
IA-32 Intel® Architecture Software
Developer’s Manual
Documentation Changes

February 2003
Notice: The IA-32 Intel® Architecture may contain design defects or errors known as errata that
may cause the product to deviate from published specifications. Current characterized errata are
documented in this specification update.

Document Number: 252046-003

2 IA-32 Software Developer’s Manual Documentation Changes

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The IA-32 Intel® Architecture may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

I2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I2C bus/protocol and was developed by Intel.
Implementations of the I2C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and North American Philips
Corporation.

Intel, Pentium, Celeron, Intel SpeedStep, Intel Xeon and the Intel logo, and the Intel logo are trademarks or registered trademarks of Intel Corporation
or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2002–2003, Intel Corporation

Contents

Revision History ... 4

Preface... 5

Summary Table of Changes... 6

Documentation Changes ... 7
IA-32 Software Developer’s Manual Documentation Changes 3

Revision History
Revision History

Version Description Date

-001 Initial Release November 2002

-002
Added 1-10 Documentation Changes.
Removed old Documentation Changes items that already have been
incorporated in the published Software Developer’s manual

December 2002

-003

Added 9 -17 Documentation Changes
Removed Documenation Change #6 - References to bits Gen and Len
Deleted
Removed Documenation Change #4 - VIF Information Added to CLI
Discussion

February 2003
4 IA-32 Software Developer’s Manual Documentation Changes

Preface
Preface

This document is an update to the specifications contained in the Affected Documents/Related
Documents table below. This document is a compilation of documentation changes. It is intended
for hardware system manufacturers and software developers of applications, operating systems, or
tools.

Affected Documents/Related Documents

Nomenclature
Documentation Changes include errors or omissions from the current published specifications.
These changes will be incorporated in the next release of the Software Development Maunal.

Document Title Document
Number

IA-32 Intel® Architecture Software Developer's Manual: Volume 1, Basic Architecture 245470-009

IA-32 Intel® Architecture Software Developer's Manual: Volume 2, Instruction Set
Reference 245471-009

IA-32 Intel® Architecture Software Developer's Manual: Volume 3, System Programming
Guide 245472-009
IA-32 Software Developer’s Manual Documentation Changes 5

Summary Table of Changes
Summary Table of Changes

The following table indicates documentation changes which apply to the IA-32 Intel Architecture.
This table uses the following notations:

Codes Used in Summary Table
Change bar to left of table row indicates this erratum is either new or modified from the previous
version of the document.

Summary Table of Documentation Changes
Number DOCUMENTATION CHANGES

1 Description of FCOMI/FCOMIP Updated

2 Note Added to POP CS Instruction Entry in Table B-10

3 Information Added on resource_stall and WC_Buffer

4 Switching the L1 Data Cache between Adaptive and Shared Mode

5 FTW Storage Location Corrected

6 More Information on Invalid TSS Conditions Provided

7 Memory Storage Location of x87 FPU Data Registers Specified for FSAVE

8 Valid Interrupt Vector Discussion Has More Explanation

9 Information Added to Clarify Handling of Reserved Bits

10 Various Corrections in Volume 2: Table B-23

11 References to Bits GEn and Len Deleted

12 PSLLQ Pseudocode Error Corrected

13 STI and CLI Decision Tables Updated to Reflect VIF

14 Usage Note Added for Two Opcodes

15 #UD Exception Information Updated for Some Instructions

16 INT Pseudocode Updated with Flag Information

17 Errors Corrected in Opcode Table
6 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes
Documentation Changes

All Documentation Changes will be incorporated into a future version of the IA-32 Intel®
Architecture Software Developer's Manual.

1. Description of FCOMI/FCOMIP Updated
The IA-32 Intel® Architecture Software Developer's Manual, Volume 2: Instruction Set Reference,
Chapter 3, Section: FCOMI/FCOMIP/ FUCOMI/FUCOMIP-Compare Floating Point Values and
Set EFLAGS currently states:

The FUCOMI/FUCOMIP instructions always clear the OF flag in the EFLAGS register (regardless
of whether an invalid-operation exception is detected); the FCOMI/FCOMIP instructions do not
clear the OF flag.

It should state:

The FCOMI/FCOMIP and FUCOMI/FUCOMIP instructions clear the OF flag in the EFLAGS
register (regardless of whether an invalid-operation exception is detected.

2. Note Added to POP CS Instruction Entry in Table B-10
The IA-32 Intel® Architecture Software Developer's Manual, Volume 2: Instruction Set Reference,
Appendix B: Instructions Formats and Encodings, Table B-10: General Purpose Instruction
Formats and Encodings has been updated by adding a note to the POP instruction. The note
addresses a common error condition. The note is shown in the table segment below.

Table B-10. General Purpose Instruction Formats and Encodings [table segment only, entire table
not shown...]

