
Addendum—Intel
Architecture

Software Developer’s
Manual

Volume 2:
Instruction Set Reference

Order Number: 243689-001

NOTE: The Intel Architecture Software Developer’s Manual consists of
the following volumes: Basic Architecture, Order Number 243190;

Addendum to the Basic Architecture (Order Number 243691); Instruction
Set Reference, Order Number 243191; System Programming Guide, Order

Number 243192; and the Addendum to the System Programming Guide,
Order Number 243690.

Please refer to all of these volumes when evaluating your design needs.

Addendum—Intel
Architecture

Software Developer’s
Manual

Volume 2:
Instruction Set Reference

NOTE: The Intel Architecture Software Developer’s Manual consists of
the following volumes: Basic Architecture, Order Number 243190;

Addendum to the Basic Architecture (Order Number 243691); Instruction
Set Reference, Order Number 243191; System Programming Guide, Order

Number 243192; and the Addendum to the System Programming Guide,
Order Number 243690.

Please refer to all of these volumes when evaluating your design needs.

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel
or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel’s Terms and
Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied
warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular
purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are
not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or
“undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them.

Intel’s Intel Architecture processors (e.g., Pentium®, Pentium® Pro, Pentium® II, and Celeron™ processors) may
contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your
product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature,
may be obtained by calling 1-800-548-4725 or by visiting Intel’s website at http://www.intel.com

Copyright © Intel Corporation 1996, 1997.

Third-party brands and names are the property of their respective owners.

iii

TABLE OF CONTENTS
PAGE

CHAPTER 3
INSTRUCTION SET REFERENCE
3.1. INSTRUCTION REFERENCE .3-1

FXRSTOR—Restore FP or MMX™ Technology State3-2
FXSAVE—Store FP or MMX™ Technology State.3-6
SYSENTER—Fast Transition to System Call Entry Point3-10
SYSEXIT—Fast Transition from System Call Entry Point3-13

3-1

CHAPTER 3
INSTRUCTION SET REFERENCE

3.1. INSTRUCTION REFERENCE

This addendum provides detailed descriptions of four Intel Architecture instructions.

3-2

INSTRUCTION SET REFERENCE

FXRSTOR—Restore FP or MMX™ Technology State

Description

The FXRSTOR instruction reloads the FP or MMX™ technology state (environment and regis-
ters) from the memory area defined by m512byte. This data should have been written by a
previous FXSAVE.

The FP or MMX technology environment and registers consist of the following data structure
(little-endian byte order as arranged in memory, with byte offset into row described by right
column).

Opcode Instruction Description

0F AE, /1 FXRSTOR m512byte Load the FP or MMX™ technology state from m512byte

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved CS IP FOP Rsvd FTW FSW FCW 0

Reserved Reserved DS DP 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

Reserved 160

Reserved 176

Reserved 192

Reserved 208

Reserved 224

Reserved 240

Reserved 256

Reserved 272

Reserved 288

Reserved 304

Reserved 320

Reserved 336

Reserved 352

Reserved 368

Reserved 384

3-3

INSTRUCTION SET REFERENCE

Three fields in the floating-point save area contain reserved bits that are not indicated in the
table:

FOP The lower 11-bits contain the opcode, upper 5-bits are reserved.

IP & DP 32-bit mode: 32-bit IP-offset.

16-bit mode: lower 16-bits are IP-offset and upper 16-bits are reserved.

The term, “Reserved,” is as defined in Section 1.4.2 of the Intel Architecture Software
Developer’s Manual, Volume 2: Instruction Set Reference. Reserved bits are undefined, and
using them risks incompatibility with future Intel Achitecture processors. Furthermore, all
“Reserved” fields in the tag word area should be set specifically to zero on a restore, or in
cases where the software is attempting to initalize a floating-point context.

Unlike the FRSTOR instruction, FXRSTOR does not fault when loading an image from
memory that contains a pending exception in the Floating-Point Status Word (FSW); only the
next occurence of this unmasked exception will result in the error condition being asserted. It
also does not flush pending x87-FP exceptions. To check and raise exceptions when loading a
new operating environment, use FWAIT after FXRSTOR.

