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Preface

This document is an update to the specifications contained in the Affected Documents 
table below. This document is a compilation of device and documentation errata, 
specification clarifications and changes. It is intended for hardware system 
manufacturers and software developers of applications, operating systems, or tools.

Affected Documents

Nomenclature

Documentation Changes include typos, errors, or omissions from the current 
published specifications. These will be incorporated in any new release of the 
specification.

Document Title
Document 

Number/Location

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
1: Basic Architecture

253665

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
2A: Instruction Set Reference, A-M

253666

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
2B: Instruction Set Reference, N-Z

253667

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
3A: System Programming Guide

253668

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
3B: System Programming Guide

253669
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Summary Tables of Changes

The following table indicates documentation changes which apply to the Intel® 64 and 
IA-32 architectures. This table uses the following notations:

Codes Used in Summary Tables

Change bar to left of table row indicates this erratum is either new or modified from the 
previous version of the document.

Documentation Changes
No. DOCUMENTATION CHANGES

1 Updates to Chapter 1, Volume 1

2 Updates to Chapter 1, Volume 2A

3 Updates to Chapter 3, Volume 2A

4 Updates to Chapter 4, Volume 2B

5 Updates to Chapter 1, Volume 3A

6 Updates to Chapter 2, Volume 3A

7 Updates to Chapter 4, Volume 3A

8 Updates to Chapter 5, Volume 3A

9 Updates to Chapter 6, Volume 3A

10 Updates to Chapter 14, Volume 3A

11 Updates to Chapter 16, Volume 3A

12 Updates to Chapter 19, Volume 3A

13 Updates to Chapter 21, Volume 3B

14 Updates to Chapter 23, Volume 3B

15 Updates to Chapter 24, Volume 3B

16 Updates to Chapter 30, Volume 3B

17 Updates to Appendix A, Volume 3B

18 Updates to Appendix B, Volume 3B
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Documentation Changes

1. Updates to Chapter 1, Volume 1

Change bars show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1: Basic Architecture.

------------------------------------------------------------------------------------------

...

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS 
MANUAL

This manual set includes information pertaining primarily to the most recent Intel 64 and 
IA-32 processors, which include: 

• Pentium® processors

• P6 family processors

• Pentium® 4 processors

• Pentium® M processors

• Intel® Xeon® processors

• Pentium® D processors

• Pentium® processor Extreme Editions

• 64-bit Intel® Xeon® processors

• Intel® CoreTM Duo processor

• Intel® CoreTM Solo processor

• Dual-Core Intel® Xeon® processor LV

• Intel® CoreTM2 Duo processor

• Intel® CoreTM2 Quad processor Q6000 series

• Intel® Xeon® processor 3000, 3200 series

• Intel® Xeon® processor 5000 series

• Intel® Xeon® processor 5100, 5300 series

• Intel® CoreTM2 Extreme processor X7000 and X6800 series

• Intel® CoreTM2 Extreme processor QX6000 series

• Intel® Xeon® processor 7100 series

• Intel® Pentium® Dual-Core processor

• Intel® Xeon® processor 7200, 7300 series

• Intel® Xeon® processor 5200, 5400, 7400 series

• Intel® CoreTM2 Extreme processor QX9000 and X9000 series

• Intel® CoreTM2 Quad processor Q9000 series

• Intel® CoreTM2 Duo processor E8000, T9000 series

• Intel® AtomTM processor family
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• Intel® CoreTM i7 processor

• Intel® CoreTM i5 processor

P6 family processors are IA-32 processors based on the P6 family microarchitecture. 
This includes the Pentium® Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® 
processors. 

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on 
the Intel NetBurst® microarchitecture. Most early Intel® Xeon® processors are based on 
the Intel NetBurst® microarchitecture. Intel Xeon processor 5000, 7100 series are based 
on the Intel NetBurst® microarchitecture.

The Intel® CoreTM Duo, Intel® CoreTM Solo and dual-core Intel® Xeon® processor LV are 
based on an improved Pentium® M processor microarchitecture. 

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200 and 7300 series, Intel® 
Pentium® dual-core, Intel® CoreTM2 Duo, Intel® CoreTM2 Quad, and Intel® CoreTM2 
Extreme processors are based on Intel® CoreTM microarchitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® CoreTM2 Quad processor 
Q9000 series, and Intel® CoreTM2 Extreme processor QX9000, X9000 series, Intel® 
CoreTM2 processor E8000 series are based on Enhanced Intel® CoreTM microarchitecture.

The Intel® AtomTM processor family is based on the Intel® AtomTM microarchitecture and 
supports Intel 64 architecture.

The Intel® CoreTM i7 processor and the Intel® CoreTM i5 processor are based on the Intel® 
microarchitecture (Nehalem) and support Intel 64 architecture.

Processors based on the Next Generation Intel Processor, codenamed Westmere, 
support Intel 64 architecture.

P6 family, Pentium® M, Intel® CoreTM Solo, Intel® CoreTM Duo processors, dual-core 
Intel® Xeon® processor LV, and early generations of Pentium 4 and Intel Xeon proces-
sors support IA-32 architecture. The Intel® AtomTM processor Z5xx series support IA-32 
architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 
7300, 7400 series, Intel® CoreTM2 Duo, Intel® CoreTM2 Extreme processors, Intel Core 2 
Quad processors, Pentium® D processors, Pentium® Dual-Core processor, newer gener-
ations of Pentium 4 and Intel Xeon processor family support Intel® 64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for 
Intel's 32-bit microprocessors. 

Intel® 64 architecture is the instruction set architecture and programming environment 
which is the superset of Intel’s 32-bit and 64-bit architectures. It is compatible with the 
IA-32 architecture.

2. Updates to Chapter 1, Volume 2A

Change bars show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A: Instruction Set Reference, A-M.

------------------------------------------------------------------------------------------

...
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1.1 IA-32 PROCESSORS COVERED IN THIS MANUAL
This manual set includes information pertaining primarily to the most recent Intel 64 and 
IA-32 processors, which include: 

• Pentium® processors

• P6 family processors

• Pentium® 4 processors

• Pentium® M processors

• Intel® Xeon® processors

• Pentium® D processors

• Pentium® processor Extreme Editions

• 64-bit Intel® Xeon® processors

• Intel® Core™ Duo processor

• Intel® Core™ Solo processor

• Dual-Core Intel® Xeon® processor LV

• Intel® Core™2 Duo processor

• Intel® Core™2 Quad processor Q6000 series

• Intel® Xeon® processor 3000, 3200 series

• Intel® Xeon® processor 5000 series

• Intel® Xeon® processor 5100, 5300 series

• Intel® Core™2 Extreme processor X7000 and X6800 series

• Intel® Core™2 Extreme QX6000 series

• Intel® Xeon® processor 7100 series

• Intel® Pentium® Dual-Core processor

• Intel® Xeon® processor 7200, 7300 series

• Intel® Xeon® processor 5200, 5400, 7400 series

• Intel® CoreTM2 Extreme processor QX9000 and X9000 series

• Intel® CoreTM2 Quad processor Q9000 series

• Intel® CoreTM2 Duo processor E8000, T9000 series

• Intel® AtomTM processor family

• Intel® CoreTM i7 processor

• Intel® CoreTM i5 processor

P6 family processors are IA-32 processors based on the P6 family microarchitecture. 
This includes the Pentium® Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® 
processors. 

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on 
the Intel NetBurst® microarchitecture. Most early Intel® Xeon® processors are based on 
the Intel NetBurst® microarchitecture. Intel Xeon processor 5000, 7100 series are based 
on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are 
based on an improved Pentium® M processor microarchitecture. 
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The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel® 
Pentium® dual-core, Intel® Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2 
Extreme processors are based on Intel® Core™ microarchitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® CoreTM2 Quad processor 
Q9000 series, and Intel® CoreTM2 Extreme processors QX9000, X9000 series, Intel® 
CoreTM2 processor E8000 series are based on Enhanced Intel® CoreTM microarchitecture.

The Intel® AtomTM processor family is based on the Intel® AtomTM microarchitecture and 
supports Intel 64 architecture.

The Intel® CoreTM i7 processor and the Intel® CoreTM i5 processor are based on the Intel® 
microarchitecture (Nehalem) and support Intel 64 architecture.

Processors based on the Next Generation Intel Processor, codenamed Westmere, 
support Intel 64 architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core 
Intel® Xeon® processor LV, and early generations of Pentium 4 and Intel Xeon proces-
sors support IA-32 architecture. The Intel® AtomTM processor Z5xx series support IA-32 
architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 
7300, 7400 series, Intel® Core™2 Duo, Intel® Core™2 Extreme, Intel® Core™2 Quad 
processors, Pentium® D processors, Pentium® Dual-Core processor, newer generations 
of Pentium 4 and Intel Xeon processor family support Intel® 64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for 
Intel's 32-bit microprocessors. 

Intel® 64 architecture is the instruction set architecture and programming environment 
which is the superset of Intel’s 32-bit and 64-bit architectures. It is compatible with the 
IA-32 architecture.

...

3. Updates to Chapter 3, Volume 2A

Change bars show changes to Chapter 3 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A: Instruction Set Reference, A-M.

------------------------------------------------------------------------------------------

...
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CALL—Call Procedure

Description

Saves procedure linking information on the stack and branches to the called procedure 
specified using the target operand. The target operand specifies the address of the first 
instruction in the called procedure. The operand can be an immediate value, a general-
purpose register, or a memory location.

This instruction can be used to execute four types of calls:

• Near Call —  A call to a procedure in the current code segment (the segment 
currently pointed to by the CS register), sometimes referred to as an intra-segment 
call.

Opcode Instruction 64-Bit 
Mode

Compat/ 
Leg Mode

Description

E8 cw CALL rel16 N.S. Valid Call near, relative, displacement 
relative to next instruction.

E8 cd CALL rel32 Valid Valid Call near, relative, displacement 
relative to next instruction. 32-bit 
displacement sign extended to 64-bits 
in 64-bit mode.

FF /2 CALL r/m16 N.E. Valid Call near, absolute indirect, address 
given in r/m16. 

FF /2 CALL r/m32 N.E. Valid Call near, absolute indirect, address 
given in r/m32. 

FF /2 CALL r/m64 Valid N.E. Call near, absolute indirect, address 
given in r/m64.

9A cd CALL 
ptr16:16

Invalid Valid Call far, absolute, address given in 
operand.

9A cp CALL 
ptr16:32

Invalid Valid Call far, absolute, address given in 
operand.

FF /3 CALL m16:16 Valid Valid Call far, absolute indirect address given 
in m16:16.

In 32-bit mode: if selector points to a 
gate, then RIP = 32-bit zero extended 
displacement taken from gate; else RIP 
= zero extended 16-bit offset from far 
pointer referenced in the instruction.

FF /3 CALL m16:32 Valid Valid In 64-bit mode: If selector points to a 
gate, then RIP = 64-bit displacement 
taken from gate; else RIP = zero 
extended 32-bit offset from far 
pointer referenced in the instruction. 

REX.W + FF /3 CALL m16:64 Valid N.E. In 64-bit mode: If selector points to a 
gate, then RIP = 64-bit displacement 
taken from gate; else RIP = 64-bit 
offset from far pointer referenced in 
the instruction. 
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• Far Call — A call to a procedure located in a different segment than the current code 
segment, sometimes referred to as an inter-segment call.

• Inter-privilege-level far call — A far call to a procedure in a segment at a 
different privilege level than that of the currently executing program or procedure.

• Task switch — A call to a procedure located in a different task.

The latter two call types (inter-privilege-level call and task switch) can only be executed 
in protected mode. See “Calling Procedures Using Call and RET” in Chapter 6 of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for addi-
tional information on near, far, and inter-privilege-level calls. See Chapter 7, “Task 
Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A, for information on performing task switches with the CALL instruction.

Near Call. When executing a near call, the processor pushes the value of the EIP register 
(which contains the offset of the instruction following the CALL instruction) on the stack 
(for use later as a return-instruction pointer). The processor then branches to the 
address in the current code segment specified by the target operand. The target operand 
specifies either an absolute offset in the code segment (an offset from the base of the 
code segment) or a relative offset (a signed displacement relative to the current value of 
the instruction pointer in the EIP register; this value points to the instruction following 
the CALL instruction). The CS register is not changed on near calls.

For a near call absolute, an absolute offset is specified indirectly in a general-purpose 
register or a memory location (r/m16, r/m32, or r/m64). The operand-size attribute 
determines the size of the target operand (16, 32 or 64 bits). When in 64-bit mode, the 
operand size for near call (and all near branches) is forced to 64-bits. Absolute offsets 
are loaded directly into the EIP(RIP) register. If the operand size attribute is 16, the 
upper two bytes of the EIP register are cleared, resulting in a maximum instruction 
pointer size of 16 bits. When accessing an absolute offset indirectly using the stack 
pointer [ESP] as the base register, the base value used is the value of the ESP before the 
instruction executes.

A relative offset (rel16 or rel32) is generally specified as a label in assembly code. But at 
the machine code level, it is encoded as a signed, 16- or 32-bit immediate value. This 
value is added to the value in the EIP(RIP) register. In 64-bit mode the relative offset is 
always a 32-bit immediate value which is sign extended to 64-bits before it is added to 
the value in the RIP register for the target calculation.  As with absolute offsets, the 
operand-size attribute determines the size of the target operand (16, 32, or 64 bits). In 
64-bit mode the target operand will always be 64-bits because the operand size is forced 
to 64-bits for near branches.

Far Calls in Real-Address or Virtual-8086 Mode. When executing a far call in real- address 
or virtual-8086 mode, the processor pushes the current value of both the CS and EIP 
registers on the stack for use as a return-instruction pointer. The processor then 
performs a “far branch” to the code segment and offset specified with the target operand 
for the called procedure. The target operand specifies an absolute far address either 
directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory location 
(m16:16 or m16:32). With the pointer method, the segment and offset of the called 
procedure is encoded in the instruction using a 4-byte (16-bit operand size) or 6-byte 
(32-bit operand size) far address immediate. With the indirect method, the target 
operand specifies a memory location that contains a 4-byte (16-bit operand size) or 6-
byte (32-bit operand size) far address. The operand-size attribute determines the size of 
the offset (16 or 32 bits) in the far address. The far address is loaded directly into the CS 
and EIP registers. If the operand-size attribute is 16, the upper two bytes of the EIP 
register are cleared.
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Far Calls in Protected Mode. When the processor is operating in protected mode, the CALL 
instruction can be used to perform the following types of far calls:

• Far call to the same privilege level

• Far call to a different privilege level (inter-privilege level call)

• Task switch (far call to another task)

In protected mode, the processor always uses the segment selector part of the far 
address to access the corresponding descriptor in the GDT or LDT. The descriptor type 
(code segment, call gate, task gate, or TSS) and access rights determine the type of call 
operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the same 
privilege level is performed. (If the selected code segment is at a different privilege level 
and the code segment is non-conforming, a general-protection exception is generated.) 
A far call to the same privilege level in protected mode is very similar to one carried out 
in real-address or virtual-8086 mode. The target operand specifies an absolute far 
address either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory 
location (m16:16 or m16:32). The operand- size attribute determines the size of the 
offset (16 or 32 bits) in the far address. The new code segment selector and its 
descriptor are loaded into CS register; the offset from the instruction is loaded into the 
EIP register. 

A call gate (described in the next paragraph) can also be used to perform a far call to a 
code segment at the same privilege level. Using this mechanism provides an extra level 
of indirection and is the preferred method of making calls between 16-bit and 32-bit 
code segments.

When executing an inter-privilege-level far call, the code segment for the procedure 
being called must be accessed through a call gate. The segment selector specified by the 
target operand identifies the call gate. The target operand can specify the call gate 
segment selector either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with 
a memory location (m16:16 or m16:32). The processor obtains the segment selector for 
the new code segment and the new instruction pointer (offset) from the call gate 
descriptor. (The offset from the target operand is ignored when a call gate is used.) 

On inter-privilege-level calls, the processor switches to the stack for the privilege level of 
the called procedure. The segment selector for the new stack segment is specified in the 
TSS for the currently running task. The branch to the new code segment occurs after the 
stack switch. (Note that when using a call gate to perform a far call to a segment at the 
same privilege level, no stack switch occurs.) On the new stack, the processor pushes 
the segment selector and stack pointer for the calling procedure’s stack, an optional set 
of parameters from the calling procedures stack, and the segment selector and instruc-
tion pointer for the calling procedure’s code segment. (A value in the call gate descriptor 
determines how many parameters to copy to the new stack.) Finally, the processor 
branches to the address of the procedure being called within the new code segment.

Executing a task switch with the CALL instruction is similar to executing a call through a 
call gate. The target operand specifies the segment selector of the task gate for the new 
task activated by the switch (the offset in the target operand is ignored). The task gate 
in turn points to the TSS for the new task, which contains the segment selectors for the 
task’s code and stack segments. Note that the TSS also contains the EIP value for the 
next instruction that was to be executed before the calling task was suspended. This 
instruction pointer value is loaded into the EIP register to re-start the calling task. 

The CALL instruction can also specify the segment selector of the TSS directly, which 
eliminates the indirection of the task gate. See Chapter 7, “Task Management,” in the 
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Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for infor-
mation on the mechanics of a task switch.

When you execute at task switch with a CALL instruction, the nested task flag (NT) is set 
in the EFLAGS register and the new TSS’s previous task link field is loaded with the old 
task’s TSS selector. Code is expected to suspend this nested task by executing an IRET 
instruction which, because the NT flag is set, automatically uses the previous task link to 
return to the calling task. (See “Task Linking” in Chapter 7 of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A, for information on nested 
tasks.) Switching tasks with the CALL instruction differs in this regard from JMP instruc-
tion. JMP does not set the NT flag and therefore does not expect an IRET instruction to 
suspend the task.

Mixing 16-Bit and 32-Bit Calls. When making far calls between 16-bit and 32-bit code 
segments, use a call gate. If the far call is from a 32-bit code segment to a 16-bit code 
segment, the call should be made from the first 64 KBytes of the 32-bit code segment. 
This is because the operand-size attribute of the instruction is set to 16, so only a 16-bit 
return address offset can be saved. Also, the call should be made using a 16-bit call gate 
so that 16-bit values can be pushed on the stack. See Chapter 18, “Mixing 16-Bit and 32-
Bit Code,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A, for more information.

Far Calls in Compatibility Mode. When the processor is operating in compatibility mode, 
the CALL instruction can be used to perform the following types of far calls:

• Far call to the same privilege level, remaining in compatibility mode

• Far call to the same privilege level, transitioning to 64-bit mode

• Far call to a different privilege level (inter-privilege level call), transitioning to 64-bit 
mode

Note that a CALL instruction can not be used to cause a task switch in compatibility mode 
since task switches are not supported in IA-32e mode.

In compatibility mode, the processor always uses the segment selector part of the far 
address to access the corresponding descriptor in the GDT or LDT. The descriptor type 
(code segment, call gate) and access rights determine the type of call operation to be 
performed.

If the selected descriptor is for a code segment, a far call to a code segment at the same 
privilege level is performed. (If the selected code segment is at a different privilege level 
and the code segment is non-conforming, a general-protection exception is generated.) 
A far call to the same privilege level in compatibility mode is very similar to one carried 
out in protected mode. The target operand specifies an absolute far address either 
directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory location 
(m16:16 or m16:32). The operand-size attribute determines the size of the offset (16 or 
32 bits) in the far address. The new code segment selector and its descriptor are loaded 
into CS register and the offset from the instruction is loaded into the EIP register. The 
difference is that 64-bit mode may be entered. This specified by the L bit in the new code 
segment descriptor.

Note that a 64-bit call gate (described in the next paragraph) can also be used to 
perform a far call to a code segment at the same privilege level. However, using this 
mechanism requires that the target code segment descriptor have the L bit set, causing 
an entry to 64-bit mode.

When executing an inter-privilege-level far call, the code segment for the procedure 
being called must be accessed through a 64-bit call gate. The segment selector specified 
by the target operand identifies the call gate. The target operand can specify the call 
gate segment selector either directly with a pointer (ptr16:16 or ptr16:32) or indirectly 
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with a memory location (m16:16 or m16:32). The processor obtains the segment 
selector for the new code segment and the new instruction pointer (offset) from the 16-
byte call gate descriptor. (The offset from the target operand is ignored when a call gate 
is used.) 

On inter-privilege-level calls, the processor switches to the stack for the privilege level of 
the called procedure. The segment selector for the new stack segment is set to NULL. 
The new stack pointer is specified in the TSS for the currently running task. The branch 
to the new code segment occurs after the stack switch. (Note that when using a call gate 
to perform a far call to a segment at the same privilege level, an implicit stack switch 
occurs as a result of entering 64-bit mode. The SS selector is unchanged, but stack 
segment accesses use a segment base of 0x0, the limit is ignored, and the default stack 
size is 64-bits. The full value of RSP is used for the offset, of which the upper 32-bits are 
undefined.) On the new stack, the processor pushes the segment selector and stack 
pointer for the calling procedure’s stack and the segment selector and instruction pointer 
for the calling procedure’s code segment. (Parameter copy is not supported in IA-32e 
mode.) Finally, the processor branches to the address of the procedure being called 
within the new code segment.

Near/(Far) Calls in 64-bit Mode. When the processor is operating in 64-bit mode, the CALL 
instruction can be used to perform the following types of far calls:

• Far call to the same privilege level, transitioning to compatibility mode

• Far call to the same privilege level, remaining in 64-bit mode

• Far call to a different privilege level (inter-privilege level call), remaining in 64-bit 
mode

Note that in this mode the CALL instruction can not be used to cause a task switch in 64-
bit mode since task switches are not supported in IA-32e mode.

In 64-bit mode, the processor always uses the segment selector part of the far address 
to access the corresponding descriptor in the GDT or LDT. The descriptor type (code 
segment, call gate) and access rights determine the type of call operation to be 
performed.

If the selected descriptor is for a code segment, a far call to a code segment at the same 
privilege level is performed. (If the selected code segment is at a different privilege level 
and the code segment is non-conforming, a general-protection exception is generated.) 
A far call to the same privilege level in 64-bit mode is very similar to one carried out in 
compatibility mode. The target operand specifies an absolute far address indirectly with 
a memory location (m16:16, m16:32 or m16:64). The form of CALL with a direct speci-
fication of absolute far address is not defined in 64-bit mode. The operand-size attribute 
determines the size of the offset (16, 32, or 64 bits) in the far address. The new code 
segment selector and its descriptor are loaded into the CS register; the offset from the 
instruction is loaded into the EIP register. The new code segment may specify entry 
either into compatibility or 64-bit mode, based on the L bit value.

A 64-bit call gate (described in the next paragraph) can also be used to perform a far call 
to a code segment at the same privilege level. However, using this mechanism requires 
that the target code segment descriptor have the L bit set.

When executing an inter-privilege-level far call, the code segment for the procedure 
being called must be accessed through a 64-bit call gate. The segment selector specified 
by the target operand identifies the call gate. The target operand can only specify the call 
gate segment selector indirectly with a memory location (m16:16, m16:32 or m16:64). 
The processor obtains the segment selector for the new code segment and the new 
instruction pointer (offset) from the 16-byte call gate descriptor. (The offset from the 
target operand is ignored when a call gate is used.)
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On inter-privilege-level calls, the processor switches to the stack for the privilege level of 
the called procedure. The segment selector for the new stack segment is set to NULL. 
The new stack pointer is specified in the TSS for the currently running task. The branch 
to the new code segment occurs after the stack switch. 

Note that when using a call gate to perform a far call to a segment at the same privilege 
level, an implicit stack switch occurs as a result of entering 64-bit mode. The SS selector 
is unchanged, but stack segment accesses use a segment base of 0x0, the limit is 
ignored, and the default stack size is 64-bits. (The full value of RSP is used for the 
offset.) On the new stack, the processor pushes the segment selector and stack pointer 
for the calling procedure’s stack and the segment selector and instruction pointer for the 
calling procedure’s code segment. (Parameter copy is not supported in IA-32e mode.) 
Finally, the processor branches to the address of the procedure being called within the 
new code segment.

Operation

IF near call
THEN IF near relative call

THEN 
IF OperandSize = 64

THEN
tempDEST  SignExtend(DEST); (* DEST is rel32 *) 
tempRIP  RIP  tempDEST;
IF stack not large enough for a 8-byte return address

THEN #SS(0); FI;
Push(RIP);
RIP  tempRIP;

FI;
IF OperandSize = 32

THEN
tempEIP  EIP  DEST; (* DEST is rel32 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 4-byte return address

THEN #SS(0); FI;
Push(EIP);
EIP  tempEIP;

FI;
IF OperandSize = 16

THEN
tempEIP  (EIP  DEST) AND 0000FFFFH; (* DEST is rel16 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 2-byte return address 

THEN #SS(0); FI;
Push(IP);
EIP  tempEIP;

FI;
ELSE (* Near absolute call *)

IF OperandSize = 64
THEN

tempRIP  DEST; (* DEST is r/m64 *)
IF stack not large enough for a 8-byte return address 
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THEN #SS(0); FI;
Push(RIP); 
RIP  tempRIP;

FI;
IF OperandSize = 32

THEN
tempEIP  DEST; (* DEST is r/m32 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 4-byte return address 

THEN #SS(0); FI;
Push(EIP); 
EIP  tempEIP;

FI;
IF OperandSize = 16

THEN
tempEIP  DEST AND 0000FFFFH; (* DEST is r/m16 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 2-byte return address 

THEN #SS(0); FI;
Push(IP);
EIP  tempEIP;

FI;
FI;rel/abs

FI; near

IF far call and (PE = 0 or (PE = 1 and VM = 1)) (* Real-address or virtual-8086 mode *)
THEN

IF OperandSize = 32
THEN

IF stack not large enough for a 6-byte return address 
THEN #SS(0); FI;

IF DEST[31:16] is not zero THEN #GP(0); FI;
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS  DEST[47:32]; (* DEST is ptr16:32 or [m16:32] *)
EIP  DEST[31:0]; (* DEST is ptr16:32 or [m16:32] *)

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 4-byte return address 

THEN #SS(0); FI;
Push(CS);
Push(IP);
CS  DEST[31:16]; (* DEST is ptr16:16 or [m16:16] *)
EIP  DEST[15:0]; (* DEST is ptr16:16 or [m16:16]; clear upper 16 bits *)

FI;
FI;

IF far call and (PE = 1 and VM = 0) (* Protected mode or IA-32e Mode, not virtual-8086 mode*)
THEN

IF segment selector in target operand NULL 
THEN #GP(0); FI;
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IF segment selector index not within descriptor table limits
THEN #GP(new code segment selector); FI;

Read type and access rights of selected segment descriptor;
IF IA32_EFER.LMA = 0

THEN
IF segment type is not a conforming or nonconforming code segment, call 
gate, task gate, or TSS 

THEN #GP(segment selector); FI;
ELSE 

IF segment type is not a conforming or nonconforming code segment or 
64-bit call gate, 

THEN #GP(segment selector); FI;
FI;
Depending on type and access rights:

GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;

FI;

CONFORMING-CODE-SEGMENT:
IF L-Bit = 1 and D-BIT = 1 and IA32_EFER.LMA = 1 

THEN GP(new code segment selector); FI;
IF DPL  CPL 

THEN #GP(new code segment selector); FI;
IF segment not present 

THEN #NP(new code segment selector); FI;
IF stack not large enough for return address

THEN #SS(0); FI;
tempEIP DEST(Offset);
IF OperandSize =16

THEN
tempEIP  tempEIP AND 0000FFFFH; FI; (* Clear upper 16 bits *)

IF (EFER.LMA = 0 or target mode = Compatibility mode) and (tempEIP outside new code
segment limit) 

THEN #GP(0); FI;
IF tempEIP is non-canonical 

THEN #GP(0); FI;
IF OperandSize = 32

THEN
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS  DEST(CodeSegmentSelector); 
(* Segment descriptor information also loaded *)
CS(RPL)  CPL;
EIP  tempEIP;

ELSE
IF OperandSize = 16

THEN
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Push(CS);
Push(IP);
CS  DEST(CodeSegmentSelector); 
(* Segment descriptor information also loaded *)
CS(RPL)  CPL;
EIP  tempEIP;

ELSE (* OperandSize = 64 *)
Push(CS); (* Padded with 48 high-order bits *)
Push(RIP);
CS  DEST(CodeSegmentSelector); 
(* Segment descriptor information also loaded *)
CS(RPL)  CPL;
RIP  tempEIP;

FI;
FI;

END;

NONCONFORMING-CODE-SEGMENT:
IF L-Bit = 1 and D-BIT = 1 and IA32_EFER.LMA = 1 

THEN GP(new code segment selector); FI;
IF (RPL  CPL) or (DPL  CPL) 

THEN #GP(new code segment selector); FI;
IF segment not present 

THEN #NP(new code segment selector); FI;
IF stack not large enough for return address 

THEN #SS(0); FI;
tempEIP  DEST(Offset);
IF OperandSize = 16

THEN tempEIP  tempEIP AND 0000FFFFH; FI; (* Clear upper 16 bits *)
IF (EFER.LMA = 0 or target mode = Compatibility mode) and (tempEIP outside new code
segment limit)

THEN #GP(0); FI;
IF tempEIP is non-canonical 

THEN #GP(0); FI;
IF OperandSize = 32

THEN
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS  DEST(CodeSegmentSelector); 
(* Segment descriptor information also loaded *)
CS(RPL)  CPL;
EIP  tempEIP;

ELSE
IF OperandSize = 16

THEN
Push(CS);
Push(IP);
CS  DEST(CodeSegmentSelector); 
(* Segment descriptor information also loaded *)
CS(RPL)  CPL;
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EIP  tempEIP;
ELSE (* OperandSize = 64 *)

Push(CS); (* Padded with 48 high-order bits *)
Push(RIP);
CS  DEST(CodeSegmentSelector); 
(* Segment descriptor information also loaded *)
CS(RPL)  CPL;
RIP  tempEIP;

FI;
FI;

END;

CALL-GATE:
IF call gate (DPL  CPL) or (RPL > DPL)

THEN #GP(call gate selector); FI;
IF call gate not present 

THEN #NP(call gate selector); FI;
IF call gate code-segment selector is NULL

THEN #GP(0); FI;
IF call gate code-segment selector index is outside descriptor table limits

THEN #GP(code segment selector); FI;
Read code segment descriptor;
IF code-segment segment descriptor does not indicate a code segment
or code-segment segment descriptor DPL  CPL 

THEN #GP(code segment selector); FI;
IF IA32_EFER.LMA = 1 AND (code-segment segment descriptor is 
not a 64-bit code segment or code-segment descriptor has both L-Bit and D-bit set)

THEN #GP(code segment selector); FI;
IF code segment not present 

THEN #NP(new code segment selector); FI;
IF code segment is non-conforming and DPL  CPL

THEN go to MORE-PRIVILEGE;
ELSE go to SAME-PRIVILEGE;

FI;
END;

MORE-PRIVILEGE:
IF current TSS is 32-bit TSS

THEN 
TSSstackAddress  new code segment (DPL  8)  4;
IF (TSSstackAddress  7)  TSS limit

THEN #TS(current TSS selector); FI;
newSS  TSSstackAddress  4;
newESP  stack address;

ELSE 
IF current TSS is 16-bit TSS

THEN
TSSstackAddress  new code segment (DPL  4)  2;
IF (TSSstackAddress  4)  TSS limit

THEN #TS(current TSS selector); FI;
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newESP  TSSstackAddress;
newSS  TSSstackAddress  2;

ELSE (* TSS is 64-bit *)
TSSstackAddress  new code segment (DPL  8)  4;
IF (TSSstackAddress  8)  TSS limit

THEN #TS(current TSS selector); FI;
newESP  TSSstackAddress;
newSS  CodeSegment (DPL);
(* null selector with RPL = new CPL *)

FI;
FI;
IF IA32_EFER.LMA = 0 and stack segment selector = NULL

THEN #TS(stack segment selector); FI;
Read code segment descriptor; 
IF IA32_EFER.LMA = 0 and (stack segment selector's RPL  DPL of code segment
or stack segment DPL  DPL of code segment or stack segment is not a
writable data segment)

THEN #TS(SS selector); FI
IF IA32_EFER.LMA = 0 and stack segment not present 

THEN #SS(SS selector); FI;
IF CallGateSize = 32

THEN
IF stack does not have room for parameters plus 16 bytes

THEN #SS(SS selector); FI;
IF CallGate(InstructionPointer) not within code segment limit 

THEN #GP(0); FI;
SS  newSS; 
(* Segment descriptor information also loaded *)
ESP  newESP; 
CS:EIP  CallGate(CS:InstructionPointer); 
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
temp  parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* Return address to calling procedure *)

ELSE 
IF CallGateSize = 16

THEN
IF stack does not have room for parameters plus 8 bytes

THEN #SS(SS selector); FI;
IF (CallGate(InstructionPointer) AND FFFFH) not in code segment limit

THEN #GP(0); FI;
SS  newSS; 
(* Segment descriptor information also loaded *)
ESP  newESP; 
CS:IP  CallGate(CS:InstructionPointer);
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
temp  parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
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Push(oldCS:oldEIP); (* Return address to calling procedure *)
ELSE (* CallGateSize = 64 *)

IF pushing 32 bytes on the stack touches non-canonical addresses
THEN #SS(SS selector); FI;

IF (CallGate(InstructionPointer) is non-canonical) 
THEN #GP(0); FI;

SS  newSS; (* New SS is NULL)
RSP  newESP; 
CS:IP  CallGate(CS:InstructionPointer);
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
Push(oldCS:oldEIP); (* Return address to calling procedure *)

FI;
FI;
CPL  CodeSegment(DPL)
CS(RPL)  CPL

END;

SAME-PRIVILEGE:
IF CallGateSize = 32

THEN
IF stack does not have room for 8 bytes

THEN #SS(0); FI;
IF CallGate(InstructionPointer) not within code segment limit 

THEN #GP(0); FI;
CS:EIP  CallGate(CS:EIP) (* Segment descriptor information also loaded *)
Push(oldCS:oldEIP); (* Return address to calling procedure *)

ELSE 
If CallGateSize = 16

THEN
IF stack does not have room for 4 bytes

THEN #SS(0); FI;
IF CallGate(InstructionPointer) not within code segment limit 

THEN #GP(0); FI;
CS:IP  CallGate(CS:instruction pointer); 
(* Segment descriptor information also loaded *)
Push(oldCS:oldIP); (* Return address to calling procedure *)

ELSE (* CallGateSize = 64)
IF pushing 16 bytes on the stack touches non-canonical addresses

THEN #SS(0); FI;
IF RIP non-canonical 

THEN #GP(0); FI;
CS:IP  CallGate(CS:instruction pointer); 
(* Segment descriptor information also loaded *)
Push(oldCS:oldIP); (* Return address to calling procedure *)

FI;
FI;
CS(RPL)  CPL

END;
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TASK-GATE:
IF task gate DPL  CPL or RPL 

THEN #GP(task gate selector); FI;
IF task gate not present 

THEN #NP(task gate selector); FI;
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local
or index not within GDT limits

THEN #GP(TSS selector); FI;
Access TSS descriptor in GDT;
IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)

THEN #GP(TSS selector); FI;
IF TSS not present 

THEN #NP(TSS selector); FI;
SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit 

THEN #GP(0); FI;
END;

TASK-STATE-SEGMENT:
IF TSS DPL  CPL or RPL
or TSS descriptor indicates TSS not available

THEN #GP(TSS selector); FI;
IF TSS is not present 

THEN #NP(TSS selector);  FI;
SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit 

THEN #GP(0); FI;
END;

Flags Affected

All flags are affected if a task switch occurs; no flags are affected if a task switch does not 
occur.

