
Document Number: 252046-022

Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Documentation Changes

August 2008

Notice: The Intel® 64 and IA-32 architectures may contain design defects or errors known as errata
that may cause the product to deviate from published specifications. Current characterized errata are
documented in the specification updates.

2 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Legal Lines and DisclaimersINFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,

BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS

PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER,

AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING

LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY

PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or

life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device

drivers and applications enabled for Intel® 64 architecture. Performance will vary depending on your hardware and software

configurations. Consult with your system vendor for more information.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel

reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future

changes to them.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

I2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I2C bus/protocol and was developed

by Intel. Implementations of the I2C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and

North American Philips Corporation.

Intel, Pentium, Intel Core, Intel Xeon, Intel 64, Intel NetBurst, and the Intel logo, and the Intel logo are trademarks of Intel

Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2002–2008, Intel Corporation. All rights reserved..

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 3

Contents

Revision History . 4

Preface . 5

Summary Tables of Changes . 6

Documentation Changes. 7

Revision History

4 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Revision History

Revision Description Date

-001 • Initial release November 2002

-002
• Added 1-10 Documentation Changes.
• Removed old Documentation Changes items that already have been

incorporated in the published Software Developer’s manual
December 2002

-003

• Added 9 -17 Documentation Changes.
• Removed Documentation Change #6 - References to bits Gen and Len

Deleted.
• Removed Documentation Change #4 - VIF Information Added to CLI

Discussion

February 2003

-004
• Removed Documentation changes 1-17.
• Added Documentation changes 1-24. June 2003

-005
• Removed Documentation Changes 1-24.
• Added Documentation Changes 1-15.

September 2003

-006 • Added Documentation Changes 16- 34. November 2003

-007
• Updated Documentation changes 14, 16, 17, and 28.
• Added Documentation Changes 35-45.

January 2004

-008
• Removed Documentation Changes 1-45.
• Added Documentation Changes 1-5.

March 2004

-009 • Added Documentation Changes 7-27. May 2004

-010
• Removed Documentation Changes 1-27.
• Added Documentation Changes 1.

August 2004

-011 • Added Documentation Changes 2-28. November 2004

-012
• Removed Documentation Changes 1-28.
• Added Documentation Changes 1-16.

March 2005

-013
• Updated title.
• There are no Documentation Changes for this revision of the

document.
July 2005

-014 • Added Documentation Changes 1-21. September 2005

-015
• Removed Documentation Changes 1-21.
• Added Documentation Changes 1-20.

March 9, 2006

-016 • Added Documentation changes 21-23. March 27, 2006

-017
• Removed Documentation Changes 1-23.
• Added Documentation Changes 1-36.

September 2006

-018 • Added Documentation Changes 37-42. October 2006

-019
• Removed Documentation Changes 1-42.
• Added Documentation Changes 1-19.

March 2007

-020 • Added Documentation Changes 20-27. May 2007

-021
• Removed Documentation Changes 1-27.
• Added Documentation Changes 1-6

November 2007

-022
• Removed Documentation Changes 1-6
• Added Documentation Changes 1-6

August 2008

Preface

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 5

Preface

This document is an update to the specifications contained in the Affected Documents
table below. This document is a compilation of device and documentation errata,
specification clarifications and changes. It is intended for hardware system
manufacturers and software developers of applications, operating systems, or tools.

Affected Documents

Nomenclature

Documentation Changes include typos, errors, or omissions from the current
published specifications. These will be incorporated in any new release of the
specification.

Document Title Document
Number/Location

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic
Architecture 253665

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A:
Instruction Set Reference, A-M 253666

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B:
Instruction Set Reference, N-Z 253667

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A:
System Programming Guide. 253668

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B:
System Programming Guide 253669

Summary Tables of Changes

6 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Summary Tables of Changes

The following table indicates documentation changes which apply to the Intel® 64 and
IA-32 architectures. This table uses the following notations:

Codes Used in Summary Tables

Change bar to left of table row indicates this erratum is either new or modified from the
previous version of the document.

Documentation Changes

No. DOCUMENTATION CHANGES

1 Extended Control Registers (Chapter 2, Vol 3A)

2 Various Updates Throughout Chapter to Reference MAXPHYADDR as an Address Width (Chapter 3, Vol 3A)

3 Page-Level Protection and Execute-Disable Bit (Chapter 4, Vol 3A)

4 Machine-Check Exceptions (Chapter 5, Vol 3A)

5 Various Updates Throughout Chapter (Chapter 7, Vol 3A)

6 Preventing Caching (Chapter 10, Vol 3A)

Documentation Changes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 7

Documentation Changes

1. Extended Control Registers (Chapter 2, Vol 3A)

Change bars show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide.

2.6 Extended Control Registers (including the
XFEATURE_ENABLED_MASK Register)

If CPUID.01H:ECX.XSAVE[bit 26] is 1, the processor supports one or more extended
control registers (XCRs). Currently, the only such register defined is XCR0, the
XFEATURE_ENABLED_MASK register. This register specifies the set of processor
states that the operating system enables on that processor, e.g. x87 FPU States, SSE
states, and other processor extended states that Intel 64 architecture may introduce in
the future. The OS programs XCR0 to reflect the features it supports.

Software can access XCR0 only if CR4.OSXSAVE[bit 18] = 1. (This bit is also readable as
CPUID.01H:ECX.OSXSAVE[bit 27].) The layout of XCR0 is architected to allow software
to use CPUID leaf function 0DH to enumerate the set of bits that the processor supports
in XCR0 (see CPUID instruction in Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2A). Each processor state (X87 FPU state, SSE state, or a future
processor extended state) is represented by a bit in XCR0. The OS can enable future
processor extended states in a forward manner by specifying the appropriate bit mask
value using the XSETBV instruction according to the results of the CPUID leaf 0DH.

With the exception of bit 63, each bit in the XFEATURE_ENABLED_MASK register (XCR0)
corresponds to a subset of the processor states. XCR0 thus provides space for up to 63

Figure 2-7. XFEATURE_ENABLED_MASK Register (XCR0)

63

x87 FPU/MMX state (must be 1)

Reserved for XCR0 bit vector expansion
Reserved / Future processor extended states

2 1 0

SSE state

Reserved (must be 0)

1

Documentation Changes

8 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

sets of processor state extensions. Bit 63 of XCR0 is reserved for future expansion and
will not represent a processor extended state.

Currently, the XFEATURE_ENABLED_MASK register (XCR0) has two processor states
defined, with up to 61 bits reserved for future processor extended states:

• XCR0.X87 (bit 0): If 1, indicates x87 FPU state (including MMX register states) is
supported in the processor. Bit 0 must be 1. An attempt to write 0 causes a #GP
exception.