POP – Pop a Segment Register from the Stack
(Note: CS cannot be sreg2 in this usage.)

segment register DS, ES 000 sreg2 111

segment register SS 000 sreg2 111

segment register FS, GS 0000 1111: 10 sreg3 001
IA-32 Software Developer’s Manual Documentation Changes 7

Documentation Changes
3. Information Added on resource_stall and WC_Buffer
The IA-32 Intel® Architecture Software Developer's Manual, Volume 3: System Programming
Guide, Appendix A, Table 1 will now include the following information on resource_stall and
WC_Buffer. The new data is shown in the table segments included below:

Table A-1. Pentium 4 and Intel Xeon Processor Performance Monitoring Events for
Non-Retirement Counting [table segment only, entire table not shown...]

Event Name Parameters Parameter Value Description

resource_stall This event monitors the occurrence or
latency of stalls in the Allocator.

ESCR restrictions MSR_ALF_ESCR0
MSR_ALF_ESCR1

Counter numbers per
ESCR

ESCR0: 12, 13, 16
ESCR1: 14, 15, 17

ESCR Event Select 01H ESCR[30:25]

Event Masks Bit ESCR[24:9]

5: SBFULL A Stall due to lack of store buffers

CCCR Select 01H CCCR[15:13]

Event Specific Notes This event may not be supported in all
models of the processor family.

WC_Buffer This event counts Write Combining
Buffer operations that are selected by
the event mask.

ESCR restrictions MSR_DAC_ESCR0
MSR_DAC_ESCR1

Counter numbers per
ESCR

ESCR0: 8, 9
ESCR1: 10, 11

ESCR Event Select 05H ESCR[30:25]

Event Masks Bit ESCR[24:9]

0: WCB_EVICTS WC Buffer evictions of all causes

1: WCB_FULL
 _EVICT

WC Buffer eviction: no WC buffer is
available

2: WCB_HITM
 _EVICT

WC Buffer eviction: Store
encountered a Hit Modified condition
8 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes
4. Switching the L1 Data Cache between Adaptive and Shared Mode
The ability to switch the L1 Data Cache between adaptive and shared mode is now documented. In
the Intel Architecture Software Developer's Manual, Volume 2: Instruction Set Reference, Chapter
3, Table 3-7; this capability impacts the description of ECX. See the EAX=1, ECX[10] in the
following table segment:

Supporting information has also been added to the IA-32 Intel® Architecture Software Developer's
Manual, Volume 3: System Programming Guide, Appendix B, Table B1. The description
IA32_MISC_ENABLE[24] has been changed. This information has been provided in the table
segment shown:

Table 3-7. Information Returned By CPUID Instruction [table segment only, entire table is not shown...]

Initial EAX
Value Information Provided About the Processor

Basic CPUID Information

1H EAX
EBX

ECX

EDX

Version Information (Type, Family, Model, and Stepping ID)
Bits 7-0: Brand Index
Bits 15-8: CLFLUSH line size. (Value ∗ 8 = cache line size in bytes)
Bits 23-16: Number of logical processors per physical processor.
Bits 31-24: Local APIC ID
Bits 9-0: Reserved
Bit 10: If this bit is 1, the L1 Data Cache may be placed in adaptive mode
or shared mode. Mode selection is determined by Bit 24 of
IA32_MISC_ENABLE (see Volume 3, Appendix B, Table B-1). If ECX[10] is
0, the ability to change the L1 Data Cache mode is not supported.
Bits 63-11: Reserved
Feature Information (see Figure 3-4 and Table 3-10)

Table B-1. Special Fields within Instruction Encodings [table segment only...]

Register Address Register Name
Fields and Flags

Shared/
Unique1 Bit Description

 Hex Dec

1A0H 416 IA32_MISC_ENABLE Shared Enable Miscellaneous Processor Features. (R/
W) Allows a variety of processor functions to
be enabled and disabled.

0 Fast-Strings Enable. When set, the fast-
strings feature on the Pentium 4 processor is
enabled(default); when clear, fast-strings are
disabled.

1 Reserved.

2 x87 FPU Fopcode Compatibility Mode
Enable. When set, fopcode compatibility mode
is enabled; when clear (default), mode is
disabled. See “Fopcode Compatibility Mode“ in
Chapter 8 of the IA-32 Intel Architecture
Software Developer’s Manual, Volume 1.

3 Thermal Monitor Enable. When set, clock
modulation controlled by the processor’s
internal thermal sensor is enabled; when clear
(default), automatic clock modulation is
disabled. (See Section 13.14.2., “Automatic
Thermal Monitor”.)
IA-32 Software Developer’s Manual Documentation Changes 9

Documentation Changes
4 Split-Lock Disable. This debug feature is
specific to the Pentium 4. When set, the bit
causes an #AC exception to be issued instead
of a split-lock cycle. Operating systems that set
this bit must align system structures to avoid
split-lock scenarios. When the bit is clear (the
default), normal split-locks are issued to the
bus.

5 Reserved.

6 Third-Level Cache Disable. (R/W) When set,
the third-level cache is disabled; when clear
(default) the third-level cache is enabled. This
flag is reserved for processors that do not have
a third-level cache. Note that this bit controls
only the third-level cache, and then only if
overall caching is enabled through the CD flag
of control register CR0, the page-level cache
controls, and/or the MTRRs (see Section
10.5.4., “Disabling and Enabling the L3
Cache”).

7 Performance Monitoring Available. (R)
When set, performance monitoring is enabled;
when clear, performance monitoring is
disabled.