Operation

FPUControlWord <— SRC(FPUControlWord);
FPUStatusWord <— SRC(FPUStatusWord);
FPUTagWord <— SRC(FPUTagWord);
FPUDataPointer <— SRC(FPUDataPointer);
FPUInstructionPointer <— SRC(FPUInstructionPointer);
FPULastInstructionOpcode <— SRC(FPULastInstructionOpcode);
ST(0) <— SRC(ST(0));
ST(1) <— SRC(ST(1));
ST(2) <— SRC(ST(2));
ST(3) <— SRC(ST(3));
ST(4) <— SRC(ST(4));
ST(5) <— SRC(ST(5));
ST(6) <— SRC(ST(6));
ST(7) <— SRC(ST(7));

Reserved 400

Reserved 416

Reserved 432

Reserved 448

Reserved 464

Reserved 480

Reserved 496

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3-4

INSTRUCTION SET REFERENCE

Exceptions

#GP(0) If m512byte is not aligned on a 16-byte boundary.

#AC(0) If alignment check is enabled (CR0.AM = 1, EFLAGS.AC = 1 and CPL = 3)
and m512byte is not aligned on a 16 byte boundary.

#UD If instruction is preceded by a lock prefix.

Numeric Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS
segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF (fault-code) If a page fault occurs.

#NM If CR0.EM = 1 or CR0.TS = 1.

#AC If alignment check is enabled, and an unaligned memory reference is made
while the current privilege level is 3.

Protected-Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS
segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF (fault-code) If a page fault occurs.

#NM If CR0.EM = 1 or CR0.TS = 1.

#AC If alignment check is enabled, and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand would lie outside of the effective address space from
0 to 0FFFFH.

#NM If CR0.EM = 1 or CR0.TS = 1.

Virtual-8086 Mode Exceptions

Same exceptions as in Real-Address Mode.

#PF (fault-code) If a page fault occurs.

#AC If alignment check is enabled, and an unaligned memory reference is made
while the current privilege level is 3.

3-5

INSTRUCTION SET REFERENCE

Notes

• State saved with FSAVE and restored with FXRSTOR (and vice versa) results in an
incorrect restoration of state in the processor. Software should not depend on the behavior
of the FXRSTOR instruction when it is preceded by either the REP, REPNE, or operand
size override prefix. The application of these prefixes with FXRSTOR is defined as
“reserved,” and processor behavior is model specific. Using these prefixes with
FXRSTOR risks incompatibility with future Intel processors. The address size prefix has
the usual effect on address calculation, but has no effect on the format of the FXRSTOR
image.

• The FXRSTOR instruction assumes that the upper byte of the FPU Tag Word is equal to
zero. If it is nonzero, the execution of the FXRSTOR instruction will cause an incorrect
state to be generated in the processor.

Always ensure that FXRSTOR is used in conjunction with the FXSAVE instruction in a
programming environment. Otherwise, ensure that the upper byte of the FPU Tag Word is
zero before the FXRSTOR instruction is executed.

If an environment creates a condition where the upper byte of the FPU Tag Word is nonzero
before execution of the FXRSTOR instruction, the result is an unpredictable system failure
due to the loading of a corrupted state.

3-6

INSTRUCTION SET REFERENCE

FXSAVE—Store FP or MMX™ Technology State

Description

The FXSAVE instruction writes the current FP or MMX technology state (environment and
registers) to the specified destination defined by m512byte. It does this without checking for
pending unmasked floating-point exceptions, similar to the operation of FNSAVE. Unlike the
FSAVE/FNSAVE instructions, the processor retains the contents of the FP or MMX technology
state in the processor after the particular state has been saved. This instruction has been opti-
mized to maximize floating-point save performance.

The FXSAVE instruction is used when an operating system needs to perform a context switch
or when an exception handler needs to use the FP and MMX technology units. It cannot be used
by an application program to pass a “clean” FP state to a procedure, because it retains the current
state. An application must explicitly execute an FINIT instruction after an FXSAVE to provide
this functionality.