• XCR0.SSE (bit 1): If 1, indicates MXCSR and XMM registers (XMM0-XMM15 in 64-bit
mode, otherwise XMM0-XMM7) are supported by XSAVE/XRESTOR in the processor.

Any attempt to set a reserved bit (as determined by the contents of EAX and EDX after
executing CPUID with EAX=0DH, ECX= 0H) in the XFEATURE_ENABLED_MASK register
for a given processor will result in a #GP exception. An attempt to write 0 to
XFEATURE_ENABLED_MASK.x87 (bit 0) will result in a #GP exception.

If a bit in the XFEATURE_ENABLED_MASK register is 1, XSAVE instruction can selectively
(in conjunction with a save mask) save a partial or full set of processor states to memory
(See XSAVE instruction in Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2B).

After reset all bits (except bit 0) in the XFEATURE_ENABLED_MASK register (XCR0) are
cleared to zero. XCR0[0] is set to 1.

2. Various Updates Throughout Chapter to Reference MAXPHYADDR as
an Address Width (Chapter 3, Vol 3A)

Change bars show changes to Chapter 3 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A: System Programming Guide.

--

3.6.1 Paging Options
Paging is controlled by three flags in the processor’s control registers:

• PG (paging) flag. Bit 31 of CR0 (available in all IA-32 processors beginning with the
Intel386 processor).

• PSE (page size extensions) flag. Bit 4 of CR4 (introduced in the Pentium
processor).

• PAE (physical address extension) flag. Bit 5 of CR4 (introduced in the Pentium
Pro processors).

The PG flag enables the page-translation mechanism. The operating system or executive
usually sets this flag during processor initialization. The PG flag must be set if the
processor’s page-translation mechanism is to be used to implement a demand-paged
virtual memory system or if the operating system is designed to run more than one
program (or task) in virtual-8086 mode.

The PSE flag enables large page sizes: 4-MByte pages or 2-MByte pages (when the PAE
flag is set). When the PSE flag is clear, the more common page length of 4 KBytes is
used. See Section 3.7.2, “Linear Address Translation (4-MByte Pages)”, Section 3.8.3,
“Linear Address Translation With PAE Enabled (2-MByte Pages)”, and Section 3.9,
“36-Bit Physical Addressing Using the PSE-36 Paging Mechanism” for more information
about the use of the PSE flag.

Documentation Changes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

The PAE flag provides a method of extending physical addresses to an extended physical
address width, MAXPHYADDR.

NOTE

The MAXPHYADDR is 36 bits for processors that do not support CPUID
leaf 80000008H, or indicated by CPUID.80000008H:EAX[bits 7:0] for
processors that support CPUID leaf 80000008H.

This physical address extension can only be used when paging is enabled. It relies on an
additional page directory pointer table that is used along with page directories and page
tables to reference physical addresses above FFFFFFFFH. See Section 3.8, “36-Bit Phys-
ical Addressing Using the PAE Paging Mechanism”, for more information about extending
physical addresses using the PAE flag.

When PAE flag is enabled for Intel 64 processors, the PAE mechanism is enhanced to
support more than 36 bits of physical addressing (if the processor’s implementation
supports more than 36 bits of physical addressing). This applies to IA-32e mode address
translation (see Section 3.10, “PAE-Enabled Paging in IA-32e Mode”) and enhanced
legacy PAE-enabled address translation (see Section 3.8.1, “Enhanced Legacy PAE
Paging”).

The 36-bit page size extension (PSE-36) feature provides an alternate method of
extending physical addressing to 36 bits. This paging mechanism uses the page size
extension mode (enabled with the PSE flag) and modified page directory entries to refer-
ence physical addresses above FFFFFFFFH. The PSE-36 feature flag (bit 17 in the EDX
register when the CPUID instruction is executed with a source operand of 1) indicates
the availability of this addressing mechanism. See Section 3.9, “36-Bit Physical
Addressing Using the PSE-36 Paging Mechanism”, for more information about the
PSE-36 physical address extension and page size extension mechanism.

...

3.7 Page Translation using 32-Bit Physical Addressing
The following sections describe the IA-32 architecture’s page translation mechanism
when using 32-bit physical addresses and a maximum physical address space of
4 GBytes. The 32-bit physical addressing described applies to IA-32 processors or when
the following situations are all true:

• The processor supports Intel 64 architecture but IA-32e mode is not active.
• PAE or PSE mechanism is not active.

Section 3.8, “36-Bit Physical Addressing Using the PAE Paging Mechanism” and Section
3.9, “36-Bit Physical Addressing Using the PSE-36 Paging Mechanism” describe exten-
sions to this page translation mechanism to support 36-bit physical addresses and a
maximum physical address space of 64 GBytes.

Documentation Changes

10 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

...

3.7.6 Page-Directory and Page-Table Entries
Figure 3-14 shows the format for the page-directory and page-table entries when
4-KByte pages and 32-bit physical addresses are being used. Figure 3-15 shows the
format for the page-directory entries when 4-MByte pages and 32-bit physical
addresses are being used. The functions of the flags and fields in the entries in Figures
3-14 and 3-15 are as follows:

Page base address, bits 12 through 32
(Page-table entries for 4-KByte pages) — Specifies the physical address
of the first byte of a 4-KByte page. The bits in this field are interpreted as
the 20 most-significant bits of the physical address, which forces pages to
be aligned on 4-KByte boundaries.

Table 3-3. Page Sizes and Physical Address Sizes
PG Flag,

CR0
PAE Flag,

CR4
PSE Flag,

CR4
PS Flag,

PDE
PSE-36 CPUID
Feature Flag Page Size

Physical Address
Size

0 X X X X — Paging Disabled

1 0 0 X X 4 KBytes 32 Bits

1 0 1 0 X 4 KBytes 32 Bits

1 0 1 1 0 4 MBytes 32 Bits

1 0 1 1 1 4 MBytes 36 Bits

1 1 X 0 X 4 KBytes MAXPHYADDRa

NOTES:
a. MAXPHYADDR is 36-bits on processors that do not support CPUID.80000008H leaf. On proces-

sors that do support CPUID.80000008H, MAXPHYADDR is implementation-specific and indicated
by CPUID.80000008H:EAX[bits 7:0].

1 1 X 1 X 2 MBytes MAXPHYADDR1

Documentation Changes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 11

(Page-directory entries for 4-KByte page tables) — Specifies the physical
address of the first byte of a page table. The bits in this field are inter-
preted as the 20 most-significant bits of the physical address, which
forces page tables to be aligned on 4-KByte boundaries.

(Page-directory entries for 4-MByte pages) — Specifies the physical
address of the first byte of a 4-MByte page. Only bits 22 through 31 of
this field are used (and bits 12 through 21 are reserved and must be set
to 0, for IA-32 processors through the Pentium II processor). The base
address bits are interpreted as the 10 most-significant bits of the physical
address, which forces 4-MByte pages to be aligned on 4-MByte bound-
aries.

