
Document Number: 252046-027

Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Documentation Changes

March 2010

Notice: The Intel® 64 and IA-32 architectures may contain design defects or errors known as errata
that may cause the product to deviate from published specifications. Current characterized errata are
documented in the specification updates.

2 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Legal Lines and DisclaimersINFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,

BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS

PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER,

AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING

LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY

PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or

life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device

drivers and applications enabled for Intel® 64 architecture. Performance will vary depending on your hardware and software

configurations. Consult with your system vendor for more information.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel

reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future

changes to them.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

I2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I2C bus/protocol and was developed

by Intel. Implementations of the I2C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and

North American Philips Corporation.

Intel, Pentium, Intel Core, Intel Xeon, Intel 64, Intel NetBurst, and the Intel logo are trademarks of Intel Corporation in the U.S.
and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2002–2010, Intel Corporation. All rights reserved..

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 3

Contents

Revision History . 4

Preface . 7

Summary Tables of Changes . 8

Documentation Changes. 9

Revision History

4 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Revision History

Revision Description Date

-001 • Initial release November 2002

-002
• Added 1-10 Documentation Changes.
• Removed old Documentation Changes items that already have been

incorporated in the published Software Developer’s manual
December 2002

-003

• Added 9 -17 Documentation Changes.
• Removed Documentation Change #6 - References to bits Gen and Len

Deleted.
• Removed Documentation Change #4 - VIF Information Added to CLI

Discussion

February 2003

-004
• Removed Documentation changes 1-17.
• Added Documentation changes 1-24. June 2003

-005
• Removed Documentation Changes 1-24.
• Added Documentation Changes 1-15.

September 2003

-006 • Added Documentation Changes 16- 34. November 2003

-007
• Updated Documentation changes 14, 16, 17, and 28.
• Added Documentation Changes 35-45.

January 2004

-008
• Removed Documentation Changes 1-45.
• Added Documentation Changes 1-5.

March 2004

-009 • Added Documentation Changes 7-27. May 2004

-010
• Removed Documentation Changes 1-27.
• Added Documentation Changes 1.

August 2004

-011 • Added Documentation Changes 2-28. November 2004

-012
• Removed Documentation Changes 1-28.
• Added Documentation Changes 1-16.

March 2005

-013
• Updated title.
• There are no Documentation Changes for this revision of the

document.
July 2005

-014 • Added Documentation Changes 1-21. September 2005

-015
• Removed Documentation Changes 1-21.
• Added Documentation Changes 1-20.

March 9, 2006

-016 • Added Documentation changes 21-23. March 27, 2006

-017
• Removed Documentation Changes 1-23.
• Added Documentation Changes 1-36.

September 2006

-018 • Added Documentation Changes 37-42. October 2006

-019
• Removed Documentation Changes 1-42.
• Added Documentation Changes 1-19.

March 2007

-020 • Added Documentation Changes 20-27. May 2007

-021
• Removed Documentation Changes 1-27.
• Added Documentation Changes 1-6

November 2007

-022
• Removed Documentation Changes 1-6
• Added Documentation Changes 1-6

August 2008

-023
• Removed Documentation Changes 1-6
• Added Documentation Changes 1-21

March 2009

Revision History

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 5

§

-024
• Removed Documentation Changes 1-21
• Added Documentation Changes 1-16

June 2009

-025
• Removed Documentation Changes 1-16
• Added Documentation Changes 1-18

September 2009

-026
• Removed Documentation Changes 1-18
• Added Documentation Changes 1-15

December 2009

-027
• Removed Documentation Changes 1-15
• Added Documentation Changes 1-24

March 2010

Revision Description Date

Revision History

6 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 7

Preface

Preface

This document is an update to the specifications contained in the Affected Documents
table below. This document is a compilation of device and documentation errata,
specification clarifications and changes. It is intended for hardware system
manufacturers and software developers of applications, operating systems, or tools.

Affected Documents

Nomenclature

Documentation Changes include typos, errors, or omissions from the current
published specifications. These will be incorporated in any new release of the
specification.

Document Title
Document

Number/Location

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
1: Basic Architecture

253665

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2A: Instruction Set Reference, A-M

253666

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2B: Instruction Set Reference, N-Z

253667

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3A: System Programming Guide, Part 1

253668

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3B: System Programming Guide, Part 2

253669

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 8

Summary Tables of Changes

Summary Tables of Changes

The following table indicates documentation changes which apply to the Intel® 64 and
IA-32 architectures. This table uses the following notations:

Codes Used in Summary Tables

Change bar to left of table row indicates this erratum is either new or modified from the
previous version of the document.

Documentation Changes
No. DOCUMENTATION CHANGES

1 Updates to Chapter 2, Volume 1

2 Updates to Chapter 12, Volume 1

3 Updates to Appendix A, Volume 1

4 Updates to Chapter 3, Volume 2A

5 Updates to Chapter 4, Volume 2B

6 Updates to Chapter 5, Volume 2B

7 Updates to Appendix A, Volume 2B

8 Updates to Appendix B, Volume 2B

9 Updates to Appendix C, Volume 2B

10 Updates to Chapter 2, Volume 3A

11 Updates to Chapter 4, Volume 3A

12 Updates to Chapter 6, Volume 3A

13 Updates to Chapter 10, Volume 3A

14 Updates to Chapter 11, Volume 3A

15 Updates to Chapter 22, Volume 3B

16 Updates to Chapter 23, Volume 3B

17 Updates to Chapter 24, Volume 3B

18 Updates to Chapter 25, Volume 3B

19 Updates to Chapter 26, Volume 3B

20 Updates to Chapter 27, Volume 3B

21 Updates to Chapter 30, Volume 3B

22 Updates to Appendix A, Volume 3B

23 Updates to Appendix B, Volume 3B

24 Updates to Appendix E, Volume 3B

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

Documentation Changes

Documentation Changes

1. Updates to Chapter 2, Volume 1

Change bars show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1: Basic Architecture.