Protected Mode Exceptions
#GP(0) If the target offset in destination operand is beyond the new code 

segment limit.

If the segment selector in the destination operand is NULL.

If the code segment selector in the gate is NULL.

If a memory operand effective address is outside the CS, DS, ES, 
FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it 
contains a NULL segment selector.

#GP(selector) If a code segment or gate or TSS selector index is outside descriptor 
table limits. 

If the segment descriptor pointed to by the segment selector in the 
destination operand is not for a conforming-code segment, noncon-
forming-code segment, call gate, task gate, or task state segment.
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If the DPL for a nonconforming-code segment is not equal to the 
CPL or the RPL for the segment’s segment selector is greater than 
the CPL.

If the DPL for a conforming-code segment is greater than the CPL.

If the DPL from a call-gate, task-gate, or TSS segment descriptor is 
less than the CPL or than the RPL of the call-gate, task-gate, or 
TSS’s segment selector.

If the segment descriptor for a segment selector from a call gate 
does not indicate it is a code segment.

If the segment selector from a call gate is beyond the descriptor 
table limits.

If the DPL for a code-segment obtained from a call gate is greater 
than the CPL.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not 
available.

#SS(0) If pushing the return address, parameters, or stack segment 
pointer onto the stack exceeds the bounds of the stack segment, 
when no stack switch occurs.

If a memory operand effective address is outside the SS segment 
limit.

#SS(selector) If pushing the return address, parameters, or stack segment 
pointer onto the stack exceeds the bounds of the stack segment, 
when a stack switch occurs.

If the SS register is being loaded as part of a stack switch and the 
segment pointed to is marked not present.

If stack segment does not have room for the return address, param-
eters, or stack segment pointer, when stack switch occurs.

#NP(selector) If a code segment, data segment, stack segment, call gate, task 
gate, or TSS is not present.

#TS(selector) If the new stack segment selector and ESP are beyond the end of 
the TSS.

If the new stack segment selector is NULL.

If the RPL of the new stack segment selector in the TSS is not equal 
to the DPL of the code segment being accessed.

If DPL of the stack segment descriptor for the new stack segment is 
not equal to the DPL of the code segment descriptor.

If the new stack segment is not a writable data segment.

If segment-selector index for stack segment is outside descriptor 
table limits. 

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory refer-
ence is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, 

FS, or GS segment limit.
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If the target offset is beyond the code segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, 

FS, or GS segment limit.

If the target offset is beyond the code segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory refer-
ence is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

#GP(selector) If a memory address accessed by the selector is in non-canonical 
space.

#GP(0) If the target offset in the destination operand is non-canonical.

64-Bit Mode Exceptions
#GP(0) If a memory address is non-canonical.

If target offset in destination operand is non-canonical.

If the segment selector in the destination operand is NULL.

If the code segment selector in the 64-bit gate is NULL.

#GP(selector) If code segment or 64-bit call gate is outside descriptor table limits. 

If code segment or 64-bit call gate overlaps non-canonical space. 

If the segment descriptor pointed to by the segment selector in the 
destination operand is not for a conforming-code segment, noncon-
forming-code segment, or 64-bit call gate.

If the segment descriptor pointed to by the segment selector in the 
destination operand is a code segment and has both the D-bit and 
the L- bit set.

If the DPL for a nonconforming-code segment is not equal to the 
CPL, or the RPL for the segment’s segment selector is greater than 
the CPL.

If the DPL for a conforming-code segment is greater than the CPL.

If the DPL from a 64-bit call-gate is less than the CPL or than the 
RPL of the 64-bit call-gate.

If the upper type field of a 64-bit call gate is not 0x0.

If the segment selector from a 64-bit call gate is beyond the 
descriptor table limits.

If the DPL for a code-segment obtained from a 64-bit call gate is 
greater than the CPL.

If the code segment descriptor pointed to by the selector in the 64-
bit gate doesn't have the L-bit set and the D-bit clear.

If the segment descriptor for a segment selector from the 64-bit call 
gate does not indicate it is a code segment. 
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#SS(0) If pushing the return offset or CS selector onto the stack exceeds 
the bounds of the stack segment when no stack switch occurs.

If a memory operand effective address is outside the SS segment 
limit.

If the stack address is in a non-canonical form.

#SS(selector) If pushing the old values of SS selector, stack pointer, EFLAGS, CS 
selector, offset, or error code onto the stack violates the canonical 
boundary when a stack switch occurs.

#NP(selector) If a code segment or 64-bit call gate is not present.

#TS(selector) If the load of the new RSP exceeds the limit of the TSS.

#UD (64-bit mode only) If a far call is direct to an absolute address in 
memory.

If the LOCK prefix is used.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory refer-
ence is made while the current privilege level is 3.

...
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CPUID—CPU Identification

Description

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. If 
a software procedure can set and clear this flag, the processor executing the procedure 
supports the CPUID instruction. This instruction operates the same in non-64-bit modes 
and 64-bit mode.

CPUID returns processor identification and feature information in the EAX, EBX, ECX, 
and EDX registers.1 The instruction’s output is dependent on the contents of the EAX 
register upon execution (in some cases, ECX as well). For example, the following 
pseudocode loads EAX with 00H and causes CPUID to return a Maximum Return Value 
and the Vendor Identification String in the appropriate registers:

MOV EAX, 00H
CPUID

Table 3-20. shows information returned, depending on the initial value loaded into the 
EAX register. Table 3-21. shows the maximum CPUID input value recognized for each 
family of IA-32 processors on which CPUID is implemented. 

Two types of information are returned: basic and extended function information. If a 
value entered for CPUID.EAX is higher than the maximum input value for basic or 
extended function for that processor then the data for the highest basic information leaf 
is returned. For example, using the Intel Core i7 processor, the following is true:

CPUID.EAX = 05H (* Returns MONITOR/MWAIT leaf. *) 
CPUID.EAX = 0AH (* Returns Architectural Performance Monitoring leaf. *) 
CPUID.EAX = 0BH (* Returns Extended Topology Enumeration leaf. *) 
CPUID.EAX = 0CH (* INVALID: Returns the same information as CPUID.EAX = 0BH. *) 
CPUID.EAX = 80000008H (* Returns linear/physical address size data. *)
CPUID.EAX = 8000000AH (* INVALID: Returns same information as CPUID.EAX = 0BH. *)

If a value entered for CPUID.EAX is less than or equal to the maximum input value and 
the leaf is not supported on that processor then 0 is returned in all the registers. For 
example, using the Intel Core i7 processor, the following is true:

CPUID.EAX = 07H (*Returns EAX=EBX=ECX=EDX=0. *)

When CPUID returns the highest basic leaf information as a result of an invalid input EAX 
value, any dependence on input ECX value in the basic leaf is honored.

CPUID can be executed at any privilege level to serialize instruction execution. Serial-
izing instruction execution guarantees that any modifications to flags, registers, and 
memory for previous instructions are completed before the next instruction is fetched 
and executed.

Opcode Instruction 64-Bit Mode Compat/
Leg Mode

Description

0F A2 CPUID Valid Valid Returns processor identification 
and feature information to the 
EAX, EBX, ECX, and EDX registers, 
as determined by input entered in 
EAX (in some cases, ECX as well).

1. On Intel 64 processors, CPUID clears the high 32 bits of the RAX/RBX/RCX/RDX registers in all 
modes.
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See also: 

“Serializing Instructions” in Chapter 8, “Multiple-Processor Management,” in the Intel® 

64 and IA-32 Architectures Software Developer’s Manual, Volume 3A

“Caching Translation Information” in Chapter 4, “Paging,” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A

Table 3-20.  Information Returned by CPUID Instruction

Initial EAX 
Value Information Provided about the Processor

Basic CPUID Information

0H EAX
EBX
ECX
EDX

Maximum Input Value for Basic CPUID Information (see Table 3-21.)
“Genu”
“ntel”
“ineI”

01H EAX

EBX

ECX
EDX

Version Information: Type, Family, Model, and Stepping ID (see Figure 
3-6.)

Bits 7-0: Brand Index
Bits 15-8: CLFLUSH line size (Value  8  cache line size in bytes)
Bits 23-16: Maximum number of addressable IDs for logical processors 
in this physical package*. 
Bits 31-24: Initial APIC ID

Feature Information (see Figure 16.10.3 and Table 3-23.)
Feature Information (see Figure 3-8. and Table 3-24.)

NOTES: 
* The nearest power-of-2 integer that is not smaller than EBX[23:16]

is the number of unique initial APIC IDs reserved for addressing dif-
ferent logical processors in a physical package. 

02H EAX
EBX
ECX
EDX

Cache and TLB Information (see Table 3-25.)
Cache and TLB Information
Cache and TLB Information
Cache and TLB Information

03H EAX
EBX

ECX

EDX

Reserved.
Reserved.

Bits 00-31 of 96 bit processor serial number. (Available in Pentium III 
processor only; otherwise, the value in this register is reserved.)

Bits 32-63 of 96 bit processor serial number. (Available in Pentium III 
processor only; otherwise, the value in this register is reserved.)

NOTES: 
Processor serial number (PSN) is not supported in the Pentium 4 pro-
cessor or later. On all models, use the PSN flag (returned using
CPUID) to check for PSN support before accessing the feature. 

See AP-485, Intel Processor Identification and the CPUID Instruc-
tion (Order Number 241618) for more information on PSN.

CPUID leaves > 3 < 80000000 are visible only when 
IA32_MISC_ENABLES.BOOT_NT4[bit 22] = 0 (default).
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Deterministic Cache Parameters Leaf 

04H NOTES:
Leaf 04H output depends on the initial value in ECX. 
See also: “INPUT EAX = 4: Returns Deterministic Cache Parameters 
for each level on page 2-48.

EAX Bits 4-0: Cache Type Field
0 = Null - No more caches
1 = Data Cache 
2 = Instruction Cache
3 = Unified Cache
4-31 = Reserved

Bits 7-5: Cache Level (starts at 1) 
Bits 8: Self Initializing cache level (does not need SW initialization)
Bits 9: Fully Associative cache

Bits 13-10: Reserved
Bits 25-14: Maximum number of addressable IDs for logical processors 
sharing this cache*, ** 
Bits 31-26: Maximum number of addressable IDs for processor cores in 
the physical package*, ***, ****

EBX Bits 11-00: L = System Coherency Line Size*
Bits 21-12: P = Physical Line partitions*
Bits 31-22: W = Ways of associativity*

ECX Bits 31-00: S = Number of Sets*

EDX Bit 0: Write-Back Invalidate/Invalidate
0 = WBINVD/INVD from threads sharing this cache acts upon lower 
level caches for threads sharing this cache
1 = WBINVD/INVD is not guaranteed to act upon lower level caches 
of non-originating threads sharing this cache.

Bit 1: Cache Inclusiveness
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.

Bits 31-02: Reserved = 0

NOTES:
* Add one to the return value to get the result. 
** The nearest power-of-2 integer that is not smaller than (1 + 

EAX[25:14]) is the number of unique initial APIC IDs reserved for 
addressing different logical processors sharing this cache

*** The nearest power-of-2 integer that is not smaller than (1 + 
EAX[31:26]) is the number of unique Core_IDs reserved for address-
ing different processor cores in a physical package. Core ID is a sub-
set of bits of the initial APIC ID. 

****The returned value is constant for valid initial values in ECX. Valid 
ECX values start from 0. 

MONITOR/MWAIT Leaf 

Table 3-20.  Information Returned by CPUID Instruction (Continued)

Initial EAX 
Value Information Provided about the Processor
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05H EAX Bits 15-00: Smallest monitor-line size in bytes (default is processor's 
monitor granularity) 
Bits 31-16: Reserved = 0

EBX Bits 15-00: Largest monitor-line size in bytes (default is processor's 
monitor granularity) 
Bits 31-16: Reserved = 0

ECX Bit 00: Enumeration of Monitor-Mwait extensions (beyond EAX and 
EBX registers) supported

Bit 01: Supports treating interrupts as break-event for MWAIT, even 
when interrupts disabled

Bits 31 - 02: Reserved 

EDX Bits 03 - 00: Number of C0* sub C-states supported using MWait
Bits 07 - 04: Number of C1* sub C-states supported using MWAIT
Bits 11 - 08: Number of C2* sub C-states supported using MWAIT
Bits 15 - 12: Number of C3* sub C-states supported using MWAIT
Bits 19 - 16: Number of C4* sub C-states supported using MWAIT
Bits 31 - 20: Reserved = 0
NOTE:
* The definition of C0 through C4 states for MWAIT extension are pro-

cessor-specific C-states, not ACPI C-states.

Thermal and Power Management Leaf 

06H EAX

EBX

Bit 00: Digital temperature sensor is supported if set
Bit 01: Intel Turbo Boost Technology Available (see description of 
IA32_MISC_ENABLES[38]).
Bit 02: ARAT. APIC-Timer-always-running feature is supported if set.
Bits 31 - 03: Reserved 
Bits 03 - 00: Number of Interrupt Thresholds in Digital Thermal Sensor
Bits 31 - 04: Reserved 

ECX Bit 00: Hardware Coordination Feedback Capability (Presence of 
IA32_MPERF and IA32_APERF). The capability to provide a measure of 
delivered processor performance (since last reset of the counters), as 
a percentage of expected processor performance at frequency speci-
fied in CPUID Brand String
Bits 02 - 01: Reserved = 0
Bit 03: The processor supports performance-energy bias preference if 
CPUID.06H:ECX.SETBH[bit 3] is set and it also implies the presence of a 
new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H)
Bits 31 - 04: Reserved = 0

EDX Reserved = 0

Direct Cache Access Information Leaf 

09H EAX

EBX

ECX

EDX

Value of bits [31:0] of IA32_PLATFORM_DCA_CAP MSR (address 
1F8H)

Reserved 

Reserved 

Reserved 

Table 3-20.  Information Returned by CPUID Instruction (Continued)

Initial EAX 
Value Information Provided about the Processor
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Architectural Performance Monitoring Leaf 

0AH EAX Bits 07 - 00: Version ID of architectural performance monitoring
Bits 15- 08: Number of general-purpose performance monitoring coun-
ter per logical processor
Bits 23 - 16: Bit width of general-purpose, performance monitoring 
counter 
Bits 31 - 24: Length of EBX bit vector to enumerate architectural per-
formance monitoring events

EBX Bit 0: Core cycle event not available if 1
Bit 1: Instruction retired event not available if 1
Bit 2: Reference cycles event not available if 1
Bit 3: Last-level cache reference event not available if 1
Bit 4: Last-level cache misses event not available if 1
Bit 5: Branch instruction retired event not available if 1
Bit 6: Branch mispredict retired event not available if 1
Bits 31- 07: Reserved = 0

ECX Reserved = 0

EDX Bits 04 - 00: Number of fixed-function performance counters (if Ver-
sion ID > 1)
Bits 12- 05: Bit width of fixed-function performance counters (if Ver-
sion ID > 1)
Reserved = 0

Extended Topology Enumeration Leaf 

0BH NOTES:
Most of Leaf 0BH output depends on the initial value in ECX. 
EDX output do not vary with initial value in ECX.
ECX[7:0] output always reflect initial value in ECX.
All other output value for an invalid initial value in ECX are 0.
Leaf 0BH exists if EBX[15:0] is not zero.

EAX Bits 4-0: Number of bits to shift right on x2APIC ID to get a unique 
topology ID of the next level type*. All logical processors with the 
same next level ID share current level.
Bits 31-5: Reserved.

EBX Bits 15 - 00: Number of logical processors at this level type. The num-
ber reflects configuration as shipped by Intel**.
Bits 31- 16: Reserved.

ECX Bits 07 - 00: Level number. Same value in ECX input
Bits 15 - 08: Level type***.
Bits 31 - 16:: Reserved.

EDX Bits 31- 0: x2APIC ID the current logical processor.

NOTES:
* Software should use this field (EAX[4:0]) to enumerate processor 
topology of the system.

Table 3-20.  Information Returned by CPUID Instruction (Continued)

Initial EAX 
Value Information Provided about the Processor
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** Software must not use EBX[15:0] to enumerate processor topology 
of the system. This value in this field (EBX[15:0]) is only intended for 
display/diagnostic purposes. The actual number of logical processors 
available to BIOS/OS/Applications may be different from the value of 
EBX[15:0], depending on software and platform hardware configura-
tions. 

*** The value of the “level type” field is not related to level numbers in 
any way, higher “level type” values do not mean higher levels. Level 
type field has the following encoding:
0 : invalid
1 : SMT
2 : Core
3-255 : Reserved

Processor Extended State Enumeration Main Leaf (EAX = 0DH, ECX = 0)

0DH NOTES:
Leaf 0DH main leaf (ECX = 0). 

EAX Bits 31-0: Reports the valid bit fields of the lower 32 bits of the 
XFEATURE_ENABLED_MASK register (XCR0). If a bit is 0, the corre-
sponding bit field in XCR0 is reserved.

EBX Bits 31-0: Maximum size (bytes) required by enabled features in 
XFEATURE_ENABLED_MASK (XCR0).  May be different than ECX when 
features at the end of the save area are not enabled.

ECX Bit 31-0: Maximum size (bytes) of the XSAVE/XRSTOR save area 
required by all supported features in the processor, i.e all the valid bit 
fields in XFEATURE_ENABLED_MASK. This includes the size needed for 
the XSAVE.HEADER. 

EDX Bit 31-0: Reports the valid bit fields of the upper 32 bits of the 
XFEATURE_ENABLED_MASK register (XCR0). If a bit is 0, the corre-
sponding bit field in XCR0 is reserved 

Processor Extended State Enumeration Sub-leaf (EAX = 0DH, ECX = 1)

EAX

EBX

ECX

EDX

Reserved

Reserved

Reserved

Reserved

Processor Extended State Enumeration Sub-leaves (EAX = 0DH, ECX = n, n > 1)

0DH NOTES:
Leaf 0DH output depends on the initial value in ECX. 
If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0.

Table 3-20.  Information Returned by CPUID Instruction (Continued)

Initial EAX 
Value Information Provided about the Processor
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EAX Bits 31-0: The size in bytes of the save area for an extended state fea-
ture associated with a valid sub-leaf index, n. Each valid sub-leaf index 
maps to a valid bit in the XFEATURE_ENABLED_MASK register (XCR0) 
starting at bit position 2. This field reports 0 if the sub-leaf index, n, is 
invalid*.

EBX Bits 31-0: The offset in bytes of the save area from the beginning of 
the XSAVE/XRSTOR area.
This field reports 0 if the sub-leaf index, n, is invalid*.

ECX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is 
reserved.

EDX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is 
reserved.

Unimplemented CPUID Leaf Functions

40000000H 
-

4FFFFFFF
H

Invalid. No existing or future CPU will return processor identification or 
feature information if the initial EAX value is in the range 40000000H 
to 4FFFFFFFH.

Extended Function CPUID Information

80000000H EAX Maximum Input Value for Extended Function CPUID Information (see 
Table 3-21.).

EBX
ECX
EDX

Reserved
Reserved
Reserved

80000001H EAX

EBX

ECX

Extended Processor Signature and Feature Bits.

Reserved

Bit 0: LAHF/SAHF available in 64-bit mode
Bits 31-1 Reserved

EDX Bits 10-0: Reserved
Bit 11: SYSCALL/SYSRET available (when in 64-bit mode)
Bits 19-12: Reserved = 0
Bit 20: Execute Disable Bit available
Bits 26-21: Reserved = 0
Bit 27: RDTSCP and IA32_TSC_AUX are available if 1
Bits 28: Reserved = 0
Bit 29: Intel® 64 Architecture available if 1
Bits 31-30: Reserved = 0

80000002H EAX
EBX
ECX
EDX

Processor Brand String
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

Table 3-20.  Information Returned by CPUID Instruction (Continued)

Initial EAX 
Value Information Provided about the Processor
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80000003H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000004H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000005H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Reserved = 0

80000006H EAX
EBX

Reserved = 0
Reserved = 0

ECX

EDX

Bits 7-0: Cache Line size in bytes
Bits 15-12: L2 Associativity field *
Bits 31-16: Cache size in 1K units
Reserved = 0

NOTES:
* L2 associativity field encodings:

00H - Disabled
01H - Direct mapped
02H - 2-way
04H - 4-way
06H - 8-way
08H - 16-way
0FH - Fully associative

80000007H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Bits 7-0: Reserved = 0
Bit 8: Invariant TSC available if 1
Bits 31-9: Reserved = 0

80000008H EAX Linear/Physical Address size 
Bits 7-0: #Physical Address Bits*
Bits 15-8: #Linear Address Bits
Bits 31-16: Reserved = 0

EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0

NOTES:
* If CPUID.80000008H:EAX[7:0] is supported, the maximum physical 

address number supported should come from this field.

Table 3-20.  Information Returned by CPUID Instruction (Continued)

Initial EAX 
Value Information Provided about the Processor
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INPUT EAX = 0: Returns CPUID’s Highest Value for Basic Processor Information and the 
Vendor Identification String

When CPUID executes with EAX set to 0, the processor returns the highest value the 
CPUID recognizes for returning basic processor information. The value is returned in the 
EAX register (see Table 3-21.) and is processor specific.

A vendor identification string is also returned in EBX, EDX, and ECX. For Intel proces-
sors, the string is “GenuineIntel” and is expressed:

EBX  756e6547h (* "Genu", with G in the low four bits of BL *)
EDX  49656e69h (* "ineI", with i in the low four bits of DL *)
ECX  6c65746eh (* "ntel", with n in the low four bits of CL *)

INPUT EAX = 80000000H: Returns CPUID’s Highest Value for Extended Processor Infor-
mation

When CPUID executes with EAX set to 0, the processor returns the highest value the 
processor recognizes for returning extended processor information. The value is 
returned in the EAX register (see Table 3-21.) and is processor specific.

Table 3-21.  Highest CPUID Source Operand for Intel 64 and IA-32 Processors 

Intel 64 or IA-32 Processors
Highest Value in EAX

Basic Information Extended Function 
Information

Earlier Intel486 Processors CPUID Not Implemented CPUID Not Implemented

Later Intel486 Processors and 
Pentium Processors

01H Not Implemented

Pentium Pro and Pentium II 
Processors, Intel® Celeron® 
Processors

02H Not Implemented

Pentium III Processors 03H Not Implemented

Pentium 4 Processors 02H 80000004H

Intel Xeon Processors 02H 80000004H

Pentium M Processor 02H 80000004H

Pentium 4 Processor 
supporting Hyper-Threading 
Technology

05H 80000008H

Pentium D Processor (8xx) 05H 80000008H

Pentium D Processor (9xx) 06H 80000008H

Intel Core Duo Processor 0AH 80000008H

Intel Core 2 Duo Processor 0AH 80000008H

Intel Xeon Processor 3000, 
5100, 5200, 5300, 5400 
Series

0AH 80000008H

Intel Core 2 Duo Processor 
8000 Series

0DH 80000008H
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IA32_BIOS_SIGN_ID Returns Microcode Update Signature

For processors that support the microcode update facility, the IA32_BIOS_SIGN_ID MSR 
is loaded with the update signature whenever CPUID executes. The signature is returned 
in the upper DWORD. For details, see Chapter 9 in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3A. 

INPUT EAX = 1: Returns Model, Family, Stepping Information

When CPUID executes with EAX set to 1, version information is returned in EAX (see 
Figure 3-6.). For example: model, family, and processor type for the Intel Xeon 
processor 5100 series is as follows:

• Model — 1111B

• Family — 0101B

• Processor Type — 00B

See Table 3-22. for available processor type values. Stepping IDs are provided as 
needed.

Intel Xeon Processor 5200, 
5400 Series

0AH 80000008H

Intel Atom Processor 0AH 80000008H

Intel Core i7 Processor 0BH 80000008H

Figure 3-6.  Version Information Returned by CPUID in EAX

Table 3-21.  Highest CPUID Source Operand for Intel 64 and IA-32 Processors  
(Continued)

Intel 64 or IA-32 Processors
Highest Value in EAX

Basic Information Extended Function 
Information

OM16525

Processor Type 

034781112131415161920272831

EAX

Family (0FH for the Pentium 4 Processor Family)

Model 

Extended
Family ID

Extended
Model ID

Family
ID

Model
Stepping

ID

Extended Family ID (0)

Extended Model ID (0)

Reserved
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NOTE
See Chapter 14 in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1, for information on identifying earlier IA-
32 processors.

The Extended Family ID needs to be examined only when the Family ID is 0FH. Integrate 
the fields into a display using the following rule:

IF Family_ID  0FH
THEN Displayed_Family = Family_ID;
ELSE Displayed_Family = Extended_Family_ID + Family_ID;
(* Right justify and zero-extend 4-bit field. *)

FI;
(* Show Display_Family as HEX field. *)

The Extended Model ID needs to be examined only when the Family ID is 06H or 0FH. 
Integrate the field into a display using the following rule:

IF (Family_ID = 06H or Family_ID = 0FH)
THEN Displayed_Model = (Extended_Model_ID << 4) + Model_ID;
(* Right justify and zero-extend 4-bit field; display Model_ID as HEX field.*)
ELSE Displayed_Model = Model_ID;

FI;
(* Show Display_Model as HEX field. *)

INPUT EAX = 1: Returns Additional Information in EBX

When CPUID executes with EAX set to 1, additional information is returned to the EBX 
register: 

• Brand index (low byte of EBX) — this number provides an entry into a brand string 
table that contains brand strings for IA-32 processors. More information about this 
field is provided later in this section. 

• CLFLUSH instruction cache line size (second byte of EBX) — this number indicates 
the size of the cache line flushed with CLFLUSH instruction in 8-byte increments. This 
field was introduced in the Pentium 4 processor.

• Local APIC ID (high byte of EBX) — this number is the 8-bit ID that is assigned to the 
local APIC on the processor during power up. This field was introduced in the Pentium 
4 processor.

INPUT EAX = 1: Returns Feature Information in ECX and EDX

When CPUID executes with EAX set to 1, feature information is returned in ECX and EDX.

Table 3-22.  Processor Type Field
Type Encoding

Original OEM Processor 00B

Intel OverDrive® Processor 01B

Dual processor (not applicable to Intel486 
processors)

10B

Intel reserved 11B
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• Figure 16.10.3 and Table 3-23. show encodings for ECX.

• Figure 3-8. and Table 3-24. show encodings for EDX.

For all feature flags, a 1 indicates that the feature is supported. Use Intel to properly 
interpret feature flags.

NOTE
Software must confirm that a processor feature is present using feature 
flags returned by CPUID prior to using the feature. Software should not 
depend on future offerings retaining all features.

Figure 3-7.  Feature Information Returned in the ECX Register

Table 3-23.  Feature Information Returned in the ECX Register 

Bit # Mnemonic Description

0 SSE3 Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the 
processor supports this technology.

1 PCLMULQDQ PCLMULQDQ. A value of 1 indicates the processor supports the 
PCLMULQDQ instruction

2 DTES64 64-bit DS Area. A value of 1 indicates the processor supports DS 
area using 64-bit layout

OM16524b

CNXT-ID — L1 Context ID

012345678910111213141516171819202122232425262728293031

ECX

TM2 — Thermal Monitor 2
EST —  Enhanced  Intel  SpeedStep®  Technology

DS-CPL — CPL Qualified Debug Store
MONITOR — MONITOR/MWAIT

PCLMULQDQ  —  Carryless Multiplication

Reserved

CMPXCHG16B

SMX — Safer Mode Extensions

xTPR Update Control

SSSE3 —  SSSE3 Extensions

PDCM —  Perf/Debug Capability MSR

VMX — Virtual Machine Extensions

SSE4_1 —  SSE4.1

OSXSAVE

SSE4_2 —  SSE4.2

DCA —  Direct Cache Access

x2APIC

POPCNT

XSAVE

AVX

AES

FMA —  Fused Multiply Add

SSE3  —  SSE3 Extensions

0

DTES64 — 64-bit DS Area

MOVBE
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3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor supports 
this feature. 

4 DS-CPL CPL Qualified Debug Store. A value of 1 indicates the processor 
supports the extensions to the Debug Store feature to allow for 
branch message storage qualified by CPL.

5 VMX Virtual Machine Extensions. A value of 1 indicates that the 
processor supports this technology

6 SMX Safer Mode Extensions. A value of 1 indicates that the processor 
supports this technology. See Chapter 6, “Safer Mode Extensions 
Reference”.

7 EST Enhanced Intel SpeedStep® technology. A value of 1 indicates 
that the processor supports this technology.

8 TM2 Thermal Monitor 2. A value of 1 indicates whether the processor 
supports this technology. 

9 SSSE3 A value of 1 indicates the presence of the Supplemental 
Streaming SIMD Extensions 3 (SSSE3). A value of 0 indicates the 
instruction extensions are not present in the processor

10 CNXT-ID L1 Context ID. A value of 1 indicates the L1 data cache mode can 
be set to either adaptive mode or shared mode. A value of 0 
indicates this feature is not supported. See definition of the 
IA32_MISC_ENABLE MSR Bit 24 (L1 Data Cache Context Mode) 
for details.

12-11 Reserved Reserved

13 CMPXCHG16B CMPXCHG16B Available. A value of 1 indicates that the feature is 
available. See the “CMPXCHG8B/CMPXCHG16B—Compare and 
Exchange Bytes” section in this chapter for a description.

14 xTPR Update 
Control

xTPR Update Control. A value of 1 indicates that the processor 
supports changing IA32_MISC_ENABLES[bit 23]. 

15 PDCM Perfmon and Debug Capability: A value of 1 indicates the 
processor supports the performance and debug feature indication 
MSR IA32_PERF_CAPABILITIES.

17 - 16 Reserved Reserved

18 DCA  A value of 1 indicates the processor supports the ability to 
prefetch data from a memory mapped device.

19 SSE4.1 A value of 1 indicates that the processor supports SSE4.1. 

20 SSE4.2 A value of 1 indicates that the processor supports SSE4.2. 

21 x2APIC A value of 1 indicates that the processor supports x2APIC 
feature.

22 MOVBE A value of 1 indicates that the processor supports MOVBE 
instruction.

23 POPCNT A value of 1 indicates that the processor supports the POPCNT 
instruction.

24 Reserved Reserved

25 AES A value of 1 indicates that the processor supports the AES 
instruction extensions.

Table 3-23.  Feature Information Returned in the ECX Register  (Continued)

Bit # Mnemonic Description
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26 XSAVE A value of 1 indicates that the processor supports the XSAVE/
XRSTOR processor extended states feature, the XSETBV/
XGETBV instructions, and the XFEATURE_ENABLED_MASK 
register (XCR0).

27 OSXSAVE A value of 1 indicates that the OS has enabled XSETBV/XGETBV 
instructions to access the XFEATURE_ENABLED_MASK register 
(XCR0), and support for processor extended state management 
using XSAVE/XRSTOR.

30 - 28 Reserved Reserved

31 Not Used Always return 0

Figure 3-8.  Feature Information Returned in the EDX Register

Table 3-23.  Feature Information Returned in the ECX Register  (Continued)

Bit # Mnemonic Description

OM16523

PBE–Pend. Brk. EN.

012345678910111213141516171819202122232425262728293031

EDX

TM–Therm. Monitor
HTT–Multi-threading
SS–Self Snoop
SSE2–SSE2 Extensions
SSE–SSE Extensions
FXSR–FXSAVE/FXRSTOR
MMX–MMX Technology
ACPI–Thermal Monitor and Clock Ctrl
DS–Debug Store
CLFSH–CFLUSH instruction
PSN–Processor Serial Number
PSE-36 – Page Size Extension
PAT–Page Attribute Table
CMOV–Conditional Move/Compare Instruction
MCA–Machine Check Architecture
PGE–PTE Global Bit
MTRR–Memory Type Range Registers
SEP–SYSENTER and SYSEXIT
APIC–APIC on Chip
CX8–CMPXCHG8B Inst.
MCE–Machine Check Exception
PAE–Physical Address Extensions
MSR–RDMSR and WRMSR Support
TSC–Time Stamp Counter
PSE–Page Size Extensions
DE–Debugging Extensions
VME–Virtual-8086 Mode Enhancement
FPU–x87 FPU on Chip

Reserved
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Table 3-24.  More on Feature Information Returned in the EDX Register

Bit # Mnemonic Description

0 FPU Floating Point Unit On-Chip. The processor contains an x87 FPU.

1 VME Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements, 
including CR4.VME for controlling the feature, CR4.PVI for protected mode 
virtual interrupts, software interrupt indirection, expansion of the TSS with 
the software indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP flags. 

2 DE Debugging Extensions. Support for I/O breakpoints, including CR4.DE for 
controlling the feature, and optional trapping of accesses to DR4 and DR5. 

3 PSE Page Size Extension. Large pages of size 4 MByte are supported, including 
CR4.PSE for controlling the feature, the defined dirty bit in PDE (Page 
Directory Entries), optional reserved bit trapping in CR3, PDEs, and PTEs. 

4 TSC Time Stamp Counter. The RDTSC instruction is supported, including CR4.TSD 
for controlling privilege.

5 MSR Model Specific Registers RDMSR and WRMSR Instructions. The RDMSR and 
WRMSR instructions are supported. Some of the MSRs are implementation 
dependent.

6 PAE Physical Address Extension. Physical addresses greater than 32 bits are 
supported: extended page table entry formats, an extra level in the page 
translation tables is defined, 2-MByte pages are supported instead of 4 
Mbyte pages if PAE bit is 1. 

7 MCE Machine Check Exception. Exception 18 is defined for Machine Checks, 
including CR4.MCE for controlling the feature. This feature does not define 
the model-specific implementations of machine-check error logging, 
reporting, and processor shutdowns. Machine Check exception handlers may 
have to depend on processor version to do model specific processing of the 
exception, or test for the presence of the Machine Check feature.

8 CX8 CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64 bits) 
instruction is supported (implicitly locked and atomic). 

9 APIC APIC On-Chip. The processor contains an Advanced Programmable Interrupt 
Controller (APIC), responding to memory mapped commands in the physical 
address range FFFE0000H to FFFE0FFFH (by default - some processors 
permit the APIC to be relocated). 

10 Reserved Reserved 

11 SEP SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and 
associated MSRs are supported. 

12 MTRR Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR 
contains feature bits that describe what memory types are supported, how 
many variable MTRRs are supported, and whether fixed MTRRs are 
supported. 

13 PGE Page Global Bit. The global bit is supported in paging-structure entries (PDEs 
and PTEs) that map a page, indicating TLB entries that are common to 
different processes and need not be flushed. The CR4.PGE bit controls this 
feature. 
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14 MCA Machine Check Architecture. The Machine Check Architecture, which 
provides a compatible mechanism for error reporting in P6 family, Pentium 
4, Intel Xeon processors, and future processors, is supported. The MCG_CAP 
MSR contains feature bits describing how many banks of error reporting 
MSRs are supported. 

15 CMOV Conditional Move Instructions. The conditional move instruction CMOV is 
supported. In addition, if x87 FPU is present as indicated by the CPUID.FPU 
feature bit, then the FCOMI and FCMOV instructions are supported 

16 PAT Page Attribute Table. Page Attribute Table is supported. This feature 
augments the Memory Type Range Registers (MTRRs), allowing an 
operating system to specify attributes of memory accessed through a linear 
address on a 4KB granularity.

17 PSE-36 36-Bit Page Size Extension. 4-MByte pages addressing physical memory 
beyond 4 GBytes are supported with 32-bit paging. This feature indicates 
that upper bits of the physical address of a 4-MByte page are encoded in 
bits 20:13 of the page-directory entry. Such physical addresses are limited 
by MAXPHYADDR and may be up to 40 bits in size.

18 PSN Processor Serial Number. The processor supports the 96-bit processor 
identification number feature and the feature is enabled.

