IA-32 Intel® Architecture and
Intel® Extended Memory 64
Technology Software Developer’s
Manual

Documentation Changes

May 2004

Note: 64-Bit Extension Technology Software Developer’s Guide will
be renamed to: Intel® Extended Memory 64 Technology
Software Developer’s Guide.

Notice: The IA-32 Intel® Architecture and Intel® Extended Memory 64 Technology may contain
design defects or errors known as errata that may cause the product to deviate from published
specifications. Current characterized errata are documented in the specification updates.

Document Number: 252046-009

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The IA-32 Intel® Architecture and Intel® Extended Memory 64 Technology may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

12C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the 12C bus/protocol and was developed by Intel.
Implementations of the 1’c bus/protocol may require licenses from various entities, including Philips Electronics N.V. and North American Philips
Corporation.

Intel, Pentium, Celeron, Intel SpeedStep, Intel Xeon and the Intel logo, and the Intel logo are trademarks or registered trademarks of Intel Corporation
or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.
Copyright © 2002-2004, Intel Corporation

2 IA-32 Software Developer’'s Manual Documentation Changes

intel.

Contents

REVISION HISTOIY .. .o e e e e e e e e ae e
PIETACE . .. -
Summary Table of Changes...........coooiiiiiiii e

Documentation Changescccoiiiiieeiiiiiieeeecr e

IA-32 Software Developer’'s Manual Documentation Changes

Revision History

Revision History

Version Description Date

-001 Initial Release November 2002
Added 1-10 Documentation Changes.

-002 Removed old Documentation Changes items that already have been | December 2002
incorporated in the published Software Developer’s manual
Added 9 -17 Documentation Changes
Removed Documentation Change #6 - References to bits Gen and

-003 Len Deleted February 2003
Removed Documentation Change #4 - VIF Information Added to CLI
Discussion
Removed Documentation changes 1-17

-004) June 2003
Added Documentation changes 1-24
Removed Documentation Changes 1-24

-005) September 2003
Added Documentation Changes 1-15

-006 Added Documentation Changes 16- 34 November 2003
Updated Documentation changes 14, 16, 17, and 28.

-007 . January 2004
Added Documentation Changes 35-45.
Removed Documentation Changes 1-45

-008) March 2004
Added Documentation Changes 1-5

-009 Added Documentation Changes 7-27 May 2004

IA-32 Software Developer’'s Manual Documentation Changes

intel ® Preface

Preface

This document is an update to the specifications contained in the Affected Documents/Rel ated
Documents table below. This document is a compilation of documentation changes. It is intended

for hardware system manufacturers and software devel opers of applications, operating systems, or
toals.

Affected Documents/Related Documents

Document Title Document
Number
IA-32 Intel® Architecture Software Developer’s Manual: Volume 1, Basic Architecture 253665
IA-32 Intel® Architecture Software Developer’s Manual: Volume 2A, Instruction Set Reference 253666
IA-32 Intel® Architecture Software Developer’s Manual: Volume 2B, Instruction Set Reference 253667
IA-32 Intel® Architecture Software Developer’'s Manual: Volume 3, System Programming Guide 253668
Intel® Extended Memory 64 Technology Software Developer’s Guide Volumes 1 and 2 300835

Nomenclature

Documentation Changes include errors or omissions from the current published specifications.
These changes will be incorporated in the next release of the Software Development Manual.

IA-32 Software Developer’'s Manual Documentation Changes 5

Summary Table of Changes In

Summary Table of Changes

The following table indicates documentation changes which apply to the IA-32 Intel Architecture.
Thistable uses the following notations:

Codes Used in Summary Table

Change bar to |eft of table row indicates this erratum is either new or modified from the previous
version of the document.

Summary Table of Documentation Changes

Number

Documentation Changes

CPUID Sector Size, Cache Line Size Expressions Have Been Updated

LDDQU Description Text Has Been Added

ANDNPD/ANDNPS Exception Lists Corrected

PSADBW Instruction Description Section Corrected

Reference to Wrong Step Corrected

APIC Chapter Updated

IA32_MC1_MISC, IA32_MC2_MISC, and IA32_MC2_ADDR Listings Corrected

Ambiguity Correction

©| ®| N | gl &~ W NP

Invalid TSS Conditions Listing Has Been Updated

.
©

Description Section Corrected

i
[

IA-32e Updates for LLDT, LMSW, LTR, SLDT, SMSW, STR

.
N

66H Prefix in 64-bit Mode Information Added

.
w

MOV—Move to/from Control Registers Section Has Been Updated

iR
>

PUSH Description Correction

.
o

EFLAG Erroneous Statement Removed

=
o

Interrupt Handling Description Corrections

.
N

IA32_MTRR_DEF_TYPE MSR Definition Corrected

.
&

Correction of Error in EFLAGS Treatment in Virtual-8086 Mode

N
©

Table B-3 Correction

N
=

Appendix E Edits

N
=

MSR_PLATFORM_BRYV Information Added

)
n

Support Pentium M Processor Section Added

N
w

MSR Data for Pentium M Processor Has Been Updated

N
B

Cache and TLB Descriptor Table Updated

)
a

Brand String Table Updated

N
o

Pentium M Processor Sections Updated

N
~

Name Change for IA32_DEBUGCTL

IA-32 Software Developer’'s Manual Documentation Changes

intel.

Documentation Changes

Documentation Changes

1. CPUID Sector Size, Cache Line Size Expressions Have Been Updated

IA-32 Intel Architecture Software Developer’s Manual, Volume 2A, Chapter 3, CPUID-CPU

I dentification section, Table 3-13 has been corrected. A number of table cells have been updated to
correct inconsistent expressions. An error in 78H has also been corrected. The affected table cells
are shown below (not al text in the table has been reproduced).

22H 3rd-level cache: 512 KB, 4-way set associative, 64-byte line size, 2 lines per sector
23H 3rd-level cache: 1 MB, 8-way set associative, 64-byte line size, 2 lines per sector
25H 3rd-level cache: 2 MB, 8-way set associative, 64-byte line size, 2 lines per sector
29H 3rd-level cache: 4 MB, 8-way set associative, 64-byte line size, 2 lines per sector
78H 2nd-level cache: 1 MB, 4-way set associative, 64-byte line size

79H 2nd-level cache: 128 KB, 8-way set associative, 64-byte line size, 2 lines per sector
7AH 2nd-level cache: 256 KB, 8-way set associative, 64-byte line size, 2 lines per sector
7BH 2nd-level cache: 512 KB, 8-way set associative, 64-byte line size, 2 lines per sector
7CH 2nd-level cache: 1 MB, 8-way set associative, 64-byte line size, 2 lines per sector

2. LDDQU Description Text Has Been Added

IA-32 Intel Architecture Software Developer’s Manual, Volume 2B, Chapter 3, LDDQU: Load
Unaligned Integer 128 bits section: text has been added. The affected areais shown below. See the
change bar for specific lines.

Implementation Notes

If the source is aligned to a 16-byte boundary, based on the implementation, the 16 bytes may
be loaded more than once. For that reason, the usage of LDDQU should be avoided when using
uncached or write-combining (WC) memory regions. For uncached or WC memory regions,
keep using MOV DQU.

This instruction is a replacement for MOVDQU (load) in situations where cache line splits
significantly affect performance. It should not be used in situations where store-load
forwarding is performance critical. If performance of store-load forwarding is critical to the
application, use MOV DQA store-load pairs when data is 128-bit aligned or MOVDQU store-
load pairs when datais 128-hit unaligned.

If the memory address is not aligned on 16-byte boundary, some implementations may
load up to 32 bytes and return 16 bytes in the destination. Some processor implementa-
tions may issue multiple loads to access the appropriate 16 bytes. Developers of multi-
threaded or multi-processor software should be aware that on these processor s the loads
will be performed in a non-atomic way.

IA-32 Software Developer’'s Manual Documentation Changes 7

|]
Documentation Changes IntGI@;

3. ANDNPD/ANDNPS Exception Lists Corrected

IA-32 Intel Architecture Software Developer’s Manual, Volume 2B, Chapter 3 - ANDNPD and
ANDNPS sections: exception lists have been updated. The affected areafor each section is shown
below.

ANDNPD—BItwise Logical AND NOT of Packed Double-Precision
Floating-Point Values

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective addressin the CS, DS, ES, FSor GS
segments.
If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For anillegal addressin the SS segment.

#PF(fault-code) For a page fault.

#NM If TSin CRO is set.

#UD If EM in CRO s set.

If OSFXSR in CR4isO0.
If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.
If any part of the operand lies outside the effective address space from O to
FFFFH.

#NM If TSin CROis set.

#UD If EM in CRO is set.

If OSFXSRin CR4is0.
If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions
Same exceptions asin Real Address Mode
#PF(fault-code) For a page fault.

8 IA-32 Software Developer’'s Manual Documentation Changes

IA-32 Software Developer’'s Manual Documentation Changes

Documentation Changes

ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision-
Floating-Point Value

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#NM

#UD

For an illegal memory operand effective addressin the CS, DS, ES, FSor GS
segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

For anillegal addressin the SS segment.
For a page fault.

If TSin CRO is set.

If EM in CRO is set.

If OSFXSR in CR4isO.

If CPUID feature flag SSE is 0.

Real-Address Mode Exceptions

#GP(0)

#NM
#UD

If memory operand is not aligned on a 16-byte boundary, regardl ess of
segment.

If any part of the operand lies outside the effective address space from 0 to
FFFFH.

If TSin CROis set.

If EM in CRO is set.

If OSFXSR in CR4isO.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code)

For apage fault.

|]
Documentation Changes IntGI@;

4, PSADBW Instruction Description Section Corrected

|A-32 Intel Architecture Software Developer’s Manual, Volume 2B, Chapter 4, the PSADBW-
Compute Sum of Absolute Differences section: an error has been corrected in the Description
paragraph. The affected areais shown below (not all text in the section has been reproduced). The
location of the change isindicated by the change bar.

Description

Computes the absolute value of the difference of 8 unsigned byte integers from the source operand
(second operand) and from the destination operand (fir st operand). These 8 differences are then
summed to produce an unsigned word integer result that is stored in the destination operand. The
source operand can be an MMX technology register or a 64-bit memory location or it can be an
XMM register or a 128-bit memory location. The destination operand can be an MM X technology
register or an XMM register. Figure 4-5 shows the operation of the PSADBW instruction when
using 64-bit operands.

5. Reference to Wrong Step Corrected

IA-32 Intel Architecture Software Devel oper’s Manual, Volume 3, Chapter 7, section 7.5.4.1:
contains an incorrect reference in anumbered list. This has been corrected. The affected step is
shown below with a change bar to indicate the location of the error (not all steps have been
included).

15. Broadcasts an INIT-SIPI-SIPI |PI sequence to the APs to wake them up and initialize them:

MOV ESI, ICR LOW |oad address of ICR | ow dword into ESI

MOV EAX, 000C4500H; | oad ICR encoding for broadcast INIT | Pl
; to all APs into EAX

MV [ESI], EAX ; broadcast INNT IPl to all APs

; 10-millisecond delay | oop

MOV EAX, 000C46XXH;, | oad I CR encoding for broadcast SIPl |IP
; to all APs into EAX, where xx is the
; vector conputed in step 10.

MOV [ESI], EAX ; broadcast SIPl IPl to all APs

; 200-m crosecond del ay | oop

MOV [ESI], EAX ; broadcast second SIPlI IPl to all APs

; 200-m crosecond del ay | oop

10 IA-32 Software Developer’'s Manual Documentation Changes

Documentation Changes

APIC Chapter Updated

IA-32 Intel Architecture Software Developer’s Manual, Volume 3, Chapter 8 has been updated.
Information has been added to multiple sections; this information indicates the model-specific
nature of some features. The new information is shown below (with enough of surrounding text to
indicate the new text’slocation; not al text in the chapter isincluded). See the change barsto locate
the updated lines.

8.4.6. Local APIC ID

At power up, system hardware assigns aunique APIC ID to each local APIC on the system bus (for
Pentium 4 and Intel Xeon processors) or on the APIC bus (for P6 family and Pentium processors).
Thehardware assigned APIC ID isbased on system topology and includes encoding for socket posi-
tion and cluster information (see Figure 7-2).

In MP systems, thelocal APIC ID isalso used asa processor 1D by theBlOSand theoperating
system. However, the ability of software to modify the APIC ID is processor model specific.
Because of this, operating system software should avoid writing to thelocal APIC ID register.

The processor receives the hardware assigned APIC ID by sampling pins A11# and A12# and pins
BRO# through BR3# (for the Pentium 4, Intel Xeon, and P6 family processors) and pins BEO#
through BE3# (for the Pentium processor). The APIC ID latched from these pins is stored in the
APIC ID field of the local APIC ID register (see Figure 8-6), and is used as the initial APIC ID for
the processor. It is also the value returned to the EBX register, when the CPUID instruction is
executed with a source operand value of 1 in the EAX register.

31 24 23 0

APIC ID* Reserved

Address: OFEEO 0020H
Value after reset: 0000 0000H

* For the P6 family and Pentium processors,
bits 28-31 are reserved. For Pentium 4
and Xeon processors, 21-31 are reserved.

Figure 8-6. Local APIC ID Register

For the P6 family and Pentium processors, the local APIC ID field in thelocal APIC ID register is
4 bits, and encodings OH through EH can be used to uniquely identify 15 different processors
connected to the APIC bus. For the Pentium 4 and Intel Xeon processors, the XxAPIC specification
extends the local APIC ID field to 8 bits which can be used to identify up to 255 processorsin the
system.

Following power up or a hardware reset, software (typically the BIOS software) can modify the
APICID fieldinthelocal APIC ID register for each processor in the system. When changing APIC
IDs, software must insure that each APIC ID for each local APIC is unique throughout the system.

......... omitted text....

IA-32 Software Developer’'s Manual Documentation Changes 11

|]
Documentation Changes IntGI@;

12

8.6. ISSUING INTERPROCESSOR INTERRUPTS

Thefollowing sections describe thelocal APIC facilitiesthat are provided for i ssuing interprocessor
interrupts (IPIs) from software. The primary local APIC facility for issuing IPIs is the interrupt
command register (ICR). The ICR can be used for the following functions:

e To send an interrupt to another processor.

« To alow a processor to forward an interrupt that it received but did not service to another
processor for servicing.

e Todirect the processor to interrupt itself (perform a self interrupt).
e Todeliver specid IPIs, such asthe start-up IPl (SIPI) message, to other processors.

