
IA-32 Intel® Architecture and
Intel® Extended Memory 64
Technology Software Developer’s
Manual
Documentation Changes

March 2005

Notice: The IA-32 Intel® Architecture and Intel® Extended Memory 64 Technology may contain
design defects or errors known as errata that may cause the product to deviate from published
specifications. Current characterized errata are documented in the specification updates.

Document Number: 252046-012

2 IA-32 Software Developer’s Manual Documentation Changes

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The IA-32 Intel® Architecture and Intel® Extended Memory 64 Technology may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

I2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I2C bus/protocol and was developed by Intel.
Implementations of the I2C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and North American Philips
Corporation.

Intel, Pentium, Celeron, Intel SpeedStep, Intel Xeon and the Intel logo, and the Intel logo are trademarks or registered trademarks of Intel Corporation
or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2002–2005, Intel Corporation. All rights reserved.

IA-32 Software Developer’s Manual Documentation Changes 3

Contents
Revision History ...4

Preface ...5

Summary Table of Changes ...6

Documentation Changes..7

4 IA-32 Software Developer’s Manual Documentation Changes

Revision History

Revision History

Version Description Date

-001 • Initial Release November 2002

-002
• Added 1-10 Documentation Changes.

• Removed old Documentation Changes items that already have been
incorporated in the published Software Developer’s manual

December 2002

-003

• Added 9 -17 Documentation Changes.

• Removed Documentation Change #6 - References to bits Gen and
Len Deleted.

• Removed Documentation Change #4 - VIF Information Added to CLI
Discussion.

February 2003

-004
• Removed Documentation changes 1-17.

• Added Documentation changes 1-24.
June 2003

-005
• Removed Documentation Changes 1-24.

• Added Documentation Changes 1-15.
September 2003

-006 • Added Documentation Changes 16- 34. November 2003

-007
• Updated Documentation changes 14, 16, 17, and 28.

• Added Documentation Changes 35-45.
January 2004

-008
• Removed Documentation Changes 1-45.

• Added Documentation Changes 1-5.
March 2004

-009 • Added Documentation Changes 7-27. May 2004

-010
• Removed Documentation Changes 1-27.

• Added Documentation Changes 1.
August 2004

-011 • Added Documentation Changes 2-28. November 2004

-012
• Removed Documentation Changes 1-28.

• Added Documentation Changes 1-16.
March 2005

IA-32 Software Developer’s Manual Documentation Changes 5

Preface

Preface

This document is an update to the specifications contained in the Affected Documents/Related
Documents table below. This document is a compilation of documentation changes. It is intended
for hardware system manufacturers and software developers of applications, operating systems, or
tools.

Affected Documents/Related Documents

Nomenclature

Documentation Changes include errors or omissions from the current published specifications.
These changes will be incorporated in the next release of the Software Development Manual.

Document Title Document
Number

IA-32 Intel® Architecture Software Developer’s Manual: Volume 1, Basic Architecture 253665

IA-32 Intel® Architecture Software Developer’s Manual: Volume 2A, Instruction Set
Reference 253666

IA-32 Intel® Architecture Software Developer’s Manual: Volume 2B, Instruction Set
Reference 253667

IA-32 Intel® Architecture Software Developer’s Manual: Volume 3, System
Programming Guide 253668

Intel® Extended Memory 64 Technology Software Developer’s Guide Volumes 1 and 2 300835

6 IA-32 Software Developer’s Manual Documentation Changes

Summary Table of Changes

Summary Table of Changes

The following table indicates documentation changes which apply to the IA-32 Intel Architecture.
This table uses the following notations:

Codes Used in Summary Table

Change bar to left of table row indicates this erratum is either new or modified from the previous
version of the document.

Summary Table of Documentation Changes
Number Documentation Changes

1 CALL Instruction Pseudocode Updated

2 Information Updated for Fast System Call Instructions: SYSENTER, SYSEXIT, SYSCALL,
SYSRET

3 A Note on the PAE Mechanism Has Been Updated

4 Exception and Interrupt Priority Table Updated

5 Exceptions for MWAIT Instruction Updated

6 More Information on the Time-stamp Counter

7 Section on Serializing Instructions Has Been Updated

8 LAHF/SAHF Enabled on Some 64-bit Steppings

9 Updated Information on Disabling the APIC

10 Updated ENTER Instruction Pseudocode

11 Updated Information on the Usage of MSR_FSB_ESCR0

12 Updated Footnotes in MOV, POP, STI Descriptions

13 Description Updated for CVTPI2PD Instruction

14 ROR/ROL Pseudocode Has Been Updated

15 Syntax for CPUID, CR and MSR Information

16 Inclusion of Intel® Extended Memory 64 Technology

17 Family Representation Within CPUID Context Updated

IA-32 Software Developer’s Manual Documentation Changes 7

Documentation Changes

Documentation Changes

1. CALL Instruction Pseudocode Updated

“CALL — Call Procedure” in Chapter 3 of the IA-32 Intel Architecture Software Developer’s
Manual, Volume 2A, has been updated to correct the inconsistency of the limit checking for code
segments.

The pseudocode provided below has been updated to correct this problem.

Operation

IF near call
THEN IF near relative call

THEN
IF OperandSize = 32

THEN
tempEIP ← EIP + DEST; (* DEST is rel32 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 4-byte return address

THEN #SS(0); FI;
Push(EIP);
EIP ← tempEIP;

ELSE (* OperandSize = 16 *)
tempEIP ← (EIP + DEST) AND 0000FFFFH; (* DEST is rel16 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 2-byte return address

THEN #SS(0); FI;
Push(IP);
EIP ← tempEIP;

FI;
FI;

ELSE (* Near absolute call *)
IF OperandSize = 32

THEN
tempEIP ← DEST; (* DEST is r/m32 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 4-byte return address

THEN #SS(0); FI;
Push(EIP);
EIP ← tempEIP;

ELSE (* OperandSize = 16 *)
tempEIP ← DEST AND 0000FFFFH; (* DEST is r/m16 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 2-byte return address

THEN #SS(0); FI;
Push(IP);
EIP ← tempEIP;

FI;

8 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

FI;
FI;

IF far call and (PE = 0 or (PE = 1 and VM = 1)) (* Real-address or virtual-8086 mode *)
THEN

IF OperandSize = 32
THEN

IF stack not large enough for a 6-byte return address
THEN #SS(0); FI;

IF DEST[31:16] is not zero THEN #GP(0); FI;
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS ← DEST[47:32]; (* DEST is ptr16:32 or [m16:32] *)
EIP ← DEST[31:0]; (* DEST is ptr16:32 or [m16:32] *)

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 4-byte return address

THEN #SS(0); FI;
Push(CS);
Push(IP);
CS ← DEST[31:16]; (* DEST is ptr16:16 or [m16:16] *)
EIP ← DEST[15:0]; (* DEST is ptr16:16 or [m16:16]; clear upper 16 bits *)

FI;
FI;

IF far call and (PE = 1 and VM = 0) (* Protected mode or Long Mode, not virtual-8086 mode*)
THEN

IF segment selector in target operand NULL
THEN #GP(0); FI;

IF segment selector index not within descriptor table limits
THEN #GP(new code segment selector); FI;

Read type and access rights of selected segment descriptor;
IF EFER.LMA = 0

THEN
IF segment type is not a conforming or nonconforming code segment, call
gate, task gate, or TSS

THEN #GP(segment selector); FI;
ELSE

IF segment type is not a conforming or nonconforming code segment or
a 64-bit call gate

THEN #GP(segment selector); FI;
FI;
Depending on type and access rights:

GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;

FI;

CONFORMING-CODE-SEGMENT:
IF EFER.LMA = 1 and new code-segment descriptor has L=D=1

THEN GP(new code segment selector); FI;
IF DPL > CPL

THEN #GP(new code segment selector); FI;
IF segment not present

THEN #NP(new code segment selector); FI;
IF stack not large enough for return address

THEN #SS(0); FI;
tempEIP ← DEST(Offset);
IF OperandSize = 16

THEN

IA-32 Software Developer’s Manual Documentation Changes 9

Documentation Changes

tempEIP ← tempEIP AND 0000FFFFH; FI; (* Clear upper 16 bits *)
IF (EFER.LMA = 0 or target mode = Compatibility mode) and (tempEIP outside new code
segment limit)

THEN #GP(0); FI;
IF tempEIP is non-canonical

THEN #GP(0); FI;
IF OperandSize = 32

THEN
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS ← DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) ← CPL;
EIP ← tempEIP;

ELSE
IF OperandSize = 16

THEN
Push(CS);
Push(IP);
CS ← DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) ← CPL;
EIP ← tempEIP;

ELSE (* OperandSize = 64 *)
Push(CS); (* Padded with 48 high-order bits *)
Push(RIP);
CS ← DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) ← CPL;
RIP ← tempEIP;

FI;
FI;

END;

NONCONFORMING-CODE-SEGMENT:
IF EFER.LMA = 1 and new code-segment descriptor has L=D=1

THEN GP(new code segment selector); FI;
IF (RPL > CPL) or (DPL ≠ CPL)

THEN #GP(new code segment selector); FI;
IF segment not present

THEN #NP(new code segment selector); FI;
IF stack not large enough for return address

