
IA-32 Intel® Architecture Software
Developer’s Manual
Documentation Changes

March 2004

Notice: The IA-32 Intel® Architecture may contain design defects or errors known as errata that
may cause the product to deviate from published specifications. Current characterized errata are
documented in this specification update.

Document Number: 252046-008

2 IA-32 Software Developer’s Manual Documentation Changes

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The IA-32 Intel® Architecture may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

I2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I2C bus/protocol and was developed by Intel.
Implementations of the I2C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and North American Philips
Corporation.

Intel, Pentium, Celeron, Intel SpeedStep, Intel Xeon and the Intel logo, and the Intel logo are trademarks or registered trademarks of Intel Corporation
or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2002-2004, Intel Corporation

IA-32 Software Developer’s Manual Documentation Changes 3

Contents

Revision History ... 4

Preface... 5

Summary Table of Changes... 6

Documentation Changes ... 7

4 IA-32 Software Developer’s Manual Documentation Changes

Revision History

Revision History

Version Description Date

-001 Initial Release November 2002

-002
Added 1-10 Documentation Changes.
Removed old Documentation Changes items that already have been
incorporated in the published Software Developer’s manual

December 2002

-003

Added 9 -17 Documentation Changes
Removed Documenation Change #6 - References to bits Gen and Len
Deleted
Removed Documenation Change #4 - VIF Information Added to CLI
Discussion

February 2003

-004
Removed Documentation changes 1-17
Added Documentation changes 1-24

June 2003

-005
Removed Documentation Changes 1-24
Added Documentation Changes 1-15

September 2003

-006 Added Documentation Changes 16- 34 November 2003

-007
Updated Documentation changes 14, 16, 17, and 28.
Added Documentation Changes 35-45.

January 2004

-008
Removed Documentation Changes 1-45
Added Documentation Changes 1-5

March 2004

IA-32 Software Developer’s Manual Documentation Changes 5

Preface

Preface

This document is an update to the specifications contained in the Affected Documents/Related
Documents table below. This document is a compilation of documentation changes. It is intended
for hardware system manufacturers and software developers of applications, operating systems, or
tools.

Affected Documents/Related Documents

Nomenclature
Documentation Changes include errors or omissions from the current published specifications.
These changes will be incorporated in the next release of the Software Development Maunal.

Document Title Document
Number

IA-32 Intel® Architecture Software Developer's Manual: Volume 1, Basic Architecture 245470-011

IA-32 Intel® Architecture Software Developer's Manual: Volume 2, Instruction Set
Reference 245471-011

IA-32 Intel® Architecture Software Developer's Manual: Volume 3, System Programming
Guide 245472-011

6 IA-32 Software Developer’s Manual Documentation Changes

Summary Table of Changes

Summary Table of Changes

The following table indicates documentation changes which apply to the IA-32 Intel Architecture.
This table uses the following notations:

Codes Used in Summary Table
Change bar to left of table row indicates this erratum is either new or modified from the previous
version of the document.

Summary Table of Documentation Changes
Number DOCUMENTATION CHANGES

1. CPUID Sector Size, Cache Line Size Expressions Have Been Updated

2. Text Added to LDDQU Description

3. Exception Lists Corrected in ANDNPD/ANDNPS

4. Description Section of PSADBW Instruction Has Been Corrected

5. Reference to Wrong Step Corrected

6. APIC Chapter Updated

IA-32 Software Developer’s Manual Documentation Changes 7

Documentation Changes

Documentation Changes

1. CPUID Sector Size, Cache Line Size Expressions Have Been Updated

IA-32 Intel Architecture Software Developer’s Manual, Volume 2A, Chapter 3, CPUID-CPU
Identification section, Table 3-13 has been corrected. A number of table cells have been updated to
correct inconsistent expressions. An error in 78H has also been corrected. The impacted table cells
are reproduced below (not all text in the table has been reproduced).

...

...

