
IA-32 Intel® Architecture Software 
Developer’s Manual
Documentation Changes

November 2003

Notice: The IA-32 Intel® Architecture may contain design defects or errors known as errata that 
may cause the product to deviate from published specifications. Current characterized errata are 
documented in this specification update.

Document Number: 252046-006



2 IA-32 Software Developer’s Manual Documentation Changes

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY 
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN 
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS 
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES 
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER 
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications. 

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for 
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The IA-32 Intel® Architecture may contain design defects or errors known as errata which may cause the product to deviate from published 
specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

I2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I2C bus/protocol and was developed by Intel. 
Implementations of the I2C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and North American Philips 
Corporation.

Intel, Pentium, Celeron, Intel SpeedStep, Intel Xeon and the Intel logo, and the Intel logo are trademarks or registered trademarks of Intel Corporation 
or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2002-2003, Intel Corporation



IA-32 Software Developer’s Manual Documentation Changes 3

Contents
Revision History ......................................................................................... 4

Preface....................................................................................................... 5

Summary Table of Changes....................................................................... 6

Documentation Changes ........................................................................... 8



4 IA-32 Software Developer’s Manual Documentation Changes 

Revision History

Revision History

Version Description Date

-001 Initial Release November 2002

-002
Added 1-10 Documentation Changes.
Removed old Documentation Changes items that already have been 
incorporated in the published Software Developer’s manual

December 2002

-003

Added 9 -17 Documentation Changes
Removed Documenation Change #6 - References to bits Gen and Len 
Deleted
Removed Documenation Change #4 - VIF Information Added to CLI 
Discussion

February 2003

-004
Removed Documentation changes 1-17
Added Documentation changes 1-24

June 2003

-005
Removed Documentation Changes 1-24
Added Documentation Changes 1-15

September 2003

-006 Added Documentation Changes 16- 34 November 2003



IA-32 Software Developer’s Manual Documentation Changes 5

Preface

Preface

This document is an update to the specifications contained in the Affected Documents/Related 
Documents table below. This document is a compilation of documentation changes. It is intended 
for hardware system manufacturers and software developers of applications, operating systems, or 
tools.

Affected Documents/Related Documents

Nomenclature
Documentation Changes include errors or omissions from the current published specifications. 
These changes will be incorporated in the next release of the Software Development Maunal.

Document Title Document 
Number

IA-32 Intel® Architecture Software Developer's Manual: Volume 1, Basic Architecture 245470-011

IA-32 Intel® Architecture Software Developer's Manual: Volume 2, Instruction Set 
Reference 245471-011

IA-32 Intel® Architecture Software Developer's Manual: Volume 3, System Programming 
Guide 245472-011



6 IA-32 Software Developer’s Manual Documentation Changes 

Summary Table of Changes

Summary Table of Changes

The following table indicates documentation changes which apply to the IA-32 Intel Architecture. 
This table uses the following notations:

Codes Used in Summary Table
Change bar to left of table row indicates this erratum is either new or modified from the previous 
version of the document.

Summary Table of Documentation Changes
Number DOCUMENTATION CHANGES

1. IA32_THERM_CONTROL has Been Changed to IA32_CLOCK_MODULATION

2. INTER-PRIVILEGE" was not Spelled Corretly in Pseudocode Entry

3. Confusing Text Artifact Removed

4. IA32_MISC_CTL has Been Removed From the List of Architectural MSRs

5. Typo Corrected in Figure 8-24

6. Typo Corrected in Figure 8-23

7. Corrupted Text Corrected

8. Corrected an Error in PACKSSDW Illustration

9. SSM Corrected to SMM

10. Exiting From SMM Text Updated

11. L1 Data Cache Context Mode Description has Been Udpated

12. #DE Should be #DB in Description of EFLAGS.RF

13. There Have Been Revisions to the Table That States Priority Among Simultaneous Exceptions 
and Interrupts

14. Corrections to Page-Directory-Pointer-Table Entry Desciption

15. Behavior Notes on the Accessed (A) Flag and Dirty (D) Flag

16. Interrupt 11 Discussion Concerning EXT Flag Functioning Has Been Updated

17. Improved Information on Interpreting Machine-Check Error Codes

18. More information on the Functioning of Debug BPs after POP SS/MOV SS Has Been Provided

19. More Information on the LBR Stack Has Been Provided

20. Limited Availability of Two MSRs Has Been Documented

21. The Section On Microcode Update Facilities Has Been Refreshed

22. A Mechanism for Determining Sync/Async SMIs Has Been Documented



IA-32 Software Developer’s Manual Documentation Changes 7

Summary Table of Changes

23. Omitted Debug Data Has Been Restored

24. CLTS Exception Information Improved

25. The MOVSS Description Have Been Updated

26. An Instruction Listing (PULLHUW) Has Been Deleted

27. Some Data Entry Errors in Table B-20 Have Been Corrected

28. Figure 8-22 Has Been Corrected

29. The Description of Minimum Thermal Monitor Activation Time Has Been Updated

30. Corrected Description of Exception- or Interrupt-Handler Procedures

31. CMPSD and CMPSS Exception Information Updated

32. PUNPCKHB*/PUNPCKLB* Exception Information Improved

33. MOVHPD, MOVLPD, UNPCKHPS, UNPCKLPS Exception Information Improved.

34. PEXTRW - PINSRW Exception Information Improved

Summary Table of Documentation Changes
Number DOCUMENTATION CHANGES



8 IA-32 Software Developer’s Manual Documentation Changes 

Documentation Changes

Documentation Changes 

1. IA32_THERM_CONTROL has been Changed to IA32_CLOCK_MODULATION
The name of the MSR IA32_THERM_CONTROL has been changed to 
IA32_CLOCK_MODULATION. This was done to avoid confusion about the MSR’s function. 

The following corrected table segment is from Appendix B, Table B-3, the IA-32 Intel Architecture 
Software Developer’s Manual, Volume 3. See the reproduced text below

2. INTER-PRIVILEGE" Was Not Spelled Correctly in Pseudocode Entry
The term inter-privilege was incorrectly spelled in pseudocode provided as part of the “INT n/INTO/
INT 3—Call to Interrupt Procedure” section, Chapter 3, IA-32 Intel Architecture Software Devel-
oper’s Manual, Volume 2. 

The corrected text segment is reproduced below.

--------------------------------------------------------------

...INTER-PRIVILEGE-LEVEL-INTERRUPT
(* PE=1, interrupt or trap gate, non-conforming code segment, DPL<CPL *)
(* Check segment selector and descriptor for stack of new privilege level in current TSS *)
IF current TSS is 32-bit TSS

THEN 
TSSstackAddress ← (new code segment DPL ∗ 8) + 4.....

Register Address

 Hex Dec Register Name Bit Description

19AH 410 IA32_CLOCK_MODULATI
ON

Clock Modulation. (R/W) Enables and disables on-
demand clock modulation and allows the selection of 
the on-demand clock modulation duty cycle. (See 
Section 13.15.3., Software Controlled Clock 
Modulation.

NOTE: IA32_CLOCK_MODULATION MSR was 
originally named IA32_THERM_CONTROL MSR.



IA-32 Software Developer’s Manual Documentation Changes 9

Documentation Changes

3. Confusing text Artifact Removed

There were some materials in the OPCODE table that should have been deleted. This error has 
been corrected. The corrected table segment (reproduced below) is in Appendix A, Table A-3, IA-
32 Intel Architecture Software Developer’s Manual, Volume 2. See address 0x0f0b

.

4. IA32_MISC_CTL Has Been Removed from the List of Architectural MSRs
The MSR IA32_MISC_CTL has been removed from the list of architectural MSRs . Note that this 
MSR is still listed in other locations.

The impacted segment (reproduced below) is from Appendix B, Table B-5, IA-32 Intel Architecture 
Software Developer’s Manual, Volume 3. The change bars show where the table row was deleted.

8 9 A B C D E F

0 INVD WBINVD UD2

79H 121 IA32_BIOS_UPDT_TRIG BIOS_UPDT_TRIG P6 Family Processors

8BH 139 IA32_BIOS_SIGN_ID BIOS_SIGN/BBL_CR_D3 P6 Family Processors

FEH 254 IA32_MTRRCAP MTRRcap P6 Family Processors

174H 372 IA32_SYSENTER_CS SYSENTER_CS_MSR P6 Family Processors

175H 373 IA32_SYSENTER_ESP SYSENTER_ESP_MSR P6 Family Processors



10 IA-32 Software Developer’s Manual Documentation Changes 

Documentation Changes

5. Typographical Error Corrected in Figure 8-24
ExINT should be ExtINT in Figure 8-24, located in the “Message Data Register Format” section, 
Chapter 8, IA-32 Intel Architecture Software Developer’s Manual, Volume 3. The corrected figure is 
reproduced below.

6. Typographical Error Corrected in Figure 8-23
0FEEH was incorrectly represented as 0FEEEH in Figure 8-23, located the “Message Address 
Register Format” section, Chapter 8, IA-32 Intel Architecture Software Developer’s Manual, Volume 
3.

The corrected figure is reproduced below.

Figure 8-24. Layout of the MSI Message Data Register

Reserved

Reserved Reserved Vector

Delivery Mode

001 - Lowest Priority
010 - SMI
011 - Reserved

101 - INIT
110 - Reserved
111 - ExtINT

Trigger Mode
0 - Edge
1 - Level

Level for Trigger Mode = 0
X - Don’t care

Level for Trigger Mode = 1
0 - Deassert
1 - Assert

000 - Fixed

001 - NMI

31 16  15 14 13 11 10 8 7 0

63 32

Figure 8-23. Layout of the MSI Message Address Register

31 20 19 12 11 4 3 2 1 0

0FEEH Destination ID  Reserved RH DM XX



IA-32 Software Developer’s Manual Documentation Changes 11

Documentation Changes

7. Corrupted Text Corrected
There was some corrupted text in the “State of the Logical Processors” section, Chapter 7, IA-32 
Intel Architecture Software Developer’s Manual, Volume 3. 

The correction is shown in the segment below. See the changebar.

-------------------------------------------------------------------

7.6.1.1 State of the Logical Processors

The following features are considered part of the architectural state of a logical processor with HT
Technology. The features can be subdivided into three groups: 

• Duplicated for each logical processor

• Shared by logical processors in a physical processor

• Shared or duplicated, depending on the implementation

The following features are duplicated for each logical processor:

• General purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, and EBP)

.........................

8. Corrected an Error in PACKSSDW Illustration
Operation of the PACKSSDW instruction was incorrectly illustrated in Figure 3-6, the 
“PACKSSWB/PACKSSDW—Pack with Signed Saturation” section, Chapter 3, IA-32 Intel Archi-
tecture Software Developer’s Manual, Volume 2. 

The corrected figure is reproduced below.

Figure 3.6. Operation of the PACKSSDW Instruction Using 64-bit Operands

D C

64-Bit SRC

64-Bit DEST

D’ C’ B’ A’

64-Bit DEST

B A



12 IA-32 Software Developer’s Manual Documentation Changes 

Documentation Changes

9. SSM Corrected to SMM
In several places, SSM was still being used as an acronym for ‘system management mode.’ The 
correct usage is SMM. Corrections were made in the “Modes of Operation” section, Chapter 3, IA-
32 Intel Architecture Software Developer’s Manual, Volume 1. The updated paragraph is reproduced 
below.

...................................................
System management mode (SMM). This mode provides a transparent mechanism for implementing plat-
form-specific functions such as power management and system security. The processor enters SMM when 
the external SMM interrupt pin (SMI#) is activated or an SMI is received from the advanced programmable 
interrupt controller (APIC). In SMM, the processor switches to a separate address space while saving the 
basic context of the currently running program or task. SMM-specific code may then be executed transpar-
ently. Upon returning from SMM, the processor is placed back into its state prior to the system management 
interrupt. SMM was introduced with the Intel386™ SL and Intel486™ SL processors and became a standard 
IA-32 feature with the Pentium processor family.

.....................................................

This change was also made in the “RSM—Resume from System Management Mode” section, 
Chapter 3, IA-32 Intel Architecture Software Developer’s Manual, Volume 2. The corrected 
segments are reproduced below.

.....................................................
Returns program control from system management mode (SMM) to the application program or operating-
system procedure that was interrupted when the processor received an SMM interrupt. The processor’s state
is restored from the dump created upon entering SMM. If the processor detects invalid state information
during state restoration, it enters the shutdown state.... 
...
ReturnFromSMM;
ProcessorState ← Restore(SMMDump);

...

10. Exiting from SMM Text Updated
A paragraph in the “Exiting from SMM” section, Chapter 13, IA-32 Intel Architecture Software 
Developer’s Manual, Volume 3 has been updated. The information previously provided was not 
complete. The corrected text segment is reproduced below. See the change bar for location.

----------------------------------
• (For the Pentium and Intel486 processors only.) If the address stored in the SMBASE register when an

RSM instruction is executed is not aligned on a 32-KByte boundary. This restriction does not apply to the
P6 family processors.

In the shutdown state, Intel processors stop executing instructions until a RESET#, INIT# or NMI# is asserted.
Processors do recognize the FLUSH# signal in the shutdown state. While Pentium family processors recognize
the SMI# signal in shutdown state, P6 family and Intel486 processors do not. Intel does not support using SMI#
to recover from shutdown states for any processor family; the response of processors in this circumstance is not
well defined. On Pentium 4 and later processors, shutdown will inhibit INTR and A20M but will not change
any of the other inhibits. On these processors, NMIs will be inhibited if no action is taken in the SMM handler
to uninhibit them (see Section 13.7.).
If the processor is in the HALT state when the SMI is received, the processor handles the return from SMM 
slightly differently (see Section 13.10., “Auto HALT Restart”). Also, the SMBASE address can be changed on 
a return from SMM (see Section 13.11., “SMBASE Relocation”).



IA-32 Software Developer’s Manual Documentation Changes 13

Documentation Changes

11. L1 Data Cache Context Mode Description Has Been Udpated
In Appendix B, Table B-1, IA-32 Intel Architecture Software Developer’s Manual, Volume 3; the “L1 
Data Cache Context Mode (RW)” table cell has been updated. Information about adaptive mode was 
clarified.

The updated table segment is reproduced below.

12. #DE Should Be #DB in Description of EFLAGS.RF
In the “System Flags and Fields in the EFLAGS Register” section, Chapter 2, IA-32 Intel Architec-
ture Software Developer’s Manual, Volume 3; there was a sentence that began "When set, this flag 
temporarily disables debug exceptions (#DE)". Debug exceptions are noted as #DB, not #DE. This 
error has been corrected.

The corrected entry is reproduced below.