--

...

2.1.15 The Intel® Core™i7 Processor Family (2008-Current)
The Intel Core i7 processor 900 series support Intel 64 architecture; they are based on
Intel microarchitecture codename Nehalem using 45 nm process technology. The Intel
Core i7 processor and Intel Xeon processor 5500 series include the following innovative
features:

• Intel® Turbo Boost Technology converts thermal headroom into higher performance.

• Intel® HyperThreading Technology in conjunction with Quadcore to provide four
cores and eight threads.

• Dedicated power control unit to reduce active and idle power consumption.

• Integrated memory controller on the processor supporting three channel of DDR3
memory.

• 8 MB inclusive Intel® Smart Cache.

• Intel® QuickPath interconnect (QPI) providing point-to-point link to chipset.

• Support for SSE4.2 and SSE4.1 instruction sets.

• Second generation Intel Virtualization Technology.

2.1.16 The Intel® Xeon® Processor 7500 Series (2010)
The Intel Xeon processor 7500 and 6500 series are based on Intel microarchitecture
codename Nehalem using 45 nm process technology. They support the same features
described in Section 2.1.15, plus the following innovative features:

• Up to eight cores per physical processor package.

• Up to 24 MB inclusive Intel® Smart Cache.

• Provides Intel® Scalable Memory Interconnect (Intel® SMI) channels with Intel®
7500 Scalable Memory Buffer to connect to system memory.

• Advanced RAS supporting software recoverable machine check architecture.

2.1.17 2010 Intel® Core™ Processor Family (2010)
2010 Intel Core processor family spans Intel Core i7, i5 and i3 processors. They are
based on Intel microarchitecture (Westmere) using 32 nm process technology. They
provide the following innovative features:

• Deliver smart performance using Intel Hyper-Threading Technology plus Intel Turbo
Boost Technology.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 10

Documentation Changes

• Enhanced Intel Smart Cache and integrated memory controller.

• Intelligent power gating.

• Repartitioned platform with on-die integration of 45nm integrated graphics.

• Support for AESNI, PCLMULQDQ, SSE4.2 and SSE4.1 instruction sets.

2.1.18 The Intel® Xeon® Processor 5600 Series (2010)
The Intel Xeon processor 5600 series are based on Intel microarchitecture (Westmere)
using 32 nm process technology. They support the same features described in Section
2.1.15, plus the following innovative features:

• Up to six cores per physical processor package.

• Up to 12 MB enhanced Intel® Smart Cache.

• Support for AESNI, PCLMULQDQ, SSE4.2 and SSE4.1 instruction sets.

• Flexible Intel Virtualization Technologies across processor and I/O.

...

Table 2-2 Key Features of Most Recent Intel 64 Processors

...

Intel
Processor

Date
Intro-
duced

Micro-
architec-ture

Top-Bin
Fre-
quency
at Intro-
duction

Tran-
sistor
s

Register
Sizes

System
Bus/
QPI
Link
Speed

Max.
Extern
. Addr.
Space

On-Die
Caches

...

Intel Core i7-965
Processor
Extreme Edition

2008 Intel microarchitecture
codename Nehalem;
Quadcore;
HyperThreading
Technology; Intel QPI;
Intel 64 Architecture;
Intel Virtualization
Technology.

3.20 GHz 731 M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

QPI: 6.4
GT/s;
Memory: 25
GB/s

64 GB L1: 64 KB
L2: 256KB
L3: 8MB

Intel Core i7-
620M
Processor

2010 Intel Turbo Boost
Technology, Intel
microarchitecture
(Westmere);
Dualcore;
HyperThreading
Technology; Intel 64
Architecture;
Intel Virtualization
Technology.,
Integrated graphics

2.66 GHz 383 M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

64 GB L1: 64 KB
L2: 256KB
L3: 4MB

Intel Xeon-
Processor 7560

2010 Intel Turbo Boost
Technology, Intel
microarchitecture
codename Nehalem;
Eight core;
HyperThreading
Technology; Intel 64
Architecture;
Intel Virtualization
Technology.

2.26 GHz 2.3B GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

QPI: 6.4
GT/s;
Memory: 50
GB/s

16 TB L1: 64 KB
L2: 256KB
L3: 24MB

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 11

. Programming with SSE3, SSSE3, SSE4 and AESNI

2. Updates to Chapter 12, Volume 1

Change bars show changes to Chapter 12 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1: Basic Architecture.

--

CHAPTER 12.
PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI

The Pentium 4 processor supporting Hyper-Threading Technology (HT Technology) intro-
duces Streaming SIMD Extensions 3 (SSE3). The Intel Xeon processor 5100 series, Intel
Core 2 processor families introduced Supplemental Streaming SIMD Extensions 3
(SSSE3). SSE4 are introduced in Intel processor generations built from 45nm process
technology. This chapter describes SSE3, SSSE3, SSE4, and provides information to
assist in writing application programs that use these extensions.