Interrupts generated with thisfacility are delivered to the other processors in the system through the
system bus (for Pentium 4 and Intel Xeon processors) or the APIC bus (for P6 family and Pentium
processors). The ability for a processor to send a lowest priority IPI is model specific and
should be avoided by BIOS and operating system software.

8.6.1. Interrupt Command Register (ICR)

The interrupt command register (ICR) is a 64-bit local APIC register (see Figure 8-12) that allows
software running on the processor to specify and send interprocessor interrupts (1PIs) to other |A-
32 processors in the system.

To send an |PI, software must set up the ICR to indicate the type of 1Pl message to be sent and the
destination processor or processors. (All fields of the ICR are read-write by software with the excep-
tion of the delivery statusfield, which isread-only.) The act of writing to the low doubleword of the
ICR causes the IPI to be sent.

IA-32 Software Developer’'s Manual Documentation Changes

Documentation Changes

63 56 55

32

Destination Field

Reserved

31

2019181716 15141312 1110

8 7

Reserved

Vector

Destination Shorthand J

00: No Shorthand
01: Self

10: All Including Self
11: All Excluding Self

\:’ Reserved

Address: FEEO 0300H (0 - 31)
FEEO 0310H (32 - 63)

Value after Reset: OH

NOTE:

L Delivery Mode

000: Fixed

001: Lowest Priority®
010: SMI

011: Reserved

100: NMI

101: INIT

110: Start Up

111: Reserved

Destination Mode
0: Physical
1: Logical

Delivery Status
0: Idle
1: Send Pending

Level
0 = De-assert
1 = Assert

Trigger Mode
0: Edge
1: Level

1. The ability of a processor to send Lowest Priority IPl is model specific.

Figure 8-12. Interrupt Command Register (ICR)

The ICR consists of the following fields.

Vector

Delivery Mode

The vector number of the interrupt being sent.

Specifies the type of 1Pl to be sent. This field is also know as the IPI
message type field.

000 (Fixed) Delivers the interrupt specified in the vector field to
the target processor or processors.

001 (Lowest Priority)
Same as fixed mode, except that the interrupt is deliv-
ered to the processor executing at the lowest priority
among the set of processors specified in the destina-
tion field. The ability for a processor to send a low-
est priority 1Pl is model specific and should be
avoided by BIOS and operating system software.

010 (SM1)

Delivers an SMI interrupt to the target processor or

processors. The vector field must be programmed to
OOH for future compatibility.

IA-32 Software Developer’'s Manual Documentation Changes

13

Documentation Changes

Destination Mode

intel.

011 (Reserved)

100 (NMI) Delivers an NMI interrupt to the target processor or
processors. The vector information isignored.

101 (INIT) Deliversan INIT request to the target processor or pro-

cessors, which causes them to perform an INIT. Asa
result of this|PI message, all thetarget processors per-
form an INIT. Thevector field must be programmed to
OO0H for future compatibility.

101 (INIT Level De-assert)

(Not supported in the Pentium 4 and Intel Xeon pro-
cessors.) Sends a synchronization message to al the
local APICs in the system to set their arbitration IDs
(stored in their Arb ID registers) to the values of their
APIC IDs (see Section 8.7., “System and APIC Bus
Arbitration”). For this delivery mode, the level flag
must be set to 0 and trigger mode flag to 1. ThisIPl is
sent to al processors, regardless of the value in the
destination field or the destination shorthand field;
however, software should specify the “all including
self” shorthand.

110 (Start-Up) Sendsaspecia “start-up” 1Pl (called aSIPI) to the tar-
get processor or processors. The vector typically
points to a start-up routine that is part of the BIOS
boot-strap code (see Section 7.5., “ Multiple-Processor
(MP) Initialization”). Note that | Pls sent with this de-
livery mode are not automatically retried if the source
APIC isunableto deliver it. It is up to the software to
determine if the SIPI was not successfully delivered
and to reissue the SIPI if necessary.

Selects either physical (0) or logical (1) destination mode (see Section

8.6.2., Determining IPI Destination).

Delivery Satus (Read Only)

Level

Trigger Mode

14

Indicatesthe IPI delivery status, asfollows:

0 (Idle) There is currently no IPI activity for this local APIC,
or the previous I Pl sent from this local APIC was de-
livered and accepted by the target processor or proces-
Sors.

1 (Send Pending)
Indicatesthat the last | Pl sent from thislocal APIC has
not yet been accepted by the target processor or pro-
CESSOrs.

For the INIT level de-assert delivery mode this flag must be set to O; for
al other delivery modesit must be set to 1. (Thisflag has no meaning in
Pentium 4 and Intel Xeon processors, and will always beissued asa l.)

Selects the trigger mode when using the INIT level de-assert delivery
mode: edge (0) or level (1). It isignored for al other delivery modes.
(This flag has no meaning in Pentium 4 and Intel Xeon processors, and
will alwaysbeissued asa0.)

IA-32 Software Developer’'s Manual Documentation Changes

In

tel.

Destination Shorthand

Destination

Documentation Changes

Indicates whether a shorthand notation is used to specify the destination
of the interrupt and, if so, which shorthand is used. Destination short-
hands are used in place of the 8-bit destination field, and can be sent by
software using a single write to the low doubleword of the ICR. Short-
hands are defined for the following cases: software self interrupt, IPIsto
all processorsin the system including the sender, IPIsto all processorsin
the system excluding the sender.

00: (No Shorthand)
The destination is specified in the destination field.

01: (Self) The issuing APIC is the one and only destination of
the IPI. This destination shorthand allows software to
interrupt the processor on which it is executing. An
APIC implementation is free to deliver the self-inter-
rupt message internally or to issue the message to the
bus and “snoop” it as with any other Pl message.

10: (All Including Self)
The IPl is sent to al processors in the system
including the processor sending the IPI. The APIC
will broadcast an IPI message with the destination
field set to FH for Pentium and P6 family processors
and to FFH for Pentium 4 and Intel Xeon processors.

11: (All Excluding Self)
The IPI is sent to all processors in a system with the
exception of the processor sending the IPl. The APIC
broadcasts a message with the physical destination
mode and destination field set to OxFH for Pentium
and P6 family processors and to OxFFH for Pentium 4
and Intel Xeon processors. Support for this destina-
tion shorthand in conjunction with the lowest-pri-
ority delivery mode is model specific. For Pentium
4 and Intel Xeon processors, when thisshorthand is
used together with lowest priority delivery mode,
the IPI may be redirected back to the issuing pro-
CEessor.

Specifiesthe target processor or processors. Thisfield isonly used when
the destination shorthand field is set to 00B. If the destination mode is set
to physical, then bits 56 through 59 contain the APIC ID of the target
processor for Pentium and P6 family processors and bits 56 through 63
contain the APIC ID of the target processor the for Pentium 4 and Intel
Xeon processors. If the destination mode is set to logical, the interpreta-
tion of the 8-bit destination field depends on the settings of the DFR and
LDR registers of thelocal APICsin al the processors in the system (see
Section 8.6.2., Determining IPI Destination).

Notethat not all the combinations of optionsfor the |ICR are valid. Table 8-2 showsthe valid combi-
nations for the fields in the ICR for the Pentium 4 and Intel Xeon processors; Table 8-3 shows the
valid combinations for the fields in the ICR for the P6 family processors.

IA-32 Software Developer’'s Manual Documentation Changes 15

Documentation Changes

16

intel.

Table 8-2. Valid Combinations for the Pentium 4 and Intel Xeon Processors’ Local xAPIC
Interrupt Command Register

Destination Valid/ | Trigger
Shorthand Invalid Mode Delivery Mode Destination Mode
No Shorthand Valid Edge All Modes? Physical or Logical
No Shorthand Invalid? | Level All Modes Physical or Logical
Self Valid Edge | Fixed x3
Self Invalid® | Level | Fixed X
Self Invalid X Lowest Priority, NMI, INIT, SMI, Start-Up | X
All Including Self | Valid Edge Fixed X
All Including Self | Invalid? | Level Fixed X
All Including Self | Invalid X Lowest Priority, NMI, INIT, SMI, Start-Up | X
All Excluding Self | Valid Edge Fixed, Lowest Priority’*, NMI, INIT, X
SMI, Start-Up
All Excluding Self | Invalid?® | Level | Fixed, Lowest Priority*, NMI, INIT, SMI, | X
Start-Up

NOTES:

1. The ability of a processor to send a lowest priority IPl is model specific.

For these interrupts, if the trigger mode bit is 1 (Level), the local XAPIC will override the bit setting and issue

the interrupt as an edge triggered interrupt.

2.
3. X—don't care.
4.

When using the “lowest priority” delivery mode and the “all excluding self’ destination, the IPI can be redi-
rected back to the issuing APIC, which is essentially the same as the “all including self” destination mode.

Table 8-3. Valid Combinations for the P6 Family Processors Local APIC Interrupt
Command Register

Destination Valid/ Trigger
Shorthand Invalid Mode Delivery Mode Destination Mode
No Shorthand Valid Edge All Modes? Physical or Logical
No Shorthand Valid? Level Fixed, Lowest Priorityl, NMI Physical or Logical
No Shorthand Valid® Level INIT Physical or Logical
Self Valid Edge Fixed x4
Self 1 Level Fixed X
Self Invalid® X Lowest Priority, NMI, INIT, SMI, | X
Start-Up
All including Self Valid Edge Fixed X
All including Self Valid? Level Fixed X
All including Self Invalid® X Lowest Priority, NMI, INIT, SMI, | X
Start-Up
All excluding Self Valid Edge All Modes? X
All excluding Self Valid? Level Fixed, Lowest Priorityl, NMI X
All excluding Self Invalid® Level SMI, Start-Up X
All excluding Self | Valid® Level INIT X
X Invalid® Level SMI, Start-Up X

NOTES:

1. The ability of a processor to send a lowest priority IPl is model specific.
2. Treated as edge triggered if level bit is set to 1, otherwise ignored.

IA-32 Software Developer’'s Manual Documentation Changes

Documentation Changes

3. Treated as edge triggered when Level bit is set to 1; treated as “INIT Level Deassert” message when level bit
is set to O (deassert). Only INIT level deassert messages are allowed to have the level bit set to 0. For all
other messages the level bit must be set to 1.

4. X—Don't care.

5. The behavior of the APIC is undefined.

8.6.2. Determining IPI Destination

The destination of an IPI can be one, al, or a subset (group) of the processors on the system bus.
The sender of the I Pl specifiesthe destination of an IPl with the following APIC registersand fields
within the registers:

e ThelCR register—The following fields in the ICR register are used to specify the destination
of anIPI:

— Destination Mode—selects one of two destination modes (physical or logical).

— Destination field—In physical destination mode, used to specify the APIC ID of the
destination processor; in logical destination mode, used to specify a message destination
address (MDA) that can be used to select specific processorsin clusters.

— Destination Shorthand—A quick method of specifying all processors, all excluding self, or
self asthe destination.

— Delivery mode, Lowest Priority—Architecturally specifies that a lowest-priority
arbitration mechanism be used to select a destination processor from a specified
group of processors. The ability of a processor to send a lowest priority 1Pl is model
specific and should be avoided by BIOS and operating system software.

e Loca destination register (LDR)—Used in conjunction with the logical destination mode and
MDASs to select the destination processors.

» Dedtination format register (DFR)—Used in conjunction with the logical destination mode and
MDAs to select the destination processors.

How the ICR, LDR, and DFR are used to select an |PI destination depends on the destination mode
used: physical, logical, broadcast/self, or lowest-priority delivery mode. These destination modes
are described in the following sections.

8.6.2.1. PHYSICAL DESTINATION MODE

In physical destination mode, the destination processor is specified by itslocal APIC ID (see Section
8.4.6., Local APIC ID). For Pentium 4 and Intel Xeon processors, either a single destination (local
APIC IDs 00H through FEH) or abroadcast to all APICs (the APIC ID is FFH) may be specified in
physical destination mode.

A broadcast 1Pl (bits 28-31 of the MDA are 1's) or 1/0O subsystem initiated interrupt with
lowest priority delivery mode is not supported in physical destination mode and must not be
configured by software. Also, for any non-broadcast | Pl or I/O subsystem initiated interrupt
with lowest priority delivery mode, software must ensure that APICsdefined in the interrupt
address are present and enabled to receiveinterrupts.

For the P6 family and Pentium processors, a single destination is specified in physical destination
mode with alocal APIC ID of OH through OEH, allowing up to 15 local APICsto be addressed on
the APIC bus. A broadcast to al local APICsis specified with OFH.

IA-32 Software Developer’'s Manual Documentation Changes 17

|]
Documentation Changes IntGI@;

NOTE

The actual number of local APICs that can be addressed on the system bus may
be restricted by hardware.

8.6.2.2. LOGICAL DESTINATION MODE

In logical destination mode, IPI destination is specified using an 8-bit message destination address
(MDA), which isentered in the destination field of the ICR. Upon receiving an | Pl message that was
sent using logical destination mode, alocal APIC comparesthe MDA in the message with the values
inits LDR and DFR to determine if it should accept and handle the IPI. For both configurations
of logical destination mode, when combined with lowest priority delivery mode, software is
responsible for ensuring that all of thelocal APICsincluded in or addressed by theIPI or 1/O
subsystem interrupt are present and enabled to receive the interrupt.

Figure 13 showsthelayout of thelogical destination register (LDR). The 8-bit logical APIC ID field
in thisregister is used to create an identifier that can be compared with the MDA.

NOTE

The logical APIC ID should not be confused with the local APIC ID that is
contained in the local APIC ID register.

31 24 23 0

Logical APIC ID Reserved

Address: OFEEO 00DOH
Value after reset: 0000 0000H

Figure 8-13. Logical Destination Register (LDR)

Figure 14 shows the layout of the destination format register (DFR). The 4-bit model field in this
register selects one of two models (flat or cluster) that can be used to interpret the MDA when using
logical destination mode.

31 28 0

Model Reserved (All 1s)

\— Flat model: 1111B

Cluster model: 0000B

Address: OFEEO 00EOH
Value after reset: FFFF FFFFH

Figure 8-14. Destination Format Register (DFR)

The interpretation of MDA for the two modelsis described in the following paragraphs.

Flat M odel. Thismodel is selected by programming DFR bits 28 through 31 to 1111. Here, aunique
logical APIC ID can be established for up to 8 local APICs by setting a different bit in the logical
APIC ID field of the LDR for each local APIC. An group of local APICs can then be selected by
setting one or more bitsin the MDA.