8 Suppress Lock Enable. When set assert on
of lock on the bus is suppressed during a Split
Lock access. when clear (default) does not
suppress lock.

9 Prefetch Queue Disable. When set disables
the prefetch queue. When clear (default) the
prefetch queue is enabled.

10 FERR# Interrupt Reporting Enable. (R/W)
When set, interrupt reporting through the
FERR# pin is enabled; when clear, this
interrupt reporting function is disabled. When
this flag is set and the processor is in the stop-
clock state (STPCLK# is asserted), asserting
the FERR# pin signals to the processor that an
interrupt (such as, INIT#, BINIT#, INTR, NMI,
SMI#, or RESET#) is pending and that the
processor should return to normal operation to
handle the interrupt. This flag does not affect
the normal operation of the FERR# pin (to
indicate an unmasked floating-point error)
when the STPCLK# pin is not asserted.

11 Branch Trace Storage Unavailable
(BTS_UNAVILABLE). (R) When set, the
processor does not support branch trace
storage (BTS); when clear, BTS is supported.

12 Precise Event Based Sampling Unavailable
(PEBS_UNAVILABLE). (R) When set, the
processor does not support precise event-
based sampling (PEBS); when clear, PEBS is
supported.

Table B-1. Special Fields within Instruction Encodings [table segment only...]

Register Address Register Name
Fields and Flags

Shared/
Unique1 Bit Description

 Hex Dec
10 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes
23:13 Reserved.

24 L1 Data Cache Context Mode (R/W). When
set to 1, this bit places the L1 Data Cache into
shared mode. When set to 0 (the default), this
bit places the L1 Data Cache into adaptive
mode. In adaptive mode, the Page Directory
Base Register contained in CR3 must be
identical across all logical processors.

Note: If the Context ID feature flag, ECX[10], is
not set to 1 after executing CPUID with EAX =
1; the ability to switch modes is not supported
and the BIOS must not alter the contents of
IA32_MISC_ENABLE[24].

63:25 Reserved.

Table B-1. Special Fields within Instruction Encodings [table segment only...]

Register Address Register Name
Fields and Flags

Shared/
Unique1 Bit Description

 Hex Dec
IA-32 Software Developer’s Manual Documentation Changes 11

Documentation Changes
5. FTW Storage Location Corrected
The IA-32 Intel® Architecture Software Developer's Manual, Volume 2: Instruction Set Reference,
Chapter 3, Section: FXSAVE - Save x87 FPU, MMX, SSE, and SSE2 State incorrectly indicates the
memory storage location of the x87 FPU Tag Word (FTW). The storage location has been
corrected to indicate a byte 4 offset (instead of a byte 5 offset).

A partial representation of the corrected table is shown below.

Table 3-14. Layout of FXSAVE and FXRSTOR Memory Region [table segment only, entire table is
not shown...]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rsrvd CS FPU IP FOP FT
W

FSW FCW 0

MXCSR_MASK MXCSR Rsrvd DS FPU DP 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160
12 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes
6. More Information on Invalid TSS Conditions Provided
In the A-32 Intel® Architecture Software Developer's Manual, Volume 3: System Programming
Guide, Chapter 5, Section: Interrupt 10 - Invalid TSS Exception (#TS), Table 5-6 has been modified
to include a more complete list of invalid conditions. The impacted part of the table is reproduced
below with additions indicated by change bars.

In the IA-32 Intel® Architecture Software Developer's Manual, Volume 3: System Programming
Guide, Chapter 5, Section: Interrupt 13 – General Protection Exception (#GP) includes a large
bulleted list. The list has been corrected. The corrected portion of the list is shown below.

• Loading the CS register with a segment selector for a data segment or a null segment selector.

• Accessing memory using the DS, ES, FS, or GS register when it contains a null segment
selector.

• Switching to a busy task during a call or jump to a TSS.

• Using a segment selector on a non-IRET task switch that points to a TSS descriptor in the
current LDT. TSS descriptors can only reside in the GDT. This condition causes a #TS
exception during an IRET task switch.

• Violating any of the privilege rules described in Chapter 4, Protection.

• Exceeding the instruction length limit of 15 bytes (this only can occur when redundant
prefixes are placed before an instruction).

Table 5-6. Invalid TSS Conditions [table segment only, entire table not shown...]

Error Code Index Invalid Condition

TSS segment selector index

TSS segment limit less than 67H for 32-bit TSS or less than 2CH for 16-bit
TSS

During an IRET task switch, the TI flag in the TSS segment selector indicates
the LDT

During an IRET task switch, the TSS segment selector exceeds descriptor
table limit

During an IRET task switch, the busy flag in the TSS descriptor indicates an
inactive task

LDT segment selector index Invalid LDT or LDT not present
IA-32 Software Developer’s Manual Documentation Changes 13

Documentation Changes
7. Memory Storage Location of x87 FPU Data Registers Specified for FSAVE
In the IA-32 Intel® Architecture Software Developer's Manual, Volume 1: Basic Architecture,
Chapter 8, Figures 8-9 and 8-10 have been updated to include a short note about storage of the X87
data registers during the operation of FSAVE. Both updated figures are shown below:

Figure 8-9. Protected Mode x87 FPU State Image in Memory, 32-Bit Format

Figure 8-10. Real Mode x87 FPU State Image in Memory, 32-Bit Format

031

0
4
8
12
16
20

24

32-Bit Protected Mode Format

Control Word

Opcode 10...00

Status Word

Tag Word

FPU Instruction Pointer Selector

FPU Operand Pointer Selector

FPU Operand Pointer Offset

0 0 0 0 0
FPU Instruction Pointer Offset

16 15

For instructions that also store x87 FPU data registers, the eight 80-
bit registers (R0-R7) follow the above structure in sequence.

