
IA-32 Intel® Architecture Software
Developer’s Manual
Documentation Changes

June 2003
Notice: The IA-32 Intel® Architecture may contain design defects or errors known as errata that
may cause the product to deviate from published specifications. Current characterized errata are
documented in this specification update.

Document Number: 252046-004

2 IA-32 Software Developer’s Manual Documentation Changes

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The IA-32 Intel® Architecture may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

I2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I2C bus/protocol and was developed by Intel.
Implementations of the I2C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and North American Philips
Corporation.

Intel, Pentium, Celeron, Intel SpeedStep, Intel Xeon and the Intel logo, and the Intel logo are trademarks or registered trademarks of Intel Corporation
or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2002, Intel Corporation

Contents

Revision History ... 4

Preface... 5

Summary Table of Changes... 6

Documentation Changes ... 8
IA-32 Software Developer’s Manual Documentation Changes 3

Revision History
Revision History

Version Description Date

-001 Initial Release November 2002

-002
Added 1-10 Documentation Changes.
Removed old Documentation Changes items that already have been
incorporated in the published Software Developer’s manual

December 2002

-003

Added 9 -17 Documentation Changes
Removed Documenation Change #6 - References to bits Gen and Len
Deleted
Removed Documenation Change #4 - VIF Information Added to CLI
Discussion

February 2003

-004
Removed Documentation changes 1-17
Added Documentation changes 1-24

June 2003
4 IA-32 Software Developer’s Manual Documentation Changes

Preface
Preface

This document is an update to the specifications contained in the Affected Documents/Related
Documents table below. This document is a compilation of documentation changes. It is intended
for hardware system manufacturers and software developers of applications, operating systems, or
tools.

Affected Documents/Related Documents

Nomenclature
Documentation Changes include errors or omissions from the current published specifications.
These changes will be incorporated in the next release of the Software Development Maunal.

Document Title Document
Number

IA-32 Intel® Architecture Software Developer's Manual: Volume 1, Basic Architecture 245470-011

IA-32 Intel® Architecture Software Developer's Manual: Volume 2, Instruction Set
Reference 245471-011

IA-32 Intel® Architecture Software Developer's Manual: Volume 3, System Programming
Guide 245472-011
IA-32 Software Developer’s Manual Documentation Changes 5

Summary Table of Changes
Summary Table of Changes

The following table indicates documentation changes which apply to the IA-32 Intel Architecture.
This table uses the following notations:

Codes Used in Summary Table
Change bar to left of table row indicates this erratum is either new or modified from the previous
version of the document.

Summary Table of Documentation Changes
Number DOCUMENTATION CHANGES

1. Information About CR2 Contents During a Double Fault has Been Added

2. Wording Changed to Clarify the Treatment of Hardware Interrupts in Regard to VIF Settings

3. Flag Information has Been Added

4. A PVI Reference has Been Added

5. INT Added to a List of Instructions in a General Description

6. INT 1 Documentation Altered

7. Erroneous Conditional Phrase Removed From Some Virtual 8086 Mode Exception Descriptions

8. Note Added to Clarify Aspects of the Pentium 4 Cache System

9. A Clarification About the Handling of NMIs

10. Documentation for Postcommit Task Switch Point Updated

11. Table Captions Changed to Address Problems With a Usage Model

12. Missing Footnote References on Table

13. CMOVcc Table Corrected

14. Introduction to Code Segment Clarified to Properly set Expectations

15. Entry for CR4 Register Added to Table

16. Operand Expression Corrected

17. Information Removed as Irrelevant or Erroneous

18. Cross Reference Updated

19. PSE-36 Flag Description Corrected

20. Description of the Time Stamp Counter has Been Updated

21. Unclear Description Corrected
6 IA-32 Software Developer’s Manual Documentation Changes

Summary Table of Changes
22. PEXTRW Description Corrected

23. Pentium M Processors and #BPs

24. Error Correction in Appendix A, Volume 3

Summary Table of Documentation Changes
Number DOCUMENTATION CHANGES
IA-32 Software Developer’s Manual Documentation Changes 7

Documentation Changes
Documentation Changes

1. Information About CR2 Contents During a Double Fault has Been Added
In Volume 3, Chapter 5, Section: Interrupt 14—Page-Fault Exception (#PF) has been upated. A
footnote with the following content has been added. The footnote talks about the updating of CR2
in a double fault context.