18 IA-32 Software Developer’'s Manual Documentation Changes

Documentation Changes

Each local APIC performs abit-wise AND of the MDA and itslogical APIC ID. If atrue condition
is detected, the local APIC acceptsthe IPl message. A broadcast to all APICsis achieved by setting
the MDA to dll 1s.

Cluster Model. This model is selected by programming DFR bits 28 through 31 to 0000. This
model supports two basic destination schemes: flat cluster and hierarchical cluster.

The flat cluster destination model is only supported for P6 family and Pentium processors. Using
thismodel, all APICs are assumed to be connected through the APIC bus. Bits 28 through 31 of the
MDA contains the encoded address of the destination cluster, and bits 24 through 27 identify up to
four local APICs within the cluster (each bit is assigned to one local APIC in the cluster, asin the
flat connection model). To identify one or more local APICs, bits 28 through 31 of the MDA are
compared with bits 28 through 31 of the LDR to determineif alocal APIC is part of the cluster. Bits
24 through 27 of the MDA are compared with Bits 24 through 27 of the LDR to identify a local
APICswithin the cluster.

Sets of processors within a cluster can be specified by writing the target cluster address in bits 28
through 31 of the MDA and setting selected bits in bits 24 through 27 of the MDA, corresponding
to the chosen members of the cluster. In this mode, 15 clusters (with cluster addresses of 0 through
14) each having 4 local APICscan be specified in the message. For the P6 and Pentium processor’s
local APICs, however, the APIC arbitration ID supports only 15 APIC agents, and hence the total
number of processors and their local APICs supported in this modeis limited to 15. Broadcast to
all local APICsisachieved by setting all destination bitsto one. This guaranteesamatch on all clus-
ters, and selectsall APICsin each cluster. A broadcast | Pl or 1/0 subsystem broadcast interrupt
with lowest priority delivery mode is not supported in cluster mode and must not be config-
ured by software.

The hierarchical cluster destination model can be used with Pentium 4, Intel Xeon, P6 family, or
Pentium processors. With this model, a hierarchical network can be created by connecting different
flat clusters viaindependent system or APIC buses. This scheme requires a cluster manager within
each cluster, which isresponsiblefor handling message passing between system or APIC buses. One
cluster contains up to 4 agents. Thus 15 cluster managers, each with 4 agents, can form a network
of up to 60 APIC agents. Note that hierarchical APIC networks requires a special cluster manager
device, which is not part of the local or the I/O APIC units.

......... omitted text....

8.11.1. Message Address Register Format
The format of the Message Address Register (lower 32-bits) is shown in Figure .

31 20 19 12 11 4 3 2 1 0

OFEEH Destination ID | Reserved RH DM XX

Figure 8-23. Layout of the MSI Message Address Register

IA-32 Software Developer’'s Manual Documentation Changes 19

|]
Documentation Changes IntGI@;

20

Fieldsin the Message Address Register are as follows:

1. Bits 31-20: These bits contain a fixed value for interrupt messages (OFEEH). This value
locates interrupts at the IMB area with a base address of 4G — 18M. All accesses to thisregion
are directed as interrupt messages. Care must to be taken to ensure that no other device claims
the region as |/O space.

2. Dedtination ID: This field contains an 8-bit destination ID. It identifies the message’s target
processor(s). The destination ID corresponds to bits 63:56 of the I/O APIC Redirection Table
Entry if the IOAPIC is used to dispatch the interrupt to the processor(s).

3. Redirection Hint Indication (RH): This bit indicates whether the message should be directed to
the processor with the lowest interrupt priority among processors that can receive the interrupt.

e When RH isOQ, theinterrupt is directed to the processor listed in the Destination
ID field.

« When RH is 1 and the physical destination mode isused, the Destination 1D field
must not be set to OxFF; it must point to a processor that is present and enabled
to receivetheinterrupt.

e When RH is 1 and the logical destination mode is active in a system using a flat
addressing model, the Destination I D field must be set so that bits set to 1 identify
processorsthat are present and enabled to receive the interrupt.

. If RH isset to 1 and thelogical destination modeisactivein a system using
cluster addressing model, then Destination ID field must not be set to OxFF; the
processor s identified with this field must be present and enabled to receive the
interrupt.

Destination Mode (DM): This bit indicates whether the Destination 1D field should be interpreted
aslogical or physical APIC ID for delivery of the lowest priority interrupt. If RH is1 and DM isO,
the Destination ID field isin physical destination mode and only the processor in the system that
has the matching APIC ID is considered for delivery of that interrupt (this means no re-direction).
If RH is1and DM is 1, the Destination ID Field isinterpreted asin logical destination mode and
the redirection is limited to only those processors that are part of the logical group of processors
based on the processor’s logical APIC ID and the Destination ID field in the message. The logical
group of processors consists of those identified by matching the 8-bit Destination 1D with the
logical destination identified by the Destination Format Register and the Logical Destination
Register in each local APIC. The details are similar to those described in Section 8.6.2.,
Determining IPI Destination. If RH is 0, then the DM hit isignored and the message is sent ahead
independent of whether the physical or logical destination mode is used.

IA-32 Software Developer’'s Manual Documentation Changes

Documentation Changes

7. IA32_MC1_MISC, IA32_MC2_MISC and IA32_MC2_ADDR Listings Corrected

For Table B-5, |A-32 Intel Architecture Software Developer’s Manual, Volume 3; afootnote has
been added to clarify when and why specific MSRs may or may not be present. The affected cells
in the table are shown below (not all cellsin the table have been included).

Table B-5. IA-32 Architectural MSRs

IA-32 Software Developer’'s Manual Documentation Changes

Register Address
IA-32 Processor

Architectural Name Former Name Family Introduced In
407H 1031 IA32_MCl_MIS(:l MC1_MISC P6 Family Processors
408H 1032 I1A32_MC2_CTL MC2_CTL P6 Family Processors
409H 1033 IA32_MC2_STATUS MC2_STATUS P6 Family Processors
40AH 1034 IA32_MC2_ADDR? MC2_ADDR P6 Family Processors
40BH 1035 IA32_MCZ_MISCl MC2_MISC P6 Family Processors
40CH 1036 I1A32_MC3_CTL MC3_CTL P6 Family Processors
40DH 1037 IA32_MC3_STATUS MC3_STATUS P6 Family Processors
40EH 1038 I1A32_MC3_ADDR MC3_ADDR P6 Family Processors
40FH 1039 1A32_MC3_MISC MC3_MISC P6 Family Processors
600H 1536 I1A32_DS_AREA Pentium 4 Processor

a These MSRs may or may not be present; this depends on flag settingsin

IA32_MCi_STATUS. See Section 14.3.2.3. and Section 14.3.2.4. for more information.

*kk kkk kk%x

|]
Documentation Changes IntGI@;

22

Ambiguity Correction

For Sections 4.11.3 and 4.12, 1A-32 Intel Architecture Software Developer’s Manual, Volume 3; the
wording has been corrected to be more precise. Updated text and table cells are marked by change
bars.

4.11.3. Page Type

The page-level protection mechanism recognizes two page types:
¢ Read-only access (R/W flag is 0).
¢ Read/write access (R/W flag is 1).

When the processor is in supervisor mode and the WP flag in register CRO is clear (its state
following reset initiaization), all pages are both readabl e and writable (write-protection isignored).
When the processor isin user mode, it can write only to user-mode pages that are read/write acces-
sible. User-mode pages which are read/write or read-only are readable; supervisor-mode pages are
neither readable nor writable from user mode. A page-fault exception is generated on any attempt
to violate the protection rules.

The P6 family, Pentium, and Intel486 processors allow user-mode pages to be write-protected
against supervisor-mode access. Setting the WP flag in register CRO to 1 enables supervisor-
mode sensitivity to user-mode, write protected pages. Supervisor pages which are read-only
are not writeable from any privilege level, regardless of WP setting. This supervisor write-
protect feature is useful for implementing a “copy-on-write” strategy used by some operating
systems, such as UNIX*, for task creation (also called forking or spawning). When a new task is
created, it is possible to copy the entire address space of the parent task. This gives the child task a
complete, duplicate set of the parent's segments and pages. An alternative copy-on-write strategy
saves memory space and time by mapping the child's segments and pages to the same segments and
pages used by the parent task. A private copy of apage gets created only when one of the taskswrites
to the page. By using the WP flag and marking the shared pages as read-only, the supervisor can
detect an attempt to write to a user-level page, and can copy the page at that time.

4.11.4. Combining Protection of Both Levels of Page Tables

For any one page, the protection attributes of its page-directory entry (first-level page table) may
differ from those of its page-table entry (second-level page table). The processor checks the protec-
tion for a page in both its page-directory and the page-table entries. Table 4-4 shows the protection
provided by the possible combinations of protection attributes when the WP flag is clear.

4.11.5. Overrides to Page Protection

The following types of memory accesses are checked as if they are privilege-level 0 accesses,
regardless of the CPL at which the processor is currently operating:

* Access to segment descriptors in the GDT, LDT, or IDT.

e Access to an inner-privilege-level stack during an inter-privilege-level cal or a cal to in
exception or interrupt handler, when a change of privilege level occurs.

IA-32 Software Developer’'s Manual Documentation Changes

Documentation Changes

4.12. COMBINING PAGE AND SEGMENT PROTECTION

When paging is enabled, the processor evaluates segment protection first, then evaluates page
protection. If the processor detectsaprotection violation at either the segment level or the page level,
the memory accessis not carried out and an exception is generated. If an exception is generated by
segmentation, no paging exception is generated.

Page-level protections cannot be used to override segment-level protection. For example, a code
segment is by definition not writable. If a code segment is paged, setting the R/W flag for the pages
to read-write does not make the pages writable. Attempts to write into the pages will be blocked by
segment-level protection checks.

Page-level protection can be used to enhance segment-level protection. For example, if alarge read-
write data segment is paged, the page-protection mechanism can be used to write-protect individual
pages.

Table 4-4. Combined Page-Directory and Page-Table Protection

Page-Directory Entry Page-Table Entry Combined Effect
Privilege Access Type Privilege Access Type Privilege Access Type
User Read-Only User Read-Only User Read-Only
User Read-Only User Read-Write User Read-Only
User Read-Write User Read-Only User Read-Only
User Read-Write User Read-Write User Read/Write
User Read-Only Supervisor Read-Only Supervisor Read-Only
User Read-Only Supervisor Read-Write Supervisor Read/Write*
User Read-Write Supervisor Read-Only Supervisor Read/Write*
User Read-Write Supervisor Read-Write Supervisor Read/Write
Supervisor Read-Only User Read-Only Supervisor Read-Only
Supervisor Read-Only User Read-Write Supervisor Read/Write*
Supervisor Read-Write User Read-Only Supervisor Read/Write*
Supervisor Read-Write User Read-Write Supervisor Read/Write
Supervisor Read-Only Supervisor Read-Only Supervisor Read-Only
Supervisor Read-Only Supervisor Read-Write Supervisor Read/Write*
Supervisor Read-Write Supervisor Read-Only Supervisor Read/Write*
Supervisor Read-Write Supervisor Read-Write Supervisor Read/Write
NOTE:

* If the WP flag of CRO is set, the access type is determined by the R/W flags of the page-directory and page-
table entries.

*kk kkk kkk

IA-32 Software Developer’'s Manual Documentation Changes 23

Documentation Changes In

24

Listing of Invalid TSS Conditions Has Been Updated

For Table 5-6, |A-32 Intel Architecture Software Developer’s Manual, Volume 3; Additional invalid
conditions have been listed. The updated tableis as follows:

Interrupt 10—Invalid TSS Exception (#TS)
Exception Class Fault.

Description

Indicates that there was an error related to a TSS. Such an error might be detected during a task
switch or during the execution of instructionsthat useinformation from a TSS. Table 5-6 showsthe
conditions that cause an invalid TSS exception to be generated.

Table 5-6. Invalid TSS Conditions

Error Code Index

Invalid Condition

TSS segment selector index

The TSS segment limit is less than 67H for 32-bit TSS or less than 2CH
for 16-bit TSS.

TSS segment selector index

During an IRET task switch, the Tl flag in the TSS segment selector
indicates the LDT.

TSS segment selector index

During an IRET task switch, the TSS segment selector exceeds
descriptor table limit.

TSS segment selector index

During an IRET task switch, the busy flag in the TSS descriptor indicates
an inactive task.

TSS segment selector index

During an IRET task switch, an attempt to load the backlink limit faults.

TSS segment selector index

During an IRET task switch, the backlink is a NULL selector.

TSS segment selector index

During an IRET task switch, the backlink points to a descriptor which is
not a busy TSS.

TSS segment selector index

The new TSS descriptor is beyond the GDT limit.

TSS segment selector index

The new TSS descriptor is not writeable.

TSS segment selector index

Stores to the old TSS encounter a fault condition.

TSS segment selector index

The old TSS descriptor is not writeable for a jump or IRET task switch.

TSS segment selector index

The new TSS backlink is not writeable for a call or exception task switch.

TSS segment selector index

The new TSS selector is null on an attempt to lock the new TSS.

TSS segment selector index

The new TSS selector has the Tl bit set on an attempt to lock the new
TSS.

TSS segment selector index

The new TSS descriptor is not an available TSS descriptor on an
attempt to lock the new TSS.

LDT segment selector index

LDT or LDT not present.

Stack segment selector index

The stack segment selector exceeds descriptor table limit.

Stack segment selector index

The stack segment selector is NULL.

Stack segment selector index

The stack segment descriptor is a non-data segment.

Stack segment selector index

The stack segment is not writable.

Stack segment selector index

The stack segment DPL != CPL.

Stack segment selector index

The stack segment selector RPL != CPL.

IA-32 Software Developer’'s Manual Documentation Changes

Documentation Changes

Table 5-6. Invalid TSS Conditions (Continued)

Error Code Index

Invalid Condition

Code segment selector index

The code segment selector exceeds descriptor table limit.

Code segment selector index

The code segment selector is NULL.

Code segment selector index

The code segment descriptor is not a code segment type.

Code segment selector index

The nonconforming code segment DPL != CPL.

Code segment selector index

The conforming code segment DPL is greater than CPL.

Data segment selector index

The data segment selector exceeds the descriptor table limit.

Data segment selector index

The data segment descriptor is not a readable code or data type.

Data segment selector index

The data segment descriptor is a nonconforming code type and RPL >
DPL.