2. Text Added to LDDQU Description

IA-32 Intel Architecture Software Developer’s Manual, Volume 2B, Chapter 3, LDDQU: Load
Unaligned Integer 128 bits section: text has been added. The area impacted is reprinted below. See
the change bar for specific lines.

--
...

Implementation Notes
• If the source is aligned to a 16-byte boundary, based on the implementation, the 16 bytes may

be loaded more than once. For that reason, the usage of LDDQU should be avoided when using
uncached or write-combining (WC) memory regions. For uncached or WC memory regions,
keep using MOVDQU.

• This instruction is a replacement for MOVDQU (load) in situations where cache line splits
significantly affect performance. It should not be used in situations where store-load
forwarding is performance critical. If performance of store-load forwarding is critical to the
application, use MOVDQA store-load pairs when data is 128-bit aligned or MOVDQU store-
load pairs when data is 128-bit unaligned.

22H 3rd-level cache: 512 KB, 4-way set associative, 64-byte line size, 2 lines per sector

23H 3rd-level cache: 1 MB, 8-way set associative, 64-byte line size, 2 lines per sector

25H 3rd-level cache: 2 MB, 8-way set associative, 64-byte line size, 2 lines per sector

29H 3rd-level cache: 4 MB, 8-way set associative, 64-byte line size, 2 lines per sector

78H 2nd-level cache: 1 MB, 4-way set associative, 64-byte line size

79H 2nd-level cache: 128 KB, 8-way set associative, 64-byte line size, 2 lines per sector

7AH 2nd-level cache: 256 KB, 8-way set associative, 64-byte line size, 2 lines per sector

7BH 2nd-level cache: 512 KB, 8-way set associative, 64-byte line size, 2 lines per sector

7CH 2nd-level cache: 1 MB, 8-way set associative, 64-byte line size, 2 lines per sector

8 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

• If the memory address is not aligned on 16-byte boundary, some implementations may
load up to 32 bytes and return 16 bytes in the destination. Some processor implementa-
tions may issue multiple loads to access the appropriate 16 bytes. Developers of multi-
threaded or multi-processor software should be aware that on these processors the loads
will be performed in a non-atomic way.

...

3. Exception Lists Corrected in ANDNPD/ANDNPS

IA-32 Intel Architecture Software Developer’s Manual, Volume 2B, Chapter 3 - ANDNPD and
ANDNPS sections: exception lists have been updated. The impacted area for each section is
reprinted below.

--

ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision
Floating-Point Values
...

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0 to
FFFFH.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

IA-32 Software Developer’s Manual Documentation Changes 9

Documentation Changes

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

...

ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision-
Floating-Point Value
...

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0 to
FFFFH.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

10 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

4. Description Section of PSADBW Instruction Has Been Corrected

IA-32 Intel Architecture Software Developer’s Manual, Volume 2B, Chapter 4, the PSADBW-
Compute Sum of Absolute Differences section: an error has been corrected in the Description
paragraph. The impacted area is reproduced below (not all text in the section has been reproduced).
The location of the change is indicated by the change bar.

--

Description
Computes the absolute value of the difference of 8 unsigned byte integers from the source operand
(second operand) and from the destination operand (first operand). These 8 differences are then
summed to produce an unsigned word integer result that is stored in the destination operand. The
source operand can be an MMX technology register or a 64-bit memory location or it can be an
XMM register or a 128-bit memory location. The destination operand can be an MMX technology
register or an XMM register. Figure 4-5 shows the operation of the PSADBW instruction when
using 64-bit operands.

5. Reference to Wrong Step Corrected

IA-32 Intel Architecture Software Developer’s Manual, Volume 3, Chapter 7, section 7.5.4.1:
contains an incorrect reference in a numbered list. This has been corrected. The impacted step is
reproduced below with a change bar to indicate the location of the error (not all steps have been
reproduced).

...

