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CHAPTER 1
ABOUT THIS MANUAL

The IA-32 Intel® Architecture Software Developer’s Manual, Volume 3: System Programming
Guide (Order Number 245472), is part of a three-volume set that describes the architecture and
programming environment of all IA-32 Intel Architecture processors. The other two volumes in
this set are:

® The IA-32 Intel Architecture Software Developer’s Manual, Volume 1: Basic Architecture
(Order Number 245470)

® The IA-32 Intel Architecture Software Developer’s Manual, Volume 2: Instruction Set
Reference (Order Number 245471).

The IA-32 Intel Architecture Software Developer’s Manual, Volume 1, describes the basic archi-
tecture and programming environment of an IA-32 processor; the IA-32 Intel Architecture Soft-
ware Developer’s Manual, Volume 2, describes the instruction set of the processor and the
opcode structure. These two volumes are aimed at application programmers who are writing
programs to run under existing operating systems or executives. The IA-32 Intel Architecture
Software Developer’s Manual, Volume 3, describes the operating-system support environment
of an TA-32 processor, including memory management, protection, task management, interrupt
and exception handling, and system management mode. It also provides IA-32 processor
compatibility information. This volume is aimed at operating-system and BIOS designers and
programmers.

1.1. 1A-32 PROCESSORS COVERED IN THIS MANUAL

This manual includes 1nf0rmat10n pertaining primarily to the most recent IA-32 processors,
which 1nclude the Pentium® processors, the P6 family processors, the Pentium 4 processors, and
the Intel® Xeon™ processors. The P6 family processors are those IA-32 processors based on the
P6 family micro-architecture, which include the Pentium Pro, Pentlum II, and Pentium Il
processors. The Pentium 4 and Intel Xeon processors are based on the Intel® NetBurst™ micro-
architecture.
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1.2. OVERVIEW OF THE /A-32 INTEL ARCHITECTURE
SOFTWARE DEVELOPER’S MANUAL, VOLUME 3: SYSTEM
PROGRAMMING GUIDE

The contents of this manual are as follows:

Chapter 1 — About This Manual. Gives an overview of all three volumes of the IA-32 Intel
Architecture Software Developer’s Manual. It also describes the notational conventions in these
manuals and lists related Intel manuals and documentation of interest to programmers and hard-
ware designers.

Chapter 2 — System Architecture Overview. Describes the modes of operation of an [A-32
processor and the mechanisms provided in the IA-32 architecture to support operating systems
and executives, including the system-oriented registers and data structures and the system-
oriented instructions. The steps necessary for switching between real-address and protected
modes are also identified.

Chapter 3 — Protected-Mode Memory Management. Describes the data structures, registers,
and instructions that support segmentation and paging and explains how they can be used to
implement a “flat” (unsegmented) memory model or a segmented memory model.

Chapter 4 — Protection. Describes the support for page and segment protection provided in
the TA-32 architecture. This chapter also explains the implementation of privilege rules, stack
switching, pointer validation, user and supervisor modes.

Chapter 5 — Interrupt and Exception Handling. Describes the basic interrupt mechanisms
defined in the IA-32 architecture, shows how interrupts and exceptions relate to protection, and
describes how the architecture handles each exception type. Reference information for each IA-
32 exception is given at the end of this chapter.

Chapter 6 — Task Management. Describes the mechanisms the IA-32 architecture provides
to support multitasking and inter-task protection.

Chapter 7 — Multiple-Processor Management. Describes the instructions and flags that
support multiple processors with shared memory, memory ordering, and Hyper-Threading Tech-
nology.

Chapter 8 — Advanced Programmable Interrupt Controller (APIC). Describes the
programming interface to the local APIC and gives an overview of the interface between the
local APIC and the I/O APIC.

Chapter 9 — Processor Management and Initialization. Defines the state of an [A-32
processor after reset initialization. This chapter also explains how to set up an IA-32 processor
for real-address mode operation and protected- mode operation, and how to switch between
modes.

Chapter 10 — Memory Cache Control. Describes the general concept of caching and the
caching mechanisms supported by the IA-32 architecture. This chapter also describes the
memory type range registers (MTRRs) and how they can be used to map memory types of phys-
ical memory. Information on using the new cache control and memory streaming instructions
introduced with the Pentium Ill, Pentium 4, and Intel Xeon processors is also given.
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Chapter 11 — Intel® MMX ™ Technology System Programming. Describes those aspects of
the Intel MMX technology that must be handled and considered at the system programming
level, including task switching, exception handling, and compatibility with existing system
environments. The Intel MMX technology was introduced into the IA-32 architecture with the
Pentium processor.

Chapter 12 — SSE and SSE2 System Programming. Describes those aspects of SSE and
SSE2 extensions that must be handled and considered at the system programming level,
including task switching, exception handling, and compatibility with existing system environ-
ments.

Chapter 13 — System Management. Describes the IA-32 architecture’s system management
mode (SMM) and the thermal monitoring facilities.

Chapter 14 — Machine-Check Architecture. Describes the machine-check architecture.

Chapter 15 — Debugging and Performance Monitoring. Describes the debugging registers
and other debug mechanism provided in the IA-32 architecture. This chapter also describes the
time-stamp counter and the performance-monitoring counters.

Chapter 16 — 8086 Emulation. Describes the real-address and virtual-8086 modes of the TA-
32 architecture.

Chapter 17 — Mixing 16-Bit and 32-Bit Code. Describes how to mix 16-bit and 32-bit code
modules within the same program or task.

Chapter 18 — IA-32 Architecture Compatibility. Describes architectural compatibility
among the TA-32 processors, which include the Intel 286, Intel386™, Intel486™, Pentium, P6
family, Pentium 4, and Intel Xeon processors. The P6 family includes the Pentium Pro, Pentium
II, and Pentium Il processors. The differences among the 32-bit IA-32 processors are also
described throughout the three volumes of the IA-32 Software Developer’s Manual, as relevant
to particular features of the architecture. This chapter provides a collection of all the relevant
compatibility information for all IA-32 processors and also describes the basic differences with
respect to the 16-bit IA-32 processors (the Intel 8086 and Intel 286 processors).

Appendix A — Performance-Monitoring Events. Lists the events that can be counted with
the performance-monitoring counters and the codes used to select these events. Both Pentium
processor and P6 family processor events are described.

Appendix B — Model Specific Registers (MSRs). Lists the MSRs available in the Pentium
processors, the P6 family processors, and the Pentium 4 and Intel Xeon processors and describes
their functions.

Appendix C — MP Initialization For P6 Family Processors. Gives an example of how to use
of the MP protocol to boot P6 family processors in n MP system.

Appendix D — Programming the LINT0 and LINT1 Inputs. Gives an example of how to
program the LINTO and LINT1 pins for specific interrupt vectors.
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Appendix E — Interpreting Machine-Check Error Codes. Gives an example of how to inter-
pret the error codes for a machine-check error that occurred on a P6 family processor.

Appendix F — APIC Bus Message Formats. Describes the message formats for messages
transmitted on the APIC bus for P6 family and Pentium processors.

1.3. NOTATIONAL CONVENTIONS

This manual uses specific notation for data-structure formats, for symbolic representation of
instructions, and for hexadecimal and binary numbers. A review of this notation makes the
manual easier to read.

1.3.1. Bit and Byte Order

In illustrations of data structures in memory, smaller addresses appear toward the bottom of the
figure; addresses increase toward the top. Bit positions are numbered from right to left. The
numerical value of a set bit is equal to two raised to the power of the bit position. [A-32 proces-
sors are “little endian” machines; this means the bytes of a word are numbered starting from the
least significant byte. Figure 1-1 illustrates these conventions.

1.3.2. Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as reserved. When
bits are marked as reserved, it is essential for compatibility with future processors that software
treat these bits as having a future, though unknown, effect. The behavior of reserved bits should
be regarded as not only undefined, but unpredictable. Software should follow these guidelines
in dealing with reserved bits:

® Do not depend on the states of any reserved bits when testing the values of registers which
contain such bits. Mask out the reserved bits before testing.

® Do not depend on the states of any reserved bits when storing to memory or to a register.
¢ Do not depend on the ability to retain information written into any reserved bits.

® When loading a register, always load the reserved bits with the values indicated in the
documentation, if any, or reload them with values previously read from the same register.

NOTE

Avoid any software dependence upon the state of reserved bits in 1A-32
registers. Depending upon the values of reserved register bits will make
software dependent upon the unspecified manner in which the processor
handles these bits. Programs that depend upon reserved values risk incompat-
ibility with future processors.
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Figure 1-1. Bit and Byte Order

1.3.3. Instruction Operands
When instructions are represented symbolically, a subset of the IA-32 assembly language is

used. In this subset, an instruction has the following format:

label: mnemonic argumentl, argument2, argument3
where:
® A label is an identifier which is followed by a colon.

® A mnemonic is a reserved name for a class of instruction opcodes which have the same
function.

® The operands argumentl, argument2, and argument3 are optional. There may be from
zero to three operands, depending on the opcode. When present, they take the form of
either literals or identifiers for data items. Operand identifiers are either reserved names of
registers or are assumed to be assigned to data items declared in another part of the
program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the
source and the left operand is the destination.

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is
the destination operand, and SUBTOTAL is the source operand. Some assembly languages put
the source and destination in reverse order.
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1.3.4. Hexadecimal and Binary Numbers

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by
the character H (for example, F82EH). A hexadecimal digit is a character from the following
set: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E, and F.

Base 2 (binary) numbers are represented by a string of 1s and Os, sometimes followed by the
character B (for example, 1010B). The “B” designation is only used in situations where confu-
sion as to the type of number might arise.

1.3.5. Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed as a
sequence of bytes. Whether one or more bytes are being accessed, a byte address is used to
locate the byte or bytes memory. The range of memory that can be addressed is called an
address space.

The processor also supports segmented addressing. This is a form of addressing where a
program may have many independent address spaces, called segments. For example, a program
can keep its code (instructions) and stack in separate segments. Code addresses would always
refer to the code space, and stack addresses would always refer to the stack space. The following
notation is used to specify a byte address within a segment:

Segment-register: Byte-address

For example, the following segment address identifies the byte at address FF79H in the segment
pointed by the DS register:

DS:FF79H

The following segment address identifies an instruction address in the code segment. The CS
register points to the code segment and the EIP register contains the address of the instruction.

CS:EIP

1.3.6. Exceptions

An exception is an event that typically occurs when an instruction causes an error. For example,
an attempt to divide by zero generates an exception. However, some exceptions, such as break-
points, occur under other conditions. Some types of exceptions may provide error codes. An
error code reports additional information about the error. An example of the notation used to
show an exception and error code is shown below.

#PF (fault code)
This example refers to a page-fault exception under conditions where an error code naming a
type of fault is reported. Under some conditions, exceptions which produce error codes may not

be able to report an accurate code. In this case, the error code is zero, as shown below for a
general-protection exception.

#GP (0)
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See Chapter 5, Interrupt and Exception Handling, for a list of exception mnemonics and their
descriptions.

1.4. RELATED LITERATURE

Literature related to IA-32 processors is listed on-line at the following Intel web site:

http://developer.intel.com/design/processors/

Some of the documents listed at this web site can be viewed on-line; others can be ordered on-
line. The literature available is listed by Intel processor and then by the following literature
types: applications notes, data sheets, manuals, papers, and specification updates. The following
literature may be of interest:

® Data Sheet for a particular Intel IA-32 processor.
® Specification Update for a particular Intel IA-32 processor.
®  AP-485, Intel Processor Identification and the CPUID Instruction, Order Number 241618.

*  ntel® Pentium® 4 and Intel® Xeon™ Processor Optimization Reference Manual, Order
Number 248966.
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CHAPTER 2
SYSTEM ARCHITECTURE OVERVIEW

The TA-32 architecture (beginning with the Intel386 processor family) provides extensive
support for operating-system and system-development software. This support is part of the
IA-32 system-level architecture and includes features to assist in the following operations:

® Memory management

® Protection of software modules

®  Multitasking

® Exception and interrupt handling

®  Multiprocessing

® Cache management

® Hardware resource and power management
® Debugging and performance monitoring

This chapter provides a brief overview of the IA-32 system-level architecture; a detailed
description of each part of this architecture given in the following chapters. This chapter also
describes the system registers that are used to set up and control the processor at the system level
and gives a brief overview of the processor’s system-level (operating system) instructions.

Many of the features of the [A-32 system-level architectural are used only by system program-
mers. Application programmers may need to read this chapter, and the following chapters which
describe the use of these features, in order to understand the hardware facilities used by system
programmers to create a reliable and secure environment for application programs.

NOTE

This overview and most of the subsequent chapters of this book focus on the
“native” or protected-mode operation of the IA-32 architecture. As described
in Chapter 9, Processor Management and Initialization, all IA-32 processors
enter real-address mode following a power-up or reset. Software must then
initiate a switch from real-address mode to protected mode.

2.1. OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE

The TA-32 system-level architecture consists of a set of registers, data structures, and instructions
designed to support basic system-level operations such as memory management, interrupt and
exception handling, task management, and control of multiple processors (multiprocessing).
Figure 2-1 provides a generalized summary of the system registers and data structures.
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2.1.1. Global and Local Descriptor Tables

When operating in protected mode, all memory accesses pass through either the global
descriptor table (GDT) or the (optional) local descriptor table (LDT), shown in Figure 2-1.
These tables contain entries called segment descriptors. A segment descriptor provides the base
address of a segment and access rights, type, and usage information. Each segment descriptor
has a segment selector associated with it. The segment selector provides an index into the GDT
or LDT (to its associated segment descriptor), a global/local flag (that determines whether the
segment selector points to the GDT or the LDT), and access rights information.

To access a byte in a segment, both a segment selector and an offset must be supplied. The
segment selector provides access to the segment descriptor for the segment (in the GDT or
LDT). From the segment descriptor, the processor obtains the base address of the segment in the
linear address space. The offset then provides the location of the byte relative to the base
address. This mechanism can be used to access any valid code, data, or stack segment in the
GDT or LDT, provided the segment is accessible from the current privilege level (CPL) at which
the processor is operating. (The CPL is defined as the protection level of the currently executing
code segment.)

In Figure 2-1 the solid arrows indicate a linear address, the dashed lines indicate a segment
selector, and the dotted arrows indicate a physical address. For simplicity, many of the segment
selectors are shown as direct pointers to a segment. However, the actual path from a segment
selector to its associated segment is always through the GDT or LDT.

The linear address of the base of the GDT is contained in the GDT register (GDTR); the linear
address of the LDT is contained in the LDT register (LDTR).

2.1.2. System Segments, Segment Descriptors, and Gates

Besides the code, data, and stack segments that make up the execution environment of a program
or procedure, the system architecture also defines two system segments: the task-state segment
(TSS) and the LDT. (The GDT is not considered a segment because it is not accessed by means
of a segment selector and segment descriptor.) Each of these segment types has a segment
descriptor defined for it.

The system architecture also defines a set of special descriptors called gates (the call gate, inter-
rupt gate, trap gate, and task gate) that provide protected gateways to system procedures and
handlers that operate at different privilege levels than application programs and procedures.
For example, a CALL to a call gate provides access to a procedure in a code segment that is at
the same or numerically lower privilege level (more privileged) than the current code segment.
To access a procedure through a call gate, the calling procedure1 must supply the selector of the
call gate. The processor than performs an access rights check on the call gate, comparing the
CPL with the privilege level of the call gate and the destination code segment pointed to by the
call gate. If access to the destination code segment is allowed, the processor gets the segment
selector for the destination code segment and an offset into that code segment from the call gate.

1. The word “procedure” is commonly used in this document as a general term for a logical unit or block of
code (such as a program, procedure, function, or routine).
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If the call requires a change in privilege level, the processor also switches to the stack for that
privilege level. (The segment selector for the new stack is obtained from the TSS for the
currently running task.) Gates also facilitate transitions between 16-bit and 32-bit code
segments, and vice versa.

2.1.3. Task-State Segments and Task Gates

The TSS (see Figure 2-1) defines the state of the execution environment for a task. It includes
the state of the general-purpose registers, the segment registers, the EFLAGS register, the EIP
register, and segment selectors and stack pointers for three stack segments (one stack each for
privilege levels 0, 1, and 2). It also includes the segment selector for the LDT associated with
the task and the page-table base address.

All program execution in protected mode happens within the context of a task, called the current
task. The segment selector for the TSS for the current task is stored in the task register. The
simplest method of switching to a task is to make a call or jump to the task. Here, the segment
selector for the TSS of the new task is given in the CALL or JMP instruction. In switching tasks,
the processor performs the following actions:

1. Stores the state of the current task in the current TSS.

2. Loads the task register with the segment selector for the new task.
3. Accesses the new TSS through a segment descriptor in the GDT.
4

Loads the state of the new task from the new TSS into the general-purpose registers, the
segment registers, the LDTR, control register CR3 (page-table base address), the EFLAGS
register, and the EIP register.

5. Begins execution of the new task.

A task can also be accessed through a task gate. A task gate is similar to a call gate, except that
it provides access (through a segment selector) to a TSS rather than a code segment.

2.1.4. Interrupt and Exception Handling

External interrupts, software interrupts, and exceptions are handled through the interrupt
descriptor table (IDT), see Figure 2-1. The IDT contains a collection of gate descriptors, which
provide access to interrupt and exception handlers. Like the GDT, the IDT is not a segment. The
linear address of the base of the IDT is contained in the IDT register (IDTR).

The gate descriptors in the IDT can be of the interrupt-, trap-, or task-gate type. To access an
interrupt or exception handler, the processor must first receive an interrupt vector (interrupt
number) from internal hardware, an external interrupt controller, or from software by means of
an INT, INTO, INT 3, or BOUND instruction. The interrupt vector provides an index into the
IDT to a gate descriptor. If the selected gate descriptor is an interrupt gate or a trap gate, the asso-
ciated handler procedure is accessed in a manner very similar to calling a procedure through a
call gate. If the descriptor is a task gate, the handler is accessed through a task switch.
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2.1.5. Memory Management

The system architecture supports either direct physical addressing of memory or virtual memory
(through paging). When physical addressing is used, a linear address is treated as a physical
address. When paging is used, all the code, data, stack, and system segments and the GDT and
IDT can be paged, with only the most recently accessed pages being held in physical memory.

The location of pages (or page frames as they are sometimes called in the IA-32 architecture) in
physical memory is contained in two types of system data structures (a page directory and a set
of page tables), both of which reside in physical memory (see Figure 2-1). An entry in a page
directory contains the physical address of the base of a page table, access rights, and memory
management information. An entry in a page table contains the physical address of a page frame,
access rights, and memory management information. The base physical address of the page
directory is contained in control register CR3.

To use this paging mechanism, a linear address is broken into three parts, providing separate
offsets into the page directory, the page table, and the page frame.

A system can have a single page directory or several. For example, each task can have its own
page directory.

2.1.6. System Registers

To assist in initializing the processor and controlling system operations, the system architecture
provides system flags in the EFLAGS register and several system registers:

® The system flags and IOPL field in the EFLAGS register control task and mode switching,
interrupt handling, instruction tracing, and access rights. See Section 2.3., “System Flags
and Fields in the EFLAGS Register”, for a description of these flags.

® The control registers (CR0O, CR2, CR3, and CR4) contain a variety of flags and data fields
for controlling system-level operations. Other flags in these registers are used to indicate
support for specific processor capabilities within the operating system or executive. See
Section 2.5., “Control Registers”, for a description of these flags.

® The debug registers (not shown in Figure 2-1) allow the setting of breakpoints for use in
debugging programs and systems software. See Chapter 15, Debugging and Performance
Monitoring, for a description of these registers.

® The GDTR, LDTR, and IDTR registers contain the linear addresses and sizes (limits) of
their respective tables. See Section 2.4., “Memory-Management Registers”, for a
description of these registers.

® The task register contains the linear address and size of the TSS for the current task. See
Section 2.4., “Memory-Management Registers”, for a description of this register.

® Model-specific registers (not shown in Figure 2-1).

The model-specific registers (MSRs) are a group of registers available primarily to operating-
system or executive procedures (that is, code running at privilege level 0). These registers
control items such as the debug extensions, the performance-monitoring counters, the machine-
check architecture, and the memory type ranges (MTRRs).
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The number and functions of these registers varies among the different members of the IA-32
processor families. Section 9.4., “Model-Specific Registers (MSRs)”, for more information
about the MSRs and Appendix B, Model-Specific Registers (MSRs), for a complete list of the
MSRs.

Most systems restrict access to all system registers (other than the EFLAGS register) by appli-
cation programs. Systems can be designed, however, where all programs and procedures run at
the most privileged level (privilege level 0), in which case application programs are allowed to
modify the system registers.

2.1.7. Other System Resources

Besides the system registers and data structures described in the previous sections, the system
architecture provides the following additional resources:

® Operating system instructions (see Section 2.6., “System Instruction Summary”).
® Performance-monitoring counters (not shown in Figure 2-1).
® Internal caches and buffers (not shown in Figure 2-1).

The performance-monitoring counters are event counters that can be programmed to count
processor events such as the number of instructions decoded, the number of interrupts received,
or the number of cache loads. See Section 15.8., “Performance Monitoring Overview”, for more
information about these counters.

The processor provides several internal caches and buffers. The caches are used to store both
data and instructions. The buffers are used to store things like decoded addresses to system and
application segments and write operations waiting to be performed. See Chapter 10, Memory
Cache Control, for a detailed discussion of the processor’s caches and buffers.

2.2. MODES OF OPERATION

The IA-32 architecture supports three operating modes and one quasi-operating mode:

® Protected mode. This is the native operating mode of the processor. In this mode all
instructions and architectural features are available, providing the highest performance and
capability. This is the recommended mode for all new applications and operating systems.

¢ Real-address mode. This operating mode provides the programming environment of the
Intel 8086 processor, with a few extensions (such as the ability to switch to protected or
system management mode).

® System management mode (SMM). The system management mode (SMM) is a standard
architectural feature in all IA-32 processors, beginning with the Intel386 SL processor.
This mode provides an operating system or executive with a transparent mechanism for
implementing power management and OEM differentiation features. SMM is entered
through activation of an external system interrupt pin (SMI#), which generates a system
management interrupt (SMI). In SMM, the processor switches to a separate address space
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while saving the context of the currently running program or task. SMM-specific code may
then be executed transparently. Upon returning from SMM, the processor is placed back
into its state prior to the SMI.

® YVirtual-8086 mode. In protected mode, the processor supports a quasi-operating mode
known as virtual-8086 mode. This mode allows the processor execute 8086 software in a
protected, multitasking environment.

Figure 2-2 shows how the processor moves among these operating modes.

> Real-Address

Mode
A
Reset or
_ PE=1
PE=0 Y
- System
Reset Protected Mode o Management
Mode
A
VM=0 VM=1
Y

Virtual-8086
Mode

RSM

Figure 2-2. Transitions Among the Processor’s Operating Modes

The processor is placed in real-address mode following power-up or a reset. Thereafter, the PE
flag in control register CRO controls whether the processor is operating in real-address or
protected mode (see Section 2.5., “Control Registers”). See Section 9.9., “Mode Switching”, for
detailed information on switching between real-address mode and protected mode.

The VM flag in the EFLAGS register determines whether the processor is operating in protected
mode or virtual-8086 mode. Transitions between protected mode and virtual-8086 mode are
generally carried out as part of a task switch or a return from an interrupt or exception handler
(see Section 16.2.5., “Entering Virtual-8086 Mode”).

The processor switches to SMM whenever it receives an SMI while the processor is in real-
address, protected, or virtual-8086 modes. Upon execution of the RSM instruction, the
processor always returns to the mode it was in when the SMI occurred.

2.3. SYSTEM FLAGS AND FIELDS IN THE EFLAGS REGISTER

The system flags and IOPL field of the EFLAGS register control I/O, maskable hardware inter-
rupts, debugging, task switching, and the virtual-8086 mode (see Figure 2-3). Only privileged
code (typically operating system or executive code) should be allowed to modify these bits.
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The functions of the system flags and IOPL are as follows:

TF

Trap (bit 8). Set to enable single-step mode for debugging; clear to disable single-step
mode. In single-step mode, the processor generates a debug exception after each
instruction, which allows the execution state of a program to be inspected after each
instruction. If an application program sets the TF flag using a POPF, POPFD, or IRET
instruction, a debug exception is generated after the instruction that follows the POPF,
POPEFED, or IRET instruction.

TF — Trap Flag

31 222120191817 161514 131211109 8 7 6 56 4 3 2 1 0

YYAVR N

0l

Reserved (set to 0) OE L ,? Zlo|f ,'_3 1]¢

ID — Identification Flag
VIP — Virtual Interrupt Pendlng
VIF — Virtual Interrupt Flag

—roUO—
m

AC — Alignment Check
VM — Virtual-8086 Mode
RF — Resume Flag
NT — Nested Task Flag
IOPL— /O Privilege Level
IF — Interrupt Enable Flag

I:] Reserved

IF

IOPL

2-8

Figure 2-3. System Flags in the EFLAGS Register

Interrupt enable (bit 9). Controls the response of the processor to maskable hardware
interrupt requests (see Section 5.3.2., “Maskable Hardware Interrupts”). Set to respond
to maskable hardware interrupts; cleared to inhibit maskable hardware interrupts. The
IF flag does not affect the generation of exceptions or nonmaskable interrupts (NMI
interrupts). The CPL, IOPL, and the state of the VME flag in control register CR4
determine whether the IF flag can be modified by the CLI, STI, POPF, POPFD, and
IRET instructions.

1/0 privilege level field (bits 12 and 13). Indicates the I/O privilege level (IOPL) of
the currently running program or task. The CPL of the currently running program or
task must be less than or equal to the IOPL to access the I/O address space. This field
can only be modified by the POPF and IRET instructions when operating at a CPL of
0. See Chapter 12, Input/Output, of the IA-32 Intel Architecture Software Developer’s
Manual, Volume 1, for more information on the relationship of the IOPL to I/O opera-
tions.

The IOPL is also one of the mechanisms that controls the modification of the IF flag
and the handling of interrupts in virtual-8086 mode when the virtual mode extensions
are in effect (the VME flag in control register CR4 is set).
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NT Nested task (bit 14). Controls the chaining of interrupted and called tasks. The
processor sets this flag on calls to a task initiated with a CALL instruction, an interrupt,
or an exception. It examines and modifies this flag on returns from a task initiated with
the IRET instruction. The flag can be explicitly set or cleared with the POPF/POPFD
instructions; however, changing to the state of this flag can generate unexpected excep-
tions in application programs. See Section 6.4., “Task Linking”, for more information
on nested tasks.

RF Resume (bit 16). Controls the processor’s response to instruction-breakpoint condi-
tions. When set, this flag temporarily disables debug exceptions (#DE) from being
generated for instruction breakpoints; although, other exception conditions can
cause an exception to be generated. When clear, instruction breakpoints will generate
debug exceptions.

The primary function of the RF flag is to allow the restarting of an instruction following
a debug exception that was caused by an instruction breakpoint condition. Here,
debugger software must set this flag in the EFLAGS image on the stack just prior to
returning to the interrupted program with the IRETD instruction, to prevent the instruc-
tion breakpoint from causing another debug exception. The processor then automati-
cally clears this flag after the instruction returned to has been successfully executed,
enabling instruction breakpoint faults again.

See Section 15.3.1.1., “Instruction-Breakpoint Exception Condition”, for more infor-
mation on the use of this flag.

VM Virtual-8086 mode (bit 17). Set to enable virtual-8086 mode; clear to return to
protected mode. See Section 16.2.1., “Enabling Virtual-8086 Mode”, for a detailed
description of the use of this flag to switch to virtual-8086 mode.

AC Alignment check (bit 18). Set this flag and the AM flag in control register CRO to
enable alignment checking of memory references; clear the AC flag and/or the AM flag
to disable alignment checking. An alignment-check exception is generated when refer-
ence is made to an unaligned operand, such as a word at an odd byte address or a
doubleword at an address which is not an integral multiple of four. Alignment-check
exceptions are generated only in user mode (privilege level 3). Memory references that
default to privilege level O, such as segment descriptor loads, do not generate this
exception even when caused by instructions executed in user-mode.

The alignment-check exception can be used to check alignment of data. This is useful
when exchanging data with other processors, which require all data to be aligned. The
alignment-check exception can also be used by interpreters to flag some pointers as
special by misaligning the pointer. This eliminates overhead of checking each pointer
and only handles the special pointer when used.

VIF Virtual Interrupt (bit 19). Contains a virtual image of the IF flag. This flag is used in
conjunction with the VIP flag. The processor only recognizes the VIF flag when either
the VME flag or the PVI flag in control register CR4 is set and the IOPL is less than 3.
(The VME flag enables the virtual-8086 mode extensions; the PVI flag enables the
protected-mode virtual interrupts.)
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See Section 16.3.3.5., “Method 6: Software Interrupt Handling”, and Section 16.4., “Protected-
Mode Virtual Interrupts”, for detailed information about the use of this flag.

VIP Virtual interrupt pending (bit 20). Set by software to indicate that an interrupt is
pending; cleared to indicate that no interrupt is pending. This flag is used in conjunc-
tion with the VIF flag. The processor reads this flag but never modifies it. The
processor only recognizes the VIP flag when either the VME flag or the PVI flag in
control register CR4 is set and the IOPL is less than 3. (The VME flag enables the
virtual-8086 mode extensions; the PVI flag enables the protected-mode virtual inter-
rupts.) See Section 16.3.3.5., “Method 6: Software Interrupt Handling”, and Section
16.4., “Protected-Mode Virtual Interrupts”, for detailed information about the use of
this flag.

ID Identification (bit 21). The ability of a program or procedure to set or clear this flag
indicates support for the CPUID instruction.

2.4. MEMORY-MANAGEMENT REGISTERS

The processor provides four memory-management registers (GDTR, LDTR, IDTR, and TR)
that specify the locations of the data structures which control segmented memory management
(see Figure 2-4). Special instructions are provided for loading and storing these registers.

System Table Registers

47 16 15 0
GDTR 32-bit Linear Base Address 16-Bit Table Limit
IDTR 32-bit Linear Base Address 16-Bit Table Limit

System Segment Segment Descriptor Registers (Automatically Loaded)

15 Registers ¢ Attributes
Reg-ir;sekr Seg. Sel. 32-bit Linear Base Address Segment Limit
LDTR Seg. Sel. 32-bit Linear Base Address Segment Limit

Figure 2-4. Memory Management Registers

24.1. Global Descriptor Table Register (GDTR)

The GDTR register holds the 32-bit base address and 16-bit table limit for the GDT. The base
address specifies the linear address of byte 0 of the GDT; the table limit specifies the number of
bytes in the table. The LGDT and SGDT instructions load and store the GDTR register, respec-
tively. On power up or reset of the processor, the base address is set to the default value of 0 and
the limit is set to FFFFH. A new base address must be loaded into the GDTR as part of the
processor initialization process for protected-mode operation. See Section 3.5.1., “Segment
Descriptor Tables”, for more information on the base address and limit fields.
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2.4.2. Local Descriptor Table Register (LDTR)

The LDTR register holds the 16-bit segment selector, 32-bit base address, 16-bit segment limit,
and descriptor attributes for the LDT. The base address specifies the linear address of byte 0 of
the LDT segment; the segment limit specifies the number of bytes in the segment. See Section
3.5.1., “Segment Descriptor Tables”, for more information on the base address and limit fields.

The LLDT and SLDT instructions load and store the segment selector part of the LDTR register,
respectively. The segment that contains the LDT must have a segment descriptor in the GDT.
When the LLDT instruction loads a segment selector in the LDTR, the base address, limit, and
descriptor attributes from the LDT descriptor are automatically loaded into the LDTR.

When a task switch occurs, the LDTR is automatically loaded with the segment selector and
descriptor for the LDT for the new task. The contents of the LDTR are not automatically saved
prior to writing the new LDT information into the register.

On power up or reset of the processor, the segment selector and base address are set to the default
value of 0 and the limit is set to FFFFH.

2.4.3. IDTR Interrupt Descriptor Table Register

The IDTR register holds the 32-bit base address and 16-bit table limit for the IDT. The base
address specifies the linear address of byte O of the IDT; the table limit specifies the number of
bytes in the table. The LIDT and SIDT instructions load and store the IDTR register, respec-
tively. On power up or reset of the processor, the base address is set to the default value of 0 and
the limit is set to FFFFH. The base address and limit in the register can then be changed as part
of the processor initialization process. See Section 5.10., “Interrupt Descriptor Table (IDT)”, for
more information on the base address and limit fields.

2.4.4. Task Register (TR)

The task register holds the 16-bit segment selector, 32-bit base address, 16-bit segment limit,
and descriptor attributes for the TSS of the current task. It references a TSS descriptor in the
GDT. The base address specifies the linear address of byte O of the TSS; the segment limit spec-
ifies the number of bytes in the TSS. (See Section 6.2.3., “Task Register”, for more information
about the task register.)

The LTR and STR instructions load and store the segment selector part of the task register,
respectively. When the LTR instruction loads a segment selector in the task register, the base
address, limit, and descriptor attributes from the TSS descriptor are automatically loaded into
the task register. On power up or reset of the processor, the base address is set to the default value
of 0 and the limit is set to FFFFH.

When a task switch occurs, the task register is automatically loaded with the segment selector
and descriptor for the TSS for the new task. The contents of the task register are not automati-
cally saved prior to writing the new TSS information into the register.
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2.5. CONTROL REGISTERS

The control registers (CRO, CR1, CR2, CR3, and CR4, see Figure 2-5) determine operating
mode of the processor and the characteristics of the currently executing task, as described below:

® (CRO—Contains system control flags that control operating mode and states of the
processor.

® CR1—Reserved.

® CR2—Contains the page-fault linear address (the linear address that caused a page fault).

31 10 987 6543210
PIPIM[P(P|, TPV
Reserved (set to 0) c|G|c|A|s|2|s|V|M| CR4
E|E|E|E|E|-|D|I|E
OSXMMEXCPTQ
OSFXSR
31 121 5432 0
P|P
. CR3
Page-D B c|w
age-Directory Base olT (PDBR)
31 0
Page-Fault Linear Address CR2
31 0
CR1
313029 28 191817 16 15 6543210
P[C|N Al (w N|E|T|E[M|P
G|D W M| |P E|T|s|m|p|E| CRO
I:l Reserved

Figure 2-5. Control Registers

® (CR3—Contains the physical address of the base of the page directory and two flags (PCD
and PWT). This register is also known as the page-directory base register (PDBR). Only
the 20 most-significant bits of the page-directory base address are specified; the lower 12
bits of the address are assumed to be 0. The page directory must thus be aligned to a page
(4-KByte) boundary. The PCD and PWT flags control caching of the page directory in the
processor’s internal data caches (they do not control TLB caching of page-directory
information).
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When using the physical address extension, the CR3 register contains the base address of
the page-directory-pointer table (see Section 3.8., “36-Bit Physical Addressing Using the
PAE Paging Mechanism”).

® CR4—<Contains a group of flags that enable several architectural extensions, and indicate
operating system or executive support for specific processor capabilities.

The control registers can be read and loaded (or modified) using the move-to-or-from-control-
registers forms of the MOV instruction. In protected mode, the MOV instructions allow the
control registers to be read or loaded (at privilege level 0 only). This restriction means that appli-
cation programs or operating-system procedures (running at privilege levels 1, 2, or 3) are
prevented from reading or loading the control registers.

When loading the control register, reserved bits should always be set to the values previously
read.

The functions of the flags in the control registers are as follows:

PG Paging (bit 31 of CRO0). Enables paging when set; disables paging when clear. When
paging is disabled, all linear addresses are treated as physical addresses. The PG flag
has no effect if the PE flag (bit O of register CRO) is not also set; in fact, setting the PG
flag when the PE flag is clear causes a general-protection exception (#GP) to be gener-
ated. See Section 3.6., “Paging (Virtual Memory) Overview”, for a detailed description
of the processor’s paging mechanism.

CD Cache Disable (bit 30 of CR0). When the CD and NW flags are clear, caching of
memory locations for the whole of physical memory in the processor’s internal (and
external) caches is enabled. When the CD flag is set, caching is restricted as described
in Table 10-5. To prevent the processor from accessing and updating its caches, the CD
flag must be set and the caches must be invalidated so that no cache hits can occur (see
Section 10.5.3., “Preventing Caching”). See Section 10.5., “Cache Control”, for a
detailed description of the additional restrictions that can be placed on the caching of
selected pages or regions of memory.

NW Not Write-through (bit 29 of CR0). When the NW and CD flags are clear, write-back
(for Pentium 4, Intel Xeon, P6 family, and Pentium processors) or write-through (for
Intel486 processors) is enabled for writes that hit the cache and invalidation cycles are
enabled. See Table 10-5 for detailed information about the affect of the NW flag on
caching for other settings of the CD and NW flags.

AM Alignment Mask (bit 18 of CRO0). Enables automatic alignment checking when set;
disables alignment checking when clear. Alignment checking is performed only when
the AM flag is set, the AC flag in the EFLAGS register is set, the CPL is 3, and the
processor is operating in either protected or virtual-8086 mode.

WP Write Protect (bit 16 of CRO). Inhibits supervisor-level procedures from writing into
user-level read-only pages when set; allows supervisor-level procedures to write into
user-level read-only pages when clear. This flag facilitates implementation of the copy-
on-write method of creating a new process (forking) used by operating systems such as
UNIX*.
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Numeric Error (bit 5 of CR0). Enables the native (internal) mechanism for reporting
x87 FPU errors when set; enables the PC-style x87 FPU error reporting mechanism
when clear. When the NE flag is clear and the IGNNE# input is asserted, x87 FPU
errors are ignored. When the NE flag is clear and the IGNNE# input is deasserted, an
unmasked x87 FPU error causes the processor to assert the FERR# pin to generate an
external interrupt and to stop instruction execution immediately before executing the
next waiting floating-point instruction or WAIT/FWAIT instruction. The FERR# pin is
intended to drive an input to an external interrupt controller (the FERR# pin emulates
the ERROR# pin of the Intel 287 and Intel 387 DX math coprocessors). The NE flag,
IGNNE# pin, and FERR# pin are used with external logic to implement PC-style error
reporting. (See “Software Exception Handling” in Chapter 8, and Appendix D in the
IA-32 Intel Architecture Software Developer’s Manual, Volume 1, for more information
about x87 FPU error reporting and for detailed information on when the FERR# pin is
asserted, which is implementation dependent.)

Extension Type (bit 4 of CR0). Reserved in the Pentium 4, Intel Xeon, P6 family, and
Pentium processors. (In the Pentium 4, Intel Xeon, and P6 family processors, this flag
is hardcoded to 1.) In the Intel386 and Intel486 processors, this flag indicates support
of Intel 387 DX math coprocessor instructions when set.

Task Switched (bit 3 of CRO0). Allows the saving of the x87 FPU, MMX, SSE, and
SSE2 context on a task switch to be delayed until an x87 FPU, MMX, SSE, or SSE2
instruction is actually executed by the new task. The processor sets this flag on every
task switch and tests it when executing x87 FPU, MMX, SSE, and SSE2 instructions.

* Ifthe TS flag is set and the EM flag (bit 2 of CRO) is clear, a device-not-available
exception (#NM) is raised prior to the execution of any x87 FPU, MMX, SSE, and
SSE2 instruction, with the exception of the PAUSE, PREFETCH#/, SFENCE,
LFENCE, MFENCE, MOVNTI, and CLFLUSH instructions. (See the paragraph
below for the special case of the WAIT/FWAIT instructions.)

* Ifthe TS flag is set and the MP flag (bit 1 of CRO) and EM flag are clear, an #NM
exception is not raised prior to the execution of an x87 FPU WAIT/FWAIT
instruction.

¢ Ifthe EM flag is set, the setting of the TS flag has no affect on the execution of the
x87 FPU, MMX, SSE, and SSE2 instructions.

Table 2-1 shows the actions taken when the processor encounters an x87 FPU instruc-
tion based on the settings of the TS, EM, and MP flags. Tables 11-1 and 12-1 show the
actions taken when the processor encounters an MMX and or an SSE or SSE2 instruc-
tion, respectively.

The processor does not automatically save the context of the x87 FPU, XMM, and
MXCSR registers on a task switch. Instead it sets the TS flag, which causes the
processor to raise an #NM exception whenever it encounters an x87 FPU, MMX, SSE,
or SSE2 instruction in the instruction stream for the new task (with the exception of the
instructions listed above).
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The fault handler for the #NM exception can then be used to clear the TS flag (with the CLTS
instruction) and save the context of the x87 FPU, XMM, and MXCSR registers. If the task never
encounters an x87 FPU, MMX, SSE, or SSE2 instruction, the x87 FPU, MMX, SSE, and SSE2
context is never saved.

Table 2-1. Action Taken By x87 FPU Instructions for Different Combinations of

EM, MP and TS
CRO Flags x87 FPU Instruction Type

EM MP TS Floating-Point WAIT/FWAIT
0 0 0 Execute Execute.

0 0 1 #NM Exception Execute.

0 1 0 Execute Execute.

0 1 1 #NM Exception #NM exception.

1 0 0 #NM Exception Execute.

1 0 1 #NM Exception Execute.

1 1 0 #NM Exception Execute.

1 1 1 #NM Exception #NM exception.

EM Emulation (bit 2 of CR0). Indicates that the processor does not have an internal or

external x87 FPU when set; indicates an x87 FPU is present when clear. This flag also
affects the execution of MMX, SSE, and SSE?2 instructions.

When the EM flag is set, execution of an x87 FPU instruction generates a device-not-
available exception (#NM). This flag must be set when the processor does not have an
internal x87 FPU or is not connected to an external math coprocessor. Setting this flag
forces all floating-point instructions to be handled by software emulation. Table 9-2
shows the recommended setting of this flag, depending on the IA-32 processor and x87
FPU or math coprocessor present in the system. Table 2-1 shows the interaction of the
EM, MP, and TS flags.

Also, when the EM flag is set, execution of an MMX instruction causes an invalid-
opcode exception (#UD) to be generated (see Table 11-1). Thus, if an IA-32 processor
incorporates MMX technology, the EM flag must be set to 0 to enable execution of
MMX instructions.

Similarly for the SSE and SSE2 extensions, when the EM flag is set, execution of most
SSE and SSE2 instructions causes an invalid opcode exception (#UD) to be generated
(see Table 12-1). Thus, if an IA-32 processor incorporates the SSE and/or SSE2 exten-
sions, the EM flag must be set to 0 to enable execution of these extensions. Those SSE
and SSE2 instructions that are not affected by the EM flag are the PAUSE,
PREFETCH#A, SFENCE, LFENCE, MFENCE, MOVNTI, and CLFLUSH instruc-
tions.
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MP

PE

PCD

PWT

VME

PVI

TSD
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Monitor Coprocessor (bit 1 of CRO0). Controls the interaction of the WAIT (or
FWAIT) instruction with the TS flag (bit 3 of CRO). If the MP flag is set, a WAIT
instruction generates a device-not-available exception (#NM) if the TS flag is set. If the
MP flag is clear, the WAIT instruction ignores the setting of the TS flag. Table 9-2
shows the recommended setting of this flag, depending on the IA-32 processor and x87
FPU or math coprocessor present in the system. Table 2-1 shows the interaction of the
MP, EM, and TS flags.

Protection Enable (bit 0 of CR0). Enables protected mode when set; enables real-
address mode when clear. This flag does not enable paging directly. It only enables
segment-level protection. To enable paging, both the PE and PG flags must be set. See
Section 9.9., “Mode Switching”, for information using the PE flag to switch between
real and protected mode.

Page-level Cache Disable (bit 4 of CR3). Controls caching of the current page direc-
tory. When the PCD flag is set, caching of the page-directory is prevented; when the
flag is clear, the page-directory can be cached. This flag affects only the processor’s
internal caches (both L1 and L2, when present). The processor ignores this flag if
paging is not used (the PG flag in register CRO is clear) or the CD (cache disable) flag
in CRO is set. See Chapter 10, Memory Cache Control, for more information about the
use of this flag. See Section 3.7.6., “Page-Directory and Page-Table Entries”, for a
description of a companion PCD flag in the page-directory and page-table entries.

Page-level Writes Transparent (bit 3 of CR3). Controls the write-through or write-
back caching policy of the current page directory. When the PWT flag is set, write-
through caching is enabled; when the flag is clear, write-back caching is enabled. This
flag affects only the internal caches (both L1 and L2, when present). The processor
ignores this flag if paging is not used (the PG flag in register CRO is clear) or the CD
(cache disable) flag in CRO is set. See Section 10.5., “Cache Control”, for more infor-
mation about the use of this flag. See Section 3.7.6., “Page-Directory and Page-Table
Entries”, for a description of a companion PCD flag in the page-directory and page-
table entries.

Virtual-8086 Mode Extensions (bit 0 of CR4). Enables interrupt- and exception-
handling extensions in virtual-8086 mode when set; disables the extensions when clear.
Use of the virtual mode extensions can improve the performance of virtual-8086 appli-
cations by eliminating the overhead of calling the virtual-8086 monitor to handle inter-
rupts and exceptions that occur while executing an 8086 program and, instead,
redirecting the interrupts and exceptions back to the 8086 program’s handlers. It also
provides hardware support for a virtual interrupt flag (VIF) to improve reliability of
running 8086 programs in multitasking and multiple-processor environments. See
Section 16.3., “Interrupt and Exception Handling in Virtual-8086 Mode”, for detailed
information about the use of this feature.

Protected-Mode Virtual Interrupts (bit 1 of CR4). Enables hardware support for a
virtual interrupt flag (VIF) in protected mode when set; disables the VIF flag in
protected mode when clear. See Section 16.4., “Protected-Mode Virtual Interrupts”, for
detailed information about the use of this feature.

Time Stamp Disable (bit 2 of CR4). Restricts the execution of the RDTSC instruction
to procedures running at privilege level 0 when set; allows RDTSC instruction to be
executed at any privilege level when clear.
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DE

PSE

PAE

MCE

PGE

PCE

Debugging Extensions (bit 3 of CR4). References to debug registers DR4 and DR5
cause an undefined opcode (#UD) exception to be generated when set; when clear,
processor aliases references to registers DR4 and DRS5 for compatibility with software
written to run on earlier IA-32 processors. See Section 15.2.2., “Debug Registers DR4
and DRS5”, for more information on the function of this flag.

Page Size Extensions (bit 4 of CR4). Enables 4-MByte pages when set; restricts pages
to 4 KBytes when clear. See Section 3.6.1., “Paging Options”, for more information
about the use of this flag.

Physical Address Extension (bit 5 of CR4). Enables paging mechanism to reference
36-bit physical addresses when set; restricts physical addresses to 32 bits when clear.
See Section 3.8., “36-Bit Physical Addressing Using the PAE Paging Mechanism”, for
more information about the physical address extension.

Machine-Check Enable (bit 6 of CR4). Enables the machine-check exception when
set; disables the machine-check exception when clear. See Chapter 14, Machine-Check
Architecture, for more information about the machine-check exception and machine-
check architecture.

Page Global Enable (bit 7 of CR4). (Introduced in the P6 family processors.) Enables
the global page feature when set; disables the global page feature when clear. The
global page feature allows frequently used or shared pages to be marked as global to
all users (done with the global flag, bit 8, in a page-directory or page-table entry).
Global pages are not flushed from the translation-lookaside buffer (TLB) on a task
switch or a write to register CR3.

When enabling the global page feature, paging must be enabled (by setting the PG flag
in control register CRO) before the PGE flag is set. Reversing this sequence may affect
program correctness, and processor performance will be impacted. See Section 3.11.,
“Translation Lookaside Buffers (TLBs)”, for more information on the use of this bit.

Performance-Monitoring Counter Enable (bit 8 of CR4). Enables execution of the
RDPMC instruction for programs or procedures running at any protection level when
set; RDPMC instruction can be executed only at protection level O when clear.

OSFXSR

Operating System Support for FXSAVE and FXRSTOR instructions (bit 9 of
CR4). When set, this flag preforms the following functions: (1) indicates to software
that the operating system supports the use of the FXSAVE and FXRSTOR instructions,
(2) enables the FXSAVE and FXRSTOR instructions to save and restore the contents
of the XMM and MXCSR registers along with the contents of the x87 FPU and MMX
registers, and (3) enables the processor to execute any of the SSE and SSE2 instruc-
tions, with the exception of the PAUSE, PREFETCHA, SFENCE, LFENCE,
MFENCE, MOVNTI, and CLFLUSH instructions.

If this flag is clear, the FXSAVE and FXRSTOR instructions will save and restore the
contents of the x87 FPU and MMX instructions, but they may not save and restore the
contents of the XMM and MXCSR registers.
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Also, if this flag is clear, the processor will generate an invalid opcode exception (#UD) when-
ever it attempts to execute any of the SSE and SSE2 instruction, with the exception of the
PAUSE, PREFETCH#A, SFENCE, LFENCE, MFENCE, MOVNTI, and CLFLUSH instructions.
The operating system or executive must explicitly set this flag.

NOTE

The CPUID feature flags FXSR, SSE, and SSE2 (bits 24, 25, and 26)
indicate availability of the FXSAVE/FXRESTOR instructions, the SSE
extensions, and the SSE2 extensions, respectively, on a particular [A-32
processor. The OSFXSR bit provides operating system software with a
means of enabling these features and indicating that the operating
system supports the features.

OSXMMEXCPT

Operating System Support for Unmasked SIMD Floating-Point Exceptions (bit
10 of CR4). Indicates that the operating system supports the handling of unmasked
SIMD floating-point exceptions through an exception handler that is invoked when a
SIMD floating-point exception (#XF) is generated. SIMD floating-point exceptions are
only generated by SSE and SSE2 SIMD floating-point instructions. The operating
system or executive must explicitly set this flag. If this flag is not set, the processor will
generate an invalid opcode exception (#UD) whenever it detects an unmasked SIMD
floating-point exception.

2.5.1. CPUID Qualification of Control Register Flags

The VME, PVI, TSD, DE, PSE, PAE, MCE, PGE, PCE, OSFXSR, and OSXMMEXCPT flags
in control register CR4 are model specific. All of these flags (except the PCE flag) can be qual-
ified with the CPUID instruction to determine if they are implemented on the processor before
they are used.

2.6. SYSTEMINSTRUCTION SUMMARY

The system instructions handle system-level functions such as loading system registers,
managing the cache, managing interrupts, or setting up the debug registers. Many of these
instructions can be executed only by operating-system or executive procedures (that is, proce-
dures running at privilege level 0). Others can be executed at any privilege level and are thus
available to application programs. Table 2-2 lists the system instructions and indicates whether
they are available and useful for application programs. These instructions are described in detail
in Chapter 3, Instruction Set Reference, of the IA-32 Intel Architecture Software Developer’s
Manual, Volume 2.
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Table 2-2. Summary of System Instructions

SYSTEM ARCHITECTURE OVERVIEW

Useful to Protected from
Instruction Description Application? Application?
LLDT Load LDT Register No Yes
SLDT Store LDT Register No No
LGDT Load GDT Register No Yes
SGDT Store GDT Register No No
LTR Load Task Register No Yes
STR Store Task Register No No
LIDT Load IDT Register No Yes
SIDT Store IDT Register No No
MOV CRn Load and store control registers No Yes
SMSW Store MSW Yes No
LMSW Load MSW No Yes
CLTS Clear TS flag in CRO No Yes
ARPL Adjust RPL Yes' No
LAR Load Access Rights Yes No
LSL Load Segment Limit Yes No
VERR Verify for Reading Yes No
VERW Verify for Writing Yes No
MOV DBn Load and store debug registers No Yes
INVD Invalidate cache, no writeback No Yes
WBINVD Invalidate cache, with writeback No Yes
INVLPG Invalidate TLB entry No Yes
HLT Halt Processor No Yes
LOCK (Prefix) Bus Lock Yes No
RSM Return from system management mode No Yes
RDMSR® Read Model-Specific Registers No Yes
WRMSR? Write Model-Specific Registers No Yes
RDPMC* Read Performance-Monitoring Counter Yes Yes?
RDTSC? Read Time-Stamp Counter Yes Yes?
NOTES:

1.

Useful to application programs running at a CPL of 1 or 2.

2. The TSD and PCE flags in control register CR4 control access to these instructions by application
programs running at a CPL of 3.

3. These instructions were introduced into the 1A-32 Architecture with the Pentium processor.

4. This instruction was introduced into the 1A-32 Architecture with the Pentium Pro processor and the Pen-
tium® processor with MMX™ technology.
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2.6.1. Loading and Storing System Registers

The GDTR, LDTR, IDTR, and TR registers each have a load and store instruction for loading
data into and storing data from the register:

LGDT (Load GDTR Register) Loadsc the GDT base address and limit from memory into the
GDTR register.

SGDT (Store GDTR Register) Stores the GDT base address and limit from the GDTR register
into memory.

LIDT (Load IDTR Register) Loads the IDT base address and limit from memory into the
IDTR register.

SIDT (Load IDTR Register Stores the IDT base address and limit from the IDTR register
into memory.

LLDT (Load LDT Register)  Loads the LDT segment selector and segment descriptor from
memory into the LDTR. (The segment selector operand can
also be located in a general-purpose register.)

SLDT (Store LDT Register)  Stores the LDT segment selector from the LDTR register into
memory or a general-purpose register.

LTR (Load Task Register) Loads segment selector and segment descriptor for a TSS from
memory into the task register. (The segment selector operand
can also be located in a general-purpose register.)

STR (Store Task Register) Stores the segment selector for the current task TSS from the
task register into memory or a general-purpose register.

The LMSW (load machine status word) and SMSW (store machine status word) instructions
operate on bits 0 through 15 of control register CRO. These instructions are provided for compat-
ibility with the 16-bit Intel 286 processor. Programs written to run on 32-bit [A-32 processors
should not use these instructions. Instead, they should access the control register CRO using the
MOV instruction.

The CLTS (clear TS flag in CRO) instruction is provided for use in handling a device-not-avail-
able exception (#NM) that occurs when the processor attempts to execute a floating-point
instruction when the TS flag is set. This instruction allows the TS flag to be cleared after the x87
FPU context has been saved, preventing further #NM exceptions. See Section 2.5., “Control
Registers”, for more information about the TS flag.

The control registers (CRO, CR1, CR2, CR3, and CR4) are loaded with the MOV instruction.
This instruction can load a control register from a general-purpose register or store the contents
of the control register in a general-purpose register.
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2.6.2. Verifying of Access Privileges

The processor provides several instructions for examining segment selectors and segment
descriptors to determine if access to their associated segments is allowed. These instructions
duplicate some of the automatic access rights and type checking done by the processor, thus
allowing operating-system or executive software to prevent exceptions from being generated.

The ARPL (adjust RPL) instruction adjusts the RPL (requestor privilege level) of a segment
selector to match that of the program or procedure that supplied the segment selector. See
Section 4.10.4., “Checking Caller Access Privileges (ARPL Instruction)”, for a detailed expla-
nation of the function and use of this instruction.

The LAR (load access rights) instruction verifies the accessibility of a specified segment and
loads the access rights information from the segment’s segment descriptor into a general-
purpose register. Software can then examine the access rights to determine if the segment type
is compatible with its intended use. See Section 4.10.1., “Checking Access Rights (LAR Instruc-
tion)”, for a detailed explanation of the function and use of this instruction.

The LSL (load segment limit) instruction verifies the accessibility of a specified segment and
loads the segment limit from the segment’s segment descriptor into a general-purpose register.
Software can then compare the segment limit with an offset into the segment to determine
whether the offset lies within the segment. See Section 4.10.3., “Checking That the Pointer
Offset Is Within Limits (LSL Instruction)”, for a detailed explanation of the function and use of
this instruction.

The VERR (verify for reading) and VERW (verify for writing) instructions verify if a selected
segment is readable or writable, respectively, at the CPL. See Section 4.10.2., “Checking
Read/Write Rights (VERR and VERW Instructions)”, for a detailed explanation of the function
and use of this instruction.

2.6.3. Loading and Storing Debug Registers

The internal debugging facilities in the processor are controlled by a set of 8 debug registers
(DRO through DR7). The MOV instruction allows setup data to be loaded into and stored from
these registers.

2.6.4. Invalidating Caches and TLBs

The processor provides several instructions for use in explicitly invalidating its caches and TLB
entries. The INVD (invalidate cache with no writeback) instruction invalidates all data and
instruction entries in the internal caches and sends a signal to the external caches indicating that
they should be invalidated also.

The WBINVD (invalidate cache with writeback) instruction performs the same function as the
INVD instruction, except that it writes back any modified lines in its internal caches to memory
before it invalidates the caches. After invalidating the internal caches, it signals the external
caches to write back modified data and invalidate their contents.
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The INVLPG (invalidate TLB entry) instruction invalidates (flushes) the TLB entry for a spec-
ified page.

2.6.5. Controlling the Processor

The HLT (halt processor) instruction stops the processor until an enabled interrupt (such as NMI
or SMI, which are normally enabled), a debug exception, the BINIT# signal, the INIT# signal,
or the RESET# signal is received. The processor generates a special bus cycle to indicate that
the halt mode has been entered. Hardware may respond to this signal in a number of ways. An
indicator light on the front panel may be turned on. An NMI interrupt for recording diagnostic
information may be generated. Reset initialization may be invoked (note that the BINIT# pin
was introduced with the Pentium Pro processor). If any non-wake events are pending during
shutdown, they will be handled after the wake event from shutdown is processed (for example,
A20M# interrupts).

The LOCK prefix invokes a locked (atomic) read-modify-write operation when modifying a
memory operand. This mechanism is used to allow reliable communications between processors
in multiprocessor systems. In the Pentium processor and earlier IA-32 processors, the LOCK
prefix causes the processor to assert the LOCK# signal during the instruction, which always
causes an explicit bus lock to occur. In the Pentium 4, Intel Xeon, and P6 family processors, the
locking operation is handled with either a cache lock or bus lock. If a memory access is cacheable
and affects only a single cache line, a cache lock is invoked and the system bus and the actual
memory location in system memory are not locked during the operation. Here, other Pentium 4,
Intel Xeon, or P6 family processors on the bus write-back any modified data and invalidate their
caches as necessary to maintain system memory coherency. If the memory access is not cache-
able and/or it crosses a cache line boundary, the processor’s LOCK# signal is asserted and the
processor does not respond to requests for bus control during the locked operation.

The RSM (return from SMM) instruction restores the processor (from a context dump) to the
state it was in prior to an system management mode (SMM) interrupt.

2.6.6. Reading Performance-Monitoring and Time-Stamp
Counters

The RDPMC (read performance-monitoring counter) and RDTSC (read time-stamp counter)
instructions allow an application program to read the processor’s performance-monitoring and
time-stamp counters, respectively.

The Pentium 4 and Intel Xeon processors have 18 40-bit performance-monitoring counters and
the P6 family processors have 2 40-bit counters. These counters can be used to record either the
occurrence of events or the duration of events. The events that can be monitored are model
specific and include the number of instructions decoded, number of interrupts received, of
number of cache loads. Each counter can be set up to monitor a different event, using the system
instruction WRMSR to set up values in the one of the 45 ESCR and one of the 18 CCCR MSRs
(for Pentium 4 and Intel Xeon processors) or in either the PerfEvtSelO or the PerfEvtSell MSR
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(for the P6 family processors). The RDPMC instruction loads the current count from a counter
into the EDX:EAX registers.

The time-stamp counter is a model-specific 64-bit counter that is reset to zero each time the
processor is reset. If not reset, the counter will increment ~6.3 x 10! times per year when
the processor is operating at a clock rate of 200 MHz. At this clock frequency, it would take
over 2000 years for the counter to wrap around. The RDTSC instruction loads the current
count of the time-stamp counter into the EDX:EAX registers.

See Section 15.8., “Performance Monitoring Overview”, and Section 15.7., “Time-Stamp
Counter”, for more information about the performance monitoring and time-stamp counters.

The RDTSC instruction was introduced into the IA-32 architecture with the Pentium processor.
The RDPMC instruction was introduced into the IA-32 architecture with the Pentium Pro
processor and the Pentium processor with MMX technology. Earlier Pentium processors have
two performance-monitoring counters, but they can be read only with the RDMSR instruction,
and only at privilege level 0.

2.6.7. Reading and Writing Model-Specific Registers

The RDMSR (read model-specific register) and WRMSR (write model-specific register) allow
the processor’s 64-bit model-specific registers (MSRs) to be read and written to, respectively.
The MSR to be read or written to is specified by the value in the ECX register. The RDMSR
instructions reads the value from the specified MSR into the EDX:EAX registers; the WRMSR
writes the value in the EDX:EAX registers into the specified MSR. See Section 9.4., “Model-
Specific Registers (MSRs)”, for more information about the MSRs.

The RDMSR and WRMSR instructions were introduced into the IA-32 architecture with the
Pentium processor.
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CHAPTER 3
PROTECTED-MODE MEMORY MANAGEMENT

This chapter describes the IA-32 architecture’s protected-mode memory management facilities,
including the physical memory requirements, the segmentation mechanism, and the paging
mechanism. See Chapter 4, Protection, for a description of the processor’s protection mecha-
nism. See Chapter 16, 8086 Emulation, for a description of memory addressing protection in
real-address and virtual-8086 modes.

3.1. MEMORY MANAGEMENT OVERVIEW

The memory management facilities of the IA-32 architecture are divided into two parts: segmen-
tation and paging. Segmentation provides a mechanism of isolating individual code, data, and
stack modules so that multiple programs (or tasks) can run on the same processor without inter-
fering with one another. Paging provides a mechanism for implementing a conventional
demand-paged, virtual-memory system where sections of a program’s execution environment
are mapped into physical memory as needed. Paging can also be used to provide isolation
between multiple tasks. When operating in protected mode, some form of segmentation must be
used. There is no mode bit to disable segmentation. The use of paging, however, is optional.

These two mechanisms (segmentation and paging) can be configured to support simple single-
program (or single-task) systems, multitasking systems, or multiple-processor systems that used
shared memory.

As shown in Figure 3-1, segmentation provides a mechanism for dividing the processor’s
addressable memory space (called the linear address space) into smaller protected address
spaces called segments. Segments can be used to hold the code, data, and stack for a program
or to hold system data structures (such as a TSS or LDT). If more than one program (or task) is
running on a processor, each program can be assigned its own set of segments. The processor
then enforces the boundaries between these segments and insures that one program does not
interfere with the execution of another program by writing into the other program’s segments.
The segmentation mechanism also allows typing of segments so that the operations that may be
performed on a particular type of segment can be restricted.

All the segments in a system are contained in the processor’s linear address space. To locate a
byte in a particular segment, a logical address (also called a far pointer) must be provided. A
logical address consists of a segment selector and an offset. The segment selector is a unique
identifier for a segment. Among other things it provides an offset into a descriptor table (such
as the global descriptor table, GDT) to a data structure called a segment descriptor. Each
segment has a segment descriptor, which specifies the size of the segment, the access rights and
privilege level for the segment, the segment type, and the location of the first byte of the segment
in the linear address space (called the base address of the segment). The offset part of the logical
address is added to the base address for the segment to locate a byte within the segment. The
base address plus the offset thus forms a linear address in the processor’s linear address space.
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Figure 3-1. Segmentation and Paging

If paging is not used, the linear address space of the processor is mapped directly into the phys-
ical address space of processor. The physical address space is defined as the range of addresses
that the processor can generate on its address bus.

Because multitasking computing systems commonly define a linear address space much larger
than it is economically feasible to contain all at once in physical memory, some method of
“virtualizing” the linear address space is needed. This virtualization of the linear address space
is handled through the processor’s paging mechanism.

Paging supports a “virtual memory” environment where a large linear address space is simulated
with a small amount of physical memory (RAM and ROM) and some disk storage. When using
paging, each segment is divided into pages (typically 4 KBytes each in size), which are stored
either in physical memory or on the disk. The operating system or executive maintains a page
directory and a set of page tables to keep track of the pages. When a program (or task) attempts
to access an address location in the linear address space, the processor uses the page directory
and page tables to translate the linear address into a physical address and then performs the
requested operation (read or write) on the memory location.
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If the page being accessed is not currently in physical memory, the processor interrupts execu-
tion of the program (by generating a page-fault exception). The operating system or executive
then reads the page into physical memory from the disk and continues executing the program.

When paging is implemented properly in the operating-system or executive, the swapping of
pages between physical memory and the disk is transparent to the correct execution of a
program. Even programs written for 16-bit IA-32 processors can be paged (transparently) when
they are run in virtual-8086 mode.

3.2. USING SEGMENTS

The segmentation mechanism supported by the IA-32 architecture can be used to implement a
wide variety of system designs. These designs range from flat models that make only minimal
use of segmentation to protect programs to multi-segmented models that employ segmentation
to create a robust operating environment in which multiple programs and tasks can be executed
reliably.

The following sections give several examples of how segmentation can be employed in a system
to improve memory management performance and reliability.

3.2.1. Basic Flat Model

The simplest memory model for a system is the basic “flat model,” in which the operating
system and application programs have access to a continuous, unsegmented address space. To
the greatest extent possible, this basic flat model hides the segmentation mechanism of the archi-
tecture from both the system designer and the application programmer.

To implement a basic flat memory model with the IA-32 architecture, at least two segment
descriptors must be created, one for referencing a code segment and one for referencing a data
segment (see Figure 3-2). Both of these segments, however, are mapped to the entire linear
address space: that is, both segment descriptors have the same base address value of 0 and the
same segment limit of 4 GBytes. By setting the segment limit to 4 GBytes, the segmentation
mechanism is kept from generating exceptions for out of limit memory references, even if no
physical memory resides at a particular address. ROM (EPROM) is generally located at the top
of the physical address space, because the processor begins execution at FFFF_FFFOH. RAM
(DRAM) is placed at the bottom of the address space because the initial base address for the DS
data segment after reset initialization is O.

3.2.2. Protected Flat Model

The protected flat model is similar to the basic flat model, except the segment limits are set to
include only the range of addresses for which physical memory actually exists (see Figure 3-3).
A general-protection exception (#GP) is then generated on any attempt to access nonexistent
memory. This model provides a minimum level of hardware protection against some kinds of
program bugs.
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Figure 3-3. Protected Flat Model

More complexity can be added to this protected flat model to provide more protection. For
example, for the paging mechanism to provide isolation between user and supervisor code and
data, four segments need to be defined: code and data segments at privilege level 3 for the user,
and code and data segments at privilege level O for the supervisor. Usually these segments all
overlay each other and start at address O in the linear address space. This flat segmentation
model along with a simple paging structure can protect the operating system from applications,
and by adding a separate paging structure for each task or process, it can also protect applica-
tions from each other. Similar designs are used by several popular multitasking operating

systems.
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3.2.3. Multi-Segment Model

A multi-segment model (such as the one shown in Figure 3-4) uses the full capabilities of the
segmentation mechanism to provided hardware enforced protection of code, data structures, and
programs and tasks. Here, each program (or task) is given its own table of segment descriptors
and its own segments. The segments can be completely private to their assigned programs or
shared among programs. Access to all segments and to the execution environments of individual
programs running on the system is controlled by hardware.
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s J o hoees | Limi
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Figure 3-4. Multi-Segment Model

Access checks can be used to protect not only against referencing an address outside the limit
of a segment, but also against performing disallowed operations in certain segments. For
example, since code segments are designated as read-only segments, hardware can be used to
prevent writes into code segments. The access rights information created for segments can also
be used to set up protection rings or levels. Protection levels can be used to protect operating-
system procedures from unauthorized access by application programs.
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3.24. Paging and Segmentation

Paging can be used with any of the segmentation models described in Figures 3-2, 3-3, and 3-4.
The processor’s paging mechanism divides the linear address space (into which segments are
mapped) into pages (as shown in Figure 3-1). These linear-address-space pages are then mapped
to pages in the physical address space. The paging mechanism offers several page-level protec-
tion facilities that can be used with or instead of the segment-protection facilities. For example,
it lets read-write protection be enforced on a page-by-page basis. The paging mechanism also
provides two-level user-supervisor protection that can also be specified on a page-by-page basis.

3.3. PHYSICAL ADDRESS SPACE

In protected mode, the IA-32 architecture provides a normal physical address space of 4 GBytes
(2% bytes). This is the address space that the processor can address on its address bus. This
address space is flat (unsegmented), with addresses ranging continuously from 0 to
FFFFFFFFH. This physical address space can be mapped to read-write memory, read-only
memory, and memory mapped I/0. The memory mapping facilities described in this chapter can
be used to divide this physical memory up into segments and/or pages.

(Introduced in the Pentium Pro processor.) The IA-32 architecture also supports an extension of
the physical address space to 2% bytes (64 GBytes), with a maximum physical address of
FFFFFFFFFH. This extension is invoked in either of two ways:

® Using the physical address extension (PAE) flag, located in bit 5 of control register CR4.

® Using the 36-bit page size extension (PSE-36) feature (introduced in the Pentium Il
processors).

(See Section 3.8., “36-Bit Physical Addressing Using the PAE Paging Mechanism” and Section
3.9., “36-Bit Physical Addressing Using the PSE-36 Paging Mechanism” for more information
about 36-bit physical addressing.)

3.4. LOGICAL AND LINEAR ADDRESSES

At the system-architecture level in protected mode, the processor uses two stages of address
translation to arrive at a physical address: logical-address translation and linear address space

paging.

Even with the minimum use of segments, every byte in the processor’s address space is accessed
with a logical address. A logical address consists of a 16-bit segment selector and a 32-bit offset
(see Figure 3-5). The segment selector identifies the segment the byte is located in and the offset
specifies the location of the byte in the segment relative to the base address of the segment.

The processor translates every logical address into a linear address. A linear address is a 32-bit
address in the processor’s linear address space. Like the physical address space, the linear
address space is a flat (unsegmented), 23?-byte address space, with addresses ranging from 0 to
FFFFFFFH. The linear address space contains all the segments and system tables defined for a
system.
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To translate a logical address into a linear address, the processor does the following:

1. Uses the offset in the segment selector to locate the segment descriptor for the segment in
the GDT or LDT and reads it into the processor. (This step is needed only when a new
segment selector is loaded into a segment register.)

2. Examines the segment descriptor to check the access rights and range of the segment to
insure that the segment is accessible and that the offset is within the limits of the segment.

3. Adds the base address of the segment from the segment descriptor to the offset to form a
linear address.

31 0
| Offset |

15 0
Seg. Selector

Logical
Address

Descriptor Table

Segment

Base Address
! ——
Descriptor

31 0
| Linear Address |

Figure 3-5. Logical Address to Linear Address Translation

If paging is not used, the processor maps the linear address directly to a physical address (that
is, the linear address goes out on the processor’s address bus). If the linear address space is
paged, a second level of address translation is used to translate the linear address into a physical
address. Page translation is described in Section 3.6., “Paging (Virtual Memory) Overview”.

3.4.1. Segment Selectors

A segment selector is a 16-bit identifier for a segment (see Figure 3-6). It does not point directly
to the segment, but instead points to the segment descriptor that defines the segment. A segment
selector contains the following items:

Index (Bits 3 through 15). Selects one of 8192 descriptors in the GDT or LDT. The
processor multiplies the index value by 8 (the number of bytes in a segment
descriptor) and adds the result to the base address of the GDT or LDT (from
the GDTR or LDTR register, respectively).

TI (table indicator) flag
(Bit 2). Specifies the descriptor table to use: clearing this flag selects the GDT;
setting this flag selects the current LDT.
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Figure 3-6. Segment Selector

Requested Privilege Level (RPL)
(Bits 0 and 1). Specifies the privilege level of the selector. The privilege level
can range from 0 to 3, with 0 being the most privileged level. See Section 4.5.,
“Privilege Levels”, for a description of the relationship of the RPL to the CPL
of the executing program (or task) and the descriptor privilege level (DPL) of
the descriptor the segment selector points to.

The first entry of the GDT is not used by the processor. A segment selector that points to this
entry of the GDT (that is, a segment selector with an index of 0 and the TI flag set to 0) is used
as a “null segment selector.” The processor does not generate an exception when a segment
register (other than the CS or SS registers) is loaded with a null selector. It does, however,
generate an exception when a segment register holding a null selector is used to access memory.
A null selector can be used to initialize unused segment registers. Loading the CS or SS register
with a null segment selector causes a general-protection exception (#GP) to be generated.

Segment selectors are visible to application programs as part of a pointer variable, but the values
of selectors are usually assigned or modified by link editors or linking loaders, not application
programs.

3.4.2. Segment Registers

To reduce address translation time and coding complexity, the processor provides registers for
holding up to 6 segment selectors (see Figure 3-7). Each of these segment registers support a
specific kind of memory reference (code, stack, or data). For virtually any kind of program
execution to take place, at least the code-segment (CS), data-segment (DS), and stack-segment
(SS) registers must be loaded with valid segment selectors. The processor also provides three
additional data-segment registers (ES, FS, and GS), which can be used to make additional data
segments available to the currently executing program (or task).

For a program to access a segment, the segment selector for the segment must have been loaded
in one of the segment registers. So, although a system can define thousands of segments, only 6
can be available for immediate use. Other segments can be made available by loading their
segment selectors into these registers during program execution.
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Figure 3-7. Segment Registers

Every segment register has a “visible” part and a “hidden” part. (The hidden part is sometimes
referred to as a “descriptor cache” or a “shadow register.”) When a segment selector is loaded
into the visible part of a segment register, the processor also loads the hidden part of the segment
register with the base address, segment limit, and access control information from the segment
descriptor pointed to by the segment selector. The information cached in the segment register
(visible and hidden) allows the processor to translate addresses without taking extra bus cycles
to read the base address and limit from the segment descriptor. In systems in which multiple
processors have access to the same descriptor tables, it is the responsibility of software to reload
the segment registers when the descriptor tables are modified. If this is not done, an old segment
descriptor cached in a segment register might be used after its memory-resident version has been
modified.

Two kinds of load instructions are provided for loading the segment registers:

1. Direct load instructions such as the MOV, POP, LDS, LES, LSS, LGS, and LFS instruc-
tions. These instructions explicitly reference the segment registers.

2. TImplied load instructions such as the far pointer versions of the CALL, JMP, and RET
instructions, the SYSENTER and SYSEXIT instructions, and the IRET, INT#n, INTO and
INT3 instructions. These instructions change the contents of the CS register (and
sometimes other segment registers) as an incidental part of their operation.

The MOV instruction can also be used to store visible part of a segment register in a general-
purpose register.

3.4.3. Segment Descriptors

A segment descriptor is a data structure in a GDT or LDT that provides the processor with the
size and location of a segment, as well as access control and status information. Segment
descriptors are typically created by compilers, linkers, loaders, or the operating system or exec-
utive, but not application programs. Figure 3-8 illustrates the general descriptor format for all
types of segment descriptors.
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31 242322212019 1615141312 11 8 7 0
D| |A| Seg. D
Base 31:24 G|/|o|v| Limit [P| P |S| Type Base 23:16 4
B L| 19:16 L
31 1615 0
Base Address 15:00 Segment Limit 15:00 0
AVL — Available for use by system software
BASE — Segment base address
D/B  — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)
DPL — Descriptor privilege level
G — Granularity
LIMIT — Segment Limit
P — Segment present
S — Descriptor type (0 = system; 1 = code or data)
TYPE — Segment type

Figure 3-8. Segment Descriptor

The flags and fields in a segment descriptor are as follows:

Segment limit field
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Specifies the size of the segment. The processor puts together the two segment
limit fields to form a 20-bit value. The processor interprets the segment limit
in one of two ways, depending on the setting of the G (granularity) flag:

e If the granularity flag is clear, the segment size can range from 1 byte to 1
MByte, in byte increments.

e If the granularity flag is set, the segment size can range from 4 KBytes to
4 GBytes, in 4-KByte increments.

The processor uses the segment limit in two different ways, depending on
whether the segment is an expand-up or an expand-down segment. See Section
3.4.3.1., “Code- and Data-Segment Descriptor Types”, for more information
about segment types. For expand-up segments, the offset in a logical address
can range from O to the segment limit. Offsets greater than the segment limit
generate general-protection exceptions (#GP). For expand-down segments, the
segment limit has the reverse function; the offset can range from the segment
limit to FFFFFFFFH or FFFFH, depending on the setting of the B flag. Offsets
less than the segment limit generate general-protection exceptions. Decreasing
the value in the segment limit field for an expand-down segment allocates new
memory at the bottom of the segment's address space, rather than at the top. [A-
32 architecture stacks always grow downwards, making this mechanism
convenient for expandable stacks.
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Base address fields
Defines the location of byte 0 of the segment within the 4-GByte linear address
space. The processor puts together the three base address fields to form a single
32-bit value. Segment base addresses should be aligned to 16-byte boundaries.
Although 16-byte alignment is not required, this alignment allows programs to
maximize performance by aligning code and data on 16-byte boundaries.

Type field Indicates the segment or gate type and specifies the kinds of access that can be
made to the segment and the direction of growth. The interpretation of this field
depends on whether the descriptor type flag specifies an application (code or
data) descriptor or a system descriptor. The encoding of the type field is
different for code, data, and system descriptors (see Figure 4-1). See Section
3.4.3.1., “Code- and Data-Segment Descriptor Types”, for a description of how
this field is used to specify code and data-segment types.

S (descriptor type) flag
Specifies whether the segment descriptor is for a system segment (S flag is
clear) or a code or data segment (S flag is set).