Data segment selector index

The data segment descriptor is a nonconforming code type and CPL >
DPL.

TSS segment selector index

The TSS segment selector is NULL for LTR.

TSS segment selector index

The TSS segment selector has the Tl bit set for LTR.

TSS segment selector index

The TSS segment descriptor/upper descriptor is beyond the GDT
segment limit.

TSS segment selector index

The TSS segment descriptor is not an available TSS type.

kkk kkk kk*k

IA-32 Software Developer’'s Manual Documentation Changes

25

|]
Documentation Changes IntGI@;

10.

26

Description Section Corrected

For the OUTS/OUTSB/OUTSW/OUTSD—Output String to Port section, Chapter 4, 1A-32 Intel
Architecture Software Developer’s Manual, Volume 2B; text in the Description sub-section has
been updated to correct an erroneous reference. The affected areais shown below in context;
affected lines are marked by a change bar.

OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

Opcode Instruction Description

6E OUTS DX, m8 Output byte from memory location specified in DS:(E)SI to
1/0O port specified in DX

6F OUTS DX, m16 Output word from memory location specified in DS:(E)SI
to 1/O port specified in DX

6F OUTS DX, m32 Output doubleword from memory location specified in
DS:(E)SI to I/O port specified in DX

6E OouUTSB Output byte from memory location specified in DS:(E)SI to
1/0O port specified in DX

6F OUTSW Output word from memory location specified in DS:(E)SI
to 1/O port specified in DX

6F OUTSD Output doubleword from memory location specified in
DS:(E)SI to I/O port specified in DX

Description

Copies data from the source operand (second operand) to the 1/0 port specified with the destination
operand (first operand). The source operand isamemory location, the address of which isread from
either the DS:ESI or the DS:SI registers (depending on the address-size attribute of the instruction,
32 or 16, respectively). (The DS segment may be overridden with a segment override prefix.) The
destination operand is an 1/O port address (from 0 to 65,535) that is read from the DX register. The
size of the /O port being accessed (that is, the size of the source and destination operands) is deter-
mined by the opcode for an 8-hit 1/O port or by the operand-size attribute of the instruction for a 16-
or 32-hit 1/0 port.

*kk kkk kx%x

IA-32 Software Developer’'s Manual Documentation Changes

u
Inte|® Documentation Changes

11. IA-32e Updates for LLDT, LMSW, LTR, SLDT, SMSW, STR

For LLDT, LMSW, LTR, SLDT, SMSW, STR; Chapters 2 & 3in the Intel® Extended Memory 64
Technology Software Developer’s Guide, Volumes 1 & 2; 1A-32e Mode Operation sections have
been updated. Change bars mark the corrections.

LLDT—Load Local Descriptor Table Register

Opcode Instruction 64-Bit Compat/Leg Mode Description
Mode
OF 00 /2 LLDT r/m16 Valid Valid Load segment selector r/m16
into LDTR

Flags Affected

None.

IA-32e Mode Operation
Operand size fixed at 16 bits.
References 64-bit mode descriptor to load 64-bit base.

kkk kkk kk%k

LMSW—Load Machine Status Word

Opcode Instruction 64-Bit Mode Compat/Leg Description
Mode
OF 01 /6 LMSW r/m16 Valid Valid Loads r/m16 in machine status
word of CRO

Flags Affected

None.

IA-32e Mode Operation

Same as legacy mode.
Operand size fixed at 16 bits.

kkk kkk kk%k

IA-32 Software Developer’'s Manual Documentation Changes 27

Documentation Changes

intel.

28

LTR—Load Task Register

Opcode Instruction 64-Bit Mode Compat/Leg Description
Mode
OF 00 /3 LTR r/m16 Valid Valid Load r/m16 into task register

Flags Affected

None.

IA-32e Mode Operation
Operand size fixed at 16 bits.
References 64-bit mode descriptor to load 64-bit base.

*kk kkk kk%x

SLDT—Store Local Descriptor Table Register

64-Bit Compat/Leg
Opcode Instruction Mode Mode Description
OF 00 /0 SLDT r/m16 Valid Valid Stores segment selector from LDTR in r/
ml6

Flags Affected

None.

IA-32e Mode Operation

The behavior of the SLDT instruction is defined by the following examples.
e SLDT r16 operands size 16, store 16-bit selector in r16

e SLDT r32 operands size 32, zero-extend 16-bit selector and store in r32
e SLDT r64 operands size 64, zero-extend 16-bit selector and storein ré4
e SLDT m16 operands size 16, store 16-bit selector in m16

e SLDT m16 operands size 32, store 16-bit selector in m16 (not m32)

e SLDT m16 operands size 64, store 16-bit selector in m16 (not m64)

*kk kkk kk%x

IA-32 Software Developer’'s Manual Documentation Changes

In

tel.

SMSW—Store Machine Status Word

Documentation Changes

64-Bit Compat/Leg
Opcode Instruction Mode Mode
OF 01 /4 SMSW r/m16 Valid Valid

Description
Store machine status word to r/m16

Flags Affected

None.

IA-32e Mode Operation

The behavior of the SMSW instruction is defined by the following examples.
e SMSW rl6 operands size 16, store CRO[15:0] inr16
e SMSW r32 operands size 32, zero-extend CRO[31:0], and storein r32
e SMSW r64 operands size 64, zero-extend CR0O[63:0], and store in r64

* SMSW ml6 operands size 16, store CRO[15:0] in m16

¢ SMSW ml6 operands size 32, store CRO[15:0] in m16 (not m32)
¢ SMSW m16 operands size 64, store CR0O[15:0] in m16 (not m64)

*kk kkk kkx

STR—Store Task Register

64-Bit Compat/Leg
Opcode Instruction Mode Mode
OF 00 /1 STR r/m16 Valid Valid

Description
Stores segment selector from TR in

r/m16

Flags Affected

None.

IA-32e Mode Operation
Same as legacy mode.
Memory operand fixed at 16 bits.

Zero extend 2 byte TR selector to 64 bits and store to register operand.

*kk kkk kkx

IA-32 Software Developer’'s Manual Documentation Changes

29

|]
Documentation Changes IntGI@;

12.

13.

30

66H Prefix in 64-bit Mode Information Added

In Chapter 1, Intel® Extended Memory 64 Technology Software Developer’s Guide, Volume 1; a
section has been added to address the 66H prefix. This section is shown below.

1.7.1.

¢ Intheinitia implementation of Intel® EM64T, an operand-size prefix (66H) is ignored when
used in 64-bit mode with a near branch. In 64-bit mode, a near branch uses 32-bit displacement
(the instruction pointer is advanced to a linear address that is the next sequential instruction
offset by a 32 bit displacement, sign extended to 64-bit). Software must not rely on this
behavior as future implementations may be different.

Other guidelines

*kk kkk kk%x

MOV—Move to/from Control Registers Section Has Been Updated

In the MOV—Move to/from Control Registers section, Chapter 4, Intel® Extended Memory 64
Technol ogy Software Developer’s Guide, Volume 2; exception sub-sections have been updated. The

entire section is shown below with affected areas marked with change bars.

MOV—Move to/from Control Registers

Compat/
64-Bit Leg

Opcode Instruction Mode Mode Description

OF 22 /r MOV CRO,r32 Valid Valid Move r32 to CRO

REX.W + OF 22 /r MOV CRO,r64 Valid N.E. Move r64 to extended CRO.
OF 22 /r MOV CR2,r32 Valid Valid Move r32 to CR2

REX.W + OF 22 /r MOV CR2,r64 Valid N.E. Move r64 to extended CR2.
OF 22 /r MOV CR3,r32 Valid Valid Move r32 to CR3

REX.W + OF 22 /r MOV CR3,r64 Valid N.E. Move r64 to extended CR3.
OF 22 /r MOV CR4,r32 Valid Valid Move r32 to CR4

REX.W + OF 22 /r MOV CR4,r64 Valid N.E. Move r64 to extended CR4.
OF 20 /r MOV r32,CR0O Valid Valid Move CRO to r32

REX.W + OF 20 /r MOV r64,CRO Valid N.E. Move extended CRO to r64.
OF 20 /r MOV r32,CR2 Valid Valid Move CR2 to r32

REX.W + OF 20 /r MOV r64,CR2 Valid N.E. Move extended CR2 to r64.
OF 20 /r MOV r32,CR3 Valid Valid Move CR3 to r32

REX.W + OF 20 /r MOV r64,CR3 Valid N.E. Move extended CR3 to r64.
OF 20 /r MOV r32,CR4 Valid Valid Move CR4 to r32

REX.W + OF 20 /r MOV r64,CR4 Valid N.E. Move extended CR4 to r64.
OF 20 /r MOV r32,CR8 Valid N.E. Move CR8 to r32

REX.W + OF 20 /r MOV r64,CR8 Valid N.E. Move extended CR8 to r64.

IA-32 Software Developer’'s Manual Documentation Changes

Documentation Changes

Flags Affected
The OF, SF, ZF, AF, PF, and CF flags are undefined.

IA-32e Mode Operation

Promoted to 64-bits.

Operand size fixed at 64-hits (see Control registers section).
Enables access to new registers R8-R15.

Protected Mode Exceptions
#GP(0) If the current privilege level isnot 0.

If an attempt is made to write invalid bit combinations in CRO (such as
setting the PG flag to 1 when the PE flag is set to O, or setting the CD flag
to 0 when the NW flag is set to 1).

If an attempt is made to write a 1 to any reserved bit in CRA4.
Attempting to activate | A-32e mode (MOV CRO) witha286 TSSin TR.
Attempting to activate | A-32e mode (MOV CRO) with CR4.PAE not set.

Attempting to activate |A-32e mode (MOV CRO) with a CS that has the
L-bit set.

Real-Address Mode Exceptions
#GP If an attempt is made to write a 1 to any reserved bit in CR4.

If an attempt is made to write invalid bit combinations in CRO (such as
setting the PG flag to 1 when the PE flag is set to O, or setting the CD flag
to 0 when the NW flag is set to 1).

Virtual-8086 Mode Exceptions
#GP(0) These instructions cannot be executed in virtual-8086 mode.

Compatibility Mode Exceptions
#GP(0) If the current privilege level isnot 0.

If an attempt is made to write invalid bit combinations in CRO (such as
setting the PG flag to 1 when the PE flag is set to 0, or setting the CD flag
to 0 when the NW flag is set to 1).

If an attempt is made to write a 1 to any reserved bit in CR3.
If an attempt is made to leave 1A-32e mode by clearing CR4.PAE.

64-Bit Mode Exceptions
#GP(0) If the current privilege level isnot O.

If an attempt is made to write invalid bit combinations in CRO (such as
setting the PG flag to 1 when the PE flag is set to O, or setting the CD flag
to 0 when the NW flag is set to 1).

IA-32 Software Developer’'s Manual Documentation Changes 31

Documentation Changes In

Attempting to clear CRO.PG

If an attempt is made to write a 1 to any reserved bit in CR4.

If an attempt is made to write a 1 to any reserved bit in CR8.

If an attempt is made to write a 1 to any reserved hit in CR3.

If an attempt is made to leave | A-32e mode by clearing CR4.PAE.

*kk kkk kx%x

14. PUSH Description Correction

In the PUSH—Push Word or Doubleword Onto the Stack section, Chapter 3, Intel® Extended
Memory 64 Technol ogy Software Devel oper’s Guide, Volume 2; the summary table has been
updated. The table is shown below with change bars marking affected cells.

PUSH—Push Word or Doubleword Onto the Stack

64-Bit Compat/Leg

Opcode Instruction Mode Mode Description

FF /6 PUSH r/m16 Valid Valid Push r/m16

FF /6 PUSH r/m32 N.E. Valid Push r/m32

FF /6 PUSH r/m64 Valid N.E. Push r/m64. Default operand size 64-
bits.

50+rw PUSH r16 Valid Valid Push r16

50+rd PUSH r32 N.E. Valid Push r32

50+rd PUSH r64 Valid N.E. Push r64. Default operand size 64-bits.

6A PUSH imm8 Valid Valid Push imm8

68 PUSH imm16 Valid Valid Push imm16

68 PUSH imm32 N.E. Valid Push imm32

68 PUSH imm64 Valid N.E. Push zero-extended imm32. Default
operand size 64-bits.

OE PUSH CS Inv. Valid Push CS

16 PUSH SS Inv. Valid Push SS

1E PUSH DS Inv. Valid Push DS

06 PUSH ES Inv. Valid Push ES

OF AO PUSH FS Valid Valid Push FS and decrement stack pointer by
16 bits.

OF AO PUSH FS N.E. Valid Push FS and decrement stack pointer by
32 bits.

OF AO PUSH FS Valid N.E. Push FS. Default operand size 64-bits.
(66h override causes 16-bit operation)

OF A8 PUSH GS Valid Valid Push GS and decrement stack pointer by
16 bits.

OF A8 PUSH GS N.E. Valid Push GS and decrement stack pointer by
32 hits.

OF A8 PUSH GS Valid N.E. Push GS, Default operand size 64-bits.
(66h override causes 16-bit operation

*kk kkk *kx%x

32 IA-32 Software Developer’'s Manual Documentation Changes

u
Inte|® Documentation Changes

15. EFLAG Erroneous Statement Removed

In Section 16.3.2, IA-32 Intel Architecture Software Developer’s Manual, Volume 3; text in a
numbered list has been edited to remove an error. The updated text is provided below (in context).
Not all of the section isincluded.

If the IF flag is set and the VIF and VIP flags are enabled, and the processor receives a maskable
hardwareinterrupt (interrupt vector O through 255), the processor performs and the interrupt handler
software should perform the following operations:

1. The processor invokes the protected-mode interrupt handler for the interrupt received, as
described in the following steps. These steps are amost identical to those described for method
1 interrupt and exception handling in Section 16.3.1.1., Handling an Interrupt or Exception
Through a Protected-Mode Trap or Interrupt Gate:

a. Switchesto 32-hit protected mode and privilege level 0.

b. Saves the state of the processor on the privilege-level 0 stack. The states of the EIP, CS,
EFLAGS, ESP, SS, ES, DS, FS, and GSregisters are saved (see Figure 16-4).

c. Clearsthe segment registers.
d. Clearsthe VM flagin the EFLAGS register.
e. Begins executing the selected protected-mode interrupt handler.

2. The recommended action of the protected-mode interrupt handler is to read the VM flag from
the EFLAGS image on the stack. If thisflag is set, the handler makes a call to the virtual-8086
monitor.

k*kk kkk kk*k

IA-32 Software Developer’'s Manual Documentation Changes 33

|]
Documentation Changes IntGI@;

16.