031

0
4
8
12
16
20

24

32-Bit Real-Address Mode Format

Control Word

FPU Operand Pointer 31...16

FPU Instruction Pointer 31...16

Status Word

Tag Word

Opcode 10...00

0 0 0 0 0 0 0 0 0 0 0 0

FPU Operand Pointer 15...00

0 0 0 0
FPU Instruction Pointer 15...00

0 0 0 0

0

16 15

For instructions that also store x87 FPU data registers, the eight 80-
bit registers (R0-R7) follow the above structure in sequence.
14 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes
8. Valid Interrupt Vector Discussion Has More Explanation
In the IA-32 Intel® Architecture Software Developer's Manual, Volume. 3: System Programming
Guide, Chapter 8, Section 8.5.2 has been updated to include more information. See the data below.
Change bars note the updated data.

Section 8.5.2 Valid Interrupt Vectors

The IA-32 architecture defines 256 vector numbers, ranging from 0 through 255 (see Section 5.2.,
Exception and Interrupt Vectors). The local and I/O APICs support 240 of these vectors (in the range
of 16 to 255) as valid interrupts.

When an interrupt vector in the range of 0 to 15 is sent or received through the local APIC, the APIC
indicates an illegal vector in its Error Status Register [see Section 8.5.3., Error Handling]. The IA-
32 architecture reserves vectors 16 through 31 for predefined interrupts, exceptions, and Intel-
reserved encodings (see Table 5-1); however, the local APIC does not treat vectors in this range as
illegal.

When an illegal vector value (0 to 15) is written to an LVT entry and the delivery mode is Fixed
(bits 8-11 equal 0), the APIC may signal an illegal vector error, without regard to whether the mask
bit is set or whether an interrupt is actually seen on the input

9. Information Added to Clarify Handling of Reserved Bits
In the Intel Architecture Software Developer’s Manual, Vol 2: Instruction Set Reference, Chapter 3,
Section: MOV—Move to/from Control Registers, Description subsection; the second paragraph
changed to document an error condition that can occur when loading control registers. Note the
change bar and bold text:

When loading control registers, programs should not attempt to change the reserved bits; that
is, always set reserved bits to the value previously read. An attempt to change CR4's reserved
bits will cause a general protection fault. Reserved bits in CR0 and CR3 remain clear after any
load of those registers; attempts to set them have no impact. On Pentium 4, Intel Xeon and P6
family processors, CR0.ET remains set after any load of CR0; attempts to clear this bit have
no impact.
IA-32 Software Developer’s Manual Documentation Changes 15

Documentation Changes
10. Various Corrections in Volume 2: Table B-23
In the Intel Architecture Software Developer’s Manual, Vol 2: Instruction Set Reference, Chapter 3,
Appendix B, Table B-23: Floating-Point Structures and Encodings; various corrections have been
made. Cells impacted by corrections are listed:

[table segment only, entire table is not shown]

Instruction and Format Encoding

... ...

FDIV – Divide

ST(0) ← ST(0) ÷ 32-bit memory 11011 000 : mod 110 r/m

ST(0) ← ST(0) ÷ 64-bit memory 11011 100 : mod 110 r/m

ST(d) ← ST(0) ÷ ST(i) 11011 d00 : 1111 R ST(i)

... ...

FDIVR – Reverse Divide

ST(0) ← 32-bit memory ÷ ST(0) 11011 000 : mod 111 r/m

ST(0) ← 64-bit memory ÷ ST(0) 11011 100 : mod 111 r/m

ST(d) ← ST(i) ÷ ST(0) 11011 d00 : 1111 R ST(i)

... ...

FIMUL

ST(0) ← ST(0) × 16-bit memory 11011 110 : mod 001 r/m

ST(0) ← ST(0) × 32-bit memory 11011 010 : mod 001 r/m

... ...

FISUB

ST(0) ← ST(0) - 16-bit memory 11011 110 : mod 100 r/m

ST(0) ← ST(0) - 32-bit memory 11011 010 : mod 100 r/m

FISUBR

ST(0) ← 16-bit memory − ST(0) 11011 110 : mod 101 r/m

ST(0) ← 32-bit memory − ST(0) 11011 010 : mod 101 r/m

... ...