DPL (descriptor privilege level) field
Specifies the privilege level of the segment. The privilege level can range from
0to 3, with 0 being the most privileged level. The DPL is used to control access
to the segment. See Section 4.5., “Privilege Levels”, for a description of the
relationship of the DPL to the CPL of the executing code segment and the RPL
of a segment selector.

P (segment-present) flag
Indicates whether the segment is present in memory (set) or not present (clear).
If this flag is clear, the processor generates a segment-not-present exception
(#NP) when a segment selector that points to the segment descriptor is loaded
into a segment register. Memory management software can use this flag to
control which segments are actually loaded into physical memory at a given
time. It offers a control in addition to paging for managing virtual memory.

Figure 3-9 shows the format of a segment descriptor when the segment-present
flag is clear. When this flag is clear, the operating system or executive is free
to use the locations marked “Available” to store its own data, such as informa-
tion regarding the whereabouts of the missing segment.

D/B (default operation size/default stack pointer size and/or upper bound) flag
Performs different functions depending on whether the segment descriptor is
an executable code segment, an expand-down data segment, or a stack
segment. (This flag should always be set to 1 for 32-bit code and data segments
and to O for 16-bit code and data segments.)

* Executable code segment. The flag is called the D flag and it indicates the
default length for effective addresses and operands referenced by instruc-
tions in the segment. If the flag is set, 32-bit addresses and 32-bit or 8-bit
operands are assumed; if it is clear, 16-bit addresses and 16-bit or 8-bit
operands are assumed.
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The instruction prefix 66H can be used to select an operand size other than
the default, and the prefix 67H can be used select an address size other than
the default.

e Stack segment (data segment pointed to by the SS register). The flag is
called the B (big) flag and it specifies the size of the stack pointer used for
implicit stack operations (such as pushes, pops, and calls). If the flag is set,
a 32-bit stack pointer is used, which is stored in the 32-bit ESP register; if
the flag is clear, a 16-bit stack pointer is used, which is stored in the 16-bit
SP register. If the stack segment is set up to be an expand-down data
segment (described in the next paragraph), the B flag also specifies the
upper bound of the stack segment.

* Expand-down data segment. The flag is called the B flag and it specifies
the upper bound of the segment. If the flag is set, the upper bound is
FFFFFFFFH (4 GBytes); if the flag is clear, the upper bound is FFFFH (64
KBytes).

31 1615141312 11 8 7 0
' D '
Available o P |S| Type Available 4
L
31 0
Available 0

Figure 3-9. Segment Descriptor When Segment-Present Flag Is Clear

G (granularity) flag

Determines the scaling of the segment limit field. When the granularity flag is
clear, the segment limit is interpreted in byte units; when flag is set, the
segment limit is interpreted in 4-KByte units. (This flag does not affect the
granularity of the base address; it is always byte granular.) When the granu-
larity flag is set, the twelve least significant bits of an offset are not tested when
checking the offset against the segment limit. For example, when the granu-
larity flag is set, a limit of O results in valid offsets from O to 4095.

Available and reserved bits
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Bit 20 of the second doubleword of the segment descriptor is available for use
by system software; bit 21 is reserved and should always be set to 0.
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3.4.3.1. CODE- AND DATA-SEGMENT DESCRIPTOR TYPES

When the S (descriptor type) flag in a segment descriptor is set, the descriptor is for either a code
or a data segment. The highest order bit of the type field (bit 11 of the second double word of
the segment descriptor) then determines whether the descriptor is for a data segment (clear) or
a code segment (set).

For data segments, the three low-order bits of the type field (bits 8, 9, and 10) are interpreted as
accessed (A), write-enable (W), and expansion-direction (E). See Table 3-1 for a description of
the encoding of the bits in the type field for code and data segments. Data segments can be read-
only or read/write segments, depending on the setting of the write-enable bit.

Table 3-1. Code- and Data-Segment Types

Type Field
i " 10 9 8 Descriptor
Decimal E w A Type Description
0 0 0 0 0 Data Read-Only
1 0 0 0 1 Data Read-Only, accessed
2 0 0 1 0 Data Read/Write
3 0 0 1 1 Data Read/Write, accessed
4 0 1 0 0 Data Read-Only, expand-down
5 0 1 0 1 Data Read-Only, expand-down, accessed
6 0 1 1 0 Data Read/Write, expand-down
7 0 1 1 1 Data Read/Write, expand-down, accessed
C R A
8 1 0 0 0 Code Execute-Only
9 1 0 0 1 Code Execute-Only, accessed
10 1 0 1 0 Code Execute/Read
11 1 0 1 1 Code Execute/Read, accessed
12 1 1 0 0 Code Execute-Only, conforming
13 1 1 0 1 Code Execute-Only, conforming, accessed
14 1 1 1 0 Code Execute/Read-Only, conforming
15 1 1 1 1 Code Execute/Read-Only, conforming, accessed

Stack segments are data segments which must be read/write segments. Loading the SS register
with a segment selector for a nonwritable data segment generates a general-protection exception
(#GP). If the size of a stack segment needs to be changed dynamically, the stack segment can be
an expand-down data segment (expansion-direction flag set). Here, dynamically changing the
segment limit causes stack space to be added to the bottom of the stack. If the size of a stack
segment is intended to remain static, the stack segment may be either an expand-up or expand-
down type.

The accessed bit indicates whether the segment has been accessed since the last time the oper-
ating-system or executive cleared the bit. The processor sets this bit whenever it loads a segment
selector for the segment into a segment register, assuming that the type of memory that contains
the segment descriptor supports processor writes. The bit remains set until explicitly cleared.
This bit can be used both for virtual memory management and for debugging.
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For code segments, the three low-order bits of the type field are interpreted as accessed (A), read
enable (R), and conforming (C). Code segments can be execute-only or execute/read, depending
on the setting of the read-enable bit. An execute/read segment might be used when constants or
other static data have been placed with instruction code in a ROM. Here, data can be read from
the code segment either by using an instruction with a CS override prefix or by loading a
segment selector for the code segment in a data-segment register (the DS, ES, FS, or GS regis-
ters). In protected mode, code segments are not writable.

Code segments can be either conforming or nonconforming. A transfer of execution into a more-
privileged conforming segment allows execution to continue at the current privilege level. A
transfer into a nonconforming segment at a different privilege level results in a general-protec-
tion exception (#GP), unless a call gate or task gate is used (see Section 4.8.1., “Direct Calls or
Jumps to Code Segments”, for more information on conforming and nonconforming code
segments). System utilities that do not access protected facilities and handlers for some types of
exceptions (such as, divide error or overflow) may be loaded in conforming code segments. Util-
ities that need to be protected from less privileged programs and procedures should be placed in
nonconforming code segments.

NOTE

Execution cannot be transferred by a call or a jump to a less-privileged
(numerically higher privilege level) code segment, regardless of whether the
target segment is a conforming or nonconforming code segment. Attempting
such an execution transfer will result in a general-protection exception.

All data segments are nonconforming, meaning that they cannot be accessed by less privileged
programs or procedures (code executing at numerically high privilege levels). Unlike code
segments, however, data segments can be accessed by more privileged programs or procedures
(code executing at numerically lower privilege levels) without using a special access gate.

If the segment descriptors in the GDT or an LDT are placed in ROM, the processor can enter an
indefinite loop if software or the processor attempts to update (write to) the ROM-based
segment descriptors. To prevent this problem, set the accessed bits for all segment descriptors
that are placed in a ROM. Also, remove any operating-system or executive code that attempts
to modify segment descriptors that are located in ROM.

3.5. SYSTEM DESCRIPTOR TYPES

When the S (descriptor type) flag in a segment descriptor is clear, the descriptor type is a system
descriptor. The processor recognizes the following types of system descriptors:

® Local descriptor-table (LDT) segment descriptor.
® Task-state segment (TSS) descriptor.

® (all-gate descriptor.
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® Interrupt-gate descriptor.
®  Trap-gate descriptor.
® Task-gate descriptor.

These descriptor types fall into two categories: system-segment descriptors and gate descriptors.
System-segment descriptors point to system segments (LDT and TSS segments). Gate descrip-
tors are in themselves “gates,” which hold pointers to procedure entry points in code segments
(call, interrupt, and trap gates) or which hold segment selectors for TSS’s (task gates). Table 3-2
shows the encoding of the type field for system-segment descriptors and gate descriptors.

Table 3-2. System-Segment and Gate-Descriptor Types

Type Field
Decimal 1 10 9 8 Description

0 0 0 0 0 Reserved

1 0 0 0 1 16-Bit TSS (Available)
2 0 0 1 0 LDT

3 0 0 1 1 16-Bit TSS (Busy)

4 0 1 0 0 | 16-Bit Call Gate

5 0 1 0 1 Task Gate

6 0 1 1 0 16-Bit Interrupt Gate
7 0 1 1 1 16-Bit Trap Gate

8 1 0 0 0 Reserved

9 1 0 0 1 32-Bit TSS (Available)
10 1 0 1 0 Reserved

1 1 0 1 1 | 32-Bit TSS (Busy)
12 1 1 0 0 32-Bit Call Gate
13 1 1 0 1 Reserved
14 1 1 1 0 32-Bit Interrupt Gate
15 1 1 1 1 32-Bit Trap Gate

For more information on the system-segment descriptors, see Section 3.5.1., “Segment
Descriptor Tables”, and Section 6.2.2., “TSS Descriptor”; for more information on the gate
descriptors, see Section 4.8.3., “Call Gates”, Section 5.11., “IDT Descriptors”, and Section
6.2.4., “Task-Gate Descriptor”.
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3.5.1. Segment Descriptor Tables

A segment descriptor table is an array of segment descriptors (see Figure 3-10). A descriptor
table is variable in length and can contain up to 8192 (2 3 8-byte descriptors. There are two
kinds of descriptor tables:

® The global descriptor table (GDT)
® The local descriptor tables (LDT)

Gilobal Local
Descriptor Descriptor
Table (GDT) Table (LDT)
[ [ | ¢ ¢
I TI=0 TI=1
Segment
Selector
56 56
48 48
40 40
32 32
24 24
16 16
8 8
First Descriptor in
GDT is Not Used 0 0
GDTR Register LDTR Register
Limit [ Limit
| Base Address Base Address
Seg. Sel.

Figure 3-10. Global and Local Descriptor Tables

Each system must have one GDT defined, which may be used for all programs and tasks in the
system. Optionally, one or more LDTs can be defined. For example, an LDT can be defined for
each separate task being run, or some or all tasks can share the same LDT.

The GDT is not a segment itself; instead, it is a data structure in the linear address space. The
base linear address and limit of the GDT must be loaded into the GDTR register (see Section
2.4., “Memory-Management Registers”). The base addresses of the GDT should be aligned on
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an eight-byte boundary to yield the best processor performance. The limit value for the GDT is
expressed in bytes. As with segments, the limit value is added to the base address to get the
address of the last valid byte. A limit value of O results in exactly one valid byte. Because
segment descriptors are always 8 bytes long, the GDT limit should always be one less than an
integral multiple of eight (that is, 8N — 1).

The first descriptor in the GDT is not used by the processor. A segment selector to this “null
descriptor” does not generate an exception when loaded into a data-segment register (DS, ES,
FS, or GS), but it always generates a general-protection exception (#GP) when an attempt is
made to access memory using the descriptor. By initializing the segment registers with this
segment selector, accidental reference to unused segment registers can be guaranteed to generate
an exception.

The LDT is located in a system segment of the LDT type. The GDT must contain a segment
descriptor for the LDT segment. If the system supports multiple LDTs, each must have a sepa-
rate segment selector and segment descriptor in the GDT. The segment descriptor for an LDT
can be located anywhere in the GDT. See Section 3.5., “System Descriptor Types”, information
on the LDT segment-descriptor type.

An LDT is accessed with its segment selector. To eliminate address translations when accessing
the LDT, the segment selector, base linear address, limit, and access rights of the LDT are stored
in the LDTR register (see Section 2.4., “Memory-Management Registers”).

When the GDTR register is stored (using the SGDT instruction), a 48-bit “pseudo-descriptor”
is stored in memory (see Figure 3-11). To avoid alignment check faults in user mode (privilege
level 3), the pseudo-descriptor should be located at an odd word address (that is, address MOD
4 is equal to 2). This causes the processor to store an aligned word, followed by an aligned
doubleword. User-mode programs normally do not store pseudo-descriptors, but the possibility
of generating an alignment check fault can be avoided by aligning pseudo-descriptors in this
way. The same alignment should be used when storing the IDTR register using the SIDT instruc-
tion. When storing the LDTR or task register (using the SLTR or STR instruction, respectively),
the pseudo-descriptor should be located at a doubleword address (that is, address MOD 4 is
equal to 0).

47 16 15 0
| Base Address ‘ Limit

Figure 3-11. Pseudo-Descriptor Format

3.6. PAGING (VIRTUAL MEMORY) OVERVIEW

When operating in protected mode, the IA-32 architecture permits the linear address space to be
mapped directly into a large physical memory (for example, 4 GBytes of RAM) or indirectly
(using paging) into a smaller physical memory and disk storage. This latter method of mapping
the linear address space is commonly referred to as virtual memory or demand-paged virtual
memory.
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When paging is used, the processor divides the linear address space into fixed-size pages (of 4
KBytes, 2 MBytes, or 4 MBytes in length) that can be mapped into physical memory and/or disk
storage. When a program (or task) references a logical address in memory, the processor trans-
lates the address into a linear address and then uses its paging mechanism to translate the linear
address into a corresponding physical address.

If the page containing the linear address is not currently in physical memory, the processor
generates a page-fault exception (#PF). The exception handler for the page-fault exception typi-
cally directs the operating system or executive to load the page from disk storage into physical
memory (perhaps writing a different page from physical memory out to disk in the process).
When the page has been loaded in physical memory, a return from the exception handler causes
the instruction that generated the exception to be restarted. The information that the processor
uses to map linear addresses into the physical address space and to generate page-fault excep-
tions (when necessary) is contained in page directories and page tables stored in memory.

Paging is different from segmentation through its use of fixed-size pages. Unlike segments,
which usually are the same size as the code or data structures they hold, pages have a fixed size.
If segmentation is the only form of address translation used, a data structure present in physical
memory will have all of its parts in memory. If paging is used, a data structure can be partly in
memory and partly in disk storage.

To minimize the number of bus cycles required for address translation, the most recently
accessed page-directory and page-table entries are cached in the processor in devices called
translation lookaside buffers (TLBs). The TLBs satisfy most requests for reading the current
page directory and page tables without requiring a bus cycle. Extra bus cycles occur only when
the TLBs do not contain a page-table entry, which typically happens when a page has not been
accessed for a long time. See Section 3.11., “Translation Lookaside Buffers (TLBs)”, for more
information on the TLBs.

3.6.1. Paging Options
Paging is controlled by three flags in the processor’s control registers:

® PG (paging) flag. Bit 31 of CRO (available in all IA-32 processors beginning with the
Intel386 processor).

® PSE (page size extensions) flag. Bit 4 of CR4 (introduced in the Pentium processor).

® PAE (physical address extension) flag. Bit 5 of CR4 (introduced in the Pentium Pro
processors).

The PG flag enables the page-translation mechanism. The operating system or executive usually
sets this flag during processor initialization. The PG flag must be set if the processor’s page-
translation mechanism is to be used to implement a demand-paged virtual memory system or if
the operating system is designed to run more than one program (or task) in virtual-8086 mode.

The PSE flag enables large page sizes: 4-MByte pages or 2-MByte pages (when the PAE flag is
set). When the PSE flag is clear, the more common page length of 4 KBytes is used. See Section
3.7.2., “Linear Address Translation (4-MByte Pages)”, Section 3.8.2., “Linear Address Transla-
tion With PAE Enabled (2-MByte Pages)”, and Section 3.9., “36-Bit Physical Addressing Using
the PSE-36 Paging Mechanism” for more information about the use of the PSE flag.
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The PAE flag provides a method of extending physical addresses to 36 bits. This physical
address extension can only be used when paging is enabled. It relies on an additional page direc-
tory pointer table that is used along with page directories and page tables to reference physical
addresses above FFFFFFFFH. See Section 3.8., “36-Bit Physical Addressing Using the PAE
Paging Mechanism”, for more information about extending physical addresses using the PAE
flag.

The 36-bit page size extension (PSE-36) feature provides an alternate method of extending
physical addressing to 36 bits. This paging mechanism uses the page size extension mode
(enabled with the PSE flag) and modified page directory entries to reference physical addresses
above FFFFFFFFH. The PSE-36 feature flag (bit 17 in the EDX register when the CPUID
instruction is executed with a source operand of 1) indicates the availability of this addressing
mechanism. See Section 3.9., “36-Bit Physical Addressing Using the PSE-36 Paging Mecha-
nism”, for more information about the PSE-36 physical address extension and page size exten-
sion mechanism.

3.6.2. Page Tables and Directories

The information that the processor uses to translate linear addresses into physical addresses
(when paging is enabled) is contained in four data structures:

® Page directory—An array of 32-bit page-directory entries (PDEs) contained in a 4-KByte
page. Up to 1024 page-directory entries can be held in a page directory.

® Page table—An array of 32-bit page-table entries (PTEs) contained in a 4-KByte page. Up
to 1024 page-table entries can be held in a page table. (Page tables are not used for 2-
MByte or 4-MByte pages. These page sizes are mapped directly from one or more page-
directory entries.)

® Page—A 4-KByte, 2-MByte, or 4-MByte flat address space.

® Page-Directory-Pointer Table—An array of four 64-bit entries, each of which points to a
page directory. This data structure is only used when the physical address extension is
enabled (see Section 3.8., “36-Bit Physical Addressing Using the PAE Paging
Mechanism™).

These tables provide access to either 4-KByte or 4-MByte pages when normal 32-bit physical
addressing is being used and to either 4-KByte or 2-MByte pages or 4-MByte pages only when
extended (36-bit) physical addressing is being used. Table 3-3 shows the page size and physical
address size obtained from various settings of the paging control flags and the PSE-36 CPUID
feature flag. Each page-directory entry contains a PS (page size) flag that specifies whether the
entry points to a page table whose entries in turn point to 4-KByte pages (PS set to 0) or whether
the page-directory entry points directly to a 4-MByte (PSE and PS set to 1) or 2-MByte page
(PAE and PS set to 1).
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3.7. PAGE TRANSLATION USING 32-BIT PHYSICAL
ADDRESSING

The following sections describe the IA-32 architecture’s page translation mechanism when
using 32-bit physical addresses and a maximum physical address space of 4 Gbytes. Section
3.8., “36-Bit Physical Addressing Using the PAE Paging Mechanism” and Section 3.9., “36-Bit
Physical Addressing Using the PSE-36 Paging Mechanism™ describe extensions to this page
translation mechanism to support 36-bit physical addresses and a maximum physical address
space of 64 Gbytes.

Table 3-3. Page Sizes and Physical Address Sizes

PG Flag, | PAE Flag, | PSE Flag, PS Flag, PSE-36 CPUID Physical
CRO CR4 CR4 PDE Feature Flag Page Size Address Size
0 X X X X — Paging Disabled
1 0 0 X X 4 KBytes 32 Bits
1 0 1 0 X 4 KBytes 32 Bits
1 0 1 1 0 4 MBytes 32 Bits
1 0 1 1 1 4 MBytes 36 Bits
1 1 X 0 X 4 KBytes 36 Bits
1 1 X 1 X 2 MBytes 36 Bits

3.7.1. Linear Address Translation (4-KByte Pages)

Figure 3-12 shows the page directory and page-table hierarchy when mapping linear addresses
to 4-KByte pages. The entries in the page directory point to page tables, and the entries in a page
table point to pages in physical memory. This paging method can be used to address up to 2%°
pages, which spans a linear address space of 232 bytes (4 GBytes).
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Linear Address
31 22 21 12 11 0

Directory Table Offset

12 4-KByte Page

10 10 Page Table Physical Address
Page Directory

Y

Page-Table Entry

20

Directory Entry |—>»

L.
>
-
’

32*
CR3 (PDBR)

*32 bits aligned onto a 4-KByte boundary.

1024 PDE * 1024 PTE = 220 Pages

Figure 3-12. Linear Address Translation (4-KByte Pages)

To select the various table entries, the linear address is divided into three sections:

® Page-directory entry—Bits 22 through 31 provide an offset to an entry in the page
directory. The selected entry provides the base physical address of a page table.

® Page-table entry—Bits 12 through 21 of the linear address provide an offset to an entry in
the selected page table. This entry provides the base physical address of a page in physical
memory.

® Page offset—Bits 0 through 11 provides an offset to a physical address in the page.

Memory management software has the option of using one page directory for all programs and
tasks, one page directory for each task, or some combination of the two.

3.7.2. Linear Address Translation (4-MByte Pages)
Figure 3-12 shows how a page directory can be used to map linear addresses to 4-MByte pages.

The entries in the page directory point to 4-MByte pages in physical memory. This paging
method can be used to map up to 1024 pages into a 4-GByte linear address space.
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Linear Address
31 22 21 0

| Directory ‘ Offset

J 22 4-MByte Page

10 Page Directory

Physical Address

Directory Entry 0 >

1024 PDE = 1024 Pages
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>
>
>
*

2
CR3 (PDBR)

*32 bits aligned onto a 4-KByte boundary.

Figure 3-13. Linear Address Translation (4-MByte Pages)

The 4-MByte page size is selected by setting the PSE flag in control register CR4 and setting
the page size (PS) flag in a page-directory entry (see Figure 3-14). With these flags set, the linear
address is divided into two sections:

® Page directory entry—Bits 22 through 31 provide an offset to an entry in the page
directory. The selected entry provides the base physical address of a 4-MByte page.

® Page offset—Bits 0 through 21 provides an offset to a physical address in the page.

NOTE

(For the Pentium processor only.) When enabling or disabling large page
sizes, the TLBs must be invalidated (flushed) after the PSE flag in control
register CR4 has been set or cleared. Otherwise, incorrect page translation
might occur due to the processor using outdated page translation information
stored in the TLBs. See Section 10.9., “Invalidating the Translation
Lookaside Buffers (TLBs)”, for information on how to invalidate the TLBs.

3.7.3. Mixing 4-KByte and 4-MByte Pages

When the PSE flag in CR4 is set, both 4-MByte pages and page tables for 4-KByte pages can
be accessed from the same page directory. If the PSE flag is clear, only page tables for 4-KByte
pages can be accessed (regardless of the setting of the PS flag in a page-directory entry).

A typical example of mixing 4-KByte and 4-MByte pages is to place the operating system or
executive’s kernel in a large page to reduce TLB misses and thus improve overall system perfor-
mance.
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The processor maintains 4-MByte page entries and 4-KByte page entries in separate TLBs. So,
placing often used code such as the kernel in a large page, frees up 4-KByte-page TLB entries
for application programs and tasks.

3.7.4. Memory Aliasing

The IA-32 architecture permits memory aliasing by allowing two page-directory entries to point
to a common page-table entry. Software that needs to implement memory aliasing in this manner
must manage the consistency of the accessed and dirty bits in the page-directory and page-table
entries. Allowing the accessed and dirty bits for the two page-directory entries to become incon-
sistent may lead to a processor deadlock.

3.7.5. Base Address of the Page Directory

The physical address of the current page directory is stored in the CR3 register (also called the
page directory base register or PDBR). (See Figure 2-5 and Section 2.5., “Control Registers”,
for more information on the PDBR.) If paging is to be used, the PDBR must be loaded as part
of the processor initialization process (prior to enabling paging). The PDBR can then be changed
either explicitly by loading a new value in CR3 with a MOV instruction or implicitly as part of
a task switch. (See Section 6.2.1., “Task-State Segment (TSS)”, for a description of how the
contents of the CR3 register is set for a task.)

There is no present flag in the PDBR for the page directory. The page directory may be not-
present (paged out of physical memory) while its associated task is suspended, but the operating
system must ensure that the page directory indicated by the PDBR image in a task's TSS is
present in physical memory before the task is dispatched. The page directory must also remain
in memory as long as the task is active.

3.7.6. Page-Directory and Page-Table Entries

Figure 3-14 shows the format for the page-directory and page-table entries when 4-KByte
pages and 32-bit physical addresses are being used. Figure 3-15 shows the format for the
page-directory entries when 4-MByte pages and 32-bit physical addresses are being used. The
functions of the flags and fields in the entries in Figures 3-14 and 3-15 are as follows:

Page base address, bits 12 through 32
(Page-table entries for 4-KByte pages.) Specifies the physical address of the
first byte of a 4-KByte page. The bits in this field are interpreted as the 20 most-
significant bits of the physical address, which forces pages to be aligned on
4-KByte boundaries.
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Page-Directory Entry (4-KByte Page Table)

31 1211 9876543210
P|P|U|R
Page-Table Base Address Avail (G g O|A|C|W|/|/|P
D|T|S|W
Available for system programmer’s use —l ‘
Global page (Ignored)
Page size (0 indicates 4 KBytes)
Reserved (set to 0)
Accessed
Cache disabled
Write-through
User/Supervisor
Read/Write
Present
Page-Table Entry (4-KByte Page)
31 1211 9876543210
P P|P|U|R
Page Base Address Avail |G|A[D|A|C|W|/|/|P
T D|T|S|W

Global Page
Page Table Attribute Index
Dirty
Accessed
Cache Disabled
Write-Through
User/Supervisor
Read/Write
Present

Available for system programmer’s use 4‘ ‘
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Figure 3-14. Format of Page-Directory and Page-Table Entries for 4-KByte Pages

and 32-Bit Physical Addresses

(Page-directory entries for 4-KByte page tables.) Specifies the physical
address of the first byte of a page table. The bits in this field are interpreted as
the 20 most-significant bits of the physical address, which forces page tables to
be aligned on 4-KByte boundaries.

(Page-directory entries for 4-MByte pages.) Specifies the physical address of
the first byte of a 4-MByte page. Only bits 22 through 31 of this field are used
(and bits 12 through 21 are reserved and must be set to 0, for IA-32 processors
through the Pentium II processor). The base address bits are interpreted as the
10 most-significant bits of the physical address, which forces 4-MByte pages
to be aligned on 4-MByte boundaries.
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Page-Directory Entry (4-MByte Page)

31 22 21 131211 9876543210
P P|P|U[R

Page Base Address Reserved A Avail. |G P DIA|C(W|/|/|P
D|T|S|W

Global page
Page size (1 indicates 4 MBytes)
Dirty
Accessed
Cache disabled
Write-through
User/Supervisor
Read/Write
Present

Page Table Attribute Index
Available for system programmer’s use

Figure 3-15. Format of Page-Directory Entries for 4-MByte Pages and 32-Bit Addresses

Present (P) flag, bit 0
Indicates whether the page or page table being pointed to by the entry is
currently loaded in physical memory. When the flag is set, the page is in phys-
ical memory and address translation is carried out. When the flag is clear, the
page is not in memory and, if the processor attempts to access the page, it
generates a page-fault exception (#PF).

The processor does not set or clear this flag; it is up to the operating system or
executive to maintain the state of the flag.

If the processor generates a page-fault exception, the operating system gener-
ally needs to carry out the following operations:

1. Copy the page from disk storage into physical memory.

2. Load the page address into the page-table or page-directory entry and set
its present flag. Other flags, such as the dirty and accessed flags, may also
be set at this time.

3. Invalidate the current page-table entry in the TLB (see Section 3.11.,
“Translation Lookaside Buffers (TLBs)”, for a discussion of TLBs and
how to invalidate them).

4. Return from the page-fault handler to restart the interrupted program (or
task).

Read/write (R/W) flag, bit 1
Specifies the read-write privileges for a page or group of pages (in the case of
a page-directory entry that points to a page table). When this flag is clear, the
page is read only; when the flag is set, the page can be read and written into.
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This flag interacts with the U/S flag and the WP flag in register CRO. See
Section 4.11., “Page-Level Protection”, and Table 4-2 for a detailed discussion
of the use of these flags.

User/supervisor (U/S) flag, bit 2

Specifies the user-supervisor privileges for a page or group of pages (in the
case of a page-directory entry that points to a page table). When this flag is
clear, the page is assigned the supervisor privilege level; when the flag is set,
the page is assigned the user privilege level. This flag interacts with the R/W
flag and the WP flag in register CRO. See Section 4.11., “Page-Level Protec-
tion”, and Table 4-2 for a detail discussion of the use of these flags.

Page-level write-through (PWT) flag, bit 3

Controls the write-through or write-back caching policy of individual pages or
page tables. When the PWT flag is set, write-through caching is enabled for the
associated page or page table; when the flag is clear, write-back caching is
enabled for the associated page or page table. The processor ignores this flag if
the CD (cache disable) flag in CRO is set. See Section 10.5., “Cache Control”,
for more information about the use of this flag. See Section 2.5., “Control
Registers”, for a description of a companion PWT flag in control register CR3.

Page-level cache disable (PCD) flag, bit 4

Controls the caching of individual pages or page tables. When the PCD flag is
set, caching of the associated page or page table is prevented; when the flag is
clear, the page or page table can be cached. This flag permits caching to be
disabled for pages that contain memory-mapped I/O ports or that do not
provide a performance benefit when cached. The processor ignores this flag
(assumes it is set) if the CD (cache disable) flag in CRO is set. See Chapter 10,
Memory Cache Control, for more information about the use of this flag. See
Section 2.5., “Control Registers”, for a description of a companion PCD flag
in control register CR3.

Accessed (A) flag, bit 5

Indicates whether a page or page table has been accessed (read from or written
to) when set. Memory management software typically clears this flag when a
page or page table is initially loaded into physical memory. The processor then
sets this flag the first time a page or page table is accessed. This flag is a
“sticky” flag, meaning that once set, the processor does not implicitly clear it.
Only software can clear this flag.

The accessed and dirty flags are provided for use by memory management soft-
ware to manage the transfer of pages and page tables into and out of physical
memory.

Dirty (D) flag, bit 6
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Indicates whether a page has been written to when set. (This flag is not used in
page-directory entries that point to page tables.) Memory management soft-
ware typically clears this flag when a page is initially loaded into physical
memory. The processor then sets this flag the first time a page is accessed for
a write operation.



Intelo PROTECTED-MODE MEMORY MANAGEMENT

This flag is “sticky,” meaning that once set, the processor does not implicitly
clear it. Only software can clear this flag. The dirty and accessed flags are
provided for use by memory management software to manage the transfer of
pages and page tables into and out of physical memory.

Page size (PS) flag, bit 7 page-directory entries for 4-KByte pages
Determines the page size. When this flag is clear, the page size is 4 KBytes and
the page-directory entry points to a page table. When the flag is set, the page
size is 4 MBytes for normal 32-bit addressing (and 2 MBytes if extended phys-
ical addressing is enabled) and the page-directory entry points to a page. If the
page-directory entry points to a page table, all the pages associated with that
page table will be 4-KByte pages.

Page attribute table index (PAT) flag, bit 7 in page-table entries for 4-KByte pages and
bit 12 in page-directory entries for 4-MByte pages
(Introduced in the Pentium Ill processor.) Selects PAT entry. For processors that
support the page attribute table (PAT), this flag is used along with the PCD and
PWT flags to select an entry in the PAT, which in turn selects the memory type
for the page (see Section 10.12., “Page Attribute Table (PAT)”). For processors
that do not support the PAT, this bit is reserved and should be set to 0.

Global (G) flag, bit 8

(Introduced in the Pentium Pro processor.) Indicates a global page when set.
When a page is marked global and the page global enable (PGE) flag in register
CR4 is set, the page-table or page-directory entry for the page is not invalidated
in the TLB when register CR3 is loaded or a task switch occurs. This flag is
provided to prevent frequently used pages (such as pages that contain kernel or
other operating system or executive code) from being flushed from the TLB.
Only software can set or clear this flag. For page-directory entries that point to
page tables, this flag is ignored and the global characteristics of a page are set
in the page-table entries. See Section 3.11., “Translation Lookaside Buffers
(TLBs)”, for more information about the use of this flag. (This bit is reserved
in Pentium and earlier IA-32 processors.)

Reserved and available-to-software bits
For all IA-32 processors. Bits 9, 10, and 11 are available for use by software.
(When the present bit is clear, bits 1 through 31 are available to software—see
Figure 3-16.) In a page-directory entry that points to a page table, bit 6 is
reserved and should be set to 0. When the PSE and PAE flags in control register
CR4 are set, the processor generates a page fault if reserved bits are not set to 0.

For Pentium IT and earlier processors. Bit 7 in a page-table entry is reserved and
should be set to 0. For a page-directory entry for a 4-MByte page, bits 12
through 21 are reserved and must be set to 0.

For Pentium Il and later processors. For a page-directory entry for a 4-MByte
page, bits 13 through 21 are reserved and must be set to 0.
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3.7.7. Not Present Page-Directory and Page-Table Entries

When the present flag is clear for a page-table or page-directory entry, the operating system or
executive may use the rest of the entry for storage of information such as the location of the page
in the disk storage system (see Figure 3-16).

31 0

‘ Available to Operating System or Executive ‘ 0‘

Figure 3-16. Format of a Page-Table or Page-Directory Entry for a Not-Present Page

3.8. 36-BIT PHYSICAL ADDRESSING USING THE PAE PAGING
MECHANISM

The PAE paging mechanism and support for 36-bit physical addressing were introduced into the
IA-32 architecture in the Pentium Pro processors. Implementation of this feature in an IA-32
processor is indicated with CPUID feature flag PAE (bit 6 in the EDX register when the source
operand for the CPUID instruction is 2). The physical address extension (PAE) flag in register
CR4 enables the PAE mechanism and extends physical addresses from 32 bits to 36 bits. Here,
the processor provides 4 additional address line pins to accommodate the additional address bits.
To use this option, the following flags must be set:

® PG flag (bit 31) in control register CRO—Enables paging
® PAE flag (bit 5) in control register CR4 are set—Enables the PAE paging mechanism.

When the PAE paging mechanism is enabled, the processor supports two sizes of pages:
4-KByte and 2-MByte. As with 32-bit addressing, both page sizes can be addressed within the
same set of paging tables (that is, a page-directory entry can point to either a 2-MByte page or
a page table that in turn points to 4-KByte pages). To support the 36-bit physical addresses, the
following changes are made to the paging data structures:

® The paging table entries are increased to 64 bits to accommodate 36-bit base physical
addresses. Each 4-KByte page directory and page table can thus have up to 512 entries.

® A new table, called the page-directory-pointer table, is added to the linear-address
translation hierarchy. This table has 4 entries of 64-bits each, and it lies above the page
directory in the hierarchy. With the physical address extension mechanism enabled, the
processor supports up to 4 page directories.

® The 20-bit page-directory base address field in register CR3 (PDPR) is replaced with a
27-bit page-directory-pointer-table base address field (see Figure 3-17). (In this case,
register CR3 is called the PDPTR.) This field provides the 27 most-significant bits of the
physical address of the first byte of the page-directory-pointer table, which forces the table
to be located on a 32-byte boundary.

® Linear address translation is changed to allow mapping 32-bit linear addresses into the
larger physical address space.
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31 0
) ) P|P
Page-Directory-Pointer-Table Base Address 8 \1/\_/ 0|00

Figure 3-17. Register CR3 Format When the Physical Address Extension is Enabled

3.8.1. Linear Address Translation With PAE Enabled (4-KByte
Pages)

Figure 3-18 shows the page-directory-pointer, page-directory, and page-table hierarchy when
mapping linear addresses to 4-KByte pages when the PAE paging mechanism enabled. This
paging method can be used to address up to 2% pages, which spans a linear address space of 232
bytes (4 GBytes).

To select the various table entries, the linear address is divided into three sections:

® Page-directory-pointer-table entry—Bits 30 and 31 provide an offset to one of the 4 entries
in the page-directory-pointer table. The selected entry provides the base physical address
of a page directory.

® Page-directory entry—Bits 21 through 29 provide an offset to an entry in the selected page
directory. The selected entry provides the base physical address of a page table.

® Page-table entry—Bits 12 through 20 provide an offset to an entry in the selected page
table. This entry provides the base physical address of a page in physical memory.

® Page offset—Bits O through 11 provide an offset to a physical address in the page.
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Linear Address
31 30 29 21 20 12 11 0
Directory Pointer »I ‘ Directory Table Offset

12 4-KByte Page

Page Table Physical Address

Page Directory 9

Page-Table Entry >

Y

»| Directory Entry

Page-Directory-
Pointer Table

4 PDPTE * 512 PDE * 512 PTE = 220 Pages

»-| Dir. Pointer Entry
>

*

2
CR3 (PDPTR)

*32 bits aligned onto a 32-byte boundary
Figure 3-18. Linear Address Translation With PAE Enabled (4-KByte Pages)

3.8.2. Linear Address Translation With PAE Enabled (2-MByte
Pages)

Figure 3-19 shows how a page-directory-pointer table and page directories can be used to map
linear addresses to 2-MByte pages when the PAE paging mechanism enabled. This paging
method can be used to map up to 2048 pages (4 page-directory-pointer-table entries times 512
page-directory entries) into a 4-GByte linear address space.

When PAE is enabled, the 2-MByte page size is selected by setting the page size (PS) flag in a
page-directory entry (see Figure 3-14). (As shown in Table 3-3, the PSE flag in control register
CR4 has no affect on the page size when PAE is enabled.) With the PS flag set, the linear address
is divided into three sections:

® Page-directory-pointer-table entry—Bits 30 and 31 provide an offset to an entry in the
page-directory-pointer table. The selected entry provides the base physical address of a
page directory.

® Page-directory entry—Bits 21 through 29 provide an offset to an entry in the page
directory. The selected entry provides the base physical address of a 2-MByte page.

® Page offset—Bits 0 through 20 provides an offset to a physical address in the page.
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Linear Address
3130 29 21 20 0
»| | Directory Offset

Directory
Pointer

24 2-MByte Page

Page Directory Physical Address

Page-Directory-
Pointer Table

2
—>»| Directory Entry 15 >
> Dir. Pointer Entry——>
—>
3% 4 PDPTE * 512 PDE = 2048 Pages

CR3 (PDPTR)

*32 bits aligned onto a 32-byte boundary

Figure 3-19. Linear Address Translation With PAE Enabled (2-MByte Pages)

3.8.3. Accessing the Full Extended Physical Address Space
With the Extended Page-Table Structure

The page-table structure described in the previous two sections allows up to 4 GBytes of
the 64 GByte extended physical address space to be addressed at one time. Additional 4-GByte
sections of physical memory can be addressed in either of two way:

® Change the pointer in register CR3 to point to another page-directory-pointer table, which
in turn points to another set of page directories and page tables.

® Change entries in the page-directory-pointer table to point to other page directories, which
in turn point to other sets of page tables.

3.8.4. Page-Directory and Page-Table Entries With Extended
Addressing Enabled

Figure 3-20 shows the format for the page-directory-pointer-table, page-directory, and

page-table entries when 4-KByte pages and 36-bit extended physical addresses are being

used. Figure 3-21 shows the format for the page-directory-pointer-table and page-directory

entries when 2-MByte pages and 36-bit extended physical addresses are being used. The func-

tions of the flags in these entries are the same as described in Section 3.7.6., “Page-Directory
and Page-Table Entries”. The major differences in these entries are as follows:

® A page-directory-pointer-table entry is added.

® The size of the entries are increased from 32 bits to 64 bits.
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® The maximum number of entries in a page directory or page table is 512.

® The base physical address field in each entry is extended to 24 bits.

NOTE

Current IA-32 processors that implement the PAE mechanism use uncached
accesses when loading page-directory-pointer table entries. This behavior is
model specific and not architectural. Future TA-32 processors may cache
page-directory-pointer table entries.

Page-Directory-Pointer-Table Entry

63 36 35 32
Reserved (set to 0) ﬁggf_

31 1211 98 543210

Page-Directory Base Address Avail | Reserved g \Zv Res. |1

Page-Directory Entry (4-KByte Page Table)

63 36 35 32
Base
Reserved (set to 0) Addr

31 1211 9876543210
P[P|U[R

Page-Table Base Address Avail |o|o|0|A|C|W|/|/|P
D|T|S|W

Page-Table Entry (4-KByte Page)

63 36 35 32
Base
Reserved (set to 0) Addr

31 1211 9876543210
P P|P|U[R

Page Base Address Avail |G|A|D|A[C(W|/|/|P
T D|T|S|W

Figure 3-20. Format of Page-Directory-Pointer-Table, Page-Directory, and Page-Table
Entries for 4-KByte Pages with PAE Enabled
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Page-Directory-Pointer-Table Entry

63 36 35 32
Reserved (set to 0) 233?_

31 1211 98 543210

Page Directory Base Address Avail. | Reserved g \Zv Res.| 1

Page-Directory Entry (2-MByte Page)

63 36 35 32
Base
Reserved (set to 0) Addr.
31 21 20 1312 11 9876543210
P PlP|U|R
Page Base Address | Reserved (setto 0) |A| Avail. [G|1|D|A 8 \_/l_v é v/v P
T

Figure 3-21. Format of Page-Directory-Pointer-Table and Page-Directory Entries for
2-MByte Pages with PAE Enabled

The base physical address in an entry specifies the following, depending on the type of entry:

® Page-directory-pointer-table entry—the physical address of the first byte of a
4-KByte page directory.

® Page-directory entry—the physical address of the first byte of a 4-KByte page table or a
2-MByte page.

® Page-table entry—the physical address of the first byte of a 4-KByte page.

For all table entries (except for page-directory entries that point to 2-MByte pages), the bits in
the page base address are interpreted as the 24 most-significant bits of a 36-bit physical address,
which forces page tables and pages to be aligned on 4-KByte boundaries. When a page-directory
entry points to a 2-MByte page, the base address is interpreted as the 15 most-significant bits of
a 36-bit physical address, which forces pages to be aligned on 2-MByte boundaries.

The present flag (bit 0) in all page-directory-pointer-table entries must be set to 1 anytime
extended physical addressing mode is enabled; that is, whenever the PAE flag (bit 5 in register
CR4) and the PG flag (bit 31 in register CRO) are set. If the P flag is not set in all 4 page-direc-
tory-pointer-table entries in the page-directory-pointer table when extended physical addressing
is enabled, a general-protection exception (#GP) is generated.

The page size (PS) flag (bit 7) in a page-directory entry determines if the entry points to a page
table or a 2-MByte page. When this flag is clear, the entry points to a page table; when the flag
is set, the entry points to a 2-MByte page. This flag allows 4-KByte and 2-MByte pages to be
mixed within one set of paging tables.
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Access (A) and dirty (D) flags (bits 5 and 6) are provided for table entries that point to pages.

Bits 9, 10, and 11 in all the table entries for the physical address extension are available for use
by software. (When the present flag is clear, bits 1 through 63 are available to software.) All bits
in Figure 3-14 that are marked reserved or O should be set to 0 by software and not accessed by
software. When the PSE and/or PAE flags in control register CR4 are set, the processor gener-
ates a page fault (#PF) if reserved bits in page-directory and page-table entries are not set to 0,
and it generates a general-protection exception (#GP) if reserved bits in a page-directory-
pointer-table entry are not set to 0.

3.9. 36-BIT PHYSICAL ADDRESSING USING THE PSE-36
PAGING MECHANISM

The PSE-36 paging mechanism provides an alternate method (from the PAE mechanism) of
extending physical memory addressing to 36 bits. This mechanism uses the page size extension
(PSE) mode and a modified page-directory table to map 4-MByte pages into a 64-Gbyte phys-
ical address space. As with the PAE mechanism, the processor provides 4 additional address line
pins to accommodate the additional address bits.

The PSE-36 mechanism was introduced into the IA-32 architecture with the Pentium Il proces-
sors. The availability of this feature is indicated with the PSE-36 feature bit (bit 17 of the EDX
register when the CPUID instruction is executed with a source operand of 1).

As is shown in Table 3-3, the following flags must be set or cleared to enable the PSE-36 paging
mechanism:

® PSE-36 CPUID feature flag—When set, it indicates the availability of the PSE-36 paging
mechanism on the IA-32 processor on which the CPUID instruction is executed.

® PG flag (bit 31) in register CRO—Set to 1 to enable paging.
® PAE flag (bit 5) in control register CR4—Clear to O to disable the PAE paging mechanism.

® PSE flag (bit 4) in control register CR4 and the PS flag in PDE— Set to 1 to enable the
page size extension for 4-Mbyte pages.

®  Or the PSE flag (bit 4) in control register CR4— Set to 1 and the PS flag (bit 7) in PDE—
Set to 0 to enable 4-KByte pages with 32-bit addressing (below 4 GBytes).

Figure 3-22 shows how the expanded page directory entry can be used to map a 32-bit linear
address to a 36-bit physical address. Here, the linear address is divided into two sections:

® Page directory entry—Bits 22 through 35 provide an offset to an entry in the page
directory. The selected entry provides the 14 most significant bits of a 36-bit address,
which locates the base physical address of a 4-MByte page.

® Page offset—Bits 0 through 21 provides an offset to a physical address in the page.

This paging method can be used to map up to 1024 pages into a 64-GByte physical address
space.
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Linear Address
31 22 21 0

| Directory ‘ Offset

J 22 4-MByte Page

10 Page Directory

Physical Address

Directory Entry 12 >

-
>
=
?
*

2
CR3 (PDBR)

*32 bits aligned onto a 4-KByte boundary.

1024 PDE = 1024 Pages

Figure 3-22. Linear Address Translation (4-MByte Pages)

Figure 3-23 shows the format for the page-directory entries when 4-MByte pages and 36-bit
physical addresses are being used. Section 3.7.6., “Page-Directory and Page-Table Entries”
describes the functions of the flags and fields in bits O through 11.

Page-Directory Entry (4-MByte Page)
31 22 21 1716 131211 9876543210

P PIP|U|R
Pe}ge Base Address | g cerved A| Avail. [G|P|D|A|C|w|/|/|P
(Bits 22 Through 31) T S blTls|w

Page Base Address (Bits 32 Through 35) J
Page Attribute Table Index
Available for system programmer’s use
Global page
Page size (must be setto 1)
Dirty
Accessed
Cache disabled
Write-through
User/Supervisor
Read/Write
Present

Figure 3-23. Format of Page-Directory Entries for 4-MByte Pages and
36-Bit Physical Addresses
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3.10. MAPPING SEGMENTS TO PAGES

The segmentation and paging mechanisms provide in the IA-32 architecture support a wide
variety of approaches to memory management. When segmentation and paging is combined,
segments can be mapped to pages in several ways. To implement a flat (unsegmented)
addressing environment, for example, all the code, data, and stack modules can be mapped to
one or more large segments (up to 4-GBytes) that share same range of linear addresses (see
Figure 3-2). Here, segments are essentially invisible to applications and the operating-system or
executive. If paging is used, the paging mechanism can map a single linear address space
(contained in a single segment) into virtual memory. Or, each program (or task) can have its own
large linear address space (contained in its own segment), which is mapped into virtual memory
through its own page directory and set of page tables.

Segments can be smaller than the size of a page. If one of these segments is placed in a page
which is not shared with another segment, the extra memory is wasted. For example, a small data
structure, such as a 1-byte semaphore, occupies 4K bytes if it is placed in a page by itself. If
many semaphores are used, it is more efficient to pack them into a single page.

The IA-32 architecture does not enforce correspondence between the boundaries of pages and
segments. A page can contain the end of one segment and the beginning of another. Likewise, a
segment can contain the end of one page and the beginning of another.

Memory-management software may be simpler and more efficient if it enforces some alignment
between page and segment boundaries. For example, if a segment which can fit in one page is
placed in two pages, there may be twice as much paging overhead to support access to that
segment.

One approach to combining paging and segmentation that simplifies memory-management soft-
ware is to give each segment its own page table, as shown in Figure 3-24. This convention gives
the segment a single entry in the page directory which provides the access control information
for paging the entire segment.

Page Frames

LDT Page Directory Page s >
PTE —
PTE >
PTE —
Seg. Descript.—> PDE 4|—>
Seg. Descript.—> PDE >

PTE | =~

PTE —‘

Figure 3-24. Memory Management Convention That Assigns a Page Table
to Each Segment

3-36



Intelo PROTECTED-MODE MEMORY MANAGEMENT

3.11. TRANSLATION LOOKASIDE BUFFERS (TLBS)

The processor stores the most recently used page-directory and page-table entries in on-chip
caches called translation lookaside buffers or TLBs. The P6 family and Pentium processors have
separate TLBs for the data and instruction caches. Also, the P6 family processors maintain sepa-
rate TLBs for 4-KByte and 4-MByte page sizes. The CPUID instruction can be used to deter-
mine the sizes of the TLBs provided in the P6 family and Pentium processors.

Most paging is performed using the contents of the TLBs. Bus cycles to the page directory and
page tables in memory are performed only when the TLBs do not contain the translation infor-
mation for a requested page.

The TLBs are inaccessible to application programs and tasks (privilege level greater than 0); that
is, they cannot invalidate TLBs. Only, operating system or executive procedures running at priv-
ilege level of O can invalid TLBs or selected TLB entries. Whenever a page-directory or page-
table entry is changed (including when the present flag is set to zero), the operating-system must
immediately invalidate the corresponding entry in the TLB so that it can be updated the next
time the entry is referenced.

All of the (non-global) TLBs are automatically invalidated any time the CR3 register is loaded
(unless the G flag for a page or page-table entry is set, as describe later in this section). The CR3
register can be loaded in either of two ways:

® Explicitly, using the MOV instruction, for example:
MOV CR3, EAX

where the EAX register contains an appropriate page-directory base address.

® Implicitly by executing a task switch, which automatically changes the contents of the CR3
register.

The INVLPG instruction is provided to invalidate a specific page-table entry in the TLB.
Normally, this instruction invalidates only an individual TLB entry; however, in some cases, it
may invalidate more than the selected entry and may even invalidate all of the TLBs. This
instruction ignores the setting of the G flag in a page-directory or page-table entry (see following
paragraph).

(Introduced in the Pentium Pro processor.) The page global enable (PGE) flag in register CR4
and the global (G) flag of a page-directory or page-table entry (bit 8) can be used to prevent
frequently used pages from being automatically invalidated in the TLBs on a task switch or a
load of register CR3. (See Section 3.7.6., “Page-Directory and Page-Table Entries”, for more
information about the global flag.) When the processor loads a page-directory or page-table
entry for a global page into a TLB, the entry will remain in the TLB indefinitely. The only ways
to deterministically invalidate global page entries are as follows:

® C(Clear the PGE flag and then invalidate the TLBs.
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¢ Execute the INVLPG instruction to invalidate individual page-directory or page-table
entries in the TLBs.

For additional information about invalidation of the TLBs, see Section 10.9., “Invalidating the
Translation Lookaside Buffers (TLBs)”.

3-38



Protection






CHAPTER 4
PROTECTION

In protected mode, the IA-32 architecture provides a protection mechanism that operates at both
the segment level and the page level. This protection mechanism provides the ability to limit
access to certain segments or pages based on privilege levels (four privilege levels for segments
and two privilege levels for pages). For example, critical operating-system code and data can be
protected by placing them in more privileged segments than those that contain applications
code. The processor’s protection mechanism will then prevent application code from accessing
the operating-system code and data in any but a controlled, defined manner.

Segment and page protection can be used at all stages of software development to assist in local-
izing and detecting design problems and bugs. It can also be incorporated into end-products to
offer added robustness to operating systems, utilities software, and applications software.

When the protection mechanism is used, each memory reference is checked to verify that it
satisfies various protection checks. All checks are made before the memory cycle is started; any
violation results in an exception. Because checks are performed in parallel with address transla-
tion, there is no performance penalty. The protection checks that are performed fall into the
following categories:

®  Limit checks.

® Type checks.

® Privilege level checks.

® Restriction of addressable domain.

® Restriction of procedure entry-points.
® Restriction of instruction set.

All protection violation results in an exception being generated. See Chapter 5, Interrupt and
Exception Handling, for an explanation of the exception mechanism. This chapter describes the
protection mechanism and the violations which lead to exceptions.

The following sections describe the protection mechanism available in protected mode. See
Chapter 16, 8086 Emulation, for information on protection in real-address and virtual-8086
mode.
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4.1. ENABLING AND DISABLING SEGMENT AND PAGE
PROTECTION

Setting the PE flag in register CRO causes the processor to switch to protected mode, which in
turn enables the segment-protection mechanism. Once in protected mode, there is no control bit
for turning the protection mechanism on or off. The part of the segment-protection mechanism
that is based on privilege levels can essentially be disabled while still in protected mode by
assigning a privilege level of O (most privileged) to all segment selectors and segment descrip-
tors. This action disables the privilege level protection barriers between segments, but other
protection checks such as limit checking and type checking are still carried out.

Page-level protection is automatically enabled when paging is enabled (by setting the PG flag
in register CR0). Here again there is no mode bit for turning off page-level protection once
paging is enabled. However, page-level protection can be disabled by performing the following
operations:

® (lear the WP flag in control register CRO.

®  Set the read/write (R/W) and user/supervisor (U/S) flags for each page-directory and page-
table entry.

This action makes each page a writable, user page, which in effect disables page-level
protection.

4.2. FIELDS AND FLAGS USED FOR SEGMENT-LEVEL AND
PAGE-LEVEL PROTECTION

The processor’s protection mechanism uses the following fields and flags in the system data
structures to control access to segments and pages:

® Descriptor type (S) flag—(Bit 12 in the second doubleword of a segment descriptor.)
Determines if the segment descriptor is for a system segment or a code or data segment.

® Type field—(Bits 8 through 11 in the second doubleword of a segment descriptor.)
Determines the type of code, data, or system segment.

® Limit field—(Bits O through 15 of the first doubleword and bits 16 through 19 of the
second doubleword of a segment descriptor.) Determines the size of the segment, along
with the G flag and E flag (for data segments).

® G flag—(Bit 23 in the second doubleword of a segment descriptor.) Determines the size of
the segment, along with the limit field and E flag (for data segments).

® E flag—(Bit 10 in the second doubleword of a data-segment descriptor.) Determines the
size of the segment, along with the limit field and G flag.

® Descriptor privilege level (DPL) field—(Bits 13 and 14 in the second doubleword of a
segment descriptor.) Determines the privilege level of the segment.

® Requested privilege level (RPL) field. (Bits 0 and 1 of any segment selector.) Specifies the
requested privilege level of a segment selector.
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®  Current privilege level (CPL) field. (Bits O and 1 of the CS segment register.) Indicates the
privilege level of the currently executing program or procedure. The term current privilege
level (CPL) refers to the setting of this field.

® User/supervisor (U/S) flag. (Bit 2 of a page-directory or page-table entry.) Determines the
type of page: user or supervisor.

® Read/write (R/W) flag. (Bit 1 of a page-directory or page-table entry.) Determines the type
of access allowed to a page: read only or read-write.

Figure 4-1 shows the location of the various fields and flags in the data, code, and system-
segment descriptors; Figure 3-6 shows the location of the RPL (or CPL) field in a segment
selector (or the CS register); and Figure 3-14 shows the location of the U/S and R/W flags in the
page-directory and page-table entries.
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Data-Segment Descriptor
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Figure 4-1. Descriptor Fields Used for Protection

Many different styles of protection schemes can be implemented with these fields and flags.
When the operating system creates a descriptor, it places values in these fields and flags in
keeping with the particular protection style chosen for an operating system or executive. Appli-
cation program do not generally access or modify these fields and flags.

The following sections describe how the processor uses these fields and flags to perform the
various categories of checks described in the introduction to this chapter.
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4.3. LIMIT CHECKING

The limit field of a segment descriptor prevents programs or procedures from addressing
memory locations outside the segment. The effective value of the limit depends on the setting
of the G (granularity) flag (see Figure 4-1). For data segments, the limit also depends on the
E (expansion direction) flag and the B (default stack pointer size and/or upper bound) flag. The
E flag is one of the bits in the type field when the segment descriptor is for a data-segment type.

When the G flag is clear (byte granularity), the effective limit is the value of the 20-bit limit field
in the segment descriptor. Here, the limit ranges from O to FFFFFH (1 MByte). When the G flag
is set (4-KByte page granularity), the processor scales the value in the limit field by a factor of
212 (4 KBytes). In this case, the effective limit ranges from FFFH (4 KBytes) to FFFFFFFFH (4
GBytes). Note that when scaling is used (G flag is set), the lower 12 bits of a segment offset
(address) are not checked against the limit; for example, note that if the segment limit is O,
offsets 0 through FFFH are still valid.

For all types of segments except expand-down data segments, the effective limit is the last
address that is allowed to be accessed in the segment, which is one less than the size, in bytes,
of the segment. The processor causes a general-protection exception any time an attempt is made
to access the following addresses in a segment:

® A byte at an offset greater than the effective limit

® A word at an offset greater than the (effective-limit — 1)

® A doubleword at an offset greater than the (effective-limit — 3)
® A quadword at an offset greater than the (effective-limit — 7)

For expand-down data segments, the segment limit has the same function but is interpreted
differently. Here, the effective limit specifies the last address that is not allowed to be accessed
within the segment; the range of valid offsets is from (effective-limit + 1) to FFFFFFFFH if the
B flag is set and from (effective-limit + 1) to FFFFH if the B flag is clear. An expand-down
segment has maximum size when the segment limit is 0.

Limit checking catches programming errors such as runaway code, runaway subscripts, and
invalid pointer calculations. These errors are detected when they occur, so identification of the
cause is easier. Without limit checking, these errors could overwrite code or data in another
segment.

In addition to checking segment limits, the processor also checks descriptor table limits. The
GDTR and IDTR registers contain 16-bit limit values that the processor uses to prevent
programs from selecting a segment descriptors outside the respective descriptor tables. The
LDTR and task registers contain 32-bit segment limit value (read from the segment descriptors
for the current LDT and TSS, respectively). The processor uses these segment limits to prevent
accesses beyond the bounds of the current LDT and TSS. See Section 3.5.1., “Segment
Descriptor Tables”, for more information on the GDT and LDT limit fields; see Section 5.10.,
“Interrupt Descriptor Table (IDT)”, for more information on the IDT limit field; and see Section
6.2.3., “Task Register”, for more information on the TSS segment limit field.
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4.4. TYPE CHECKING

Segment descriptors contain type information in two places:
® The S (descriptor type) flag.
® The type field.

The processor uses this information to detect programming errors that result in an attempt to use
a segment or gate in an incorrect or unintended manner.

The S flag indicates whether a descriptor is a system type or a code or data type. The type field
provides 4 additional bits for use in defining various types of code, data, and system descriptors.
Table 3-1 shows the encoding of the type field for code and data descriptors; Table 3-2 shows
the encoding of the field for system descriptors.

The processor examines type information at various times while operating on segment selectors
and segment descriptors. The following list gives examples of typical operations where type
checking is performed. This list is not exhaustive.

® When a segment selector is loaded into a segment register. Certain segment registers
can contain only certain descriptor types, for example:

— The CS register only can be loaded with a selector for a code segment.

— Segment selectors for code segments that are not readable or for system segments
cannot be loaded into data-segment registers (DS, ES, FS, and GS).

— Only segment selectors of writable data segments can be loaded into the SS register.
®  When a segment selector is loaded into the LDTR or task register.

— The LDTR can only be loaded with a selector for an LDT.

— The task register can only be loaded with a segment selector for a TSS.

® When instructions access segments whose descriptors are already loaded into
segment registers. Certain segments can be used by instructions only in certain predefined
ways, for example:

— No instruction may write into an executable segment.
— No instruction may write into a data segment if it is not writable.
— No instruction may read an executable segment unless the readable flag is set.

®  When an instruction operand contains a segment selector. Certain instructions can
access segments or gates of only a particular type, for example:

— A far CALL or far JMP instruction can only access a segment descriptor for a
conforming code segment, nonconforming code segment, call gate, task gate, or TSS.

— The LLDT instruction must reference a segment descriptor for an LDT.

— The LTR instruction must reference a segment descriptor for a TSS.
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— The LAR instruction must reference a segment or gate descriptor for an LDT, TSS,
call gate, task gate, code segment, or data segment.

— The LSL instruction must reference a segment descriptor for a LDT, TSS, code
segment, or data segment.

— IDT entries must be interrupt, trap, or task gates.
® During certain internal operations. For example:

— On a far call or far jump (executed with a far CALL or far JMP instruction), the
processor determines the type of control transfer to be carried out (call or jump to
another code segment, a call or jump through a gate, or a task switch) by checking the
type field in the segment (or gate) descriptor pointed to by the segment (or gate)
selector given as an operand in the CALL or JMP instruction. If the descriptor type is
for a code segment or call gate, a call or jump to another code segment is indicated; if
the descriptor type is for a TSS or task gate, a task switch is indicated.

— On a call or jump through a call gate (or on an interrupt- or exception-handler call
through a trap or interrupt gate), the processor automatically checks that the segment
descriptor being pointed to by the gate is for a code segment.

— On a call or jump to a new task through a task gate (or on an interrupt- or exception-
handler call to a new task through a task gate), the processor automatically checks that
the segment descriptor being pointed to by the task gate is for a TSS.

— On a call or jump to a new task by a direct reference to a TSS, the processor automati-
cally checks that the segment descriptor being pointed to by the CALL or JMP
instruction is for a TSS.

— On return from a nested task (initiated by an IRET instruction), the processor checks
that the previous task link field in the current TSS points to a TSS.

4.41. Null Segment Selector Checking

Attempting to load a null segment selector (see Section 3.4.1., “Segment Selectors”) into the CS
or SS segment register generates a general-protection exception (#GP). A null segment selector
can be loaded into the DS, ES, FS, or GS register, but any attempt to access a segment through
one of these registers when it is loaded with a null segment selector results in a #GP exception
being generated. Loading unused data-segment registers with a null segment selector is a useful
method of detecting accesses to unused segment registers and/or preventing unwanted accesses
to data segments.

4.5. PRIVILEGE LEVELS

The processor’s segment-protection mechanism recognizes 4 privilege levels, numbered from 0
to 3. The greater numbers mean lesser privileges. Figure 4-2 shows how these levels of privilege
can be interpreted as rings of protection.
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The center (reserved for the most privileged code, data, and stacks) is used for the segments
containing the critical software, usually the kernel of an operating system. Outer rings are used
for less critical software. (Systems that use only 2 of the 4 possible privilege levels should use
levels 0 and 3.)

Protection Rings

Operating

System

Kernel

Operating System
“

Services

Applications

Figure 4-2. Protection Rings

The processor uses privilege levels to prevent a program or task operating at a lesser privilege
level from accessing a segment with a greater privilege, except under controlled situations.
When the processor detects a privilege level violation, it generates a general-protection excep-
tion (#GP).

To carry out privilege-level checks between code segments and data segments, the processor
recognizes the following three types of privilege levels:

®  Current privilege level (CPL). The CPL is the privilege level of the currently executing
program or task. It is stored in bits 0 and 1 of the CS and SS segment registers. Normally,
the CPL is equal to the privilege level of the code segment from which instructions are
being fetched. The processor changes the CPL when program control is transferred to a
code segment with a different privilege level. The CPL is treated slightly differently when
accessing conforming code segments. Conforming code segments can be accessed from
any privilege level that is equal to or numerically greater (less privileged) than the DPL of
the conforming code segment. Also, the CPL is not changed when the processor accesses a
conforming code segment that has a different privilege level than the CPL.
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Descriptor privilege level (DPL). The DPL is the privilege level of a segment or gate. It is
stored in the DPL field of the segment or gate descriptor for the segment or gate. When the
currently executing code segment attempts to access a segment or gate, the DPL of the
segment or gate is compared to the CPL and RPL of the segment or gate selector (as
described later in this section). The DPL is interpreted differently, depending on the type of
segment or gate being accessed:

— Data segment. The DPL indicates the numerically highest privilege level that a
program or task can have to be allowed to access the segment. For example, if the DPL
of a data segment is 1, only programs running at a CPL of 0 or 1 can access the
segment.

— Nonconforming code segment (without using a call gate). The DPL indicates the
privilege level that a program or task must be at to access the segment. For example, if
the DPL of a nonconforming code segment is 0, only programs running at a CPL of 0
can access the segment.

— Call gate. The DPL indicates the numerically highest privilege level that the currently
executing program or task can be at and still be able to access the call gate. (This is the
same access rule as for a data segment.)

— Conforming code segment and nonconforming code segment accessed through a
call gate. The DPL indicates the numerically lowest privilege level that a program or
task can have to be allowed to access the segment. For example, if the DPL of a
conforming code segment is 2, programs running at a CPL of 0 or 1 cannot access the
segment.

— TSS. The DPL indicates the numerically highest privilege level that the currently
executing program or task can be at and still be able to access the TSS. (This is the
same access rule as for a data segment.)

Requested privilege level (RPL). The RPL is an override privilege level that is assigned
to segment selectors. It is stored in bits O and 1 of the segment selector. The processor
checks the RPL along with the CPL to determine if access to a segment is allowed. Even if
the program or task requesting access to a segment has sufficient privilege to access the
segment, access is denied if the RPL is not of sufficient privilege level. That is, if the RPL
of a segment selector is numerically greater than the CPL, the RPL overrides the CPL, and
vice versa. The RPL can be used to insure that privileged code does not access a segment
on behalf of an application program unless the program itself has access privileges for that
segment. See Section 4.10.4., “Checking Caller Access Privileges (ARPL Instruction)” for
a detailed description of the purpose and typical use of the RPL.

Privilege levels are checked when the segment selector of a segment descriptor is loaded into a
segment register. The checks used for data access differ from those used for transfers of program
control among code segments; therefore, the two kinds of accesses are considered separately in
the following sections.
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4.6. PRIVILEGE LEVEL CHECKING WHEN ACCESSING
DATA SEGMENTS

To access operands in a data segment, the segment selector for the data segment must be loaded
into the data-segment registers (DS, ES, FS, or GS) or into the stack-segment register (SS).
(Segment registers can be loaded with the MOV, POP, LDS, LES, LFS, LGS, and LSS instruc-
tions.) Before the processor loads a segment selector into a segment register, it performs a priv-
ilege check (see Figure 4-3) by comparing the privilege levels of the currently running program
or task (the CPL), the RPL of the segment selector, and the DPL of the segment’s segment
descriptor. The processor loads the segment selector into the segment register if the DPL is
numerically greater than or equal to both the CPL and the RPL. Otherwise, a general-protection
fault is generated and the segment register is not loaded.

CS Register
CPL

Segment Selector
For Data Segment

RPL

Privilege
Check

Data-Segment Descriptor

YYY

DPL

Figure 4-3. Privilege Check for Data Access

Figure 4-4 shows four procedures (located in codes segments A, B, C, and D), each running at
different privilege levels and each attempting to access the same data segment.

® The procedure in code segment A is able to access data segment E using segment selector
El, because the CPL of code segment A and the RPL of segment selector El are equal to
the DPL of data segment E.

® The procedure in code segment B is able to access data segment E using segment selector
E2, because the CPL of code segment A and the RPL of segment selector E2 are both
numerically lower than (more privileged) than the DPL of data segment E. A code segment
B procedure can also access data segment E using segment selector E1.

® The procedure in code segment C is not able to access data segment E using segment
selector E3 (dotted line), because the CPL of code segment C and the RPL of segment
selector E3 are both numerically greater than (less privileged) than the DPL of data
segment E. Even if a code segment C procedure were to use segment selector E1 or E2,
such that the RPL would be acceptable, it still could not access data segment E because its
CPL is not privileged enough.
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® The procedure in code segment D should be able to access data segment E because code
segment D’s CPL is numerically less than the DPL of data segment E. However, the RPL
of segment selector E3 (which the code segment D procedure is using to access data
segment E) is numerically greater than the DPL of data segment E, so access is not
allowed. If the code segment D procedure were to use segment selector E1 or E2 to access
the data segment, access would be allowed.
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Figure 4-4. Examples of Accessing Data Segments From Various Privilege Levels

As demonstrated in the previous examples, the addressable domain of a program or task varies
as its CPL changes. When the CPL is 0, data segments at all privilege levels are accessible; when
the CPL is 1, only data segments at privilege levels 1 through 3 are accessible; when the CPL is
3, only data segments at privilege level 3 are accessible.

The RPL of a segment selector can always override the addressable domain of a program or task.
When properly used, RPLs can prevent problems caused by accidental (or intensional) use of
segment selectors for privileged data segments by less privileged programs or procedures.

It is important to note that the RPL of a segment selector for a data segment is under software
control. For example, an application program running at a CPL of 3 can set the RPL for a data-
segment selector to 0. With the RPL set to 0, only the CPL checks, not the RPL checks, will
provide protection against deliberate, direct attempts to violate privilege-level security for the
data segment. To prevent these types of privilege-level-check violations, a program or procedure
can check access privileges whenever it receives a data-segment selector from another proce-
dure (see Section 4.10.4., “Checking Caller Access Privileges (ARPL Instruction)”).
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4.6.1. Accessing Data in Code Segments

In some instances it may be desirable to access data structures that are contained in a code
segment. The following methods of accessing data in code segments are possible:

® Load a data-segment register with a segment selector for a nonconforming, readable, code
segment.

® Load a data-segment register with a segment selector for a conforming, readable, code
segment.

® Use a code-segment override prefix (CS) to read a readable, code segment whose selector
is already loaded in the CS register.

The same rules for accessing data segments apply to method 1. Method 2 is always valid because
the privilege level of a conforming code segment is effectively the same as the CPL, regardless
of its DPL. Method 3 is always valid because the DPL of the code segment selected by the CS
register is the same as the CPL.

4.7. PRIVILEGE LEVEL CHECKING WHEN LOADING THE SS
REGISTER

Privilege level checking also occurs when the SS register is loaded with the segment selector for
a stack segment. Here all privilege levels related to the stack segment must match the CPL; that
is, the CPL, the RPL of the stack-segment selector, and the DPL of the stack-segment descriptor
must be the same. If the RPL and DPL are not equal to the CPL, a general-protection exception
(#GP) is generated.

4.8. PRIVILEGE LEVEL CHECKING WHEN TRANSFERRING
PROGRAM CONTROL BETWEEN CODE SEGMENTS

To transfer program control from one code segment to another, the segment selector for the
destination code segment must be loaded into the code-segment register (CS). As part of this
loading process, the processor examines the segment descriptor for the destination code segment
and performs various limit, type, and privilege checks. If these checks are successful, the CS
register is loaded, program control is transferred to the new code segment, and program execu-
tion begins at the instruction pointed to by the EIP register.

Program control transfers are carried out with the JMP, CALL, RET, SYSENTER, SYSEXIT,
INT n, and IRET instructions, as well as by the exception and interrupt mechanisms. Exceptions,
interrupts, and the IRET instruction are special cases discussed in Chapter 5, Interrupt and
Exception Handling. This chapter discusses only the JMP, CALL, RET, SYSENTER, and
SYSEXIT instructions.
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A JMP or CALL instruction can reference another code segment in any of four ways:
® The target operand contains the segment selector for the target code segment.

® The target operand points to a call-gate descriptor, which contains the segment selector for
the target code segment.

® The target operand points to a TSS, which contains the segment selector for the target code
segment.

® The target operand points to a task gate, which points to a TSS, which in turn contains the
segment selector for the target code segment.

The following sections describe first two types of references. See Section 6.3., “Task
Switching”, for information on transferring program control through a task gate and/or TSS.

The SYSENTER and SYSEXIT instructions are special instructions for making fast calls to and
returns from operating system or executive procedures. These instructions are discussed briefly
in Section 4.8.7., “Performing Fast Calls to System Procedures with the SYSENTER and
SYSEXIT Instructions”.

4.8.1. Direct Calls or Jumps to Code Segments

The near forms of the JMP, CALL, and RET instructions transfer program control within the
current code segment, so privilege-level checks are not performed. The far forms of the JMP,
CALL, and RET instructions transfer control to other code segments, so the processor does
perform privilege-level checks.

When transferring program control to another code segment without going through a call gate,
the processor examines four kinds of privilege level and type information (see Figure 4-5):

® The CPL. (Here, the CPL is the privilege level of the calling code segment; that is, the code
segment that contains the procedure that is making the call or jump.)

CS Register

CPL

Segment Selector
For Code Segment

DPL| |C

RPL
Destination Code > Privilege
Segment Descriptor
9 P » Check

Figure 4-5. Privilege Check for Control Transfer Without Using a Gate
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® The DPL of the segment descriptor for the destination code segment that contains the
called procedure.

® The RPL of the segment selector of the destination code segment.

® The conforming (C) flag in the segment descriptor for the destination code segment, which
determines whether the segment is a conforming (C flag is set) or nonconforming (C flag is
clear) code segment. (See Section 3.4.3.1., “Code- and Data-Segment Descriptor Types”,
for more information about this flag.)

The rules that the processor uses to check the CPL, RPL, and DPL depends on the setting of the
C flag, as described in the following sections.

4.8.1.1. ACCESSING NONCONFORMING CODE SEGMENTS

When accessing nonconforming code segments, the CPL of the calling procedure must be equal
to the DPL of the destination code segment; otherwise, the processor generates a general-protec-
tion exception (#GP).

For example, in Figure 4-6, code segment C is a nonconforming code segment. Therefore, a
procedure in code segment A can call a procedure in code segment C (using segment selector
C1), because they are at the same privilege level (the CPL of code segment A is equal to the DPL
of code segment C). However, a procedure in code segment B cannot call a procedure in code
segment C (using segment selector C2 or C1), because the two code segments are at different
privilege levels.
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Figure 4-6. Examples of Accessing Conforming and Nonconforming Code Segments
From Various Privilege Levels

The RPL of the segment selector that points to a nonconforming code segment has a limited
effect on the privilege check. The RPL must be numerically less than or equal to the CPL of the
calling procedure for a successful control transfer to occur. So, in the example in Figure 4-6, the
RPLs of segment selectors C1 and C2 could legally be set to O, 1, or 2, but not to 3.

When the segment selector of a nonconforming code segment is loaded into the CS register, the
privilege level field is not changed; that is, it remains at the CPL (which is the privilege level of
the calling procedure). This is true, even if the RPL of the segment selector is different from the
CPL.

4.8.1.2. ACCESSING CONFORMING CODE SEGMENTS

When accessing conforming code segments, the CPL of the calling procedure may be numeri-
cally equal to or greater than (less privileged) the DPL of the destination code segment; the
processor generates a general-protection exception (#GP) only if the CPL is less than the DPL.
(The segment selector RPL for the destination code segment is not checked if the segment is a
conforming code segment.)
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In the example in Figure 4-6, code segment D is a conforming code segment. Therefore, calling
procedures in both code segment A and B can access code segment D (using either segment
selector D1 or D2, respectively), because they both have CPLs that are greater than or equal to
the DPL of the conforming code segment. For conforming code segments, the DPL repre-
sents the numerically lowest privilege level that a calling procedure may be at to success-
fully make a call to the code segment.

(Note that segments selectors D1 and D2 are identical except for their respective RPLs. But
since RPLs are not checked when accessing conforming code segments, the two segment selec-
tors are essentially interchangeable.)

When program control is transferred to a conforming code segment, the CPL does not change,
even if the DPL of the destination code segment is less than the CPL. This situation is the only
one where the CPL may be different from the DPL of the current code segment. Also, since the
CPL does not change, no stack switch occurs.

Conforming segments are used for code modules such as math libraries and exception handlers,
which support applications but do not require access to protected system facilities. These
modules are part of the operating system or executive software, but they can be executed at
numerically higher privilege levels (less privileged levels). Keeping the CPL at the level of a
calling code segment when switching to a conforming code segment prevents an application
program from accessing nonconforming code segments while at the privilege level (DPL) of a
conforming code segment and thus prevents it from accessing more privileged data.

Most code segments are nonconforming. For these segments, program control can be transferred
only to code segments at the same level of privilege, unless the transfer is carried out through a
call gate, as described in the following sections.

4.8.2. Gate Descriptors

To provide controlled access to code segments with different privilege levels, the processor
provides special set of descriptors called gate descriptors. There are four kinds of gate
descriptors:

® (all gates
® Trap gates
® Interrupt gates
® Task gates

Task gates are used for task switching and are discussed in Chapter 6, Task Management. Trap
and interrupt gates are special kinds of call gates used for calling exception and interrupt
handlers. The are described in Chapter 5, Interrupt and Exception Handling. This chapter is
concerned only with call gates.
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4.8.3. Call Gates

Call gates facilitate controlled transfers of program control between different privilege levels.
They are typically used only in operating systems or executives that use the privilege-level
protection mechanism. Call gates are also useful for transferring program control between 16-bit
and 32-bit code segments, as described in Section 17.4., “Transferring Control Among Mixed-
Size Code Segments”.

Figure 4-7 shows the format of a call-gate descriptor. A call-gate descriptor may reside in the
GDT or in an LDT, but not in the interrupt descriptor table (IDT). It performs six functions:

® It specifies the code segment to be accessed.
® [t defines an entry point for a procedure in the specified code segment.

® It specifies the privilege level required for a caller trying to access the procedure.

31 1615141312 11 87 6 54 0
D Type
Offset in Segment 31:16 Pl P P 000 %%rjr?,:' 4
L |of1 ‘1 |o ‘ 0
31 1615 0
Segment Selector Offset in Segment 15:00 0

DPL Descriptor Privilege Level
P Gate Valid

Figure 4-7. Call-Gate Descriptor

® If a stack switch occurs, it specifies the number of optional parameters to be copied
between stacks.

® It defines the size of values to be pushed onto the target stack: 16-bit gates force 16-bit
pushes and 32-bit gates force 32-bit pushes.

