
Document Number: 252046-017

Intel® 64 and IA-32 Architectures
Software Developer’s Manual
Documentation Changes

September 2006

Notice: The Intel® 64 and IA-32 architectures may contain design defects or errors known as
errata that may cause the product to deviate from published specifications. Current characterized
errata are documented in the specification updates.

2 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER,
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving,
or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

I2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I2C bus/protocol and was developed
by Intel. Implementations of the I2C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and
North American Philips Corporation.

Intel, Pentium, Celeron, Intel SpeedStep, Intel Xeon, Intel 64, and the Intel logo, and the Intel logo are trademarks or registered
trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2002–2006, Intel Corporation. All rights reserved.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 3

Contents
Preface ... 5

Summary Table of Changes ... 6

Documentation Changes.. 8

4 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Revision History

Version Description Date

-001 • Initial Release November 2002

-002 • Added 1-10 Documentation Changes.
• Removed old Documentation Changes items that already have been

incorporated in the published Software Developer’s manual

December 2002

-003 • Added 9 -17 Documentation Changes.
• Removed Documentation Change #6 - References to bits Gen and Len

Deleted.
• Removed Documentation Change #4 - VIF Information Added to CLI

Discussion.

February 2003

-004 • Removed Documentation changes 1-17.
• Added Documentation changes 1-24.

June 2003

-005 • Removed Documentation Changes 1-24.
• Added Documentation Changes 1-15.

September 2003

-006 • Added Documentation Changes 16- 34. November 2003

-007 • Updated Documentation changes 14, 16, 17, and 28.
• Added Documentation Changes 35-45.

January 2004

-008 • Removed Documentation Changes 1-45.
• Added Documentation Changes 1-5.

March 2004

-009 • Added Documentation Changes 7-27. May 2004

-010 • Removed Documentation Changes 1-27.
• Added Documentation Changes 1.

August 2004

-011 • Added Documentation Changes 2-28. November 2004

-012 • Removed Documentation Changes 1-28.
• Added Documentation Changes 1-16.

March 2005

-013 • Updated title.
• There are no Documentation Changes for this revision of the document.

July 2005

-014 • Added Documentation Changes 1-21. September 2005

-015 • Removed Documentation Changes 1-21.
• Added Documentation Changes 1-20.

March 9, 2006

-016 • Added Documentation changes 21-23. March 27, 2006

-017 • Removed Documentation Changes 1-23.
• Added Documentation Changes 1-36.

September 2006

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 5

Preface

Preface

This document is an update to the specifications contained in the Affected Documents/
Related Documents table below. This document is a compilation of documentation
changes. It is intended for hardware system manufacturers and software developers of
applications, operating systems, or tools.

Affected Documents/Related Documents

Nomenclature
Documentation Changes include errors or omissions from the current published
specifications. These changes will be incorporated in the next release of the Software
Development Manual.

Document Title Document
Number

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1:
Basic Architecture

253665

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A:
Instruction Set Reference, A-M

253666

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B:
Instruction Set Reference, N-Z

253667

6 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Summary Table of Changes

Summary Table of Changes

The following table indicates documentation changes which apply to the IA-32 Intel®
architecture. This table uses the following notations:

Codes Used in Summary Table
Change bar to left of table row indicates this erratum is either new or modified from
the previous version of the document.

Summary Table of Documentation Changes (Sheet 1 of 2)
Number Documentation Changes

1 MOV—Move to/from Control Registers

2 XTPR Update Control information added

3 Table on reserved bit checking has been corrected

4 MSR_THERM2_CTL description updated

5 Updated CPUID input format

6 Flag information added for POPF/POPFD/POPFQ

7 Restriction added for total size field, microcode update format

8 Flag check corrected

9 REP/REPE/REPZ/REPNE/REPNZ summary table updated

10 Documentation of CMASK bit range corrected

11 Note defines additional restrictions on APIC DFR programming

12 Tables documenting MCA error codes updated

13 PUSHA/PUSHAD information updated

14 VMCALL pseudocode updated

15 Information on code fetches in uncacheable memory updated

16 PUSH description updated

17 IRET/IRETD pseudocode updated

18 BSR summary table updated

19 SYSCALL and SYSRET pseudocode updated

20 VMX Debug exceptions paragraph deleted

21 FLD list of exceptions updated

22 CPUID register reference corrected

23 UCOMISS range corrected in pseudocode

24 CR information updated

25 VMXON opcode corrected

26 MSR references updated

27 CR0.WP coverage updated

28 Illegal register address flag description updated

29 CPUID call reference corrected

30 Note describing semaphore restrictions added

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 7

Summary Table of Changes

31 DAS pseudocode updated

32 Entries added to CACHE-TLB table

33 Updated MOV to CR8 information

34 Information on ENTER instruction updated

35 Microcode update sections improved

36 Incorrect calls to CPUID.1:ECX[bit 9] have been corrected

Summary Table of Documentation Changes (Sheet 2 of 2)
Number Documentation Changes

8 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

Documentation Changes

1. MOV—Move to/from Control Registers
In Chapter 3, “MOV—Move to/from Control Registers” of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A; the summary table has been
corrected. The updated table is reproduced below. Change bars mark corrected lines.

2. XTPR Update Control information added
Figure 3-6 and Table 3-15 in Chapter 3, “CPUID—CPU Identification” of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2A, information on the CPUID
xTPR update control bit has been added.

The information is reproduced below.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 22 /r MOV CR0,r32 N.E. Valid Move r32 to CR0.
0F 22 /r MOV CR0,r64 Valid N.E. Move r64 to extended CR0.
0F 22 /r MOV CR2,r32 N.E. Valid Move r32 to CR2.
0F 22 /r MOV CR2,r64 Valid N.E. Move r64 to extended CR2.
0F 22 /r MOV CR3,r32 N.E. Valid Move r32 to CR3.
0F 22 /r MOV CR3,r64 Valid N.E. Move r64 to extended CR3.
0F 22 /r MOV CR4,r32 N.E. Valid Move r32 to CR4.
0F 22 /r MOV CR4,r64 Valid N.E. Move r64 to extended CR4.
0F 20 /r MOV r32,CR0 N.E. Valid Move CR0 to r32.
0F 20 /r MOV r64,CR0 Valid N.E. Move extended CR0 to r64.
0F 20 /r MOV r32,CR2 N.E. Valid Move CR2 to r32.
0F 20 /r MOV r64,CR2 Valid N.E. Move extended CR2 to r64.
0F 20 /r MOV r32,CR3 N.E. Valid Move CR3 to r32.
0F 20 /r MOV r64,CR3 Valid N.E. Move extended CR3 to r64.
0F 20 /r MOV r32,CR4 N.E. Valid Move CR4 to r32.
0F 20 /r MOV r64,CR4 Valid N.E. Move extended CR4 to r64.
0F 20 /r MOV r32,CR8 N.E. N.E. Move CR8 to r32.
REX + 0F 20 /r MOV r64,CR8 Valid N.E. Move extended CR8 to r64.1

NOTE:
1. MOV CR* instructions, except for MOV CR8, are serializing instructions. MOV CR8 is not architectur-

ally defined as a serializing instruction. For more information, see Chapter 7 in Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

Documentation Changes

Information on the CPUID xTPR update control function has also been added to the
discussions of IA32_MISC_ENABLES[bit 23] in Appendix B (Tables B-1, B-2, B-5) of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

The added information is reproduced below.

Figure 3-6. Extended Feature Information Returned in the ECX Register

Table 3-15. More on Extended Feature Information Returned in the ECX Register

Bit # Mnemonic Description

....[not all lines in table are shown]

13 CMPXCHG16B CMPXCHG16B Available. A value of 1 indicates that the feature is
available. See the “CMPXCHG8B/CMPXCHG16B—Compare and
Exchange Bytes” section in this chapter for a description.

14 xTPR Update
Control

xTPR Update Control. A value of 1 indicates that the processor
supports changing IA32_MISC_ENABLES[bit 23].

31 - 15 Reserved Reserved

Register
Address Register Name

Fields and Flags

Model
Avail-
ability

Shared/
Unique Bit Description Hex Dec

23 xTPR Message Disable (R/W).
When set to 1, xTPR messages are
disabled. xTPR messages are
optional messages that allow the
processor to inform the chipset of
its priority. The default is
processor specific.

10 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

3. Table on reserved bit checking has been corrected
Table 3-5 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3A has been corrected. The corrections were to check bit values. The table is reproduced
below. See the change bars for impacted lines.

4. MSR_THERM2_CTL description updated
In Table B-2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B, the description for MSR_THERM2_CTL(address 19DH) has been updated. The
update targets Family F processors. See the table segment below.

Mode Paging Mode Paging Structure Check Bits

32-bit 4-KByte pages (PAE = 0, PSE = 0) PDE and PT No reserved bits checked

4-MByte page (PAE = 0, PSE = 1) PDE Bit [21]

4-KByte page (PAE = 0, PSE = 1) PDE No reserved bits checked

4-KByte and 4-MByte page (PAE =
0, PSE = 1)

PTE No reserved bits checked

4-KByte and 2-MByte pages (PAE =
1, PSE = x)

PDP table entry Bits [63:40] & [8:5] & [2:1]

2-MByte page (PAE = 1, PSE = x) PDE Bits [62:40] & [20:13]

4-KByte pages (PAE = 1, PSE = x) PDE Bits [62:40]

4-KByte pages (PAE = 1, PSE = x) PTE Bits [62:40]

64-bit 4-KByte and 2-MByte pages (PAE =
1, PSE = x)

PML4E Bits [51:40]

4-KByte and 2-MByte pages (PAE =
1, PSE = x)

PDPTE Bits [51:40]

2-MByte page (PAE = 1, PSE = x) PDE, 2-MByte page Bits [51:40] & [20:13]

4-KByte pages (PAE = 1, PSE = x) PDE, 4-KByte page Bits [51:40]

4-KByte pages (PAE = 1, PSE = x) PTE Bits [51:40]

NOTE:
x = Bit does not impact behavior.

Register
Address Register Name

Fields and Flags

Model
Avail-
ability

Shared/
Unique Bit Description Hex Dec

....

19DH 413 IMSR_THERM2_CTL Thermal Monitor 2 Control.

3 Shared For Family F, Model 3 processors:
When read, specifies the value of
the target TM2 transition last
written. When set, it sets the next
target value for TM2 transition.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 11

Documentation Changes

5. Updated CPUID input format
Some CPUID inputs require two input values. Documentation of the CPUID input format
has been updated to reflect this requirement.

See the summary table below (from Chapter 3, “CPUID—CPU Identification”, of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A).

CPUID—CPU Identification

.---

In addition, the input format is summarized in a figure located in the first chapter of each
volume; this figure is reproduced below.

4, 6 Shared For Family F, Model 4 and Model 6
processors: When read, specifies
the value of the target TM2
transition last written. Writes may
cause #GP exceptions.

Register
Address Register Name

Fields and Flags

Model
Avail-
ability

Shared/
Unique Bit Description Hex Dec

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F A2 CPUID Valid Valid Returns processor
identification and feature
information to the EAX, EBX,
ECX, and EDX registers, as
determined by input entered
in EAX (and, in some cases,
ECX).

12 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

.

--

From Chapter 7 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A), below is an example of a CPUID feature that requires two inputs. See the
change bars and the footnote.

7.7. Detecting Hardware Multi-Threading Support and Topology
Use the CPUID instruction to detect the presence of hardware multi-threading support in
a physical processor. The following can be interpreted:

• Hardware Multi-Threading feature flag (CPUID.1:EDX[28] = 1) — Indicates
when set that the physical package is capable of supporting Hyper-Threading
Technology and/or multiple cores.

• Logical processors per Package (CPUID.1:EBX[23:16]) — Indicates the
maximum number of logical processors in a physical package. This represents the
hardware capability as the processor has been manufactured.1

Figure 18-11. Syntax for CPUID, CR, and MSR Data Presentation

1. Operating system and BIOS may implement features that reduce the number of logical processors available
in a platform to applications at runtime to less than the number of physical packages times the number of
hardware-capable logical processors per package.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 13

Documentation Changes

• Cores per Package1 (CPUID.(EAX=4, ECX=02):EAX[31:26] + 1 = Y) —
Indicates the maximum number of processor cores (Y) in the physical package

The CPUID feature flag may indicate support for hardware multi-threading when only
one logical processor available in the package. In this case, the decimal value
represented by bits 16 through 23 in the EBX register will have a value of 1.

Software should note that the number of logical processors enabled by system software
may be less than the value of “logical processors per package”. Similarly, the number of
cores enabled by system software may be less than the value of “cores per package”.

..Text omitted here...

6. Flag information added for POPF/POPFD/POPFQ
In Chapter 4, “POPF/POPFD/POPFQ—Pop Stack” of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2B, the flag information has been updated. The
section is reprinted below with changes marked by change bars.

POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

Description

Pops a doubleword (POPFD) from the top of the stack (if the current operand-size
attribute is 32) and stores the value in the EFLAGS register, or pops a word from the top
of the stack (if the operand-size attribute is 16) and stores it in the lower 16 bits of the
EFLAGS register (that is, the FLAGS register). These instructions reverse the operation
of the PUSHF/PUSHFD instructions.

The POPF (pop flags) and POPFD (pop flags double) mnemonics reference the same
opcode. The POPF instruction is intended for use when the operand-size attribute is 16;
the POPFD instruction is intended for use when the operand-size attribute is 32. Some
assemblers may force the operand size to 16 for POPF and to 32 for POPFD. Others may
treat the mnemonics as synonyms (POPF/POPFD) and use the setting of the operand-
size attribute to determine the size of values to pop from the stack.

The effect of POPF/POPFD on the EFLAGS register changes, depending on the mode of
operation. When the processor is operating in protected mode at privilege level 0 (or in
real-address mode, the equivalent to privilege level 0), all non-reserved flags in the
EFLAGS register except RF3, VIP, VIF, and VM may be modified. VIP, VIF and VM remain
unaffected.