15. Broadcasts an INIT-SIPI-SIPI IPI sequence to the APs to wake them up and initialize them:
MOV ESI, ICR_LOW; load address of ICR low dword into ESI

MOV EAX, 000C4500H; load ICR encoding for broadcast INIT IPI

; to all APs into EAX
MOV [ESI], EAX ; broadcast INIT IPI to all APs

; 10-millisecond delay loop

MOV EAX, 000C46XXH; load ICR encoding for broadcast SIPI IP

; to all APs into EAX, where xx is the

; vector computed in step 10.

MOV [ESI], EAX ; broadcast SIPI IPI to all APs

; 200-microsecond delay loop

MOV [ESI], EAX ; broadcast second SIPI IPI to all APs

; 200-microsecond delay loop

IA-32 Software Developer’s Manual Documentation Changes 11

Documentation Changes

6. APIC Chapter Updated

IA-32 Intel Architecture Software Developer’s Manual, Volume 3, Chapter 8 has been updated.
Information has been added to multiple sections; this information indicates the model-specific
nature of some features. The new information is reprinted below (with enough of surrounding text
to indicate the new text’s location; not all text in the chapter is reproduced). See the change bars to
locate the updated lines.

--

8.4.6. Local APIC ID
At power up, system hardware assigns a unique APIC ID to each local APIC on the system bus (for
Pentium 4 and Intel Xeon processors) or on the APIC bus (for P6 family and Pentium processors).
The hardware assigned APIC ID is based on system topology and includes encoding for socket posi-
tion and cluster information (see Figure 7-2).

In MP systems, the local APIC ID is also used as a processor ID by the BIOS and the operating
system. However, the ability of software to modify the APIC ID is processor model specific.
Because of this, operating system software should avoid writing to the local APIC ID register.

The processor receives the hardware assigned APIC ID by sampling pins A11# and A12# and pins
BR0# through BR3# (for the Pentium 4, Intel Xeon, and P6 family processors) and pins BE0#
through BE3# (for the Pentium processor). The APIC ID latched from these pins is stored in the
APIC ID field of the local APIC ID register (see Figure 8-6), and is used as the initial APIC ID for
the processor. It is also the value returned to the EBX register, when the CPUID instruction is
executed with a source operand value of 1 in the EAX register.

For the P6 family and Pentium processors, the local APIC ID field in the local APIC ID register is
4 bits, and encodings 0H through EH can be used to uniquely identify 15 different processors
connected to the APIC bus. For the Pentium 4 and Intel Xeon processors, the xAPIC specification
extends the local APIC ID field to 8 bits which can be used to identify up to 255 processors in the
system.

Following power up or a hardware reset, software (typically the BIOS software) can modify the
APIC ID field in the local APIC ID register for each processor in the system. When changing APIC
IDs, software must insure that each APIC ID for each local APIC is unique throughout the system.

... omitted text....

Figure 8-6. Local APIC ID Register

31 02324

ReservedAPIC ID*

Address: 0FEE0 0020H
Value after reset: 0000 0000H

* For the P6 family and Pentium processors,
bits 28-31 are reserved. For Pentium 4
and Xeon processors, 21-31 are reserved.

12 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

8.6. ISSUING INTERPROCESSOR INTERRUPTS
The following sections describe the local APIC facilities that are provided for issuing interprocessor
interrupts (IPIs) from software. The primary local APIC facility for issuing IPIs is the interrupt
command register (ICR). The ICR can be used for the following functions:

• To send an interrupt to another processor.

• To allow a processor to forward an interrupt that it received but did not service to another
processor for servicing.

• To direct the processor to interrupt itself (perform a self interrupt).

• To deliver special IPIs, such as the start-up IPI (SIPI) message, to other processors.

Interrupts generated with this facility are delivered to the other processors in the system through the
system bus (for Pentium 4 and Intel Xeon processors) or the APIC bus (for P6 family and Pentium
processors). The ability for a processor to send a lowest priority IPI is model specific and
should be avoided by BIOS and operating system software.