® It specifies whether the call-gate descriptor is valid.

The segment selector field in a call gate specifies the code segment to be accessed. The offset
field specifies the entry point in the code segment. This entry point is generally to the first
instruction of a specific procedure. The DPL field indicates the privilege level of the call gate,
which in turn is the privilege level required to access the selected procedure through the gate.
The P flag indicates whether the call-gate descriptor is valid. (The presence of the code segment
to which the gate points is indicated by the P flag in the code segment’s descriptor.) The param-
eter count field indicates the number of parameters to copy from the calling procedures stack to
the new stack if a stack switch occurs (see Section 4.8.5., “Stack Switching”). The parameter
count specifies the number of words for 16-bit call gates and doublewords for 32-bit call gates.
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Note that the P flag in a gate descriptor is normally always set to 1. If it is set to 0, a not present
(#NP) exception is generated when a program attempts to access the descriptor. The operating
system can use the P flag for special purposes. For example, it could be used to track the number
of times the gate is used. Here, the P flag is initially set to O causing a trap to the not-present
exception handler. The exception handler then increments a counter and sets the P flag to 1, so
that on returning from the handler, the gate descriptor will be valid.

4.8.4. Accessing a Code Segment Through a Call Gate

To access a call gate, a far pointer to the gate is provided as a target operand in a CALL or JMP
instruction. The segment selector from this pointer identifies the call gate (see Figure 4-8); the
offset from the pointer is required, but not used or checked by the processor. (The offset can be
set to any value.)

When the processor has accessed the call gate, it uses the segment selector from the call gate to
locate the segment descriptor for the destination code segment. (This segment descriptor can be
in the GDT or the LDT.) It then combines the base address from the code-segment descriptor
with the offset from the call gate to form the linear address of the procedure entry point in the
code segment.

As shown in Figure 4-9, four different privilege levels are used to check the validity of a
program control transfer through a call gate:

® The CPL (current privilege level).

® The RPL (requestor's privilege level) of the call gate’s selector.

® The DPL (descriptor privilege level) of the call gate descriptor.

® The DPL of the segment descriptor of the destination code segment.

The C flag (conforming) in the segment descriptor for the destination code segment is also
checked.
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Figure 4-9. Privilege Check for Control Transfer with Call Gate
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The privilege checking rules are different depending on whether the control transfer was initi-
ated with a CALL or a JMP instruction, as shown in Table 4-1.
Table 4-1. Privilege Check Rules for Call Gates
Instruction Privilege Check Rules
CALL CPL < call gate DPL; RPL < call gate DPL

Destination conforming code segment DPL < CPL
Destination nonconforming code segment DPL < CPL

JMP CPL < call gate DPL; RPL < call gate DPL

Destination conforming code segment DPL < CPL

Destination nonconforming code segment DPL = CPL

The DPL field of the call-gate descriptor specifies the numerically highest privilege level from
which a calling procedure can access the call gate; that is, to access a call gate, the CPL of a
calling procedure must be equal to or less than the DPL of the call gate. For example, in Figure
4-12, call gate A has a DPL of 3. So calling procedures at all CPLs (0 through 3) can access this
call gate, which includes calling procedures in code segments A, B, and C. Call gate B has a
DPL of 2, so only calling procedures at a CPL or 0, 1, or 2 can access call gate B, which includes
calling procedures in code segments B and C. The dotted line shows that a calling procedure in
code segment A cannot access call gate B.

The RPL of the segment selector to a call gate must satisfy the same test as the CPL of the calling
procedure; that is, the RPL must be less than or equal to the DPL of the call gate. In the example
in Figure 4-12, a calling procedure in code segment C can access call gate B using gate selector
B2 or B1, but it could not use gate selector B3 to access call gate B.

If the privilege checks between the calling procedure and call gate are successful, the processor
then checks the DPL of the code-segment descriptor against the CPL of the calling procedure.
Here, the privilege check rules vary between CALL and JMP instructions. Only CALL instruc-
tions can use call gates to transfer program control to more privileged (numerically lower priv-
ilege level) nonconforming code segments; that is, to nonconforming code segments with a DPL
less than the CPL. A JMP instruction can use a call gate only to transfer program control to a
nonconforming code segment with a DPL equal to the CPL. CALL and JMP instruction can both
transfer program control to a more privileged conforming code segment; that is, to a conforming
code segment with a DPL less than or equal to the CPL.

If a call is made to a more privileged (numerically lower privilege level) nonconforming desti-
nation code segment, the CPL is lowered to the DPL of the destination code segment and a stack
switch occurs (see Section 4.8.5., “Stack Switching”). If a call or jump is made to a more priv-
ileged conforming destination code segment, the CPL is not changed and no stack switch occurs.
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Figure 4-10. Example of Accessing Call Gates At Various Privilege Levels

Call gates allow a single code segment to have procedures that can be accessed at different priv-
ilege levels. For example, an operating system located in a code segment may have some
services which are intended to be used by both the operating system and application software
(such as procedures for handling character I/0O). Call gates for these procedures can be set up
that allow access at all privilege levels (0 through 3). More privileged call gates (with DPLs of
0 or 1) can then be set up for other operating system services that are intended to be used only
by the operating system (such as procedures that initialize device drivers).

4.8.5. Stack Switching

Whenever a call gate is used to transfer program control to a more privileged nonconforming
code segment (that is, when the DPL of the nonconforming destination code segment is less than
the CPL), the processor automatically switches to the stack for the destination code segment’s
privilege level. This stack switching is carried out to prevent more privileged procedures from
crashing due to insufficient stack space. It also prevents less privileged procedures from inter-
fering (by accident or intent) with more privileged procedures through a shared stack.
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Each task must define up to 4 stacks: one for applications code (running at privilege level 3) and
one for each of the privilege levels 2, 1, and O that are used. (If only two privilege levels are used
[3 and 0], then only two stacks must be defined.) Each of these stacks is located in a separate
segment and is identified with a segment selector and an offset into the stack segment (a stack
pointer).

The segment selector and stack pointer for the privilege level 3 stack is located in the SS and
ESP registers, respectively, when privilege-level-3 code is being executed and is automatically
stored on the called procedure’s stack when a stack switch occurs.

Pointers to the privilege level 0, 1, and 2 stacks are stored in the TSS for the currently running
task (see Figure 6-2). Each of these pointers consists of a segment selector and a stack pointer
(loaded into the ESP register). These initial pointers are strictly read-only values. The processor
does not change them while the task is running. They are used only to create new stacks when
calls are made to more privileged levels (numerically lower privilege levels). These stacks are
disposed of when a return is made from the called procedure. The next time the procedure is
called, a new stack is created using the initial stack pointer. (The TSS does not specify a stack
for privilege level 3 because the processor does not allow a transfer of program control from a
procedure running at a CPL of 0, 1, or 2 to a procedure running at a CPL of 3, except on a return.)

The operating system is responsible for creating stacks and stack-segment descriptors for all the
privilege levels to be used and for loading initial pointers for these stacks into the TSS. Each
stack must be read/write accessible (as specified in the type field of its segment descriptor) and
must contain enough space (as specified in the limit field) to hold the following items:

® The contents of the SS, ESP, CS, and EIP registers for the calling procedure.
® The parameters and temporary variables required by the called procedure.

® The EFLAGS register and error code, when implicit calls are made to an exception or
interrupt handler.

The stack will need to require enough space to contain many frames of these items, because
procedures often call other procedures, and an operating system may support nesting of multiple
interrupts. Each stack should be large enough to allow for the worst case nesting scenario at its
privilege level.

(If the operating system does not use the processor’s multitasking mechanism, it still must create
at least one TSS for this stack-related purpose.)

When a procedure call through a call gate results in a change in privilege level, the processor
performs the following steps to switch stacks and begin execution of the called procedure at a
new privilege level:

1. Uses the DPL of the destination code segment (the new CPL) to select a pointer to the new
stack (segment selector and stack pointer) from the TSS.

2. Reads the segment selector and stack pointer for the stack to be switched to from the
current TSS. Any limit violations detected while reading the stack-segment selector, stack
pointer, or stack-segment descriptor cause an invalid TSS (#TS) exception to be generated.

3. Checks the stack-segment descriptor for the proper privileges and type and generates an
invalid TSS (#TS) exception if violations are detected.
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4. Temporarily saves the current values of the SS and ESP registers.
Loads the segment selector and stack pointer for the new stack in the SS and ESP registers.

6. Pushes the temporarily saved values for the SS and ESP registers (for the calling
procedure) onto the new stack (see Figure 4-11).

7. Copies the number of parameter specified in the parameter count field of the call gate from
the calling procedure’s stack to the new stack. If the count is 0, no parameters are copied.

8. Pushes the return instruction pointer (the current contents of the CS and EIP registers) onto
the new stack.

9. Loads the segment selector for the new code segment and the new instruction pointer from
the call gate into the CS and EIP registers, respectively, and begins execution of the called
procedure.

See the description of the CALL instruction in Chapter 3, Instruction Set Reference, in the IA-
32 Intel Architecture Software Developer’s Manual, Volume 2, for a detailed description of the
privilege level checks and other protection checks that the processor performs on a far call
through a call gate.

Calling Procedure’s Stack Called Procedure’s Stack
Calling SS
Parameter 1 Calling ESP
Parameter 2 Parameter 1
Parameter3  [<«— ESP Parameter 2
Parameter 3

Calling CS

Calling EIP <—ESP

Figure 4-11. Stack Switching During an Interprivilege-Level Call

The parameter count field in a call gate specifies the number of data items (up to 31) that the
processor should copy from the calling procedure’s stack to the stack of the called procedure. If
more than 31 data items need to be passed to the called procedure, one of the parameters can be
a pointer to a data structure, or the saved contents of the SS and ESP registers may be used to
access parameters in the old stack space. The size of the data items passed to the called proce-
dure depends on the call gate size, as described in Section 4.8.3., “Call Gates”.
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4.8.6. Returning from a Called Procedure

The RET instruction can be used to perform a near return, a far return at the same privilege level,
and a far return to a different privilege level. This instruction is intended to execute returns from
procedures that were called with a CALL instruction. It does not support returns from a JMP
instruction, because the JMP instruction does not save a return instruction pointer on the stack.

A near return only transfers program control within the current code segment; therefore, the
processor performs only a limit check. When the processor pops the return instruction pointer
from the stack into the EIP register, it checks that the pointer does not exceed the limit of the
current code segment.

On a far return at the same privilege level, the processor pops both a segment selector for the
code segment being returned to and a return instruction pointer from the stack. Under normal
conditions, these pointers should be valid, because they were pushed on the stack by the CALL
instruction. However, the processor performs privilege checks to detect situations where the
current procedure might have altered the pointer or failed to maintain the stack properly.

A far return that requires a privilege-level change is only allowed when returning to a less priv-
ileged level (that is, the DPL of the return code segment is numerically greater than the CPL).
The processor uses the RPL field from the CS register value saved for the calling procedure (see
Figure 4-11) to determine if a return to a numerically higher privilege level is required. If the
RPL is numerically greater (less privileged) than the CPL, a return across privilege levels
occurs.

The processor performs the following steps when performing a far return to a calling procedure
(see Figures 6-2 and 6-4 in the IA-32 Intel Architecture Software Developer’s Manual, Volume
1, for an illustration of the stack contents prior to and after a return):

1. Checks the RPL field of the saved CS register value to determine if a privilege level
change is required on the return.

2. Loads the CS and EIP registers with the values on the called procedure’s stack. (Type and
privilege level checks are performed on the code-segment descriptor and RPL of the code-
segment selector.)

3. (If the RET instruction includes a parameter count operand and the return requires a
privilege level change.) Adds the parameter count (in bytes obtained from the RET
instruction) to the current ESP register value (after popping the CS and EIP values), to step
past the parameters on the called procedure’s stack. The resulting value in the ESP register
points to the saved SS and ESP values for the calling procedure’s stack. (Note that the byte
count in the RET instruction must be chosen to match the parameter count in the call gate
that the calling procedure referenced when it made the original call multiplied by the size
of the parameters.)

4. (If the return requires a privilege level change.) Loads the SS and ESP registers with the
saved SS and ESP values and switches back to the calling procedure’s stack. The SS and
ESP values for the called procedure’s stack are discarded. Any limit violations detected
while loading the stack-segment selector or stack pointer cause a general-protection
exception (#GP) to be generated. The new stack-segment descriptor is also checked for
type and privilege violations.
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5. (If the RET instruction includes a parameter count operand.) Adds the parameter count (in
bytes obtained from the RET instruction) to the current ESP register value, to step past the
parameters on the calling procedure’s stack. The resulting ESP value is not checked against
the limit of the stack segment. If the ESP value is beyond the limit, that fact is not
recognized until the next stack operation.

6. (If the return requires a privilege level change.) Checks the contents of the DS, ES, FS, and
GS segment registers. If any of these registers refer to segments whose DPL is less than the
new CPL (excluding conforming code segments), the segment register is loaded with a null
segment selector.

See the description of the RET instruction in Chapter 3, Instruction Set Reference, of the IA-32
Intel Architecture Software Developer’s Manual, Volume 2, for a detailed description of the priv-
ilege level checks and other protection checks that the processor performs on a far return.

4.8.7. Performing Fast Calls to System Procedures with the
SYSENTER and SYSEXIT Instructions

The SYSENTER and SYSEXIT instructions were introduced into the IA-32 architecture in the
Pentium II processors for the purpose of providing a fast (low overhead) mechanism for calling
operating system or executive procedures. The SYSENTER instruction is intended for use by
user code running at privilege level 3 to access operating system or executive procedures
running at privilege level 0. The SYSEXIT procedure is intended for use by privilege level 0
operating system or executive procedures for fast returns to privilege level 3 user code. The
SYSENTER instruction can be executed from privilege levels 3, 2, or 1; the SYSEXIT instruc-
tion can only be executed from privilege level 0.

The SYSENTER and SYSEXIT instructions are companion instructions, but they do not consti-
tute a call/return pair because the SYSENTER instruction does not save any state information
for use by the SYSEXIT instruction on a return.

The target instruction and stack pointer for these instructions are not specified through instruc-
tion operands. Instead, they are specified through parameters entered in several MSRs and
general-purpose registers. For the SYSENTER instruction, the processor gets the privilege level
0 target instruction and stack pointer from the following sources:

® Target code segment—Reads it from the SYSENTER_CS_MSR.

® Target instruction—Reads it from the SYSENTER_EIP_MSR.

®  Stack segment—Computes it adding 8 to the value in the SYSENTER_CS_MSR.
® Stack pointer—Reads it from the SYSENTER_ESP_MSR.

For the SYSEXIT instruction, the privilege level 3 target instruction and stack pointer are spec-
ified as follows:

® Target code segment—Computes it by adding 16 to the value in the
SYSENTER_CS_MSR.

® Target instruction—Reads it from the EDX register.
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® Stack segment—Computes it by adding 24 to the value in the SYSENTER_CS_MSR.
® Stack pointer—Reads it from the ECX register.

The SYSENTER and SYSEXIT instructions preform “fast” calls and returns because they force
the processor into a predefined privilege level O state when a SYSENTER instruction is
executed and into a predefined privilege level 3 state when a SYSEXIT instruction is executed.
By forcing predefined and consistent processor states, the number of privilege checks ordinarily
required to perform a far call to another privilege levels are greatly reduced. Also, by prede-
fining the target context state in MSRs and general-purpose registers eliminates all memory
accesses except when fetching the target code.

Any additional state that needs to be saved to allow a return to the calling procedure must be
saved explicitly by the calling procedure or be predefined through programming conventions.

4.9. PRIVILEGED INSTRUCTIONS

Some of the system instructions (called “privileged instructions” are protected from use by
application programs. The privileged instructions control system functions (such as the loading
of system registers). They can be executed only when the CPL is 0 (most privileged). If one of
these instructions is executed when the CPL is not 0, a general-protection exception (#GP) is
generated. The following system instructions are privileged instructions:

® LGDT—Load GDT register.

¢ LLDT—Load LDT register.

® LTR—Load task register.

® LIDT—Load IDT register.

® MOV (control registers)—Load and store control registers.
® LMSW—Load machine status word.

® CLTS—Clear task-switched flag in register CRO.

® MOV (debug registers)—Load and store debug registers.
® INVD—Invalidate cache, without writeback.

® WBINVD—Invalidate cache, with writeback.

¢ INVLPG—Invalidate TLB entry.

¢ HLT—Halt processor.

® RDMSR—Read Model-Specific Registers.

®  WRMSR—Write Model-Specific Registers.

¢ RDPMC—Read Performance-Monitoring Counter.

¢ RDTSC—Read Time-Stamp Counter.
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Some of the privileged instructions are available only in the more recent families of IA-32
processors (see Section 18.9., “New Instructions In the Pentium and Later IA-32 Processors”).

The PCE and TSD flags in register CR4 (bits 4 and 2, respectively) enable the RDPMC and
RDTSC instructions, respectively, to be executed at any CPL.

4.10. POINTER VALIDATION

When operating in protected mode, the processor validates all pointers to enforce protection
between segments and maintain isolation between privilege levels. Pointer validation consists
of the following checks:

Checking access rights to determine if the segment type is compatible with its use.
Checking read/write rights
Checking if the pointer offset exceeds the segment limit.

Checking if the supplier of the pointer is allowed to access the segment.

A

Checking the offset alignment.

The processor automatically performs first, second, and third checks during instruction execu-
tion. Software must explicitly request the fourth check by issuing an ARPL instruction. The fifth
check (offset alignment) is performed automatically at privilege level 3 if alignment checking is
turned on. Offset alignment does not affect isolation of privilege levels.

4.10.1. Checking Access Rights (LAR Instruction)

When the processor accesses a segment using a far pointer, it performs an access rights check
on the segment descriptor pointed to by the far pointer. This check is performed to determine if
type and privilege level (DPL) of the segment descriptor are compatible with the operation to be
performed. For example, when making a far call in protected mode, the segment-descriptor type
must be for a conforming or nonconforming code segment, a call gate, a task gate, or a TSS.
Then, if the call is to a nonconforming code segment, the DPL of the code segment must be equal
to the CPL, and the RPL of the code segment’s segment selector must be less than or equal to
the DPL. If type or privilege level are found to be incompatible, the appropriate exception is
generated.

To prevent type incompatibility exceptions from being generated, software can check the access
rights of a segment descriptor using the LAR (load access rights) instruction. The LAR instruc-
tion specifies the segment selector for the segment descriptor whose access rights are to be
checked and a destination register. The instruction then performs the following operations:

1. Check that the segment selector is not null.

2. Checks that the segment selector points to a segment descriptor that is within the descriptor
table limit (GDT or LDT).
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3. Checks that the segment descriptor is a code, data, LDT, call gate, task gate, or TSS
segment-descriptor type.

4. If the segment is not a conforming code segment, checks if the segment descriptor is
visible at the CPL (that is, if the CPL and the RPL of the segment selector are less than or
equal to the DPL).

5. If the privilege level and type checks pass, loads the second doubleword of the segment
descriptor into the destination register (masked by the value OOFXFFOOH, where X
indicates that the corresponding 4 bits are undefined) and sets the ZF flag in the EFLAGS
register. If the segment selector is not visible at the current privilege level or is an invalid
type for the LAR instruction, the instruction does not modify the destination register and
clears the ZF flag.

Once loaded in the destination register, software can preform additional checks on the access
rights information.

4.10.2. Checking Read/Write Rights (VERR and VERW
Instructions)

When the processor accesses any code or data segment it checks the read/write privileges
assigned to the segment to verify that the intended read or write operation is allowed. Software
can check read/write rights using the VERR (verify for reading) and VERW (verify for writing)
instructions. Both these instructions specify the segment selector for the segment being checked.
The instructions then perform the following operations:

1. Check that the segment selector is not null.

2. Checks that the segment selector points to a segment descriptor that is within the descriptor
table limit (GDT or LDT).

3. Checks that the segment descriptor is a code or data-segment descriptor type.

4. 1If the segment is not a conforming code segment, checks if the segment descriptor is
visible at the CPL (that is, if the CPL and the RPL of the segment selector are less than or
equal to the DPL).

5. Checks that the segment is readable (for the VERR instruction) or writable (for the
VERW) instruction.

The VERR instruction sets the ZF flag in the EFLAGS register if the segment is visible at the
CPL and readable; the VERW sets the ZF flag if the segment is visible and writable. (Code
segments are never writable.) The ZF flag is cleared if any of these checks fail.

4-28



Intel ® PROTECTION

4.10.3. Checking That the Pointer Offset Is Within Limits (LSL
Instruction)

When the processor accesses any segment it performs a limit check to insure that the offset is
within the limit of the segment. Software can perform this limit check using the LSL (load
segment limit) instruction. Like the LAR instruction, the LSL instruction specifies the segment
selector for the segment descriptor whose limit is to be checked and a destination register. The
instruction then performs the following operations:

1. Check that the segment selector is not null.

2. Checks that the segment selector points to a segment descriptor that is within the descriptor
table limit (GDT or LDT).

Checks that the segment descriptor is a code, data, LDT, or TSS segment-descriptor type.

4. 1If the segment is not a conforming code segment, checks if the segment descriptor is
visible at the CPL (that is, if the CPL and the RPL of the segment selector less than or
equal to the DPL).

5. If the privilege level and type checks pass, loads the unscrambled limit (the limit scaled
according to the setting of the G flag in the segment descriptor) into the destination register
and sets the ZF flag in the EFLAGS register. If the segment selector is not visible at the
current privilege level or is an invalid type for the LSL instruction, the instruction does not
modify the destination register and clears the ZF flag.

Once loaded in the destination register, software can compare the segment limit with the offset
of a pointer.

4.10.4. Checking Caller Access Privileges (ARPL Instruction)

The requestor’s privilege level (RPL) field of a segment selector is intended to carry the privi-
lege level of a calling procedure (the calling procedure’s CPL) to a called procedure. The called
procedure then uses the RPL to determine if access to a segment is allowed. The RPL is said to
“weaken” the privilege level of the called procedure to that of the RPL.

Operating-system procedures typically use the RPL to prevent less privileged application
programs from accessing data located in more privileged segments. When an operating-system
procedure (the called procedure) receives a segment selector from an application program (the
calling procedure), it sets the segment selector’s RPL to the privilege level of the calling proce-
dure. Then, when the operating system uses the segment selector to access its associated
segment, the processor performs privilege checks using the calling procedure’s privilege level
(stored in the RPL) rather than the numerically lower privilege level (the CPL) of the operating-
system procedure. The RPL thus insures that the operating system does not access a segment on
behalf of an application program unless that program itself has access to the segment.

Figure 4-12 shows an example of how the processor uses the RPL field. In this example, an
application program (located in code segment A) possesses a segment selector (segment selector
D1) that points to a privileged data structure (that is, a data structure located in a data segment
D at privilege level 0).
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The application program cannot access data segment D, because it does not have sufficient priv-
ilege, but the operating system (located in code segment C) can. So, in an attempt to access data
segment D, the application program executes a call to the operating system and passes segment
selector D1 to the operating system as a parameter on the stack. Before passing the segment
selector, the (well behaved) application program sets the RPL of the segment selector to its
current privilege level (which in this example is 3). If the operating system attempts to access
data segment D using segment selector D1, the processor compares the CPL (which is now 0
following the call), the RPL of segment selector D1, and the DPL of data segment D (which is
0). Since the RPL is greater than the DPL, access to data segment D is denied. The processor’s
protection mechanism thus protects data segment D from access by the operating system,
because application program’s privilege level (represented by the RPL of segment selector B) is
greater than the DPL of data segment D.

Passed as a
parameter on
the stack.
Application Program \
Code Call
Segment A| | Gate SelectorB | Gate B - Segment Sel. D1
CPL=3 RPL=3 —| RP‘L=3
— DPL=3 |
Lowest Privilege | |
|
|
!
| |
| |
Access !
| not |
| allowed ‘
| |
| N\
Code |- — — - Data
Operating | Segment C Se t Sel. D2
> gment Sel. | 3| Segment D
System RPL=0
DPL=0 -
Access DPL=0
m Highest Privilege allowed

Figure 4-12. Use of RPL to Weaken Privilege Level of Called Procedure

Now assume that instead of setting the RPL of the segment selector to 3, the application program
sets the RPL to 0 (segment selector D2). The operating system can now access data segment D,
because its CPL and the RPL of segment selector D2 are both equal to the DPL of data segment D.
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Because the application program is able to change the RPL of a segment selector to any value,
it can potentially use a procedure operating at a numerically lower privilege level to access a
protected data structure. This ability to lower the RPL of a segment selector breaches the
processor’s protection mechanism.

Because a called procedure cannot rely on the calling procedure to set the RPL correctly, oper-
ating-system procedures (executing at numerically lower privilege-levels) that receive segment
selectors from numerically higher privilege-level procedures need to test the RPL of the segment
selector to determine if it is at the appropriate level. The ARPL (adjust requested privilege level)
instruction is provided for this purpose. This instruction adjusts the RPL of one segment selector
to match that of another segment selector.

The example in Figure 4-12 demonstrates how the ARPL instruction is intended to be used.
When the operating-system receives segment selector D2 from the application program, it uses
the ARPL instruction to compare the RPL of the segment selector with the privilege level of the
application program (represented by the code-segment selector pushed onto the stack). If the
RPL is less than application program’s privilege level, the ARPL instruction changes the RPL
of the segment selector to match the privilege level of the application program (segment
selector D1). Using this instruction thus prevents a procedure running at a numerically higher
privilege level from accessing numerically lower privilege-level (more privileged) segments by
lowering the RPL of a segment selector.

Note that the privilege level of the application program can be determined by reading the RPL
field of the segment selector for the application-program’s code segment. This segment selector
is stored on the stack as part of the call to the operating system. The operating system can copy
the segment selector from the stack into a register for use as an operand for the ARPL
instruction.

4.10.5. Checking Alignment

When the CPL is 3, alignment of memory references can be checked by setting the AM flag in
the CRO register and the AC flag in the EFLAGS register. Unaligned memory references
generate alignment exceptions (#AC). The processor does not generate alignment exceptions
when operating at privilege level 0, 1, or 2. See Table 5-6 for a description of the alignment
requirements when alignment checking is enabled.

4.11. PAGE-LEVEL PROTECTION

Page-level protection can be used alone or applied to segments. When page-level protection is
used with the flat memory model, it allows supervisor code and data (the operating system or
executive) to be protected from user code and data (application programs). It also allows pages
containing code to be write protected. When the segment- and page-level protection are
combined, page-level read/write protection allows more protection granularity within segments.
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With page-level protection (as with segment-level protection) each memory reference is
checked to verify that protection checks are satisfied. All checks are made before the memory
cycle is started, and any violation prevents the cycle from starting and results in a page-fault
exception being generated. Because checks are performed in parallel with address translation,
there is no performance penalty.

The processor performs two page-level protection checks:
® Restriction of addressable domain (supervisor and user modes).
® Page type (read only or read/write).

Violations of either of these checks results in a page-fault exception being generated. See
Chapter 5, “Interrupt 14—Page-Fault Exception (#PF)”, for an explanation of the page-fault
exception mechanism. This chapter describes the protection violations which lead to page-fault
exceptions.

4.11.1. Page-Protection Flags

Protection information for pages is contained in two flags in a page-directory or page-table entry
(see Figure 3-14): the read/write flag (bit 1) and the user/supervisor flag (bit 2). The protection
checks are applied to both first- and second-level page tables (that is, page directories and page
tables).

4.11.2. Restricting Addressable Domain

The page-level protection mechanism allows restricting access to pages based on two privilege
levels:

®  Supervisor mode (U/S flag is 0)—(Most privileged) For the operating system or executive,
other system software (such as device drivers), and protected system data (such as page
tables).

® User mode (U/S flag is 1)—(Least privileged) For application code and data.

The segment privilege levels map to the page privilege levels as follows. If the processor is
currently operating at a CPL of 0, 1, or 2, it is in supervisor mode; if it is operating at a CPL of
3, it is in user mode. When the processor is in supervisor mode, it can access all pages; when in
user mode, it can access only user-level pages. (Note that the WP flag in control register CRO
modifies the supervisor permissions, as described in Section 4.11.3., “Page Type”.)

Note that to use the page-level protection mechanism, code and data segments must be set up
for at least two segment-based privilege levels: level O for supervisor code and data segments
and level 3 for user code and data segments. (In this model, the stacks are placed in the data
segments.) To minimize the use of segments, a flat memory model can be used (see Section
3.2.1., “Basic Flat Model”).
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Here, the user and supervisor code and data segments all begin at address zero in the linear
address space and overlay each other. With this arrangement, operating-system code (running at
the supervisor level) and application code (running at the user level) can execute as if there are
no segments. Protection between operating-system and application code and data is provided by
the processor’s page-level protection mechanism.

4.11.3. Page Type

The page-level protection mechanism recognizes two page types:
® Read-only access (R/W flag is 0).
® Read/write access (R/W flag is 1).

When the processor is in supervisor mode and the WP flag in register CRO is clear (its state
following reset initialization), all pages are both readable and writable (write-protection is
ignored). When the processor is in user mode, it can write only to user-mode pages that are
read/write accessible. User-mode pages which are read/write or read-only are readable; super-
visor-mode pages are neither readable nor writable from user mode. A page-fault exception is
generated on any attempt to violate the protection rules.

The P6 family, Pentium, and Intel486 processors allow user-mode pages to be write-protected
against supervisor-mode access. Setting the WP flag in register CRO to 1 enables supervisor-
mode sensitivity to user-mode, write-protected pages. This supervisor write-protect feature is
useful for implementing a “copy-on-write” strategy used by some operating systems, such as
UNIX*, for task creation (also called forking or spawning). When a new task is created, it is
possible to copy the entire address space of the parent task. This gives the child task a complete,
duplicate set of the parent's segments and pages. An alternative copy-on-write strategy saves
memory space and time by mapping the child's segments and pages to the same segments and
pages used by the parent task. A private copy of a page gets created only when one of the tasks
writes to the page. By using the WP flag and marking the shared pages as read-only, the super-
visor can detect an attempt to write to a user-level page, and can copy the page at that time.

4.11.4. Combining Protection of Both Levels of Page Tables

For any one page, the protection attributes of its page-directory entry (first-level page table) may
differ from those of its page-table entry (second-level page table). The processor checks the
protection for a page in both its page-directory and the page-table entries. Table 4-2 shows the
protection provided by the possible combinations of protection attributes when the WP flag is
clear.

4.11.5. Overrides to Page Protection

The following types of memory accesses are checked as if they are privilege-level 0 accesses,
regardless of the CPL at which the processor is currently operating:

®  Access to segment descriptors in the GDT, LDT, or IDT.

® Access to an inner-privilege-level stack during an inter-privilege-level call or a call to in
exception or interrupt handler, when a change of privilege level occurs.
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4.12. COMBINING PAGE AND SEGMENT PROTECTION

When paging is enabled, the processor evaluates segment protection first, then evaluates page
protection. If the processor detects a protection violation at either the segment level or the page
level, the memory access is not carried out and an exception is generated. If an exception is
generated by segmentation, no paging exception is generated.

Page-level protections cannot be used to override segment-level protection. For example, a code
segment is by definition not writable. If a code segment is paged, setting the R/W flag for the
pages to read-write does not make the pages writable. Attempts to write into the pages will be
blocked by segment-level protection checks.

Page-level protection can be used to enhance segment-level protection. For example, if a large
read-write data segment is paged, the page-protection mechanism can be used to write-protect
individual pages.

Table 4-2. Combined Page-Directory and Page-Table Protection

Page-Directory Entry Page-Table Entry Combined Effect
Privilege Access Type Privilege Access Type Privilege Access Type
User Read-Only User Read-Only User Read-Only
User Read-Only User Read-Write User Read-Only
User Read-Write User Read-Only User Read-Only
User Read-Write User Read-Write User Read/Write
User Read-Only Supervisor Read-Only Supervisor Read/Write*
User Read-Only Supervisor Read-Write Supervisor Read/Write*
User Read-Write Supervisor Read-Only Supervisor Read/Write*
User Read-Write Supervisor Read-Write Supervisor Read/Write
Supervisor Read-Only User Read-Only Supervisor Read/Write*
Supervisor Read-Only User Read-Write Supervisor Read/Write*
Supervisor Read-Write User Read-Only Supervisor Read/Write*
Supervisor Read-Write User Read-Write Supervisor Read/Write
Supervisor Read-Only Supervisor Read-Only Supervisor Read/Write*
Supervisor Read-Only Supervisor Read-Write Supervisor Read/Write*
Supervisor Read-Write Supervisor Read-Only Supervisor Read/Write*
Supervisor Read-Write Supervisor Read-Write Supervisor Read/Write
NOTE:

* If the WP flag of CRO is set, the access type is determined by the R/W flags of the page-directory and
page-table entries.
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CHAPTER 5
INTERRUPT AND EXCEPTION HANDLING

This chapter describes the processor’s interrupt and exception-handling mechanism, when oper-
ating in protected mode. Most of the information provided here also applies to the interrupt and
exception mechanism used in real-address or virtual-8086 mode. See Chapter 15, Debugging
and Performance Monitoring, for a description of the differences in the interrupt and exception
mechanism for real-address and virtual-8086 mode.

5.1. INTERRUPT AND EXCEPTION OVERVIEW

Interrupts and exceptions are events that indicate that a condition exists somewhere in the
system, the processor, or within the currently executing program or task that requires the atten-
tion of a processor. They typically result in a forced transfer of execution from the currently
running program or task to a special software routine or task called an interrupt handler or an
exception handler. The action taken by a processor in response to an interrupt or exception is
referred to as servicing or handling the interrupt or exception.

Interrupts typically occur at random times during the execution of a program, in response to
signals from hardware. System hardware uses interrupts to handle events external to the
processor, such as requests to service peripheral devices. Software can also generate interrupts
by executing the INT »n instruction.

Exceptions occur when the processor detects an error condition while executing an instruction,
such as division by zero. The processor detects a variety of error conditions including protection
violations, page faults, and internal machine faults. The machine-check architecture of the
Pentium 4, Intel Xeon, P6 family, and Pentium processors also permits a machine-check excep-
tion to be generated when internal hardware errors and bus errors are detected.

The TA-32 architecture’s interrupt and exception-handling mechanism allows interrupts and
exceptions to be handled transparently to application programs and the operating system or
executive. When an interrupt is received or an exception is detected, the currently running
procedure or task is automatically suspended while the processor executes an interrupt or excep-
tion handler. When execution of the handler is complete, the processor resumes execution of the
interrupted procedure or task. The resumption of the interrupted procedure or task happens
without loss of program continuity, unless recovery from an exception was not possible or an
interrupt caused the currently running program to be terminated.

This chapter describes the processor’s interrupt and exception-handling mechanism, when oper-
ating in protected mode. A detailed description of the exceptions and the conditions that cause
them to be generated is given at the end of this chapter. See Chapter 16, 8086 Emulation, for a
description of the interrupt and exception mechanism for real-address and virtual-8086 mode.
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5.2. EXCEPTION AND INTERRUPT VECTORS

To aid in handling exceptions and interrupts, each IA-32 architecture-defined exception and
each interrupt condition that requires special handling by the processor is assigned a unique
identification number, called a vector. The processor uses the vector assigned to an exception
or interrupt as an index into its interrupt descriptor table (IDT) to locate the entry point of an
exception or interrupt handler (see Section 5.10., “Interrupt Descriptor Table (IDT)”).

The allowable range for vector numbers is 0 to 255. The vectors in the range O through 31 are
reserved by the IA-32 architecture for architecture-defined exceptions and interrupts. Not all of
the vectors in this range have a currently defined function. The unassigned vectors in this range
are reserved for future uses. Do not use the reserved vectors.

The vectors in the range 32 to 255 are designated as user-defined interrupts and are not reserved
by the IA-32 architecture. These interrupts are generally assigned to external I/O devices to
enable those devices to send interrupts to the processor through one of the external hardware
interrupt mechanisms described in Section 5.3., “Sources of Interrupts”.

Table 5-1 shows the assignments vectors to architecturally defined exceptions and to the NMI
interrupt. For each exception, this table gives the exception type (see Section 5.5., “Exception
Classifications”) and indicates whether an error code is saved on the stack for the exception. The
source of each predefined exception and the NMI interrupt is also given.

5.3. SOURCES OF INTERRUPTS

The processor receives interrupts from two sources:
® External (hardware generated) interrupts.

® Software-generated interrupts.

5.3.1. External Interrupts

External interrupts are received through pins on the processor or through the local APIC. The
primary interrupt pins on Pentium 4, Intel Xeon, P6 family, and Pentium processors are the
LINT[1:0] pins, which are connected to the local APIC (see Chapter 8, Advanced Program-
mable Interrupt Controller (APIC)). When the local APIC is enabled, the LINT[1:0] pins can be
programmed through the APIC’s local vector table (LVT) to be associated with any of the
processor’s exception or interrupt vectors.

When the local APIC is disabled, these pins are configured as INTR and NMI pins, respectively.
Asserting the INTR pin signals the processor that an external interrupt has occurred, and the
processor reads from the system bus the interrupt vector number provided by an external inter-
rupt controller, such as an 8259A (see Section 5.2., “Exception and Interrupt Vectors”).
Asserting the NMI pin signals a non-maskable interrupt (NMI), which is assigned to interrupt
vector 2.
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Table 5-1. Protected-Mode Exceptions and Interrupts

Vector | Mne- Error
No. monic Description Type Code Source
0 #DE Divide Error Fault No DIV and IDIV instructions.
1 #DB RESERVED Fault/ No For Intel use only.
Trap
2 — NMI Interrupt Interrupt No Nonmaskable external interrupt.
3 #BP Breakpoint Trap No INT 3 instruction.
4 #OF Overflow Trap No INTO instruction.
5 #BR BOUND Range Exceeded Fault No BOUND instruction.
6 #UD Invalid Opcode (Undefined Fault No UD2 instruction or reserved
Opcode) opcode.
7 #NM Device Not Available (No Fault No Floating-point or WAIT/FWAIT
Math Coprocessor) instruction.
8 #DF Double Fault Abort Yes Any instruction that can generate
(Zero) | an’exception, an NMI, oran INTR.
9 Coprocessor Segment Fault No Floating-point instruction.?
Overrun (reserved)
10 #TS Invalid TSS Fault Yes Task switch or TSS access.
11 #NP Segment Not Present Fault Yes Loading segment registers or
accessing system segments.
12 #SS Stack-Segment Fault Fault Yes ISta(cj:k operations and SS register
oads.
13 #GP General Protection Fault Yes Any memory reference and other
protection checks.
14 #PF Page Fault Fault Yes Any memory reference.
15 — (Intel reserved. Do not use.) No
16 #MF x87 FPU Floating-Point Fault No x87 FPU floating-point or
Error (Math Faul WAIT/FWAIT instruction.
17 #AC Alignment Check Fault E(Zes ) Any data reference in memory.3
ero
18 #MC Machine Check Abort No Error codes (if any) and source
are model dependent.*
19 #XF SIMD Floating-Point Fault No SSE and SSE2 floating-point
Exception instructions®
20-31 | — Intel reserved. Do not use.
32- | — User Defined (Non- Interrupt External interrupt or INT n
255 reserved) Interrupts instruction.
NOTES:

1. The UD2 instruction was introduced in the Pentium Pro processor.
2. IA-32 processors after the Intel386 processor do not generate this exception.
3. This exception was introduced in the Intel486 processor.
4. This exception was introduced in the Pentium processor and enhanced in the P6 family processors.

5. This exception was introduced in the Pentium Ill processor.
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The processor’s local APIC is normally connected to a system-based I/O APIC. Here, external
interrupts received at the I/O APIC’s pins can be directed to the local APIC through the system
bus (Pentium 4 and Intel Xeon processors) or the APIC serial bus (P6 family and Pentium
processors). The I/O APIC determines the vector number of the interrupt and sends this number
to the local APIC. When a system contains multiple processors, processors can also send inter-
rupts to one another by means of the system bus (Pentium 4 and Intel Xeon processors) or the
APIC serial bus (P6 family and Pentium processors).

The LINT[1:0] pins are not available on the Intel486 processor and the earlier Pentium proces-
sors that do not contain an on-chip local APIC. Instead these processors have dedicated NMI
and INTR pins. With these processors, external interrupts are typically generated by a system-
based interrupt controller (8259A), with the interrupts being signaled through the INTR pin.

Note that several other pins on the processor cause a processor interrupt to occur; however, these
interrupts are not handled by the interrupt and exception mechanism described in this chapter.
These pins include the RESET#, FLUSH#, STPCLK#, SMI#, R/S#, and INIT# pins. Which of
these pins are included on a particular IA-32 processor is implementation dependent. The func-
tions of these pins are described in the data books for the individual processors. The SMI# pin
is also described in Chapter 13, System Management.

5.3.2. Maskable Hardware Interrupts

Any external interrupt that is delivered to the processor by means of the INTR pin or through
the local APIC is called a maskable hardware interrupt. The maskable hardware interrupts
that can be delivered through the INTR pin include all IA-32 architecture defined interrupt
vectors from 0 through 255; those that can be delivered through the local APIC include interrupt
vectors 16 through 255.

The IF flag in the EFLAGS register permits all the maskable hardware interrupts to be masked
as a group (see Section 5.8.1., “Masking Maskable Hardware Interrupts”). Note that when inter-
rupts O through 15 are delivered through the local APIC, the APIC indicates the receipt of an
illegal vector.

5.3.3. Software-Generated Interrupts

The INT 7 instruction permits interrupts to be generated from within software by supplying the
interrupt vector number as an operand. For example, the INT 35 instruction forces an implicit
call to the interrupt handler for interrupt 35.

Any of the interrupt vectors from 0 to 255 can be used as a parameter in this instruction. If the
processor’s predefined NMI vector is used, however, the response of the processor will not be
the same as it would be from an NMI interrupt generated in the normal manner. If vector number
2 (the NMI vector) is used in this instruction, the NMI interrupt handler is called, but the
processor’s NMI-handling hardware is not activated.
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NOTE

Interrupts generated in software with the INT # instruction cannot be masked
by the IF flag in the EFLAGS register.

5.4. SOURCES OF EXCEPTIONS

The processor receives exceptions from three sources:
® Processor-detected program-error exceptions.
® Software-generated exceptions.

® Machine-check exceptions.

5.4.1. Program-Error Exceptions

The processor generates one or more exceptions when it detects program errors during the
execution in an application program or the operating system or executive. The IA-32 architec-
ture defines a vector number for each processor-detectable exception. The exceptions are further
classified as faults, traps, and aborts (see Section 5.5., “Exception Classifications”).

5.4.2. Software-Generated Exceptions

The INTO, INT 3, and BOUND instructions permit exceptions to be generated in software.
These instructions allow checks for specific exception conditions to be performed at specific
points in the instruction stream. For example, the INT 3 instruction causes a breakpoint excep-
tion to be generated.

The INT n instruction can be used to emulate a specific exception in software, with one limita-
tion. If the n operand in the INT r instruction contains a vector for one of the IA-32 architecture
exceptions, the processor will generate an interrupt to that vector, which will in turn invoke the
exception handler associated with that vector. Because this is actually an interrupt, however, the
processor does not push an error code onto the stack, even if a hardware-generated exception for
that vector normally produces one. For those exceptions that produce an error code, the excep-
tion handler will attempt to pop an error code from the stack while handling the exception. If the
INT # instruction was used to emulate the generation of an exception, the handler will pop off
and discard the EIP (in place of the missing error code), sending the return to the wrong location.

5.4.3. Machine-Check Exceptions

The P6 family and Pentium processors provide both internal and external machine-check mech-
anisms for checking the operation of the internal chip hardware and bus transactions. These
mechanisms constitute extended (implementation dependent) exception mechanisms. When a
machine-check error is detected, the processor signals a machine-check exception (vector 18)
and returns an error code.
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See “Interrupt 18—Machine Check Exception (#MC)” at the end of this chapter and Chapter 14,
Machine-Check Architecture, for a detailed description of the machine-check mechanism.

5.5. EXCEPTION CLASSIFICATIONS

Exceptions are classified as faults, traps, or aborts depending on the way they are reported and
whether the instruction that caused the exception can be restarted with no loss of program or task

continuity.

Faults

Traps

Aborts

A fault is an exception that can generally be corrected and that, once corrected,
allows the program to be restarted with no loss of continuity. When a fault is
reported, the processor restores the machine state to the state prior to the begin-
ning of execution of the faulting instruction. The return address (saved contents
of the CS and EIP registers) for the fault handler points to the faulting instruc-
tion, rather than the instruction following the faulting instruction.

A trap is an exception that is reported immediately following the execution of
the trapping instruction. Traps allow execution of a program or task to be
continued without loss of program continuity. The return address for the trap
handler points to the instruction to be executed after the trapping instruction.

An abort is an exception that does not always report the precise location of the
instruction causing the exception and does not allow restart of the program or
task that caused the exception. Aborts are used to report severe errors, such as
hardware errors and inconsistent or illegal values in system tables.

NOTE

A small subset of exceptions that are normally reported as faults are not
restartable and will result in loss of some processor state. An example,
executing a POPAD instruction where the stack frame crosses over the end of
the stack segment will cause such a fault to be reported. Here, the exception
handler will see that the instruction pointer (CS:EIP) has been restored as if
the POPAD instruction had not been executed; however, the internal
processor state (particularly, the general-purpose registers) will have been
modified. These corner cases are considered programming errors, and an
application causing this class of exceptions will likely be terminated by the
operating system.

5.6. PROGRAM OR TASK RESTART

To allow restarting of program or task following the handling of an exception or an interrupt, all
exceptions except aborts are guaranteed to report the exception on a precise instruction
boundary, and all interrupts are guaranteed to be taken on an instruction boundary.
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For fault-class exceptions, the return instruction pointer that the processor saves when it gener-
ates the exception points to the faulting instruction. So, when a program or task is restarted
following the handling of a fault, the faulting instruction is restarted (re-executed). Restarting
the faulting instruction is commonly used to handle exceptions that are generated when access
to an operand is blocked. The most common example of a fault is a page-fault exception (#PF)
that occurs when a program or task references an operand in a page that is not in memory. When
a page-fault exception occurs, the exception handler can load the page into memory and resume
execution of the program or task by restarting the faulting instruction. To insure that this instruc-
tion restart is handled transparently to the currently executing program or task, the processor
saves the necessary registers and stack pointers to allow it to restore itself to its state prior to the
execution of the faulting instruction.

For trap-class exceptions, the return instruction pointer points to the instruction following the
trapping instruction. If a trap is detected during an instruction which transfers execution, the
return instruction pointer reflects the transfer. For example, if a trap is detected while executing
a JMP instruction, the return instruction pointer points to the destination of the JMP instruction,
not to the next address past the JMP instruction. All trap exceptions allow program or task restart
with no loss of continuity. For example, the overflow exception is a trapping exception. Here,
the return instruction pointer points to the instruction following the INTO instruction that tested
the OF (overflow) flag in the EFLAGS register. The trap handler for this exception resolves the
overflow condition. Upon return from the trap handler, program or task execution continues at
the next instruction following the INTO instruction.

The abort-class exceptions do not support reliable restarting of the program or task. Abort
handlers generally are designed to collect diagnostic information about the state of the processor
when the abort exception occurred and then shut down the application and system as gracefully
as possible.

Interrupts rigorously support restarting of interrupted programs and tasks without loss of conti-
nuity. The return instruction pointer saved for an interrupt points to the next instruction to be
executed at the instruction boundary where the processor took the interrupt. If the instruction
just executed has a repeat prefix, the interrupt is taken at the end of the current iteration with the
registers set to execute the next iteration.

The ability of a P6 family processor to speculatively execute instructions does not affect the
taking of interrupts by the processor. Interrupts are taken at instruction boundaries located
during the retirement phase of instruction execution; so they are always taken in the “in-order”
instruction stream. See Chapter 2, Introduction to the Intel Architecture, in the IA-32 Intel Archi-
tecture Software Developer’s Manual, Volume 1, for more information about the P6 family
processors’ microarchitecture and its support for out-of-order instruction execution.

Note that the Pentium processor and earlier IA-32 processors also perform varying amounts of
prefetching and preliminary decoding of instructions; however, here also exceptions and inter-
rupts are not signaled until actual “in-order” execution of the instructions. For a given code
sample, the signaling of exceptions will occur uniformly when the code is executed on any
family of IA-32 processors (except where new exceptions or new opcodes have been defined).
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5.7. NONMASKABLE INTERRUPT (NMI)

The nonmaskable interrupt (NMI) can be generated in either of two ways:
¢ External hardware asserts the NMI pin.

® The processor receives a message on the system bus (Pentium 4 and Intel Xeon processors)
or the APIC serial bus (P6 family and Pentium processors) with a delivery mode NMI.

When the processor receives a NMI from either of these sources, the processor handles it imme-
diately by calling the NMI handler pointed to by interrupt vector number 2. The processor also
invokes certain hardware conditions to insure that no other interrupts, including NMI interrupts,
are received until the NMI handler has completed executing (see Section 5.7.1., “Handling
Multiple NMIs”).

Also, when an NMI is received from either of the above sources, it cannot be masked by the IF
flag in the EFLAGS register.

Itis possible to issue a maskable hardware interrupt (through the INTR pin) to vector 2 to invoke
the NMI interrupt handler; however, this interrupt will not truly be an NMI interrupt. A true NMI
interrupt that activates the processor’s NMI-handling hardware can only be delivered through
one of the mechanisms listed above.

5.7.1. Handling Multiple NMis

While an NMI interrupt handler is executing, the processor disables additional calls to the NMI
handler until the next IRET instruction is executed. This blocking of subsequent NMIs prevents
stacking up calls to the NMI handler. It is recommended that the NMI interrupt handler be
accessed through an interrupt gate to disable maskable hardware interrupts (see Section 5.8.1.,
“Masking Maskable Hardware Interrupts”). If the NMI handler is a virtual-8086 task with an
IOPL of less than 3, an IRET instruction issued from the handler generates a general-protection
exception (see Section 16.2.7., “Sensitive Instructions”). In this case, the NMI is unmasked
before the general-protection exception handler is invoked.

5.8. ENABLING AND DISABLING INTERRUPTS

The processor inhibits the generation of some interrupts, depending on the state of the processor
and of the IF and RF flags in the EFLAGS register, as described in the following sections.

5.8.1. Masking Maskable Hardware Interrupts

The IF flag can disable the servicing of maskable hardware interrupts received on the
processor’s INTR pin or through the local APIC (see Section 5.3.2., “Maskable Hardware Inter-
rupts”). When the IF flag is clear, the processor inhibits interrupts delivered to the INTR pin or
through the local APIC from generating an internal interrupt request; when the IF flag is set,
interrupts delivered to the INTR or through the local APIC pin are processed as normal external
Interrupts.
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The IF flag does not affect non-maskable interrupts (NMIs) delivered to the NMI pin or delivery
mode NMI messages delivered through the local APIC, nor does it affect processor generated
exceptions. As with the other flags in the EFLAGS register, the processor clears the IF flag in
response to a hardware reset.

The fact that the group of maskable hardware interrupts includes the reserved interrupt and
exception vectors 0 through 32 can potentially cause confusion. Architecturally, when the IF
flag is set, an interrupt for any of the vectors from 0 through 32 can be delivered to the processor
through the INTR pin and any of the vectors from 16 through 32 can be delivered through the
local APIC. The processor will then generate an interrupt and call the interrupt or exception
handler pointed to by the vector number. So for example, it is possible to invoke the page-fault
handler through the INTR pin (by means of vector 14); however, this is not a true page-fault
exception. It is an interrupt. As with the INT # instruction (see Section 5.4.2., “Software-Gener-
ated Exceptions”), when an interrupt is generated through the INTR pin to an exception vector,
the processor does not push an error code on the stack, so the exception handler may not operate
correctly.

The IF flag can be set or cleared with the STI (set interrupt-enable flag) and CLI (clear interrupt-
enable flag) instructions, respectively. These instructions may be executed only if the CPL is
equal to or less than the IOPL. A general-protection exception (#GP) is generated if they are
executed when the CPL is greater than the IOPL. (The effect of the IOPL on these instructions
is modified slightly when the virtual mode extension is enabled by setting the VME flag in
control register CR4: see Section 16.3., “Interrupt and Exception Handling in Virtual-8086
Mode”. Behavior is also impacted by the PVI flag: see Section 16.4., “Protected-Mode Virtual
Interrupts”.)

The IF flag is also affected by the following operations:

® The PUSHF instruction stores all flags on the stack, where they can be examined and
modified. The POPF instruction can be used to load the modified flags back into the
EFLAGS register.

® Task switches and the POPF and IRET instructions load the EFLAGS register; therefore,
they can be used to modify the setting of the IF flag.

®  When an interrupt is handled through an interrupt gate, the IF flag is automatically cleared,
which disables maskable hardware interrupts. (If an interrupt is handled through a trap
gate, the IF flag is not cleared.)

See the descriptions of the CLI, STI, PUSHF, POPF, and IRET instructions in Chapter 3,
Instruction Set Reference, of the IA-32 Intel Architecture Software Developer’s Manual, Volume
2, for a detailed description of the operations these instructions are allowed to perform on the IF
flag.

5.8.2. Masking Instruction Breakpoints

The RF (resume) flag in the EFLAGS register controls the response of the processor to instruc-
tion-breakpoint conditions (see the description of the RF flag in Section 2.3., “System Flags and
Fields in the EFLAGS Register”).
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When set, it prevents an instruction breakpoint from generating a debug exception (#DB); when
clear, instruction breakpoints will generate debug exceptions. The primary function of the RF
flag is to prevent the processor from going into a debug exception loop on an instruction-break-
point. See Section 15.3.1.1., “Instruction-Breakpoint Exception Condition”, for more informa-
tion on the use of this flag.

5.8.3. Masking Exceptions and Interrupts When Switching
Stacks

To switch to a different stack segment, software often uses a pair of instructions, for example:

MOV SS, AX
MOV ESP, StackTop

If an interrupt or exception occurs after the segment selector has been loaded into the SS register
but before the ESP register has been loaded, these two parts of the logical address into the stack
space are inconsistent for the duration of the interrupt or exception handler.

To prevent this situation, the processor inhibits interrupts, debug exceptions, and single-step trap
exceptions after either a MOV to SS instruction or a POP to SS instruction, until the instruction
boundary following the next instruction is reached. All other faults may still be generated. If the
LSS instruction is used to modify the contents of the SS register (which is the recommended
method of modifying this register), this problem does not occur.

5.9. PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND
INTERRUPTS

If more than one exception or interrupt is pending at an instruction boundary, the processor
services them in a predictable order. Table 5-2 shows the priority among classes of exception
and interrupt sources.

Table 5-2. Priority Among Simultaneous Exceptions and Interrupts

Priority Descriptions

1 (Highest) Hardware Reset and Machine Checks
- RESET
- Machine Check

2 Trap on Task Switch
- Tflagin TSS is set

3 External Hardware Interventions
- FLUSH

- STOPCLK

- SMI

- INIT

4 Traps on the Previous Instruction
- Breakpoints
- Debug Trap Exceptions (TF flag set or data/I-O breakpoint)
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Table 5-2. Priority Among Simultaneous Exceptions and Interrupts (Contd.)

Priority Descriptions

5 External Interrupts
- NMI Interrupts
- Maskable Hardware Interrupts

6 Faults from Fetching Next Instruction
- Code Breakpoint Fault

- Code-Segment Limit Violation*

- Code Page Fault*

7 Faults from Decoding the Next Instruction
- Instruction length > 15 bytes

- Invalid Opcode

- Coprocessor Not Available

8 (Lowest) Faults on Executing an Instruction
- Overflow

- Bound error

- Invalid TSS

- Segment Not Present

- Stack fault

- General Protection

- Data Page Fault

- Alignment Check

- x87 FPU Floating-point exception
- SIMD floating-point exception

NOTE:

* For the Pentium and Intel486 processors, the Code Segment Limit Violation and the Code Page Fault
exceptions are assigned to the priority 7.

While priority among these classes listed in Table 5-2 is consistent throughout the architecture,
exceptions within each class are implementation-dependent and may vary from processor to
processor. The processor first services a pending exception or interrupt from the class which has
the highest priority, transferring execution to the first instruction of the handler. Lower priority
exceptions are discarded; lower priority interrupts are held pending. Discarded exceptions are
re-generated when the interrupt handler returns execution to the point in the program or task
where the exceptions and/or interrupts occurred.

5.10. INTERRUPT DESCRIPTOR TABLE (IDT)

The interrupt descriptor table (IDT) associates each exception or interrupt vector with a gate
descriptor for the procedure or task used to service the associated exception or interrupt. Like
the GDT and LDTs, the IDT is an array of 8-byte descriptors (in protected mode). Unlike the
GDT, the first entry of the IDT may contain a descriptor. To form an index into the IDT, the
processor scales the exception or interrupt vector by eight (the number of bytes in a gate
descriptor). Because there are only 256 interrupt or exception vectors, the IDT need not contain
more than 256 descriptors. It can contain fewer than 256 descriptors, because descriptors are
required only for the interrupt and exception vectors that may occur. All empty descriptor slots
in the IDT should have the present flag for the descriptor set to 0.
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The base addresses of the IDT should be aligned on an 8-byte boundary to maximize perfor-
mance of cache line fills. The limit value is expressed in bytes and is added to the base address
to get the address of the last valid byte. A limit value of O results in exactly 1 valid byte. Because
IDT entries are always eight bytes long, the limit should always be one less than an integral
multiple of eight (that is, 8N — 1).

The IDT may reside anywhere in the linear address space. As shown in Figure 5-1, the processor
locates the IDT using the IDTR register. This register holds both a 32-bit base address and 16-bit
limit for the IDT.

The LIDT (load IDT register) and SIDT (store IDT register) instructions load and store the
contents of the IDTR register, respectively. The LIDT instruction loads the IDTR register with
the base address and limit held in a memory operand. This instruction can be executed only
when the CPL is 0. It normally is used by the initialization code of an operating system when
creating an IDT. An operating system also may use it to change from one IDT to another. The
SIDT instruction copies the base and limit value stored in IDTR to memory. This instruction can
be executed at any privilege level.

If a vector references a descriptor beyond the limit of the IDT, a general-protection exception
(#GP) is generated.

IDTR Register
47 16 15 0

IDT Base Address ‘ IDT Limit

l Interrupt

Descriptor Table (IDT)
@ - Gate for

Interrupt #n (n—1)*8

S

Gate for
Interrupt #3 16
Gate for
Interrupt #2 8
Gate for
—> Interrupt #1 0
31 0

Figure 5-1. Relationship of the IDTR and IDT

5.11. IDT DESCRIPTORS

The IDT may contain any of three kinds of gate descriptors:
® Task-gate descriptor

® Interrupt-gate descriptor

® Trap-gate descriptor
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Figure 5-2 shows the formats for the task-gate, interrupt-gate, and trap-gate descriptors. The
format of a task gate used in an IDT is the same as that of a task gate used in the GDT or an LDT
(see Section 6.2.4., “Task-Gate Descriptor”). The task gate contains the segment selector for a
TSS for an exception and/or interrupt handler task.

Interrupt and trap gates are very similar to call gates (see Section 4.8.3., “Call Gates”). They
contain a far pointer (segment selector and offset) that the processor uses to transfer program
execution to a handler procedure in an exception- or interrupt-handler code segment. These
gates differ in the way the processor handles the IF flag in the EFLAGS register (see Section
5.12.1.2., “Flag Usage By Exception- or Interrupt-Handler Procedure”).

Task Gate
31 16 15 14 13 12 8 7 0
D
Pl P |OO01T0O0 1 4
L
31 1615 0
TSS Segment Selector 0

Interrupt Gate

31 16 15 14 13 12 8 7 5 4 0
D
Offset 31..16 Pl P|0OD110|{0O00O0 4
L
31 1615 0
Segment Selector Offset 15..0 0
Trap Gate
31 16 151413 12 8 7 5 4 0
D
Offset 31..16 PlpP|OD111/0 00 4
L
31 16 15 0
Segment Selector Offset 15..0 0
DPL Descriptor Privilege Level
Offset Offset to procedure entry point
P Segment Present flag

Selector Segment Selector for destination code segment
Size of gate: 1 = 32 bits; 0 = 16 bits

D
I:I Reserved

Figure 5-2. IDT Gate Descriptors
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5.12. EXCEPTION AND INTERRUPT HANDLING

The processor handles calls to exception- and interrupt-handlers similar to the way it handles
calls with a CALL instruction to a procedure or a task. When responding to an exception or inter-
rupt, the processor uses the exception or interrupt vector as an index to a descriptor in the IDT.
If the index points to an interrupt gate or trap gate, the processor calls the exception or interrupt
handler in a manner similar to a CALL to a call gate (see Section 4.8.2., “Gate Descriptors”
through Section 4.8.6., “Returning from a Called Procedure”). If index points to a task gate, the
processor executes a task switch to the exception- or interrupt-handler task in a manner similar
to a CALL to a task gate (see Section 6.3., “Task Switching”).

5.12.1. Exception- or Interrupt-Handler Procedures

An interrupt gate or trap gate references an exception- or interrupt-handler procedure that runs
in the context of the currently executing task (see Figure 5-3). The segment selector for the gate
points to a segment descriptor for an executable code segment in either the GDT or the current
LDT. The offset field of the gate descriptor points to the beginning of the exception- or interrupt-
handling procedure.
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Destination
IDT Code Segment
Interrupt
Offset Procedure
Interrupt > Interrupt or *’@—>

Vector Trap Gate

e
Segment Selector
GDT or LDT
Base
Address
- Segment
- Descriptor

Figure 5-3. Interrupt Procedure Call

When the processor performs a call to the exception- or interrupt-handler procedure, it saves the
current states of the EFLAGS register, CS register, and EIP register on the stack (see Figure 5-4).
(The CS and EIP registers provide a return instruction pointer for the handler.) If an exception
causes an error code to be saved, it is pushed on the stack after the EIP value.

If the handler procedure is going to be executed at the same privilege level as the interrupted
procedure, the handler uses the current stack.

If the handler procedure is going to be executed at a numerically lower privilege level, a stack
switch occurs. When a stack switch occurs, a stack pointer for the stack to be returned to is also
saved on the stack. (The SS and ESP registers provide a return stack pointer for the handler.)
The segment selector and stack pointer for the stack to be used by the handler is obtained from
the TSS for the currently executing task. The processor copies the EFLAGS, SS, ESP, CS, EIP,
and error code information from the interrupted procedure’s stack to the handler’s stack.
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Stack Usage with No
Privilege-Level Change
Interrupted Procedure’s
and Handler’s Stack

~<— ESP Before

EFLAGS Transfer to Handler
Ccs
EIP

Error Code |<«——ESP After
Transfer to Handler

Stack Usage with
Privilege-Level Change

Interrupted Procedure’s Handler's Stack

Stack
~«——ESP Before
Transfer to Handler SS
ESP
EFLAGS
CS
EIP

ESP After——> Error Code
Transfer to Handler

Figure 5-4. Stack Usage on Transfers to Interrupt and Exception-Handling Routines

To return from an exception- or interrupt-handler procedure, the handler must use the IRET (or
IRETD) instruction. The IRET instruction is similar to the RET instruction except that it restores
the saved flags into the EFLAGS register. The IOPL field of the EFLAGS register is restored
only if the CPL is 0. The IF flag is changed only if the CPL is less than or equal to the IOPL.
See “IRET/IRETD—Interrupt Return” in Chapter 3 of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 2, for the complete operation performed by the IRET instruction.

If a stack switch occurred when calling the handler procedure, the IRET instruction switches
back to the interrupted procedure’s stack on the return.

5.12.1.1. PROTECTION OF EXCEPTION- AND INTERRUPT-HANDLER
PROCEDURES

The privilege-level protection for exception- and interrupt-handler procedures is similar to that
used for ordinary procedure calls when called through a call gate (see Section 4.8.4., “Accessing
a Code Segment Through a Call Gate”). The processor does not permit transfer of execution to
an exception- or interrupt-handler procedure in a less privileged code segment (numerically
greater privilege level) than the CPL.
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An attempt to violate this rule results in a general-protection exception (#GP). The protection
mechanism for exception- and interrupt-handler procedures is different in the following ways:

® Because interrupt and exception vectors have no RPL, the RPL is not checked on implicit
calls to exception and interrupt handlers.

® The processor checks the DPL of the interrupt or trap gate only if an exception or interrupt
is generated with an INT n, INT 3, or INTO instruction. Here, the CPL must be less than or
equal to the DPL of the gate. This restriction prevents application programs or procedures
running at privilege level 3 from using a software interrupt to access critical exception
handlers, such as the page-fault handler, providing that those handlers are placed in more
privileged code segments (numerically lower privilege level). For hardware-generated
interrupts and processor-detected exceptions, the processor ignores the DPL of interrupt
and trap gates.

Because exceptions and interrupts generally do not occur at predictable times, these privilege
rules effectively impose restrictions on the privilege levels at which exception and interrupt-
handling procedures can run. Either of the following techniques can be used to avoid privilege-
level violations.

® The exception or interrupt handler can be placed in a conforming code segment. This
technique can be used for handlers that only need to access data available on the stack (for
example, divide error exceptions). If the handler needs data from a data segment, the data
segment needs to be accessible from privilege level 3, which would make it unprotected.

® The handler can be placed in a nonconforming code segment with privilege level 0. This
handler would always run, regardless of the CPL that the interrupted program or task is
running at.

5.12.1.2. FLAG USAGE BY EXCEPTION- OR INTERRUPT-HANDLER
PROCEDURE

When accessing an exception or interrupt handler through either an interrupt gate or a trap gate,
the processor clears the TF flag in the EFLAGS register after it saves the contents of the
EFLAGS register on the stack. (On calls to exception and interrupt handlers, the processor also
clears the VM, RF, and NT flags in the EFLAGS register, after they are saved on the stack.)
Clearing the TF flag prevents instruction tracing from affecting interrupt response. A subsequent
IRET instruction restores the TF (and VM, RF, and NT) flags to the values in the saved contents
of the EFLAGS register on the stack.

The only difference between an interrupt gate and a trap gate is the way the processor handles
the IF flag in the EFLAGS register. When accessing an exception- or interrupt-handling proce-
dure through an interrupt gate, the processor clears the IF flag to prevent other interrupts from
interfering with the current interrupt handler. A subsequent IRET instruction restores the IF flag
to its value in the saved contents of the EFLAGS register on the stack. Accessing a handler
procedure through a trap gate does not affect the IF flag.
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5.12.2. Interrupt Tasks

When an exception or interrupt handler is accessed through a task gate in the IDT, a task switch
results. Handling an exception or interrupt with a separate task offers several advantages:

® The entire context of the interrupted program or task is saved automatically.

® A new TSS permits the handler to use a new privilege level O stack when handling the
exception or interrupt. If an exception or interrupt occurs when the current privilege level 0
stack is corrupted, accessing the handler through a task gate can prevent a system crash by
providing the handler with a new privilege level 0 stack.

® The handler can be further isolated from other tasks by giving it a separate address space.
This is done by giving it a separate LDT.

The disadvantage of handling an interrupt with a separate task is that the amount of machine
state that must be saved on a task switch makes it slower than using an interrupt gate, resulting
in increased interrupt latency.

A task gate in the IDT references a TSS descriptor in the GDT (see Figure 5-5). A switch to the
handler task is handled in the same manner as an ordinary task switch (see Section 6.3., “Task
Switching”). The link back to the interrupted task is stored in the previous task link field of the
handler task’s TSS. If an exception caused an error code to be generated, this error code is copied
to the stack of the new task.

When exception- or interrupt-handler tasks are used in an operating system, there are actually
two mechanisms that can be used to dispatch tasks: the software scheduler (part of the operating
system) and the hardware scheduler (part of the processor's interrupt mechanism). The software
scheduler needs to accommodate interrupt tasks that may be dispatched when interrupts are
enabled.

NOTE

Because 1A-32 architecture tasks are not re-entrant, an interrupt-handler task
must disable interrupts between the time it completes handling the interrupt
and the time it executes the IRET instruction. This action prevents another
interrupt from occurring while the interrupt task’s TSS is still marked busy,
which would cause a general-protection (#GP) exception.
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TSS for Interrupt-

IDT Handling Task
Interrupt
Vector Task Gate
TSS Selector TSS
Base
GDT Address

—> TSS Descriptor

Figure 5-5. Interrupt Task Switch
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5.13. ERROR CODE

When an exception condition is related to a specific segment, the processor pushes an error code
onto the stack of the exception handler (whether it is a procedure or task). The error code has
the format shown in Figure 5-6. The error code resembles a segment selector; however, instead
of a TI flag and RPL field, the error code contains 3 flags:

EXT External event (bit 0). When set, indicates that an event external to the
program, such as a hardware interrupt, caused the exception.

IDT Descriptor location (bit 1). When set, indicates that the index portion of the
error code refers to a gate descriptor in the IDT; when clear, indicates that the
index refers to a descriptor in the GDT or the current LDT.

TI GDT/LDT (bit 2). Only used when the IDT flag is clear. When set, the TI flag
indicates that the index portion of the error code refers to a segment or gate
descriptor in the LDT; when clear, it indicates that the index refers to a
descriptor in the current GDT.

31 3

Reserved Segment Selector Index

—XxXm| o

—o— |~

Figure 5-6. Error Code

The segment selector index field provides an index into the IDT, GDT, or current LDT to the
segment or gate selector being referenced by the error code. In some cases the error code is null
(that is, all bits in the lower word are clear). A null error code indicates that the error was not
caused by a reference to a specific segment or that a null segment descriptor was referenced in
an operation.

The format of the error code is different for page-fault exceptions (#PF), see “Interrupt
14—Page-Fault Exception (#PF)” in this chapter.

The error code is pushed on the stack as a doubleword or word (depending on the default inter-
rupt, trap, or task gate size). To keep the stack aligned for doubleword pushes, the upper half of
the error code is reserved. Note that the error code is not popped when the IRET instruction is
executed to return from an exception handler, so the handler must remove the error code before
executing a return.

Error codes are not pushed on the stack for exceptions that are generated externally (with the
INTR or LINT[1:0] pins) or the INT # instruction, even if an error code is normally produced
for those exceptions.
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5.14. EXCEPTION AND INTERRUPT REFERENCE

The following sections describe conditions which generate exceptions and interrupts. They are
arranged in the order of vector numbers. The information contained in these sections are as

follows:

Exception Class

Description

Exception Error Code

Saved Instruction Pointer

Program State Change

Indicates whether the exception class is a fault, trap, or abort type.
Some exceptions can be either a fault or trap type, depending on
when the error condition is detected. (This section is not applicable
to interrupts.)

Gives a general description of the purpose of the exception or inter-
rupt type. It also describes how the processor handles the exception
or interrupt.

Indicates whether an error code is saved for the exception. If one is
saved, the contents of the error code are described. (This section is
not applicable to interrupts.)

Describes which instruction the saved (or return) instruction pointer
points to. It also indicates whether the pointer can be used to restart
a faulting instruction.

Describes the effects of the exception or interrupt on the state of the
currently running program or task and the possibilities of restarting
the program or task without loss of continuity.
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Interrupt 0—Divide Error Exception (#DE)
Exception Class  Fault.

Description

Indicates the divisor operand for a DIV or IDIV instruction is O or that the result cannot be repre-
sented in the number of bits specified for the destination operand.

Exception Error Code

None.

Saved Instruction Pointer

Saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state change does not accompany the divide error, because the exception occurs
before the faulting instruction is executed.
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Interrupt 1—Debug Exception (#DB)

Reserved for Intel use only.

Interrupt 2—NMI Interrupt
Exception Class  Not applicable.

Description

The nonmaskable interrupt (NMI) is generated externally by asserting the processor’s NMI pin
or through an NMI request set by the I/O APIC to the local APIC. This interrupt causes the NMI
interrupt handler to be called.

Exception Error Code

Not applicable.

Saved Instruction Pointer

The processor always takes an NMI interrupt on an instruction boundary. The saved contents of
CS and EIP registers point to the next instruction to be executed at the point the interrupt is
taken. See Section 5.5., “Exception Classifications”, for more information about when the
processor takes NMI interrupts.

Program State Change

The instruction executing when an NMI interrupt is received is completed before the NMI is
generated. A program or task can thus be restarted upon returning from an interrupt handler
without loss of continuity, provided the interrupt handler saves the state of the processor before
handling the interrupt and restores the processor’s state prior to a return.
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Interrupt 3—Breakpoint Exception (#BP)
Exception Class  Trap.

Description

Indicates that a breakpoint instruction (INT 3) was executed, causing a breakpoint trap to be
generated. Typically, a debugger sets a breakpoint by replacing the first opcode byte of an
instruction with the opcode for the INT 3 instruction. (The INT 3 instruction is one byte long,
which makes it easy to replace an opcode in a code segment in RAM with the breakpoint
opcode.) The operating system or a debugging tool can use a data segment mapped to the same
physical address space as the code segment to place an INT 3 instruction in places where it is
desired to call the debugger.

With the P6 family, Pentium, Intel486, and Intel386 processors, it is more convenient to set
breakpoints with the debug registers. (See Section 15.3.2., “Breakpoint Exception
(#BP)—Interrupt Vector 3”, for information about the breakpoint exception.) If more break-
points are needed beyond what the debug registers allow, the INT 3 instruction can be used.

The breakpoint (#BP) exception can also be generated by executing the INT 7 instruction with
an operand of 3. The action of this instruction (INT 3) is slightly different than that of the INT
3 instruction (see “INTn/INTO/INT3—Call to Interrupt Procedure” in Chapter 3 of the /A-32

Intel Architecture Software Developer’s Manual, Volume 2).

Exception Error Code

None.

Saved Instruction Pointer

Saved contents of CS and EIP registers point to the instruction following the INT 3 instruction.

Program State Change

Even though the EIP points to the instruction following the breakpoint instruction, the state of
the program is essentially unchanged because the INT 3 instruction does not affect any register
or memory locations. The debugger can thus resume the suspended program by replacing the
INT 3 instruction that caused the breakpoint with the original opcode and decrementing the
saved contents of the EIP register. Upon returning from the debugger, program execution
resumes with the replaced instruction.
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Interrupt 4—Overflow Exception (#OF)
Exception Class  Trap.

Description

Indicates that an overflow trap occurred when an INTO instruction was executed. The INTO
instruction checks the state of the OF flag in the EFLAGS register. If the OF flag is set, an over-
flow trap is generated.

Some arithmetic instructions (such as the ADD and SUB) perform both signed and unsigned
arithmetic. These instructions set the OF and CF flags in the EFLAGS register to indicate signed
overflow and unsigned overflow, respectively. When performing arithmetic on signed operands,
the OF flag can be tested directly or the INTO instruction can be used. The benefit of using the
INTO instruction is that if the overflow exception is detected, an exception handler can be called
automatically to handle the overflow condition.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction following the INTO
instruction.

Program State Change

Even though the EIP points to the instruction following the INTO instruction, the state of the
program is essentially unchanged because the INTO instruction does not affect any register or
memory locations. The program can thus resume normal execution upon returning from the
overflow exception handler.
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Interrupt 5—BOUND Range Exceeded Exception (#BR)
Exception Class  Fault.

Description

Indicates that a BOUND-range-exceeded fault occurred when a BOUND instruction was
executed. The BOUND instruction checks that a signed array index is within the upper and
lower bounds of an array located in memory. If the array index is not within the bounds of the
array, a BOUND-range-exceeded fault is generated.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the BOUND instruction that generated the
exception.

Program State Change

A program-state change does not accompany the bounds-check fault, because the operands for
the BOUND instruction are not modified. Returning from the BOUND-range-exceeded excep-
tion handler causes the BOUND instruction to be restarted.
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Interrupt 6—Invalid Opcode Exception (#UD)

Exception Class  Fault.

Description

Indicates that the processor did one of the following things:

Attempted to execute an invalid or reserved opcode.

Attempted to execute an instruction with an operand type that is invalid for its accompa-
nying opcode; for example, the source operand for a LES instruction is not a memory
location.

Attempted to execute an MMX, SSE, or SSE2 instruction on an IA-32 processor that does
not support the MMX technology, SSE, or SSE2 extensions, respectively. CPUID feature
flags MMX (bit 23), SSE (bit 25), and SSE2 (bit 26) indicate support for these extensions.

Attempted to execute an MMX instruction or an SSE or SSE2 SIMD instruction (with the
exception of the MOVNTI, PAUSE, PREFETCH/, SFENCE, LFENCE, MFENCE, and
CLFLUSH instructions) when the EM flag in control register CRO is set (1).

Attempted to execute an SSE or SSE2 instruction when the OSFXSR bit in control register
CR4 is clear (0). Note this does not include the following SSE and SSE2 instructions:
MASKMOVQ, MOVNTQ, MOVNTI, PREFETCH#A, SFENCE, LFENCE, MFENCE, and
CLFLUSH, or the 64-bit versions of the PAVGB, PAVGW, PEXTRW, PINSRW,
PMAXSW, PMAXUB, PMINSW, PMINUB, PMOVMSKB, PMULHUW, PSADBW,
PSHUFW, PADDQ, and PSUBQ instructions.

Attempted to execute an SSE or SSE2 instruction on an IA-32 processor that causes a
SIMD floating-point exception when the OSXMMEXCPT bit in control register CR4 is
clear (0).

Executed a UD2 instruction. Note that even though it is the execution of the UD2
instruction that causes the invalid opcode exception, the saved instruction pointer still
points at the UD2 instruction.