1. Software must check CPUID for its support of leaf 4 when implementing support for multi-core. If CPUID leaf
4 is not available at runtime, software should handle the situation as if there is only one core per package.

2. Maximum number of cores in the physical package must be queried by executing CPUID with EAX =1 and a
valid ECX input value. ECX input values start from 0.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

9D POPF Valid Valid Pop top of stack into lower 16 bits
of EFLAGS.

9D POPFD N.E. Valid Pop top of stack into EFLAGS.
REX.W + 9D POPFQ Valid N.E. Pop top of stack and zero-extend

into RFLAGS.

3. RF is always zero after execution of POPF. This is because POPF, like all instructions, clears RF as it begins to
execute.

14 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

When operating in protected mode with a privilege level greater than 0, but less than or
equal to IOPL, all flags can be modified except the IOPL field and VIP, VIF, and VM. Here,
the IOPL flags are unaffected, the VIP and VIF flags are cleared, and the VM flag is
unaffected. The interrupt flag (IF) is altered only when executing at a level at least as
privileged as the IOPL. If a POPF/POPFD instruction is executed with insufficient
privilege, an exception does not occur but privileged bits do not change.

When operating in virtual-8086 mode, the IOPL must be equal to 3 to use POPF/POPFD
instructions; VM, RF, IOPL, VIP, and VIF are unaffected. If the IOPL is less than 3, POPF/
POPFD causes a general-protection exception (#GP).

In 64-bit mode, use REX.W to pop the top of stack to RFLAGS. The mnemonic assigned
is POPFQ (note that the 32-bit operand is not encodable). POPFQ pops 64 bits from the
stack, loads the lower 32 bits into RFLAGS, and zero extends the upper bits of RFLAGS.

See Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1, for more information about the EFLAGS registers.

Operation

IF VM = 0 (* Not in Virtual-8086 Mode *)
THEN IF CPL = 0

THEN
IF OperandSize = 32;

THEN
EFLAGS ← Pop(); (* 32-bit pop *)
(* All non-reserved flags except RF, VIP, VIF, and VM can be modified;
VIP and VIF are cleared; RF, VM, and all reserved bits are unaffected. *)

ELSE IF (Operandsize = 64)
RFLAGS = Pop(); (* 64-bit pop *)
(* All non-reserved flags except RF, VIP, VIF, and VM can be modified; VIP
and VIF are cleared; RF, VM, and all reserved bits are unaffected.*)

ELSE (* OperandSize = 16 *)
EFLAGS[15:0] ← Pop(); (* 16-bit pop *)
(* All non-reserved flags can be modified. *)

FI;
ELSE (* CPL > 0 *)

IF OperandSize = 32
THEN

IF CPL > IOPL
THEN

EFLAGS ← Pop(); (* 32-bit pop *)
(* All non-reserved bits except IF, IOPL, RF, VIP, and
VIF can be modified; IF, IOPL, RF, VM, and all reserved

 bits are unaffected; VIP and VIF are cleared. *)
ELSE

EFLAGS ← Pop(); (* 32-bit pop *)
(* All non-reserved bits except IOPL, RF, VIP, and VIF can be

 modified; IOPL, RF, VM, and all reserved bits are
 unaffected; VIP and VIF are cleared. *)

FI;
ELSE IF (Operandsize = 64)

IF CPL > IOPL
THEN

RFLAGS ← Pop(); (* 64-bit pop *)
(* All non-reserved bits except IF, IOPL, RF, VIP, and

 VIF can be modified; IF, IOPL, RF, VM, and all reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 15

Documentation Changes

 bits are unaffected; VIP and VIF are cleared. *)
ELSE

RFLAGS ← Pop(); (* 64-bit pop *)
(* All non-reserved bits except IOPL, RF, VIP, and VIF can be

 modified; IOPL, RF, VM, and all reserved bits are
 unaffected; VIP and VIF are cleared. *)

FI;
ELSE (* OperandSize = 16 *)

EFLAGS[15:0] ← Pop(); (* 16-bit pop *)
(* All non-reserved bits except IOPL can be modified; IOPL and all
reserved bits are unaffected. *)

FI;
FI;

ELSE (* In Virtual-8086 Mode *)
IF IOPL = 3

THEN IF OperandSize = 32
THEN

EFLAGS ← Pop();
(* All non-reserved bits except VM, RF, IOPL, VIP, and VIF can be
modified; VM, RF, IOPL, VIP, VIF, and all reserved bits are unaffected. *)

ELSE
EFLAGS[15:0] ← Pop(); FI;
(* All non-reserved bits except IOPL can be modified;
IOPL and all reserved bits are unaffected. *)

ELSE (* IOPL < 3 *)
#GP(0); (* Trap to virtual-8086 monitor. *)

FI;
FI;

FI;

Flags Affected

All flags may be affected; see the Operation section for details.

Protected Mode Exceptions
#SS(0) If the top of stack is not within the stack segment.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current privi-
lege level is 3 and alignment checking is enabled.

Real-Address Mode Exceptions
#SS If the top of stack is not within the stack segment.

Virtual-8086 Mode Exceptions
#GP(0) If the I/O privilege level is less than 3.

If an attempt is made to execute the POPF/POPFD instruction with
an operand-size override prefix.

#SS(0) If the top of stack is not within the stack segment.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment
checking is enabled.

16 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(U) If the stack address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory refer-
ence is made while the current privilege level is

7. Restriction added for total size field, microcode update format
In Chapter 9 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A, the total size field of the microcode update header must be in multiples of
1024 bytes (1 KBytes). This is now indicated in several locations. See the example
below.

9.11.1 Microcode Update
.Text omitted here...

For microcode updates with a data size not equal to 00000000H, the total size field
specifies the size of the microcode update. The first 48 bytes contain the microcode
update header. The second part of the microcode update is the encrypted data. The data
size field of the microcode update header specifies the encrypted data size, its value
must be a multiple of the size of DWORD. The total size field of the microcode
update header specifies the encrypted data size plus the header size; its value
must be in multiples of 1024 bytes (1 KBytes). The optional extended signature
table if implemented follows the encrypted data, and its size is calculated by (Total Size
– (Data Size + 48)).

..Text omitted here...

8. Flag check corrected
In Section 22.3.4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B), a flag check was incorrectly indicated in the following section. The section is
reproduced below, with the correction.

22.3.1.4 Checks on Guest RIP and RFLAGS
The following checks are performed on fields in the guest-state area corresponding to
RIP and RFLAGS:

• RIP. The following checks are performed on processors that support Intel 64
Technology:

— Bits 63:32 must be 0 if the “IA-32e mode guest” VM-entry control is 0 or if the L
bit (bit 13) in the access-rights field for CS is 0.

— If the processor supports N < 64 linear-address bits, bits 63:N must be identical
if the “IA-32e mode guest” VM-entry control is 1 and the L bit in the access-rights
field for CS is 1.1 (No check applies if the processor supports 64 linear-address
bits.)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 17

Documentation Changes

• RFLAGS.

— Reserved bits 63:22 (bits 31:22 on processors that do not support Intel 64
Technology), bit 15, bit 5 and bit 3 must be 0 in the field, and reserved bit 1
must be 1.

— On processors that support Intel 64 Technology, the VM flag (bit 17) must be 0 if
the “IA-32e mode guest” VM-entry control is 1.

The IF flag (RFLAGS[bit 9]) must be 1 if the valid bit (bit 31) in the VM-entry
interruption-information field is 1 and the interruption type (bits 10:8) is external
interrupt.

..Text omitted here...

9. REP/REPE/REPZ/REPNE/REPNZ summary table updated
In Chapter 4, “REP/REPE/ REPZ/ REPNE/ REPNZ—Repeat String Operation Prefix”, of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B, the
summary table has been corrected. The updated table is reproduced below. Change bars
mark corrected lines.

REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix

1. Software can determine the number N by executing CPUID with 80000008H in EAX. The number of linear-
address bits supported is returned in bits 15:8 of EAX.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

F3 6C REP INS m8, DX Valid Valid Input (E)CX bytes from port
DX into ES:[(E)DI].

F3 6C REP INS m8, DX Valid N.E. Input RCX bytes from port DX
into [RDI].

F3 6D REP INS m16, DX Valid Valid Input (E)CX words from port
DX into ES:[(E)DI.]

F3 6D REP INS m32, DX Valid Valid Input (E)CX doublewords from
port DX into ES:[(E)DI].

F3 6D REP INS r/m32, DX Valid N.E. Input RCX default size from
port DX into [RDI].

F3 A4 REP MOVS m8, m8 Valid Valid Move (E)CX bytes from
DS:[(E)SI] to ES:[(E)DI].

F3 REX.W A4 REP MOVS m8, m8 Valid N.E. Move RCX bytes from [RSI] to
[RDI].

F3 A5 REP MOVS m16,
m16

Valid Valid Move (E)CX words from
DS:[(E)SI] to ES:[(E)DI].

F3 A5 REP MOVS m32,
m32

Valid Valid Move (E)CX doublewords from
DS:[(E)SI] to ES:[(E)DI].

F3 REX.W A5 REP MOVS m64,
m64

Valid N.E. Move RCX quadwords from
[RSI] to [RDI].

F3 6E REP OUTS DX, r/
m8

Valid Valid Output (E)CX bytes from
DS:[(E)SI] to port DX.

F3 REX.W 6E REP OUTS DX, r/
m8*

Valid N.E. Output RCX bytes from [RSI]
to port DX.

F3 6F REP OUTS DX, r/
m16

Valid Valid Output (E)CX words from
DS:[(E)SI] to port DX.

18 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

F3 6F REP OUTS DX, r/
m32

Valid Valid Output (E)CX doublewords
from DS:[(E)SI] to port DX.

F3 REX.W 6F REP OUTS DX, r/
m32

Valid N.E. Output RCX default size from
[RSI] to port DX.

F3 AC REP LODS AL Valid Valid Load (E)CX bytes from
DS:[(E)SI] to AL.

F3 REX.W AC REP LODS AL Valid N.E. Load RCX bytes from [RSI] to
AL.

F3 AD REP LODS AX Valid Valid Load (E)CX words from
DS:[(E)SI] to AX.

F3 AD REP LODS EAX Valid Valid Load (E)CX doublewords from
DS:[(E)SI] to EAX.

F3 REX.W AD REP LODS RAX Valid N.E. Load RCX quadwords from
[RSI] to RAX.

F3 AA REP STOS m8 Valid Valid Fill (E)CX bytes at ES:[(E)DI]
with AL.

F3 REX.W AA REP STOS m8 Valid N.E. Fill RCX bytes at [RDI] with AL.
F3 AB REP STOS m16 Valid Valid Fill (E)CX words at ES:[(E)DI]

with AX.
F3 AB REP STOS m32 Valid Valid Fill (E)CX doublewords at

ES:[(E)DI] with EAX.
F3 REX.W AB REP STOS m64 Valid N.E. Fill RCX quadwords at [RDI]

with RAX.
F3 A6 REPE CMPS m8,

m8
Valid Valid Find nonmatching bytes in

ES:[(E)DI] and DS:[(E)SI].
F3 REX.W A6 REPE CMPS m8,

m8
Valid N.E. Find non-matching bytes in

[RDI] and [RSI].
F3 A7 REPE CMPS m16,

m16
Valid Valid Find nonmatching words in

ES:[(E)DI] and DS:[(E)SI].
F3 A7 REPE CMPS m32,

m32
Valid Valid Find nonmatching

doublewords in ES:[(E)DI] and
DS:[(E)SI].

F3 REX.W A7 REPE CMPS m64,
m64

Valid N.E. Find non-matching quadwords
in [RDI] and [RSI].

F3 AE REPE SCAS m8 Valid Valid Find non-AL byte starting at
ES:[(E)DI].

F3 REX.W AE REPE SCAS m8 Valid N.E. Find non-AL byte starting at
[RDI].

F3 AF REPE SCAS m16 Valid Valid Find non-AX word starting at
ES:[(E)DI].

F3 AF REPE SCAS m32 Valid Valid Find non-EAX doubleword
starting at ES:[(E)DI].

F3 REX.W AF REPE SCAS m64 Valid N.E. Find non-RAX quadword
starting at [RDI].

F2 A6 REPNE CMPS m8,
m8

Valid Valid Find matching bytes in
ES:[(E)DI] and DS:[(E)SI].

F2 REX.W A6 REPNE CMPS m8,
m8

Valid N.E. Find matching bytes in [RDI]
and [RSI].

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 19

Documentation Changes

10. Documentation of CMASK bit range corrected
In Figure 18-13 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B (in our new edition), the figure showing the layout of MSR IA32PERFEVTSELx
has been corrected to show the correct range of CMASK. The same change has been
made to the paragraph text associated with the figure. See below.

..Text omitted here...

• Counter mask (CMASK) field (bits 24 through 31) — When this field is not zero,
the logical processor compares this mask to the events count of the detected
microarchitectural condition during a single cycle. If the event count is greater than
or equal to this mask, the counter is incremented by one. Otherwise the counter is
not incremented. This mask is intended for software to characterize microarchitec-
tural conditions that can count multiple occurrences per cycle (for example, two or
more instructions retired per clock; or bus queue occupations). If the counter-mask

F2 A7 REPNE CMPS m16,
m16

Valid Valid Find matching words in
ES:[(E)DI] and DS:[(E)SI].

F2 A7 REPNE CMPS m32,
m32

Valid Valid Find matching doublewords in
ES:[(E)DI] and DS:[(E)SI].

F2 REX.W A7 REPNE CMPS m64,
m64

Valid N.E. Find matching doublewords in
[RDI] and [RSI].

F2 AE REPNE SCAS m8 Valid Valid Find AL, starting at ES:[(E)DI].
F2 REX.W AE REPNE SCAS m8 Valid N.E. Find AL, starting at [RDI].
F2 AF REPNE SCAS m16 Valid Valid Find AX, starting at ES:[(E)DI].
F2 AF REPNE SCAS m32 Valid Valid Find EAX, starting at ES:[(E)DI].
F2 REX.W AF REPNE SCAS m64 Valid N.E. Find RAX, starting at [RDI].