FMULP – Multiply

ST(i) ← ST(0) × ST(i) 11011 110 : 1100 1 ST(i)
16 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes
11. References to Bits GEn and Len Deleted
The Intel Architecture Software Developer's Manual, Vol 3: System Programming Guide, Chapter
15, Table 15-2 Debug Exception Condition referenced bits Gen and Len. They don’t exist in this
context; this error has been removed. The corrected table is shown:

12. PSLLQ Pseudocode Error Corrected
In the Intel Architecture Software Developer’s Manual, Vol 2: Instruction Set Reference, Chapter 3,
Section: PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical; we corrected a typo in the
PSLLQ pseudocode. The corrected entry is shown below.

PSLLQ instruction with 128-bit operand:
IF (COUNT > 63)
THEN

DEST[128..0] ← 00000000000000000000000000000000H
ELSE

DEST[63-0] ← ZeroExtend(DEST[63-0] << COUNT);
DEST[127-64] ← ZeroExtend(DEST[127-64] << COUNT);

FI;

Table 15-2. Debug Exception Conditions

Debug or Breakpoint Condition DR6 Flags Tested DR7 Flags Tested Exception Class

Single-step trap BS = 1 Trap

Instruction breakpoint, at addresses
defined by DRn and LENn

Bn = 1 and
(Gn or Ln = 1)

R/Wn = 0 Fault

Data write breakpoint, at addresses
defined by DRn and LENn

Bn = 1 and
(Gn or Ln = 1)

R/Wn = 1 Trap

I/O read or write breakpoint, at addresses
defined by DRn and LENn

Bn = 1 and
(Gn or Ln = 1)

R/Wn = 2 Trap

Data read or write (but not instruction
fetches), at addresses defined by DRn and
LENn

Bn = 1 and
(Gn or Ln = 1)

R/Wn = 3 Trap

General detect fault, resulting from an
attempt to modify debug registers (usually
in conjunction with in-circuit emulation)

BD = 1 Fault

Task switch BT = 1 Trap
IA-32 Software Developer’s Manual Documentation Changes 17

Documentation Changes
13. STI and CLI Decision Tables Updated to Reflect VIF
In the Intel Architecture Software Developer’s Manual, Vol 2: Instruction Set Reference, Chapter 3,
Section: CLI — Clear Interrupt Flag; we have added VIF information to the relevent decision table.
The new CLI decision table is shown below:

In the Intel Architecture Software Developer’s Manual, Vol 2: Instruction Set Reference, Chapter 3,
Section: STI — Set Interrupt Flag; we have added VIF information to the relevent decision table.
The new STI decision table is shown below:

PE VM IOPL CPL PVI VIP VME CLI Result

0 X X X X X X IF = 0
1 0 ≥ CPL X X X X IF = 0

1 0 < CPL 3 1 X X VIF = 0

1 0 < CPL < 3 X X X GP Fault

1 0 < CPL X 0 X X GP Fault

1 1 3 X X X X IF = 0

1 1 < 3 X X X 1 VIF = 0
1 1 < 3 X X X 0 GP Fault

X = This setting has no impact.

PE VM IOPL CPL PVI VIP VME STI Result

0 X X X X X X IF = 1
1 0 ≥ CPL X X X X IF = 1

1 0 < CPL 3 1 0 X VIF = 1

1 0 < CPL < 3 X X X GP Fault

1 0 < CPL X 0 X X GP Fault

1 0 < CPL X X 1 X GP Fault

1 1 3 X X X X IF = 1
1 1 < 3 X X 0 1 VIF = 1

1 1 < 3 X X 1 X GP Fault

1 1 < 3 X X X 0 GP Fault

X = This setting has no impact.
18 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes
14. Usage Note Added for Two Opcodes
In the Intel Architecture Software Developer’s Manual, Vol 2: Instruction Set Reference, Appendix
A, Table A-3; we have added a usage note to two opcodes. Only impacted table cells are shown.
Note the bold text.

NOTE:
† All blanks in the opcode map shown in Table A-3 are reserved and should not be used. Do not depend on

the operation of these undefined opcodes.
†† Not currently supported after Pentium Pro and Pentium II families. Using this opcode on the current genera-

tion of processors will generate a #UD. For future processors, this value is reserved.

15. #UD Exception Information Updated for Some Instructions
In the Intel Architecture Software Developer’s Manual, Vol 2: Instruction Set Reference, Chapter 3;
we have updated #UD exception information in for the following instructions:

MOVD xmm, r32 MOVD r32, xmm MOVDQA MOVDQU
MOVQ xmm, m64 PACKSSWB/DW PACKUSWB PADDB/W/D
PADDSB/W PADDUSB/W PAND PANDN PCMPEQB/W/
D PCMPGTB/W/D PMADDWD PMULHWPMULLW
POR PSLLW/D/Q PSRAW/D PSRLW/D/QPSUBB/W/
D PSUBSB/W PSUBUSB/W PUNPCKHBW/WD/DQ
PUNPCKLBW/WD/DQ PXOR

The updated #UD text is as follows.

Protected Mode Exceptions
#UD If EM in CR0 is set.

128-bit operations will generate #UD only if OSFXSR in CR4 is 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one that is MMX
capable) will result in the instruction operating on the mm registers, not #UD.

Real-Address Mode Exceptions
#UD If EM in CR0 is set.