19 CLFSH CLFLUSH Instruction. CLFLUSH Instruction is supported.

20 Reserved Reserved

21 DS Debug Store. The processor supports the ability to write debug information 
into a memory resident buffer. This feature is used by the branch trace 
store (BTS) and precise event-based sampling (PEBS) facilities (see Chapter 
20, “Introduction to Virtual-Machine Extensions,” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3B).

22 ACPI Thermal Monitor and Software Controlled Clock Facilities. The processor 
implements internal MSRs that allow processor temperature to be 
monitored and processor performance to be modulated in predefined duty 
cycles under software control.

23 MMX Intel MMX Technology. The processor supports the Intel MMX technology.

24 FXSR FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR instructions 
are supported for fast save and restore of the floating point context. 
Presence of this bit also indicates that CR4.OSFXSR is available for an 
operating system to indicate that it supports the FXSAVE and FXRSTOR 
instructions.

25 SSE SSE. The processor supports the SSE extensions.

26 SSE2 SSE2. The processor supports the SSE2 extensions.

27 SS Self Snoop. The processor supports the management of conflicting memory 
types by performing a snoop of its own cache structure for transactions 
issued to the bus.

28 HTT Multi-Threading. The physical processor package is capable of supporting 
more than one logical processor.

29 TM Thermal Monitor. The processor implements the thermal monitor automatic 
thermal control circuitry (TCC).

Table 3-24.  More on Feature Information Returned in the EDX Register (Continued)

Bit # Mnemonic Description
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INPUT EAX = 2: TLB/Cache/Prefetch Information Returned in EAX, EBX, ECX, EDX

When CPUID executes with EAX set to 2, the processor returns information about the 
processor’s internal TLBs, cache and prefetch hardware in the EAX, EBX, ECX, and EDX 
registers. The information is reported in encoded form and fall into the following catego-
ries:

• The least-significant byte in register EAX (register AL) indicates the number of times 
the CPUID instruction must be executed with an input value of 2 to get a complete 
description of the processor’s TLB/Cache/Prefetch hardware. The Intel Xeon 
processor 7400 series will return a 1.

• The most significant bit (bit 31) of each register indicates whether the register 
contains valid information (set to 0) or is reserved (set to 1).

• If a register contains valid information, the information is contained in 1 byte 
descriptors. There are four types of encoding values for the byte descriptor, the 
encoding type is noted in the second column of Table 3-25.. Table 3-25. lists the 
encoding of these descriptors. Note that the order of descriptors in the EAX, EBX, 
ECX, and EDX registers is not defined; that is, specific bytes are not designated to 
contain descriptors for specific cache, prefetch, or TLB types. The descriptors may 
appear in any order. Note also a processor may report a general descriptor type 
(FFH) and not report any byte descriptor of “cache type“ via CPUID leaf 2.

30 Reserved Reserved

31 PBE Pending Break Enable. The processor supports the use of the FERR#/PBE# 
pin when the processor is in the stop-clock state (STPCLK# is asserted) to 
signal the processor that an interrupt is pending and that the processor 
should return to normal operation to handle the interrupt. Bit 10 (PBE 
enable) in the IA32_MISC_ENABLE MSR enables this capability.

Table 3-25.  Encoding of CPUID Leaf 2 Descriptors 
 Value Type Description

00H General Null descriptor, this byte contains no information

01H TLB Instruction TLB: 4 KByte pages, 4-way set associative, 32 entries

02H TLB Instruction TLB: 4 MByte pages, fully associative, 2 entries

03H TLB Data TLB: 4 KByte pages, 4-way set associative, 64 entries

04H TLB Data TLB: 4 MByte pages, 4-way set associative, 8 entries

05H TLB Data TLB1: 4 MByte pages, 4-way set associative, 32 entries

06H Cache 1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size

08H Cache 1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line 
size

09H Cache 1st-level instruction cache: 32KBytes, 4-way set associative, 64 byte line size

0AH Cache 1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size

0BH TLB Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries

0CH Cache 1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size

0DH Cache 1st-level data cache: 16 KBytes, 4-way set associative, 64 byte line size

0EH Cache 1st-level data cache: 24 KBytes, 6-way set associative, 64 byte line size

Table 3-24.  More on Feature Information Returned in the EDX Register (Continued)

Bit # Mnemonic Description
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21H Cache 2nd-level cache: 256 KBytes, 8-way set associative, 64 byte line size

22H Cache 3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines 
per sector

23H Cache 3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per 
sector

25H Cache 3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per 
sector

29H Cache 3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per 
sector

2CH Cache 1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size

30H Cache 1st-level instruction cache: 32 KBytes, 8-way set associative, 64 byte line 
size

40H Cache No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-
level cache

41H Cache 2nd-level cache: 128 KBytes, 4-way set associative, 32 byte line size

42H Cache 2nd-level cache: 256 KBytes, 4-way set associative, 32 byte line size

43H Cache 2nd-level cache: 512 KBytes, 4-way set associative, 32 byte line size

44H Cache 2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size

45H Cache 2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size

46H Cache 3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size

47H Cache 3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size

48H Cache 2nd-level cache: 3MByte, 12-way set associative, 64 byte line size

49H Cache 3rd-level cache: 4MB, 16-way set associative, 64-byte line size (Intel Xeon 
processor MP, Family 0FH, Model 06H);

2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size

4AH Cache 3rd-level cache: 6MByte, 12-way set associative, 64 byte line size

4BH Cache 3rd-level cache: 8MByte, 16-way set associative, 64 byte line size

4CH Cache 3rd-level cache: 12MByte, 12-way set associative, 64 byte line size

4DH Cache 3rd-level cache: 16MByte, 16-way set associative, 64 byte line size

4EH Cache 2nd-level cache: 6MByte, 24-way set associative, 64 byte line size

4FH TLB Instruction TLB: 4 KByte pages, 32 entries

50H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries

51H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries

52H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries

55H TLB Instruction TLB: 2-MByte or 4-MByte pages, fully associative, 7 entries

56H TLB Data TLB0: 4 MByte pages, 4-way set associative, 16 entries

57H TLB Data TLB0: 4 KByte pages, 4-way associative, 16 entries

59H TLB Data TLB0: 4 KByte pages, fully associative, 16 entries

5AH TLB Data TLB0: 2-MByte or 4 MByte pages, 4-way set associative, 32 entries

5BH TLB Data TLB: 4 KByte and 4 MByte pages, 64 entries

Table 3-25.  Encoding of CPUID Leaf 2 Descriptors  (Continued)
 Value Type Description
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5CH TLB Data TLB: 4 KByte and 4 MByte pages,128 entries

5DH TLB Data TLB: 4 KByte and 4 MByte pages,256 entries

60H Cache 1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size

66H Cache 1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size

67H Cache 1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size

68H Cache 1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size

70H Cache Trace cache: 12 K-op, 8-way set associative

71H Cache Trace cache: 16 K-op, 8-way set associative

72H Cache Trace cache: 32 K-op, 8-way set associative

78H Cache 2nd-level cache: 1 MByte, 4-way set associative, 64byte line size

79H Cache 2nd-level cache: 128 KByte, 8-way set associative, 64 byte line size, 2 lines 
per sector

7AH Cache 2nd-level cache: 256 KByte, 8-way set associative, 64 byte line size, 2 lines 
per sector

7BH Cache 2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines 
per sector

7CH Cache 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per 
sector

7DH Cache 2nd-level cache: 2 MByte, 8-way set associative, 64byte line size

7FH Cache 2nd-level cache: 512 KByte, 2-way set associative, 64-byte line size

80H Cache 2nd-level cache: 512 KByte, 8-way set associative, 64-byte line size

82H Cache 2nd-level cache: 256 KByte, 8-way set associative, 32 byte line size

83H Cache 2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size

84H Cache 2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size

85H Cache 2nd-level cache: 2 MByte, 8-way set associative, 32 byte line size

86H Cache 2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size

87H Cache 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size

B0H TLB Instruction TLB: 4 KByte pages, 4-way set associative, 128 entries

B1H TLB Instruction TLB: 2M pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries

B2H TLB Instruction TLB: 4KByte pages, 4-way set associative, 64 entries

B3H TLB Data TLB: 4 KByte pages, 4-way set associative, 128 entries

B4H TLB Data TLB1: 4 KByte pages, 4-way associative, 256 entries

BAH TLB Data TLB1: 4 KByte pages, 4-way associative, 64 entries

C0H TLB Data TLB: 4 KByte and 4 MByte pages, 4-way associative, 8 entries

CAH STLB Shared 2nd-Level TLB: 4 KByte pages, 4-way associative, 512 entries

E4H Cache 3rd-level cache: 8 MByte, 16-way set associative, 64 byte line size

F0H Prefetch 64-Byte prefetching

Table 3-25.  Encoding of CPUID Leaf 2 Descriptors  (Continued)
 Value Type Description
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Example 3-1.  Example of Cache and TLB Interpretation

The first member of the family of Pentium 4 processors returns the following information 
about caches and TLBs when the CPUID executes with an input value of 2:

EAX 66 5B 50 01H
EBX 0H
ECX 0H
EDX 00 7A 70 00H

Which means:

• The least-significant byte (byte 0) of register EAX is set to 01H. This indicates that 
CPUID needs to be executed once with an input value of 2 to retrieve complete 
information about caches and TLBs.

• The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to 0, 
indicating that each register contains valid 1-byte descriptors.

• Bytes 1, 2, and 3 of register EAX indicate that the processor has:

— 50H - a 64-entry instruction TLB, for mapping 4-KByte and 2-MByte or 4-MByte 
pages.

— 5BH - a 64-entry data TLB, for mapping 4-KByte and 4-MByte pages.

— 66H - an 8-KByte 1st level data cache, 4-way set associative, with a 64-Byte 
cache line size.

• The descriptors in registers EBX and ECX are valid, but contain NULL descriptors.

• Bytes 0, 1, 2, and 3 of register EDX indicate that the processor has:

— 00H - NULL descriptor.

— 70H - Trace cache: 12 K-op, 8-way set associative.

— 7AH - a 256-KByte 2nd level cache, 8-way set associative, with a sectored, 64-
byte cache line size.

— 00H - NULL descriptor.

INPUT EAX = 04H: Returns Deterministic Cache Parameters for Each Level

When CPUID executes with EAX set to 04H and ECX contains an index value, the 
processor returns encoded data that describe a set of deterministic cache parameters 
(for the cache level associated with the input in ECX). Valid index values start from 0.

Software can enumerate the deterministic cache parameters for each level of the cache 
hierarchy starting with an index value of 0, until the parameters report the value associ-
ated with the cache type field is 0. The architecturally defined fields reported by deter-
ministic cache parameters are documented in Table 3-20..

This Cache Size in Bytes

= (Ways + 1) * (Partitions + 1) * (Line_Size + 1) * (Sets + 1)

F1H Prefetch 128-Byte prefetching

FFH General CPUID leaf 2 does not report cache descriptor information, use CPUID leaf 4 to 
query cache parameters

Table 3-25.  Encoding of CPUID Leaf 2 Descriptors  (Continued)
 Value Type Description
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= (EBX[31:22] + 1) * (EBX[21:12] + 1) * (EBX[11:0] + 1) * (EXC + 1)

The CPUID leaf 04H also reports data that can be used to derive the topology of 
processor cores in a physical package. This information is constant for all valid index 
values. Software can query the raw data reported by executing CPUID with EAX=04H 
and ECX=0 and use it as part of the topology enumeration algorithm described in 
Chapter 8, “Multiple-Processor Management,” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3A.

INPUT EAX = 05H: Returns MONITOR and MWAIT Features

When CPUID executes with EAX set to 05H, the processor returns information about 
features available to MONITOR/MWAIT instructions. The MONITOR instruction is used for 
address-range monitoring in conjunction with MWAIT instruction. The MWAIT instruction 
optionally provides additional extensions for advanced power management. See Table 3-
20.

INPUT EAX = 06H: Returns Thermal and Power Management Features

When CPUID executes with EAX set to 06H, the processor returns information about 
thermal and power management features. See Table 3-20.

INPUT EAX = 09H: Returns Direct Cache Access Information

When CPUID executes with EAX set to 09H, the processor returns information about 
Direct Cache Access capabilities. See Table 3-20.

INPUT EAX = 0AH: Returns Architectural Performance Monitoring Features

When CPUID executes with EAX set to 0AH, the processor returns information about 
support for architectural performance monitoring capabilities. Architectural performance 
monitoring is supported if the version ID (see Table 3-20.) is greater than Pn 0. See 
Table 3-20.

For each version of architectural performance monitoring capability, software must 
enumerate this leaf to discover the programming facilities and the architectural perfor-
mance events available in the processor. The details are described in Chapter 20, “Intro-
duction to Virtual-Machine Extensions,” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3B.

INPUT EAX = 0BH: Returns Extended Topology Information

When CPUID executes with EAX set to 0BH, the processor returns information about 
extended topology enumeration data. Software must detect the presence of CPUID leaf 
0BH by verifying (a) the highest leaf index supported by CPUID is >= 0BH, and (b) 
CPUID.0BH:EBX[15:0] reports a non-zero value. See Table 3-20.

INPUT EAX = 0DH: Returns Processor Extended States Enumeration Information

When CPUID executes with EAX set to 0DH and ECX = 0, the processor returns informa-
tion about the bit-vector representation of all processor state extensions that are 
supported in the processor and storage size requirements of the XSAVE/XRSTOR area. 
See Table 3-20.

When CPUID executes with EAX set to 0DH and ECX = n (n > 1, and is a valid sub-leaf 
index), the processor returns information about the size and offset of each processor 
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extended state save area within the XSAVE/XRSTOR area. See Table 3-20.. Software can 
use the forward-extendable technique depicted below to query the valid sub-leaves and 
obtain size and offset information for each processor extended state save area:

For i = 2 to 62 // sub-leaf 1 is reserved
IF (CPUID.(EAX=0DH, ECX=0):VECTOR[i] = 1 ) // VECTOR is the 64-bit value of EDX:EAX

Execute CPUID.(EAX=0DH, ECX = i) to examine size and offset for sub-leaf i; 
FI;

METHODS FOR RETURNING BRANDING INFORMATION

Use the following techniques to access branding information:

1. Processor brand string method; this method also returns the processor’s maximum
operating frequency

2. Processor brand index; this method uses a software supplied brand string table.

These two methods are discussed in the following sections. For methods that are avail-
able in early processors, see Section: “Identification of Earlier IA-32 Processors” in 
Chapter 14 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1.

The Processor Brand String Method

Figure 3-9. describes the algorithm used for detection of the brand string. Processor 
brand identification software should execute this algorithm on all Intel 64 and IA-32 
processors. 

This method (introduced with Pentium 4 processors) returns an ASCII brand identifica-
tion string and the maximum operating frequency of the processor to the EAX, EBX, ECX, 
and EDX registers.



Documentation Changes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 51

How Brand Strings Work

To use the brand string method, execute CPUID with EAX input of 8000002H through 
80000004H. For each input value, CPUID returns 16 ASCII characters using EAX, EBX, 
ECX, and EDX. The returned string will be NULL-terminated.

Table 3-26. shows the brand string that is returned by the first processor in the Pentium 
4 processor family.

Figure 3-9.  Determination of Support for the Processor Brand String

Table 3-26.  Processor Brand String Returned with Pentium 4 Processor 

EAX Input Value Return Values ASCII Equivalent

80000002H EAX  20202020H

EBX  20202020H

ECX  20202020H

EDX  6E492020H

“  ” 

“ ”

“ ”

“nI  ”

OM15194

IF (EAX & 0x80000000)

CPUID

IF (EAX Return Value 
≥ 0x80000004)

CPUID 
Function

Supported

True ≥
Extended

EAX Return Value =
Max. Extended CPUID

Function Index

Input: EAX= 
0x80000000

Processor Brand
String Not
Supported

False

Processor Brand
String Supported

True
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Extracting the Maximum Processor Frequency from Brand Strings

Figure 3-10. provides an algorithm which software can use to extract the maximum 
processor operating frequency from the processor brand string.

NOTE
When a frequency is given in a brand string, it is the maximum qualified 
frequency of the processor, not the frequency at which the processor is 
currently running.

80000003H EAX  286C6574H

EBX  50202952H

ECX  69746E65H

EDX  52286D75H

“(let”

“P )R”

“itne”

“R(mu”

80000004H EAX  20342029H

EBX  20555043H

ECX  30303531H

EDX  007A484DH

“ 4 )”

“ UPC”

“0051”

“\0zHM”

Table 3-26.  Processor Brand String Returned with Pentium 4 Processor  (Continued)
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The Processor Brand Index Method

The brand index method (introduced with Pentium® III Xeon® processors) provides an 
entry point into a brand identification table that is maintained in memory by system soft-
ware and is accessible from system- and user-level code. In this table, each brand index 
is associate with an ASCII brand identification string that identifies the official Intel 
family and model number of a processor.

When CPUID executes with EAX set to 1, the processor returns a brand index to the low 
byte in EBX. Software can then use this index to locate the brand identification string for 
the processor in the brand identification table. The first entry (brand index 0) in this 
table is reserved, allowing for backward compatibility with processors that do not 
support the brand identification feature. Starting with processor signature family ID = 
0FH, model = 03H, brand index method is no longer supported. Use brand string method 
instead.

Table 3-27. shows brand indices that have identification strings associated with them.

Figure 3-10.  Algorithm for Extracting Maximum Processor Frequency

OM15195

IF Substring Matched

"zHM", or 

"zHG", or 

"zHT"

Determine "Freq"

and "Multiplier"
True

Determine "Multiplier"

Scan "Brand String" in

Reverse Byte Order

Report Error
False

Scan Digits 

Until Blank

Match

Substring

Determine "Freq"
Reverse Digits

To Decimal Value

Max. Qualified
Frequency =

"Freq" x "Multiplier"
"Freq" = XY.Z if

Digits = "Z.YX"

In Reverse Order

If "zHM"

If "zHG"

If "zHT"
Multiplier = 1 x 10

12

Multiplier = 1 x 10
9

Multiplier = 1 x 10
6
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IA-32 Architecture Compatibility

CPUID is not supported in early models of the Intel486 processor or in any IA-32 
processor earlier than the Intel486 processor.

Operation

IA32_BIOS_SIGN_ID MSR  Update with installed microcode revision number;

CASE (EAX) OF
EAX  0:

EAX  Highest basic function input value understood by CPUID;

Table 3-27.  Mapping of Brand Indices; and 
Intel 64 and IA-32 Processor Brand Strings

Brand Index Brand String

00H This processor does not support the brand identification feature

01H Intel(R) Celeron(R) processor1

02H Intel(R) Pentium(R) III processor1

03H Intel(R) Pentium(R) III Xeon(R) processor; If processor signature = 
000006B1h, then Intel(R) Celeron(R) processor

04H Intel(R) Pentium(R) III processor

06H Mobile Intel(R) Pentium(R) III processor-M

07H Mobile Intel(R) Celeron(R) processor1

08H Intel(R) Pentium(R) 4 processor

09H Intel(R) Pentium(R) 4 processor

0AH Intel(R) Celeron(R) processor1

0BH Intel(R) Xeon(R) processor; If processor signature = 00000F13h, then Intel(R) 
Xeon(R) processor MP

0CH Intel(R) Xeon(R) processor MP

0EH Mobile Intel(R) Pentium(R) 4 processor-M; If processor signature = 
00000F13h, then Intel(R) Xeon(R) processor

0FH Mobile Intel(R) Celeron(R) processor1

11H Mobile Genuine Intel(R) processor

12H Intel(R) Celeron(R) M processor

13H Mobile Intel(R) Celeron(R) processor1

14H Intel(R) Celeron(R) processor

15H Mobile Genuine Intel(R) processor

16H Intel(R) Pentium(R) M processor

17H Mobile Intel(R) Celeron(R) processor1

18H – 0FFH RESERVED

NOTES:
1. Indicates versions of these processors that were introduced after the Pentium III 
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EBX  Vendor identification string;
EDX  Vendor identification string;
ECX  Vendor identification string;

BREAK;
EAX  1H:

EAX[3:0]  Stepping ID; 
EAX[7:4]  Model; 
EAX[11:8]  Family; 
EAX[13:12]  Processor type; 
EAX[15:14]  Reserved;
EAX[19:16]  Extended Model;
EAX[27:20]  Extended Family;
EAX[31:28]  Reserved;
EBX[7:0]  Brand Index; (* Reserved if the value is zero. *)
EBX[15:8]  CLFLUSH Line Size;
EBX[16:23]  Reserved; (* Number of threads enabled = 2 if MT enable fuse set. *)
EBX[24:31]  Initial APIC ID;
ECX  Feature flags; (* See Figure 16.10.3. *)
EDX  Feature flags; (* See Figure 3-8.. *)

BREAK;
EAX  2H:

EAX  Cache and TLB information; 
 EBX  Cache and TLB information; 
 ECX  Cache and TLB information; 

EDX  Cache and TLB information; 
BREAK;
EAX  3H:

EAX  Reserved; 
 EBX  Reserved; 
 ECX  ProcessorSerialNumber[31:0]; 

(* Pentium III processors only, otherwise reserved. *)
EDX  ProcessorSerialNumber[63:32]; 
(* Pentium III processors only, otherwise reserved. *

BREAK
EAX  4H:

EAX  Deterministic Cache Parameters Leaf; (* See Table 3-20.. *)
EBX  Deterministic Cache Parameters Leaf; 

 ECX  Deterministic Cache Parameters Leaf; 
EDX  Deterministic Cache Parameters Leaf; 

BREAK;
EAX  5H:

EAX  MONITOR/MWAIT Leaf; (* See Table 3-20.. *)
 EBX  MONITOR/MWAIT Leaf; 
 ECX  MONITOR/MWAIT Leaf; 

EDX  MONITOR/MWAIT Leaf; 
BREAK;
EAX  6H:

EAX  Thermal and Power Management Leaf; (* See Table 3-20.. *)
 EBX  Thermal and Power Management Leaf; 
 ECX  Thermal and Power Management Leaf; 
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EDX  Thermal and Power Management Leaf; 
BREAK;
EAX  7H or 8H:

EAX  Reserved = 0;
 EBX  Reserved = 0; 
 ECX  Reserved = 0; 

EDX  Reserved = 0; 
BREAK;
EAX  9H:

EAX  Direct Cache Access Information Leaf; (* See Table 3-20.. *)
 EBX  Direct Cache Access Information Leaf; 
 ECX  Direct Cache Access Information Leaf; 

EDX  Direct Cache Access Information Leaf; 
BREAK;
EAX  AH:

EAX  Architectural Performance Monitoring Leaf; (* See Table 3-20.. *)
 EBX  Architectural Performance Monitoring Leaf; 
 ECX  Architectural Performance Monitoring Leaf; 

EDX  Architectural Performance Monitoring Leaf; 
BREAK

EAX  BH:
EAX  Extended Topology Enumeration Leaf; (* See Table 3-20.. *)
EBX  Extended Topology Enumeration Leaf; 

 ECX  Extended Topology Enumeration Leaf; 
EDX  Extended Topology Enumeration Leaf; 

BREAK;
EAX  CH:

EAX  Reserved = 0;
 EBX  Reserved = 0; 
 ECX  Reserved = 0; 

EDX  Reserved = 0; 
BREAK;
EAX  DH:

EAX  Processor Extended State Enumeration Leaf; (* See Table 3-20.. *)
 EBX  Processor Extended State Enumeration Leaf; 
 ECX  Processor Extended State Enumeration Leaf; 

EDX  Processor Extended State Enumeration Leaf; 
BREAK;

BREAK;
EAX  80000000H:

EAX  Highest extended function input value understood by CPUID;
EBX  Reserved; 
ECX  Reserved; 
EDX  Reserved; 

BREAK;
EAX  80000001H:

EAX  Reserved; 
EBX  Reserved; 
ECX  Extended Feature Bits (* See Table 3-20..*); 
EDX  Extended Feature Bits (* See Table 3-20.. *); 
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BREAK;
EAX  80000002H:

EAX  Processor Brand String; 
EBX  Processor Brand String, continued;
ECX  Processor Brand String, continued; 
EDX  Processor Brand String, continued; 

BREAK;
EAX  80000003H:

EAX  Processor Brand String, continued; 
EBX  Processor Brand String, continued; 
ECX  Processor Brand String, continued; 
EDX  Processor Brand String, continued; 

BREAK;
EAX 80000004H:

EAX  Processor Brand String, continued; 
EBX  Processor Brand String, continued; 
ECX  Processor Brand String, continued; 
EDX  Processor Brand String, continued;

BREAK;
EAX 80000005H:

EAX  Reserved = 0; 
EBX  Reserved = 0; 
ECX  Reserved = 0; 
EDX  Reserved = 0; 

BREAK;
EAX 80000006H:

EAX  Reserved = 0; 
EBX  Reserved = 0; 
ECX  Cache information; 
EDX  Reserved = 0; 

BREAK;
EAX 80000007H:

EAX  Reserved = 0; 
EBX  Reserved = 0; 
ECX  Reserved = 0; 
EDX  Reserved = Misc Feature Flags; 

BREAK;
EAX 80000008H:

EAX  Reserved = Physical Address Size Information; 
EBX  Reserved = Virtual Address Size Information; 
ECX  Reserved = 0; 
EDX  Reserved = 0; 

BREAK;
EAX >= 40000000H and EAX <= 4FFFFFFFH:
DEFAULT: (* EAX Value outside of recognized range for CPUID. *)

(* If the highest basic information leaf data depend on ECX input value, ECX is honored.*)
EAX  Reserved; (* Information returned for highest basic information leaf. *)
EBX  Reserved; (* Information returned for highest basic information leaf. *)
ECX  Reserved; (* Information returned for highest basic information leaf. *)
EDX  Reserved; (* Information returned for highest basic information leaf. *)
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BREAK;
ESAC;

Flags Affected

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

In earlier IA-32 processors that do not support the CPUID instruc-
tion, execution of the instruction results in an invalid opcode (#UD) 
exception being generated.

...
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INT n/INTO/INT 3—Call to Interrupt Procedure

Description

The INT n instruction generates a call to the interrupt or exception handler specified with 
the destination operand (see the section titled “Interrupts and Exceptions” in Chapter 6 
of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1). The 
destination operand specifies an interrupt vector number from 0 to 255, encoded as an 
8-bit unsigned intermediate value. Each interrupt vector number provides an index to a 
gate descriptor in the IDT. The first 32 interrupt vector numbers are reserved by Intel for 
system use. Some of these interrupts are used for internally generated exceptions.

The INT n instruction is the general mnemonic for executing a software-generated call to 
an interrupt handler. The INTO instruction is a special mnemonic for calling overflow 
exception (#OF), interrupt vector number 4. The overflow interrupt checks the OF flag in 
the EFLAGS register and calls the overflow interrupt handler if the OF flag is set to 1. 

The INT 3 instruction generates a special one byte opcode (CC) that is intended for 
calling the debug exception handler. (This one byte form is valuable because it can be 
used to replace the first byte of any instruction with a breakpoint, including other one 
byte instructions, without over-writing other code). To further support its function as a 
debug breakpoint, the interrupt generated with the CC opcode also differs from the 
regular software interrupts as follows: 

• Interrupt redirection does not happen when in VME mode; the interrupt is handled by 
a protected-mode handler.

• The virtual-8086 mode IOPL checks do not occur. The interrupt is taken without 
faulting at any IOPL level.

Note that the “normal” 2-byte opcode for INT 3 (CD03) does not have these special 
features. Intel and Microsoft assemblers will not generate the CD03 opcode from any 
mnemonic, but this opcode can be created by direct numeric code definition or by self-
modifying code.

The action of the INT n instruction (including the INTO and INT 3 instructions) is similar 
to that of a far call made with the CALL instruction. The primary difference is that with 
the INT n instruction, the EFLAGS register is pushed onto the stack before the return 
address. (The return address is a far address consisting of the current values of the CS 
and EIP registers.) Returns from interrupt procedures are handled with the IRET instruc-
tion, which pops the EFLAGS information and return address from the stack.

The interrupt vector number specifies an interrupt descriptor in the interrupt descriptor 
table (IDT); that is, it provides index into the IDT. The selected interrupt descriptor in 
turn contains a pointer to an interrupt or exception handler procedure. In protected 
mode, the IDT contains an array of 8-byte descriptors, each of which is an interrupt 
gate, trap gate, or task gate. In real-address mode, the IDT is an array of 4-byte far 
pointers (2-byte code segment selector and a 2-byte instruction pointer), each of 
which point directly to a procedure in the selected segment. (Note that in real-address 

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

CC INT 3 Valid Valid Interrupt 3—trap to debugger.

CD ib INT imm8 Valid Valid Interrupt vector number specified by 
immediate byte.

CE INTO Invalid Valid Interrupt 4—if overflow flag is 1.
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mode, the IDT is called the interrupt vector table, and its pointers are called interrupt 
vectors.) 

The following decision table indicates which action in the lower portion of the table is 
taken given the conditions in the upper portion of the table. Each Y in the lower section 
of the decision table represents a procedure defined in the “Operation” section for this 
instruction (except #GP).

When the processor is executing in virtual-8086 mode, the IOPL determines the action of 
the INT n instruction. If the IOPL is less than 3, the processor generates a #GP(selector) 
exception; if the IOPL is 3, the processor executes a protected mode interrupt to privi-
lege level 0. The interrupt gate's DPL must be set to 3 and the target CPL of the interrupt 
handler procedure must be 0 to execute the protected mode interrupt to privilege level 
0.

The interrupt descriptor table register (IDTR) specifies the base linear address and limit 
of the IDT. The initial base address value of the IDTR after the processor is powered up 
or reset is 0.

Operation

The following operational description applies not only to the INT n and INTO instructions, 
but also to external interrupts and exceptions.

Table 3-64.  Decision Table
PE 0 1 1 1 1 1 1 1

VM – – – – – 0 1 1

IOPL – – – – – – <3 =3

DPL/CPL 
RELATIONSHIP

– DPL<
CPL

– DPL>
CPL

DPL=
CPL or C

DPL<
CPL & NC

– –

INTERRUPT TYPE – S/W – – – – – –

GATE TYPE – – Task Trap or 
Interrupt

Trap or 
Interrupt

Trap or 
Interrupt

Trap or 
Interrupt

Trap or 
Interrupt

REAL-ADDRESS-
MODE

Y

PROTECTED-MODE Y Y Y Y Y Y Y

TRAP-OR-
INTERRUPT-GATE

Y Y Y Y Y

INTER-PRIVILEGE-
LEVEL-INTERRUPT

Y

INTRA-PRIVILEGE-
LEVEL-INTERRUPT

Y

INTERRUPT-FROM-
VIRTUAL-8086-MODE

Y

TASK-GATE Y

#GP Y Y Y

NOTES:
 Don't Care.
Y Yes, action taken.