-----------------------------------------------

RF Resume (bit 16). Controls the processor’s response to instruction-breakpoint conditions. When set,
this flag temporarily disables debug exceptions (#DB) from being generated for instruction break-
points; although, other exception conditions can cause an exception to be generated. When clear,
instruction breakpoints will generate debug exceptions. 
The primary function of the RF flag is to allow the restarting of an instruction following a debug
exception that was caused by an instruction breakpoint condition. Here, debugger software must set
this flag in the EFLAGS image on the stack just prior to returning to the interrupted program with the
IRETD instruction, to prevent the instruction breakpoint from causing another debug exception. The
processor then automatically clears this flag after the instruction returned to has been successfully
executed, enabling instruction breakpoint faults again.
See Section 15.3.1.1., Instruction-Breakpoint Exception Condition, for more information on the use
of this flag.

Register Address Register Name
Fields and Flags

Shared/
Unique1 Bit Description

 Hex Dec

24 L1 Data Cache Context Mode (R/W). When 
set to 1, this bit places the L1 Data Cache 
into shared mode. When set to 0 (the 
default), this bit places the L1 Data Cache 
into adaptive mode. When the L1 Data 
Cache is running in adaptive mode and the 
CR3s are identical, data in L1 is shared 
across logical processors. Otherwise, data in 
L1 is not shared and cache use is 
competitive.

NOTE: If the Context ID feature flag, 
ECX[10], is not set to 1 after executing 
CPUID with EAX = 1; the ability to switch 
modes is not supported and the BIOS must 
not alter the contents of 
IA32_MISC_ENABLE[24].



14 IA-32 Software Developer’s Manual Documentation Changes 

Documentation Changes

13. There Have Been Revisions to the Table That States Priority among Simulta-
neous Exceptions and Interrupts
We have made a number of updates to Table 5-2, located in the “Priority Among Simultaneous 
Exceptions and Interrupts” section, Chapter 5, IA-32 Intel Architecture Software Developer’s 
Manual, Volume 3. 

The updated cells are reproduced below.

Priority Descriptions (continued)...

5 External Interrupts
- NMI Interrupts
- Maskable Hardware Interrupts

6 Code Breakpoint Fault

7 Faults from Fetching Next Instruction 
- Code-Segment Limit Violation
- Code Page Fault

8 Faults from Decoding the Next Instruction
- Instruction length > 15 bytes 
- Invalid Opcode 
- Coprocessor Not Available

9 (Lowest) Faults on Executing an Instruction
- Overflow
- Bound error
- Invalid TSS
- Segment Not Present
- Stack fault
- General Protection
- Data Page Fault
- Alignment Check
- x87 FPU Floating-point exception
- SIMD floating-point exception



IA-32 Software Developer’s Manual Documentation Changes 15

Documentation Changes

14. Corrections to Page-Directory-Pointer-Table Entry Desciption
In Figure 3-20 and 3-21, located in the “Page-Directory and Page-Table Entries With Extended 
Addressing Enabled” section, Chapter 3, IA-32 Intel Architecture Software Developer’s Manual, 
Volume 3; Bit 0 of both representations of the Page-Directory-Pointer-Table Entry now indicate P 
(showing the the location of the ‘present flag’ bit).

The corrected tables are reproduced below.

Figure 3-20. Format of Page-Directory-Pointer-Table, Page-Directory, and Page-Table 
Entries for 4-KByte Pages with PAE Enabled

63 36 35 32

BaseReserved (set to 0)

Page-Directory-Pointer-Table Entry

31 12 11 9 8 5 4 3 2 0
P
C
D

P
W
T

AvailPage-Directory Base Address

Addr.

Res.Reserved

63 36 35 32

BaseReserved (set to 0)

Page-Directory Entry (4-KByte Page Table)

31 12 11 9 8 7 6 5 4 3 2 1 0
P
C0
D

P
P
W
T

Page-Table Base Address

Addr.

0 0 A
R
/

W

U
/
S

63 36 35 32

BaseReserved (set to 0)

Page-Table Entry (4-KByte Page)

31 12 11 9 8 7 6 5 4 3 2 1 0
P
CD
D

P
P
W
T

Page Base Address

Addr.

G A
R
/

W

U
/
S

Avail

Avail

P

1

P
A
T



16 IA-32 Software Developer’s Manual Documentation Changes 

Documentation Changes

In addition, the paragraph discussing the present flag has been updated. this text is also located in 
the “Page-Directory and Page-Table Entries With Extended Addressing Enabled” section, Chapter 
3, IA-32 Intel Architecture Software Developer’s Manual, Volume 3. 

The applicable text segment is reproduced below. Note the change bar.

----------------------------------------
For all table entries (except for page-directory entries that point to 2-MByte pages), the bits in the page
base address are interpreted as the 24 most-significant bits of a 36-bit physical address, which forces page
tables and pages to be aligned on 4-KByte boundaries. When a page-directory entry points to a 2-MByte
page, the base address is interpreted as the 15 most-significant bits of a 36-bit physical address, which
forces pages to be aligned on 2-MByte boundaries.
The present flag (bit 0) in the page-directory-pointer-table entries can be set to 0 or 1. If the present flag is
clear, the remaining bits in the page-directory-pointer-table entry are available to the operating system. If
the present flag is set, the fields of the page-directory-pointer-table entry are defined in Figures  for 4KB
pages and Figures  for 2MB pages.
The page size (PS) flag (bit 7) in a page-directory entry determines if the entry points to a page table or a
2-MByte page. When this flag is clear, the entry points to a page table; when the flag is set, the entry points
to a 2-MByte page. This flag allows 4-KByte and 2-MByte pages to be mixed within one set of paging
tables.

Figure 3-21. Format of Page-Directory-Pointer-Table and Page-Directory 
Entries for 2-MByte Pages with PAE Enabled

63 36 35 32

BaseReserved (set to 0)

Page-Directory Entry (2-MByte Page)

31 12 11 9 8 7 6 5 4 3 2 1 0
P
CD
D

P
P
W
T

Page Base Address

Addr.

G 1 AReserved (set to 0)

21 20
R
/

W

U
/
S

63 36 35 32

BaseReserved (set to 0)

Page-Directory-Pointer-Table Entry

31 12 11 9 8 5 4 3 2 0
P
C
D

P
W
T

Avail.Page Directory Base Address

Addr.

Res.Reserved

Avail.

P

1

13
P
A
T



IA-32 Software Developer’s Manual Documentation Changes 17

Documentation Changes

15. Behavior Notes on the Accessed (A) Flag and Dirty (D) Flag
Notes have been added to two sub-paragraphs of the “Page-Directory and Page-Table Entries” 
section, Chapter 3, IA-32 Intel Architecture Software Developer’s Manual, Volume 3. The notes 
clarify a limitation on the processor’s Self-Modifying Code detection logic in the Accessed (A) flag 
and Dirty (D) flag context.

The applicable sections are reproduced below. See the change bars.

---------------------------------------------------------------

Accessed (A) flag, bit 5
Indicates whether a page or page table has been accessed (read from or written to) when set.
Memory management software typically clears this flag when a page or page table is initially
loaded into physical memory. The processor then sets this flag the first time a page or page
table is accessed. 

This flag is a “sticky” flag, meaning that once set, the processor does not implicitly clear it.
Only software can clear this flag. The accessed and dirty flags are provided for use by
memory management software to manage the transfer of pages and page tables into and out
of physical memory.

NOTE: The accesses used by the processor to set this bit may or may not be exposed to the
processor’s Self-Modifying Code detection logic. If the processor is executing code from the
same memory area that is being used for page table structures, the setting of the bit may or
may not result in an immediate change to the executing code stream.

Dirty (D) flag, bit 6
Indicates whether a page has been written to when set. (This flag is not used in page-direc-
tory entries that point to page tables.) Memory management software typically clears this
flag when a page is initially loaded into physical memory. The processor then sets this flag
the first time a page is accessed for a write operation. 

This flag is “sticky,” meaning that once set, the processor does not implicitly clear it. Only
software can clear this flag. The dirty and accessed flags are provided for use by memory
management software to manage the transfer of pages and page tables into and out of phys-
ical memory.

NOTE: The accesses used by the processor to set this bit may or may not be exposed to the
processor’s Self-Modifying Code detection logic. If the processor is executing code from the
same memory area that is being used for page table structures, the setting of the bit may or
may not result in an immediate change to the executing code stream.

16. Interrupt 11 Discussion Concerning EXT Flag Functioning Has Been 
Updated
The Volume 3, Chapter 5, Interrupt 11: Error Code section has been updated. This section now
provides a more complete description of the EXT flag. The impacted text is reproduced below.

----------------------------------------------------------------------

Exception Error Code

An error code containing the segment selector index for the segment descriptor that caused the viola-
tion is pushed onto the stack of the exception handler. If the EXT flag is set, it indicates that the
exception resulted from either:

• an external event (NMI or INTR) that caused an interrupt, which subsequently referenced a
not-present segment.

• a benign exception that subsequently referenced a not-present segment. A contributory
exception or page fault that subsequently referenced a not-present segment would cause a
double fault (#DF) to be generated instead of #NP.



18 IA-32 Software Developer’s Manual Documentation Changes 

Documentation Changes

17. Improved Information on Interpreting Machine-Check Error Codes
In Volume 3, Appendix E has been re-written to incorporate new IA32_MCi_STATUS data.
Encoding of the model-specific and other information fields is different for the 06H and 0FH
processor families. Changes are documented in the following sections.

----------------------------------------------------------------------

E.1. DECODING FAMILY 06H SPECIFIC MACHINE ERROR CODES
Machine error code reporting by processor family 06H is based on values read from
IA32_MCi_STATUS (Figure E-1).

Table E-1 shows how to interpret internal watchdog timer timeout machine-check errors reported in
IA32_MCi_STATUS for processor family 06H.

Figure E-1.  IA32_MCi_STATUS Encoding for Family 06H

        010

Internal watchdog timer timeout

        016 - 15

Architectural MCA Error Code

External Bus Error Codes
32 - 3156

Other information

MCA error codes
Model specific error codes

56

Reserved



IA-32 Software Developer’s Manual Documentation Changes 19

Documentation Changes

Table E-2 shows how to interpret errors that occur on the external bus.

Table E-1.  Family 06H Encoding of Internal Watchdog Timer Errors Reported in 
IA32_MCi_STATUS

Bit No. Bit Function Bit Description

Architectural MCA 
error code

0-15 0000010000000000 Internal watchdog timer timeout. Note that a 
watch-dog timer time-out only occurs if the 
BINIT driver is enabled.

Model-specific error 
codes

16-31 Reserved Reserved

Other information 32-56 Reserved Reserved

Table E-2.  Family 06H Encoding 32_MCi_STATUS for External Bus Errors 
Type Bit No. Bit Function Bit Description

MCA error 
codes

0-1 Reserved Reserved.

2-3 For external bus errors: 
special cycle or I/O

For internal timeout:
Reserved

For external bus errors:
• Bit 2 is set to 1 if the access was a special 

cycle.
• Bit 3 is set to 1 if the access was a special 

cycle OR a I/O cycle.

For internal timeout:
Reserved

4-7 For external bus errors:
Read/Write

For internal timeout:
Reserved

For external bus errors, 00WR:
W = 1 for writes
R = 1 for reads

For internal timeout:
Reserved

8-9 Reserved Reserved

10-11 10

01

External bus errors

Internal watchdog timer timeout

12-15 Reserved Reserved

Model specific 
errors

16-18 Reserved Reserved



20 IA-32 Software Developer’s Manual Documentation Changes 

Documentation Changes

Model specific 
errors

19-24 Bus queue request type 000000 for BQ_DCU_READ_TYPE error
000010 for BQ_IFU_DEMAND_TYPE error
000011 for BQ_IFU_DEMAND_NC_TYPE error
000100 for BQ_DCU_RFO_TYPE error
000101 for BQ_DCU_RFO_LOCK_TYPE error
000110 for BQ_DCU_ITOM_TYPE error
001000 for BQ_DCU_WB_TYPE error
001010 for BQ_DCU_WCEVICT_TYPE error
001011 for BQ_DCU_WCLINE_TYPE error
001100 for BQ_DCU_BTM_TYPE error

001101 for BQ_DCU_INTACK_TYPE error
001110 for BQ_DCU_INVALL2_TYPE error
001111 for BQ_DCU_FLUSHL2_TYPE error
010000 for BQ_DCU_PART_RD_TYPE error
010010 for BQ_DCU_PART_WR_TYPE error
010100 for BQ_DCU_SPEC_CYC_TYPE error
011000 for BQ_DCU_IO_RD_TYPE error
011001 for BQ_DCU_IO_WR_TYPE error
011100 for BQ_DCU_LOCK_RD_TYPE error
011110 for BQ_DCU_SPLOCK_RD_TYPE error

011101 for BQ_DCU_LOCK_WR_TYPE error
000010 for BQ_IFU_DEMAND_TYPE error
000011 for BQ_IFU_DEMAND_NC_TYPE error
000100 for BQ_DCU_RFO_TYPE error
000101 for BQ_DCU_RFO_LOCK_TYPE error
000110 for BQ_DCU_ITOM_TYPE error
001000 for BQ_DCU_WB_TYPE error
001010 for BQ_DCU_WCEVICT_TYPE error
001011 for BQ_DCU_WCLINE_TYPE error
001100 for BQ_DCU_BTM_TYPE error

001101 for BQ_DCU_INTACK_TYPE error
001110 for BQ_DCU_INVALL2_TYPE error
001111 for BQ_DCU_FLUSHL2_TYPE error
010000 for BQ_DCU_PART_RD_TYPE error
010010 for BQ_DCU_PART_WR_TYPE error
010100 for BQ_DCU_SPEC_CYC_TYPE error
011000 for BQ_DCU_IO_RD_TYPE error
011001 for BQ_DCU_IO_WR_TYPE error
011100 for BQ_DCU_LOCK_RD_TYPE error
011110 for BQ_DCU_SPLOCK_RD_TYPE error
011101 for BQ_DCU_LOCK_WR_TYPE error

Model specific 
errors

27-25 Bus queue error type 000 for BQ_ERR_HARD_TYPE error
001 for BQ_ERR_DOUBLE_TYPE error
010 for BQ_ERR_AERR2_TYPE error
100 for BQ_ERR_SINGLE_TYPE error
101 for BQ_ERR_AERR1_TYPE error

Table E-2.  Family 06H Encoding 32_MCi_STATUS for External Bus Errors  (Continued)
Type Bit No. Bit Function Bit Description



IA-32 Software Developer’s Manual Documentation Changes 21

Documentation Changes

Model specific 
errors

28 FRC error 1 if FRC error active

29 BERR 1 if BERR is driven

30 Internal BINIT 1 if BINIT driven for this processor

31 Reserved Reserved

Other 
information

32-34 Reserved Reserved

35 External BINIT 1 if BINIT is received from external bus.

36 RESPONSE PARITY 
ERROR

This bit is asserted in IA32_MCi_STATUS if this 
component has received a parity error on the 
RS[2:0]# pins for a response transaction. The 
RS signals are checked by the RSP# external 
pin.