Detected a LOCK prefix that precedes an instruction that may not be locked or one that
may be locked but the destination operand is not a memory location.

Attempted to execute an LLDT, SLDT, LTR, STR, LSL, LAR, VERR, VERW, or ARPL
instruction while in real-address or virtual-8086 mode.

Attempted to execute the RSM instruction when not in SMM mode.

In the Pentium 4, Intel Xeon, and P6 family processors, this exception is not generated until an
attempt is made to retire the result of executing an invalid instruction; that is, decoding and spec-
ulatively attempting to execute an invalid opcode does not generate this exception. Likewise, in
the Pentium processor and earlier IA-32 processors, this exception is not generated as the result
of prefetching and preliminary decoding of an invalid instruction. (See Section 5.5., “Exception
Classifications”, for general rules for taking of interrupts and exceptions.)
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Interrupt 6—Invalid Opcode Exception (#UD) (Continued)

The opcodes D6 and F1 are undefined opcodes that are reserved by the TA-32 architecture.
These opcodes, even though undefined, do not generate an invalid opcode exception.

The UD2 instruction is guaranteed to generate an invalid opcode exception.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state change does not accompany an invalid-opcode fault, because the invalid
instruction is not executed.
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Interrupt 7—Device Not Available Exception (#NM)
Exception Class  Fault.

Description
Indicates one of the following things:
The device-not-available exception is generated by either of three conditions:

® The processor executed an x87 FPU floating-point instruction while the EM flag in control
register CRO was set (1). (See the paragraph below for the special case of the
WAIT/FWAIT instruction.)

® The processor executed a WAIT/FWAIT instruction while the MP and TS flags of register
CRO were set, regardless of the setting of the EM flag.

® The processor executed an x87 FPU, MMX, SSE, or SSE2 instruction (with the exception
of the MOVNTI, PAUSE, PREFETCH/, SFENCE, LFENCE, MFENCE, and CLFLUSH
instructions) while the TS flag in control register CRO was set and the EM flag is clear.

The EM flag is set when the processor does not have an internal x87 FPU floating-point unit. A
device-not-available exception is then generated each time an x87 FPU floating-point instruc-
tion is encountered, allowing an exception handler to call floating-point instruction emulation
routines.

The TS flag indicates that a context switch (task switch) has occurred since the last time an x87
floating-point, MMX, SSE, or SSE2 instruction was executed, but that the context of the x87
FPU, XMM, and MXCSR registers were not saved. When the TS flag is set and the EM flag is
clear, the processor generates a device-not-available exception each time an x87 floating-point,
MMX, SSE, or SSE2 instruction is encountered (with the exception of the instructions listed
above). The exception handler can then save the context of the x87 FPU, XMM, and MXCSR
registers before it executes the instruction. See Section 2.5., “Control Registers”, for more infor-
mation about the TS flag.

The MP flag in control register CRO is used along with the TS flag to determine if WAIT or
FWALIT instructions should generate a device-not-available exception. It extends the function of
the TS flag to the WAIT and FWAIT instructions, giving the exception handler an opportunity
to save the context of the x87 FPU before the WAIT or FWAIT instruction is executed. The MP
flag is provided primarily for use with the Intel 286 and Intel386 DX processors. For programs
running on the Pentium 4, Intel Xeon, P6 family, Pentium, or Intel486 DX processors, or the
Intel 487 SX coprocessors, the MP flag should always be set; for programs running on the
Intel486 SX processor, the MP flag should be clear.

Exception Error Code

None.
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Interrupt 7—Device Not Available Exception (#NM) (Continued)

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the floating-point instruction or the
WAIT/FWAIT instruction that generated the exception.

Program State Change

A program-state change does not accompany a device-not-available fault, because the instruc-
tion that generated the exception is not executed.

If the EM flag is set, the exception handler can then read the floating-point instruction pointed
to by the EIP and call the appropriate emulation routine.

If the MP and TS flags are set or the TS flag alone is set, the exception handler can save the
context of the x87 FPU, clear the TS flag, and continue execution at the interrupted floating-
point or WAIT/FWAIT instruction.
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Interrupt 8—Double Fault Exception (#DF)
Exception Class  Abort.

Description

Indicates that the processor detected a second exception while calling an exception handler for
a prior exception. Normally, when the processor detects another exception while trying to call
an exception handler, the two exceptions can be handled serially. If, however, the processor
cannot handle them serially, it signals the double-fault exception. To determine when two faults
need to be signalled as a double fault, the processor divides the exceptions into three classes:
benign exceptions, contributory exceptions, and page faults (see Table 5-3).

Table 5-3. Interrupt and Exception Classes

Class Vector Number Description
Benign Exceptions and Interrupts 1 Debug
2 NMI Interrupt
3 Breakpoint
4 Overflow
5 BOUND Range Exceeded
6 Invalid Opcode
7 Device Not Available
9 Coprocessor Segment Overrun
16 Floating-Point Error
17 Alignment Check
18 Machine Check
19 SIMD floating-point
All INT n
All INTR
Contributory Exceptions 0 Divide Error
10 Invalid TSS
11 Segment Not Present
12 Stack Fault
13 General Protection
Page Faults 14 Page Fault

Table 5-4 shows the various combinations of exception classes that cause a double fault to be
generated. A double-fault exception falls in the abort class of exceptions. The program or task
cannot be restarted or resumed. The double-fault handler can be used to collect diagnostic infor-
mation about the state of the machine and/or, when possible, to shut the application and/or
system down gracefully or restart the system.

A segment or page fault may be encountered while prefetching instructions; however, this
behavior is outside the domain of Table 5-4. Any further faults generated while the processor is
attempting to transfer control to the appropriate fault handler could still lead to a double-fault
sequence.
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Interrupt 8—Double Fault Exception (#DF) (Continued)

Table 5-4. Conditions for Generating a Double Fault

Second Exception

First Exception

Benign

Contributory

Page Fault

Benign

Contributory

Handle Exceptions
Serially

Handle Exceptions
Serially

Handle Exceptions
Serially

Generate a Double Fault

Handle Exceptions
Serially

Handle Exceptions
Serially

Page Fault Handle Exceptions Generate a Double Fault | Generate a Double Fault

Serially

If another exception occurs while attempting to call the double-fault handler, the processor
enters shutdown mode. This mode is similar to the state following execution of an HLT instruc-
tion. In this mode, the processor stops executing instructions until an NMI interrupt, SMI inter-
rupt, hardware reset, or INIT# is received. The processor generates a special bus cycle to
indicate that it has entered shutdown mode. Software designers may need to be aware of the
response of hardware when it goes into shutdown mode. For example, hardware may turn on an
indicator light on the front panel, generate an NMI interrupt to record diagnostic information,
invoke reset initialization, generate an INIT initialization, or generate an SMI. If any events are
pending during shutdown, they will be handled after an wake event from shutdown is processed
(for example, A20M# interrupts).

If a shutdown occurs while the processor is executing an NMI interrupt handler, then only a
hardware reset can restart the processor. Likewise, if the shutdown occurs while executing in
SMM, a hardware reset must be used to restart the processor

Exception Error Code

Zero. The processor always pushes an error code of 0 onto the stack of the double-fault handler.

Saved Instruction Pointer

The saved contents of CS and EIP registers are undefined.

Program State Change

A program-state following a double-fault exception is undefined. The program or task cannot
be resumed or restarted. The only available action of the double-fault exception handler is to
collect all possible context information for use in diagnostics and then close the application
and/or shut down or reset the processor.

If the double fault occurs when any portion of the exception handling machine state is corrupted,
the handler cannot be invoked and the processor must be reset.

5-32



Intel e INTERRUPT AND EXCEPTION HANDLING

Interrupt 9—Coprocessor Segment Overrun

Exception Class  Abort. (Intel reserved; do not use. Recent IA-32 processors do not
generate this exception.)

Description

Indicates that an Intel386 CPU-based systems with an Intel 387 math coprocessor detected a
page or segment violation while transferring the middle portion of an Intel 387 math copro-
cessor operand. The P6 family, Pentium, and Intel486 processors do not generate this exception;
instead, this condition is detected with a general protection exception (#GP), interrupt 13.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state following a coprocessor segment-overrun exception is undefined. The program
or task cannot be resumed or restarted. The only available action of the exception handler is to
save the instruction pointer and reinitialize the x87 FPU using the FNINIT instruction.
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Interrupt 10—Invalid TSS Exception (#TS)

Exception Class  Fault.

Description

Indicates that a task switch was attempted and that invalid information was detected in the TSS
for the target task. Table 5-5 shows the conditions that will cause an invalid-TSS exception to
be generated. In general, these invalid conditions result from protection violations for the TSS
descriptor; the LDT pointed to by the TSS; or the stack, code, or data segments referenced by

the TSS.

Table 5-5. Invalid TSS Conditions

Error Code Index

Invalid Condition

TSS segment selector index

TSS segment selector index

TSS segment selector index

TSS segment selector index

LDT segment selector index

Stack-segment selector index
Stack-segment selector index
Stack-segment selector index
Stack-segment selector index
Code-segment selector index
Code-segment selector index
Code-segment selector index
Code-segment selector index

Data-segment selector index

Data-segment selector index

TSS segment limit less than 67H for 32-bit TSS or less than 2CH for 16-
bit TSS

During an IRET task switch, the Tl flag in the TSS segment selector
indicates the LDT

During an IRET task switch, the TSS segment selector exceeds
descriptor table limit

During an IRET task switch, the busy flag in the TSS descriptor indicates
an inactive task

Invalid LDT or LDT not present

Stack-segment selector exceeds descriptor table limit
Stack segment is not writable

Stack segment DPL # CPL

Stack-segment selector RPL # CPL

Code-segment selector exceeds descriptor table limit
Code segment is not executable

Nonconforming code segment DPL # CPL
Conforming code segment DPL greater than CPL
Data-segment selector exceeds descriptor table limit

Data segment not readable

This exception can generated either in the context of the original task or in the context of the
new task (see Section 6.3., “Task Switching”). Until the processor has completely verified the
presence of the new TSS, the exception is generated in the context of the original task. Once the
existence of the new TSS is verified, the task switch is considered complete. Any invalid-TSS
conditions detected after this point are handled in the context of the new task. (A task switch is
considered complete when the task register is loaded with the segment selector for the new TSS
and, if the switch is due to a procedure call or interrupt, the previous task link field of the new
TSS references the old TSS.)

5-34



Intel e INTERRUPT AND EXCEPTION HANDLING

Interrupt 10—Invalid TSS Exception (#TS) (Continued)

The invalid-TSS handler must be a task called using a task gate. Handling this exception inside
the faulting TSS context is not recommended because the processor state may not be consistent.

Exception Error Code

An error code containing the segment selector index for the segment descriptor that caused the
violation is pushed onto the stack of the exception handler. If the EXT flag is set, it indicates that
the exception was caused by an event external to the currently running program (for example, if
an external interrupt handler using a task gate attempted a task switch to an invalid TSS).

Saved Instruction Pointer

If the exception condition was detected before the task switch was carried out, the saved
contents of CS and EIP registers point to the instruction that invoked the task switch. If the
exception condition was detected after the task switch was carried out, the saved contents of CS
and EIP registers point to the first instruction of the new task.

Program State Change

The ability of the invalid-TSS handler to recover from the fault depends on the error condition
than causes the fault. See Section 6.3., “Task Switching”, for more information on the task
switch process and the possible recovery actions that can be taken.

If an invalid TSS exception occurs during a task switch, it can occur before or after the commit-
to-new-task point. If it occurs before the commit point, no program state change occurs. If it
occurs after the commit point (when the segment descriptor information for the new segment
selectors have been loaded in the segment registers), the processor will load all the state infor-
mation from the new TSS before it generates the exception. During a task switch, the processor
first loads all the segment registers with segment selectors from the TSS, then checks their
contents for validity. If an invalid TSS exception is discovered, the remaining segment registers
are loaded but not checked for validity and therefore may not be usable for referencing memory.
The invalid TSS handler should not rely on being able to use the segment selectors found in the
CS, SS, DS, ES, FS, and GS registers without causing another exception. The exception handler
should load all segment registers before trying to resume the new task; otherwise, general-
protection exceptions (#GP) may result later under conditions that make diagnosis more diffi-
cult. The Intel recommended way of dealing situation is to use a task for the invalid TSS excep-
tion handler. The task switch back to the interrupted task from the invalid-TSS exception-
handler task will then cause the processor to check the registers as it loads them from the TSS.
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Interrupt 11—Segment Not Present (#NP)
Exception Class  Fault.

Description

Indicates that the present flag of a segment or gate descriptor is clear. The processor can generate
this exception during any of the following operations:

® While attempting to load CS, DS, ES, FS, or GS registers. [Detection of a not-present
segment while loading the SS register causes a stack fault exception (#SS) to be
generated.] This situation can occur while performing a task switch.

®  While attempting to load the LDTR using an LLDT instruction. Detection of a not-present
LDT while loading the LDTR during a task switch operation causes an invalid-TSS
exception (#TS) to be generated.

®  When executing the LTR instruction and the TSS is marked not present.

® While attempting to use a gate descriptor or TSS that is marked segment-not-present, but is
otherwise valid.

An operating system typically uses the segment-not-present exception to implement virtual
memory at the segment level. If the exception handler loads the segment and returns, the inter-
rupted program or task resumes execution.

A not-present indication in a gate descriptor, however, does not indicate that a segment is not
present (because gates do not correspond to segments). The operating system may use the
present flag for gate descriptors to trigger exceptions of special significance to the operating
system.

Exception Error Code

An error code containing the segment selector index for the segment descriptor that caused the
violation is pushed onto the stack of the exception handler. If the EXT flag is set, it indicates that
the exception resulted from an external event (NMI or INTR) that caused an interrupt, which
subsequently referenced a not-present segment. The IDT flag is set if the error code refers to an
IDT entry (e.g., an INT instruction referencing a not-present gate).

Saved Instruction Pointer

The saved contents of CS and EIP registers normally point to the instruction that generated the
exception. If the exception occurred while loading segment descriptors for the segment selectors
in anew TSS, the CS and EIP registers point to the first instruction in the new task. If the excep-
tion occurred while accessing a gate descriptor, the CS and EIP registers point to the instruction
that invoked the access (for example a CALL instruction that references a call gate).

5-36



Intel e INTERRUPT AND EXCEPTION HANDLING

Interrupt 11—Segment Not Present (#NP) (Continued)

Program State Change

If the segment-not-present exception occurs as the result of loading a register (CS, DS, SS, ES,
FS, GS, or LDTR), a program-state change does accompany the exception, because the register
is not loaded. Recovery from this exception is possible by simply loading the missing segment
into memory and setting the present flag in the segment descriptor.

If the segment-not-present exception occurs while accessing a gate descriptor, a program-state
change does not accompany the exception. Recovery from this exception is possible merely by
setting the present flag in the gate descriptor.

If a segment-not-present exception occurs during a task switch, it can occur before or after the
commit-to-new-task point (see Section 6.3., “Task Switching”). If it occurs before the commit
point, no program state change occurs. If it occurs after the commit point, the processor will load
all the state information from the new TSS (without performing any additional limit, present, or
type checks) before it generates the exception. The segment-not-present exception handler
should thus not rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS,
and GS registers without causing another exception. (See the Program State Change description
for “Interrupt 10—Invalid TSS Exception (#TS)” in this chapter for additional information on
how to handle this situation.)
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Interrupt 12—Stack Fault Exception (#SS)
Exception Class  Fault.

Description
Indicates that one of the following stack related conditions was detected:

® A limit violation is detected during an operation that refers to the SS register. Operations
that can cause a limit violation include stack-oriented instructions such as POP, PUSH,
CALL, RET, IRET, ENTER, and LEAVE, as well as other memory references which
implicitly or explicitly use the SS register (for example, MOV AX, [BP+6] or MOV AX,
SS:[EAX+6]). The ENTER instruction generates this exception when there is not enough
stack space for allocating local variables.

® A not-present stack segment is detected when attempting to load the SS register. This
violation can occur during the execution of a task switch, a CALL instruction to a different
privilege level, a return to a different privilege level, an LSS instruction, or a MOV or POP
instruction to the SS register.

Recovery from this fault is possible by either extending the limit of the stack segment (in the
case of a limit violation) or loading the missing stack segment into memory (in the case of a not-
present violation.

Exception Error Code

If the exception is caused by a not-present stack segment or by overflow of the new stack during
an inter-privilege-level call, the error code contains a segment selector for the segment that
caused the exception. Here, the exception handler can test the present flag in the segment
descriptor pointed to by the segment selector to determine the cause of the exception. For a
normal limit violation (on a stack segment already in use) the error code is set to 0.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that generated the
exception. However, when the exception results from attempting to load a not-present stack
segment during a task switch, the CS and EIP registers point to the first instruction of the new
task.

Program State Change

A program-state change does not generally accompany a stack-fault exception, because the
instruction that generated the fault is not executed. Here, the instruction can be restarted after
the exception handler has corrected the stack fault condition.
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Interrupt 12—Stack Fault Exception (#SS) (Continued)

If a stack fault occurs during a task switch, it occurs after the commit-to-new-task point (see
Section 6.3., “Task Switching”). Here, the processor loads all the state information from the new
TSS (without performing any additional limit, present, or type checks) before it generates the
exception. The stack fault handler should thus not rely on being able to use the segment selectors
found in the CS, SS, DS, ES, FS, and GS registers without causing another exception. The
exception handler should check all segment registers before trying to resume the new task;
otherwise, general protection faults may result later under conditions that are more difficult to
diagnose. (See the Program State Change description for “Interrupt 10—Invalid TSS Exception
(#TS)” in this chapter for additional information on how to handle this situation.)
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Interrupt 13—General Protection Exception (#GP)
Exception Class  Fault.

Description

Indicates that the processor detected one of a class of protection violations called “general-
protection violations.” The conditions that cause this exception to be generated comprise all the
protection violations that do not cause other exceptions to be generated (such as, invalid-TSS,
segment-not-present, stack-fault, or page-fault exceptions). The following conditions cause
general-protection exceptions to be generated:

® Exceeding the segment limit when accessing the CS, DS, ES, FS, or GS segments.

® Exceeding the segment limit when referencing a descriptor table (except during a task
switch or a stack switch).

® Transferring execution to a segment that is not executable.
®  Writing to a code segment or a read-only data segment.
® Reading from an execute-only code segment.

® Loading the SS register with a segment selector for a read-only segment (unless the
selector comes from a TSS during a task switch, in which case an invalid-TSS exception
occurs).

® Loading the SS, DS, ES, FS, or GS register with a segment selector for a system segment.

® Loading the DS, ES, FS, or GS register with a segment selector for an execute-only code
segment.

® Loading the SS register with the segment selector of an executable segment or a null
segment selector.

® Loading the CS register with a segment selector for a data segment or a null segment
selector.

® Accessing memory using the DS, ES, FS, or GS register when it contains a null segment
selector.

® Switching to a busy task during a call or jump to a TSS.

® Using a segment selector on a non-IRET task switch that points to a TSS descriptor in the
current LDT. TSS descriptors can only reside in the GDT. This condition causes a #TS
exception during an IRET task switch.

® Violating any of the privilege rules described in Chapter 4, Protection.

® Exceeding the instruction length limit of 15 bytes (this only can occur when redundant
prefixes are placed before an instruction).
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Interrupt 13—General Protection Exception (#GP) (Continued)

Loading the CRO register with a set PG flag (paging enabled) and a clear PE flag
(protection disabled).

Loading the CRO register with a set NW flag and a clear CD flag.

Referencing an entry in the IDT (following an interrupt or exception) that is not an
interrupt, trap, or task gate.

Attempting to access an interrupt or exception handler through an interrupt or trap gate
from virtual-8086 mode when the handler’s code segment DPL is greater than 0.

Attempting to write a 1 into a reserved bit of CR4.

Attempting to execute a privileged instruction when the CPL is not equal to O (see Section
4.9., “Privileged Instructions”, for a list of privileged instructions).

Writing to a reserved bit in an MSR.
Accessing a gate that contains a null segment selector.

Executing the INT 7 instruction when the CPL is greater than the DPL of the referenced
interrupt, trap, or task gate.

The segment selector in a call, interrupt, or trap gate does not point to a code segment.

The segment selector operand in the LLDT instruction is a local type (TI flag is set) or
does not point to a segment descriptor of the LDT type.

The segment selector operand in the LTR instruction is local or points to a TSS that is not
available.

The target code-segment selector for a call, jump, or return is null.

If the PAE and/or PSE flag in control register CR4 is set and the processor detects any
reserved bits in a page-directory-pointer-table entry set to 1. These bits are checked during
a write to control registers CR0O, CR3, or CR4 that causes a reloading of the page-
directory-pointer-table entry.

Attempting to write a non-zero value into the reserved bits of the MXCSR register.

Executing an SSE or SSE2 instruction that attempts to access a 128-bit memory location
that is not aligned on a 16-byte boundary when the instruction requires 16-byte alignment.
This condition also applies to the stack segment.

A program or task can be restarted following any general-protection exception. If the exception
occurs while attempting to call an interrupt handler, the interrupted program can be restartable,
but the interrupt may be lost.
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Interrupt 13—General Protection Exception (#GP) (Continued)

Exception Error Code

The processor pushes an error code onto the exception handler’s stack. If the fault condition was
detected while loading a segment descriptor, the error code contains a segment selector to or IDT
vector number for the descriptor; otherwise, the error code is 0. The source of the selector in an
error code may be any of the following:

® An operand of the instruction.
® A selector from a gate which is the operand of the instruction.
® A selector from a TSS involved in a task switch.

® DT vector number.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

In general, a program-state change does not accompany a general-protection exception, because
the invalid instruction or operation is not executed. An exception handler can be designed to
correct all of the conditions that cause general-protection exceptions and restart the program or
task without any loss of program continuity.

If a general-protection exception occurs during a task switch, it can occur before or after the
commit-to-new-task point (see Section 6.3., “Task Switching”). If it occurs before the commit
point, no program state change occurs. If it occurs after the commit point, the processor will load
all the state information from the new TSS (without performing any additional limit, present, or
type checks) before it generates the exception. The general-protection exception handler should
thus not rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS, and
GS registers without causing another exception. (See the Program State Change description for
“Interrupt 10—Invalid TSS Exception (#TS)” in this chapter for additional information on how
to handle this situation.)
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Interrupt 14—Page-Fault Exception (#PF)

Exception Class  Fault.

Description

Indicates that, with paging enabled (the PG flag in the CRO register is set), the processor detected
one of the following conditions while using the page-translation mechanism to translate a linear
address to a physical address:

The P (present) flag in a page-directory or page-table entry needed for the address
translation is clear, indicating that a page table or the page containing the operand is not
present in physical memory.

The procedure does not have sufficient privilege to access the indicated page (that is, a
procedure running in user mode attempts to access a supervisor-mode page).

Code running in user mode attempts to write to a read-only page. In the Intel486 and later
processors, if the WP flag is set in CRO, the page fault will also be triggered by code
running in supervisor mode that tries to write to a read-only user-mode page.

One or more reserved bits in page directory entry are set to 1. See description below of
RSVD error code flag

The exception handler can recover from page-not-present conditions and restart the program or
task without any loss of program continuity. It can also restart the program or task after a privi-
lege violation, but the problem that caused the privilege violation may be uncorrectable.

Exception Error Code

Yes (special format). The processor provides the page-fault handler with two items of informa-
tion to aid in diagnosing the exception and recovering from it:

An error code on the stack. The error code for a page fault has a format different from that
for other exceptions (see Figure 5-7). The error code tells the exception handler four
things:

— The P flag indicates whether the exception was due to a not-present page (0) or to
either an access rights violation or the use of a reserved bit (1).

— The W/R flag indicates whether the memory access that caused the exception was a
read (0) or write (1).

— The U/S flag indicates whether the processor was executing at user mode (1) or
supervisor mode (0) at the time of the exception.

— The RSVD flag indicates that the processor detected 1s in reserved bits of the page
directory, when the PSE or PAE flags in control register CR4 are set to 1. (The PSE
flag is only available in the Pentium 4, Intel Xeon, P6 family, and Pentium processors,
and the PAE flag is only available on the Pentium 4, Intel Xeon, and P6 family
processors. In earlier IA-32 processor, the bit position of the RSVD flag is reserved.)
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Interrupt 14—Page-Fault Exception (#PF) (Continued)

31 43210
B|UIR
Reserved vI/|/|P
D |S|W
P 0 The fault was caused by a non-present page.
1 The fault was caused by a page-level protection violation.
W/R 0 The access causing the fault was a read.
1 The access causing the fault was a write.
u/s 0 The access causing the fault originated when the processor

was executing in supervisor mode.
1 The access causing the fault originated when the processor
was executing in user mode.

RSVD O The fault was not caused by reserved bit violation.
1 The fault was caused by reserved bits set to 1 in a page directory.

Figure 5-7. Page-Fault Error Code

® The contents of the CR2 register. The processor loads the CR2 register with the 32-bit
linear address that generated the exception. The page-fault handler can use this address to
locate the corresponding page directory and page-table entries. Another page fault can
potentially occur during execution of the page-fault handler; the handler should save the
contents of the CR2 register before a second page fault can occur. If a page fault is caused
by a page-level protection violation, the access flag in the page-directory entry is set when
the fault occurs. The behavior of IA-32 processors regarding the access flag in the corre-
sponding page-table entry is model specific and not architecturally defined.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that generated the
exception. If the page-fault exception occurred during a task switch, the CS and EIP registers
may point to the first instruction of the new task (as described in the following ‘“Program State
Change” section).

Program State Change

A program-state change does not normally accompany a page-fault exception, because the
instruction that causes the exception to be generated is not executed. After the page-fault excep-
tion handler has corrected the violation (for example, loaded the missing page into memory),
execution of the program or task can be resumed.

1. Processors update CR2 whenever a page fault is detected. If a second page fault occurs while an earlier
page fault is being delivered, the faulting linear address of the second fault will overwrite the contents of
CR2 (replacing the previous address). These updates to CR2 occur even if the page fault results in a
double fault or occurs during the delivery of a double fault.
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Interrupt 14—Page-Fault Exception (#PF) (Continued)

When a page-fault exception is generated during a task switch, the program-state may change,
as follows. During a task switch, a page-fault exception can occur during any of following
operations:

®  While writing the state of the original task into the TSS of that task.

®  While reading the GDT to locate the TSS descriptor of the new task.

®  While reading the TSS of the new task.

® While reading segment descriptors associated with segment selectors from the new task.

®  While reading the LDT of the new task to verify the segment registers stored in the new
TSS.

In the last two cases the exception occurs in the context of the new task. The instruction pointer
refers to the first instruction of the new task, not to the instruction which caused the task switch
(or the last instruction to be executed, in the case of an interrupt). If the design of the operating
system permits page faults to occur during task-switches, the page-fault handler should be called
through a task gate.

If a page fault occurs during a task switch, the processor will load all the state information from
the new TSS (without performing any additional limit, present, or type checks) before it gener-
ates the exception. The page-fault handler should thus not rely on being able to use the segment
selectors found in the CS, SS, DS, ES, FS, and GS registers without causing another exception.
(See the Program State Change description for “Interrupt 10—Invalid TSS Exception (#TS)” in
this chapter for additional information on how to handle this situation.)

Additional Exception-Handling Information

Special care should be taken to ensure that an exception that occurs during an explicit stack
switch does not cause the processor to use an invalid stack pointer (SS:ESP). Software written
for 16-bit IA-32 processors often use a pair of instructions to change to a new stack, for example:

MOV SS, AX
MOV SP, StackTop

When executing this code on one of the 32-bit IA-32 processors, it is possible to get a page fault,
general-protection fault (#GP), or alignment check fault (#AC) after the segment selector has
been loaded into the SS register but before the ESP register has been loaded. At this point, the
two parts of the stack pointer (SS and ESP) are inconsistent. The new stack segment is being
used with the old stack pointer.

The processor does not use the inconsistent stack pointer if the exception handler switches to a
well defined stack (that is, the handler is a task or a more privileged procedure). However, if the
exception handler is called at the same privilege level and from the same task, the processor will
attempt to use the inconsistent stack pointer.
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Interrupt 14—Page-Fault Exception (#PF) (Continued)

In systems that handle page-fault, general-protection, or alignment check exceptions within the
faulting task (with trap or interrupt gates), software executing at the same privilege level as the
exception handler should initialize a new stack by using the LSS instruction rather than a pair
of MOV instructions, as described earlier in this note. When the exception handler is running at
privilege level O (the normal case), the problem is limited to procedures or tasks that run at priv-
ilege level 0, typically the kernel of the operating system.
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Interrupt 16—x87 FPU Floating-Point Error (#MF)
Exception Class  Fault.

Description

Indicates that the x87 FPU has detected a floating-point error. The NE flag in the register CRO
must be set for an interrupt 16 (floating-point error exception) to be generated. (See Section 2.5.,
“Control Registers”, for a detailed description of the NE flag.)

NOTE
SIMD floating-point exceptions (#XF) are signaled through interrupt 19.

While executing x87 FPU instructions, the x87 FPU detects and reports six types of floating-
point error conditions:

® Invalid operation (#I)
— Stack overflow or underflow (#IS)
— Invalid arithmetic operation (#1A)

® Divide-by-zero (#Z)

® Denormalized operand (#D)

®  Numeric overflow (#0)

®  Numeric underflow (#U)

® Inexact result (precision) (#P)

Each of these error conditions represents an x87 FPU exception type, and for each of exception
type, the x87 FPU provides a flag in the x87 FPU status register and a mask bit in the x87 FPU
control register. If the x87 FPU detects a floating-point error and the mask bit for the exception
type is set, the x87 FPU handles the exception automatically by generating a predefined (default)
response and continuing program execution. The default responses have been designed to
provide a reasonable result for most floating-point applications.

If the mask for the exception is clear and the NE flag in register CRO is set, the x87 FPU does
the following:

1. Sets the necessary flag in the FPU status register.

2. Waits until the next “waiting” x87 FPU instruction or WAIT/FWAIT instruction is
encountered in the program’s instruction stream.

3. Generates an internal error signal that cause the processor to generate a floating-point
exception (#MF).
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Interrupt 16—x87 FPU Floating-Point Error (#MF) (Continued)

Prior to executing a waiting x87 FPU instruction or the WAIT/FWAIT instruction, the x87 FPU
checks for pending x87 FPU floating-point exceptions (as described in step 2 above). Pending
x87 FPU floating-point exceptions are ignored for “non-waiting” x87 FPU instructions, which
include the FNINIT, FNCLEX, FNSTSW, FNSTSW AX, FNSTCW, FNSTENYV, and FNSAVE
instructions. Pending x87 FPU exceptions are also ignored when executing the state manage-
ment instructions FXSAVE and FXRSTOR.

All of the x87 FPU floating-point error conditions can be recovered from. The x87 FPU floating-
point-error exception handler can determine the error condition that caused the exception from
the settings of the flags in the x87 FPU status word. See “Software Exception Handling” in
Chapter 8 of the IA-32 Intel Architecture Software Developer’s Manual, Volume 1, for more
information on handling x87 FPU floating-point exceptions.

Exception Error Code

None. The x87 FPU provides its own error information.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the floating-point or WAIT/FWAIT instruc-
tion that was about to be executed when the floating-point-error exception was generated. This
is not the faulting instruction in which the error condition was detected. The address of the
faulting instruction is contained in the x87 FPU instruction pointer register. See “x87 FPU
Instruction and Operand (Data) Pointers” in Chapter 8 of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 1, for more information about information the FPU saves for use
in handling floating-point-error exceptions.

Program State Change

A program-state change generally accompanies an x87 FPU floating-point exception because
the handling of the exception is delayed until the next waiting x87 FPU floating-point or
WAIT/FWAIT instruction following the faulting instruction. The x87 FPU, however, saves
sufficient information about the error condition to allow recovery from the error and re-execu-
tion of the faulting instruction if needed.

In situations where non- x87 FPU floating-point instructions depend on the results of an x87
FPU floating-point instruction, a WAIT or FWAIT instruction can be inserted in front of a
dependent instruction to force a pending x87 FPU floating-point exception to be handled before
the dependent instruction is executed. See “x87 FPU Exception Synchronization” in Chapter 8
of the IA-32 Intel Architecture Software Developer’s Manual, Volume 1, for more information
about synchronization of x87 floating-point-error exceptions.
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Interrupt 17—Alignment Check Exception (#AC)
Exception Class  Fault.

Description

Indicates that the processor detected an unaligned memory operand when alignment checking
was enabled. Alignment checks are only carried out in data (or stack) segments (not in code or
system segments). An example of an alignment-check violation is a word stored at an odd byte
address, or a doubleword stored at an address that is not an integer multiple of 4. Table 5-6 lists
the alignment requirements various data types recognized by the processor.

Table 5-6. Alignment Requirements by Data Type

Data Type Address Must Be Divisible By
Word 2
Doubleword 4
Single-precision floating-point (32-bits) 4
Double-precision floating-point (64-bits) 8
Double extended-precision floating-point (80-bits) 8
Quadword 8
Double quadword 16
Segment Selector 2
32-bit Far Pointer 2
48-bit Far Pointer 4
32-bit Pointer 4
GDTR, IDTR, LDTR, or Task Register Contents 4
FSTENV/FLDENV Save Area 4 or 2, depending on operand size
FSAVE/FRSTOR Save Area 4 or 2, depending on operand size
Bit String 2 or 4 depending on the operand-size attribute.

Note that the alignment check exception (#AC) is generated only for data types that must be
aligned on word, doubleword, and quadword boundaries. A general-protection exception (#GP)
is generated 128-bit data types that are not aligned on a 16-byte boundary.

To enable alignment checking, the following conditions must be true:
® AM flag in CRO register is set.

® AC flag in the EFLAGS register is set.

® The CPL is 3 (protected mode or virtual-8086 mode).
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Interrupt 17—Alignment Check Exception (#AC) (Continued)

Alignment-check exceptions (#AC) are generated only when operating at privilege level 3 (user
mode). Memory references that default to privilege level 0, such as segment descriptor loads, do
not generate alignment-check exceptions, even when caused by a memory reference made from
privilege level 3.

Storing the contents of the GDTR, IDTR, LDTR, or task register in memory while at privilege
level 3 can generate an alignment-check exception. Although application programs do not
normally store these registers, the fault can be avoided by aligning the information stored on an
even word-address.

The FXSAVE and FXRSTOR instructions save and restore a 512-byte data structure, the first
byte of which must be aligned on a 16-byte boundary. If the alignment-check exception (#AC)
is enabled when executing these instructions (and CPL is 3), a misaligned memory operand can
cause either an alignment-check exception or a general-protection exception (#GP) depending
on the TA-32 processor implementation (see “FXSAVE-Save x87 FPU, MMX, SSE, and SSE2
State” and “FXRSTOR-Restore x87 FPU, MMX, SSE, and SSE2 State” in Chapter 3 of the IA-
32 Intel Architecture Software Developer’s Manual, Volume 2.

The MOVUPS and MOVUPD instructions, which perform a 128-bit unaligned load or store do
not generate general-protection exceptions (#GP) when an operand is not aligned on a 16-byte
boundary. However, if alignment checking is enabled (as described above), 2-, 4-, and 8-byte
misalignments will be detected and cause an alignment-check exception to be generated.

FSAVE and FRSTOR instructions generate unaligned references, which can cause alignment-
check faults. These instructions are rarely needed by application programs.

Exception Error Code

Yes (always zero).

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state change does not accompany an alignment-check fault, because the instruction
is not executed.
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Interrupt 18—Machine-Check Exception (#MC)
Exception Class  Abort.

Description

Indicates that the processor detected an internal machine error or a bus error, or that an external
agent detected a bus error. The machine-check exception is model-specific, available only on
the Pentium 4, Intel Xeon, P6 family, and Pentium processors. The implementation of the
machine-check exception is different between the Pentium 4, Intel Xeon, P6 family, and
Pentium processors, and these implementations may not be compatible with future 1A-32
processors. (Use the CPUID instruction to determine whether this feature is present.)

Bus errors detected by external agents are signaled to the processor on dedicated pins: the
BINIT# and MCERR# pins on the Pentium 4, Intel Xeon, and P6 family processors and the
BUSCHK# pin on the Pentium processor. When one of these pins is enabled, asserting the pin
causes error information to be loaded into machine-check registers and a machine-check excep-
tion is generated.

The machine-check exception and machine-check architecture are discussed in detail in Chapter
14, Machine-Check Architecture. Also, see the data books for the individual processors for
processor-specific hardware information.

Exception Error Code

None. Error information is provide by machine-check MSRs.

Saved Instruction Pointer

For the Pentium 4 and Intel Xeon processors, the saved contents of extended machine-check
state registers are directly associated with the error that caused the machine-check exception to
be generated (see Section 14.3.1.3., “IA32_MCG_STATUS MSR” and Section 14.3.2.5.,
“IA32_MCG Extended Machine Check State MSRs”).

For the P6 family processors, if the EIPV flag in the MCG_STATUS MSR is set, the saved
contents of CS and EIP registers are directly associated with the error that caused the machine-
check exception to be generated; if the flag is clear, the saved instruction pointer may not be
associated with the error (see Section 14.3.1.3., “IA32_MCG_STATUS MSR”).

For the Pentium processor, contents of the CS and EIP registers may not be associated with the
error.

Program State Change

The machine-check mechanism is enabled by setting the MCE flag in control register CR4.
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Interrupt 18—Machine-Check Exception (#MC) (Continued)

For the Pentium 4, Intel Xeon, P6 family, and Pentium processors, a program-state change
always accompanies a machine-check exception, and an abort class exception is generated. For
abort exceptions, information about the exception can be collected from the machine-check
MSRs, but the program cannot generally be restarted.

If the machine-check mechanism is not enabled (the MCE flag in control register CR4 is clear),
a machine-check exception causes the processor to enter the shutdown state.
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Interrupt 19—SIMD Floating-Point Exception (#XF)
Exception Class  Fault.

Description

Indicates the processor has detected a SSE or SSE2 SIMD floating-point exception. The appro-
priate status flag in the MXCSR register must be set and the particular exception unmasked for
this interrupt to be generated.

There are six classes of numeric exception conditions that can occur while executing a SSE or
SSE2 SIMD floating-point instruction:

® Invalid operation (#I)

® Divide-by-zero (#7Z)

® Denormal operand (#D)

®  Numeric overflow (#0)

®  Numeric underflow (#U)

® Inexact result (Precision) (#P)

The invalid operation, divide-by-zero, and denormal-operand exceptions are pre-computation
exceptions; that is, they are detected before any arithmetic operation occurs. The numeric under-
flow, numeric overflow, and inexact result exceptions are post-computational exceptions.

See "SIMD Floating-Point Exceptions", in Chapter 11 of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 1, for additional information about the SIMD floating-point excep-
tion classes.

When a SIMD floating-point exception occurs, the processor does either of the following things:

® It handles the exception automatically by producing the most reasonable result and
allowing program execution to continue undisturbed. This is the response to masked
exceptions.

® It generates a SIMD floating-point exception, which in turn invokes a software exception
handler. This is the response to unmasked exceptions.

Each of the six SIMD floating-point exception conditions has a corresponding flag bit and mask
bit in the MXCSR register. If an exception is masked (the corresponding mask bit in the MXCSR
register is set), the processor takes an appropriate automatic default action and continues with
the computation. If the exception is unmasked (the corresponding mask bit is clear) and the
operating system supports SIMD floating-point exceptions (the OSXMMEXCPT flag in control
register CR4 is set), a software exception handler is invoked through a SIMD floating-point
exception. If the exception is unmasked and the OSXMMEXCPT bit is clear (indicating that the
operating system does not support unmasked SIMD floating-point exceptions), an invalid
opcode exception (#UD) is signaled instead of a SIMD floating-point exception.
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Interrupt 19—SIMD Floating-Point Exception (#XF) (Continued)

Note that because SIMD floating-point exceptions are precise and occur immediately, the situ-
ation does not arise where an x87 FPU instruction, a WAIT/FWAIT instruction, or another SSE
or SSE2 instruction will catch a pending unmasked SIMD floating-point exception.

In situations where a SIMD floating-point exception occurred while the SIMD floating-point
exceptions were masked (causing the corresponding exception flag to be set) and the SIMD
floating-point exception was subsequently unmasked, then no exception is generated when the
exception is unmasked.

When the SSE and SSE2 SIMD floating-point instructions operate on packed operands (made
up of two or four sub-operands), multiple SIMD floating-point exception conditions may be
detected. If no more than one exception condition is detected for one or more sets of sub-oper-
ands, the exception flags are set for each exception condition detected. For example, an invalid
exception detected for one sub-operand will not prevent the reporting of a divide-by-zero excep-
tion for another sub-operand. However, when two or more exceptions conditions are generated
for one sub-operand, only one exception condition is reported, according to the precedences
shown in Table 5-7. This exception precedence sometimes results in the higher priority excep-
tion condition being reported and the lower priority exception conditions being ignored.

Table 5-7. SIMD Floating-Point Exceptions Priority

Priority Description

1 (Highest) Invalid operation exception due to SNaN operand (or any NaN operand for maximum,
minimum, or certain compare and convert operations).

2 QNaN operand’.

3 Any other invalid operation exception not mentioned above or a divide-by-zero
exception2.

4 Denormal operand exceptionQ.

5 Numeric overflow and underflow exceptions possibly in conjunction with the inexact

result exception?.

6 (Lowest) Inexact result exception.

Notes:

1. Though a QNaN this is not an exception, the handling of a QNaN operand has precedence over lower pri-
ority exceptions. For example, a QNaN divided by zero results in a QNaN, not a divide-by-zero- excep-
tion.

2. If masked, then instruction execution continues, and a lower priority exception can occur as well.

Exception Error Code

None.
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Interrupt 19—SIMD Floating-Point Exception (#XF) (Continued)

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the SSE or SSE2 instruction that was
executed when the SIMD floating-point exception was generated. This is the faulting instruction
in which the error condition was detected.

Program State Change

A program-state change does not accompany a SIMD floating-point exception because the
handling of the exception is immediate unless the particular exception is masked. The available
state information is often sufficient to allow recovery from the error and re-execution of the
faulting instruction if needed.
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Interrupts 32 to 255—User Defined Interrupts
Exception Class  Not applicable.

Description
Indicates that the processor did one of the following things:

¢ Executed an INT 7 instruction where the instruction operand is one of the vector numbers
from 32 through 255.

® Responded to an interrupt request at the INTR pin or from the local APIC when the
interrupt vector number associated with the request is from 32 through 255.
Exception Error Code

Not applicable.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that follows the INT n
instruction or instruction following the instruction on which the INTR signal occurred.

Program State Change

A program-state change does not accompany interrupts generated by the INT # instruction or
the INTR signal. The INT 7 instruction generates the interrupt within the instruction stream.
When the processor receives an INTR signal, it commits all state changes for all previous
instructions before it responds to the interrupt; so, program execution can resume upon returning
from the interrupt handler.
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CHAPTER 6
TASK MANAGEMENT

This chapter describes the IA-32 architecture’s task management facilities. These facilities are
only available when the processor is running in protected mode.

6.1. TASK MANAGEMENT OVERVIEW

A task is a unit of work that a processor can dispatch, execute, and suspend. It can be used to
execute a program, a task or process, an operating-system service utility, an interrupt or excep-
tion handler, or a kernel or executive utility.

The IA-32 architecture provides a mechanism for saving the state of a task, for dispatching tasks
for execution, and for switching from one task to another. When operating in protected mode,
all processor execution takes place from within a task. Even simple systems must define at least
one task. More complex systems can use the processor’s task management facilities to support
multitasking applications.

6.1.1. Task Structure

A task is made up of two parts: a task execution space and a task-state segment (TSS). The task
execution space consists of a code segment, a stack segment, and one or more data segments
(see Figure 6-1). If an operating system or executive uses the processor’s privilege-level protec-
tion mechanism, the task execution space also provides a separate stack for each privilege level.

The TSS specifies the segments that make up the task execution space and provides a storage
place for task state information. In multitasking systems, the TSS also provides a mechanism for
linking tasks.

NOTE

This chapter describes primarily 32-bit tasks and the 32-bit TSS structure.
For information on 16-bit tasks and the 16-bit TSS structure, see Section 6.6.,
“16-Bit Task-State Segment (TSS)”.

A task is identified by the segment selector for its TSS. When a task is loaded into the processor
for execution, the segment selector, base address, limit, and segment descriptor attributes for the
TSS are loaded into the task register (see Section 2.4.4., “Task Register (TR)”).

If paging is implemented for the task, the base address of the page directory used by the task is
loaded into control register CR3.



TASK MANAGEMENT

(TSS)

Y

Code
Segment

Task-State Data
Segment —|—> Segment

Stack

Segment

Y

(Current Priv.
Level)

Stack Seg.

>

Priv. Level 0

Priv. Level 1

—L ]

Task Register

Stack Seg.

Stack
» Segment

L 1

CR3

(Priv. Level 2)

Figure 6-1. Structure of a Task

6.1.2. Task State

The following items define the state of the currently executing task:

The task’s current execution space, defined by the segment selectors in the segment

registers (CS, DS, SS, ES, FS, and GS).
The state of the general-purpose registers.
The state of the EFLAGS register.

The state of the EIP register.

The state of control register CR3.

The state of the task register.

The state of the LDTR register.

The I/O map base address and I/O map (contained in the TSS).

Stack pointers to the privilege 0, 1, and 2 stacks (contained in the TSS).

Link to previously executed task (contained in the TSS).

Prior to dispatching a task, all of these items are contained in the task’s TSS, except the state of
the task register. Also, the complete contents of the LDTR register are not contained in the TSS,
only the segment selector for the LDT.
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6.1.3. Executing a Task

Software or the processor can dispatch a task for execution in one of the following ways:
® A explicit call to a task with the CALL instruction.

® A explicit jump to a task with the JMP instruction.

® An implicit call (by the processor) to an interrupt-handler task.

® An implicit call to an exception-handler task.

® A return (initiated with an IRET instruction) when the NT flag in the EFLAGS register is
set.

All of these methods of dispatching a task identify the task to be dispatched with a segment
selector that points either to a task gate or the TSS for the task. When dispatching a task with a
CALL or JMP instruction, the selector in the instruction may select either the TSS directly or a
task gate that holds the selector for the TSS. When dispatching a task to handle an interrupt or
exception, the IDT entry for the interrupt or exception must contain a task gate that holds the
selector for the interrupt- or exception-handler TSS.

When a task is dispatched for execution, a task switch automatically occurs between the
currently running task and the dispatched task. During a task switch, the execution environment
of the currently executing task (called the task’s state or context) is saved in its TSS and execu-
tion of the task is suspended. The context for the dispatched task is then loaded into the processor
and execution of that task begins with the instruction pointed to by the newly loaded EIP
register. If the task has not been run since the system was last initialized, the EIP will point to
the first instruction of the task’s code; otherwise, it will point to the next instruction after the last
instruction that the task executed when it was last active.

If the currently executing task (the calling task) called the task being dispatched (the called task),
the TSS segment selector for the calling task is stored in the TSS of the called task to provide a
link back to the calling task.

For all IA-32 processors, tasks are not recursive. A task cannot call or jump to itself.

Interrupts and exceptions can be handled with a task switch to a handler task. Here, the processor
not only can perform a task switch to handle the interrupt or exception, but it can automatically
switch back to the interrupted task upon returning from the interrupt- or exception-handler task.
This mechanism can handle interrupts that occur during interrupt tasks.

As part of a task switch, the processor can also switch to another LDT, allowing each task to have
a different logical-to-physical address mapping for LDT-based segments. The page-directory base
register (CR3) also is reloaded on a task switch, allowing each task to have its own set of page
tables. These protection facilities help isolate tasks and prevent them from interfering with one
another. If one or both of these protection mechanisms are not used, the processor provides no
protection between tasks. This is true even with operating systems that use multiple privilege
levels for protection. Here, a task running at privilege level 3 that uses the same LDT and page
tables as other privilege-level-3 tasks can access code and corrupt data and the stack of other
tasks.
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Use of task management facilities for handling multitasking applications is optional. Multi-
tasking can be handled in software, with each software defined task executed in the context of
a single IA-32 architecture task.

6.2. TASK MANAGEMENT DATA STRUCTURES

The processor defines five data structures for handling task-related activities:
® Task-state segment (TSS).

® Task-gate descriptor.

® TSS descriptor.

® Task register.

® NT flag in the EFLAGS register.

When operating in protected mode, a TSS and TSS descriptor must be created for at least one
task, and the segment selector for the TSS must be loaded into the task register (using the LTR
instruction).

6.2.1. Task-State Segment (TSS)

The processor state information needed to restore a task is saved in a system segment called the
task-state segment (TSS). Figure 6-2 shows the format of a TSS for tasks designed for 32-bit
CPUs. (Compatibility with 16-bit Intel 286 processor tasks is provided by a different kind of
TSS, see Figure 6-9.) The fields of a TSS are divided into two main categories: dynamic fields
and static fields.
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Figure 6-2. 32-Bit Task-State Segment (TSS)

The processor updates the dynamic fields when a task is suspended during a task switch. The
following are dynamic fields:

General-purpose register fields
State of the EAX, ECX, EDX, EBX, ESP, EBP, ESI, and EDI registers prior to
the task switch.
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Segment selector fields
Segment selectors stored in the ES, CS, SS, DS, FS, and GS registers prior to
the task switch.

EFLAGS register field
State of the EFAGS register prior to the task switch.

EIP (instruction pointer) field
State of the EIP register prior to the task switch.

Previous task link field
Contains the segment selector for the TSS of the previous task (updated on a
task switch that was initiated by a call, interrupt, or exception). This field
(which is sometimes called the back link field) permits a task switch back to
the previous task to be initiated with an IRET instruction.

The processor reads the static fields, but does not normally change them. These fields are set up
when a task is created. The following are static fields:

LDT segment selector field
Contains the segment selector for the task’s LDT.

CR3 control register field
Contains the base physical address of the page directory to be used by the task.
Control register CR3 is also known as the page-directory base register (PDBR).

Privilege level-0, -1, and -2 stack pointer fields
These stack pointers consist of a logical address made up of the segment
selector for the stack segment (SS0, SS1, and SS2) and an offset into the stack
(ESPO, ESP1, and ESP2). Note that the values in these fields are static for a
particular task; whereas, the SS and ESP values will change if stack switching
occurs within the task.

T (debug trap) flag (byte 100, bit 0)
When set, the T flag causes the processor to raise a debug exception when a
task switch to this task occurs (see Section 15.3.1.5., “Task-Switch Exception
Condition”).

I/O map base address field

Contains a 16-bit offset from the base of the TSS to the I/O permission bit map
and interrupt redirection bitmap. When present, these maps are stored in the
TSS at higher addresses. The I/O map base address points to the beginning of
the I/O permission bit map and the end of the interrupt redirection bit map.
See Chapter 12, Input/Output, in the IA-32 Intel Architecture Software Devel-
oper’s Manual, Volume 1, for more information about the I/O permission bit
map. See Section 16.3., “Interrupt and Exception Handling in Virtual-8086
Mode”, for a detailed description of the interrupt redirection bit map.

If paging is used, care should be taken to avoid placing a page boundary within the part of the
TSS that the processor reads during a task switch (the first 104 bytes). If a page boundary is
placed within this part of the TSS, the pages on either side of the boundary must be present at
the same time and contiguous in physical memory.
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The reason for this restriction is that when accessing a TSS during a task switch, the processor
reads and writes into the first 104 bytes of each TSS from contiguous physical addresses begin-
ning with the physical address of the first byte of the TSS. It may not perform address transla-
tions at a page boundary if one occurs within this area. So, after the TSS access begins, if a part
of the 104 bytes is not both present and physically contiguous, the processor will access incor-
rect TSS information, without generating a page-fault exception. The reading of this incorrect
information will generally lead to an unrecoverable exception later in the task switch process.

Also, if paging is used, the pages corresponding to the previous task’s TSS, the current task’s
TSS, and the descriptor table entries for each should be marked as read/write. The task switch
will be carried out faster if the pages containing these structures are also present in memory
before the task switch is initiated.

6.2.2. TSS Descriptor

The TSS, like all other segments, is defined by a segment descriptor. Figure 6-3 shows the
format of a TSS descriptor. TSS descriptors may only be placed in the GDT; they cannot be
placed in an LDT or the IDT.

An attempt to access a TSS using a segment selector with its TI flag set (which indicates the
current LDT) causes a general-protection exception (#GP) to be generated during CALLs and
JMPs; it causes an invalid TSS exception (#TS) during IRETs. A general-protection exception
is also generated if an attempt is made to load a segment selector for a TSS into a segment
register.

The busy flag (B) in the type field indicates whether the task is busy. A busy task is currently
running or is suspended. A type field with a value of 1001B indicates an inactive task; a value
of 1011B indicates a busy task. Tasks are not recursive. The processor uses the busy flag to
detect an attempt to call a task whose execution has been interrupted. To insure that there is only
one busy flag is associated with a task, each TSS should have only one TSS descriptor that points
to 1t.
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TSS Descriptor

31 242322 212019 1615141312 11 8 7 0
A - D Type
Base3t24  |alofo|v| Hmt [p) p yp Base23:16 |4
L : L |o 1‘0|B|1
31 1615 0
Base Address 15:00 Segment Limit 15:00 0

AVL Available for use by system software
B Busy flag

BASE Segment Base Address

DPL Descriptor Privilege Level

G Granularity
LIMIT  Segment Limit
P Segment Present

TYPE Segment Type

Figure 6-3. TSS Descriptor

The base, limit, and DPL fields and the granularity and present flags have functions similar to
their use in data-segment descriptors (see Section 3.4.3., “Segment Descriptors”). When the G
flag is 0 in a TSS descriptor for a 32-bit TSS, the limit field must have a value equal to or greater
than 67H, one byte less than the minimum size of a TSS. Attempting to switch to a task whose
TSS descriptor has a limit less than 67H generates an invalid-TSS exception (#TS). A larger
limit is required if an I/O permission bit map is included in the TSS. An even larger limit would
be required if the operating system stores additional data in the TSS. The processor does not
check for a limit greater than 67H on a task switch; however, it does when accessing the I/O
permission bit map or interrupt redirection bit map.

Any program or procedure with access to a TSS descriptor (that is, whose CPL is numerically
equal to or less than the DPL of the TSS descriptor) can dispatch the task with a call or a jump.

In most systems, the DPLs of TSS descriptors should be set to values less than 3, so that only
privileged software can perform task switching. However, in multitasking applications, DPLs
for some TSS descriptors can be set to 3 to allow task switching at the application (or user) priv-
ilege level.

6.2.3. Task Register

The task register holds the 16-bit segment selector and the entire segment descriptor (32-bit base
address, 16-bit segment limit, and descriptor attributes) for the TSS of the current task (see
Figure 2-4). This information is copied from the TSS descriptor in the GDT for the current task.
Figure 6-4 shows the path the processor uses to accesses the TSS, using the information in the
task register.
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The task register has both a visible part (that can be read and changed by software) and an invis-
ible part (that is maintained by the processor and is inaccessible by software). The segment
selector in the visible portion points to a TSS descriptor in the GDT. The processor uses the
invisible portion of the task register to cache the segment descriptor for the TSS. Caching these
values in a register makes execution of the task more efficient, because the processor does not
need to fetch these values from memory to reference the TSS of the current task.

The LTR (load task register) and STR (store task register) instructions load and read the visible
portion of the task register. The LTR instruction loads a segment selector (source operand) into
the task register that points to a TSS descriptor in the GDT, and then loads the invisible portion
of the task register with information from the TSS descriptor. This instruction is a privileged
instruction that may be executed only when the CPL is 0. The LTR instruction generally is used
during system initialization to put an initial value in the task register. Afterwards, the contents
of the task register are changed implicitly when a task switch occurs.

The STR (store task register) instruction stores the visible portion of the task register in a
general-purpose register or memory. This instruction can be executed by code running at any
privilege level, to identify the currently running task; however, it is normally used only by oper-
ating system software.

On power up or reset of the processor, the segment selector and base address are set to the default
value of 0 and the limit is set to FFFFH.

6.2.4. Task-Gate Descriptor

A task-gate descriptor provides an indirect, protected reference to a task. Figure 6-5 shows the
format of a task-gate descriptor. A task-gate descriptor can be placed in the GDT, an LDT, or the
IDT.

The TSS segment selector field in a task-gate descriptor points to a TSS descriptor in the GDT.
The RPL in this segment selector is not used.

The DPL of a task-gate descriptor controls access to the TSS descriptor during a task switch.
When a program or procedure makes a call or jump to a task through a task gate, the CPL and
the RPL field of the gate selector pointing to the task gate must be less than or equal to the DPL
of the task-gate descriptor. (Note that when a task gate is used, the DPL of the destination TSS
descriptor is not used.)



TASK MANAGEMENT

TSS
S —
~&
A
Visible Part Invisible Part
Task —
Register Selector Base Address Segment Limit
A
GDT
> TSS Descriptor
0
Figure 6-4. Task Register
31 161514 1312 11 8 7
D
el B Type
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31 16 15

TSS Segment Selector

DPL Descriptor Privilege Level
P Segment Present
TYPE Segment Type

\:I Reserved

Figure 6-5. Task-Gate Descriptor
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A task can be accessed either through a task-gate descriptor or a TSS descriptor. Both of these
structures are provided to satisfy the following needs:

The need for a task to have only one busy flag. Because the busy flag for a task is stored in
the TSS descriptor, each task should have only one TSS descriptor. There may, however,
be several task gates that reference the same TSS descriptor.

The need to provide selective access to tasks. Task gates fill this need, because they can
reside in an LDT and can have a DPL that is different from the TSS descriptor’s DPL. A
program or procedure that does not have sufficient privilege to access the TSS descriptor
for a task in the GDT (which usually has a DPL of 0) may be allowed access to the task
through a task gate with a higher DPL. Task gates give the operating system greater
latitude for limiting access to specific tasks.

The need for an interrupt or exception to be handled by an independent task. Task gates
may also reside in the IDT, which allows interrupts and exceptions to be handled by
handler tasks. When an interrupt or exception vector points to a task gate, the processor
switches to the specified task.

Figure 6-6 illustrates how a task gate in an LDT, a task gate in the GDT, and a task gate in the
IDT can all point to the same task.
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LDT GDT TSS
Task Gate
Task Gate > TSS Descriptor
IDT
Task Gate

Figure 6-6. Task Gates Referencing the Same Task

6.3. TASK SWITCHING

The processor transfers execution to another task in any of four cases:

® The current program, task, or procedure executes a JMP or CALL instruction to a TSS
descriptor in the GDT.

® The current program, task, or procedure executes a JMP or CALL instruction to a task-gate
descriptor in the GDT or the current LDT.

® Aninterrupt or exception vector points to a task-gate descriptor in the IDT.

® The current task executes an IRET when the NT flag in the EFLAGS register is set.
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The JMP, CALL, and IRET instructions, as well as interrupts and exceptions, are all generalized
mechanisms for redirecting a program. The referencing of a TSS descriptor or a task gate (when
calling or jumping to a task) or the state of the NT flag (when executing an IRET instruction)
determines whether a task switch occurs.

The processor performs the following operations when switching to a new task:

1.

Obtains the TSS segment selector for the new task as the operand of the JMP or CALL
instruction, from a task gate, or from the previous task link field (for a task switch initiated
with an IRET instruction).

Checks that the current (old) task is allowed to switch to the new task. Data-access
privilege rules apply to JMP and CALL instructions. The CPL of the current (old) task and
the RPL of the segment selector for the new task must be less than or equal to the DPL of
the TSS descriptor or task gate being referenced. Exceptions, interrupts (except for
interrupts generated by the INT n instruction), and the IRET instruction are permitted to
switch tasks regardless of the DPL of the destination task-gate or TSS descriptor. For
interrupts generated by the INT # instruction, the DPL is checked.

Checks that the TSS descriptor of the new task is marked present and has a valid limit
(greater than or equal to 67H).

Checks that the new task is available (call, jump, exception, or interrupt) or busy (IRET
return).

Checks that the current (old) TSS, new TSS, and all segment descriptors used in the task
switch are paged into system memory.

If the task switch was initiated with a JMP or IRET instruction, the processor clears the
busy (B) flag in the current (old) task’s TSS descriptor; if initiated with a CALL
instruction, an exception, or an interrupt, the busy (B) flag is left set. (See Table 6-2.)

If the task switch was initiated with an IRET instruction, the processor clears the NT flag
in a temporarily saved image of the EFLAGS register; if initiated with a CALL or JMP
instruction, an exception, or an interrupt, the NT flag is left unchanged in the saved
EFLAGS image.

Saves the state of the current (old) task in the current task’s TSS. The processor finds the
base address of the current TSS in the task register and then copies the states of the
following registers into the current TSS: all the general-purpose registers, segment
selectors from the segment registers, the temporarily saved image of the EFLAGS register,
and the instruction pointer register (EIP).

If the task switch was initiated with a CALL instruction, an exception, or an interrupt, the
processor will set the NT flag in the EFLAGS loaded from the new task. If initiated with an
IRET instruction or JMP instruction, the NT flag will reflect the state of NT in the
EFLAGS loaded from the new task (see Table 6-2).
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10. If the task switch was initiated with a CALL instruction, JMP instruction, an exception, or
an interrupt, the processor sets the busy (B) flag in the new task’s TSS descriptor; if
initiated with an IRET instruction, the busy (B) flag is left set.

11. Loads the task register with the segment selector and descriptor for the new task's TSS.

12. The TSS state is loaded into the processor. This includes the LDTR register, the PDBR
(control register CR3), the EFLAGS registers, the EIP register, the general-purpose
registers, and the segment selectors. Note that a fault during the load of this state may
corrupt architectural state.

13. The descriptors associated with the segment selectors are loaded and qualified. Any errors
associated with this loading and qualification occur in the context of the new task.

NOTE

At this point, if all checks and saves have been carried out successfully, the
processor commits to the task switch. If an unrecoverable error occurs in
steps 1 through 11, the processor does not complete the task switch and
insures that the processor is returned to its state prior to the execution of the
instruction that initiated the task switch. If an unrecoverable error occurs in
step 12, architectural state may be corrupted, but an attempt will be made to
handle the error in the prior execution environment. If an unrecoverable error
occurs after the commit point (in step 13), the processor completes the task
switch (without performing additional access and segment availability
checks) and generates the appropriate exception prior to beginning execution
of the new task. If exceptions occur after the commit point, the exception
handler must finish the task switch itself before allowing the processor to
begin executing the new task. See Chapter 5, “Interrupt 10—Invalid TSS
Exception (#TS)”, for more information about the affect of exceptions on a
task when they occur after the commit point of a task switch.

14. Begins executing the new task. (To an exception handler, the first instruction of the new
task appears not to have been executed.)

The state of the currently executing task is always saved when a successful task switch occurs.
If the task is resumed, execution starts with the instruction pointed to by the saved EIP value,
and the registers are restored to the values they held when the task was suspended.

When switching tasks, the privilege level of the new task does not inherit its privilege level from
the suspended task. The new task begins executing at the privilege level specified in the CPL
field of the CS register, which is loaded from the TSS. Because tasks are isolated by their sepa-
rate address spaces and TSSs and because privilege rules control access to a TSS, software does
not need to perform explicit privilege checks on a task switch.

Table 6-1 shows the exception conditions that the processor checks for when switching tasks. It
also shows the exception that is generated for each check if an error is detected and the segment
that the error code references. (The order of the checks in the table is the order used in the P6
family processors. The exact order is model specific and may be different for other IA-32
processors.) Exception handlers designed to handle these exceptions may be subject to recursive
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calls if they attempt to reload the segment selector that generated the exception. The cause of
the exception (or the first of multiple causes) should be fixed before reloading the selector.

Table 6-1. Exception Conditions Checked During a Task Switch

Error Code

Condition Checked Exception’ Reference?
Segment selector for a TSS descriptor references #GP New Task’s TSS
the GDT and is within the limits of the table. #TS (for IRET)
TSS descriptor is present in memory. #NP New Task’s TSS
TSS descriptor is not busy (for task switch initiated by a | #GP (for JMP, CALL, | Task’s back-link TSS
call, interrupt, or exception). INT)
TSS descriptor is not busy (for task switch initiated by #TS (for IRET) New Task’s TSS
an IRET instruction).
TSS segment limit greater than or equal to 108 (for 32- #TS New Task’s TSS
bit TSS) or 44 (for 16-bit TSS).
Registers are loaded from the values in the TSS.
LDT segment selector of new task is valid 3. #TS New Task’s LDT
Code segment DPL matches segment selector RPL. #TS New Code Segment
SS segment selector is valid 2. #TS New Stack Segment
Stack segment is present in memory. #SF New Stack Segment
Stack segment DPL matches CPL. #TS New stack segment
LDT of new task is present in memory. #TS New Task’s LDT
CS segment selector is valid 3. #TS New Code Segment
Code segment is present in memory. #NP New Code Segment
Stack segment DPL matches selector RPL. #TS New Stack Segment
DS, ES, FS, and GS segment selectors are valid 2. #TS New Data Segment
DS, ES, FS, and GS segments are readable. #TS New Data Segment
DS, ES, FS, and GS segments are present in memory. #NP New Data Segment
DS, ES, FS, and GS segment DPL greater than or #TS New Data Segment
equal to CPL (unless these are conforming segments).

NOTES:

1. #NP is segment-not-present exception, #GP is general-protection exception, #TS is invalid-TSS excep-
tion, and #SF is stack-fault exception.

2. The error code contains an index to the segment descriptor referenced in this column.

3. A segment selector is valid if it is in a compatible type of table (GDT or LDT), occupies an address within
the table’s segment limit, and refers to a compatible type of descriptor (for example, a segment selector in
the CS register only is valid when it points to a code-segment descriptor).

The TS (task switched) flag in the control register CRO is set every time a task switch occurs.
System software uses the TS flag to coordinate the actions of floating-point unit when gener-
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ating floating-point exceptions with the rest of the processor. The TS flag indicates that the
context of the floating-point unit may be different from that of the current task. See Section 2.5.,
“Control Registers”, for a detailed description of the function and use of the TS flag.

6.4. TASK LINKING

The previous task link field of the TSS (sometimes called the “backlink™) and the NT flag in the
EFLAGS register are used to return execution to the previous task. The NT flag indicates
whether the currently executing task is nested within the execution of another task, and the
previous task link field of the current task's TSS holds the TSS selector for the higher-level task
in the nesting hierarchy, if there is one (see Figure 6-7).

When a CALL instruction, an interrupt, or an exception causes a task switch, the processor
copies the segment selector for the current TSS into the previous task link field of the TSS for
the new task, and then sets the NT flag in the EFLAGS register. The NT flag indicates that the
previous task link field of the TSS has been loaded with a saved TSS segment selector. If soft-
ware uses an IRET instruction to suspend the new task, the processor uses the value in the
previous task link field and the NT flag to return to the previous task; that is, if the NT flag is
set, the processor performs a task switch to the task specified in the previous task link field.

NOTE

‘When a JMP instruction causes a task switch, the new task is not nested; that
is, the NT flag is set to 0 and the previous task link field is not used. A JMP
instruction is used to dispatch a new task when nesting is not desired.

Top Level Nested More Deeply Currently Executing
Task Task Nested Task Task
TSS TSS TSS EFLAGS
NT=1
NT=0 NT=1 NT=1
Previous Previous Previous
Task Link Task Link Task Link Task Register

Figure 6-7. Nested Tasks

Table 6-2 summarizes the uses of the busy flag (in the TSS segment descriptor), the NT flag, the
previous task link field, and TS flag (in control register CRO) during a task switch. Note that the
NT flag may be modified by software executing at any privilege level. It is possible for a
program to set its NT flag and execute an IRET instruction, which would have the effect of
invoking the task specified in the previous link field of the current task's TSS. To keep spurious
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task switches from succeeding, the operating system should initialize the previous task link field
for every TSS it creates to 0.

Table 6-2. Effect of a Task Switch on Busy Flag, NT Flag, Previous Task Link Field,
and TS Flag

Flag or Field

Effect of JMP
instruction

Effect of CALL
Instruction or
Interrupt

Effect of IRET
Instruction

Busy (B) flag of new
task.

Busy flag of old task.

Flag is set. Must have
been clear before.

Flag is cleared.

Flag is set. Must have
been clear before.

No change. Flag is
currently set.

No change. Must have
been set.

Flag is cleared.

NT flag of new task. Set to value from TSS of | Flag is set. Set to value from TSS of
new task. new task.
NT flag of old task. No change. No change. Flag is cleared.
Previous task link field of | No change. Loaded with selector No change.
new task. for old task’s TSS.
Previous task link field of | No change. No change. No change.
old task.
TS flag in control Flag is set. Flag is set. Flag is set.
register CRO.
6.4.1. Use of Busy Flag To Prevent Recursive Task Switching

A TSS allows only one context to be saved for a task; therefore, once a task is called
(dispatched), a recursive (or re-entrant) call to the task would cause the current state of the task
to be lost. The busy flag in the TSS segment descriptor is provided to prevent re-entrant task
switching and subsequent loss of task state information. The processor manages the busy flag as

follows:

1. When dispatching a task, the processor sets the busy flag of the new task.

2. If during a task switch, the current task is placed in a nested chain (the task switch is being

generated by a CALL instruction, an interrupt, or an exception), the busy flag for the
current task remains set.

When switching to the new task (initiated by a CALL instruction, interrupt, or exception),
the processor generates a general-protection exception (#GP) if the busy flag of the new
task is already set. (If the task switch is initiated with an IRET instruction, the exception is
not raised because the processor expects the busy flag to be set.)

When a task is terminated by a jump to a new task (initiated with a JMP instruction in the
task code) or by an IRET instruction in the task code, the processor clears the busy flag,
returning the task to the “not busy” state.

In this manner the processor prevents recursive task switching by preventing a task from
switching to itself or to any task in a nested chain of tasks. The chain of nested suspended tasks
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may grow to any length, due to multiple calls, interrupts, or exceptions. The busy flag prevents
a task from being invoked if it is in this chain.

The busy flag may be used in multiprocessor configurations, because the processor follows a
LOCK protocol (on the bus or in the cache) when it sets or clears the busy flag. This lock keeps
two processors from invoking the same task at the same time. (See Section 7.1.2.1., “Automatic
Locking”, for more information about setting the busy flag in a multiprocessor applications.)

6.4.2. Modifying Task Linkages

In a uniprocessor system, in situations where it is necessary to remove a task from a chain of
linked tasks, use the following procedure to remove the task:

1. Disable interrupts.

2. Change the previous task link field in the TSS of the pre-empting task (the task that
suspended the task to be removed). It is assumed that the pre-empting task is the next task
(newer task) in the chain from the task to be removed. Change the previous task link field
to point to the TSS of the next oldest task in the chain or to an even older task in the chain.

3. Clear the busy (B) flag in the TSS segment descriptor for the task being removed from the
chain. If more than one task is being removed from the chain, the busy flag for each task
being remove must be cleared.

4. Enable interrupts.

In a multiprocessing system, additional synchronization and serialization operations must be
added to this procedure to insure that the TSS and its segment descriptor are both locked when
the previous task link field is changed and the busy flag is cleared.

6.5. TASK ADDRESS SPACE

The address space for a task consists of the segments that the task can access. These segments
include the code, data, stack, and system segments referenced in the TSS and any other segments
accessed by the task code. These segments are mapped into the processor’s linear address space,
which is in turn mapped into the processor’s physical address space (either directly or through
paging).

The LDT segment field in the TSS can be used to give each task its own LDT. Giving a task its
own LDT allows the task address space to be isolated from other tasks by placing the segment
descriptors for all the segments associated with the task in the task’s LDT.

It also is possible for several tasks to use the same LDT. This is a simple and memory-efficient
way to allow some tasks to communicate with or control each other, without dropping the
protection barriers for the entire system.

Because all tasks have access to the GDT, it also is possible to create shared segments accessed
through segment descriptors in this table.
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If paging is enabled, the CR3 register (PDBR) field in the TSS allows each task can also have
its own set of page tables for mapping linear addresses to physical addresses. Or, several tasks
can share the same set of page tables.

6.5.1. Mapping Tasks to the Linear and Physical Address Spaces

Tasks can be mapped to the linear address space and physical address space in either of two
ways:

® One linear-to-physical address space mapping is shared among all tasks. When paging is
not enabled, this is the only choice. Without paging, all linear addresses map to the same
physical addresses. When paging is enabled, this form of linear-to-physical address space
mapping is obtained by using one page directory for all tasks. The linear address space
may exceed the available physical space if demand-paged virtual memory is supported.

® Each task has its own linear address space that is mapped to the physical address space.
This form of mapping is accomplished by using a different page directory for each task.
Because the PDBR (control register CR3) is loaded on each task switch, each task may
have a different page directory.

The linear address spaces of different tasks may map to completely distinct physical addresses.
If the entries of different page directories point to different page tables and the page tables point
to different pages of physical memory, then the tasks do not share any physical addresses.

With either method of mapping task linear address spaces, the TSSs for all tasks must lie in a
shared area of the physical space, which is accessible to all tasks. This mapping is required so
that the mapping of TSS addresses does not change while the processor is reading and updating
the TSSs during a task switch. The linear address space mapped by the GDT also should be
mapped to a shared area of the physical space; otherwise, the purpose of the GDT is defeated.
Figure 6-8 shows how the linear address spaces of two tasks can overlap in the physical space
by sharing page tables.
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TSS Page Directories Page Tables Page Frames
Task A
Task A TSS > Page
Task A
PTE — Page
PTE >
PDBR > PDE > PTE — Task A
PDE Page
Shared PT >
Shared
- Page
PTE T+
T PTE Shared
Task B TSS 7 Page
Task B
- Page
PDBR > PDE PTE —
PDE > PTE Task B
T - Page

6.5.2.

Figure 6-8. Overlapping Linear-to-Physical Mappings

Task Logical Address Space

To allow the sharing of data among tasks, use any of the following techniques to create shared
logical-to-physical address-space mappings for data segments:
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Through the segment descriptors in the GDT. All tasks must have access to the segment
descriptors in the GDT. If some segment descriptors in the GDT point to segments in the
linear-address space that are mapped into an area of the physical-address space common to
all tasks, then all tasks can share the data and code in those segments.

Through a shared LDT. Two or more tasks can use the same LDT if the LDT fields in their
TSSs point to the same LDT. If some segment descriptors in a shared LDT point to
segments that are mapped to a common area of the physical address space, the data and
code in those segments can be shared among the tasks that share the LDT. This method of
sharing is more selective than sharing through the GDT, because the sharing can be limited
to specific tasks. Other tasks in the system may have different LDTs that do not give them
access to the shared segments.

Through segment descriptors in distinct LDTs that are mapped to common addresses in the
linear address space. If this common area of the linear address space is mapped to the same
area of the physical address space for each task, these segment descriptors permit the tasks
to share segments. Such segment descriptors are commonly called aliases. This method of
sharing is even more selective than those listed above, because, other segment descriptors
in the LDTs may point to independent linear addresses which are not shared.
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6.6. 16-BIT TASK-STATE SEGMENT (TSS)

The 32-bit IA-32 processors also recognize a 16-bit TSS format like the one used in Intel 286
processors (see Figure 6-9). It is supported for compatibility with software written to run on
these earlier IA-32 processors.

The following additional information is important to know about the 16-bit TSS.

Do not use a 16-bit TSS to implement a virtual-8086 task.
The valid segment limit for a 16-bit TSS is 2CH.

The 16-bit TSS does not contain a field for the base address of the page directory, which is
loaded into control register CR3. Therefore, a separate set of page tables for each task is
not supported for 16-bit tasks. If a 16-bit task is dispatched, the page-table structure for the
previous task is used.

The I/0 base address is not included in the 16-bit TSS, so none of the functions of the I/O
map are supported.

When task state is saved in a 16-bit TSS, the upper 16 bits of the EFLAGS register and the
EIP register are lost.

When the general-purpose registers are loaded or saved from a 16-bit TSS, the upper 16
bits of the registers are modified and not maintained.
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CHAPTER 7
MULTIPLE-PROCESSOR MANAGEMENT

The IA-32 architecture provides several mechanisms for managing and improving the perfor-
mance of multiple processors connected to the same system bus. These mechanisms include:

Bus locking and/or cache coherency management for performing atomic operations on
system memory.

Serializing instructions. (These instructions apply only to the Pentium 4, Intel Xeon, P6
family, and Pentium processors.)

Advance programmable interrupt controller (APIC) located on the processor chip (see
Chapter 8, Advanced Programmable Interrupt Controller (APIC)). The APIC architecture
was introduced into the IA-32 processors with the Pentium processor.

A second-level cache (level 2, L2). For the Pentium 4, Intel Xeon, and P6 family
processors, the L2 cache is included in the processor package and is tightly coupled to the
processor. For the Pentium and Intel486 processors, pins are provided to support an
external L2 cache.

A third-level cache (level 3, L3). For the Intel Xeon processors, the L3 cache is included in
the processor package and is tightly coupled to the processor.

Hyper-Threading Technology, an extension to the IA-32 architecture that enables a single
processor core to execute two or more threads of execution concurrently (see Section 7.6.,
“Hyper-Threading Technology™).

These mechanisms are particularly useful in symmetric-multiprocessing (SMP) systems;
however, they can also be used in applications where a IA-32 processor and a special-purpose
processor (such as a communications, graphics, or video processor) share the system bus.