Blank Action not taken.
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IF PE 0
THEN 

GOTO REAL-ADDRESS-MODE;
ELSE (* PE  1 *)

IF (VM  1 and IOPL  3 AND INT n) 
THEN 

 #GP(0);
ELSE (* Protected mode, IA-32e mode, or virtual-8086 mode interrupt *)

IF (IA32_EFER.LMA  0)
THEN (* Protected mode, or virtual-8086 mode interrupt *)

GOTO PROTECTED-MODE;
ELSE (* IA-32e mode interrupt *)

GOTO IA-32e-MODE;
FI;

FI;
FI;
REAL-ADDRESS-MODE:

IF ((vector_number  4)  3) is not within IDT limit 
THEN #GP; FI;

IF stack not large enough for a 6-byte return information 
THEN #SS; FI;

Push (EFLAGS[15:0]);
IF  0; (* Clear interrupt flag *)
TF  0; (* Clear trap flag *)
AC  0; (* Clear AC flag *)
Push(CS);
Push(IP);
(* No error codes are pushed *)
CS  IDT(Descriptor (vector_number  4), selector));
EIP  IDT(Descriptor (vector_number  4), offset)); (* 16 bit offset AND 0000FFFFH *)

END;
PROTECTED-MODE:

IF ((vector_number  8)  7) is not within IDT limits
or selected IDT descriptor is not an interrupt-, trap-, or task-gate type

THEN #GP((vector_number  8)  2  EXT); FI;
(* EXT is bit 0 in error code *)

IF software interrupt (* Generated by INT n, INT 3, or INTO *)
THEN

IF gate descriptor DPL  CPL
THEN #GP((vector_number  8)  2 ); FI; 
(* PE1, DPLCPL, software interrupt *)

FI;
IF gate not present 

THEN #NP((vector_number  8)  2  EXT); FI;
IF task gate (* Specified in the selected interrupt table descriptor *)

THEN GOTO TASK-GATE;
ELSE GOTO TRAP-OR-INTERRUPT-GATE; (* PE 1, trap/interrupt gate *)

FI;
END;
IA-32e-MODE:
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IF ((vector_number  16)  15) is not in IDT limits
or selected IDT descriptor is not an interrupt-, or trap-gate type

THEN #GP((vector_number  16)  2  EXT); FI;
(* EXT is bit 0 in error code *)

IF software interrupt (* Generated by INT n, INT 3, but not INTO *)
THEN

IF gate descriptor DPL  CPL
THEN #GP((vector_number  16)  2 ); FI;
(* PE1, DPL CPL, software interrupt *)

ELSE (* Generated by INTO *)
THEN #UD;

FI;
IF gate not present 

THEN #NP((vector_number  16)  2  EXT); FI;
IF ((vector_number * 16)[IST] 0)

NewRSP  TSS[ISTx]; FI;
GOTO TRAP-OR-INTERRUPT-GATE; (* Trap/interrupt gate *)

END;
TASK-GATE: (* PE 1, task gate *)

Read segment selector in task gate (IDT descriptor);
IF local/global bit is set to local
or index not within GDT limits

THEN #GP(TSS selector); FI;
Access TSS descriptor in GDT;
IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)

THEN #GP(TSS selector); FI;
IF TSS not present 

THEN #NP(TSS selector); FI;
SWITCH-TASKS (with nesting) to TSS;
IF interrupt caused by fault with error code

THEN
IF stack limit does not allow push of error code

THEN #SS(0); FI;
Push(error code);

FI;
IF EIP not within code segment limit 

THEN #GP(0); FI;
END;
TRAP-OR-INTERRUPT-GATE:

Read segment selector for trap or interrupt gate (IDT descriptor);
IF segment selector for code segment is NULL

THEN #GP(0H  EXT); FI; (* NULL selector with EXT flag set *)
IF segment selector is not within its descriptor table limits 

THEN #GP(selector  EXT); FI;
Read trap or interrupt handler descriptor;
IF descriptor does not indicate a code segment 
or code segment descriptor DPL CPL

THEN #GP(selector  EXT); FI;
IF trap or interrupt gate segment is not present, 

THEN #NP(selector  EXT); FI;
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IF code segment is non-conforming and DPL  CPL
THEN 

IF VM 0
THEN 

GOTO INTER-PRIVILEGE-LEVEL-INTERRUPT; 
(* PE 1, interrupt or trap gate, nonconforming 
code segment, DPL CPL, VM 0 *)

ELSE (* VM  1 *)
IF code segment DPL  0 

THEN #GP; (new code segment selector);
GOTO INTERRUPT-FROM-VIRTUAL-8086-MODE; FI;
(* PE  1, interrupt or trap gate, DPL CPL, VM 1 *)

FI;
ELSE (* PE  1, interrupt or trap gate, DPL  CPL *)

IF VM  1 
THEN #GP(new code segment selector); FI;

IF code segment is conforming or code segment DPL  CPL
THEN 

GOTO INTRA-PRIVILEGE-LEVEL-INTERRUPT; 
ELSE 

#GP(CodeSegmentSelector  EXT);
(* PE 1, interrupt or trap gate, nonconforming 
code segment, DPL CPL *)

FI;
FI;

END;
INTER-PRIVILEGE-LEVEL-INTERRUPT:

(* PE 1, interrupt or trap gate, non-conforming code segment, DPL CPL *)
(* Check segment selector and descriptor for stack of new privilege level in current TSS *)
IF current TSS is 32-bit TSS

THEN 
TSSstackAddress  (new code segment DPL  8)  4;
IF (TSSstackAddress  7)  TSS limit

THEN #TS(current TSS selector); FI;
NewSS  TSSstackAddress  4;
NewESP  stack address;

ELSE 
IF current TSS is 16-bit TSS

THEN(* TSS is 16-bit *)
TSSstackAddress  (new code segment DPL  4)  2
IF (TSSstackAddress  4)  TSS limit

THEN #TS(current TSS selector); FI;
NewESP  TSSstackAddress;
NewSS  TSSstackAddress  2;

ELSE (* TSS is 64-bit *)
NewESP  TSS[RSP FOR NEW TARGET DPL];
NewSS  CodeSegmentDescriptor(DPL);
(* null selector with RPL = new CPL *)

FI;
FI;
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IF segment selector is NULL
THEN #TS(EXT); FI;

IF segment selector index is not within its descriptor table limits
or segment selector's RPL  DPL of code segment, 

THEN #TS(SS selector  EXT); FI;
IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)

Read segment descriptor for stack segment in GDT or LDT;
IF stack segment DPL  DPL of code segment, 
or stack segment does not indicate writable data segment

THEN #TS(SS selector  EXT); FI;
IF stack segment not present 

THEN #SS(SS selector EXT); FI;
FI
IF 32-bit gate 

THEN
IF new stack does not have room for 24 bytes (error code pushed) 
or 20 bytes (no error code pushed)

THEN #SS(segment selector  EXT); FI;
FI

ELSE 
IF 16-bit gate 

THEN
IF new stack does not have room for 12 bytes (error code pushed) 
or 10 bytes (no error code pushed);
THEN #SS(segment selector  EXT); FI;

ELSE (* 64-bit gate*)
IF StackAddress is non-canonical

THEN #SS(0);FI;
FI;

FI;
IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)

THEN
IF instruction pointer is not within code segment limits 

THEN #GP(0); FI;
SS:ESP  TSS(NewSS:NewESP); 

(* Segment descriptor information also loaded *)
ELSE

IF instruction pointer points to non-canonical address
THEN #GP(0); FI:

FI;
IF 32-bit gate

THEN 
CS:EIP  Gate(CS:EIP); (* Segment descriptor information also loaded *)

ELSE 
IF 16-bit gate

THEN 
CS:IPGate(CS:IP); 
(* Segment descriptor information also loaded *)

ELSE (* 64-bit gate *)
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CS:RIP Gate(CS:RIP); 
(* Segment descriptor information also loaded *)

FI;
FI;
IF 32-bit gate

THEN
Push(far pointer to old stack); 
(* Old SS and ESP, 3 words padded to 4 *)
Push(EFLAGS);
Push(far pointer to return instruction); 
(* Old CS and EIP, 3 words padded to 4 *)
Push(ErrorCode); (* If needed, 4 bytes *)

ELSE
IF 16-bit gate

THEN
Push(far pointer to old stack); 
(* Old SS and SP, 2 words *)
Push(EFLAGS(15-0]);
Push(far pointer to return instruction); 
(* Old CS and IP, 2 words *)
Push(ErrorCode); (* If needed, 2 bytes *)

ELSE (* 64-bit gate *)
Push(far pointer to old stack); 
(* Old SS and SP, each an 8-byte push *)
Push(RFLAGS); (* 8-byte push *)
Push(far pointer to return instruction); 
(* Old CS and RIP, each an 8-byte push *)
Push(ErrorCode); (* If needed, 8-bytes *)

FI;
FI;
CPL  CodeSegmentDescriptor(DPL);
CS(RPL)  CPL;
IF interrupt gate

THEN IF  0 (* Interrupt flag set to 0: disabled *); FI;
TF  0;
VM  0;
RF  0;
NT  0;

END;
INTERRUPT-FROM-VIRTUAL-8086-MODE:

(* Check segment selector and descriptor for privilege level 0 stack in current TSS *)
IF current TSS is 32-bit TSS

THEN 
TSSstackAddress  (new code segment DPL  8)  4;
IF (TSSstackAddress  7)  TSS limit

THEN #TS(current TSS selector); FI;
NewSS  TSSstackAddress  4;
NewESP  stack address;

ELSE (* TSS is 16-bit *)
TSSstackAddress  (new code segment DPL  4)  2;
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IF (TSSstackAddress  4)  TSS limit
THEN #TS(current TSS selector); FI;

NewESP  TSSstackAddress;
NewSS  TSSstackAddress  2;

FI;
IF segment selector is NULL

THEN #TS(EXT); FI;
IF segment selector index is not within its descriptor table limits
or segment selector's RPL  DPL of code segment

THEN #TS(SS selector  EXT); FI;
Access segment descriptor for stack segment in GDT or LDT;
IF stack segment DPL  DPL of code segment, 
or stack segment does not indicate writable data segment

THEN #TS(SS selector  EXT); FI;
IF stack segment not present 

THEN #SS(SS selector EXT); FI;
IF 32-bit gate

THEN
IF new stack does not have room for 40 bytes (error code pushed) 
or 36 bytes (no error code pushed)

THEN #SS(segment selector  EXT); FI;
ELSE IF 16-bit gate 

THEN
IF new stack does not have room for 20 bytes (error code pushed) 
or 18 bytes (no error code pushed)

THEN #SS(segment selector  EXT); FI;
ELSE (* 64-bit gate*)

IF StackAddress is non-canonical
THEN #SS(0);

FI;
FI;
IF instruction pointer is not within code segment limits 

THEN #GP(0); FI;
tempEFLAGS  EFLAGS;
VM  0;
TF  0;
RF  0;
NT  0;
IF service through interrupt gate 

THEN IF  0; FI;
TempSS  SS;
TempESP  ESP;
SS:ESP  TSS(SS0:ESP0); (* Change to level 0 stack segment *)
(* Following pushes are 16 bits for 16-bit gate and 32 bits for 32-bit gates; 
Segment selector pushes in 32-bit mode are padded to two words *)
Push(GS);
Push(FS);
Push(DS);
Push(ES);
Push(TempSS);
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Push(TempESP);
Push(TempEFlags);
Push(CS);
Push(EIP);
GS  0; (* Segment registers NULLified, invalid in protected mode *)
FS  0;
DS  0;
ES  0;
CS  Gate(CS);
IF OperandSize  32

THEN
EIP  Gate(instruction pointer);

ELSE (* OperandSize is 16 *)
EIP  Gate(instruction pointer) AND 0000FFFFH;

FI;
(* Start execution of new routine in Protected Mode *)

END;
INTRA-PRIVILEGE-LEVEL-INTERRUPT:

(* PE 1, DPL  CPL or conforming segment *)
IF 32-bit gate and IA32_EFER.LMA = 0

THEN
IF current stack does not have room for 16 bytes (error code pushed) 
or 12 bytes (no error code pushed)

THEN #SS(0); FI;
ELSE IF 16-bit gate 

IF current stack does not have room for 8 bytes (error code pushed) 
or 6 bytes (no error code pushed)

THEN #SS(0); FI;
ELSE (* 64-bit gate*)

IF StackAddress is non-canonical
THEN #SS(0);

FI;
FI;
IF instruction pointer not within code segment limit

THEN #GP(0); FI;
IF 32-bit gate

THEN
Push (EFLAGS);
Push (far pointer to return instruction); (* 3 words padded to 4 *)
CS:EIP  Gate(CS:EIP); (* Segment descriptor information also loaded *)
Push (ErrorCode); (* If any *)

ELSE
IF 16-bit gate

THEN
Push (FLAGS);
Push (far pointer to return location); (* 2 words *)
CS:IP  Gate(CS:IP); 
(* Segment descriptor information also loaded *)
Push (ErrorCode); (* If any *)

ELSE (* 64-bit gate*)
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Push(far pointer to old stack); 
(* Old SS and SP, each an 8-byte push *)
Push(RFLAGS); (* 8-byte push *)
Push(far pointer to return instruction); 
(* Old CS and RIP, each an 8-byte push *)
Push(ErrorCode); (* If needed, 8 bytes *)
CS:RIP  GATE(CS:RIP); 
(* Segment descriptor information also loaded *)

FI;
FI;
CS(RPL)  CPL;
IF interrupt gate 

THEN IF  0; FI; (* Interrupt flag set to 0: disabled *)
TF  0;
NT  0;
VM  0;
RF  0;

END;

Flags Affected

The EFLAGS register is pushed onto the stack. The IF, TF, NT, AC, RF, and VM flags may 
be cleared, depending on the mode of operation of the processor when the INT instruc-
tion is executed (see the “Operation” section). If the interrupt uses a task gate, any flags 
may be set or cleared, controlled by the EFLAGS image in the new task’s TSS.

Protected Mode Exceptions
#GP(0) If the instruction pointer in the IDT or in the interrupt-, trap-, or 

task gate is beyond the code segment limits.

#GP(selector) If the segment selector in the interrupt-, trap-, or task gate is NULL.

If an interrupt-, trap-, or task gate, code segment, or TSS segment 
selector index is outside its descriptor table limits.

If the interrupt vector number is outside the IDT limits.

If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.

If an interrupt is generated by the INT n, INT 3, or INTO instruction 
and the DPL of an interrupt-, trap-, or task-descriptor is less than 
the CPL.

If the segment selector in an interrupt- or trap-gate does not point 
to a segment descriptor for a code segment.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not 
available.

#SS(0) If pushing the return address, flags, or error code onto the stack 
exceeds the bounds of the stack segment and no stack switch 
occurs.

#SS(selector) If the SS register is being loaded and the segment pointed to is 
marked not present.

If pushing the return address, flags, error code, or stack segment 
pointer exceeds the bounds of the new stack segment when a stack 
switch occurs.
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#NP(selector) If code segment, interrupt-, trap-, or task gate, or TSS is not 
present.

#TS(selector) If the RPL of the stack segment selector in the TSS is not equal to 
the DPL of the code segment being accessed by the interrupt or trap 
gate.

If DPL of the stack segment descriptor pointed to by the stack 
segment selector in the TSS is not equal to the DPL of the code 
segment descriptor for the interrupt or trap gate.

If the stack segment selector in the TSS is NULL.

If the stack segment for the TSS is not a writable data segment.

If segment-selector index for stack segment is outside descriptor 
table limits. 

#PF(fault-code) If a page fault occurs.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, 

FS, or GS segment limit.

If the interrupt vector number is outside the IDT limits.

#SS If stack limit violation on push.

If pushing the return address, flags, or error code onto the stack 
exceeds the bounds of the stack segment.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) (For INT n, INTO, or BOUND instruction) If the IOPL is less than 3 or 

the DPL of the interrupt-, trap-, or task-gate descriptor is not equal 
to 3.

If the instruction pointer in the IDT or in the interrupt-, trap-, or 
task gate is beyond the code segment limits.

#GP(selector) If the segment selector in the interrupt-, trap-, or task gate is NULL.

If a interrupt-, trap-, or task gate, code segment, or TSS segment 
selector index is outside its descriptor table limits.

If the interrupt vector number is outside the IDT limits.

If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.

If an interrupt is generated by the INT n instruction and the DPL of 
an interrupt-, trap-, or task-descriptor is less than the CPL.

If the segment selector in an interrupt- or trap-gate does not point 
to a segment descriptor for a code segment.

If the segment selector for a TSS has its local/global bit set for local.

#SS(selector) If the SS register is being loaded and the segment pointed to is 
marked not present.

If pushing the return address, flags, error code, stack segment 
pointer, or data segments exceeds the bounds of the stack segment.

#NP(selector) If code segment, interrupt-, trap-, or task gate, or TSS is not 
present.
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#TS(selector) If the RPL of the stack segment selector in the TSS is not equal to 
the DPL of the code segment being accessed by the interrupt or trap 
gate.

If DPL of the stack segment descriptor for the TSS’s stack segment 
is not equal to the DPL of the code segment descriptor for the inter-
rupt or trap gate.

If the stack segment selector in the TSS is NULL.

If the stack segment for the TSS is not a writable data segment.

If segment-selector index for stack segment is outside descriptor 
table limits. 

#PF(fault-code) If a page fault occurs.

#BP If the INT 3 instruction is executed.

#OF If the INTO instruction is executed and the OF flag is set.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the instruction pointer in the 64-bit interrupt gate or 64-bit trap 

gate is non-canonical.

#GP(selector) If the segment selector in the 64-bit interrupt or trap gate is NULL.

If the interrupt vector number is outside the IDT limits.

If the interrupt vector number points to a gate which is in non-
canonical space.

If the interrupt vector number points to a descriptor which is not a 
64-bit interrupt gate or 64-bit trap gate.

If the descriptor pointed to by the gate selector is outside the 
descriptor table limit.

If the descriptor pointed to by the gate selector is in non-canonical 
space.

If the descriptor pointed to by the gate selector is not a code 
segment.

If the descriptor pointed to by the gate selector doesn’t have the L-
bit set, or has both the L-bit and D-bit set.

If the descriptor pointed to by the gate selector has DPL > CPL.

#SS(0) If a push of the old EFLAGS, CS selector, EIP, or error code is in non-
canonical space with no stack switch.

#SS(selector) If a push of the old SS selector, ESP, EFLAGS, CS selector, EIP, or 
error code is in non-canonical space on a stack switch (either CPL 
change or no-CPL with IST).

#NP(selector) If the 64-bit interrupt-gate, 64-bit trap-gate, or code segment is not 
present.
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#TS(selector) If an attempt to load RSP from the TSS causes an access to non-
canonical space.

If the RSP from the TSS is outside descriptor table limits. 

#PF(fault-code) If a page fault occurs.

#UD If the LOCK prefix is used.

..

4. Updates to Chapter 4, Volume 2B

Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2B: Instruction Set Reference, N-Z.

------------------------------------------------------------------------------------------

...
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PINSRB/PINSRD/PINSRQ — Insert Byte/Dword/Qword

...

Opcode Instruction Compat/
Leg Mode

64-bit 
Mode

Description

66 0F 3A 
20 /r ib

PINSRB xmm1, 
r32/m8, imm8

Valid Valid Insert a byte integer value from r32/m8 
into xmm1 at the destination element in 
xmm1 specified by imm8.

66 0F 3A 
22 /r ib

PINSRD xmm1, r/
m32, imm8

Valid Valid Insert a dword integer value from r/m32 
into the xmm1 at the destination 
element specified by imm8.

66 REX.W 
0F 3A 22 /r 
ib

PINSRQ xmm1, r/
m64, imm8

N. E. Valid Insert a qword integer value from r/m32 
into the xmm1 at the destination 
element specified by imm8.



Documentation Changes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 73

RET—Return from Procedure

Description

Transfers program control to a return address located on the top of the stack. The 
address is usually placed on the stack by a CALL instruction, and the return is made to 
the instruction that follows the CALL instruction.

The optional source operand specifies the number of stack bytes to be released after the 
return address is popped; the default is none. This operand can be used to release 
parameters from the stack that were passed to the called procedure and are no longer 
needed. It must be used when the CALL instruction used to switch to a new procedure 
uses a call gate with a non-zero word count to access the new procedure. Here, the 
source operand for the RET instruction must specify the same number of bytes as is 
specified in the word count field of the call gate.

The RET instruction can be used to execute three different types of returns:

• Near return — A return to a calling procedure within the current code segment (the 
segment currently pointed to by the CS register), sometimes referred to as an 
intrasegment return.

• Far return — A return to a calling procedure located in a different segment than the 
current code segment, sometimes referred to as an intersegment return.

• Inter-privilege-level far return — A far return to a different privilege level than 
that of the currently executing program or procedure.

The inter-privilege-level return type can only be executed in protected mode. See the 
section titled “Calling Procedures Using Call and RET” in Chapter 6 of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1, for detailed information on 
near, far, and inter-privilege-level returns.

When executing a near return, the processor pops the return instruction pointer (offset) 
from the top of the stack into the EIP register and begins program execution at the new 
instruction pointer. The CS register is unchanged. 

When executing a far return, the processor pops the return instruction pointer from the 
top of the stack into the EIP register, then pops the segment selector from the top of the 
stack into the CS register. The processor then begins program execution in the new code 
segment at the new instruction pointer.

The mechanics of an inter-privilege-level far return are similar to an intersegment 
return, except that the processor examines the privilege levels and access rights of the 
code and stack segments being returned to determine if the control transfer is allowed to 
be made. The DS, ES, FS, and GS segment registers are cleared by the RET instruction 
during an inter-privilege-level return if they refer to segments that are not allowed to be 
accessed at the new privilege level. Since a stack switch also occurs on an inter-privilege 
level return, the ESP and SS registers are loaded from the stack. 

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

C3 RET Valid Valid Near return to calling procedure.

CB RET Valid Valid Far return to calling procedure.

C2 iw RET imm16 Valid Valid Near return to calling procedure and pop 
imm16 bytes from stack.

CA iw RET imm16 Valid Valid Far return to calling procedure and pop 
imm16 bytes from stack.
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If parameters are passed to the called procedure during an inter-privilege level call, the 
optional source operand must be used with the RET instruction to release the parameters 
on the return. Here, the parameters are released both from the called procedure’s stack 
and the calling procedure’s stack (that is, the stack being returned to).

In 64-bit mode, the default operation size of this instruction is the stack size, i.e. 64 bits.

Operation

(* Near return *)
IF instruction  Near return 

THEN;
IF OperandSize  32

THEN
IF top 4 bytes of stack not within stack limits

THEN #SS(0); FI;
EIP  Pop();

ELSE
IF OperandSize = 64

THEN
IF top 8 bytes of stack not within stack limits

THEN #SS(0); FI;
RIP  Pop();

ELSE (* OperandSize  16 *)
IF top 2 bytes of stack not within stack limits

THEN #SS(0); FI;
tempEIP  Pop();
tempEIP  tempEIP AND 0000FFFFH;
IF tempEIP not within code segment limits

THEN #GP(0); FI;
EIP  tempEIP;

FI;
FI;

IF instruction has immediate operand
THEN IF StackAddressSize 32

THEN 
ESP  ESP  SRC; (* Release parameters from stack *)

ELSE
IF StackAddressSize 64

THEN 
RSP  RSP  SRC; (* Release parameters from stack *)

ELSE (* StackAddressSize 16 *)
SP  SP  SRC; (* Release parameters from stack *)

FI;
FI;

FI;
FI;

(* Real-address mode or virtual-8086 mode *)
IF ((PE  0) or (PE  1 AND VM  1)) and instruction  far return
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THEN
IF OperandSize  32

THEN
IF top 12 bytes of stack not within stack limits

THEN #SS(0); FI;
EIP  Pop();
CS  Pop(); (* 32-bit pop, high-order 16 bits discarded *)

ELSE (* OperandSize  16 *)
IF top 6 bytes of stack not within stack limits

THEN #SS(0); FI;
tempEIP  Pop();
tempEIP  tempEIP AND 0000FFFFH;
IF tempEIP not within code segment limits

THEN #GP(0); FI;
EIP  tempEIP;
CS  Pop(); (* 16-bit pop *)

FI;
IF instruction has immediate operand 

THEN 
SP  SP  (SRC AND FFFFH); (* Release parameters from stack *)

FI;
FI;

(* Protected mode, not virtual-8086 mode *)
IF (PE  1 and VM  0 and IA32_EFER.LMA = 0) and instruction  far RET

THEN
IF OperandSize  32

THEN 
IF second doubleword on stack is not within stack limits

THEN #SS(0); FI;
ELSE (* OperandSize  16 *)

IF second word on stack is not within stack limits
THEN #SS(0); FI;

FI;
IF return code segment selector is NULL

THEN #GP(0); FI;
IF return code segment selector addresses descriptor beyond descriptor table limit 

THEN #GP(selector); FI;
Obtain descriptor to which return code segment selector points from descriptor table;
IF return code segment descriptor is not a code segment

THEN #GP(selector); FI;
IF return code segment selector RPL  CPL

THEN #GP(selector); FI;
IF return code segment descriptor is conforming
and return code segment DPL  return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is non-conforming and return code 
segment DPL  return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is not present
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THEN #NP(selector); FI:
IF return code segment selector RPL  CPL 

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL;

FI;
FI; 

RETURN-SAME-PRIVILEGE-LEVEL:
IF the return instruction pointer is not within the return code segment limit 

THEN #GP(0); FI;
IF OperandSize 32

THEN
EIP  Pop();
CS  Pop(); (* 32-bit pop, high-order 16 bits discarded *)
ESP  ESP  SRC; (* Release parameters from stack *)

ELSE (* OperandSize 16 *)
EIP  Pop();
EIP  EIP AND 0000FFFFH;
CS  Pop(); (* 16-bit pop *)
ESP  ESP  SRC; (* Release parameters from stack *)

FI;

RETURN-OUTER-PRIVILEGE-LEVEL:
IF top (16  SRC) bytes of stack are not within stack limits (OperandSize 32) 
or top (8  SRC) bytes of stack are not within stack limits (OperandSize 16)

THEN #SS(0); FI;
Read return segment selector;
IF stack segment selector is NULL

THEN #GP(0); FI;
IF return stack segment selector index is not within its descriptor table limits

THEN #GP(selector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL  RPL of the return code segment selector
or stack segment is not a writable data segment
or stack segment descriptor DPL RPL of the return code segment selector

THEN #GP(selector); FI;
IF stack segment not present

THEN #SS(StackSegmentSelector); FI;
IF the return instruction pointer is not within the return code segment limit

THEN #GP(0); FI;
CPL  ReturnCodeSegmentSelector(RPL);
IF OperandSize 32

THEN
EIP  Pop();
CS  Pop(); (* 32-bit pop, high-order 16 bits discarded; segment descriptor
information also loaded *)
CS(RPL)  CPL;
ESP  ESP  SRC; (* Release parameters from called procedure’s stack *)
tempESP  Pop();
tempSS  Pop(); (* 32-bit pop, high-order 16 bits discarded; segment 
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descriptor information also loaded *)
ESP  tempESP;
SS  tempSS;

ELSE (* OperandSize 16 *)
EIP  Pop();
EIP  EIP AND 0000FFFFH;
CS  Pop(); (* 16-bit pop; segment descriptor information also loaded *)
CS(RPL)  CPL;
ESP  ESP  SRC; (* Release parameters from called procedure’s stack *)
tempESP  Pop();
tempSS  Pop(); (* 16-bit pop; segment descriptor information also loaded *)
ESP  tempESP;
SS  tempSS;

FI;

FOR each of segment register (ES, FS, GS, and DS)
DO

IF segment register points to data or non-conforming code segment 
and CPL  segment descriptor DPL (* DPL in hidden part of segment register *)

THEN SegmentSelector  0; (* Segment selector invalid *)
FI;

OD;

ESP  ESP  SRC; (* Release parameters from calling procedure’s stack *)

(* IA-32e Mode *)
IF (PE 1 and VM  0 and IA32_EFER.LMA = 1) and instruction  far RET

THEN
IF OperandSize 32

THEN 
IF second doubleword on stack is not within stack limits

THEN #SS(0); FI;
IF first or second doubleword on stack is not in canonical space

THEN #SS(0); FI;
ELSE 

IF OperandSize = 16
THEN

IF second word on stack is not within stack limits
THEN #SS(0); FI;

IF first or second word on stack is not in canonical space
THEN #SS(0); FI;

ELSE (* OperandSize  64 *)
IF first or second quadword on stack is not in canonical space 

THEN #SS(0); FI;
FI

FI;
IF return code segment selector is NULL

THEN GP(0); FI;
IF return code segment selector addresses descriptor beyond descriptor table limit 

THEN GP(selector); FI;
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IF return code segment selector addresses descriptor in non-canonical space
THEN GP(selector); FI;

Obtain descriptor to which return code segment selector points from descriptor table;
IF return code segment descriptor is not a code segment 

THEN #GP(selector); FI;
IF return code segment descriptor has L-bit = 1 and D-bit = 1 

THEN #GP(selector); FI;
IF return code segment selector RPL  CPL 

THEN #GP(selector); FI;
IF return code segment descriptor is conforming
and return code segment DPL  return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is non-conforming
and return code segment DPL return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is not present 

THEN #NP(selector); FI:
IF return code segment selector RPL  CPL 

THEN GOTO IA-32E-MODE-RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO IA-32E-MODE-RETURN-SAME-PRIVILEGE-LEVEL;

FI; 
FI;

IA-32E-MODE-RETURN-SAME-PRIVILEGE-LEVEL:
IF the return instruction pointer is not within the return code segment limit 

THEN #GP(0); FI;
IF the return instruction pointer is not within canonical address space

THEN #GP(0); FI;
IF OperandSize 32

THEN
EIP  Pop();
CS  Pop(); (* 32-bit pop, high-order 16 bits discarded *)
ESP  ESP  SRC; (* Release parameters from stack *)

ELSE 
IF OperandSize = 16

THEN
EIP  Pop();
EIP  EIP AND 0000FFFFH;
CS  Pop(); (* 16-bit pop *)
ESP  ESP  SRC; (* Release parameters from stack *)

ELSE (* OperandSize 64 *)
RIP  Pop();
CS  Pop(); (* 64-bit pop, high-order 48 bits discarded *)
ESP  ESP  SRC; (* Release parameters from stack *)

FI;
FI; 

IA-32E-MODE-RETURN-OUTER-PRIVILEGE-LEVEL:
IF top (16  SRC) bytes of stack are not within stack limits (OperandSize 32) 
or top (8  SRC) bytes of stack are not within stack limits (OperandSize 16)
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THEN #SS(0); FI;
IF top (16  SRC) bytes of stack are not in canonical address space (OperandSize 32) 
or top (8  SRC) bytes of stack are not in canonical address space (OperandSize 16)
or top (32 + SRC) bytes of stack are not in canonical address space (OperandSize = 64)

THEN #SS(0); FI;
Read return stack segment selector;
IF stack segment selector is NULL

THEN
IF new CS descriptor L-bit = 0 

THEN #GP(selector);
IF stack segment selector RPL = 3

THEN #GP(selector);
FI;
IF return stack segment descriptor is not within descriptor table limits

THEN #GP(selector); FI;
IF return stack segment descriptor is in non-canonical address space

THEN #GP(selector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL  RPL of the return code segment selector
or stack segment is not a writable data segment
or stack segment descriptor DPL  RPL of the return code segment selector

THEN #GP(selector); FI;
IF stack segment not present 

THEN #SS(StackSegmentSelector); FI;
IF the return instruction pointer is not within the return code segment limit 

THEN #GP(0); FI:
IF the return instruction pointer is not within canonical address space 

THEN #GP(0); FI;
CPL  ReturnCodeSegmentSelector(RPL);
IF OperandSize 32

THEN
EIP Pop();
CS  Pop(); (* 32-bit pop, high-order 16 bits discarded, segment descriptor
information also loaded *)
CS(RPL)  CPL;
ESP  ESP  SRC; (* Release parameters from called procedure’s stack *)
tempESP  Pop();
tempSS  Pop(); (* 32-bit pop, high-order 16 bits discarded, segment descriptor
information also loaded *)
ESP  tempESP;
SS  tempSS;

ELSE 
IF OperandSize = 16

THEN
EIP  Pop();
EIP  EIP AND 0000FFFFH;
CS  Pop(); (* 16-bit pop; segment descriptor information also loaded *)
CS(RPL)  CPL;
ESP  ESP  SRC; (* release parameters from called 
procedure’s stack *)
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tempESP  Pop();
tempSS  Pop(); (* 16-bit pop; segment descriptor information loaded *)
ESP  tempESP;
SS tempSS;

ELSE (* OperandSize 64 *)
RIP  Pop();
CS  Pop(); (* 64-bit pop; high-order 48 bits discarded; segment
descriptor information loaded *)
CS(RPL)  CPL;
ESP  ESP  SRC; (* Release parameters from called procedure’s 
stack *)
tempESP  Pop();
tempSS Pop(); (* 64-bit pop; high-order 48 bits discarded; segment
descriptor information also loaded *)
ESP  tempESP;
SS  tempSS;

FI;
FI;

FOR each of segment register (ES, FS, GS, and DS)
DO

IF segment register points to data or non-conforming code segment
and CPL  segment descriptor DPL; (* DPL in hidden part of segment register *)

THEN SegmentSelector 0; (* SegmentSelector invalid *)
FI;

OD;

ESP  ESP  SRC; (* Release parameters from calling procedure’s stack *)

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the return code or stack segment selector NULL.

If the return instruction pointer is not within the return code 
segment limit 

#GP(selector) If the RPL of the return code segment selector is less then the CPL.

If the return code or stack segment selector index is not within its 
descriptor table limits.

If the return code segment descriptor does not indicate a code 
segment.

If the return code segment is non-conforming and the segment 
selector’s DPL is not equal to the RPL of the code segment’s 
segment selector

If the return code segment is conforming and the segment 
selector’s DPL greater than the RPL of the code segment’s segment 
selector

If the stack segment is not a writable data segment.
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If the stack segment selector RPL is not equal to the RPL of the 
return code segment selector.

If the stack segment descriptor DPL is not equal to the RPL of the 
return code segment selector.

#SS(0) If the top bytes of stack are not within stack limits.

If the return stack segment is not present.

#NP(selector) If the return code segment is not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory access occurs when the CPL is 3 and align-
ment checking is enabled.

Real-Address Mode Exceptions
#GP If the return instruction pointer is not within the return code 

segment limit 

#SS If the top bytes of stack are not within stack limits.

Virtual-8086 Mode Exceptions
#GP(0) If the return instruction pointer is not within the return code 

segment limit 

#SS(0) If the top bytes of stack are not within stack limits.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory access occurs when alignment checking is 
enabled.

Compatibility Mode Exceptions
Same as 64-bit mode exceptions.

64-Bit Mode Exceptions
#GP(0) If the return instruction pointer is non-canonical.

If the return instruction pointer is not within the return code 
segment limit.

If the stack segment selector is NULL going back to compatibility 
mode.

If the stack segment selector is NULL going back to CPL3 64-bit 
mode.

If a NULL stack segment selector RPL is not equal to CPL going back 
to non-CPL3 64-bit mode.

If the return code segment selector is NULL.

#GP(selector) If the proposed segment descriptor for a code segment does not 
indicate it is a code segment. 

If the proposed new code segment descriptor has both the D-bit and 
L-bit set.

If the DPL for a nonconforming-code segment is not equal to the 
RPL of the code segment selector.

If CPL is greater than the RPL of the code segment selector.

If the DPL of a conforming-code segment is greater than the return 
code segment selector RPL.
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If a segment selector index is outside its descriptor table limits.

If a segment descriptor memory address is non-canonical.

If the stack segment is not a writable data segment.

If the stack segment descriptor DPL is not equal to the RPL of the 
return code segment selector.

If the stack segment selector RPL is not equal to the RPL of the 
return code segment selector. 

#SS(0) If an attempt to pop a value off the stack violates the SS limit.

If an attempt to pop a value off the stack causes a non-canonical 
address to be referenced.

#NP(selector) If the return code or stack segment is not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory refer-
ence is made while the current privilege level is 3.

...
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5. Updates to Chapter 1, Volume 3A

Change bars show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

------------------------------------------------------------------------------------------

...

1.1 PROCESSORS COVERED IN THIS MANUAL
This manual set includes information pertaining primarily to the most recent Intel® 64 
and IA-32 processors, which include: 

• Pentium® processors

• P6 family processors

• Pentium® 4 processors

• Pentium® M processors

• Intel® Xeon® processors

• Pentium® D processors

• Pentium® processor Extreme Editions

• 64-bit Intel® Xeon® processors

• Intel® Core™ Duo processor

• Intel® Core™ Solo processor

• Dual-Core Intel® Xeon® processor LV

• Intel® Core™2 Duo processor

• Intel® Core™2 Quad processor Q6000 series

• Intel® Xeon® processor 3000, 3200 series

• Intel® Xeon® processor 5000 series

• Intel® Xeon® processor 5100, 5300 series

• Intel® Core™2 Extreme processor X7000 and X6800 series

• Intel® Core™2 Extreme QX6000 series

• Intel® Xeon® processor 7100 series

• Intel® Pentium® Dual-Core processor

• Intel® Xeon® processor 7200, 7300 series

• Intel® Core™2 Extreme QX9000 series

• Intel® Xeon® processor 5200, 5400, 7400 series

• Intel® CoreTM2 Extreme processor QX9000 and X9000 series

• Intel® CoreTM2 Quad processor Q9000 series

• Intel® CoreTM2 Duo processor E8000, T9000 series

• Intel® AtomTM processor family

• Intel® CoreTM i7 processor 

• Intel® CoreTM i5 processor 
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P6 family processors are IA-32 processors based on the P6 family microarchitecture. 
This includes the Pentium® Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® 
processors. 

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on 
the Intel NetBurst® microarchitecture. Most early Intel® Xeon® processors are based on 
the Intel NetBurst® microarchitecture. Intel Xeon processor 5000, 7100 series are based 
on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are 
based on an improved Pentium® M processor microarchitecture. 

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel® 
Pentium® dual-core, Intel® Core™2 Duo, Intel® Core™2 Quad and Intel® Core™2 
Extreme processors are based on Intel® Core™ microarchitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® CoreTM2 Quad processor 
Q9000 series, and Intel® CoreTM2 Extreme processors QX9000, X9000 series, Intel® 
CoreTM2 processor E8000 series are based on Enhanced Intel® CoreTM microarchitecture.

The Intel® AtomTM processor family is based on the Intel® AtomTM microarchitecture and 
supports Intel 64 architecture.

The Intel® CoreTM i7 processor and the Intel® CoreTM i5 processor are based on the Intel® 
microarchitecture (Nehalem) and support Intel 64 architecture.

Processors based on the Next Generation Intel Processor, codenamed Westmere, 
support Intel 64 architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core 
Intel® Xeon® processor LV, and early generations of Pentium 4 and Intel Xeon proces-
sors support IA-32 architecture. The Intel® AtomTM processor Z5xx series support IA-32 
architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 
7300, 7400 series, Intel® Core™2 Duo, Intel® Core™2 Extreme processors, Intel Core 2 
Quad processors, Pentium® D processors, Pentium® Dual-Core processor, newer gener-
ations of Pentium 4 and Intel Xeon processor family support Intel® 64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for 
Intel's 32-bit microprocessors. Intel® 64 architecture is the instruction set architecture 
and programming environment which is a superset of and compatible with IA-32 archi-
tecture.

1.2 OVERVIEW OF THE SYSTEM PROGRAMMING GUIDE
A description of this manual’s content follows:

Chapter 1 — About This Manual. Gives an overview of all five volumes of the Intel® 
64 and IA-32 Architectures Software Developer’s Manual. It also describes the notational 
conventions in these manuals and lists related Intel manuals and documentation of 
interest to programmers and hardware designers.

Chapter 2 — System Architecture Overview. Describes the modes of operation used 
by Intel 64 and IA-32 processors and the mechanisms provided by the architectures to 
support operating systems and executives, including the system-oriented registers and 
data structures and the system-oriented instructions. The steps necessary for switching 
between real-address and protected modes are also identified.
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Chapter 3 — Protected-Mode Memory Management. Describes the data structures, 
registers, and instructions that support segmentation and paging. The chapter explains 
how they can be used to implement a “flat” (unsegmented) memory model or a 
segmented memory model.