37 BUS BINIT This bit is asserted in IA32_MCi_STATUS if this 
component has received a hard error response 
on a split transaction (one access that has 
needed to be split across the 64-bit external bus 
interface into two accesses).

38 TIMEOUT BINIT This bit is asserted in IA32_MCi_STATUS if this 
component has experienced a ROB time-out, 
which indicates that no micro-instruction has 
been retired for a predetermined period of time.

A ROB time-out occurs when the 15-bit ROB 
time-out counter carries a 1 out of its high order 
bit. The timer is cleared when a micro-instruction 
retires, an exception is detected by the core 
processor, RESET is asserted, or when a ROB 
BINIT occurs.

The ROB time-out counter is prescaled by the 8-
bit PIC timer which is a divide by 128 of the bus 
clock (the bus clock is 1:2, 1:3, 1:4 of the core 
clock). When a carry out of the 8-bit PIC timer 
occurs, the ROB counter counts up by one. 
While this bit is asserted, it cannot be overwritten 
by another error.

39-41 Reserved Reserved

42 HARD ERROR This bit is asserted in IA32_MCi_STATUS if this 
component has initiated a bus transactions 
which has received a hard error response. While 
this bit is asserted, it cannot be overwritten.

43 IERR This bit is asserted in IA32_MCi_STATUS if this 
component has experienced a failure that 
causes the IERR pin to be asserted. While this 
bit is asserted, it cannot be overwritten.

Table E-2.  Family 06H Encoding 32_MCi_STATUS for External Bus Errors  (Continued)
Type Bit No. Bit Function Bit Description



22 IA-32 Software Developer’s Manual Documentation Changes 

Documentation Changes

Other 
information

44 AERR This bit is asserted in IA32_MCi_STATUS if this 
component has initiated 2 failing bus 
transactions which have failed due to Address 
Parity Errors (AERR asserted). While this bit is 
asserted, it cannot be overwritten.

45 UECC The Uncorrectable ECC error bit is asserted in 
IA32_MCi_STATUS for uncorrected ECC errors. 
While this bit is asserted, the ECC syndrome 
field will not be overwritten.

46 CECC The correctable ECC error bit is asserted in 
IA32_MCi_STATUS for corrected ECC errors.

47-54 ECC syndrome The ECC syndrome field in IA32_MCi_STATUS 
contains the 8-bit ECC syndrome only if the error 
was a correctable/uncorrectable ECC error and 
there wasn't a previous valid ECC error 
syndrome logged in IA32_MCi_STATUS. 

A previous valid ECC error in 
IA32_MCi_STATUS is indicated by 
IA32_MCi_STATUS.bit45 (uncorrectable error 
occurred) being asserted. After processing an 
ECC error, machine-check handling software 
should clear IA32_MCi_STATUS.bit45 so that 
future ECC error syndromes can be logged.

55-56 Reserved Reserved.

Table E-2.  Family 06H Encoding 32_MCi_STATUS for External Bus Errors  (Continued)
Type Bit No. Bit Function Bit Description



IA-32 Software Developer’s Manual Documentation Changes 23

Documentation Changes

E.2. DECODING FAMILY 0FH SPECIFIC MACHINE ERROR CODES
Machine error code reporting by processor family 0FH is also based on values read from
IA32_MCi_STATUS (Figure E-2).

Table E-3 provides information on how to interpret processor family 0FH error code fields for
internal watchdog timer timeout machine-checks.

Figure E-2.  IA32_MCi_STATUS Encoding for Family 0FH

        010

Thread timeout indicator

        016 - 15

Architectural MCA Error Codes

External Bus Error Codes
32 - 3156

Architectural compound MCA error codes
Model specific error codes

27-26

Internal watchdog timer timeout

        016 - 15
Memory Hierarchy Error Codes
56

Architectural compound MCA error codes
Model specific error codes

56

Reserved

32 - 31

Other information

Other information



24 IA-32 Software Developer’s Manual Documentation Changes 

Documentation Changes

Table E-4 provides the information to interpret errors that occur on the external bus. Note that
processor family 0FH uses the compound MCA code format for external bus errors. Refer to
Chapter 14, Machine-Check Architecture for more information.

Table E-3.  Family 0FH Encoding of IA32_MCi_STATUS for Internal Watchdog Timer Errors
Bit 
No. 

Bit Function Bit Description

Architectural  
MCA error code

0-15 0000010000000000 Internal watchdog timer timeout. Note that a 
watch-dog timer time-out only occurs if the BINIT 
driver is enabled.

Model-specific 
error code

16-25 Reserved Reserved

26-27 Thread timeout 
indicator (TT)

Contains the indication of the thread which timed 
out:

01 - Thread 0 timed out
10 - Thread 1 timed out
11 - Both threads timed out

28-31 Reserved Reserved

Other  information 32-56 Reserved Reserved



IA-32 Software Developer’s Manual Documentation Changes 25

Documentation Changes

Table E-4.  Family 0FH Encoding of IA32_MCi_STATUS for External Bus Errors 
Bit 
No. 

Bit Function Bit Description

Architectural 
compound 
MCA error 
codes

0-1 Memory hierarchy level (LL) Refer to Table 14-5 for detailed decoding of the 
memory hierarchy level (LL) sub-field.

2-3 Memory and I/O (II)  Refer to Table 14-7 for a detailed decoding of 
the memory or IO (II) sub-field.

4-7 Request (RRRR) Refer to Table 14-6 for a detailed decoding of 
the request (RRRR) sub-field.

8 Timeout (T) Refer to Table 14-7 for a detailed decoding of 
the Timeout (T) Sub-Field.

9-10 Participation (PP) Refer to Table 14-7 for a detailed decoding of 
the participation (PP) sub-field.

11-15 00001 Bus and interconnect errors

Model-
specific error 
codes

16 FSB address parity Address parity error detected:
1 = Address parity error detected
0 = No address parity error

17 Response hard fail Hardware failure detected on response

18 Response parity Parity error detected on response

19 PIC and FSB data parity Data Parity detected on either PIC or FSB 
access

20 Processor Signature = 
00000F04H: Invalid PIC 
request

All other processors:
Reserved

Processor Signature = 00000F04H. Indicates 
error due to an invalid PIC request (access was 
made to PIC space with WB memory):

1 = Invalid PIC request error
0 = No Invalid PIC request error

Reserved

21 Pad state machine The state machine that tracks P and N data-
strobe relative timing has become 
unsynchronized or a glitch has been detected.

22 Pad strobe glitch Data strobe glitch

23 Pad address glitch Address strobe glitch

24-31 Reserved Reserved

Other 
Information

32-56 Reserved Reserved



26 IA-32 Software Developer’s Manual Documentation Changes 

Documentation Changes

Table E-5 provides information on how to interpret errors that occur within the memory hierarchy. 

Table E-5.  Family 0FH Encoding of IA32_MCi_STATUS for Memory Hierarchy Errors
Bit No. Bit Function Bit Description

Architectural 
compound 
MCA error 
code

0-1 Memory Hierarchy Level (LL) Refer to Table 14-5 for a detailed decoding of 
the memory hierarchy level (LL) sub-field.

2-3 Transaction Type (TT) Refer to Table 14-5 for a detailed decoding of 
the transaction type (TT) sub-field.

4-7 Request (RRRR) Refer to Table 14-6 for a detailed decoding of 
the request type (RRRR) sub-field.

8-15 00000001 Memory hierarchy error format

Model specific 
error codes

16-17 Tag Error Code Contains the tag error code for this machine 
check error:

00 = No error detected
01 = Parity error on tag miss with a clean 
line
10 = Parity error/multiple tag match on tag 
hit
11 = Parity error/multiple tag match on tag 
miss

18-19 Data Error Code Contains the data error code for this machine 
check error:

00 = No error detected
01 = Single bit error
10 = Double bit error on a clean line
11 = Double bit error on a modified line

20 L3 Error This bit is set if the machine check error 
originated in the L3 (it can be ignored for 
invalid PIC request errors):

1 = L3 error
0 = L2 error

21 Invalid PIC Request Indicates error due to invalid PIC request 
(access was made to PIC space with WB 
memory):

1 = Invalid PIC request error
0 = No invalid PIC request error

22-31 Reserved Reserved

Other 
Information

32-39 8-bit Error Count Holds a count of the number of errors since 
reset. The counter begins at 0 for the first error 
and saturates at a count of 254.

40-56 Reserved Reserved



IA-32 Software Developer’s Manual Documentation Changes 27

Documentation Changes

18. More information on the Functioning of Debug BPs after POP SS/MOV SS 
Has Been Provided
In Volume 3, Section 15.3.1.1; more information has been provided on the functioning of code
instruction breakpoints immediately after POP SS/MOV SS instructions. This data is reprinted
below (in context). Footnotes have been added to the POP and MOV sections in Volume 2 of the IA-
32 Intel Architecture Software Developer’s Manual which contain the same information for POP SS/
MOV SS (the footnotes are not reproduced here).

----------------------------------------------------------

15.3.1.1. INSTRUCTION-BREAKPOINT EXCEPTION CONDITION

The processor reports an instruction breakpoint when it attempts to execute an instruction at an
address specified in a breakpoint-address register (DB0 through DR3) that has been set up to detect
instruction execution (R/W flag is set to 0). Upon reporting the instruction breakpoint, the processor
generates a fault-class, debug exception (#DB) before it executes the target instruction for the break-
point. 

Instruction breakpoints are the highest priority debug exceptions. They are serviced before any other
exceptions detected during the decoding or execution of an instruction. Note, however, that if a code
instruction breakpoint is placed on an instruction located immediately after a POP SS/MOV SS
instruction, it may not be triggered. In most situations, POP SS/MOV SS will inhibit such interrupts
(see "MOV-Move" and "POP-Pop a Value from the Stack" in the IA-32 Intel Architecture Software
Developer’s Manual, Volume 2).

19. More Information on the LBR Stack Has Been Provided
The following information has been added to Volume 3 of the IA-32 Intel Architecture Software
Developer’s Manual, Section 15.5. This information describes the LBR stack and
MSR_LASTBRANCH_TOS 
-------------------------------------------------------

• Last Branch Record (LBR) Stack — The LBR stack is a circular stack that consists of four 
MSRs (MSR_LASTBRANCH_0 through MSR_LASTBRANCH_3) for the Pentium 4 and 
Intel Xeon processor family [CPUID family 0FH, models 0H-02H]. The LBR stack consists of 
16 MSR pairs (MSR_LASTBRANCH_0_FROM_LIP through 
MSR_LASTBRANCH_15_FROM_LIP and MSR_LASTBRANCH_0_TO_LIP through 
MSR_LASTBRANCH_15_TO_LIP) for the Pentium 4 and Intel Xeon processor family 
[CPUID family 0FH, model 03H].

• Last Branch Record Top-of-Stack (TOS) Pointer — The TOS Pointer MSR contains a 2-bit 
pointer (0-3) to the MSR in the LBR stack that contains the most recent branch, interrupt, or 
exception recorded for the Pentium 4 and Intel Xeon processor family [CPUID family 0FH, 
models 0H-02H]. This pointer becomes a 4-bit pointer (0-15) for the Pentium 4 and Intel Xeon 
processor family [CPUID family 0FH, model 03H]. 

See also: Table 15-2, Figure 15-3, and Figure 15-4 below.



28 IA-32 Software Developer’s Manual Documentation Changes 

Documentation Changes

Table 15-2.  LBR MSR Stack Structure for the Pentium 4 and Intel Xeon Processor Family 
LBR MSRs for Family 0FH, Models 0H-
02H; MSRs at locations 1DBH-1DEH.

Decimal Value of TOS Pointer in 
MSR_LASTBRANCH_TOS (bits 
0-1)

MSR_LASTBRANCH_0
MSR_LASTBRANCH_1
MSR_LASTBRANCH_2
MSR_LASTBRANCH_3

0
1
2
3

LBR MSRs for Family 0FH, Models; 
MSRs at locations 680H-68FH.

Decimal Value of TOS Pointer in 
MSR_LASTBRANCH_TOS (bits 
0-3)

MSR_LASTBRANCH_0_FROM_LIP
MSR_LASTBRANCH_1_FROM_LIP
MSR_LASTBRANCH_2_FROM_LIP
MSR_LASTBRANCH_3_FROM_LIP
MSR_LASTBRANCH_4_FROM_LIP
MSR_LASTBRANCH_5_FROM_LIP
MSR_LASTBRANCH_6_FROM_LIP
MSR_LASTBRANCH_7_FROM_LIP
MSR_LASTBRANCH_8_FROM_LIP
MSR_LASTBRANCH_9_FROM_LIP
MSR_LASTBRANCH_10_FROM_LIP
MSR_LASTBRANCH_11_FROM_LIP
MSR_LASTBRANCH_12_FROM_LIP
MSR_LASTBRANCH_13_FROM_LIP
MSR_LASTBRANCH_14_FROM_LIP
MSR_LASTBRANCH_15_FROM_LIP

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

LBR MSRs for Family 0FH, Model 03H; 
MSRs at locations 6C0H-6CFH.

MSR_LASTBRANCH_0_TO_LIP
MSR_LASTBRANCH_1_TO_LIP
MSR_LASTBRANCH_2_TO_LIP
MSR_LASTBRANCH_3_TO_LIP
MSR_LASTBRANCH_4_TO_LIP
MSR_LASTBRANCH_5_TO_LIP
MSR_LASTBRANCH_6_TO_LIP
MSR_LASTBRANCH_7_TO_LIP
MSR_LASTBRANCH_8_TO_LIP
MSR_LASTBRANCH_9_TO_LIP
MSR_LASTBRANCH_10_TO_LIP
MSR_LASTBRANCH_11_TO_LIP
MSR_LASTBRANCH_12_TO_LIP
MSR_LASTBRANCH_13_TO_LIP
MSR_LASTBRANCH_14_TO_LIP
MSR_LASTBRANCH_15_TO_LIP

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15



IA-32 Software Developer’s Manual Documentation Changes 29

Documentation Changes

Volume 3, Appendix B, Table B-1 has also been updated to reflect new LBR stack information.
Impacted cells are reproduced below.