The save format is as described for the FXRSTOR instruction. All of the fields in bytes 0-160
retain the same internal format as the FSAVE instruction, except for the floating-point tag word
(FTW). Unlike FSAVE, the FXSAVE instruction only saves the FTW valid bits rather than the
entire x87-FP FTW field. The FTW bits are saved by FXSAVE in a non-TOS relative order,
meaning that FR0 is always saved first, followed by FR1, FR2, and so forth.

As an example, if TOS=4 and only ST0, ST1 and ST2 are valid, FSAVE saves the FTW field in
the following format:

ST3 ST2 ST1 ST0 ST7 ST6 ST5 ST4 (TOS=4)

FR7 FR6 FR5 FR4 FR3 FR2 FR1 FR0

11 xx xx xx 11 11 11 11

where xx is one of (00, 01, 10). A (11) indicates an Empty stack element. The values of 00, 01,
and 10 indicate Valid, Zero, and Special, respectively. In this example, FXSAVE would save
the following vector:

FR7 FR6 FR5 FR4 FR3 FR2 FR1 FR0

0 1 1 1 0 0 0 0

Opcode Instruction Description

0F AE, /0 FXSAVE m512byte Store FP or MMX™ technology state to m512byte

3-7

INSTRUCTION SET REFERENCE

The FSAVE format for FTW can be recreated from the FTW valid bits and the stored 80-bit FP
data (assuming the stored data was not the contents of MMX registers) using the following table.

In binary floating-point format, a real number has three parts: a sign bit, a significand, and an
exponent. The significand has two parts: a 1-bit binary integer (referred to as the J-bit) and a
binary fraction.

The J-bit is defined to be the 1-bit binary integer to the left of the decimal place in the signifi-
cand. The M-bit is defined to be the most significant bit of the fractional portion of the signifi-
cand (i.e., the bit immediately to the right of the decimal place).

If the FXSAVE instruction is immediately preceded by an FP instruction which does not use a
memory operand, then the FXSAVE instruction does not write/update the DP field, in the
FXSAVE image.

The destination m512byte is assumed to be aligned on a 16-byte boundary. If m512byte is not
aligned on a 16-byte boundary, FXSAVE generates a general protection exception.

Operation

(* Save FPU State and Registers *)
DEST(FPUControlWord) <— FPUControlWord;
DEST(FPUStatusWord) <— FPUStatusWord;
DEST(FPUTagWord) <— Function of (FPUTagWord);
DEST(FPUDataPointer) <— FPUDataPointer;
DEST(FPUInstructionPointer) <— FPUInstructionPointer;
DEST(FPULastInstructionOpcode) <— FPULastInstructionOpcode;
DEST(ST(0)) <— ST(0);
DEST(ST(1)) <— ST(1);
DEST(ST(2)) <— ST(2);

Exponent
all 1s

Exponent
all 0s

Fraction
all 0s

J and M
bits

FTW
valid bit x87 FTW

0 0 0 0x 1 Special 10

0 0 0 1x 1 Valid 00

0 0 1 00 1 Special 10

0 0 1 10 1 Valid 00

0 1 0 0x 1 Special 10

0 1 0 1x 1 Special 10

0 1 1 00 1 Zero 01

0 1 1 10 1 Special 10

1 0 0 1x 1 Special 10

1 0 0 1x 1 Special 10

1 0 1 00 1 Special 10

1 0 1 10 1 Special 10

For all legal combinations above 0 Empty 11

3-8

INSTRUCTION SET REFERENCE

DEST(ST(3)) <— ST(3);
DEST(ST(4)) <— ST(4);
DEST(ST(5)) <— ST(5);
DEST(ST(6))<— ST(6);
DEST(ST(7)) <— ST(7);
(* Does not initialize FPU -- Retains contents from above *)

Exceptions

#GP(0) If m512byte is not aligned on a 16-byte boundary.

#AC(0) If alignment check is enabled (CR0.AM = 1, EFLAGS.AC = 1 and CPL = 3)
and m512byte is not aligned on a 16 byte boundary.