8.6.1. Interrupt Command Register (ICR)
The interrupt command register (ICR) is a 64-bit local APIC register (see Figure 8-12) that allows
software running on the processor to specify and send interprocessor interrupts (IPIs) to other IA-
32 processors in the system.

To send an IPI, software must set up the ICR to indicate the type of IPI message to be sent and the
destination processor or processors. (All fields of the ICR are read-write by software with the excep-
tion of the delivery status field, which is read-only.) The act of writing to the low doubleword of the
ICR causes the IPI to be sent.

IA-32 Software Developer’s Manual Documentation Changes 13

Documentation Changes

The ICR consists of the following fields.

Vector The vector number of the interrupt being sent.

Delivery Mode Specifies the type of IPI to be sent. This field is also know as the IPI
message type field.

000 (Fixed) Delivers the interrupt specified in the vector field to
the target processor or processors.

001 (Lowest Priority)
Same as fixed mode, except that the interrupt is deliv-
ered to the processor executing at the lowest priority
among the set of processors specified in the destina-
tion field. The ability for a processor to send a low-
est priority IPI is model specific and should be
avoided by BIOS and operating system software.

010 (SMI) Delivers an SMI interrupt to the target processor or
processors. The vector field must be programmed to
00H for future compatibility.

Figure 8-12. Interrupt Command Register (ICR)

31 0

Reserved

7

Vector

Destination Shorthand

810

Delivery Mode
000: Fixed
001: Lowest Priority1

00: No Shorthand
01: Self

111213141516171819

10: All Including Self
11: All Excluding Self

010: SMI
011: Reserved
100: NMI
101: INIT
110: Start Up
111: Reserved

Destination Mode
0: Physical
1: Logical

Delivery Status
0: Idle
1: Send Pending

Level
0 = De-assert
1 = Assert

Trigger Mode
0: Edge
1: Level

63 32

ReservedDestination Field
56

Address: FEE0 0300H (0 - 31)

Value after Reset: 0H

Reserved

20

55

FEE0 0310H (32 - 63)

 NOTE:
1. The ability of a processor to send Lowest Priority IPI is model specific.

14 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

011 (Reserved)

100 (NMI) Delivers an NMI interrupt to the target processor or
processors. The vector information is ignored.

101 (INIT) Delivers an INIT request to the target processor or pro-
cessors, which causes them to perform an INIT. As a
result of this IPI message, all the target processors per-
form an INIT. The vector field must be programmed to
00H for future compatibility.

101 (INIT Level De-assert)
(Not supported in the Pentium 4 and Intel Xeon pro-
cessors.) Sends a synchronization message to all the
local APICs in the system to set their arbitration IDs
(stored in their Arb ID registers) to the values of their
APIC IDs (see Section 8.7., “System and APIC Bus
Arbitration”). For this delivery mode, the level flag
must be set to 0 and trigger mode flag to 1. This IPI is
sent to all processors, regardless of the value in the
destination field or the destination shorthand field;
however, software should specify the “all including
self” shorthand.

110 (Start-Up) Sends a special “start-up” IPI (called a SIPI) to the tar-
get processor or processors. The vector typically
points to a start-up routine that is part of the BIOS
boot-strap code (see Section 7.5., “Multiple-Processor
(MP) Initialization”). Note that IPIs sent with this de-
livery mode are not automatically retried if the source
APIC is unable to deliver it. It is up to the software to
determine if the SIPI was not successfully delivered
and to reissue the SIPI if necessary.

Destination Mode Selects either physical (0) or logical (1) destination mode (see Section
8.6.2., Determining IPI Destination).

Delivery Status (Read Only)
Indicates the IPI delivery status, as follows:

0 (Idle) There is currently no IPI activity for this local APIC,
or the previous IPI sent from this local APIC was de-
livered and accepted by the target processor or proces-
sors.