AESNI and PCLMLQDQ are instruction extensions targeted to accelerate high-speed
block encryption and cryptographic processing. Section 12.13 covers these instructions
and their relationship to the Advanced Encryption Standard (AES).

...

12.13 AESNI OVERVIEW
The AESNI extension provides six instructions to accelerate symmetric block encryption/
decryption of 128-bit data blocks using the Advanced Encryption Standard (AES) speci-
fied by the NIST publication FIPS 197. Specifically, two instructions (AESENC, AESEN-
CLAST) target the AES encryption rounds, two instructions (AESDEC, AESDECLAST)
target AES decryption rounds using the Equivalent Inverse Cipher. One instruction
(AESIMC) targets the Inverse MixColumn transformation primitive and one instruction
(AESKEYGEN) targets generation of round keys from the cipher key for the AES encryp-
tion/decryption rounds.

AES supports encryption/decryption using cipher key lengths of 128, 192, and 256 bits
by processing the data block in 10, 12, 14 rounds of predefined transformations.
Figure Figure 12-5 depicts the cryptographic processing of a block of 128-bit plain text
into cipher text.

Figure 12-5 AES State Flow

Plain text AES State

RK(0)

XOR Rounds 2.. n-2

Round 1 Last

RK(1) RK(n-1)

AES State AES State Cipher text

AES-128: n = 10
AES-192: n = 12
AES-256: n = 14

Round
n-1

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 12

. Programming with SSE3, SSSE3, SSE4 and AESNI

The predefined AES transformation primitives are described in the next few sections,
they are also referenced in the operation flow of instruction reference page of these
instructions.

12.13.1 Little-Endian Architecture and Big-Endian Specification (FIPS
197)

FIPS 197 document defines the Advanced Encryption Standard (AES) and includes a set
of test vectors for testing all of the steps in the algorithm, and can be used for testing
and debugging.

The following observation is important for using the AES instructions offered in Intel 64
Architecture: FIPS 197 text convention is to write hex strings with the low-memory byte
on the left and the high-memory byte on the right. Intel’s convention is the reverse. It is
similar to the difference between Big Endian and Little Endian notations.

In other words, a 128 bits vector in the FIPS document, when read from left to right, is
encoded as [7:0, 15:8, 23:16, 31:24, …127:120]. Note that inside the byte, the
encoding is [7:0], so the first bit from the left is the most significant bit. In practice, the
test vectors are written in hexadecimal notation, where pairs of hexadecimal digits
define the different bytes. To translate the FIPS 197 notation to an Intel 64 architecture
compatible (“Little Endian”) format, each test vector needs to be byte-reflected to
[127:120,… 31:24, 23:16, 15:8, 7:0].

Example A:

FIPS Test vector: 0x000102030405060708090a0b0c0d0e0f

Intel AES Hardware: 0x0f0e0d0c0b0a09080706050403020100

It should be pointed out that the only thing at issue is a textual convention, and
programmers do not need to perform byte-reversal in their code, when using the AES
instructions.

12.13.1.1 AES Data Structure in Intel 64 Architecture
he AES instructions that are defined in this document operate on one or on two 128 bits
source operands: State and Round Key. From the architectural point of view, the state is
input in an xmm register and the Round key is input either in an xmm register or a 128-
bit memory location.

In AES algorithm, the state (128 bits) can be viewed as 4 32-bit doublewords (“Word”s
in AES terminology): X3, X2, X1, X0.

The state may also be viewed as a set of 16 bytes. The 16 bytes can also be viewed as a
4x4 matrix of bytes where S(i, j) with i, j = 0, 1, 2, 3 compose the 32-bit “word”s as
follows:

X0 = S (3, 0) S (2, 0) S (1, 0) S (0, 0)

X1 = S (3, 1) S (2, 1) S (1, 1) S (0, 1)

X2 = S (3, 2) S (2, 2) S (1, 2) S (0, 2)

X3 = S (3, 3) S (2, 3) S (1, 3) S (0, 3)

The following tables, Table Table 12-8 through Table Table 12-11, illustrate various
representations of a 128-bit state.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 13

. Programming with SSE3, SSSE3, SSE4 and AESNI

Example:

FIPS vector: d4 bf 5d 30 e0 b4 52 ae b8 41 11 f1 1e 27 98 e5

This vector has the “least significant” byte d4 and the significant byte e5 (written in Big
Endian format in the FIPS document). When it is translated to IA notations, the encoding
is:

12.13.2 AES Transformations and Functions
The following functions and transformations are used in the algorithmic descriptions of
AES instruction extensions AESDEC, AESDECLAST, AESENC, AESENCLAST, AESIMC,
AESKEYGENASSIST.

Note that these transformations are expressed here in a Little Endian format (and not as
in the FIPS 197 document).