The main goals of these multiprocessing mechanisms are as follows:

To maintain system memory coherency—When two or more processors are attempting
simultaneously to access the same address in system memory, some communication
mechanism or memory access protocol must be available to promote data coherency and,
in some instances, to allow one processor to temporarily lock a memory location.

To maintain cache consistency—When one processor accesses data cached in another
processor, it must not receive incorrect data. If it modifies data, all other processors that
access that data must receive the modified data.

To allow predictable ordering of writes to memory—In some circumstances, it is important
that memory writes be observed externally in precisely the same order as programmed.

To distribute interrupt handling among a group of processors—When several processors
are operating in a system in parallel, it is useful to have a centralized mechanism for
receiving interrupts and distributing them to available processors for servicing.
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® To increase system performance by exploiting the multi-threaded and multi-process nature
of contemporary operating systems and applications.

The TA-32 architecture’s caching mechanism and cache consistency are discussed in Chapter 10,
Memory Cache Control. The APIC architecture is described in Chapter 8, Advanced Program-
mable Interrupt Controller (APIC). Bus and memory locking, serializing instructions, memory
ordering, and Hyper-Threading Technology are discussed in the following sections.

7.1. LOCKED ATOMIC OPERATIONS

The 32-bit IA-32 processors support locked atomic operations on locations in system memory.
These operations are typically used to manage shared data structures (such as semaphores,
segment descriptors, system segments, or page tables) in which two or more processors may try
simultaneously to modify the same field or flag. The processor uses three interdependent mech-
anisms for carrying out locked atomic operations:

® Guaranteed atomic operations.
® Bus locking, using the LOCK# signal and the LOCK instruction prefix.

® Cache coherency protocols that insure that atomic operations can be carried out on cached
data structures (cache lock). This mechanism is present in the Pentium 4, Intel Xeon, and
P6 family processors.

These mechanisms are interdependent in the following ways. Certain basic memory transactions
(such as reading or writing a byte in system memory) are always guaranteed to be handled atom-
ically. That is, once started, the processor guarantees that the operation will be completed before
another processor or bus agent is allowed access to the memory location. The processor also
supports bus locking for performing selected memory operations (such as a read-modify-write
operation in a shared area of memory) that typically need to be handled atomically, but are not
automatically handled this way. Because frequently used memory locations are often cached in
a processor’s L1 or L2 caches, atomic operations can often be carried out inside a processor’s
caches without asserting the bus lock. Here the processor’s cache coherency protocols insure
that other processors that are caching the same memory locations are managed properly while
atomic operations are performed on cached memory locations.

Note that the mechanisms for handling locked atomic operations have evolved as the complexity
of TA-32 processors has evolved. As such, more recent IA-32 processors (such as the Pentium
4, Intel Xeon, and P6 family processors) provide a more refined locking mechanism than earlier
IA-32 processors, as is described in the following sections.
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7.1.1. Guaranteed Atomic Operations

The Pentium 4, Intel Xeon, P6 family, Pentium, and Intel486 processors guarantee that the
following basic memory operations will always be carried out atomically:

® Reading or writing a byte.
® Reading or writing a word aligned on a 16-bit boundary.
® Reading or writing a doubleword aligned on a 32-bit boundary.

The Pentium 4, Intel Xeon, and P6 family, and Pentium processors guarantee that the following
additional memory operations will always be carried out atomically:

® Reading or writing a quadword aligned on a 64-bit boundary.
® 16-bit accesses to uncached memory locations that fit within a 32-bit data bus.

The P6 family processors guarantee that the following additional memory operation will always
be carried out atomically:

® Unaligned 16-, 32-, and 64-bit accesses to cached memory that fit within a 32-byte cache
line.

Accesses to cacheable memory that are split across bus widths, cache lines, and page boundaries
are not guaranteed to be atomic by the Pentium 4, Intel Xeon, P6 family, Pentium, and Intel486
processors. The Pentium 4, Intel Xeon, and P6 family processors provide bus control signals that
permit external memory subsystems to make split accesses atomic; however, nonaligned data
accesses will seriously impact the performance of the processor and should be avoided.

7.1.2. Bus Locking

IA-32 processors provide a LOCK# signal that is asserted automatically during certain critical
memory operations to lock the system bus. While this output signal is asserted, requests from
other processors or bus agents for control of the bus are blocked. Software can specify other
occasions when the LOCK semantics are to be followed by prepending the LOCK prefix to an
instruction.

In the case of the Intel386, Intel486, and Pentium processors, explicitly locked instructions will
result in the assertion of the LOCK# signal. It is the responsibility of the hardware designer to
make the LOCK# signal available in system hardware to control memory accesses among
processors.

For the Pentium 4, Intel Xeon, and P6 family processors, if the memory area being accessed is
cached internally in the processor, the LOCK# signal is generally not asserted; instead, locking
is only applied to the processor’s caches (see Section 7.1.4., “Effects of a LOCK Operation on
Internal Processor Caches”™).
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7.1.21. AUTOMATIC LOCKING

The operations on which the processor automatically follows the LOCK semantics are as
follows:

®  When executing an XCHG instruction that references memory.

®  When setting the B (busy) flag of a TSS descriptor. The processor tests and sets the busy
flag in the type field of the TSS descriptor when switching to a task. To insure that two
processors do not switch to the same task simultaneously, the processor follows the LOCK
semantics while testing and setting this flag.

®  When updating segment descriptors. When loading a segment descriptor, the processor
will set the accessed flag in the segment descriptor if the flag is clear. During this
operation, the processor follows the LOCK semantics so that the descriptor will not be
modified by another processor while it is being updated. For this action to be effective,
operating-system procedures that update descriptors should use the following steps:

— Use a locked operation to modify the access-rights byte to indicate that the segment
descriptor is not-present, and specify a value for the type field that indicates that the
descriptor is being updated.

— Update the fields of the segment descriptor. (This operation may require several
memory accesses; therefore, locked operations cannot be used.)

— Use a locked operation to modify the access-rights byte to indicate that the segment
descriptor is valid and present.

Note that the Intel386 processor always updates the accessed flag in the segment
descriptor, whether it is clear or not. The Pentium 4, Intel Xeon, P6 family, Pentium, and
Intel486 processors only update this flag if it is not already set.

® When updating page-directory and page-table entries. When updating page-directory
and page-table entries, the processor uses locked cycles to set the accessed and dirty flag in
the page-directory and page-table entries.

® Acknowledging interrupts. After an interrupt request, an interrupt controller may use the
data bus to send the interrupt vector for the interrupt to the processor. The processor
follows the LOCK semantics during this time to ensure that no other data appears on the
data bus when the interrupt vector is being transmitted.

7.1.2.2. SOFTWARE CONTROLLED BUS LOCKING

To explicitly force the LOCK semantics, software can use the LOCK prefix with the following
instructions when they are used to modify a memory location. An invalid-opcode exception
(#UD) is generated when the LOCK prefix is used with any other instruction or when no write
operation is made to memory (that is, when the destination operand is in a register).

® The bit test and modify instructions (BTS, BTR, and BTC).
® The exchange instructions (XADD, CMPXCHG, and CMPXCHGSB).
® The LOCK prefix is automatically assumed for XCHG instruction.
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® The following single-operand arithmetic and logical instructions: INC, DEC, NOT, and
NEG

® The following two-operand arithmetic and logical instructions: ADD, ADC, SUB, SBB,
AND, OR, and XOR.

A locked instruction is guaranteed to lock only the area of memory defined by the destination
operand, but may be interpreted by the system as a lock for a larger memory area.

Software should access semaphores (shared memory used for signalling between multiple
processors) using identical addresses and operand lengths. For example, if one processor
accesses a semaphore using a word access, other processors should not access the semaphore
using a byte access.

The integrity of a bus lock is not affected by the alignment of the memory field. The LOCK
semantics are followed for as many bus cycles as necessary to update the entire operand.
However, it is recommend that locked accesses be aligned on their natural boundaries for better
system performance:

® Any boundary for an 8-bit access (locked or otherwise).
® 16-bit boundary for locked word accesses.

® 32-bit boundary for locked doubleword access.

®  64-bit boundary for locked quadword access.

Locked operations are atomic with respect to all other memory operations and all externally
visible events. Only instruction fetch and page table accesses can pass locked instructions.
Locked instructions can be used to synchronize data written by one processor and read by
another processor.

For the P6 family processors, locked operations serialize all outstanding load and store opera-
tions (that is, wait for them to complete). This rule is also true for the Pentium 4 and Intel Xeon
processors, with one exception: load operations that reference weakly ordered memory types
(such as the WC memory type) may not be serialized.

Locked instructions should not be used to insure that data written can be fetched as instructions.

NOTE

The locked instructions for the current versions of the Pentium 4, Intel Xeon,
P6 family, Pentium, and Intel486 processors allow data written to be fetched
as instructions. However, Intel recommends that developers who require the
use of self-modifying code use a different synchronizing mechanism,
described in the following sections.
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7.1.3. Handling Self- and Cross-Modifying Code

The act of a processor writing data into a currently executing code segment with the intent of
executing that data as code is called self-modifying code. IA-32 processors exhibit model-
specific behavior when executing self-modified code, depending upon how far ahead of the
current execution pointer the code has been modified. As processor architectures become
more complex and start to speculatively execute code ahead of the retirement point (as in the
Pentium 4, Intel Xeon, and P6 family processors), the rules regarding which code should
execute, pre- or post-modification, become blurred. To write self-modifying code and ensure
that it is compliant with current and future versions of the IA-32 architecture, one of the
following two coding options must be chosen.

(* OPTION 1 %)

Store modified code (as data) into code segment;
Jump to new code or an intermediate location;
Execute new code;

(* OPTION 2 ¥)

Store modified code (as data) into code segment;

Execute a serializing instruction; (* For example, CPUID instruction *)
Execute new code;

(The use of one of these options is not required for programs intended to run on the Pentium or
Intel486 processors, but are recommended to insure compatibility with the Pentium 4, Intel
Xeon, and P6 family processors.)

It should be noted that self-modifying code will execute at a lower level of performance than
non-self-modifying or normal code. The degree of the performance deterioration will depend
upon the frequency of modification and specific characteristics of the code.

The act of one processor writing data into the currently executing code segment of a second
processor with the intent of having the second processor execute that data as code is called
cross-modifying code. As with self-modifying code, IA-32 processors exhibit model-specific
behavior when executing cross-modifying code, depending upon how far ahead of the executing
processors current execution pointer the code has been modified. To write cross-modifying code
and insure that it is compliant with current and future versions of the IA-32 architecture, the
following processor synchronization algorithm must be implemented.

; Action of Modifying Processor

Memory_Flag « 0; (* Set Memory_Flag to value other than 1 *)
Store modified code (as data) into code segment;
Memory_Flag « 1;

; Action of Executing Processor
WHILE (Memory_Flag # 1)
Wait for code to update;
ELIHW;
Execute serializing instruction; (* For example, CPUID instruction *)
Begin executing modified code;
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(The use of this option is not required for programs intended to run on the Intel486 processor,
but is recommended to insure compatibility with the Pentium 4, Intel Xeon, P6 family, and
Pentium processors.)

Like self-modifying code, cross-modifying code will execute at a lower level of performance
than non-cross-modifying (normal) code, depending upon the frequency of modification and
specific characteristics of the code.

7.1.4. Effects of a LOCK Operation on Internal Processor
Caches

For the Intel486 and Pentium processors, the LOCK# signal is always asserted on the bus during
a LOCK operation, even if the area of memory being locked is cached in the processor.

For the Pentium 4, Intel Xeon, and P6 family processors, if the area of memory being locked
during a LOCK operation is cached in the processor that is performing the LOCK operation as
write-back memory and is completely contained in a cache line, the processor may not assert the
LOCKH# signal on the bus. Instead, it will modify the memory location internally and allow it’s
cache coherency mechanism to insure that the operation is carried out atomically. This operation
is called “cache locking.” The cache coherency mechanism automatically prevents two or more
processors that have cached the same area of memory from simultaneously modifying data in
that area.

7.2. MEMORY ORDERING

The term memory ordering refers to the order in which the processor issues reads (loads) and
writes (stores) through the system bus to system memory. The IA-32 architecture supports
several memory ordering models depending on the implementation of the architecture. For
example, the Intel386 processor enforces program ordering (generally referred to as strong
ordering), where reads and writes are issued on the system bus in the order they occur in the
instruction stream under all circumstances.

To allow optimizing of instruction execution, the IA-32 architecture allows departures from
strong-ordering model called processor ordering in Pentium 4, Intel Xeon, and P6 family
processors. These processor-ordering variations allow performance enhancing operations such
as allowing reads to go ahead of buffered writes. The goal of any of these variations is to increase
instruction execution speeds, while maintaining memory coherency, even in multiple-processor
systems.

The following sections describe the memory ordering models used by the Intel486 and Pentium
processors, and by the Pentium 4, Intel Xeon, and P6 family processors.
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7.2.1.  Memory Ordering in the Pentium® and Intel486™
Processors

The Pentium and Intel486 processors follow the processor-ordered memory model; however,
they operate as strongly-ordered processors under most circumstances. Reads and writes always
appear in programmed order at the system bus—except for the following situation where
processor ordering is exhibited. Read misses are permitted to go ahead of buffered writes on the
system bus when all the buffered writes are cache hits and, therefore, are not directed to the same
address being accessed by the read miss.

In the case of I/O operations, both reads and writes always appear in programmed order.

Software intended to operate correctly in processor-ordered processors (such as the Pentium 4,
Intel Xeon, and P6 family processors) should not depend on the relatively strong ordering of the
Pentium or Intel486 processors. Instead, it should insure that accesses to shared variables that
are intended to control concurrent execution among processors are explicitly required to obey
program ordering through the use of appropriate locking or serializing operations (see Section
7.2.4., “Strengthening or Weakening the Memory Ordering Model”).

7.2.2. Memory Ordering Pentium 4, Intel® Xeon™, and P6 Family
Processors

The Pentium 4, Intel Xeon, and P6 family processors also use a processor-ordered memory
ordering model that can be further defined as “write ordered with store-buffer forwarding.” This
model can be characterized as follows.

In a single-processor system for memory regions defined as write-back cacheable, the following
ordering rules apply:

1. Reads can be carried out speculatively and in any order.
2. Reads can pass buffered writes, but the processor is self-consistent.

3. Writes to memory are always carried out in program order, with the exception of writes
executed with the CLFLUSH instruction and streaming stores (writes) executed with the
non-temporal move instructions (MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and
MOVNTPD).

4. Writes can be buffered.

5. Writes are not performed speculatively; they are only performed for instructions that have
actually been retired.

6. Data from buffered writes can be forwarded to waiting reads within the processor.

7. Reads or writes cannot pass (be carried out ahead of) I/O instructions, locked instructions,
or serializing instructions.

8. Reads cannot pass LFENCE and MFENCE instructions.
9. Writes cannot pass SFENCE and MFENCE instructions.
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The second rule allows a read to pass a write. However, if the write is to the same memory loca-
tion as the read, the processor’s internal “snooping” mechanism will detect the conflict and
update the already cached read before the processor executes the instruction that uses the value.

The sixth rule constitutes an exception to an otherwise write ordered model.

Note that the term “write ordered with store-buffer forwarding” (introduced at the beginning of
this section) refers to the combined effects of rules 2 and 6.

In a multiple-processor system, the following ordering rules apply:
® Individual processors use the same ordering rules as in a single-processor system.
® Writes by a single processor are observed in the same order by all processors.

®  Writes from the individual processors on the system bus are NOT ordered with respect to
each other.

The latter rule can be clarified by the example in Figure 7-1. Consider three processors in a
system and each processor performs three writes, one to each of three defined locations (A, B,
and C). Individually, the processors perform the writes in the same program order, but because
of bus arbitration and other memory access mechanisms, the order that the three processors write
the individual memory locations can differ each time the respective code sequences are executed
on the processors. The final values in location A, B, and C would possibly vary on each execu-
tion of the write sequence.

The processor-ordering model described in this section is virtually identical to that used by the
Pentium and Intel486 processors. The only enhancements in the Pentium 4, Intel Xeon, and P6
family processors are:

® Added support for speculative reads.
® Store-buffer forwarding, when a read passes a write to the same memory location.

®  QOut of order store from long string store and string move operations (see Section 7.2.3.,
“Out-of-Order Stores For String Operations in Pentium 4, Intel Xeon, and P6 Family
Processors”, below).
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Order of Writes From Individual Processors

Each Processor #1 Processor #2 Processor #3
iszc;aggtceees; ?g Write A.1 Write A.2 Write A.3
perform writes Write B.1 Write B.2 Write B.3
in program order. Write C.1 Write C.2 Write C.3

Example of Order of Actual Writes
From All Processors to Memory

Writes are in order Write A.1 —
with respect to Write B.1
individual processors. Write A.2 Writes from all

Write A.3 processors are
Write C.1 > not guaranteed
Write B.2 to occurin a
Write C.2 particular order.
Write B.3
Write C.3—

Figure 7-1. Example of Write Ordering in Multiple-Processor Systems

7.2.3. Out-of-Order Stores For String Operations in Pentium 4,
Intel Xeon, and P6 Family Processors

The Pentium 4, Intel Xeon, and P6 family processors modify the processors operation during the
string store operations (initiated with the MOVS and STOS instructions) to maximize perfor-
mance. Once the “fast string” operations initial conditions are met (as described below), the
processor will essentially operate on, from an external perspective, the string in a cache line by
cache line mode. This results in the processor looping on issuing a cache-line read for the source
address and an invalidation on the external bus for the destination address, knowing that all
bytes in the destination cache line will be modified, for the length of the string. In this mode
interrupts will only be accepted by the processor on cache line boundaries. It is possible in this
mode that the destination line invalidations, and therefore stores, will be issued on the external
bus out of order.

Code dependent upon sequential store ordering should not use the string operations for the entire
data structure to be stored. Data and semaphores should be separated. Order dependent code
should use a discrete semaphore uniquely stored to after any string operations to allow correctly
ordered data to be seen by all processors.

Initial conditions for “fast string” operations:

® EDI and ESI must be 8-byte aligned for the Pentium Il processor. EDI must be 8-byte
aligned for the Pentium 4 processor.

®  String operation must be performed in ascending address order.
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® The initial operation counter (ECX) must be equal to or greater than 64.

® Source and destination must not overlap by less than a cache line (64 bytes, Pentium 4 and
Intel Xeon processors; 32 bytes P6 family and Pentium processors).

® The memory type for both source and destination addresses must be either WB or WC.

7.2.4. Strengthening or Weakening the Memory Ordering Model

The TA-32 architecture provides several mechanisms for strengthening or weakening the
memory ordering model to handle special programming situations. These mechanisms include:

® The I/O instructions, locking instructions, the LOCK prefix, and serializing instructions
force stronger ordering on the processor.

® The SFENCE instruction (introduced to the IA-32 architecture in the Pentium Il
processor) and the LFENCE and MFENCE instructions (introduced in the Pentium 4 and
Intel Xeon processors) provide memory ordering and serialization capability for specific
types of memory operations.

® The memory type range registers (MTRRs) can be used to strengthen or weaken memory
ordering for specific area of physical memory (see Section 10.11., “Memory Type Range
Registers (MTRRs)”). MTRRs are available only in the Pentium 4, Intel Xeon, and P6
family processors.

® The page attribute table (PAT) can be used to strengthen memory ordering for a specific
page or group of pages (see Section 10.12., “Page Attribute Table (PAT)”). The PAT is
available only in the Pentium 4, Intel Xeon, and Pentium Il processors.

These mechanisms can be used as follows.

Memory mapped devices and other I/O devices on the bus are often sensitive to the order of
writes to their I/O buffers. I/O instructions can be used to (the IN and OUT instructions) impose
strong write ordering on such accesses as follows. Prior to executing an I/O instruction, the
processor waits for all previous instructions in the program to complete and for all buffered
writes to drain to memory. Only instruction fetch and page tables walks can pass I/O instruc-
tions. Execution of subsequent instructions do not begin until the processor determines that the
I/0O instruction has been completed.

Synchronization mechanisms in multiple-processor systems may depend upon a strong
memory-ordering model. Here, a program can use a locking instruction such as the XCHG
instruction or the LOCK prefix to insure that a read-modify-write operation on memory is
carried out atomically. Locking operations typically operate like I/O operations in that they wait
for all previous instructions to complete and for all buffered writes to drain to memory (see
Section 7.1.2., “Bus Locking”).
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Program synchronization can also be carried out with serializing instructions (see Section 7.4.,
“Serializing Instructions”). These instructions are typically used at critical procedure or task
boundaries to force completion of all previous instructions before a jump to a new section of
code or a context switch occurs. Like the I/O and locking instructions, the processor waits until
all previous instructions have been completed and all buffered writes have been drained to
memory before executing the serializing instruction.

The SFENCE, LFENCE, and MFENCE instructions provide a performance-efficient way of
insuring load and store memory ordering between routines that produce weakly-ordered results
and routines that consume that data. The functions of these instructions are as follows:

® SFENCE—Serializes all store (write) operations that occurred prior to the SFENCE
instruction in the program instruction stream, but does not affect load operations.

® LFENCE—Serializes all load (read) operations that occurred prior to the LFENCE
instruction in the program instruction stream, but does not affect store operations.

¢ MFENCE—Serializes all store and load operations that occurred prior to the MFENCE
instruction in the program instruction stream.

Note that the SFENCE, LFENCE, and MFENCE instructions provide a more efficient method
of controlling memory ordering than the CPUID instruction.

The MTRRs were introduced in the P6 family processors to define the cache characteristics for
specified areas of physical memory. The following are two examples of how memory types set
up with MTRRs can be used strengthen or weaken memory ordering for the Pentium 4, Intel
Xeon, and P6 family processors:

® The strong uncached (UC) memory type forces a strong-ordering model on memory
accesses. Here, all reads and writes to the UC memory region appear on the bus and out-of-
order or speculative accesses are not performed. This memory type can be applied to an
address range dedicated to memory mapped I/O devices to force strong memory ordering.

® For areas of memory where weak ordering is acceptable, the write back (WB) memory
type can be chosen. Here, reads can be performed speculatively and writes can be buffered
and combined. For this type of memory, cache locking is performed on atomic (locked)
operations that do not split across cache lines, which helps to reduce the performance
penalty associated with the use of the typical synchronization instructions, such as XCHG,
that lock the bus during the entire read-modify-write operation. With the WB memory
type, the XCHG instruction locks the cache instead of the bus if the memory access is
contained within a cache line.

The PAT was introduced in the Pentium Il processor to enhance the caching characteristics that
can be assigned to pages or groups of pages. The PAT mechanism typically used to strengthen
caching characteristics at the page level with respect to the caching characteristics established
by the MTRRs. Table 10-7 shows the interaction of the PAT with the MTRRs.
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It is recommended that software written to run on Pentium 4, Intel Xeon, and P6 family proces-
sors assume the processor-ordering model or a weaker memory-ordering model. The Pentium 4,
Intel Xeon, and P6 family processors do not implement a strong memory-ordering model, except
when using the UC memory type. Despite the fact that Pentium 4, Intel Xeon, and P6 family
processors support processor ordering, Intel does not guarantee that future processors will
support this model. To make software portable to future processors, it is recommended that oper-
ating systems provide critical region and resource control constructs and API’s (application
program interfaces) based on I/0, locking, and/or serializing instructions be used to synchronize
access to shared areas of memory in multiple-processor systems. Also, software should not
depend on processor ordering in situations where the system hardware does not support this
memory-ordering model.

7.3. PROPAGATION OF PAGE TABLE AND PAGE DIRECTORY
ENTRY CHANGES TO MULTIPLE PROCESSORS

In a multiprocessor system, when one processor changes a page table or page directory entry,
the changes must also be propagated to all the other processors. This process is commonly
referred to as “TLB shootdown.” The propagation of changes to page table or page directory
entries can be done using memory-based semaphores and/or interprocessor interrupts (IPI)
between processors. For example, a simple but algorithmic correct TLB shootdown sequence
for a IA-32 processor is as follows:

1. Begin barrier—Stop all but one processor; that is, cause all but one to HALT or stop in a
spin loop.

2. Let the active processor change the necessary PTEs and/or PDEs.
3. Let all processors invalidate the PTEs and PDEs modified in their TLBs.
4. End barrier—Resume all processors; resume general processing.

Alternate, performance-optimized, TLB shootdown algorithms may be developed; however,
care must be taken by the developers to ensure that either of the following conditions are met:

® Different TLB mappings are not used on different processors during the update process.

® The operating system is prepared to deal with the case where processors are using the stale
mapping during the update process.
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7.4. SERIALIZING INSTRUCTIONS

The TA-32 architecture defines several serializing instructions. These instructions force the
processor to complete all modifications to flags, registers, and memory by previous instructions
and to drain all buffered writes to memory before the next instruction is fetched and executed.
For example, when a MOV to control register instruction is used to load a new value into control
register CRO to enable protected mode, the processor must perform a serializing operation
before it enters protected mode. This serializing operation insures that all operations that were
started while the processor was in real-address mode are completed before the switch to
protected mode is made.

The concept of serializing instructions was introduced into the IA-32 architecture with the
Pentium processor to support parallel instruction execution. Serializing instructions have no
meaning for the Intel486 and earlier processors that do not implement parallel instruction execu-
tion.

It is important to note that executing of serializing instructions on Pentium 4, Intel Xeon, and P6
family processors constrain speculative execution, because the results of speculatively executed
instructions are discarded.

The following instructions are serializing instructions:

® Privileged serializing instructions—MOYV (to control register), MOV (to debug register),
WRMSR, INVD, INVLPG, WBINVD, LGDT, LLDT, LIDT, and LTR.

® Non-privileged serializing instructions—CPUID, IRET, and RSM.
® Non-privileged memory ordering instructions—SFENCE, LFENCE, and MFENCE.

When the processor serializes instruction execution, it ensures that all pending memory transac-
tions are completed, including writes stored in its store buffer, before it executes the next
instruction. Nothing can pass a serializing instruction, and serializing instructions cannot pass
any other instruction (read, write, instruction fetch, or I/0).

The CPUID instruction can be executed at any privilege level to serialize instruction execution
with no effect on program flow, except that the EAX, EBX, ECX, and EDX registers are modi-
fied.

The SFENCE, LFENCE, and MFENCE instructions provide more granularity in controlling the
serialization of memory loads and stores (see Section 7.2.4., “Strengthening or Weakening the
Memory Ordering Model”).

The following additional information is worth noting regarding serializing instructions:

® The processor does not writeback the contents of modified data in its data cache to external
memory when it serializes instruction execution. Software can force modified data to be
written back by executing the WBINVD instruction, which is a serializing instruction. It
should be noted that frequent use of the WBINVD instruction will seriously reduce system
performance.
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® When an instruction is executed that enables or disables paging (that is, changes the PG
flag in control register CRO), the instruction should be followed by a jump instruction. The
target instruction of the jump instruction is fetched with the new setting of the PG flag (that
is, paging is enabled or disabled), but the jump instruction itself is fetched with the
previous setting. The Pentium 4, Intel Xeon, and P6 family processors do not require the
jump operation following the move to register CRO (because any use of the MOV
instruction in a Pentium 4, Intel Xeon, or P6 family processor to write to CRO is
completely serializing). However, to maintain backwards and forward compatibility with
code written to run on other IA-32 processors, it is recommended that the jump operation
be performed.

® Whenever an instruction is executed to change the contents of CR3 while paging is
enabled, the next instruction is fetched using the translation tables that correspond to the
new value of CR3. Therefore the next instruction and the sequentially following instruc-
tions should have a mapping based upon the new value of CR3. (Global entries in the
TLBs are not invalidated, see Section 10.9., “Invalidating the Translation Lookaside
Buffers (TLBs)”.)

® The Pentium 4, Intel Xeon, P6 family, and Pentium processors use branch-prediction
techniques to improve performance by prefetching the destination of a branch instruction
before the branch instruction is executed. Consequently, instruction execution is not deter-
ministically serialized when a branch instruction is executed.

7.5. MULTIPLE-PROCESSOR (MP) INITIALIZATION

The IA-32 architecture (beginning with the P6 family processors) defines a multiple-processor
(MP) initialization protocol called the Multiprocessor Specification Version 1.4. This specifica-
tion defines the boot protocol to be used by TA-32 processors in multiple-processor systems.
(Here, multiple processors is defined as two or more processors.) The MP initialization
protocol has the following important features:

® It supports controlled booting of multiple processors without requiring dedicated system
hardware.

® It allows hardware to initiate the booting of a system without the need for a dedicated
signal or a predefined boot processor.

® It allows all IA-32 processors to be booted in the same manner, including those with
Hyper-Threading Technology.

The mechanism for carrying out the MP initialization protocol differs depending on the IA-32
processor family, as follows:

® For P6 family processors—The selection of the BSP and APs (see Section 7.5.1., “BSP
and AP Processors”) is handled through arbitration on the APIC bus, using BIPI and FIPI
messages. See Appendix C for a complete discussion of MP initialization for P6 family
processors.
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® Intel Xeon processors with family, model, and stepping IDs up to FOOH—The selection of
the BSP and APs (see Section 7.5.1., “BSP and AP Processors”) is handled through
arbitration on the system bus, using BIPI and FIPI messages. See Section 7.5.3., “MP
Initialization Protocol Algorithm for the Intel Xeon Processors” for a complete discussion
of MP initialization for Intel Xeon processors.

® Intel Xeon processors with family, model, and stepping IDs of FOAH and beyond—The
selection of the BSP and APs is handled through a special system bus cycle, without using
BIPI and FIPI message arbitration. This method of selection is also described in Section
7.5.3., “MP Initialization Protocol Algorithm for the Intel Xeon Processors”.

The family, model, and stepping ID for a processor is given in the EAX register when the
CPUID instruction is executed with a value of 1 in the EAX register.

7.5.1. BSP and AP Processors

The MP initialization protocol defines two classes of processors: the bootstrap processor (BSP)
and the application processors (APs). Following a power-up or RESET of an MP system, system
hardware dynamically selects one of the processors on the system bus as the BSP. The remaining
processors are designated as APs.

As part of the BSP selection mechanism, the BSP flag is set in the [A32_APIC_BASE MSR (see
Figure 8-5) of the BSP, indicating that it is the BSP. This flag is cleared for all other processors.

The BSP executes the BIOS’s boot-strap code to configure the APIC environment, sets up
system-wide data structures, and starts and initializes the APs. When the BSP and APs are
initialized, the BSP then begins executing the operating-system initialization code.

Following a power-up or reset, the APs complete a minimal self-configuration, then wait for a
startup signal (a SIPI message) from the BSP processor. Upon receiving a SIPI message, an AP
executes the BIOS AP configuration code, which ends with the AP being placed in halt state.

In TA-32 processors with Hyper-Threading Technology, the MP initialization protocol treats
each of the logical processors on the system bus as a separate processor (with a unique APIC
ID). During boot-up, one of the logical processors is selected as the BSP and the remainder of
the logical processors are designated as APs.

7.5.2. MP Initialization Protocol Requirements and Restrictions
for Intel Xeon Processors

The MP initialization protocol imposes the following requirements and restrictions on the
system:

® The MP protocol is executed only after a power-up or RESET. If the MP protocol has
completed and a BSP is chosen, subsequent INITs (either to a specific processor or system
wide) do not cause the MP protocol to be repeated. Instead, each processor examines its
BSP flag (in the IA32_APIC_BASE MSR) to determine whether it should execute the
BIOS boot-strap code (if it is the BSP) or enter a wait-for-SIPI state (if it is an AP).
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All devices in the system that are capable of delivering interrupts to the processors must be
inhibited from doing so for the duration of the MP initialization protocol. The time during
which interrupts must be inhibited includes the window between when the BSP issues an
INIT-SIPI-SIPI sequence to an AP and when the AP responds to the last SIPI in the
sequence.

7.5.3. MP Initialization Protocol Algorithm for the Intel Xeon

Processors

Following a power-up or RESET of an MP system, the Intel Xeon processors in the system
execute the MP initialization protocol algorithm to initialize each of the processors on the
system bus. In the course of executing this algorithm, the following boot-up and initialization
operations are carried out:

1.

Each processor on the system bus is assigned a unique 8-bit APIC ID, based on system
topology (see Section 7.5.5., “Identifying the Processors in an MP System”). This ID is
written into the local APIC ID register for each processor.

Each processor is assigned a unique arbitration priority based on it APIC ID.

Each processor executes its internal BIST simultaneously with the other processors on the
system bus.

Upon completion of the BIST, the processors use a hardware-defined selection mechanism
to select the BSP and the APs from the available processors on the system bus. The BSP
selection mechanism differs depending on the family, model, and stepping IDs of the
processors, as follows:

— Family, model, and stepping IDs of FOAH and onwards:

® The processors begin monitoring the BNR# signal, which is toggling. When the
BNR# pin stops toggling, each processor attempts to issue a NOP special cycle on
the system bus.

® The processor with the highest arbitration priority succeeds in issuing a NOP
special cycle and is nominated the BSP. This processor sets the BSP flag in its
IA32_APIC_BASE MSR, then fetches and begins executing BIOS boot-strap
code, beginning at the reset vector (physical address FFFF FFFOH).

®* The remaining processors (that failed in issuing a NOP special cycle) are
designated as APs. They leave their BSP flags in the clear state and enter a “wait-
for-SIPI state.”

— Family, model, and stepping IDs up to FO9H:

® Each processor broadcasts a BIPI to “all including self.” The first processor that
broadcasts a BIPI (and thus receives its own BIPI vector), selects itself as the BSP
and sets the BSP flag in its IA32_APIC_BASE MSR. (See Section C.1.,
“Overview of the MP Initialization Process For P6 Family Processors”, for a
description of the BIPI, FIPI, and SIPI messages.)
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The

* The remainder of the processors (which were not selected as the BSP) are
designated as APs. They leave their BSP flags in the clear state and enter a “wait-
for-SIPI state.”

® The newly established BSP broadcasts an FIPI message to “all including self,”
which the BSP and APs treat as an end of MP initialization signal. Only the
processor with its BSP flag set responds to the FIPI message. It responds by
fetching and executing the BIOS boot-strap code, beginning at the reset vector
(physical address FFFF FFFOH).

As part of the boot-strap code, the BSP creates an ACPI table and an MP table and adds its
initial APIC ID to these tables as appropriate.

At the end of the boot-strap procedure, the BSP sets a processor counter to 1, then
broadcasts a SIPI message to all the APs in the system. Here, the SIPI message contains a
vector to the BIOS AP initialization code (at 000VVOOOH, where VV is the vector
contained in the SIPI message).

The first action of the AP initialization code is to set up a race (among the APs) to a BIOS
initialization semaphore. The first AP to the semaphore begins executing the initialization
code. (See Section 7.5.4., “MP Initialization Example”, for semaphore implementation
details.) As part of the AP initialization procedure, the AP adds its APIC ID number to the
ACPI and MP tables as appropriate and increments the processor counter by 1. At the
completion of the initialization procedure, the AP executes a CLI instruction and halts
itself.

When each of the APs has gained access to the semaphore and executed the AP initial-
ization code, the BSP establishes a count for the number of processors connected to the
system bus, completes executing the BIOS boot-strap code, and then begins executing
operating-system boot-strap and start-up code.

While the BSP is executing operating-system boot-strap and start-up code, the APs remain
in the halted state. In this state they will respond only to INITs, NMIs, and SMIs. They will
also respond to snoops and to assertions of the STPCLK# pin.

following section gives an example (with code) of the MP initialization protocol for

multiple Intel Xeon processors operating in an MP configuration.

Appendix D, Programming the LINTO and LINTI Inputs, describes how to program the
LINTI[O:1] pins of the processor’s local APICs after an MP configuration has been completed.

7.5.4. MP Initialization Example

The

following example illustrates the use of the MP initialization protocol to initialize IA-32

processors in an MP system after the BSP and APs have been established. This code runs
successfully on any IA-32 processor that uses the MP initialization protocol, which include the
P6 family processors and the Intel Xeon processors (with and without Hyper-Threading Tech-
nology.
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The following constants and data definitions are used in the accompanying code examples. They
are based on the addresses of the APIC registers as defined in Table 8-1.

ICR_LOW EQU OFEE00300H
SVR EQU OFEE000FOH
APIC_ID EQU OFEE00020H
LVT3 EQU OFEE00370H
APIC_ENABLED EQU 0100H
BOOT_ID DD ?

COUNT EQU 00H
VACANT EQU 00H

7.5.4.1. TYPICAL BSP INITIALIZATION SEQUENCE

After the BSP and APs have been selected (by means of a hardware protocol, see Section 7.5.3.,
“MP Initialization Protocol Algorithm for the Intel Xeon Processors”), the BSP begins
executing BIOS boot-strap code (POST) at the normal IA-32 architecture starting address (FFFF
FFFOH). The boot-strap code typically performs the following operations:

1. Initializes memory.
Loads the microcode update into the processor.
Initializes the MTRRs.

Enables the caches.

A

Executes the CPUID instruction with a value of OH in the EAX register, then reads the
EBX, ECX, and EDX registers to determine if the BSP is “Genuinelntel.”

6. Executes the CPUID instruction with a value of 1H in the EAX register, then saves the
values in the EAX, ECX, and EDX registers in a system configuration space in RAM for
use later.

7. Loads start-up code for the AP to execute into a 4-KByte page in the lower 1 MByte of
memory.

8. Switches to protected mode and insures that the APIC address space is mapped to the
strong uncacheable (UC) memory type.

9. Determine the BSP’s APIC ID from the local APIC ID register (default is 0):

MOV ESI, APIC ID ; address of local APIC ID register

MOV EAX, [ESI]

AND EAX, OFFO000O0O0OH ; zero out all other bits except APIC ID
MOV BOOT ID, EAX ; save in memory
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10.

11.

12.

13.

14.

7-20

Saves the APIC ID in the ACPI and MP tables and optionally in the system configuration
space in RAM.

Converts the base address of the 4-KByte page for the AP’s bootup code into 8-bit vector.
The 8-bit vector defines the address of a 4-KByte page in the real-address mode address
space (1-MByte space). For example, a vector of 0BDH specifies a start-up memory
address of 000BDOOOH.

Enables the local APIC by setting bit 8 of the APIC spurious vector register (SVR).

MOV ESI, SVR ; address of SVR

MOV EAX, [ESI]

OR EAX, APIC ENABLED ; set bit 8 to enable (0 on reset)
MOV [ESI], EAX

Sets up the LVT error handling entry by establishing an 8-bit vector for the APIC error
handler.

MOV ESI, LVT3

MOV EAX, [ESI]

AND EAX, FFFFFFOOH; clear out previous vector

OR EAX, 000000xxH; xx 1is the 8-bit vector the APIC error
; handler.

MOV [ESI], EAX

Initializes the Lock Semaphore variable VACANT to O0H. The APs use this semaphore to
determine the order in which they execute BIOS AP initialization code.

Performs the following operation to set up the BSP to detect the presence of APs in the
system and the number of processors:

— Sets the value of the COUNT variable to 1.

— Starts a timer (set for an approximate interval of 100 milliseconds). In the AP BIOS
initialization code, the AP will increment the COUNT variable to indicate its presence.
When the timer expires, the BSP checks the value of the COUNT variable. If the timer
expires and the COUNT variable has not been incremented, no APs are present or
some error has occurred.
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15. Broadcasts an INIT-SIPI-SIPI IPI sequence to the APs to wake them up and initialize

them:

MOV ESI, ICR_LOW; load address of ICR low dword into ESI

MOV EAX, 000C4500H; load ICR encoding for broadcast INIT IPI
; to all APs into EAX

MOV [ESI], EAX ; broadcast INIT IPI to all APs

; 10-millisecond delay loop

MOV EAX, 000C46XXH; load ICR encoding for broadcast SIPI IPI
; to all APs into EAX, where xx is the
; vector value computed in step 8.

MOV [ESI], EAX ; broadcast SIPI IPI to all APs

; 200-microsecond delay loop

MOV [ESI], EAX ; broadcast second SIPI IPI to all APs

; 200-microsecond delay loop

16. Waits for the timer interrupt.
17. Reads and evaluates the COUNT variable and establishes a processor count.

18. If necessary, reconfigures the APIC and continues with the remaining system diagnostics
as appropriate.

7.5.4.2. TYPICAL AP INITIALIZATION SEQUENCE

When an AP receives the SIPI, it begins executing BIOS AP initialization code at the vector
encoded in the SIPI. The AP initialization code typically performs the following operations:

1. Waits on the BIOS initialization Lock Semaphore. When control of the semaphore is
attained, initialization continues.

Loads the microcode update into the processor.
Initializes the MTRRs (using the same mapping that was used for the BSP).

Enables the cache.

A

Executes the CPUID instruction with a value of OH in the EAX register, then reads the
EBX, ECX, and EDX registers to determine if the AP is “Genuinelntel.”

6. Executes the CPUID instruction with a value of 1H in the EAX register, then saves the
values in the EAX, ECX, and EDX registers in a system configuration space in RAM for
use later.

7. Switches to protected mode and insures that the APIC address space is mapped to the
strong uncacheable (UC) memory type.

8. Determines the AP’s APIC ID from the local APIC ID register, and adds it to the MP and
ACPI tables and optionally to the system configuration space in RAM.
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9. Initializes and configures the local APIC by setting bit 8 in the SVR register and setting up
the LVT3 (error LVT) for error handling (as described in steps 9 and 10 in Section 7.5.4.1.,
“Typical BSP Initialization Sequence”).

10. Configures the APs SMI execution environment. (Each AP and the BSP must have a
different SMBASE address.)

11. Increments the COUNT variable by 1.
12. Releases the semaphore.

13. Executes the CLI and HLT instructions.
14. Waits for an INIT IPIL.

7.5.5. Identifying the Processors in an MP System

After the BIOS has completed the MP initialization protocol, each processor can be uniquely
identified by its local APIC ID. Software can access these APIC IDs in either of the following
ways:

® Read the APIC ID for a local APIC. Code running on a processor can execute a MOV
instruction to read the contents of the processor’s local APIC ID register (see Section
8.4.6., “Local APIC ID”).

® Read the ACPI or MP table. As part of the MP initialization protocol, the BIOS creates
an ACPI table and an MP table. These tables are defined in the Multiprocessor Specifi-
cation Version 1.4 and provide software with a list of the processors in the system and their
local APIC IDs. The format of the ACPI table is derived from the ACPI specification,
which is an industry standard power management and platform configuration specification
for MP systems.

For Intel Xeon processors, the APIC ID assigned to a processor during power-up and initializa-
tion is 8 bits (see Figure 7-2). Here, bits 1 and 2 form a 2-bit processor identifier (which can also
be thought of as a socket identifier). In systems that configure processors in clusters, bits 3 and
4 form a 2-bit cluster ID. Bit 0 is used in the Intel Xeon processor MP to identify the two logical
processors within the package (see Section 7.6.8., “Identifying Logical Processors in an MP
System”). For an Intel Xeon processor without Hyper-Threading Technology, bit 0 is always set
to 0; for an Intel Xeon processor with Hyper-Threading Technology, bit O performs the same
function as it does in the Intel Xeon processor MP.
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APIC ID Format for Intel Xeon Processors
without Hyper-Threading Technology

7 5 4 3 2 1 0

Reserved 0
Cluster —‘
Processor ID

APIC ID Format for P6 Family Processors
7 5 4 3 2 A 0

Reserved

ClusterQ ’

Processor ID

Figure 7-2. Interpretation of APIC ID in MP Systems

For P6 family processors, the APIC ID that is assigned to a processor during power-up and
initialization is 4 bits (see Figure 7-2). Here, bits 0 and 1 form a 2-bit processor (or socket) iden-
tifier and bits 2 and 3 form a 2-bit cluster ID.

7.6. HYPER-THREADING TECHNOLOGY

Hyper-Threading (HT) Technology was introduced into the IA-32 architecture in the Intel Xeon
processor MP and in later steppings of the Intel Xeon processor. It is also supported by the Intel
Pentium 4 processor at 3.06 GHz or higher. All HT Technology configurations require a chipset
and BIOS that utilize the technology, and an operating system that includes optimizations for
HT technology. See www.intel.com/info/hyperthreading for more information. See also:
Volume 1, Chapter 2.2.4., Hyper-Threading Technology.

Intel recommends that software not rely on IA-32 processor names to determine whether a
processor supports HT Technology. Software should use the CPUID instruction as described in
Section 7.6.3., “Detecting Hyper-Threading Technology”.

HT Technology is an extension to the IA-32 architecture that enables a single physical processor
to execute two or more separate code streams (called threads) concurrently. The following
sections describe how the feature is implemented in IA-32 processors.
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7.6.1. Intel Hyper-Threading Technology Architecture

Figure 7-3 shows a generalized view of an IA-32 processor with HT Technology, using the Intel
Xeon processor MP as an example. This implementation of the HT Technology consists of two
logical processors (each represented by a separate IA-32 architectural state) which share the
processor’s execution engine and the bus interface. Each logical processor also has its own
advanced programmable interrupt controller (APIC).

Logical Logical
Processor 0 | Processor 1
Architectural | Architectural

State State

Execution Engine

Local APIC | Local APIC

Bus Interface

A
A

System Bus

Figure 7-3. 1A-32 Processor with Intel Hyper-Threading Technology using
Two Logical Processors

7.6.1.1. STATE OF THE LOGICAL PROCESSORS

The following features are considered part of the architectural state of a logical processor with
HT Technology. The features can be subdivided into three groups:

® Duplicated for each logical processor
¢ Shared by logical processors in a physical processor

® Shared or duplicated depending on the implementationShared or duplicated depending on
the implementationDuplicated for Each Logical Processor

The following features are duplicated for each logical processor:
® General purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, and EBP)
® Segment registers (CS, DS, SS, ES, FS, and GS)

® EFLAGS and EIP registers. Note that the CS and EIP registers for each logical processor
point to the instruction stream for the thread being executed by the logical processor.
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® x87 FPU registers (STO through ST7, status word, control word, tag word, data operand
pointer, and instruction pointer)

®  MMKX registers (MMO through MM7)
®  XMM registers (XMMO through XMM?7) and the MXCSR register

® Control registers (CRO, CR2, CR3, CR4) and system table pointer registers (GDTR,
LDTR, IDTR, task register)

® Debug registers (DRO, DR1, DR2, DR3, DR6, DR7) and the debug control MSR
(IA32_DEBUGCTL)

® Machine check global status (IA32_MCG_STATUS) and machine check capability
(IA32_MCG_CAP) MSRs

® Thermal clock modulation and ACPI Power management control MSRs
® Time stamp counter MSRs

® DMost of the other MSR registers, including the page attribute table (PAT). See the
exceptions below.

® Local APIC registers.

The following features are shared by logical processors:

® JA32_MISC_ENABLE MSR (MSR address 1AOH)

® Memory type range registers (MTRRs)

Whether the following features are shared or duplicated is implementation-specific:

® Machine check architecture (MCA) MSRs (except for the 1A32_MCG_STATUS and
TA32_MCG_CAP MSRs)

® Performance monitoring control and counter MSRs

7.6.1.2. APIC FUNCTIONALITY

When a processor with HT Technology support is initialized, each logical processor is assigned
alocal APIC ID (see Table 8-1). The local APIC ID serves as an ID for the logical processor and
stored in the logical processor’s APIC ID register. If two or more IA-32 processors with HT
Technology are present in a dual processor (DP) or MP system, each logical processor on the
system bus is assigned a unique local APIC ID (see Section 7.6.8., “Identifying Logical Proces-
sors in an MP System”).

Software communicates with local processors using the APIC’s interprocessor interrupt (IPT)
messaging facility. The setup and programming of local APICs in processors with HT Tech-
nology is identical to that of IA-32 processors without HT Technology. See Chapter 8, Advanced
Programmable Interrupt Controller (APIC) for a detailed discussion.
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7.6.1.3. MEMORY TYPE RANGE REGISTERS (MTRR)

MTRRs in a processor with HT Technology are shared by logical processors. When one logical
processor updates the setting of the MTRRs, settings are automatically shared with the other
logical processors in the same physical package.

IA-32 architecture requires that all MP systems based on IA-32 processors (this includes logical
processors) MUST use an identical MTRR memory map. This gives software a consistent view
of memory, independent of the processor on which it is running. See Section 10.11., “Memory
Type Range Registers (MTRRs)” for information on setting up MTRRs.

7.6.1.4. PAGE ATTRIBUTE TABLE (PAT)

Each logical processor has its own PAT MSR (IA32_CR_PAT). However, as described in
Section 10.12., “Page Attribute Table (PAT)”, the PAT MSR settings must be the same for all
processors in a system, including the logical processors.

7.6.1.5. MACHINE CHECK ARCHITECTURE

In the HT Technology context, all of the machine check architecture (MCA) MSRs (except for
the TA32_MCG_STATUS and IA32_MCG_CAP MSRs) are duplicated for each logical
processor. This permits logical processors to initialize, configure, query, and handle machine-
check exceptions simultaneously within the same physical processor. The design is compatible
with machine check exception handlers that follow the guidelines given in Chapter 14, Machine-
Check Architecture.

The TA32_MCG_STATUS MSR is duplicated for each logical processor so that its machine
check in progress bit field (MCIP) can be used to detect recursion on the part of MCA handlers.
In addition, the MSR allows each logical processor to determine that a machine-check exception
is in progress independent of the actions of another logical processor in the same physical
package.

Because the logical processors within a physical package are tightly coupled with respect to
shared hardware resources, both logical processors are notified of machine check errors that
occur within a given physical processor. If machine-check exceptions are enabled when a fatal
error is reported, all the logical processors within a physical package are dispatched to the
machine-check exception handler. If machine-check exceptions are disabled, the logical proces-
sors enter the shutdown state and assert the IERR# signal.

When enabling machine-check exceptions, the MCE flag in control register CR4 should be set
for each logical processor.

7.6.1.6. DEBUG REGISTERS AND EXTENSIONS

Each logical processor has its own set of debug registers (DRO, DR1, DR2, DR3, DR6, DR7)
and its own debug control MSR (IA32_DEBUGCTL). These can be set to control and record
debug information for each logical processor independently. Each logical processor also has its
own last branch records (LBR) stack.
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7.6.1.7. PERFORMANCE MONITORING COUNTERS

Performance counters their companion control MSRs are shared between the logical processors
within the physical processor. As a result, software must manage the use of these resources. The
performance counter interrupts, events, and precise event monitoring support can be set up and
allocated on a per thread (per logical processor) basis.

See Section 15.10., “Performance Monitoring and Hyper-Threading Technology”, for a discus-
sion of performance monitoring in the Intel Xeon processor MP.

7.6.1.8. IA32_MISC_ENABLE MSR

The IA32_MISC_ENABLE MSR (MSR address 1AOH) is shared between the logical proces-
sors in an [A-32 processor with HT Technology. Thus the architectural features that this register
controls are set the same for all the logical processors in the same physical package.

7.6.1.9. MEMORY ORDERING

The logical processors in an IA-32 processor with HT Technology obey the same rules for
memory ordering as IA-32 processors without HT Technology (see Section 7.2., “Memory
Ordering”). Each logical processor uses a processor-ordered memory model that can be further
defined as “write-ordered with store buffer forwarding.” All mechanisms for strengthening or
weakening the memory ordering model to handle special programming situations apply to each
logical processor.

7.6.1.10. SERIALIZING INSTRUCTIONS

As a general rule, when a logical processor in an IA-32 processor with HT Technology executes
a serializing instruction, only that logical processor is affected by the operation. An exception
to this rule is the execution of the WBINVD, INVD, and WRMSR instructions; and the MOV
CR instruction when the state of the CD flag in control register CRO is modified. Here, both
logical processors are serialized.

7.6.1.11. MICROCODE UPDATE RESOURCES

In an TA-32 processor with HT Technology, the microcode update facilities are shared between
the logical processors; either logical processor can initiate an update. Each logical processor has
its own BIOS signature MSR (IA32_BIOS_SIGN_ID at MSR address 8BH). When a logical
processor performs an update for the physical processor, the IA32_BIOS_SIGN_ID MSRs for
resident logical processors are updated with identical information. If logical processors initiate
an update simultaneously, the processor core provides the necessary synchronization needed to
insure that only one update is performed at a time.

Operating system microcode update drivers that adhere to Intel’s guidelines do not need to be
modified to run on an IA-32 processor with HT Technology.
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7.6.1.12. SELF MODIFYING CODE

IA-32 processors with HT Technology support self-modifying code, where data writes modify
instructions cached or currently in flight. They also support cross-modifying code, where on an
MP system writes generated by one processor modify instructions cached or currently in flight
on another. See Section 7.1.3., “Handling Self- and Cross-Modifying Code” for a description of
the requirements for self- and cross-modifying code in an IA-32 processor.

7.6.2. Implementation-Specific HT Technology Facilities for the
Intel Xeon Processor MP

The following non-architectural facilities are implementation-specific in IA-32 processors with
HT Technology:

® (Caches
® Translation lookaside buffers (TLBs)
® Thermal monitoring facilities

The Intel Xeon processor MP implementation is described in the following sections.

7.6.2.1. PROCESSOR CACHES

For the Intel Xeon processor MP, the caches are shared. Any cache manipulation instruction that
is executed on one logical processor has a global effect on the cache hierarchy of the physical
processor. Note the following:

® WBINVD instruction. The entire cache hierarchy is invalidated after modified data is
written back to memory. All logical processors are stopped from executing until after the
write-back and invalidate operation is completed. A special bus cycle is sent to all caching
agents.

¢ INVD instruction. The entire cache hierarchy is invalidated without writing back
modified data to memory. All logical processors are stopped from executing until after the
invalidate operation is completed. A special bus cycle is sent to all caching agents.

¢ CLFLUSH instruction. The specified cache line is invalidated from the cache hierarchy
after any modified data is written back to memory and a bus cycle is sent to all caching
agents, regardless of which logical processor caused the cache line to be filled.

¢ (D flag in control register CR0. Each logical processor has its own CRO control register,
and thus its own CD flag in CRO. The CD flags for the two logical processors are ORed
together, such that when any logical processor sets its CD flag, the entire cache is
nominally disabled.
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7.6.2.2. PROCESSOR TRANSLATION LOOKASIDE BUFFERS (TLBS)

In an Intel Xeon processor MP, data cache TLBs are shared. The instruction cache TLB is dupli-
cated in each logical processor.

Entries in the TLBs are tagged with an ID that indicates the logical processor that initiated the
translation. This tag applies even for translations that are marked global using the page global
feature for memory paging.

When a logical processor performs a TLB invalidation operation, only the TLB entries that are
tagged for that logical processor are flushed. This protocol applies to all TLB invalidation oper-
ations, including writes to control registers CR3 and CR4 and uses of the INVLPG instruction.

7.6.2.3. THERMAL MONITOR

In an Intel Xeon processor MP, logical processors share the catastrophic shutdown detector and
the automatic thermal monitoring mechanism (see Section 13.15., “Thermal Monitoring and
Protection”). Sharing results in the following behavior:

® If the processor’s core temperature rises above the preset catastrophic shutdown temper-
ature, the processor core halts execution, which causes both logical processors to stop
execution.

®  When the processor’s core temperature rises above the preset automatic thermal monitor
trip temperature, the clock speed of the processor core is automatically modulated, which
effects the execution speed of both logical processors.

For software controlled clock modulation, each logical processor has its own
IA32_THERM_CONTROL MSR, allowing clock modulation to be enabled or disabled on a per
logical processor basis. Typically, if software controlled clock modulation is going to be used,
it must be enabled for all the logical processors within a physical processor, and the modulation
duty cycle must be set to the same value for each logical processor. If the duty cycle values differ
between the logical processors, then the processor clock will be modulated at the highest duty
cycle selected.

7.6.2.4. EXTERNAL SIGNAL COMPATIBILITY

This section describes the constraints on external signals received through the pins of an Intel
Xeon processor MP and how these signals are shared between its logical processors.

® STPCLK#. A single STPCLK# pin is provided on the physical package of the Intel Xeon
processor MP. External control logic uses this pin for power management within the
system. When the STPCLK# signal is asserted, the processor core transitions to the stop-
grant state, where instruction execution is halted but the processor core continues to
respond to snoop transactions. Regardless of whether the logical processors are active or
halted when the STPCLK# signal is asserted, execution is stopped on both logical
processors and neither will respond to interrupts.

In MP systems, the STPCLK# pins on all physical processors are generally tied together.
As aresult this signal affects all the logical processors within the system simultaneously.
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¢ LINTO and LINT1 Pins. An Intel Xeon processor MP has only one set of LINTO and
LINT1 pins, which are shared between the logical processors. When one of these pins is
asserted, both logical processors respond unless the pin has been masked in the APIC local
vector tables for one or both of the logical processors.

Typically in MP systems, the LINTO and LINT1 pins are not used to deliver interrupts to
the logical processors. Instead all interrupts are delivered to the local processors through
the I/0 APIC.

®  A20M# Pin. On an IA-32 processor, the A20M# pin is typically provided for compatibility
with the Intel 286 processor. Asserting this pin causes bit 20 of the physical address to be
masked (forced to zero) for all external bus memory accesses. The Intel Xeon processor
MP provides one A20M# pin, which affects the operation of both logical processors within
the physical processor. This configuration is compatible with the IA-32 architecture.

7.6.3. Detecting Hyper-Threading Technology

Software can use the CPUID instruction to detect the presence of HT Technology and its config-
uration in an IA-32 processor. When the CPUID instruction is executed with an input value of
1 in the EAX register, the following two items must be checked to determine HT Technology
availability:

® The HT Technology feature flag (bit 28 in the EDX register) indicates (when set) that the
processor supports HT Technology.

® Bits 16 through 23 in the EBX register indicate the number of logical processors supported
within the physical package.

It is possible to have the CPUID HT Technology feature flag set, but have only one logical
processor available in the package. In this case, bits 16 through 23 in the EBX register will have
a value of 1.

7.6.4. |Initializing IA-32 Processors With Hyper-Threading
Technology

The initialization process for an MP system that contains IA-32 processors with HT Technology
is the same as for a conventional MP system (see Section 7.5., “Multiple-Processor (MP) Initial-
ization”). One of the logical processors in the system is selected as the BSP and the other proces-
sors (or logical processors) are designated as APs. The initialization process is identical to that
described in Section 7.5.3., “MP Initialization Protocol Algorithm for the Intel Xeon Proces-
sors” and Section 7.5.4., “MP Initialization Example”.

As part of the initialization procedure, each logical processor is automatically assigned an APIC
ID, which is stored in the local APIC ID register for each logical processor. If two or more
processors with HT Technology are present in a system, each logical processor on the system
bus is assigned a unique ID (see Section 7.6.8., “Identifying Logical Processors in an MP
System”).
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Once logical processors have APIC IDs, software can communicate with them by sending APIC
IPI messages.

7.6.5. Executing Multiple Threads on an I1A-32 Processor With
Hyper-Threading Technology

Upon completion of the operating system boot-up procedure, the bootstrap processor (BSP)
continues to execute operating system code, while the other logical processors in the system are
placed in the halt state. To execute a code stream (thread) on one of the halted logical processors,
the operating system must issue an interprocessor interrupt (IPI) addressed to the logical
processor. In response to the IPI, the halted logical processor wakes up and begins executing the
thread identified by the interrupt vector it received as part of the IPI. When all the logical proces-
sors in an IA-32 processor with HT Technology are executing threads, the core execution engine
executes the instruction streams for the active threads concurrently, and the shared execution
resources are allocated to the active logical processors on an “as needed basis.”

To manage the execution of multiple threads on the logical processors, an operating system can
use conventional symmetric multiprocessing (SMP) techniques. For example, the operating-
system can use a time-slice or other load balancing mechanism to periodically interrupt each of
the active logical processors. Upon interrupting a logical processor, the operating system then
checks its run queue for a thread waiting to be executed and dispatches the thread to the inter-
rupted logical processor. In this way, an MP-capable operating system can schedule threads for
execution on logical processors in the same way that it does on the processors in a conventional
MP system.

7.6.6. Handling Interrupts on an IA-32 Processor With Hyper-
Threading Technology

Interrupts are handled in the same way in an IA-32 processors with HT Technology as they are
in a conventional MP system. External interrupts are received by the I/O APIC, which distrib-
utes them as interrupt messages to specific logical processors (see Figure 7-4). Each logical
processor can also send IPIs to other logical processors by writing to the ICR register of its local
APIC (see Section 8.6., “Issuing Interprocessor Interrupts”).
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Figure 7-4. Local APICs and I/0 APIC When IA-32 Processors with Hyper-Threading
Technology Are Used in MP Systems
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7.6.7. Management of Idle and Blocked Conditions

During normal execution of an IA-32 processor with HT Technology, with each logical
processor actively executing a thread, logical processors use the shared processor resources
(such as cache lines, TLB entries, and bus accesses) on an as-needed basis. When one of the
logical processors is either idle (software has no work for it to do) or blocked (spinning on a lock
or semaphore) additional management of the core execution engine resource by using the HLT
(halt) and PAUSE instructions is recommended for efficient operation.

7.6.7.1. HLT INSTRUCTION

The HLT instruction stops the execution of the logical processor on which it is executed and
places it in a halted state until further notice (see the description of the HLT instruction in
Chapter 3, Instruction Set Reference, of the IA-32 Intel Architecture Software Developer’s
Manual, Volume 2). When a logical processor is halted, active logical processors continue to
have full access to the shared resources within the physical package. Here shared resources that
were being used by the halted logical processor become available to active logical processors,
allowing them to execute at greater efficiency. When the halted logical processor resumes
execution, shared resources are again shared among all active logical processors. (See Section
7.6.9.2., “Halt Idle Logical Processors”, for more information about using the HLT instruction
with TA-32 processors with Hyper-Threading Technology.)

7.6.7.2. PAUSE INSTRUCTION

The PAUSE instruction improves the performance of IA-32 processors with HT Technology
when executing “spin-wait loops” and other routines where one thread is accessing a shared lock
or semaphore in a tight polling loop. When executing a spin-wait loop, the processor can suffer
a severe performance penalty when exiting the loop because it detects a possible memory order
violation and flushes the core processor’s pipeline. The PAUSE instruction provides a hint to the
processor that the code sequence is a spin-wait loop. The processor uses this hint to avoid the
memory order violation and prevent the pipeline flush. In addition, the PAUSE instruction de-
pipelines the spin-wait loop to prevent it from consuming execution resources excessively. (See
Section 7.6.9.1., “Use the PAUSE Instruction in Spin-Wait Loops”, for more information about
using the PAUSE instruction with IA-32 processors with Hyper-Threading Technology.)

7.6.8. Identifying Logical Processors in an MP System

For any IA-32 processor, the system hardware establishes an initial APIC ID for the processor
during power-up or RESET (see Section 7.6.4., “Initializing IA-32 Processors With Hyper-
Threading Technology”). For an IA-32 processor with HT Technology, system hardware assigns
a unique APIC ID to each logical processors on the system bus.
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The APIC ID for a logical processor is made up of three fields: logical processor ID, physical
package ID, and cluster ID. Figure 7-5 shows the layout of these fields. Here, bit O forms a 1-bit
logical processor ID, bits 1 and 2 form a 2-bit package ID, and bits 3 and 4 form a 2-bit cluster
ID. Bit 0 is used to identify the two logical processor within the package.

7 5 4 3 2 1 0

Reserved

Cluster IDQ ‘

Package ID
Logical Processor ID

Figure 7-5. Interpretation of the APIC ID

Table 7-1 shows the APIC IDs that are generated for the logical processors in a system with four
MP-type Intel Xeon processors (a total of 8 logical processors). Of the two logical processors
within a Intel Xeon processor MP, logical processor 0 is also referred to as the “primary logical
processor” and logical processor 1 is referred to as the “secondary logical processor.”

Table 7-1. Initial APIC IDs for the Logical Processors in a System that has Four MP-Type
Intel Xeon Processors with Hyper-Threading Technology

Logical Processor Initial APIC ID Physical Processor ID Logical Processor ID
OH OH OH
1H OH 1H
2H 1H OH
3H 1H 1H
4H 2H OH
5H 2H 1H
6H 3H OH
7H 3H 1H

Software can determine the APIC IDs of the logical processor in the system in either of the two
ways described in Section 7.5.5., “Identifying the Processors in an MP System”. Note that only
the APIC IDs of the primary logical processors in each physical package are included in the MP
table. All the logical processors in the system are included in the ACPI table, with the primary
logical processors at the top of the table followed by the secondary logical processors.
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If future IA-32 processors with HT Technology that implement more than two logical processors
per physical processor, the logical processor bit shown in Figure 7-5 will be expanded to a 2- or
3-bit field to allow each of the logical processors to be identified. The package ID and cluster
ID fields will be shifted to the left accordingly. Also, the package ID may be expanded to more
than 2 bits, requiring the cluster ID field to be shifted to the left.

Operating system and application software can determine the layout of an APIC ID for a partic-
ular processor by interpreting the number of logical processors field and the local APIC physical
ID field that are returned to the EBX register when the CPUID instruction is executed with a
parameter of 1 in the EAX registers.

As with TA-32 processors without HT Technology, software can assign a different APIC ID to a
logical processor by writing the value into the local APIC ID register; however, the CPUID
instruction will still report the processor’s initial APIC ID (the value assigned during power-up
or RESET).

Figure 7-5 depicts the layout of cluster ID, package ID and logical processor ID bit fields of an
APIC ID for current implementations of HT Technology (two logical processors per package).
In general, the content of an APIC ID (excluding cluster ID) for a logical processor in a package
with a finite number of logical processors per package is given by:

((Package ID << (1+((int)(log(2)(max(Logical_Per_Package-1,1)))) Il Logical Processor ID)

Use this formula to determine the association between logical processors and their physical
packages for future implementations of HT Technology. The pseudo-code below (Examples 7-
1 and 7-2) shows an algorithm to determine the relationship between logical and physical
processors. This algorithm supports any number of logical processors per package. The algo-
rithm is run on each logical processor in the system using an operating system specific affinity
to accomplish binding. After running the algorithm, logical processors that have the same
Processor ID exist within the same physical package. All processors present in the system must
support the same number of logical processors per physical processor.

The algorithm for detecting support for HT Technology and identifying the relationships
between a logical processor to the corresponding physical processor ID consists of five steps:

1.  Detect support for HT Technology in the processor.
Identify the number of logical processors available in a physical processor package.
Extract the initial APIC ID for this processor.

Compute a mask value and bit-shift value.

QR W

Compute a logical processor ID and physical processor package ID.
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Example 7-1. Generalized Algorithm to Extract Physical Processor IDs for Hyper-
Threading Technology

1. Pseudo-code to detect support for Hyper-Threading Technology
in a processor.

// Returns non-zero if Hyper-Threading Technology is supported on
// the processors and zero if not. This does not mean that
// Hyper-Threading Technology is necessarily enabled.

unsigned int HTSupported (void)
{
try { // verify cpuid instruction is supported
execute cpuid with eax = 0 to get vendor string
execute cpuid with eax = 1 to get feature flag and signature
}
except (EXCEPTION EXECUTE HANDLER) {

returen 0 ; // CPUID is not supported and so Hyper-Threading
// Technology is not supported
}

// Check to see if this a a Genuine Intel Processor
// a member of the Pentium 4 processor family
// and supporting Hyper-Threading Technology

if (vendor string NEQ GenuinelIntel)
if (family signature NEQ Pentium4Family)
return (feature flag edx & HTT BIT);
return 0;

2. Pseudo-code to identify the number of logical processors per
physical processor package.

#define NUM LOGICAL BITS 0x00FF0000 // EBX[23:16] indicate number of
// logical processor per package

// Returns the number of logical processors per physical processor.

unsigned char LogicalProcessorsPerPackage (void)
{
if (!HTSupported()) return (unsigned char) 1;
execute cpuid with eax = 1
store returned value of ebx
return (unsigned char) ((reg ebx & NUM LOGICAL BITS) >> 16);
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Example 7-2. Streamlined Determination of Mask to get the Logical Processor Number

3. Pseudo-code to extract the initial APIC ID of a processor
#define INITIAL APIC ID BITS OxFF000000 // EBX[31:24] initial APIC ID

// Returns the 8-bit unique initial APIC ID for the processor this
// code is actually running on. The default value returned is OxFF if
// Hyper-Threading Technology is not supported.

unsigned char GetAPIC ID (void)
{
unsigned int reg ebx = 0;
if (!HTSupported()) return (unsigned char) -1;
execute cpuid with eax =1
store returned value of ebx
return (unsigned char) ((reg ebx & INITIAL APEIC ID BITS) >> 24;

4. Sample code to compute a mask value and a bit-shift wvalue,
the logical processor ID and physical processor package ID.

unsigned char i = 1;

unsigned char PHY ID MASK = OxFF;
unsigned char PHY ID SHIFT = O;
unsigned char APIC ID;

unsigned char LOG _ID, PHY ID;

Logical_Per_ Package = LogicalProcessorsPerPackage() ;
While (i < Logical Per Package) {

i *= 2;

PHY ID MASK <<= 1;

PHY ID SHIFT++;

// Assume this thread is running on the logical processor from
// which we extract the logical processor ID and its physical
// processor package ID. If not, use the 0S-specific affinity
// service (See example 7-3) to bind this thread to the target
// logical processor

APIC ID = GetAPIC_ID();

LOT_ID = APIC ID & ~PHY ID MASK;

PHY ID = APIC ID >> PHY ID SHIFT;
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Example 7-3. Using an OS-specific Affinity Service to Identify the Logical Processor IDs

5.

in an MP System

Compute the 1logical processor ID and physical processor
package ID.

// The OS may limit the processor that this process may run on.

7-38

hCurrentProcessHandle = GetCurrentProcess() ;
GetProcessAffinityMask (hCureentPorcessHandle,
&dwProcessAffinity, &dwSystemAffinity);

// If the available process affinity mask does not equal the
// available system affinity mask, then determining if
// Hyper-Threading Technology is enabled may not be possible.

if (dwProcessAffinity != dwSystemAffinity)
printf (“This process can not utilize all processors. \n”),

dwAffinityMask = 1;

while
//
if
}

}

(dwAffinityMask != 0 &&

dwAffinityMask <= dwProcessAffinity) ({

Check to make sure we can utilize this processor first.

(dwAffinityMask & dwProcessAffinity) {

if (SetProcessAffinityMask (hCurrentProcessHandle,
dwAffinityMask)) {

Sleep (0) ; // May not be running on the logical processor
// on the affinity just set. Sleep gives the
// O0S a chance to switch to the desired
// logical processor.

// Retrieve APIC ID for this logical processor

// Extract logical processor ID and physical processor
// package ID

}
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7.6.9. Required Operating System Support

This section describes changes that must be made to an operating system to run on IA-32 proces-
sors with HT Technology. It also describes optimizations that can help an operating system make
more efficient use of the logical processors within a physical package. The required changes and
suggested optimizations are representative of the types of modifications that appear in the
Windows XP and the Linux kernel 2.4.0 operating systems to support IA-32 processors with HT
Technology. Additional optimizations IA-32 processors with HT Technology are described in
the Pentium 4 and Intel Xeon Processor Optimization Reference Manual (see Section 1.4.,
“Related Literature” for an order number).

7.6.9.1. USE THE PAUSE INSTRUCTION IN SPIN-WAIT LOOPS

Intel recommends that a PAUSE instruction be placed in all spin-wait loops that run on Intel
Xeon and/or Pentium 4 processors.

Software routines that use spin-wait loops include multiprocessor synchronization primitives
(spin-locks, semaphores, and mutex variables) and idle loops. Such routines keep the processor
core busy executing a load-compare-branch loop while a thread waits for a resource to become
available. Including a PAUSE instruction in such a loop greatly improves efficiency (see Section
7.6.7.2., “PAUSE Instruction”). The following routine gives an example of a spin-wait loop that
uses a PAUSE instruction:

Spin Lock:
CMP lockvar, 0;Check if lock is free
JE Get_ Lock

PAUSE ; Short delay
JMP Spin Lock

Get_ Lock:
MOV EAX, 1

XCHG EAX, lockvar ; Try to get lock
CMP EAX, 0 ; Test if successful
JNE Spin Lock
Critical_ Section:
<critical section code>
MOV lockvar, O

Continue:

The spin-wait loop above uses a “test, test-and-set” technique for determining the availability of
the synchronization variable. This technique is recommended when writing spin-wait loops.

In TA-32 processor generations earlier than the Pentium 4 processor, the PAUSE instruction is
treated as a NOP instruction.
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7.6.9.2. HALT IDLE LOGICAL PROCESSORS

If one of two logical processors is idle or in a spin-wait loop of long duration, explicitly halt that
processor by means of a HLT instruction.

In an MP system, operating systems can place idle processors into a loop that continuously
checks the run queue for runnable software tasks. Logical processors that execute idle loops
consume a significant amount of core’s execution resources that might otherwise be used by the
other logical processors in the physical package. For this reason, halting idle logical processors
optimizes the perforrnance.1 If all logical processors within a physical package are halted, the
processor will enter a power-saving state.

7.6.9.3. GUIDELINES FOR SCHEDULING THREADS ON MULTIPLE LOGICAL
PROCESSORS

Because the logical processors, the order in which threads are dispatched to logical processors
for execution can affect the overall efficiency of a system. The following guidelines are recom-
mended for scheduling threads for execution.

® Dispatch threads to one logical processor per physical package before dispatching threads
to the remaining logical processors in available physical packages. In an MP system with
two or more IA-32 processors with HT Technology, distribute threads out over all the
physical packages rather than concentrate them in one or two physical processors.

® Use processor affinity to assign a thread to a specific physical processor. The practice
increases the chance that the processor’s caches will contain some of the thread’s code and
data when it is dispatched for execution after being suspended. The thread can be
dispatched to any logical processor within a physical package because logical processors
share the physical processor’s caches.

7.6.9.4. ELIMINATE EXECUTION-BASED TIMING LOOPS

Intel discourages the use of timing loops that depend on a processor’s execution speed to
measure time. There are several reasons:

¢ Timing loops cause problems when they are calibrated on a IA-32 processor running at one
clock speed and then executed on a processor running at another clock speed.

® Routines for calibrating execution-based timing loops produce unpredictable results when
run on an [A-32 processor with HT Technology. This is due to the sharing of execution
resources between the logical processors within a physical package.

To avoid the problems described, timing loop routines must use a timing mechanism for the loop
that does not depend on the execution speed of the logical processors in the system. The
following sources are generally available:

® A high resolution system timer (for example, an Intel 8254).

1. Excessive transitions into and out of the HALT state could also incur performance penalties. Operating
systems should evaluate the performance trade-offs for their operating system.

7-40



Intelc MULTIPLE-PROCESSOR MANAGEMENT

® A high resolution timer within the processor (such as, the local APIC timer or the time-
stamp counter).

For additional information, see the Pentium 4 and Intel Xeon Processor Optimization Reference
Manual (see Section 1.4., “Related Literature” for an order number).

7.6.9.5. PLACE LOCKS AND SEMAPHORES IN ALIGNED, 128-BYTE
BLOCKS OF MEMORY

When software uses locks or semaphores to synchronize processes, threads, or other code
sections; Intel recommends that only one lock or semaphore be present within a cache line. In
an Intel Xeon processor MP (which have 128-byte wide cache lines), following this recommen-
dation means that each lock or semaphore should be contained in a 128-byte block of memory
that begins on a 128-byte boundary. The practice minimizes the bus traffic required to service
locks.
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CHAPTER 8
ADVANCED PROGRAMMABLE
INTERRUPT CONTROLLER (APIC)

The Advanced Programmable Interrupt Controller (APIC), referred to in the following sections
as the local APIC, was introduced into the IA-32 processors with the Pentium processor (see
Section 18.23., “Advanced Programmable Interrupt Controller (APIC)”) and is included in the
Pentium 4, Intel Xeon, and P6 family processors (see Section 8.4.2., “Presence of the Local
APIC”). The local APIC performs two primary functions for the processor:

® TItreceives interrupts from the processor’s interrupt pins, from internal sources, and/or from
an external I/O APIC (or other external interrupt controller) and sends them to the
processor core for handling.

® In multiple processor (MP) systems, it sends and receives interprocessor interrupt (IPT)
messages to and from other IA-32 processors on the system bus. These IPI messages can
be used to distribute interrupts among the processors in the system or to execute system
wide functions (such as, booting up processors or distributing work among a group of
processors).

The external I/O APIC is part of Intel’s system chip set. Its primary function is to receive
external interrupt events from the system and its associated I/O devices and relay them to the
local APIC as interrupt messages. In MP systems, the I/O APIC also provides a mechanism for
distributing external interrupts to the local APICs of selected processors or groups of processors
on the system bus.

This chapter provides a detailed description of the local APIC and its programming interface. It
also provides an overview of the interface between the local APIC and the I/O APIC. Contact
Intel for detailed information about the /O APIC.

When a local APIC has sent an interrupt to its associated processor core for handling, the
processor uses the interrupt and exception handling mechanism described in Chapter 5, Inter-
rupt and Exception Handling, to service the interrupt. Section 5.1., “Interrupt and Exception
Overview”, gives an introduction to interrupt and exception handling in the IA-32 architecture.
It is recommended that this section be read in addition to the following sections to aid in under-
standing the IA-32 APIC architecture and its functions.