THEN #SS(0); FI;
tempEIP ← DEST(Offset);
IF OperandSize = 16

THEN tempEIP ← tempEIP AND 0000FFFFH; FI; (* Clear upper 16 bits *)
IF (EFER.LMA = 0 or target mode = Compatibility mode) and (tempEIP outside new code
segment limit)

THEN #GP(0); FI;
IF tempEIP is non-canonical

THEN #GP(0); FI;
IF OperandSize = 32

THEN
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS ← DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) ← CPL;
EIP ← tempEIP;

ELSE
IF OperandSize = 16

THEN
Push(CS);
Push(IP);
CS ← DEST(CodeSegmentSelector);

10 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

(* Segment descriptor information also loaded *)
CS(RPL) ← CPL;
EIP ← tempEIP;

ELSE (* OperandSize = 64 *)
Push(CS); (* Padded with 48 high-order bits *)
Push(RIP);
CS ← DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) ← CPL;
RIP ← tempEIP;

FI;
FI;

END;

CALL-GATE:
IF call gate (DPL < CPL) or (RPL > DPL)

THEN #GP(call gate selector); FI;
IF call gate not present

THEN #NP(call gate selector); FI;
IF call gate code-segment selector is NULL

THEN #GP(0); FI;
IF call gate code-segment selector index is outside descriptor table limits

THEN #GP(code segment selector); FI;
Read code segment descriptor;
IF code-segment segment descriptor does not indicate a code segment
or code-segment segment descriptor DPL > CPL

THEN #GP(code segment selector); FI;
IF EFER.LMA = 1 AND (code-segment segment descriptor is not a 64-bit code segment
or code-segment descriptor has both L-Bit and D-bit set)

THEN #GP(code segment selector); FI;
IF code segment not present

THEN #NP(new code segment selector); FI;
IF code segment is non-conforming and DPL < CPL

THEN go to MORE-PRIVILEGE;
ELSE go to SAME-PRIVILEGE;

FI;
END;

MORE-PRIVILEGE:
IF current TSS is 32-bit TSS

THEN
TSSstackAddress ← new code segment (DPL ∗ 8) + 4;
IF (TSSstackAddress + 7) > TSS limit

THEN #TS(current TSS selector); FI;
newSS ← TSSstackAddress + 4;
newESP ← stack address;

ELSE
IF current TSS is 16-bit TSS

THEN
TSSstackAddress ← new code segment (DPL ∗ 4) + 2;
IF (TSSstackAddress + 4) > TSS limit

THEN #TS(current TSS selector); FI;
newESP ← TSSstackAddress;
newSS ← TSSstackAddress + 2;

ELSE (* TSS is 64-bit *)
TSSstackAddress ← new code segment (DPL ∗ 8) + 4;
IF (TSSstackAddress + 8) > TSS limit

IA-32 Software Developer’s Manual Documentation Changes 11

Documentation Changes

THEN #TS(current TSS selector); FI;
newESP ← TSSstackAddress;
newSS ← NULL;

FI;
FI;
IF EFER.LMA = 0 and stack segment selector = NULL

THEN #TS(stack segment selector); FI;
Read code segment descriptor;
IF EFER.LMA = 0 and (stack segment selector's RPL ≠ DPL of code segment
or stack segment DPL ≠ DPL of code segment or stack segment is not a
writable data segment)

THEN #TS(SS selector); FI
IF EFER.LMA = 0 and stack segment not present

THEN #SS(SS selector); FI;
IF CallGateSize = 32

THEN
IF stack does not have room for parameters plus 16 bytes

THEN #SS(SS selector); FI;
IF CallGate(InstructionPointer) not within code segment limit

THEN #GP(0); FI;
SS ← newSS;
(* Segment descriptor information also loaded *)
ESP ← newESP;
CS:EIP ← CallGate(CS:InstructionPointer);
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
temp ← parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* Return address to calling procedure *)

ELSE
IF CallGateSize = 16

THEN
IF stack does not have room for parameters plus 8 bytes

THEN #SS(SS selector); FI;
IF (CallGate(InstructionPointer) AND FFFFH) not in code segment limit

THEN #GP(0); FI;
SS ← newSS;
(* Segment descriptor information also loaded *)
ESP ← newESP;
CS:IP ← CallGate(CS:InstructionPointer);
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
temp ← parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* Return address to calling procedure *)

ELSE (* CallGateSize = 64 *)
IF pushing 32 bytes on the stack touches non-canonical addresses

THEN #SS(SS selector); FI;
IF (CallGate(InstructionPointer) is non-canonical)

THEN #GP(0); FI;
SS ← newSS; (* New SS is NULL)
RSP ← newESP;
CS:IP ← CallGate(CS:InstructionPointer);
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)

12 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

Push(oldCS:oldEIP); (* Return address to calling procedure *)
FI;

FI;
CPL ← CodeSegment(DPL)
CS(RPL) ← CPL

END;

SAME-PRIVILEGE:
IF CallGateSize = 32

THEN
IF stack does not have room for 8 bytes

THEN #SS(0); FI;
IF CallGate(InstructionPointer) not within code segment limit

THEN #GP(0); FI;
CS:EIP ← CallGate(CS:EIP) (* Segment descriptor information also loaded *)
Push(oldCS:oldEIP); (* Return address to calling procedure *)

ELSE
If CallGateSize = 16

THEN
IF stack does not have room for 4 bytes

THEN #SS(0); FI;
IF CallGate(InstructionPointer) not within code segment limit

THEN #GP(0); FI;
CS:IP ← CallGate(CS:instruction pointer);
(* Segment descriptor information also loaded *)
Push(oldCS:oldIP); (* Return address to calling procedure *)

ELSE (* CallGateSize = 64)
IF pushing 16 bytes on the stack touches non-canonical addresses

THEN #SS(0); FI;
IF RIP non-canonical

THEN #GP(0); FI;
CS:IP ← CallGate(CS:instruction pointer);
(* Segment descriptor information also loaded *)
Push(oldCS:oldIP); (* Return address to calling procedure *)

FI;
FI;
CS(RPL) ← CPL

END;

TASK-GATE:
IF task gate DPL < CPL or RPL

THEN #GP(task gate selector); FI;
IF task gate not present

THEN #NP(task gate selector); FI;
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local
or index not within GDT limits

THEN #GP(TSS selector); FI;
Access TSS descriptor in GDT;

IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)
THEN #GP(TSS selector); FI;

IF TSS not present
THEN #NP(TSS selector); FI;

SWITCH-TASKS (with nesting) to TSS;

IA-32 Software Developer’s Manual Documentation Changes 13

Documentation Changes

IF EIP not within code segment limit
THEN #GP(0); FI;

END;

TASK-STATE-SEGMENT:
IF TSS DPL < CPL or RPL
or TSS descriptor indicates TSS not available

THEN #GP(TSS selector); FI;
IF TSS is not present

THEN #NP(TSS selector); FI;
SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit

THEN #GP(0); FI;
END;

2. Information Updated for Fast System Call Instructions: SYSENTER,
SYSEXIT, SYSCALL, SYSRET

SYSENTER and SYSEXIT sections covered in Chapter 4, IA-32 Intel Architecture Software
Developer’s Manual, Volume 2B, and SYSCALL and SYSRET sections covered in Chapter 3,
Intel® Extended Memory 64 Technology Software Developer’s Guide, Volume 2, have been
updated and are now covered in IA-32 Intel Architecture Software Developer’s Manual, Volume 2B
(rev. 015).

Updated sections are reprinted below.

SYSENTER—Fast System Call

Description

Executes a fast call to a level 0 system procedure or routine. SYSENTER is a companion
instruction to SYSEXIT. The instruction is optimized to provide the maximum performance for
system calls from user code running at privilege level 3 to operating system or executive
procedures running at privilege level 0.

Prior to executing the SYSENTER instruction, software must specify the privilege level 0 code
segment and code entry point, and the privilege level 0 stack segment and stack pointer by writing
values to the following MSRs:

• IA32_SYSENTER_CS — Contains the 32-bit segment selector for the privilege level 0 code
segment. This value is also used to compute the segment selector of the privilege level 0 stack
segment.

• IA32_SYSENTER_EIP — Contains the 32-bit offset into the privilege level 0 code segment
to the first instruction of the selected operating procedure or routine.

• IA32_SYSENTER_ESP — Contains the 32-bit stack pointer for the privilege level 0 stack.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 34 SYSENTER Valid Valid Fast call to privilege level 0 system
procedures.

14 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

These MSRs can be read from and written to using RDMSR/WRMSR. Register addresses are
listed in Table 7-6. The addresses are defined to remain fixed for future IA-32 processors.

When SYSENTER is executed, the processor:

1. Loads the segment selector from the IA32_SYSENTER_CS into the CS register.

2. Loads the instruction pointer from the IA32_SYSENTER_EIP into the EIP register.

3. Adds 8 to the value in IA32_SYSENTER_CS and loads it into the SS register.

4. Loads the stack pointer from the IA32_SYSENTER_ESP into the ESP register.

5. Switches to privilege level 0.

6. Clears the VM flag in the EFLAGS register, if the flag is set.

7. Begins executing the selected system procedure.

The processor does not save a return IP or other state information for the calling procedure.