#UD If instruction is preceded by a lock prefix.

Numeric Exceptions

None.

Protected-Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS
segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF (fault-code) If a page fault occurs.

#NM If CR0.EM = 1 or CR0.TS = 1.

#AC If alignment check is enabled, and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand would lie outside of the effective address space from
0 to 0FFFFH.

#NM If CR0.EM = 1 or CR0.TS = 1.

Virtual-8086 Exceptions

Same exceptions as in Real-Address Mode

#PF (fault-code) If a page fault occurs.

#AC If alignment check is enabled, and an unaligned memory reference is made
while the current privilege level is 3.

3-9

INSTRUCTION SET REFERENCE

Notes

State saved with FXSAVE and restored with FRSTOR (and vice versa) results in an incorrect
restoration of state in the processor. Software should not depend on the behavior of the
FXRSTOR instruction when it is preceded by either the REP, REPNE, or operand size override
prefix. The application of these prefixes with FXRSTOR is defined as “reserved,” and processor
behavior is model specific. Using these prefixes with FXRSTOR risks incompatibility with
future Intel processors. The address size prefix has the usual effect on address calculation, but
has no effect on the format of the FXSAVE image.

If there is a pending unmasked FP exception at the time FXSAVE is executed, the sequence of
FXSAVE-FWAIT-FXRSTOR results in an incorrect state in the processor. The FWAIT instruc-
tion causes the processor to check and handle pending unmasked FP exceptions. Since the
processor does not clear the FPU state with FXSAVE, the exception is handled, but that fact is
not reflected in the saved image. When the image is reloaded using FXRSTOR, the exception
bits in the FSW get loaded incorrectly.

3-10

INSTRUCTION SET REFERENCE

SYSENTER—Fast Transition to System Call Entry Point

Description

The SYSENTER instruction is part of the “Fast System Call” facility introduced on the
Pentium® II processor. The SYSENTER instruction is optimized to provide the maximum
performance for protection ring transitions to CPL = 0.

The SYSENTER instruction sets the following registers according to values specified by the
operating system in certain model specific registers.

CS register set to the value of (SYSENTER_CS_MSR)

EIP register set to the value of (SYSENTER_EIP_MSR)

SS regisster set to the sum of (8 plus the value in SYSENTER_CS_MSR)

ESP register set to the value of (SYSENTER_ESP_MSR)

The processor does not save user stack or return address information, and does not save any
registers.

The SYSENTER and SYSEXIT instructions do not constitute a call/return pair; therefore, the
system call “stub” routines executed by user code (typically in shared libraries or DLLs) must
perform the required register state save to create a system call/return pair.

The SYSENTER instruction always transfers to a flat protected-mode kernel at CPL = 0.
SYSENTER can be invoked from all modes except real mode. The instruction requires that the
following conditions are met by the operating system:

• The CS selector for the target ring 0 code segment is 32 bits, mapped as a flat 0-4 GB
address space with execute and read permissions

• The SS selector for the target ring 0 stack segment is 32 bits, mapped as a flat 0-4 GB
address space with read, write, and accessed permissions. This selector (Target Ring 0 SS
Selector) is assigned the value of the new (CS selector + 8).

An operating system provides values for CS, EIP, SS, and ESP for the ring 0 entry point through
use of model specific registers within the processor. These registers can be read from and written
to by using the RDMSR and WRMSR instructions. The register addresses are defined to remain
fixed at the following addresses on future processors that provide support for this feature.

Opcode Instruction Description

0F, 34 SYSENTER Transition to System Call Entry Point

Name Description Address

SYSENTER_CS_MSR Target Ring 0 CS Selector 174h

SYSENTER_ESP_MSR Target Ring 0 ESP 175h

SYSENTER_EIP_MSR Target Ring 0 Entry Point EIP 176h

3-11

INSTRUCTION SET REFERENCE

The presence of this facility is indicated by the SYSENTER Present (SEP) bit 11 of CPUID. An
operating system that detects the presence of the SEP bit must also qualify the processor family
and model to ensure that the SYSENTER/SYSEXIT instructions are actually present. For
example:

If (CPUID SEP bit is set) {
If (Family == 6) AND (Model < 3) AND (Stepping < 3) {

THEN
Fast System Call NOT supported
}

Else Fast System Call is supported
}

The Pentium Pro processor (Model = 1) returns a set SEP CPUID feature bit, but does not
support the SYSENTER/SYSEXIT instructions.