34

Interrupt Handling Description Corrections

In Sections 16.3.1.1 through 16.3.3, |A-32 Intel Architecture Software Developer’s Manual, Volume
3; anumber of corrections have been made. The area involved is shown below with affected areas
marked with change bars.

16.3.1.1. HANDLING AN INTERRUPT OR EXCEPTION THROUGH A PROTECTED-
MODE TRAP OR INTERRUPT GATE

When an interrupt or exception vector points to a 32-bit trap or interrupt gate in the IDT, the gate
must in turn point to a nonconforming, privilege-level 0, code segment. When accessing this code
segment, processor performs the following steps.

1. Switchesto 32-hit protected mode and privilege level 0.

2. Saves the state of the processor on the privilege-level 0 stack. The states of the EIP, CS,
EFLAGS, ESP, SS, ES, DS, FS, and GSregisters are saved (see Figure 16-4).

3. Clears the segment registers. Saving the DS, ES, FS, and GS registers on the stack and then
clearing the registers lets the interrupt or exception handler safely save and restore these
registers regardless of the type segment selectors they contain (protected-mode or 8086-style).
Theinterrupt and exception handlers, which may be called in the context of either a protected-
mode task or a virtual-8086-mode task, can use the same code sequences for saving and
restoring the registers for any task. Clearing these registers before execution of the IRET
instruction does not cause a trap in the interrupt handler. Interrupt procedures that expect
values in the segment registers or that return values in the segment registers must use the
register images saved on the stack for privilege level 0.

4. Clears VM, NT, RF and TF flags (in the EFLAGS register). If the gate is an interrupt gate,
clearsthe IF flag.

5. Begins executing the selected interrupt or exception handler.

If thetrap or interrupt gate references a procedure in aconforming segment or in asegment at a priv-
ilege level other than 0O, the processor generates a general-protection exception (#GP). Here, the
error code is the segment selector of the code segment to which a call was attempted.

IA-32 Software Developer’'s Manual Documentation Changes

IA-32 Software Developer’'s Manual Documentation Changes

Documentation Changes

Without Error Code

Unused

Old GS

Old FS

Old DS

Old ES

Old ss

Old ESP

Old EFLAGS

Old Cs

Old EIP

ESP from

TSS

<— New ESP

With Error Code

Unused

ESP from
TSS

Old GS

Old FS

Old DS

Old ES

Old ss

Old ESP

Old EFLAGS

Old Cs

Old EIP

Error Code

-<— New ESP

Figure 16-4. Privilege Level 0 Stack After Interrupt or Exception in Virtual-8086 Mode

Interrupt and exception handlers can examine the VM flag on the stack to determine if the inter-
rupted procedure was running in virtual-8086 mode. If so, the interrupt or exception can be handled
in one of three ways.

The protected-mode interrupt or exception handler that was called can handle the interrupt or
exception.

The protected-mode interrupt or exception handler can call the virtual-8086 monitor to handle
the interrupt or exception.

The virtual-8086 monitor (if called) can in turn pass control back to the 8086 program’s
interrupt and exception handler.

If the interrupt or exception is handled with a protected-mode handler, the handler can return to the
interrupted program in virtual-8086 mode by executing an IRET instruction. Thisinstruction loads
the EFLAGS and segment registers from the images saved in the privilege level 0 stack (see Figure
16-4). A set VM flag in the EFLAGS image causes the processor to switch back to virtual-8086
mode. The CPL at thetimethe IRET instruction is executed must be 0, otherwise the processor does
not change the state of the VM flag.

35

|]
Documentation Changes IntGI@;

36

The virtual-8086 monitor runs at privilege level 0, like the protected-mode interrupt and exception
handlers. It is commonly closely tied to the protected-mode general-protection exception (#GP,
vector 13) handler. If the protected-mode interrupt or exception handler calls the virtual-8086
monitor to handle the interrupt or exception, the return from the virtual-8086 monitor to the inter-
rupted virtual-8086 mode program requires two return instructions: a RET instruction to return to
the protected-mode handler and an IRET instruction to return to the interrupted program.

The virtual-8086 monitor has the option of directing the interrupt and exception back to an interrupt
or exception handler that is part of the interrupted 8086 program, as described in Section 16.3.1.2,,
Handling an Interrupt or Exception With an 8086 Program Interrupt or Exception Handler.

16.3.1.2. HANDLING AN INTERRUPT OR EXCEPTION WITH AN 8086 PROGRAM
INTERRUPT OR EXCEPTION HANDLER

Because it was designed to run on an 8086 processor, an 8086 program running in a virtual-8086-
mode task contains an 8086-style interrupt vector table, which starts at linear address 0. If the
virtual-8086 monitor correctly directs an interrupt or exception vector back to the virtual-8086-
modetask it came from, the handlersin the 8086 program can handle the interrupt or exception. The
virtual-8086 monitor must carry out the following stepsto send an interrupt or exception back to the
8086 program:

1. Usethe 8086 interrupt vector to locate the appropriate handler procedure in the 8086 program
interrupt table.

2. Store the EFLAGS (low-order 16 bits only), CS and EIP values of the 8086 program on the
privilege-level 3 stack. This is the stack that the virtual-8086-mode task is using. (The 8086
handler may use or modify this information.)

3. Change the return link on the privilege-level 0 stack to point to the privilege-level 3 handler
procedure.

Execute an IRET instruction to pass control to the 8086 program handler.

When the IRET instruction from the privilege-level 3 handler triggers a general-protection
exception (#GP) and thus effectively again calls the virtual-8086 monitor, restore the return
link on the privilege-level 0 stack to point to the original, interrupted, privilege-level 3
procedure.

6. Copy the low order 16 bits of the EFLAGS image from the privilege-level 3 stack to the
privilege-level 0 stack (because some 8086 handlers modify these flags to return information
to the code that caused the interrupt).

7. Execute an IRET instruction to pass control back to the interrupted 8086 program.

Note that if an operating system intends to support al 8086 MS-DOS-based programs, it is neces-
sary to use the actual 8086 interrupt and exception handlers supplied with the program. The reason
for thisisthat some programs modify their own interrupt vector tableto substitute (or hook in series)
their own specialized interrupt and exception handlers.

IA-32 Software Developer’'s Manual Documentation Changes

Documentation Changes

16.3.1.3. HANDLING AN INTERRUPT OR EXCEPTION THROUGH A TASK GATE

When an interrupt or exception vector pointsto atask gatein the IDT, the processor performs atask
switch to the selected interrupt- or exception-handling task. The following actions are carried out as
part of thistask switch:

1. The EFLAGSregister with the VM flag set is saved in the current TSS.

2. Thelink field in the TSS of the called task is loaded with the segment selector of the TSS for
the interrupted virtual-8086-mode task.

3. The EFLAGS register isloaded from the image in the new TSS, which clearsthe VM flag and
causes the processor to switch to protected mode.

4, TheNT flag inthe EFLAGS register is set.
5. The processor begins executing the selected interrupt- or exception-handler task.

When an IRET instruction is executed in the handler task and the NT flag in the EFLAGS register
is set, the processors switches from a protected-mode interrupt- or exception-handler task back to a
virtual-8086-mode task. Here, the EFL AGS and segment registers are loaded from images saved in
the TSS for the virtual-8086-mode task. If the VM flag is set in the EFLAGS image, the processor
switches back to virtual-8086 mode on the task switch. The CPL at the timethe IRET instructionis
executed must be 0, otherwise the processor does not change the state of the VM flag.

16.3.2. Class 2—Maskable Hardware Interrupt Handling in Virtual-
8086 Mode Using the Virtual Interrupt Mechanism

Maskable hardware interrupts are those interrupts that are delivered through the INTR# pin or
through an interrupt request to thelocal APIC (see Section 5.3.2., “Maskable Hardware I nterrupts’).
These interrupts can be inhibited (masked) from interrupting an executing program or task by
clearing the IF flag in the EFLAGS register.

When the VME flag in control register CR4 is set and the IOPL field in the EFLAGS register isless
than 3, two additional flags are activated in the EFLAGS register:

e VIF (virtua interrupt) flag, bit 19 of the EFLAGS register.
e VIP (virtua interrupt pending) flag, bit 20 of the EFL AGS register.

These flags provide the virtual-8086 monitor with more efficient control over handling maskable
hardware interrupts that occur during virtual-8086 mode tasks. They also reduce interrupt-handling
overhead, by eliminating the need for al I F related operations (such as PUSHF, POPF, CLI, and ST
instructions) to trap to the virtual-8086 monitor. The purpose and use of these flags are as follows.

NOTE

The VIF and VIP flags are only available in 1A-32 processors that support the
virtual mode extensions. These extensions were introduced in the 1A-32 archi-
tecture with the Pentium processor. When this mechanism is either not available
or not enabled, maskable hardware interrupts are handled as class 1 interrupts.
Here, if VIF and VIP flags are needed, the virtual-8086 monitor can implement
them in software.

Existing 8086 programs commonly set and clear the IF flag in the EFL AGS register to enable and
disable maskable hardware interrupts, respectively; for example, to disable interrupts while
handling another interrupt or an exception. This practice workswell in single task environments, but

IA-32 Software Developer’'s Manual Documentation Changes 37

|]
Documentation Changes IntGI@;

38

can cause problemsin multitasking and multiple-processor environments, whereit is often desirable
to prevent an application program from having direct control over the handling of hardware inter-
rupts. When using earlier 1A-32 processors, this problem was often solved by creating avirtual 1F
flag in software. The |A-32 processors (beginning with the Pentium processor) provide hardware
support for this virtual IF flag through the VIF and VIP flags.

The VIF flag is a virtualized version of the IF flag, which an application program running from
within a virtual-8086 task can used to control the handling of maskable hardware interrupts. When
the VIF flag is enabled, the CLI and STI instructions operate on the VIF flag instead of the IF flag.
When an 8086 program executes the CLI instruction, the processor clears the VIF flag to request
that the virtual-8086 monitor inhibit maskable hardware interrupts from interrupting program
execution; when it executes the STI instruction, the processor sets the VIF flag requesting that the
virtual-8086 monitor enable maskable hardware interrupts for the 8086 program. But actually the | F
flag, managed by the operating system, always controls whether maskable hardware interrupts are
enabled. Also, if under these circumstances an 8086 program triesto read or changethe | F flag using
the PUSHF or POPF instructions, the processor will change the VIF flag instead, leaving IF
unchanged.

The VIP flag provides software a means of recording the existence of a deferred (or pending)
maskable hardware interrupt. This flag is read by the processor but never explicitly written by the
processor; it can only be written by software.

If the IF flag is set and the VIF and VIP flags are enabled, and the processor receives a maskable
hardwareinterrupt (interrupt vector 0 through 255), the processor performs and the interrupt handler
software should perform the following operations:

1. The processor invokes the protected-mode interrupt handler for the interrupt received, as
described in the following steps. These steps are almost identical to those described for method
1 interrupt and exception handling in Section 16.3.1.1., Handling an Interrupt or Exception
Through a Protected-Mode Trap or Interrupt Gate:

a. Switchesto 32-hit protected mode and privilege level 0.

b. Saves the state of the processor on the privilege-level 0 stack. The states of the EIP, CS,
EFLAGS, ESP, SS, ES, DS, FS, and GSregisters are saved (see Figure 16-4).

c. Clearsthe segment registers.
d. Clearsthe VM flag in the EFLAGS register.
e. Begins executing the selected protected-mode interrupt handler.

2. The recommended action of the protected-mode interrupt handler is to read the VM flag from
the EFLAGS image on the stack. If thisflag is set, the handler makes a call to the virtual-8086
monitor.

3. Thevirtual-8086 monitor should read the VIF flag in the EFLAGS register.

— If the VIF flag is clear, the virtual-8086 monitor sets the VIP flag in the EFLAGS image
on the stack to indicate that there is a deferred interrupt pending and returns to the
protected-mode handler.

— If the VIF flag is set, the virtual-8086 monitor can handle the interrupt if it “belongs’ to
the 8086 program running in the interrupted virtual-8086 task; otherwise, it can call the
protected-mode interrupt handler to handle the interrupt.

4. The protected-mode handler executes a return to the program executing in virtual-8086 mode.
5. Upon returning to virtual-8086 mode, the processor continues execution of the 8086 program.

When the 8086 program is ready to receive maskable hardware interrupts, it executes the STI
instruction to set the VIF flag (enabling maskable hardware interrupts). Prior to setting the VIF flag,

IA-32 Software Developer’'s Manual Documentation Changes

Documentation Changes

the processor automatically checks the VIP flag and does one of the following, depending on the
state of the flag:

« IftheVIPflagisclear (indicating no pending interrupts), the processor setsthe VIF flag.

e If the VIP flag is set (indicating a pending interrupt), the processor generates a general-
protection exception (#GP).

The recommended action of the protected-mode general-protection exception handler isto then call
thevirtual-8086 monitor and | et it handle the pending interrupt. After handling the pending interrupt,
the typical action of the virtual-8086 monitor is to clear the VIP flag and set the VIF flag in the
EFLAGS image on the stack, and then execute areturn to the virtual-8086 mode. The next time the
processor receives a maskable hardware interrupt, it will then handle it as described in steps 1
through 5 earlier in this section.

If the processor finds that both the VIF and VIP flags are set at the beginning of an instruction, it
generates a general -protection exception. This action alows the virtual-8086 monitor to handle the
pending interrupt for the virtual-8086 mode task for which the VIF flag is enabled. Note that this
situation can only occur immediately following execution of a POPF or IRET instruction or upon
entering a virtual-8086 mode task through atask switch.

Note that the states of the VIF and V1P flags are not modified in real-address mode or during tran-
sitions between real-address and protected modes.

NOTE

The virtual interrupt mechanism described in this section is also available for use
in protected mode, see Section 16.4., “ Protected-Mode Virtua Interrupts”’.

16.3.3. Class 3—Software Interrupt Handling in Virtual-8086 Mode

When the processor receives a software interrupt (an interrupt generated with the INT n instruction)
while in virtual-8086 mode, it can use any of six different methods to handle the interrupt. The
method selected depends on the settings of the VME flag in control register CR4, the IOPL field in
the EFLAGS register, and the software interrupt redirection bit map in the TSS. Table 16-2 lists the
six methods of handling software interrupts in virtual-8086 mode and the respective settings of the
VME flag, IOPL field, and the bitsin the interrupt redirection bit map for each method. The table
also summarizes the various actions the processor takes for each method.