The SYSENTER instruction always transfers program control to a protected-mode code segment
with a DPL of 0. The instruction requires that the following conditions are met by the operating
system:

• The segment descriptor for the selected system code segment selects a flat, 32-bit code
segment of up to 4 GBytes, with execute, read, accessed, and non-conforming permissions.

• The segment descriptor for selected system stack segment selects a flat 32-bit stack segment of
up to 4 GBytes, with read, write, accessed, and expand-up permissions.

The SYSENTER can be invoked from all operating modes except real-address mode.

The SYSENTER and SYSEXIT instructions are companion instructions, but they do not constitute
a call/return pair. When executing a SYSENTER instruction, the processor does not save state
information for the user code, and neither the SYSENTER nor the SYSEXIT instruction supports
passing parameters on the stack.

To use the SYSENTER and SYSEXIT instructions as companion instructions for transitions
between privilege level 3 code and privilege level 0 operating system procedures, the following
conventions must be followed:

• The segment descriptors for the privilege level 0 code and stack segments and for the privilege
level 3 code and stack segments must be contiguous in the global descriptor table. This
convention allows the processor to compute the segment selectors from the value entered in
the SYSENTER_CS_MSR MSR.

• The fast system call “stub” routines executed by user code (typically in shared libraries or
DLLs) must save the required return IP and processor state information if a return to the
calling procedure is required. Likewise, the operating system or executive procedures called
with SYSENTER instructions must have access to and use this saved return and state
information when returning to the user code.

MSR Address

IA32_SYSENTER_CS 174H

IA32_SYSENTER_ESP 175H

IA32_SYSENTER_EIP 176H

IA-32 Software Developer’s Manual Documentation Changes 15

Documentation Changes

The SYSENTER and SYSEXIT instructions were introduced into the IA-32 architecture in the
Pentium® II processor. The availability of these instructions on a processor is indicated with the
SYSENTER/SYSEXIT present (SEP) feature flag returned to the EDX register by the CPUID
instruction. An operating system that qualifies the SEP flag must also qualify the processor family
and model to ensure that the SYSENTER/SYSEXIT instructions are actually present. For example:

IF CPUID SEP bit is set
THEN IF (Family = 6) and (Model < 3) and (Stepping < 3)

THEN
SYSENTER/SYSEXIT_Not_Supported; FI;

ELSE
SYSENTER/SYSEXIT_Supported; FI;

FI;

When the CPUID instruction is executed on the Pentium Pro processor (model 1), the processor
returns a the SEP flag as set, but does not support the SYSENTER/SYSEXIT instructions.

Operation

IF CR0.PE = 0 THEN #GP(0); FI;
IF SYSENTER_CS_MSR = 0 THEN #GP(0); FI;
EFLAGS.VM ← 0; (* Insures protected mode execution *)
EFLAGS.IF ← 0; (* Mask interrupts *)
EFLAGS.RF ← 0;

CS.SEL ← SYSENTER_CS_MSR (* Operating system provides CS *)
(* Set rest of CS to a fixed value *)
CS.SEL.CPL ← 0;
CS.BASE ← 0; (* Flat segment *)
CS.LIMIT ← FFFFH; (* 4-GByte limit *)
CS.ARbyte.G ← 1; (* 4-KByte granularity *)
CS.ARbyte.S ← 1;
CS.ARbyte.TYPE ← 1011B; (* Execute + Read, Accessed *)
CS.ARbyte.D ← 1; (* 32-bit code segment*)
CS.ARbyte.DPL ← 0;
CS.ARbyte.RPL ← 0;
CS.ARbyte.P ← 1;

SS.SEL ← CS.SEL + 8;
(* Set rest of SS to a fixed value *)
SS.BASE ← 0; (* Flat segment *)
SS.LIMIT ← FFFFH; (* 4-GByte limit *)
SS.ARbyte.G ← 1; (* 4-KByte granularity *)
SS.ARbyte.S ←;
SS.ARbyte.TYPE ← 0011B; (* Read/Write, Accessed *)
SS.ARbyte.D ← 1; (* 32-bit stack segment*)
SS.ARbyte.DPL ← 0;
SS.ARbyte.RPL ← 0;
SS.ARbyte.P ← 1;

ESP ← SYSENTER_ESP_MSR;
EIP ← SYSENTER_EIP_MSR;

IA-32e Mode Operation

In IA-32e mode, SYSENTER executes a fast system calls from user code running at privilege level
3 (in compatibility mode or 64-bit mode) to 64-bit executive procedures running at privilege level
0. This instruction is a companion instruction to the SYSEXIT instruction.

16 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

In IA-32e mode, the IA32_SYSENTER_EIP and IA32_SYSENTER_ESP MSRs hold 64-bit
addresses and must be in canonical form; IA32_SYSENTER_CS must not contain a NULL
selector.

When SYSENTER transfers control, the following fields are generated and bits set:

• Target code segment — Reads non-NULL selector from IA32_SYSENTER_CS.

• New CS attributes — G-bit = 1, D-bit = 0, P-bit = 1, DPL = 0, CS_type = ER non-conforming
code, L-bit = 1 (go to 64-bit mode); also CS base = 0, CS limit = FFFFFFFFH.

• Target instruction — Reads 64-bit canonical address from IA32_SYSENTER_EIP.

• Stack segment — Computed by adding 8 to the value from IA32_SYSENTER_CS.

• Stack pointer — Reads 64-bit canonical address from IA32_SYSENTER_ESP.

• New SS attributes — G-bit = 1, D-bit = 1, P-bit = 1, DPL = 0, SS_type = RW expand-up area;
also SS base = 0, SS limit = FFFFFFFFH.

Flags Affected

VM, IF, RF (see Operation above)

Protected Mode Exceptions

#GP(0) If IA32_SYSENTER_CS = 0.

Real-Address Mode Exceptions

#GP(0) If protected mode is not enabled.

Virtual-8086 Mode Exceptions

Same exceptions as in Protected Mode.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.

SYSEXIT—Fast Return from Fast System Call

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 35 SYSEXIT Valid Valid Fast return to privilege level 3 user code.

REX.W +
0F 35

SYSEXIT Valid Valid Fast return to 64-bit mode privilege level 3
user code.

IA-32 Software Developer’s Manual Documentation Changes 17

Documentation Changes

Description

Executes a fast return to privilege level 3 user code. SYSEXIT is a companion instruction to the
SYSENTER instruction. The instruction is optimized to provide the maximum performance for
returns from system procedures executing at protections levels 0 to user procedures executing at
protection level 3. It must be executed from code executing at privilege level 0.

Prior to executing SYSEXIT, software must specify the privilege level 3 code segment and code
entry point, and the privilege level 3 stack segment and stack pointer by writing values into the
following MSR and general-purpose registers:

• IA32_SYSENTER_CS — Contains the 32-bit segment selector for the privilege level 0 code
segment in which the processor is currently executing. This value is used to compute the
segment selectors for the privilege level 3 code and stack segments.

• EDX — Contains the 32-bit offset into the privilege level 3 code segment to the first
instruction to be executed in the user code.

• ECX — Contains the 32-bit stack pointer for the privilege level 3 stack.

The IA32_SYSENTER_CS MSR can be read from and written to using RDMSR/WRMSR. The
register address is listed in Table 7-6. This address is defined to remain fixed for future IA-32
processors.

When SYSEXIT is executed, the processor:

1. Adds 16 to the value in IA32_SYSENTER_CS and loads the sum into the CS selector register.

2. Loads the instruction pointer from the EDX register into the EIP register.

3. Adds 24 to the value in IA32_SYSENTER_CS and loads the sum into the SS selector register.

4. Loads the stack pointer from the ECX register into the ESP register.

5. Switches to privilege level 3.

6. Begins executing the user code at the EIP address.

See “SWAPGS—Swap GS Base Register” for information about using the SYSENTER and
SYSEXIT instructions as companion call and return instructions.

The SYSEXIT instruction always transfers program control to a protected-mode code segment
with a DPL of 3. The instruction requires that the following conditions are met by the operating
system:

• The segment descriptor for the selected user code segment selects a flat, 32-bit code segment
of up to 4 GBytes, with execute, read, accessed, and non-conforming permissions.

• The segment descriptor for selected user stack segment selects a flat, 32-bit stack segment of
up to 4 GBytes, with expand-up, read, write, and accessed permissions.

The SYSENTER can be invoked from all operating modes except real-address mode.

The SYSENTER and SYSEXIT instructions were introduced into the IA-32 architecture in the
Pentium II processor. The availability of these instructions on a processor is indicated with the
SYSENTER/SYSEXIT present (SEP) feature flag returned to the EDX register by the CPUID
instruction. An operating system that qualifies the SEP flag must also qualify the processor family
and model to ensure that the SYSENTER/SYSEXIT instructions are actually present. For example:

IF CPUID SEP bit is set
THEN IF (Family = 6) and (Model < 3) and (Stepping < 3)

18 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

THEN
SYSENTER/SYSEXIT_Not_Supported; FI;

ELSE
SYSENTER/SYSEXIT_Supported; FI;

FI;

When the CPUID instruction is executed on the Pentium Pro processor (model 1), the processor
returns a the SEP flag as set, but does not support the SYSENTER/SYSEXIT instructions.