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix

is used: AH, BH, CH, DH.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

Figure 18-13. Layout of IA32_PERFEVTSELx MSRs

31

INV—Invert counter mask
EN—Enable counters
INT—APIC interrupt enable
PC—Pin control

8 7 0

Event Select

E—Edge detect
OS—Operating system mode
USR—User Mode

Counter Mask
EE

N

I
N
T

19 1618 15172021222324

Reserved

I
N
V

P
C

U
S
R

O
S Unit Mask (UMASK)(CMASK)

63

20 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

field is 0, then the counter is incremented each cycle by the event count associated
with multiple occurrences.

..Text omitted here...

11. Note defines additional restrictions on APIC DFR programming
In Section 8.6.2.2 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A, the note has been updated to capture a programming
recommendation. The note is reproduced below. See the change bars.

--

8.6.2.2 Logical Destination Mode
..Text omitted here...

• The hierarchical cluster destination model can be used with Pentium 4, Intel Xeon, P6
family, or Pentium processors. With this model, a hierarchical network can be
created by connecting different flat clusters via independent system or APIC buses.
This scheme requires a cluster manager within each cluster, which is responsible for
handling message passing between system or APIC buses. One cluster contains up
to 4 agents. Thus 15 cluster managers, each with 4 agents, can form a network of up
to 60 APIC agents. Note that hierarchical APIC networks requires a special cluster
manager device, which is not part of the local or the I/O APIC units.

NOTE
All processors that have their APIC software enabled (using the spurious
vector enable/disable bit) must have their DFRs (Destination Format
Registers) programmed identically.

The default mode for DFR is flat mode. If you are using cluster mode,
DFRs must be programmed before the APIC is software enabled. Since
some chipsets do not accurately track a system view of the logical mode,
program DFRs as soon as possible after starting the processor.

8.6.2.3 Broadcast/Self Delivery Mode
The destination shorthand field of the ICR allows the delivery mode to be by-passed in
favor of broadcasting the IPI to all the processors on the system bus and/or back to itself
(see Section 8.6.1, “Interrupt Command Register (ICR)”). Three destination shorthands
are supported: self, all excluding self, and all including self. The destination mode is
ignored when a destination shorthand is used.

...Text omitted here...

12. Tables documenting MCA error codes updated
Tables 14-15 and 14-16 in Section 14.7 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A, have been updated. Information in the tables
is grouped differently. See the change bars below.

14.7. INTERPRETING THE MCA ERROR CODES
When the processor detects a machine-check error condition, it writes a 16-bit error
code to the MCA error code field of one of the IA32_MCi_STATUS registers and sets the

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 21

Documentation Changes

VAL (valid) flag in that register. The processor may also write a 16-bit model-specific
error code in the IA32_MCi_STATUS register depending on the implementation of the
machine-check architecture of the processor.

The MCA error codes are architecturally defined for IA-32 processors. However, the
specific IA32_MCi_STATUS register that a code is ‘written to’ is model specific. To
determine the cause of a machine-check exception, the machine-check exception
handler must read the VAL flag for each IA32_MCi_STATUS register. If the flag is set, the
machine check-exception handler must then read the MCA error code field of the
register. It is the encoding of the MCA error code field [15:0] that determines the type of
error being reported and not the register bank reporting it.

There are two types of MCA error codes: simple error codes and compound error codes.

14.7.1 Simple Error Codes
Table 14-15 shows the simple error codes. These unique codes indicate global error
information.

14.7.2 Compound Error Codes
Compound error codes describe errors related to the TLBs, memory, caches, bus and
interconnect logic, and internal timer. A set of sub-fields is common to all of compound
errors. These sub-fields describe the type of access, level in the memory hierarchy, and
type of request. Table 14-16 shows the general form of the compound error codes.

Table 14-15. IA32_MCi_Status [15:0] Simple Error Code Encoding

Error Code Binary Encoding Meaning

No Error 0000 0000 0000 0000 No error has been reported to this bank of
error-reporting registers.

Unclassified 0000 0000 0000 0001 This error has not been classified into the
MCA error classes.

Microcode ROM
Parity Error

0000 0000 0000 0010 Parity error in internal microcode ROM

External Error 0000 0000 0000 0011 The BINIT# from another processor caused
this processor to enter machine check.1

FRC Error 0000 0000 0000 0100 FRC (functional redundancy check) master/
slave error

Internal Timer Error 0000 0100 0000 0000 Internal timer error.

Internal Unclassified 0000 01xx xxxx xxxx Internal unclassified errors. 2

NOTES:
1. BINIT# assertion will cause a machine check exception if the processor (or any processor on

the same external bus) has BINIT# observation enabled during power-on configuration (hard-
ware strapping) and if machine check exceptions are enabled (by setting CR4.MCE = 1).

2. At least one X must equal one. Internal unclassified errors have not been classified. This is
because no additional information is included in the machine check register.

22 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

The “Interpretation” column in the table indicates the name of a compound error. The
name is constructed by substituting mnemonics for the sub-field names given within
curly braces. For example, the error code ICACHEL1_RD_ERR is constructed from the
form:

{TT}CACHE{LL}_{RRRR}_ERR,
where {TT} is replaced by I, {LL} is replaced by L1, and {RRRR} is replaced by RD.

For more information on the “Form” and “Interpretation” columns, see Section 14.7.2.1,
“Correction Report Filtering (F) Bit” through Section 14.7.2.5, “Bus and Interconnect
Errors”.

..Text omitted here...

13. PUSHA/PUSHAD information updated
In the Description subsection, “PUSHA/PUSHAD—Push All General-Purpose Registers”, in
Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2B, the language has been updated to correct an error (EBP was listed twice in
the earlier version). See the change bar and bold text.

PUSHA/PUSHAD—Push All General-Purpose Registers

Description

Pushes the contents of the general-purpose registers onto the stack. The registers are
stored on the stack in the following order: EAX, ECX, EDX, EBX, ESP (original
value), EBP, ESI, and EDI (if the current operand-size attribute is 32) and AX,
CX, DX, BX, SP (original value), BP, SI, and DI (if the operand-size attribute is
16). These instructions perform the reverse operation of the POPA/POPAD instructions.
The value pushed for the ESP or SP register is its value before prior to pushing the first
register (see the “Operation” section below).

The PUSHA (push all) and PUSHAD (push all double) mnemonics reference the same
opcode. The PUSHA instruction is intended for use when the operand-size attribute is 16
and the PUSHAD instruction for when the operand-size attribute is 32. Some assemblers
may force the operand size to 16 when PUSHA is used and to 32 when PUSHAD is used.

Table 14-16. IA32_MCi_Status [15:0] Compound Error Code Encoding

Type Form Interpretation

Generic Memory
Hierarchy

000F 0000 0000 11LL Generic memory hierarchy error

TLB Errors 000F 0000 0001 TTLL {TT}TLB{LL}_ERR

Memory Hierarchy Errors 000F 0001 RRRR TTLL {TT}CACHE{LL}_{RRRR}_ERR

Bus and Interconnect
Errors

000F 1PPT RRRR IILL BUS{LL}_{PP}_{RRRR}_{II}_{T}_ERR

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

60 PUSHA Invalid Valid Push AX, CX, DX, BX, original SP, BP, SI,
and DI.

60 PUSHAD Invalid Valid Push EAX, ECX, EDX, EBX, original ESP,
EBP, ESI, and EDI.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 23

Documentation Changes

Others may treat these mnemonics as synonyms (PUSHA/PUSHAD) and use the current
setting of the operand-size attribute to determine the size of values to be pushed from
the stack, regardless of the mnemonic used.

In the real-address mode, if the ESP or SP register is 1, 3, or 5 when PUSHA/PUSHAD
executes: an #SS exception is generated but not delivered (the stack error reported
prevents #SS delivery). Next, the processor generates a #DF exception and enters a
shutdown state as described in the #DF discussion in Chapter 5 of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A.

This instruction executes as described in compatibility mode and legacy mode. It is not
valid in 64-bit mode.

..Text omitted here...

14. VMCALL pseudocode updated
In the Operations subsection, “VMCALL—Call to VM Monitor”, in Chapter 5 of the Intel®

64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, the pseudocode
has been updated. The change accommodates an architectural decision made pertaining
to the handling of SMM.

The subsection is reprinted below. See the change bars.

Operation

IF not in VMX operation
THEN #UD;

ELSIF in VMX non-root operation
THEN VM exit;

ELSIF in SMM or if the valid bit in the IA32_SMM_MONITOR_CTL MSR is clear
THEN VMfail(VMCALL executed in VMX root operation);

ELSIF (RFLAGS.VM = 1) OR (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF CPL > 0
THEN #GP(0);

ELSIF dual-monitor treatment of SMIs and SMM is active
THEN perform an SMM VM exit (see Section 24.16.2
 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B);

ELSIF current-VMCS pointer is not valid
THEN VMfailInvalid;

ELSIF launch state of current VMCS is not clear
THEN VMfailValid(VMCALL with non-clear VMCS);

ELSIF VM-exit control fields are not valid (see Section 24.16.6.1 of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3B)

THEN VMfailValid(VMCALL with invalid VM-exit control fields);
ELSE

enter SMM;
read revision identifier in MSEG;
IF revision identifier does not match that supported by processor

THEN
leave SMM;
VMfailValid(VMCALL with incorrect MSEG revision identifier);

ELSE

24 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

read SMM-monitor features field in MSEG (see Section 24.16.6.2,
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B);
IF features field is invalid

THEN
leave SMM;
VMfailValid(VMCALL with invalid SMM-monitor features);

ELSE activate dual-monitor treatment of SMIs and SMM (see Section 24.16.6
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B);

FI;
FI;

FI;

15. Information on code fetches in uncacheable memory updated
In Section 10.3.3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A, the language has been updated to address confusion.

The section is reproduced below.

10.3.3 Code Fetches in Uncacheable Memory
Programs may execute code from uncacheable (UC) memory, but the implications are
different from accessing data in UC memory. When doing code fetches, the processor
never transitions from cacheable code to UC code speculatively. It also never
speculatively fetches branch targets that result in UC code.

The processor may fetch the same UC cache line multiple times in order to decode an
instruction once. It may decode consecutive UC instructions in a cacheline without
fetching between each instruction. It may also fetch additional cachelines from the same
or a consecutive 4-KByte page in order to decode one non-speculative UC instruction
(this can be true even when the instruction is contained fully in one line).

Because of the above and because cacheline sizes may change in future processors,
software should avoid placing memory-mapped I/O with read side effects in the same
page or in a subsequent page used to execute UC code.

16. PUSH description updated
In the Description subsection, “PUSH—Push Word, Doubleword or Quadword Onto the
Stack”, in Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2B, the language describing the instructions in real-address mode has
been corrected.

The subsection is reprinted below. See the change bar.

--

Description

Decrements the stack pointer and then stores the source operand on the top of the
stack. The address-size attribute of the stack segment determines the stack pointer size
(16, 32 or 64 bits). The operand-size attribute of the current code segment determines
the amount the stack pointer is decremented (2, 4 or 8 bytes).

In non-64-bit modes: if the address-size and operand-size attributes are 32, the 32-bit
ESP register (stack pointer) is decremented by 4. If both attributes are 16, the 16-bit SP
register (stack pointer) is decremented by 2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 25

Documentation Changes

If the source operand is an immediate and its size is less than the address size of the
stack, a sign-extended value is pushed on the stack. If the source operand is the FS or
GS and its size is less than the address size of the stack, the zero-extended value is
pushed on the stack.

The B flag in the stack segment’s segment descriptor determines the stack’s address-
size attribute. The D flag in the current code segment’s segment descriptor (with
prefixes), determines the operand-size attribute and the address-size attribute of the
source operand. Pushing a 16-bit operand when the stack address-size attribute is 32
can result in a misaligned stack pointer (a stack pointer that is not be aligned on a
doubleword boundary).

The PUSH ESP instruction pushes the value of the ESP register as it existed before the
instruction was executed. Thus if a PUSH instruction uses a memory operand in which
the ESP register is used for computing the operand address, the address of the operand
is computed before the ESP register is decremented.

In the real-address mode, if the ESP or SP register is 1 when the PUSH instruction is
executed, an #SS exception is generated but not delivered (the stack error reported
prevents #SS delivery). Next, the processor generates a #DF exception and enters a
shutdown state as described in the #DF discussion in Chapter 5 of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A.

In 64-bit mode, the instruction’s default operation size is 64 bits. In a push, the 64-bit
RSP register (stack pointer) is decremented by 8. A 66H override causes 16-bit
operation. Note that pushing a 16-bit operand can result in the stack pointer misaligned
to 8-byte boundary.

..Text omitted here...

17. IRET/IRETD pseudocode updated
In the Operation subsection, “IRET/IRETD—Interrupt Return”, in Chapter 3 of the Intel®

64 and IA-32 Architectures Software Developer’s Manual, Volume 2A, the pseudocode
has been updated to correct an error.

The subsection is reprinted below. See the change bar.