The VME flag enables the virtual mode extensions for the Pentium and later 1A-32 processors.
When thisflag is clear, the processor responds to interrupts and exceptions in virtual-8086 mode in
the same manner as an Intel 386 or Intel486 processor does. When this flag is set, the virtual mode
extension provides the following enhancements to virtual-8086 mode:

e Speeds up the handling of software-generated interrupts in virtual-8086 mode by allowing the
processor to bypass the virtual-8086 monitor and redirect software interrupts back to the
interrupt handlers that are part of the currently running 8086 program.

e Supportsvirtual interrupts for software written to run on the 8086 processor.

ThelOPL valueinteractswith the VME flag and the bitsin theinterrupt redirection bit map to deter-
mine how specific software interrupts should be handled.

The software interrupt redirection bit map (see Figure 16-5) is a 32-byte field in the TSS. This map
islocated directly below the I/O permission bit map in the TSS. Each bit in the interrupt redirection
bit map is mapped to an interrupt vector. Bit O in the interrupt redirection bit map (which maps to
vector zero in the interrupt table) islocated at the 1/0 base map addressin the TSS minus 32 bytes.
When abit in this bit map is set, it indicates that the associated software interrupt (interrupt gener-

IA-32 Software Developer’'s Manual Documentation Changes 39

|]
Documentation Changes IntGI@;

ated with an INT ninstruction) should be handled through the protected-mode IDT and interrupt and
exception handlers. When abit in thisbit map isclear, the processor redirectsthe associated software
interrupt back to theinterrupt table in the 8086 program (located at linear address 0 in the program’s
address space).

NOTE

The software interrupt redirection bit map does not affect hardware generated
interrupts and exceptions. Hardware generated interrupts and exceptions are
aways handled by the protected-mode interrupt and exception handlers.

Table 16-2. Software Interrupt Handling Methods While in Virtual-8086 Mode

Bitin
Redir.
Method | VME | IOPL | Bitmap* Processor Action

1 0 3 X Interrupt directed to a protected-mode interrupt handler:
- Switches to privilege-level 0 stack
- Pushes GS, FS, DS and ES onto privilege-level 0 stack
- Pushes SS, ESP, EFLAGS, CS and EIP of interrupted

task onto privilege-level 0 stack
- Clears VM, RF, NT, and TF flags
- If serviced through interrupt gate, clears IF flag
- Clears GS, FS, DS and ESto 0
- Sets CS and EIP from interrupt gate

2 0 <3 X Interrupt directed to protected-mode general-protection
exception (#GP) handler.

3 1 <3 1 Interrupt directed to a protected-mode general-protection
exception (#GP) handler; VIF and VIP flag support for handling
class 2 maskable hardware interrupts.

4 1 3 1 Interrupt directed to protected-mode interrupt handler: (see
method 1 processor action).

5 1 3 0 Interrupt redirected to 8086 program interrupt handler:

- Pushes EFLAGS

- Pushes CS and EIP (lower 16 bits only)

- Clears IF flag

- Clears TF flag

- Loads CS and EIP (lower 16 bits only) from selected entry in
the interrupt vector table of the current virtual-8086 task

6 1 <3 0 Interrupt redirected to 8086 program interrupt handler; VIF and
VIP flag support for handling class 2 maskable hardware
interrupts:

- Pushes EFLAGS with IOPL set to 3 and VIF copied to IF

- Pushes CS and EIP (lower 16 bits only)

- Clears the VIF flag

- Clears TF flag

- Loads CS and EIP (lower 16 bits only) from selected entry in
the interrupt vector table of the current virtual-8086 task

NOTE:

* When set to 0, software interrupt is redirected back to the 8086 program interrupt handler; when set to 1,
interrupt is directed to protected-mode handler.

40 IA-32 Software Developer’'s Manual Documentation Changes

tel.

Documentation Changes

b ¢ bi 31 2423 Task-State Segment (TSS)
Last byte of bit
mapmustbe_>1 1111111

followed by a
byte with all bits

1/0 Permission Bit Map

Software Interrupt Redirection Bit Map (32 Bytes) >
/—/—\

<~ I/O Map Base 64H

I/O map base _»
must not exceed
DFFFH. [I

Figure 16-5. Software Interrupt Redirection Bit Map in TSS

Redirecting software interrupts back to the 8086 program potentially speeds up interrupt handling
because a switch back and forth between virtual -8086 mode and protected modeisnot required. This
latter interrupt-handling technique is particularly useful for 8086 operating systems (such as MS-
DOS) that use the INT ninstruction to call operating system procedures.

The CPUID instruction can be used to verify that the virtual mode extension is implemented on the
processor. Bit 1 of the feature flags register (EDX) indicates the availability of the virtual mode
extension (see “CPUID—CPU Identification” in Chapter 3 of the |A-32 Intel Architecture Software
Developer’s Manual, Volume 2).

The following sections describe the six methods (or mechanisms) for handling software interrupts
in virtual-8086 mode. See Section, In Section 16.3.2, | A-32 Intel Architecture Software Developer’s
Manual, Volume 3; text in a numbered list has been edited to remove an error. The updated text is
provided below (in context). Not all of the section isincluded., for adescription of the use of the VIF
and VIP flagsin the EFLAGS register for handling maskable hard

*kk kkk kk%x

IA-32 Software Developer’'s Manual Documentation Changes 41

|]
Documentation Changes IntGI@;

17.

42

IA32_ MTRR_DEF_TYPE MSR Definition Corrected

In Section 10.11.2.1, item “Type field, bits 0 through 7", |A-32 Intel Architecture Software
Developer’s Manual, Volume 3; the first paragraph has been corrected. The paragraph is shown
below in context with a change bar marking the affected area.

10.11.2.1. 1A32_MTRR_DEF_TYPE MSR

The IA32_ MTRR_DEF _TYPE MSR (named MTRRdef Type MSR for the P6 family processors)
sets the default properties of the regions of physical memory that are not encompassed by MTRRs.
The functions of the flags and field in this register are as follows:

Typefield, bits0through 7
Indicates the default memory type used for those physical memory address ranges
that do not have a memory type specified for them by an MTRR (see Table 10-8
for the encoding of thisfield). The legal values for thisfield are 0, 1, 4, 5, and 6.
All other values result in a general-protection exception (#GP) being generated.

Intel recommends the use of the UC (uncached) memory type for al physica
memory addresses where memory does not exist. To assign the UC type to nonex-
istent memory locations, it can either be specified as the default type in the Type
field or be explicitly assigned with the fixed and variable MTRRs.

63 1211109 8 7 0

elF

Reserved E Type

E—MTRR enable/disable ;

FE—Fixed-range MTRRs enable/disable
Type—Default memory type

|:| Reserved

Figure 10-5. 1A32_MTRR_DEF_TYPE MSR

*k%k kkk k%%

IA-32 Software Developer’'s Manual Documentation Changes

18.

Documentation Changes

Correction of Error in EFLAGS Treatment in Virtual-8086 Mode

For the INT n/INTO/INT 3—Call to Interrupt Procedure section, Chapter 3, 1A-32 Intel
Architecture Software Developer’s Manual, Volume 2A; the Operation sub-section has been
corrected. This section is shown below with a change bar marking the affected line.

Operation

Thefollowing operational description applies not only to the INT nand INTO instructions, but also
to external interrupts and exceptions.

IFPE=0

THEN
GOTO REAL-ADDRESS-MODE;
ELSE (* PE=17%)
IF (VM =1 AND IOPL < 3 AND INT n)
THEN
#GP(0);
ELSE (* protected mode or virtual-8086 mode interrupt *)
GOTO PROTECTED-MODE;
FI;

REAL-ADDRESS-MODE:

IF ((DEST * 4) + 3) is not within IDT limit THEN #GP; FI;

IF stack not large enough for a 6-byte return information THEN #SS; FlI;
Push (EFLAGS[15:0]);

IF < 0; (* Clear interrupt flag *)

TF « O; (* Clear trap flag *)

AC « 0; (*Clear AC flag*)

Push(CS);

Push(IP);

(* No error codes are pushed *)

CS « IDT(Descriptor (vector_number * 4), selector));

EIP « IDT(Descriptor (vector_number * 4), offset)); (* 16 bit offset AND 0000FFFFH *)

END;

PROTECTED-MODE:

IF ((DEST * 8) + 7) is not within IDT limits
OR selected IDT descriptor is not an interrupt-, trap-, or task-gate type
THEN #GP((DEST * 8) + 2 + EXT);
(* EXT is bit 0 in error code *)

FI;
IF software interrupt (* generated by INT n, INT 3, or INTO *)
THEN
IF gate descriptor DPL < CPL
THEN #GP((vector_number * 8) + 2);
(* PE =1, DPL<CPL, software interrupt *)
FI;
FI;

IF gate not present THEN #NP((vector_number * 8) + 2 + EXT); FI;
IF task gate (* specified in the selected interrupt table descriptor *)
THEN GOTO TASK-GATE;
ELSE GOTO TRAP-OR-INTERRUPT-GATE; (* PE = 1, trap/interrupt gate *)

IA-32 Software Developer’'s Manual Documentation Changes 43

|]
Documentation Changes IntGI@;

Fl;
END;

TASK-GATE: (* PE =1, task gate *)
Read segment selector in task gate (IDT descriptor);
IF local/global bit is set to local
OR index not within GDT limits
THEN #GP(TSS selector);
Fl;
Access TSS descriptor in GDT;
IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)
THEN #GP(TSS selector);
Fl;
IF TSS not present
THEN #NP(TSS selector);
Fl;
SWITCH-TASKS (with nesting) to TSS;
IF interrupt caused by fault with error code
THEN
IF stack limit does not allow push of error code
THEN #SS(0);
Fl;
Push(error code);
FI;
IF EIP not within code segment limit
THEN #GP(0);
FI;
END;
TRAP-OR-INTERRUPT-GATE
Read segment selector for trap or interrupt gate (IDT descriptor);
IF segment selector for code segment is null
THEN #GP(OH + EXT); (* null selector with EXT flag set *)
Fl;
IF segment selector is not within its descriptor table limits
THEN #GP(selector + EXT);
FI;
Read trap or interrupt handler descriptor;
IF descriptor does not indicate a code segment
OR code segment descriptor DPL > CPL
THEN #GP(selector + EXT);
Fl;
IF trap or interrupt gate segment is not present,
THEN #NP(selector + EXT);

Fl;
IF code segment is non-conforming AND DPL < CPL
THEN IF VM=0
THEN

GOTO INTER-PRIVILEGE-LEVEL-INTERRUPT,;
(* PE =1, interrupt or trap gate, nonconforming *)
(* code segment, DPL<CPL, VM =0 *)
ELSE (*VM=17%)

IF code segment DPL = 0 THEN #GP(new code segment selector); Fl;
GOTO INTERRUPT-FROM-VIRTUAL-8086-MODE;
(* PE = 1, interrupt or trap gate, DPL<CPL, VM =1 %)

FI;

44 IA-32 Software Developer’'s Manual Documentation Changes

u
Inte|® Documentation Changes

ELSE (* PE =1, interrupt or trap gate, DPL > CPL *)
IF VM =1 THEN #GP(new code segment selector); Fl;
IF code segment is conforming OR code segment DPL = CPL
THEN
GOTO INTRA-PRIVILEGE-LEVEL-INTERRUPT;
ELSE
#GP(CodeSegmentSelector + EXT);
(* PE = 1, interrupt or trap gate, nonconforming *)
(* code segment, DPL>CPL *)
FI;
FI;
END;

INTER-PRIVILEGE-LEVEL-INTERRUPT

(* PE=1, interrupt or trap gate, non-conforming code segment, DPL<CPL *)

(* Check segment selector and descriptor for stack of new privilege level in current TSS *)
IF current TSS is 32-bit TSS

THEN
TSSstackAddress < (new code segment DPL * 8) + 4
IF (TSSstackAddress + 7) > TSS limit
THEN #TS(current TSS selector); Fl;
NewSS « TSSstackAddress + 4;
NewESP <« stack address;
ELSE (* TSS is 16-bit *)
TSSstackAddress « (new code segment DPL * 4) + 2
IF (TSSstackAddress + 4) > TSS limit
THEN #TS(current TSS selector); Fl;
NewESP <« TSSstackAddress;
NewSS « TSSstackAddress + 2;
FI;
IF segment selector is null THEN #TS(EXT); FI;
IF segment selector index is not within its descriptor table limits
OR segment selector's RPL = DPL of code segment,
THEN #TS(SS selector + EXT);
FI;
Read segment descriptor for stack segment in GDT or LDT,;
IF stack segment DPL = DPL of code segment,
OR stack segment does not indicate writable data segment,
THEN #TS(SS selector + EXT);
FI;
IF stack segment not present THEN #SS(SS selector+EXT); Fl;
IF 32-hit gate
THEN
IF new stack does not have room for 24 bytes (error code pushed)
OR 20 bytes (no error code pushed)
THEN #SS(segment selector + EXT);
FI;
ELSE (* 16-bit gate *)
IF new stack does not have room for 12 bytes (error code pushed)
OR 10 bytes (no error code pushed);
THEN #SS(segment selector + EXT);
FI;
FI;
IF instruction pointer is not within code segment limits THEN #GP(0); FlI;
SS:ESP « TSS(NewSS:NewESP) (* segment descriptor information also loaded *)

IA-32 Software Developer’'s Manual Documentation Changes 45

|]
Documentation Changes IntGI@;