8.1. LOCAL AND I/O APIC OVERVIEW

Each local APIC consists of a set of APIC registers (see Table 8-1) and associated hardware that
control the delivery of interrupts to the processor core and the generation of IPI messages. The
APIC registers are memory mapped and can be read and written to using the MOV instruction.
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The local APIC can receive interrupts from the following sources:

® Locally connected I/O devices. These interrupts originate as an edge or level asserted by
an I/O device that is connected directly to the processor’s local interrupt pins (LINTO and
LINT1). The I/O devices may also be connected to an 8259-type interrupt controller that is
in turn connected to the processor through one of the local interrupt pins.

¢ Externally connected I/0 devices. These interrupts originate as an edge or level asserted
by an I/O device that is connected to the interrupt input pins of an I/O APIC. These
interrupts are sent as I/O interrupt messages from the I/O APIC to one or more the IA-32
processors in the system.

¢ Inter-processor interrupts (IPIs). An IA-32 processor can use the IPI mechanism to
interrupt another processor or group of processors on the system bus. IPIs are used for such
things as software self-interrupts, interrupt forwarding, or preemptive scheduling.

¢ APIC timer generated interrupts. The local APIC timer can be programmed to send a
local interrupt to its associated processor when a programmed count is reached (see
Section 8.5.4., “APIC Timer”).

¢ Performance monitoring counter interrupts. The Pentium 4, Intel Xeon, and P6 family
processors provide the ability to send a interrupt to its associated processor when a
performance-monitoring counter overflows (see Section 15.9.6.9., “Generating an
Interrupt on Overflow™).

® Thermal Sensor interrupts. The Pentium 4 and Intel Xeon processors provide the ability
to send an interrupt to themselves when the internal thermal sensor has been tripped (see
Section 13.15.2., “Thermal Monitor’).

¢ APIC internal error interrupts. When an error condition is recognized within the local
APIC (such as an attempt to access an unimplemented register), the APIC can be
programmed to send an interrupt to its associated processor (see Section 8.5.3., “Error
Handling”).

Of these interrupt sources, the processor’s LINTO and LINT1 pins, the APIC timer, the perfor-
mance-monitoring counters, the thermal sensor, and the internal APIC error detector are referred
to as local interrupt sources. Upon receiving a signal from a local interrupt source, the local
APIC delivers the interrupt to the processor core using an interrupt delivery protocol that has
been set up through a group of APIC registers called the local vector table or LVT (see Section
8.5.1., “Local Vector Table”). A separate entry is provided in the local vector table for each local
interrupt source, which allows a specific interrupt delivery protocol to be set up for each source.
For example, if the LINT1 pin is going to be used as an NMI pin, the LINT1 entry in the local
vector table can be set up to deliver an interrupt with vector number 2 (NMI interrupt) to the
processor core.

The local APIC handles interrupts from the other two interrupt sources (externally connected
I/O devices and IPIs) through its IPI message handling facilities.

A processor can generate IPIs by programming the interrupt command register (ICR) in its local
APIC (see Section 8.6.1., “Interrupt Command Register (ICR)”). The act of writing to the ICR
causes an IPI message to be generated and issued on the system bus (for Pentium 4 and Intel
Xeon processors) or on the APIC bus (for Pentium and P6 family processors).
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(See Section 8.2., “System Bus Vs. APIC Bus”.) IPIs can be sent to other IA-32 processors in
the system or to the originating processor (self-interrupts). When the target processor receives
an IPI message, its local APIC handles the message automatically (using information include in
the message such as vector number and trigger mode) and delivers it to the processor core for
servicing. See Section 8.6., “Issuing Interprocessor Interrupts” for a detailed explanation of the
local APIC’s IPI message delivery and acceptance mechanism.

The local APIC can also receive interrupts from externally connected devices through the I/O
APIC (see Figure 8-1). The I/0O APIC is responsible for receiving interrupts generated by system
hardware and I/O devices and forwarding them to the local APIC as interrupt messages.

Pentium 4 and Pentium and P6
Intel Xeon Processors Family Processors
Processor Core Processor Core
Local APIC Local APIC
A Interrupt Local A Interrupt Local
) Messages Interrupts Messages Interrupts
-t -
Interrupt | System Bus 3-Wire APIC Bus
Messages
(
Bridge I/O APIC [ External
-« Interrupts
A
PCI
- Y AC ' System Chip Set
Y
/O APIC [ External
-< Interrupts
System Chip Set

Figure 8-1. Relationship of Local APIC and I/O APIC In Single-Processor Systems

Individual pins on the I/O APIC can be programmed to generate a specific interrupt vector when
asserted. The I/O APIC also has a “virtual wire mode” that allows it to communicate with a stan-
dard 8259A-style external interrupt controller.

Note that the local APIC can be disabled (see Section 8.4.3., “Enabling or Disabling the Local
APIC”), allowing its associated processor core to receive interrupts directly from an 8259A
interrupt controller.

Both the local APIC and the I/O APIC are designed to operate in MP systems (see Figures 8-2
and 8-3). Here each local APIC handles both externally generated interrupts that it receives as
interrupt messages from the I/O APIC and IPIs from other processors on the system bus, and
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from itself. (Interrupts can also be delivered to the individual processors through the local inter-
rupt pins; however, this mechanism is commonly not used in MP systems.)

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Processor #1 Processor #2 Processor #3 Processor #3
CPU CPU CPU CPU
Local APIC Local APIC Local APIC Local APIC
A A
Interrupt “|P|S Interrupt AIPIs Interrupt LA IPls InterruptA A|p|s
Messages Messages Messages Messages
[y Yy Yy Yv
- '
Interrupt A Processor System Bus
Messages
Y
Bridge
A c
PCI
e Y ‘F )
Y
/O APIC [ External
< Interrupts
System Chip Set

Figure 8-2. Local APICs and I/0 APIC When Intel Xeon Processors Are Used in Multiple-
Processor Systems

Processor #1 Processor #2 Processor #3 Processor #4
CPU CPU CPU CPU
Local APIC Local APIC Local APIC Local APIC
Interrupt A “IPIs Interrupt A A IPIs InterruptA A IPls Interrupt A IPls
Messages Messages Messages Messages
Al YVY Y
Interrupt A 3-wire APIC Bus
Messages
/
External >
Interrupts > /O APIC
System Chip Set

Figure 8-3. Local APICs and I/O APIC When P6 Family Processors Are Used in Multiple-
Processor Systems
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The IPI mechanism is typically used in MP systems to send fixed interrupts (interrupts for a
specific vector number) and special-purpose interrupts to other processors on the system bus or
to itself. For example, one local APIC can use an IPI to forward a fixed interrupt to another
processor for servicing. Special-purpose IPIs, including NMI, INIT, SMI and SIPI IPIs, allow
one or more processors in the system bus to perform system-wide boot-up and control functions.

The following sections focus on the local APIC, and its implementation in the Pentium 4, Intel
Xeon, and P6 family processors. In the descriptions in these sections, the generic terms “local
APIC” and “I/O APIC” refer to the local and I/O APICs used with the P6 family processors and
to the local and I/O xAPICs used with the Pentium 4 and Intel Xeon processors (see Section 8.3.,
“Relationship Between the Intel 82489DX External APIC, the APIC, and the xAPIC”).

8.2. SYSTEM BUS VS. APIC BUS

For the P6 family and Pentium processors, the I/O APIC and local APICs communicate through
the 3-wire inter-APIC bus (see Figure 8-3). The local APICs also use the APIC bus to send and
receive IPIs. The APIC bus and its messages are invisible to software and are not classed as
architectural.

Beginning with the Pentium 4 and Intel Xeon processors, the /O APIC and local APICs (using
the xAPIC architecture) communicate through the system bus (see Figure 8-2). Here the I/O
APIC sends interrupt requests to the processors on the system bus through bridge hardware that
is part of the Intel chip set. This bridge hardware generates the actual interrupt messages that go
to the local APICs. IPIs between local APICs are transmitted directly on the system bus.

8.3. RELATIONSHIP BETWEEN THE INTEL 82489DX EXTERNAL
APIC, THE APIC, AND THE XAPIC

The local APIC in the P6 family and Pentium processors is an architectural subset of the Intel
82489DX external APIC. The differences are described in Section 18.23.1., “Software Visible
Differences Between the Local APIC and the 82489DX”.

The APIC architecture used in the Pentium 4 and Intel Xeon processors (called the x APIC archi-
tecture) is an extension of the APIC architecture found in the P6 family processors. The primary
difference between the APIC and xAPIC architectures is that with the XAPIC architecture, the
local APICs and the I/O APIC communicate with one another through the system bus; whereas,
with the APIC architecture, they communication through the APIC bus (see Section 8.2.,
“System Bus Vs. APIC Bus”). Also, some of the APIC architectural features have been extended
and/or modified in the XAPIC architecture. These extensions and modifications are noted in the
following sections.
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8.4. LOCAL APIC

The following sections describe the architecture of the local APIC and how to detect it, identify
it, and determine its status. Descriptions of how to program the local APIC are given in Section
8.5.1., “Local Vector Table” and Section 8.6.1., “Interrupt Command Register (ICR)”.

8.4.1. The Local APIC Block Diagram

Figure 8-4 gives a functional block diagram for the local APIC. Software interacts with the local
APIC by reading and writing its registers. The APIC registers are memory-mapped to a 4-KByte
region of the processor’s physical address space with an initial starting address of FEEOOOOOH.
For correct APIC operation, this address space must be mapped to an area of memory that has
been designated as strong uncacheable (UC). See Section 10.3., “Methods of Caching Avail-
able”.

In MP system configurations, the APIC registers for all the IA-32 processors on the system bus
are initially mapped to the same 4-KByte region of the physical address space. Software has the
option of changing this initial mapping to a different 4-KByte region for all the local APICs or
of mapping the APIC registers for each local APIC to its own 4-KByte region. Section 8.4.5.,
“Relocating the Local APIC Registers” describes how to relocate the base address for the APIC
registers for a specific processor.

NOTE

For Pentium 4, Intel Xeon, and P6 family processors, the APIC handles all
memory accesses to addresses within the 4-KByte APIC register space
internally and no external bus cycles are produced. For the Pentium
processors with an on-chip APIC, bus cycles are produced for accesses to the
APIC register space. Thus, for software intended to run on Pentium
processors, system software should explicitly not map the APIC register
space to regular system memory. Doing so can result in an invalid opcode
exception (#UD) being generated or unpredictable execution.
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DATA/ADDR
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1. Introduced in P6 family processors.

2. Introduced in the Pentium 4 and Intel Xeon processors.

3. Three-wire APIC bus in P6 family and Pentium processors.
4. Not implemented in Pentium 4 and Intel Xeon processors.

Figure 8-4. Local APIC Structure
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Table 8-1 shows how the APIC registers are mapped into the 4-KByte APIC register space. All
registers are 32 bits, 64 bits, or 256 bits in width, and all are aligned on 128-bit boundaries. All
32-bit registers must be accessed using 128-bit aligned 32-bit loads or stores. The wider registers
(64-bit or 256-bit) must be accessed using multiple 32-bit loads or stores, with the first access
being 128-bit aligned. If a LOCK prefix is used with a MOV instruction that accesses the APIC
address space, the prefix is ignored; that is, a locking operation does not take place. All the regis-

ters listed in Table 8-1 are described in the following sections of this chapter.

Table 8-1. Local APIC Register Address Map

Address Register Name Software Read/Write

FEEO 0000H Reserved

FEEO 0010H Reserved

FEEO 0020H Local APIC ID Register Read/Write.

FEEO 0030H Local APIC Version Register Read Only.

FEEO 0040H Reserved

FEEO 0050H Reserved

FEEO 0060H Reserved

FEEO 0070H Reserved

FEEO 0080H Task Priority Register (TPR) Read/Write.

FEEO 0090H Arbitration Priority Register1 (APR) Read Only.

FEEO 00AOH Processor Priority Register (PPR) Read Only.

FEEO 00BOH EOI Register Write Only.

FEEO 00COH Reserved

FEEO 00DOH Logical Destination Register Read/Write.

FEEO O0OEOH Destination Format Register Bits 0-27 Read only; bits 28-31
Read/Write.

FEEO O0FOH Spurious Interrupt Vector Register Bits 0-8 Read/Write; bits 9-31
Read Only.

FEEO 0100H through In-Service Register (ISR) Read Only.

FEEO 0170H

FEEO 0180H through Trigger Mode Register (TMR) Read Only.

FEEO 01FOH

FEEO 0200H through Interrupt Request Register (IRR) Read Only.

FEEO 0270H

FEEO 0280H Error Status Register Read Only.

FEEO 0290H through Reserved

FEEO 02FOH

FEEO 0300H Interrupt Command Register (ICR) [0-31] | Read/Write.

FEEO 0310H Interrupt Command Register (ICR) [32-63] | Read/Write.
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Table 8-1. Local APIC Register Address Map (Contd.)

Address Register Name Software Read/Write
FEEO 0320H LVT Timer Register Read/Write.
FEEO 0330H LVT Thermal Sensor Register? Read/Write.
FEEO 0340H LVT Performance Monitoring Counters Read/Write.
Register

FEEO 0350H LVT LINTO Register Read/Write.
FEEO 0360H LVT LINT1 Register Read/Write.
FEEO 0370H LVT Error Register Read/Write.
FEEO 0380H Initial Count Register (for Timer) Read/Write.
FEEO 0390H Current Count Register (for Timer) Read Only.
FEEO 03A0H through Reserved

FEEO 03DOH

FEEO O3EOH Divide Configuration Register (for Timer) Read/Write.
FEEO 03FOH Reserved

NOTES:
1. Not supported in the Pentium 4 and Intel Xeon processors.

2. Introduced in the Pentium 4 and Intel Xeon processors. This APIC register and its associated function are
implementation dependent and may not be present in future 1A-32 processors.

3. Introduced in the Pentium Pro processor. This APIC register and its associated function are implementa-
tion dependent and may not be present in future |1A-32 processors.

NOTE

The local APIC registers listed in Table 8-1 are not MSRs. The only MSR
associated with the programming of the local APIC is the IA32_APIC_BASE
MSR (see Section 8.4.3., “Enabling or Disabling the Local APIC”).

8.4.2. Presence of the Local APIC

Beginning with the P6 family processors, the presence or absence of an on-chip local APIC can
be detected using the CPUID instruction. When the CPUID instruction is executed with a source
operand of 1 in the EAX register, bit 9 of the CPUID feature flags returned in the EDX register
indicates the presence (set) or absence (clear) of a local APIC.
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8.4.3. Enabling or Disabling the Local APIC

The local APIC can be enabled or disabled in either of two ways:
® APIC global enable/disable flag in the IA32_APIC_BASE MSR (see Figure 8-5).

® APIC software enable/disable flag in the spurious-interrupt vector register (see Figure
8-22)

The APIC global enable/disable flag in the IA32_APIC_BASE MSR permits the local APIC to
be permanently disabled. Following a power-up or reset, this flag is set, enabling the local APIC.
To permanently disable the local APIC until the next power-up or reset, software can clear this
flag. When this flag is clear, the processor is functionally equivalent to an IA-32 processor
without an on-chip APIC (for example, an Intel486 processor). In this state, CPUID feature flag
for the APIC (bit 9 for the EDX register [see Section 8.4.2., “Presence of the Local APIC”]) is
set to 0. Also, when the APIC global enable/disable flag in the IA32_APIC_BASE MSR flag
has been cleared, it can only be reset by a power-up or RESET action.

63 36 35 12111098 7 0

Reserved APIC Base

APIC Base—Base physical address 4‘

APIC global enable/disable
BSP—Processor is BSP

D Reserved

Figure 8-5. IA32_APIC_BASE MSR

For the Pentium processor, the APICEN pin (which is shared with the PICD1 pin) is used during
power-up or RESET to disable the local APIC.

If the APIC global enable/disable flag in the IA32_APIC_BASE MSR has not been cleared,
software can temporarily disable a local APIC at any time by clearing the APIC software
enable/disable flag in the spurious-interrupt vector register (see Figure 8-22). The state of the
local APIC when in this software-disabled state is described in Section 8.4.7.2., “Local APIC
State After It Has Been Software Disabled”. When the local APIC is in the software-disabled
state, it can be re-enabled at any time by setting the APIC software enable/disable flag to 1.

Note that each entry in the LVT has a mask bit that can be used to inhibit interrupts from being
delivered to the processor from selected local interrupt sources (the LINTO and LINT1 pins, the
APIC timer, the performance-monitoring counters, the thermal sensor, and/or the internal APIC
error detector).
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8.4.4. Local APIC Status and Location

The status and location of the local APIC are contained in the IA32_APIC_BASE MSR (called
APIC_BASE_MSR in the P6 family processors). This MSR is located at MSR address 27
(1BH). Figure 8-5 shows the encoding of the bits in this MSR. The functions of these bits are as
follows:

BSP flag, bit 8 Indicates if the processor is the bootstrap processor (BSP) (see Section 7.5.,
“Multiple-Processor (MP) Initialization). Following a power-up or RESET,
this flag is set to 1 for the processor that was selected as the BSP and set to 0
for each of the remaining application processors (APs).

APIC Global Enable flag, bit 11
Enables (1) or disables (0) the local APIC (see Section 8.4.3., “Enabling or
Disabling the Local APIC”). This flag is available in the Pentium 4, Intel Xeon,
and P6 family processors. It is not guaranteed to be available or available at the
same location in future IA-32 processors.

APIC Base field, bits 12 through 35
Specifies the base address of the APIC registers. This 24-bit value is extended
by 12 bits at the low end to form the base address, which automatically aligns
the address on a 4-KByte boundary. Following a power-up or RESET, this field
is set to FEEOOOOOH.

Bits O through 7, bits 9 and 10, and bits 36 through 63 in the IA32_APIC_BASE MSR are
reserved.

8.4.5. Relocating the Local APIC Registers

The Pentium 4, Intel Xeon, and P6 family processors permit the starting address of the APIC
registers to be relocated from FEEOOOOOH to another physical address by modifying the value
in the 24-bit base address field of the IA32_APIC_BASE MSR. This extension of the APIC
architecture is provided to help resolve conflicts with memory maps of existing systems and to
allow individual processors in an MP system to map their APIC registers to different locations
in physical memory.

8.4.6. Local APICID

At power up, system hardware assigns a unique APIC ID to each local APIC on the system bus
(for Pentium 4 and Intel Xeon processors) or on the APIC bus (for P6 family and Pentium
processors). The hardware assigned APIC ID is based on system topology and includes
encoding for socket position and cluster information (see Figure 7-2).

In MP systems, the local APIC ID is also used as a processor ID by the BIOS and the operating
system.
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The processor receives the hardware assigned APIC ID by sampling pins A11# and A12# and
pins BRO# through BR3# (for the Pentium 4, Intel Xeon, and P6 family processors) and pins
BEO# through BE3# (for the Pentium processor). The APIC ID latched from these pins is stored
in the APIC ID field of the local APIC ID register (see Figure 8-6), and is used as the initial
APIC ID for the processor. It is also the value returned to the EBX register, when the CPUID
instruction is executed with a source operand value of 1 in the EAX register.

31 24 23 0

APIC ID* Reserved

Address: OFEEO 0020H
Value after reset: 0000 0000H

* For the P6 family and Pentium processors,
bits 28 through 31 are reserved.

Figure 8-6. Local APIC ID Register

For the P6 family and Pentium processors, the local APIC ID field in the local APIC ID register
is 4 bits, and encodings OH through EH can be used to uniquely identify 15 different processors
connected to the APIC bus. For the Pentium 4 and Intel Xeon processors, the xAPIC specifica-
tion extends the local APIC ID field to 8 bits which can be used to identify up to 255 processors
in the system.

Following power up or a hardware reset, software (typically the BIOS software) can modify the
APIC ID field in the local APIC ID register for each processor in the system. When changing
APIC IDs, software must insure that each APIC ID for each local APIC is unique throughout
the system.

8.4.7. Local APIC State

The following sections describe the state of the local APIC and its registers following a power-
up or RESET, after is has been software disabled, following an INIT reset, and following an
INIT-deassert message.

8.4.7.1. LOCAL APIC STATE AFTER POWER-UP OR RESET

Following a power-up or RESET of the processor, the state of local APIC and its registers are
as follows:

® The following registers are reset to all Os: the IRR, ISR, TMR, ICR, LDR, and TPR
registers; the timer initial count and timer current count registers; and the divide configu-
ration register.

® The DFR register is reset to all 1s.

® The LVT register entries are reset to all Os except for the mask bits, which are set to 1s.
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® The local APIC version register is not affected.

® The local APIC ID register is set to a unique APIC ID. (Pentium and P6 family processors
only) The Arb ID register is set to the value in the APIC ID register.

® The spurious-interrupt vector register is initialized to 0000 OOFFH. The setting of bit 8 to 0
software disables the local APIC.

® If the processor is the only processor in the system or it is in an MP system and has been
designated the BSP (see Section 7.5.1., “BSP and AP Processors”), the local APIC will
respond normally to INIT and NMI messages, and to INIT# and STPCLK# signals; if it is
in an MP system and has been designated as an AP, the local APIC will respond the same
as for the BSP and in addition it will respond to a SIPI message. For P6 family processors
only, an AP will not respond to a STPCLK# signal.

8.4.7.2. LOCAL APIC STATE AFTER IT HAS BEEN SOFTWARE DISABLED

When the APIC software enable/disable flag in the spurious interrupt vector register has been
explicitly cleared (as opposed to being cleared during a power up or RESET), the local APIC is
temporarily disabled (see Section 8.4.3., “Enabling or Disabling the Local APIC”). The opera-
tion and response of a local APIC while in this software-disabled state is as follows:

® The local APIC will respond normally to INIT, NMI, SMI, and SIPI messages.

® Pending interrupts in the IRR and ISR registers are held and require masking or handling
by the CPU.

® A local APIC can still issue IPIs. It is software’s responsibility to avoid issuing IPIs
through the IPI mechanism and the ICR register if sending interrupts through this
mechanism is not desired.

® The reception or transmission of any IPIs that are in progress when the local APIC is
disabled are completed before the local APIC enters the software-disabled state.

® The mask bits for all the LVT entries are set. Attempts to reset these bits will be ignored.

® (Pentium and P6 family processors) The local APIC continues to listen to all bus messages
in order to keep its arbitration ID synchronized with the rest of the system.

8.4.7.3.  LOCAL APIC STATE AFTER AN INIT RESET (“WAIT-FOR-SIPI”
STATE)

An INIT reset of the processor can be initiated in either of two ways:
® By asserting the processor’s INIT# pin.

® By sending the processor an INIT IPI (sending it an IPI with the delivery mode set to
INIT).

Upon receiving an INIT through either of these two mechanisms, the processor responds by
beginning the initialization process of the processor core and the local APIC. The state of the
local APIC following an INIT reset is the same as it is after a power-up or hardware RESET,
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except that the APIC ID and arbitration ID registers are not affected. This state is also referred
to at the “wait-for-SIPI” state. See Section 7.5.2., “MP Initialization Protocol Requirements and
Restrictions for Intel Xeon Processors”, for a discussion of the effect of an INIT that follows a
power-up or RESET in an MP system.

8.4.7.4. LOCAL APIC STATE AFTER IT RECEIVES AN INIT-DEASSERT IPI

(Only the Pentium and P6 family processors support the INIT-deassert IP1.) An INIT-disassert
IPI has no affect on the state of the APIC, other than to reload the arbitration ID register with
the value in the APIC ID register.

8.4.8. Local APIC Version Register

The local APIC contains a hardwired version register, which software can use to identify the
APIC version (see Figure 8-7). In addition, this register specifies the number of entries in the
local vector table (LVT) for the specific implementation. The fields in the local APIC version
register are as follows:

Version The version numbers of the local APIC:
1XH Local APIC. For Pentium 4 and Intel Xeon proces-
sors, 14H is returned.
0XH 82489DX external APIC.

20H through FFHReserved.

Max LVT Entry Shows the number of LVT entries minus 1. For the Pentium 4 and Intel
Xeon processors (which have 6 LVT entries), the value returned in the
Max LVT field is 5; for the P6 family processors (which have 5 LVT
entries), the value returned is 4; for the Pentium processor (which has
4 LVT entries), the value returned is 3.

31 24 23 16 15 87 0

Max. LVT
Entry

Value after reset: 000N 00VVH
V = Version, N = # of LVT entries minus 1
Address: FEEO 0030H

Reserved Reserved Version

Figure 8-7. Local APIC Version Register
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8.5. HANDLING LOCAL INTERRUPTS

The following sections describe the facilities that are provided in the local APIC for handling
local interrupts, which include the processor’s LINTO and LINTI1 pins, the APIC timer, the
performance-monitoring counters, the thermal sensor, and the internal APIC error detector. The
local interrupt handling facilities include the LVT, the error status register (ESR), the divide
configuration register (DCR), and the initial count and current count registers.

8.5.1. Local Vector Table

The local vector table (LVT) allows software to specify the manner in which the local interrupts
are delivered to the processor core. It consists of the following five 32-bit APIC registers (see
Figure 8-8), one for each local interrupt:

® LVT Timer Register (FEEO 0320H)—Specifies interrupt delivery when the APIC timer
signals an interrupt (see Section 8.5.4., “APIC Timer”).

® LVT Thermal Monitor Register (FEEQ 0330H)—Specifies interrupt delivery when the
thermal sensor generates an interrupt (see Section 13.15.2., “Thermal Monitor”). This LVT
entry is implementation specific, not architectural. If implemented, it will always be at
base address FEEO 0330H.

® LVT Performance Counter Register (FEEO 0340H)—Specifies interrupt delivery when a
performance counter generates an interrupt on overflow (see Section 15.9.6.9.,
“Generating an Interrupt on Overflow”). This LVT entry is implementation specific, not
architectural. If implemented, it is not guaranteed to be at base address FEEQ 0340H.

® LVT LINTO Register (FEEO 0350H)—Specifies interrupt delivery when an interrupt is
signaled at the LINTO pin.

® LVT LINTI Register (FEEO 0360H)—Specifies interrupt delivery when an interrupt is
signaled at the LINT1 pin.

® LVT Error Register (FEEO 0370H)—Specifies interrupt delivery when the APIC detects an
internal error (see Section 8.5.3., “Error Handling”).

NOTE

The LVT performance counter register and its associated interrupt were
introduced in the P6 processors and are also present in the Pentium 4 and
Intel Xeon processors. The LVT thermal monitor register and its associated
interrupt were introduced in the Pentium 4 and Intel Xeon processors

Note that as shown in Figures 8-8, some of these fields and flags are not available (and reserved)
for some entries.
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31 18 17 16 15 1312 11 87 0
Timer Vector
Timer Mode A A A Address: FEEQ 0320H
0: One-shot Value after Reset: 0001 0000H
1: Periodic Delivery Status
0: Idle
1: Send Pending
Mask’
0: Not Masked
1: Masked
Interrupt Input Delivery Mode
Pin Polarity 000: Fixed
010: SMI
100: NMI
Remote 111: ExtINT
IRR 101: INIT
All other combinations
are Reserved
Trigger Mode
0: Edge
1: Level
31 177y Y Y Yy y 1110|87 0
LINTO Vector
LINT1 Vector
Error Vector
Performance
Mon. Counters Vector
Thermal
Sensor Vector
16 15 14 13 12
I:l Reserved Address: FEEO 0350H
Address: FEEO 0360H
Address: FEEO 0370H
T (Pentium 4 and Intel Xeon processors.) When a Address: FEEOQ 0340H
performance monitoring counters interrupt is generated, Address: FEEO 0330H
the mask bit for its associated LVT entry is set. Value After Reset: 0001 0000H

Figure 8-8. Local Vector Table (LVT)
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The setup information that can be specified in the registers of the LVT table is as follows:

Vector Interrupt vector number.

Delivery Mode Specifies the type of interrupt to be sent to the processor. Note that
some delivery modes will only operate as intended when used in
conjunction with a specific trigger mode. The allowable delivery
modes are as follows:

000 (Fixed)
010 (SMI)

100 (NMI)

101 (INIT)

111 (ExtINT)

Delivery Status (Read Only)

Delivers the interrupt specified in the vector field.

Delivers an SMI interrupt to the processor core
through the processor’s local SMI signal path.
When using this delivery mode, the vector field
should be set to O0H for future compatibility.

Delivers an NMI interrupt to the processor. The
vector information is ignored.

Delivers an INIT request to the processor core,
which causes the processor to perform an INIT.
When using this delivery mode, the vector field
should be set to O0H for future compatibility.

Causes the processor to respond to the interrupt as
if the interrupt originated in an externally connect-
ed (8259A-compatible) interrupt controller. A
special INTA bus cycle corresponding to ExtINT,
is routed to the external controller. The external
controller is expected to supply the vector infor-
mation. The APIC architecture supports only one
ExtINT source in a system, usually contained in
the compatibility bridge.

Indicates the interrupt delivery status, as follows:

0 (Idle)

There is currently no activity for this interrupt
source, or the previous interrupt from this source
was delivered to the processor core and accepted.

1 (Send Pending)

Interrupt Input Pin Polarity

Indicates that an interrupt from this source has
been delivered to the processor core, but has not
yet been accepted (see Section 8.5.5., “Local In-
terrupt Acceptance”).

Specifies the polarity of the corresponding interrupt pin: (0) active
high or (1) active low.
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Remote IRR Flag (Read Only)
For fixed mode, level-triggered interrupts, this flag is set when the
local APIC accepts the interrupt for servicing and is reset when an
EOI command is received from the processor. The meaning of this
flag is undefined for edge-triggered interrupts and other delivery
modes.

Trigger Mode Selects the trigger mode for the local LINTO and LINT1 pins: (0)
edge sensitive and (1) level sensitive. This flag is only used when the
delivery mode is Fixed. When the delivery mode is NMI, SMI, or
INIT, the trigger mode is always edge sensitive; when the delivery
mode is ExtINT, the trigger mode is always level sensitive. The timer
and error interrupts are always treated as edge sensitive.

If the local APIC is not used in conjunction with an I/O APIC and
fixed delivery mode is selected, the Pentium 4, Intel Xeon, and P6
family processors will always use level-sensitive triggering, regard-
less if edge-sensitive triggering is selected.

Mask Interrupt mask: (0) enables reception of the interrupt and (1) inhibits
reception of the interrupt. When the local APIC handles a perfor-
mance-monitoring counters interrupt, it automatically sets the mask
flag in the corresponding LVT entry. This flag will remain set until
software clears it.

Timer Mode Selects the timer mode: (0) one-shot and (1) periodic (see Section
8.5.4., “APIC Timer”).

8.5.2. Valid Interrupt Vectors

The IA-32 architecture defines 256 vector numbers, ranging from 0 through 255 (see Section
5.2., “Exception and Interrupt Vectors”). The local and I/O APICs support 240 of these vectors
(in the range of 16 to 255) as valid interrupts.

When an interrupt vector in the range of 0 to 15 is sent or received through the local APIC, the
APIC indicates an illegal vector in its Error Status Register [see Section 8.5.3., “Error
Handling”]. The TA-32 architecture reserves vectors 16 through 31 for predefined interrupts,
exceptions, and Intel-reserved encodings (see Table 5-1); however, the local APIC does not treat
vectors in this range as illegal.

When an illegal vector value (0 to 15) is written to an LVT entry and the delivery mode is Fixed
(bits 8-11 equal 0), the APIC may signal an illegal vector error, without regard to whether the
mask bit is set or whether an interrupt is actually seen on the input.

8.5.3. Error Handling

The local APIC provides an error status register (ESR) that it uses to record errors that it detects
when handling interrupts (see Figure 8-9). An APIC error interrupt is generated when the local
APIC sets one of the error bits in the ESR. The LVT error register allows selection of the inter-
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rupt vector to be delivered to the processor core when APIC error is detected. The LVT error
register also provides a means of masking the APIC error interrupt.

The functions of the ESR flags are as follows:

Send Checksum Error (P6 family and Pentium processors only.) Set when the local APIC
detects a checksum error for a message that it sent on the APIC bus.

Receive Checksum (P6 family and Pentium processors only.) Set when the local APIC

Error detects a checksum error for a message that it received on the APIC
bus.

Send Accept Error (P6 family and Pentium processors only.) Set when the local APIC
detects that a message it sent was not accepted by any APIC on the
APIC bus.

Receive Accept Error  (P6 family and Pentium processors only.) Set when the local APIC
detects that the message it received was not accepted by any APIC
on the APIC bus, including itself.

Send Illegal Vector Set when the local APIC detects an illegal vector in the message that
it is sending.

Receive Illegal Vector  Set when the local APIC detects an illegal vector in the message it
received, including an illegal vector code in the local vector table
interrupts or in a self-interrupt.

Illegal Reg. Address (Pentium 4, Intel Xeon, and P6 family processors only.) Set when
the processor is trying to access a register that is not implemented in
the processors’ local APIC register address space; that is, within the
address range of the APIC register base address (specified in the
IA32_APIC_BASE MSR) plus 4K Bytes.

31 876 54 3210
Reserved

Received lllegal Vector
Send lllegal Vector
Reserved
Receive Accept Error®
Send Accept Error?
Receive Checksum Error?
Send Checksum Error?

lllegal RegisterAddress1 ‘ ‘ ‘

Address: FEEO 0280H
Value after reset: OH

1. Only used in the Pentium 4, Intel Xeon, and P6 family
processors; reserved in the Pentium processor.

2. Only used in the P6 family and Pentium processors;
reserved in the Pentium 4 and Intel Xeon processors.

Figure 8-9. Error Status Register (ESR)
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The ESR is a write/read register. A write (of any value) to the ESR must be done just prior to
reading the ESR to update the register. This initial write causes the ESR contents to be updated
with the latest error status. Back-to-back writes clear the ESR register.

After an error bit is set in the register, it remains set until the register is cleared. Setting the mask
bit for the LVT error register prevents errors from being recorded in the ESR; however, the state
of the ESR before the mask bit was set is maintained.

8.5.4. APIC Timer

The local APIC unit contains a 32-bit programmable timer that is available to software to time
events or operations. This timer is set up by programming four registers: the divide configura-
tion register (see Figure 8-10), the initial-count and current-count registers (see Figure 8-11),
and the LVT timer register (see Figure 8-8).

31 4 3210

Reserved 0

Aadress: FEEO 03E0H Divide Value (bits 0, 1 and 3) j_‘

Value aft t: OH
alue after reset: 0 000: Divide by 2

001: Divide by 4
010: Divide by 8
011: Divide by 16
100: Divide by 32
101: Divide by 64
110: Divide by 128
111: Divide by 1

Figure 8-10. Divide Configuration Register

31 0

Initial Count

Current Count

Address: Initial Count FEEO 0380H
Current Count FEEO 0390H
Value after reset: OH

Figure 8-11. Initial Count and Current Count Registers

The time base for the timer is derived from the processor’s bus clock, divided by the value spec-
ified in the divide configuration register.

The timer can be configured through the timer LVT entry for one-shot or periodic operation. In
one-shot mode, the timer is started by programming its initial-count register. The initial count
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value is then copied into the current-count register and count-down begins. After the timer
reaches zero, an timer interrupt is generated and the timer remains at its O value until repro-
grammed.

In periodic mode, the current-count register is automatically reloaded from the initial-count
register when the count reaches 0 and a timer interrupt is generated, and the count-down is
repeated. If during the count-down process the initial-count register is set, counting will restart,
using the new initial-count value. The initial-count register is a read-write register; the current-
count register is read only.

The LVT timer register determines the vector number that is delivered to the processor with the
timer interrupt that is generated when the timer count reaches zero. The mask flag in the LVT
timer register can be used to mask the timer interrupt.

8.5.5. Local Interrupt Acceptance

When a local interrupt is sent to the processor core, it is subject to the acceptance criteria spec-
ified in the interrupt acceptance flow chart in Figure 8-17. If the interrupt is accepted, it is logged
into the IRR register and handled by the processor according to its priority (see Section 8.8.4.,
“Interrupt Acceptance for Fixed Interrupts”). If the interrupt is not accepted, it is sent back to
the local APIC and retried.

8.6. ISSUING INTERPROCESSOR INTERRUPTS

The following sections describe the local APIC facilities that are provided for issuing interpro-
cessor interrupts (IPIs) from software. The primary local APIC facility for issuing IPIs is the
interrupt command register (ICR). The ICR can be used for the following functions:

® To send an interrupt to another processor.

® To allow a processor to forward an interrupt that it received but did not service to another
processor for servicing.

® To direct the processor to interrupt itself (perform a self interrupt).

® To deliver special IPIs, such as the start-up IPI (SIPI) message, to other processors or to
itself.

Interrupts generated with this facility are delivered to the other processors in the system through
the system bus (for Pentium 4 and Intel Xeon processors) or the APIC bus (for P6 family and
Pentium processors).

8.6.1. Interrupt Command Register (ICR)

The interrupt command register (ICR) is a 64-bit local APIC register (see Figure 8-12) that
allows software running on the processor to specify and send interprocessor interrupts (IPIs) to
other IA-32 processors in the system.
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To send an IPI, software must set up the ICR to indicate the type of IPI message to be sent and
the destination processor or processors. (All fields of the ICR are read-write by software with
the exception of the delivery status field, which is read-only.) The act of writing to the low

doubleword of the ICR causes the IPI to be sent.
The ICR consists of the following fields.

Vector The vector number of the interrupt being sent.
63 56 55 32
Destination Field Reserved
31 2019181716 15141312 1110 87 0
Reserved Vector

Destination Shorthand J

00: No Shorthand
01: Self

10: All Including Self
11: All Excluding Self

D Reserved

Address: FEEO 0300H (0 - 31)

FEEO 0310H (32 - 63)
Value after Reset: OH

L Delivery Mode

000: Fixed

001: Lowest Priority
010: SMI

011: Reserved

100: NMI

101: INIT

110: Start Up

111: Reserved

Destination Mode
0: Physical
1: Logical

Delivery Status
0: Idle
1: Send Pending

Level
0 = De-assert
1 = Assert

Trigger Mode
0: Edge
1: Level

Figure 8-12. Interrupt Command Register (ICR)

Delivery Mode Specifies the type of IPI to be sent. This field is also know as the IPI

message type field.

000 (Fixed) Delivers the interrupt specified in the vector field
to the target processor or processors.
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001 (Lowest Priority)

010 (SMT)

011 (Reserved)
100 (NMI)

101 (INIT)

Same as fixed mode, except that the interrupt is
delivered to the processor executing at the lowest
priority among the set of processors specified in
the destination field. (For Pentium 4 and Intel
Xeon processors, use of this delivery mode is not
recommended because it may cause multiple IPIs
to be sent, which degrades performance.)

Delivers an SMI interrupt to the target processor
or processors. The vector field must be pro-
grammed to O0H for future compatibility.

Delivers an NMI interrupt to the target processor
or processors. The vector information is ignored.

Delivers an INIT request to the target processor or
processors, which causes them to perform an
INIT. As a result of this IPI message, all the target
processors perform an INIT. The vector field must
be programmed to O0H for future compatibility.

101 (INIT Level De-assert)

110 (Start-Up)

(Not supported in the Pentium 4 and Intel Xeon
processors.) Sends a synchronization message to
all the local APICs in the system to set their arbi-
tration IDs (stored in their Arb ID registers) to the
values of their APIC IDs (see Section 8.7., “Sys-
tem and APIC Bus Arbitration”). For this delivery
mode, the level flag must be set to 0 and trigger
mode flag to 1. This IPI is sent to all processors,
regardless of the value in the destination field or
the destination shorthand field; however, software
should specify the “all including self”” shorthand.

Sends a special “start-up” IPI (called a SIPI) to the
target processor or processors. The vector typical-
ly points to a start-up routine that is part of the
BIOS boot-strap code (see Section 7.5., “Multiple-
Processor (MP) Initialization”). Note that IPIs sent
with this delivery mode are not automatically re-
tried if the source APIC is unable to deliver it. It is
up to the software to determine if the SIPI was not
successfully delivered and to reissue the SIPI if
necessary.
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Destination Mode

Selects either physical (0) or logical (1) destination mode (see
Section 8.6.2., “Determining IPI Destination”).

Delivery Status (Read Only)

Level

Trigger Mode

Destination Shorthand

8-24

Indicates the IPI delivery status, as follows:

0 (Idle) There is currently no IPI activity for this local
APIC, or the previous IPI sent from this local
APIC was delivered and accepted by the target
Processor or processors.

1 (Send Pending)
Indicates that the last IPI sent from this local APIC
has not yet been accepted by the target processor
OT Processors.

For the INIT level de-assert delivery mode this flag must be set to 0;
for all other delivery modes it must be set to 1. (This flag has no
meaning in Pentium 4 and Intel Xeon processors, and will always be
issued as a 1.)

Selects the trigger mode when using the INIT level de-assert delivery
mode: edge (0) or level (1). It is ignored for all other delivery modes.
(This flag has no meaning in Pentium 4 and Intel Xeon processors,
and will always be issued as a 0.)

Indicates whether a shorthand notation is used to specify the destina-
tion of the interrupt and, if so, which shorthand is used. Destination
shorthands are used in place of the 8-bit destination field, and can be
sent by software using a single write to the low doubleword of the
ICR. Shorthands are defined for the following cases: software self
interrupt, IPIs to all processors in the system including the sender,
IPIs to all processors in the system excluding the sender.

00: (No Shorthand)
The destination is specified in the destination
field.

01: (Self) The issuing APIC is the one and only destination
of the IPI. This destination shorthand allows soft-
ware to interrupt the processor on which it is exe-
cuting. An APIC implementation is free to deliver
the self-interrupt message internally or to issue the
message to the bus and “snoop” it as with any oth-
er IPI message.
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10: (All Including Self)

The IPI is sent to all processors in the system in-
cluding the processor sending the IPI. The APIC
will broadcast an IPI message with the destination
field set to FH for Pentium and P6 family proces-
sors and to FFH for Pentium 4 and Intel Xeon pro-
Cessors.

11: (All Excluding Self)

The IPI is sent to all processors in the system with
the exception of the processor sending the IPI. The
APIC will broadcast a message using the physical
destination mode and destination field set to FH
for Pentium and P6 family processors and to FFH
for Pentium 4 and Intel Xeon processors. (For
Pentium 4 and Intel Xeon processors, when this
destination shorthand is used in conjunction with
the lowest-priority delivery mode, the IPI may be
redirected back to the issuing processor.)

Specifies the target processor or processors. This field is only used
when the destination shorthand field is set to 00B. If the destination
mode is set to physical, then bits 56 through 59 contain the APIC ID
of the target processor for Pentium and P6 family processors and bits
56 through 63 contain the APIC ID of the target processor the for
Pentium 4 and Intel Xeon processors. If the destination mode is set
to logical, the interpretation of the 8-bit destination field depends on
the settings of the DFR and LDR registers of the local APICs in all
the processors in the system (see Section 8.6.2., “Determining IPI

Destination”).

Note that not all the combinations of options for the ICR are valid. Table 8-2 shows the valid
combinations for the fields in the ICR for the Pentium 4 and Intel Xeon processors; Table 8-3
shows the valid combinations for the fields in the ICR for the P6 family processors.

Table 8-2. Valid Combinations for the Pentium 4 and Intel Xeon Processors’ Local xAPIC
Interrupt Command Register

Destination Valid/ | Trigger

Shorthand Invalid Mode Delivery Mode Destination Mode
No Shorthand Valid Edge All Modes Physical or Logical
No Shorthand Invalid' | Level All Modes Physical or Logical
Self Valid Edge | Fixed X2
Self Invalid' | Level Fixed X
Self Invalid X Lowest Priority, NMI, INIT, SMI, Start-Up | X
All Including Self | Valid Edge Fixed X
All Including Self | Invalid' | Level Fixed X
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Table 8-2. Valid Combinations for the Pentium 4 and Intel Xeon Processors’ Local xAPIC
Interrupt Command Register (Contd.)

Destination Valid/ | Trigger
Shorthand Invalid Mode Delivery Mode Destination Mode
All Including Self | Invalid X Lowest Priority, NMI, INIT, SMI, Start-Up | X
All Excluding Self | Valid Edge Fixed, Lowest Priority3, NMI, INIT, SMI, X
Start-Up
All Excluding Self Invalid’ Level FIxed, Lowest Prioritys, NMI, INIT, SMI, X
Start-Up

NOTES:

1. For these interrupts, if the trigger mode bit is 1 (Level), the local xAPIC will override the bit setting and
issue the interrupt as an edge triggered interrupt.

2. X—don't care.

3. When using the “lowest priority” delivery mode and the “all excluding self” destination, the IPI can be redi-
rected back to the issuing APIC, which is essentially the same as the “all including self” destination mode.

Table 8-3. Valid Combinations for the P6 Family Processors’
Local APIC Interrupt Command Register

Destination Valid/ Trigger
Shorthand Invalid Mode Delivery Mode Destination Mode
No Shorthand Valid Edge All Modes Physical or Logical
No Shorthand Valid' Level Fixed, Lowest Priority, NMI Physical or Logical
No Shorthand Valid® Level INIT Physical or Logical
Self Valid Edge Fixed X3
Self 1 Level Fixed X
Self Invalid* X Lowest Priority, NMI, INIT, SMI, | X
Start-Up
All including Self Valid Edge Fixed X
All including Self Valid' Level Fixed X
All including Self Invalid X Lowest Priority, NMI, INIT, SMI, | X
Start-Up
All excluding Self Valid Edge All Modes X
All excluding Self Valid® Level Fixed, Lowest Priority, NMI X
All excluding Self Invalid® Level SMI, Start-Up X
All excluding Self Valid? Level INIT X
X Invalid* Level SMI, Start-Up X

NOTES:

1. Treated as edge triggered if level bit is set to 1, otherwise ignored.
2. Treated as edge triggered when Level bit is set to 1; treated as “INIT Level Deassert” message when
level bit is set to 0 (deassert). Only INIT level deassert messages are allowed to have the level bit set to
0. For all other messages the level bit must be set to 1.

3. X—Don't care.

4. The behavior of the APIC is undefined.
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8.6.2. Determining IPI Destination

The destination of an IPI can be one, all, or a subset (group) of the processors on the system bus.
The sender of the IPI specifies the destination of an IPI with the following APIC registers and
fields within the registers:

® The ICR register—The following fields in the ICR register are used to specify the
destination of an IPI:

— Destination Mode—selects one of two destination modes (physical or logical).

— Destination field—In physical destination mode, used to specify the APIC ID of the
destination processor; in logical destination mode, used to specify a message
destination address (MDA) that can be used to select specific processors in clusters.

— Destination Shorthand—A quick method of specifying all processors, all excluding
self, or self as the destination.

— Delivery mode, Lowest Priority—Specifies that a lowest-priority arbitration
mechanism be used to select a destination processor from a specified group of
processors.

® Local destination register (LDR)—Used in conjunction with the logical destination mode
and MDA s to select the destination processors.

® Destination format register (DFR)—Used in conjunction with the logical destination mode
and MDA s to select the destination processors.

How the ICR, LDR, and DFR are used to select an IPI destination depends on the destination
mode used: physical, logical, broadcast/self, or lowest-priority delivery mode. These destination
modes are described in the following sections.

8.6.2.1. PHYSICAL DESTINATION MODE

In physical destination mode, the destination processor is specified by its local APIC ID (see
Section 8.4.6., “Local APIC ID”). For Pentium 4 and Intel Xeon processors, either a single desti-
nation (the local APIC ID is 00H through FEH) or a broadcast to all APICs (the APIC ID is FFH)
can be specified in physical destination mode. This APIC ID mechanism allows up to 255 local
APICs can be individually addressed on a single system bus.

For the P6 family and Pentium processors, a single destination is specified in physical destina-
tion mode with a local APIC ID of OH through OEH, allowing up to 15 local APICs to be
addressed on the APIC bus. A broadcast to all local APICs is specified with OFH.

NOTE

The actual number of local APICs that can be addressed on the system bus
may be restricted by hardware.
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8.6.2.2. LOGICAL DESTINATION MODE

In logical destination mode, IPI destination is specified using an 8-bit message destination
address (MDA), which is entered in the destination field of the ICR. Upon receiving an IPI
message that was sent using logical destination mode, a local APIC compares the MDA in the
message with the values in its LDR and DFR to determine if it should accept and handle the IPI.

Figure 8-13 shows the layout of the logical destination register (LDR). The 8-bit logical APIC
ID field in this register is used to create an identifier that can be compared with the MDA.

NOTE

The logical APIC ID should not be confused with the local APIC ID that is
contained in the local APIC ID register.

31 24 23 0

Logical APIC ID Reserved

Address: OFEEO 00DOH
Value after reset: 0000 0000H

Figure 8-13. Logical Destination Register (LDR)

Figure 8-14 shows the layout of the destination format register (DFR). The 4-bit model field in
this register selects one of two models (flat or cluster) that can be used to interpret the MDA
when using logical destination mode.

31 28 0

Model Reserved (All 1s)

I—Flat model: 1111B

Cluster model: 0000B

Address: OFEEO 00EOH
Value after reset: FFFF FFFFH

Figure 8-14. Destination Format Register (DFR)

The interpretation of MDA for the two models is described in the following paragraphs.

Flat Model. This model is selected by programming DFR bits 28 through 31 to 1111. Here, a
unique logical APIC ID can be established for up to 8 local APICs by setting a different bit in
the logical APIC ID field of the LDR for each local APIC. An group of local APICs can then be
selected by setting one or more bits in the MDA.
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Each local APIC performs a bit-wise AND of the MDA and its logical APIC ID. If a true condi-
tion is detected, the local APIC accepts the IPI message. A broadcast to all APICs is achieved
by setting the MDA to all 1s.

Cluster Model. This model is selected by programming DFR bits 28 through 31 to 0000. This
model supports two basic destination schemes: flat cluster and hierarchical cluster.

The flat cluster destination model is only supported for P6 family and Pentium processors.
Using this model, all APICs are assumed to be connected through the APIC bus. Bits 28 through
31 of the MDA contains the encoded address of the destination cluster, and bits 24 through 27
identify up to four local APICs within the cluster (each bit is assigned to one local APIC in the
cluster, as in the flat connection model). To identify one or more local APICs, bits 28 through
31 of the MDA are compared with bits 28 through 31 of the LDR to determine if a local APIC
is part of the cluster. Bits 24 through 27 of the MDA are compared with Bits 24 through 27 of
the LDR to identify a local APICs within the cluster.

Sets of processors within a cluster can be specified by writing the target cluster address in bits
28 through 31 of the MDA and setting selected bits in bits 24 through 27 of the MDA, corre-
sponding to the chosen members of the cluster. In this mode, 15 clusters (with cluster addresses
of 0 through 14) each having 4 local APICs can be specified in the message. For the P6 and
Pentium processor’s local APICs, however, the APIC arbitration ID supports only 15 APIC
agents, and hence the total number of processors and their local APICs supported in this mode
is limited to 15. Broadcast to all local APICs is achieved by setting all destination bits to one.
This guarantees a match on all clusters, and selects all APICs in each cluster.

The hierarchical cluster destination model can be used with Pentium 4, Intel Xeon, P6 family,
or Pentium processors. With this model, a hierarchical network can be created by connecting
different flat clusters via independent system or APIC buses. This scheme requires a cluster
manager within each cluster, which is responsible for handling message passing between system
or APIC buses. One cluster contains up to 4 agents. Thus 15 cluster managers, each with 4
agents, can form a network of up to 60 APIC agents. Note that hierarchical APIC networks
requires a special cluster manager device, which is not part of the local or the I/O APIC units.

8.6.2.3. BROADCAST/SELF DELIVERY MODE

The destination shorthand field of the ICR allows the delivery mode to be by-passed in favor of
broadcasting the IPI to all the processors on the system bus and/or back to itself (see Section
8.6.1., “Interrupt Command Register (ICR)”). Three destination shorthands are supported: self,
all excluding self, and all including self. The destination mode is ignored when a destination
shorthand is used.

8.6.2.4. LOWEST PRIORITY DELIVERY MODE

With lowest priority delivery mode, the ICR is programmed to send an IPI to several processors
on the system bus, using the logical or shorthand destination mechanism for selecting the
processor. The selected processors then arbitrate with one another over the system bus or the
APIC bus, with the lowest-priority processor accepting the IPI.
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For systems based on the Intel Xeon processor, the chipset bus controller accepts messages from
the I/O APIC agents in the system and directs interrupts to the processors on the system bus.
When using the lowest priority delivery mode, the chipset chooses a target processor to receive
the interrupt out of the set of possible targets. The Pentium 4 processor provides a special bus
cycle on the system bus that informs the chipset of the current task priority for each logical
processor in the system. The chipset saves this information and uses it to choose the lowest
priority processor when an interrupt is received.

For systems based on P6 family processors, the processor priority used in lowest-priority arbi-
tration is contained in the arbitration priority register (APR) in each local APIC. Figure 8-15
shows the layout of the APR.

31 87 43 0

Reserved

Arbitration Priority—‘

Address: FEEO 0090H Arbitration Priority Sub-Class
Value after reset: OH

Figure 8-15. Arbitration Priority Register (APR)

The APR value is computed as follows:

IF (TPR[7:4] > IRRV[7:4]) AND (TPR[7:4] > ISRV[7:4])
THEN
APR[7:0] < TPR[7:0]
ELSE
APR[7:4] < max(TPR([7:4] AND ISRV[7:4], IRRV[7:4])
APR[3:0] « 0.

Here, the TPR value is the task priority value in the TPR (see Figure 8-18), the IRRV value is
the vector number for the highest priority bit that is set in the IRR (see Figure 8-20) or O0H (if
no IRR bit is set), and the ISRV value is the vector number for the highest priority bit that is set
in the ISR (see Figure 8-20). Following arbitration among the destination processors, the
processor with the lowest value in its APR handles the IPI and the other processors ignore it.

(P6 family and Pentium processors.) For these processors, if a focus processor exists, it may
accept the interrupt, regardless of its priority. A processor is said to be the focus of an interrupt
if it is currently servicing that interrupt or if it has a pending request for that interrupt. For Intel
Xeon processors, the concept of a focus processor is not supported.

In operating systems that use the lowest priority delivery mode but do not update the TPR, the
TPR information saved in the chipset will potentially cause the interrupt to be always delivered
to the same processor from the logical set. This behavior is functionally backward compatible
with the P6 family processor but may result in unexpected performance implications.
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8.6.3. IPI Delivery and Acceptance

When the low double-word of the ICR is written to, the local APIC creates an IPI message from
the information contained in the ICR and sends the message out on the system bus (Pentium 4
and Intel Xeon processors) or the APIC bus (P6 family and Pentium processors). The manner in
which these IPIs are handled after being issues in described in Section 8.8., “Handling Interrupts”.

8.7. SYSTEM AND APIC BUS ARBITRATION

When several local APICs and the I/O APIC are sending IPI and interrupt messages on the
system bus (or APIC bus), the order in which the messages are sent and handled is determined
through bus arbitration.

For the Pentium 4 and Intel Xeon processors, the local and I/O APICs use the arbitration mech-
anism defined for the system bus to determine the order in which IPIs are handled. This mech-
anism is non-architectural and cannot be controlled by software.

For the P6 family and Pentium processors, the local and I/O APICs use an APIC-based arbitra-
tion mechanism to determine the order in which IPIs are handled. Here, each local APIC is given
an arbitration priority of from O to 15, which the I/O APIC uses during arbitration to determine
which local APIC should be given access to the APIC bus. The local APIC with the highest arbi-
tration priority always wins bus access. Upon completion of an arbitration round, the winning
local APIC lowers its arbitration priority to 0 and the losing local APICs each raise theirs by 1.

The current arbitration priority for a local APIC is stored in a 4-bit, software-transparent arbi-
tration ID (Arb ID) register. During reset, this register is initialized to the APIC ID number
(stored in the local APIC ID register). The INIT level-deassert IPI, which is issued with and ICR
command, can be used to resynchronize the arbitration priorities of the local APICs by resetting
Arb ID register of each agent to its current APIC ID value. (The Pentium 4 and Intel Xeon
processors do not implement the Arb ID register.)

Section 8.10., “APIC Bus Message Passing Mechanism and Protocol (P6 Family and Pentium
Processors Only)”, describes the APIC bus arbitration protocols and bus message formats, while
Section 8.6.1., “Interrupt Command Register (ICR)”, describes the INIT level de-assert IPI
message.

Note that except for the SIPI IPI (see Section 8.6.1., “Interrupt Command Register (ICR)”), all
bus messages that fail to be delivered to their specified destination or destinations are automat-
ically retried. Software should avoid situations in which IPIs are sent to disabled or nonexistent
local APICs, causing the messages to be resent repeatedly.

8.8. HANDLING INTERRUPTS

When a local APIC receives an interrupt from a local source, an interrupt message from an I/O
APIC, or and IPI, the manner in which it handles the message depends on processor implemen-
tation, as described in the following sections.
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8.8.1. Interrupt Handling with the Pentium 4 and Intel Xeon
Processors

With the Pentium 4 and Intel Xeon processors, the local APIC handles the local interrupts, inter-
rupt messages, and IPIs it receives as follows:

1. It determines if it is the specified destination or not (see Figure 8-16). If it is the specified
destination, it accepts the message; if it is not, it discards the message.

Wait to Receive
Bus Message

Belong
to
Destination?

Discard No
Message

Accept
Message

Figure 8-16. Interrupt Acceptance Flow Chart for the Local APIC (Pentium 4 and Intel
Xeon Processors)

2. If the local APIC determines that it is the designated destination for the interrupt and if the
interrupt request is an NMI, SMI, INIT, ExtINT, or SIPI, the interrupt is sent directly to the
processor core for handling.

3. If the local APIC determines that it is the designated destination for the interrupt but the
interrupt request is not one of the interrupts given in step 2, the local APIC sets the
appropriate bit in the IRR.

4. When interrupts are pending in the IRR and ISR register, the local APIC dispatches them
to the processor one at a time, based on their priority and the current task and processor
priorities in the TPR and PPR (see Section 8.8.3.1., “Task and Processor Priorities”).

5. When a fixed interrupt has been dispatched to the processor core for handling, the
completion of the handler routine is indicated with an instruction in the instruction handler
code that writes to the end-of-interrupt (EOI) register in the local APIC (see Section 8.8.5.,
“Signaling Interrupt Servicing Completion”). The act of writing to the EOI register causes
the local APIC to delete the interrupt from its ISR queue and (for level-triggered
interrupts) send a message on the bus indicating that the interrupt handling has been
completed. (A write to the EOI register must not be included in the handler routine for an
NMI, SMI, INIT, ExtINT, or SIPI.)

8.8.2. Interrupt Handling with the P6 Family and Pentium
Processors

With the P6 family and Pentium processors, the local APIC handles the local interrupts, interrupt
messages, and IPIs it receives as follows (see Figure 8-17).

8-32



tel® ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Wait to Receive
Bus Message
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Message Destination?
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Figure 8-17. Interrupt Acceptance Flow Chart for the Local APIC (P6 Family and
Pentium Processors)

(IPIs only.) It examines the IPI message to determines if it is the specified destination for
the IPI as described in Section 8.6.2., “Determining IPI Destination”. If it is the specified
destination, it continues its acceptance procedure; if it is not the destination, it discards the
IPI message. When the message specifies lowest-priority delivery mode, the local APIC
will arbitrate with the other processors that were designated on recipients of the IPI
message (see Section 8.6.2.4., “Lowest Priority Delivery Mode™).

If the local APIC determines that it is the designated destination for the interrupt and if the
interrupt request is an NMI, SMI, INIT, ExtINT, or INIT-deassert interrupt, or one of the
MP protocol IPI messages (BIPI, FIPI, and SIPI), the interrupt is sent directly to the
processor core for handling.
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3. If the local APIC determines that it is the designated destination for the interrupt but the
interrupt request is not one of the interrupts given in step 2, the local APIC looks for an
open slot in one of its two pending interrupt queues contained in the IRR and ISR registers
(see Figure 8-20). If a slot is available (see Section 8.8.4., “Interrupt Acceptance for Fixed
Interrupts”), places the interrupt in the slot. If a slot is not available, it rejects the interrupt
request and sends it back to the sender with a retry message.

4. When interrupts are pending in the IRR and ISR register, the local APIC dispatches them
to the processor one at a time, based on their priority and the current task and processor
priorities in the TPR and PPR (see Section 8.8.3.1., “Task and Processor Priorities”™).

5. When a fixed interrupt has been dispatched to the processor core for handling, the
completion of the handler routine is indicated with an instruction in the instruction handler
code that writes to the end-of-interrupt (EOI) register in the local APIC (see Section 8.8.5.,
“Signaling Interrupt Servicing Completion”). The act of writing to the EOI register causes
the local APIC to delete the interrupt from its queue and (for level-triggered interrupts)
send a message on the bus indicating that the interrupt handling has been completed. (A
write to the EOI register must not be included in the handler routine for an NMI, SMI,
INIT, ExtINT, or SIPL.)

The following sections describe the acceptance of interrupts and their handling by the local
APIC and processor in greater detail.

8.8.3. Interrupt, Task, and Processor Priority

For interrupts that are delivered to the processor through the local APIC, each interrupt has an
implied priority based on its vector number. The local APIC uses this priority to determine when
to service the interrupt relative to the other activities of the processor, including the servicing of
other interrupts.

For interrupts vectors in the range of 16 to 255, the interrupt priority is determined using the
following relationship:

priority = vector / 16

Here the quotient is rounded down to the nearest integer value to determine the priority, with 1
being the lowest priority and 15 is the highest. Because vectors 0 through 31 are reserved for
dedicated uses by the IA-32 architecture, the priorities of user defined interrupts range from 2
to 15.

Each interrupt priority level (sometimes interpreted by software as an interrupt priority class)
encompasses 16 vectors. Prioritizing interrupts within a priority level is determined by the
vector number. The higher the vector number, the higher the priority within that priority level.
In determining the priority of a vector and ranking of vectors within a priority group, the vector
number is often divided into two parts, with the high 4 bits of the vector indicating its priority
and the low 4 bit indicating its ranking within the priority group.
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8.8.3.1. TASK AND PROCESSOR PRIORITIES

The local APIC also defines a task priority and a processor priority that is uses in determining
the order in which interrupts should be handled. The task priority is a software selected value
between 0 and 15 (see Figure 8-18) that is written into the task priority register (TPR). The TPR
is a read/write register.

31 87 43 0

Reserved

Task Priority4
Address: FEEO 0080H Task Priority Sub-Class

Value after reset: OH

Figure 8-18. Task Priority Register (TPR)

NOTE

In this discussion, the term “task” refers to a software defined task, process,
thread, program, or routine that is dispatched to run on the processor by the
operating system. It does not refer an IA-32 architecture defined task as
described in Chapter 6, Task Management.

The task priority allows software to set a priority threshold for interrupting the processor. The
processor will service only those interrupts that have a priority higher than that specified in the
TPR. If software sets the task priority in the TPR to 0, the processor will handle all interrupts; it
is it set to 15, all interrupts are inhibited from being handled, except those delivered with the
NMI, SMI, INIT, ExtINT, INIT-deassert, and start-up delivery mode. This mechanism enables
the operating system to temporarily block specific interrupts (generally low priority interrupts)
from disturbing high-priority work that the processor is doing.

Note that the task priority is also used to determine the arbitration priority of the local processor
(see Section 8.6.2.4., “Lowest Priority Delivery Mode”).

The processor priority is set by the processor, also to value between 0 and 15 (see Figure 8-19)
that is written into the processor priority register (PPR). The PPR is a read only register. The
processor priority represents the current priority at which the processor is executing. It is used
to determine whether a pending interrupt can be dispensed to the processor.

31 87 4 3 0

Reserved

Processor Priority J

Address: FEEO 00AOH Processor Priority Sub-Class
Value after reset: OH

Figure 8-19. Processor Priority Register (PPR)
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Its value in the PPR is computed as follows:

IF TPR[7:4] = ISRV[7:4]
THEN
PPR[7:0] « TPR[7:0]
ELSE
PPR[7:4] « ISRV[7:4]
PPR[3:0] < 0
Here, the ISRV value is the vector number of the highest priority ISR bit that is set, or 00H if no

ISR bit is set. Essentially, the processor priority is set to either to the highest priority pending
interrupt in the ISR or to the current task priority, whichever is higher.

8.8.4. Interrupt Acceptance for Fixed Interrupts

The local APIC queues the fixed interrupts that it accepts in one of two interrupt pending regis-
ters: the interrupt request register (IRR) or in-service register (ISR). These two 256-bit read-only
registers are shown in Figure 8-20). The 256 bits in these registers represent the 256 possible
vectors, with vectors O through 15 are reserved.

NOTE

All interrupts with an NMI, SMI, INIT, ExtINT, start-up, or INIT-deassert
delivery mode bypass the IRR and ISR registers and are sent directly to the
processor core for servicing.

255 16 15 0
Reserved IRR

Reserved ISR

Reserved TMR

Addresses: IRR FEEO 0200H - FEEO 0270H
ISR FEEO 0100H - FEEO 0170H
TMR FEEO 0180H - FEEO 10FOH
Value after reset: OH

Figure 8-20. IRR, ISR and TMR Registers

The IRR contains the active interrupt requests that have been accepted, but not yet dispatched
to the processor for servicing. When the local APIC accepts an interrupt, it sets the bit in the IRR
that corresponds the vector of the accepted interrupt. When the processor core is ready to handle
the next interrupt, the local APIC clears the highest priority IRR bit that is set and sets the corre-
sponding ISR bit. The vector for the highest priority bit set in the ISR is then dispatched to the
processor core for servicing.
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While the processor is servicing the highest priority interrupt, the local APIC can send additional
fixed interrupts by setting bits in the IRR. When the interrupt service routine issues a write to
the EOI register (see Section 8.8.5., “Signaling Interrupt Servicing Completion”), the local
APIC responds by clearing the highest priority ISR bit that is set. It then repeats the process of
clearing the highest priority bit in the IRR and setting the corresponding bit in the ISR. The
processor core then begins executing the service routing for the highest priority bit set in the
ISR.

If more than one interrupt is generated with the same vector number, the local APIC can set the
bit for the vector both in the IRR and the ISR. This means that for the Pentium 4 and Intel Xeon
processors, the IRR and ISR can queue two interrupts for each interrupt vector: one in the IRR
and one in the ISR. Any additional interrupts issued for the same interrupt vector are collapsed
into the single bit in the IRR.

For the P6 family and Pentium processors, the IRR and ISR registers can queue no more than
two interrupts per priority level, and will reject other interrupts that are received within the same
priority level.

If the local APIC receives an interrupt with a priority higher than that of the interrupt currently
in serviced, and interrupts are enabled in the processor core, the local APIC dispatches the
higher priority interrupt to the processor immediately (without waiting for a write to the EOI
register). The currently executing interrupt handler is then interrupted so the higher-priority
interrupt can be handled. When the handling of the higher-priority interrupt has been completed,
the servicing of the interrupted interrupt is resumed.

The trigger mode register (TMR) indicates the trigger mode of the interrupt (see Figure 8-20).
Upon acceptance of an interrupt into the IRR, the corresponding TMR bit is cleared for edge-
triggered interrupts and set for level-triggered interrupts. If a TMR bit is set when an EOI cycle
for its corresponding interrupt vector is generated, an EOI message is sent to all I/O APICs.

8.8.5. Signaling Interrupt Servicing Completion

For all interrupts except those delivered with the NMI, SMI, INIT, ExtINT, the start-up, or INIT-
Deassert delivery mode, the interrupt handler must include a write to the end-of-interrupt (EOI)
register (see Figure 8-21). This write must occur at the end of the handler routine, sometime
before the IRET instruction. This action indicates that the servicing of the current interrupt is
complete and the local APIC can issue the next interrupt from the ISR.

31 0

Address: OFEEO 00BOH
Value after reset: OH

Figure 8-21. EOI Register
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Upon receiving and EOI, the APIC clears the highest priority bit in the ISR and dispatches the
next highest priority interrupt to the processor. If the terminated interrupt was a level-triggered
interrupt, the local APIC also sends an end-of-interrupt message to all I/O APICs.

For future compatibility, the software is requested to issue the end-of-interrupt command by
writing a value of OH into the EOI register.

8.9. SPURIOUS INTERRUPT

A special situation may occur when a processor raises its task priority to be greater than or equal
to the level of the interrupt for which the processor INTR signal is currently being asserted. If
at the time the INTA cycle is issued, the interrupt that was to be dispensed has become masked
(programmed by software), the local APIC will deliver a spurious-interrupt vector. Dispensing
the spurious-interrupt vector does not affect the ISR, so the handler for this vector should return
without an EOL

The vector number for the spurious-interrupt vector is specified in the spurious-interrupt vector
register (see Figure 8-22). The functions of the fields in this register are as follows:

Spurious Vector Determines the vector number to be delivered to the processor when
the local APIC generates a spurious vector.

(Pentium 4 and Intel Xeon processors.) Bits 0 through 7 of the this
field are programmable by software.

(P6 family and Pentium processors). Bits 4 through 7 of the this field
are programmable by software, and bits 0 through 3 are hardwired to
logical ones. Software writes to bits O through 3 have no effect.

APIC Software Allows software to temporarily enable (1) or disable (0) the local

Enable/Disable APIC (see Section 8.4.3., “Enabling or Disabling the Local APIC”).
Focus Processor Determines if focus processor checking is enabled (0) or disabled (1)
Checking when using the lowest-priority delivery mode. In Pentium 4 and Intel

Xeon processors, this bit is reserved and should be cleared to 0.
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31 10 9 8 7 0

Reserved

Focus Processor Checking14
0: Enabled
1: Disabled

APIC Software Enable/Disable
0: APIC Disabled
1: APIC Enabled

Spurious Vector?
Address: FEEO 00FOH
Value after reset: 0000 OOFFH
1. Not supported in Pentium 4 and Intel Xeon processors.

2. For the P6 family and Pentium processors, bits 0 through 3
of the spurious vector are hardwired to 1.

Figure 8-22. Spurious-Interrupt Vector Register (SVR)

8.10. APIC BUS MESSAGE PASSING MECHANISM AND
PROTOCOL (P6 FAMILY AND PENTIUM PROCESSORS
ONLY)

The Pentium 4 and Intel Xeon processors pass messages among the local and I/O APICs on the
system bus, using the system bus message passing mechanism and protocol.

The P6 family and Pentium processors, pass messages among the local and I/O APICs on the
serial APIC bus, as follows. Because only one message can be sent at a time on the APIC bus,
the I/O APIC and local APICs employ a “rotating priority” arbitration protocol to gain permis-
sion to send a message on the APIC bus. One or more APICs may start sending their messages
simultaneously. At the beginning of every message, each APIC presents the type of the message
it is sending and its current arbitration priority on the APIC bus. This information is used for
arbitration. After each arbitration cycle (within an arbitration round), only the potential winners
keep driving the bus. By the time all arbitration cycles are completed, there will be only one
APIC left driving the bus. Once a winner is selected, it is granted exclusive use of the bus, and
will continue driving the bus to send its actual message.

After each successfully transmitted message, all APICs increase their arbitration priority by 1.
The previous winner (that is, the one that has just successfully transmitted its message) assumes
a priority of 0 (lowest). An agent whose arbitration priority was 15 (highest) during arbitration,
but did not send a message, adopts the previous winner’s arbitration priority, increments by 1.

Note that the arbitration protocol described above is slightly different if one of the APICs issues
a special End-Of-Interrupt (EOI). This high-priority message is granted the bus regardless of its
sender’s arbitration priority, unless more than one APIC issues an EOI message simultaneously.
In the latter case, the APICs sending the EOI messages arbitrate using their arbitration priorities.
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If the APICs are set up to use “lowest priority” arbitration (see Section 8.6.2.4., “Lowest Priority
Delivery Mode”) and multiple APICs are currently executing at the lowest priority (the value in
the APR register), the arbitration priorities (unique values in the Arb ID register) are used to
break ties. All 8 bits of the APR are used for the lowest priority arbitration.

8.10.1. Bus Message Formats

See Appendix F, APIC Bus Message Formats, for a description of bus message formats used to
transmit messages on the serial APIC bus.

8.11. MESSAGE SIGNALLED INTERRUPTS

The PCI Local Bus Specification, Rev 2.2 (www.pcisig.com ) introduces the concept of message
signalled interrupts. Intel processors and chipsets with this capability currently include the
Pentium 4 and Intel Xeon processors. As the specification indicates:

“Message signalled interrupts (MSI) is an optional feature that enables PCI
devices to request service by writing a system-specified message to a system-
specified address (PCI DWORD memory write transaction). The transaction
address specifies the message destination while the transaction data specifies
the message. System software is expected to initialize the message
destination and message during device configuration, allocating one or more
non-shared messages to each MSI capable function.”

The capabilities mechanism provided by the PCI Local Bus Specification is used to identify and
configure MSI capable PCI devices. Among other fields, this structure contains a Message Data
Register and a Message Address Register. To request service, the PCI device function writes the
contents of the Message Data Register to the address contained in the Message Address Register
(and the Message Upper Address register for 64-bit message addresses).

Section 8.11.1.and Section 8.11.2. provide layout details for the Message Address Register and
the Message Data Register. The operation issued by the device is a PCI write command to the
Message Address Register with the Message Data Register contents. The operation follows
semantic rules as defined for PCI write operations and is a DWORD operation.

8.11.1. Message Address Register Format

The format of the Message Address Register (lower 32-bits) is shown in Figure 8-23.
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31 20 19 12 1 4 3 2 1 0

OFEEEH Destination ID Reserved RH DM XX

Figure 8-23. Layout of the MSI Message Address Register

Fields in the Message Address Register are as follows:

1.

Bits 31-20: These bits contain a fixed value for interrupt messages (OFEEH). This value
locates interrupts at the IMB area with a base address of 4G — 18M. All accesses to this
region are directed as interrupt messages. Care must to be taken to ensure that no other
device claims the region as I/O space.

Destination ID: This field contains an 8-bit destination ID. It identifies the message’s target
processor(s). The destination ID corresponds to bits 63:56 of the I/O APIC Redirection
Table Entry if the IOAPIC is used to dispatch the interrupt to the processor(s).

Redirection Hint Indication (RH): This bit indicates whether the message should be
directed to the processor with the lowest interrupt priority among processors that can
receive the interrupt. When the bit is 0, the interrupt is directed to the processor listed in
the Destination ID field. When the bit is 1, the interrupt is directed to the processor with
the lowest priority of the processors indicated in the Destination ID field. Interpreting the
Destination ID field for lowest priority delivery takes the DM bit into account.

Destination Mode (DM): This bit indicates whether the Destination ID field should be
interpreted as logical or physical APIC ID for delivery of the lowest priority interrupt. If
RH is 1 and DM is 0, the Destination ID field is in physical destination mode and only the
processor in the system that has the matching APIC ID is considered for delivery of that
interrupt (this means no re-direction). If RH is 1 and DM is 1, the Destination ID Field is
interpreted as in logical destination mode and the redirection is limited to only those
processors that are part of the logical group of processors based on the processor’s logical
APIC ID and the Destination ID field in the message. The logical group of processors
consists of those identified by matching the 8-bit Destination ID with the logical
destination identified by the Destination Format Register and the Logical Destination
Register in each local APIC. The details are similar to those described in Section 8.6.2.,
“Determining IPI Destination”. If RH is 0, then the DM bit is ignored and the message is
sent ahead independent of whether the physical or logical destination mode is used.
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8.11.2. Message Data Register Format

The layout of the Message Data Register is shown in Figure 8-24.

63 32
Reserved
31 16 15 14 13 11 10 8 7 0
Reserved Reserved Vector
Trigger Mode Delivery Mode
0 - Edge 000 - Fixed
1- Level 001 - Lowest Priority
010 - SMI
Level for Trigger Mode = 0 011 - Reserved
X - Don't care 001 - NMI
Level for Trigger Mode = 1 101 - INIT
0 - Deassert 110 - Reserved
1 - Assert 111 - ExXINT

Figure 8-24. Layout of the MSI Message Data Register

Reserved fields are not assumed to be any value. Software must preserve their contents on

writes. Other fields in the Message Data Register are described below.

1. Vector: This 8-bit field contains the interrupt vector associated with the message. Values
range from 010H to OFEH. Software must guarantee that the field is not programmed with

vector 00H to OFH.

2. Delivery Mode: This 3-bit field specifies how the interrupt receipt is handled. Delivery
Modes operate only in conjunction with specified Trigger Modes. Correct Trigger Modes

must be guaranteed by software. Restrictions are indicated below:

a. 000B (Fixed Mode) — Deliver the signal to all the agents listed in the destination. The

Trigger Mode for fixed delivery mode can be edge or level.

b. 001B (Lowest Priority) — Deliver the signal to the agent that is executing at the lowest
priority of all agents listed in the destination field. The trigger mode can be edge or

level.
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010B (System Management Interrupt or SMI) — The delivery mode is edge only. For
systems that rely on SMI semantics, the vector field is ignored but must be
programmed to all zeroes for future compatibility.

100B (NMI) — Deliver the signal to all the agents listed in the destination field. The
vector information is ignored. NMI is an edge triggered interrupt regardless of the
Trigger Mode Setting.

101B (INIT) — Deliver this signal to all the agents listed in the destination field. The
vector information is ignored. INIT is an edge triggered interrupt regardless of the
Trigger Mode Setting.

111B (ExtINT) — Deliver the signal to the INTR signal of all agents in the destination
field (as an interrupt that originated from an 8259A compatible interrupt controller).
The vector is supplied by the INTA cycle issued by the activation of the ExtINT.
ExtINT is an edge triggered interrupt.