Processors update CR2 whenever a page fault is detected. If a second page fault
occurs while an earlier page fault is being delivered, the faulting linear address of
the second fault will overwrite the contents of CR2 (replacing the previous
address). These updates to CR2 occur even if the page fault results in a double
fault or occurs during the delivery of a double fault.

2. Wording Changed to Clarify the Treatment of Hardware Interrupts in Regard
to VIF Settings
In Volume 3, Section 16.4 has been updated. The area impacted is reproduced below in context; see
the changebar and bold text. The old phrase was “If the processor receives a maskable hardware
interrupt when the VIF flag is clear, the processor invokes the protected-mode interrupt handler.”

When the PVI flag is set to 1, the CPL is 3, and the IOPL is less than 3, the STI
and CLI instructions set and clear the VIF flag in the EFLAGS register, leaving
IF unaffected. In this mode of operation, an application running in protected
mode and at a CPL of 3 can inhibit interrupts in the same manner as is described
in Section 16.3.2., “Class 2—Maskable Hardware Interrupt Handling in Virtual-
8086 Mode Using the Virtual Interrupt Mechanism”, for a virtual-8086 mode
task. When the application executes the CLI instruction, the processor clears the
VIF flag. If the processor receives a maskable hardware interrupt, the
processor invokes the protected-mode interrupt handler. This handler checks
the state of the VIF flag in the EFLAGS register. If the VIF flag is clear
(indicating that the active task does not want to have interrupts handled now), the
handler sets the VIP flag in the EFLAGS image on the stack and returns to the
privilege-level 3 application, which continues program execution...
8 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes
3. Flag Information has Been Added
In Volume 3, Section 16.3.1.1, item 4; now specifies a more complete list of cleared flags. The
numbered list is reproduced below, with the change.
--

1. Switches to 32-bit protected mode and privilege level 0.

2. Saves the state of the processor on the privilege-level 0 stack. The states of the EIP, CS,
EFLAGS, ESP, SS, ES, DS, FS, and GS registers are saved (see Figure 16-4).

3. Clears the segment registers. Saving the DS, ES, FS, and GS registers on the stack and
then clearing the registers lets the interrupt or exception handler safely save and restore
these registers regardless of the type segment selectors they contain (protected-mode or
8086-style). The interrupt and exception handlers, which may be called in the context of
either a protected-mode task or a virtual-8086-mode task, can use the same code
sequences for saving and restoring the registers for any task. Clearing these registers
before execution of the IRET instruction does not cause a trap in the interrupt handler.
Interrupt procedures that expect values in the segment registers or that return values in the
segment registers must use the register images saved on the stack for privilege level 0.

4. Clears VM, NT, RF and TF flags (in the EFLAGS register).

5. Begins executing the selected interrupt or exception handler.

4. A PVI Reference has Been Added
Volume 3, Section 5.8.1 (text in the fourth paragraph) has been upated to add a relevant PVI refer-
ence. The updated text is reproduced in context below.

The IF flag can be set or cleared with the STI (set interrupt-enable flag) and CLI
(clear interrupt-enable flag) instructions, respectively. These instructions may be
executed only if the CPL is equal to or less than the IOPL. A general-protection
exception (#GP) is generated if they are executed when the CPL is greater than
the IOPL. (The effect of the IOPL on these instructions is modified slightly when
the virtual mode extension is enabled by setting the VME flag in control register
CR4: see Section 16.3., “Interrupt and Exception Handling in Virtual-8086
Mode”. Behavior is also impacted by the PVI flag: see Section 16.4.,
“Protected-Mode Virtual Interrupts”.)

5. INT Added to a List of Instructions in a General Description
A paragraph in Volume 3, Section 16.4 (fifth paragraph) has been changed. The new text is shown
below (INT was added to the list):

PUSHF, POPF, IRET and INT are executed like in the Intel486 processor,
regardless of whether protected-mode virtual interrupts are enabled.
IA-32 Software Developer’s Manual Documentation Changes 9

Documentation Changes
6. INT 1 Documentation Altered
Volume 3, Table 5.1 has been upated to reflect Intel’s current INT 1 usage model. See the table
section below (the entire table is not included). The Intel position is that INT 1 is for internal use
only.