----------------------------------------------------------------------------

Figure 15-3.  MSR_LASTBRANCH_TOS MSR Layout for the Pentium 4 and Intel Xeon 
Processor Family

Figure 15-4.  LBR MSR Branch Record Layout for the Pentium 4 and Intel Xeon Processor 
Family

31

Family 0FH, Models 01-02H

Reserved

Top-of-stack pointer (TOS)

31

Family 0FH, Model 03H+

Reserved

Top-of-stack pointer (TOS)

3 0

1  0

63

From Linear Address

0

To Linear Address

63

From Linear Address

0

063

To Linear Address

32 - 31
MSR_LASTBRANCH_0 through MSR_LASTBRANCH_3 
CPUID Family 0FH, Models 0H-02H

Reserved

CPUID Family 0FH, Model 03H

Reserved

MSR_LASTBRANCH_0_FROM_LIP through MSR_LASTBRANCH_15_FROM_LIP

32 - 31

32 - 31

MSR_LASTBRANCH_TO_LIP through MSR_LASTBRANCH_15_TO_LIP



30 IA-32 Software Developer’s Manual Documentation Changes 

Documentation Changes

Table B-1.  MSRs in the Pentium 4 and Intel Xeon Processors 
Register 
Address

Register Name
Fields and Flags

Model 
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

1DAH 474 MSR_LASTBRANCH
_TOS

0, 1, 2, 
3

Unique Last Branch Record Stack TOS. (R) 
Contains an index (0-3 or 0-15) that 
points to the top of the last branch 
record stack (that is, that points the 
index of the MSR containing the most 
recent branch record.

1DBH 475 MSR_LASTBRANCH
_0

0, 1, 2 Unique Last Branch Record 0. (R/W) One of 
four last branch record registers on the 
last branch record stack. It contains 
pointers to the source and destination 
instruction for one of the last four 
branches, exceptions, or interrupts that 
the processor took.

NOTE: MSR_LASTBRANCH_0 
through MSR_LASTBRANCH_3 at 
1DBH-1DEH are available only on 
family 0FH, models 0H-02H. They 
have been replaced by the MSRs at 
680H-68FH and 6C0H-6CFH..

1DCH 476 MSR_LASTBRANCH
_1

0, 1, 2 Unique Last Branch Record 1. See 
description of the 
MSR_LASTBRANCH_0 MSR at 
1DBH.

1DDH 477 MSR_LASTBRANCH
_2

0, 1, 2 Unique Last Branch Record 2. See 
description of the 
MSR_LASTBRANCH_0 MSR at 
1DBH.

1DEH 478 MSR_LASTBRANCH
_3

0, 1, 2 Unique Last Branch Record 3. See 
description of the 
MSR_LASTBRANCH_0 MSR at 
1DBH.

680H 1664 MSR_LASTBRANCH
_0_FROM_LIP

3 Unique Last Branch Record 0. (R/W) One of 
16 pairs of last branch record registers 
on the last branch record stack (680H-
68FH). This part of the stack contains 
pointers to the source instruction for 
one of the last 16 branches, 
exceptions, or interrupts taken by the 
processor.

NOTE: The MSRs at 680H-68FH, 
6C0H-6CfH are not available in 
processor releases before family 0FH, 
model 03H. These MSRs replace 
MSRs previously located at 1DBH-
1DEH.which performed the same 
function for early releases.

681H 1665 MSR_LASTBRANCH
_1_FROM_LIP

3 Unique Last Branch Record 1. See 
description of MSR_LASTBRANCH_0 
at 680H.

682H 1666 MSR_LASTBRANCH
_2_FROM_LIP

3 Unique Last Branch Record 2. See 
description of MSR_LASTBRANCH_0 
at 680H.



IA-32 Software Developer’s Manual Documentation Changes 31

Documentation Changes

683H 1667 MSR_LASTBRANCH
_3_FROM_LIP

3 Unique Last Branch Record 3. See 
description of MSR_LASTBRANCH_0 
at 680H.

684H 1668 MSR_LASTBRANCH
_4_FROM_LIP

3 Unique Last Branch Record 4. See 
description of MSR_LASTBRANCH_0 
at 680H.

685H 1669 MSR_LASTBRANCH
_5_FROM_LIP

3 Unique Last Branch Record 5. See 
description of MSR_LASTBRANCH_0 
at 680H.

686H 1670 MSR_LASTBRANCH
_6_FROM_LIP

3 Unique Last Branch Record 6. See 
description of MSR_LASTBRANCH_0 
at 680H.

687H 1671 MSR_LASTBRANCH
_7_FROM_LIP

3 Unique Last Branch Record 7. See 
description of MSR_LASTBRANCH_0 
at 680H.

688H 1672 MSR_LASTBRANCH
_8_FROM_LIP

3 Unique Last Branch Record 8. See 
description of MSR_LASTBRANCH_0 
at 680H.

689H 1673 MSR_LASTBRANCH
_9_FROM_LIP

3 Unique Last Branch Record 9. See 
description of MSR_LASTBRANCH_0 
at 680H.

68AH 1674 MSR_LASTBRANCH
_10_FROM_LIP

3 Unique Last Branch Record 10. See 
description of MSR_LASTBRANCH_0 
at 680H.

68BH 1675 MSR_LASTBRANCH
_11_FROM_LIP

3 Unique Last Branch Record 11. See 
description of MSR_LASTBRANCH_0 
at 680H.

68CH 1676 MSR_LASTBRANCH
_12_FROM_LIP

3 Unique Last Branch Record 12. See 
description of MSR_LASTBRANCH_0 
at 680H.

68DH 1677 MSR_LASTBRANCH
_13_FROM_LIP

3 Unique Last Branch Record 13. See 
description of MSR_LASTBRANCH_0 
at 680H.

68EH 1678 MSR_LASTBRANCH
_14_FROM_LIP

3 Unique Last Branch Record 14. See 
description of MSR_LASTBRANCH_0 
at 680H.

68FH 1679 MSR_LASTBRANCH
_15_FROM_LIP

3 Unique Last Branch Record 15. See 
description of MSR_LASTBRANCH_0 
at 680H.

6C0H 1728 MSR_LASTBRANCH
_0_TO_LIP

3 Unique Last Branch Record 0. (R/W) One of 
16 pairs of last branch record registers 
on the last branch record stack (6C0H-
6CFH). This part of the stack contains 
pointers to the destination instruction 
for one of the last 16 branches, 
exceptions, or interrupts that the 
processor took.

Table B-1.  MSRs in the Pentium 4 and Intel Xeon Processors  (Continued)
Register 
Address

Register Name
Fields and Flags

Model 
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec



32 IA-32 Software Developer’s Manual Documentation Changes 

Documentation Changes

6C1H 1729 MSR_LASTBRANCH
_1_TO_LIP

3 Unique Last Branch Record 1. See 
description of MSR_LASTBRANCH_0 
at 6C0H.

6C2H 1730 MSR_LASTBRANCH
_2_TO_LIP

3 Unique Last Branch Record 2. See 
description of MSR_LASTBRANCH_0 
at 6C0H.

6C3H 1731 MSR_LASTBRANCH
_3_TO_LIP

3 Unique Last Branch Record 3. See 
description of MSR_LASTBRANCH_0 
at 6C0H.

6C4H 1732 MSR_LASTBRANCH
_4_TO_LIP

3 Unique Last Branch Record 4. See 
description of MSR_LASTBRANCH_0 
at 6C0H.

6C5H 1733 MSR_LASTBRANCH
_5_TO_LIP

3 Unique Last Branch Record 5. See 
description of MSR_LASTBRANCH_0 
at 6C0H.

6C6H 1734 MSR_LASTBRANCH
_6_TO_LIP

3 Unique Last Branch Record 6. See 
description of MSR_LASTBRANCH_0 
at 6C0H.

6C7H 1735 MSR_LASTBRANCH
_7_TO_LIP

3 Unique Last Branch Record 7. See 
description of MSR_LASTBRANCH_0 
at 6C0H.

6C8H 1736 MSR_LASTBRANCH
_8_TO_LIP

3 Unique Last Branch Record 8. See 
description of MSR_LASTBRANCH_0 
at 6C0H.

6C9H 1737 MSR_LASTBRANCH
_9_TO_LIP

3 Unique Last Branch Record 9. See 
description of MSR_LASTBRANCH_0 
at 6C0H.

6CAH 1738 MSR_LASTBRANCH
_10_TO_LIP

3 Unique Last Branch Record 10. See 
description of MSR_LASTBRANCH_0 
at 6C0H.

6CBH 1739 MSR_LASTBRANCH
_11_TO_LIP

3 Unique Last Branch Record 11. See 
description of MSR_LASTBRANCH_0 
at 6C0H.

6CCH 1740 MSR_LASTBRANCH
_12_TO_LIP

3 Unique Last Branch Record 12. See 
description of MSR_LASTBRANCH_0 
at 6C0H.

6CDH 1741 MSR_LASTBRANCH
_13_TO_LIP

3 Unique Last Branch Record 13. See 
description of MSR_LASTBRANCH_0 
at 6C0H.

6CEH 1742 MSR_LASTBRANCH
_14_TO_LIP

3 Unique Last Branch Record 14. See 
description of MSR_LASTBRANCH_0 
at 6C0H.

6CFH 1743 MSR_LASTBRANCH
_15_TO_LIP

3 Unique Last Branch Record 15. See 
description of MSR_LASTBRANCH_0 
at 6C0H.

Table B-1.  MSRs in the Pentium 4 and Intel Xeon Processors  (Continued)
Register 
Address

Register Name
Fields and Flags

Model 
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec



IA-32 Software Developer’s Manual Documentation Changes 33

Documentation Changes

20. Limited Availability of Two MSR’s Have Been Documented
A note has been added to Volume 3, Chapter 15, Table 15-4. The note indicates the availability of
MSR_IQ_ESCR0 and MSR_IQ_ESCR1. The impacted table cells are reproduced below.

---------------------------------------------------------------------

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr

MSR_IQ_COUNTER0 12 30CH MSR_IQ_CCCR0 36CH MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01
MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

MSR_IQ_COUNTER1 13 30DH MSR_IQ_CCCR1 36DH MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01
MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

MSR_IQ_COUNTER2 14 30EH MSR_IQ_CCCR2 36EH MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11
MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6
0
2
1

3B9H
3CDH
3E1H
3BBH
3BDH
3CBH

MSR_IQ_COUNTER3 15 30FH MSR_IQ_CCCR3 36FH MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11
MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6
0
2
1

3B9H
3CDH
3E1H
3BBH
3BDH
3CBH

MSR_IQ_COUNTER4 16 310H MSR_IQ_CCCR4 370H MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01
MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

MSR_IQ_COUNTER5 17 311H MSR_IQ_CCCR5 371H MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11
MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6
0
2
1

3B9H
3CDH
3E1H
3BBH
3BDH
3CBH

1 MSR_IQ_ESCR0 and MSR_IQ_ESCR1 are available only on early processor builds (family 0FH, 
models 01H-02H). These MSRs are not available on later versions.



34 IA-32 Software Developer’s Manual Documentation Changes 

Documentation Changes

21. The Microcode Update Facilities Section Has Been Updated
Volume 3 of the IA-32 Intel Architecture Software Developer’s Manual, Section 9.11 has been
updated. The new information has been added that documents the microcode update facilities added
on new processors. 

----------------------------------------------------------------------

9.11. MICROCODE UPDATE FACILITIES
The Pentium 4, Intel Xeon, and P6 family processors have the capability to correct errata by loading
an Intel-supplied data block into the processor. The data block is called a microcode update. This
section describes the mechanisms the BIOS needs to provide in order to use this feature during
system initialization. It also describes a specification that permits the incorporation of future updates
into a system BIOS.

Intel considers the release of a microcode update for a silicon revision to be the equivalent of a
processor stepping and completes a full-stepping level validation for releases of microcode updates.

A microcode update is used to correct errata in the processor. The BIOS, which has an update loader,
is responsible for loading the update on processors during system initialization (Figure 9-7). There
are two steps to this process: the first is to incorporate the necessary update data blocks into the
BIOS; the second is to load update data blocks into the processor.

9.11.1. Microcode Update
A microcode update consists of an Intel-supplied binary that contains a descriptive header and data.
No executable code resides within the update. Each microcode update is tailored for a specific list
of processor signatures. A mismatch of the processor’s signature with the signature contained in the
update will result in a failure to load. A processor signature includes the extended family, extended
model, type, family, model, and stepping of the processor (starting with processor family 0fH, model
03H, a given microcode update may be associated with one of multiple processor signatures; see
Section 9.11.2. for detail).

Microcode updates are composed of a multi-byte header, followed by encrypted data and then by an
optional extended signature table. Table 9-1 provides a definition of the fields; Table 9-2 shows the
format of an update. 

The header is 48 bytes. The first 4 bytes of the header contain the header version. The update header
and its reserved fields are interpreted by software based upon the header version. An encoding
scheme guards against tampering and provides a means for determining the authenticity of any given

Figure 9-7.  Applying Microcode Updates

CPU

BIOS

Update
BlocksNew Update

Update
Loader



IA-32 Software Developer’s Manual Documentation Changes 35

Documentation Changes

update. For microcode updates with a data size field equal to 00000000H, the size of the microcode
update is 2048 bytes. The first 48 bytes contain the microcode update header. The remaining 2000
bytes contain encrypted data. 

For microcode updates with a data size not equal to 00000000H, the total size field specifies the size
of the microcode update. The first 48 bytes contain the microcode update header. The second part
of the microcode update is the encrypted data.  The data size field of the microcode update header
specifies the encrypted data size, its value must be a multiple of the size of DWORD.  The optional
extended signature table if implemented follows the encrypted data, and its size is calculated by
(Total Size – (Data Size + 48)). 

NOTE
The optional extended signature table is supported starting with processor family
0FH, model 03H.

. 
Table 9-1.  Microcode Update Field Definitions

Field Name Offset
(bytes)

Length 
(bytes)

Description

Header Version 0 4 Version number of the update header.

Update Revision 4 4 Unique version number for the update, the basis for 
the update signature provided by the processor to 
indicate the current update functioning within the 
processor.  Used by the BIOS to authenticate the 
update and verify that the processor loads 
successfully.  The value in this field cannot be used for 
processor stepping identification alone.  This is a 
signed 32-bit number.

Date 8 4 Date of the update creation in binary format: 
mmddyyyy (e.g. 07/18/98 is 07181998H).

Processor 
Signature

12 4 Extended family, extended model, type, family, model, 
and stepping of processor that requires this particular 
update revision (e.g., 00000650H).  Each microcode 
update is designed specifically for a given extended 
family, extended model, type, family, model, and 
stepping of the processor.  The BIOS uses the 
processor signature field in conjunction with the 
CPUID instruction to determine whether or not an 
update is appropriate to load on a processor.  The 
information encoded within this field exactly 
corresponds to the bit representations returned by the 
CPUID instruction.

Checksum 16 4 Checksum of update data and header.  Used to verify 
the integrity of the update header and data.  Checksum 
is correct when the summation of the DWORDs that 
comprise the microcode update results in 00000000H.