Operation

IF SYSENTER_CS_MSR = 0 THEN #GP(0); FI;
IF CR0.PE = 0 THEN #GP(0); FI;
IF CPL ≠ 0 THEN #GP(0); FI;

CS.SEL ← (SYSENTER_CS_MSR + 16); (* Segment selector for return CS *)
(* Set rest of CS to a fixed value *)
CS.BASE ← 0; (* Flat segment *)
CS.LIMIT ← FFFFH; (* 4-GByte limit *)
CS.ARbyte.G ← 1; (* 4-KByte granularity *)
CS.ARbyte.S ← 1;
CS.ARbyte.TYPE ← 1011B; (* Execute, Read, Non-Conforming Code *)
CS.ARbyte.D ← 1; (* 32-bit code segment*)
CS.ARbyte.DPL ← 3;
CS.ARbyte.RPL ← 3;
CS.ARbyte.P ← 1;

SS.SEL ← (SYSENTER_CS_MSR + 24); (* Segment selector for return SS *)
(* Set rest of SS to a fixed value *);
SS.BASE ← 0; (* Flat segment *)
SS.LIMIT ← FFFFH; (* 4-GByte limit *)
SS.ARbyte.G ←1; (* 4-KByte granularity *)
SS.ARbyte.S ← ;
SS.ARbyte.TYPE ← 0011B; (* Expand Up, Read/Write, Data *)
SS.ARbyte.D ← 1; (* 32-bit stack segment*)
SS.ARbyte.DPL ← 3;
SS.ARbyte.RPL ← 3;
SS.ARbyte.P ← 1;

ESP ← ECX;
EIP← EDX;

IA-32e Mode Operation

In IA-32e mode, SYSEXIT executes a fast system calls from a 64-bit executive procedures running
at privilege level 0 to user code running at privilege level 3 (in compatibility mode or 64-bit mode).
This instruction is a companion instruction to the SYSENTER instruction.

In IA-32e mode, the IA32_SYSENTER_EIP and IA32_SYSENTER_ESP MSRs hold 64-bit
addresses and must be in canonical form; IA32_SYSENTER_CS must not contain a NULL
selector.

When the SYSEXIT instruction transfers control to 64-bit mode user code using REX.W, the
following fields are generated and bits set:

• Target code segment — Computed by adding 32 to the value in the IA32_SYSENTER_CS.

IA-32 Software Developer’s Manual Documentation Changes 19

Documentation Changes

• New CS attributes — G-bit = 1, D-bit = 0, P-bit = 1, DPL = 3, CS_type = ER accessed non-
conforming code, L-bit = 1 (go to 64-bit mode).

• Target instruction — Reads 64-bit canonical address in RDX.

• Stack segment — Computed by adding 8 to the value of CS selector.

• New SS attributes — G-bit = 1, D-bit = 1, P-bit = 1, DPL = 3, SS_type = RW expand-up area.

• Stack pointer — Update RSP using 64-bit canonical address in RCX.

When SYSEXIT transfers control to compatibility mode user code when the operand size attribute
is 32 bits, the following fields are generated and bits set:

• Target code segment — Computed by adding 16 to the value in IA32_SYSENTER_CS.

• New CS attributes — G-bit = 1, D-bit = 1, P-bit = 1, DPL = 3, CS_type = ER accessed non-
conforming code, L-bit = 0 (go to compatibility mode); also CS base = 0, CS limit =
FFFFFFFFH.

• Target instruction — Fetch the target instruction from 32-bit address in EDX.

• Stack segment — Computed by adding 24 to the value in IA32_SYSENTER_CS.

• New SS attributes — G-bit = 1, D-bit = 1, P-bit = 1, DPL = 3, SS_type = RW expand-up area;
also SS base = 0, SS limit = FFFFFFFFH.

• Stack pointer — Update ESP from 32-bit address in ECX.

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If IA32_SYSENTER_CS = 0.

Real-Address Mode Exceptions

#GP(0) If protected mode is not enabled.

Virtual-8086 Mode Exceptions

#GP(0) If IA32_SYSENTER_CS = 0.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0) If IA32_SYSENTER_CS = 0.

If CPL ≠ 0.

If ECX or EDX contains a non-canonical address.

20 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

SYSCALL—Fast System Call

Description

SYSCALL saves the RIP of the instruction following SYSCALL to RCX and loads a new RIP
from the IA32_LSTAR (64-bit mode). Upon return, SYSRET copies the value saved in RCX to the
RIP.

SYSCALL saves RFLAGS (lower 32 bit only) in R11. It then masks RFLAGS with an OS-defined
value using the IA32_FMASK (MSR C000_0084). The actual mask value used by the OS is the
complement of the value written to the IA32_FMASK MSR. None of the bits in RFLAGS are
automatically cleared (except for RF). SYSRET restores RFLAGS from R11 (the lower 32 bits
only).

Software should not alter the CS or SS descriptors in a manner that violates the following
assumptions made by SYSCALL/SYSRET:

• The CS and SS base and limit remain the same for all processes, including the operating
system (the base is 0H and the limit is 0FFFFFFFFH).

• The CS of the SYSCALL target has a privilege level of 0.

• The CS of the SYSRET target has a privilege level of 3.

SYSCALL/SYSRET do not check for violations of these assumptions.

Operation

IF ((CS ≠ 1) or (IA32_EFER.SCE ≠ 1))
(* Not in 64-Bit Mode or SYSCALL/SYSRET not enabled in IA32_EFER *)

THEN #UD; FI;
RCX ← RIP;
RIP ← LSTAR_MSR;
R11 ← EFLAGS;
EFLAGS ← (EFLAGS MASKED BY IA32_FMASK);
CPL ← 0;
CS(SEL) ← IA32_STAR_MSR[47:32];
CS(PL) ← 0;
CS(BASE) ← 0;
CS(LIMIT) ← 0xFFFFF;
CS(GRANULAR) ← 1;
SS(SEL) ← IA32_STAR_MSR[47:32] + 8;
SS(PL) ← 0;
SS(BASE) ← 0;
SS(LIMIT) ← 0xFFFFF;
SS(GRANULAR) ← 1;

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 05 SYSCALL Valid Invalid Fast call to privilege level 0
system procedures.

IA-32 Software Developer’s Manual Documentation Changes 21

Documentation Changes

Flags Affected

All.

Protected Mode Exceptions

#UD If Mode ≠ 64-bit.

Real-Address Mode Exceptions

#UD Instruction is not recognized in this mode.

Virtual-8086 Mode Exceptions

#UD Instruction is not recognized in this mode.

Compatibility Mode Exceptions

#UD Instruction is not recognized in this mode.

64-Bit Mode Exceptions

#UD If IA32_EFER.SCE = 0.

SYSRET—Return From Fast System Call

Description

SYSCALL saves the RIP of the instruction following the SYSCALL into RCX and loads the new
RIP from the LSTAR (64-bit mode only). Upon return, SYSRET copies the value saved in RCX to
the RIP.

In a return to 64-bit mode using Osize 64, SYSRET sets the CS selector value to MSR
IA32_STAR[63:48] +16. The SS is set to IA32_STAR[63:48] + 8.

It is the responsibility of the OS to keep descriptors in the GDT/LDT that correspond to selectors
loaded by SYSCALL/SYSRET consistent with the base, limit and attribute values forced by the
these instructions.

Software should not alter the CS or SS descriptors in a manner that violates the following
assumptions made by SYSCALL/SYSRET:

• CS and SS base and limit remain the same for all processes, including the operating system.

• CS of the SYSCALL target has a privilege level of 0.

• CS of the SYSRET target has a privilege level of 3.

SYSCALL/SYSRET do not check for violations of these assumptions.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 07 SYSRET Valid Invalid Return from fast system call

22 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

Operation

IF (CS.L ≠ 1) or (IA32_EFER.SCE ≠ 1)
(* Not in 64-Bit Mode or SYSCALL/SYSRET not enabled in IA32_EFER *)

THEN #UD; FI;
IF (CPL ≠ 0)

THEN #GP(0); FI;
IF (RCX ≠ CANONICAL_ADDRESS)

THEN #GP(0); FI;
IF (OPERAND_SIZE = 64)

THEN (* Return to 64-Bit Mode *)
EFLAGS ← R11;
CPL ← 0x3;
CS(SEL) ← IA32_STAR[63:48] + 16;
CS(PL) ← 0x3;
SS(SEL) ← IA32_STAR[63:48] + 8;
SS(PL) ← 0x3;
RIP ← RCX;

ELSE (* Return to Compatibility Mode *)
#UD

FI;

Flags Affected

VM, IF, RF.

Protected Mode Exceptions

#UD If Mode ≠ 64-Bit.

Real-Address Mode Exceptions

#UD Instruction not recognized in this mode.

Virtual-8086 Mode Exceptions

#UD Instruction not recognized in this mode.

Compatibility Mode Exceptions

#UD Instruction not recognized in this mode.

64-Bit Mode Exceptions

#UD If IA32_EFER.SCE bit = 0.

#GP(0) If CPL ≠ 0.

If ECX contains a non-canonical address.

IA-32 Software Developer’s Manual Documentation Changes 23

Documentation Changes

3. A Note on the PAE Mechanism Has Been Updated

A note that discusses the PAE Mechanism has been updated. In the old version of the
documentation, this note was in Section 3.8.4, IA-32 Intel Architecture Software Developer’s
Manual, Volume 3. In the new version (Rev.015), the note is in Section 3.8.5.