1 (Send Pending)
Indicates that the last IPI sent from this local APIC has
not yet been accepted by the target processor or pro-
cessors.

Level For the INIT level de-assert delivery mode this flag must be set to 0; for
all other delivery modes it must be set to 1. (This flag has no meaning in
Pentium 4 and Intel Xeon processors, and will always be issued as a 1.)

Trigger Mode Selects the trigger mode when using the INIT level de-assert delivery
mode: edge (0) or level (1). It is ignored for all other delivery modes.
(This flag has no meaning in Pentium 4 and Intel Xeon processors, and
will always be issued as a 0.)

IA-32 Software Developer’s Manual Documentation Changes 15

Documentation Changes

Destination Shorthand Indicates whether a shorthand notation is used to specify the destination
of the interrupt and, if so, which shorthand is used. Destination short-
hands are used in place of the 8-bit destination field, and can be sent by
software using a single write to the low doubleword of the ICR. Short-
hands are defined for the following cases: software self interrupt, IPIs to
all processors in the system including the sender, IPIs to all processors in
the system excluding the sender.

00: (No Shorthand)
The destination is specified in the destination field.

01: (Self) The issuing APIC is the one and only destination of
the IPI. This destination shorthand allows software to
interrupt the processor on which it is executing. An
APIC implementation is free to deliver the self-inter-
rupt message internally or to issue the message to the
bus and “snoop” it as with any other IPI message.

10: (All Including Self)
The IPI is sent to all processors in the system
including the processor sending the IPI. The APIC
will broadcast an IPI message with the destination
field set to FH for Pentium and P6 family processors
and to FFH for Pentium 4 and Intel Xeon processors.

11: (All Excluding Self)
The IPI is sent to all processors in a system with the
exception of the processor sending the IPI. The APIC
broadcasts a message with the physical destination
mode and destination field set to 0xFH for Pentium
and P6 family processors and to 0xFFH for Pentium 4
and Intel Xeon processors. Support for this destina-
tion shorthand in conjunction with the lowest-pri-
ority delivery mode is model specific. For Pentium
4 and Intel Xeon processors, when this shorthand is
used together with lowest priority delivery mode,
the IPI may be redirected back to the issuing pro-
cessor.

Destination Specifies the target processor or processors. This field is only used when
the destination shorthand field is set to 00B. If the destination mode is set
to physical, then bits 56 through 59 contain the APIC ID of the target
processor for Pentium and P6 family processors and bits 56 through 63
contain the APIC ID of the target processor the for Pentium 4 and Intel
Xeon processors. If the destination mode is set to logical, the interpreta-
tion of the 8-bit destination field depends on the settings of the DFR and
LDR registers of the local APICs in all the processors in the system (see
Section 8.6.2., Determining IPI Destination).

Note that not all the combinations of options for the ICR are valid. Table 8-2 shows the valid combi-
nations for the fields in the ICR for the Pentium 4 and Intel Xeon processors; Table 8-3 shows the
valid combinations for the fields in the ICR for the P6 family processors.

16 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

NOTES:
1. The ability of a processor to send a lowest priority IPI is model specific.
2. For these interrupts, if the trigger mode bit is 1 (Level), the local xAPIC will override the bit setting and issue

the interrupt as an edge triggered interrupt.
3. X—don’t care.
4. When using the “lowest priority” delivery mode and the “all excluding self” destination, the IPI can be redi-

rected back to the issuing APIC, which is essentially the same as the “all including self” destination mode.

NOTES:
1. The ability of a processor to send a lowest priority IPI is model specific.
2. Treated as edge triggered if level bit is set to 1, otherwise ignored.