Volume 3, Section 5.14: Interrupt 1 - Debug Exception (#DB) has also been updated for the same
reason. The new text follows.

Interrupt 1—Debug Exception (#DB)

Reserved for Intel use only.

7. Erroneous Conditional Phrase Removed From Some Virtual 8086 Mode
Exception Descriptions
Corrections have been made in Volume 2, Chapter 3 for CLTS, FXRSTOR, FXSAVE, HLT,
MULSD, MULSS, RCPSS exception conditions. Various entries were referring to exceptions being
raised if CPL was this or that. In the impacted exception conditions, CPL is always 3 (true in V86
mode) so the included ‘if statement’ was simply not necessary.

8. Note Added to Clarify Aspects of the Pentium 4 Cache System
In Volume 1, Section 2.1.7; a footnote has been added to provide more information about the
Pentium 4 cache system. The applicable text is reproduced below.

The Intel Pentium 4 processor uses a cache line size of 64bytes throughout its
cache hierarchy. The larger unified cache levels use a sectored implementation,
where each 128byte cache sector consists of two associated 64byte cache lines.

9. A Clarification About the Handling of NMIs
In Volume 3, Section 13.7, the first paragraph has been updated to better describe the handling of
NMIs. The new text is reproduced in context below.NMI interrupts are blocked upon entry to the
SMI handler. If an NMI request occurs during the SMI handler, it is latched and serviced after the
processor exits SMM. Only one NMI request will be latched during the SMI handler. If an NMI
request is pending when the processor executes the RSM instruction, the NMI is serviced before the
next instruction of the interrupted code sequenc. This assumes that NMIs were not blocked before
the SMI occurred. If NMIs were blocked before the SMI occurred, they are blocked after execution
of RSM.

Vector
No.

Mne-
monic Description Type

Error
Code Source

 0 #DE Divide Error Fault No DIV and IDIV instructions.

 1 #DB RESERVED Fault/
Trap

No For Intel use only.

 2 — NMI Interrupt Interrupt No Nonmaskable external interrupt.
10 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes
10. Documentation for Postcommit task Switch Point Updated
In Volume 3, Section 6.3; the numbered list was impacted by improvements to task switch descrip-
tion. The impacted area is reproduced below.

11. Loads the task register with the segment selector and descriptor for the new task's TSS.

12. The TSS state is loaded into the processor. This includes the LDTR register, the PDBR
(control register CR3), the EFLAGS registers, the EIP register, the general-purpose
registers, and the segment selectors. Note that a fault during the load of this state may
corrupt architectural state.

13. The descriptors associated with the segment selectors are loaded and qualified. Any
errors associated with this loading and qualification occur in the context of the new task.

NOTE
At this point, if all checks and saves have been carried out successfully, the
processor commits to the task switch. If an unrecoverable error occurs in
steps 1 through 11, the processor does not complete the task switch and
insures that the processor is returned to its state prior to the execution of the
instruction that initiated the task switch. If an unrecoverable error occurs in
step 12, architectural state may be corrupted, but an attempt will be made to
handle the error in the prior execution environment. If an unrecoverable
error occurs after the commit point (in step 13), the processor completes the
task switch (without performing additional access and segment availability
checks) and generates the appropriate exception prior to beginning
execution of the new task. If exceptions occur after the commit point, the
exception handler must finish the task switch itself before allowing the
processor to begin executing the new task. See Chapter 5, “Interrupt 10—
Invalid TSS Exception (#TS)”, for more information about the affect of
exceptions on a task when they occur after the commit point of a task switch.

14. Begins executing the new task. (To an exception handler, the first instruction of the new
task appears not to have been executed.)

11. Table Captions Changed to Address Problems With a Usage Model
Volume 2, Tables A-2 and A-3 have been updated to address a usage model complaint in regard to
the way table cells were addressed. New footnotes (the text is provided below) document the A-2,
A-3 table access methodology.
--

† All blanks in the opcode map shown in Table A-2 are reserved and should not be used.
Do not depend on the operation of these undefined opcodes.