128-bit operations will generate #UD only if OSFXSR in CR4 is 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one that is MMX
capable) will result in the instruction operating on the mm registers, not #UD.

[table segment only, entire table not shown]

0 1 2 3 4 5 6 7

1 MOVUPS
Vps, Wps

MOVSS (F3)
Vss, Wss
MOVUPD

(66)
Vpd, Wpd

MOVSD (F2)
Vsd, Wsd

MOVUPS
Wps, Vps

MOVSS (F3)
Wss, Vss
MOVUPD

(66)
Wpd, Vpd

MOVSD (F2)
Vsd, Wsd

MOVLPS
Wq, Vq

MOVLPD (66)
Vq, Ws

MOVHLPS
Vq, Vq

MOVLPS
Vq, Wq

MOVLPD (66)
Vq, Wq

UNPCKLPS
Vps, Wq

UNPCKLPD
(66)

Vpd, Wq

UNPCKHPS
Vps, Wq

UNPCKHPD
(66)

Vpd, Wq

MOVHPS
Vq, Wq

MOVHPD
(66)

Vq, Wq
MOVLHPS

Vq, Vq

MOVHPS
Wq, Vq

MOVHPD
(66)

Wq, Vq

2 MOV
Rd, Cd

MOV
Rd, Dd

MOV
Cd, Rd

MOV
Dd, Rd

MOV
Rd, Td†† MOV

Td, Rd††
IA-32 Software Developer’s Manual Documentation Changes 19

Documentation Changes
16. INT Pseudocode Updated with Flag Information
In the Intel Architecture Software Developer’s Manual, Vol 2: Instruction Set Reference, Section:
INT n/INTO/INT 3—Call to Interrupt Procedure; we have updated the pseudocode to better reflect
how some flags are cleared. The corrected listing is shown.
IF PE = 0

THEN
GOTO REAL-ADDRESS-MODE;

ELSE (* PE = 1 *)
IF (VM = 1 AND IOPL < 3 AND INT n)

THEN
#GP(0);

ELSE (* protected mode or virtual-8086 mode interrupt *)
GOTO PROTECTED-MODE;

FI;
FI;

REAL-ADDRESS-MODE:
IF ((DEST ∗ 4) + 3) is not within IDT limit THEN #GP; FI;
IF stack not large enough for a 6-byte return information THEN #SS; FI;
Push (EFLAGS[15:0]);
IF ← 0; (* Clear interrupt flag *)
TF ← 0; (* Clear trap flag *)
AC ← 0; (*Clear AC flag*)
Push(CS);
Push(IP);
(* No error codes are pushed *)
CS ← IDT(Descriptor (vector_number ∗ 4), selector));
EIP ← IDT(Descriptor (vector_number ∗ 4), offset)); (* 16 bit offset AND 0000FFFFH *)

END;

PROTECTED-MODE:
IF ((DEST ∗ 8) + 7) is not within IDT limits

OR selected IDT descriptor is not an interrupt-, trap-, or task-gate type
THEN #GP((DEST ∗ 8) + 2 + EXT);
(* EXT is bit 0 in error code *)

FI;
IF software interrupt (* generated by INT n, INT 3, or INTO *)

THEN
IF gate descriptor DPL < CPL

THEN #GP((vector_number ∗ 8) + 2);
(* PE = 1, DPL<CPL, software interrupt *)

FI;
FI;
IF gate not present THEN #NP((vector_number ∗ 8) + 2 + EXT); FI;
IF task gate (* specified in the selected interrupt table descriptor *)

THEN GOTO TASK-GATE;
ELSE GOTO TRAP-OR-INTERRUPT-GATE; (* PE = 1, trap/interrupt gate *)

FI;
END;

TASK-GATE: (* PE = 1, task gate *)
Read segment selector in task gate (IDT descriptor);

IF local/global bit is set to local
OR index not within GDT limits
20 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes
THEN #GP(TSS selector);
FI;
Access TSS descriptor in GDT;
IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)

THEN #GP(TSS selector);
FI;
IF TSS not present

THEN #NP(TSS selector);
FI;

SWITCH-TASKS (with nesting) to TSS;
IF interrupt caused by fault with error code

THEN
IF stack limit does not allow push of error code

THEN #SS(0);
FI;
Push(error code);

FI;
IF EIP not within code segment limit

THEN #GP(0);
FI;

END;
TRAP-OR-INTERRUPT-GATE

Read segment selector for trap or interrupt gate (IDT descriptor);
IF segment selector for code segment is null

THEN #GP(0H + EXT); (* null selector with EXT flag set *)
FI;
IF segment selector is not within its descriptor table limits

THEN #GP(selector + EXT);
FI;
Read trap or interrupt handler descriptor;
IF descriptor does not indicate a code segment

OR code segment descriptor DPL > CPL
THEN #GP(selector + EXT);

FI;
IF trap or interrupt gate segment is not present,

THEN #NP(selector + EXT);
FI;
IF code segment is non-conforming AND DPL < CPL

THEN IF VM=0
THEN

GOTO INTER-PRIVILEGE-LEVEL-INTERRUPT;
(* PE = 1, interrupt or trap gate, nonconforming *)
(* code segment, DPL<CPL, VM = 0 *)