Figure 3-14. Format of Page-Directory and Page-Table Entries for 4-KByte Pages
and 32-Bit Physical Addresses

31

Available for system programmer’s use
Global page (Ignored)
Page size (0 indicates 4 KBytes)
Available

12 11 9 8 7 6 5 4 3 2 1 0

P
S

P
CA

Accessed
Cache disabled
Write-through
User/Supervisor
Read/Write
Present

D
P

P
W
T

U
/
S

R
/

W
GAvailPage-Table Base Address

31

Available for system programmer’s use
Global Page
Page Table Attribute Index
Dirty

12 11 9 8 7 6 5 4 3 2 1 0

P
CAD

Accessed
Cache Disabled
Write-Through
User/Supervisor
Read/Write
Present

D
P

P
W
T

U
/
S

R
/

W
AvailPage Base Address

Page-Directory Entry (4-KByte Page Table)

Page-Table Entry (4-KByte Page)

P
A
T

G

A
V
L

Documentation Changes

12 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Present (P) flag, bit 0
Indicates whether the page or page table being pointed to by the entry is
currently loaded in physical memory. When the flag is set, the page is in
physical memory and address translation is carried out. When the flag is
clear, the page is not in memory and, if the processor attempts to access
the page, it generates a page-fault exception (#PF).

The processor does not set or clear this flag; it is up to the operating
system or executive to maintain the state of the flag.

If the processor generates a page-fault exception, the operating system
generally needs to carry out the following operations:

1. Copy the page from disk storage into physical memory.

2. Load the page address into the page-table or page-directory entry
and set its present flag. Other flags, such as the dirty and accessed
flags, may also be set at this time.

3. Invalidate the current page-table entry in the TLB (see Section 3.12,
“Translation Lookaside Buffers (TLBs)”, for a discussion of TLBs and
how to invalidate them).

4. Return from the page-fault handler to restart the interrupted
program (or task).

Read/write (R/W) flag, bit 1
Specifies the read-write privileges for a page or group of pages (in the
case of a page-directory entry that points to a page table). When this flag
is clear, the page is read only; when the flag is set, the page can be read
and written into. This flag interacts with the U/S flag and the WP flag in
register CR0. See Section 4.11, “Page-Level Protection”, and Table 4-3
for a detailed discussion of the use of these flags.

User/supervisor (U/S) flag, bit 2
Specifies the user-supervisor privileges for a page or group of pages (in
the case of a page-directory entry that points to a page table). When this
flag is clear, the page is assigned the supervisor privilege level; when the
flag is set, the page is assigned the user privilege level. This flag interacts

Figure 3-15. Format of Page-Directory Entries for 4-MByte Pages and 32-Bit Addresses

31

Available for system programmer’s use
Global page
Page size (1 indicates 4 MBytes)
Dirty

12 11 9 8 7 6 5 4 3 2 1 0

P
S

P
CAD

Accessed
Cache disabled
Write-through
User/Supervisor
Read/Write
Present

D
P

P
W
T

U
/
S

R
/

W
GAvail.Page Base Address

Page-Directory Entry (4-MByte Page)
22 21

Reserved

Page Table Attribute Index

P
A
T

13

Documentation Changes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 13

with the R/W flag and the WP flag in register CR0. See Section 4.11,
“Page-Level Protection”, and Table 4-3 for a detail discussion of the use of
these flags.

Page-level write-through (PWT) flag, bit 3
Controls the write-through or write-back caching policy of individual
pages or page tables. When the PWT flag is set, write-through caching is
enabled for the associated page or page table; when the flag is clear,
write-back caching is enabled for the associated page or page table. The
processor ignores this flag if the CD (cache disable) flag in CR0 is set. See
Section 10.5, “Cache Control”, for more information about the use of this
flag. See Section 2.5, “Control Registers”, for a description of a
companion PWT flag in control register CR3.

Page-level cache disable (PCD) flag, bit 4
Controls the caching of individual pages or page tables. When the PCD
flag is set, caching of the associated page or page table is prevented;
when the flag is clear, the page or page table can be cached. This flag
permits caching to be disabled for pages that contain memory-mapped
I/O ports or that do not provide a performance benefit when cached. The
processor ignores this flag (assumes it is set) if the CD (cache disable)
flag in CR0 is set. See Chapter 10, “Memory Cache Control”, for more
information about the use of this flag. See Section 2.5, “Control Regis-
ters”, for a description of a companion PCD flag in control register CR3.

Accessed (A) flag, bit 5
Indicates whether a page or page table has been accessed (read from or
written to) when set. Memory management software typically clears this
flag when a page or page table is initially loaded into physical memory.
The processor then sets this flag the first time a page or page table is
accessed.

This flag is a “sticky” flag, meaning that once set, the processor does not
implicitly clear it. Only software can clear this flag. The accessed and dirty
flags are provided for use by memory management software to manage
the transfer of pages and page tables into and out of physical memory.

NOTE: The accesses used by the processor to set this bit may or may not
be exposed to the processor’s Self-Modifying Code detection logic. If the
processor is executing code from the same memory area that is being
used for page table structures, the setting of the bit may or may not
result in an immediate change to the executing code stream.

Dirty (D) flag, bit 6
Indicates whether a page has been written to when set. (This flag is not
used in page-directory entries that point to page tables.) Memory
management software typically clears this flag when a page is initially
loaded into physical memory. The processor then sets this flag the first
time a page is accessed for a write operation.

This flag is “sticky,” meaning that once set, the processor does not implic-
itly clear it. Only software can clear this flag. The dirty and accessed flags
are provided for use by memory management software to manage the
transfer of pages and page tables into and out of physical memory.

NOTE: The accesses used by the processor to set this bit may or may not
be exposed to the processor’s Self-Modifying Code detection logic. If the
processor is executing code from the same memory area that is being

Documentation Changes

14 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

used for page table structures, the setting of the bit may or may not
result in an immediate change to the executing code stream.

Page size (PS) flag, bit 7 page-directory entries for 4-KByte pages
Determines the page size. When this flag is clear, the page size is 4
KBytes and the page-directory entry points to a page table. When the flag
is set, the page size is 4 MBytes for normal 32-bit addressing (and 2
MBytes if extended physical addressing is enabled) and the page-direc-
tory entry points to a page. If the page-directory entry points to a page
table, all the pages associated with that page table will be 4-KByte pages.

Page attribute table index (PAT) flag, bit 7 in page-table entries for 4-KByte
pages and bit 12 in page-directory entries for 4-MByte pages
(Introduced in the Pentium III processor) — Selects PAT entry. For proces-
sors that support the page attribute table (PAT), this flag is used along
with the PCD and PWT flags to select an entry in the PAT, which in turn
selects the memory type for the page (see Section 10.12, “Page Attribute
Table (PAT)”). For processors that do not support the PAT, this bit is
reserved and should be set to 0.