†† To use the table, take the opcode’s first Hex character from the row designation and the
second character from the column designation. For example: 07H for
[POP ES].
IA-32 Software Developer’s Manual Documentation Changes 11

Documentation Changes
12. Missing Footnote References on Table
n Volume 3, Table 10-2; the table footnotes were confusing. In the new version of the document, the
need for table footnotes has been eliminated by moving the applicable data into the table. The
refreshed table cells are shown.

.

13. CMOVcc Table Corrected
In Volume 2, Chapter 3, Section: CMOVcc—Conditional Move; the descriptions of ‘CMOVO r16,
r/m16’ and ‘CMOVO r32, r/m32’ have been updated. The impacted information is reproduced in
context below. Both of the old descriptions erroneously stated OF = 0.

14. Introduction to Code Segment Clarified to Properly set Expectations
For Volume 3, Example 9-1; the introduction has been updated. Pseudocode supplied in the IA-32
PRM is general in nature. It provides high level examples. To obtain working code, most IA-32 PRM
examples must be updated to fit into specific contexts. The old introduction to Example 9-1 seemed
to imply that the pseudocode supplied would work in any situation. The old language has been
removed; it has been replaced by the following statement:

Example 9-1 provides high-level sample code designed to move the processor
into protected mode. This listing does not include any opcode and offset infor-
mation.

Memory Type and
Mnemonic Cacheable

Writeback
Cacheable

Allows
Speculative

Reads Memory Ordering Model

Strong Uncacheable
(UC)

No No No Strong Ordering

Uncacheable (UC-) No No No Strong Ordering. Can only be
selected through the PAT. Can be
overridden by WC in MTRRs.

Write Combining (WC) No No Yes Weak Ordering. Available by
programming MTRRs or by
selecting it through the PAT.

Write Through (WT) Yes No Yes Speculative Processor Ordering

Write Back (WB) Yes Yes Yes Speculative Processor Ordering.

Write Protected (WP) Yes for reads;
no for writes

No Yes Speculative Processor Ordering.
Available by programming
MTRRs.

0F q5 /r CMOVNZ r16, r/m16 Move if not zero (ZF=0)
0F 45 /r CMOVNZ r32, r/m32 Move if not zero (ZF=0)
0F 40 /r CMOVO r16, r/m16 Move if overflow (OF=1)
0F 40 /r CMOVO r32, r/m32 Move if overflow (OF=1)
0F 4A /r CMOVP r16, r/m16 Move if parity (PF=1)
0F 4A /r CMOVP r32, r/m32 Move if parity (PF=1)
0F 4A /r CMOVPE r16, r/m16 Move if parity even (PF=1)
12 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes
15. Entry for CR4 Register Added to Table
In Volume 3, Table 13-2; an entry for the CR4 register has been added. The applicable table cells are
reproduced in context below.

16. Operand Expression Corrected
In Volume 2, Section 3-11; the operand order has been corrected for MOVSD (F2). The applicable
table segment is shown below with the relevant expression highlighted.
.

17. Information Removed as Irrelevant or Erroneous
In Volume 3, Section 3.11; the last bulleted item in a bulleted list has been removed (as unnecessary
information). Section 3.11 now closes with the following text.

--
When the processor loads a page-directory or page-table entry for a global page into a TLB, the entry will
remain in the TLB indefinitely. The only ways to deterministically invalidate global page entries are as follows:
• Clear the PGE flag and then invalidate the TLBs.
• Execute the INVLPG instruction to invalidate individual page-directory or page-table entries in the

TLBs.

For additional information about invalidation of the TLBs, see Section 10.9., Invalidating the Translation
Lookaside Buffers (TLBs).