Operation

SYSENTER
IF CR0.PE == 0 THEN #GP(0)
IF SYSENTER_CS_MSR == 0 THEN #GP(0)

EFLAGS.VM := 0 // Prevent VM86 mode
EFLAGS.IF := 0 // Mask interrupts

CS.SEL := SYSENTER_CS_MSR // Operating system provides CS

// Set rest of CS to a fixed value
CS.SEL.CPL := 0 // CPL = 0
CS.SEL.BASE := 0 // Flat segment
CS.SEL.LIMIT := 0xFFFF // 4G limit
CS.SEL.G := 1 // 4 KB granularity
CS.SEL.S := 1
CS.SEL.TYPE_xCRA := 1011 // Execute + Read, Accessed
CS.SEL.D := 1 // 32 bit code
CS.SEL.DPL := 0
CS.SEL.RPL := 0
CS.SEL.P := 1
SS.SEL := CS.SEL+8

// Set rest of SS to a fixed value
SS.SEL.BASE := 0 // Flat segment
SS.SEL.LIMIT := 0xFFFF // 4G limit
SS.SEL.G := 1 // 4 KB granularity
SS.SEL.S := 1
SS.SEL.TYPE_xCRA := 0011 // Read/Write, Accessed

3-12

INSTRUCTION SET REFERENCE

SS.SEL.D := 1 // 32 bit stack
SS.SEL.DPL := 0
SS.SEL.RPL := 0
SS.SEL.P := 1

ESP := SYSENTER_ESP_MSR
EIP := SYSENTER_EIP_MSR

Exceptions

#GP(0) If SYSENTER_CS_MSR contains zero.

Numeric Exceptions

None.

Real-Address Mode Exceptions

#GP(0) If protected mode is not enabled.

3-13

INSTRUCTION SET REFERENCE

SYSEXIT—Fast Transition from System Call Entry Point

Description

The SYSEXIT instruction is part of the “Fast System Call” facility introduced on the Pentium
II processor. The SYSEXIT instruction is optimized to provide the maximum performance for
protection ring transitions from CPL = 0 to CPL = 3.

The SYSEXIT instruction sets the following registers according to values specified by the oper-
ating system in certain model specific or general purpose registers.

CS register set to the sum of (16 plus the value in SYSENTER_CS_MSR)

EIP register set to the value contained in the EDX register

SS register set to the sum of (24 plus the value in SYSENTER_CS_MSR)

ESP register set to the value contained in the ECX register

The processor does not save kernel stack or return address information, and does not save any
registers.

The SYSENTER and SYSEXIT instructions do not constitute a call/return pair; therefore, the
system call “stub” routines executed by user code (typically in shared libraries or DLLs) must
perform the required register state restore to create a system call/return pair.

The SYSEXIT instruction always transfers to a flat protected-mode user at CPL = 3. SYSEXIT
can be invoked only from protected mode and CPL = 0. The instruction requires that the
following conditions are met by the operating system:

• The CS selector for the target ring 3 code segment is 32 bits, mapped as a flat 0-4 GB
address space with execute, read, and nonconforming permissions.

• The SS selector for the target ring 3 stack segment is 32 bits, mapped as a flat 0-4 GB
address space with expand-up, read, and write permissions.

An operating system must set the following:

Opcode Instruction Description

0F, 35 SYSEXIT Transition from System Call Entry Point

Name Description

CS Selector The Target Ring 3 CS Selector. This is assigned the sum of (16 + the value
of SYSENTER_CS_MSR).

SS Selector The Target Ring 3 SS Selector. This is assigned the sum of (24 + the value
of SYSENTER_CS_MSR).