Chapter 4 — Paging. Describes the paging modes supported by Intel 64 and IA-32 
processors.

Chapter 5 — Protection. Describes the support for page and segment protection 
provided in the Intel 64 and IA-32 architectures. This chapter also explains the imple-
mentation of privilege rules, stack switching, pointer validation, user and supervisor 
modes.

Chapter 6 — Interrupt and Exception Handling. Describes the basic interrupt mech-
anisms defined in the Intel 64 and IA-32 architectures, shows how interrupts and excep-
tions relate to protection, and describes how the architecture handles each exception 
type. Reference information for each exception is given at the end of this chapter.

Chapter 7 — Task Management. Describes mechanisms the Intel 64 and IA-32 archi-
tectures provide to support multitasking and inter-task protection.

Chapter 8 — Multiple-Processor Management. Describes the instructions and flags 
that support multiple processors with shared memory, memory ordering, and Intel® 
Hyper-Threading Technology.

Chapter 9 — Processor Management and Initialization. Defines the state of an 
Intel 64 or IA-32 processor after reset initialization. This chapter also explains how to set 
up an Intel 64 or IA-32 processor for real-address mode operation and protected- mode 
operation, and how to switch between modes.

Chapter 10 — Advanced Programmable Interrupt Controller (APIC). Describes 
the programming interface to the local APIC and gives an overview of the interface 
between the local APIC and the I/O APIC.

Chapter 11 — Memory Cache Control. Describes the general concept of caching and 
the caching mechanisms supported by the Intel 64 or IA-32 architectures. This chapter 
also describes the memory type range registers (MTRRs) and how they can be used to 
map memory types of physical memory. Information on using the new cache control and 
memory streaming instructions introduced with the Pentium III, Pentium 4, and Intel 
Xeon processors is also given.

Chapter 12 — Intel® MMX™ Technology System Programming. Describes those 
aspects of the Intel® MMX™ technology that must be handled and considered at the 
system programming level, including: task switching, exception handling, and compati-
bility with existing system environments.

Chapter 13 — System Programming For Instruction Set Extensions And 
Processor Extended States. Describes the operating system requirements to support 
SSE/SSE2/SSE3/SSSE3/SSE4 extensions, including task switching, exception handling, 
and compatibility with existing system environments. The latter part of this chapter 
describes the extensible framework of operating system requirements to support 
processor extended states. Processor extended state may be required by instruction set 
extensions beyond those of SSE/SSE2/SSE3/SSSE3/SSE4 extensions.

Chapter 14 — Power and Thermal Management. Describes facilities of Intel 64 and 
IA-32 architecture used for power management and thermal monitoring.

Chapter 15 — Machine-Check Architecture. Describes the machine-check archi-
tecture and machine-check exception mechanism found in the Pentium 4, Intel 
Xeon, and P6 family processors. Additionally, a signaling mechanism for soft-
ware to respond to hardware corrected machine check error is covered.
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Chapter 16 — Debugging, Branch Profiles and Time-Stamp Counter. Describes 
the debugging registers and other debug mechanism provided in Intel 64 or IA-32 
processors. This chapter also describes the time-stamp counter. 

Chapter 17 — 8086 Emulation. Describes the real-address and virtual-8086 modes of 
the IA-32 architecture. 

Chapter 18 — Mixing 16-Bit and 32-Bit Code. Describes how to mix 16-bit and 32-
bit code modules within the same program or task.

Chapter 19 — IA-32 Architecture Compatibility. Describes architectural compati-
bility among IA-32 processors.

Chapter 20 — Introduction to Virtual-Machine Extensions. Describes the basic 
elements of virtual machine architecture and the virtual-machine extensions for Intel 64 
and IA-32 Architectures.

Chapter 21 — Virtual-Machine Control Structures. Describes components that 
manage VMX operation. These include the working-VMCS pointer and the controlling-
VMCS pointer.

Chapter 22— VMX Non-Root Operation. Describes the operation of a VMX non-root 
operation. Processor operation in VMX non-root mode can be restricted programmati-
cally such that certain operations, events or conditions can cause the processor to 
transfer control from the guest (running in VMX non-root mode) to the monitor software 
(running in VMX root mode).

Chapter 23 — VM Entries. Describes VM entries. VM entry transitions the processor 
from the VMM running in VMX root-mode to a VM running in VMX non-root mode. 
VM-Entry is performed by the execution of VMLAUNCH or VMRESUME instructions.

Chapter 24 — VM Exits. Describes VM exits. Certain events, operations or situations 
while the processor is in VMX non-root operation may cause VM-exit transitions. In addi-
tion, VM exits can also occur on failed VM entries.

Chapter 25 — VMX Support for Address Translation. Describes virtual-machine 
extensions that support address translation and the virtualization of physical memory.

Chapter 26 — System Management Mode. Describes Intel 64 and IA-32 architec-
tures’ system management mode (SMM) facilities.

Chapter 27 — Virtual-Machine Monitoring Programming Considerations. 
Describes programming considerations for VMMs. VMMs manage virtual machines 
(VMs).

Chapter 28 — Virtualization of System Resources. Describes the virtualization of 
the system resources. These include: debugging facilities, address translation, physical 
memory, and microcode update facilities.

Chapter 29 — Handling Boundary Conditions in a Virtual Machine Monitor. 
Describes what a VMM must consider when handling exceptions, interrupts, error condi-
tions, and transitions between activity states.

Chapter 30 — Performance Monitoring. Describes the Intel 64 and IA-32 architec-
tures’ facilities for monitoring performance.

Appendix A — Performance-Monitoring Events. Lists architectural performance 
events. Non-architectural performance events (i.e. model-specific events) are listed for 
each generation of microarchitecture. 

Appendix B — Model-Specific Registers (MSRs). Lists the MSRs available in the 
Pentium processors, the P6 family processors, the Pentium 4, Intel Xeon, Intel Core 
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Solo, Intel Core Duo processors, and Intel Core 2 processor family and describes their 
functions.

Appendix C — MP Initialization For P6 Family Processors. Gives an example of 
how to use of the MP protocol to boot P6 family processors in n MP system.

Appendix D — Programming the LINT0 and LINT1 Inputs. Gives an example of 
how to program the LINT0 and LINT1 pins for specific interrupt vectors.

Appendix E — Interpreting Machine-Check Error Codes. Gives an example of how 
to interpret the error codes for a machine-check error that occurred on a P6 family 
processor.

Appendix F — APIC Bus Message Formats. Describes the message formats for 
messages transmitted on the APIC bus for P6 family and Pentium processors.

Appendix G — VMX Capability Reporting Facility. Describes the VMX capability 
MSRs. Support for specific VMX features is determined by reading capability MSRs.

Appendix H — Field Encoding in VMCS. Enumerates all fields in the VMCS and their 
encodings. Fields are grouped by width (16-bit, 32-bit, etc.) and type (guest-state, host-
state, etc.).

Appendix I — VM Basic Exit Reasons. Describes the 32-bit fields that encode 
reasons for a VM exit. Examples of exit reasons include, but are not limited to: software 
interrupts, processor exceptions, software traps, NMIs, external interrupts, and triple 
faults.

...

6. Updates to Chapter 2, Volume 3A

Change bars show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

------------------------------------------------------------------------------------------

...

2.5 CONTROL REGISTERS
Control registers (CR0, CR1, CR2, CR3, and CR4; see Figure 2-6) determine operating 
mode of the processor and the characteristics of the currently executing task. These 
registers are 32 bits in all 32-bit modes and compatibility mode. 

In 64-bit mode, control registers are expanded to 64 bits. The MOV CRn instructions are 
used to manipulate the register bits. Operand-size prefixes for these instructions are 
ignored. The following is also true:

• Bits 63:32 of CR0 and CR4 are reserved and must be written with zeros. Writing a 
nonzero value to any of the upper 32 bits results in a general-protection exception, 
#GP(0). 

• All 64 bits of CR2 are writable by software. 

• Bits 51:40 of CR3 are reserved and must be 0. 

• The MOV CRn instructions do not check that addresses written to CR2 and CR3 are 
within the linear-address or physical-address limitations of the implementation. 

• Register CR8 is available in 64-bit mode only. 
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The control registers are summarized below, and each architecturally defined control 
field in these control registers are described individually. In Figure 2-6, the width of the 
register in 64-bit mode is indicated in parenthesis (except for CR0).

...

WP Write Protect (bit 16 of CR0) — When set, inhibits supervisor-level proce-
dures from writing into read-only pages; when clear, allows supervisor-level 
procedures to write into read-only pages (regardless of the U/S bit setting; see 
Section 4.1.3 and Section 4.6). This flag facilitates implementation of the copy-
on-write method of creating a new process (forking) used by operating systems 
such as UNIX.

...

7. Updates to Chapter 4, Volume 3A

Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

------------------------------------------------------------------------------------------

...

4.7 PAGE-FAULT EXCEPTIONS
Accesses using linear addresses may cause page-fault exceptions (#PF; exception 
14). An access to a linear address may cause page-fault exception for either of two 
reasons: (1) there is no valid translation for the linear address; or (2) there is a valid 
translation for the linear address, but its access rights do not permit the access.

As noted in Section 4.3, Section 4.4.2, and Section 4.5, there is no valid translation for a 
linear address if the translation process for that address would use a paging-structure 
entry in which the P flag (bit 0) is 0 or one that sets a reserved bit. If there is a valid 
translation for a linear address, its access rights are determined as specified in Section 
4.6.

Figure 4-11 illustrates the error code that the processor provides on delivery of a page-
fault exception. The following items explain how the bits in the error code describe the 
nature of the page-fault exception:

• P flag (bit 0).
This flag is 0 if there is no valid translation for the linear address because the P flag 
was 0 in one of the paging-structure entries used to translate that address. 

• W/R (bit 1).
If the access causing the page-fault exception was a write, this flag is 1; otherwise, 
it is 0. This flag describes the access causing the page-fault exception, not the access 
rights specified by paging.

• U/S (bit 2).
If a supervisor-mode (CPL < 3) access caused the page-fault exception, this flag is 
1; it is 0 if a user-mode (CPL = 3) access did so. This flag describes the access 
causing the page-fault exception, not the access rights specified by paging.

• RSVD flag (bit 3).
This flag is 1 if there is no valid translation for the linear address because a reserved 
bit was set in one of the paging-structure entries used to translate that address. 
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(Because reserved bits are not checked in a paging-structure entry whose P flag is 0, 
bit 3 of the error code can be set only if bit 0 is also set.)

Bits reserved in the paging-structure entries are reserved for future functionality. 
Software developers should be aware that such bits may be used in the future and 
that a paging-structure entry that causes a page-fault exception on one processor 
might not do so in the future.

• I/D flag (bit 4).
Use of this flag depends on the settings of CR4.PAE and IA32_EFER.NXE:

— CR4.PAE = 0 (32-bit paging is in use) or IA32_EFER.NXE= 0.
This flag is 0.

— CR4.PAE = 1 (either PAE paging or IA-32e paging is in use) and 
IA32_EFER.NXE= 1.
If the access causing the page-fault exception was an instruction fetch, this flag 
is 1; otherwise, it is 0. This flag describes the access causing the page-fault 
exception, not the access rights specified by paging.

...

8. Updates to Chapter 5, Volume 3A

Change bars show changes to Chapter 5 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

------------------------------------------------------------------------------------------

...

 

Figure 4-11.  Page-Fault Error Code
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5.11.3 Page Type
The page-level protection mechanism recognizes two page types:

• Read-only access (R/W flag is 0).

• Read/write access (R/W flag is 1).

When the processor is in supervisor mode and the WP flag in register CR0 is clear (its 
state following reset initialization), all pages are both readable and writable (write-
protection is ignored). When the processor is in user mode, it can write only to user-
mode pages that are read/write accessible. User-mode pages which are read/write or 
read-only are readable; supervisor-mode pages are neither readable nor writable from 
user mode. A page-fault exception is generated on any attempt to violate the protection 
rules.

Starting with the P6 family, Intel processors allow user-mode pages to be write-
protected against supervisor-mode access. Setting CR0.WP = 1 enables supervisor-
mode sensitivity to write protected pages. If CR0.WP = 1, read-only pages are not writ-
able from any privilege level. This supervisor write-protect feature is useful for imple-
menting a “copy-on-write” strategy used by some operating systems, such as UNIX*, for 
task creation (also called forking or spawning). When a new task is created, it is possible 
to copy the entire address space of the parent task. This gives the child task a complete, 
duplicate set of the parent's segments and pages. An alternative copy-on-write strategy 
saves memory space and time by mapping the child's segments and pages to the same 
segments and pages used by the parent task. A private copy of a page gets created only 
when one of the tasks writes to the page. By using the WP flag and marking the shared 
pages as read-only, the supervisor can detect an attempt to write to a page, and can 
copy the page at that time.

...

9. Updates to Chapter 6, Volume 3A

Change bars show changes to Chapter 6 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

------------------------------------------------------------------------------------------

...

6.15 EXCEPTION AND INTERRUPT REFERENCE
The following sections describe conditions which generate exceptions and interrupts. 
They are arranged in the order of vector numbers. The information contained in these 
sections are as follows:

• Exception Class — Indicates whether the exception class is a fault, trap, or abort 
type. Some exceptions can be either a fault or trap type, depending on when the 
error condition is detected. (This section is not applicable to interrupts.)

• Description — Gives a general description of the purpose of the exception or 
interrupt type. It also describes how the processor handles the exception or 
interrupt.

• Exception Error Code — Indicates whether an error code is saved for the 
exception. If one is saved, the contents of the error code are described. (This section 
is not applicable to interrupts.)
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• Saved Instruction Pointer — Describes which instruction the saved (or return) 
instruction pointer points to. It also indicates whether the pointer can be used to 
restart a faulting instruction.

• Program State Change — Describes the effects of the exception or interrupt on the 
state of the currently running program or task and the possibilities of restarting the 
program or task without loss of continuity.

...

Interrupt 14—Page-Fault Exception (#PF)

Exception Class Fault.

Description

Indicates that, with paging enabled (the PG flag in the CR0 register is set), the processor 
detected one of the following conditions while using the page-translation mechanism to 
translate a linear address to a physical address:

• The P (present) flag in a page-directory or page-table entry needed for the address 
translation is clear, indicating that a page table or the page containing the operand is 
not present in physical memory.

• The procedure does not have sufficient privilege to access the indicated page (that 
is, a procedure running in user mode attempts to access a supervisor-mode page).

• Code running in user mode attempts to write to a read-only page. In the Intel486 
and later processors, if the WP flag is set in CR0, the page fault will also be triggered 
by code running in supervisor mode that tries to write to a read-only page.

• An instruction fetch to a linear address that translates to a physical address in a 
memory page with the execute-disable bit set (for information about the execute-
disable bit, see Chapter 4, “Paging”).

• One or more reserved bits in page directory entry are set to 1. See description below 
of RSVD error code flag.

The exception handler can recover from page-not-present conditions and restart the 
program or task without any loss of program continuity. It can also restart the program 
or task after a privilege violation, but the problem that caused the privilege violation may 
be uncorrectable.

See also: Section 4.7, “Page-Fault Exceptions.”

Exception Error Code

Yes (special format). The processor provides the page-fault handler with two items of 
information to aid in diagnosing the exception and recovering from it:

• An error code on the stack. The error code for a page fault has a format different 
from that for other exceptions (see Figure 6-9). The error code tells the exception 
handler four things:

— The P flag indicates whether the exception was due to a not-present page (0) or 
to either an access rights violation or the use of a reserved bit (1).

— The W/R flag indicates whether the memory access that caused the exception 
was a read (0) or write (1).

— The U/S flag indicates whether the processor was executing at user mode (1) or 
supervisor mode (0) at the time of the exception.
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— The RSVD flag indicates that the processor detected 1s in reserved bits of the 
page directory, when the PSE or PAE flags in control register CR4 are set to 1. 
Note: 

• The PSE flag is only available in recent Intel 64 and IA-32 processors 
including the Pentium 4, Intel Xeon, P6 family, and Pentium processors. 

• The PAE flag is only available on recent Intel 64 and IA-32 processors 
including the Pentium 4, Intel Xeon, and P6 family processors. 

• In earlier IA-32 processors, the bit position of the RSVD flag is reserved and 
is cleared to 0.

— The I/D flag indicates whether the exception was caused by an instruction fetch. 
This flag is reserved and cleared to 0 if CR4.PAE = 0 (32-bit paging is in use) or 
IA32_EFER.NXE= 0 (the execute-disable feature is either unsupported or not 
enabled). See Section 4.7, “Page-Fault Exceptions,” for details. 

...

10. Updates to Chapter 14, Volume 3A

Change bars show changes to Chapter 14 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

------------------------------------------------------------------------------------------

...

14.3.3 Intel Turbo Boost Technology
Intel Turbo Boost Technology is supported in Intel Core i7 processors and Intel Xeon 
processors based on Intel microarchitecture (Nehalem). It uses the same principle of 
leveraging thermal headroom to dynamically increase processor performance for single-
threaded and multi-threaded/multi-tasking environment. The programming interface 
described in Section 14.3.2 also applies to Intel Turbo Boost Technology.

14.3.4 Performance and Energy Bias Hint support
Intel 64 processors may support additional software hint to guide the hardware heuristic 
of power management features to favor increasing dynamic performance or conserve 
energy consumption. 

Software can detect processor's capability to support performance-energy bias prefer-
ence hint by examining bit 3 of ECX in CPUID leaf 6. The processor supports this capa-
bility if CPUID.06H:ECX.SETBH[bit 3] is set and it also implies the presence of a new 
architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H).

Software can program the lowest four bits of IA32_ENERGY_PERF_BIAS MSR with a 
value from 0 - 15. The values represent a sliding scale, where a value of 0 (the default 
reset value) corresponds to a hint preference for highest performance and a value of 15 
corresponds to the maximum energy savings. A value of 7 roughly translates into a hint 
to balance performance with energy consumption
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The layout of IA32_ENERGY_PERF_BIAS is shown in Figure 14-4.. The scope of 
IA32_ENERGY_PERF_BIAS is per logical processor, which means that each of the logical 
processors in the package can be programmed with a different value. This may be espe-
cially important in virtualization scenarios, where the performance / energy require-
ments of one logical processor may differ from the other. Conflicting "hints" from various 
logical processors at higher hierarchy level will be resolved in favor of performance over 
energy savings. 

Software can use whatever criteria it sees fit to program the MSR with the appropriate 
value. However, the value only serves as a hint to the hardware and the actual impact on 
performance and energy savings is model specific.

...

11. Updates to Chapter 16, Volume 3A

Change bars show changes to Chapter 16 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

------------------------------------------------------------------------------------------

Figure 14-4.  IA32_ENERGY_PERF_BIAS Register
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CHAPTER 16
DEBUGGING, PROFILING BRANCHES AND TIME-STAMP

COUNTER

Intel 64 and IA-32 architectures provide debug facilities for use in debugging code and 
monitoring performance. These facilities are valuable for debugging application soft-
ware, system software, and multitasking operating systems. Debug support is accessed 
using debug registers (DB0 through DB7) and model-specific registers (MSRs): 

• Debug registers hold the addresses of memory and I/O locations called breakpoints. 
Breakpoints are user-selected locations in a program, a data-storage area in 
memory, or specific I/O ports. They are set where a programmer or system designer 
wishes to halt execution of a program and examine the state of the processor by 
invoking debugger software. A debug exception (#DB) is generated when a memory 
or I/O access is made to a breakpoint address. 

• MSRs monitor branches, interrupts, and exceptions; they record addresses of the 
last branch, interrupt or exception taken and the last branch taken before an 
interrupt or exception.

16.1 OVERVIEW OF DEBUG SUPPORT FACILITIES
The following processor facilities support debugging and performance monitoring:

• Debug exception (#DB) — Transfers program control to a debug procedure or task 
when a debug event occurs.

• Breakpoint exception (#BP) — See breakpoint instruction (INT 3) below.

• Breakpoint-address registers (DR0 through DR3) — Specifies the addresses of 
up to 4 breakpoints.

• Debug status register (DR6) — Reports the conditions that were in effect when a 
debug or breakpoint exception was generated.

• Debug control register (DR7) — Specifies the forms of memory or I/O access that 
cause breakpoints to be generated.

• T (trap) flag, TSS — Generates a debug exception (#DB) when an attempt is made 
to switch to a task with the T flag set in its TSS.

• RF (resume) flag, EFLAGS register — Suppresses multiple exceptions to the 
same instruction.

• TF (trap) flag, EFLAGS register — Generates a debug exception (#DB) after every 
execution of an instruction.

• Breakpoint instruction (INT 3) — Generates a breakpoint exception (#BP) that 
transfers program control to the debugger procedure or task. This instruction is an 
alternative way to set code breakpoints. It is especially useful when more than four 
breakpoints are desired, or when breakpoints are being placed in the source code.

• Last branch recording facilities — Store branch records in the last branch record 
(LBR) stack MSRs for the most recent taken branches, interrupts, and/or exceptions 
in MSRs. A branch record consist of a branch-from and a branch-to instruction 
address. Send branch records out on the system bus as branch trace messages 
(BTMs).
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These facilities allow a debugger to be called as a separate task or as a procedure in the 
context of the current program or task. The following conditions can be used to invoke 
the debugger:

• Task switch to a specific task.

• Execution of the breakpoint instruction.

• Execution of any instruction.

• Execution of an instruction at a specified address.

• Read or write to a specified memory address/range.

• Write to a specified memory address/range.

• Input from a specified I/O address/range.

• Output to a specified I/O address/range.

• Attempt to change the contents of a debug register.

16.2 DEBUG REGISTERS
Eight debug registers (see Figure 16-1.) control the debug operation of the processor. 
These registers can be written to and read using the move to/from debug register form 
of the MOV instruction. A debug register may be the source or destination operand for 
one of these instructions. 

Debug registers are privileged resources; a MOV instruction that accesses these regis-
ters can only be executed in real-address mode, in SMM or in protected mode at a CPL of 
0. An attempt to read or write the debug registers from any other privilege level gener-
ates a general-protection exception (#GP).

The primary function of the debug registers is to set up and monitor from 1 to 4 break-
points, numbered 0 though 3. For each breakpoint, the following information can be 
specified:

• The linear address where the breakpoint is to occur.

• The length of the breakpoint location (1, 2, or 4 bytes).

• The operation that must be performed at the address for a debug exception to be 
generated.

• Whether the breakpoint is enabled.

• Whether the breakpoint condition was present when the debug exception was 
generated.
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The following paragraphs describe the functions of flags and fields in the debug 
registers.

16.2.1 Debug Address Registers (DR0-DR3)
Each of the debug-address registers (DR0 through DR3) holds the 32-bit linear address 
of a breakpoint (see Figure 16-1.). Breakpoint comparisons are made before physical 
address translation occurs. The contents of debug register DR7 further specifies break-
point conditions. 

Figure 16-1.  Debug Registers
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16.2.2 Debug Registers DR4 and DR5
Debug registers DR4 and DR5 are reserved when debug extensions are enabled (when 
the DE flag in control register CR4 is set) and attempts to reference the DR4 and DR5 
registers cause invalid-opcode exceptions (#UD). When debug extensions are not 
enabled (when the DE flag is clear), these registers are aliased to debug registers DR6 
and DR7.

16.2.3 Debug Status Register (DR6)
The debug status register (DR6) reports debug conditions that were sampled at the time 
the last debug exception was generated (see Figure 16-1.). Updates to this register only 
occur when an exception is generated. The flags in this register show the following infor-
mation:

• B0 through B3 (breakpoint condition detected) flags (bits 0 through 3) — 
Indicates (when set) that its associated breakpoint condition was met when a debug 
exception was generated. These flags are set if the condition described for each 
breakpoint by the LENn, and R/Wn flags in debug control register DR7 is true. They 
may or may not be set if the breakpoint is not enabled by the Ln or the Gn flags in 
register DR7. Therefore on a #DB, a debug handler should check only those B0-B3 
bits which correspond to an enabled breakpoint.

• BD (debug register access detected) flag (bit 13) — Indicates that the next 
instruction in the instruction stream accesses one of the debug registers (DR0 
through DR7). This flag is enabled when the GD (general detect) flag in debug 
control register DR7 is set. See Section 16.2.4, “Debug Control Register (DR7),” for 
further explanation of the purpose of this flag. 

• BS (single step) flag (bit 14) — Indicates (when set) that the debug exception 
was triggered by the single-step execution mode (enabled with the TF flag in the 
EFLAGS register). The single-step mode is the highest-priority debug exception. 
When the BS flag is set, any of the other debug status bits also may be set.

• BT (task switch) flag (bit 15) — Indicates (when set) that the debug exception 
resulted from a task switch where the T flag (debug trap flag) in the TSS of the target 
task was set. See Section 7.2.1, “Task-State Segment (TSS),” for the format of a 
TSS. There is no flag in debug control register DR7 to enable or disable this 
exception; the T flag of the TSS is the only enabling flag.

Certain debug exceptions may clear bits 0-3. The remaining contents of the DR6 register 
are never cleared by the processor. To avoid confusion in identifying debug exceptions, 
debug handlers should clear the register before returning to the interrupted task.

16.2.4 Debug Control Register (DR7)
The debug control register (DR7) enables or disables breakpoints and sets breakpoint 
conditions (see Figure 16-1.). The flags and fields in this register control the following 
things:

• L0 through L3 (local breakpoint enable) flags (bits 0, 2, 4, and 6) — Enables 
(when set) the breakpoint condition for the associated breakpoint for the current 
task. When a breakpoint condition is detected and its associated Ln flag is set, a 
debug exception is generated. The processor automatically clears these flags on 
every task switch to avoid unwanted breakpoint conditions in the new task.
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• G0 through G3 (global breakpoint enable) flags (bits 1, 3, 5, and 7) — 
Enables (when set) the breakpoint condition for the associated breakpoint for all 
tasks. When a breakpoint condition is detected and its associated Gn flag is set, a 
debug exception is generated. The processor does not clear these flags on a task 
switch, allowing a breakpoint to be enabled for all tasks.

• LE and GE (local and global exact breakpoint enable) flags (bits 8, 9) — This 
feature is not supported in the P6 family processors, later IA-32 processors, and 
Intel 64 processors. When set, these flags cause the processor to detect the exact 
instruction that caused a data breakpoint condition. For backward and forward 
compatibility with other Intel processors, we recommend that the LE and GE flags be 
set to 1 if exact breakpoints are required.

• GD (general detect enable) flag (bit 13) — Enables (when set) debug-register 
protection, which causes a debug exception to be generated prior to any MOV 
instruction that accesses a debug register. When such a condition is detected, the BD 
flag in debug status register DR6 is set prior to generating the exception. This 
condition is provided to support in-circuit emulators. 

When the emulator needs to access the debug registers, emulator software can set 
the GD flag to prevent interference from the program currently executing on the 
processor.

The processor clears the GD flag upon entering to the debug exception handler, to 
allow the handler access to the debug registers.

• R/W0 through R/W3 (read/write) fields (bits 16, 17, 20, 21, 24, 25, 28, and 
29) — Specifies the breakpoint condition for the corresponding breakpoint. The DE 
(debug extensions) flag in control register CR4 determines how the bits in the R/Wn 
fields are interpreted. When the DE flag is set, the processor interprets bits as 
follows:

00 — Break on instruction execution only. 
01 — Break on data writes only.
10 — Break on I/O reads or writes.
11 — Break on data reads or writes but not instruction fetches.

When the DE flag is clear, the processor interprets the R/Wn bits the same as for the 
Intel386™ and Intel486™ processors, which is as follows:

00 — Break on instruction execution only.
01 — Break on data writes only.
10 — Undefined.
11 — Break on data reads or writes but not instruction fetches.

• LEN0 through LEN3 (Length) fields (bits 18, 19, 22, 23, 26, 27, 30, and 31) 
— Specify the size of the memory location at the address specified in the corre-
sponding breakpoint address register (DR0 through DR3). These fields are 
interpreted as follows:

00 — 1-byte length.
01 — 2-byte length.
10 — Undefined (or 8 byte length, see note below).
11 — 4-byte length.

If the corresponding RWn field in register DR7 is 00 (instruction execution), then the 
LENn field should also be 00. The effect of using other lengths is undefined. See Section 
16.2.5, “Breakpoint Field Recognition,” below.
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NOTES
For Pentium® 4 and Intel® Xeon® processors with a CPUID signature 
corresponding to family 15 (model 3, 4, and 6), break point conditions 
permit specifying 8-byte length on data read/write with an of encoding 
10B in the LENn field. 

Encoding 10B is also supported in processors based on Intel Core micro-
architecture or enhanced Intel Core microarchitecture, the respective 
CPUID signatures corresponding to family 6, model 15, and family 6, 
display_model value 23. The Encoding 10B is supported in processors 
based on Intel Atom microarchitecture, with CPUID signature of family 6, 
display_model value 28. The encoding 10B is undefined for other 
processors.

16.2.5 Breakpoint Field Recognition
Breakpoint address registers (debug registers DR0 through DR3) and the LENn fields for 
each breakpoint define a range of sequential byte addresses for a data or I/O breakpoint. 
The LENn fields permit specification of a 1-, 2-, 4-, or 8-byte range, beginning at the 
linear address specified in the corresponding debug register (DRn). Two-byte ranges 
must be aligned on word boundaries; 4-byte ranges must be aligned on doubleword 
boundaries. I/O addresses are zero-extended (from 16 to 32 bits, for comparison with 
the breakpoint address in the selected debug register). These requirements are enforced 
by the processor; it uses LENn field bits to mask the lower address bits in the debug 
registers. Unaligned data or I/O breakpoint addresses do not yield valid results.

A data breakpoint for reading or writing data is triggered if any of the bytes participating 
in an access is within the range defined by a breakpoint address register and its LENn 
field. Table 16-1. provides an example setup of debug registers and data accesses that 
would subsequently trap or not trap on the breakpoints.

A data breakpoint for an unaligned operand can be constructed using two breakpoints, 
where each breakpoint is byte-aligned and the two breakpoints together cover the 
operand. The breakpoints generate exceptions only for the operand, not for neighboring 
bytes.

Instruction breakpoint addresses must have a length specification of 1 byte (the LENn 
field is set to 00). Code breakpoints for other operand sizes are undefined. The processor 
recognizes an instruction breakpoint address only when it points to the first byte of an 
instruction. If the instruction has prefixes, the breakpoint address must point to the first 
prefix.

Table 16-1.  Breakpoint Examples

Debug Register Setup

Debug Register R/Wn Breakpoint Address LENn

DR0
DR1
DR2
DR3

R/W0 = 11 (Read/Write)
R/W1 = 01 (Write)
R/W2 = 11 (Read/Write)
R/W3 = 01 (Write)

A0001H
A0002H
B0002H
C0000H

LEN0 = 00 (1 byte)
LEN1 = 00 (1 byte)
LEN2 = 01) (2 bytes)
LEN3 = 11 (4 bytes)

Data Accesses

Operation Address Access Length 
(In Bytes)
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16.2.6 Debug Registers and Intel® 64 Processors
For Intel 64 architecture processors, debug registers DR0–DR7 are 64 bits. In 16-bit or 
32-bit modes (protected mode and compatibility mode), writes to a debug register fill 
the upper 32 bits with zeros. Reads from a debug register return the lower 32 bits. In 64-
bit mode, MOV DRn instructions read or write all 64 bits. Operand-size prefixes are 
ignored. 

In 64-bit mode, the upper 32 bits of DR6 and DR7 are reserved and must be written with 
zeros. Writing 1 to any of the upper 32 bits results in a #GP(0) exception (see Figure 16-
2.). All 64 bits of DR0–DR3 are writable by software. However, MOV DRn instructions do 
not check that addresses written to DR0–DR3 are in the linear-address limits of the 
processor implementation (address matching is supported only on valid addresses 
generated by the processor implementation). Break point conditions for 8-byte memory 
read/writes are supported in all modes.

Data operations that trap
- Read or write
- Read or write
- Write
- Write
- Read or write
- Read or write
- Read or write
- Write
- Write
- Write

A0001H
A0001H
A0002H
A0002H
B0001H
B0002H
B0002H
C0000H
C0001H
C0003H

1
2
1
2
4
1
2
4
2
1

Data operations that do not trap
- Read or write
- Read
- Read or write
- Read or write
- Read
- Read or write

A0000H
A0002H
A0003H
B0000H
C0000H
C0004H

1
1
4
2
2
4

Table 16-1.  Breakpoint Examples (Continued)

Debug Register Setup

Debug Register R/Wn Breakpoint Address LENn



Documentation Changes

102 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

16.3 DEBUG EXCEPTIONS
The Intel 64 and IA-32 architectures dedicate two interrupt vectors to handling debug 
exceptions: vector 1 (debug exception, #DB) and vector 3 (breakpoint exception, #BP). 
The following sections describe how these exceptions are generated and typical excep-
tion handler operations.

16.3.1 Debug Exception (#DB)—Interrupt Vector 1
The debug-exception handler is usually a debugger program or part of a larger software 
system. The processor generates a debug exception for any of several conditions. The 
debugger checks flags in the DR6 and DR7 registers to determine which condition 
caused the exception and which other conditions might apply. Table 16-2. shows the 
states of these flags following the generation of each kind of breakpoint condition.

Instruction-breakpoint and general-detect condition (see Section 16.3.1.3, “General-
Detect Exception Condition”) result in faults; other debug-exception conditions result in 
traps. The debug exception may report one or both at one time. The following sections 
describe each class of debug exception. 

See also: Chapter 6, “Interrupt 1—Debug Exception (#DB),” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Figure 16-2.  DR6/DR7 Layout on Processors Supporting Intel 64 Technology

Table 16-2.  Debug Exception Conditions

Debug or Breakpoint Condition DR6 Flags 
Tested

DR7 Flags 
Tested

Exception Class

Single-step trap BS = 1 Trap

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

DR7L

Reserved

0

1234569101718252627282930

G
0

L
1

L
2

L
3

G
3

L
E

G
E

G
2

G
1

G
D

R/W
0

LEN
0

R/W
1

LEN
1

R/W
2

LEN
2

R/W
3

LEN
3

31 16 15 1314 12 11 8 7 0

DR6B
0

123456910

B
1

B
2

B
3

0 1 1 1 1 1 1 1 1 1B
D

B
S

B
T

63 32

63 32

DR6

DR7

0 0 0 0 1

Reserved (set to 1)



Documentation Changes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 103

16.3.1.1  Instruction-Breakpoint Exception Condition
The processor reports an instruction breakpoint when it attempts to execute an instruc-
tion at an address specified in a breakpoint-address register (DB0 through DR3) that has 
been set up to detect instruction execution (R/W flag is set to 0). Upon reporting the 
instruction breakpoint, the processor generates a fault-class, debug exception (#DB) 
before it executes the target instruction for the breakpoint. 

Instruction breakpoints are the highest priority debug exceptions. They are serviced 
before any other exceptions detected during the decoding or execution of an instruction. 
However, if a code instruction breakpoint is placed on an instruction located immedi-
ately after a POP SS/MOV SS instruction, the breakpoint may not be triggered. In most 
situations, POP SS/MOV SS will inhibit such interrupts (see “MOV—Move” and “POP—
Pop a Value from the Stack” in Chapters 3 and 4 of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volumes 2A & 2B).

Because the debug exception for an instruction breakpoint is generated before the 
instruction is executed, if the instruction breakpoint is not removed by the exception 
handler; the processor will detect the instruction breakpoint again when the instruction 
is restarted and generate another debug exception. To prevent looping on an instruction 
breakpoint, the Intel 64 and IA-32 architectures provide the RF flag (resume flag) in the 
EFLAGS register (see Section 2.3, “System Flags and Fields in the EFLAGS Register,” in 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). When 
the RF flag is set, the processor ignores instruction breakpoints.