The text of the updated section is provided below. See the change bars for the impacted area.

3.8.5 Page-Directory and Page-Table Entries With Extended
Addressing Enabled

Figure 3-20 shows the format for the page-directory-pointer-table, page-directory, and page-
table entries when 4-KByte pages and 36-bit extended physical addresses are being used.
Figure 3-21 shows the format for the page-directory-pointer-table and page-directory entries
when 2-MByte pages and 36-bit extended physical addresses are being used. The functions of the
flags in these entries are the same as described in Section 3.7.6, “Page-Directory and Page-Table
Entries”. The major differences in these entries are as follows:

• A page-directory-pointer-table entry is added.

• The size of the entries are increased from 32 bits to 64 bits.

• The maximum number of entries in a page directory or page table is 512.

• The base physical address field in each entry is extended to 24 bits.

Note:

Older IA-32 processors that implement the PAE mechanism use uncached
accesses when loading page-directory-pointer table entries. This behavior is
model specific and not architectural. More recent IA-32 processors may cache
page-directory-pointer table entries.

4. Exception and Interrupt Priority Table Updated

Information on the system response to simultaneous exceptions and interrupts has been updated.
This update impacted Table 5-2, IA-32 Intel Architecture Software Developer’s Manual, Volume 3.

The updated table is reprinted below. See the change bars for the impacted area.

Priority Description

1 (Highest) Hardware Reset and Machine Checks
- RESET
- Machine Check

2 Trap on Task Switch
- T flag in TSS is set

3 External Hardware Interventions
- FLUSH
- STOPCLK
- SMI
- INIT

24 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

5. Exceptions for MWAIT Instruction Updated

In the earlier documentation, this material was covered in the “MWAIT—Monitor Wait” section of
Chapter 3 in the Intel® Extended Memory 64 Technology Software Developer’s Guide, Volume 2.
MWAIT is now covered in the updated version (Rev.015) of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 2A.

The updated list of exceptions is reprinted below.

Protected Mode Exceptions

#GP(0) If ECX ≠ 0.

#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.

If executed at privilege level 1 through 3 when the instruction is not available.

If LOCK prefixes are used.

If REPE, REPNE or operand size prefixes are used.

4 Traps on the Previous Instruction
- Breakpoints
- Debug Trap Exceptions (TF flag set or data/I-O breakpoint)

5 Nonmaskable Interrupts (NMI) 1

6 Maskable Hardware Interrupts 1

7 Code Breakpoint Fault

8 Faults from Fetching Next Instruction
- Code-Segment Limit Violation
- Code Page Fault

9 Faults from Decoding the Next Instruction
- Instruction length > 15 bytes
- Invalid Opcode
- Coprocessor Not Available

10 (Lowest) Faults on Executing an Instruction
- Overflow
- Bound error
- Invalid TSS
- Segment Not Present
- Stack fault
- General Protection
- Data Page Fault

- Alignment Check
- x87 FPU Floating-point exception
- SIMD floating-point exception

NOTE:
1. The Intel486TM processor and earlier processors group nonmaskable and maskable interrupts in the same priority

class.

Priority Description

IA-32 Software Developer’s Manual Documentation Changes 25

Documentation Changes

Real Address Mode Exceptions

#GP(0) For ECX has a value other than 0.

#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.

If LOCK prefix is used.

If REPE, REPNE or operand size prefixes are used.

Virtual 8086 Mode Exceptions

#GP(0) For ECX has a value other than 0.

#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0; or the instruction is executed at
privilege level 1-2-3 when the instruction is not available.

If LOCK prefix is used.

If REPE, REPNE or operand size prefixes are used.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0) If the current privilege level is not 0.

If RCX ≠ 0.

#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.

If the F3H, F2H, 66H or LOCK prefix is used.

6. More Information on the Time-stamp Counter

The full 64-bit time-stamp counter is now writeable with WRMSR (for newer models). Table B-1
in IA-32 Intel Architecture Software Developer’s Manual, Volume 3 has been updated to reflect this.
The updated table segment is reprinted below.

26 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

--

Sections 15.7 and 15.9.9 in the IA-32 Intel Architecture Software Developer’s Manual, Volume 3
have been updated to improve the description of clock-tick operation. In the new version of the
documentation (Rev.015), these sections are numbered 15.8 and 15.10.9.

The updated documentation is reprinted below.

Time-Stamp Counter

The IA-32 architecture (beginning with the Pentium processor) defines a time-stamp counter
mechanism that can be used to monitor and identify the relative time occurrence of processor
events. The counter’s architecture includes the following components:

• TSC flag — A feature bit that indicates the availability of the time-stamp counter. The counter
is available in an IA-32 processor implementation if the function CPUID.1:EDX.TSC[bit 4] =
1.

• IA32_TIME_STAMP_COUNTER MSR (called TSC MSR in P6 family and Pentium
processors) — The MSR used as the counter.

• RDTSC instruction — An instruction used to read the time-stamp counter.

• TSD flag — A control register flag is used to enable or disable the time-stamp counter
(enabled if CR4.TSD[bit 2] = 1).

The time-stamp counter (as implemented in the P6 family, Pentium, Pentium M, Pentium 4, and
Intel Xeon processors) is a 64-bit counter that is set to 0 following a RESET of the processor.
Following a RESET, the counter will increment even when the processor is halted by the HLT
instruction or the external STPCLK# pin. Note that the assertion of the external DPSLP# pin may
cause the time-stamp counter to stop.

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

... more table cells....

10H 16 IA32_TIME_STAMP_
COUNTER

0, 1, 2,
3, 4

Unique Time Stamp Counter. See Section
15.8, “Time-Stamp Counter”

63:0 Timestamp Count Value.
A 64-bit register accessed when
referenced as a qword through a
RDMSR, WRMSR or RDTSC
instruction. Returns the current time
stamp count value. All 64 bits are
readable.

On earlier processors, only the lower
32 bits are writeable. On any write to
the lower 32 bits, the upper 32 bits
are cleared. For processor family
0FH, models 3 and 4: all 64 bits are
writeable.

... more table cells....

IA-32 Software Developer’s Manual Documentation Changes 27

Documentation Changes

Members of the processor families increment the time-stamp counter differently:

• For Pentium M processors (family [06H], models [09H, 0DH]); for Pentium 4 processors,
Intel Xeon processors (family [0FH], models [00H, 01H, or 02H]); and for P6 family
processors: the time-stamp counter increments with every internal processor clock cycle. The
internal processor clock cycle is determined by the current core-clock to bus-clock ratio.
Intel® SpeedStep® technology transitions may also impact the processor clock.

• For Pentium 4 processors, Intel® Xeon™ processors (family [0FH], models [03H and
higher]): the time-stamp counter increments at a constant rate. That rate may be set by the
maximum core-clock to bus-clock ratio of the processor or may be set by the frequency at
which the processor is booted. The specific processor configuration determines the behavior.
Constant TSC behavior ensures that the duration of each clock tick is uniform and supports the
use of the TSC as a wall clock timer even if the processor core changes frequency. This is the
architectural behavior moving forward.

Note:

To determine average processor clock frequency, Intel recommends the use of
EMON logic to count processor core clocks over the period of time for which the
average is required. See Section 15.10.9 and Appendix A in this manual for more
information.

The RDTSC instruction reads the time-stamp counter and is guaranteed to return a monotonically
increasing unique value whenever executed, except for a 64-bit counter wraparound. Intel
guarantees that the time-stamp counter will not wraparound within 10 years after being reset. The
period for counter wrap is longer for Pentium 4, Intel Xeon, P6 family, and Pentium processors.

Normally, the RDTSC instruction can be executed by programs and procedures running at any
privilege level and in virtual-8086 mode. The TSD flag allows use of this instruction to be
restricted to programs and procedures running at privilege level 0. A secure operating system
would set the TSD flag during system initialization to disable user access to the time-stamp
counter. An operating system that disables user access to the time-stamp counter should emulate
the instruction through a user-accessible programming interface.

The RDTSC instruction is not serializing or ordered with other instructions. It does not necessarily
wait until all previous instructions have been executed before reading the counter. Similarly,
subsequent instructions may begin execution before the RDTSC instruction operation is
performed.

The RDMSR and WRMSR instructions read and write the time-stamp counter, treating the time-
stamp counter as an ordinary MSR (address 10H). In the Pentium 4, Intel Xeon, and P6 family
processors, all 64-bits of the time-stamp counter are read using RDMSR (just as with RDTSC).
When WRMSR is used to write the time-stamp counter on processors before family [0FH], models
[03H, 04H]: only the low order 32-bits of the time-stamp counter can be written (the high-order 32
bits are cleared to 0). For family [0FH], models [03H, 04H]: all 64 bits are writeable.

15.10.9 Counting Clocks

The count of cycles, also known as clockticks, forms a the basis for measuring how long a program
takes to execute. Clockticks are also used as part of efficiency ratios like cycles per instruction
(CPI). Processor clocks may stop ticking under circumstances like the following:

• The processor is halted when there is nothing for the CPU to do. For example, the processor
may halt to save power while the computer is servicing an I/O request. When Hyper-Threading

28 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

Technology is enabled, both logical processors must be halted for performance-monitoring
counters to be powered down.

• The processor is asleep as a result of being halted or because of a power-management scheme.
There are different levels of sleep. In the some deep sleep levels, the time-stamp counter stops
counting.