• MixColumns(): A byte-oriented 4x4 matrix transformation on the matrix represen-
tation of a 128-bit AES state. A FIPS-197 defined 4x4 matrix is multiplied to each 4x1

Table 12-8 Byte and 32-bit Word Representation of a 128-bit State

Byte # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit
Position

127
-
120

119
-
112

111
-
103

103
-
96

95
-88

87
-80

79
-72

71
-64

63
-56

55
-48

47
-40

39
-32

31
-24

23
-16

15
-8

7 -
0

127 - 96 95 - 64 64 - 32 31 - 0

State Word X3 X2 X1 X0

State Byte P O N M L K J I H G F E D C B A

Table 12-9 Matrix Representation of a 128-bit State

A E I M S(0, 0) S(0, 1) S(0, 2) S(0, 3)

B F J N S(1, 0) S(1, 1) S(1, 2) S(1, 3)

C G K O S(2, 0) S(2, 1) S(2, 2) S(2, 3)

D H L P S(3, 0) S(3, 1) S(3, 2) S(3, 3)

Table 12-10 Little Endian Representation of a 128-bit State

Byte # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

State Byte P O N M L K J I H G F E D C B A

State Value e5 98 27 1e f1 11 41 b8 ae 52 b4 e0 30 5d bf d4

Table 12-11 Little Endian Representation of a 4x4 Byte Matrix

A E I M d4 e0 b8 1e

B F J N bf b4 41 27

C G K O 5d 52 11 98

D H L P 30 ae f1 e5

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 14

. Programming with SSE3, SSSE3, SSE4 and AESNI

column vector of the AES state. The columns are considered polynomials with coeffi-
cients in the Finite Field that is used in the definition of FIPS 197, the operations
(“multiplication” and “addition”) are in that Finite Field, and the polynomials are
reduced modulo x4+1.

The MixColumns() transformation defines the relationship between each byte of the
result state, represented as S’(i, j) of a 4x4 matrix (see Section 12.13.1), as a
function of input state bytes, S(i, j), as follows

S’(0, j) FF_MUL(02H, S(0, j)) XOR FF_MUL(03H, S(1, j)) XOR S(2, j) XOR S(3,
j)

S’(1, j) S(0, j) XOR FF_MUL(02H, S(1, j)) XOR FF_MUL(03H, S(2, j)) XOR S(3,
j)

S’(2, j) S(0, j) XOR S(1, j) XOR FF_MUL(02H, S(2, j)) XOR FF_MUL(03H, S(3, j)
)

S’(3, j) FF_MUL(03H, S(0, j)) XOR S(1, j) XOR S(2, j) XOR FF_MUL(02H, S(3, j)
)

where j = 0, 1, 2, 3. FF_MUL(Byte1, Byte2) denotes the result of multiplying two
elements (represented by Byte1 and byte2) in the Finite Field representation that
defines AES. The result of produced bye FF_MUL(Byte1, Byte2) is an element in the
Finite Field (represented as a byte). A Finite Field is a field with a finite number of
elements, and when this number can be represented as a power of 2 (2n), its
elements can be represented as the set of 2n binary strings of length n. AES uses a
finite field with n=8 (having 256 elements). With this representation, “addition” of
two elements in that field is a bit-wise XOR of their binary-string representation,
producing another element in the field. Multiplication of two elements in that field is
defined using an irreducible polynomial (for AES, this polynomial is m(x) = x8 + x4

+ x3 + x + 1). In this Finite Field representation, the bit value of bit position k of a
byte represents the coefficient of a polynomial of order k, e.g., 1010_1101B (ADH)
is represented by the polynomial (x7 + x5 + x3 + x2 + 1). The byte value result of
multiplication of two elements is obtained by a carry-less multiplication of the two
corresponding polynomials, followed by reduction modulo the polynomial, where
the remainder is calculated using operations defined in the field. For example,
FF_MUL(57H, 83H) = C1H, because the carry-less polynomial multiplication of the
polynomials represented by 57H and 83H produces (x13 + x11 + x9 + x8 + x6 + x5

+ x4 + x3 + 1), and the remainder modulo m(x) is (x7 + x6 + 1).

• RotWord(): performs a byte-wise cyclic permutation (rotate right in little-endian byte
order) on a 32-bit AES word.

The output word X’[j] of RotWord(X[j]) where X[j] represent the four bytes of
column j, S(i, j), in descending order X[j] = (S(3, j), S(2, j), S(1, j), S(0, j)); X’[j]
= (S’(3, j), S’(2, j), S’(1, j), S’(0, j)) (S(0, j), S(3, j), S(2, j), S(1, j))

• ShiftRows(): A byte-oriented matrix transformation that processes the matrix repre-
sentation of a 16-byte AES state by cyclically shifting the last three rows of the state
by different offset to the left, see Table 12-12.

Table 12-12 The ShiftRows Transformation

Matrix Representation of Input State Output of ShiftRows

A E I M A E I M

B F J N F J N B

C G K O K O C G

D H L P P D H L

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 15

. Programming with SSE3, SSSE3, SSE4 and AESNI

• SubBytes(): A byte-oriented transformation that processes the 128-bit AES state by
applying a non-linear substitution table (S-BOX) on each byte of the state.

The SubBytes() function defines the relationship between each byte of the result
state S’(i, j) as a function of input state byte S(i, j), by

S’(i, j) S-Box (S(i, j)[7:4], S(i, j)[3:0])

where S-BOX(S[7:4], S[3:0]) represents a look-up operation on a 16x16 table to
return a byte value, see Table 12-13.

• SubWord(): produces an output AES word (four bytes) from the four bytes of an
input word using a non-linear substitution table (S-BOX).

X’[j] = (S’(3, j), S’(2, j), S’(1, j), S’(0, j)) (S-Box (S(3, j)), S-Box(S(2, j)), S-
Box(S(1, j)), S-Box(S(0, j)))

• InvMixColumns(): The inverse transformation of MixColumns().