Operation

IF PE = 0
THEN

GOTO REAL-ADDRESS-MODE;
ELSE

IF (IA32_EFER.LMA = 0)
THEN (* Protected mode *)

GOTO PROTECTED-MODE;
ELSE (* IA-32e mode *)

GOTO IA-32e-MODE;
FI;

FI;
REAL-ADDRESS-MODE;

IF OperandSize = 32
THEN

IF top 12 bytes of stack not within stack limits
THEN #SS; FI;

tempEIP ← 4 bytes at end of stack

26 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

IF tempEIP[31:16] is not zero THEN #GP(0); FI;
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)
tempEFLAGS ← Pop();
EFLAGS ← (tempEFLAGS AND 257FD5H) OR (EFLAGS AND 1A0000H);

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits

THEN #SS; FI;
EIP ← Pop(); (* 16-bit pop; clear upper 16 bits *)
CS ← Pop(); (* 16-bit pop *)
EFLAGS[15:0] ← Pop();

FI;
END;

PROTECTED-MODE:
IF VM = 1 (* Virtual-8086 mode: PE = 1, VM = 1 *)

THEN
GOTO RETURN-FROM-VIRTUAL-8086-MODE; (* PE = 1, VM = 1 *)

FI;
IF NT = 1

THEN
GOTO TASK-RETURN; (* PE = 1, VM = 0, NT = 1 *)

FI;
IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits

THEN #SS(0); FI;
tempEIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits

THEN #SS(0); FI;
tempEIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();
tempEIP ← tempEIP AND FFFFH;
tempEFLAGS ← tempEFLAGS AND FFFFH;

FI;
IF tempEFLAGS(VM) = 1 and CPL = 0

THEN
GOTO RETURN-TO-VIRTUAL-8086-MODE;
(* PE = 1, VM = 1 in EFLAGS image *)

ELSE
GOTO PROTECTED-MODE-RETURN;
(* PE = 1, VM = 0 in EFLAGS image *)

FI;
IA-32e-MODE:

IF NT = 1
THEN #GP(0);

ELSE IF OperandSize = 32
THEN

IF top 12 bytes of stack not within stack limits

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

Documentation Changes

THEN #SS(0); FI;
tempEIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();

ELSE IF OperandSize = 16
THEN

IF top 6 bytes of stack are not within stack limits
THEN #SS(0); FI;

tempEIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();
tempEIP ← tempEIP AND FFFFH;
tempEFLAGS ← tempEFLAGS AND FFFFH;

FI;
ELSE (* OperandSize = 64 *)

THEN
tempRIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();
tempRSP ← Pop();
tempSS ← Pop();

FI;
GOTO IA-32e-MODE-RETURN;

RETURN-FROM-VIRTUAL-8086-MODE:
(* Processor is in virtual-8086 mode when IRET is executed and stays in virtual-8086 mode *)

IF IOPL = 3 (* Virtual mode: PE = 1, VM = 1, IOPL = 3 *)
THEN IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits

THEN #SS(0); FI;
IF instruction pointer not within code segment limits

THEN #GP(0); FI;
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)
EFLAGS ← Pop();
(* VM, IOPL,VIP and VIF EFLAG bits not modified by pop *)

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits

THEN #SS(0); FI;
IF instruction pointer not within code segment limits

THEN #GP(0); FI;
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop *)
EFLAGS[15:0] ← Pop(); (* IOPL in EFLAGS not modified by pop *)

FI;
ELSE

#GP(0); (* Trap to virtual-8086 monitor: PE = 1, VM = 1, IOPL < 3 *)
FI;

END;

28 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

RETURN-TO-VIRTUAL-8086-MODE:
(* Interrupted procedure was in virtual-8086 mode: PE = 1, VM = 1 in flag image *)
IF top 24 bytes of stack are not within stack segment limits

THEN #SS(0); FI;
IF instruction pointer not within code segment limits

THEN #GP(0); FI;
CS ← tempCS;
EIP ← tempEIP;
EFLAGS ← tempEFLAGS;
TempESP ← Pop();
TempSS ← Pop();
ES ← Pop(); (* Pop 2 words; throw away high-order word *)
DS ← Pop(); (* Pop 2 words; throw away high-order word *)
FS ← Pop(); (* Pop 2 words; throw away high-order word *)
GS ← Pop(); (* Pop 2 words; throw away high-order word *)
SS:ESP ← TempSS:TempESP;
CPL ← 3;
(* Resume execution in Virtual-8086 mode *)

END;

TASK-RETURN: (* PE = 1, VM = 0, NT = 1 *)
Read segment selector in link field of current TSS;
IF local/global bit is set to local
or index not within GDT limits

THEN #TS (TSS selector); FI;
Access TSS for task specified in link field of current TSS;
IF TSS descriptor type is not TSS or if the TSS is marked not busy

THEN #TS (TSS selector); FI;
IF TSS not present

THEN #NP(TSS selector); FI;
SWITCH-TASKS (without nesting) to TSS specified in link field of current TSS;
Mark the task just abandoned as NOT BUSY;
IF EIP is not within code segment limit

THEN #GP(0); FI;
END;

PROTECTED-MODE-RETURN: (* PE = 1, VM = 0 in flags image *)
IF return code segment selector is NULL

THEN GP(0); FI;
IF return code segment selector addrsses descriptor beyond descriptor table limit

THEN GP(selector); FI;
Read segment descriptor pointed to by the return code segment selector;
IF return code segment descriptor is not a code segment

THEN #GP(selector); FI;
IF return code segment selector RPL < CPL

THEN #GP(selector); FI;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is not present

THEN #NP(selector); FI;
IF return code segment selector RPL > CPL

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 29

Documentation Changes

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL; FI;

END;

RETURN-TO-SAME-PRIVILEGE-LEVEL: (* PE = 1, VM = 0 in flags image, RPL = CPL *)
IF new mode ≠ 64-Bit Mode

THEN
IF tempEIP is not within code segment limits

THEN #GP(0); FI;
EIP ← tempEIP;

ELSE (* new mode = 64-bit mode *)
IF tempRIP is non-canonical

THEN #GP(0); FI;
RIP ← tempRIP;

FI;
CS ← tempCS; (* Segment descriptor information also loaded *)
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) ← tempEFLAGS;
IF OperandSize = 32 or OperandSize = 64

THEN EFLAGS(RF, AC, ID) ← tempEFLAGS; FI;
IF CPL ≤ IOPL

THEN EFLAGS(IF) ← tempEFLAGS; FI;
IF CPL = 0

THEN EFLAGS(IOPL) ← tempEFLAGS;
IF OperandSize = 32

THEN EFLAGS(VM, VIF, VIP) ← tempEFLAGS; FI;
IF OperandSize = 64

THEN EFLAGS(VIF, VIP) ← tempEFLAGS; FI;
FI;

END;

RETURN-TO-OUTER-PRIVILEGE-LEVEL:
IF OperandSize = 32

THEN
IF top 8 bytes on stack are not within limits

THEN #SS(0); FI;
ELSE (* OperandSize = 16 *)

IF top 4 bytes on stack are not within limits
THEN #SS(0); FI;

FI;
Read return segment selector;
IF stack segment selector is NULL

THEN #GP(0); FI;
IF return stack segment selector index is not within its descriptor table limits

THEN #GP(SSselector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL ≠ RPL of the return code segment selector
or the stack segment descriptor does not indicate a a writable data segment;
or the stack segment DPL ≠ RPL of the return code segment selector

THEN #GP(SS selector); FI;
IF stack segment is not present

THEN #SS(SS selector); FI;
IF new mode ≠ 64-Bit Mode

30 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

THEN
IF tempEIP is not within code segment limits

THEN #GP(0); FI;
EIP ← tempEIP;

ELSE (* new mode = 64-bit mode *)
IF tempRIP is non-canonical

THEN #GP(0); FI;
RIP ← tempRIP;

FI;
CS ← tempCS;
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) ← tempEFLAGS;
IF OperandSize = 32

THEN EFLAGS(RF, AC, ID) ← tempEFLAGS; FI;
IF CPL ≤ IOPL

THEN EFLAGS(IF) ← tempEFLAGS; FI;
IF CPL = 0

THEN
EFLAGS(IOPL) ← tempEFLAGS;
IF OperandSize = 32

THEN EFLAGS(VM, VIF, VIP) ← tempEFLAGS; FI;
IF OperandSize = 64

THEN EFLAGS(VIF, VIP) ← tempEFLAGS; FI;
FI;
CPL ← RPL of the return code segment selector;
FOR each of segment register (ES, FS, GS, and DS)

DO
IF segment register points to data or non-conforming code segment
and CPL > segment descriptor DPL (* Stored in hidden part of segment register *)

THEN (* Segment register invalid *)
SegmentSelector ← 0; (* NULL segment selector *)

FI;
OD;

END;
IA-32e-MODE-RETURN: (* IA32_EFER.LMA = 1, PE = 1, VM = 0 in flags image *)

IF ((return code segment selector is NULL) or (return RIP is non-canonical) or
(SS selector is NULL going back to compatibility mode) or
(SS selector is NULL going back to CPL3 64-bit mode) or
(RPL <> CPL going back to non-CPL3 64-bit mode for a NULL SS selector))

THEN GP(0); FI;
IF return code segment selector addrsses descriptor beyond descriptor table limit

THEN GP(selector); FI;
Read segment descriptor pointed to by the return code segment selector;
IF return code segment descriptor is not a code segment

THEN #GP(selector); FI;
IF return code segment selector RPL < CPL

THEN #GP(selector); FI;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is not present

THEN #NP(selector); FI;
IF return code segment selector RPL > CPL

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 31

Documentation Changes

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL; FI;

END;

18. BSR summary table updated
In Chapter 3, “BSR—Bit Scan Reverse”, of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2A, the summary table has been updated (/r was
added). See the change bar below.

BSR—Bit Scan Reverse

19. SYSCALL and SYSRET pseudocode updated
In Chapter 4, “SYSCALL—Fast System Call” and “SYSRET—Return From Fast System
Call” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B,
the pseudocode has been corrected.

See the change bars on the reprinted subsections below.

SYSCALL—Fast System Call

Operation

IF ((CS.L) or (IA32_EFER.LMA ≠ 1) or (IA32_EFER.SCE ≠ 1))
(* Not in 64-Bit Mode or SYSCALL/SYSRET not enabled in IA32_EFER *)

THEN #UD; FI;
RCX ← RIP;
RIP ← LSTAR_MSR;
R11 ← EFLAGS;
EFLAGS ← (EFLAGS MASKED BY IA32_FMASK);
CPL ← 0;
CS(SEL) ← IA32_STAR_MSR[47:32];
CS(DPL) ← 0;
CS(BASE) ← 0;
CS(LIMIT) ← 0xFFFFF;
CS(GRANULAR) ← 1;
SS(SEL) ← IA32_STAR_MSR[47:32] + 8;
SS(DPL) ← 0;
SS(BASE) ← 0;
SS(LIMIT) ← 0xFFFFF;

SS(GRANULAR) ← 1;

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F BD /r BSR r16, r/m16 Valid Valid Bit scan reverse on r/m16.
0F BD /r BSR r32, r/m32 Valid Valid Bit scan reverse on r/m32.
REX.W + 0F BD BSR r64, r/m64 Valid N.E. Bit scan reverse on r/m64.

32 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

SYSRET—Return From Fast System Call
... Not all text shown...

Operation

IF (CS.L ≠ 1) or (IA32_EFER.LMA ≠ 1) or (IA32_EFER.SCE ≠ 1)
(* Not in 64-Bit Mode or SYSCALL/SYSRET not enabled in IA32_EFER *)

THEN #UD; FI;
IF (CPL ≠ 0)

THEN #GP(0); FI;
IF (RCX ≠ CANONICAL_ADDRESS)

THEN #GP(0); FI;
IF (OPERAND_SIZE = 64)

THEN (* Return to 64-Bit Mode *)
EFLAGS ← R11;
CPL ← 0x3;
CS(SEL) ← IA32_STAR[63:48] + 16;
CS(PL) ← 0x3;
SS(SEL) ← IA32_STAR[63:48] + 8;
SS(PL) ← 0x3;
RIP ← RCX;

ELSE (* Return to Compatibility Mode *)
EFLAGS ← R11;
CPL ← 0x3;
CS(SEL) ← IA32_STAR[63:48] ;
CS(PL) ← 0x3;
SS(SEL) ← IA32_STAR[63:48] + 8;
SS(PL) ← 0x3;
EIP ← ECX;

FI;

20. VMX Debug exceptions paragraph deleted
In Section 27.3.1 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B, the first two paragraphs were deleted.

27.3.1 Debug Exceptions
If a VMM emulates a guest instruction that would encounter a debug trap (single step or
data or I/O breakpoint), it should cause that trap to be delivered. The VMM should not
inject the debug exception by using vector-on-entry, but should set the appropriate bits
in the pending debug exceptions field. This method will give the trap the right priority
with respect to other events. (If the exception bitmap was programmed to cause VM
exits on debug exceptions, the debug trap will cause a VM exit. At this point, the trap can
be injected with vector-on-entry with the proper priority.)

There is a valid pending debug exception if the BS bit (see Table 20-4) is set, regardless
of the values of RFLAGS.TF or IA32_DEBUGCTL.BTF. The values of these bits do not
impact the delivery of pending debug exceptions.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 33

Documentation Changes

VMMs should exercise care when emulating a guest write (attempted using WRMSR) to
IA32_DEBUGCTL to modify BTF if this is occurring with RFLAGS.TF = 1 and after a MOV
SS or POP SS instruction (for example: while debug exceptions are blocked). Note the
following:

• Normally, if WRMSR clears BTF while RFLAGS.TF = 1 and with debug exceptions
blocked, a single-step trap will occur after WRMSR. A VMM emulating such an
instruction should set the BS bit (see Table 20-4) in the pending debug exceptions
field before VM entry.

• Normally, if WRMSR sets BTF while RFLAGS.TF = 1 and with debug exceptions
blocked, neither a single-step trap nor a taken-branch trap can occur after WRMSR.
A VMM emulating such an instruction should clear the BS bit (see Table 20-4) in the
pending debug exceptions field before VM entry.

..Text omitted here...

21. FLD list of exceptions updated
In Chapter 3, “FLD—Load Floating Point Value”, of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2A, exceptions have been updated. See the
change bars.

..Text omitted here...

Floating-Point Exceptions
#IS Stack underflow or overflow occurred.

#IA Source operand is an SNaN. Does not occur if the source operand is
in double extended-precision floating-point format (FLD m80fp or
FLD ST(i)).

#D Source operand is a denormal value. Does not occur if the source
operand is in double extended-precision floating-point format.

Protected Mode Exceptions
#GP(0) If destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES,
FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory refer-
ence is made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES,

FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

34 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES,

FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory refer-
ence is made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canon-

ical form.