Loader Revision 20 4 Version number of the loader program needed to 
correctly load this update. The initial version is 
00000001H.

Processor Flags 24 4 Platform type information is encoded in the lower 8 bits 
of this 4-byte field.  Each bit represents a particular 
platform type for a given CPUID.  The BIOS uses the 
processor flags field in conjunction with the platform Id 
bits in MSR (17H) to determine whether or not an 
update is appropriate to load on a processor.  Multiple 
bits may be set representing support for multiple 
platform IDs.



36 IA-32 Software Developer’s Manual Documentation Changes 

Documentation Changes

Data Size 28 4 Specifies the size of the encrypted data in bytes, and 
must be a multiple of DWORDs.  If this value is 
00000000H, then the microcode update encrypted 
data is 2000 bytes (or 500 DWORDs).

Total Size 32 4 Specifies the total size of the microcode update in 
bytes.  It is the summation of the header size, the 
encrypted data size and the size of the optional 
extended signature table.

Reserved 36 12 Reserved fields for future expansion

Update Data 48 Data Size 
or 2000

Update data

Extended 
Signature Count

Data Size + 
48 

4 Specifies the number of extended signature structures 
(Processor Signature[n], processor flags[n] and 
checksum[n]) that exist in this microcode update.

Extended 
Checksum

Data Size + 
52

4 Checksum of update extended processor signature 
table.  Used to verify the integrity of the extended 
processor signature table.  Checksum is correct when 
the summation of the DWORDs that comprise the 
extended processor signature table results in 
00000000H.

Reserved Data Size + 
56

12 Reserved fields

Processor 
Signature[n]

Data Size + 
68 + (n * 12)

4 Extended family, extended model, type, family, model, 
and stepping of processor that requires this particular 
update revision (e.g., 00000650H).  Each microcode 
update is designed specifically for a given extended 
family, extended model, type, family, model, and 
stepping of the processor.  The BIOS uses the 
processor signature field in conjunction with the 
CPUID instruction to determine whether or not an 
update is appropriate to load on a processor. The 
information encoded within this field exactly 
corresponds to the bit representations returned by the 
CPUID instruction.

Processor Flags[n] Data Size + 
72 + (n * 12)

4 Platform type information is encoded in the lower 8 bits 
of this 4-byte field.  Each bit represents a particular 
platform type for a given CPUID.  The BIOS uses the 
processor flags field in conjunction with the platform Id 
bits in MSR (17H) to determine whether or not an 
update is appropriate to load on a processor.  Multiple 
bits may be set representing support for multiple 
platform IDs.

Checksum[n] Data Size + 
76 + (n * 12)

4 Used by utility software to decompose a microcode 
update into multiple microcode updates where each of 
the new microcode updates is constructed without the 
optional extended processor signature table.

Table 9-1.  Microcode Update Field Definitions (Continued)
Field Name Offset

(bytes)
Length 
(bytes)

Description



IA-32 Software Developer’s Manual Documentation Changes 37

Documentation Changes

9.11.2. Optional Extended Signature Table
The extended signature table is a structure that may be appended to the end of the encrypted data
when the encrypted data only supports a single processor signature (optional case). The extended
signature table will always be present when the encrypted data supports multiple processor step-
pings and/or models (required case). 

The extended signature table consists of a 20-byte extended signature header structure, which
contains the extended signature count, the extended processor signature table checksum, and 12
reserved bytes (Table 9-3). Following the extended signature header structure, the extended signa-
ture table contains 0-to-n extended processor signature structures.

Table 9-2.  Microcode Update Format 
31 24 16 8 0 Bytes

Header Version 0

Update Revision 4

Month: 8 Day: 8 Year: 16 8

Processor Signature (CPUID) 12

R
es: 4

E
xtended

Fam
ily: 8

E
xtended 

M
ode: 4

R
eserved: 2

Type: 2

Fam
ily: 4

M
odel: 4

Stepping: 4

Checksum 16

Loader Revision 20

Processor Flags 24

Reserved (24 bits)

P
7

P
6

P
5

P
4

P
3

P
2

P
1

P
0

Data Size 28

Total Size 32

Reserved (12 Bytes) 36

Update Data (Data Size bytes, or 2000 Bytes if Data Size = 00000000H) 48

Extended Signature Count ‘n’ Data Size 
+ 48

Extended Processor Signature Table Checksum Data Size 
+ 52

Reserved (12 Bytes) Data Size 
+ 56

Processor Signature[n] Data Size 
+ 68 + 
(n * 12)

Processor Flags[n] Data Size 
+ 72 + 
(n * 12)

Checksum[n] Data Size 
+ 76 + 
(n * 12)



38 IA-32 Software Developer’s Manual Documentation Changes 

Documentation Changes

Each processor signature structure consist of the processor signature, processor flags, and a
checksum (Table 9-4). 

The extended signature count in the extended signature header structure indicates the number of
processor signature structures that exist in the extended signature table.  

The extended processor signature table checksum is a checksum of all DWORDs that comprise the
extended signature table. That includes the extended signature count, extended processor signature
table checksum, 12 reserved bytes and the n processor signature structures. A valid extended signa-
ture table exists when the result of a DWORD checksum is 00000000H.

9.11.3. Processor Identification
Each microcode update is designed to for a specific processor or set of processors. To determine the
correct microcode update to load, software must ensure that one of the processor signatures
embedded in the microcode update matches the 32-bit processor signature returned by the CPUID
instruction when executed by the target processor with EAX = 1.  Attempting to load a microcode
update that does not match a processor signature embedded in the microcode update with the
processor signature returned by CPUID will cause the processor to reject the update.

Example 9-1 shows how to check for a valid processor signature match between the processor and
microcode update.

Example 9-1.  Pseudo Code to Validate the Processor Signature

ProcessorSignature ← CPUID(1):EAX

If (Update.HeaderVersion == 00000001h)
{

// first check the ProcessorSignature field
If (ProcessorSignature == Update.ProcessorSignature)

Success

// if extended signature is present
Else If (Update.TotalSize > (Update.DataSize + 48))
{

//
// Assume the Data Size has been used to calculate the 
// location of Update.ProcessorSignature[0].
//

For (N ← 0; ((N < Update.ExtendedSignatureCount) AND 

Table 9-3.  Extended Processor Signature Table Header Structure
Extended Signature Count ‘n’ Data Size + 48
Extended Processor Signature Table Checksum Data Size + 52
Reserved (12 Bytes) Data Size + 56

Table 9-4.  Processor Signature Structure
Processor Signature[n] Data Size + 68 + (n * 12)
Processor Flags[n] Data Size + 72 + (n * 12)
Checksum[n] Data Size + 76 + (n * 12)



IA-32 Software Developer’s Manual Documentation Changes 39

Documentation Changes

 (ProcessorSignature != Update.ProcessorSignature[N])); N++);

// if the loops ended when the iteration count is
// less than the number of processor signatures in
// the table, we have a match

If (N < Update.ExtendedSignatureCount)
Success

Else
Fail

}
Else

Fail
Else

Fail 

9.11.4. Platform Identification
In addition to verifying the processor signature, the intended processor platform type must be deter-
mined to properly target the microcode update. The intended processor platform type is determined
by reading the IA32_PLATFORM_ID register, (MSR 17H).  This 64-bit register must be read using
the RDMSR instruction. 

The three platform ID bits, when read as a binary coded decimal (BCD) number, indicate the bit
position in the microcode update header’s processor flags field associated with the installed
processor.  The processor flags in the 48-byte header and the processor flags field associated with
the extended processor signature structures may have multiple bits set. Each set bit represents a
different platform ID that the update supports.

Register Name: IA32_PLATFORM_ID

MSR Address: 017H
Access: Read Only

IA32_PLATFORM_ID is a 64-bit register accessed only when referenced as a Qword through a RDMSR
instruction.

To validate the platform information, software may implement an algorithm similar to the algo-
rithms in Example 9-2.

Table 9-5.  Processor Flags
Bit Descriptions
63:53 Reserved
52:50 Platform Id Bits (RO). The field gives information concerning the intended platform for the 

processor.  See also Table 9-2.

52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

49:0 Reserved



40 IA-32 Software Developer’s Manual Documentation Changes 

Documentation Changes

Example 9-2.  Pseudo Code Example of Processor Flags Test

Flag ← 1 << IA32_PLATFORM_ID[52:50]

If (Update.HeaderVersion == 00000001h)
{

If (Update.ProcessorFlags & Flag)
{

Load Update
}
Else
{

//
// Assume the Data Size has been used to calculate the 
// location of Update.ProcessorSignature[N] and a match
// on Update.ProcessorSignature[N] has already succeeded
//

If (Update.ProcessorFlags[n] & Flag)
{

Load Update
}

}
}

9.11.5. Microcode Update Checksum
Each microcode update contains a DWORD checksum located in the update header.  It is software’s
responsibility to ensure that a microcode update is not corrupt. To check for a corrupt microcode
update, software must perform a unsigned DWORD (32-bit) checksum of the microcode update.
Even though some fields are signed, the checksum procedure treats all DWORDs as unsigned.
Microcode updates with a header version equal to 00000001H must sum all DWORDs that comprise
the microcode update. A valid checksum check will yield a value of 00000000H. Any other value
indicates the microcode update is corrupt and should not be loaded.

The checksum algorithm shown by the pseudo code in Example 9-3 treats the microcode update as
an array of unsigned DWORDs. If the data size DWORD field at byte offset 32 equals 00000000H,
the size of the encrypted data is 2000 bytes, resulting in 500 DWORDs. Otherwise the microcode
update size in DWORDs = (Total Size / 4).



IA-32 Software Developer’s Manual Documentation Changes 41

Documentation Changes

Example 9-3.  Pseudo Code Example of Checksum Test

N ← 512

If (Update.DataSize != 00000000H)
N ← Update.TotalSize / 4

ChkSum ← 0
For (I ← 0; I < N; I++)
{

ChkSum ← ChkSum + MicrocodeUpdate[I]
}

If (ChkSum == 00000000H)
Success

Else
Fail

9.11.6. Microcode Update Loader
This section describes an update loader used to load an update into a Pentium 4, Intel Xeon, or P6
family processor. It also discusses the requirements placed on the BIOS to ensure proper loading.
The update loader described contains the minimal instructions needed to load an update. The
specific instruction sequence that is required to load an update is dependent upon the loader revision
field contained within the update header. This revision is expected to change infrequently (poten-
tially, only when new processor models are introduced).

Example 9-4 below represents the update loader with a loader revision of 00000001H. Note that the
microcode update must be aligned on a 16-byte boundary.

Example 9-4.  Assembly Code Example of Simple Microcode Update Loader

mov ecx,79h ; MSR to read in ECX
xor eax,eax ; clear EAX
xor ebx,ebx ; clear EBX
mov ax,cs ; Segment of microcode update
shl eax,4
mov bx,offset Update; Offset of microcode update
add eax,ebx ; Linear Address of Update in EAX
add eax,48d ; Offset of the Update Data within the Update
xor edx,edx ; Zero in EDX
WRMSR ; microcode update trigger



42 IA-32 Software Developer’s Manual Documentation Changes 

Documentation Changes

The loader shown in Example 9-4 assumes that update is the address of a microcode update (header
and data) embedded within the code segment of the BIOS.  It also assumes that the processor is oper-
ating in real mode. The data may reside anywhere in memory, aligned on a 16-byte boundary, that
is accessible by the processor within its current operating mode (real, protected).

Before the BIOS executes the microcode update trigger (WRMSR) instruction, the following must
be true:

• EAX contains the linear address of the start of the update data

• EDX contains zero

• ECX contains 79H (address of IA32_BIOS_UPDT_TRIG)

Other requirements are:

• If the update is loaded while the processor is in real mode, then the update data may not cross a
segment boundary.

• If the update is loaded while the processor is in real mode, then the update data may not exceed
a segment limit.

• If paging is enabled, pages that are currently present must map the update data.

• The microcode update data requires a 16-byte boundary alignment.

9.11.6.1. Hard Resets in Update Loading

The effects of a loaded update are cleared from the processor upon a hard reset. Therefore, each time
a hard reset is asserted during the BIOS POST, the update must be reloaded on all processors that
observed the reset. The effects of a loaded update are, however, maintained across a processor INIT.
There are no side effects caused by loading an update into a processor multiple times.

9.11.6.2. Update in a Multiprocessor System

A multiprocessor (MP) system requires loading each processor with update data appropriate for its
CPUID and platform ID bits. The BIOS is responsible for ensuring that this requirement is met and
that the loader is located in a module executed by all processors in the system. If a system design
permits multiple steppings of Pentium 4, Intel Xeon, and P6 family processors to exist concurrently;
then the BIOS must verify individual processors against the update header information to ensure
appropriate loading. Given these considerations, it is most practical to load the update during MP
initialization.



IA-32 Software Developer’s Manual Documentation Changes 43

Documentation Changes

9.11.6.3. Update in a System with Intel HT Technology 

Intel Hyper-Threading Technology (HT Technology) has implications on the loading of the micro-
code update. The update must be loaded for each core in a physical processor.  Thus, for a processor
with HT Technology, only one logical processor per core is required to load the microcode update.
Each individual logical processor can independently load the update.  However, MP initialization
must provide some mechanism (e.g. a software semaphore) to force serialization of microcode
update loads and to prevent simultaneous load attempts to the same core.

9.11.6.4. Update Loader Enhancements

The update loader presented in Section 9.11.6., Microcode Update Loader is a minimal implemen-
tation that can be enhanced to provide additional functionality. Potential enhancements are
described below:

• BIOS can incorporate multiple updates to support multiple steppings of the Pentium 4, Intel
Xeon, and P6 family processors. This feature provides for operating in a mixed stepping
environment on an MP system and enables a user to upgrade to a later version of the processor.
In this case, modify the loader to check the CPUID and platform ID bits of the processor that it
is running on against the available headers before loading a particular update. The number of
updates is only limited by available BIOS space.

• A loader can load the update and test the processor to determine if the update was loaded
correctly. See Section 9.11.7., Update Signature and Verification.

• A loader can verify the integrity of the update data by performing a checksum on the double
words of the update summing to zero. See Section 9.11.5., Microcode Update Checksum.

• A loader can provide power-on messages indicating successful loading of an update.

9.11.7. Update Signature and Verification
The Pentium 4, Intel Xeon, and P6 family processors provide capabilities to verify the authenticity
of a particular update and to identify the current update revision. This section describes the model-
specific extensions of processors that support this feature. The update verification method below
assumes that the BIOS will only verify an update that is more recent than the revision currently
loaded in the processor.