Table 8-2. Valid Combinations for the Pentium 4 and Intel Xeon Processors’ Local xAPIC
Interrupt Command Register

Destination
Shorthand

Valid/
Invalid

Trigger
Mode Delivery Mode Destination Mode

No Shorthand Valid Edge All Modes1 Physical or Logical

No Shorthand Invalid2 Level All Modes Physical or Logical

Self Valid Edge Fixed X3

Self Invalid2 Level Fixed X

Self Invalid X Lowest Priority, NMI, INIT, SMI, Start-Up X

All Including Self Valid Edge Fixed X

All Including Self Invalid2 Level Fixed X

All Including Self Invalid X Lowest Priority, NMI, INIT, SMI, Start-Up X

All Excluding Self Valid Edge Fixed, Lowest Priority1,4, NMI, INIT,
SMI, Start-Up

X

All Excluding Self Invalid2 Level FIxed, Lowest Priority4, NMI, INIT, SMI,
Start-Up

X

Table 8-3. Valid Combinations for the P6 Family Processors Local APIC Interrupt
Command Register

Destination
Shorthand

Valid/
Invalid

Trigger
Mode Delivery Mode Destination Mode

No Shorthand Valid Edge All Modes1 Physical or Logical

No Shorthand Valid2 Level Fixed, Lowest Priority1, NMI Physical or Logical

No Shorthand Valid3 Level INIT Physical or Logical

Self Valid Edge Fixed X4

Self 1 Level Fixed X

Self Invalid5 X Lowest Priority, NMI, INIT, SMI,
Start-Up

X

All including Self Valid Edge Fixed X

All including Self Valid2 Level Fixed X

All including Self Invalid5 X Lowest Priority, NMI, INIT, SMI,
Start-Up

X

All excluding Self Valid Edge All Modes1 X

All excluding Self Valid2 Level Fixed, Lowest Priority1, NMI X

All excluding Self Invalid5 Level SMI, Start-Up X

All excluding Self Valid3 Level INIT X

X Invalid5 Level SMI, Start-Up X

IA-32 Software Developer’s Manual Documentation Changes 17

Documentation Changes

3. Treated as edge triggered when Level bit is set to 1; treated as “INIT Level Deassert” message when level bit
is set to 0 (deassert). Only INIT level deassert messages are allowed to have the level bit set to 0. For all
other messages the level bit must be set to 1.

4. X—Don’t care.
5. The behavior of the APIC is undefined.

8.6.2. Determining IPI Destination
The destination of an IPI can be one, all, or a subset (group) of the processors on the system bus.
The sender of the IPI specifies the destination of an IPI with the following APIC registers and fields
within the registers:

• The ICR register—The following fields in the ICR register are used to specify the destination
of an IPI:

— Destination Mode—selects one of two destination modes (physical or logical).

— Destination field—In physical destination mode, used to specify the APIC ID of the
destination processor; in logical destination mode, used to specify a message destination
address (MDA) that can be used to select specific processors in clusters.

— Destination Shorthand—A quick method of specifying all processors, all excluding self, or
self as the destination.

— Delivery mode, Lowest Priority—Architecturally specifies that a lowest-priority
arbitration mechanism be used to select a destination processor from a specified
group of processors. The ability of a processor to send a lowest priority IPI is model
specific and should be avoided by BIOS and operating system software.

• Local destination register (LDR)—Used in conjunction with the logical destination mode and
MDAs to select the destination processors.

• Destination format register (DFR)—Used in conjunction with the logical destination mode and
MDAs to select the destination processors.

How the ICR, LDR, and DFR are used to select an IPI destination depends on the destination mode
used: physical, logical, broadcast/self, or lowest-priority delivery mode. These destination modes
are described in the following sections.

8.6.2.1. PHYSICAL DESTINATION MODE

In physical destination mode, the destination processor is specified by its local APIC ID (see Section
8.4.6., Local APIC ID). For Pentium 4 and Intel Xeon processors, either a single destination (local
APIC IDs 00H through FEH) or a broadcast to all APICs (the APIC ID is FFH) may be specified in
physical destination mode.