Level: Edge triggered interrupt messages are always interpreted as assert messages. For

edge triggered interrupts this field is not used. For level triggered interrupts, this bit
reflects the state of the interrupt input.

a.

b.

Trigger Mode: This field indicates the signal type that will trigger a message.

0 — Indicates edge sensitive.

1 — Indicates level sensitive.
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CHAPTER 9
PROCESSOR MANAGEMENT AND
INITIALIZATION

This chapter describes the facilities provided for managing processor wide functions and for
initializing the processor. The subjects covered include: processor initialization, x87 FPU
initialization, processor configuration, feature determination, mode switching, the MSRs (in the
Pentium, P6 family, Pentium 4, and Intel Xeon processors), and the MTRRs (in the P6 family,
Pentium 4, and Intel Xeon processors).

9.1. INITIALIZATION OVERVIEW

Following power-up or an assertion of the RESET# pin, each processor on the system bus
performs a hardware initialization of the processor (known as a hardware reset) and an optional
built-in self-test (BIST). A hardware reset sets each processor’s registers to a known state and
places the processor in real-address mode. It also invalidates the internal caches, translation
lookaside buffers (TLBs) and the branch target buffer (BTB). At this point, the action taken
depends on the processor family:

® Pentium 4 and Intel Xeon processors—All the processors on the system bus (including a
single processor in a uniprocessor system) execute the multiple processor (MP) initial-
ization protocol. The processor that is selected through this protocol as the bootstrap
processor (BSP) then immediately starts executing software-initialization code in the
current code segment beginning at the offset in the EIP register. The application (non-BSP)
processors (APs) go into a Wait For Startup IPI (SIPI) state while the BSP is executing
initialization code. See Section 7.5., “Multiple-Processor (MP) Initialization”, for more
details. Note that in a uniprocessor system, the single Pentium 4 or Intel Xeon processor
automatically becomes the BSP.

® P6 family processors—The action taken is the same as for the Pentium 4 and Intel Xeon
processors (as described in the previous paragraph).

® Pentium processors—In either a single- or dual- processor system, a single Pentium
processor is always pre-designated as the primary processor. Following a reset, the primary
processor behaves as follows in both single- and dual-processor systems. Using the dual-
processor (DP) ready initialization protocol, the primary processor immediately starts
executing software-initialization code in the current code segment beginning at the offset
in the EIP register. The secondary processor (if there is one) goes into a halt state.

® Intel486 processor—The primary processor (or single processor in a uniprocessor system)
immediately starts executing software-initialization code in the current code segment
beginning at the offset in the EIP register. (The Intel486 does not automatically execute a
DP or MP initialization protocol to determine which processor is the primary processor.)
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The software-initialization code performs all system-specific initialization of the BSP or
primary processor and the system logic.

At this point, for MP (or DP) systems, the BSP (or primary) processor wakes up each AP (or
secondary) processor to enable those processors to execute self-configuration code.

When all processors are initialized, configured, and synchronized, the BSP or primary processor
begins executing an initial operating-system or executive task.

The x87 FPU is also initialized to a known state during hardware reset. x87 FPU software initial-
ization code can then be executed to perform operations such as setting the precision of the x87
FPU and the exception masks. No special initialization of the x87 FPU is required to switch
operating modes.

Asserting the INIT# pin on the processor invokes a similar response to a hardware reset. The
major difference is that during an INIT, the internal caches, MSRs, MTRRs, and x87 FPU state
are left unchanged (although, the TLBs and BTB are invalidated as with a hardware reset). An
INIT provides a method for switching from protected to real-address mode while maintaining
the contents of the internal caches.

9.1.1. Processor State After Reset

Table 9-1 shows the state of the flags and other registers following power-up for the Pentium 4,
Intel Xeon, P6 family, and Pentium processors. The state of control register CRO is 60000010H
(see Figure 9-1), which places the processor is in real-address mode with paging disabled.

9.1.2. Processor Built-In Self-Test (BIST)

Hardware may request that the BIST be performed at power-up. The EAX register is cleared
(OH) if the processor passes the BIST. A nonzero value in the EAX register after the BIST indi-
cates that a processor fault was detected. If the BIST is not requested, the contents of the EAX
register after a hardware reset is OH.

The overhead for performing a BIST varies between processor families. For example, the BIST
takes approximately 30 million processor clock periods to execute on the Pentium 4 processor.
(This clock count is model-specific, and Intel reserves the right to change the exact number of
periods, for any of the IA-32 processors, without notification.)
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Table 9-1. 32-Bit IA-32 Processor States Following Power-up, Reset, or INIT
Register Pentium 4 and Intel Xeon P6 Family Processor Pentium Processor
Processor

EFLAGS' 00000002H 00000002H 00000002H

EIP 0000FFFOH 0000FFFOH 0000FFFOH

CRO 60000010H? 60000010H? 60000010H?

CR2, CR3, CR4 | 00000000H 00000000H 00000000H

CS Selector = FOOOH Selector = FOOOH Selector = FOOOH
Base = FFFFO000H Base = FFFFO000H Base = FFFFO000H
Limit = FFFFH Limit = FFFFH Limit = FFFFH
AR = Present, R/W, AR = Present, R/W, AR = Present, R/W,
Accessed Accessed Accessed

SS, DS, ES, FS, | Selector = 0000H Selector = 0000H Selector = 0000H

GS Base = 00000000H Base = 00000000H Base = 00000000H
Limit = FFFFH Limit = FFFFH Limit = FFFFH
AR = Present, R/W, AR = Present, R/W, AR = Present, R/W,
Accessed Accessed Accessed

EDX 00000FxxH 000006xxH 000005xxH

EAX 03 08 03

EBX, ECX, ESI, | 00000000H 00000000H 00000000H

EDI, EBP, ESP

STO through Pwr up or Reset: +0.0 Pwr up or Reset: +0.0 Pwr up or Reset: +0.0

sT74 FINIT/ENINIT: Unchanged | FINIT/FNINIT: Unchanged | FINIT/FNINIT: Unchanged

x87 FPU Control
Word?*

x87 FPU Status
Word?*

x87 FPU Tag
Word?*

x87 FPU Data
Operand and CS
Seg. Selectors*

x87 FPU Data
Operand and
Inst. Pointers

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 5555H
FINIT/ENINIT: FFFFH

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset:
00000000H
FINIT/FNINIT: 00000000H

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 5555H
FINIT/ENINIT: FFFFH

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset:
00000000H
FINIT/FNINIT: 00000000H

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 5555H
FINIT/ENINIT: FFFFH

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset:
00000000H
FINIT/FNINIT: 00000000H

MMO through Pwr up or Reset: Pentium II and Pentium Il | Pentium with MMX
MM74 0000000000000000H Processors Only— Technology Only—
INIT or FINIT/FNINIT: Pwr up or Reset: Pwr up or Reset:
Unchanged 0000000000000000H 0000000000000000H
INIT or FINIT/FNINIT: INIT or FINIT/FNINIT:
Unchanged Unchanged
XMMO through Pwr up or Reset: Pentium Il processor NA

XMM7

0000000000000000H
INIT: Unchanged

Only—

Pwr up or Reset:
0000000000000000H

INIT: Unchanged
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Table 9-1. 32-Bit IA-32 Processor States Following Power-up, Reset, or INIT (Contd.)

Register Pentium 4 and Intel Xeon P6 Family Processor Pentium Processor
Processor
MXCSR Pwr up or Reset: 1F80H Pentium Il processor only- | NA
INIT: Unchanged Pwr up or Reset: 1F80H
INIT: Unchanged
GDTR, IDTR Base = 00000000H Base = 00000000H Base = 00000000H
Limit = FFFFH Limit = FFFFH Limit = FFFFH
AR = Present, R/'W AR = Present, R/\W AR = Present, R/\W
LDTR, Task Selector = 0000H Selector = 0000H Selector = 0000H
Register Base = 00000000H Base = 00000000H Base = 00000000H
Limit = FFFFH Limit = FFFFH Limit = FFFFH
AR = Present, R/\W AR = Present, R/\W AR = Present, R/\W
DRO, DR1, DR2, | 00000000H 00000000H 00000000H
DR3
DR6 FFFFOFFOH FFFFOFFOH FFFFOFFOH
DR7 00000400H 00000400H 00000400H
Time-Stamp Power up or Reset: OH Power up or Reset: OH Power up or Reset: OH
Counter INIT: Unchanged INIT: Unchanged INIT: Unchanged

Perf. Counters
and Event Select

Power up or Reset: OH
INIT: Unchanged

Power up or Reset: OH
INIT: Unchanged

Power up or Reset: OH
INIT: Unchanged

All Other MSRs

Pwr up or Reset:

Pwr up or Reset:

Pwr up or Reset:

Undefined Undefined Undefined
INIT: Unchanged INIT: Unchanged INIT: Unchanged
Data and Code Invalid Invalid Invalid
Cache, TLBs
Fixed MTRRs Pwr up or Reset: Disabled | Pwr up or Reset: Disabled | Not Implemented

INIT: Unchanged

INIT: Unchanged

Variable MTRRs

Pwr up or Reset: Disabled
INIT: Unchanged

Pwr up or Reset: Disabled
INIT: Unchanged

Not Implemented

Machine-Check
Architecture

Pwr up or Reset:
Undefined
INIT: Unchanged

Pwr up or Reset:
Undefined
INIT: Unchanged

Not Implemented

APIC

Pwr up or Reset: Enabled
INIT: Unchanged

Pwr up or Reset: Enabled
INIT: Unchanged

Pwr up or Reset: Enabled
INIT: Unchanged

NOTES:

1. The 10 most-significant bits of the EFLAGS register are undefined following a reset. Software should not
depend on the states of any of these bits.

2. The CD and NW flags are unchanged, bit 4 is set to 1, all other bits are cleared.

3. If Built-In Self-Test (BIST) is invoked on power up or reset, EAX is 0 only if all tests passed. (BIST cannot
be invoked during an INIT.)

4. The state of the x87 FPU and MMX registers is not changed by the execution of an INIT.
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Paging disabled: 0
Caching disabled: 1
Not write-through disabled: 1

Alignment check disabled: 0
’7 Write-protect disabled: 0

31302928 1918 171615 6 543210
P|C|N Al W N1TEMP
G|D|W M| |P E| |S|M|P|E

External x87 FPU error reporting: 0 ‘
(Not used): 1

No task switch: 0
x87 FPU instructions not trapped: 0
WAIT/FWAIT instructions not trapped: 0
Real-address mode: 0

|:] Reserved

Figure 9-1. Contents of CRO Register after Reset

9.1.3. Model and Stepping Information

Following a hardware reset, the EDX register contains component identification and revision
information (see Figure 9-2). For example, the model, family, and processor type returned for
the first processor in the Intel Pentium 4 family is as follows: model (0000B), family (1111B),
and processor type (00B).

31 24 23 20 19 1615 14 13 12 11 87 43 0

Extended Extended . Stepplng
EAX Family Model Family | Model D

Processor Type ‘
Family (1111B for the Pentium 4 Processor Family)

Model (Beginning with 0000B)

Figure 9-2. Version Information in the EDX Register after Reset

The stepping ID field contains a unique identifier for the processor’s stepping ID or revision
level. The extended family and extended model fields were added to the IA-32 architecture in
the Pentium 4 processors.
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9.1.4. First Instruction Executed

The first instruction that is fetched and executed following a hardware reset is located at physical
address FFFFFFFOH. This address is 16 bytes below the processor’s uppermost physical
address. The EPROM containing the software-initialization code must be located at this address.

The address FFFFFFFOH is beyond the 1-MByte addressable range of the processor while in
real-address mode. The processor is initialized to this starting address as follows. The CS
register has two parts: the visible segment selector part and the hidden base address part. In real-
address mode, the base address is normally formed by shifting the 16-bit segment selector value
4 bits to the left to produce a 20-bit base address. However, during a hardware reset, the segment
selector in the CS register is loaded with FOOOH and the base address is loaded with
FFFFOOOOH. The starting address is thus formed by adding the base address to the value in the
EIP register (that is, FFFFO000 + FFFOH = FFFFFFFOH).

The first time the CS register is loaded with a new value after a hardware reset, the processor
will follow the normal rule for address translation in real-address mode (that is, [CS base address
= CS segment selector * 16]). To insure that the base address in the CS register remains
unchanged until the EPROM based software-initialization code is completed, the code must not
contain a far jump or far call or allow an interrupt to occur (which would cause the CS selector
value to be changed).

9.2. X87 FPU INITIALIZATION

Software-initialization code can determine the whether the processor contains an x87 FPU by
using the CPUID instruction. The code must then initialize the x87 FPU and set flags in control
register CRO to reflect the state of the x87 FPU environment.

A hardware reset places the x87 FPU in the state shown in Table 9-1. This state is different from
the state the x87 FPU is placed in following the execution of an FINIT or FNINIT instruction
(also shown in Table 9-1). If the x87 FPU is to be used, the software-initialization code should
execute an FINIT/FNINIT instruction following a hardware reset. These instructions, tag all
data registers as empty, clear all the exception masks, set the TOP-of-stack value to 0, and select
the default rounding and precision controls setting (round to nearest and 64-bit precision).

If the processor is reset by asserting the INIT# pin, the x87 FPU state is not changed.

9.2.1. Configuring the x87 FPU Environment

Initialization code must load the appropriate values into the MP, EM, and NE flags of control
register CRO. These bits are cleared on hardware reset of the processor. Figure 9-2 shows the
suggested settings for these flags, depending on the IA-32 processor being initialized. Initializa-
tion code can test for the type of processor present before setting or clearing these flags.
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Table 9-2. Recommended Settings of EM and MP Flags on IA-32 processors
EM MP NE I1A-32 processor

1 0 1 Intel486™ SX, Intel386™ DX, and Intel386™ SX processors
only, without the presence of a math coprocessor.

0 1 10r0 Pentium 4, Intel Xeon, P6 family, Pentium, Intel486™ DX, and
Intel 487 SX processors, and Intel386 DX and Intel386 SX
processors when a companion math coprocessor is present.

NOTE:
* The setting of the NE flag depends on the operating system being used.

The EM flag determines whether floating-point instructions are executed by the x87 FPU (EM
is cleared) or a device-not-available exception (#NM) is generated for all floating-point instruc-
tions so that an exception handler can emulate the floating-point operation (EM = 1). Ordinarily,
the EM flag is cleared when an x87 FPU or math coprocessor is present and set if they are not
present. If the EM flag is set and no x87 FPU, math coprocessor, or floating-point emulator is
present, the processor will hang when a floating-point instruction is executed.

The MP flag determines whether WAIT/FWAIT instructions react to the setting of the TS flag.
If the MP flag is clear, WAIT/FWAIT instructions ignore the setting of the TS flag; if the MP
flag is set, they will generate a device-not-available exception (#NM) if the TS flag is set. Gener-
ally, the MP flag should be set for processors with an integrated x87 FPU and clear for proces-
sors without an integrated x87 FPU and without a math coprocessor present. However, an
operating system can choose to save the floating-point context at every context switch, in which
case there would be no need to set the MP bit.

Table 2-1 shows the actions taken for floating-point and WAIT/FWAIT instructions based on the
settings of the EM, MP, and TS flags.

The NE flag determines whether unmasked floating-point exceptions are handled by generating
a floating-point error exception internally (NE is set, native mode) or through an external inter-
rupt (NE is cleared). In systems where an external interrupt controller is used to invoke numeric
exception handlers (such as MS-DOS-based systems), the NE bit should be cleared.

9.2.2. Setting the Processor for x87 FPU Software Emulation

Setting the EM flag causes the processor to generate a device-not-available exception (#NM)
and trap to a software exception handler whenever it encounters a floating-point instruction.
(Table 9-2 shows when it is appropriate to use this flag.) Setting this flag has two functions:

® It allows x87 FPU code to run on an IA-32 processor that has neither an integrated x87
FPU nor is connected to an external math coprocessor, by using a floating-point emulator.

® It allows floating-point code to be executed using a special or nonstandard floating-point
emulator, selected for a particular application, regardless of whether an x87 FPU or math
coprocessor is present.

To emulate floating-point instructions, the EM, MP, and NE flag in control register CRO should
be set as shown in Table 9-3.
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Table 9-3. Software Emulation Settings of EM, MP, and NE Flags

CRO Bit Value
EM 1
MP 0
NE 1

Regardless of the value of the EM bit, the Intel486 SX processor generates a device-not-avail-
able exception (#NM) upon encountering any floating-point instruction.

9.3. CACHE ENABLING

The IA-32 processors (beginning with the Intel486 processor) contain internal instruction and
data caches. These caches are enabled by clearing the CD and NW flags in control register CRO.
(They are set during a hardware reset.) Because all internal cache lines are invalid following
reset initialization, it is not necessary to invalidate the cache before enabling caching. Any
external caches may require initialization and invalidation using a system-specific initialization
and invalidation code sequence.

Depending on the hardware and operating system or executive requirements, additional config-
uration of the processor’s caching facilities will probably be required. Beginning with the
Intel486 processor, page-level caching can be controlled with the PCD and PWT flags in page-
directory and page-table entries. Beginning with the P6 family processors, the memory type
range registers (MTRRs) control the caching characteristics of the regions of physical memory.
(For the Intel486 and Pentium processors, external hardware can be used to control the caching
characteristics of regions of physical memory.) See Chapter 10, Memory Cache Control, for
detailed information on configuration of the caching facilities in the Pentium 4, Intel Xeon, and
P6 family processors and system memory.

9.4. MODEL-SPECIFIC REGISTERS (MSRS)

The Pentium 4, Intel Xeon, P6 family, and Pentium processors contain a model-specific registers
(MSRs). These registers are by definition implementation specific; that is, they are not guaran-
teed to be supported on future IA-32 processors and/or to have the same functions. The MSRs
are provided to control a variety of hardware- and software-related features, including:

® The performance-monitoring counters (see Section 15.8., “Performance Monitoring
Overview”).

® (Pentium 4, Intel Xeon, and P6 family processors only.) Debug extensions (see Section
15.4., “Last Branch Recording Overview”).

®  (Pentium 4, Intel Xeon, and P6 family processors only.) The machine-check exception
capability and its accompanying machine-check architecture (see Chapter 14, Machine-
Check Architecture).
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® (Pentium 4, Intel Xeon, and P6 family processors only.) The MTRRs (see Section 10.11.,
“Memory Type Range Registers (MTRRs)”).

The MSRs can be read and written to using the RDMSR and WRMSR instructions, respectively.

When performing software initialization of a Pentium 4, Intel Xeon, P6 family, or Pentium
processor, many of the MSRs will need to be initialized to set up things like performance-moni-
toring events, run-time machine checks, and memory types for physical memory.

The list of available performance-monitoring counters for the Pentium 4, Intel Xeon, P6 family,
and Pentium processors is given in Appendix A, Performance-Monitoring Events, and the list
of available MSRs for the Pentium 4, Intel Xeon, P6 family, and Pentium processors is given in
Appendix B, Model-Specific Registers (MSRs). The references earlier in this section show
where the functions of the various groups of MSRs are described in this manual.

9.5. MEMORY TYPE RANGE REGISTERS (MTRRS)

Memory type range registers (MTRRs) were introduced into the IA-32 architecture with the
Pentium Pro processor. They allow the type of caching (or no caching) to be specified in system
memory for selected physical address ranges. They allow memory accesses to be optimized for
various types of memory such as RAM, ROM, frame buffer memory, and memory-mapped I/O
devices.

In general, initializing the MTRRs is normally handled by the software initialization code or
BIOS and is not an operating system or executive function. At the very least, all the MTRRs
must be cleared to 0, which selects the uncached (UC) memory type. See Section 10.11.,
“Memory Type Range Registers (MTRRs)”, for detailed information on the MTRRs.

9.6. SSE AND SSE2 EXTENSIONS INITIALIZATION

For processors that contain the SSE extensions (Pentium 4, Intel Xeon, and Pentium Il proces-
sors) and the SSE2 extensions (Pentium 4 and Intel Xeon processors), several steps must be
taken when initializing the processor to allow execution of SSE and SSE2 instructions.

®  Check the CPUID feature flags for the presence of the SSE and SSE2 extensions (bits 25
and 26, respectively) and support for the FXSAVE and FXRSTOR instructions (bit 24).
Also check for support for the CLFLUSH instruction (bit 19). The CPUID feature flags are
loaded in the EDX register when the CPUID instruction is executed with a 1 in the EAX
register.

® Set the OSFXSR flag (bit 9 in control register CR4) to indicate that the operating system
supports saving and restoring the SSE and SSE2 execution environment (XXM and
MXCSR registers) with the FXSAVE and FXRSTOR instructions, respectively. See
Section 2.5., “Control Registers”, for a description of the OSFXSR flag.

¢ Set the OSXMMEXCPT flag (bit 10 in control register CR4) to indicate that the operating
system supports the handling of SSE and SSE2 SIMD floating-point exceptions (#XF). See
Section 2.5., “Control Registers”, for a description of the OSXMMEXCPT flag.
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® Set the mask bits and flags in the MXCSR register according to the mode of operation
desired for SSE and SSE2 SIMD floating-point instructions. See “MXCSR Control and
Status Register” in Chapter 10 of the IA-32 Intel Architecture Software Developer’s
Manual, Volume 1 for a detailed description of the bits and flags in the MXCSR register.

9.7. SOFTWARE INITIALIZATION FOR REAL-ADDRESS MODE
OPERATION

Following a hardware reset (either through a power-up or the assertion of the RESET# pin) the
processor is placed in real-address mode and begins executing software initialization code from
physical address FFFFFFFOH. Software initialization code must first set up the necessary data
structures for handling basic system functions, such as a real-mode IDT for handling interrupts
and exceptions. If the processor is to remain in real-address mode, software must then load addi-
tional operating-system or executive code modules and data structures to allow reliable execu-
tion of application programs in real-address mode.

If the processor is going to operate in protected mode, software must load the necessary data
structures to operate in protected mode and then switch to protected mode. The protected-mode
data structures that must be loaded are described in Section 9.8., “Software Initialization for
Protected-Mode Operation”.

9.7.1. Real-Address Mode IDT

In real-address mode, the only system data structure that must be loaded into memory is the IDT
(also called the “interrupt vector table). By default, the address of the base of the IDT is phys-
ical address OH. This address can be changed by using the LIDT instruction to change the base
address value in the IDTR. Software initialization code needs to load interrupt- and exception-
handler pointers into the IDT before interrupts can be enabled.

The actual interrupt- and exception-handler code can be contained either in EPROM or RAM;
however, the code must be located within the 1-MByte addressable range of the processor in
real-address mode. If the handler code is to be stored in RAM, it must be loaded along with the
IDT.

9.7.2. NMI Interrupt Handling

The NMI interrupt is always enabled (except when multiple NMIs are nested). If the IDT and
the NMI interrupt handler need to be loaded into RAM, there will be a period of time following
hardware reset when an NMI interrupt cannot be handled. During this time, hardware must
provide a mechanism to prevent an NMI interrupt from halting code execution until the IDT and
the necessary NMI handler software is loaded. Here are two examples of how NMIs can be
handled during the initial states of processor initialization:

¢ Asimple IDT and NMI interrupt handler can be provided in EPROM. This allows an NMI
interrupt to be handled immediately after reset initialization.
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® The system hardware can provide a mechanism to enable and disable NMIs by passing the
NMI# signal through an AND gate controlled by a flag in an I/O port. Hardware can clear
the flag when the processor is reset, and software can set the flag when it is ready to handle
NMI interrupts.

9.8. SOFTWARE INITIALIZATION FOR PROTECTED-MODE
OPERATION

The processor is placed in real-address mode following a hardware reset. At this point in the
initialization process, some basic data structures and code modules must be loaded into physical
memory to support further initialization of the processor, as described in Section 9.7., “Software
Initialization for Real-Address Mode Operation”. Before the processor can be switched to
protected mode, the software initialization code must load a minimum number of protected
mode data structures and code modules into memory to support reliable operation of the
processor in protected mode. These data structures include the following:

® A protected-mode IDT.

* AGDT.

* ATSS.

® (Optional.) An LDT.

® If paging is to be used, at least one page directory and one page table.

® A code segment that contains the code to be executed when the processor switches to
protected mode.

® One or more code modules that contain the necessary interrupt and exception handlers.

Software initialization code must also initialize the following system registers before the
processor can be switched to protected mode:

® The GDTR.

® (Optional.) The IDTR. This register can also be initialized immediately after switching to
protected mode, prior to enabling interrupts.

®  Control registers CR1 through CR4.

® (Pentium 4, Intel Xeon, and P6 family processors only.) The memory type range registers
(MTRRsS).

With these data structures, code modules, and system registers initialized, the processor can be
switched to protected mode by loading control register CRO with a value that sets the PE flag
(bit 0).
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9.8.1. Protected-Mode System Data Structures

The contents of the protected-mode system data structures loaded into memory during software
initialization, depend largely on the type of memory management the protected-mode operating-
system or executive is going to support: flat, flat with paging, segmented, or segmented with
paging.

To implement a flat memory model without paging, software initialization code must at a
minimum load a GDT with one code and one data-segment descriptor. A null descriptor in the
first GDT entry is also required. The stack can be placed in a normal read/write data segment,
so no dedicated descriptor for the stack is required. A flat memory model with paging also
requires a page directory and at least one page table (unless all pages are 4 MBytes in which case
only a page directory is required). See Section 9.8.3., “Initializing Paging”.

Before the GDT can be used, the base address and limit for the GDT must be loaded into the
GDTR register using an LGDT instruction.

A multi-segmented model may require additional segments for the operating system, as well as
segments and LDTs for each application program. LDTs require segment descriptors in the
GDT. Some operating systems allocate new segments and LDTs as they are needed. This
provides maximum flexibility for handling a dynamic programming environment. However,
many operating systems use a single LDT for all tasks, allocating GDT entries in advance. An
embedded system, such as a process controller, might pre-allocate a fixed number of segments
and LDTs for a fixed number of application programs. This would be a simple and efficient way
to structure the software environment of a real-time system.

9.8.2. Initializing Protected-Mode Exceptions and Interrupts

Software initialization code must at a minimum load a protected-mode IDT with gate descriptor
for each exception vector that the processor can generate. If interrupt or trap gates are used, the
gate descriptors can all point to the same code segment, which contains the necessary exception
handlers. If task gates are used, one TSS and accompanying code, data, and task segments are
required for each exception handler called with a task gate.

If hardware allows interrupts to be generated, gate descriptors must be provided in the IDT for
one or more interrupt handlers.

Before the IDT can be used, the base address and limit for the IDT must be loaded into the IDTR
register using an LIDT instruction. This operation is typically carried out immediately after
switching to protected mode.
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9.8.3. Initializing Paging

Paging is controlled by the PG flag in control register CRO. When this flag is clear (its state
following a hardware reset), the paging mechanism is turned off; when it is set, paging is enabled.
Before setting the PG flag, the following data structures and registers must be initialized:

® Software must load at least one page directory and one page table into physical memory.
The page table can be eliminated if the page directory contains a directory entry pointing to
itself (here, the page directory and page table reside in the same page), or if only 4-MByte
pages are used.

® Control register CR3 (also called the PDBR register) is loaded with the physical base
address of the page directory.

® (Optional) Software may provide one set of code and data descriptors in the GDT or in an
LDT for supervisor mode and another set for user mode.

With this paging initialization complete, paging is enabled and the processor is switched to
protected mode at the same time by loading control register CRO with an image in which the PG
and PE flags are set. (Paging cannot be enabled before the processor is switched to protected
mode.)

9.8.4. Initializing Multitasking

If the multitasking mechanism is not going to be used and changes between privilege levels are
not allowed, it is not necessary load a TSS into memory or to initialize the task register.

If the multitasking mechanism is going to be used and/or changes between privilege levels are
allowed, software initialization code must load at least one TSS and an accompanying TSS
descriptor. (A TSS is required to change privilege levels because pointers to the privileged-level
0, 1, and 2 stack segments and the stack pointers for these stacks are obtained from the TSS.)
TSS descriptors must not be marked as busy when they are created; they should be marked busy
by the processor only as a side-effect of performing a task switch. As with descriptors for LDTs,
TSS descriptors reside in the GDT.

After the processor has switched to protected mode, the LTR instruction can be used to load a
segment selector for a TSS descriptor into the task register. This instruction marks the TSS
descriptor as busy, but does not perform a task switch. The processor can, however, use the TSS
to locate pointers to privilege-level 0, 1, and 2 stacks. The segment selector for the TSS must be
loaded before software performs its first task switch in protected mode, because a task switch
copies the current task state into the TSS.

After the LTR instruction has been executed, further operations on the task register are
performed by task switching. As with other segments and LDTs, TSSs and TSS descriptors can
be either pre-allocated or allocated as needed.
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9.9. MODE SWITCHING

To use the processor in protected mode, a mode switch must be performed from real-address
mode. Once in protected mode, software generally does not need to return to real-address mode.
To run software written to run in real-address mode (8086 mode), it is generally more convenient
to run the software in virtual-8086 mode, than to switch back to real-address mode.

9.9.1. Switching to Protected Mode

Before switching to protected mode, a minimum set of system data structures and code modules
must be loaded into memory, as described in Section 9.8., “Software Initialization for Protected-
Mode Operation”. Once these tables are created, software initialization code can switch into
protected mode.

Protected mode is entered by executing a MOV CRO instruction that sets the PE flag in the CRO
register. (In the same instruction, the PG flag in register CRO can be set to enable paging.)
Execution in protected mode begins with a CPL of 0.

The 32-bit IA-32 processors have slightly different requirements for switching to protected
mode. To insure upwards and downwards code compatibility with all 32-bit IA-32 processors,
it is recommended that the following steps be performed:

1. Disable interrupts. A CLI instruction disables maskable hardware interrupts. NMI
interrupts can be disabled with external circuitry. (Software must guarantee that no
exceptions or interrupts are generated during the mode switching operation.)

2. Execute the LGDT instruction to load the GDTR register with the base address of the
GDT.

3. Execute a MOV CRO instruction that sets the PE flag (and optionally the PG flag) in
control register CRO.

4. Immediately following the MOV CRO instruction, execute a far JMP or far CALL
instruction. (This operation is typically a far jump or call to the next instruction in the
instruction stream.)

The JMP or CALL instruction immediately after the MOV CRO instruction changes the
flow of execution and serializes the processor.

If paging is enabled, the code for the MOV CRO instruction and the JMP or CALL
instruction must come from a page that is identity mapped (that is, the linear address before
the jump is the same as the physical address after paging and protected mode is enabled).
The target instruction for the JMP or CALL instruction does not need to be identity
mapped.

5. [If a local descriptor table is going to be used, execute the LLDT instruction to load the
segment selector for the LDT in the LDTR register.

6. Execute the LTR instruction to load the task register with a segment selector to the initial
protected-mode task or to a writable area of memory that can be used to store TSS
information on a task switch.
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7. After entering protected mode, the segment registers continue to hold the contents they had
in real-address mode. The JMP or CALL instruction in step 4 resets the CS register.
Perform one of the following operations to update the contents of the remaining segment
registers.

— Reload segment registers DS, SS, ES, FS, and GS. If the ES, FS, and/or GS registers
are not going to be used, load them with a null selector.

— Perform a JMP or CALL instruction to a new task, which automatically resets the
values of the segment registers and branches to a new code segment.

8. Execute the LIDT instruction to load the IDTR register with the address and limit of the
protected-mode IDT.

9. Execute the STI instruction to enable maskable hardware interrupts and perform the
necessary hardware operation to enable NMI interrupts.

Random failures can occur if other instructions exist between steps 3 and 4 above. Failures will
be readily seen in some situations, such as when instructions that reference memory are inserted
between steps 3 and 4 while in system management mode.

9.9.2. Switching Back to Real-Address Mode

The processor switches back to real-address mode if software clears the PE bit in the CRO
register with a MOV CRO instruction. A procedure that re-enters real-address mode should
perform the following steps:

1. Disable interrupts. A CLI instruction disables maskable hardware interrupts. NMI
interrupts can be disabled with external circuitry.

2. If paging is enabled, perform the following operations:

— Transfer program control to linear addresses that are identity mapped to physical
addresses (that is, linear addresses equal physical addresses).

— Insure that the GDT and IDT are in identity mapped pages.
— Clear the PG bit in the CRO register.
— Move OH into the CR3 register to flush the TLB.

3. Transfer program control to a readable segment that has a limit of 64 KBytes (FFFFH).
This operation loads the CS register with the segment limit required in real-address mode.

4. Load segment registers SS, DS, ES, FS, and GS with a selector for a descriptor containing
the following values, which are appropriate for real-address mode:

— Limit = 64 KBytes (OFFFFH)
— Byte granular (G =0)

— Expand up (E =0)

— Writable (W =1)
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9.1

— Present (P=1)
— Base = any value

The segment registers must be loaded with non-null segment selectors or the segment
registers will be unusable in real-address mode. Note that if the segment registers are not
reloaded, execution continues using the descriptor attributes loaded during protected
mode.

Execute an LIDT instruction to point to a real-address mode interrupt table that is within
the 1-MByte real-address mode address range.

Clear the PE flag in the CRO register to switch to real-address mode.

Execute a far JMP instruction to jump to a real-address mode program. This operation
flushes the instruction queue and loads the appropriate base and access rights values in the
CS register.

Load the SS, DS, ES, FS, and GS registers as needed by the real-address mode code. If any
of the registers are not going to be used in real-address mode, write Os to them.

Execute the STI instruction to enable maskable hardware interrupts and perform the
necessary hardware operation to enable NMI interrupts.

NOTE

All the code that is executed in steps 1 through 9 must be in a single page and
the linear addresses in that page must be identity mapped to physical
addresses.

0. INITIALIZATION AND MODE SWITCHING EXAMPLE

This section provides an initialization and mode switching example that can be incorporated into
an application. This code was originally written to initialize the Intel386 processor, but it will
execute successfully on the Pentium 4, Intel Xeon, P6 family, Pentium, and Intel486 processors.

The

code in this example is intended to reside in EPROM and to run following a hardware reset

of the processor. The function of the code is to do the following:

Establish a basic real-address mode operating environment.
Load the necessary protected-mode system data structures into RAM.

Load the system registers with the necessary pointers to the data structures and the
appropriate flag settings for protected-mode operation.

Switch the processor to protected mode.

Figure 9-3 shows the physical memory layout for the processor following a hardware reset and
the starting point of this example. The EPROM that contains the initialization code resides at the
upper end of the processor’s physical memory address range, starting at address FFFFFFFFH

and

going down from there. The address of the first instruction to be executed is at FFFFFFFOH,

the default starting address for the processor following a hardware reset.
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The main steps carried out in this example are summarized in Table 9-4. The source listing for
the example (with the filename STARTUP.ASM) is given in Example 9-1. The line numbers
given in Table 9-4 refer to the source listing.

The following are some additional notes concerning this example:

When the processor is switched into protected mode, the original code segment base-
address value of FFFFOOOOH (located in the hidden part of the CS register) is retained and
execution continues from the current offset in the EIP register. The processor will thus
continue to execute code in the EPROM until a far jump or call is made to a new code
segment, at which time, the base address in the CS register will be changed.

Maskable hardware interrupts are disabled after a hardware reset and should remain
disabled until the necessary interrupt handlers have been installed. The NMI interrupt is
not disabled following a reset. The NMI# pin must thus be inhibited from being asserted
until an NMI handler has been loaded and made available to the processor.

The use of a temporary GDT allows simple transfer of tables from the EPROM to
anywhere in the RAM area. A GDT entry is constructed with its base pointing to address 0
and a limit of 4 GBytes. When the DS and ES registers are loaded with this descriptor, the
temporary GDT is no longer needed and can be replaced by the application GDT.

This code loads one TSS and no LDTs. If more TSSs exist in the application, they must be
loaded into RAM. If there are LDTs they may be loaded as well.
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After Reset
FFFF FFFFH
[CSBASE+E|P] > - — — - — — — A1 FFFF FFFOH
64K EPROM
EIP = 0000 FFFOH
CS.BASE = FFFF 0000H FFFF 0000H
DS.BASE = OH
ES.BASE = OH
SS.BASE = 0OH
ESP = 0H
Y
? S
[SP, DS, SS, ES] > 0

Figure 9-3. Processor State After Reset

Table 9-4. Main Initialization Steps in STARTUP.ASM Source Listing

STARTUP.ASM
Line Numbers
From To Description
157 157 Jump (short) to the entry code in the EPROM
162 169 Construct a temporary GDT in RAM with one entry:
? : E{l;\lllv data segment, base = 0, limit = 4 GBytes
171 172 Load the GDTR to point to the temporary GDT
174 177 Load CRO with PE flag set to switch to protected mode
179 181 Jump near to clear real mode instruction queue
184 186 Load DS, ES registers with GDT[1] descriptor, so both point to the entire
physical memory space
188 195 Per(l;orm specific board initialization that is imposed by the new protected
mode
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Table 9-4. Main Initialization Steps in STARTUP.ASM Source Listing (Contd.)

STARTUP.ASM
Line Numbers
From To Description

196 218 Copy the application’s GDT from ROM into RAM
220 238 Copy the application’s IDT from ROM into RAM
241 243 Load application’s GDTR
244 245 Load application’s IDTR
247 261 Copy the application’s TSS from ROM into RAM
263 267 Update TSS descriptor and other aliases in GDT (GDT alias or IDT alias)
277 277 Load the task register (without task switch) using LTR instruction
282 286 Load SS, ESP with the value found in the application’s TSS
287 287 Push EFLAGS value found in the application’s TSS
288 288 Push CS value found in the application’s TSS
289 289 Push EIP value found in the application’s TSS
290 293 Load DS, ES with the value found in the application’s TSS
296 296 Perform IRET; pop the above values and enter the application code

9.10.1. Assembler Usage

In this example, the Intel assembler ASM386 and build tools BLD386 are used to assemble and
build the initialization code module. The following assumptions are used when using the Intel
ASM386 and BLD386 tools.

The ASM386 will generate the right operand size opcodes according to the code-segment
attribute. The attribute is assigned either by the ASM386 invocation controls or in the
code-segment definition.

If a code segment that is going to run in real-address mode is defined, it must be set to a
USE 16 attribute. If a 32-bit operand is used in an instruction in this code segment (for
example, MOV EAX, EBX), the assembler automatically generates an operand prefix for
the instruction that forces the processor to execute a 32-bit operation, even though its
default code-segment attribute is 16-bit.

Intel’s ASM386 assembler allows specific use of the 16- or 32-bit instructions, for
example, LGDTW, LGDTD, IRETD. If the generic instruction LGDT is used, the default-
segment attribute will be used to generate the right opcode.
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9.10.2. STARTUP.ASM Listing

Example 9-1 provides high-level sample code designed to move the processor into protected
mode. This listing does not include any opcode and offset information.

Example 9-1. STARTUP.ASM

MS-DOS* 5.0(045-N) 386 (TM) MACRO ASSEMBLER STARTUP 09:44:51 08/19/92
PAGE 1

MS-DOS 5.0(045-N) 386 (TM) MACRO ASSEMBLER V4.0, ASSEMBLY OF MODULE
STARTUP

OBJECT MODULE PLACED IN startup.obj
ASSEMBLER INVOKED BY: f:\386tools\ASM386.EXE startup.a58 pw (132 )

LINE SOURCE

1 NAME STARTUP

2

3 Fiddidiiiiiiidiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

4

5 ASSUMPTIONS:

6

7 ; 1. The bottom 64K of memory is ram, and can be used for
8 scratch space by this module.

9

10 ; 2. The system has sufficient free usable ram to copy the
11 ; initial GDT, IDT, and TSS

12 ;

13 Giiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
14

15 ; configuration data - must match with build definition

16

17 CS_BASE EQU OFFFFOO0OOH

18

19 ; CS_BASE is the linear address of the segment STARTUP_CODE
20 ; - this is specified in the build language file
21
22 RAM_START EQU 400H
23
24 ; RAM START 1s the start of free, usable ram in the linear
25 ; memory space. The GDT, IDT, and initial TSS will be
26 ; copied above this space, and a small data segment will be
27 ; discarded at this linear address. The 32-bit word at
28 ; RAM START will contain the linear address of the first
29 ; free byte above the copied tables - this may be useful if
30 ; a memory manager is used.
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31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

TSS INDEX

1

1

1

’

TASK STATE

TSS_INDEX is the
run after startup

TSS structure
STRUC

link
link h
ESPO
SSso
SS0_h
ESP1
Ss1
SS1_h
ESP2
SSs2
SS2_h
CR3_reg
EIP reg
EFLAGS reg
EAX reg
ECX_reg
EDX reg
EBX reg
ESP reg
EBP_reg
ESI_reg
EDI_reg
ES_reg
ES_h
CS_reg
CS_h
SS_reg
SS_h
DS_reg
DS h
FS_reg
FS_h
GS_reg

EQU

PROCESSOR MANAGEMENT AND INITIALIZATION

10

index of the

structures for system data

DW
DW
DD
DW
DW
DD
DW
DW
DD
DW
DW
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW

STRUCTURES and EQU

S B UL S S I I N R I S e O L B R AV ALV ]

TSS of the

first task to

RN NN
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78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

9-22

GS_h DW ?
LDT reg DwW ?
LDT_h DW ?
TRAP_reg DW ?
IO _map base DW ?

TASK STATE ENDS

; basic structure of a descriptor

DESC STRUC
lim 0_15 DW ?
bas 0_15 DW ?
bas_16_23 DB ?
access DB ?
gran DB ?
bas 24 31 DB ?

DESC ENDS

; structure for use with LGDT and LIDT instructions
TABLE_ REG STRUC

table lim DW ?

table linear DD ?
TABLE_REG ENDS

; offset of GDT and IDT descriptors in builder generated GDT
GDT_DESC_OFF EQU 1*SIZE (DESC)
IDT DESC_OFF EQU 2*SIZE (DESC)

; equates for building temporary GDT in RAM

LINEAR_SEL EQU 1*SIZE (DESC)
LINEAR_PROTO_LO EQU 00000FFFFH ; LINEAR_ALIAS
LINEAR PROTO_HI EQU 000CF9200H

; Protection Enable Bit in CRO
PE_BIT EQU 1B

; Initially, this data segment starts at linear 0, according
; to the processor’s power-up state.

STARTUP_DATA SEGMENT RW

free mem linear base LABEL DWORD

TEMP_GDT LABEL BYTE ; must be first in segment
TEMP_GDT NULL DESC  DESC <>
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125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

TEMP_GDT_LINEAR DESC DESC <>

; scratch areas for LGDT and LIDT instructions
TEMP GDT SCRATCH TABLE REG <>

APP_GDT RAM TABLE_REG <>
APP IDT RAM TABLE_REG <>
; align end data
fill DW ?
; last thing in this segment - should be on a dword boundary
end data LABEL BYTE

STARTUP_ DATA ENDS

e CODE SEGMENT----=---=-=-=-=-—-—---
STARTUP_CODE SEGMENT ER PUBLIC USE1l6

; filled in by builder
PUBLIC GDT_EPROM
GDT_EPROM TABLE REG <>

; filled in by builder
PUBLIC IDT_ EPROM
IDT EPROM TABLE REG <>

; entry point into startup code - the bootstrap will vector
; here with a near JOJMP generated by the builder. This
; label must be in the top 64K of linear memory.

PUBLIC STARTUP
STARTUP:

; DS,ES address the bottom 64K of flat linear memory
ASSUME DS:STARTUP_ DATA, ES:STARTUP_DATA

; See Figure 9-4

; load GDTR with temporary GDT

LEA EBX,TEMP_GDT ; build the TEMP_GDT in low ram,
MOV DWORD PTR [EBX],O0 ; where we can address
MOV DWORD PTR [EBX]+4,0
MOV DWORD PTR [EBX] +8, LINEAR PROTO_LO
MOV DWORD PTR [EBX]+12, LINEAR_PROTO HI
MOV TEMP_GDT_scratch.table linear, EBX
MOV TEMP_GDT_ scratch.table 1lim, 15
DB 66H ; execute a 32 bit LGDT
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172
173
174
175
176
177
178

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

9-24

LGDT

TEMP_GDT_ scratch

; enter protected mode

7

MOV
OR
MOV

EBX, CRO
EBX,PE_BIT
CRO, EBX

clear prefetch queue

JMP

CLEAR LABEL:

CLEAR_LABEL

; make DS and ES address 4G of linear memory

1

1

MOV
MOV
MOV

CX,LINEAR SEL
DS, CX
ES,CX

do board specific initialization

REP

; See Figure 9-5
; copy EPROM GDT to ram at:

MOV
ADD
MOV
MOV
ADD
MOV
MOV
MOVZX
MOV
INC
MOV
MOV
ADD
MOVS

; fixup
MOV
MOV
ROR
MOV
MOV

RAM START + size (STARTUP_DATA)
EAX,RAM_START
EAX,OFFSET (end data)
EBX,RAM START
ECX, CS_BASE
ECX, OFFSET (GDT_ EPROM)
ESI, [ECX].table linear
EDI,EAX
ECX, [ECX].table lim
APP_GDT ram[EBX] .table 1lim,CX
ECX
EDX, EAX
APP GDT ram[EBX] .table linear, EAX
EAX,ECX
BYTE PTR ES: [EDI],BYTE PTR DS: [ESI]

GDT base in descriptor

ECX, EDX

[EDX] .bas 0 15+GDT DESC_OFF,CX
ECX, 16

[EDX] .bas_16 23+GDT_DESC_OFF,CL
[EDX] .bas 24 31+GDT_DESC_OFF,CH



219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

REP

REP
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; copy EPROM IDT to ram at:
; RAM START+size (STARTUP_DATA)+SIZE (EPROM GDT)

MOV
ADD
MOV
MOV
MOVZX
MOV
INC
MOV
MOV
ADD
MOVS

MOV
ROR
MOV
MOV

MOV

LGDT

LIDT

MOV
MOV
MOV
MOV
MOV
MOV
ROL
MOV
MOV
LSL
INC
MOV
ADD
MOVS

MOV
ROL

ECX, CS_BASE

ECX, OFFSET (IDT_EPROM)

ESI, [ECX].table linear

EDI, EAX

ECX, [ECX].table lim

APP_IDT ram[EBX].table 1im,CX

ECX

APP_IDT ram[EBX] .table linear, EAX
EBX, EAX

EAX, ECX

BYTE PTR ES: [EDI],BYTE PTR DS: [ESI]

; fixup IDT pointer in GDT
[EDX] .bas 0 15+IDT DESC OFF,BX
EBX, 16

[EDX] .bas_16 23+IDT DESC OFF,BL
[EDX] .bas 24 31+IDT DESC OFF,BH

; load GDTR and IDTR
EBX,RAM START

DB 66H ; execute a 32 bit LGDT
APP GDT ram[EBX]
DB 66H ; execute a 32 bit LIDT

APP_IDT_ ram [EBX]

; move the TSS

EDI, EAX

EBX, TSS INDEX*SIZE (DESC)

ECX,GDT DESC OFF ;build linear address for TSS
GS,CX

DH,GS: [EBX] .bas_24 31

DL, GS: [EBX] .bas_16_23

EDX, 16

DX,GS: [EBX] .bas_0_15

ESTI, EDX

ECX, EBX

ECX

EDX, EAX

EAX, ECX

BYTE PTR ES: [EDI],BYTE PTR DS: [ESTI]

; fixup TSS pointer

GS: [EBX] .bas_0_15,DX
EDX, 16
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266 MOV GS: [EBX] .bas_24 31,DH

267 MOV GS: [EBX] .bas_16_ 23,DL

268 ROL EDX, 16

269 ;save start of free ram at linear location RAMSTART

270 MOV free mem linear base+RAM START, EAX

271

272 ;assume no LDT used in the initial task - if necessary,
273 ;jcode to move the LDT could be added, and should resemble
274 ;that used to move the TSS

275

276 ; load task register

277 LTR BX ; No task switch, only descriptor loading
278 ; See Figure 9-6

279 ; load minimal set of registers necessary to simulate task
280 ; switch

281

282

283 MOV AX, [EDX] .SS_reg ; start loading registers

284 MOV EDI, [EDX] .ESP_reg

285 MOV SS,AX

286 MOV ESP,EDI ; stack now valid

287 PUSH DWORD PTR [EDX].EFLAGS_reg

288 PUSH DWORD PTR [EDX].CS_reg

289 PUSH DWORD PTR [EDX].EIP_reg

290 MOV AX, [EDX] .DS_reg

291 MOV BX, [EDX] .ES_reg

292 MOV DS, AX ; DS and ES no longer linear memory

293 MOV ES,BX

294

295 ; simulate far jump to initial task

296 IRETD

297

298 STARTUP_CODE ENDS

*%x* WARNING #377 IN 298, (PASS 2) SEGMENT CONTAINS PRIVILEGED

INSTRUCTION (S)

299
300 END STARTUP, DS:STARTUP DATA, SS:STARTUP_DATA
301
302
ASSEMBLY COMPLETE, 1 WARNING, NO ERRORS.
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START: [CS.BASE+EIP] ——>

e Jump near start

* Construct TEMP_GDT
*LGDT

* Move to protected mode

< 5
DS, ES = GDT[1] 4GB
1

GDT [1]
GDTI0]

Base=0, Limit=4G

0

FFFF FFFFH

FFFF 0000H

GDT_SCRATCH

TEMP_GDT

Figure 9-4. Constructing Temporary GDT and Switching to Protected Mode (Lines
162-172 of List File)
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FFFF FFFFH
— TSS
IDT
GDT
* Move the GDT, IDT, TSS
from ROM to RAM
¢ Fix Aliases
*LTR < S
> TSS RAM
» IDT RAM
> GDT RAM RAM_START
0

Figure 9-5.
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EIP
SS =TSS.SS EFLAGS
ESP = TSS.ESP .
PUSH TSS.EFLAG :
PUSH TSS.CS
PUSH TSS.EIP ESP
ES = TSS.ES .
DS = TSS.DS
IRET ES I <
cs
SS
DS
GDT
TSS RAM
IDT Alias IDT RAM
—|__GDT Alias GDT RAM FAM STAF

Figure 9-6. Task Switching (Lines 282-296 of List File)

9.10.3. MAIN.ASM Source Code

The file MAIN.ASM shown in Example 9-2 defines the data and stack segments for this appli-
cation and can be substituted with the main module task written in a high-level language that is
invoked by the IRET instruction executed by STARTUP.ASM.

Example 9-2. MAIN.ASM

NAME
data

DATA

main_module
SEGMENT RW

dw 1000 dup(?)

ENDS

stack stackseg 800
CODE SEGMENT ER use32 PUBLIC
main start:
nop
nop
nop
CODE ENDS

END main_start, ds:data, ss:stack
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9.10.4. Supporting Files

The batch file shown in Example 9-3 can be used to assemble the source code files
STARTUP.ASM and MAIN.ASM and build the final application.

Example 9-3. Batch File to Assemble and Build the Application

ASM386 STARTUP.ASM
ASM386 MAIN.ASM

BLD386 STARTUP.OBJ, MAIN.OBJ buildfile (EPROM.BLD) bootstrap (STARTUP)
Bootload

BLD386 performs several operations in this example:

® It allocates physical memory location to segments and tables.

® It generates tables using the build file and the input files.

® It links object files and resolves references.

® It generates a boot-loadable file to be programmed into the EPROM.

Example 9-4 shows the build file used as an input to BLD386 to perform the above functions.

Example 9-4. Build File
INIT BLD EXAMPLE;
SEGMENT

*SEGMENTS (DPL = 0)
, startup.startup code (BASE = OFFFFOO0O0OH)

TASK
BOOT_ TASK(OBJECT = startup, INITIAL,DPL = O,
NOT INTENABLED)
, PROTECTED_MODE_TASK (OBJECT = main module,DPL = 0,
NOT INTENABLED)
TABLE
GDT (
LOCATION = GDT_EPROM
, ENTRY = (
10: PROTECTED_MODE_TASK

, startup.startup_ code
, startup.startup_ data

, main module.data

, main_module.code

, main_module.stack
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-- Area for the GDT,

-- Eprom size 64K

(4000H. .05FFFFH) )

IDT (
LOCATION = IDT_EPROM
)i
MEMORY
(
RESERVE = (0..3FFFH
ROM
, 60000H. .0FFFEFFFFH)
, RANGE = (ROM_AREA = ROM
, RANGE = (RAM_AREA = RAM
)i
END

IDT, TSS copied from

(OFFFFOOOOH. . OFFFFFFFFH) )

Table 9-5 shows the relationship of each build item with an ASM source file.

Table 9-5. Relationship Between BLD Item and ASM Source File

BLD386 Controls and

in the GDT

PROTECTED_MODE_TA
SK))

Item ASM386 and Startup.A58 BLD file Effect
Bootstrap public startup bootstrap Near jump at
startup: start(startup) OFFFFFFFOH to start
GDT location public GDT_EPROM TABLE The location of the GDT
GDT_EPROM TABLE_REG GDT(location = will be programmed into
<> GDT_EPROM) the GDT_EPROM
location
IDT location public IDT_EPROM TABLE The location of the IDT
IDT_EPROM TABLE_REG IDT(location = will be programmed into
<> IDT_EPROM the IDT_EPROM
location
RAM start RAM_START equ 400H memory (reserve = RAM_START is used as
(0..3FFFH)) the ram destination for
moving the tables. It
must be excluded from
the application’s
segment area.
Location of the TSS_INDEX EQU 10 TABLE GDT( Put the descriptor of the
application TSS ENTRY=( 10: application TSS in GDT

entry 10
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Table 9-5. Relationship Between BLD Item and ASM Source File (Contd.)

BLD386 Controls and
ltem ASM386 and Startup.A58 BLD file Effect
EPROM size size and location of the SEGMENT startup.code Initialization code size
and location initialization code (base= OFFFFO000H) must be less than 64K
...memory (RANGE( and resides at upper
ROM_AREA = most 64K of the 4 GB
ROM(x..y)) memory space.

9.11. MICROCODE UPDATE FACILITIES

The Pentium 4, Intel Xeon, and P6 family processors have the capability to correct errata by
loading an Intel-supplied data block into the processor. The data block is called a microcode
update. This section describes the mechanisms the BIOS needs to provide in order to use this
feature during system initialization. It also describes a specification that permits the incorpora-
tion of future updates into a system BIOS.

Intel considers the release of a microcode update for a silicon revision to be the equivalent of a
processor stepping. Intel completes full-stepping level validation for releases of microcode
updates.

A microcode update is used to correct errata in the processor. The BIOS, which has an update
loader, is responsible for loading the update on processors during system initialization (refer to
Figure 9-7). There are two steps to this process: the first is to incorporate the necessary update
data blocks into the BIOS; the second is to load update data blocks into the processor.

Update
Loader
Y
. Update
New Update > Blocks CPU
BIOS

Figure 9-7. Integrating Processor Specific Updates

9.11.1. Microcode Update

A microcode update consists of an Intel-supplied binary that contains a descriptive header and
data. No executable code resides within the update. Each microcode update is tailored for a
particular stepping of a Pentium 4, Intel Xeon, or P6 family processor. A mismatch between the
stepping of the processor and the update results in a failure to load.
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The processor platform type must be determined to properly target the microcode update. It is
determined by reading a model-specific register MSR (17H). Read the 64-bit register by using
the RDMSR instruction. See Table 9-6. The three platform ID bits, when read as a binary coded
decimal (BCD) number, indicate the bit position in the microcode update header’s Processor
Flags field that is associated with the installed processor.

Register Name: IA32_PLATFORM_ID
MSR Address: 017H
Access: Read Only

IA32_PLATFORM_ID is a 64-bit MSR accessed only when referenced as a quadword using
the RDMSR instruction.

Table 9-6. Processor MSR Register Components

Bit Descriptions

63:53 Reserved

52:50 Platform ID bits (RO). The field gives information concerning the intended platform for the
processor.
52 51 50
0 O 0 Processor Flag 0 (See Processor Flags in Microcode Update Header)
0 O 1 Processor Flag 1
0o 1 0 Processor Flag 2
o 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

49:0 Reserved

The microcode update is a data block that is exactly 2048 bytes in length. The initial 48 bytes of
the update contain a header with information used to identify the update. The update header and
its reserved fields are interpreted by software based upon the header version. The initial version
of the header is 00000001H. An encoding scheme guards against tampering of the update data
and provides a means for determining the authenticity of any given update.

Table 9-7 defines each of the fields and Figure 9-8 shows the format of the microcode update
data block.
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Table 9-7. Microcode Update Encoding Format

Field Name

Offset
(in bytes)

Length
(in bytes)

Description

Header Version

0

4

Version number of the update header.

Update Revision

4

4

Unique version number for the update, the basis for the
update signature provided by the processor to indicate
the current update functioning within the processor. Used
by the BIOS to authenticate the update and verify that it is
loaded successfully by the processor. The value in this
field cannot be used for processor stepping identification
alone.

Date

Date of the update creation in binary format: mmddyyyy
(e.g. 07/18/98 is 07181998h).

Processor

12

Processor type, family, model, and stepping of processor
that requires this particular update revision (e.g.,
00000650h). Each microcode update is designed
specifically for a given processor type, family, model, and
stepping of processor. The BIOS uses the Processor field
in conjunction with the CPUID instruction to determine
whether or not an update is appropriate to load on a
processor. The information encoded within this field
exactly corresponds to the bit representations returned
by the CPUID instruction.

Checksum

16

Checksum of update data and header. Used to verify the
integrity of the update header and data. Checksum is
correct when the summation of the 512 double words of
the update result in the value zero.

Loader Revision

20

Version number of the loader program needed to
correctly load this update. The initial version is
00000001h.

Processor Flags

24

Platform type information is encoded in the lower 8 bits of
this 4-byte field. Each bit represents a particular platform
type for a given CPUID. The BIOS uses the Processor
Flags field in conjunction with the platform ID bits in MSR
(17h) to determine whether or not an update is
appropriate to load on a processor.

Reserved

28

20

Reserved Fields for future expansion.

Update Data

48

2000

Update data.
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32 24 16 8 0

Update Data (2000 Bytes)

Reserved (20 Bytes)

Processor Flags

Reserved: 24 P7:1 P6:1| P5:1| P4:1 P3: 1 P2: 1 P1:1

Loader Revision

Checksum
Processor
Reserved: 18 ProcType: 2 Family: 4 Model: 4 Stepping: 4
Date
Month: 8 Day: 8 Year: 16

Update Revision

Header Revision

Figure 9-8. Format of the Microcode Update Data Block

9.11.2. Microcode Update Loader

This section describes the update loader used to load a microcode update into a Pentium 4, Intel
Xeon, or P6 family processor. It also discusses the requirements placed upon the BIOS to ensure
proper loading of an update.

The update loader contains the minimal instructions needed to load an update. The specific
instruction sequence that is required to load an update is dependent upon the loader revision field
contained within the update header. The revision of the update loader is expected to change very
infrequently, potentially only when new processor models are introduced.
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The code below represents the update loader with a loader revision of 00000001H:

mov ecx,79h ; MSR to read in ECX

XOr eax,eax ; clear EAX

xXor ebx,ebx ; clear EBX

mov ax,cs ; Segment of microcode update

shl eax,4
mov bx,offset Update; Offset of microcode update

add eax,ebx ; Linear Address of Update in EAX

add eax,48d ; Offset of the Update Data within the Update
xor edx,edx ; Zero in EDX

WRMSR ; microcode update trigger

9.11.2.1. UPDATE LOADING PROCEDURE

The simple loader previously described assumes that Update is the address of a microcode
update (header and data) embedded within the code segment of the BIOS. It also assumes that
the processor is operating in real mode. The data may reside anywhere in memory that is acces-
sible by the processor within its current operating mode (real, protected).

Before the BIOS executes the microcode update trigger (WRMSR) instruction the following
must be true:

® EAX contains the linear address of the start of the update data
¢ EDX contains zero
® ECX contains 79H

The value in the ECX register is the address of the [A32_BIOS_UPDT_TRIG MSR. Writing to
this MSR causes the microcode update located at the linear address in the EAX register to be
loaded into the processor.

Other requirements to keep in mind are:

® The microcode update must be loaded to the processor early on in the POST, and always
prior to the initialization of the processors L2 cache controller.

® If the update is loaded while the processor is in real mode, then the update data may not
cross a segment boundary.

® If the update is loaded while the processor is in real mode, then the update data may not
exceed a segment limit.

® If paging is enabled, pages that are currently present and accessed must map the update
data.

® The microcode update data does not require any particular byte or word boundary
alignment.

9-36



Intel e PROCESSOR MANAGEMENT AND INITIALIZATION

9.11.2.2. HARD RESETS IN UPDATE LOADING

The effects of a loaded update are cleared from the processor upon a hard reset. Therefore, each
time a hard reset is asserted during the BIOS POST, the update must be reloaded on all proces-
sors that observed the reset. The effects of a loaded update are, however, maintained across a
processor INIT. There are no side effects caused by loading an update into a processor multiple
times.

9.11.2.3. UPDATE IN A MULTIPROCESSOR SYSTEM

A multiprocessor (MP) system requires loading each processor with update data appropriate for
its CPUID and platform ID bits. The BIOS is responsible for ensuring that this requirement is
met, and that the loader is located in a module that is executed by all processors in the system.
If a system design permits multiple steppings of Pentium 4, Intel Xeon, and P6 family processors
to exist concurrently, then the BIOS must verify each individual processor against the update
header information to ensure appropriate loading. Given these considerations, it is most prac-
tical to load the update during MP initialization.

9.11.2.4. UPDATE LOADER ENHANCEMENTS

The update loader presented in Section 9.11.2.1., “Update Loading Procedure” is a minimal
implementation that can be enhanced to provide additional functionality and features. Some
potential enhancements are described below:

® The BIOS can incorporate multiple updates to support multiple steppings of the Pentium 4,
Intel Xeon, and P6 family processors. This feature provides for operating in a mixed
stepping environment on an MP system and enables a user to upgrade to a later version of
the processor. In this case, modify the loader to check the CPUID and platform ID bits of
the processor that it is running on against the available headers before loading a particular
update. The number of updates is only limited by the available space in the BIOS.

® A loader can load the update and test the processor to determine if the update was loaded
correctly. This can be done as described in the Section 9.11.3., “Update Signature and
Verification”.

® A loader can verify the integrity of the update data by performing a checksum on the
double words of the update summing to zero, and can reject the update.

® A loader can provide power-on messages indicating successful loading of an update.

9.11.3. Update Signature and Verification

The Pentium 4, Intel Xeon, and P6 family processors provides capabilities to verify the authen-
ticity of a particular update and to identify the current update revision. This section describes the
model-specific extensions of the processor that support this feature. The update verification
method below assumes that the BIOS will only verify an update that is more recent than the revi-
sion currently loaded into the processor.
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The CPUID instruction returns a value in a model specific register in addition to its usual
register return values. The semantics of the CPUID instruction cause it to deposit an update ID
value in the 64-bit model-specific register (MSR) at address O8BH. If no update is present in the
processor, the value in the MSR remains unmodified. Normally a zero value is preloaded into
the MSR by software before executing the CPUID instruction. If the MSR still contains zero
after executing CPUID, this indicates that no update is present.

The update ID value returned in the EDX register after a RDMSR instruction indicates the revi-
sion of the update loaded in the processor. This value, in combination with the normal CPUID
value returned in the EAX register, uniquely identifies a particular update. The signature ID can
be directly compared with the update revision field in the microcode update header for verifica-
tion of a correct update load. No consecutive updates released for a given stepping of a Pentium
4, Intel Xeon, or P6 family processor may share the same signature. Updates for different step-
pings are differentiated by the CPUID value.

9.11.3.1. DETERMINING THE SIGNATURE

An update that is successfully loaded into the processor provides a signature that matches the
update revision of the currently functioning revision. This signature is available any time after
the actual update has been loaded, and requesting this signature does not have any negative
impact upon any currently loaded update. The procedure for determining this signature is:

mov ecx, 08Bh ;Model Specific Register to Read in ECX
XOr eax,eax ;clear EAX

xor edx,edx ;clear EDX

WRMSR ;Load 0 to MSR at 8Bh

mov eax, 1l

CPUID

mov ecx, 08BH ;Model Specific Register to Read

RDMSR ;Read Model Specific Register

If there is an update currently active in the processor, its update revision is returned in the EDX
register after the RDMSR instruction has completed.

9.11.3.2.  AUTHENTICATING THE UPDATE

An update may be authenticated by the BIOS using the signature primitive, described above,
with the following algorithm:

Z = Update revision from the update header to be authenticated;
X = Current Update Signature from MSR 8Bh;
If (Z > X) Then
Load Update that is to be authenticated;
Y = New Signature from MSR 8Bh;
If (Z ==Y) then Success
Else Fail
Else Fail
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The algorithm requires that the BIOS only authenticate updates that contain a numerically larger
revision than the currently loaded revision, where Current Signature (X) < New Update Revi-
sion (Z). A processor with no update loaded should be considered to have a revision equal to
zero. This authentication procedure relies upon the decoding provided by the processor to verify
an update from a potentially hostile source. As an example, this mechanism in conjunction with
other safeguards provides security for dynamically incorporating field updates into the BIOS.

9.11.4. Pentium 4, Intel Xeon, and P6 Family Processor
Microcode Update Specifications

This section describes the interface that an application can use to dynamically integrate
processor-specific updates into the system BIOS. In this discussion, the application is referred
to as the calling program or caller.

The real mode INT15 call specification described here is an Intel extension to an OEM BIOS.
This extension allows an application to read and modify the contents of the microcode update
data in NVRAM. The update loader, which is part of the system BIOS, cannot be updated by the
interface. All of the functions defined in the specification must be implemented for a system to
be considered compliant with the specification. The INT15 functions are accessible only from
real mode.

9.11.4.1. RESPONSIBILITIES OF THE BIOS

If a BIOS passes the presence test (INT 15H, AX=0D042H, BL=0H) it must implement all of
the sub-functions defined in the INT 15H, AX= 0D042H specification. There are no optional
functions. The BIOS must load the appropriate update for each processor during system initial-
ization.

A header version of an update block containing the value OFFFFFFFFH indicates that the update
block is unused and available for storing a new update.

The BIOS is responsible for providing a 2048 byte region of non-volatile storage (NVRAM) for
each potential processor stepping within a system. This storage unit is referred to as an update
block. The BIOS for a single processor system need only provide one update block to store the
microcode update data. The BIOS for a multiple processor capable system needs to provide one
update block for each unique processor stepping supported by the OEM’s system. The BIOS is
responsible for managing the NVRAM update blocks. This includes garbage collection, such as
removing update blocks that exist in NVRAM for which a corresponding processor does not
exist in the system. This specification only provides the mechanism for ensuring security, the
uniqueness of an entry, and that stale entries are not loaded. The actual update block manage-
ment is implementation specific on a per-BIOS basis. As an example, the BIOS may use update
blocks sequentially in ascending order with CPU signatures sorted versus the first available
block. In addition, garbage collection may be implemented as a setup option to clear all
NVRAM slots or as BIOS code that searches and eliminates unused entries during boot.
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The following algorithm describes the steps performed during BIOS initialization used to load
the updates into the processor(s). It assumes that the BIOS ensures that no update contained
within NVRAM has a header version or loader version that does not match one currently
supported by the BIOS and that the update block contains a correct checksum. It also assumes
that the BIOS ensures that at most one update exists for each processor stepping and that older
update revisions are not allowed to overwrite more recent ones. These requirements are checked
by the BIOS during the execution of the write update function of this interface. The BIOS
sequentially scans through all of the update blocks in NVRAM starting with index 0. The BIOS
scans until it finds an update where the processor fields in the header match the family, model,
and stepping as well as the platform ID bits of the current processor.

For each processor in the system {
Determine the ProcType, Family, Model and Stepping via CPUID;
Determine the Platform ID Bits by reading the 1A32_PLATFORM_ID[52:50] MSR;
for (I = UpdateBlock 0, | < NumOfUpdates; I++) {
If (UpdateHeader.Processor ==
ProcType, Family, Model and Stepping) &&
(UpdateHeader.ProcessorFlags == Platform ID Bits)) {
Load UpdateHeader.UpdateData into the Processor;
Verify that update was correctly loaded into the processor
Go on to next processor
Break;
}
}

NOTE

The platform ID bits in the IA32_PLATFORM_ID MSR are encoded as a
three-bit binary coded decimal field. The platform ID bits in the microcode
update header are individually bit encoded. The algorithm must do a
translation from one format to the other prior to doing the comparison.

When performing the INT 15H, 0D042H functions, the BIOS must assume that the caller has
no knowledge about platform specific requirements. It is the responsibility of the BIOS calls to
manage all chipset and platform specific prerequisites for managing the NVRAM device. When
writing the update data via the write update sub-function, the BIOS must maintain implementa-
tion specific data requirements, such as the update of NVRAM checksum. The BIOS should also
attempt to verify the success of write operations on the storage device used to record the update.

9.11.4.2.  RESPONSIBILITIES OF THE CALLING PROGRAM

This section of the document lists the responsibilities of the calling program using the interface
specifications to load microcode update(s) into BIOS NVRAM.

The calling program should call the INT 15H, 0D042H functions from a pure real mode program
and should be executing on a system that is running in pure real mode. The caller should issue
the presence test function (sub function 0) and verify the signature and return codes of that func-
tion. It is important that the calling program provides the required scratch RAM buffers for the
BIOS and the proper stack size as specified in the interface definition.
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The calling program should read any update data that already exists in the BIOS in order to make
decisions about the appropriateness of loading the update. The BIOS refuses to overwrite a
newer update with an older version. The update header contains information about version and
processor specifics for the calling program to make an intelligent decision about loading.

There can be no ambiguous updates. The BIOS refuses to allow multiple updates for the same
CPUID to exist at the same time. The BIOS also refuses to load an update for a processor that
does not exist in the system.

The calling application should implement a verify function that is run after the update write
function successfully completes. This function reads back the update and verifies that the BIOS
returned an image identical to the one that was written. The following pseudo-code represents a
calling program.

INT 15 D042 Calling Program Pseudo-code

1

/l We must be in real mode

1

If the system is not in Real mode
then Exit

I

/I Detect the presence of Genuine Intel processor(s) that can be updated (CPUID)
1
If no Intel processors exist that can be updated

then Exit
1
/I Detect the presence of the Intel microcode update extensions
1
If the BIOS fails the PresenceTest
then Exit
1
/' If the APIC is enabled, see if any other processors are out there
1

Read APICBaseMSR
If APIC enabled {
Send Broadcast Message to all processors except self via APIC;
Have all processors execute CPUID and record Type, Family, Model, Stepping
Have all processors read IA32_PLATFORM_ID[52:50] and record platform ID bits
If current processor is not updatable
then Exit
}
1
// Determine the number of unique update slots needed for this system
/I
NumSilots = 0;
For each processor {
If ((this is a unique processor stepping) and
(we have an update in the database for this processor)) {
Checksum the update from the database;
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If Checksum fails
then Exit;
Increment NumSiots;

}

}

/1

// Do we have enough update slots for all CPUs?

1

If there are more unique processor steppings than update slots provided by the BIOS
then Exit

/I
// Do we need any update slots at all? If not, then we’re all done
1
If (NumSilots == 0)
then Exit

z Record updates for processors in NVRAM.
gor (I=0; I<NumSilots; I++) {
z Load each Update
|SSL/J/e the WriteUpdate function

If (STORAGE_FULL) returned {
Display Error -- BIOS is not managing NVRAM appropriately
exit

}

If INVALID_REVISION) returned {
Display Message: More recent update already loaded in NVRAM for this stepping
continue;

}

If any other error returned {
Display Diagnostic
exit
}
1
/I Verify the update was loaded correctly
1
Issue the ReadUpdate function

If an error occurred {

Display Diagnostic
exit
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1

/I Compare the Update read to that written
/I

if (Update read != Update written) {

Display Diagnostic

exit
}
}
/1
/I Enable Update Loading, and inform user
i

Issue the ControlUpdate function with Task=Enable.

9.11.4.3. MICROCODE UPDATE FUNCTIONS

Table 9-8 defines the current Pentium 4, Intel Xeon, and P6 family processor microcode update
functions.

Table 9-8. Microcode Update Functions

Microcode Update Function
Function Number Description Required/Optional
Presence test O00H Returns information about the supported Required
functions.
Write update data 01H Writes one of the update data areas (slots). Required
Update control 02H Globally controls the loading of updates. Required
Read update data 03H Reads one of the update data areas (slots). Required

9.11.4.4. INT 15H-BASED INTERFACE

Intel recommends that a BIOS interface be provided that allows additional microcode updates
to be added to the system flash. The INT15H interface is an Intel-defined method for doing this.

The program that calls this interface is responsible for providing three 64-kilobyte RAM areas
for BIOS use during calls to the read and write functions. These RAM scratch pads can be used
by the BIOS for any purpose, but only for the duration of the function call. The calling routine
places real mode segments pointing to the RAM blocks in the CX, DX and SI registers. Calls to
functions in this interface must be made with a minimum of 32 kilobytes of stack available to
the BIOS.

In general, each function returns with CF cleared and AH contains the returned status. The
general return codes and other constant definitions are listed in Section 9.11.4.9., “Return
Codes”.

The OEM Error (AL) is provided for the OEM to return additional error information specific to
the platform. If the BIOS provides no additional information about the error, the OEM Error
must be set to SUCCESS.
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The OEM Error field is undefined if AH contains either SUCCESS (00) or
NOT_IMPLEMENTED (86h). In all other cases it must be set with either SUCCESS or a value
meaningful to the OEM.

The following text details the functions provided by the INT15H-based interface.

9.11.4.5. FUNCTION 00H—PRESENCE TEST

This function verifies that the BIOS has implemented the required microcode update functions.
Table 9-9 lists the parameters and return codes for the function.

Table 9-9. Parameters for the Presence Test

Input
AX Function Code 0D042h
BL Sub-function 00h - Presence Test
Output
CF Carry Flag Carry Set - Failure - AH Contains Status.
Carry Clear - All return values are valid.
AH Return Code
AL OEM Error Additional OEM Information.
EBX Signature Part 1 ‘INTE’ - Part one of the signature.
ECX Signature Part 2 'LPEP’- Part two of the signature.
EDX Loader Version Version number of the microcode update loader.
Sl Update Count Number of update blocks the system can record in NVRAM.
Return Codes (See Table 8-8 for code definitions)
SUCCESS Function completed successfully.
NOT_IMPLEMENTED Function not implemented.

In order to assure that the BIOS function is present, the caller must verify the Carry Flag, the
Return Code, and the 64-bit signature. Each update block is exactly 2048 bytes in length. The
update count reflects the number of update blocks available for storage within non-volatile
RAM. The update count must return with a value greater than or equal to the number of unique
processor steppings currently installed within the system.

The loader version number refers to the revision of the update loader program that is included
in the system BIOS image.

9.11.4.6. FUNCTION 01H—WRITE MICROCODE UPDATE DATA

This function integrates a new microcode update into the BIOS storage device. Table 9-10 lists
the parameters and return codes for the function.
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Table 9-10. Parameters for the Write Update Data Function

Input
AX Function Code 0D042H
BL Sub-function 01H - Write Update
ED:DI Update Address Real Mode pointer to the Intel Update structure. This buffer is
2048 bytes in length
CX Scratch Pad1 Real Mode Segment address of 64 kilobytes of RAM Block.
DX Scratch Pad2 Real Mode Segment address of 64 kilobytes of RAM Block.
Sl Scratch Pad3 Real Mode Segment address of 64 kilobytes of RAM Block.
SS:SP Stack pointer 32 kilobytes of Stack Minimum.
Output
CF Carry Flag Carry Set - Failure - AH Contains Status.
Carry Clear - All return values are valid.
AH Return Code Status of the Call
AL OEM Error Additional OEM Information.

Return Codes (See Table 8-8 for code

definitions)

SUCCESS

Function completed successfully.

WRITE_FAILURE

A failure because of the inability to write the storage device.

ERASE_FAILURE

A failure because of the inability to erase the storage device.

READ_FAILURE

A failure because of the inability to read the storage device.

STORAGE_FULL

The BIOS non-volatile storage area is unable to accommodate
the update because all available update blocks are filled with
updates that are needed for processors in the system.

CPU_NOT_PRESENT

The processor stepping does not currently exist in the system.

INVALID_HEADER

The update header contains a header or loader version that is
not recognized by the BIOS.

INVALID_HEADER_CS

The update does not checksum correctly.

SECURITY_FAILURE

The processor rejected the update.

INVALID_REVISION

The same or more recent revision of the update exists in the
storage device.

The BIOS is responsible for selecting an appropriate update block in the non-volatile storage for
storing the new update. This BIOS is also responsible for ensuring the integrity of the informa-
tion provided by the caller, including authenticating the proposed update before incorporating it

into storage.
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Before writing the update block into NVRAM, the BIOS should ensure that the update structure
meets the following criteria in the following order:

1. The update header version should be equal to an update header version recognized by the
BIOS.

2. The update loader version in the update header should be equal to the update loader
version contained within the BIOS image.

3. The update block should checksum to zero. This checksum is computed as a 32-bit
summation of all 512 double words in the structure, including the header.

The BIOS selects an update block in non-volatile storage for storing the candidate update. The
BIOS can select any available update block as long as it guarantees that only a single update
exists for any given processor stepping in non-volatile storage. If the update block selected
already contains an update, the following additional criteria apply to overwrite it:

® The processor signature in the proposed update should be equal to the processor signature
in the header of the current update in NVRAM (CPUID + platform ID bits).