There are three ways to count processor clock cycles to monitor performance. These are:

• Non-halted clockticks — Measures clock cycles in which the specified logical processor is
not halted and is not in any power-saving state. When Hyper-Threading Technology is
enabled, these ticks can be measured on a per-logical-processor basis.

• Non-sleep clockticks — Measures clock cycles in which the specified physical processor is
not in a sleep mode or in a power-saving state. These ticks cannot be measured on a logical-
processor basis.

• Time-stamp counter — Measures clock cycles in which the physical processor is not in deep
sleep. These ticks cannot be measured on a logical-processor basis. Some processor models
permit clock cycles to be measured when the physical processor is not in deep sleep (by using
the time-stamp counter and the RDTSC instruction). Note that such sticks cannot be measured
on a per-logical-processor basis. See Section for detail on processor capabilities.

The first two methods use performance counters and can be set up to cause an interrupt upon
overflow (for sampling). They may also be useful where it is easier for a tool to read a performance
counter than to use a time stamp counter (the timestamp counter is accessed using the RDTSC
instruction).

For applications with a significant amount of I/O, there are two ratios of interest:

• Non-halted CPI — Non-halted clockticks/instructions retired measures the CPI for phases
where the CPU was being used. This ratio can be measured on a logical-processor basis when
Hyper-Threading Technology is enabled.

• Nominal CPI — Time-stamp counter ticks/instructions retired measures the CPI over the
duration of a program, including those periods when the machine halts while waiting for I/O.

15.10.9.3 Incrementing the Time-Stamp Counter

The time-stamp counter increments when the clock signal on the system bus is active and when the
sleep pin is not asserted. The counter value can be read with the RDTSC instruction.

The time-stamp counter and the non-sleep clockticks count may not agree in all cases and for all
processors. See Section 10.8 for more information on counter operation.

7. Section on Serializing Instructions Has Been Updated

The information on SFENCE, LFENCE, MFENCE has been updated in Section 7.4, IA-32 Intel
Architecture Software Developer’s Manual, Volume 3.

The updated material is reprinted below. Note the change bars.

IA-32 Software Developer’s Manual Documentation Changes 29

Documentation Changes

Serializing Instructions

The IA-32 architecture defines several serializing instructions. These instructions force the
processor to complete all modifications to flags, registers, and memory by previous instructions
and to drain all buffered writes to memory before the next instruction is fetched and executed. For
example, when a MOV to control register instruction is used to load a new value into control
register CR0 to enable protected mode, the processor must perform a serializing operation before it
enters protected mode. This serializing operation insures that all operations that were started while
the processor was in real-address mode are completed before the switch to protected mode is made.

The concept of serializing instructions was introduced into the IA-32 architecture with the Pentium
processor to support parallel instruction execution. Serializing instructions have no meaning for the
Intel486 and earlier processors that do not implement parallel instruction execution.

It is important to note that executing of serializing instructions on Pentium 4, Intel Xeon, and P6
family processors constrain speculative execution because the results of speculatively executed
instructions are discarded. The following instructions are serializing instructions:

• Privileged serializing instructions — MOV (to control register), MOV (to debug register),
WRMSR, INVD, INVLPG, WBINVD, LGDT, LLDT, LIDT, and LTR.

• Non-privileged serializing instructions — CPUID, IRET, and RSM.

When the processor serializes instruction execution, it ensures that all pending memory
transactions are completed (including writes stored in its store buffer) before it executes the next
instruction. Nothing can pass a serializing instruction and a serializing instruction cannot pass any
other instruction (read, write, instruction fetch, or I/O). For example, CPUID can be executed at
any privilege level to serialize instruction execution with no effect on program flow, except that the
EAX, EBX, ECX, and EDX registers are modified.

The following instructions are memory ordering instructions, not serializing instructions. These
drain the data memory subsystem. They do not effect the instruction execution stream:

• Non-privileged memory ordering instructions — SFENCE, LFENCE, and MFENCE.

The SFENCE, LFENCE, and MFENCE instructions provide more granularity in controlling the
serialization of memory loads and stores (see Section 7.2.4, “Strengthening or Weakening the
Memory Ordering Model”).

The following additional information is worth noting regarding serializing instructions:

• The processor does not writeback the contents of modified data in its data cache to external
memory when it serializes instruction execution. Software can force modified data to be
written back by executing the WBINVD instruction, which is a serializing instruction. It
should be noted that frequent use of the WBINVD instruction will seriously reduce system
performance.

• When an instruction is executed that enables or disables paging (that is, changes the PG flag in
control register CR0), the instruction should be followed by a jump instruction. The target
instruction of the jump instruction is fetched with the new setting of the PG flag (that is,
paging is enabled or disabled), but the jump instruction itself is fetched with the previous
setting. The Pentium 4, Intel Xeon, and P6 family processors do not require the jump operation
following the move to register CR0 (because any use of the MOV instruction in a Pentium 4,
Intel Xeon, or P6 family processor to write to CR0 is completely serializing). However, to
maintain backwards and forward compatibility with code written to run on other IA-32
processors, it is recommended that the jump operation be performed.

30 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

• Whenever an instruction is executed to change the contents of CR3 while paging is enabled,
the next instruction is fetched using the translation tables that correspond to the new value of
CR3. Therefore the next instruction and the sequentially following instructions should have a
mapping based upon the new value of CR3. (Global entries in the TLBs are not invalidated,
see Section 10.9, “Invalidating the Translation Lookaside Buffers (TLBs)”.)

• The Pentium 4, Intel Xeon, P6 family, and Pentium processors use branch-prediction
techniques to improve performance by prefetching the destination of a branch instruction
before the branch instruction is executed. Consequently, instruction execution is not
deterministically serialized when a branch instruction is executed.

8. LAHF/SAHF Enabled on Some 64-bit Steppings

LAHF/SAHF are now enabled on some 64-Bit steppings. The corrected information is reprinted
below. For coverage of these instructions, see IA-32 Intel Architecture Software Developer’s
Manual, Volumes 2A & 2B.

LAHF—Load Status Flags into AH Register

Description

Moves the low byte of the EFLAGS register (which includes status flags SF, ZF, AF, PF, and CF) to
the AH register. Reserved bits 1, 3, and 5 of the EFLAGS register are set in the AH register as
shown in the “Operation” section below.

This instruction executes as described above in compatibility mode and legacy mode. It is valid in
64-bit mode only if CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 1.

Operation

IF 64-Bit Mode
THEN

IF CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 1;
THEN AH ← RFLAGS(SF:ZF:0:AF:0:PF:1:CF);
ELSE #UD;

FI;
ELSE

AH ← EFLAGS(SF:ZF:0:AF:0:PF:1:CF);
FI;

Flags Affected

None. The state of the flags in the EFLAGS register is not affected.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

9F LAHF Invalid* Valid Load: AH ← EFLAGS(SF:ZF:0:AF:0:PF:1:CF).

NOTE:
* Valid in specific steppings. See Description section.

IA-32 Software Developer’s Manual Documentation Changes 31

Documentation Changes

Protected Mode Exceptions

None.

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions

None.

Compatibility Mode Exceptions

None.

64-Bit Mode Exceptions

#UD If CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 0.

SAHF—Store AH into Flags

Description

Loads the SF, ZF, AF, PF, and CF flags of the EFLAGS register with values from the corresponding
bits in the AH register (bits 7, 6, 4, 2, and 0, respectively). Bits 1, 3, and 5 of register AH are
ignored; the corresponding reserved bits (1, 3, and 5) in the EFLAGS register remain as shown in
the “Operation” section below.

This instruction executes as described above in compatibility mode and legacy mode. It is valid in
64-bit mode only if CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 1.

Operation

IF IA-64 Mode
THEN

IF CPUID.80000001.ECX[0] = 1;
THEN

RFLAGS(SF:ZF:0:AF:0:PF:1:CF) ← AH;
ELSE

#UD;
FI

ELSE
EFLAGS(SF:ZF:0:AF:0:PF:1:CF) ← AH;

FI;

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

9E SAHF Invalid* Valid Loads SF, ZF, AF, PF, and CF from AH
into EFLAGS register.

* Valid in specific steppings. See Description section.

32 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

Flags Affected

The SF, ZF, AF, PF, and CF flags are loaded with values from the AH register. Bits 1, 3, and 5 of
the EFLAGS register are unaffected, with the values remaining 1, 0, and 0, respectively.

Protected Mode Exceptions

None.

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions

None.

Compatibility Mode Exceptions

None.

64-Bit Mode Exceptions

#UD If CPUID.80000001:ECX[0] = 0.

9. Updated Information on Disabling the APIC

Sections 8.4.3 and 8.4.4 in the IA-32 Intel Architecture Software Developer’s Manual, Volume 3
have been updated to more accurately describe the effect of disabling the APIC.

The updated text is reprinted below.

8.4.3 Enabling or Disabling the Local APIC

The local APIC can be enabled or disabled in either of two ways:

1. Using the APIC global enable/disable flag in the IA32_APIC_BASE MSR (MSR address
1BH). See Figure 8-5.

— When IA32_APIC_BASE[11] is 0, the processor is functionally equivalent to an IA-32
processor without an on-chip APIC. The CPUID feature flag for the APIC (see Section
8.4.2, “Presence of the Local APIC”) is also set to 0.