Global (G) flag, bit 8
(Introduced in the Pentium Pro processor) — Indicates a global page
when set. When a page is marked global and the page global enable
(PGE) flag in register CR4 is set, the page-table or page-directory entry
for the page is not invalidated in the TLB when register CR3 is loaded or
a task switch occurs. This flag is provided to prevent frequently used
pages (such as pages that contain kernel or other operating system or
executive code) from being flushed from the TLB. Only software can set
or clear this flag. For page-directory entries that point to page tables, this
flag is ignored and the global characteristics of a page are set in the
page-table entries. See Section 3.12, “Translation Lookaside Buffers
(TLBs)”, for more information about the use of this flag. (This bit is
reserved in Pentium and earlier IA-32 processors.)

Reserved and available-to-software bits
For all IA-32 processors. Bits 9, 10, and 11 are available for use by soft-
ware. (When the present bit is clear, bits 1 through 31 are available to
software, see Figure 3-16.) In a page-directory entry that points to a
page table, bit 6 is reserved and should be set to 0. When the PSE and
PAE flags in control register CR4 are set, the processor generates a page
fault if reserved bits are not set to 0.

For Pentium II and earlier processors. Bit 7 in a page-table entry is
reserved and should be set to 0. For a page-directory entry for a 4-MByte
page, bits 12 through 21 are reserved and must be set to 0.

For Pentium III and later processors. For a page-directory entry for a 4-MByte
page, bits 13 through 21 are reserved and must be set to 0.

...

Documentation Changes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 15

3.8 36-BIT PHYSICAL ADDRESSING USING THE PAE PAGING
MECHANISM
The PAE paging mechanism and support for 36-bit physical addressing were introduced
into the IA-32 architecture in the Pentium Pro processors. Implementation of this feature
in an IA-32 processor is indicated with CPUID feature flag PAE (bit 6 in the EDX register
when the source operand for the CPUID instruction is 2). The physical address extension
(PAE) flag in register CR4 enables the PAE mechanism and extends physical addresses
from 32 bits to 36 bits (or to MAXPHYADDR bits). Here, the processor provides additional
address line pins (4 for 36-bit physical addressing) to accommodate the additional
address bits. To use this option, the following flags must be set:

• PG flag (bit 31) in control register CR0—Enables paging

• PAE flag (bit 5) in control register CR4 are set—Enables the PAE paging mechanism.

When the PAE paging mechanism is enabled, the processor supports two sizes of pages:
4-KByte and 2-MByte. As with 32-bit addressing, both page sizes can be addressed
within the same set of paging tables (that is, a page-directory entry can point to either a
2-MByte page or a page table that in turn points to 4-KByte pages). To support extended
physical addresses, the following changes are made to the paging data structures:

• The paging table entries are increased to 64 bits to accommodate 36-bit base
physical addresses. Each 4-KByte page directory and page table can thus have up to
512 entries.

• A new table, called the page-directory-pointer table, is added to the linear-address
translation hierarchy. This table has 4 entries of 64-bits each, and it lies above the
page directory in the hierarchy. With the physical address extension mechanism
enabled, the processor supports up to 4 page directories.

• The 20-bit page-directory base address field in register CR3 (PDBR) is replaced with
a 27-bit page-directory-pointer-table base address field. The updated field provides
the 27 most-significant bits of the physical address of the first byte of the
page-directory pointer table (forcing the table to be located on a 32-byte boundary).

Since CR3 now contains the page-directory-pointer-table base address, it can be
referred to as the page-directory-pointer-table register (PDPTR). See Figure 3-17.

• Linear address translation is changed to allow mapping 32-bit linear addresses into
the larger physical address space.

...

Figure 3-17. Register CR3 Format When the Physical Address Extension is Enabled

31 0

0Page-Directory-Pointer-Table Base Address
P
C
D

P
W
T

00

Documentation Changes

16 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

3.8.4 Accessing the Full Extended Physical Address Space With the
Extended Page-Table Structure
The page-table structure described in the previous two sections allows up to
4 GBytes of the extended physical address space to be addressed at one time. Addi-
tional 4-GByte sections of physical memory can be addressed in either of two way:

• Change the pointer in register CR3 to point to another page-directory-pointer table,
which in turn points to another set of page directories and page tables.

• Change entries in the page-directory-pointer table to point to other page directories,
which in turn point to other sets of page tables.

3.8.5 Page-Directory and Page-Table Entries With Extended Addressing
Enabled
Figure 3-20 shows the format for the page-directory-pointer-table, page-directory,
and page-table entries when 4-KByte pages and extended physical addresses are
being used. Figure shows the format for the page-directory-pointer-table and
page-directory entries when 2-MByte pages and extended physical addresses are being
used. The functions of the flags in these entries are the same as described in Section
3.7.6, “Page-Directory and Page-Table Entries”. The major differences in these entries
are as follows:

• A page-directory-pointer-table entry is added.

• The size of the entries are increased from 32 bits to 64 bits.

• The maximum number of entries in a page directory or page table is 512.

• The base physical address field in each entry is extended to 24 bits for 36-bit
physical addressing (or extended to MAXPHYADDR-12 bits if MAXPHYADDR is
different than 36).

NOTE

Older IA-32 processors that implement the PAE mechanism use
uncached accesses when loading page-directory-pointer table entries.
This behavior is model specific and not architectural. More recent Intel
64 and IA-32 processors may cache page-directory-pointer table entries.

Documentation Changes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 17

Figure 3-20. Format of Page-Directory-Pointer-Table, Page-Directory, and Page-Table
Entries for 4-KByte Pages with PAE Enabled

Figure 3-21. Format of Page-Directory-Pointer-Table and Page-Directory Entries
for 2-MByte Pages with PAE Enabled

63 32

BaseReserved (set to 0)

Page-Directory-Pointer-Table Entry

31 12 11 9 8 5 4 3 2 0
P
C
D

P
W
T

AvailPage-Directory Base Address

Addr.

Res.0

63 maxphyaddr 32

BaseReserved (set to 0)

Page-Directory Entry (4-KByte Page Table)

31 12 11 9 8 7 6 5 4 3 2 1 0
P
C
D

P
P
W
T

Page-Table Base Address

Addr.

0 0 A
R
/

W

U
/
S

63 32

BaseReserved (set to 0)

Page-Table Entry (4-KByte Page)

31 12 11 9 8 7 6 5 4 3 2 1 0
P
CD
D

P
P
W
T

Page Base Address

Addr.

G A
R
/

W

U
/
S

Avail

Avail

P

1

P
A
T

A
V
L

A
V
L

67

A

maxphyaddr

maxphyaddr

63 32

BaseReserved (set to 0)

Page-Directory Entry (2-MByte Page)

31 12 11 9 8 7 6 5 4 3 2 1 0
P
CD
D

P
P
W
T

Page Base Address

Addr.