ELSE (* VM = 1 *)
IF code segment DPL ≠ 0 THEN #GP(new code segment selector); FI;
GOTO INTERRUPT-FROM-VIRTUAL-8086-MODE;
(* PE = 1, interrupt or trap gate, DPL<CPL, VM = 1 *)

FI;
ELSE (* PE = 1, interrupt or trap gate, DPL ≥ CPL *)

IF VM = 1 THEN #GP(new code segment selector); FI;
IF code segment is conforming OR code segment DPL = CPL

THEN
GOTO INTRA-PRIVILEGE-LEVEL-INTERRUPT;

ELSE
#GP(CodeSegmentSelector + EXT);
IA-32 Software Developer’s Manual Documentation Changes 21

Documentation Changes
(* PE = 1, interrupt or trap gate, nonconforming *)
(* code segment, DPL>CPL *)

FI;
FI;

END;

INTER-PREVILEGE-LEVEL-INTERRUPT
(* PE=1, interrupt or trap gate, non-conforming code segment, DPL<CPL *)
(* Check segment selector and descriptor for stack of new privilege level in current TSS *)
IF current TSS is 32-bit TSS

THEN
TSSstackAddress ← (new code segment DPL ∗ 8) + 4
IF (TSSstackAddress + 7) > TSS limit

THEN #TS(current TSS selector); FI;
NewSS ← TSSstackAddress + 4;
NewESP ← stack address;

ELSE (* TSS is 16-bit *)
TSSstackAddress ← (new code segment DPL ∗ 4) + 2
IF (TSSstackAddress + 4) > TSS limit

THEN #TS(current TSS selector); FI;
NewESP ← TSSstackAddress;
NewSS ← TSSstackAddress + 2;

FI;
IF segment selector is null THEN #TS(EXT); FI;
IF segment selector index is not within its descriptor table limits

OR segment selector's RPL ≠ DPL of code segment,
THEN #TS(SS selector + EXT);

FI;
Read segment descriptor for stack segment in GDT or LDT;

IF stack segment DPL ≠ DPL of code segment,
OR stack segment does not indicate writable data segment,

THEN #TS(SS selector + EXT);
FI;
IF stack segment not present THEN #SS(SS selector+EXT); FI;
IF 32-bit gate

THEN
IF new stack does not have room for 24 bytes (error code pushed)

OR 20 bytes (no error code pushed)
THEN #SS(segment selector + EXT);

FI;
ELSE (* 16-bit gate *)

IF new stack does not have room for 12 bytes (error code pushed)
OR 10 bytes (no error code pushed);

THEN #SS(segment selector + EXT);
FI;

FI;
IF instruction pointer is not within code segment limits THEN #GP(0); FI;
SS:ESP ← TSS(NewSS:NewESP) (* segment descriptor information also loaded *)
IF 32-bit gate

THEN
CS:EIP ← Gate(CS:EIP); (* segment descriptor information also loaded *)

ELSE (* 16-bit gate *)
CS:IP ← Gate(CS:IP); (* segment descriptor information also loaded *)

FI;
IF 32-bit gate
22 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes
THEN
Push(far pointer to old stack); (* old SS and ESP, 3 words padded to 4 *);
Push(EFLAGS);
Push(far pointer to return instruction); (* old CS and EIP, 3 words padded to 4*);
Push(ErrorCode); (* if needed, 4 bytes *)

ELSE(* 16-bit gate *)
Push(far pointer to old stack); (* old SS and SP, 2 words *);
Push(EFLAGS(15..0]);
Push(far pointer to return instruction); (* old CS and IP, 2 words *);
Push(ErrorCode); (* if needed, 2 bytes *)

FI;
CPL ← CodeSegmentDescriptor(DPL);
CS(RPL) ← CPL;
IF interrupt gate

THEN IF ← 0 (*interrupt flag set to 0: disabled*);
FI;
TF ← 0;
VM ← 0;
RF ← 0;
NT ← 0;

END;

INTERRUPT-FROM-VIRTUAL-8086-MODE:
(* Check segment selector and descriptor for privilege level 0 stack in current TSS *)
IF current TSS is 32-bit TSS

THEN
TSSstackAddress ← (new code segment DPL ∗ 8) + 4
IF (TSSstackAddress + 7) > TSS limit

THEN #TS(current TSS selector); FI;
NewSS ← TSSstackAddress + 4;
NewESP ← stack address;

ELSE (* TSS is 16-bit *)
TSSstackAddress ← (new code segment DPL ∗ 4) + 2
IF (TSSstackAddress + 4) > TSS limit

THEN #TS(current TSS selector); FI;
NewESP ← TSSstackAddress;
NewSS ← TSSstackAddress + 2;

FI;
IF segment selector is null THEN #TS(EXT); FI;
IF segment selector index is not within its descriptor table limits

OR segment selector's RPL ≠ DPL of code segment,
THEN #TS(SS selector + EXT);

FI;
Access segment descriptor for stack segment in GDT or LDT;
IF stack segment DPL ≠ DPL of code segment,

OR stack segment does not indicate writable data segment,
THEN #TS(SS selector + EXT);