® The update revision in the proposed update should be greater than the update revision in
the header of the current update in NVRAM.

If no unused update blocks are available and the above criteria are not met, the BIOS can over-
write an update block for a processor stepping that is no longer present in the system. This can
be done by scanning the update blocks and comparing the processor steppings, identified in the
MP Specification table, to the processor steppings that currently exist in the system.

Finally, before storing the proposed update into NVRAM, the BIOS should verify the authen-
ticity of the update via the mechanism described in Section 9.11.2., “Microcode Update
Loader”. This includes loading the update into the current processor, executing the CPUID
instruction, reading MSR 08Bh, and comparing a calculated value with the update revision in
the proposed update header for equality.

When performing the write update function, the BIOS should record the entire update, including
the header and the update data. When writing an update, the original contents may be over-
written, assuming the above criteria have been met. It is the responsibility of the BIOS to ensure
that more recent updates are not overwritten through the use of this BIOS call, and that only a
single update exists within the NVRAM for any processor stepping.

Figure 9-9 shows the process the BIOS follows to choose an update block and ensure the integ-
rity of the data when it stores the new microcode update.
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Figure 9-9. Write Operation Flow Chart
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9.11.4.7.  FUNCTION 02H—MICROCODE UPDATE CONTROL

This function enables loading of binary updates into the processor. Table 9-11 lists the parame-
ters and return codes for the function.

Table 9-11. Parameters for the Control Update Sub-function

Input
AX Function Code 0D042H
BL Sub-function 02H - Control Update
BH Task See Description.
CX Scratch Pad1 Real Mode Segment of 64 kilobytes of RAM Block.
DX Scratch Pad2 Real Mode Segment of 64 kilobytes of RAM Block.
Sl Scratch Pad3 Real Mode Segment of 64 kilobytes of RAM Block.
SS:SP Stack pointer 32 kilobytes of Stack Minimum.
Output
CF Carry Flag Carry Set - Failure - AH contains Status.
Carry Clear - All return values are valid.
AH Return Code Status of the Call.
AL OEM Error Additional OEM Information.
BL Update Status Either Enable or Disable indicator.
Return Codes (See Table 8-8 for code definitions)
SUCCESS Function completed successfully.
READ_FAILURE A failure because of the inability to read the storage device.

This control is provided on a global basis for all updates and processors. The caller can deter-
mine the current status of update loading (enabled or disabled) without changing the state. The
function does not allow the caller to disable loading of binary updates, as this poses a security
risk.

The caller specifies the requested operation by placing one of the values from Table 9-12 in the
BH register. After successfully completing this function the BL register contains either the
enable or the disable designator. Note that if the function fails, the update status return value is
undefined.

Table 9-12. Mnemonic Values

Mnemonic Value Meaning

Enable 1 Enable the Update loading at initialization time

Query 2 Determine the current state of the update control without changing
its status.
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The READ_FAILURE error code returned by this function has meaning only if the control func-
tion is implemented in the BIOS NVRAM. The state of this feature (enabled/disabled) can also
be implemented using CMOS RAM bits where READ failure errors cannot occur.

9.11.4.8.  FUNCTION 03H—READ MICROCODE UPDATE DATA

This function reads a currently installed microcode update from the BIOS storage into a caller-
provided RAM buffer. Table 9-13 lists the parameters and return codes for the function.

Table 9-13. Parameters for the Read Microcode Update Data Function

Input

AX Function Code 0D042H

BL Sub-function 03H - Read Update

ES:DI Buffer Address Real Mode pointer to the Intel Update structure that will be
written with the binary data.

ECX Scratch Pad1 Real Mode Segment address of 64 kilobytes of RAM Block
(lower 16 bits).

ECX Scratch Pad2 Real Mode Segment address of 64 kilobytes of RAM Block
(upper 16 bits).

DX Scratch Pad3 Real Mode Segment address of 64 kilobytes of RAM Block.

SS:SP Stack pointer 32 kilobytes of Stack Minimum.

Sl Update Number The index number of the update block to be read. This value is
zero based and must be less than the update count returned
from the presence test function.

Output

CF Carry Flag Carry Set - Failure - AH contains Status.

Carry Clear - All

return values

are valid.

AH Return Code Status of the Call.

AL OEM Error Additional OEM Information.

Return Codes (See Table 8-8 for code

definitions)

SUCCESS

Function completed successfully.

READ_FAILURE

A failure because of the inability to read the storage device.

UPDATE_NUM_INVALID Update number exceeds the maximum number of update
blocks implemented by the BIOS.

The read function enables the caller to read any update data that already exists in a BIOS and
make decisions about the addition of new updates. As a result of a successful call, the BIOS
copies exactly 2048 bytes into the location pointed to by ES:DI, with the contents of the update
block represented by update number.
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An update block is considered unused and available for storing a new update if its header version
contains the value OFFFFFFFFH after return from this function call. The actual implementation
of NVRAM storage management is not specified here and is BIOS dependent. As an example,
the actual data value used to represent an empty block by the BIOS may be zero, rather than
OFFFFFFFFH. The BIOS is responsible for translating this information into the header provided
by this function.

9.11.4.9. RETURN CODES

After the call has been made, the return codes listed in Table 9-14 are available in the AH
register.

Table 9-14. Return Code Definitions

Return Code Value Description

SUCCESS O00H Function completed successfully

NOT_IMPLEMENTED 86H Function not implemented

ERASE_FAILURE 90H A failure because of the inability to erase the storage
device

WRITE_FAILURE 91H A failure because of the inability to write the storage device

READ_FAILURE 92H A failure because of the inability to read the storage device

STORAGE_FULL 93H The BIOS non-volatile storage area is unable to

accommodate the update because all available update
blocks are filled with updates that are needed for
processors in the system

CPU_NOT_PRESENT 94H The processor stepping does not currently exist in the
system

INVALID_HEADER 95H The update header contains a header or loader version
that is not recognized by the BIOS

INVALID_HEADER_CS 96h The update does not checksum correctly

SECURITY_FAILURE 97H The update was rejected by the processor

INVALID_REVISION 98H The same or more recent revision of the update exists in
the storage device

UPDATE_NUM_INVALID 99H The update number exceeds the maximum number of

update blocks implemented by the BIOS
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CHAPTER 10
MEMORY CACHE CONTROL

This chapter describes the IA-32 architecture’s memory cache and cache control mechanisms, the
TLBs, and the store buffer. It also describes the memory type range registers (MTRRs) found in
the P6 family processors and how they are used to control caching of physical memory locations.

10.1. INTERNAL CACHES, TLBS, AND BUFFERS

The IA-32 architecture supports caches, translation look aside buffers (TLBs), and a store buffer
for temporary on-chip (and external) storage of instructions and data. (Figure 10-1 shows the
arrangement of caches, TLBs, and the store buffer for the Pentium 4 and Intel Xeon processors.)
Table 10-1 shows the characteristics of these caches and buffers for the Pentium 4, Intel Xeon,
P6 family, and Pentium processors. The sizes and characteristics of these units are machine
specific and may change in future versions of the processor. The CPUID instruction returns
the sizes and characteristics of the caches and buffers for the processor on which the instruction
is executed (see “CPUID—CPU Identification” in Chapter 3 of the IA-32 Intel Architecture Soft-
ware Developer’s Manual, Volume 2).

Physical
Memory

System Bus 4
(External)

»| Data Cache
L2 Cache L3 Cachef Unit (L1)
) } :
1 1 Instruction
TLBs

Bus Interface Unit

Y o

Instruction Decoder | Trace Cache

|
[ |—> Data TLBs

Store Buffer

T Intel Xeon processors only

Figure 10-1. Cache Structure of the Pentium 4 and Intel Xeon Processors
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Table 10-1. Characteristics of the Caches, TLBs, Store Buffer, and Write Combining

Buffer in IA-32 processors

Cache or Buffer

Characteristics

Trace Cache®

- Pentium 4 and Intel Xeon processors: 12 Kuops, 8-way set associative.
- Pentium M processor: not implemented.
- P6 family and Pentium processors: not implemented.

L1 Instruction Cache

- Pentium 4 and Intel Xeon processors: not implemented.

- Pentium M processor: 32-KByte, 8-way set associative.

- P6 family and Pentium processors: 8- or 16-KByte, 4-way set associative,
32-byte cache line size; 2-way set associative for earlier Pentium processors.

L1 Data Cache

- Pentium 4 and Intel Xeon processors: 8-KByte, 4-way set associative, 64-byte
cache line size.

- Pentium M processor: 32-KByte, 8-way set associative, 64-byte cache line size.

- P6 family processors: 16-KByte, 4-way set associative, 32-byte cache line size;
8-KBytes, 2-way set associative for earlier P6 family processors.

- Pentium processors: 16-KByte, 4-way set associative, 32-byte cache line size;
8-KByte, 2-way set associative for earlier Pentium processors.

L2 Unified Cache

- Pentium 4 and Intel Xeon processors: 256-or 512-KByte, 8-way set associative,
64-byte cache line size, 128-byte sector size.

- Pentium M processor: 1-MByte, 8-way set associative, 64-byte cache line size.

- P6 family processors: 128-KByte, 256-KByte, 512-KByte, 1-MByte, or 2-MByte,
4-way set associative, 32-byte cache line size.

- Pentium processor (external optional): System specific, typically 256- or 512-
KByte, 4-way set associative, 32-byte cache line size.

L3 Unified Cache

- Intel Xeon processors: 512-KByte or 1-MByte, 8-way set associative, 64-byte
cache line size, 128-byte sector size.

Instruction TLB
(4-KByte Pages)

- Pentium 4 and Intel Xeon processors: 128 entries, 4-way set associative.

- Pentium M processor: 128 entries, 4-way set associative.

- P6 family processors: 32 entries, 4-way set associative.

- Pentium processor: 32 entries, 4-way set associative; fully set associative for
Pentium processors with MMX technology.

Data TLB (4-KByte
Pages)

- Pentium 4 and Intel Xeon processors: 64 entries, fully set associative; shared
with
large page data TLBs.

- Pentium M processor: 128 entries, 4-way set associative.

- Pentium and P6 family processors: 64 entries, 4-way set associative; fully set.
associative for Pentium processors with MMX technology.

Instruction TLB
(Large Pages)

- Pentium 4 and Intel Xeon processors: large pages are fragmented.
- Pentium M processor: 2 entries, fully associative.

- P6 family processors: 2 entries, fully associative.

- Pentium processor: Uses same TLB as used for 4-KByte pages.

Data TLB (Large
Pages)

- Pentium 4 and Intel Xeon processors: 64 entries, fully set associative; shared
with small page data TLBs.

- Pentium M processor: 8 entries, fully associative.

- P6 family processors: 8 entries, 4-way set associative.

- Pentium processor: 8 entries, 4-way set associative; uses same TLB as used for
4-KByte pages in Pentium processors with MMX technology.
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Table 10-1. Characteristics of the Caches, TLBs, Store Buffer, and Write Combining
Buffer in 1A-32 processors (Contd.)

Cache or Buffer Characteristics

Store Buffer - Pentium 4 and Intel Xeon processors: 24 entries.

- Pentium M processor: 16 entries.

- P6 family processors: 12 entries.

- Pentium processor: 2 buffers, 1 entry each (Pentium processors with MMX
technology have 4 buffers for 4 entries).

Write Combining - Pentium 4 and Intel Xeon processors: 6 entries.
(WC) Buffer - Pentium M processor: 6 entries.
- P6 family processors: 4 entries.

NOTES:
T Introduced to the 1A-32 architecture in the Pentium 4 and Intel Xeon processors.

The TA-32 processors implement four types of caches: the trace cache, the level 1 (L1) cache,
the level 2 (L2) cache, and the level 3 (L3) cache (see Figure 10-1). The uses of these caches
differs from the Pentium 4, Intel Xeon, and P6 family processors, as follows:

® Pentium 4 and Intel Xeon processors—The trace cache caches decoded instructions (pLops)
from the instruction decoder, and the L1 cache contains only data. The L2 and L3 caches
are unified data and instruction caches that are located on the processor chip. (The L3
cache is only implemented on Intel Xeon processors.)

® P6 family processors—The L1 cache is divided into two sections: one dedicated to caching
IA-32 architecture instructions (pre-decoded instructions) and one to caching data. The L2
cache is a unified data and instruction cache that is located on the processor chip. The P6
family processors do not implement a trace cache.

® Pentium processors—The L1 cache has the same structure as on the P6 family processors
(and a trace cache is not implemented). The L2 cache is a unified data and instruction
cache that is external to the processor chip on earlier Pentium processors and implemented
on the processor chip in later Pentium processors. For Pentium processors where the L2
cache is external to the processor, access to the cache is through the system bus.

The cache lines for the L1 and L2 caches in the Pentium 4 and the L1, L2, and L3 caches in the
Intel Xeon processors are 64 bytes wide. The processor always reads a cache line from system
memory beginning on a 64-byte boundary. (A 64-byte aligned cache line begins at an address
with its 6 least-significant bits clear.) A cache line can be filled from memory with a 8-transfer
burst transaction. The caches do not support partially-filled cache lines, so caching even a single
doubleword requires caching an entire line.

The L1 and L2 cache lines in the P6 family and Pentium processors are 32 bytes wide, with
cache line reads from system memory beginning on a 32-byte boundary (5 least-significant bits
of a memory address clear.) A cache line can be filled from memory with a 4-transfer burst trans-
action. Partially-filled cache lines are not supported.

The trace cache in the Pentium 4 and Intel Xeon processors is an integral part of the Intel
NetBurst micro-architecture and is available in all execution modes: protected mode, system
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management mode (SMM), and real-address mode. The L1,L.2, and L3 caches are also available
in all execution modes; however, use of them must be handled carefully in SMM (see Section
13.4.2., “SMRAM Caching”).

The TLBs store the most recently used page-directory and page-table entries. They speed up
memory accesses when paging is enabled by reducing the number of memory accesses that are
required to read the page tables stored in system memory. The TLBs are divided into four
groups: instruction TLBs for 4-KByte pages, data TLBs for 4-KByte pages; instruction TLBs
for large pages (2-MByte or 4-MByte pages), and data TLBs for large pages. The TLBs are
normally active only in protected mode with paging enabled. When paging is disabled or the
processor is in real-address mode, the TLBs maintain their contents until explicitly or implicitly
flushed (see Section 10.9., “Invalidating the Translation Lookaside Buffers (TLBs)”).

The store buffer is associated with the processors instruction execution units. It allows writes to
system memory and/or the internal caches to be saved and in some cases combined to optimize
the processor’s bus accesses. The store buffer is always enabled in all execution modes.

The processor’s caches are for the most part transparent to software. When enabled, instructions
and data flow through these caches without the need for explicit software control. However,
knowledge of the behavior of these caches may be useful in optimizing software performance.
For example, knowledge of cache dimensions and replacement algorithms gives an indication
of how large of a data structure can be operated on at once without causing cache thrashing.

In multiprocessor systems, maintenance of cache consistency may, in rare circumstances,
require intervention by system software. For these rare cases, the processor provides privileged
cache control instructions for use in flushing caches and forcing memory ordering.

The Pentium Ill, Pentium 4, and Intel Xeon processors introduced several instructions that soft-
ware can use to improve the performance of the L1, L2, and L3 caches, including the
PREFETCH/ and CLFLUSH instructions and the non-temporal move instructions (MOVNTI,
MOVNTQ, MOVNTDQ, MOVNTPS, and MOVNTPD). The use of these instructions are
discussed in Section 10.5.5., “Cache Management Instructions”.

10.2. CACHING TERMINOLOGY

The IA-32 architecture (beginning with the Pentium processor) uses the MESI (modified, exclu-
sive, shared, invalid) cache protocol to maintain consistency with internal caches and caches in
other processors (see Section 10.4., “Cache Control Protocol”).

When the processor recognizes that an operand being read from memory is cacheable, the
processor reads an entire cache line into the appropriate cache (L1, L2, L3, or all). This operation
is called a cache line fill. If the memory location containing that operand is still cached the next
time the processor attempts to access the operand, the processor can read the operand from the
cache instead of going back to memory. This operation is called a cache hit.

When the processor attempts to write an operand to a cacheable area of memory, it first checks
if a cache line for that memory location exists in the cache. If a valid cache line does exist, the
processor (depending on the write policy currently in force) can write the operand into the cache
instead of writing it out to system memory. This operation is called a write hit. If a write misses
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the cache (that is, a valid cache line is not present for area of memory being written to), the
processor performs a cache line fill, write allocation. Then it writes the operand into the cache
line and (depending on the write policy currently in force) can also write it out to memory. If the
operand is to be written out to memory, it is written first into the store buffer, and then written
from the store buffer to memory when the system bus is available. (Note that for the Pentium
processor, write misses do not result in a cache line fill; they always result in a write to memory.
For this processor, only read misses result in cache line fills.)

When operating in an MP system, [A-32 processors (beginning with the Intel486 processor)
have the ability to snoop other processor’s accesses to system memory and to their internal
caches. They use this snooping ability to keep their internal caches consistent both with system
memory and with the caches in other processors on the bus. For example, in the Pentium and P6
family processors, if through snooping one processor detects that another processor intends to
write to a memory location that it currently has cached in shared state, the snooping processor
will invalidate its cache line forcing it to perform a cache line fill the next time it accesses the
same memory location.

Beginning with the P6 family processors, if a processor detects (through snooping) that another
processor is trying to access a memory location that it has modified in its cache, but has not yet
written back to system memory, the snooping processor will signal the other processor (by
means of the HITM# signal) that the cache line is held in modified state and will preform an
implicit write-back of the modified data. The implicit write-back is transferred directly to the
initial requesting processor and snooped by the memory controller to assure that system memory
has been updated. Here, the processor with the valid data may pass the data to the other proces-
sors without actually writing it to system memory; however, it is the responsibility of the
memory controller to snoop this operation and update memory.

10.3. METHODS OF CACHING AVAILABLE

The processor allows any area of system memory to be cached in the L1, L2, and L3 caches.
Within individual pages or regions of system memory, it also allows the type of caching (also
called memory type) to be specified, using a variety of system flags and registers (see Section
10.5., “Cache Control”). The memory types currently defined for the IA-32 architecture are as
follows. (Table 10-2 summarizes the memory types and gives their basic characteristics.)

® Strong Uncacheable (UC)—System memory locations are not cached. All reads and writes
appear on the system bus and are executed in program order without reordering. No
speculative memory accesses, page-table walks, or prefetches of speculated branch targets
are made. This type of cache-control is useful for memory-mapped I/O devices. When
used with normal RAM, it greatly reduces processor performance.
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Table 10-2. Memory Types and Their Properties

Allows
Memory Type and Writeback | Speculative
Mnemonic Cacheable | Cacheable Reads Memory Ordering Model

Strong Uncacheable No No No Strong Ordering

(UC)

Uncacheable (UC-) No No No Strong Ordering. Can only be
selected through the PAT. Can be
overridden by WC in MTRRs.

Write Combining (WC) No No Yes Weak Ordering. Available by
programming MTRRs or by
selecting it through the PAT.

Write Through (WT) Yes No Yes Speculative Processor Ordering

Write Back (WB) Yes Yes Yes Speculative Processor Ordering.

Write Protected (WP) Yes for reads; No Yes Speculative Processor Ordering.

no for writes Available by programming
MTRRs.

Uncacheable (UC-)—Has same characteristics as the strong uncacheable (UC) memory
type, except that this memory type can be overridden by programming the MTRRs for the
WC memory type. This memory type is available in the Pentium 4, Intel Xeon, and
Pentium Il processors and can only be selected through the PAT.

Write Combining (WC)—System memory locations are not cached (as with uncacheable
memory) and coherency is not enforced by the processor’s bus coherency protocol.
Speculative reads are allowed. Writes may be delayed and combined in the write
combining buffer (WC buffer) to reduce memory accesses. If the WC buffer is partially
filled, the writes may be delayed until the next occurrence of a serializing event; such as,
an SFENCE or MFENCE instruction, CPUID execution, a read or write to uncached
memory, an interrupt occurrence, or a LOCK instruction execution. This type of cache-
control is appropriate for video frame buffers, where the order of writes is unimportant as
long as the writes update memory so they can be seen on the graphics display. See Section
10.3.1., “Buffering of Write Combining Memory Locations”, for more information about
caching the WC memory type. This memory type is available in the Pentium Pro and
Pentium II processors by programming the MTRRs or in the Pentium lll, Pentium 4, and
Intel Xeon processors by programming the MTRRs or by selecting it through the PAT.

Write-through (WT)—Writes and reads to and from system memory are cached. Reads
come from cache lines on cache hits; read misses cause cache fills. Speculative reads are
allowed. All writes are written to a cache line (when possible) and through to system
memory. When writing through to memory, invalid cache lines are never filled, and valid
cache lines are either filled or invalidated. Write combining is allowed. This type of cache-
control is appropriate for frame buffers or when there are devices on the system bus that
access system memory, but do not perform snooping of memory accesses. It enforces
coherency between caches in the processors and system memory.

Write-back (WB)—Writes and reads to and from system memory are cached. Reads come
from cache lines on cache hits; read misses cause cache fills. Speculative reads are
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allowed. Write misses cause cache line fills (in the Pentium 4, Intel Xeon, and P6 family
processors), and writes are performed entirely in the cache, when possible. Write
combining is allowed. The write-back memory type reduces bus traffic by eliminating
many unnecessary writes to system memory. Writes to a cache line are not immediately
forwarded to system memory; instead, they are accumulated in the cache. The modified
cache lines are written to system memory later, when a write-back operation is performed.
Write-back operations are triggered when cache lines need to be deallocated, such as when
new cache lines are being allocated in a cache that is already full. They also are triggered
by the mechanisms used to maintain cache consistency. This type of cache-control
provides the best performance, but it requires that all devices that access system memory
on the system bus be able to snoop memory accesses to insure system memory and cache
coherency.

MEMORY CACHE CONTROL

Write protected (WP)—Reads come from cache lines when possible, and read misses
cause cache fills. Writes are propagated to the system bus and cause corresponding cache
lines on all processors on the bus to be invalidated. Speculative reads are allowed. This
memory type is available in the Pentium 4, Intel Xeon, and P6 family processors by
programming the MTRRs (see Table 10-6).

Table 10-3 shows which of these caching methods are available in the Pentium, P6 Family,
Pentium 4, and Intel Xeon processors.

Table 10-3. Methods of Caching Available in Pentium 4, Intel Xeon, P6 Family, and
Pentium Processors

Memory Type Pentium 4 and Intel P6 Family Processors | Pentium Processor
Xeon Processors
Strong Uncacheable (UC) Yes Yes Yes
Uncacheable (UC-) Yes Yes* No
Write Combining (WC) Yes Yes No
Write Through (WT) Yes Yes Yes
Write Back (WB) Yes Yes Yes
Write Protected (WP) Yes Yes No

NOTES:

* Introduced in the Pentium Il processor; not available in the Pentium Pro or Pentium II processors

10.3.1.

Buffering of Write Combining Memory Locations

Writes to the WC memory type are not cached in the typical sense of the word cached. They are
retained in an internal write combining buffer (WC buffer) that is separate from the internal L1,
L2, and L3 caches and the store buffer. The WC buffer is not snooped and thus does not provide
data coherency. Buffering of writes to WC memory is done to allow software a small window
of time to supply more modified data to the WC buffer while remaining as non-intrusive to soft-
ware as possible. The buffering of writes to WC memory also causes data to be collapsed; that
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is, multiple writes to the same memory location will leave the last data written in the location
and the other writes will be lost.

The size and structure of the WC buffer is not architecturally defined. For the Pentium 4 and
Intel Xeon processors, the WC buffer is made up of several 64-byte WC buffers. For the P6
family processors, the WC buffer is made up of several 32-byte WC buffers.

When software begins writing to WC memory, the processor begins filling the WC buffers one
at a time. When one or more WC buffers has been filled, the processor has the option of evicting
the buffers to system memory. The protocol for evicting the WC buffers is implementation
dependent and should not be relied on by software for system memory coherency. When using
the WC memory type, software must be sensitive to the fact that the writing of data to system
memory is being delayed and must deliberately empty the WC buffers when system memory
coherency is required.

Once the processor has started to evict data from the WC buffer into system memory, it will
make a bus-transaction style decision based on how much of the buffer contains valid data. If
the buffer is full (for example, all bytes are valid) the processor will execute a burst-write trans-
action on the bus that will result in all 32 bytes (P6 family processors) or 64 bytes (Pentium 4
and Intel Xeon processor) being transmitted on the data bus in a single burst transaction. If one
or more of the WC buffer’s bytes are invalid (for example, have not been written by software)
then the processor will transmit the data to memory using “partial write” transactions (one chunk
at a time, where a “chunk” is 8 bytes).

This will result in a maximum of 4 partial write transactions (for P6 family processors) or 8
partial write transactions (for the Pentium 4 and Intel Xeon processors) for one WC buffer of
data sent to memory.

The WC memory type is weakly ordered by definition. Once the eviction of a WC buffer has
started, the data is subject to the weak ordering semantics of its definition. Ordering is not main-
tained between the successive allocation/deallocation of WC buffers (for example, writes to WC
buffer 1 followed by writes to WC buffer 2 may appear as buffer 2 followed by buffer 1 on the
system bus). When a WC buffer is evicted to memory as partial writes there is no guaranteed
ordering between successive partial writes (for example, a partial write for chunk 2 may appear
on the bus before the partial write for chunk 1 or vice versa). The only elements of WC propa-
gation to the system bus that are guaranteed are those provided by transaction atomicity. For
example, with a P6 family processor, a completely full WC buffer will always be propagated as
a single 32-bit burst transaction using any chunk order. In a WC buffer eviction where the data
will be evicted as partials, all data contained in the same chunk (0 mod 8 aligned) will be prop-
agated simultaneously. Likewise, with a Pentium 4 or Intel Xeon processor, a full WC buffer
will always be propagated as a single burst transactions, using any chunk order within a trans-
action. For partial buffer propagations, all data contained in the same chunk will be propagated
simultaneously.
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10.3.2. Choosing a Memory Type

The simplest system memory model does not use memory-mapped I/O with read or write side
effects, does not include a frame buffer, and uses the write-back memory type for all memory.
An I/0 agent can perform direct memory access (DMA) to write-back memory and the cache
protocol maintains cache coherency.

A system can use strong uncacheable memory for other memory-mapped I/O, and should
always use strong uncacheable memory for memory-mapped I/O with read side effects.

Dual-ported memory can be considered a write side effect, making relatively prompt writes
desirable, because those writes cannot be observed at the other port until they reach the memory
agent. A system can use strong uncacheable, uncacheable, write-through, or write-combining
memory for frame buffers or dual-ported memory that contains pixel values displayed on a
screen. Frame buffer memory is typically large (a few megabytes) and is usually written more
than it is read by the processor. Using strong uncacheable memory for a frame buffer generates
very large amounts of bus traffic, because operations on the entire buffer are implemented using
partial writes rather than line writes. Using write-through memory for a frame buffer can
displace almost all other useful cached lines in the processor’s L2 and L3 caches and L1 data
cache. Therefore, systems should use write-combining memory for frame buffers whenever
possible.

Software can use page-level cache control, to assign appropriate effective memory types when
software will not access data structures in ways that benefit from write-back caching. For
example, software may read a large data structure once and not access the structure again until
the structure is rewritten by another agent. Such a large data structure should be marked as
uncacheable, or reading it will evict cached lines that the processor will be referencing again.

A similar example would be a write-only data structure that is written to (to export the data to
another agent), but never read by software. Such a structure can be marked as uncacheable,
because software never reads the values that it writes (though as uncacheable memory, it will be
written using partial writes, while as write-back memory, it will be written using line writes,
which may not occur until the other agent reads the structure and triggers implicit write-backs).

On the Pentium lll, Pentium 4, and Intel Xeon processors, new instructions are provided that
give software greater control over the caching, prefetching, and the write-back characteristics of
data. These instructions allow software to use weakly ordered or processor ordered memory
types to improve processor performance, but when necessary to force strong ordering on
memory reads and/or writes. They also allow software greater control over the caching of data.
(For a description of these instructions and there intended use, see Section 10.5.5., “Cache
Management Instructions”).

10.4. CACHE CONTROL PROTOCOL

The following section describes the cache control protocol currently defined for the IA-32 archi-
tecture. This protocol is used by the Pentium 4, Intel Xeon, P6 family, and Pentium processors.

In the L1 data cache and in the L2 and L3 unified caches, the MESI (modified, exclusive, shared,
invalid) cache protocol maintains consistency with caches of other processors. The L1 data
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cache and the L2 and L3 unified caches have two MESI status flags per cache line. Each line
can thus be marked as being in one of the states defined in Table 10-4. In general, the operation
of the MESI protocol is transparent to programs.

Table 10-4. MESI Cache Line States

the system bus.

the system bus.

processor to
gain exclusive

Cache Line State M (Modified) E (Exclusive) S (Shared) I (Invalid)
This cache line is valid? Yes Yes Yes No
The memory copy is... ...out of date ...valid ...valid —
Copies exist in caches of No No Maybe Maybe
other processors?
A write to this line ... ...doesnotgoto | ...doesnotgoto | ...causes the ...goes directly

to the system
bus.

ownership of the
line.

The L1 instruction cache in P6 family processors implements only the “SI” part of the MESI
protocol, because the instruction cache is not writable. The instruction cache monitors changes
in the data cache to maintain consistency between the caches when instructions are modified.
See Section 10.6., “Self-Modifying Code”, for more information on the implications of caching
instructions.

10.5. CACHE CONTROL

The IA-32 architecture provides a variety of mechanisms for controlling the caching of data and
instructions and for controlling the ordering of reads and writes between the processor, the
caches, and memory. These mechanisms can be divided into two groups:

® Cache control registers and bits. The IA-32 architecture defines several dedicated registers
and various bits within control registers and page- and directory-table entries that control
the caching system memory locations in the L1, L2, and L3 caches. These mechanisms
control the caching of virtual memory pages and of regions of physical memory.

® (Cache Control and Memory Ordering Instructions. The IA-32 architecture provides several
instructions that control the caching of data, the ordering of memory reads and writes, and
the prefetching of data. These instructions allow software to control the caching of specific
data structures, to control memory coherency for specific locations in memory, and to
force strong memory ordering at specific locations in a program.

The following sections describe these two groups of cache control mechanisms.
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10.5.1. Cache Control Registers and Bits

The current IA-32 architecture provides the following cache-control registers and bits for use in
enabling and/or restricting caching to various pages or regions in memory (see Figure 10-2):

® (D flag, bit 30 of control register CRO—Controls caching of system memory locations
(see Section 2.5., “Control Registers”). If the CD flag is clear, caching is enabled for the
whole of system memory, but may be restricted for individual pages or regions of memory
by other cache-control mechanisms. When the CD flag is set, caching is restricted in the
processor’s caches (cache hierarchy) for the Pentium 4, Intel Xeon, and P6 family
processors and prevented for the Pentium processor (see note below). With the CD flag set,
however, the caches will still respond to snoop traffic. Caches should be explicitly flushed
to insure memory coherency. For highest processor performance, both the CD and the NW
flags in control register CRO should be cleared. Table 10-5 shows the interaction of the CD
and NW flags.

NOTE

The effect of setting the CD flag is somewhat different for the Pentium 4,
Intel Xeon, and P6 family processors than for the Pentium processor (see
Table 10-5). To insure memory coherency after the CD flag is set, the caches
should be explicitly flushed (see Section 10.5.3., “Preventing Caching”).
Setting the CD flag for the Pentium 4, Intel Xeon, and P6 family processors
modifies cache line fill and update behaviour. Also for the Pentium 4, Intel
Xeon, and P6 family processors, setting the CD flag does not force strict
ordering of memory accesses unless the MTRRs are disabled and/or all
memory is referenced as uncached (see Section 7.2.4., “Strengthening or
Weakening the Memory Ordering Model”).
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P
G
E
> Enables global pages
R designated with G fla Physical Memor
c SP 5 ’ ’ Y Y FFFFFFFFH2
cw | l________
—————————— [~~~ 4
BIT Control caching of PAT

R

page directory

Page-Directory or

CRO Page-Table Entry
P4 [P|P
CIN Ala'clw
D|w T| |B|T

CD and NW Flags
control overall caching
of system memory

PCD and PWT flags
control page-level
caching

G flag controls page-
level flushing of TLBs

IA32_MISC_ENABLE MSR

3 Level

Cache Disable

Store Buffer

TLBs

PAT controls caching
of virtual memory
pages

MTRRs?3

MTRRs control caching
of selected regions of

o physical memory

1. G flag only available in Pentium 4, Intel Xeon, and P6 family

processors.

2. If 36-bit physical addressing is being used, the maximum
physical address size is FFFFFFFFFH.

3. MTRRs available only in Pentium 4 and P6 family processors;
similar control available in Pentium processor with the KEN#
and WB/WT# pins.

4. PAT available only in Pentium Ill and Pentium 4 processors.

Figure 10-2. Cache-Control Registers and Bits Available in IA-32 Processors
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Table 10-5. Cache Operating Modes

CD | NW Caching and Read/Write Policy L1 L2/L3!
0 0 | Normal Cache Mode. Highest performance cache operation.
- Read hits access the cache; read misses may cause replacement. Yes Yes
- Write hits update the cache. Yes Yes
- Only writes to shared lines and write misses update system memory. Yes Yes
- Write misses cause cache line fills. Yes Yes
- Write hits can change shared lines to modified under control of the Yes Yes
MTRRs and with associated read invalidation cycle.
- (Pentium processor only.) Write misses do not cause cache line fills. Yes
- (Pentium processor only.) Write hits can change shared lines to Yes
exclusive under control of WB/WT#.
- Invalidation is allowed. Yes Yes
- External snoop traffic is supported. Yes Yes
0 1 Invalid setting.
Generates a general-protection exception (#GP) with an error code of 0. NA NA
1 0 | No-fill Cache Mode. Memory coherency is maintained.
- (Pentium 4 and Intel Xeon processors.) State of processor after a power Yes Yes
up or reset.
- Read hits access the cache; read misses do not cause replacement Yes Yes
(see Pentium 4 and Intel Xeon processors reference below).
- Write hits update the cache. Yes Yes
- Only writes to shared lines and write misses update system memory. Yes Yes
- Write misses access memory. Yes Yes
- Write hits can change shared lines to exclusive under control of the Yes Yes
MTRRs and with associated read invalidation cycle.
- (Pentium processor only.) Write hits can change shared lines to Yes
exclusive under control of the WB/WT#.
- (Pentium 4, Intel Xeon, and P6 family processors only.) Strict memory Yes Yes

ordering is not enforced unless the MTRRs are disabled and/or all
memory is referenced as uncached (see Section 7.2.4., “Strengthening
or Weakening the Memory Ordering Model”).

- Invalidation is allowed. Yes Yes

- External snoop traffic is supported. Yes Yes

- (Pentium 4 and Intel Xeon processors) Allows cache line fills and Yes Yes
replacements unless the accessed memory is mapped as uncached.

1 1 Memory coherency is not maintained.2

- (P6 family and Pentium processors.) State of the processor after a Yes Yes
power up or reset.

- Read hits access the cache; read misses do not cause replacement. Yes Yes

- Write hits update the cache and change exclusive lines to modified. Yes Yes

- Shared lines remain shared after write hit. Yes Yes

- Write misses access memory. Yes Yes

- Invalidation is inhibited when snooping; but is allowed with INVD and Yes Yes
WBINVD instructions.

- External snoop traffic is supported. No Yes

NOTE:

1. The L2/L3 column in this table is definitive for the Pentium 4, Intel Xeon, and P6 family processors. It is
intended to represent what could be implemented in a system based on a Pentium processor with an
external, platform specific, write-back L2 cache.

2. The Pentium 4 and Intel Xeon processors do not support this mode; setting the CD and NW bits to 1
selects the no-fill cache mode.
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® NW flag, bit 29 of control register CRO—Controls the write policy for system memory
locations (see Section 2.5., “Control Registers”). If the NW and CD flags are clear, write-
back is enabled for the whole of system memory, but may be restricted for individual pages
or regions of memory by other cache-control mechanisms. Table 10-5 shows how the other
combinations of CD and NW flags affects caching.

NOTE

For the Pentium 4 and Intel Xeon processors, the NW flag is a don’t care flag;
that is, when the CD flag is set, the processor uses the no-fill cache mode,
regardless of the setting of the NW flag.

For the Pentium processor, when the L1 cache is disabled (the CD and NW
flags in control register CRO are set), external snoops are accepted in DP
(dual-processor) systems and inhibited in uniprocessor systems. When
snoops are inhibited, address parity is not checked and APCHK# is not
asserted for a corrupt address; however, when snoops are accepted, address
parity is checked and APCHK# is asserted for corrupt addresses.

® PCD flag in the page-directory and page-table entries—Controls caching for individual
page tables and pages, respectively (see Section 3.7.6., “Page-Directory and Page-Table
Entries”). This flag only has effect when paging is enabled and the CD flag in control
register CRO is clear. The PCD flag enables caching of the page table or page when clear
and prevents caching when set.

® PWT flag in the page-directory and page-table entries—Controls the write policy for
individual page tables and pages, respectively (see Section 3.7.6., “Page-Directory and
Page-Table Entries”). This flag only has effect when paging is enabled and the NW flag in
control register CRO is clear. The PWT flag enables write-back caching of the page table or
page when clear and write-through caching when set.

® PCD and PWT flags in control register CR3. Control the global caching and write policy
for the page directory (see Section 2.5., “Control Registers”). The PCD flag enables
caching of the page directory when clear and prevents caching when set. The PWT flag
enables write-back caching of the page directory when clear and write-through caching
when set. These flags do not affect the caching and write policy for individual page tables.
These flags only have effect when paging is enabled and the CD flag in control register
CRO is clear.

® G (global) flag in the page-directory and page-table entries (introduced to the IA-32 archi-
tecture in the P6 family processors)—Controls the flushing of TLB entries for individual
pages. See Section 3.11., “Translation Lookaside Buffers (TLBs)”, for more information
about this flag.

® PGE (page global enable) flag in control register CR4—Enables the establishment of
global pages with the G flag. See Section 3.11., “Translation Lookaside Buffers (TLBs)”,
for more information about this flag.
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® Memory type range registers (MTRRs) (introduced in the P6 family processors)—Control
the type of caching used in specific regions of physical memory. Any of the caching types
described in Section 10.3., “Methods of Caching Available”, can be selected. See Section
10.11., “Memory Type Range Registers (MTRRs)”, for a detailed description of the
MTRRs.

® Page Attribute Table (PAT) MSR (Introduced in the Pentium Il processor)—Extends the
memory typing capabilities of the processor to permit memory types to be assigned on a
page-by-page basis (see Section 10.12., “Page Attribute Table (PAT)”).

® Third-Level Cache Disable flag, bit 6 of the IA32_MISC_ENABLE MSR (Introduced in
the Intel Xeon processors)—Allows the L3 cache to be disabled and enabled, indepen-
dently of the L1 and L2 caches.

® KEN# and WB/WT# pins (Pentium processor)—Allow external hardware to control the
caching method used for specific areas of memory. They perform similar (but not
identical) functions to the MTRRs in the P6 family processors.

® PCD and PWT pins (Pentium processor)—These pins (which are associated with the PCD
and PWT flags in control register CR3 and in the page-directory and page-table entries)
permit caching in an external L2 cache to be controlled on a page-by-page basis, consistent
with the control exercised on the L1 cache of these processors. The Pentium 4, Intel Xeon,
and P6 family processors do not provide these pins because the L2 cache in internal to the
chip package.

10.5.2. Precedence of Cache Controls

For the cache control flags and MTRRs operate hierarchically for restricting caching. That is, if
the CD flag is set, caching is prevented globally (see Table 10-5). If the CD flag is clear, the
page-level cache control flags and/or the MTRRs can be used to restrict caching. If there is an
overlap of page-level and MTRR caching controls, the mechanism that prevents caching has
precedence. For example, if an MTRR makes a region of system memory uncachable, a page-
level caching control cannot be used to enable caching for a page in that region. The converse
is also true; that is, if a page-level caching control designates a page as uncachable, an MTRR
cannot be used to make the page cacheable.

In cases where there is a overlap in the assignment of the write-back and write-through caching
policies to a page and a region of memory, the write-through policy takes precedence. The write-
combining policy (which can only be assigned through an MTRR or the PAT) takes precedence
over either write-through or write-back.

The selection of memory types at the page level varies depending on whether PAT is being used
to select memory types for pages, as described in the following sections.

Third-level cache disable flag (bit 6 of the IA32_MISC_ENABLE MSR) takes precedence over
the CD flag, MTRRs, and PAT for the L3 cache. That is, when the third-level cache disable flag
is set (cache disabled), the other cache controls have no affect on the L3 cache; when the flag is
clear (enabled), the cache controls have the same affect on the L3 cache as they have on the L1
and L2 caches.
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10.5.2.1.  SELECTING MEMORY TYPES FOR PENTIUM PRO AND PENTIUM II
PROCESSORS

The Pentium Pro and Pentium II processors do not support the PAT. Here, the effective memory
type for a page is selected with the MTRRs and the PCD and PWT bits in the page-table or page-
directory entry for the page. Table 10-6 describes the mapping of MTRR memory types and
page-level caching attributes to effective memory types, when normal caching is in effect (the
CD and NW flags in control register CRO are clear). Combinations that appear in gray are imple-
mentation-defined for the Pentium Pro and Pentium II processors. System designers are encour-
aged to avoid these implementation-defined combinations.

Table 10-6. Effective Page-Level Memory Type for Pentium Pro and
Pentium II Processors*

MTRR Memory Type PCD Value PWT Value Effective Memory Type
uc X X uc
WC 0 0 WC
0 1 WC
1 0 wWC
1 1 uc
WT 0 X WT
1 X uc
WP 0 0 WP
0 1 WP
1 0 wWC
1 1 uc
WB 0 0 WB
0 1 WT
1 X uc
Note:

* These effective memory types also apply to the Pentium 4, Intel Xeon, and Pentium Ill processors when
the PAT bit is not used (set to 0) in page-table and page-directory entries.

When normal caching is in effect, the effective memory type shown in Table 10-6 is determined
using the following rules:

1. If the PCD and PWT attributes for the page are both 0, then the effective memory type is
identical to the MTRR-defined memory type.

2. If the PCD flag is set, then the effective memory type is UC.

If the PCD flag is clear and the PWT flag is set, the effective memory type is WT for the
WB memory type and the MTRR-defined memory type for all other memory types.
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4. Setting the PCD and PWT flags to opposite values is considered model-specific for the WP
and WC memory types and architecturally-defined for the WB, WT, and UC memory

types.

10.5.2.2. SELECTING MEMORY TYPES FOR PENTIUM 4, INTEL XEON, AND
PENTIUM Il PROCESSORS

The Pentium 4, Intel Xeon, and Pentium Il processors use the PAT to select effective page-level
memory types. Here, a memory type for a page is selected by the MTRRs and the value in a PAT
entry that is selected with the PAT, PCD and PWT bits in a page-table or page-directory entry
(see Section 10.12.3., “Selecting a Memory Type from the PAT”). Table 10-7 describes the
mapping of MTRR memory types and PAT entry types to effective memory types, when normal
caching is in effect (the CD and NW flags in control register CRO are clear). The combinations
shown in gray are implementation-defined for the Pentium 4, Intel Xeon, and Pentium Ill proces-
sors. System designers are encouraged to avoid the implementation-defined combinations.

Table 10-7. Effective Page-Level Memory Types for Pentium Ill, Pentium 4, and
Intel Xeon Processors

MTRR Memory Type PAT Entry Value Effective Memory Type

uc uc uc'
uc- uc'
WC weC
WT uc'
WB uc!
WP uc'

wc uc uc?
ucC- weC
WC wcC
WT Undefined
WB wC
WP Undefined

wWT uc uc?
uc- uc?
WC wcC
WT WT
WB WT
WP Undefined
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Table 10-7. Effective Page-Level Memory Types for Pentium lll, Pentium 4, and
Intel Xeon Processors (Contd.)

WB uc uc?
uc- uc?
wC wC
WT WT
WB WB
WP WP

WP uc uc?
ucC- Undefined
wC wC
WT Undefined
WB WP
WP WP

NOTES:

1. The UC attribute comes from the MTRRs and the processors are not required to snoop their caches since
the data could never have been cached. This attribute is preferred for performance reasons.

2. The UC attribute came from the page-table or page-directory entry and processors are required to check
their caches because the data may be cached due to page aliasing, which is not recommended.

10.5.2.3. WRITING VALUES ACROSS PAGES WITH DIFFERENT MEMORY
TYPES

If two adjoining pages in memory have different memory types, and a word or longer operand
is written to a memory location that crosses the page boundary between those two pages, the
operand might be written to memory twice. This action does not present a problem for writes to
actual memory; however, if a device is mapped the memory space assigned to the pages, the
device might malfunction.

10.5.3. Preventing Caching

To disable the L1, L2, and L3 caches after they have been enabled and have received cache fills,
perform the following steps:

1. Enter the no-fill cache mode. (Set the CD flag in control register CRO to 1 and the NW flag
to 0.

2. Flush all caches using the WBINVD instruction.

3. Disable the MTRRs and set the default memory type to uncached or set all MTRRs for the
uncached memory type (see the discussion of the discussion of the TYPE field and the E
flag in Section 10.11.2.1., “IA32_MTRR_DEF_TYPE MSR”).
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The caches must be flushed (step 2) after the CD flag is set to insure system memory coherency.
If the caches are not flushed, cache hits on reads will still occur and data will be read from valid
cache lines.

NOTE

Setting the CD flag in control register CRO modifies the processor’s caching
behaviour as indicated in Table 10-5, but it does not force the effective
memory type for all physical memory to be UC nor does it force strict
memory ordering. To force the UC memory type and strict memory ordering
on all of physical memory, either the MTRRs must all be programmed for the
UC memory type or they must be disabled.

For the Pentium 4 and Intel Xeon processors, after the sequence of steps
given above has been executed, the cache lines containing the code between
the end of the WBINVD instruction and before the MTRRS have actually
been disabled may be retained in the cache hierarchy. Here, to remove code
from the cache completely, a second WBINVD instruction must be executed
after the MTRRs have been disabled.

10.5.4. Disabling and Enabling the L3 Cache

Third-level cache disable flag (bit 6 of the IA32_MISC_ENABLE MSR) allows the L3 cache
to be disabled and enabled, independently of the L1 and L2 caches. Prior to using this control to
disable or enable the L3 cache, software should disable and flush all the processor caches, as
described earlier in Section 10.5.3., “Preventing Caching”, to prevent of loss of information
stored in the L3 cache. After the L3 cache has been disabled or enabled, caching for the whole
processor can be restored.

10.5.5. Cache Management Instructions

The [A-32 architecture provide several instructions for managing the L1, L2, and L3 caches. The
INVD, WBINVD, and WBINVD instructions are system instructions that operate on the L1, 1.2,
and L3 caches as a whole. The PREFETCH/ and CLFLUSH instructions and the non-temporal
move instructions (MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and MOVNTPD), which
were introduced in the SSE and SSE2 extensions, offer more granular control over caching.

The INVD and WBINVD instructions are used to invalidate the contents of the L1, L2, and L3
caches. The INVD instruction invalidates all internal cache entries, then generates a special-
function bus cycle that indicates that external caches also should be invalidated. The INVD
instruction should be used with care. It does not force a write-back of modified cache lines;
therefore, data stored in the caches and not written back to system memory will be lost. Unless
there is a specific requirement or benefit to invalidating the caches without writing back the
modified lines (such as, during testing or fault recovery where cache coherency with main
memory is not a concern), software should use the WBINVD instruction.
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The WBINVD instruction first writes back any modified lines in all the internal caches, then
invalidates the contents of both the L1, L2, and L3 caches. It ensures that cache coherency with
main memory is maintained regardless of the write policy in effect (that is, write-through or
write-back). Following this operation, the WBINVD instruction generates one (P6 family
processors) or two (Pentium and Intel486 processors) special-function bus cycles to indicate to
external cache controllers that write-back of modified data followed by invalidation of external
caches should occur.

The PREFETCH?# instructions allow a program to suggest to the processor that a cache line from
a specified location in system memory be prefetched into the cache hierarchy (see Section 10.8.,
“Explicit Caching”).

The CLFLUSH instruction allow selected cache lines to be flushed from memory. This instruc-
tion give a program the ability to explicitly free up cache space, when it is known that cached
section of system memory will not be accessed in the near future.

The non-temporal move instructions (MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and
MOVNTPD) allow data to be moved from the processor’s registers directly into system memory
without being also written into the L1, L2, and/or L3 caches. These instructions can be used to
prevent cache pollution when operating on data that is going to be modified only once before
being stored back into system memory. These instructions operate on data in the general-
purpose, MMX, and XMM registers.

10.5.6. L1 Data Cache Context Mode

First-level data cache context mode is a feature of Intel Pentium 4 processor with Hyper-
Threading Technology. When the Context ID feature flag ( ECX[10] ) is set after executing the
CPUID instruction with EAX = 1, then the processor supports setting of the .1 Data Cache
Context Mode using IA32_MISC_ENABLE MSR. The selectable modes are Adaptive Mode
(default) and Shared Mode.

The BIOS is responsible for configuring the L1 data cache context mode.

10.5.6.1. ADAPTIVE MODE

In adaptive mode, memory accessed using the page directory is mapped identically across
logical processors sharing an L1 data cache. Since mapping is identical, the targeted cache
appears as full size to each logical processor (instead of being competitively shared).

If the CR3 register is configured the same for logical processors that share an L1 data cache, the
cache will take advantage of the adaptive mode feature. If the L1 data cache is configured for
adaptive mode, but CR3 registers are not programmed identical across the logical processors
that share the same L1 data cache, then each logical processor will compete for L1 data cache
resources. In this case, the cache does not look full size to any of the logical processors.
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10.5.6.2. SHARED MODE

In shared mode, the L1 data cache is competitively shared. This is true even when CR3 registers
are configured identically across logical processors that share the same L1 data cache.

10.6. SELF-MODIFYING CODE

A write to a memory location in a code segment that is currently cached in the processor causes
the associated cache line (or lines) to be invalidated. This check is based on the physical address
of the instruction. In addition, the P6 family and Pentium processors check whether a write to a
code segment may modify an instruction that has been prefetched for execution. If the write
affects a prefetched instruction, the prefetch queue is invalidated. This latter check is based on
the linear address of the instruction. For the Pentium 4 and Intel Xeon processors, a write or a
snoop of an instruction in a code segment, where the target instruction is already decoded and
resident in the trace cache, invalidates the entire trace cache. The latter behavior means that
programs that self-modify code can cause severe degradation of performance when run on the
Pentium 4 and Intel Xeon processors.

In practice, the check on linear addresses should not create compatibility problems among IA-
32 processors. Applications that include self-modifying code use the same linear address for
modifying and fetching the instruction. Systems software, such as a debugger, that might
possibly modify an instruction using a different linear address than that used to fetch the instruc-
tion, will execute a serializing operation, such as a CPUID instruction, before the modified
instruction is executed, which will automatically resynchronize the instruction cache and
prefetch queue. (See Section 7.1.3., “Handling Self- and Cross-Modifying Code”, for more
information about the use of self-modifying code.)

For Intel486 processors, a write to an instruction in the cache will modify it in both the cache
and memory, but if the instruction was prefetched before the write, the old version of the instruc-
tion could be the one executed. To prevent the old instruction from being executed, flush the
instruction prefetch unit by coding a jump instruction immediately after any write that modifies
an instruction.

10.7. IMPLICIT CACHING (PENTIUM 4, INTEL XEON, AND P6
FAMILY PROCESSORS)

Implicit caching occurs when a memory element is made potentially cacheable, although the
element may never have been accessed in the normal von Neumann sequence. Implicit caching
occurs on the Pentium 4, Intel Xeon, and P6 family processors due to aggressive prefetching,
branch prediction, and TLB miss handling. Implicit caching is an extension of the behavior of
existing Intel386, Intel486, and Pentium processor systems, since software running on these
processor families also has not been able to deterministically predict the behavior of instruction
prefetch.

To avoid problems related to implicit caching, the operating system must explicitly invalidate
the cache when changes are made to cacheable data that the cache coherency mechanism does
not automatically handle. This includes writes to dual-ported or physically aliased memory
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boards that are not detected by the snooping mechanisms of the processor, and changes to page-
table entries in memory.

The code in Example 10-1 shows the effect of implicit caching on page-table entries. The linear
address FOOOH points to physical location BOOOH (the page-table entry for FOOOH contains the
value BOOOH), and the page-table entry for linear address FOOO is PTE_F000.

Example 10-1. Effect of Implicit Caching on Page-Table Entries

mov EAX, CR3 ; Invalidate the TLB

mov CR3, EAX ; by copying CR3 to itself

mov PTE F000, AO0OOH; Change FO00OH to point to AO00OH
mov EBX, [FOO0O0H];

Because of speculative execution in the Pentium 4, Intel Xeon, and P6 family processors, the
last MOV instruction performed would place the value at physical location BOOOH into EBX,
rather than the value at the new physical address AOOOH. This situation is remedied by placing
a TLB invalidation between the load and the store.

10.8. EXPLICIT CACHING

The Pentium Il processor introduced four new instructions, the PREFETCH# instructions, that
provide software with explicit control over the caching of data. These instructions provide
“hints” to the processor that the data requested by a PREFETCH# instruction should be read into
cache hierarchy now or as soon as possible, in anticipation of its use. The instructions provide
different variations of the hint that allow selection of the cache level into which data will be read.

The PREFETCH# instructions can help reduce the long latency typically associated with
reading data from memory and thus help prevent processor “stalls.” However, these instructions
should be used judiciously. Overuse can lead to resource conflicts and hence reduce the perfor-
mance of an application. Also, these instructions should only be used to prefetch data from
memory; they should not be used to prefetch instructions. For more detailed information on the
proper use of the prefetch instruction, refer to Chapter 6, “Optimizing Cache Usage for the Intel
Pentium 4 Processors”, in the Pentium 4 Processor Optimization Reference Manual (see
Section 1.4., “Related Literature”, for the document order number).

10.9. INVALIDATING THE TRANSLATION LOOKASIDE BUFFERS
(TLBS)

The processor updates its address translation caches (TLBs) transparently to software. Several
mechanisms are available, however, that allow software and hardware to invalidate the TLBs
either explicitly or as a side effect of another operation.

The INVLPG instruction invalidates the TLB for a specific page. This instruction is the most
efficient in cases where software only needs to invalidate a specific page, because it improves
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performance over invalidating the whole TLB. This instruction is not affected by the state of the
G flag in a page-directory or page-table entry.

The following operations invalidate all TLB entries except global entries. (A global entry is one
for which the G (global) flag is set in its corresponding page-directory or page-table entry. The
global flag was introduced into the IA-32 architecture in the P6 family processors, see Section
10.5., “Cache Control”.)

®  Writing to control register CR3.

® A task switch that changes control register CR3.

The following operations invalidate all TLB entries, irrespective of the setting of the G flag:
® Asserting or de-asserting the FLUSH# pin.

® (Pentium 4, Intel Xeon, and P6 family processors only.) Writing to an MTRR (with a
WRMSR instruction).

®  Writing to control register CRO to modify the PG or PE flag.

¢ (Pentium 4, Intel Xeon, and P6 family processors only.) Writing to control register CR4 to
modify the PSE, PGE, or PAE flag.

See Section 3.11., “Translation Lookaside Buffers (TLBs)”, for additional information about the
TLBs.

10.10. STORE BUFFER

IA-32 processors temporarily store each write (store) to memory in a store buffer. The store
buffer improves processor performance by allowing the processor to continue executing instruc-
tions without having to wait until a write to memory and/or to a cache is complete. It also allows
writes to be delayed for more efficient use of memory-access bus cycles.

In general, the existence of the store buffer is transparent to software, even in systems that use
multiple processors. The processor ensures that write operations are always carried out in
program order. It also insures that the contents of the store buffer are always drained to memory
in the following situations:

®  When an exception or interrupt is generated.

® (Pentium 4, Intel Xeon, and P6 family processors only.) When a serializing instruction is
executed.

®  When an I/O instruction is executed.
®  When a LOCK operation is performed.

® (Pentium 4, Intel Xeon, and P6 family processors only.) When a BINIT operation is
performed.
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® (Pentium lll, Pentium 4, and Intel Xeon processors only.) When using an SFENCE
instruction to order stores.

®  (Pentium 4 and Intel Xeon processors only.) When using an MFENCE instruction to order
stores.

The discussion of write ordering in Section 7.2., “Memory Ordering”, gives a detailed descrip-
tion of the operation of the store buffer.

10.11. MEMORY TYPE RANGE REGISTERS (MTRRS)

The following section pertains only to the Pentium 4, Intel Xeon, and P6 family processors.

The memory type range registers (MTRRs) provide a mechanism for associating the memory
types (see Section 10.3., “Methods of Caching Available”) with physical-address ranges in
system memory. They allow the processor to optimize operations for different types of memory
such as RAM, ROM, frame-buffer memory, and memory-mapped I/O devices. They also
simplify system hardware design by eliminating the memory control pins used for this function
on earlier IA-32 processors and the external logic needed to drive them.

The MTRR mechanism allows up to 96 memory ranges to be defined in physical memory, and
it defines a set of model-specific registers (MSRs) for specifying the type of memory that is
contained in each range. Table 10-8 shows the memory types that can be specified and their
properties; Figure 10-3 shows the mapping of physical memory with MTRRs. See Section 10.3.,
“Methods of Caching Available”, for a more detailed description of each memory type.

Following a hardware reset, a Pentium 4, Intel Xeon, or P6 family processor disables all the
fixed and variable MTRRs, which in effect makes all of physical memory uncachable. Initial-
ization software should then set the MTRRs to a specific, system-defined memory map. Typi-
cally, the BIOS (basic input/output system) software configures the MTRRs. The operating
system or executive is then free to modify the memory map using the normal page-level cache-
ability attributes.

In a multiprocessor system, different Pentium 4, Intel Xeon, or P6 family processors MUST use
the identical MTRR memory map so that software has a consistent view of memory, indepen-
dent of the processor executing a program.
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Table 10-8. Memory Types That Can Be Encoded in MTRRs

Memory Type and Mnemonic Encoding in MTRR
Uncacheable (UC) 00H
Write Combining (WC) 01H
Reserved* 02H
Reserved® 03H
Write-through (WT) 04H
Write-protected (WP) 05H
Writeback (WB) 06H
Reserved* 7H through FFH

NOTE:
* Using these encoding result in a general-protection exception (#GP) being generated.

Physical Memory

FFFFFFFFH

Address ranges not
mapped by an MTRR H? ?
are set to a default type

8 variable ranges
(from 4 KBytes to
maximum size of
physical memory)

100000H
i FFFFFH
(& KBytes eagn ——=|  256KBytes | Co L
16 fixed ranges BFFFFH
(16 KBytes each) 256 KBytes 80000H
7FFFFH
8 fixed ranges
(64-KBytes each) 512 KBytes
0

Figure 10-3. Mapping Physical Memory With MTRRs
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10.11.1. MTRR Feature Identification

The availability of the MTRR feature is model-specific. Software can determine if MTRRs are
supported on a processor by executing the CPUID instruction and reading the state of the MTRR
flag (bit 12) in the feature information register (EDX).

If the MTRR flag is set (indicating that the processor implements MTRRs), additional informa-
tion about MTRRSs can be obtained from the 64-bit IA32_MTRRCAP MSR (named MTRRcap
MSR for the P6 family processors). The IA32_ MTRRCAP MSR is a read-only MSR that can
be read with the RDMSR instruction. Figure 10-4 shows the contents of the IA32_MTRRCAP
MSR. The functions of the flags and field in this register are as follows:

VCNT (variable range registers count) field, bits 0 through 7
Indicates the number of variable ranges implemented on the processor. The
Pentium 4, Intel Xeon, and P6 family processors have eight pairs of MTRRs
for setting up eight variable ranges.

63 11109 8 7 0

Reserved va

-7

VCNT

WC—Write-combining memory type supported J
FIX—Fixed range registers supported
VCNT—Number of variable range registers

I:l Reserved

Figure 10-4. 1A32_MTRRCAP Register

FIX (fixed range registers supported) flag, bit 8
Fixed range MTRRs (IA32_MTRR_FIX64K_00000 through
IA32_MTRR_FIX4K_O0F8000) are supported when set; no fixed range regis-
ters are supported when clear.

WC (write combining) flag, bit 10
The write-combining (WC) memory type is supported when set; the WC type
is not supported when clear.

Bit 9 and bits 11 through 63 in the IA32_ MTRRCAP MSR are reserved. If software attempts to
write to the IA32_MTRRCAP MSR, a general-protection exception (#GP) is generated.

For the Pentium 4, Intel Xeon, and P6 family processors, the IA32_MTRRCAP MSR always
contains the value 508H.
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10.11.2. Setting Memory Ranges with MTRRs

The memory ranges and the types of memory specified in each range are set by three groups of
registers: the IA32_MTRR_DEF_TYPE MSR, the fixed-range MTRRs, and the variable range
MTRRs. These registers can be read and written to using the RDMSR and WRMSR instruc-
tions, respectively. The IA32_MTRRCAP MSR indicates the availability of these registers on
the processor (see Section 10.11.1., “MTRR Feature Identification™).

10.11.2.1. 1A32_MTRR_DEF_TYPE MSR

The IA32_MTRR_DEF_TYPE MSR (named MTRRdefType MSR for the P6 family proces-
sors) sets the default properties of the regions of physical memory that are not encompassed by
MTRRs (see Figure 10-4). The functions of the flags and field in this register are as follows:

Type field, bits 0 through 7
Indicates the default memory type used for those physical memory address
ranges that do not have a memory type specified for them by an MTRR. (See
Table 10-8 for the encoding of this field.) If the MTRRs are disabled, this field
defines the memory type for all of physical memory. The legal values for this
field are 0, 1, 4, 5, and 6. All other values result in a general-protection excep-
tion (#GP) being generated.

Intel recommends the use of the UC (uncached) memory type for all physical
memory addresses where memory does not exist. To assign the UC type to
nonexistent memory locations, it can either be specified as the default type in
the Type field or be explicitly assigned with the fixed and variable MTRRs.

63 1211109 8 7 0

Reserved E E Type

E—MTRR enable/disable #

FE—Fixed-range MTRRs enable/disable
Type—Default memory type

D Reserved

Figure 10-5. 1A32_MTRR_DEF_TYPE MSR

FE (fixed MTRRs enabled) flag, bit 10
Fixed-range MTRRs are enabled when set; fixed-range MTRRs are disabled
when clear. When the fixed-range MTRRs are enabled, they take priority over
the variable-range MTRRs when overlaps in ranges occur. If the fixed-range
MTRRs are disabled, the variable-range MTRRs can still be used and can map
the range ordinarily covered by the fixed-range MTRRs.
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E (MTRRs enabled) flag, bit 11
MTRRs are enabled when set; all MTRRs are disabled when clear, and the UC
memory type is applied to all of physical memory. When this flag is set, the FE
flag can disable the fixed-range MTRRs; when the flag is clear, the FE flag has
no affect. When the E flag is set, the type specified in the default memory type
field is used for areas of memory not already mapped by either a fixed or vari-
able MTRR.

Bits 8 and 9, and bits 12 through 63, in the IA32_MTRR_DEF_TYPE MSR are reserved; the
processor generates a general-protection exception (#GP) if software attempts to write nonzero
values to them.

10.11.2.2. FIXED RANGE MTRRS

The fixed memory ranges are mapped with 11 fixed-range registers of 64 bits each. Each of these
registers is divided into 8-bit fields that are used to specify the memory type for each of the sub-
ranges the register controls:

® Register IA32_MTRR_FIX64K_00000. Maps the 512-KByte address range from OH to
7FFFFH. This range is divided into eight 64-KByte sub-ranges.

® Registers IA32_MTRR_FIX16K_80000 and IA32_ MTRR_FIX16K_A0000. Maps the
two 128-KByte address ranges from 80000H to BFFFFH. This range is divided into
sixteen 16-KByte sub-ranges, 8 ranges per register.

® Registers IA32. MTRR_FIX4K C0000 through IA32 MTRR_FIX4K_F8000. Maps
eight 32-KByte address ranges from COO0O0H to FFFFFH. This range is divided into sixty-
four 4-KByte sub-ranges, 8 ranges per register.

Table 10-9 shows the relationship between the fixed physical-address ranges and the corre-
sponding fields of the fixed-range MTRRs; Table 10-8 shows the possible encoding of these
fields.

Note that for the P6 family processors, the prefix for the fixed range MTRRs is MTRRfix.

10.11.2.3. VARIABLE RANGE MTRRS

The Pentium 4, Intel Xeon, and P6 family processors permit software to specify the memory
type for eight variable-size address ranges, using a pair of MTRRs for each range. The first of
each pair IA32_MTRR_PHYSBASERn) defines the base address and memory type for the
range, and the second (IA32_MTRR_PHYSMASKn#) contains a mask that is used to determine

[N 1]

the address range. The “n” suffix indicates registers pairs O through 7.

Note that for the P6 family processors, the prefixes for the variable range MTRRs are MTRR-
physBase and MTRRphysMask.
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Table 10-9. Address Mapping for Fixed-Range MTRRs
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Address Range (hexadecimal) MTRR
63 56 |55 48 (47 40 (39 32 (31 24|23 16|15 8 |7 O
70000- | 60000- | 50000- |40000- |30000- |[20000- | 10000- |00000- |IA32_MTRR_
7FFFF | 6FFFF | 5FFFF | 4FFFF | 3FFFF | 2FFFF | 1FFFF | OFFFF | FIX64K_00000
9C000 | 98000- | 94000- |90000- |8CO000- |88000- |84000- |80000- |IA32_MTRR_
9FFFF | 98FFF | 97FFF | 93FFF | 8FFFF | 8BFFF |87FFF |83FFF | FIX16K_80000
BCO00 | B800O- | B4000- | BOOOO- | ACO0O- | A8B00O- | A4000- | A0O0O- |IA32_MTRR_
BFFFF | BBFFF | B7FFF | B3FFF | AFFFF | ABFFF | A7FFF | ABFFF | FIX16K_A0000
C7000 | C6000- | C5000- | C4000- | C3000- | C2000- | C1000- | C0O000- |IA32_MTRR_
C7FFF | C6FFF | C5FFF | CAFFF | C3FFF | C2FFF | C1FFF | COFFF | FIX4K_C0000
CF000 | CEO00O- | CDO0O- | CCO00- | CB0OO- | CA000- | C9000- | C8000- | IA32_MTRR_
CFFFF | CEFFF | CDFFF | CCFFF | CBFFF | CAFFF | COFFF | C8FFF | FIX4K_C8000
D7000 | D6000- | D5000- | D4000- | D3000- | D2000- | D1000- | DO0OO- |IA32_MTRR_
D7FFF | D6FFF | D5FFF | D4FFF | D3FFF | D2FFF | D1FFF | DOFFF | FIX4K_DO0000
DF000 | DEO0O- | DD000O- | DC000- | DBO0O- | DAOOO- | D9000- | D8000- | IA32_MTRR_
DFFFF | DEFFF | DDFFF | DCFFF | DBFFF | DAFFF | DOFFF | D8FFF | FIX4K_D8000
E7000 E6000- | E5000- | E4000- | E3000- | E2000- | E1000- | EO000- |IA32_MTRR_
E7FFF | E6BFFF | ESFFF | EAFFF | ESFFF | E2FFF | E1FFF | EOFFF | FIX4K_E0000
EF000 | EE000- | EDO0OO- | ECO00- | EBOOO- | EA00O- | E9Q000- | E8000- |IA32_MTRR_
EFFFF | EEFFF | EDFFF | ECFFF | EBFFF | EAFFF | EOQFFF | ES8FFF | FIX4K_E8000
F7000 F6000- | F5000- | F4000- | F3000- | F2000- | F1000- | F0O000- |IA32_MTRR_
F7FFF | F6FFF | F5FFF | FAFFF | FSFFF | F2FFF | FIFFF | FOFFF | FIX4K_F0000
FF000 FE000- | FDOOO- | FC000- | FBOOO- | FAOOO- | F9000- | F8000- |IA32_MTRR_
FFFFF | FEFFF | FDFFF | FCFFF | FBFFF | FAFFF | FOFFF | F8FFF | FIX4K_F8000

Figure 10-6 shows flags and fields in these registers. The functions of the flags and fields in
these registers are as follows:

Type field, bits 0 through 7
Specifies the memory type for the range (see Table 10-8 for the encoding of this

field).
PhysBase field, bits 12 through 35

Specifies the base address of the address range. This 24-bit value is extended
by 12 bits at the low end to form the base address, which automatically aligns

the address on a 4-KByte boundary.
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PhysMask field, bits 12 through 35
Specifies a 24-bit mask that determines the range of the region being mapped,
according to the following relationship:

Address_Within_Range AND PhysMask = PhysBase AND PhysMask

This 24-bit value is extended by 12 bits at the low end to form the mask value.
See Section 10.11.3., “Example Base and Mask Calculations”, for more infor-
mation and some examples of base address and mask computations.

V (valid) flag, bit 11
Enables the register pair when set; disables register pair when clear.

IA32_MTRR_PHYSBASEnN Register
63 36 35 1211 87 0

Reserved PhysBase Type

PhysBase—Base address of range J
Type—Memory type for range

IA32_MTRR_PHYSMASKn Register
63 36 35 121110 0

Reserved PhysMask \Y Reserved

PhysMask—Sets range mask —‘
V—Valid

D Reserved

Figure 10-6. 1A32_MTRR_PHYSBASEnN and IA32_MTRR_PHYSMASKn Variable-Range
Register Pair

All other bits in the [A32_MTRR_PHYSBASE#n and IA32_MTRR_PHYSMASKn# registers are
reserved; the processor generates a general-protection exception (#GP) if software attempts to
write to them.

Overlapping variable MTRR ranges are not supported generically. However, two variable
ranges are allowed to overlap, if the following conditions are present:

® If both of them are UC (uncached).
® If one range is of type UC and the other is of type WB (write back).

In both cases above, the effective type for the overlapping region is UC. The processor’s
behavior is undefined for all other cases of overlapping variable ranges.

A variable range can overlap a fixed range (provided the fixed range MTRR’s are enabled).
Here, the memory type specified in the fixed range register overrides the one specified in vari-
able-range register pair.
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NOTE

Some mask values can result in discontinuous ranges. In a discontinuous
range, the area not mapped by the mask value is set to the default memory
type. Intel does not encourage the use of discontinuous ranges, because they
could require physical memory to be present throughout the entire 4-GByte
physical memory map. If memory is not provided for the complete memory
map, the behaviour of the processor is undefined.

10.11.3. Example Base and Mask Calculations

The base and mask values entered into the variable-range MTRR pairs are 24-bit values that the
processor extends to 36-bits. For example, to enter a base address of 2 MBytes (200000H) to the
IA32_MTRR_PHYSBASES3 register, the 12 least-significant bits are truncated and the value
000200H is entered into the PhysBase field. The same operation must be performed on mask
values. For instance, to map the address range from 200000H to 3FFFFFH (2 MBytes to 4
MBytes), a mask value of FFFEOOOOOH is required. Here again, the 12 least-significant bits of
this mask value are truncated, so that the value entered in the PhysMask field of the
IA32_MTRR_PHYSMASKS3 register is FFFEOOH. This mask is chosen so that when any
address in the 200000H to 3FFFFFH range is ANDed with the mask value it will return the same
value as when the base address is ANDed with the mask value (which is 200000H).

To map the address range from 400000H 7FFFFFH (4 MBytes to 8 MBytes), a base value of
000400H is entered in the PhysBase field and a mask value of FFFCOOH is entered in the Phys-
Mask field.

Here is a real-life example of setting up the MTRRs for an entire system. Assume that the system
has the following characteristics:

® 96 MBytes of system memory is mapped as write-back memory (WB) for highest system
performance.

® A custom 4-MByte I/O card is mapped to uncached memory (UC) at a base address of 64
MBytes. This restriction forces the 96 MBytes of system memory to be addressed from 0
to 64 MBytes and from 68 MBytes to 100 MBytes, leaving a 4-MByte hole for the I/O
card.

® An 8-MByte graphics card is mapped to write-combining memory (WC) beginning at
address AOOOOOOOH.

® The BIOS area from 15 MBytes to 16 MBytes is mapped to UC memory.
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The following settings for the MTRRs will yield the proper mapping of the physical address
space for this system configuration.

IA32_MTRR_PHYSBASEO = 0000 0000 0000 0006H
IA32_MTRR_PHYSMASKO = 0000 000F FC00 0800H
Caches 0-64 MB as WB cache type.
IA32_MTRR_PHYSBASE1 = 0000 0000 0400 0006H
IA32_MTRR_PHYSMASK1 = 0000 000F FEOO 0800H
Caches 64-96 MB as WB cache type.
IA32_MTRR_PHYSBASE2 = 0000 0000 0600 0006H
IA32_MTRR_PHYSMASK2 = 0000 000F FFCO 0800H
Caches 96-100 MB as WB cache type.
IA32_MTRR_PHYSBASE3 = 0000 0000 0400 0000H
IA32_MTRR_PHYSMASK3 = 0000 000F FFCO 0800H
Caches 64-68 MB as UC cache type.
IA32_MTRR_PHYSBASE4 = 0000 0000 00F0 0000H
IA32_MTRR_PHYSMASK4 = 0000 000F FFFO 0800H
Caches 15-16 MB as UC cache type
IA32_MTRR_PHYSBASES5 = 0000 0000 A0O00 0001H
IA32_MTRR_PHYSMASKS5 = 0000 000F FF80 0800H
Caches A0000000-A0800000 as WC type.

This MTRR setup uses the ability to overlap any two memory ranges (as long as the ranges are
mapped to WB and UC memory types) to minimize the number of MTRR registers that are
required to configure the memory environment. This setup also fulfills the requirement that two
register pairs are left for operating system usage.

10.11.4. Range Size and Alignment Requirement

The range that is to be mapped to a variable-range MTRR must meet the following “power of
2” size and alignment rules:

1. The minimum range size is 4 KBytes, and the base address of this range must be on at least
a 4-KByte boundary.

2. For ranges greater than 4 KBytes, each range must be of length 2" and its base address
must be aligned on a 2" boundary, where 7 is a value equal to or greater than 12. The base-
address alignment value cannot be less than its length. For example, an §8-KByte range
cannot be aligned on a 4-KByte boundary. It must be aligned on at least an 8-KByte
boundary.

10.11.4.1. MTRR PRECEDENCES

If the MTRRs are not enabled (by setting the E flag in the IA32_MTRR_DEF_TYPE MSR),
then all memory accesses are of the UC memory type. If the MTRRs are enabled, then the
memory type used for a memory access is determined as follows:
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1. If the physical address falls within the first 1 MByte of physical memory and fixed MTRRs
are enabled, the processor uses the memory type stored for the appropriate fixed-range
MTRR.

2. Otherwise, the processor attempts to match the physical address with a memory type range
set with a pair of variable-range MTRRs:

a. If one variable memory range matches, the processor uses the memory type stored in
the IA32_MTRR_PHYSBASER register for that range.

b. If two or more variable memory ranges match and the memory types are identical,
then that memory type is used.

c. If two or more variable memory ranges match and one of the memory types is UC, the
UC memory type used.

d. If two or more variable memory ranges match and the memory types are WT and WB,
the WT memory type is used.

e. If two or more variable memory ranges match and the memory types are other than UC
and WB, the behaviour of the processor is undefined.

3. Ifno fixed or variable memory range matches, the processor uses the default memory type.

10.11.5. MTRR Initialization

On a hardware reset, a Pentium 4, Intel Xeon, or P6 family processor clears the valid flags in the
variable-range MTRRs and clears the E flag in the IA32_MTRR_DEF_TYPE MSR to disable
all MTRRs. All other bits in the MTRRs are undefined. Prior to initializing the MTRRs, soft-
ware (normally the system BIOS) must initialize all fixed-range and variable-range MTRR
registers fields to 0. Software can then initialize the MTRRs according to the types of memory
known to it, including memory on devices that it auto-configures. This initialization is expected
to occur prior to booting the operating system.

See Section 10.11.8., “MTRR Considerations in MP Systems”, for information on initializing
MTRRs in MP (multiple-processor) systems.
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10.11.6. Remapping Memory Types

A system designer may re-map memory types to tune performance or because a future processor
may not implement all memory types supported by the Pentium 4, Intel Xeon, and P6 family
processors. The following rules support coherent memory-type re-mappings:

1. A memory type should not be mapped into another memory type that has a weaker
memory ordering model. For example, the uncacheable type cannot be mapped into any
other type, and the write-back, write-through, and write-protected types cannot be mapped
into the weakly ordered write-combining type.

2. A memory type that does not delay writes should not be mapped into a memory type that
does delay writes, because applications of such a memory type may rely on its write-
through behavior. Accordingly, the write-back type cannot be mapped into the write-
through type.

3. A memory type that views write data as not necessarily stored and read back by a
subsequent read, such as the write-protected type, can only be mapped to another type with
the same behaviour (and there are no others for the Pentium 4, Intel Xeon, and P6 family
processors) or to the uncac