G 1 AReserved (set to 0)

21 20
R
/

W

U
/
S

63 32

BaseReserved (set to 0)

Page-Directory-Pointer-Table Entry

31 12 11 9 8 5 4 3 2 0
P
C
D

P
W
T

Avail.Page Directory Base Address

Addr.

Res.Reserved

Avail.

P

1

13
P
A
T

maxphyaddr

maxphyaddr

Documentation Changes

18 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

The base physical address in an entry specifies the following, depending on the type of
entry:

• Page-directory-pointer-table entry — the physical address of the first byte of a
4-KByte page directory.

• Page-directory entry — the physical address of the first byte of a 4-KByte page
table or a 2-MByte page.

• Page-table entry — the physical address of the first byte of a 4-KByte page.

For all table entries (except for page-directory entries that point to 2-MByte pages), the
bits in the page base address are interpreted as the 24 most-significant bits of a 36-bit
physical address, or the (MAXPHYADDR - 12) most significant bits of the extended phys-
ical address width. Thus 4-KByte page tables and pages are aligned on 4-KByte bound-
aries. When a page-directory entry points to a 2-MByte page, the base address is
interpreted as the 15 most-significant bits of a 36-bit physical address, or the (MAXPHY-
ADDR - 21) most significant bits of the extended physical address width. Thus 2-MByte
pages are aligned on 2-MByte boundaries.

The present flag (bit 0) in the page-directory-pointer-table entries can be set to 0 or 1.
If the present flag is clear, the remaining bits in the page-directory-pointer-table entry
are available to the operating system. If the present flag is set, the fields of the
page-directory-pointer-table entry are defined in Figures 3-20 for 4-KByte pages and
Figures for 2-MByte pages.

The page size (PS) flag (bit 7) in a page-directory entry determines if the entry points to
a page table or a 2-MByte page. When this flag is clear, the entry points to a page table;
when the flag is set, the entry points to a 2-MByte page. This flag allows 4-KByte and
2-MByte pages to be mixed within one set of paging tables.

Access (A) and dirty (D) flags (bits 5 and 6) are provided for table entries that point to
pages.

Bits 9, 10, and 11 in all the table entries for the physical address extension are available
for use by software. (When the present flag is clear, bits 1 through 63 are available to
software.) All bits in Figure 3-14 that are marked reserved or 0 should be set to 0 by
software and not accessed by software. When the PSE and/or PAE flags in control
register CR4 are set, the processor generates a page fault (#PF) if reserved bits in
page-directory and page-table entries are not set to 0, and it generates a
general-protection exception (#GP) if reserved bits in a page-directory-pointer-table
entry are not set to 0.

3.9 36-Bit Physical Addressing Using the PSE-36
Paging Mechanism
The PSE-36 paging mechanism provides an alternate method (from the PAE mechanism)
of extending physical memory addressing to 36 bits. This mechanism uses the page size
extension (PSE) mode and a modified page-directory table to map 4-MByte pages into a
64-GByte physical address space. The processor provides 4 additional address line pins
to accommodate the additional address bits.

The PSE-36 mechanism was introduced into the IA-32 architecture with the Pentium III
processors. The availability of this feature is indicated with the PSE-36 feature bit (bit 17
of the EDX register when the CPUID instruction is executed with a source operand of 1).

Documentation Changes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 19

As is shown in Table 3-3, the following flags must be set or cleared to enable the PSE-36
paging mechanism:

• PSE-36 CPUID feature flag — When set, it indicates the availability of the PSE-36
paging mechanism on the IA-32 processor on which the CPUID instruction is
executed.

• PG flag (bit 31) in register CR0 — Set to 1 to enable paging.

• PAE flag (bit 5) in control register CR4 — Clear to 0 to disable the PAE paging
mechanism.

• PSE flag (bit 4) in control register CR4 and the PS flag in PDE — Set to 1 to
enable the page size extension for 4-MByte pages.

• Or the PSE flag (bit 4) in control register CR4 — Set to 1 and the PS flag (bit 7)
in PDE— Set to 0 to enable 4-KByte pages with 32-bit addressing (below 4 GBytes).

Figure 3-22 shows how the expanded page directory entry can be used to map a 32-bit
linear address to a 36-bit physical address. Here, the linear address is divided into two
sections:

• Page directory entry — Bits 22 through 35 provide an offset to an entry in the page
directory. The selected entry provides the 14 most significant bits of a 36-bit
address, which locates the base physical address of a 4-MByte page.

• Page offset — Bits 0 through 21 provides an offset to a physical address in the
page.

This paging method can be used to map up to 1024 pages into a 64-GByte physical
address space.

Figure shows the format for the page-directory entries when 4-MByte pages and
36-bit physical addresses are being used. Section 3.7.6, “Page-Directory and Page-Table
Entries” describes the functions of the flags and fields in bits 0 through 11.

Figure 3-22. Linear Address Translation (4-MByte Pages)

0
Directory Offset

Page Directory

Directory Entry

CR3 (PDBR)

4-MByte Page

Physical Address

31 2122
Linear Address

1024 PDE = 1024 Pages

10

22

32*

*32 bits aligned onto a 4-KByte boundary.

14

Documentation Changes

20 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

3.10 PAE-ENABLED PAGING IN IA-32E MODE
Intel 64 architecture expands physical address extension (PAE) paging structures to
potentially support mapping a 64-bit linear address to a 52-bit physical address. In the
first implementation of Intel 64 architecture, PAE paging structures support translation
of a 48-bit linear address into a 40-bit physical address. Other implementations may
support different physical address sizes. The physical address width, MAXPHYADDR, is
reported by CPUID.80000008H:EAX[bits 7:0].

When IA-32e mode is enabled, linear address to physical address translation is different
than in PAE-enabled protected mode. Address translation from a linear address to a
physical address uses up to four levels of paging data structures. A new page mapping
table, the page map level 4 table (PML4 table), is added on top of the page director
pointer table.

Prior to activating IA-32e mode, PAE must be enabled by setting CR4.PAE = 1. PAE
expands the size of page-directory entries (PDE) and page-table entries (PTE) from 32
bits to 64 bits. This change is made to support physical-address sizes of greater than 32
bits. An attempt to activate IA-32e mode prior to enabling PAE results in a
general-protection exception, #GP.

PML4 tables are used in page translation only in IA-32e mode. They are not used when
IA-32e mode is disabled, whether or not PAE is enabled. The existing page-directory
pointer table is expanded to 512 eight-byte entries from four entries. As a result, nine
bits of the linear address are used to index into a PDP table rather than two bits. The size
of the page-directory entry (PDE) table and page-table entry (PTE) table remains 512
eight-byte entries, each indexed by nine linear-address bits. The total of linear-address
index bits into the collection of paging data structures (PML4 + PDP + PDE + PTE + page
offset) becomes 48. The method for translating the high-order 16 linear-address bits
into a physical address is currently reserved.