The InvMixColumns() transformation defines the relationship between each byte of
the result state S’(i, j) as a function of input state bytes, S(i, j), by

S’(0, j) FF_MUL(0eH, S(0, j)) XOR FF_MUL(0bH, S(1, j)) XOR FF_MUL(0dH,
S(2, j)) XOR FF_MUL(09H, S(3, j))

S’(1, j) FF_MUL(09H, S(0, j)) XOR FF_MUL(0eH, S(1, j)) XOR FF_MUL(0bH,
S(2, j)) XOR FF_MUL(0dH, S(3, j))

S’(2, j) FF_MUL(0dH, S(0, j)) XOR FF_MUL(09H, S(1, j)) XOR FF_MUL(0eH,
S(2, j)) XOR FF_MUL(0bH, S(3, j))

Table 12-13 Look-up Table Associated with S-Box Transformation

S[3:0]

0 1 2 3 4 5 6 7 8 9 a b c d e f

S[7:4]

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15

3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84

5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf

6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2

8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db

a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79

b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08

c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a

d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e

e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 16

. Programming with SSE3, SSSE3, SSE4 and AESNI

S’(3, j) FF_MUL(0bH, S(0, j)) XOR FF_MUL(0dH, S(1, j)) XOR FF_MUL(09H,
S(2, j)) XOR FF_MUL(0eH, S(3, j)), where j = 0, 1, 2, 3.

• InvShiftRows(): The inverse transformation of InvShiftRows(). The InvShiftRows()
transforms the matrix representation of a 16-byte AES state by cyclically shifting the
last three rows of the state by different offset to the right, see Table 12-14.

• InvSubBytes(): The inverse transformation of SubBytes().

The InvSubBytes() transformation defines the relationship between each byte of
the result state S’(i, j) as a function of input state byte S(i, j), by

S’(i, j) InvS-Box (S(i, j)[7:4], S(i, j)[3:0])

where InvS-BOX(S[7:4], S[3:0]) represents a look-up operation on a 16x16 table to
return a byte value, see Table 12-15.

Table 12-14 The InvShiftRows Transformation

Matrix Representation of Input State Output of ShiftRows

A E I M A E I M

B F J N N B F J

C G K O K O C G

D H L P H L P D

Table 12-15 Look-up Table Associated with InvS-Box Transformation

S[3:0]

0 1 2 3 4 5 6 7 8 9 a b c d e f

S[7:4]

0 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb

1 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb

2 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e

3 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25

4 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92

5 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84

6 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06

7 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b

8 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73

9 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e

a 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b

b fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4

c 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f

d 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef

e a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61

f 17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 17

. Programming with SSE3, SSSE3, SSE4 and AESNI

12.13.3 PCLMULQDQ
The PCLMULQDQ instruction performs carry-less multiplication of two 64-bit data into a
128-bit result. Carry-less multiplication of two 128-bit data into a 256-bit result can use
PCLMULQDQ as building blocks.

Carry-less multiplication is a component of many cryptographic systems. It is an impor-
tant piece of implementing Galois Counter Mode (GCM) operation of block ciphers. GCM
operation can be used in conjunction with AES algorithms to add authentication capa-
bility. GCM usage models also include IPsec, storage standard, and security protocols
over fiber channel. Additionally, PCLMULQDQ can be used in calculations of hash func-
tions and CRC using arbitrary polynomials.

12.13.4 Checking for AESNI Support
Before an application attempts to use AESNI instructions or PCLMULQDQ, the application
should follow the steps illustrated in Section 11.6.2, “Checking for SSE/SSE2 Support.”
Next, use the additional step provided below:

Check that the processor supports AESNI (if CPUID.01H:ECX.AESNI[bit 25] = 1); Check
that the processor supports PCLMULQDQ (if CPUID.01H:ECX.PCLMULQDQ[bit 1] = 1)

...

3. Updates to Appendix A, Volume 1

Change bars show changes to Appendix A of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1: Basic Architecture.

...

Table A-2 EFLAGS Cross-Reference

...

Instruction OF SF ZF AF PF CF TF IF DF NT RF

...

BT/BTS/BTR/BTC — — — — M

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 18

Instruction Set Reference, A-M

4. Updates to Chapter 3, Volume 2A

Change bars show changes to Chapter 3 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A: Instruction Set Reference, A-M.

--

CHAPTER 3
INSTRUCTION SET REFERENCE, A-M

This chapter describes the instruction set for the Intel 64 and IA-32 architectures (A-M)
in IA-32e, protected, Virtual-8086, and real modes of operation. The set includes
general-purpose, x87 FPU, MMX, SSE/SSE2/SSE3/SSSE3/SSE4, AESNI/PCLMULQDQ,
and system instructions. See also Chapter 4, “Instruction Set Reference, N-Z,” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B.

...

AESDEC—Perform One Round of an AES Decryption Flow

Instruction Operand Encoding

Description

This instruction performs a single round of the AES decryption flow using the Equivalent
Inverse Cipher, with the round key from the second source operand, operating on a 128-
bit data (state) from the first source operand, and store the result in the destination
operand.

Use the AESDEC instruction for all but the last decryption round. For the last decryption
round, use the AESDECCLAST instruction.

The first source operand and the destination operand are the same and must be an XMM
register. The second source operand can be an XMM register or a 128-bit memory loca-
tion.

Operation
AESDEC
STATE ← SRC1;
RoundKey ← SRC2;

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

66 0F 38 DE /r AESDEC xmm1,
xmm2/m128

A Valid Valid Perform one round of an
AES decryption flow, using
the Equivalent Inverse
Cipher, operating on a 128-
bit data (state) from xmm1
with a 128-bit round key
from xmm2/m128.