CPUID returns a value in a model specific register in addition to its usual register return values.  The
semantics of CPUID cause it to deposit an update ID value in the 64-bit model-specific register at
address 08BH (IA32_BIOS_SIGN_ID).  If no update is present in the processor, the value in the
MSR remains unmodified. The BIOS must pre-load a zero into the MSR before executing CPUID.
If a read of the MSR at 8BH still returns zero after executing CPUID, this indicates that no update
is present.



44 IA-32 Software Developer’s Manual Documentation Changes 

Documentation Changes

The update ID value returned in the EDX register after RDMSR executes indicates the revision of
the update loaded in the processor. This value, in combination with the CPUID value returned in the
EAX register, uniquely identifies a particular update. The signature ID can be directly compared
with the update revision field in a microcode update header for verification of a correct load. No
consecutive updates released for a given stepping of a processor may share the same signature. The
processor signature returned by CPUID differentiates updates for different steppings.

9.11.7.1. Determining the Signature

An update that is successfully loaded into the processor provides a signature that matches the update
revision of the currently functioning revision. This signature is available any time after the actual
update has been loaded. Requesting the signature does not have a negative impact upon a loaded
update.  

The procedure for determining this signature shown in Example 9-5.

Example 9-5.  Assembly Code to Retrieve the Update Revision

MOV ECX, 08BH;IA32_BIOS_SIGN_ID
XOR EAX, EAX;clear EAX
XOR EDX, EDX;clear EDX
WRMSR ;Load 0 to MSR at 8BH
MOV EAX, 1
cpuid
MOV ECX, 08BH;IA32_BIOS_SIGN_ID
rdmsr ;Read Model Specific Register

If there is an update active in the processor, its revision is returned in the EDX register after the
RDMSR instruction executes.

IA32_BIOS_SIGN_ID Microcode Update Signature Register 

MSR Address: 08BH Accessed as a Qword
Default Value: XXXX XXXX XXXX XXXXh
Access: Read/Write

The IA32_BIOS_SIGN_ID register is used to report the microcode update signature when CPUID
executes.  The signature is returned in the upper DWORD (Table 9-6).

9.11.7.2. Authenticating the Update

An update may be authenticated by the BIOS using the signature primitive, described above, and the
algorithm in Example 9-6.

Table 9-6.  Microcode Update Signature
Bit Description
63:32 Microcode update signature.  This field contains the signature of the currently loaded 

microcode update when read following the execution of the CPUID instruction, function 1.  It is 
required that this register field be pre-loaded with zero prior to executing the CPUID, function 
1.  If the field remains equal to zero, then there is no microcode update loaded.  Another non-
zero value will be the signature.

31:0 Reserved.



IA-32 Software Developer’s Manual Documentation Changes 45

Documentation Changes

Example 9-6.  Pseudo Code to Authenticate the Update

Z ← Obtain Update Revision from the Update Header to be authenticated;
X ← Obtain Current Update Signature from MSR 8BH;

If (Z > X)
{

Load Update that is to be authenticated;
Y ← Obtain New Signature from MSR 8BH;

If (Z == Y)
Success

Else
Fail

}
Else

Fail

Example 9-6 requires that the BIOS only authenticate updates that contain a numerically larger revi-
sion than the currently loaded revision, where Current Signature (X) < New Update Revision (Z).
A processor with no loaded update is considered to have a revision equal to zero.

This authentication procedure relies upon the decoding provided by the processor to verify an update
from a potentially hostile source.  As an example, this mechanism in conjunction with other safe-
guards provides security for dynamically incorporating field updates into the BIOS.

9.11.8. Pentium 4, Intel Xeon, and P6 Family Processor Microcode 
Update Specifications

This section describes the interface that an application can use to dynamically integrate processor-
specific updates into the system BIOS. In this discussion, the application is referred to as the calling
program or caller.

The real mode INT15 call specification described here is an Intel extension to an OEM BIOS. This
extension allows an application to read and modify the contents of the microcode update data in
NVRAM. The update loader, which is part of the system BIOS, cannot be updated by the interface.
All of the functions defined in the specification must be implemented for a system to be considered
compliant with the specification. The INT15 functions are accessible only from real mode.

9.11.8.1. Responsibilities of the BIOS

If a BIOS passes the presence test (INT 15H, AX = 0D042H, BL = 0H), it must implement all of the
sub-functions defined in the INT 15H, AX = 0D042H specification. There are no optional functions.
BIOS must load the appropriate update for each processor during system initialization.

A Header Version of an update block containing the value 0FFFFFFFFH indicates that the update
block is unused and available for storing a new update.

The BIOS is responsible for providing a region of non-volatile storage (NVRAM) for each potential
processor stepping within a system.  This storage unit consists of one or more update blocks. An
update block is a contiguous 2048-byte block of memory. The BIOS for a single processor system
need only provide update blocks to store one microcode update. If the BIOS for a multiple processor
system is intended to support mixed processor steppings, then the BIOS needs to provide enough
update blocks to store each unique microcode update or for each processor socket on the OEM’s
system board. 



46 IA-32 Software Developer’s Manual Documentation Changes 

Documentation Changes

The BIOS is responsible for managing the NVRAM update blocks. This includes garbage collec-
tion, such as removing microcode updates that exist in NVRAM for which a corresponding
processor does not exist in the system. This specification only provides the mechanism for ensuring
security, the uniqueness of an entry, and that stale entries are not loaded. The actual update block
management is implementation specific on a per-BIOS basis. 

As an example, the BIOS may use update blocks sequentially in ascending order with CPU signa-
tures sorted versus the first available block.  In addition, garbage collection may be implemented as
a setup option to clear all NVRAM slots or as BIOS code that searches and eliminates unused entries
during boot.

NOTE
For IA-32 processors starting with family 0FH and model 03H, the microcode
update may be as large as 16 KBytes. Thus, BIOS must allocate 8 update blocks
for each microcode update. In a MP system, a common microcode update may be
sufficient for each socket in the system. 
For IA-32 processors earlier than family 0FH and model 03H, the microcode
update is 2 KBytes. An MP-capable BIOS that supports multiple steppings must
allocate a block for each socket in the system.
A single-processor BIOS that supports variable-sized microcode update and
fixed-sized microcode update must allocate one 16 KByte region and a second
region of at least 2 KBytes.



IA-32 Software Developer’s Manual Documentation Changes 47

Documentation Changes

The following algorithm (Example 9-7) describes the steps performed during BIOS initialization
used to load the updates into the processor(s). The algorithm assumes:

• The BIOS ensures that no update contained within NVRAM has a header version or loader
version that does not match one currently supported by the BIOS.

• The update contains a correct checksum.

• The BIOS ensures that (at most) one update exists for each processor stepping.

• Older update revisions are not allowed to overwrite more recent ones.

These requirements are checked by the BIOS during the execution of the write update function of
this interface. The BIOS sequentially scans through all of the update blocks in NVRAM starting
with index 0. The BIOS scans until it finds an update where the processor fields in the header match
the processor signature (extended family, extended model, type, family, model, and stepping) as well
as the platform bits of the current processor.

Example 9-7.  Pseudo Code, Checks Required Prior to Loading an Update

For each processor in the system
{

Determine the Processor Signature via CPUID function 1;
Determine the Platform Bits ← 1 << IA32_PLATFORM_ID[52:50];

For (I ← UpdateBlock 0, I < NumOfBlocks; I++)
{

If (Update.Header_Version == 0x00000001)
{

If ((Update.ProcessorSignature == Processor Signature) &&
 (Update.ProcessorFlags & Platform Bits))

{
Load Update.UpdateData into the Processor;
Verify update was correctly loaded into the processor 
Go on to next processor

Break;
}
Else If (Update.TotalSize > (Update.DataSize + 48))
{

N ← 0
While (N < Update.ExtendedSignatureCount)
{

If ((Update.ProcessorSignature[N] == 
 Processor Signature) &&
 (Update.ProcessorFlags[N] & Platform Bits))

{
Load Update.UpdateData into the Processor;
Verify update was correctly loaded into the processor
Go on to next processor

Break;
}
N ← N + 1

}
I ← I + (Update.TotalSize / 2048)
If ((Update.TotalSize MOD 2048) == 0)

I ← I + 1
}

}
}



48 IA-32 Software Developer’s Manual Documentation Changes 

Documentation Changes

}

NOTE
The platform Id bits in IA32_PLATFORM_ID are encoded as a three-bit binary
coded decimal field. The platform bits in the microcode update header are
individually bit encoded. The algorithm must do a translation from one format to
the other prior to doing a check.

When performing the INT 15H, 0D042H functions, the BIOS must assume that the caller has no
knowledge of platform specific requirements. It is the responsibility of BIOS calls to manage all
chipset and platform specific prerequisites for managing the NVRAM device. When writing the
update data using the Write Update sub-function, the BIOS must maintain implementation specific
data requirements (such as the update of NVRAM checksum). The BIOS should also attempt to
verify the success of write operations on the storage device used to record the update.

9.11.8.2. Responsibilities of the Calling Program

This section of the document lists the responsibilities of acalling program using the interface spec-
ifications to load microcode update(s) into BIOS NVRAM.

• The calling program should call the INT 15H, 0D042H functions from a pure real mode
program and should be executing on a system that is running in pure real mode. 

• The caller should issue the presence test function (sub function 0) and verify the signature and
return codes of that function. 

• It is important that the calling program provides the required scratch RAM buffers for the
BIOS and the proper stack size as specified in the interface definition.

• The calling program should read any update data that already exists in the BIOS in order to
make decisions about the appropriateness of loading the update. The BIOS must refuse to
overwrite a newer update with an older version. The update header contains information about
version and processor specifics for the calling program to make an intelligent decision about
loading.

• There can be no ambiguous updates. The BIOS must refuse to allow multiple updates for the
same CPU to exist at the same time; it also must refuse to load updates for processors that
don’t exist on the system.

• The calling application should implement a verify function that is run after the update write
function successfully completes. This function reads back the update and verifies that the
BIOS returned an image identical to the one that was written. 

Example 9-8 represents a calling program.

Example 9-8.  INT 15 DO42 Calling Program Pseudo-code

//
// We must be in real mode
//
If the system is not in Real mode exit
//
// Detect the presence of Genuine Intel processor(s) that can be updated 
// using(CPUID)
//
If no Intel processors exist that can be updated exit



IA-32 Software Developer’s Manual Documentation Changes 49

Documentation Changes

//
// Detect the presence of the Intel microcode update extensions
//
If the BIOS fails the PresenceTestexit
//
// If the APIC is enabled, see if any other processors are out there
//
Read IA32_APICBASE
If APIC enabled
{

Send Broadcast Message to all processors except self via APIC
Have all processors execute CPUID and record the Processor Signature 
(i.e.,Extended Family, Extended Model, Type, Family, Model, Stepping)
Have all processors read IA32_PLATFORM_ID[52:50] and record Platform
 Id Bits

If current processor cannot be updated
exit

}
//
// Determine the number of unique update blocks needed for this system
//
NumBlocks = 0
For each processor
{

If ((this is a unique processor stepping) AND
(we have a unique update in the database for this processor))

{
Checksum the update from the database;
If Checksum fails

exit
NumBlocks ← NumBlocks + size of microcode update / 2048

}
}

//
// Do we have enough update slots for all CPUs?
//
If there are more blocks required to support the unique processor steppings 
than update blocks provided by the BIOS

exit
//
// Do we need any update blocks at all?  If not, we are done
//
If (NumBlocks == 0)

exit
//
// Record updates for processors in NVRAM.
//
For (I=0; I<NumBlocks; I++)
{

//
// Load each Update
//
Issue the WriteUpdate function

If (STORAGE_FULL) returned



50 IA-32 Software Developer’s Manual Documentation Changes 

Documentation Changes

{
Display Error -- BIOS is not managing NVRAM appropriately
exit

}

If (INVALID_REVISION) returned
{

Display Message: More recent update already loaded in NVRAM for
 this stepping
continue

}

If any other error returned
{

Display Diagnostic
exit

}

//
// Verify the update was loaded correctly
//
Issue the ReadUpdate function

If an error occurred
{

Display Diagnostic
exit

}
//
// Compare the Update read to that written
//
If (Update read != Update written)
{

Display Diagnostic
exit

}

I ← I + (size of microcode update / 2048)
}
//
// Enable Update Loading, and inform user
//
Issue the Update Control function with Task = Enable.



IA-32 Software Developer’s Manual Documentation Changes 51

Documentation Changes

9.11.8.3. Microcode Update Functions

Table 9-7 defines current Pentium 4, Intel Xeon, and P6 family processor microcode update func-
tions.

9.11.8.4. INT 15H-based Interface

Intel recommends that a BIOS interface be provided that allows additional microcode updates to be
added to system flash. The INT15H interface is the Intel-defined method for doing this.

The program that calls this interface is responsible for providing three 64-kilobyte RAM areas for
BIOS use during calls to the read and write functions. These RAM scratch pads can be used by the
BIOS for any purpose, but only for the duration of the function call. The calling routine places real
mode segments pointing to the RAM blocks in the CX, DX and SI registers. Calls to functions in
this interface must be made with a minimum of 32 kilobytes of stack available to the BIOS.

In general, each function returns with CF cleared and AH contains the returned status. The general
return codes and other constant definitions are listed in Section 9.11.8.9., Return Codes.

The OEM error field (AL) is provided for the OEM to return additional error information specific
to the platform. If the BIOS provides no additional information about the error, OEM error must be
set to SUCCESS. The OEM error field is undefined if AH contains either SUCCESS (00H) or
NOT_IMPLEMENTED (86H). In all other cases, it must be set with either SUCCESS or a value
meaningful to the OEM.

The following sections describe functions provided by the INT15H-based interface.

Table 9-7.  Microcode Update Functions
Microcode Update 

Function
Function 
Number Description Required/Optional

Presence test 00H Returns information about the supported 
functions.

Required

Write update data 01H Writes one of the update data areas (slots). Required

Update control 02H Globally controls the loading of updates. Required

Read update data 03H Reads one of the update data areas (slots). Required



52 IA-32 Software Developer’s Manual Documentation Changes 

Documentation Changes

9.11.8.5. Function 00H—Presence Test

This function verifies that the BIOS has implemented required microcode update functions. Table
9-8 lists the parameters and return codes for the function.

Description
In order to assure that the BIOS function is present, the caller must verify the carry flag, the return
code, and the 64-bit signature. The update count reflects the number of 2048-byte blocks available
for storage within one non-volatile RAM.

The loader version number refers to the revision of the update loader program that is included in the
system BIOS image.

Table 9-8.  Parameters for the Presence Test
Input

AX Function Code 0D042H

BL Sub-function 00H - Presence test

Output

CF Carry Flag Carry Set - Failure - AH contains status
Carry Clear - All return values valid

AH Return Code  

AL OEM Error Additional OEM information.