#GP(0) If the memory address is in a non-canonical form.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory refer-
ence is made while the current privilege level is 3.

22. CPUID register reference corrected
In Section 7.5.5 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A, the name of a register (EBX) has been corrected. Part of the section has
been reprinted below. See the change bar.

7.5.5 Identifying Logical Processors in an MP System
After the BIOS has completed the MP initialization protocol, each logical processor can be
uniquely identified by its local APIC ID. Software can access these APIC IDs in either of
the following ways:

• Read APIC ID for a local APIC — Code running on a logical processor can execute
a MOV instruction to read the processor’s local APIC ID register (see Section 8.4.6,
“Local APIC ID”). This is the ID to use for directing physical destination mode
interrupts to the processor.

• Read ACPI or MP table — As part of the MP initialization protocol, the BIOS creates
an ACPI table and an MP table. These tables are defined in the Multiprocessor Speci-
fication Version 1.4 and provide software with a list of the processors in the system
and their local APIC IDs. The format of the ACPI table is derived from the ACPI speci-
fication, which is an industry standard power management and platform configu-
ration specification for MP systems.

• Read Initial APIC ID — An APIC ID is assigned to a logical processor during power
up and is called the initial APIC ID. This is the APIC ID reported by
CPUID.1:EBX[31:24] and may be different from the current value read from the
local APIC. Use the initial APIC ID to determine the topological relationship between
logical processors.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 35

Documentation Changes

Bits in the initial APIC ID can be interpreted using several bit masks. Each bit mask
can be used to extract an identifier to represent a hierarchical level of the multi-
threading resource topology in an MP system (See Section 7.10.1, “Hierarchical
Mapping of Shared Resources”). The initial APIC ID may consist of up to four bit-
fields. In a non-clustered MP system, the field consists of up to three bit fields.

..Text omitted here...

23. UCOMISS range corrected in pseudocode
In “UCOMISS—Unordered Compare Scalar Single-Precision Floating-Point Values and
Set EFLAGS” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2B, a bit range has been corrected in the Operations subsection. See the change
bar.

Operation

RESULT ← UnorderedCompare(SRC1[31:0] <> SRC2[31:0]) {
(* Set EFLAGS *)
CASE (RESULT) OF

UNORDERED: ZF,PF,CF ← 111;
GREATER_THAN: ZF,PF,CF ← 000;
LESS_THAN: ZF,PF,CF ← 001;
EQUAL: ZF,PF,CF ← 100;

ESAC;
OF,AF,SF ← 0;

24. CR information updated
In Section 2.5 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A, the documentation of the XMXE bit has been added. See the change bars
below.

2.5 CONTROL REGISTERS
Control registers (CR0, CR1, CR2, CR3, and CR4; see Figure 2-14) determine operating
mode of the processor and the characteristics of the currently executing task. These
registers are 32 bits in all 32-bit modes and compatibility mode.

In 64-bit mode, control registers are expanded to 64 bits. The MOV CRn instructions are
used to manipulate the register bits. Operand-size prefixes for these instructions are
ignored. The following is also true:

• Bits 63:32 of CR0 and CR4 are reserved and must be written with zeros. Writing a
nonzero value to any of the upper 32 bits results in a general-protection exception,
#GP(0).

• All 64 bits of CR2 are writable by software.

• Bits 51:40 of CR3 are reserved and must be 0.

• The MOV CRn instructions do not check that addresses written to CR2 and CR3 are
within the linear-address or physical-address limitations of the implementation.

36 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

• Register CR8 is available in 64-bit mode only.

The control registers are summarized below, and each architecturally defined control
field in these control registers are described individually. In Figure 2-14, the width of the
register in 64-bit mode is indicated in parenthesis (except for CR0).

• CR0 — Contains system control flags that control operating mode and states of the
processor.

• CR1 — Reserved.

• CR2 — Contains the page-fault linear address (the linear address that caused a page
fault).

• CR3 — Contains the physical address of the base of the page directory and two flags
(PCD and PWT). This register is also known as the page-directory base register
(PDBR). Only the most-significant bits (less the lower 12 bits) of the base address
are specified; the lower 12 bits of the address are assumed to be 0. The page
directory must thus be aligned to a page (4-KByte) boundary. The PCD and PWT
flags control caching of the page directory in the processor’s internal data caches
(they do not control TLB caching of page-directory information).

When using the physical address extension, the CR3 register contains the base
address of the page-directory-pointer table In IA-32e mode, the CR3 register
contains the base address of the PML4 table.

See also: Section 3.8, “36-Bit Physical Addressing Using the PAE Paging Mechanism.”

• CR4 — Contains a group of flags that enable several architectural extensions, and
indicate operating system or executive support for specific processor capabilities.
The control registers can be read and loaded (or modified) using the move-to-or-
from-control-registers forms of the MOV instruction. In protected mode, the MOV
instructions allow the control registers to be read or loaded (at privilege level 0 only).
This restriction means that application programs or operating-system procedures
(running at privilege levels 1, 2, or 3) are prevented from reading or loading the
control registers.

• CR8 — Provides read and write access to the Task Priority Register (TPR). It specifies
the priority threshold value that operating systems use to control the priority class of
external interrupts allowed to interrupt the processor. This register is available only
in 64-bit mode. However, interrupt filtering continues to apply in compatibility mode.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 37

Documentation Changes

When loading a control register, reserved bits should always be set to the values
previously read. The flags in control registers are:

PG Paging (bit 31 of CR0) — Enables paging when set; disables paging when
clear. When paging is disabled, all linear addresses are treated as physical
addresses. The PG flag has no effect if the PE flag (bit 0 of register CR0) is not
also set; setting the PG flag when the PE flag is clear causes a general-protection
exception (#GP). See also: Section 3.6, “Paging (Virtual Memory) Overview.”

On IA-32 processors that support Intel 64 Technology, enabling and disabling IA-
32e mode operation also requires modifying CR0.PG.

CD Cache Disable (bit 30 of CR0) — When the CD and NW flags are clear, caching
of memory locations for the whole of physical memory in the processor’s internal
(and external) caches is enabled. When the CD flag is set, caching is restricted
as described in Table 10-5. To prevent the processor from accessing and
updating its caches, the CD flag must be set and the caches must be invalidated
so that no cache hits can occur.

See also: Section 10.5.3, “Preventing Caching,” and Section 10.5, “Cache
Control.”

NW Not Write-through (bit 29 of CR0) — When the NW and CD flags are clear,
write-back (for Pentium 4, Intel Xeon, P6 family, and Pentium processors) or
write-through (for Intel486 processors) is enabled for writes that hit the cache
and invalidation cycles are enabled. See Table 10-5 for detailed information
about the affect of the NW flag on caching for other settings of the CD and NW
flags.

AM Alignment Mask (bit 18 of CR0) — Enables automatic alignment checking
when set; disables alignment checking when clear. Alignment checking is
performed only when the AM flag is set, the AC flag in the EFLAGS register is set,

Figure 2-14. Control Registers

CR1

W
P

A
M

Page-Directory Base

V
M
E

P
S
E

T
S
D

D
E

P
V
I

P
G
E

M
C
E

P
A
E

P
C
E

N
W

P
G

C
D

P
W
T

P
C
D

Page-Fault Linear Address

P
E

E
M

M
P

T
S

N
E

E
T

CR2

CR0

CR4

Reserved

CR3

Reserved (set to 0)

31 2930 28 19 18 17 16 15 6 5 4 3 2 1 0

31(63) 0

31(63) 0

31(63) 12 11 5 4 3 2

31(63) 9 8 7 6 5 4 3 2 1 0

(PDBR)

13 12 11 10

OSFXSR
OSXMMEXCPT

V
M
X
E

00

38 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

CPL is 3, and the processor is operating in either protected or virtual-8086
mode.

WP Write Protect (bit 16 of CR0) — Inhibits supervisor-level procedures from
writing into user-level read-only pages when set; allows supervisor-level proce-
dures to write into user-level read-only pages when clear (regardless of the U/S
bit setting; see Section 3.7.6). This flag facilitates implementation of the copy-
on-write method of creating a new process (forking) used by operating systems
such as UNIX.

NE Numeric Error (bit 5 of CR0) — Enables the native (internal) mechanism for
reporting x87 FPU errors when set; enables the PC-style x87 FPU error reporting
mechanism when clear. When the NE flag is clear and the IGNNE# input is
asserted, x87 FPU errors are ignored. When the NE flag is clear and the IGNNE#
input is deasserted, an unmasked x87 FPU error causes the processor to assert
the FERR# pin to generate an external interrupt and to stop instruction execu-
tion immediately before executing the next waiting floating-point instruction or
WAIT/FWAIT instruction.

The FERR# pin is intended to drive an input to an external interrupt controller
(the FERR# pin emulates the ERROR# pin of the Intel 287 and Intel 387 DX
math coprocessors). The NE flag, IGNNE# pin, and FERR# pin are used with
external logic to implement PC-style error reporting.

See also: “Software Exception Handling” in Chapter 8, “Programming with the
x87 FPU,” and Appendix A, “Eflags Cross-Reference,” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1.

ET Extension Type (bit 4 of CR0) — Reserved in the Pentium 4, Intel Xeon, P6
family, and Pentium processors. In the Pentium 4, Intel Xeon, and P6 family
processors, this flag is hardcoded to 1. In the Intel386 and Intel486 processors,
this flag indicates support of Intel 387 DX math coprocessor instructions when
set.

TS Task Switched (bit 3 of CR0) — Allows the saving of the x87 FPU/MMX/SSE/
SSE2/ SSE3 context on a task switch to be delayed until an x87 FPU/MMX/SSE/
SSE2/SSE3 instruction is actually executed by the new task. The processor sets
this flag on every task switch and tests it when executing x87 FPU/MMX/SSE/
SSE2/SSE3 instructions.

• If the TS flag is set and the EM flag (bit 2 of CR0) is clear, a device-not-
available exception (#NM) is raised prior to the execution of any x87 FPU/
MMX/SSE/ SSE2/SSE3 instruction; with the exception of PAUSE, PREFETCHh,
SFENCE, LFENCE, MFENCE, MOVNTI, and CLFLUSH. See the paragraph below
for the special case of the WAIT/FWAIT instructions.

• If the TS flag is set and the MP flag (bit 1 of CR0) and EM flag are clear, an
#NM exception is not raised prior to the execution of an x87 FPU WAIT/FWAIT
instruction.

• If the EM flag is set, the setting of the TS flag has no affect on the execution
of x87 FPU/MMX/SSE/SSE2/SSE3 instructions.

Table 2-17 shows the actions taken when the processor encounters an x87 FPU
instruction based on the settings of the TS, EM, and MP flags. Table 11-1 and
12-1 show the actions taken when the processor encounters an MMX/SSE/SSE2/
SSE3 instruction.

The processor does not automatically save the context of the x87 FPU, XMM, and
MXCSR registers on a task switch. Instead, it sets the TS flag, which causes the
processor to raise an #NM exception whenever it encounters an x87 FPU/MMX/

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 39

Documentation Changes

SSE /SSE2/SSE3 instruction in the instruction stream for the new task (with the
exception of the instructions listed above).

The fault handler for the #NM exception can then be used to clear the TS flag (with the
CLTS instruction) and save the context of the x87 FPU, XMM, and MXCSR registers. If the
task never encounters an x87 FPU/MMX/SSE/SSE2/SSE3 instruction; the x87 FPU/MMX/
SSE/SSE2/ SSE3 context is never saved.

EM Emulation (bit 2 of CR0) — Indicates that the processor does not have an
internal or external x87 FPU when set; indicates an x87 FPU is present when
clear. This flag also affects the execution of MMX/SSE/SSE2/SSE3 instructions.

When the EM flag is set, execution of an x87 FPU instruction generates a device-
not-available exception (#NM). This flag must be set when the processor does
not have an internal x87 FPU or is not connected to an external math copro-
cessor. Setting this flag forces all floating-point instructions to be handled by
software emulation. Table 9-2 shows the recommended setting of this flag,
depending on the IA-32 processor and x87 FPU or math coprocessor present in
the system. Table 2-17 shows the interaction of the EM, MP, and TS flags.

Also, when the EM flag is set, execution of an MMX instruction causes an invalid-
opcode exception (#UD) to be generated (see Table 11-1). Thus, if an IA-32
processor incorporates MMX technology, the EM flag must be set to 0 to enable
execution of MMX instructions.

Similarly for SSE/SSE2/SSE3 extensions, when the EM flag is set, execution of
most SSE/SSE2/SSE3 instructions causes an invalid opcode exception (#UD) to
be generated (see Table 12-1). If an IA-32 processor incorporates the SSE/
SSE2/SSE3 extensions, the EM flag must be set to 0 to enable execution of these
extensions. SSE/SSE2/SSE3 instructions not affected by the EM flag include:
PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, and CLFLUSH.

MP Monitor Coprocessor (bit 1 of CR0). — Controls the interaction of the WAIT
(or FWAIT) instruction with the TS flag (bit 3 of CR0). If the MP flag is set, a WAIT
instruction generates a device-not-available exception (#NM) if the TS flag is also
set. If the MP flag is clear, the WAIT instruction ignores the setting of the TS flag.
Table 9-2 shows the recommended setting of this flag, depending on the IA-32
processor and x87 FPU or math coprocessor present in the system. Table 2-17
shows the interaction of the MP, EM, and TS flags.

PE Protection Enable (bit 0 of CR0) — Enables protected mode when set;
enables real-address mode when clear. This flag does not enable paging directly.
It only enables segment-level protection. To enable paging, both the PE and PG
flags must be set.

CR0 Flags x87 FPU Instruction Type

EM MP TS Floating-Point WAIT/FWAIT

0 0 0 Execute Execute.

0 0 1 #NM Exception Execute.

0 1 0 Execute Execute.

0 1 1 #NM Exception #NM exception.

1 0 0 #NM Exception Execute.

1 0 1 #NM Exception Execute.

1 1 0 #NM Exception Execute.