DS, ES, FS, GS, SS Limits 0FFFFFFFFH

CR0 PE, EM, TS and PG flags set to 0; others unmodified

CR4 Cleared to zero

DR6 Undefined

1 MOVUPS
Vps, Wps

MOVSS (F3)
Vss, Wss

MOVUPD (66)
Vpd, Wpd

MOVSD (F2)
Vsd, Wsd

MOVUPS
Wps, Vps

MOVSS (F3)
Wss, Vss

MOVUPD (66)
Wpd, Vpd

MOVSD (F2)
Wsd, Vsd

MOVLPS
Wq, Vq

MOVLPD (66)
Vq, Ws

MOVHLPS
Vq, Vq

MOVLPS
Vq, Wq

MOVLPD (66)
Vq, Wq

UNPCKLPS
Vps, Wq

UNPCKLPD
(66)

Vpd, Wq

UNPCKHPS
Vps, Wq

UNPCKHPD
(66)

Vpd, Wq

MOVHPS
Vq, Wq

MOVHPD (66)
Vq, Wq

MOVLHPS
Vq, Vq

MOVHPS
Wq, Vq

MOVHPD (66)
Wq, Vq
IA-32 Software Developer’s Manual Documentation Changes 13

Documentation Changes
18. Cross Reference Updated
In Volume 3, Section 8.11.1; an erroneous cross reference has been updated. The relevant paragraph
is reproduced below (it’s item 4 in the numbered list). See the change bar and the highlighted text.

Destination Mode (DM): This bit indicates whether the Destination ID field
should be interpreted as logical or physical APIC ID for delivery of the lowest
priority interrupt. If RH is 1 and DM is 0, the Destination ID field is in physical
destination mode and only the processor in the system that has the matching
APIC ID is considered for delivery of that interrupt (this means no re-direction).
If RH is 1 and DM is 1, the Destination ID Field is interpreted as in logical
destination mode and the redirection is limited to only those processors that are
part of the logical group of processors based on the processor’s logical APIC ID
and the Destination ID field in the message. The logical group of processors
consists of those identified by matching the 8-bit Destination ID with the logical
destination identified by the Destination Format Register and the Logical
Destination Register in each local APIC. The details are similar to those
described in Section 8.6.2., “Determining IPI Destination”. If RH is 0, then the
DM bit is ignored and the message is sent ahead independent of whether the
physical or logical destination mode is used.

19. PSE-36 flag Description Corrected
In Volume 2, Table 3-11; an error has been corrected. The old table entry assigned a 32-bit page size
extension to PSE-36. The corrected entry is reproduced in context below .

20. Description of the Time Stamp Counter has Been Updated
In Volume 3, Section 15.7: the third paragraph has been expanded. The updated version of the para-
graph is reproduced below. See the changebar and the bold text.

The time-stamp counter (as implemented in the Pentium 4, Intel Xeon, P6 family, and Pentium
processors) is a 64-bit counter that is set to 0 following the hardware reset of the processor.
Following reset, the counter is incremented every processor clock cycle, even when the processor is
halted by the HLT instruction or the external STPCLK# pin. However, the assertion of the external
DPSLP# pin may cause the time-stamp counter to stop and Intel SpeedStep® technology tran-
sitions may cause the frequency at which the time-stamp counter increments to change in
accordance with the processor's internal clock frequency.

16 PAT Page Attribute Table. Page Attribute Table is supported. This feature augments
the Memory Type Range Registers (MTRRs), allowing an operating system to
specify attributes of memory on a 4K granularity through a linear address.

17 PSE-36 36-Bit Page Size Extension. Extended 4-MByte pages that are capable of
addressing physical memory beyond 4 GBytes are supported. This feature
indicates that the upper four bits of the physical address of the 4-MByte page is
encoded by bits 13-16 of the page directory entry.

18 PSN Processor Serial Number. The processor supports the 96-bit processor
identification number feature and the feature is enabled.
14 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes
21. Unclear Description Corrected
In Volume 3, Section 8.11.1, item number 4 in the numbered list has been re-written to address a
clarity issue. The next text is indicated by the changebar and bold text (the old version implied the
possibility of re-direction).

4. Destination Mode (DM): This bit indicates whether the Destination ID field should be
interpreted as logical or physical APIC ID for delivery of the lowest priority interrupt. If RH is
1 and DM is 0, the Destination ID field is in physical destination mode and only the
processor in the system that has the matching APIC ID is considered for delivery of that
interrupt (this means no re-direction). If RH is 1 and DM is 1, the Destination ID Field is
interpreted as in logical destination mode and the redirection is limited to only those processors
that are part of the logical group of processors based on the processor’s logical APIC ID and
the Destination ID field in the message. The logical group of processors consists of those
identified by matching the 8-bit Destination ID with the logical destination identified by the
Destination Format Register and the Logical Destination Register in each local APIC. The
details are similar to those described in Section 8.6.2., “Determining IPI Destination”. If RH is
0, then the DM bit is ignored and the message is sent ahead independent of whether the
physical or logical destination mode is used.