IF 32-bit gate
THEN
CS:EIP « Gate(CS:EIP); (* segment descriptor information also loaded *)
ELSE (* 16-bit gate *)
CS:IP « Gate(CS:IP); (* segment descriptor information also loaded *)
FI;
IF 32-bit gate
THEN
Push(far pointer to old stack); (* old SS and ESP, 3 words padded to 4 *);
Push(EFLAGS);
Push(far pointer to return instruction); (* old CS and EIP, 3 words padded to 4*);
Push(ErrorCode); (* if needed, 4 bytes *)
ELSE(* 16-bit gate *)
Push(far pointer to old stack); (* old SS and SP, 2 words *);
Push(EFLAGS(15..0]);
Push(far pointer to return instruction); (* old CS and IP, 2 words *);
Push(ErrorCode); (* if needed, 2 bytes *)
FI;
CPL « CodeSegmentDescriptor(DPL);
CS(RPL) « CPL;
IF interrupt gate
THEN IF « O (*interrupt flag set to O: disabled*);
Fl;
TF < 0;
VM « 0;
RF « 0;
NT « 0;
END;
INTERRUPT-FROM-VIRTUAL-8086-MODE:
(* Check segment selector and descriptor for privilege level 0 stack in current TSS *)
IF current TSS is 32-bit TSS
THEN
TSSstackAddress « (new code segment DPL * 8) + 4
IF (TSSstackAddress + 7) > TSS limit
THEN #TS(current TSS selector); FI;
NewSS <« TSSstackAddress + 4;
NewESP « stack address;
ELSE (* TSS is 16-bit *)
TSSstackAddress « (new code segment DPL * 4) + 2
IF (TSSstackAddress + 4) > TSS limit
THEN #TS(current TSS selector); FI;
NewESP <« TSSstackAddress;
NewSS « TSSstackAddress + 2;
Fl;
IF segment selector is null THEN #TS(EXT); FI;
IF segment selector index is not within its descriptor table limits
OR segment selector's RPL = DPL of code segment,
THEN #TS(SS selector + EXT);
Fl;
Access segment descriptor for stack segment in GDT or LDT,;
IF stack segment DPL = DPL of code segment,
OR stack segment does not indicate writable data segment,
THEN #TS(SS selector + EXT);
FI;
IF stack segment not present

46 IA-32 Software Developer’'s Manual Documentation Changes

u
Inte|® Documentation Changes

THEN #SS(SS selector+EXT);
FI;
IF 32-bit gate
THEN
IF new stack does not have room for 40 bytes (error code pushed)
OR 36 bytes (no error code pushed);
THEN #SS(segment selector + EXT);
Fl;
ELSE (* 16-bit gate *)
IF new stack does not have room for 20 bytes (error code pushed)
OR 18 hytes (no error code pushed);
THEN #SS(segment selector + EXT);
Fl;
Fl;
IF instruction pointer is not within code segment limits
THEN #GP(0);
FI;
tempEFLAGS <« EFLAGS;
VM « 0O;
TF « O;
RF « 0;
NT « 0;
IF service through interrupt gate
THEN IF =0;
Fl;
TempSS « SS;
TempESP « ESP;
SS:ESP « TSS(SS0:ESPO0); (* Change to level 0 stack segment *)
(* Following pushes are 16 bits for 16-bit gate and 32 bits for 32-bit gates *)
(* Segment selector pushes in 32-bit mode are padded to two words *)
Push(GS);
Push(FS);
Push(DS);
Push(ES);
Push(TempSS);
Push(TempESP);
Push(TempEFlags);
Push(CS);
Push(EIP);
GS « 0; (*segment registers nullified, invalid in protected mode *)
FS « 0;
DS « 0;
ES « 0;
CS « Gate(CS);
IF OperandSize = 32
THEN
EIP « Gate(instruction pointer);
ELSE (* OperandSize is 16 *)
EIP « Gate(instruction pointer) AND O000FFFFH;
Fl;
(* Starts execution of new routine in Protected Mode *)
END;

INTRA-PRIVILEGE-LEVEL-INTERRUPT:
(* PE=1, DPL = CPL or conforming segment *)

IA-32 Software Developer’'s Manual Documentation Changes 47

|]
Documentation Changes IntGI@;

IF 32-bit gate
THEN
IF current stack does not have room for 16 bytes (error code pushed)
OR 12 bytes (no error code pushed); THEN #SS(0);
FI;
ELSE (* 16-bit gate *)
IF current stack does not have room for 8 bytes (error code pushed)
OR 6 bytes (no error code pushed); THEN #SS(0);
Fl;
Fl;
IF instruction pointer not within code segment limit
THEN #GP(0);
Fl;
IF 32-bit gate
THEN
Push (EFLAGS);
Push (far pointer to return instruction); (* 3 words padded to 4 *)
CS:EIP « Gate(CS:EIP); (* segment descriptor information also loaded *)
Push (ErrorCode); (* if any *)
ELSE (* 16-bit gate *)
Push (FLAGS);
Push (far pointer to return location); (* 2 words *)
CS:IP « Gate(CS:IP); (* segment descriptor information also loaded *)
Push (ErrorCode); (* if any *)
Fl;
CS(RPL) « CPL;
IF interrupt gate
THEN IF « 0; (*interrupt flag set to O: disabled*)
Fl;
TF < 0;
NT « O;
VM « 0;
RF « 0;
END;

*kk kkk kk%x

48 IA-32 Software Developer’'s Manual Documentation Changes

19. Table B-3 Correction

For Table B-3, |A-32 Intel Architecture Software Developer’s Manual, Volume 3; an error in the

Documentation Changes

DEBUGCTLMSR entry has been corrected. The corrected cells are shown below.

Table B-3. MSRs in the P6 Family Processors

Register Address

Hex Dec Register Name Bit Description

1D9H 473 DEBUGCTLMSR
0 Enable/Disable Last Branch Records
1 Branch Trap Flag
2 Performance Monitoring/Break Point Pins
3 Performance Monitoring/Break Point Pins
4 Performance Monitoring/Break Point Pins
5 Performance Monitoring/Break Point Pins
6 Enable/Disable Execution Trace Messages
317 Reserved

*kk kkk kkx

IA-32 Software Developer’'s Manual Documentation Changes

49

u
Interpreting Machine-Check Error Codes Inte|®

20.

50

Updates to Appendix E

For Appendix E, |A-32 Intel Architecture Software Developer’s Manual, Volume 3; some architec-
tural information has been removed due to redundancy. The updated appendix is below.

APPENDIX E
INTERPRETING MACHINE-CHECK
ERROR CODES

Encoding of the model-specific and other information fieldsis different for 06H and OFH processor
families. The differences are documented in the following sections.

E.1L INCREMENTAL DECODING INFORMATION: PROCESSOR
FAMILY 06H MACHINE ERROR CODES FOR MACHINE
CHECK

Table E.1. provides information for interpreting additional family 06H model-specific fields for

external bus errors. These errors are reported in the IA32_MCi_STATUS MSRs. They are reported

(architecturally) as compound errors with a general form of 0000 1PPT RRRRIILL in the MCA
error code field. See Chapter 14 for information on the interpretation of compound error codes.

Table E-1. Incremental Decoding Information: Processor Family 06H Machine Error
Codes For Machine Check

Type Bit No. | Bit Function Bit Description

MCA error 0-15

codes?

Model specific 16-18 Reserved Reserved

errors

Model specific 19-24 Bus queue request type | 000000 for BQ_DCU_READ_TYPE error
errors 000010 for BQ_IFU_DEMAND_TYPE error

000011 for BQ_IFU_DEMAND_NC_TYPE error
000100 for BQ_DCU_RFO_TYPE error
000101 for BQ_DCU_RFO_LOCK_TYPE error

000110 for BQ_DCU_ITOM_TYPE error
001000 for BQ_DCU_WB_TYPE error
001010 for BQ_DCU_WCEVICT_TYPE error
001011 for BQ_DCU_WCLINE_TYPE error
001100 for BQ_DCU_BTM_TYPE error

001101 for BQ_DCU_INTACK_TYPE error
001110 for BQ_DCU_INVALL2_TYPE error
001111 for BQ_DCU_FLUSHL2_TYPE error
010000 for BQ_DCU_PART_RD_TYPE error
010010 for BQ_DCU_PART_WR_TYPE error

010100 for BQ_DCU_SPEC_CYC_TYPE error
011000 for BQ_DCU_IO_RD_TYPE error
011001 for BQ_DCU_IO_WR_TYPE error
011100 for BQ_DCU_LOCK_RD_TYPE error
011110 for BQ_DCU_SPLOCK_RD_TYPE error

011101 for BQ_DCU_LOCK_WR_TYPE error

IA-32 Software Developer’'s Manual Documentation Changes

Interpreting Machine-Check Error Codes

Table E-1. Incremental Decoding Information: Processor Family 06H Machine Error
Codes For Machine Check (Continued)

Type

Bit No.

Bit Function

Bit Description

Model specific
errors

27-25

Bus queue error type

000 for BQ_ERR_HARD_TYPE error
001 for BQ_ERR_DOUBLE_TYPE error
010 for BQ_ERR_AERR2_TYPE error
100 for BQ_ERR_SINGLE_TYPE error
101 for BQ_ERR_AERR1_TYPE error

Model specific
errors

28

FRC error

1if FRC error active

29

BERR

1if BERR is driven

30

Internal BINIT

1 if BINIT driven for this processor

31

Reserved

Reserved

Other
information

32-34

Reserved

Reserved

35

External BINIT

1 if BINIT is received from external bus.

36

RESPONSE PARITY
ERROR

This bit is asserted in IA32_MCi_STATUS if this
component has received a parity error on the
RS[2:0]# pins for a response transaction. The
RS signals are checked by the RSP# external
pin.

37

BUS BINIT

This bit is asserted in IA32_MCi_STATUS if this
component has received a hard error response
on a split transaction (one access that has
needed to be split across the 64-bit external bus
interface into two accesses).

38

TIMEOUT BINIT

This bit is asserted in IA32_MCi_STATUS if this
component has experienced a ROB time-out,
which indicates that no micro-instruction has
been retired for a predetermined period of time.

A ROB time-out occurs when the 15-bit ROB
time-out counter carries a 1 out of its high order
bit. The timer is cleared when a micro-instruction
retires, an exception is detected by the core
processor, RESET is asserted, or when a ROB
BINIT occurs.

The ROB time-out counter is prescaled by the 8-
bit PIC timer which is a divide by 128 of the bus
clock (the bus clock is 1:2, 1:3, 1:4 of the core
clock). When a carry out of the 8-bit PIC timer
occurs, the ROB counter counts up by one.
While this bit is asserted, it cannot be overwritten
by another error.

39-41

Reserved

Reserved

42

HARD ERROR

This bit is asserted in IA32_MCi_STATUS if this
component has initiated a bus transactions
which has received a hard error response. While
this bit is asserted, it cannot be overwritten.

43

IERR

This bit is asserted in IA32_MCi_STATUS if this
component has experienced a failure that
causes the IERR pin to be asserted. While this
bit is asserted, it cannot be overwritten.

IA-32 Software Developer’'s Manual Documentation Changes

51

u
Interpreting Machine-Check Error Codes Inte|®

Table E-1. Incremental Decoding Information: Processor Family 06H Machine Error
Codes For Machine Check (Continued)

Type Bit No. | Bit Function Bit Description

44 AERR This bit is asserted in IA32_MCi_STATUS if this
component has initiated 2 failing bus
transactions which have failed due to Address
Parity Errors (AERR asserted). While this bit is
asserted, it cannot be overwritten.

45 UECC The Uncorrectable ECC error bit is asserted in
IA32_MCi_STATUS for uncorrected ECC errors.
While this bit is asserted, the ECC syndrome
field will not be overwritten.

46 CECC The correctable ECC error bit is asserted in
IA32_MCIi_STATUS for corrected ECC errors.
47-54 ECC syndrome The ECC syndrome field in IA32_MCi_STATUS

contains the 8-bit ECC syndrome only if the error
was a correctable/uncorrectable ECC error and
there wasn't a previous valid ECC error
syndrome logged in IA32_MCi_STATUS.

A previous valid ECC error in
IA32_MCIi_STATUS is indicated by
IA32_MCi_STATUS.bit45 (uncorrectable error
occurred) being asserted. After processing an
ECC error, machine-check handling software
should clear IA32_MCi_STATUS.bit45 so that
future ECC error syndromes can be logged.

55-56 Reserved Reserved.
Status register | 57-63
validity
indicators

a. These fields are architecturally defined. Refer to Chapter 14, Machine-Check Architecture
for more information.

52 IA-32 Software Developer’'s Manual Documentation Changes

Interpreting Machine-Check Error Codes

E.2. INCREMENTAL DECODING INFORMATION: PROCESSOR
FAMILY OFH MACHINE ERROR CODES FOR MACHINE
CHECK

Table E-2 provides information for interpreting additional family OFH model-specific fields for
external bus errors. These errors are reported in the IA32_MCi_STATUS MSRs. They are reported
(architecturally) as compound errors with a general form of 0000 1PPT RRRRIILL in the MCA
error code field. See Chapter 14 for information on the interpretation of compound error codes.

Table E-2. Incremental Decoding Information: Processor Family OFH Machine Error Codes
For Machine Check

Bit
Type No. Bit Function Bit Description
MCA error 0-15
codes?
Model- 16 FSB address parity Address parity error detected:
specific error 1 = Address parity error detected
codes 0 = No address parity error
17 Response hard fail Hardware failure detected on response
18 Response parity Parity error detected on response
19 PIC and FSB data parity Data Parity detected on either PIC or FSB
access
20 Processor Signature = Processor Signature = 00000F04H. Indicates
00000F04H: Invalid PIC error due to an invalid PIC request (access was
request made to PIC space with WB memory):
1 = Invalid PIC request error
0 = No Invalid PIC request error
All other processors: Reserved
Reserved
21 Pad state machine The state machine that tracks P and N data-
strobe relative timing has become
unsynchronized or a glitch has been detected.
22 Pad strobe glitch Data strobe glitch
23 Pad address glitch Address strobe glitch
Other 24-56 | Reserved Reserved
Status 57-63
register
validity
indicators

a. These fields are architecturally defined. Refer to Chapter 14, Machine-Check Architecture

for more information.

IA-32 Software Developer’'s Manual Documentation Changes

u
Interpreting Machine-Check Error Codes Inte|®

54

Table E-3 provides information on interpreting additional family 07H, model specific fields for
memory hierarchy errors. These errors are reported in one of thelA32_MCi_STATUS MSRs. These
errors are reported, architecturally, as compound errors with a general form of 0000 0001 RRRR
TTLL inthe MCA error code field. See Chapter 14 for how to interpret the compound error code.

Table E-3. Decoding Family 07H Machine Check Codes for Memory Hierarchy Errors

Type Bit No. | Bit Function Bit Description

MCA error 0-15

codes?