Op/En Operand 1 Operand2 Operand3 Operand4

A ModRM:reg (r, w) ModRM:r/m (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 19

Instruction Set Reference, A-M

STATE ← InvShiftRows(STATE);
STATE ← InvSubBytes(STATE);
STATE ← InvMixColumns(STATE);
DEST[127:0] ← STATE XOR RoundKey;
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

AESDEC __m128i _mm_aesdec (__m128i, __m128i)

SIMD Floating-Point Exceptions

None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES,

FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary, regard-
less of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.AESNI[bit 25] = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary, regard-

less of segment.

If any part of the operand lies outside the effective address space
from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.AESNI[bit 25] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 20

Instruction Set Reference, A-M

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canon-

ical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regard-
less of segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.AESNI[bit 25] = 0.

If the LOCK prefix is used.

AESDECLAST—Perform Last Round of an AES Decryption Flow

Instruction Operand Encoding

Description

This instruction performs the last round of the AES decryption flow using the Equivalent
Inverse Cipher, with the round key from the second source operand, operating on a 128-
bit data (state) from the first source operand, and store the result in the destination
operand.

The first source operand and the destination operand are the same and must be an XMM
register. The second source operand can be an XMM register or a 128-bit memory loca-
tion.

Operation
AESDECLAST
STATE ← SRC1;
RoundKey ← SRC2;
STATE ← InvShiftRows(STATE);
STATE ← InvSubBytes(STATE);
DEST[127:0] ← STATE XOR RoundKey;
DEST[255:128] (Unmodified)

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

66 0F 38 DF /r AESDECLAST
xmm1,
xmm2/m128

A Valid Valid Perform the last round of an
AES decryption flow, using
the Equivalent Inverse
Cipher, operating on a 128-
bit data (state) from xmm1
with a 128-bit round key
from xmm2/m128.

Op/En Operand 1 Operand2 Operand3 Operand4

A ModRM:reg (r, w) ModRM:r/m (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 21

Instruction Set Reference, A-M

Intel C/C++ Compiler Intrinsic Equivalent

AESDECLAST __m128i _mm_aesdeclast (__m128i, __m128i)

SIMD Floating-Point Exceptions

None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES,

FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary, regard-
less of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.AESNI[bit 25] = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary, regard-

less of segment.

If any part of the operand lies outside the effective address space
from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.AESNI[bit 25] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canon-

ical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regard-
less of segment.

#PF(fault-code) For a page fault.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 22

Instruction Set Reference, A-M

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.AESNI[bit 25] = 0.

If the LOCK prefix is used.

AESENC—Perform One Round of an AES Encryption Flow

Instruction Operand Encoding

Description

This instruction performs a single round of an AES encryption flow using a round key
from the second source operand, operating on 128-bit data (state) from the first source
operand, and store the result in the destination operand.

Use the AESENC instruction for all but the last encryption rounds. For the last encryption
round, use the AESENCCLAST instruction.

The first source operand and the destination operand are the same and must be an XMM
register. The second source operand can be an XMM register or a 128-bit memory loca-
tion.

Operation
AESENC
STATE ← SRC1;
RoundKey ← SRC2;
STATE ← ShiftRows(STATE);
STATE ← SubBytes(STATE);
STATE ← MixColumns(STATE);
DEST[127:0] ← STATE XOR RoundKey;
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

AESENC __m128i _mm_aesenc (__m128i, __m128i)

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

66 0F 38 DC /r AESENC xmm1,
xmm2/m128

A Valid Valid Perform one round of an
AES encryption flow, operat-
ing on a 128-bit data (state)
from xmm1 with a 128-bit
round key from
xmm2/m128.

Op/En Operand 1 Operand2 Operand3 Operand4

A ModRM:reg (r, w) ModRM:r/m (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 23

Instruction Set Reference, A-M

SIMD Floating-Point Exceptions

None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES,

FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary, regard-
less of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.AESNI[bit 25] = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary, regard-

less of segment.

If any part of the operand lies outside the effective address space
from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.AESNI[bit 25] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canon-

ical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regard-
less of segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.AESNI[bit 25] = 0.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 24

Instruction Set Reference, A-M

If the LOCK prefix is used.

AESENCLAST—Perform Last Round of an AES Encryption Flow

Instruction Operand Encoding

Description

This instruction performs the last round of an AES encryption flow using a round key
from the second source operand, operating on 128-bit data (state) from the first source
operand, and store the result in the destination operand.

The first source operand and the destination operand are the same and must be an XMM
register. The second source operand can be an XMM register or a 128-bit memory loca-
tion.

Operation
AESENCLAST
STATE ← SRC1;
RoundKey ← SRC2;
STATE ← ShiftRows(STATE);
STATE ← SubBytes(STATE);
DEST[127:0] ← STATE XOR RoundKey;
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

AESENCLAST __m128i _mm_aesenclast (__m128i, __m128i)

SIMD Floating-Point Exceptions

None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES,

FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary, regard-
less of segment.

#SS(0) For an illegal address in the SS segment.

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

66 0F 38 DD /r AESENCLAST
xmm1,
xmm2/m128

A Valid Valid Perform the last round of an
AES encryption flow, operat-
ing on a 128-bit data (state)
from xmm1 with a 128-bit
round key from
xmm2/m128.

Op/En Operand 1 Operand2 Operand3 Operand4

A ModRM:reg (r, w) ModRM:r/m (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 25

Instruction Set Reference, A-M

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.AESNI[bit 25] = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary, regard-

less of segment.