A broadcast IPI (bits 28-31 of the MDA are 1's) or I/O subsystem initiated interrupt with
lowest priority delivery mode is not supported in physical destination mode and must not be
configured by software. Also, for any non-broadcast IPI or I/O subsystem initiated interrupt
with lowest priority delivery mode, software must ensure that APICs defined in the interrupt
address are present and enabled to receive interrupts.

For the P6 family and Pentium processors, a single destination is specified in physical destination
mode with a local APIC ID of 0H through 0EH, allowing up to 15 local APICs to be addressed on
the APIC bus. A broadcast to all local APICs is specified with 0FH.

18 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

NOTE
The actual number of local APICs that can be addressed on the system bus may
be restricted by hardware.

8.6.2.2. LOGICAL DESTINATION MODE

In logical destination mode, IPI destination is specified using an 8-bit message destination address
(MDA), which is entered in the destination field of the ICR. Upon receiving an IPI message that was
sent using logical destination mode, a local APIC compares the MDA in the message with the values
in its LDR and DFR to determine if it should accept and handle the IPI. For both configurations
of logical destination mode, when combined with lowest priority delivery mode, software is
responsible for ensuring that all of the local APICs included in or addressed by the IPI or I/O
subsystem interrupt are present and enabled to receive the interrupt.

Figure 13 shows the layout of the logical destination register (LDR). The 8-bit logical APIC ID field
in this register is used to create an identifier that can be compared with the MDA.

NOTE
The logical APIC ID should not be confused with the local APIC ID that is
contained in the local APIC ID register.

Figure 14 shows the layout of the destination format register (DFR). The 4-bit model field in this
register selects one of two models (flat or cluster) that can be used to interpret the MDA when using
logical destination mode.

The interpretation of MDA for the two models is described in the following paragraphs.

Flat Model. This model is selected by programming DFR bits 28 through 31 to 1111. Here, a unique
logical APIC ID can be established for up to 8 local APICs by setting a different bit in the logical
APIC ID field of the LDR for each local APIC. An group of local APICs can then be selected by
setting one or more bits in the MDA.

Figure 8-13. Logical Destination Register (LDR)

Figure 8-14. Destination Format Register (DFR)

31 02324

ReservedLogical APIC ID

Address: 0FEE0 00D0H
Value after reset: 0000 0000H

31 0

Model

28

Reserved (All 1s)

Address: 0FEE0 00E0H
Value after reset: FFFF FFFFH

Flat model: 1111B
Cluster model: 0000B

IA-32 Software Developer’s Manual Documentation Changes 19

Documentation Changes

Each local APIC performs a bit-wise AND of the MDA and its logical APIC ID. If a true condition
is detected, the local APIC accepts the IPI message. A broadcast to all APICs is achieved by setting
the MDA to all 1s.

Cluster Model. This model is selected by programming DFR bits 28 through 31 to 0000. This
model supports two basic destination schemes: flat cluster and hierarchical cluster.

The flat cluster destination model is only supported for P6 family and Pentium processors. Using
this model, all APICs are assumed to be connected through the APIC bus. Bits 28 through 31 of the
MDA contains the encoded address of the destination cluster, and bits 24 through 27 identify up to
four local APICs within the cluster (each bit is assigned to one local APIC in the cluster, as in the
flat connection model). To identify one or more local APICs, bits 28 through 31 of the MDA are
compared with bits 28 through 31 of the LDR to determine if a local APIC is part of the cluster. Bits
24 through 27 of the MDA are compared with Bits 24 through 27 of the LDR to identify a local
APICs within the cluster.

Sets of processors within a cluster can be specified by writing the target cluster address in bits 28
through 31 of the MDA and setting selected bits in bits 24 through 27 of the MDA, corresponding
to the chosen members of the cluster. In this mode, 15 clusters (with cluster addresses of 0 through
14) each having 4 local APICs can be specified in the message. For the P6 and Pentium processor’s
local APICs, however, the APIC arbitration ID supports only 15 APIC agents, and hence the total
number of processors and their local APICs supported in this mode is limited to 15. Broadcast to
all local APICs is achieved by setting all destination bits to one. This guarantees a match on all clus-
ters, and selects all APICs in each cluster. A broadcast IPI or I/O subsystem broadcast interrupt
with lowest priority delivery mode is not supported in cluster mode and must not be config-
ured by software.

