

CLOS on context switch. If using a CPU that supports model specific non-

architectural L3 CAT and updating the class of service on context switch is 

desired, it is possible to achieve this if the platform also supports L2 CAT. 

Resource Control would be utilized to configure L2 CAT and create the 

appropriate PID to CLOS mapping, while the L3 masks would need to be 

configured out-of-band (for example, direct MSR programming). 

B.1.4.4.2 Intel-cmt-cat Tool (Intel RDT Utility) 

The Intel RDT software package intel-cmt-cat is a software library that 

supports the Allocation and Monitoring features of Intel RDT. It can work with 

or without kernel support for RDT, which makes intel-cmt-cat a useful tool 

when working with model specific non-architectural L3 CAT.  

The latest versions of the RDT Utility also include specialized print functions as 

command line options, which can be used to more easily decode the mapping 

of I/O devices to I/O RDT Channels for instance.  

Intel-cmt-cat provides a pqos utility which access to the Intel RDT features 

through a command line interface. pqos can be used to program the 

L3_MASK_n registers on platforms that support non-architecture L3 CAT. Use 

the ‘--iface=msr’ parameter to force enumeration and programming to be 

completed through MSR interfaces and not the OS interfaces. 

The Intel RDT Utility is available at Github*: 

https://github.com/intel/intel-cmt-cat  

https://github.com/intel/intel-cmt-cat
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Note also that the RDT Utility includes a wiki with detailed discussion, 

command line usage information and examples:  

https://github.com/intel/intel-cmt-cat/wiki/  

§ 
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