Figure 3-23. Format of Page-Directory Entries for 4-MByte Pages and
36-Bit Physical Addresses

31

Available for system programmer’s use
Global page
Page size (must be set to 1)
Dirty

12 11 9 8 7 6 5 4 3 2 1 0

P
S

P
CAD

Accessed
Cache disabled
Write-through
User/Supervisor
Read/Write
Present

D
P

P
W
T

U
/
S

R
/

W
GAvail.

Page Base Address

Page-Directory Entry (4-MByte Page)
22 21

Reserved

1316

(Bits 22 Through 31)

Page Base Address (Bits 32 Through 35)
Page Attribute Table Index

17

P
A
T

Documentation Changes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 21

The PS flag in the page directory entry (PDE.PS) selects between 4-KByte and 2-MByte
page sizes. Because PDE.PS is used to control large page selection, the CR4.PSE bit is
ignored.

...

3.10.3 Enhanced Paging Data Structures
Figure shows the format for the PML4 table, page-directory-pointer table,
page-directory and page-table entries when 4-KByte pages are used in IA-32e mode.
Figure 3-27 shows the format for the PML4 table, the page-directory-pointer table
and page-directory entries when 2-MByte pages are used in IA-32e mode.

Except for the PML4 table; enhanced formats of page-directory-pointer table,
page-directory, and page-table entries are also used in enhanced legacy PAE-enabled
paging on processors that support Intel 64 architecture (see Section 3.8.1,
“Enhanced Legacy PAE Paging”).

Figure 3-26. Format of Paging Structure Entries for 4-KByte Pages in IA-32e Mode

63 32

Reserved (set to 0)

Page-Directory-Pointer-Table Entry

31 12 11 9 8 5 4 3 2 0
P
C
D

P
W
T

AvailPage-Directory Base Address 0

63 32

Reserved (set to 0)

Page-Directory Entry (4-KByte Page Table)

31 12 11 9 8 7 6 5 4 3 2 1 0
P
C
D

P
P
W
T

Page-Table Base Address 0 A
R
/

W

U
/
S

63 32

Reserved (set to 0)

Page-Table Entry (4-KByte Page)

31 12 11 9 8 7 6 5 4 3 2 1 0
P
CD
D

P
P
W
T

Page Base Address G A
R
/

W

U
/
S

Avail

Avail

P

1

P
A
T

63 32

Base AddressReserved (set to 0)

Page-Map-Level-4-Table Entry

31 12 11 9 8 5 4 3 2 0
P
C
D

P
W
T

AvailPML4 Base Address 0 P

1

62

Avail
E
X
B

51

62

Avail
E
X
B

51

62

Avail
E
X
B

51

R
/

W

U
/
S

maxphyaddr62

Avail
E
X
B

51

6

A

6

A
R
/

W

U
/
S

Base Address

Base Address

Base Address

A
V
L

7

7

A
V
L

A
V
L

maxphyaddr

maxphyaddr

maxphyaddr

maxphyaddr is
defined in Sec. 3.6.1

Documentation Changes

22 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Except for bit 63, functions of the flags in these entries are as described in Section 3.7.6,
“Page-Directory and Page-Table Entries”. The differences are:

• A PML4 table entry and a page-directory-pointer-table entry are added.

• Entries are increased from 32 bits to 64 bits.

• The maximum number of entries in a page directory, page table, or PML4 table is
512.

• The P, R/W, U/S, PWT, PCD, and A flags are implemented uniformly across all four
levels.

• The base physical address field in each entry is extended to (MAXPHYADDR-12) bits
(28 bits if the processor’s implementation supports a 40-bit physical address).

• Bits 62:52 are available for use by system programmers.

• Bit 63 is the execute-disable bit if the execute-disable bit feature is supported in the
processor. If the feature is not supported, bit 63 is reserved. The functionality of the
execute disable bit is described in Section 4.11, “Page-Level Protection”. It requires
both PAE and enhanced paging data structures. Note that the execute disable bit can
provide page protection in 32-bit PAE mode and IA-32e mode.

Figure 3-27. Format of Paging Structure Entries for 2-MByte Pages in IA-32e Mode

63 62 32

Reserved (set to 0)

Page-Directory-Pointer-Table Entry*

31 12 11 9 8 5 4 3 2 0
P
C
D

P
W
T

AvailPage-Directory Base Address

63 62 52 51 32

Page Base AddressReserved (set to 0)

Page-Directory Entry (2-MByte Page)

31 21 20 13 12 11 9 8 7 6 5 4 3 2 1 0
P
C
D

P
P
W
T

Page Base Address G 1 A
R
/

W

U
/
S

Avail

P

1

63 62 32

Base AddressReserved (set to 0)

Page-Map-Level-4-Table Entry*

31 12 11 9 8 5 4 3 2 0
P
C
D

P
W
T

AvailPML4 Base Address 0 P

1

Avail
E
X
B

Avail
E
X
B

51

R
/

W

U
/
S

maxphyaddr

Avail
E
X
B

51

6

A
R
/

W

U
/
S

P
A
T

Reserved (set to 0) D

Base Address

* Identical to the structures in 4-KByte pages.

67

A
A
V
L

0

7
A
V
L

maxphyaddr

maxphyaddr

Documentation Changes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 23

3.10.3.1 Intel® 64 Processors and Reserved Bit Checking
On processors supporting Intel 64 architecture and/or supporting the execute disable
bit, the processor enforces reserved bit checking on paging mode specific bits.

Table 3-4 shows the reserved bits that are checked on Intel 64 processors when execute
disable bit checking is either disabled or not supported. The 32-bit mode behavior in
Table 3-4 also applies to IA-32 processors that support the execute-disable bit but not
Intel 64 architecture.

If the execute disable bit is enabled in an IA-32 or Intel 64 processor, reserved bits in
paging data structures for legacy 32-bit mode and 64-bit mode are shown in Table 3-5.