— After IA32_APIC_BASE[11] is set to 0, processor APICs based on the 3-wire APIC bus
cannot be generally re-enabled until a system hardware reset. The three 3-wire bus looses
track of arbitration that would necessary for complete re-enabling. Certain APIC function-
ality can be enabled (performance and thermal monitoring interrupt generation for
example). However, delivery of interrupts across the 3-wire bus cannot.

— For processors that use Front Side Bus delivery (FSB) of interrupts, software may disable
or enable the APIC by setting and resetting IA32_APIC_BASE[11]. A hardware reset is
not required to re-start APIC functionality.

2. Using the APIC software enable/disable flag in the spurious-interrupt vector register. See
Figure 8-23.

IA-32 Software Developer’s Manual Documentation Changes 33

Documentation Changes

— If IA32_APIC_BASE[11] is 1, software can temporarily disable a local APIC at any time
by clearing the APIC software enable/disable flag in the spurious-interrupt vector register
(see Figure 8-23). The state of the local APIC when in this software-disabled state is
described in Section 8.4.7.2, “Local APIC State After It Has Been Software Disabled”.

— When the local APIC is in the software-disabled state, it can be re-enabled at any time by
setting the APIC software enable/disable flag to 1.

For the Pentium processor, the APICEN pin (which is shared with the PICD1 pin) is used during
power-up or RESET to disable the local APIC.

Note that each entry in the LVT has a mask bit that can be used to inhibit interrupts from being
delivered to the processor from selected local interrupt sources (the LINT0 and LINT1 pins, the
APIC timer, the performance-monitoring counters, the thermal sensor, and/or the internal APIC
error detector).

8.4.4 Local APIC Status and Location

The status and location of the local APIC are contained in the IA32_APIC_BASE MSR (see Figure
8-5). MSR bit functions are described below:

• BSP flag, bit 8 Indicates if the processor is the bootstrap processor (BSP). See Section 7.5,
“Multiple-Processor (MP) Initialization”. Following a power-up or RESET, this flag is set to 1
for the processor selected as the BSP and set to 0 for the remaining processors (APs).

• APIC Global Enable flag, bit 11 Enables or disables the local APIC (see Section 8.4.3,
Enabling or Disabling the Local APIC). This flag is available in the Pentium 4, Intel Xeon, and
P6 family processors. It is not guaranteed to be available or available at the same location in
future IA-32 processors.

• APIC Base field, bits 12 through 35 Specifies the base address of the APIC registers. This
24-bit value is extended by 12 bits at the low end to form the base address. This automatically
aligns the address on a 4-KByte boundary. Following a power-up or RESET, the field is set to
FEE0 0000H.

• Bits 0 through 7, bits 9 and 10, and bits 36 through 63 in the IA32_APIC_BASE MSR are
reserved.

10. Updated ENTER Instruction Pseudocode

“ENTER—Make Stack Frame for Procedure Parameters” section in Chapter 3 of the IA-32 Intel
Architecture Software Developer’s Manual, Volume 2B has been updated. The updated section is
reprinted below.

Figure 8-5. IA32_APIC_BASE MSR (APIC_BASE_MSR in P6 Family)

BSP—Processor is BSP

APIC global enable/disable
APIC Base—Base physical address

63 071011 8912

Reserved

36 35

APIC BaseReserved

34 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

ENTER—Make Stack Frame for Procedure Parameters

Description

Creates a stack frame for a procedure. The first operand (size operand) specifies the size of the
stack frame (that is, the number of bytes of dynamic storage allocated on the stack for the
procedure). The second operand (nesting level operand) gives the lexical nesting level (0 to 31) of
the procedure. The nesting level determines the number of stack frame pointers that are copied into
the “display area” of the new stack frame from the preceding frame. Both of these operands are
immediate values.

The stack-size attribute determines whether the BP (16 bits), EBP (32 bits), or RBP (64 bits)
register specifies the current frame pointer and whether SP (16 bits), ESP (32 bits), or RSP (64 bits)
specifies the stack pointer. In 64-bit mode, stack-size attribute is always 64-bits.

The ENTER and companion LEAVE instructions are provided to support block structured
languages. The ENTER instruction (when used) is typically the first instruction in a procedure and
is used to set up a new stack frame for a procedure. The LEAVE instruction is then used at the end
of the procedure (just before the RET instruction) to release the stack frame.

If the nesting level is 0, the processor pushes the frame pointer from the BP/EBP/RBP register onto
the stack, copies the current stack pointer from the SP/ESP/RSP register into the BP/EBP/RBP
register, and loads the SP/ESP/RSP register with the current stack-pointer value minus the value in
the size operand. For nesting levels of 1 or greater, the processor pushes additional frame pointers
on the stack before adjusting the stack pointer. These additional frame pointers provide the called
procedure with access points to other nested frames on the stack. See “Procedure Calls for Block-
Structured Languages” in Chapter 6 of the IA-32 Intel Architecture Software Developer’s Manual,
Volume 1, for more information about the actions of the ENTER instruction.

In 64-bit mode, default operation size is 64 bits; 32-bit operation size cannot be encoded.

Operation

NestingLevel ← NestingLevel MOD 32
IF 64-Bit Mode (StackSize = 64)

THEN
Push(RBP);
FrameTemp ← RSP;

ELSE IF StackSize = 32
THEN

Push(EBP);
FrameTemp ← ESP; FI;

ELSE (* StackSize = 16 *)

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

C8 iw 00 ENTER imm16, 0 Valid Valid Create a stack frame for a
procedure.

C8 iw 01 ENTER imm16,1 Valid Valid Create a nested stack frame for a
procedure.

C8 iw ib ENTER imm16,
imm8

Valid Valid Create a nested stack frame for a
procedure.

IA-32 Software Developer’s Manual Documentation Changes 35

Documentation Changes

Push(BP);
FrameTemp ← SP;

FI;

IF NestingLevel = 0
THEN GOTO CONTINUE; FI;

IF (NestingLevel > 0)
FOR i ← 1 to (NestingLevel − 1)

DO
IF 64-Bit Mode (StackSize = 64)

THEN
RBP ← RBP − 8;
Push([RBP]); (* Quadword push *)

ELSE IF OperandSize = 32
THEN

IF StackSize = 32
EBP ← EBP − 4;
Push([EBP]); (* Doubleword push *)

ELSE (* StackSize = 16 *)
BP ← BP − 4;
Push([BP]); (* Doubleword push *)

FI;
FI;

ELSE (* OperandSize = 16 *)
IF StackSize = 32

THEN
EBP ← EBP − 2;
Push([EBP]); (* Word push *)

ELSE (* StackSize = 16 *)
BP ← BP − 2;
Push([BP]); (* Word push *)

FI;
FI;

OD;

IF 64-Bit Mode (StackSize = 64)
THEN

Push(FrameTemp); (* Quadword push *)
ELSE IF OperandSize = 32

THEN
Push(FrameTemp); FI; (* Doubleword push *)

ELSE (* OperandSize = 16 *)
Push(FrameTemp); (* Word push *)

FI;
GOTO CONTINUE;

FI;

CONTINUE:
IF 64-Bit Mode (StackSize = 64)

THEN
RBP ← FrameTemp;
RSP ← RSP − Size;

ELSE IF StackSize = 32
THEN

EBP ← FrameTemp;
ESP ← ESP − Size; FI;

ELSE (* StackSize = 16 *)

36 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

BP ← FrameTemp;
SP ← SP − Size;

FI;

END;

Flags Affected

None.

Protected Mode Exceptions

#SS(0) If the new value of the SP or ESP register is outside the stack segment limit.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions

#SS(0) If the new value of the SP or ESP register is outside the stack segment limit.

Virtual-8086 Mode Exceptions

#SS(0) If the new value of the SP or ESP register is outside the stack segment limit.

#PF(fault-code) If a page fault occurs.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

11. Updated Information on the Usage of MSR_FSB_ESCR0

The description of the IOQ_allocation event has been updated to better reflect the usage of using
MSR_FSB_ESCR0. See Table A-1 in IA-32 Intel Architecture Software Developer’s Manual,
Volume 3.

The change is reproduced in the table segment below (items 3 and 4a; see the change bars).

Event Name Event Parameters Parameter Value Description

... additional table cells before this...

IOQ_allocation

IA-32 Software Developer’s Manual Documentation Changes 37

Documentation Changes

Event Specific Notes 1. If PREFETCH bit is cleared,
sectors fetched using prefetch
are excluded in the counts. If
PREFETCH bit is set, all sectors
or chunks read are counted.

2. Specify the edge trigger in CCCR
to avoid double counting.

3. The mapping of interpreted bit
field values to transaction types
may differ with different processor
model implementations of the
Pentium 4 processor family.
Applications that program
performance monitoring events
should use CPUID to determine
processor models when using
this event. The logic equations
that trigger the event are model-
specific (see 4a and 4b below).

4a.For Pentium 4 and Xeon
Processors starting with CPUID
Model field encoding equal to 2 or
greater, this event is triggered by
evaluating the logical expression
((Request type) and (Bit 5 or Bit
6) and (Memory type) and
(Source agent)).