FI;
IF stack segment not present

THEN #SS(SS selector+EXT);
FI;
IF 32-bit gate

THEN
IF new stack does not have room for 40 bytes (error code pushed)

OR 36 bytes (no error code pushed);
IA-32 Software Developer’s Manual Documentation Changes 23

Documentation Changes
THEN #SS(segment selector + EXT);
FI;

ELSE (* 16-bit gate *)
IF new stack does not have room for 20 bytes (error code pushed)

OR 18 bytes (no error code pushed);
THEN #SS(segment selector + EXT);

FI;
FI;
IF instruction pointer is not within code segment limits

THEN #GP(0);
FI;
tempEFLAGS ← EFLAGS;
VM ← 0;
TF ← 0;
RF ← 0;
IF service through interrupt gate

THEN IF = 0;
FI;
TempSS ← SS;
TempESP ← ESP;
SS:ESP ← TSS(SS0:ESP0); (* Change to level 0 stack segment *)
(* Following pushes are 16 bits for 16-bit gate and 32 bits for 32-bit gates *)
(* Segment selector pushes in 32-bit mode are padded to two words *)
Push(GS);
Push(FS);
Push(DS);
Push(ES);
Push(TempSS);
Push(TempESP);
Push(TempEFlags);
Push(CS);
Push(EIP);
GS ← 0; (*segment registers nullified, invalid in protected mode *)
FS ← 0;
DS ← 0;
ES ← 0;
CS ← Gate(CS);
IF OperandSize = 32

THEN
EIP ← Gate(instruction pointer);

ELSE (* OperandSize is 16 *)
EIP ← Gate(instruction pointer) AND 0000FFFFH;

FI;
(* Starts execution of new routine in Protected Mode *)

END;

INTRA-PRIVILEGE-LEVEL-INTERRUPT:
(* PE=1, DPL = CPL or conforming segment *)
IF 32-bit gate

THEN
IF current stack does not have room for 16 bytes (error code pushed)

OR 12 bytes (no error code pushed); THEN #SS(0);
FI;

ELSE (* 16-bit gate *)
IF current stack does not have room for 8 bytes (error code pushed)
24 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes
OR 6 bytes (no error code pushed); THEN #SS(0);
FI;

FI;
IF instruction pointer not within code segment limit

THEN #GP(0);
FI;
IF 32-bit gate

THEN
Push (EFLAGS);
Push (far pointer to return instruction); (* 3 words padded to 4 *)
CS:EIP ← Gate(CS:EIP); (* segment descriptor information also loaded *)
Push (ErrorCode); (* if any *)

ELSE (* 16-bit gate *)
Push (FLAGS);
Push (far pointer to return location); (* 2 words *)
CS:IP ← Gate(CS:IP); (* segment descriptor information also loaded *)
Push (ErrorCode); (* if any *)

FI;
CS(RPL) ← CPL;
IF interrupt gate

THEN IF ← 0; (*interrupt flag set to 0: disabled*)
FI;
TF ← 0;
NT ← 0;
VM ← 0;
RF ← 0;

END

17. Errors Corrected In Opcode Table
In the Intel Architecture Software Developer’s Manual, Vol 2: Instruction Set Reference, Appendix
A, Table A-2; multiple errors have been corrected. Rows with corrected cells are shown (note the
bold text).

[table segments only, entire table not shown]

0 1 2 3 4 5 6 7

...

A MOV MOVS/
MOVSB
Yb, Xb

MOVS/
MOVSW/
MOVSD
Yv, Xv

CMPS/
CMPSB
Yb, Xb

CMPS/
CMPSW/
CMPSD
Xv, Yv

AL, Ob eAX, Ov Ob, AL Ov, eAX

B MOV immediate byte into byte register

AL CL DL BL AH CH DH BH

C Shift Grp 21A RET
Iw

RET LES
Gv, Mp

LDS
Gv, Mp

Grp 111A - MOV

Eb, Ib Ev, Ib Eb, Ib Ev, Iv
IA-32 Software Developer’s Manual Documentation Changes 25

	Title Page
	Contents
	Revision History
	Preface
	Summary Table of Changes
	Documentation Changes
	1. Description of FCOMI/FCOMIP Updated
	2. Note Added to POP CS Instruction Entry in Table B-10
	3. Information Added on resource_stall and WC_Buffer
	4. Switching the L1 Data Cache between Adaptive and Shared Mode
	5. FTW Storage Location Corrected
	6. More Information on Invalid TSS Conditions Provided
	7. Memory Storage Location of x87 FPU Data Registers Specified for FSAVE
	8. Valid Interrupt Vector Discussion Has More Explanation
	9. Information Added to Clarify Handling of Reserved Bits
	10. Various Corrections in Volume 2: Table B-23
	11. References to Bits GEn and Len Deleted
	12. PSLLQ Pseudocode Error Corrected
	13. STI and CLI Decision Tables Updated to Reflect VIF
	14. Usage Note Added for Two Opcodes
	15. #UD Exception Information Updated for Some Instructions
	16. INT Pseudocode Updated with Flag Information
	17. Errors Corrected In Opcode Table