All Intel 64 and IA-32 processors manage the RF flag as follows. The RF Flag is cleared at 
the start of the instruction after the check for code breakpoint, CS limit violation and FP 
exceptions. Task Switches and IRETD/IRETQ instructions transfer the RF image from the 
TSS/stack to the EFLAGS register.

When calling an event handler, Intel 64 and IA-32 processors establish the value of the 
RF flag in the EFLAGS image pushed on the stack:

• For any fault-class exception except a debug exception generated in response to an 
instruction breakpoint, the value pushed for RF is 1.

Instruction breakpoint, at addresses 
defined by DRn and LENn

Bn = 1 and 
(Gn or Ln = 1)

R/Wn = 0 Fault

Data write breakpoint, at addresses 
defined by DRn and LENn

Bn = 1 and 
(Gn or Ln = 1)

R/Wn = 1 Trap

I/O read or write breakpoint, at 
addresses defined by DRn and LENn

Bn = 1 and 
(Gn or Ln = 1)

R/Wn = 2 Trap

Data read or write (but not instruction 
fetches), at addresses defined by DRn 
and LENn

Bn = 1 and 
(Gn or Ln = 1)

R/Wn = 3 Trap

General detect fault, resulting from an 
attempt to modify debug registers 
(usually in conjunction with in-circuit 
emulation)

BD = 1 Fault

Task switch BT = 1 Trap

Table 16-2.  Debug Exception Conditions

Debug or Breakpoint Condition DR6 Flags 
Tested

DR7 Flags 
Tested

Exception Class
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• For any interrupt arriving after any iteration of a repeated string instruction but the 
last iteration, the value pushed for RF is 1.

• For any trap-class exception generated by any iteration of a repeated string 
instruction but the last iteration, the value pushed for RF is 1.

• For other cases, the value pushed for RF is the value that was in EFLAG.RF at the 
time the event handler was called. This includes:

— Debug exceptions generated in response to instruction breakpoints

— Hardware-generated interrupts arriving between instructions (including those 
arriving after the last iteration of a repeated string instruction)

— Trap-class exceptions generated after an instruction completes (including those 
generated after the last iteration of a repeated string instruction)

— Software-generated interrupts (RF is pushed as 0, since it was cleared at the 
start of the software interrupt)

As noted above, the processor does not set the RF flag prior to calling the debug excep-
tion handler for debug exceptions resulting from instruction breakpoints. The debug 
exception handler can prevent recurrence of the instruction breakpoint by setting the RF 
flag in the EFLAGS image on the stack. If the RF flag in the EFLAGS image is set when the 
processor returns from the exception handler, it is copied into the RF flag in the EFLAGS 
register by IRETD/IRETQ or a task switch that causes the return. The processor then 
ignores instruction breakpoints for the duration of the next instruction. (Note that the 
POPF, POPFD, and IRET instructions do not transfer the RF image into the EFLAGS 
register.) Setting the RF flag does not prevent other types of debug-exception conditions 
(such as, I/O or data breakpoints) from being detected, nor does it prevent non-debug 
exceptions from being generated.

For the Pentium processor, when an instruction breakpoint coincides with another fault-
type exception (such as a page fault), the processor may generate one spurious debug 
exception after the second exception has been handled, even though the debug excep-
tion handler set the RF flag in the EFLAGS image. To prevent a spurious exception with 
Pentium processors, all fault-class exception handlers should set the RF flag in the 
EFLAGS image.

16.3.1.2  Data Memory and I/O Breakpoint Exception Conditions
Data memory and I/O breakpoints are reported when the processor attempts to access 
a memory or I/O address specified in a breakpoint-address register (DB0 through DR3) 
that has been set up to detect data or I/O accesses (R/W flag is set to 1, 2, or 3). The 
processor generates the exception after it executes the instruction that made the access, 
so these breakpoint condition causes a trap-class exception to be generated. 

Because data breakpoints are traps, the original data is overwritten before the trap 
exception is generated. If a debugger needs to save the contents of a write breakpoint 
location, it should save the original contents before setting the breakpoint. The handler 
can report the saved value after the breakpoint is triggered. The address in the debug 
registers can be used to locate the new value stored by the instruction that triggered the 
breakpoint.

Intel486 and later processors ignore the GE and LE flags in DR7. In Intel386 processors, 
exact data breakpoint matching does not occur unless it is enabled by setting the LE 
and/or the GE flags. 
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P6 family processors are unable to report data breakpoints exactly for the REP MOVS and 
REP STOS instructions until the completion of the iteration after the iteration in which the 
breakpoint occurred.

For repeated INS and OUTS instructions that generate an I/O-breakpoint debug excep-
tion, the processor generates the exception after the completion of the first iteration. 
Repeated INS and OUTS instructions generate a memory-breakpoint debug exception 
after the iteration in which the memory address breakpoint location is accessed.

16.3.1.3  General-Detect Exception Condition
When the GD flag in DR7 is set, the general-detect debug exception occurs when a 
program attempts to access any of the debug registers (DR0 through DR7) at the same 
time they are being used by another application, such as an emulator or debugger. This 
protection feature guarantees full control over the debug registers when required. The 
debug exception handler can detect this condition by checking the state of the BD flag in 
the DR6 register. The processor generates the exception before it executes the MOV 
instruction that accesses a debug register, which causes a fault-class exception to be 
generated. 

16.3.1.4  Single-Step Exception Condition
The processor generates a single-step debug exception if (while an instruction is being 
executed) it detects that the TF flag in the EFLAGS register is set. The exception is a 
trap-class exception, because the exception is generated after the instruction is 
executed. The processor will not generate this exception after the instruction that sets 
the TF flag. For example, if the POPF instruction is used to set the TF flag, a single-step 
trap does not occur until after the instruction that follows the POPF instruction.

The processor clears the TF flag before calling the exception handler. If the TF flag was 
set in a TSS at the time of a task switch, the exception occurs after the first instruction is 
executed in the new task.

The TF flag normally is not cleared by privilege changes inside a task. The INT n and 
INTO instructions, however, do clear this flag. Therefore, software debuggers that 
single-step code must recognize and emulate INT n or INTO instructions rather than 
executing them directly. To maintain protection, the operating system should check the 
CPL after any single-step trap to see if single stepping should continue at the current 
privilege level.

The interrupt priorities guarantee that, if an external interrupt occurs, single stepping 
stops. When both an external interrupt and a single-step interrupt occur together, the 
single-step interrupt is processed first. This operation clears the TF flag. After saving the 
return address or switching tasks, the external interrupt input is examined before the 
first instruction of the single-step handler executes. If the external interrupt is still 
pending, then it is serviced. The external interrupt handler does not run in single-step 
mode. To single step an interrupt handler, single step an INT n instruction that calls the 
interrupt handler.

16.3.1.5  Task-Switch Exception Condition
The processor generates a debug exception after a task switch if the T flag of the new 
task's TSS is set. This exception is generated after program control has passed to the 
new task, and prior to the execution of the first instruction of that task. The exception 
handler can detect this condition by examining the BT flag of the DR6 register.
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If entry 1 (#DB) in the IDT is a task gate, the T bit of the corresponding TSS should not 
be set. Failure to observe this rule will put the processor in a loop.

16.3.2 Breakpoint Exception (#BP)—Interrupt Vector 3
The breakpoint exception (interrupt 3) is caused by execution of an INT 3 instruction. 
See Chapter 6, “Interrupt 3—Breakpoint Exception (#BP).” Debuggers use break excep-
tions in the same way that they use the breakpoint registers; that is, as a mechanism for 
suspending program execution to examine registers and memory locations. With earlier 
IA-32 processors, breakpoint exceptions are used extensively for setting instruction 
breakpoints.

With the Intel386 and later IA-32 processors, it is more convenient to set breakpoints 
with the breakpoint-address registers (DR0 through DR3). However, the breakpoint 
exception still is useful for breakpointing debuggers, because a breakpoint exception can 
call a separate exception handler. The breakpoint exception is also useful when it is 
necessary to set more breakpoints than there are debug registers or when breakpoints 
are being placed in the source code of a program under development.

16.4 LAST BRANCH, INTERRUPT, AND EXCEPTION 
RECORDING OVERVIEW

P6 family processors introduced the ability to set breakpoints on taken branches, inter-
rupts, and exceptions, and to single-step from one branch to the next. This capability 
has been modified and extended in the Pentium 4, Intel Xeon, Pentium M, Intel® Core™ 
Solo, Intel® Core™ Duo, Intel® Core™2 Duo, Intel® Core™ i7 and Intel® Atom™ proces-
sors to allow logging of branch trace messages in a branch trace store (BTS) buffer in 
memory. 

See the following sections for processor specific implementation of last branch, interrupt 
and exception recording:

— Section 16.5, “Last Branch, Interrupt, and Exception Recording (Intel® Core™2 
Duo and Intel® Atom™ Processor Family)”

— Section 16.6, “Last Branch, Interrupt, and Exception Recording (Intel® Core™i7 
Processor Family)”

— Section 16.7, “Last Branch, Interrupt, and Exception Recording (Processors 
based on Intel NetBurst® Microarchitecture)”

— Section 16.8, “Last Branch, Interrupt, and Exception Recording (Intel® Core™ 
Solo and Intel® Core™ Duo Processors)”

— Section 16.9, “Last Branch, Interrupt, and Exception Recording (Pentium M 
Processors)”

— Section 16.10, “Last Branch, Interrupt, and Exception Recording (P6 Family 
Processors)”

The following subsections of Section 16.4 describe common features of profiling 
branches. These features are generally enabled using the IA32_DEBUGCTL MSR (older 
processor may have implemented a subset or model-specific features, see definitions of 
MSR_DEBUGCTLA, MSR_DEBUGCTLB, MSR_DEBUGCTL).
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16.4.1 IA32_DEBUGCTL MSR
The IA32_DEBUGCTL MSR provides bit field controls to enable debug trace interrupts, 
debug trace stores, trace messages enable, single stepping on branches, last branch 
record recording, and to control freezing of LBR stack or performance counters on a PMI 
request. IA32_DEBUGCTL MSR is located at register address 01D9H. 

See Figure 16-3. for the MSR layout and the bullets below for a description of the flags:

• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor 
records a running trace of the most recent branches, interrupts, and/or exceptions 
taken by the processor (prior to a debug exception being generated) in the last 
branch record (LBR) stack. For more information, see the Section 16.5.1, “LBR 
Stack”.

• BTF (single-step on branches) flag (bit 1) — When set, the processor treats the 
TF flag in the EFLAGS register as a “single-step on branches” flag rather than a 
“single-step on instructions” flag. This mechanism allows single-stepping the 
processor on taken branches, interrupts, and exceptions. See Section 16.4.3, 
“Single-Stepping on Branches, Exceptions, and Interrupts,” for more information 
about the BTF flag.

• TR (trace message enable) flag (bit 6) — When set, branch trace messages are 
enabled. When the processor detects a taken branch, interrupt, or exception; it 
sends the branch record out on the system bus as a branch trace message (BTM). 
See Section 16.4.4, “Branch Trace Messages,” for more information about the TR 
flag.

• BTS (branch trace store) flag (bit 7) — When set, the flag enables BTS facilities 
to log BTMs to a memory-resident BTS buffer that is part of the DS save area. See 
Section 16.4.9, “BTS and DS Save Area.”

• BTINT (branch trace interrupt) flag (bit 8) — When set, the BTS facilities 
generate an interrupt when the BTS buffer is full. When clear, BTMs are logged to the 
BTS buffer in a circular fashion. See Section 16.4.5, “Branch Trace Store (BTS),” for a 
description of this mechanism.

Figure 16-3.  IA32_DEBUGCTL MSR for Processors based 
on Intel Core microarchitecture
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• BTS_OFF_OS (branch trace off in privileged code) flag (bit 9) — When set, 
BTS or BTM is skipped if CPL is 0. See Section 16.7.2.

• BTS_OFF_USR (branch trace off in user code) flag (bit 10) — When set, BTS or 
BTM is skipped if CPL is greater than 0. See Section 16.7.2.

• FREEZE_LBRS_ON_PMI flag (bit 11) — When set, the LBR stack is frozen on a 
hardware PMI request (e.g. when a counter overflows and is configured to trigger PMI). 

• FREEZE_PERFMON_ON_PMI flag (bit 12) — When set, a PMI request clears each 
of the “ENABLE” field of MSR_PERF_GLOBAL_CTRL MSR (see Figure 30-3) to disable 
all the counters. 

• FREEZE_WHILE_SMM_EN (bit 14) — If this bit is set, upon the delivery of an SMI, 
the processor will clear all the enable bits of IA32_PERF_GLOBAL_CTRL, save a copy 
of the content of IA32_DEBUGCTL and disable LBR, BTF, TR, and BTS fields of 
IA32_DEBUGCTL before transferring control to the SMI handler. Subsequently, the 
enable bits of IA32_PERF_GLOBAL_CTRL will be set to 1, the saved copy of 
IA32_DEBUGCTL prior to SMI delivery will be restored, after the SMI handler issues 
RSM to complete its service. Note that system software must check 
IA32_DEBUGCTL. to determine if the processor supports the 
FREEZE_WHILE_SMM_EN control bit. FREEZE_WHILE_SMM_EN is supported if 
IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See Section 
30.11 for details of detecting the presence of IA32_PERF_CAPABILITIES MSR.

16.4.2 Monitoring Branches, Exceptions, and Interrupts
When the LBR flag (bit 0) in the IA32_DEBUGCTL MSR is set, the processor automatically 
begins recording branch records for taken branches, interrupts, and exceptions (except 
for debug exceptions) in the LBR stack MSRs.

When the processor generates a a debug exception (#DB), it automatically clears the 
LBR flag before executing the exception handler. This action does not clear previously 
stored LBR stack MSRs. The branch record for the last four taken branches, interrupts 
and/or exceptions are retained for analysis.

A debugger can use the linear addresses in the LBR stack to re-set breakpoints in the 
breakpoint address registers (DR0 through DR3). This allows a backward trace from the 
manifestation of a particular bug toward its source.

If the LBR flag is cleared and TR flag in the IA32_DEBUGCTL MSR remains set, the 
processor will continue to update LBR stack MSRs. This is because BTM information must 
be generated from entries in the LBR stack. A #DB does not automatically clear the TR 
flag.

16.4.3 Single-Stepping on Branches, Exceptions, and Interrupts
When software sets both the BTF flag (bit 1) in the IA32_DEBUGCTL MSR and the TF flag 
in the EFLAGS register, the processor generates a single-step debug exception the next 
time it takes a branch, services an interrupt, or generates an exception. This mechanism 
allows the debugger to single-step on control transfers caused by branches, interrupts, 
and exceptions. This “control-flow single stepping” helps isolate a bug to a particular 
block of code before instruction single-stepping further narrows the search. If the BTF 
flag is set when the processor generates a debug exception, the processor clears the BTF 
flag along with the TF flag. The debugger must reset the BTF and TF flags before 
resuming program execution to continue control-flow single stepping.
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16.4.4 Branch Trace Messages
Setting the TR flag (bit 6) in the IA32_DEBUGCTL MSR enables branch trace messages 
(BTMs). Thereafter, when the processor detects a branch, exception, or interrupt, it 
sends a branch record out on the system bus as a BTM. A debugging device that is moni-
toring the system bus can read these messages and synchronize operations with taken 
branch, interrupt, and exception events. 

When interrupts or exceptions occur in conjunction with a taken branch, additional BTMs 
are sent out on the bus, as described in Section 16.4.2, “Monitoring Branches, Excep-
tions, and Interrupts.”

Unlike the P6 family and Core family processors, the Pentium 4, Atom, and Intel Xeon 
processors can collect branch records in the LBR stack MSRs while at the same time 
sending/storing BTMs when both the TR and LBR flags are set in the IA32_DEBUGCTL 
MSR (in the case of Pentium 4, processor, MSR_DEBUGCTLA).

16.4.5 Branch Trace Store (BTS)
A trace of taken branches, interrupts, and exceptions is useful for debugging code by 
providing a method of determining the decision path taken to reach a particular code 
location. The LBR flag (bit 0) of IA32_DEBUGCTL provides a mechanism for capturing 
records of taken branches, interrupts, and exceptions and saving them in the last branch 
record (LBR) stack MSRs, setting the TR flag for sending them out onto the system bus 
as BTMs. The branch trace store (BTS) mechanism provides the additional capability of 
saving the branch records in a memory-resident BTS buffer, which is part of the DS save 
area. The BTS buffer can be configured to be circular so that the most recent branch 
records are always available or it can be configured to generate an interrupt when the 
buffer is nearly full so that all the branch records can be saved. The BTINT flag (bit 8) can 
be used to enable the generation of interrupt when the BTS buffer is full. See Section 
16.4.9.2, “Setting Up the DS Save Area.” for additional details.

Setting this flag (BTS) alone can greatly reduce the performance of the processor. CPL-
qualified branch trace storing mechanism can help mitigate the performance impact of 
sending/logging branch trace messages.

16.4.6 CPL-Qualified Branch Trace Mechanism
CPL-qualified branch trace mechanism is available to a subset of Intel 64 and IA-32 
processors that support the branch trace storing mechanism. The processor supports the 
CPL-qualified branch trace mechanism if CPUID.01H:ECX[bit 4] = 1.

The CPL-qualified branch trace mechanism is described in Section 16.4.9.4. System soft-
ware can selectively specify CPL qualification to not send/store Branch Trace Messages 
associated with a specified privilege level. Two bit fields, BTS_OFF_USR (bit 10) and 
BTS_OFF_OS (bit 9), are provided in the debug control register to specify the CPL of 
BTMs that will not be logged in the BTS buffer or sent on the bus.

16.4.7 Freezing LBR and Performance Counters on PMI 
Many issues may generate a performance monitoring interrupt (PMI); a PMI service 
handler will need to determine cause to handle the situation. Two capabilities that allow 
a PMI service routine to improve branch tracing and performance monitoring are:
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• Freezing LBRs on PMI (bit 11)— The processor freezes LBRs on a PMI request by 
clearing the LBR bit (bit 0) in IA32_DEBUGCTL. Software must then re-enable 
IA32_DEBUGCTL.[0] to continue monitoring branches. When using this feature, 
software should be careful about writes to IA32_DEBUGCTL to avoid re-enabling 
LBRs by accident if they were just disabled.

• Freezing PMCs on PMI (bit 12) — The processor freezes the performance counters 
on a PMI request by clearing the MSR_PERF_GLOBAL_CTRL MSR (see Figure 30-3). 
The PMCs affected include both general-purpose counters and fixed-function 
counters (see Section 30.4.1, “Fixed-function Performance Counters”). Software 
must re-enable counts by writing 1s to the corresponding enable bits in 
MSR_PERF_GLOBAL_CTRL before leaving a PMI service routine to continue counter 
operation.

Freezing LBRs and PMCs on PMIs occur when:

• A performance counter had an overflow and was programmed to signal a PMI in case 
of an overflow.

— For the general-purpose counters; this is done by setting bit 20 of the 
IA32_PERFEVTSELx register.

— For the fixed-function counters; this is done by setting the 3rd bit in the corre-
sponding 4-bit control field of the MSR_PERF_FIXED_CTR_CTRL register (see 
Figure 30-1) or IA32_FIXED_CTR_CTRL MSR (see Figure 30-2).

• The PEBS buffer is almost full and reaches the interrupt threshold.

• The BTS buffer is almost full and reaches the interrupt threshold.

16.4.8 LBR Stack 
The last branch record stack and top-of-stack (TOS) pointer MSRs are supported across 
Intel 64 and IA-32 processor families. However, the number of MSRs in the LBR stack 
and the valid range of TOS pointer value can vary between different processor families. 
Table 16-3. lists the LBR stack size and TOS pointer range for several processor families 
according to the CPUID signatures of DisplayFamily/DisplayModel encoding (see CPUID 
instruction in Chapter 3 of Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2A). 

The last branch recording mechanism tracks not only branch instructions (like JMP, Jcc, 
LOOP and CALL instructions), but also other operations that cause a change in the 
instruction pointer (like external interrupts, traps and faults). The branch recording 
mechanisms generally employs a set of MSRs, referred to as last branch record (LRB) 
stack. The size and exact locations of the LRB stack are generally model-specific. 

Table 16-3.   LBR Stack Size and TOS Pointer Range 
DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer

06_1AH, 06_1EH, 06_1FH, 
06_2EH

16 0 to 15

06_17H, 06_1DH 4 0 to 3

06_0FH 4 0 to 3

06_1CH 8 0 to 7
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• Last Branch Record (LBR) Stack — The LBR consists of N pairs of MSRs (N is listed 
in the LBR stack size column of Table 16-3.) that store source and destination 
address of recent branches (see Figure 16-3.): 

— MSR_LASTBRANCH_0_FROM_IP (address is model specific) through the next 
consecutive (N-1) MSR address store source addresses

— MSR_LASTBRANCH_0_TO_IP (address is model specific ) through the next 
consecutive (N-1) MSR address store destination addresses.

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant M bits 
of the TOS Pointer MSR (MSR_LASTBRANCH_TOS, address is model specific) 
contains an M-bit pointer to the MSR in the LBR stack that contains the most recent 
branch, interrupt, or exception recorded. The valid range of the M-bit POS pointer is 
given in Table 16-3..

16.4.8.1  LBR Stack and Intel® 64 Processors 
LBR MSRs are 64-bits. If IA-32e mode is disabled, only the lower 32-bits of the address 
is recorded. If IA-32e mode is enabled, the processor writes 64-bit values into the MSR. 

In 64-bit mode, last branch records store 64-bit addresses; in compatibility mode, the 
upper 32-bits of last branch records are cleared.

Software should query an architectural MSR IA32_PERF_CAPABILITIES[5:0] about 
the format of the address that is stored in the LBR stack. Four formats are defined by 
the following encoding:

— 000000B (32-bit record format) — Stores 32-bit offset in current CS of 
respective source/destination,

— 000001B (64-bit LIP record format) — Stores 64-bit linear address of 
respective source/destination,

— 000010B (64-bit EIP record format) — Stores 64-bit offset (effective 
address) of respective source/destination.

— 000011B (64-bit EIP record format) and Flags — Stores 64-bit offset 
(effective address) of respective source/destination. LBR flags are supported in 
the upper bits of ‘FROM’ register in the LBR stack. See LBR stack details below for 
flag support and definition.

Processor’s support for the architectural MSR IA32_PERF_CAPABILITIES is provided 
by CPUID.01H:ECX[PERF_CAPAB_MSR] (bit 15).

Figure 16-4.  64-bit Address Layout of LBR MSR 

63

Source Address

0

063

Destination Address

MSR_LASTBRANCH_0_FROM_IP through MSR_LASTBRANCH_(N-1)_FROM_IP

MSR_LASTBRANCH_0_TO_IP through MSR_LASTBRANCH_(N-1)_TO_IP
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16.4.8.2  LBR Stack and IA-32 Processors 
The LBR MSRs in IA-32 processors introduced prior to Intel 64 architecture store the 32-
bit “To Linear Address” and “From Linear Address“ using the high and low half of each 
64-bit MSR. 

16.4.8.3  Last Exception Records and Intel 64 Architecture
Intel 64 and IA-32 processors also provide MSRs that store the branch record for the last 
branch taken prior to an exception or an interrupt. The location of the last exception 
record (LER) MSRs are model specific. The MSRs that store last exception records are 
64-bits. If IA-32e mode is disabled, only the lower 32-bits of the address is recorded. If 
IA-32e mode is enabled, the processor writes 64-bit values into the MSR. In 64-bit 
mode, last exception records store 64-bit addresses; in compatibility mode, the upper 
32-bits of last exception records are cleared.

16.4.9 BTS and DS Save Area
The Debug store (DS) feature flag (bit 21), returned by CPUID.1:EDX[21] Indicates 
that the processor provides the debug store (DS) mechanism. This mechanism allows 
BTMs to be stored in a memory-resident BTS buffer. See Section 16.4.5, “Branch Trace 
Store (BTS).” Precise event-based sampling (PEBS, see Section 30.4.4, “Precise Event 
Based Sampling (PEBS),”) also uses the DS save area provided by debug store mecha-
nism. When CPUID.1:EDX[21] is set, the following BTS facilities are available:

• The BTS_UNAVAILABLE flag in the IA32_MISC_ENABLE MSR indicates (when clear) 
the availability of the BTS facilities, including the ability to set the BTS and BTINT bits 
in the MSR_DEBUGCTLA MSR.

• The IA32_DS_AREA MSR can be programmed to point to the DS save area. 

The debug store (DS) save area is a software-designated area of memory that is used to 
collect the following two types of information:

• Branch records — When the BTS flag in the IA32_DEBUGCTL MSR is set, a branch 
record is stored in the BTS buffer in the DS save area whenever a taken branch, 
interrupt, or exception is detected. 

• PEBS records — When a performance counter is configured for PEBS, a PEBS record 
is stored in the PEBS buffer in the DS save area after the counter overflow occurs. 
This record contains the architectural state of the processor (state of the 8 general 
purpose registers, EIP register, and EFLAGS register) at the next occurrence of the 
PEBS event that caused the counter to overflow. When the state information has 
been logged, the counter is automatically reset to a preselected value, and event 
counting begins again. This feature is available only for a subset of the performance 
events on processors that support PEBS.

NOTES
DS save area and recording mechanism is not available in the SMM. The 
feature is disabled on transition to the SMM mode. Similarly DS recording 
is disabled on the generation of a machine check exception and is cleared 
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on processor RESET and INIT. DS recording is available in real address 
mode.

The BTS and PEBS facilities may not be available on all processors. The 
availability of these facilities is indicated by the BTS_UNAVAILABLE and 
PEBS_UNAVAILABLE flags, respectively, in the IA32_MISC_ENABLE MSR 
(see Appendix B).

The DS save area is divided into three parts (see Figure 16-5.): buffer management 
area, branch trace store (BTS) buffer, and PEBS buffer. The buffer management area is 
used to define the location and size of the BTS and PEBS buffers. The processor then 
uses the buffer management area to keep track of the branch and/or PEBS records in 
their respective buffers and to record the performance counter reset value. The linear 
address of the first byte of the DS buffer management area is specified with the 
IA32_DS_AREA MSR.

The fields in the buffer management area are as follows: 

• BTS buffer base — Linear address of the first byte of the BTS buffer. This address 
should point to a natural doubleword boundary.

• BTS index — Linear address of the first byte of the next BTS record to be written to. 
Initially, this address should be the same as the address in the BTS buffer base field.

• BTS absolute maximum — Linear address of the next byte past the end of the BTS 
buffer. This address should be a multiple of the BTS record size (12 bytes) plus 1.

• BTS interrupt threshold — Linear address of the BTS record on which an interrupt 
is to be generated. This address must point to an offset from the BTS buffer base that 
is a multiple of the BTS record size. Also, it must be several records short of the BTS 
absolute maximum address to allow a pending interrupt to be handled prior to 
processor writing the BTS absolute maximum record.

• PEBS buffer base — Linear address of the first byte of the PEBS buffer. This address 
should point to a natural doubleword boundary.

• PEBS index — Linear address of the first byte of the next PEBS record to be written 
to. Initially, this address should be the same as the address in the PEBS buffer base 
field.
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• PEBS absolute maximum — Linear address of the next byte past the end of the 
PEBS buffer. This address should be a multiple of the PEBS record size (40 bytes) 
plus 1.

• PEBS interrupt threshold — Linear address of the PEBS record on which an 
interrupt is to be generated. This address must point to an offset from the PEBS 
buffer base that is a multiple of the PEBS record size. Also, it must be several records 
short of the PEBS absolute maximum address to allow a pending interrupt to be 
handled prior to processor writing the PEBS absolute maximum record.

• PEBS counter reset value — A 40-bit value that the counter is to be reset to after 
state information has collected following counter overflow. This value allows state 
information to be collected after a preset number of events have been counted. 

Figure 16-6. shows the structure of a 12-byte branch record in the BTS buffer. The fields 
in each record are as follows:

• Last branch from — Linear address of the instruction from which the branch, 
interrupt, or exception was taken.

Figure 16-5.  DS Save Area
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• Last branch to — Linear address of the branch target or the first instruction in the 
interrupt or exception service routine.

• Branch predicted — Bit 4 of field indicates whether the branch that was taken was 
predicted (set) or not predicted (clear).

Figure 16-7. shows the structure of the 40-byte PEBS records. Nominally the register 
values are those at the beginning of the instruction that caused the event. However, 
there are cases where the registers may be logged in a partially modified state. The 
linear IP field shows the value in the EIP register translated from an offset into the 
current code segment to a linear address.

16.4.9.1  DS Save Area and IA-32e Mode Operation
When IA-32e mode is active (IA32_EFER.LMA = 1), the structure of the DS save area is 
shown in Figure 16-8.. The organization of each field in IA-32e mode operation is similar 
to that of non-IA-32e mode operation. However, each field now stores a 64-bit address. 
The IA32_DS_AREA MSR holds the 64-bit linear address of the first byte of the DS buffer 
management area. 

Figure 16-6.  32-bit Branch Trace Record Format

Figure 16-7.  PEBS Record Format
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When IA-32e mode is active, the structure of a branch trace record is similar to that 
shown in Figure 16-6., but each field is 8 bytes in length. This makes each BTS record 24 
bytes (see Figure 16-9.). The structure of a PEBS record is similar to that shown in 
Figure 16-7., but each field is 8 bytes in length and architectural states include register 
R8 through R15. This makes the size of a PEBS record in 64-bit mode 144 bytes (see 
Figure 16-10.).

Figure 16-8.  IA-32e Mode DS Save Area

Figure 16-9.  64-bit Branch Trace Record Format
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Fields in the buffer management area of a DS save area are described in Section 16.4.9. 

The format of a branch trace record and a PEBS record are the same as the 64-bit record 
formats shown in Figure 16-9. and Figure 16-10., with the exception that the branch 
predicted bit is not supported by Intel Core microarchitecture or Intel Atom microarchi-
tecture. The 64-bit record formats for BTS and PEBS apply to DS save area for all oper-
ating modes. 

The procedures used to program IA32_DEBUG_CTRL MSR to set up a BTS buffer or a 
CPL-qualified BTS are described in Section 16.4.9.3 and Section 16.4.9.4.

Required elements for writing a DS interrupt service routine are largely the same on 
processors that support using DS Save area for BTS or PEBS records. However, on 
processors based on Intel NetBurst® microarchitecture, re-enabling counting requires 
writing to CCCRs. But a DS interrupt service routine on processors based on Intel Core 
or Intel Atom microarchitecture should:

• Re-enable the enable bits in IA32_PERF_GLOBAL_CTRL MSR if it is servicing an 
overflow PMI due to PEBS.

• Clear overflow indications by writing to IA32_PERF_GLOBAL_OVF_CTRL when a 
counting configuration is changed. This includes bit 62 (ClrOvfBuffer) and the 
overflow indication of counters used in either PEBS or general-purpose counting 
(specifically: bits 0 or 1; see Figures 30-3).

16.4.9.2  Setting Up the DS Save Area
To save branch records with the BTS buffer, the DS save area must first be set up in 
memory as described in the following procedure (See Section 30.4.4.1, “Setting up the 
PEBS Buffer,” for instructions for setting up a PEBS buffer, respectively, in the DS save 
area):

Figure 16-10.  64-bit PEBS Record Format

RFLAGS 0H

8H

10H

063

RIP

20H

30H

28H

38H

40H

48H

18H

RAX

RBX

RCX

RDX

RSI

RDI

RBP

RSP

R8

...

R15

50H

...

88H



Documentation Changes

118 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

1. Create the DS buffer management information area in memory (see Section 16.4.9, 
“BTS and DS Save Area,” and Section 16.4.9.1, “DS Save Area and IA-32e Mode 
Operation”). Also see the additional notes in this section.

2. Write the base linear address of the DS buffer management area into the 
IA32_DS_AREA MSR. 

3. Set up the performance counter entry in the xAPIC LVT for fixed delivery and edge 
sensitive. See Section 10.6.1, “Local Vector Table.”

4. Establish an interrupt handler in the IDT for the vector associated with the 
performance counter entry in the xAPIC LVT.

5. Write an interrupt service routine to handle the interrupt. See Section 16.4.9.5, 
“Writing the DS Interrupt Service Routine.”

The following restrictions should be applied to the DS save area.

• The three DS save area sections should be allocated from a non-paged pool, and 
marked accessed and dirty. It is the responsibility of the operating system to keep 
the pages that contain the buffer present and to mark them accessed and dirty. The 
implication is that the operating system cannot do “lazy” page-table entry 
propagation for these pages.

• The DS save area can be larger than a page, but the pages must be mapped to 
contiguous linear addresses. The buffer may share a page, so it need not be aligned 
on a 4-KByte boundary. For performance reasons, the base of the buffer must be 
aligned on a doubleword boundary and should be aligned on a cache line boundary. 

• It is recommended that the buffer size for the BTS buffer and the PEBS buffer be an 
integer multiple of the corresponding record sizes.

• The precise event records buffer should be large enough to hold the number of 
precise event records that can occur while waiting for the interrupt to be serviced.

• The DS save area should be in kernel space. It must not be on the same page as 
code, to avoid triggering self-modifying code actions.

• There are no memory type restrictions on the buffers, although it is recommended 
that the buffers be designated as WB memory type for performance considerations.

• Either the system must be prevented from entering A20M mode while DS save area 
is active, or bit 20 of all addresses within buffer bounds must be 0.

• Pages that contain buffers must be mapped to the same physical addresses for all 
processes, such that any change to control register CR3 will not change the DS 
addresses. 

• The DS save area is expected to used only on systems with an enabled APIC. The LVT 
Performance Counter entry in the APCI must be initialized to use an interrupt gate 
instead of the trap gate.

16.4.9.3  Setting Up the BTS Buffer
Three flags in the MSR_DEBUGCTLA MSR (see Table 16-4.), IA32_DEBUGCTL (see 
Figure 16-3.), or MSR_DEBUGCTLB (see Figure 16-16.) control the generation of branch 
records and storing of them in the BTS buffer; these are TR, BTS, and BTINT. The TR flag 
enables the generation of BTMs. The BTS flag determines whether the BTMs are sent out 
on the system bus (clear) or stored in the BTS buffer (set). BTMs cannot be simultane-
ously sent to the system bus and logged in the BTS buffer. The BTINT flag enables the 
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generation of an interrupt when the BTS buffer is full. When this flag is clear, the BTS 
buffer is a circular buffer.

The following procedure describes how to set up a DS Save area to collect branch records 
in the BTS buffer:

1. Place values in the BTS buffer base, BTS index, BTS absolute maximum, and BTS 
interrupt threshold fields of the DS buffer management area to set up the BTS buffer 
in memory.

2. Set the TR and BTS flags in the IA32_DEBUGCTL for Intel Core Solo and Intel Core 
Duo processors or later processors (or MSR_DEBUGCTLA MSR for processors based 
on Intel NetBurst Microarchitecture; or MSR_DEBUGCTLB for Pentium M processors).

3. Clear the BTINT flag in the corresponding IA32_DEBUGCTL (or MSR_DEBUGCTLA 
MSR; or MSR_DEBUGCTLB) if a circular BTS buffer is desired.

NOTES
If the buffer size is set to less than the minimum allowable value (i.e. BTS 
absolute maximum < 1 + size of BTS record), the results of BTS is 
undefined.

In order to prevent generating an interrupt, when working with circular 
BTS buffer, SW need to set BTS interrupt threshold to a value greater 
than BTS absolute maximum (fields of the DS buffer management area). 
It's not enough to clear the BTINT flag itself only. 