1 1 1 #NM Exception #NM exception.

40 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

See also: Section 9.9, “Mode Switching.”

PCD Page-level Cache Disable (bit 4 of CR3) — Controls caching of the current
page directory. When the PCD flag is set, caching of the page-directory is
prevented; when the flag is clear, the page-directory can be cached. This flag
affects only the processor’s internal caches (both L1 and L2, when present). The
processor ignores this flag if paging is not used (the PG flag in register CR0 is
clear) or the CD (cache disable) flag in CR0 is set.

See also: Chapter 10, “Memory Cache Control” (for more about the use of the
PCD flag) and Section 3.7.6, “Page-Directory and Page-Table Entries” (for a
description of a companion PCD flag in page-directory and page-table entries).

PWT Page-level Writes Transparent (bit 3 of CR3) — Controls the write-through
or write-back caching policy of the current page directory. When the PWT flag is
set, write-through caching is enabled; when the flag is clear, write-back caching
is enabled. This flag affects only internal caches (both L1 and L2, when present).
The processor ignores this flag if paging is not used (the PG flag in register CR0
is clear) or the CD (cache disable) flag in CR0 is set.

See also: Section 10.5, “Cache Control” (for more information about the use of
this flag), and Section 3.7.6, “Page-Directory and Page-Table Entries” (for a
description of a companion PCD flag in the page-directory and page-table
entries).

VME Virtual-8086 Mode Extensions (bit 0 of CR4) — Enables interrupt- and
exception-handling extensions in virtual-8086 mode when set; disables the
extensions when clear. Use of the virtual mode extensions can improve the
performance of virtual-8086 applications by eliminating the overhead of calling
the virtual-8086 monitor to handle interrupts and exceptions that occur while
executing an 8086 program and, instead, redirecting the interrupts and excep-
tions back to the 8086 program’s handlers. It also provides hardware support for
a virtual interrupt flag (VIF) to improve reliability of running 8086 programs in
multitasking and multiple-processor environments.

See also: Section 15.3, “Interrupt and Exception Handling in Virtual-8086
Mode.”

PVI Protected-Mode Virtual Interrupts (bit 1 of CR4) — Enables hardware
support for a virtual interrupt flag (VIF) in protected mode when set; disables
the VIF flag in protected mode when clear.

See also: Section 15.4, “Protected-Mode Virtual Interrupts.”

TSD Time Stamp Disable (bit 2 of CR4) — Restricts the execution of the RDTSC
instruction to procedures running at privilege level 0 when set; allows RDTSC
instruction to be executed at any privilege level when clear.

DE Debugging Extensions (bit 3 of CR4) — References to debug registers DR4
and DR5 cause an undefined opcode (#UD) exception to be generated when set;
when clear, processor aliases references to registers DR4 and DR5 for compati-
bility with software written to run on earlier IA-32 processors.

See also: Section 18.2.2, “Debug Registers DR4 and DR5.”

PSE Page Size Extensions (bit 4 of CR4) — Enables 4-MByte pages when set;
restricts pages to 4 KBytes when clear.

See also: Section 3.6.1, “Paging Options.”

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 41

Documentation Changes

PAE Physical Address Extension (bit 5 of CR4) — When set, enables paging
mechanism to reference greater-or-equal-than-36-bit physical addresses. When
clear, restricts physical addresses to 32 bits. PAE must be enabled to enable IA-
32e mode operation. Enabling and disabling IA-32e mode operation also
requires modifying CR4.PAE.

See also: Section 3.8, “36-Bit Physical Addressing Using the PAE Paging
Mechanism.”

MCE Machine-Check Enable (bit 6 of CR4) — Enables the machine-check excep-
tion when set; disables the machine-check exception when clear.

See also: Chapter 14, “Machine-Check Architecture.”

PGE Page Global Enable (bit 7 of CR4) — (Introduced in the P6 family proces-
sors.) Enables the global page feature when set; disables the global page
feature when clear. The global page feature allows frequently used or shared
pages to be marked as global to all users (done with the global flag, bit 8, in a
page-directory or page-table entry). Global pages are not flushed from the
translation-lookaside buffer (TLB) on a task switch or a write to register CR3.

When enabling the global page feature, paging must be enabled (by setting the
PG flag in control register CR0) before the PGE flag is set. Reversing this
sequence may affect program correctness, and processor performance will be
impacted.

See also: Section 3.12, “Translation Lookaside Buffers (TLBs).”

PCE Performance-Monitoring Counter Enable (bit 8 of CR4) — Enables execu-
tion of the RDPMC instruction for programs or procedures running at any protec-
tion level when set; RDPMC instruction can be executed only at protection level
0 when clear.

OSFXSR
Operating System Support for FXSAVE and FXRSTOR instructions (bit 9
of CR4) — When set, this flag: (1) indicates to software that the operating
system supports the use of the FXSAVE and FXRSTOR instructions, (2) enables
the FXSAVE and FXRSTOR instructions to save and restore the contents of the
XMM and MXCSR registers along with the contents of the x87 FPU and MMX
registers, and (3) enables the processor to execute SSE/SSE2/SSE3 instruc-
tions, with the exception of the PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE,
MOVNTI, and CLFLUSH.

If this flag is clear, the FXSAVE and FXRSTOR instructions will save and restore
the contents of the x87 FPU and MMX instructions, but they may not save and
restore the contents of the XMM and MXCSR registers. Also, the processor will
generate an invalid opcode exception (#UD) if it attempts to execute any SSE/
SSE2/SSE3 instruction, with the exception of PAUSE, PREFETCHh, SFENCE,
LFENCE, MFENCE, MOVNTI, and CLFLUSH. The operating system or executive
must explicitly set this flag.

NOTE
CPUID feature flags FXSR, SSE, SSE2, and SSE3 indicate availability
of the FXSAVE/FXRESTOR instructions, SSE extensions, SSE2
extensions, and SSE3 extensions respectively. The OSFXSR bit
provides operating system software with a means of enabling these
features and indicating that the operating system supports the
features.

42 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

OSXMMEXCPT
Operating System Support for Unmasked SIMD Floating-Point Excep-
tions (bit 10 of CR4) — When set, indicates that the operating system supports
the handling of unmasked SIMD floating-point exceptions through an exception
handler that is invoked when a SIMD floating-point exception (#XF) is gener-
ated. SIMD floating-point exceptions are only generated by SSE/SSE2/SSE3
SIMD floating-point instructions.

The operating system or executive must explicitly set this flag. If this flag is not
set, the processor will generate an invalid opcode exception (#UD) whenever it
detects an unmasked SIMD floating-point exception.

XMXE
VMX-Enable Bit (bit 13 of CR4) — Enables VMX operation when set. See
Chapter 19, “Introduction to Virtual-Machine Extensions.”

TPLTask Priority Level (bit 3:0 of CR8) — This sets the threshold value corresponding
to the highest-priority interrupt to be blocked. A value of 0 means all interrupts are
enabled. This field is available in 64-bit mode. A value of 15 means all interrupts will be
disabled.

25. VMXON opcode corrected
In Chapter 5, “VMXON—Enter VMX Operation”, of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2B, the summary chart has been corrected to
address a typo. See below.

VMXON—Enter VMX Operation

..Text omitted here...

26. MSR references updated
In Sections 20.6.1 and 20.6.2 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3B, two MSR references (IA32_VMX_PINBASED_CTLS,
IA32_VMX_PROCBASED_CTLS) have been corrected. The text is reprinted below to
show context. See the change bars.

20.6.1 Pin-Based VM-Execution Controls
The pin-based VM-execution controls constitute a 32-bit vector that governs the
handling of asynchronous events (for example: interrupts).1 Table 20-5 lists the controls
supported. See Chapter 21 for how these controls affect processor behavior in VMX non-
root operation.

Opcode Instruction Description
F3 0F C7 /6 VMXON m64 Enter VMX root operation.

1. Some asynchronous events cause VM exits regardless of the settings of the pin-based VM-execution controls
(see Section 21.2).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 43

Documentation Changes

All other bits in this field are reserved, some to 0 and some to 1. Software should consult
the VMX capability MSR IA32_VMX_PINBASED_CTLS, (see Appendix G.2) to
determine how to set reserved bits. Failure to set reserved bits properly causes
subsequent VM entries to fail (see Section 22.2).

20.6.2 Processor-Based VM-Execution Controls
The processor-based VM-execution controls constitute a 32-bit vector that governs the
handling of synchronous events, mainly those caused by the execution of specific
instructions.1 Table 20-6 lists the controls supported. See Chapter 21 for more details of
how these controls affect processor behavior in VMX non-root operation.

Table 20-5. Definitions of Pin-Based VM-Execution Controls

Bit Position(s) Name Description

0 External-interrupt
exiting

If this control is 1, external interrupts cause VM exits.
Otherwise, they are delivered normally through the guest
interrupt-descriptor table (IDT). If this control is 1, the value
of RFLAGS.IF does not affect interrupt blocking.

3 NMI exiting If this control is 1, non-maskable interrupts (NMIs) cause VM
exits. Otherwise, they are delivered normally using
descriptor 2 of the IDT. This control also determines
interactions between IRET and blocking by NMI (see Section
21.3).

1. Some instructions cause VM exits regardless of the settings of the processor-based VM-execution controls
(see Section 21.1.2), as do task switches (see Section 21.2).

Table 20-6. Definitions of Processor-Based VM-Execution Controls

Bit Position(s) Name Description

2 Interrupt-window
exiting

If this control is 1, a VM exit occurs at the beginning of any
instruction if RFLAGS.IF = 1 and there are no other blocking
of interrupts (see Section 20.4.2).

3 Use TSC offsetting This control determines whether executions of RDTSC and
executions of RDMSR that read from the
IA32_TIME_STAMP_COUNTER MSR return a value modified
by the TSC offset field (see Section 20.6.4.1 and Section
21.3).

7 HLT exiting This control determines whether executions of HLT cause
VM exits.

9 INVLPG exiting This determines whether executions of INVLPG cause
VM exits.

10 MWAIT exiting This control determines whether executions of MWAIT cause
VM exits.

11 RDPMC exiting This control determines whether executions of RDPMC cause
VM exits.

12 RDTSC exiting This control determines whether executions of RDTSC cause
VM exits.

44 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

All other bits in this field are reserved, some to 0 and some to 1. Software should consult
the VMX capability MSR IA32_VMX_PROCBASED_CTLS (see Appendix G.2) to
determine how to set reserved bits. Failure to set reserved bits properly causes
subsequent VM entries to fail (see Section 22.2).

27. CR0.WP coverage updated
In Section 2.5 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A, the text has been updated to make the language more precise. See the
change bars.

19 CR8-load exiting This control determines whether executions of MOV to CR8
cause VM exits. This control must be 0 on processors that do
not support Intel 64 Technology.

20 CR8-store exiting This control determines whether executions of MOV from
CR8 cause VM exits. This control must be 0 on processors
that do not support Intel 64 Technology.

21 Use TPR shadow Setting this control to 1 activates the TPR shadow, which is
maintained in a page of memory addressed by the virtual-
APIC address. See Section 21.3.

This control must be 0 on processors that do not support
Intel 64 Technology.

23 MOV-DR exiting This control determines whether executions of MOV DR
cause VM exits.

24 Unconditional I/O
exiting

This control determines whether executions of I/O
instructions (IN, INS/INSB/INSW/INSD, OUT, and OUTS/
OUTSB/OUTSW/OUTSD) cause VM exits.

This control is ignored if the “use I/O bitmaps” control is 1.

25 Use I/O bitmaps This control determines whether I/O bitmaps are used to
restrict executions of I/O instructions (see Section 20.6.4
and Section 21.1.3).

For this control, “0” means “do not use I/O bitmaps” and “1”
means “use I/O bitmaps.” If the I/O bitmaps are used, the
setting of the “unconditional I/O exiting” control is ignored.

28 Use MSR bitmaps This control determines whether MSR bitmaps are used to
control execution of the RDMSR and WRMSR instructions
(see Section 20.6.4 and Section 21.1.3).

For this control, “0” means “do not use MSR bitmaps” and “1”
means “use MSR bitmaps.” If the MSR bitmaps are not used,
all executions of the RDMSR and WRMSR instructions cause
VM exits.

Not all processors support the 1-setting of this control.
Software may consult the VMX capability MSR
IA32_VMX_PROCBASED_CTLS (see Appendix G.2) to
determine whether that setting is supported.

29 MONITOR exiting This control determines whether executions of MONITOR
cause VM exits.

30 PAUSE exiting This control determines whether executions of PAUSE cause
VM exits.

Table 20-6. Definitions of Processor-Based VM-Execution Controls (Continued)

Bit Position(s) Name Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 45

Documentation Changes

2.5 CONTROL REGISTERS
..Text omitted here...

WP Write Protect (bit 16 of CR0) — Inhibits supervisor-level procedures from
writing into user-level read-only pages when set; allows supervisor-level proce-
dures to write into user-level read-only pages when clear (regardless of the U/S
bit setting; see Section 3.7.6). This flag facilitates implementation of the copy-
on-write method of creating a new process (forking) used by operating systems
such as UNIX.

...Text omitted here...

--

In Section 4.11.1 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A, a similar update has been made. See the change bar below.

--

4.11.1 Page Type
..Text omitted here...

Starting with the P6 family, Intel processors allow user-mode pages to be write-
protected against supervisor-mode access. Setting CR0.WP = 1 enables supervisor-
mode sensitivity to user-mode, write protected pages. Supervisor pages which are read-
only are not writable from any privilege level (if CR0.WP = 0). This supervisor write-
protect feature is useful for implementing a “copy-on-write” strategy used by some
operating systems, such as UNIX*, for task creation (also called forking or spawning).
When a new task is created....

..Text omitted here...

28. Illegal register address flag description updated
In Figure 8-2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A, the language describing the illegal register address flag has been updated.
The table is reprinted below. See the change bar.

FLAG Function

Send Checksum Error (P6 family and Pentium processors only) Set when the local APIC
detects a checksum error for a message that it sent on the APIC bus.