4b.For Pentium 4 and Xeon
Processors with CPUID Model
field encoding less than 2, this
event is triggered by evaluating
the logical expression [((Request
type) or Bit 5 or Bit 6) or (Memory
type)] and (Source agent). Note
that event mask bits for memory
type are ignored if either
ALL_READ or ALL_WRITE is
specified.

5. This event is known to ignore
CPL in early implementations of
Pentium 4 and Xeon Processors.
Both user requests and OS
requests are included in the
count. This behavior is fixed
starting with Pentium 4 and Xeon
Processors with CPUID signature
0xF27 (Family 15, Model 2,
Stepping 7).

6. For write-through (WT) and write-
protected (WP) memory types,
this event counts reads as the
number of 64-byte sectors. Writes
are counted by individual chunks.

7. For uncacheable (UC) memory
types, this events counts the
number of 8-byte chunks
allocated.

8. For Pentium 4 and Xeon
Processors with CPUID
Signature less than 0xf27, only
MSR_FSB_ESCR0 is available.

... ... additional table cells follow

38 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

12. Updated Footnotes in MOV, POP, STI Descriptions

“MOV—Move” section in Chapter 3 of the IA-32 Intel Architecture Software Developer’s Manual,
Volume 2A is reprinted below.

1. If a code instruction breakpoint (for debug) is placed on an instruction located immediately after a MOV SS instruction, the breakpoint may
not be triggered. However, in a sequence of instructions that load the SS register, only the first instruction in the sequence is guaranteed to
delay an interrupt.
In the following sequence, interrupts may be recognized before MOV ESP, EBP executes:
MOV SS, EDX
MOV SS, EAX
MOV ESP, EBP

“POP—Pop a Value from the Stack” in Chapter 4 of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 2B is reprinted below.

1. If a code instruction breakpoint (for debug) is placed on an instruction located immediately after a POP SS instruction, the breakpoint may
not be triggered. However, in a sequence of instructions that POP the SS register, only the first instruction in the sequence is guaranteed to
delay an interrupt.
In the following sequence, interrupts may be recognized before POP ESP executes:
POP SS
POP SS
POP ESP

“STI—Set Interrupt Flag” in Chapter 4 of the IA-32 Intel Architecture Software Developer’s
Manual, Volume 2B is reprinted below.

1. The STI instruction delays recognition of interrupts only if it is executed with EFLAGS.IF = 0. In a sequence of STI instructions, only the
first instruction in the sequence is guaranteed to delay interrupts.
In the following instruction sequence, interrupts may be recognized before RET executes:
STI
STI
RET

13. Description Updated for CVTPI2PD Instruction

Chapter 3 of the IA-32 Intel Architecture Software Developer’s Manual, Volume 2A has been
updated to correctly describe the operation of the instruction when the second operand is a memory
operand. The corrected text is provided below.

CVTPI2PD—Convert Packed Doubleword Integers to Packed Double-
Precision Floating-Point Values

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

66 0F 2A /r CVTPI2PD
xmm, mm/
m64*

Valid Valid Convert two packed signed
doubleword integers from mm/mem64
to two packed double-precision
floating-point values in xmm.

NOTES:
* Operation is different for different operand sets; see the Description section.

IA-32 Software Developer’s Manual Documentation Changes 39

Documentation Changes

Description

Converts two packed signed doubleword integers in the source operand (second operand) to two
packed double-precision floating-point values in the destination operand (first operand).

The source operand can be an MMX technology register or a 64-bit memory location. The
destination operand is an XMM register. In addition, depending on the operand configuration:

• For operands xmm, mm: the instruction causes a transition from x87 FPU to MMX
technology operation (that is, the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag
word is set to all 0s [valid]). If this instruction is executed while an x87 FPU floating-point
exception is pending, the exception is handled before the CVTPI2PD instruction is executed.

• For operands xmm, m64: the instruction does not cause a transition to MMX technology and
does not take x87 FPU exceptions.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

14. ROR/ROL Pseudocode Has Been Updated

“RCL/RCR/ROL/ROR—Rotate” section in Chapter 4 of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 2B has been updated to correct ROR/ROL’s treatment of
[EFLAGS.CF].

The corrected code segments are reprinted below.

... more code

(* ROL instruction operation *)
IF (tempCOUNT > 0) (* Prevents updates to CF *)

WHILE (tempCOUNT ≠ 0)
DO

tempCF ← MSB(DEST);
DEST ← (DEST ∗ 2) + tempCF;
tempCOUNT ← tempCOUNT – 1;

OD;
ELIHW;
CF ← LSB(DEST);
IF COUNT = 1

THEN OF ← MSB(DEST) XOR CF;
ELSE OF is undefined;

FI;
FI;

(* ROR instruction operation *)
IF tempCOUNT > 0) (* Prevent updates to CF *)

WHILE (tempCOUNT ≠ 0)
DO

tempCF ← LSB(SRC);
DEST ← (DEST / 2) + (tempCF ∗ 2SIZE);
tempCOUNT ← tempCOUNT – 1;

OD;
ELIHW;

40 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

CF ← MSB(DEST);
IF COUNT = 1

THEN OF ← MSB(DEST) XOR MSB − 1(DEST);
ELSE OF is undefined;

FI;
FI;

15. Syntax for CPUID, CR and MSR Information

We are implementing a consistent syntax for expressing CPUID, CR and MSR values in IA-32
Intel Architecture Software Developer’s Manual. The syntax is described in the first chapter of each
of the volumes. The applicable section (from Volume 1, Chapter 1) is reprinted below.

1.3.7 A New Syntax for CPUID, CR, and MSR Values

Obtain feature flags, status, and system information by using the CPUID instruction, by checking
control register bits, and by reading model-specific registers. We are moving toward a new syntax
to represent this information. See Figure 1-2.

Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation

IA-32 Software Developer’s Manual Documentation Changes 41

Documentation Changes

16. Inclusion of Intel® Extended Memory 64 Technology

Additional information on Intel® Extended Memory 64 Technology (Intel® EM64T) has been
added to Software Developer's Manuals. For specific topics, see the table of contents and index
provided in each volume.

The section shown below is reproduced from IA-32 Intel Architecture Software Developer’s
Manual, Volume 1.

2.2.5 Intel® Extended Memory 64 Technology

Intel® Extended Memory 64 Technology (Intel® EM64T) increases the linear address space for
software to 64 bits and supports physical address space up to 40 bits. The technology also
introduces a new operating mode referred to as IA-32e mode.

IA-32e mode operates in one of two sub-modes: (1) compatibility mode enables a 64-bit operating
system to run most legacy 32-bit software unmodified, (2) 64-bit mode enables a 64-bit operating
system to run applications written to access 64-bit address space.

In the 64-bit mode of Intel EM64T, applications may access:

• 64-bit flat linear addressing

• 8 additional general-purpose registers (GPRs)

• 8 additional registers for streaming SIMD extensions (SSE, SSE2 and SSE3)

• 64-bit-wide GPRs and instruction pointers

• uniform byte-register addressing

• fast interrupt-prioritization mechanism

• a new instruction-pointer relative-addressing mode.

A processor with Intel EM64T supports existing IA-32 software because it is able to run in non-64-
bit legacy modes. Most existing IA-32 applications also run in compatibility mode.

17. Family Representation Within CPUID Context Updated

“CPUID—CPU Identification” section in Chapter 3 of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 2A has been updated to correct the subsection on family and model
information (the previous update contained an error).

The corrected text is reproduced below. See the change bars within the context of the section. Pay
particular attention to the extended-model ID formula.

INPUT EAX = 1: Returns Model, Family, Stepping Information

When CPUID executes with EAX set to 1, version information is returned in EAX (see Figure
1-1). For example: model, family, and processor type for the first processor in the Intel Pentium 4
family is returned as follows:

• Model — 0000B

42 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

• Family — 1111B

• Processor Type — 00B

See Table 7-6 for available processor type values. Stepping IDs are provided as needed.

Note:

See AP-485, Intel Processor Identification and the CPUID Instruction (Order
Number 241618) and Chapter 13 in the IA-32 Intel Architecture Software
Developer’s Manual, Volume 1, for information on identifying earlier IA-32
processors.

The Extended Family ID needs to be examined only when the Family ID is 0FH. Integrate the
fields into a display using the following rule:

IF Family_ID ≠ 0FH
THEN Displayed_Family = Family_ID;
ELSE Displayed_Family = Extended_Family_ID + Family_ID;
(* Right justify and zero-extend 4-bit field. *)

FI;
(* Show Display_Family as HEX field. *)

The Extended Model ID needs to be examined only when the Family ID is 06H or 0FH. Integrate
the field into a display using the following rule:

IF (Family_ID = 06H or Family_ID = 0FH)
THEN Displayed_Model = (Extended_Model_ID << 4) + Model_ID;

Figure 1-1. Version Information Returned by CPUID in EAX

Table 7-6. Processor Type Field
Type Encoding

Original OEM Processor 00B

Intel OverDrive® Processor 01B

Dual processor (not applicable to Intel486
processors)

10B

Intel reserved 11B

IA-32 Software Developer’s Manual Documentation Changes 43

Documentation Changes

(* Right justify and zero-extend Extended_Model_ID and Model_ID. *)
ELSE Displayed_Model = Model_ID;

FI;
(* Show Display_Model as HEX field. *)

44 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

	Revision History
	Preface
	Summary Table of Changes
	Documentation Changes