Mode Paging Mode Paging Structure Check Bits

32-bit 4-KByte pages (PAE = 0, PSE = 0) PDE and PT No reserved bits checked

4-MByte page (PAE = 0, PSE = 1) PDE Bit [21]

4-KByte page (PAE = 0, PSE = 1) PDE No reserved bits checked

4-KByte and 4-MByte page (PAE =
0, PSE = 1)

PTE No reserved bits checked

4-KByte and 2-MByte pages (PAE =
1, PSE = x)

PDP table entry Bits [63:MAXPHYADDR] & [8:5]
& [2:1]

2-MByte page (PAE = 1, PSE = x) PDE Bits [63:MAXPHYADDR] &
[20:13]

4-KByte pages (PAE =1, PSE = x) PDE Bits [63:MAXPHYADDR]

4-KByte and 2-MByte pages (PAE =
1, PSE = x)

PTE Bits [63:MAXPHYADDR]

64-bit 4-KByte and 2-MByte pages (PAE =
1, PSE = x)

PML4E Bit [63], bits [51:MAXPHYADDR],
bits [8:7]

4-KByte and 2-MByte pages (PAE =
1, PSE = x)

PDPTE Bit [63], bits [51:MAXPHYADDR],
bits [8:7]

2-MByte page (PAE =1, PSE = x) PDE, 2-MByte page Bit [63], bits [51:MAXPHYADDR]
& [20:13]

4-KByte pages (PAE = 1, PSE = x) PDE, 4-KByte page Bit [63], bits [51:MAXPHYADDR]

4-KByte and 2-MByte pages (PAE =
1, PSE = x)

PTE Bit [63], bits [51:MAXPHYADDR]

Documentation Changes

24 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Table 3-5. Reserved Bit Checking When Execute Disable Bit is Enabled

Mode Paging Mode Paging Structure Check Bits

32-bit 4-KByte pages (PAE = 0, PSE = 0) PDE and PT No reserved bits checked

4-MByte page (PAE = 0, PSE = 1) PDE Bit [21]

4-KByte page (PAE = 0, PSE = 1) PDE No reserved bits checked

4-KByte and 4-MByte page (PAE =
0, PSE = 1)

PTE No reserved bits checked

4-KByte and 2-MByte pages (PAE =
1, PSE = x)

PDP table entry Bits [63:MAXPHYADDR] & [8:5] &
[2:1]

2-MByte page (PAE = 1, PSE = x) PDE Bits [62:MAXPHYADDR] &
[20:13]

4-KByte pages (PAE = 1, PSE = x) PDE Bits [62:MAXPHYADDR]

4-KByte pages (PAE = 1, PSE = x) PTE Bits [62:MAXPHYADDR]

64-bit 4-KByte and 2-MByte pages (PAE =
1, PSE = x)

PML4E Bits [51:MAXPHYADDR], bits
[8:7]

4-KByte and 2-MByte pages (PAE =
1, PSE = x)

PDPTE Bits [51:MAXPHYADDR], bits
[8:7]

2-MByte page (PAE = 1, PSE = x) PDE, 2-MByte page Bits [51:MAXPHYADDR] &
[20:13]

4-KByte pages (PAE = 1, PSE = x) PDE, 4-KByte page Bits [51:MAXPHYADDR]

4-KByte pages (PAE = 1, PSE = x) PTE Bits [51:MAXPHYADDR]

NOTE:
x = Bit does not impact behavior.

Documentation Changes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 25

3. Page-Level Protection and Execute-Disable Bit (Chapter 4, Vol 3A)

Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A: System Programming Guide.

--

4.13 PAGE-LEVEL PROTECTION AND EXECUTE-DISABLE BIT
In addition to page-level protection offered by the U/S and R/W flags, enhanced
PAE-enabled paging structures (see Section 3.10.3, “Enhanced Paging Data Structures”)
provide the execute-disable bit. This bit offers additional protection for data pages.

An Intel 64 or IA-32 processor with the execute disable bit capability can prevent data
pages from being used by malicious software to execute code. This capability is provided
in:

• 32-bit protected mode with PAE enabled.

• IA-32e mode.

While the execute disable bit capability does not introduce new instructions, it does
require operating systems to use a PAE-enabled environment and establish a page-gran-
ular protection policy for memory pages.

If the execute disable bit of a memory page is set, that page can be used only as data.
An attempt to execute code from a memory page with the execute-disable bit set causes
a page-fault exception.

Only 4-KBytes and 2-MBytes page sizes are supported by the execute-disable bit capa-
bility (seeTable 4-4). The execute-disable bit capability is not supported for page size
enabled by CR4.PSE. Existing page-level protection mechanisms (see Section 4.11,
“Page-Level Protection”) continue to apply to memory pages independent of the
execute-disable bit setting. The physical address range that can benefit from the
execute-disable bit capability start from 0 to 2^MAXPHYADDR (or 2^32 if
CPUID.80000008H is not supported). MAXPHYADDR is reported in
CPUID.80000008H:EAX[bit 7:0].

Table 4-4. Page Sizes a Supported by Execute-Disable Bit Capability
PG Flag, CR0 PAE Flag, CR4 PS Flag, PDE Page Size Supported

1 1 0 4 KBytes

1 1 1 2 MBytes

Documentation Changes

26 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

4. Machine-Check Exceptions (Chapter 5, Vol 3A)

Change bars show changes to Chapter 13 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A: System Programming Guide.

--

5.4.3 Machine-Check Exceptions
The P6 family and Pentium processors provide both internal and external machine-check
mechanisms for checking the operation of the internal chip hardware and bus transac-
tions. These mechanisms are implementation dependent. When a machine-check error
is detected, the processor signals a machine-check exception (vector 18) and returns an
error code.

See Chapter 5, “Interrupt 18—Machine-Check Exception (#MC)” and Chapter 14,
“Machine-Check Architecture,” for more information about the machine-check
mechanism.

5. Debugging and Performance Monitoring (Chapter 7, Vol 3A)

Change bars show changes to Chapter 18 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3B: System Programming Guide.

--

7.2.4 Out-of-Order Stores For String Operations
The Intel Core 2 Duo, Intel Core, Pentium 4, and P6 family processors modify the proces-
sors operation during the string store operations (initiated with the MOVS and STOS
instructions) to maximize performance. Once the “fast string” operations initial condi-
tions are met (as described below), the processor will essentially operate on, from an
external perspective, the string in a cache line by cache line mode. This results in the
processor looping on issuing a cache-line read for the source address and an invalidation
on the external bus for the destination address, knowing that all bytes in the destination
cache line will be modified, for the length of the string. In this mode interrupts will only
be accepted by the processor on cache line boundaries. It is possible in this mode that
the destination line invalidations, and therefore stores, will be issued on the external bus
out of order.

Code dependent upon sequential store ordering should not use the string operations for
the entire data structure to be stored. Data and semaphores should be separated. Order
dependent code should use a discrete semaphore uniquely stored to after any string
operations to allow correctly ordered data to be seen by all processors.

“Fast string” operation can be disabled by clearing the fast-string-enable bit (bit 0) of
IA32_MISC_ENABLES MSR.

Initial conditions for “fast string” operations are implementation specific. Example condi-
tions include:

• EDI and ESI must be 8-byte aligned for the Pentium III processor. EDI must be 8-byte
aligned for the Pentium 4 processor.

• String operation must be performed in ascending address order.

• The initial operation counter (ECX) must be equal to or greater than 64.

• Source and destination must not overlap by less than a cache line (64 bytes, for Intel
Core 2 Duo, Intel Core, Pentium M, and Pentium 4 processors; 32 bytes P6 family
and Pentium processors).