The hierarchical cluster destination model can be used with Pentium 4, Intel Xeon, P6 family, or
Pentium processors. With this model, a hierarchical network can be created by connecting different
flat clusters via independent system or APIC buses. This scheme requires a cluster manager within
each cluster, which is responsible for handling message passing between system or APIC buses. One
cluster contains up to 4 agents. Thus 15 cluster managers, each with 4 agents, can form a network
of up to 60 APIC agents. Note that hierarchical APIC networks requires a special cluster manager
device, which is not part of the local or the I/O APIC units.

... omitted text....

8.11.1. Message Address Register Format
The format of the Message Address Register (lower 32-bits) is shown in Figure .

Figure 8-23. Layout of the MSI Message Address Register

31 20 19 12 11 4 3 2 1 0

0FEEH Destination ID Reserved RH DM XX

20 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

Fields in the Message Address Register are as follows:

1. Bits 31-20: These bits contain a fixed value for interrupt messages (0FEEH). This value
locates interrupts at the 1MB area with a base address of 4G – 18M. All accesses to this region
are directed as interrupt messages. Care must to be taken to ensure that no other device claims
the region as I/O space.

2. Destination ID: This field contains an 8-bit destination ID. It identifies the message’s target
processor(s). The destination ID corresponds to bits 63:56 of the I/O APIC Redirection Table
Entry if the IOAPIC is used to dispatch the interrupt to the processor(s).

3. Redirection Hint Indication (RH): This bit indicates whether the message should be directed to
the processor with the lowest interrupt priority among processors that can receive the interrupt.

• When RH is 0, the interrupt is directed to the processor listed in the Destination
ID field.

• When RH is 1 and the physical destination mode is used, the Destination ID field
must not be set to 0xFF; it must point to a processor that is present and enabled
to receive the interrupt.

• When RH is 1 and the logical destination mode is active in a system using a flat
addressing model, the Destination ID field must be set so that bits set to 1 identify
processors that are present and enabled to receive the interrupt.

• If RH is set to 1 and the logical destination mode is active in a system using
cluster addressing model, then Destination ID field must not be set to 0xFF; the
processors identified with this field must be present and enabled to receive the
interrupt.

4. Destination Mode (DM): This bit indicates whether the Destination ID field should be
interpreted as logical or physical APIC ID for delivery of the lowest priority interrupt. If RH is
1 and DM is 0, the Destination ID field is in physical destination mode and only the processor
in the system that has the matching APIC ID is considered for delivery of that interrupt (this
means no re-direction). If RH is 1 and DM is 1, the Destination ID Field is interpreted as in
logical destination mode and the redirection is limited to only those processors that are part of
the logical group of processors based on the processor’s logical APIC ID and the Destination
ID field in the message. The logical group of processors consists of those identified by
matching the 8-bit Destination ID with the logical destination identified by the Destination
Format Register and the Logical Destination Register in each local APIC. The details are
similar to those described in Section 8.6.2., Determining IPI Destination. If RH is 0, then the
DM bit is ignored and the message is sent ahead independent of whether the physical or logical
destination mode is used.

	Title Page
	Contents
	Revision History
	Preface
	Summary Table of Changes
	Documentation Changes
	1. CPUID Sector Size, Cache Line Size Expressions Have Been Updated
	2. Text Added to LDDQU Description
	3. Exception Lists Corrected in ANDNPD/ANDNPS
	4. Description Section of PSADBW Instruction Has Been Corrected
	5. Reference to Wrong Step Corrected
	6. APIC Chapter Updated