16.4.9.4  Setting Up CPL-Qualified BTS 
If the processor supports CPL-qualified last branch recording mechanism, the generation 
of branch records and storing of them in the BTS buffer are determined by: TR, BTS, 
BTS_OFF_OS, BTS_OFF_USR, and BTINT. The encoding of these five bits are shown in 
Table 16-5..

Table 16-4.   IA32_DEBUGCTL Flag Encodings 
TR BTS BTINT Description

0 X X Branch trace messages (BTMs) off

1 0 X Generate BTMs

1 1 0 Store BTMs in the BTS buffer, used here as a circular buffer

1 1 1 Store BTMs in the BTS buffer, and generate an interrupt when 
the buffer is nearly full

Table 16-5.  CPL-Qualified Branch Trace Store Encodings 
TR BTS BTS_OFF_OS BTS_OFF_USR BTINT Description

0 X X X X Branch trace messages (BTMs) 
off

1 0 X X X Generates BTMs but do not 
store BTMs

1 1 0 0 0 Store all BTMs in the BTS buffer, 
used here as a circular buffer

1 1 1 0 0 Store BTMs with CPL > 0 in the 
BTS buffer
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16.4.9.5  Writing the DS Interrupt Service Routine
The BTS, non-precise event-based sampling, and PEBS facilities share the same inter-
rupt vector and interrupt service routine (called the debug store interrupt service routine 
or DS ISR). To handle BTS, non-precise event-based sampling, and PEBS interrupts: 
separate handler routines must be included in the DS ISR. Use the following guidelines 
when writing a DS ISR to handle BTS, non-precise event-based sampling, and/or PEBS 
interrupts.

• The DS interrupt service routine (ISR) must be part of a kernel driver and operate at 
a current privilege level of 0 to secure the buffer storage area.

• Because the BTS, non-precise event-based sampling, and PEBS facilities share the 
same interrupt vector, the DS ISR must check for all the possible causes of interrupts 
from these facilities and pass control on to the appropriate handler. 

BTS and PEBS buffer overflow would be the sources of the interrupt if the buffer 
index matches/exceeds the interrupt threshold specified. Detection of non-precise 
event-based sampling as the source of the interrupt is accomplished by checking for 
counter overflow.

• There must be separate save areas, buffers, and state for each processor in an MP 
system.

• Upon entering the ISR, branch trace messages and PEBS should be disabled to 
prevent race conditions during access to the DS save area. This is done by clearing 
TR flag in the IA32_DEBUGCTL (or MSR_DEBUGCTLA MSR) and by clearing the 
precise event enable flag in the MSR_PEBS_ENABLE MSR. These settings should be 
restored to their original values when exiting the ISR. 

• The processor will not disable the DS save area when the buffer is full and the 
circular mode has not been selected. The current DS setting must be retained and 
restored by the ISR on exit.

• After reading the data in the appropriate buffer, up to but not including the current 
index into the buffer, the ISR must reset the buffer index to the beginning of the 

1 1 0 1 0 Store BTMs with CPL = 0 in the 
BTS buffer

1 1 1 1 X Generate BTMs but do not store 
BTMs

1 1 0 0 1 Store all BTMs in the BTS buffer; 
generate an interrupt when the 
buffer is nearly full

1 1 1 0 1 Store BTMs with CPL > 0 in the 
BTS buffer; generate an 
interrupt when the buffer is 
nearly full

1 1 0 1 1 Store BTMs with CPL = 0 in the 
BTS buffer; generate an 
interrupt when the buffer is 
nearly full

Table 16-5.  CPL-Qualified Branch Trace Store Encodings  (Continued)
TR BTS BTS_OFF_OS BTS_OFF_USR BTINT Description
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buffer. Otherwise, everything up to the index will look like new entries upon the next 
invocation of the ISR.

• The ISR must clear the mask bit in the performance counter LVT entry.

• The ISR must re-enable the counters to count via IA32_PERF_GLOBAL_CTRL/
IA32_PERF_GLOBAL_OVF_CTRL if it is servicing an overflow PMI due to PEBS (or via 
CCCR's ENABLE bit on processor based on Intel NetBurst microarchitecture).

• The Pentium 4 Processor and Intel Xeon Processor mask PMIs upon receiving an 
interrupt. Clear this condition before leaving the interrupt handler.

16.5 LAST BRANCH, INTERRUPT, AND EXCEPTION 
RECORDING (INTEL® CORE™2 DUO AND INTEL® ATOM™ 
PROCESSOR FAMILY)

The Intel Core 2 Duo processor family and Intel Xeon processors based on Intel Core 
microarchitecture or enhanced Intel Core microarchitecture provide last branch interrupt 
and exception recording. The facilities described in this section also apply to Intel Atom 
processor family. These capabilities are similar to those found in Pentium 4 processors, 
including support for the following facilities:

• Debug Trace and Branch Recording Control — The IA32_DEBUGCTL MSR 
provide bit fields for software to configure mechanisms related to debug trace, 
branch recording, branch trace store, and performance counter operations. See 
Section 16.4.1 for a description of the flags. See Figure 16-3. for the MSR layout.

• Last branch record (LBR) stack — There are a collection of MSR pairs that store 
the source and destination addresses related to recently executed branches. See 
Section 16.5.1. 

• Monitoring and single-stepping of branches, exceptions, and interrupts

— See Section 16.4.2 and Section 16.4.3. In addition, the ability to freeze the LBR 
stack on a PMI request is available.

— The Intel Atom processor family clears the TR flag when the 
FREEZE_LBRS_ON_PMI flag is set.

• Branch trace messages — See Section 16.4.4. 

• Last exception records — See Section 16.7.3. 

• Branch trace store and CPL-qualified BTS — See Section 16.4.5.

• FREEZE_LBRS_ON_PMI flag (bit 11) — see Section 16.4.7. 

• FREEZE_PERFMON_ON_PMI flag (bit 12) — see Section 16.4.7. 

• FREEZE_WHILE_SMM_EN (bit 14) — FREEZE_WHILE_SMM_EN is supported if 
IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See Section 
16.4.1.

16.5.1 LBR Stack 
The last branch record stack and top-of-stack (TOS) pointer MSRs are supported across 
Intel Core 2, Intel Xeon and Intel Atom processor families. Four pair of MSRs are 
supported in the LBR stack

• Last Branch Record (LBR) Stack 



Documentation Changes

122 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

— MSR_LASTBRANCH_0_FROM_IP (address 40H) through 
MSR_LASTBRANCH_3_FROM_IP (address 43H) store source addresses

— MSR_LASTBRANCH_0_TO_IP (address 60H) through 
MSR_LASTBRANCH_3_To_IP (address 63H) store destination addresses. 

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant 2 bits 
of the TOS Pointer MSR (MSR_LASTBRANCH_TOS, address 1C9H) contains a pointer 
to the MSR in the LBR stack that contains the most recent branch, interrupt, or 
exception recorded. 

For compatibility, the MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) duplicate 
functions of the LastExceptionToIP and LastExceptionFromIP MSRs found in P6 family 
processors.

16.6 LAST BRANCH, INTERRUPT, AND EXCEPTION 
RECORDING (INTEL® CORE™I7 PROCESSOR FAMILY)

The Intel Core i7 processor family and Intel Xeon processors based on Intel microarchi-
tecture (Nehalem) support last branch interrupt and exception recording. These capabil-
ities are similar to those found in Intel Core 2 processors and adds additional 
capabilities:

• Debug Trace and Branch Recording Control — The IA32_DEBUGCTL MSR 
provides bit fields for software to configure mechanisms related to debug trace, 
branch recording, branch trace store, and performance counter operations. See 
Section 16.4.1 for a description of the flags. See Figure 16-11. for the MSR layout. 

• Last branch record (LBR) stack — There are 16 MSR pairs that store the source 
and destination addresses related to recently executed branches. See Section 
16.6.1.

• Monitoring and single-stepping of branches, exceptions, and interrupts — 
See Section 16.4.2 and Section 16.4.3. In addition, the ability to freeze the LBR 
stack on a PMI request is available.

• Branch trace messages — The IA32_DEBUGCTL MSR provides bit fields for 
software to enable each logical processor to generate branch trace messages. See 
Section 16.4.4. However, not all BTM messages are observable using the Intel® QPI 
link.

• Last exception records — See Section 16.7.3. 

• Branch trace store and CPL-qualified BTS — See Section 16.4.6 and Section 
16.4.5.

• FREEZE_LBRS_ON_PMI flag (bit 11) — see Section 16.4.7. 

• FREEZE_PERFMON_ON_PMI flag (bit 12) — see Section 16.4.7. 

• FREEZE_WHILE_SMM_EN (bit 14) — FREEZE_WHILE_SMM_EN is supported if 
IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See Section 
16.4.1.

Processors based on Intel microarchitecture (Nehalem) provide additional capabilities:

• Independent control of uncore PMI — The IA32_DEBUGCTL MSR provides a bit 
field (see Figure 16-11.) for software to enable each logical processor to receive an 
uncore counter overflow interrupt.

• LBR filtering — Processors based on Intel microarchitecture (Nehalem) support 
filtering of LBR based on combination of CPL and branch type conditions. When LBR 
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filtering is enabled, the LBR stack only captures the subset of branches that are 
specified by MSR_LBR_SELECT.

16.6.1 LBR Stack
Processors based on Intel microarchitecture (Nehalem) provide 16 pairs of MSR to 
record last branch record information. The layout of each MSR pair is shown in Table 16-
6. and Table 16-7..

Processors based on Intel microarchitecture (Nehalem) have an LBR MSR Stack as 
shown in Table 16-8..

Figure 16-11.  IA32_DEBUGCTL MSR for Processors based 
on Intel microarchitecture (Nehalem)

Table 16-6.   IA32_LASTBRACH_x_FROM_IP 
Bit Field Bit Offset Access Description

Data 47:0 R/O The linear address of the branch instruction itself, 
This is the “branch from“ address

SIGN_EXt 62:48 R/0 Signed extension of bit 47 of this register

MISPRED 63 R/O When set, indicates the branch was predicted; 
otherwise, the branch was mispredicted.

Table 16-7.   IA32_LASTBRACH_x_TO_IP 
Bit Field Bit Offset Access Description

Data 47:0 R/O The linear address of the target of the branch 
instruction itself, This is the “branch to“ address

SIGN_EXt 63:48 R/0 Signed extension of bit 47 of this register

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Reserved

8 7 6 5 4 3 2 1  0

BTS — Branch trace store

Reserved

910

BTS_OFF_OS — BTS off in OS
BTS_OFF_USR — BTS off in user code
FREEZE_LBRS_ON_PMI
FREEZE_PERFMON_ON_PMI

111214

FREEZE_WHILE_SMM_EN
UNCORE_PMI_EN

13



Documentation Changes

124 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Table 16-8.  LBR Stack Size and TOS Pointer Range

16.6.2 Filtering of Last Branch Records
MSR_LBR_SELECT is cleared to zero at RESET, and LBR filtering is disabled, i.e. all 
branches will be captured. MSR_LBR_SELECT provides bit fields to specify the conditions 
of subsets of branches that will not be captured in the LBR. The layout of 
MSR_LBR_SELECT is shown in Table 16-9..

16.7 LAST BRANCH, INTERRUPT, AND EXCEPTION 
RECORDING (PROCESSORS BASED ON INTEL 
NETBURST® MICROARCHITECTURE)

Pentium 4 and Intel Xeon processors based on Intel NetBurst microarchitecture provide 
the following methods for recording taken branches, interrupts and exceptions:

• Store branch records in the last branch record (LBR) stack MSRs for the most recent 
taken branches, interrupts, and/or exceptions in MSRs. A branch record consist of a 
branch-from and a branch-to instruction address. 

• Send the branch records out on the system bus as branch trace messages (BTMs).

• Log BTMs in a memory-resident branch trace store (BTS) buffer.

To support these functions, the processor provides the following MSRs and related facil-
ities:

DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer

06_1AH 16 0 to 15

Table 16-9.   MSR_LBR_SELECT 
Bit Field Bit Offset Access Description

CPL_EQ_0 0 R/W When set, do not capture branches occurring in ring 0

CPL_NEQ_0 1 R/W When set, do not capture branches occurring in ring 
>0

JCC 2 R/W When set, do not capture conditional branches

NEAR_REL_CALL 3 R/W When set, do not capture near relative calls

NEAR_IND_CALL 4 R/W When set, do not capture near indirect calls

NEAR_RET 5 R/W When set, do not capture near returns

NEAR_IND_JMP 6 R/W When set, do not capture near indirect jumps

NEAR_REL_JMP 7 R/W When set, do not capture near relative jumps

FAR_BRANCH 8 R/W When set, do not capture far branches

Reserved 63:9 Must be zero
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• MSR_DEBUGCTLA MSR — Enables last branch, interrupt, and exception recording; 
single-stepping on taken branches; branch trace messages (BTMs); and branch trace 
store (BTS). This register is named DebugCtlMSR in the P6 family processors.

• Debug store (DS) feature flag (CPUID.1:EDX.DS[bit 21]) — Indicates that the 
processor provides the debug store (DS) mechanism, which allows BTMs to be stored 
in a memory-resident BTS buffer.

• CPL-qualified debug store (DS) feature flag (CPUID.1:ECX.DS-CPL[bit 4]) — 
Indicates that the processor provides a CPL-qualified debug store (DS) mechanism, 
which allows software to selectively skip sending and storing BTMs, according to 
specified current privilege level settings, into a memory-resident BTS buffer.

• IA32_MISC_ENABLE MSR — Indicates that the processor provides the BTS 
facilities.

• Last branch record (LBR) stack — The LBR stack is a circular stack that consists 
of four MSRs (MSR_LASTBRANCH_0 through MSR_LASTBRANCH_3) for the 
Pentium 4 and Intel Xeon processor family [CPUID family 0FH, models 0H-02H]. 
The LBR stack consists of 16 MSR pairs (MSR_LASTBRANCH_0_FROM_LIP through 
MSR_LASTBRANCH_15_FROM_LIP and MSR_LASTBRANCH_0_TO_LIP through 
MSR_LASTBRANCH_15_TO_LIP) for the Pentium 4 and Intel Xeon processor family 
[CPUID family 0FH, model 03H].

• Last branch record top-of-stack (TOS) pointer — The TOS Pointer MSR contains 
a 2-bit pointer (0-3) to the MSR in the LBR stack that contains the most recent 
branch, interrupt, or exception recorded for the Pentium 4 and Intel Xeon processor 
family [CPUID family 0FH, models 0H-02H]. This pointer becomes a 4-bit pointer (0-
15) for the Pentium 4 and Intel Xeon processor family [CPUID family 0FH, model 
03H]. See also: Table 16-10., Figure 16-12., and Section 16.7.2, “LBR Stack for 
Processors Based on Intel NetBurst Microarchitecture.”

• Last exception record — See Section 16.7.3, “Last Exception Records.”

16.7.1 MSR_DEBUGCTLA MSR 
The MSR_DEBUGCTLA MSR enables and disables the various last branch recording 
mechanisms described in the previous section. This register can be written to using the 
WRMSR instruction, when operating at privilege level 0 or when in real-address mode. A 
protected-mode operating system procedure is required to provide user access to this 
register. Figure 16-12. shows the flags in the MSR_DEBUGCTLA MSR. The functions of 
these flags are as follows:

• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor 
records a running trace of the most recent branches, interrupts, and/or exceptions 
taken by the processor (prior to a debug exception being generated) in the last 
branch record (LBR) stack. Each branch, interrupt, or exception is recorded as a 64-
bit branch record. The processor clears this flag whenever a debug exception is 
generated (for example, when an instruction or data breakpoint or a single-step trap 
occurs). See Section 16.7.2, “LBR Stack for Processors Based on Intel NetBurst 
Microarchitecture.”

• BTF (single-step on branches) flag (bit 1) — When set, the processor treats the 
TF flag in the EFLAGS register as a “single-step on branches” flag rather than a 
“single-step on instructions” flag. This mechanism allows single-stepping the 
processor on taken branches, interrupts, and exceptions. See Section 16.4.3, 
“Single-Stepping on Branches, Exceptions, and Interrupts.”
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• TR (trace message enable) flag (bit 2) — When set, branch trace messages are 
enabled. Thereafter, when the processor detects a taken branch, interrupt, or 
exception, it sends the branch record out on the system bus as a branch trace 
message (BTM). See Section 16.4.4, “Branch Trace Messages.”

• BTS (branch trace store) flag (bit 3) — When set, enables the BTS facilities to log 
BTMs to a memory-resident BTS buffer that is part of the DS save area. See Section 
16.4.9, “BTS and DS Save Area.”

• BTINT (branch trace interrupt) flag (bits 4) — When set, the BTS facilities 
generate an interrupt when the BTS buffer is full. When clear, BTMs are logged to the 
BTS buffer in a circular fashion. See Section 16.4.5, “Branch Trace Store (BTS).”

• BTS_OFF_OS (disable ring 0 branch trace store) flag (bit 5) — When set, 
enables the BTS facilities to skip sending/logging CPL_0 BTMs to the memory-
resident BTS buffer. See Section 16.7.2, “LBR Stack for Processors Based on Intel 
NetBurst Microarchitecture.”

• BTS_OFF_USR (disable ring 0 branch trace store) flag (bit 6) — When set, 
enables the BTS facilities to skip sending/logging non-CPL_0 BTMs to the memory-
resident BTS buffer. See Section 16.7.2, “LBR Stack for Processors Based on Intel 
NetBurst Microarchitecture.”

The initial implementation of BTS_OFF_USR and BTS_OFF_OS in 
MSR_DEBUGCTLA is shown in Figure 16-12.. The BTS_OFF_USR and 
BTS_OFF_OS fields may be implemented on other model-specific debug 
control register at different locations.

See Appendix B, “Model-Specific Registers (MSRs),” for a detailed description of each of 
the last branch recording MSRs.

16.7.2 LBR Stack for Processors Based on Intel NetBurst 
Microarchitecture

The LBR stack is made up of LBR MSRs that are treated by the processor as a circular 
stack. The TOS pointer (MSR_LASTBRANCH_TOS MSR) points to the LBR MSR (or LBR 
MSR pair) that contains the most recent (last) branch record placed on the stack. Prior to 
placing a new branch record on the stack, the TOS is incremented by 1. When the TOS 

Figure 16-12.  MSR_DEBUGCTLA MSR for Pentium 4 and Intel Xeon Processors

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

5 4 3 2 1 0

BTS — Branch trace store

Reserved

67

BTS_OFF_OS — Disable storing CPL_0 BTS
BTS_OFF_USR — Disable storing non-CPL_0 BTS
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pointer reaches it maximum value, it wraps around to 0. See Table 16-10. and Figure 16-
12..

Table 16-10.  LBR MSR Stack Size and TOS Pointer Range for the Pentium® 4 and the 
Intel® Xeon® Processor Family

The registers in the LBR MSR stack and the MSR_LASTBRANCH_TOS MSR are read-only 
and can be read using the RDMSR instruction.

Figure 16-13. shows the layout of a branch record in an LBR MSR (or MSR pair). Each 
branch record consists of two linear addresses, which represent the “from” and “to” 
instruction pointers for a branch, interrupt, or exception. The contents of the from and to 
addresses differ, depending on the source of the branch:

• Taken branch — If the record is for a taken branch, the “from” address is the 
address of the branch instruction and the “to” address is the target instruction of the 
branch. 

• Interrupt — If the record is for an interrupt, the “from” address the return 
instruction pointer (RIP) saved for the interrupt and the “to” address is the address 
of the first instruction in the interrupt handler routine. The RIP is the linear address 
of the next instruction to be executed upon returning from the interrupt handler.

• Exception — If the record is for an exception, the “from” address is the linear 
address of the instruction that caused the exception to be generated and the “to” 
address is the address of the first instruction in the exception handler routine.

DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer

Family 0FH, Models 0H-02H; 
MSRs at locations 1DBH-
1DEH.

4 0 to 3

Family 0FH, Models; MSRs at 
locations 680H-68FH.

16 0 to 15

Family 0FH, Model 03H; MSRs 
at locations 6C0H-6CFH.

16 0 to 15
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Additional information is saved if an exception or interrupt occurs in conjunction with a 
branch instruction. If a branch instruction generates a trap type exception, two branch 
records are stored in the LBR stack: a branch record for the branch instruction followed 
by a branch record for the exception.

If a branch instruction is immediately followed by an interrupt, a branch record is stored 
in the LBR stack for the branch instruction followed by a record for the interrupt. 

16.7.3 Last Exception Records
The Pentium 4, Intel Xeon, Pentium M, Intel® Core™ Solo, Intel® Core™ Duo, Intel® 
Core™2 Duo, Intel® Core™ i7 and Intel® Atom™ processors provide two MSRs (the 
MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) that duplicate the functions of 
the LastExceptionToIP and LastExceptionFromIP MSRs found in the P6 family processors. 
The MSR_LER_TO_LIP and MSR_LER_FROM_LIP MSRs contain a branch record for the 
last branch that the processor took prior to an exception or interrupt being generated.

16.8 LAST BRANCH, INTERRUPT, AND EXCEPTION 
RECORDING (INTEL® CORE™ SOLO AND INTEL® CORE™ 

DUO PROCESSORS)
Intel Core Solo and Intel Core Duo processors provide last branch interrupt and excep-
tion recording. This capability is almost identical to that found in Pentium 4 and Intel 
Xeon processors. There are differences in the stack and in some MSR names and loca-
tions. 

Note the following:

• IA32_DEBUGCTL MSR — Enables debug trace interrupt, debug trace store, trace 
messages enable, performance monitoring breakpoint flags, single stepping on 

Figure 16-13.  LBR MSR Branch Record Layout for the Pentium 4 
and Intel Xeon Processor Family

63

From Linear Address

0

To Linear Address
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From Linear Address

0
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To Linear Address

32 - 31

MSR_LASTBRANCH_0 through MSR_LASTBRANCH_3 
CPUID Family 0FH, Models 0H-02H

Reserved

CPUID Family 0FH, Model 03H-04H

Reserved

MSR_LASTBRANCH_0_FROM_LIP through MSR_LASTBRANCH_15_FROM_LIP

32 - 31

32 - 31

MSR_LASTBRANCH_0_TO_LIP through MSR_LASTBRANCH_15_TO_LIP
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branches, and last branch. IA32_DEBUGCTL MSR is located at register address 
01D9H. 

See Figure 16-14. for the layout and the entries below for a description of the flags:

— LBR (last branch/interrupt/exception) flag (bit 0) — When set, the 
processor records a running trace of the most recent branches, interrupts, and/
or exceptions taken by the processor (prior to a debug exception being 
generated) in the last branch record (LBR) stack. For more information, see the 
“Last Branch Record (LBR) Stack” below.

— BTF (single-step on branches) flag (bit 1) — When set, the processor treats 
the TF flag in the EFLAGS register as a “single-step on branches” flag rather than 
a “single-step on instructions” flag. This mechanism allows single-stepping the 
processor on taken branches, interrupts, and exceptions. See Section 16.4.3, 
“Single-Stepping on Branches, Exceptions, and Interrupts,” for more information 
about the BTF flag.

— TR (trace message enable) flag (bit 6) — When set, branch trace messages 
are enabled. When the processor detects a taken branch, interrupt, or exception; 
it sends the branch record out on the system bus as a branch trace message 
(BTM). See Section 16.4.4, “Branch Trace Messages,” for more information about 
the TR flag.

— BTS (branch trace store) flag (bit 7) — When set, the flag enables BTS 
facilities to log BTMs to a memory-resident BTS buffer that is part of the DS save 
area. See Section 16.4.9, “BTS and DS Save Area.”

— BTINT (branch trace interrupt) flag (bits 8) — When set, the BTS facilities 
generate an interrupt when the BTS buffer is full. When clear, BTMs are logged to 
the BTS buffer in a circular fashion. See Section 16.4.5, “Branch Trace Store 
(BTS),” for a description of this mechanism.

• Debug store (DS) feature flag (bit 21), returned by the CPUID instruction — 
Indicates that the processor provides the debug store (DS) mechanism, which allows 
BTMs to be stored in a memory-resident BTS buffer. See Section 16.4.5, “Branch 
Trace Store (BTS).”

• Last Branch Record (LBR) Stack — The LBR stack consists of 8 MSRs 
(MSR_LASTBRANCH_0 through MSR_LASTBRANCH_7); bits 31-0 hold the ‘from’ 
address, bits 63-32 hold the ‘to’ address (MSR addresses start at 40H). See Figure 
16-15..

Figure 16-14.  IA32_DEBUGCTL MSR for Intel Core Solo 
and Intel Core Duo Processors

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Reserved

8 7 6 5 4 3 2 1  0

BTS — Branch trace store

Reserved
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• Last Branch Record Top-of-Stack (TOS) Pointer — The TOS Pointer MSR 
contains a 3-bit pointer (bits 2-0) to the MSR in the LBR stack that contains the most 
recent branch, interrupt, or exception recorded. For Intel Core Solo and Intel Core 
Duo processors, this MSR is located at register address 01C9H.

For compatibility, the Intel Core Solo and Intel Core Duo processors provide two 32-bit 
MSRs (the MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) that duplicate func-
tions of the LastExceptionToIP and LastExceptionFromIP MSRs found in P6 family proces-
sors.

For details, see Section 16.7, “Last Branch, Interrupt, and Exception Recording (Proces-
sors based on Intel NetBurst® Microarchitecture),” and Appendix B.6, “MSRs In Intel® 
Core™ Solo and Intel® Core™ Duo Processors.”

16.9 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING (PENTIUM M PROCESSORS)

Like the Pentium 4 and Intel Xeon processor family, Pentium M processors provide last 
branch interrupt and exception recording. The capability operates almost identically to 
that found in Pentium 4 and Intel Xeon processors. There are differences in the shape of 
the stack and in some MSR names and locations. Note the following:

• MSR_DEBUGCTLB MSR — Enables debug trace interrupt, debug trace store, trace 
messages enable, performance monitoring breakpoint flags, single stepping on 
branches, and last branch. For Pentium M processors, this MSR is located at register 
address 01D9H. See Figure 16-16. and the entries below for a description of the 
flags.

— LBR (last branch/interrupt/exception) flag (bit 0) — When set, the 
processor records a running trace of the most recent branches, interrupts, and/
or exceptions taken by the processor (prior to a debug exception being 
generated) in the last branch record (LBR) stack. For more information, see the 
“Last Branch Record (LBR) Stack” bullet below.

— BTF (single-step on branches) flag (bit 1) — When set, the processor treats 
the TF flag in the EFLAGS register as a “single-step on branches” flag rather than 
a “single-step on instructions” flag. This mechanism allows single-stepping the 
processor on taken branches, interrupts, and exceptions. See Section 16.4.3, 
“Single-Stepping on Branches, Exceptions, and Interrupts,” for more information 
about the BTF flag.

— PBi (performance monitoring/breakpoint pins) flags (bits 5-2) — When 
these flags are set, the performance monitoring/breakpoint pins on the 
processor (BP0#, BP1#, BP2#, and BP3#) report breakpoint matches in the 
corresponding breakpoint-address registers (DR0 through DR3). The processor 

Figure 16-15.  LBR Branch Record Layout for the Intel Core Solo 
and Intel Core Duo Processor
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asserts then deasserts the corresponding BPi# pin when a breakpoint match 
occurs. When a PBi flag is clear, the performance monitoring/breakpoint pins 
report performance events. Processor execution is not affected by reporting 
performance events.

— TR (trace message enable) flag (bit 6) — When set, branch trace messages 
are enabled. When the processor detects a taken branch, interrupt, or exception, 
it sends the branch record out on the system bus as a branch trace message 
(BTM). See Section 16.4.4, “Branch Trace Messages,” for more information about 
the TR flag.

— BTS (branch trace store) flag (bit 7) — When set, enables the BTS facilities 
to log BTMs to a memory-resident BTS buffer that is part of the DS save area. 
See Section 16.4.9, “BTS and DS Save Area.”

— BTINT (branch trace interrupt) flag (bits 8) — When set, the BTS facilities 
generate an interrupt when the BTS buffer is full. When clear, BTMs are logged to 
the BTS buffer in a circular fashion. See Section 16.4.5, “Branch Trace Store 
(BTS),” for a description of this mechanism.

• Debug store (DS) feature flag (bit 21), returned by the CPUID instruction — 
Indicates that the processor provides the debug store (DS) mechanism, which allows 
BTMs to be stored in a memory-resident BTS buffer. See Section 16.4.5, “Branch 
Trace Store (BTS).”

• Last Branch Record (LBR) Stack — The LBR stack consists of 8 MSRs 
(MSR_LASTBRANCH_0 through MSR_LASTBRANCH_7); bits 31-0 hold the ‘from’ 
address, bits 63-32 hold the ‘to’ address. For Pentium M Processors, these pairs are 
located at register addresses 040H-047H. See Figure 16-17..

• Last Branch Record Top-of-Stack (TOS) Pointer — The TOS Pointer MSR 
contains a 3-bit pointer (bits 2-0) to the MSR in the LBR stack that contains the most 
recent branch, interrupt, or exception recorded. For Pentium M Processors, this MSR 
is located at register address 01C9H.

Figure 16-16.  MSR_DEBUGCTLB MSR for Pentium M Processors
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For more detail on these capabilities, see Section 16.7.3, “Last Exception Records,” and 
Appendix B.7, “MSRs In the Pentium M Processor.”

16.10 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING (P6 FAMILY PROCESSORS)

The P6 family processors provide five MSRs for recording the last branch, interrupt, or 
exception taken by the processor: DEBUGCTLMSR, LastBranchToIP, LastBranchFromIP, 
LastExceptionToIP, and LastExceptionFromIP. These registers can be used to collect last 
branch records, to set breakpoints on branches, interrupts, and exceptions, and to 
single-step from one branch to the next.

See Appendix B, “Model-Specific Registers (MSRs),” for a detailed description of each of 
the last branch recording MSRs.

16.10.1 DEBUGCTLMSR Register
The version of the DEBUGCTLMSR register found in the P6 family processors enables last 
branch, interrupt, and exception recording; taken branch breakpoints; the breakpoint 
reporting pins; and trace messages. This register can be written to using the WRMSR 
instruction, when operating at privilege level 0 or when in real-address mode. A 
protected-mode operating system procedure is required to provide user access to this 
register. Figure 16-18. shows the flags in the DEBUGCTLMSR register for the P6 family 
processors. The functions of these flags are as follows:

• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor 
records the source and target addresses (in the LastBranchToIP, LastBranchFromIP, 
LastExceptionToIP, and LastExceptionFromIP MSRs) for the last branch and the last 
exception or interrupt taken by the processor prior to a debug exception being 
generated. The processor clears this flag whenever a debug exception, such as an 
instruction or data breakpoint or single-step trap occurs.

Figure 16-17.  LBR Branch Record Layout for the Pentium M Processor
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• BTF (single-step on branches) flag (bit 1) — When set, the processor treats the 
TF flag in the EFLAGS register as a “single-step on branches” flag. See Section 
16.4.3, “Single-Stepping on Branches, Exceptions, and Interrupts.”

• PBi (performance monitoring/breakpoint pins) flags (bits 2 through 5) — 
When these flags are set, the performance monitoring/breakpoint pins on the 
processor (BP0#, BP1#, BP2#, and BP3#) report breakpoint matches in the corre-
sponding breakpoint-address registers (DR0 through DR3). The processor asserts 
then deasserts the corresponding BPi# pin when a breakpoint match occurs. When a 
PBi flag is clear, the performance monitoring/breakpoint pins report performance 
events. Processor execution is not affected by reporting performance events.

• TR (trace message enable) flag (bit 6) — When set, trace messages are enabled 
as described in Section 16.4.4, “Branch Trace Messages.” Setting this flag greatly 
reduces the performance of the processor. When trace messages are enabled, the 
values stored in the LastBranchToIP, LastBranchFromIP, LastExceptionToIP, and 
LastExceptionFromIP MSRs are undefined.

16.10.2 Last Branch and Last Exception MSRs
The LastBranchToIP and LastBranchFromIP MSRs are 32-bit registers for recording the 
instruction pointers for the last branch, interrupt, or exception that the processor took 
prior to a debug exception being generated. When a branch occurs, the processor loads 
the address of the branch instruction into the LastBranchFromIP MSR and loads the 
target address for the branch into the LastBranchToIP MSR. 

When an interrupt or exception occurs (other than a debug exception), the address of 
the instruction that was interrupted by the exception or interrupt is loaded into the Last-
BranchFromIP MSR and the address of the exception or interrupt handler that is called is 
loaded into the LastBranchToIP MSR.

The LastExceptionToIP and LastExceptionFromIP MSRs (also 32-bit registers) record the 
instruction pointers for the last branch that the processor took prior to an exception or 
interrupt being generated. When an exception or interrupt occurs, the contents of the 
LastBranchToIP and LastBranchFromIP MSRs are copied into these registers before the 
to and from addresses of the exception or interrupt are recorded in the LastBranchToIP 
and LastBranchFromIP MSRs.

These registers can be read using the RDMSR instruction.

Note that the values stored in the LastBranchToIP, LastBranchFromIP, LastExceptionToIP, 
and LastExceptionFromIP MSRs are offsets into the current code segment, as opposed to 

Figure 16-18.  DEBUGCTLMSR Register (P6 Family Processors)
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linear addresses, which are saved in last branch records for the Pentium 4 and Intel Xeon 
processors.

16.10.3 Monitoring Branches, Exceptions, and Interrupts
When the LBR flag in the DEBUGCTLMSR register is set, the processor automatically 
begins recording branches that it takes, exceptions that are generated (except for debug 
exceptions), and interrupts that are serviced. Each time a branch, exception, or interrupt 
occurs, the processor records the to and from instruction pointers in the LastBranchToIP 
and LastBranchFromIP MSRs. In addition, for interrupts and exceptions, the processor 
copies the contents of the LastBranchToIP and LastBranchFromIP MSRs into the LastEx-
ceptionToIP and LastExceptionFromIP MSRs prior to recording the to and from addresses 
of the interrupt or exception.

When the processor generates a debug exception (#DB), it automatically clears the LBR 
flag before executing the exception handler, but does not touch the last branch and last 
exception MSRs. The addresses for the last branch, interrupt, or exception taken are 
thus retained in the LastBranchToIP and LastBranchFromIP MSRs and the addresses of 
the last branch prior to an interrupt or exception are retained in the LastExceptionToIP, 
and LastExceptionFromIP MSRs.

The debugger can use the last branch, interrupt, and/or exception addresses in combi-
nation with code-segment selectors retrieved from the stack to reset breakpoints in the 
breakpoint-address registers (DR0 through DR3), allowing a backward trace from the 
manifestation of a particular bug toward its source. Because the instruction pointers 
recorded in the LastBranchToIP, LastBranchFromIP, LastExceptionToIP, and LastExcep-
tionFromIP MSRs are offsets into a code segment, software must determine the segment 
base address of the code segment associated with the control transfer to calculate the 
linear address to be placed in the breakpoint-address registers. The segment base 
address can be determined by reading the segment selector for the code segment from 
the stack and using it to locate the segment descriptor for the segment in the GDT or 
LDT. The segment base address can then be read from the segment descriptor.

Before resuming program execution from a debug-exception handler, the handler must 
set the LBR flag again to re-enable last branch and last exception/interrupt recording.

16.11 TIME-STAMP COUNTER
The Intel 64 and IA-32 architectures (beginning with the Pentium processor) define a 
time-stamp counter mechanism that can be used to monitor and identify the relative 
time occurrence of processor events. The counter’s architecture includes the following 
components:

• TSC flag — A feature bit that indicates the availability of the time-stamp counter. 
The counter is available in an if the function CPUID.1:EDX.TSC[bit 4] = 1.