EBX Signature Part 1 'INTE' - Part one of the signature 

ECX Signature Part 2 'LPEP'- Part two of the signature

EDX Loader Version Version number of the microcode update loader

SI Update Count Number of 2048 update blocks in NVRAM the BIOS allocated 
to storing microcode updates 

Return Codes (see Table 9-13 for code definitions)

SUCCESS The function completed successfully.

NOT_IMPLEMENTED The function is not implemented. 



IA-32 Software Developer’s Manual Documentation Changes 53

Documentation Changes

9.11.8.6. Function 01H—Write Microcode Update Data

This function integrates a new microcode update into the BIOS storage device. Table 9-9 lists the
parameters and return codes for the function.

Description
The BIOS is responsible for selecting an appropriate update block in the non-volatile storage for
storing the new update. This BIOS is also responsible for ensuring the integrity of the information

Table 9-9.  Parameters for the Write Update Data Function
Input

AX Function Code 0D042H

BL Sub-function 01H - Write update

ES:DI Update Address Real Mode pointer to the Intel Update structure. This buffer is 
2048 bytes in length if the processor supports only fixed-size 
microcode update or...

Real Mode pointer to the Intel Update structure. This buffer is 
64K-bytes in length if the processor supports a variable-size 
microcode update.

CX Scratch Pad1 Real mode segment address of 64 kilobytes of RAM block

DX Scratch Pad2 Real mode segment address of 64 kilobytes of RAM block

SI Scratch Pad3 Real mode segment address of 64 kilobytes of RAM block

SS:SP Stack pointer 32 kilobytes of stack minimum

Output

CF Carry Flag Carry Set - Failure - AH Contains status
Carry Clear - All return values valid

AH Return Code Status of the call

AL OEM Error Additional OEM information

Return Codes (see Table 9-13 for code definitions)

SUCCESS The function completed successfully.

WRITE_FAILURE A failure occurred because of the inability to write the storage 
device.

ERASE_FAILURE A failure occurred because of the inability to erase the storage 
device.

READ_FAILURE A failure occured because of the inability to read the storage 
device.

STORAGE_FULL The BIOS non-volatile storage area is unable to accommodate 
the update because all available update blocks are filled with 
updates that are needed for processors in the system.

CPU_NOT_PRESENT The processor stepping does not currently exist in the system.

INVALID_HEADER The update header contains a header or loader version that is 
not recognized by the BIOS.

INVALID_HEADER_CS The update does not checksum correctly.

SECURITY_FAILURE The processor rejected the update.

INVALID_REVISION The same or more recent revision of the update exists in the 
storage device. 



54 IA-32 Software Developer’s Manual Documentation Changes 

Documentation Changes

provided by the caller, including authenticating the proposed update before incorporating it into
storage.

Before writing the update block into NVRAM, the BIOS should ensure that the update structure
meets the following criteria in the following order:

1. The update header version should be equal to an update header version recognized by the
BIOS.

2. The update loader version in the update header should be equal to the update loader version
contained within the BIOS image.

3. The update block must checksum. This checksum is computed as a 32-bit summation of all
double words in the structure, including the header, data, and processor signature table.

The BIOS selects update block(s) in non-volatile storage for storing the candidate update. The BIOS
can select any available update block as long as it guarantees that only a single update exists for any
given processor stepping in non-volatile storage. If the update block selected already contains an
update, the following additional criteria apply to overwrite it:

• The processor signature in the proposed update must be equal to the processor signature in the
header of the current update in NVRAM (Processor Signature + platform ID bits).

• The update revision in the proposed update should be greater than the update revision in the
header of the current update in NVRAM.

If no unused update blocks are available and the above criteria are not met, the BIOS can overwrite
update block(s) for a processor stepping that is no longer present in the system. This can be done by
scanning the update blocks and comparing the processor steppings, identified in the MP Specifica-
tion table, to the processor steppings that currently exist in the system.

Finally, before storing the proposed update in NVRAM, the BIOS must verify the authenticity of the
update via the mechanism described in Section 9.11.6., Microcode Update Loader. This includes
loading the update into the current processor, executing the CPUID instruction, reading MSR 08Bh,
and comparing a calculated value with the update revision in the proposed update header for
equality.

When performing the write update function, the BIOS must record the entire update, including the
header, the update data, and the extended processor signature table (if applicable). When writing an
update, the original contents may be overwritten, assuming the above criteria have been met. It is
the responsibility of the BIOS to ensure that more recent updates are not overwritten through the use
of this BIOS call, and that only a single update exists within the NVRAM for any processor stepping
and platform ID.

Figure 9-8 and Figure 9-9 show the process the BIOS follows to choose an update block and ensure
the integrity of the data when it stores the new microcode update. 



IA-32 Software Developer’s Manual Documentation Changes 55

Documentation Changes

Figure 9-8.  Microcode Update Write Operation Flow [1]

 

1

Valid Update
Header Version? 

Loader Revision Match
BIOS’s Loader? 

Does Update Match A
CPU in The System 

Write Microcode Update

Does Update
Checksum Correctly? 

Yes

Yes

Yes

No
Return

CPU_NOT_PRESENT 

No
Return

INVALID_HEADER 

No
Return

INVALID_HEADER 

No
Return

INVALID_HEADER_CS 



56 IA-32 Software Developer’s Manual Documentation Changes 

Documentation Changes

Figure 9-9.  Microcode Update Write Operation Flow [2]

 

Return
INVALID_REVISION

Yes 

1 

Update Revision Newer 
Than NVRAM Update? 

Update Pass 
Authenticity Test? 

Return
SECURITY_FAILURE

Yes 

Update NMRAM Record 

Return 
SUCCESS 

Update Matching CPU 
Already In NVRAM? 

Space Available in
NVRAM?

Yes 

No

Return 
STORAGE_FULL 

Replacement  
policy implemented? 

No

No

No Yes Yes 



IA-32 Software Developer’s Manual Documentation Changes 57

Documentation Changes

9.11.8.7. Function 02H—Microcode Update Control

This function enables loading of binary updates into the processor. Table 9-10 lists the parameters
and return codes for the function.

Description
This control is provided on a global basis for all updates and processors. The caller can determine
the current status of update loading (enabled or disabled) without changing the state. The function
does not allow the caller to disable loading of binary updates, as this poses a security risk.

The caller specifies the requested operation by placing one of the values from Table 9-11 in the BH
register. After successfully completing this function, the BL register contains either the enable or the
disable designator. Note that if the function fails, the update status return value is undefined.

The READ_FAILURE error code returned by this function has meaning only if the control function
is implemented in the BIOS NVRAM. The state of this feature (enabled/disabled) can also be imple-
mented using CMOS RAM bits where READ failure errors cannot occur.

Table 9-10.  Parameters for the Control Update Sub-function
Input

AX Function Code 0D042H

BL Sub-function 02H - Control update

BH Task See the description below.

CX Scratch Pad1 Real mode segment of 64 kilobytes of RAM block

DX Scratch Pad2 Real mode segment of 64 kilobytes of RAM block

SI Scratch Pad3 Real mode segment of 64 kilobytes of RAM block

SS:SP Stack pointer 32 kilobytes of stack minimum

Output

CF Carry Flag Carry Set - Failure - AH contains status
Carry Clear - All return values valid.

AH Return Code Status of the call

AL OEM Error Additional OEM Information. 

BL Update Status Either enable or disable indicator

Return Codes (see Table 9-13 for code definitions)

SUCCESS Function completed successfully.

READ_FAILURE A failure occurred because of the inability to read the storage 
device. 

Table 9-11.  Mnemonic Values
Mnemonic Value Meaning

Enable 1 Enable the Update loading at initialization time.

Query 2 Determine the current state of the update control without changing 
its status.



58 IA-32 Software Developer’s Manual Documentation Changes 

Documentation Changes

9.11.8.8. Function 03H—Read Microcode Update Data

This function reads a currently installed microcode update from the BIOS storage into a caller-
provided RAM buffer. Table 9-12 lists the parameters and return codes for the function.

Description
The read function enables the caller to read any microcode update data that already exists in a BIOS
and make decisions about the addition of new updates.  As a result of a successful call, the BIOS
copies the microcode update into the location pointed to by ES:DI, with the contents of all Update
block(s) that are used to store the specified microcode update.

If the specified block is not a header block, but does contain valid data from a microcode update that
spans multiple update blocks, then the BIOS must return Failure with the NOT_EMPTY error code
in AH.

An update block is considered unused and available for storing a new update if its Header Version
contains the value 0FFFFFFFFH after return from this function call.  The actual implementation of

Table 9-12.  Parameters for the Read Microcode Update Data Function
Input

AX Function Code 0D042H

BL Sub-function 03H - Read Update

ES:DI Buffer Address Real Mode pointer to the Intel Update structure that will be 
written with the binary data

ECX Scratch Pad1 Real Mode Segment address of 64 kilobytes of RAM Block 
(lower 16 bits)

ECX Scratch Pad2 Real Mode Segment address of 64 kilobytes of RAM Block 
(upper 16 bits)

DX Scratch Pad3 Real Mode Segment address of 64 kilobytes of RAM Block

SS:SP Stack pointer 32 kilobytes of Stack Minimum

SI Update Number This is the index number of the update block to be read. This 
value is zero based and must be less than the update count 
returned from the presence test function.

Output

CF Carry Flag Carry Set     - Failure - AH contains Status

Carry Clear - All 
return values 
are valid.

AH Return Code Status of the Call

AL OEM Error Additional OEM Information

Return Codes (see Table 9-13 for code definitions)

SUCCESS The function completed successfully.

READ_FAILURE There was a failure because of the inability to read the storage 
device.

UPDATE_NUM_INVALID Update number exceeds the maximum number of update 
blocks implemented by the BIOS.

NOT_EMPTY The specified update block is a subsequent block in use to 
store a valid microcode update that spans multiple blocks. 
The specified block is not a header block and is not empty. 



IA-32 Software Developer’s Manual Documentation Changes 59

Documentation Changes

NVRAM storage management is not specified here and is BIOS dependent.  As an example, the
actual data value used to represent an empty block by the BIOS may be zero, rather than
0FFFFFFFFH. The BIOS is responsible for translating this information into the header provided by
this function.

9.11.8.9. Return Codes

After the call has been made, the return codes listed in Table 9-13 are available in the AH register.

Table 9-13.  Return Code Definitions 
Return Code Value Description

SUCCESS 00H The function completed successfully.

NOT_IMPLEMENTED 86H The function is not implemented

ERASE_FAILURE 90H A failure because of the inability to erase the storage 
device.

WRITE_FAILURE 91H A failure because of the inability to write the storage 
device.

READ_FAILURE 92H A failure because of the inability to read the storage device.

STORAGE_FULL 93H The BIOS non-volatile storage area is unable to 
accommodate the update because all available update 
blocks are filled with updates that are needed for 
processors in the system.

CPU_NOT_PRESENT 94H The processor stepping does not currently exist in the 
system.

INVALID_HEADER 95H The update header contains a header or loader version 
that is not recognized by the BIOS.

INVALID_HEADER_CS 96H The update does not checksum correctly.

SECURITY_FAILURE 97H The update was rejected by the processor.

INVALID_REVISION 98H The same or more recent revision of the update exists in 
the storage device.

UPDATE_NUM_INVALID 99H The update number exceeds the maximum number of 
update blocks implemented by the BIOS.

NOT_EMPTY 9AH The specified update block is a subsequent block in use to 
store a valid microcode update that spans multiple blocks. 

The specified block is not a header block and is not empty.



60 IA-32 Software Developer’s Manual Documentation Changes 

Documentation Changes

22. A Mechanism for Determining Sync/Async SMIs Has Been Documented
In Volume 3, a new section has been added. The section provides information about two new CRs
that provide an effective means to determine whether an SMI is synchronous or asynchronous. The
new section is reproduced below.

-----------------------------------------------------------------------------

13.7. MANAGING SYNCHRONOUS AND ASYNCHRONOUS SYSTEM 
MANAGEMENT INTERRUPTS

Particularly when coding for a multiprocessor system or a system with Intel HT Technology, it was
not always possible for an SMI handler to distinguish between a synchronous SMI (triggered during
an I/O instruction) and an asynchronous SMI. To facilitiate the discrimination of these two events,
incremental state information has been added to the SMM state save map. 

Processors that have an SMM revision ID of 30004H or higher have the incremental state informa-
tion described below.

13.7.1. I/O State Implementation
Within the extended SMM state save map, a bit (IO_SMI) is provided that is set only when an SMI
is either taken immediately after a successful I/O instruction or is taken after a successful iteration
of a REP I/O instruction (note that the successful notion pertains to the processor point of view; not
necessarily to the corresponding platform function). When set, the IO_SMI bit provides a strong
indication that the corresponding SMI was synchronous. In this case, the SMM State Save Map also
supplies the port address of the I/O operation.  The IO_SMI bit and the I/O Port Address may be
used in conjunction with the information logged by the platform to confirm that the SMI was indeed
synchronous.

Note that the IO_SMI bit by itself is a strong indication, not a guarantee, that the SMI is synchro-
nous. This is because an asynchronous SMI might coincidentally be taken after an I/O instruction.
In such a case, the IO_SMI bit would still be set in the SMM state save map.

Information characterizing the I/O instruction is saved in two locations in the SMM State Save Map
(Table 13-14).  Note that the IO_SMI bit also serves as a valid bit for the rest of the I/O information
fields.  The contents of these I/O information fields are not defined when the IO_SMI bit is not set.



IA-32 Software Developer’s Manual Documentation Changes 61

Documentation Changes

IO_SMI is set if an SMI was taken during or immediately following an I/O instruction. When
IO_SMI is set, the other fields may be interpreted as follows:

• I/O Length can be:

• 001 – Byte

• 010 – Word

• 100 – Dword

• I/O Instruction Type: 

• I/O Memory Address is:

• for OUTS/REP_OUTS: Segment_base + eSI 

• for INS/REP_INS: ES_base + eDI 

• for IN/OUT: 0x0

The SMRAM save map (Table 13-1) has also been updated. It now indicates the location of the rele-
vant CRs. Impacted table cells are reproduced below.

Table 13-14.  I/O Instruction Information in the SMM State Save Map
State (SMM Rev. ID: 30004H or 
higher)

Format

31 16 15 8 7 4 3 1 0

I/0 State Field
SMRAM offset 7FA4

I/O
 P

ort

R
eserved

I/O
 Type

I/O
 Length

IO
_S

M
I

31 0

I/O Memory Address Field
SMRAM offset 7FA0

I/O Memory Address

Table 13-15.  I/O Instruction Type 
Encodings 

Instruction Encoding

IN Immediate 1001

IN DX 0001

OUT Immediate 1000

OUT DX 0000

INS 0011

OUTS 0010

REP INS 0111

REP OUTS 0110



62 IA-32 Software Developer’s Manual Documentation Changes 

Documentation Changes

23. Omitted Debug Data Has Been Restored
In the Volume 3, Chapter 5, Interrupt 1 section; data deleted by mistake has been restored. This
material is reproduced below.