Receive Checksum Error (P6 family and Pentium processors only) Set when the local APIC
detects a checksum error for a message that it received on the APIC
bus.

Send Accept Error (P6 family and Pentium processors only) Set when the local APIC
detects that a message it sent was not accepted by any APIC on the
APIC bus.

Receive Accept Error (P6 family and Pentium processors only) Set when the local APIC
detects that the message it received was not accepted by any APIC
on the APIC bus, including itself.

46 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

29. CPUID call reference corrected
In Section 3.3.1 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A, a CPUID reference has been corrected. See the change bar and the bold
text.

3.3.1 Physical Address Space for Processors with Intel® 64
Technology

On processors that support Intel 64 Technology (CPUID.80000001:EDX[29] = 1), the
size of the physical address range is implementation-specific and indicated by
CPUID.80000008H:EAX[bits 7-0]. For the format of information returned in EAX, see
“CPUID—CPU Identification” in Chapter 3 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2A.

30. Note describing semaphore restrictions added
In Section 7.1.2.2 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A, the language has been added to clarify a usage restriction. See the
change bar below.

7.1.2.2 Software Controlled Bus Locking
To explicitly force the LOCK semantics, software can use the LOCK prefix with the
following instructions when they are used to modify a memory location. An invalid-
opcode exception (#UD) is generated when the LOCK prefix is used with any other
instruction or when no write operation is made to memory (that is, when the destination
operand is in a register).

• The bit test and modify instructions (BTS, BTR, and BTC).

• The exchange instructions (XADD, CMPXCHG, and CMPXCHG8B).

Send Illegal Vector Set when the local APIC detects an illegal vector in the message that
it is sending.

Receive Illegal Vector Set when the local APIC detects an illegal vector in the message it
received, including an illegal vector code in the local vector table
interrupts or in a self-interrupt.

Illegal Reg. Address (Pentium 4, Intel Xeon, and P6 family processors only) Set when the
processor is trying to access a register in the processor's local APIC
register address space that is reserved (see Table 8-1). Addresses in
one the 0x10 byte regions marked reserved are illegal register
addreses.

The Local APIC Register Map is the address range of the APIC
register base address (specified in the IA32_APIC_BASE MSR) plus 4
KBytes.

FLAG Function

Send Checksum Error (P6 family and Pentium processors only) Set when the local APIC
detects a checksum error for a message that it sent on the APIC bus.

Receive Checksum Error (P6 family and Pentium processors only) Set when the local APIC
detects a checksum error for a message that it received on the APIC
bus.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 47

Documentation Changes

• The LOCK prefix is automatically assumed for XCHG instruction.

• The following single-operand arithmetic and logical instructions: INC, DEC, NOT, and
NEG.

• The following two-operand arithmetic and logical instructions: ADD, ADC, SUB, SBB,
AND, OR, and XOR.

A locked instruction is guaranteed to lock only the area of memory defined by the
destination operand, but may be interpreted by the system as a lock for a larger memory
area.

Software should access semaphores (shared memory used for signalling between
multiple processors) using identical addresses and operand lengths. For example, if one
processor accesses a semaphore using a word access, other processors should not
access the semaphore using a byte access.

NOTE
Do not implement semaphores using the WC memory type. Do not
perform non-temporal stores to a cache line containing a location used to
implement a semaphore.

..Text omitted here...

31. DAS pseudocode updated
In Chapter 3, “DAS—Decimal Adjust AL after Subtraction”, of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A, the pseudocode has been
corrected. See the change bar below.

Operation

IF 64-Bit Mode
THEN

#UD;
ELSE

old_AL ← AL;
old_CF ← CF;
CF ← 0;
IF (((AL AND 0FH) > 9) or AF = 1)
 THEN
 AL ← AL − 6;

CF ← old_CF or (Borrow from AL ← AL − 6);
AF ← 1;

ELSE
AF ← 0;

FI;
IF ((old_AL > 99H) or (old_CF = 1))

 THEN
AL ← AL − 60H;
CF ← 1;

FI;
FI;

48 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

32. Entries added to CACHE-TLB table
In Table 3-17 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A, entries have been added to the table. The table is reprinted below, see the
change bars.

• ---

Table 3-17. Encoding of Cache and TLB Descriptors

Descriptor Value Cache or TLB Description

00H Null descriptor

01H Instruction TLB: 4 KByte pages, 4-way set associative, 32 entries

02H Instruction TLB: 4 MByte pages, 4-way set associative, 2 entries

03H Data TLB: 4 KByte pages, 4-way set associative, 64 entries

04H Data TLB: 4 MByte pages, 4-way set associative, 8 entries

05H Data TLB1: 4 MByte pages, 4-way set associative, 32 entries

06H 1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size

08H 1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line
size

0AH 1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size

0BH Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries

0CH 1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size

22H 3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines
per sector

23H 3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per
sector

25H 3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per
sector

29H 3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per
sector

2CH 1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size

30H 1st-level instruction cache: 32 KBytes, 8-way set associative, 64 byte line
size

40H No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-
level cache

41H 2nd-level cache: 128 KBytes, 4-way set associative, 32 byte line size

42H 2nd-level cache: 256 KBytes, 4-way set associative, 32 byte line size

43H 2nd-level cache: 512 KBytes, 4-way set associative, 32 byte line size

44H 2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size

45H 2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size

46H 3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size

47H 3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size

49H 2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size

50H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 49

Documentation Changes

51H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries

52H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries

56H Data TLB0: 4 MByte pages, 4-way set associative, 16 entries

57H Data TLB0: 4 KByte pages, 4-way associative, 16 entries

5BH Data TLB: 4 KByte and 4 MByte pages, 64 entries

5CH Data TLB: 4 KByte and 4 MByte pages,128 entries

5DH Data TLB: 4 KByte and 4 MByte pages,256 entries

60H 1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size

66H 1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size

67H 1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size

68H 1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size

70H Trace cache: 12 K-μop, 8-way set associative

71H Trace cache: 16 K-μop, 8-way set associative

72H Trace cache: 32 K-μop, 8-way set associative

78H 2nd-level cache: 1 MByte, 4-way set associative, 64byte line size

79H 2nd-level cache: 128 KByte, 8-way set associative, 64 byte line size, 2 lines
per sector

7AH 2nd-level cache: 256 KByte, 8-way set associative, 64 byte line size, 2 lines
per sector

7BH 2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines
per sector

7CH 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per
sector

7DH 2nd-level cache: 2 MByte, 8-way set associative, 64byte line size

7FH 2nd-level cache: 512 KByte, 2-way set associative, 64-byte line size

82H 2nd-level cache: 256 KByte, 8-way set associative, 32 byte line size

83H 2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size

84H 2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size

85H 2nd-level cache: 2 MByte, 8-way set associative, 32 byte line size

86H 2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size

87H 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size

B0H Instruction TLB: 4 KByte pages, 4-way set associative, 128 entries

B3H Data TLB: 4 KByte pages, 4-way set associative, 128 entries

B4H Data TLB1: 4 KByte pages, 4-way associative, 256 entries

F0H 64-Byte prefetching

F1H 128-Byte prefetching

Table 3-17. Encoding of Cache and TLB Descriptors (Continued)

Descriptor Value Cache or TLB Description

50 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

33. Updated MOV to CR8 information
In Sections 21.1.3 through 21.2 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3B, changes have been made to clarify VMX behavior. See
the change bars.

21.3 CHANGES TO INSTRUCTION BEHAVIOR IN VMX NON-
ROOT OPERATION

The behavior of some instructions is changed in VMX non-root operation. Some of these
changes are determined by the settings of certain VM-execution control fields. The
following items detail such changes:

• CLTS. Behavior of the CLTS instruction is determined by the bits in position 3 (corre-
sponding to CR0.TS) in the CR0 guest/host mask and the CR0 read shadow:

— If bit 3 in the CR0 guest/host mask is 0, CLTS clears CR0.TS normally (the value
of bit 3 in the CR0 read shadow is irrelevant in this case), unless CR0.TS is fixed
to 1 in VMX operation (see Section 19.8), in which case CLTS causes a general-
protection exception.

— If bit 3 in the CR0 guest/host mask is 1 and bit 3 in the CR0 read shadow is 0,
CLTS completes but does not change the contents of CR0.TS.

— If the bits in position 3 in the CR0 guest/host mask and the CR0 read shadow are
both 1, CLTS causes a VM exit (see Section 21.1.3).

• IRET. Behavior of IRET with regard to the blocking by NMI (see Table 20-3) is
determined by the setting of the “NMI exiting” VM-execution control:

— If the control is 0, IRET operates normally and unblocks NMIs.

— If the control is 1, IRET does not affect blocking by NMI.

• LMSW. An execution of LMSW that does not cause a VM exit (see Section 21.1.3)
leaves unmodified any bit in CR0 corresponding to a bit set in the CR0 guest/host
mask. It causes a general-protection exception if it attempts to set any bit to a value
not supported in VMX operation (see Section 19.8)

• MOV from CR0. The behavior of MOV from CR0 is determined by the CR0 guest/
host mask and the CR0 read shadow. For each position corresponding to a bit clear
in the CR0 guest/host mask, the destination operand is loaded with the value of the
corresponding bit in CR0. For each position corresponding to a bit set in the CR0
guest/host mask, the destination operand is loaded with the value of the corre-
sponding bit in the CR0 read shadow. Thus, if every bit is cleared in the CR0 guest/
host mask, MOV from CR0 reads normally from CR0; if every bit is set in the CR0
guest/host mask, MOV from CR0 returns the value of the CR0 read shadow.

Note that, depending on the contents of the CR0 guest/host mask and the CR0 read
shadow, bits may be set in the destination that would never be set when reading
directly from CR0.

• MOV from CR4. The behavior of MOV from CR4 is determined by the CR4 guest/
host mask and the CR4 read shadow. For each position corresponding to a bit clear
in the CR4 guest/host mask, the destination operand is loaded with the value of the
corresponding bit in CR4. For each position corresponding to a bit set in the CR4
guest/host mask, the destination operand is loaded with the value of the corre-
sponding bit in the CR4 read shadow. Thus, if every bit is cleared in the CR4 guest/
host mask, MOV from CR4 reads normally from CR4; if every bit is set in the CR4
guest/host mask, MOV from CR4 returns the value of the CR4 read shadow.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 51

Documentation Changes

Note that, depending on the contents of the CR4 guest/host mask and the CR4 read
shadow, bits may be set in the destination that would never be set when reading
directly from CR4.

• MOV from CR8. Behavior of the MOV from CR8 instruction (which can be executed
only in 64-bit mode on processors that support Intel 64 architecture) is determined
by the settings of the “CR8-store exiting” and “use TPR shadow” VM-execution
controls:

— If both controls are 0, MOV from CR8 operates normally.

— If the “CR8-store exiting” VM-execution control is 0 and the “use TPR shadow”
VM-execution control is 1, MOV from CR8 reads from the TPR shadow. Specifi-
cally, it loads bits 3:0 of its destination operand with the value of bits 7:4 of byte
128 of the page referenced by the virtual-APIC page address (see Section
20.6.7). Bits 63:4 of the destination operand are cleared.

— If the “CR8-store exiting” VM-execution control is 1, MOV from CR8 causes a
VM exit (see Section 21.1.3); the “use TPR shadow” VM-execution control is
ignored in this case.

• MOV to CR0. An execution of MOV to CR0 that does not cause a VM exit (see Section
21.1.3) leaves unmodified any bit in CR0 corresponding to a bit set in the CR0 guest/
host mask. It causes a general-protection exception if it attempts to set any bit to a
value not supported in VMX operation (see Section 19.8).

• MOV to CR4. An execution of MOV to CR4 that does not cause a VM exit (see Section
21.1.3) leaves unmodified any bit in CR4 corresponding to a bit set in the CR4 guest/
host mask. Such an execution causes a general-protection exception if it attempts to
set any bit to a value not supported in VMX operation (see Section 19.8).

• MOV to CR8. Behavior of the MOV to CR8 instruction (which can be executed only in
64-bit mode on processors that support Intel 64 architecture) is determined by the
settings of the “CR8-load exiting” and “use TPR shadow” VM-execution controls:

— If both controls are 0, MOV to CR8 operates normally.

— If the “CR8-load exiting” VM-execution control is 0 and the “use TPR shadow”
VM-execution control is 1, MOV to CR8 writes to the TPR shadow. Specifically, it
stores bits 3:0 of its source operand into bits 7:4 of byte 128 of the page
referenced by the virtual-APIC page address (see Section 20.6.7); bits 3:0 of
that byte and bytes 129-131 of that page are cleared. Such a store may cause a
VM exit to occur after it completes (see Section 21.1.3).

— If the “CR8-load exiting” VM-execution control is 1, MOV to CR8 causes a VM exit
(see Section 21.1.3); the “use TPR shadow” VM-execution control is ignored in
this case.

• RDMSR. Section 21.1.3 identifies when executions of the RDMSR instruction cause
VM exits. If an execution of RDMSR does not cause a VM exit and if RCX contains 10H
(indicating the IA32_TIME_STAMP_COUNTER MSR), the value returned by the
RDMSR instruction is determined by the setting of the “use TSC offsetting”
VM-execution control as well as the TSC offset:

— If the control is 0, RDMSR operates normally, loading EAX:EDX with the value of
the IA32_TIME_STAMP_COUNTER MSR.

— If the control is 1, RDMSR loads EAX:EDX with the sum (using signed addition) of
the value of the IA32_TIME_STAMP_COUNTER MSR and the value of the TSC
offset (interpreted as a signed value).

52 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

• RDTSC. Behavior of the RDTSC instruction is determined by the settings of the
“RDTSC exiting” and “use TSC offsetting” VM-execution controls as well as the TSC
offset:

— If both controls are 0, RDTSC operates normally.

— If the “RDTSC exiting” VM-execution control is 0 and the “use TSC offsetting”
VM-execution control is 1, RDTSC loads EAX:EDX with the sum (using signed
addition) of the value of the IA32_TIME_STAMP_COUNTER MSR and the value of
the TSC offset (interpreted as a signed value).