• IA32_TIME_STAMP_COUNTER MSR (called TSC MSR in P6 family and Pentium 
processors) — The MSR used as the counter.

• RDTSC instruction — An instruction used to read the time-stamp counter.

• TSD flag — A control register flag is used to enable or disable the time-stamp 
counter (enabled if CR4.TSD[bit 2] = 1).

The time-stamp counter (as implemented in the P6 family, Pentium, Pentium M, Pentium 
4, Intel Xeon, Intel Core Solo and Intel Core Duo processors and later processors) is a 
64-bit counter that is set to 0 following a RESET of the processor. Following a RESET, the 
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counter increments even when the processor is halted by the HLT instruction or the 
external STPCLK# pin. Note that the assertion of the external DPSLP# pin may cause the 
time-stamp counter to stop.

Processor families increment the time-stamp counter differently:

• For Pentium M processors (family [06H], models [09H, 0DH]); for Pentium 4 
processors, Intel Xeon processors (family [0FH], models [00H, 01H, or 02H]); and 
for P6 family processors: the time-stamp counter increments with every internal 
processor clock cycle. 

The internal processor clock cycle is determined by the current core-clock to bus-
clock ratio. Intel® SpeedStep® technology transitions may also impact the 
processor clock.

• For Pentium 4 processors, Intel Xeon processors (family [0FH], models [03H and 
higher]); for Intel Core Solo and Intel Core Duo processors (family [06H], model 
[0EH]); for the Intel Xeon processor 5100 series and Intel Core 2 Duo processors 
(family [06H], model [0FH]); for Intel Core 2 and Intel Xeon processors (family 
[06H], display_model [17H]); for Intel Atom processors (family [06H], 
display_model [1CH]): the time-stamp counter increments at a constant rate. That 
rate may be set by the maximum core-clock to bus-clock ratio of the processor or 
may be set by the maximum resolved frequency at which the processor is booted. 
The maximum resolved frequency may differ from the maximum qualified frequency 
of the processor, see Section 30.10.5 for more detail.

The specific processor configuration determines the behavior. Constant TSC behavior 
ensures that the duration of each clock tick is uniform and supports the use of the 
TSC as a wall clock timer even if the processor core changes frequency. This is the 
architectural behavior moving forward.

NOTE
To determine average processor clock frequency, Intel recommends the 
use of EMON logic to count processor core clocks over the period of time 
for which the average is required. See Section 30.10, “Counting Clocks,” 
and Appendix A, “Performance-Monitoring Events,” for more infor-
mation.

The RDTSC instruction reads the time-stamp counter and is guaranteed to return a 
monotonically increasing unique value whenever executed, except for a 64-bit counter 
wraparound. Intel guarantees that the time-stamp counter will not wraparound within 
10 years after being reset. The period for counter wrap is longer for Pentium 4, Intel 
Xeon, P6 family, and Pentium processors.

Normally, the RDTSC instruction can be executed by programs and procedures running 
at any privilege level and in virtual-8086 mode. The TSD flag allows use of this instruc-
tion to be restricted to programs and procedures running at privilege level 0. A secure 
operating system would set the TSD flag during system initialization to disable user 
access to the time-stamp counter. An operating system that disables user access to the 
time-stamp counter should emulate the instruction through a user-accessible program-
ming interface.

The RDTSC instruction is not serializing or ordered with other instructions. It does not 
necessarily wait until all previous instructions have been executed before reading the 
counter. Similarly, subsequent instructions may begin execution before the RDTSC 
instruction operation is performed.
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The RDMSR and WRMSR instructions read and write the time-stamp counter, treating the 
time-stamp counter as an ordinary MSR (address 10H). In the Pentium 4, Intel Xeon, 
and P6 family processors, all 64-bits of the time-stamp counter are read using RDMSR 
(just as with RDTSC). When WRMSR is used to write the time-stamp counter on proces-
sors before family [0FH], models [03H, 04H]: only the low-order 32-bits of the time-
stamp counter can be written (the high-order 32 bits are cleared to 0). For family [0FH], 
models [03H, 04H, 06H]; for family [06H]], model [0EH, 0FH]; for family [06H]], 
display_model [17H, 1AH, 1CH, 1DH]: all 64 bits are writable.

16.11.1 Invariant TSC
The time stamp counter in newer processors may support an enhancement, referred to 
as invariant TSC. Processor’s support for invariant TSC is indicated by 
CPUID.80000007H:EDX[8]. 

The invariant TSC will run at a constant rate in all ACPI P-, C-. and T-states. This is the 
architectural behavior moving forward. On processors with invariant TSC support, the 
OS may use the TSC for wall clock timer services (instead of ACPI or HPET timers). TSC 
reads are much more efficient and do not incur the overhead associated with a ring tran-
sition or access to a platform resource.

16.11.2 IA32_TSC_AUX Register and RDTSCP Support
Processor based on Intel microarchitecture (Nehalem) provides an auxiliary TSC 
register, IA32_TSC_AUX that is designed to be used in conjunction with IA32_TSC. 
IA32_TSC_AUX provides a 32-bit field that is initialized by privileged software with a 
signature value (for example, a logical processor ID).

The primary usage of IA32_TSC_AUX in conjunction with IA32_TSC is to allow software 
to read the 64-bit time stamp in IA32_TSC and signature value in IA32_TSC_AUX with 
the instruction RDTSCP in an atomic operation. RDTSCP returns the 64-bit time stamp in 
EDX:EAX and the 32-bit TSC_AUX signature value in ECX. The atomicity of RDTSCP 
ensures that no context switch can occur between the reads of the TSC and TSC_AUX 
values.

Support for RDTSCP is indicated by CPUID.80000001H:EDX[27]. As with RDTSC instruc-
tion, non-ring 0 access is controlled by CR4.TSD (Time Stamp Disable flag).

User mode software can use RDTSCP to detect if CPU migration has occurred between 
successive reads of the TSC. It can also be used to adjust for per-CPU differences in TSC 
values in a NUMA system.

12. Updates to Chapter 19, Volume 3A

Change bars show changes to Chapter 19 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

------------------------------------------------------------------------------------------

...
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19.21 CONTROL REGISTERS
The following sections identify the new control registers and control register flags and 
fields that were introduced to the 32-bit IA-32 in various processor families. See 
Figure 2-6 for the location of these flags and fields in the control registers.

The Pentium III processor introduced one new control flag in control register CR4:

• OSXMMEXCPT (bit 10) — The OS will set this bit if it supports unmasked SIMD 
floating-point exceptions.

The Pentium II processor introduced one new control flag in control register CR4:

• OSFXSR (bit 9) — The OS supports saving and restoring the Pentium III processor 
state during context switches.

The Pentium Pro processor introduced three new control flags in control register CR4:

• PAE (bit 5) — Physical address extension. Enables paging mechanism to reference 
extended physical addresses when set; restricts physical addresses to 32 bits when 
clear (see also: Section 19.22.1.1, “Physical Memory Addressing Extension”).

• PGE (bit 7) — Page global enable. Inhibits flushing of frequently-used or shared 
pages on CR3 writes (see also: Section 19.22.1.2, “Global Pages”). 

• PCE (bit 8) — Performance-monitoring counter enable. Enables execution of the 
RDPMC instruction at any protection level.

The content of CR4 is 0H following a hardware reset.

Control register CR4 was introduced in the Pentium processor. This register contains 
flags that enable certain new extensions provided in the Pentium processor:

• VME — Virtual-8086 mode extensions. Enables support for a virtual interrupt flag in 
virtual-8086 mode (see Section 17.3, “Interrupt and Exception Handling in Virtual-
8086 Mode”).

• PVI — Protected-mode virtual interrupts. Enables support for a virtual interrupt flag 
in protected mode (see Section 17.4, “Protected-Mode Virtual Interrupts”).

• TSD — Time-stamp disable. Restricts the execution of the RDTSC instruction to 
procedures running at privileged level 0.

• DE — Debugging extensions. Causes an undefined opcode (#UD) exception to be 
generated when debug registers DR4 and DR5 are references for improved 
performance (see Section 19.23.3, “Debug Registers DR4 and DR5”).

• PSE — Page size extensions. Enables 4-MByte pages with 32-bit paging when set 
(see Section 4.3, “32-Bit Paging”).

• MCE — Machine-check enable. Enables the machine-check exception, allowing 
exception handling for certain hardware error conditions (see Chapter 15, “Machine-
Check Architecture”). 

The Intel486 processor introduced five new flags in control register CR0:

• NE — Numeric error. Enables the normal mechanism for reporting floating-point 
numeric errors.

• WP — Write protect. Write-protects read-only pages against supervisor-mode 
accesses.

• AM — Alignment mask. Controls whether alignment checking is performed. Operates 
in conjunction with the AC (Alignment Check) flag.
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• NW — Not write-through. Enables write-throughs and cache invalidation cycles when 
clear and disables invalidation cycles and write-throughs that hit in the cache when 
set. 

• CD — Cache disable. Enables the internal cache when clear and disables the cache 
when set.

The Intel486 processor introduced two new flags in control register CR3:

• PCD — Page-level cache disable. The state of this flag is driven on the PCD# pin 
during bus cycles that are not paged, such as interrupt acknowledge cycles, when 
paging is enabled.   The PCD# pin is used to control caching in an external cache on 
a cycle-by-cycle basis.

• PWT — Page-level write-through. The state of this flag is driven on the PWT# pin 
during bus cycles that are not paged, such as interrupt acknowledge cycles, when 
paging is enabled. The PWT# pin is used to control write through in an external 
cache on a cycle-by-cycle basis. 

...

13. Updates to Chapter 21, Volume 3B

Change bars show changes to Chapter 21 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

------------------------------------------------------------------------------------------

...

21.1 OVERVIEW
The virtual-machine control data structure (VMCS) is defined for VMX operation. A VMCS 
manages transitions in and out of VMX non-root operation (VM entries and VM exits) as 
well as processor behavior in VMX non-root operation. This structure is manipulated by 
the new instructions VMCLEAR, VMPTRLD, VMREAD, and VMWRITE.

A VMM can use a different VMCS for each virtual machine that it supports. For a virtual 
machine with multiple logical processors (virtual processors), the VMM can use a 
different VMCS for each virtual processor.

Each logical processor associates a region in memory with each VMCS. This region is 
called the VMCS region.1 Software references a specific VMCS by using the 64-bit phys-
ical address of the region; such an address is called a VMCS pointer. VMCS pointers 
must be aligned on a 4-KByte boundary (bits 11:0 must be zero). On processors that 
support Intel 64 architecture, these pointers must not set bits beyond the processor’s 
physical-address width.2 On processors that do not support Intel 64 architecture, they 
must not set any bits in the range 63:32.

A logical processor may maintain a number of VMCSs that are active. At any given time, 
at most one of the active VMCSs is the current VMCS:

1. The amount of memory required for a VMCS region is at most 4 KBytes. The exact size is implemen-
tation specific and can be determined by consulting the VMX capability MSR IA32_VMX_BASIC to 
determine the size of the VMCS region (see Appendix G.1).

2. Software can determine a processor’s physical-address width by executing CPUID with 80000008H 
in EAX. The physical-address width is returned in bits 7:0 of EAX.



Documentation Changes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 139

• Software makes a VMCS active by executing VMPTRLD with the address of the 
VMCS. The processor may optimize VMX operation by maintaining the state of an 
active VMCS in memory, on the processor, or both. Software should not make a 
VMCS active on more than one logical processor (see Section 21.10.1 for how to 
migrate a VMCS from one logical processor to another).

A VMCS remains active until software executes VMCLEAR with the address of the that 
VMCS. A logical processor does not use a VMCS that is not active, nor does it 
maintain the VMCS’s state on the processor.

Software should avoiding executing the VMXOFF instruction while any VMCS is 
active. If VMXOFF is executed while a VMCS is active, the VMCS data in the corre-
sponding VMCS region are undefined. Behavior may be unpredictable if that VMCS is 
subsequently made active again (e.g., on another logical processor).

• Software makes a VMCS current by executing VMPTRLD with the address of the 
VMCS; that address is loaded into the current-VMCS pointer. VMX instructions 
VMLAUNCH, VMPTRST, VMREAD, VMRESUME, and VMWRITE operate on the current 
VMCS. In particular, the VMPTRST instruction stores the current-VMCS pointer into a 
specified memory location (it stores the value FFFFFFFF_FFFFFFFFH if there is no 
current VMCS). A VMCS remains current until either software executes VMPTRLD 
with the address of a different VMCS (which then becomes the current VMCS) or 
software executes VMCLEAR with the address of the current VMCS (after which there 
is no current VMCS).

This document frequently uses the term “the VMCS” to refer to the current VMCS.

...

14. Updates to Chapter 23, Volume 3B

Change bars show changes to Chapter 23 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

------------------------------------------------------------------------------------------

...

23.2.1.3  VM-Entry Control Fields
VM entries perform the following checks on the VM-entry control fields.

• Reserved bits in the VM-entry controls must be set properly. Software may consult 
the VMX capability MSRs to determine the proper settings (see Appendix G.5).

• Fields relevant to VM-entry event injection must be set properly. These fields are the 
VM-entry interruption-information field (see Table 21-12 in Section 21.8.3), the 
VM-entry exception error code, and the VM-entry instruction length. If the valid bit 
(bit 31) in the VM-entry interruption-information field is 1, the following must hold:

— The field’s interruption type (bits 10:8) is not set to a reserved value. Value 1 is 
reserved on all logical processors; value 7 (other event) is reserved on logical 
processors that do not support the 1-setting of the “monitor trap flag” VM-
execution control.

— The field’s vector (bits 7:0) is consistent with the interruption type:

• If the interruption type is non-maskable interrupt (NMI), the vector is 2.

• If the interruption type is hardware exception, the vector is at most 31.
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• If the interruption type is other event, the vector is 0 (pending MTF VM exit).

— The field's deliver-error-code bit (bit 11) is 1 if and only if (1) either (a) the 
"unrestricted guest" VM-execution control is 0; or (b) bit 0 (corresponding to 
CR0.PE) is set in the CR0 field in the guest-state area; (2) the interruption type 
is hardware exception; and (3) the vector indicates an exception that would 
normally deliver an error code (8 = #DF; 10 = TS; 11 = #NP; 12 = #SS; 13 = 
#GP; 14 = #PF; or 17 = #AC).

— Reserved bits in the field (30:12) are 0.

— If the deliver-error-code bit (bit 11) is 1, bits 31:15 of the VM-entry exception 
error-code field are 0.

— If the interruption type is software interrupt, software exception, or privileged 
software exception, the VM-entry instruction-length field is in the range 1–15.

...

23.3.2.2  Loading Guest Segment Registers and Descriptor-Table Registers
For each of CS, SS, DS, ES, FS, GS, TR, and LDTR, fields are loaded from the guest-state 
area as follows:

• The unusable bit is loaded from the access-rights field. This bit can never be set for 
TR (see Section 23.3.1.2). If it is set for one of the other registers, the following 
apply:

— For each of CS, SS, DS, ES, FS, and GS, uses of the segment cause faults 
(general-protection exception or stack-fault exception) outside 64-bit mode, just 
as they would had the segment been loaded using a null selector. This bit does 
not cause accesses to fault in 64-bit mode.

— If this bit is set for LDTR, uses of LDTR cause general-protection exceptions in all 
modes, just as they would had LDTR been loaded using a null selector.

If this bit is clear for any of CS, SS, DS, ES, FS, GS, TR, and LDTR, a null selector
value does not cause a fault (general-protection exception or stack-fault
exception).

• TR. The selector, base, limit, and access-rights fields are loaded.

• CS.

— The following fields are always loaded: selector, base address, limit, and (from 
the access-rights field) the L, D, and G bits.

— For the other fields, the unusable bit of the access-rights field is consulted:

• If the unusable bit is 0, all of the access-rights fields are loaded.

• If the unusable bit is 1, the remainder of CS access rights are undefined after 
VM entry.

• SS, DS, ES, FS, and GS, and LDTR.

— The selector fields are loaded.

— For the other fields, the unusable bit of the corresponding access-rights field is 
consulted:

• If the unusable bit is 0, the base-address, limit, and access-rights fields are 
loaded.
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• If the unusable bit is 1, the base address, the segment limit, and the 
remainder of the access rights are undefined after VM entry. The only 
exceptions are the following:

— Bits 3:0 of the base address for SS are cleared to 0.

— SS.DPL: always loaded from the SS access-rights field. This will be the
current privilege level (CPL) after the VM entry completes.

— SS.B: set to 1.

— The base addresses for FS and GS: always loaded. On processors that
support Intel 64 architecture, the values loaded for base addresses for
FS and GS are also manifest in the FS.base and GS.base MSRs.

— The base address for LDTR on processors that support Intel 64 archi-
tecture: set to an undefined but canonical value.

— Bits 63:32 of the base addresses for SS, DS, and ES on processors that
support Intel 64 architecture: cleared to 0.

GDTR and IDTR are loaded using the base and limit fields.

...

15. Updates to Chapter 24, Volume 3B

Change bars show changes to Chapter 24 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

------------------------------------------------------------------------------------------

...

Table 24-9.  Format of the VM-Exit Instruction-Information Field as Used for LIDT, LGDT, 
SIDT, or SGDT

...

16. Updates to Chapter 30, Volume 3B

Change bars show changes to Chapter 30 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

------------------------------------------------------------------------------------------

...

Bit Position(s) Content

...

11 Operand size:

0: 16-bit
1: 32-bit

Other values not used. Undefined for VM exits from 64-bit mode.

14:12 Undefined.

...
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30.4.1 Fixed-function Performance Counters
Processors based on Intel Core microarchitecture provide three fixed-function perfor-
mance counters. Bits beyond the width of the fixed counter are reserved and must be 
written as zeros. Model-specific fixed-function performance counters on processors that 
support Architectural Perfmon version 1 are 40 bits wide.

Each of the fixed-function counter is dedicated to count a pre-defined performance 
monitoring events. The performance monitoring events associated with fixed-function 
counters and the addresses of these counters are listed in Table 30-8.. 

...

30.6.1.3  Off-core Response Performance Monitoring in the Processor Core
Performance an event using off-core response facility can program any of the four 
IA32_PERFEVTSELx MSR with specific event codes and predefine mask bit value. Each 
event code for off-core response monitoring requires programming an associated config-
uration MSR, MSR_OFFCORE_RSP_0. There is only one off-core response configuration 
MSR. Table 30-14. lists the event code, mask value and additional off-core configuration 
MSR that must be programmed to count off-core response events using IA32_PMCx. 

The layout of MSR_OFFCORE_RSP_0 is shown in Figure 30-16.. Bits 7:0 specifies the 
request type of a transaction request to the uncore. Bits 15:8 specifies the response of 
the uncore subsystem.

Table 30-8.  Association of Fixed-Function Performance Counters with 
Architectural Performance Events

Event Name Fixed-Function PMC PMC Address

INST_RETIRED.ANY MSR_PERF_FIXED_CTR0/
IA32_FIXED_CTR0

309H

CPU_CLK_UNHALTED.CORE MSR_PERF_FIXED_CTR1//
IA32_FIXED_CTR1

30AH

CPU_CLK_UNHALTED.REF MSR_PERF_FIXED_CTR2//
IA32_FIXED_CTR2

30BH

Table 30-14.  Off-Core Response Event Encoding

Event code in 
IA32_PERFEVTSELx

Mask Value in 
IA32_PERFEVTSELx Required Off-core Response MSR

0xB7 0x01 MSR_OFFCORE_RSP_0 (address 0x1A6)
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...

30.7 PERFORMANCE MONITORING FOR PROCESSORS BASED 
ON NEXT GENERATION INTEL® PROCESSOR 
(CODENAMED WESTMERE)

All of the performance monitoring programming interfaces (architectural and non-archi-
tectural core PMU facilities, and uncore PMU) described in Section 30.6 also apply to next 
generation Intel processor, codenamed Westmere. 

Table 30-14. describes a non-architectural performance monitoring event (event code 
0B7H) and associated MSR_OFFCORE_RSP_0 (address 1A6H) in the core PMU. This 
event and a second functionally equivalent offcore response event using event code 
0BBH and MSR_OFFCORE_RSP_1 (address 1A7H) are supported in next generation Intel 
processor, codenamed Westmere. The event code and event mask definitions of Non-
architectural performance monitoring events are listed in Table A-8. 

...

17. Updates to Appendix A, Volume 3B

Change bars show changes to Appendix A of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

------------------------------------------------------------------------------------------

...

Figure 30-16.  Layout of MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 to Configure 
Off-core Response Events

RESPONSE TYPE — NON_DRAM (R/W)
RESPONSE TYPE — LOCAL_DRAM (R/W)
RESPONSE TYPE — REMOTE_DRAM (R/W)
RESPONSE TYPE — REMOTE_CACHE_FWD (R/W)

8 7 0

RESPONSE TYPE — RESERVED

11 312 1

Reserved

63 249 5610131415

RESPONSE TYPE — OTHER_CORE_HITM (R/W)
RESPONSE TYPE — OTHER_CORE_HIT_SNP (R/W)
RESPONSE TYPE — UNCORE_HIT (R/W)
REQUEST TYPE — OTHER (R/W)
REQUEST TYPE — PF_IFETCH (R/W)
REQUEST TYPE — PF_RFO (R/W)
REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — WB (R/W)
REQUEST TYPE — DMND_IFETCH (R/W)
REQUEST TYPE — DMND_RFO (R/W)
REQUEST TYPE — DMND_DATA_RD (R/W)

RESET Value — 0x00000000_00000000
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A.2 PERFORMANCE MONITORING EVENTS FOR  
INTEL® CORE™I7 PROCESSOR FAMILY

Processors based on the Intel microarchitecture (Nehalem) support the architectural and 
non-architectural performance-monitoring events listed in Table A-1 and Table A-2.. 
Table A-2. applies to processors with CPUID signature of DisplayFamily_DisplayModel 
encoding with the following values: 06_1AH, 06_1EH, 06_1FH, and 06_2EH. In addition, 
these processors (CPUID signature of DisplayFamily_DisplayModel 06_1AH) also support 
the following non-architectural, product-specific uncore performance-monitoring events 
listed in Table A-3. Fixed counters support the architecture events defined in Table A-6.

...

Table A-2.  Non-Architectural Performance Events In the Processor Core for Intel Core i7 
Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment

...

0BH 10H MEM_INST_RETIRED.
LATENCY_ABOVE_T
HRESHOLD

Counts the number of instructions 
exceeding the latency specified 
with ld_lat facility.

In conjunction 
with ld_lat 
facility

...

14H 01H ARITH.CYCLES_DIV_
BUSY

Counts the number of cycles the 
divider is busy executing divide or 
square root operations. The divide 
can be integer, X87 or Streaming 
SIMD Extensions (SSE). The square 
root operation can be either X87 or 
SSE. 

Set 'edge =1, invert=1, cmask=1' to 
count the number of divides.

Count may be 
incorrect When 
SMT is on.

14H 02H ARITH.MUL Counts the number of multiply 
operations executed. This includes 
integer as well as floating point 
multiply operations but excludes 
DPPS mul and MPSAD.

Count may be 
incorrect When 
SMT is on

...

20H 01H LSD_OVERFLOW Counts number of loops that can’t 
stream from the instruction queue.

...
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Non-architectural Performance monitoring events that are located in the uncore sub-
system may be product implementation specific between different platforms using 
processors based on Intel microarchitecture (Nehalem). Processors with CPUID signa-
ture of DisplayFamily_DisplayModel 06_1AH, 06_1EH, and 06_1FH support performance 
events listed in Table A-3.

...

A.3 PERFORMANCE MONITORING EVENTS FOR  NEXT 
GENERATION INTEL® PROCESSOR (CODENAMED 
WESTMERE)

Next generation Intel 64 processors (codenamed Westmere) support the architectural 
and non-architectural performance-monitoring events listed in Table A-1 and Table A-4.. 
Table A-4. applies to processors with CPUID signature of DisplayFamily_DisplayModel 

2EH 4FH L3_LAT_CACHE.REFE
RENCE

This event counts requests 
originating from the core that 
reference a cache line in the last 
level cache. The event count 
includes speculative traffic but 
excludes cache line fills due to a L2 
hardware-prefetch. Because cache 
hierarchy, cache sizes and other 
implementation-specific 
characteristics; value comparison to 
estimate performance differences 
is not recommended. 

see Table A-1

2EH 41H L3_LAT_CACHE.MISS This event counts each cache miss 
condition for references to the last 
level cache. The event count may 
include speculative traffic but 
excludes cache line fills due to L2 
hardware-prefetches. Because 
cache hierarchy, cache sizes and 
other implementation-specific 
characteristics; value comparison to 
estimate performance differences 
is not recommended. 

see Table A-1

...

C0H 02H INST_RETIRED.X87 Counts the number of MMX 
instructions retired:.

C0H 04H INST_RETIRED.MMX Counts the number of floating point 
computational operations retired: 
floating point computational 
operations executed by the assist 
handler and sub-operations of 
complex floating point instructions 
like transcendental instructions.

...
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encoding with the following values: 06_25H, 06_2CH. In addition, these processors 
(CPUID signature of DisplayFamily_DisplayModel 06_25H, 06_2CH) also support the 
following non-architectural, product-specific uncore performance-monitoring events 
listed in Table A-3. Fixed counters support the architecture events defined in Table A-6.

Table A-4.  Non-Architectural Performance Events In Next Generation Processor Core 
(Codenamed Westmere)

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment

03H 02H LOAD_BLOCK.OVERL
AP_STORE

Loads that partially overlap an 
earlier store

03H 07H LOAD_BLOCK.ANY Loads that were blocked

04H 07H SB_DRAIN.ANY All Store buffer stall cycles

05H 02H MISALIGN_MEMORY.S
TORE

All store referenced with 
misaligned address

...

08H 04H DTLB_LOAD_MISSES.
WALK_CYCLES

Cycles PMH is busy with a page 
walk due to a load miss in the STLB. 

...

0BH 01H MEM_INST_RETIRED.
LOADS

Counts the number of instructions 
with an architecturally-visible store 
retired on the architected path.

In conjunction 
with ld_lat 
facility

...

0BH 01H MEM_INST_RETIRED.
LOADS

Counts the number of instructions 
with an architecturally-visible store 
retired on the architected path.

In conjunction 
with ld_lat 
facility

0BH 02H MEM_INST_RETIRED.
STORES

Counts the number of instructions 
with an architecturally-visible store 
retired on the architected path.

In conjunction 
with ld_lat 
facility

0BH 10H MEM_INST_RETIRED.
LATENCY_ABOVE_T
HRESHOLD

Counts the number of instructions 
exceeding the latency specified 
with ld_lat facility.

In conjunction 
with ld_lat 
facility

...

0FH 02H MEM_UNCORE_RETI
RED.LOCAL_HITM

Load instructions retired that HIT 
modified data in sibling core 
(Precise Event)

0FH 04H MEM_UNCORE_RETI
RED.REMOTE_HITM

Load instructions retired that HIT 
modified data in other socket 
(Precise Event)

0FH 08H MEM_UNCORE_RETI
RED.LOCAL_DRAM_A
ND_REMOTE_CACHE
_HIT

Load instructions retired local dram 
and remote cache HIT data sources 
(Precise Event)

0FH 20H MEM_UNCORE_RETI
RED.REMOTE_DRAM

Load instructions retired remote 
DRAM and remote home-remote 
cache HITM (Precise Event)
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0FH 80H MEM_UNCORE_RETI
RED.UNCACHEABLE

Load instructions retired I/O 
(Precise Event)

...

13H 01H LOAD_DISPATCH.RS Counts number of loads dispatched 
from the Reservation Station that 
bypass the Memory Order Buffer.

...

14H 01H ARITH.CYCLES_DIV_
BUSY

Counts the number of cycles the 
divider is busy executing divide or 
square root operations. The divide 
can be integer, X87 or Streaming 
SIMD Extensions (SSE). The square 
root operation can be either X87 or 
SSE. 

Set 'edge =1, invert=1, cmask=1' to 
count the number of divides.

Count may be 
incorrect When 
SMT is on

14H 02H ARITH.MUL Counts the number of multiply 
operations executed. This includes 
integer as well as floating point 
multiply operations but excludes 
DPPS mul and MPSAD.

Count may be 
incorrect When 
SMT is on

...

2EH 02H L3_LAT_CACHE.REFE
RENCE

Counts uncore Last Level Cache 
references. Because cache 
hierarchy, cache sizes and other 
implementation-specific 
characteristics; value comparison to 
estimate performance differences 
is not recommended. 

see Table A-1

2EH 01H L3_LAT_CACHE.MISS Counts uncore Last Level Cache 
misses. Because cache hierarchy, 
cache sizes and other 
implementation-specific 
characteristics; value comparison to 
estimate performance differences 
is not recommended. 

see Table A-1

...

49H 04H DTLB_MISSES.WALK_
CYCLES

Counts cycles of page walk due to 
misses in the STLB.

...

4FH 01H EPT.EPDE_HIT Counts hits of Extended PDE cache.

4FH 10H EPT.WALK_CYCLES Counts Extended Page walk cycles.

...

B4H 01H SNOOPQ_REQUESTS.
CODE

Counts the number of snoop code 
requests

B4H 02H SNOOPQ_REQUESTS.
DATA

Counts the number of snoop data 
requests
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...

A.5 PERFORMANCE MONITORING EVENTS FOR 
INTEL® XEON® PROCESSOR 3000, 3200, 5100, 5300 
SERIES AND INTEL® CORE™2 DUO PROCESSORS

Processors based on the Intel Core microarchitecture support architectural and non-
architectural performance-monitoring events. 

Fixed-function performance counters are introduced first on processors based on Intel 
Core microarchitecture. Table A-6 lists pre-defined performance events that can be 
counted using fixed-function performance counters.

B4H 04H SNOOPQ_REQUESTS.
INVALIDATE

Counts the number of snoop 
invalidate requests

B7H 01H OFF_CORE_RESPONS
E_0

see Section 30.6.1.3, “Off-core 
Response Performance Monitoring 
in the Processor Core”

Use MSR 01A6H

...

BBH 01H OFF_CORE_RESPONS
E_1

see Section 30.6.1.3, “Off-core 
Response Performance Monitoring 
in the Processor Core”

Use MSR 01A7H

...

C0H 04H INST_RETIRED.MMX Counts the number of retired: MMX 
instructions.

...

C5H 01H BR_MISP_RETIRED.C
ONDITIONAL

Counts mispredicted conditional 
retired calls. 

...

C5H 01H BR_MISP_RETIRED.C
ONDITIONAL

Counts mispredicted conditional 
retired calls. 

C5H 02H BR_MISP_RETIRED.N
EAR_CALL

Counts mispredicted direct & 
indirect near unconditional retired 
calls. 

C5H 04H BR_MISP_RETIRED.A
LL_BRANCHES

Counts all mispredicted retired calls. 

C7H 01H SSEX_UOPS_RETIRE
D.PACKED_SINGLE

Counts SIMD packed single-
precision floating point Uops 
retired.

...

D1H 01H UOPS_DECODED.STA
LL_CYCLES

Counts the cycles of decoder stalls. 

...
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Table A-6.  Fixed-Function Performance Counter
and Pre-defined Performance Events

18. Updates to Appendix B, Volume 3B

Change bars show changes to Appendix B of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

------------------------------------------------------------------------------------------

...

Table B-1.  CPUID Signature Values of DisplayFamily_DisplayModel

...

Table B-2.  IA-32 Architectural MSRs

Fixed-Function 
Performance 
Counter Address

Event Mask 
Mnemonic Description

MSR_PERF_FIXED_
CTR0

309H Inst_Retired.Any This event counts the number of 
instructions that retire execution. For 
instructions that consist of multiple micro-
ops, this event counts the retirement of 
the last micro-op of the instruction. The 
counter continue counting during 
hardware interrupts, traps, and inside 
interrupt handlers

DisplayFamily_DisplayModel Processor Families/Processor Number Series

...

06_1EH, 06_1FH, 06_2EH Intel Processors based on Intel Microarchitecture (Nehalem)

06_25H, 06_2CH Next Generation Intel Processor (Westmere)

...

Register Address Architectural MSR Name 
and bit fields 

(Former MSR Name) MSR/Bit Description

Introduced as 
Architectural 

MSR
Hex Decimal

...



Documentation Changes

150 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

79H 121 IA32_BIOS_UPDT_TRIG 
(BIOS_UPDT_TRIG)

BIOS Update Trigger (W)

Executing a WRMSR 
instruction to this MSR 
causes a microcode update 
to be loaded into the 
processor. See Section 
9.11.6, “Microcode Update 
Loader.”

A processor may prevent 
writing to this MSR when 
loading guest states on VM 
entries or saving guest 
states on VM exits.

06_01H

...

18AH-
197H

394-
407

Reserved 06_0EH1

...

1b0H 432 IA32_ENERGY_PERF_BIAS Performance Energy Bias 
Hint (R/W)

if 
CPUID.6H:ECX[3] 
= 1

3:0 Power Policy Preference: 

0 indicates preference to 
highest performance.

15 indicates preference to 
maximize energy saving.

63:4 Reserved

...

1F2H 498 IA32_SMRR_PHYSBASE SMRR Base Address. 
(Writeable only in SMM) 

Base address of SMM 
memory range.

06_1AH

7:0 Type. Specifies memory type 
of the range.

11:8 Reserved.

31:12 PhysBase. 

SMRR physical Base 
Address.

63:24 Reserved.

1F3H 499 IA32_SMRR_PHYSMASK SMRR Range Mask. 
(Writeable only in SMM) 

Range Mask of SMM memory 
range.

06_1AH

10:0  Reserved.

11 Valid. 

Enable range mask
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...

Table B-3.  MSRs in Processors Based on Intel Core Microarchitecture

...

Table B-4.  MSRs in Intel Atom Processor Family

31:12 PhysMask. 

SMRR address range mask.

63:24 Reserved.

...

277H 631 IA32_PAT IA32_PAT (R/W) 06_05H

2:0 PA0

7:3 Reserved

...

406H 1030 IA32_MC1_ADDR2 MC1_ADDR P6 Family 
Processors

...
NOTES:

1. The *_ADDR MSRs may or may not be present; this depends on flag settings in IA32_MCi_STATUS. 
See Section 15.3.2.3 and Section 15.3.2.4 for more information.

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

...

79H 121 IA32_BIOS_
UPDT_TRIG

Unique BIOS Update Trigger Register. (W) 

see Table B-2.

...

277H 631 IA32_PAT Unique see Table B-2.

...

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

...

79H 121 IA32_BIOS_
UPDT_TRIG

Unique BIOS Update Trigger Register. (W) 

see Table B-2.

...

277H 631 IA32_PAT Unique see Table B-2.

...
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...

Table B-5.  MSRs in Processors Based on Intel Microarchitecture (Nehalem)

...

Table B-6.  MSRs in the Pentium 4 and Intel Xeon Processors

...

Table B-9.  MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel Xeon 
Processor LV

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

...

79H 121 IA32_BIOS_
UPDT_TRIG

Core BIOS Update Trigger Register. (W) 

see Table B-2.

...

277H 631 IA32_PAT Thread see Table B-2.

...

Register 
Address

Register Name
Fields and Flags

Model 
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

...

79H 121 IA32_BIOS_UPDT_
TRIG

0, 1, 2, 
3, 4, 6

Shared BIOS Update Trigger Register. 
(W) see Table B-2.

...

277H 631 IA32_PAT 0, 1, 2, 
3, 4, 6

Unique Page Attribute Table. 

See Section 11.11.2.2, “Fixed 
Range MTRRs.”

...

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

...

79H 121 IA32_BIOS_
UPDT_TRIG

Unique BIOS Update Trigger Register (W). see Table 
B-2.

...
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