Documentation Changes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

• The memory type for both source and destination addresses must be either WB or
WC.

NOTE
Initial conditions for “fast string“ operation in future Intel 64 or IA-32 processor families
may differ from above.

...

7.8.1 State of the Logical Processors
The following features are part of the architectural state of logical processors within Intel
64 or IA-32 processors supporting Hyper-Threading Technology. The features can be
subdivided into three groups:

• Duplicated for each logical processor

• Shared by logical processors in a physical processor

• Shared or duplicated, depending on the implementation

The following features are duplicated for each logical processor:

• General purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, and EBP)

• Segment registers (CS, DS, SS, ES, FS, and GS)

• EFLAGS and EIP registers. Note that the CS and EIP/RIP registers for each logical
processor point to the instruction stream for the thread being executed by the logical
processor.

• x87 FPU registers (ST0 through ST7, status word, control word, tag word, data
operand pointer, and instruction pointer)

• MMX registers (MM0 through MM7)

• XMM registers (XMM0 through XMM7) and the MXCSR register

• Control registers and system table pointer registers (GDTR, LDTR, IDTR, task
register)

• Debug registers (DR0, DR1, DR2, DR3, DR6, DR7) and the debug control MSRs

• Machine check global status (IA32_MCG_STATUS) and machine check capability
(IA32_MCG_CAP) MSRs

• Thermal clock modulation and ACPI Power management control MSRs

• Time stamp counter MSRs

• Most of the other MSR registers, including the page attribute table (PAT). See the
exceptions below.

• Local APIC registers.

• Additional general purpose registers (R8-R15), XMM registers (XMM8-XMM15),
control register, IA32_EFER on Intel 64 processors.

Documentation Changes

28 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

The following features are shared by logical processors:

• Memory type range registers (MTRRs)

Whether the following features are shared or duplicated is implementation-specific:

• IA32_MISC_ENABLE MSR (MSR address 1A0H)

• Machine check architecture (MCA) MSRs (except for the IA32_MCG_STATUS and
IA32_MCG_CAP MSRs)

Performance monitoring control and counter MSRs

...

7.8.8 IA32_MISC_ENABLE MSR
The IA32_MISC_ENABLE MSR (MSR address 1A0H) is generally shared between the
logical processors in a processor core supporting Hyper-Threading Technology. However,
some bit fields within IA32_MISC_ENABLES MSR may be duplicated per logical
processor. The partition of shared or duplicated bit fields within IA32_MISC_ENABLES is
implementation dependent. Software should program duplicated fields carefully on all
logical processors in the system to ensure consistent behavior.

...

7.8.13.2 Processor Translation Lookaside Buffers (TLBs)
In processors supporting Hyper-Threading Technology, data cache TLBs are shared. The
instruction cache TLB may be duplicated or shared in each logical processor, depending
on implementation specifics of different processor families.

Entries in the TLBs are tagged with an ID that indicates the logical processor that initi-
ated the translation. This tag applies even for translations that are marked global using
the page global feature for memory paging.

When a logical processor performs a TLB invalidation operation, only the TLB entries that
are tagged for that logical processor are guaranteed to be flushed. This protocol applies
to all TLB invalidation operations, including writes to control registers CR3 and CR4 and
uses of the INVLPG instruction.

...

7.9.3 Performance Monitoring Counters
Performance counters and their companion control MSRs are shared between two logical
processors sharing a processor core if the processor core supports Hyper-Threading
Technology and is based on Intel NetBurst microarchitecture. They are not shared
between logical processors in different cores or different physical packages. As a result,
software must manage the use of these resources, based on the topology of perfor-
mance monitoring resources. Performance counter interrupts, events, and precise event

Documentation Changes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 29

monitoring support can be set up and allocated on a per thread (per logical processor)
basis.

See Section 18.17, “Performance Monitoring and Hyper-Threading Technology in Proces-
sors Based on Intel NetBurst Microarchitecture.”

7.9.4 IA32_MISC_ENABLE MSR
Some bit fields in IA32_MISC_ENABLE MSR (MSR address 1A0H) may be shared
between two logical processors sharing a processor core, or may be shared between
different cores in a physical processor. See Appendix B, “Model-Specific Registers
(MSRs)”.

6. Preventing Caching (Chapter 10, Vol 3A)

Change bars show changes to Chapter 10 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A: System Programming Guide.

--

7.8.8 Preventing Caching
To disable the L1, L2, and L3 caches after they have been enabled and have received
cache fills, perform the following steps:

1. Enter the no-fill cache mode. (Set the CD flag in control register CR0 to 1 and the
NW flag to 0.

2. Flush all caches using the WBINVD instruction.

3. Disable the MTRRs and set the default memory type to uncached or set all MTRRs for
the uncached memory type (see the discussion of the discussion of the TYPE field
and the E flag in Section 10.11.2.1, “IA32_MTRR_DEF_TYPE MSR”).

The caches must be flushed (step 2) after the CD flag is set to insure system memory
coherency. If the caches are not flushed, cache hits on reads will still occur and data will
be read from valid cache lines.

The intent of the three separate steps listed above address three distinct requirements:
(i) discontinue new data replacing existing data in the cache (ii) ensure data already in
the cache are evicted to memory, (iii) ensure subsequent memory references observe
UC memory type semantics. Different processor implementation of caching control hard-
ware may allow some variation of software implementation of these three requirements.
See note below.

NOTES

Setting the CD flag in control register CR0 modifies the processor’s
caching behaviour as indicated in Table 10-5, but setting the CD flag
alone may not be sufficient across all processor families to force the
effective memory type for all physical memory to be UC nor does it force
strict memory ordering, due to hardware implementation variations
across different processor families. To force the UC memory type and
strict memory ordering on all of physical memory, it is sufficient to either
program the MTRRs for all physical memory to be UC memory type or
disable all MTRRs.

For the Pentium 4 and Intel Xeon processors, after the sequence of steps
given above has been executed, the cache lines containing the code

Documentation Changes

30 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

between the end of the WBINVD instruction and before the MTRRS have
actually been disabled may be retained in the cache hierarchy. Here, to
remove code from the cache completely, a second WBINVD instruction
must be executed after the MTRRs have been disabled.

For Intel Atom processors, setting the CD flag forces all physical memory
to observe UC semantics (without requiring memory type of physical
memory to be set explicitly). Consequently, software does not need to
issue a second WBINVD as some other processor generations might
require.

§

	Intel® 64 and IA-32 Architectures
	Software Developer’s Manual
	Contents
	Revision History
	Preface
	Affected Documents
	Nomenclature

	Summary Tables of Changes
	Codes Used in Summary Tables
	Documentation Changes

	Documentation Changes
	3.7 Page Translation using 32-Bit Physical Addressing
	3.7.6 Page-Directory and Page-Table Entries