-------------------------------------------------------------------

Interrupt 1—Debug Exception (#DB)

Exception Class Trap or Fault. The exception handler can distinguish between traps or faults 
by examining the contents of DR6 and the other debug registers.

Description

Indicates that one or more of several debug-exception conditions has been detected. Whether the
exception is a fault or a trap depends on the condition (see Table 13-2). See Chapter 15, Debugging
and Performance Monitoring, for detailed information about the debug exceptions.

Exception Error Code

None. An exception handler can examine the debug registers to determine which condition caused
the exception.

Saved Instruction Pointer

Fault—Saved contents of CS and EIP registers point to the instruction that generated the exception.

Trap—Saved contents of CS and EIP registers point to the instruction following the instruction that
generated the exception.

Program State Change

Fault—A program-state change does not accompany the debug exception, because the exception
occurs before the faulting instruction is executed. The program can resume normal execution upon
returning from the debug exception handler.

Table 13-1.  SMRAM State Save Map
Offset 

(Added to SMBASE + 
8000H) Register Writable?

7FA4H I/O State Field, see Section 13.7. No

7FA0H I/O Memory Address Field, see Section 13.7. No

Table 13-2.  Debug Exception Conditions and Corresponding Exception Classes
Exception Condition Exception Class

Instruction fetch breakpoint Fault

Data read or write breakpoint Trap

I/O read or write breakpoint Trap

General detect condition (in conjunction with in-circuit emulation) Fault

Single-step Trap

Task-switch Trap



IA-32 Software Developer’s Manual Documentation Changes 63

Documentation Changes

Trap—A program-state change does accompany the debug exception, because the instruction or task
switch being executed is allowed to complete before the exception is generated. However, the new
state of the program is not corrupted and execution of the program can continue reliably.

24. CLTS Exception Information Updated
In the Volume 2, Chapter 3, CLTS—Clear Task-Switched Flag in CR0 section; missing exception
data has been added. The corrected area is reproduced below.

------------------------------------------

CLTS—Clear Task-Switched Flag in CR0: only updated exception
sections reproduced...

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

Real-Address Mode Exceptions
None.

Virtual-8086 Mode Exceptions
#GP(0) CLTS is not recognized in virtual-8086 mode.

25. The MOVSS Description Has Been Updated
In the Volume 2, Chapter 3, MOVSS—Move Scalar Single--Precision Floating-Point Values section;
incorrect data has been updated. The corrected area is reprinted below. In the incorrect version, the
description block below indicated 64-bit memory locations.

-------------------------------------------------------------------------------------------

MOVSS—Move Scalar Single--Precision Floating-Point Values

Description
Moves a scalar single-precision floating-point value from the source operand (second operand) to
the destination operand (first operand). The source and destination operands can be XMM registers
or 32-bit memory locations. This instruction can be used to move a single-precision floating-point
value to and from the low doubleword of an XMM register and a 32-bit memory location, or to move
a single-precision floating-point value between the low doublewords of two XMM registers. The
instruction cannot be used to transfer data between memory locations. 

When the source and destination operands are XMM registers, the three high-order doublewords of
the destination operand remain unchanged. When the source operand is a memory location and

Opcode Instruction Description
F3 0F 10 /r MOVSS xmm1, xmm2/m32 Move scalar single-precision floating-point value from 

xmm2/m32 to xmm1 register.
F3 0F 11 /r MOVSS xmm2/m32, xmm1 Move scalar single-precision floating-point value from 

xmm1 register to xmm2/m32.



64 IA-32 Software Developer’s Manual Documentation Changes 

Documentation Changes

destination operand is an XMM registers, the three high-order doublewords of the destination
operand are cleared to all 0s.

---------------------------------------------------------------------------

26. An Instruction Listing (PULLHUW) Has Been Deleted
In Volume 2of the IA-32 Intel Architecture Software Developer’s Manual, Appendix B, Table B-13;
there was a listing for a ‘PULLHUW’ instruction. This appears to have been an old corruption of
PMULHUW entry (see the SSE/SSE2 entries by that name). The PULLHUW table entry has been
deleted. The reproduced table cells (below) indicate the point of deletion.

-----------------------------------------------------------------------------

27. Data Entry Errors in Table B-20 Have Been Corrected
In Volume 2 of the IA-32 Intel Architecture Software Developer’s Manual, Appendix B, Table B-20.
MOVQ encoding information has been changed. The impacted table cells are reproduced below. 

PMADDWD - Packed multiply add

mmxreg2 to mmxreg1 0000 1111:11110101: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:11110101: mod mmxreg r/m

PMULHW - Packed multiplication, store high 
word

mmxreg2 to mmxreg1 0000 1111:11100101: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:11100101: mod mmxreg r/m

Table B-20.  (continued)
MOVQ - Move Quadword

xmmreg2 to xmmreg1 11110011:00001111:01111110: 11 xmmreg1 xmmreg2

xmmreg2 from xmmreg1 01100110:00001111:11010110: 11 xmmreg1 xmmreg2

mem to xmmreg 11110011:00001111:01111110: mod xmmreg r/m

mem from xmmreg 01100110:00001111:11010110: mod xmmreg r/m



IA-32 Software Developer’s Manual Documentation Changes 65

Documentation Changes

28. Figure 8-22 Has Been Corrected
In Volume 3 of the IA-32 Intel Architecture Software Developer’s Manual, Chapter 8, Figure 8-22;
an incorrect address has been corrected. The corrected figure has been reproduced below.

29. The Description of Minimum Thermal Monitor Activation Time Has Been 
Updated
In Volume 3of the IA-32 Intel Architecture Software Developer’s Manual, Section 13.15.2.4; a para-
graph describing TM1/TM2 has been re-written to provide a more accurate description. The appli-
cable text is reproduced below.

----------------------------------------------------------

Thermal Status Log flag, bit 1
When set, indicates that the thermal sensor has tripped since the last power-up or reset or since
the last time that software cleared this flag. This flag is a sticky bit; once set it remains set until
cleared by software or until a power-up or reset of the processor. The default state is clear.

After the second temperature sensor has been tripped, the thermal monitor (TM1/TM2) will remain
engaged for a minimum time period (on the order of 1 ms). The thermal monitor will remain
engaged until the processor core temperature drops below the preset trip temperature of the temper-
ature sensor, taking hysteresis into account.

30. Corrected Description of Exception- or Interrupt-Handler Procedures
In Volume 3, Section 5.12.1; text describing exception- or interrupt-handler procedures has been re-
written. The new text is reproduced below.

----------------------------------------------------

When the processor performs a call to the exception- or interrupt-handler procedure:

• If the handler procedure is going to be executed at a numerically lower privilege level, a stack
switch occurs. When the stack switch occurs: 

 

Figure 8-20.  IRR, ISR and TMR Registers

255 0

Reserved

Addresses: IRR    FEE0 0200H - FEE0 0270H

Value after reset: 0H

16 15

IRR

Reserved ISR

Reserved TMR

ISR    FEE0 0100H - FEE0 0170H
TMR  FEE0 0180H - FEE0 01F0H

Figure 8-21.  IA32_THERM_STATUS MSR

63 0

Reserved

12

Thermal Status
Thermal Status Log



66 IA-32 Software Developer’s Manual Documentation Changes 

Documentation Changes

a. The segment selector and stack pointer for the stack to be used by the handler are obtained
from the TSS for the currently executing task. On this new stack, the processor pushes the
stack segment selector and stack pointer of the interrupted procedure. 

b. The processor then saves the current state of the EFLAGS, CS, and EIP registers on the
new stack (see Figure 5-4). 

c. If an exception causes an error code to be saved, it is pushed on the new stack after the EIP
value.

• If the handler procedure is going to be executed at the same privilege level as the interrupted
procedure:

a. The processor saves the current state of the EFLAGS, CS, and EIP registers on the current
stack (see Figure 5-4). 

b. If an exception causes an error code to be saved, it is pushed on the current stack after the
EIP value.

31. CMPSD and CMPSS Exception Information Updated
Changes were made in the relevant sections of Volume 2of the IA-32 Intel Architecture Software
Developer’s Manual, Chapter 3. The updated exception sections are reproduced below.

-------------------------------------------------------------------

Figure 5-4.  Stack Usage on Transfers to Interrupt and Exception-Handling Routines

 CS

Error Code

EFLAGS
CS

 EIP
ESP After
Transfer to Handler

Error Code

ESP Before
Transfer to Handler

 EFLAGS

 EIP

 SS
 ESP

Stack Usage with No
Privilege-Level Change

Stack Usage with
Privilege-Level Change

Interrupted Procedure’s 

Interrupted Procedure’s
and Handler’s Stack

Handler’s Stack

ESP After
Transfer to Handler

Transfer to Handler
ESP Before

Stack



IA-32 Software Developer’s Manual Documentation Changes 67

Documentation Changes

CMPSD — Compare Scalar Double-Precision Floating-Point Values: 
only updated exception sections reproduced....

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside the effective address space from 0 to 
FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 
is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 
is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

CMPSS — Compare Scalar Single-Precision Floating-Point Values:
only updated exception sections reproduced....

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 
is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 
is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made 
while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside the effective address space from 0 to 
FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 
is 1. 



68 IA-32 Software Developer’s Manual Documentation Changes 

Documentation Changes

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 
is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

32. PUNPCKHB*/PUNPCKLB* Exception Information Improved
Changes were made in the relevant sections of Volume 2, Chapter 3. The updated exception sections
are reproduced below. 

------------------------------------------------------------------------------

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ — 
Unpack High Data: only updated exception sections reproduced....

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS 

segment limit. 

(128-bit operations only) If memory operand is not aligned on a 16-byte 
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit. 

#UD If EM in CR0 is set.

128-bit operations will generate #UD only if OSFXSR in CR4 is 0. Execution 
of 128-bit instructions on a non-SSE2 capable processor (one that is MMX 
technology capable) will result in the instruction operating on the mm regis-
ters, not #UD.

#NM If TS in CR0 is set.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned 
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions 
#GP(0) If any part of the operand lies outside of the effective address space from 0 to 

FFFFH.

(128-bit operations only) If memory operand is not aligned on a 16-byte 
boundary, regardless of segment.

#UD If EM in CR0 is set.



IA-32 Software Developer’s Manual Documentation Changes 69

Documentation Changes

128-bit operations will generate #UD only if OSFXSR in CR4 is 0. Execution 
of 128-bit instructions on a non-SSE2 capable processor (one that is MMX 
technology capable) will result in the instruction operating on the mm regis-
ters, not #UD.

#NM If TS in CR0 is set.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned 
memory reference is made.

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ — 
Unpack Low Data: only updated exception sections reproduced...

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS 

segment limit. 

(128-bit operations only) If memory operand is not aligned on a 16-byte 
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit. 

#UD If EM in CR0 is set.

128-bit operations will generate #UD only if OSFXSR in CR4 is 0. Execution 
of 128-bit instructions on a non-SSE2 capable processor (one that is MMX 
technology capable) will result in the instruction operating on the mm regis-
ters, not #UD.

#NM If TS in CR0 is set.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned 
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions 
#GP(0) If any part of the operand lies outside of the effective address space from 0 to 

0FFFFH.

(128-bit operations only) If memory operand is not aligned on a 16-byte 
boundary, regardless of segment. 

#UD If EM in CR0 is set.

128-bit operations will generate #UD only if OSFXSR in CR4 is 0. Execution 



70 IA-32 Software Developer’s Manual Documentation Changes 

Documentation Changes

of 128-bit instructions on a non-SSE2 capable processor (one that is MMX 
technology capable) will result in the instruction operating on the mm regis-
ters, not #UD.

#NM If TS in CR0 is set.

#MF (64-bit operations only) If there is a pending x87 FPU exception. 

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned 
memory reference is made.

33. MOVHPD, MOVLPD, UNPCKHPS, UNPCKLPS Exception Information 
Updated

Changes were made in the relevant sections of Volume 2 of the IA-32 Intel Architecture Software 
Developer’s Manual, Chapter 3. The updated exception sections are reproduced below.

------------------------------------------------------------------------------

MOVHPD—Move High Packed Double-Precision Floating-Point Value: 
only updated exception sections reproduced...

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made 
while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0 to 
FFFFH.

#NM If TS in CR0 is set. 

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.



IA-32 Software Developer’s Manual Documentation Changes 71

Documentation Changes

If CPUID feature flag SSE2 is 0.

MOVHPS — Move High Packed Single-Precision Floating-Point 
Values: only updated exception sections reproduced...

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0 to 
FFFFH.

#NM If TS in CR0 is set. 

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

UNPCKHPS—Unpack and Interleave High Packed Single-Precision
Floating-Point Values: only updated exception sections reproduced...

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments.

If memory operand is not aligned on a 16-byte boundary, regardless of 
segment.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 
is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 
is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.



72 IA-32 Software Developer’s Manual Documentation Changes 

Documentation Changes

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of 
segment.

If any part of the operand lies outside the effective address space from 0 to 
FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 
is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 
is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

UNPCKLPS—Unpack and Interleave Low Packed Single-Precision
Floating-Point Values: only updated exception sections reproduced...

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments.

If memory operand is not aligned on a 16-byte boundary, regardless of 
segment.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 
is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 
is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of 
segment.

If any part of the operand lies outside the effective address space from 0 to 
FFFFH.

#NM If TS in CR0 is set.



IA-32 Software Developer’s Manual Documentation Changes 73

Documentation Changes

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 
is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 
is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

34. PEXTRW - PINSRW Exception Information Updated

Changes were made in the relevant sections of Volume 2 of the IA-32 Intel Architecture Software 
Developer’s Manual, Chapter 3. The updated exception sections are reproduced below.

-------------------------------------------------------------------

PEXTRW — Extract Word: only updated exception sections repro-
duced...

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS 

segment limit. 

#SS(0)If a memory operand effective address is outside the SS segment limit. 

#UD If EM in CR0 is set.

(128-bit operations only) If OSFXSR in CR4 is 0.

(128-bit operations only) If CPUID feature flag SSE2 is 0.

#NM If TS in CR0 is set.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned 
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions 
#GP(0) If any part of the operand lies outside of the effective address space from 0 to 

FFFFH.

#UD If EM in CR0 is set.

(128-bit operations only) If OSFXSR in CR4 is 0.

(128-bit operations only) If CPUID feature flag SSE2 is 0.

#NM If TS in CR0 is set.

#MF (64-bit operations only) If there is a pending x87 FPU exception.



74 IA-32 Software Developer’s Manual Documentation Changes 

Documentation Changes