EIP Target Ring 3 Return EIP. This is the target entry point, and is assigned the
value contained in the EDX register.

ESP Target Ring 3 Return ESP. This is the target entry point, and is assigned the
value contained in the ECX register.

3-14

INSTRUCTION SET REFERENCE

The presence of this facility is indicated by the SYSENTER Present (SEP) bit 11 of CPUID. An
operating system that detects the presence of the SEP bit must also qualify the processor family
and model to ensure that the SYSENTER/SYSEXIT instructions are actually present, as
described for the SYSENTER instruction. The Pentium Pro processor (Model = 1) returns a set
SEP CPUID feature bit, but does not support the SYSENTER/SYSEXIT instructions.

Operation

SYSEXIT
IF SYSENTER_CS_MSR == 0 THEN #GP(0)
IF CR0.PE == 0 THEN #GP(0)
IF CPL <> 0 THEN #GP(0)

// Changing CS:EIP and SS:ESP is required

CS.SEL := (SYSENTER_CS_MSR + 16) // Selector for return CS
CS.SEL.RPL := 3

// Set rest of CS to a fixed value
CS.SEL.BASE := 0 // Flat segment
CS.SEL.LIMIT := 0xFFFF // 4G limit
CS.SEL.G := 1 // 4 KB granularity
CS.SEL.S := 1
CS.SEL.TYPE_xCRA := 1011 // Execute, Read, Nonconforming Code
CS.SEL.D := 1 // 32 bit code
CS.SEL.DPL := 3
CS.SEL.P := 1

SS.SEL := (SYSENTER_CS_MSR + 24)
SS.SEL.RPL := 3

// Set rest of SS to a fixed value
SS.SEL.BASE := 0 // Flat segment
SS.SEL.LIMIT := 0xFFFF // 4G limit
SS.SEL.G := 1 // 4 KB granularity
SS.SEL.S := 1
SS.SEL.TYPE_xCRA := 0011 // Expand Up, Read/Write, Data
SS.SEL.D := 1 // 32 bit stack
SS.SEL.DPL := 3
SS.SEL.CPL := 3
SS.SEL.P := 1

ESP := ECX
EIP := EDX

3-15

INSTRUCTION SET REFERENCE

Exceptions

#GP(0) If SYSENTER_CS_MSR contains zero.

Numeric Exceptions

None.

Protected-Mode Exceptions

#GP(0) If CPL is nonzero.

Real-Address Mode Exceptions

#GP(0) If protected mode is not enabled.

UNITED STATES, Intel Corporation
2200 Mission College Blvd., P.O. Box 58119, Santa Clara, CA 95052-8119

Tel: +1 408 765-8080

JAPAN, Intel Japan K.K.
5-6 Tokodai, Tsukuba-shi, Ibaraki-ken 300-26

Tel: + 81-29847-8522

FRANCE, Intel Corporation S.A.R.L.
1, Quai de Grenelle, 75015 Paris

Tel: +33 1-45717171

UNITED KINGDOM, Intel Corporation (U.K.) Ltd.
Pipers Way, Swindon, Wiltshire, England SN3 1RJ

Tel: +44 1-793-641440

GERMANY, Intel GmbH
Dornacher Strasse 1

85622 Feldkirchen/ Muenchen
Tel: +49 89/99143-0

HONG KONG, Intel Semiconductor Ltd.
32/F Two Pacific Place, 88 Queensway, Central

Tel: +852 2844-4555

CANADA, Intel Semiconductor of Canada, Ltd.
190 Attwell Drive, Suite 500
Rexdale, Ontario M9W 6H8

Tel: +416 675-2438

	Addendum—Intel Architecture Software Developer’s Manual, Volume 2: Instruction Set Reference
	CHAPTER 3: INSTRUCTION SET REFERENCE
	3.1. INSTRUCTION REFERENCE
	FXRSTOR—Restore FP or MMX™ Technology State
	FXSAVE—Store FP or MMX™ Technology State
	SYSENTER—Fast Transition to System Call Entry Point
	SYSEXIT—Fast Transition from System Call Entry Point