22. PEXTRW Description Corrected
In Volume 2, Chapter 3, Section: PEXTRW—Extract Word; the Description paragraph has been
updated. The changebar and the bold text mark the spot (‘3 least-significant bits’ replaces ‘4 least-
significant bits’).

Copies the word in the source operand (second operand) specified by the count
operand (third operand) to the destination operand (first operand). The source
operand can be an MMX technology or an XMM register. The destination
operand is the low word of a general-purpose register. The count operand is an 8-
bit immediate. When specifying a word location in an MMX technology register,
the 2 least-significant bits of the count operand specify the location; for an XMM
register, the 3 least-significant bits specify the location. The high word of the
destination operand is cleared (set to all 0s).
IA-32 Software Developer’s Manual Documentation Changes 15

Documentation Changes
23. Pentium M Processors and #BPs
In Volume 3, Section 15.3.2; information about the Pentium M processor’s handling of #BPs has
been added. The section is reproduced below; the changebar and bold text mark the spot.

The breakpoint exception (interrupt 3) is caused by execution of an INT 3
instruction (see Chapter 5, “Interrupt 3—Breakpoint Exception (#BP)”).
Debuggers use break exceptions in the same way that they use the breakpoint
registers; that is, as a mechanism for suspending program execution to examine
registers and memory locations. With earlier IA-32 processors, breakpoint
exceptions are used extensively for setting instruction breakpoints.
With the Intel386 and later IA-32 processors, it is more convenient to set
breakpoints with the breakpoint-address registers (DR0 through DR3). However,
the breakpoint exception still is useful for breakpointing debuggers, because the
breakpoint exception can call a separate exception handler. The breakpoint
exception is also useful when it is necessary to set more breakpoints than there
are debug registers or when breakpoints are being placed in the source code of a
program under development.
Note that with Pentium M processors, #BPs for fast string operations are
reported only on cache line boundaries.

24. Error Correction in Appendix A, Volume 3
In Volume 3, Table A-1; incorrect parameter information has been corrected. For the corrected infor-
mation, see the bold text in the table segment below. The incorrect entry was 05H.

global_power
_events

This event accumulates the time
during which a processor is not
stopped.

ESCR restrictions MSR_FSB_ESCR0
MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1
ESCR1: 2, 3

ESCR Event Select 013H ESCR[31:25]

ESCR Event Mask Bit 0: Running ESCR[24:9]
The processor is active (includes the
handling of HLT STPCLK and
throttling.
16 IA-32 Software Developer’s Manual Documentation Changes

	Contents
	Revision History
	Preface
	Summary Table of Changes
	Documentation Changes
	1. Information About CR2 Contents During a Double Fault has Been Added
	2. Wording Changed to Clarify the Treatment of Hardware Interrupts in Regard to VIF Settings
	3. Flag Information has Been Added
	4. A PVI Reference has Been Added
	5. INT Added to a List of Instructions in a General Description
	6. INT 1 Documentation Altered
	7. Erroneous Conditional Phrase Removed From Some Virtual 8086 Mode Exception Descriptions
	8. Note Added to Clarify Aspects of the Pentium 4 Cache System
	9. A Clarification About the Handling of NMIs
	10. Documentation for Postcommit task Switch Point Updated
	11. Table Captions Changed to Address Problems With a Usage Model
	12. Missing Footnote References on Table
	13. CMOVcc Table Corrected
	14. Introduction to Code Segment Clarified to Properly set Expectations
	15. Entry for CR4 Register Added to Table
	16. Operand Expression Corrected
	17. Information Removed as Irrelevant or Erroneous
	18. Cross Reference Updated
	19. PSE-36 flag Description Corrected
	20. Description of the Time Stamp Counter has Been Updated
	21. Unclear Description Corrected
	22. PEXTRW Description Corrected
	23. Pentium M Processors and #BPs
	24. Error Correction in Appendix A, Volume 3