If any part of the operand lies outside the effective address space
from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.AESNI[bit 25] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canon-

ical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regard-
less of segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.AESNI[bit 25] = 0.

If the LOCK prefix is used.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 26

Instruction Set Reference, A-M

AESIMC- Perform the AES InvMixColumn Transformation

Instruction Operand Encoding

Description

Perform the InvMixColumns transformation on the source operand and store the result in
the destination operand. The destination operand is an XMM register. The source
operand can be an XMM register or a 128-bit memory location.

Note the AESIMC instruction should be applied to the expanded AES round keys (except
for the first and last round key) in order to prepare them for decryption using the “Equiv-
alent Inverse Cipher” (defined in FIPS 197).

Operation
DEST[127:0] ← InvMixColumns(SRC);
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

AESIMC __m128i _mm_aesimc (__m128i)

SIMD Floating-Point Exceptions

None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES,

FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary, regard-
less of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.AESNI[bit 25] = 0.

If the LOCK prefix is used.

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

66 0F 38 DB /r AESIMC xmm1,
xmm2/m128

A Valid Valid Perform the InvMixColumn
transformation on a 128-bit
round key from
xmm2/m128 and store the
result in xmm1.

Op/En Operand 1 Operand2 Operand3 Operand4

A ModRM:reg (w) ModRM:r/m (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

Instruction Set Reference, A-M

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary, regard-

less of segment.

If any part of the operand lies outside the effective address space
from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.AESNI[bit 25] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canon-

ical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regard-
less of segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.AESNI[bit 25] = 0.

If the LOCK prefix is used.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 28

Instruction Set Reference, A-M

AESKEYGENASSIST - AES Round Key Generation Assist

Instruction Operand Encoding

Description

Assist in expanding the AES cipher key, by computing steps towards generating a round
key for encryption, using 128-bit data specified in the source operand and an 8-bit round
constant specified as an immediate, store the result in the destination operand.

The destination operand is an XMM register. The source operand can be an XMM register
or a 128-bit memory location.

Operation
X3[31:0] ← SRC [127: 96];
X2[31:0] ← SRC [95: 64];
X1[31:0] ← SRC [63: 32];
X0[31:0] ← SRC [31: 0];
RCON[31:0] ← ZeroExtend(Imm8[7:0]);
DEST[31:0] ← SubWord(X1);
DEST[63:32] ← RotWord(SubWord(X1)) XOR RCON;
DEST[95:64] ← SubWord(X3);
DEST[127:96] ← RotWord(SubWord(X3)) XOR RCON;
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

AESKEYGENASSIST __m128i _mm_aesimc (__m128i, const int)

SIMD Floating-Point Exceptions

None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES,

FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary, regard-
less of segment.

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

66 0F 3A DF /r
ib

AESKEYGENAS-
SIST xmm1,
xmm2/m128,
imm8

A Valid Valid Assist in AES round key gen-
eration using an 8 bits
Round Constant (RCON)
specified in the immediate
byte, operating on 128 bits
of data specified in
xmm2/m128 and stores the
result in xmm1.

Op/En Operand 1 Operand2 Operand3 Operand4

A ModRM:reg (w) ModRM:r/m (r) imm8 NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 29

Instruction Set Reference, A-M

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.AESNI[bit 25] = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary, regard-

less of segment.

If any part of the operand lies outside the effective address space
from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.AESNI[bit 25] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canon-

ical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regard-
less of segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.AESNI[bit 25] = 0.

If the LOCK prefix is used.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 30

Instruction Set Reference, A-M

BT—Bit Test

...

Flags Affected

The CF flag contains the value of the selected bit. The ZF flag is unaffected. The OF, SF,
AF, and PF flags are undefined.

...

BTC—Bit Test and Complement

...

Flags Affected

The CF flag contains the value of the selected bit before it is complemented. The ZF flag
is unaffected. The OF, SF, AF, and PF flags are undefined.

...

BTR—Bit Test and Reset

...

Flags Affected

The CF flag contains the value of the selected bit before it is cleared. The ZF flag is unaf-
fected. The OF, SF, AF, and PF flags are undefined.

...

BTS—Bit Test and Set

...

Flags Affected

The CF flag contains the value of the selected bit before it is set. The ZF flag is unaf-
fected. The OF, SF, AF, and PF flags are undefined.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 31

Instruction Set Reference, A-M

CLTS—Clear Task-Switched Flag in CR0

Instruction Operand Encoding

Description

Clears the task-switched (TS) flag in the CR0 register. This instruction is intended for use
in operating-system procedures. It is a privileged instruction that can only be executed
at a CPL of 0. It is allowed to be executed in real-address mode to allow initialization for
protected mode.

The processor sets the TS flag every time a task switch occurs. The flag is used to
synchronize the saving of FPU context in multitasking applications. See the description of
the TS flag in the section titled “Control Registers” in Chapter 2 of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A, for more information
about this flag.

CLTS operation is the same in non-64-bit modes and 64-bit mode.

See Chapter 22, “VMX Non-Root Operation,” of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3B, for more information about the behavior of
this instruction in VMX non-root operation.

Operation

CR0.TS[bit 3] ← 0;

Flags Affected

The TS flag in CR0 register is cleared.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) CLTS is not recognized in virtual-8086 mode.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

0F 06 CLTS A Valid Valid Clears TS flag in CR0.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 32

Instruction Set Reference, A-M

64-Bit Mode Exceptions
#GP(0) If the CPL is greater than 0.