Model specific | 16-17 Tag Error Code Contains the tag error code for this machine
error codes check error:

00 = No error detected

01 = Parity error on tag miss with a clean
line

10 = Parity error/multiple tag match on tag
hit

11 = Parity error/multiple tag match on tag
miss

18-19 Data Error Code Contains the data error code for this machine
check error:

00 = No error detected

01 = Single bit error

10 = Double bit error on a clean line

11 = Double bit error on a modified line

20 L3 Error This bit is set if the machine check error
originated in the L3 (it can be ignored for
invalid PIC request errors):

1=L3error

0 =L2 error

21 Invalid PIC Request Indicates error due to invalid PIC request
(access was made to PIC space with WB
memory):

1 = Invalid PIC request error

0 = No invalid PIC request error

22-31 Reserved Reserved
Other 32-39 8-bit Error Count Holds a count of the number of errors since
Information reset. The counter begins at 0 for the first error
and saturates at a count of 254.
40-56 Reserved Reserved
Status register | 57-63
validity
indicators

a. These fields are architecturally defined. Refer to Chapter 14, Machine-Check Architecture
for more information.

IA-32 Software Developer’'s Manual Documentation Changes

Interpreting Machine-Check Error Codes

21. MSR_PLATFORM_BRYV Information Added

For Table B-1, |A-32 Intel Architecture Software Developer’s Manual, Volume 3.; documentation
for MSR_PLATFORM_BRYV has been added. The added cells are shown below.

Table B-1. MSRs in the Pentium 4 and Intel Xeon Processors

Register Register Name Model Sharedﬁ
Address Fields and Flags Ql‘)’ﬁ‘i't';, Unique Bit Description
Hex Dec
1A1H 417 | MSR_PLATFORM_BRV | 3 Shared Platform Feature Requirements.
(R)

17:0 Reserved.

18 PLATFORM Requirements: When
set to 1, indicates the processor has
specific platform requirements. The
details of the platform requirements
are listed in the respective data
sheets of the processor.

63:19 Reserved.

kkk kkk kk*k

IA-32 Software Developer’'s Manual Documentation Changes

55

u
Interpreting Machine-Check Error Codes Inte|®

22.

56

Section On Support Processor Added

In Chapter 15, 1A-32 Intel Architecture Software Developer’s Manual, Volume 3; a section has been
added to cover last branch, interrupt, and exception recording for the Pentium M processor.

15.6. LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING
(PENTIUM M PROCESSORYS)

Like the Pentium 4 and Intel Xeon processor family, Pentium M processors provide last branch
interrupt and exception recording. The capability operates amost identically to that found in
Pentium 4 and Intel Xeon processors. There are differences in the shape of the stack and in some
MSR names and locations. Note the following:

e MSR DEBUGCTLB MSR — Enables debug trace interrupt, debug trace store, trace messages
enable, performance monitoring breakpoint flags, single stepping on branches, and last branch.
For Pentium M processors, thisM SR islocated at register address 01D9H. See Figure 15-6 and
the entries below for a description of the flags.

LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor
records a running trace of the most recent branches, interrupts, and/or exceptions
taken by the processor (prior to a debug exception being generated) in the last branch
record (LBR) stack. For moreinformation, see the “L ast Branch Record (LBR) Stack”
bullet below.

BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF
flag in the EFLAGS register as a “single-step on branches’ flag rather than a“single-
step on instructions’ flag. This mechanism allows single-stepping the processor on
taken branches, interrupts, and exceptions. See Section 15.5.4., “Single-Stepping on
Branches, Exceptions, and Interrupts’ for more information about the BTF flag.

PBi (performance monitoring/breakpoint pins) flags (bits 5-2) — When these
flags are set, the performance monitoring/breakpoint pins on the processor (BPO#,
BP1#, BP2#, and BP3#) report breakpoint matches in the corresponding breakpoint-
address registers (DRO through DR3). The processor asserts then deasserts the corre-
sponding BPi# pin when a breakpoint match occurs. When a PBi flag is clear, the
performance monitoring/breakpoint pins report performance events. Processor
execution is not affected by reporting performance events.

TR (trace message enable) flag (bit 6) — When set, branch trace messages are
enabled. When the processor detects a taken branch, interrupt, or exception, it sends
the branch record out on the system bus as a branch trace message (BTM). See Section
15.5.5., “Branch Trace Messages’ for more information about the TR flag.

BTS (branch trace store) flag (bit 7) — When set, enables the BTS facilities to log
BTMs to a memory-resident BTS buffer that is part of the DS save area. See Section
15.10.5., “DS Save Ared’.

BTINT (branch traceinterrupt) flag (bits 8) — When set, the BTSfacilities generate
an interrupt when the BTS buffer isfull. When clear, BTMs are logged to the BTS buffer
in acircular fashion. See Section 15.5.7., “Branch Trace Store (BTS)” for a description
of this mechanism.

IA-32 Software Developer’'s Manual Documentation Changes

u
Inte|® Interpreting Machine-Check Error Codes

31 876543210
Reserved
BTINT — Branch trace interrupt | L_J
BTS — Branch trace store

TR — Trace messages enable
PB3/2/1/0 — Performance monitoring breakpoint flags
BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Figure 15-6. MSR_DEBUGCTLB MSR for Pentium M Processors

« Debug store (DS) feature flag (bit 21), returned by the CPUID instruction — Indicates that the
processor provides the debug store (DS) mechanism, which allows BTMsto be stored in a
memory-resident BTS buffer. See also: Section 15.5.7.

» Last Branch Record (LBR) Stack — The LBR stack consists of 8 MSRs
(MSR_LASTBRANCH_0 through MSR_LASTBRANCH_7); hits 31-0 hold the ‘from’
address, bits 63-32 hold the ‘to’ address. For Pentium M Processors, these pairs are located at
register addresses 040H-047H. See Figure 15-7

e Last Branch Record Top-of-Stack (TOS) Pointer — The TOS Pointer MSR contains a 3-bit
pointer (bits 2-0) to the MSR in the LBR stack that contains the most recent branch, interrupt,
or exception recorded. For Pentium M Processors, this M SR is located at register address
01C9H.

e For compdtibility, the Pentium M processor provides two 32 bit MSRs (the
MSR_LER_TO _LIP and the MSR_LER_FROM_LIP MSRs) that duplicate the functions of
the LastExceptionTol P and L astExceptionFromlP M SRs found in P6 family processors.

MSR_LASTBRANCH 0 through MSR_LASTBRANCH_7
63 32-31 0

To Linear Address From Linear Address

Figure 15-7. LBR Branch Record Layout for the Pentium M Processor

For more detail on these capabilities, see Section 15.5., “Last Branch, Interrupt, and Exception
Recording (Pentium 4 and Intel Xeon Processors)” and Section B.2., “MSRs In the Pentium M
Processor”.

IA-32 Software Developer’'s Manual Documentation Changes 57

Interpreting Machine-Check Error Codes

In

23. MSR Data for Pentium M Processor Has Been Updated

In Section B2, |A-32 Intel Architecture Software Developer’s Manual, Volume 3; new MSR
coverage has been added for the Pentium M processor. Updated table cells are shown below.

Table E-2. MSRs in Pentium M Processors

Register Address
Hex Dec Register Name Bit Description
40H 64 MSR_LASTBRANCH_ | Last Branch Record 0. (R/W)
0 One of 8 last branch record registers on the last branch
record stack: bits 31-0 hold the ‘from’ address and bits 63-
32 hold the ‘to’ address. See also:
» Last Branch Record Stack TOS at 1C9H
» Section 15.6., “Last Branch, Interrupt, and Exception
Recording (Pentium M Processors)”
41H 65 MSR_LASTBRANCH_ | Last Branch Record 1. (R/W)
1 See description of MSR_LASTBRANCH_O.
42H 66 MSR_LASTBRANCH_ | Last Branch Record 2. (R/W)
2 See description of MSR_LASTBRANCH_O.
43H 67 MSR_LASTBRANCH_ | Last Branch Record 3. (R/W)
3 See description of MSR_LASTBRANCH_O.
44H 68 MSR_LASTBRANCH_ | Last Branch Record 4. (R/W)
4 See description of MSR_LASTBRANCH_O.
45H 69 MSR_LASTBRANCH_ | Last Branch Record 5. (R/W)
5 See description of MSR_LASTBRANCH_O.
46H 70 MSR_LASTBRANCH_ | Last Branch Record 6. (R/W)
6 See description of MSR_LASTBRANCH_O.
47H 71 MSR_LASTBRANCH_ | Last Branch Record 7. (R/W)
7 See description of MSR_LASTBRANCH_O.
1C9H 457 MSR_LASTBRANCH_ | Last Branch Record Stack TOS. (R)
TOS Contains an index (bits 0-3) that points to the MSR
containing the most recent branch record. See also:
* MSR_LASTBRANCH_O (at 40H)
» Section 15.6., “Last Branch, Interrupt, and Exception
Recording (Pentium M Processors)”
1D9H 473 IA32_DEBUGCTL Debug Control. (R/W)
Controls how several debug features are used. Bit
definitions are discussed in the referenced section.
See Section 15.6., “Last Branch, Interrupt, and Exception
Recording (Pentium M Processors)”.
1DDH 477 | MSR_LER_TO_LIP Last Exception Record To Linear IP. (R)
This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last
exception that was generated or the last interrupt that was
handled.
See Section 15.6., “Last Branch, Interrupt, and Exception
Recording (Pentium M Processors)” and Section 15.7.2.,
“Last Branch and Last Exception MSRs (P6 Family
Processors)”.

58

IA-32 Software Developer’'s Manual Documentation Changes

Interpreting Machine-Check Error Codes

Table E-2. MSRs in Pentium M Processors (Continued)

Register Address

Hex

Dec

Register Name

Bit Description

1DEH

478

MSR_LER_FROM_LI
P

Last Exception Record From Linear IP. (R)

Contains a pointer to the last branch instruction that the
processor executed prior to the last exception that was
generated or the last interrupt that was handled.

See Section 15.6., “Last Branch, Interrupt, and Exception
Recording (Pentium M Processors)” and Section 15.7.2.,
“Last Branch and Last Exception MSRs (P6 Family
Processors)”.

1536

IA32_DS_AREA

DS Save Area. (R/W)

Points to the DS buffer management area, which is used to
manage the BTS and PEBS buffers. See Section 15.10.4.,
“Debug Store (DS) Mechanism”.

31.0

DS Buffer Management Area. Linear address of the first
byte of the DS buffer management area.

63:32

Reserved.

kkk kkk kk*k

IA-32 Software Developer’'s Manual Documentation Changes

59

Interpreting Machine-Check Error Codes In

24, Cache and TLB Descriptor Table Updated

In the CPUID section, Chapter 3, |A-32 Intel Architecture Software Devel oper’s Manual, Volume
2A; Table 3-13 has been updated. Updated cells are shown below.

Table 3-13. Encoding of Cache and TLB Descriptors

Descriptor Value

Cache or TLB Description

22H

3rd-level cache: 512K Bytes, 4-way set associative, 64 byte line size, 2 lines per
sector

23H

3rd-level cache: 1M Bytes, 8-way set associative, 64 byte line size, 2 lines per
sector

25H

3rd-level cache: 2M Bytes, 8-way set associative, 64 byte line size, 2 lines per
sector

29H

3rd-level cache: 4M Bytes, 8-way set associative, 64 byte line size, 2 lines per
sector

78H

2nd-level cache: 1M Byte, 4-way set associative, 64byte line size

79H

2nd-level cache: 128KB, 8-way set associative, 64 byte line size, 2 lines per sector

7AH

2nd-level cache: 256KB, 8-way set associative, 64 byte line size, 2 lines per sector

7BH

2nd-level cache: 512KB, 8-way set associative, 64 byte line size, 2 lines per sector

7CH

2nd-level cache: 1MB, 8-way set associative, 64 byte line size, 2 lines per sector

7FH

2nd-level cache: 512KB, 2-way set associative, 64-byte line size

FOH

64-Byte Prefetching

F1H

128-Byte Prefetching

kkk kkk kkk

60

IA-32 Software Developer’'s Manual Documentation Changes

u
Inte|® Interpreting Machine-Check Error Codes

25. Brand String Table Updated

In the CPUID section, Chapter 3, |A-32 Intel Architecture Software Developer’s Manual, Volume
2A; Table 3-15 has been updated. Updated cells are shown below.

Table 3-15. Mapping of Brand Indices and IA-32 Processor Brand Strings

Brand Index Brand String
11H Mobile Genuine Intel(R) processor
12H Intel(R) Celeron(R) M processor
15H Mobile Genuine Intel(R) processor
17H Mobile Intel(R) Celeron(R) processor’r
18H — OFFH RESERVED

*kk kkk kk%x

IA-32 Software Developer’'s Manual Documentation Changes 61

u
Interpreting Machine-Check Error Codes Inte|®

26.

27.

62

Pentium M Processor Sections Updated

Chapter 2, 1A-32 Intel Architecture Software Developer’s Manual, Volume 1; Sections 2.1.9 and
2.2.3 have been updated. Both updated sections are shown below.

2.1.9. The Intel® Pentium® M Processor (2003-2004)

The Intel Pentium M processor family is a high performance, low power mobile processor family
with microarchitectural enhancements over previous generations of Intel mobile processors. This
family isdesigned for extending battery life and seamlessintegration with platform innovations that
enable new usage model s (such as extended mohility, ultrathin form-factors, and integrated wireless
networking).

......... omitted text

2.2.3. The Intel Pentium M Processor Family

The Intel Pentium M processor family is designed for low power consumption. It's enhanced
microarchitecture includes the following features:

e Support for Intel Architecture with Dynamic Execution

* A high performance, low-power core manufactured using Intel’s advanced process technology
with copper interconnect

e On-die, primary 32-kbyte instruction cache and 32-kbyte write-back data cache

¢ On-die, second-level cache (up to 2-MByte) with Advanced Transfer Cache Architecture

e Advanced Branch Prediction and Data Prefetch Logic

e Support for MMX™ Technology, Streaming SIMD instructions, and the SSE2 instruction set
¢ A 400 MHz, Source-Synchronous Processor System Bus

« Advanced power management using Enhanced Intel® SpeedStep® Technology

These features are designed to facilitate seamless integration with additional platform sub-systems
(battery enhancements, efficient wireless networking, and more advanced graphics technologies).

*kk kkk kk%x

Name Change for IA32_DEBUGCTL

IA-32 Intel Architecture Software Developer’s Manual, Volume 3, the 1A32 DEBUGCTL was
previously classified as architectural MSR. Variants of the MSR have been renamed as follows:.

- The Pentium 4 processor DEBUGCTL MSR isnow MSR_DEBUGCTLA.
- The Pentium M processor DEBUGCTL MSR isnow MSR_DEBUGCTLB.

IA-32 Software Developer’'s Manual Documentation Changes

	Contents
	Revision History
	Preface
	Summary Table of Changes
	Documentation Changes