— If the “RDTSC exiting” VM-execution control is 1, RDTSC causes a VM exit (see
Section 21.1.3).

• SMSW. The behavior of SMSW is determined by the CR0 guest/host mask and the
CR0 read shadow. For each position corresponding to a bit clear in the CR0 guest/
host mask, the destination operand is loaded with the value of the corresponding bit
in CR0. For each position corresponding to a bit set in the CR0 guest/host mask, the
destination operand is loaded with the value of the corresponding bit in the CR0 read
shadow. Thus, if every bit is cleared in the CR0 guest/host mask, MOV from CR0
reads normally from CR0; if every bit is set in the CR0 guest/host mask, MOV from
CR0 returns the value of the CR0 read shadow.

Note the following: (1) for any memory destination or for a 16-bit register desti-
nation, only the low 16 bits of the CR0 guest/host mask and the CR0 read shadow
are used (bits 63:16 of a register destination are left unchanged); (2) for a 32-bit
register destination, only the low 32 bits of the CR0 guest/host mask and the CR0
read shadow are used (bits 63:32 of the destination are cleared); and
(3) depending on the contents of the CR0 guest/host mask and the CR0 read
shadow, bits may be set in the destination that would never be set when reading
directly from CR0.

• WRMSR. Section 21.1.3 identifies when executions of the WRMSR instruction cause
VM exits. If an execution of WRMSR causes neither a fault or a VM exit and if RCX
contains 79H (indicating IA32_BIOS_UPDT_TRIG MSR); no microcode update is
loaded and control passes to the next instruction. This implies that microcode
updates cannot be loaded in VMX non-root operation.

34. Information on ENTER instruction updated
In Chapter 3, “ENTER—Make Stack Frame for Procedure Parameters”, of the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 2A, information has been
added. The section is reproduced below. See the change bars.

ENTER—Make Stack Frame for Procedure Parameters
Opcode Instruction 64-

Bit
Mode

Compat/
Leg Mode

Description

C8 iw 00 ENTER imm16, 0 Valid Valid Create a stack frame for a
procedure.

C8 iw 01 ENTER imm16,1 Valid Valid Create a nested stack frame for a
procedure.

C8 iw ib ENTER imm16,
imm8

Valid Valid Create a nested stack frame for a
procedure.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 53

Documentation Changes

Description

Creates a stack frame for a procedure. The first operand (size operand) specifies the size
of the stack frame (that is, the number of bytes of dynamic storage allocated on the
stack for the procedure). The second operand (nesting level operand) gives the lexical
nesting level (0 to 31) of the procedure. The nesting level determines the number of
stack frame pointers that are copied into the “display area” of the new stack frame from
the preceding frame. Both of these operands are immediate values.

The stack-size attribute determines whether the BP (16 bits), EBP (32 bits), or RBP (64
bits) register specifies the current frame pointer and whether SP (16 bits), ESP (32 bits),
or RSP (64 bits) specifies the stack pointer. In 64-bit mode, stack-size attribute is always
64-bits.

The ENTER and companion LEAVE instructions are provided to support block structured
languages. The ENTER instruction (when used) is typically the first instruction in a
procedure and is used to set up a new stack frame for a procedure. The LEAVE
instruction is then used at the end of the procedure (just before the RET instruction) to
release the stack frame.

If the nesting level is 0, the processor pushes the frame pointer from the BP/EBP/RBP
register onto the stack, copies the current stack pointer from the SP/ESP/RSP register
into the BP/EBP/RBP register, and loads the SP/ESP/RSP register with the current stack-
pointer value minus the value in the size operand. For nesting levels of 1 or greater, the
processor pushes additional frame pointers on the stack before adjusting the stack
pointer. These additional frame pointers provide the called procedure with access points
to other nested frames on the stack. See “Procedure Calls for Block-Structured
Languages” in Chapter 6 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, for more information about the actions of the ENTER instruction.

The ENTER instruction causes a page fault whenever a write using the final value of the
stack pointer (within the current stack segment) would do so.

In 64-bit mode, default operation size is 64 bits; 32-bit operation size cannot be
encoded.

Operation

NestingLevel ← NestingLevel MOD 32
IF 64-Bit Mode (StackSize = 64)

THEN
Push(RBP);
FrameTemp ← RSP;

ELSE IF StackSize = 32
THEN

Push(EBP);
FrameTemp ← ESP; FI;

ELSE (* StackSize = 16 *)
Push(BP);
FrameTemp ← SP;

FI;
IF NestingLevel = 0

THEN GOTO CONTINUE;
FI;

IF (NestingLevel > 1)
THEN FOR i ← 1 to (NestingLevel - 1)

DO

54 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

IF 64-Bit Mode (StackSize = 64)
THEN

RBP ← RBP - 8;
Push([RBP]); (* Quadword push *)

ELSE IF OperandSize = 32
THEN

IF StackSize = 32
EBP ← EBP - 4;
Push([EBP]); (* Doubleword push *)

ELSE (* StackSize = 16 *)
BP ← BP - 4;
Push([BP]); (* Doubleword push *)

FI;
FI;

ELSE (* OperandSize = 16 *)
IF StackSize = 32

THEN
EBP ← EBP - 2;
Push([EBP]); (* Word push *)

ELSE (* StackSize = 16 *)
BP ← BP - 2;
Push([BP]); (* Word push *)

FI;
FI;

OD;
FI;

IF 64-Bit Mode (StackSize = 64)
THEN

Push(FrameTemp); (* Quadword push *)
ELSE IF OperandSize = 32

THEN
Push(FrameTemp); FI; (* Doubleword push *)

ELSE (* OperandSize = 16 *)
Push(FrameTemp); (* Word push *)

FI;

CONTINUE:
IF 64-Bit Mode (StackSize = 64)

THEN
RBP ← FrameTemp;
RSP ← RSP − Size;

ELSE IF StackSize = 32
THEN

EBP ← FrameTemp;
ESP ← ESP − Size; FI;

ELSE (* StackSize = 16 *)
BP ← FrameTemp;
SP ← SP − Size;

FI;

END;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 55

Documentation Changes

Flags Affected

None.

Protected Mode Exceptions
#SS(0) If the new value of the SP or ESP register is outside the stack

segment limit.

#PF(fault-code) If a page fault occurs or if a write using the final value of the stack
pointer (within the current stack segment) would cause a page
fault.

Real-Address Mode Exceptions
#SS(0) If the new value of the SP or ESP register is outside the stack

segment limit.

Virtual-8086 Mode Exceptions
#SS(0) If the new value of the SP or ESP register is outside the stack

segment limit.

#PF(fault-code) If a page fault occurs or if a write using the final value of the stack
pointer (within the current stack segment) would cause a page
fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#SS(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs or if a write using the final value of the stack
pointer (within the current stack segment) would cause a page
fault.

35. Microcode update sections improved
In Sections 9.11.3 through 9.11.4 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A, the information has been restructured and the
supporting pseudocode has been improved. The applicable sections are reproduced
below.

9.11.3 Processor Identification
Each microcode update is designed to for a specific processor or set of processors. To
determine the correct microcode update to load, software must ensure that one of the
processor signatures embedded in the microcode update matches the 32-bit processor
signature returned by the CPUID instruction. Software should not attempt to load a
microsoft update where the signatures do not match.

9.11.4 Platform Identification
In addition to verifying the processor signature, the intended processor platform type
must be determined to properly target the microcode update. The intended processor

56 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

platform type is determined by reading the IA32_PLATFORM_ID register, (MSR 17H).
This 64-bit register must be read using the RDMSR instruction.

The three platform ID bits, when read as a binary coded decimal (BCD) number, indicate
the bit position in the microcode update header’s processor flags field associated with
the installed processor. The processor flags in the 48-byte header and the processor
flags field associated with the extended processor signature structures may have
multiple bits set. Each set bit represents a different platform ID that the update
supports.

Register Name: IA32_PLATFORM_ID

MSR Address: 017H
Access: Read Only

IA32_PLATFORM_ID is a 64-bit register accessed only when referenced as a Qword through a RDMSR
instruction.

Example 9-5 shows how to check for a processor signature and platform flags match
between the processor and microcode update. The example assumes microcode
authentication has been performed prior to attempting to load the microcode update and
does not consider the revision of the microcode update.

In most cases, it is not desirable to load a microcode update with a microcode revision
that is less than or equal to the processor’s current microcode revision.

Example 9-5. Processor Signature and Platform Flags Comparison

ProcessorSignature ← CPUID.1:EAX

Flag ← 1 << IA32_PLATFORM_ID[52:50]

uCodeMatch ← FALSE

If (Update.HeaderVersion == 00000001H)

{

//

// Check for Processor Signature and Platform Id match

//

Table 9-10. Processor Flags

Bit Descriptions
63:53 Reserved
52:50 Platform Id Bits (RO). The field gives information concerning the intended platform for

the processor. See also Table 9-7.

52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

49:0 Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 57

Documentation Changes

If (ProcessorSignature == Update.ProcessorSignature &&

Flag & Update.ProcessorFlags)

{

Load Update

uCodeMatch = TRUE

}

//

// If the Processor Signature and Platform Id did not match,

// check for the presence of an Extended Signature Table

//

Else If (Update.TotalSize > (Update.DataSize + 48))

{

//

// Assume the Data Size has been used to calculate the

// location of the Extended Signature Table

// Update.ProcessorSignature[0] field

//

For (N ← 0; N < Update.ExtendedSignatureCount; N++)
{

//

// Check Extended Signature Table Processor Signature

// and Platform Id for a match.

//

If (ProcessorSignature == Update.ProcessorSignature[N] &&

Flag & Update.ProcessorFlags[N])

{

Load Update

uCodeMatch = TRUE

Break

}

}

}

//

// The microcode was not a match for the system,

// a microcode update did not occur

//

If (!uCodeMatch)

{

Fail

}

}

36. Incorrect calls to CPUID.1:ECX[bit 9] have been corrected
In Appendix B of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B, incorrect calls to CPUID.1:ECX[bit 9] have been corrected to
CPUID.1:ECX[bit 9]. See the table segments reproduced below. Only impacted table
rows are reproduced.

58 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

Register
Address Register Name

Fields and Flags

Model
Avail-
ability

Shared/
Unique Bit Description Hex Dec

...

9BH 155 IA32_SMM_MONITOR_CT
L

3, 4, 6 Unique SMM Monitor Configuration (R/W).
(If CPUID.1:ECX[bit 5]=1 and in SMM)

...

480H 1152 IA32_VMX_BASIC 3, 4, 6 Unique BASE Register of VMX Capability
Reporting (R/O).
(If CPUID.1:ECX[bit 5]=1)

481H 1153 IA32_VMX_PINBASED_CT
LS

3, 4, 6 Unique Capability Reporting Register of Pin-
based VMCS Controls(R/O).
(If CPUID.1:ECX[bit 5]=1)

482H 1154 IA32_VMX_
PROCBASED_CTLS

3, 4, 6 Unique Capability Reporting Register of
Processor-based VMCS Controls(R/O).
(If CPUID.1:ECX[bit 5]=1)

483H 1155 IA32_VMX_EXIT_CTLS 3, 4, 6 Unique Capability Reporting Register of VM-
exit VMCS Controls(R/O).
(If CPUID.1:ECX[bit 5]=1)

484H 1156 IA32_VMX_ENTRY_
CTLS

3, 4, 6 Unique Capability Reporting Register of VM-
entry VMCS Controls(R/O).
(If CPUID.1:ECX[bit 5]=1)

485H 1157 IA32_VMX_MISC 3, 4, 6 Unique Capability Reporting Register of
Miscellaneous VMCS Controls(R/O).
(If CPUID.1:ECX[bit 5]=1)

486H 1158 IA32_VMX_CR0_
FIXED0

3, 4, 6 Unique Capability Reporting Register of CR0
Bits Fixed to Zero (R/O).
(If CPUID.1:ECX[bit 5]=1)

487H 1159 IA32_VMX_CR0_
FIXED1

3, 4, 6 Unique Capability Reporting Register of CR0
Bits Fixed to One (R/O).
(If CPUID.1:ECX[bit 5]=1)

488H 1160 IA32_VMX_CR4_
FIXED0

3, 4, 6 Unique Capability Reporting Register of CR4
Bits Fixed to Zero (R/O).
(If CPUID.1:ECX[bit 5]=1)

489H 1161 IA32_VMX_CR4_
FIXED1

3, 4, 6 Unique Capability Reporting Register of CR4
Bits Fixed to One(R/O).
(If CPUID.1:ECX[bit 5]=1)

48AH 1162 IA32_VMX_VMCS_
ENUM

3, 4, 6 Unique Capability Reporting Register of VMCS
Field Enumeration (R/O).
(If CPUID.1:ECX[bit 5]=1)

	Preface
	Affected Documents/Related Documents
	Nomenclature

	Summary Table of Changes
	Codes Used in Summary Table
	Summary Table of Documentation Changes (Sheet 1 of 2)

	Documentation Changes
	7.7. Detecting Hardware Multi-Threading Support and Topology
	9.11.1 Microcode Update
	14.7. Interpreting the MCA Error Codes
	14.7.1 Simple Error Codes
	14.7.2 Compound Error Codes
	10.3.3 Code Fetches in Uncacheable Memory
	27.3.1 Debug Exceptions
	7.5.5 Identifying Logical Processors in an MP System

	2.5 Control Registers
	20.6.1 Pin-Based VM-Execution Controls
	20.6.2 Processor-Based VM-Execution Controls

	2.5 Control Registers
	4.11.1 Page Type
	3.3.1 Physical Address Space for Processors with Intel® 64 Technology

	21.3 Changes to Instruction Behavior in VMX Non- Root Operation
	9.11.3 Processor Identification
	9.11.4 Platform Identification

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts false
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /Symbol
]
 /NeverEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for reliable viewing and printing of business documents. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