#UD If the LOCK prefix is used.

...

Table 3-15. Feature Information Returned in the ECX Register
Bit # Mnemonic Description

0 SSE3 Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the
processor supports this technology.

1 PCLMULQDQ PCLMULQDQ. A value of 1 indicates the processor supports the
PCLMULQDQ instruction

2 DTES64 64-bit DS Area. A value of 1 indicates the processor supports DS
area using 64-bit layout

3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor supports
this feature.

4 DS-CPL CPL Qualified Debug Store. A value of 1 indicates the processor
supports the extensions to the Debug Store feature to allow for
branch message storage qualified by CPL.

5 VMX Virtual Machine Extensions. A value of 1 indicates that the
processor supports this technology

6 SMX Safer Mode Extensions. A value of 1 indicates that the processor
supports this technology. See Chapter 6, “Safer Mode Extensions
Reference”.

7 EST Enhanced Intel SpeedStep® technology. A value of 1 indicates
that the processor supports this technology.

8 TM2 Thermal Monitor 2. A value of 1 indicates whether the processor
supports this technology.

9 SSSE3 A value of 1 indicates the presence of the Supplemental
Streaming SIMD Extensions 3 (SSSE3). A value of 0 indicates the
instruction extensions are not present in the processor

10 CNXT-ID L1 Context ID. A value of 1 indicates the L1 data cache mode can
be set to either adaptive mode or shared mode. A value of 0
indicates this feature is not supported. See definition of the
IA32_MISC_ENABLE MSR Bit 24 (L1 Data Cache Context Mode)
for details.

12-11 Reserved Reserved

13 CMPXCHG16B CMPXCHG16B Available. A value of 1 indicates that the feature is
available. See the “CMPXCHG8B/CMPXCHG16B—Compare and
Exchange Bytes” section in this chapter for a description.

14 xTPR Update
Control

xTPR Update Control. A value of 1 indicates that the processor
supports changing IA32_MISC_ENABLES[bit 23].

15 PDCM Perfmon and Debug Capability: A value of 1 indicates the
processor supports the performance and debug feature indication
MSR IA32_PERF_CAPABILITIES.

16 Reserved Reserved

17 PCID Process-context identifiers. A value of 1 indicates that the
processor supports PCIDs and that software may set CR4.PCIDE
to 1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 33

Instruction Set Reference, A-M

...

18 DCA A value of 1 indicates the processor supports the ability to
prefetch data from a memory mapped device.

19 SSE4.1 A value of 1 indicates that the processor supports SSE4.1.

20 SSE4.2 A value of 1 indicates that the processor supports SSE4.2.

21 x2APIC A value of 1 indicates that the processor supports x2APIC
feature.

22 MOVBE A value of 1 indicates that the processor supports MOVBE
instruction.

23 POPCNT A value of 1 indicates that the processor supports the POPCNT
instruction.

24 Reserved Reserved

25 AESNI A value of 1 indicates that the processor supports the AESNI
instruction extensions.

26 XSAVE A value of 1 indicates that the processor supports the
XSAVE/XRSTOR processor extended states feature, the
XSETBV/XGETBV instructions, and the
XFEATURE_ENABLED_MASK register (XCR0).

27 OSXSAVE A value of 1 indicates that the OS has enabled XSETBV/XGETBV
instructions to access the XFEATURE_ENABLED_MASK register
(XCR0), and support for processor extended state management
using XSAVE/XRSTOR.

28 AVX A value of 1 indicates the processor supports the AVX instruction
extensions.

30 - 29 Reserved Reserved

31 Not Used Always returns 0

Bit # Mnemonic Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 34

Instruction Set Reference, A-M

CMOVcc—Conditional Move

...

Operation

temp ← SRC

IF condition TRUE
THEN

DEST ← temp;
FI;

ELSE
IF (OperandSize == 32 and IA-32e mode active)

THEN
DEST[63:32] ← 0;

FI;
FI;

...

CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands
The CMPS, CMPSB, CMPSW, CMPSD, and CMPSQ instructions can be preceded by the
REP prefix for block comparisons. More often, however, these instructions will be used in
a LOOP construct that takes some action based on the setting of the status flags before
the next comparison is made. See “REP/REPE/REPZ /REPNE/REPNZ—Repeat String
Operation Prefix” in Chapter 4 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2B, for a description of the REP prefix.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 35

Instruction Set Reference, A-M

CPUID—CPU Identification

...

Table 3-12 Information Returned by CPUID Instruction

...

Initial EAX
Value Information Provided about the Processor

...

Deterministic Cache Parameters Leaf

04H NOTES:
Leaf 04H output depends on the initial value in ECX.
See also: “INPUT EAX = 4: Returns Deterministic Cache Parameters
for each level on page 3-214.

EAX Bits 4-0: Cache Type Field
0 = Null - No more caches
1 = Data Cache
2 = Instruction Cache
3 = Unified Cache
4-31 = Reserved

Bits 7-5: Cache Level (starts at 1)
Bits 8: Self Initializing cache level (does not need SW initialization)
Bits 9: Fully Associative cache

Bits 13-10: Reserved
Bits 25-14: Maximum number of addressable IDs for logical processors
sharing this cache*, **
Bits 31-26: Maximum number of addressable IDs for processor cores in
the physical package*, ***, ****

EBX Bits 11-00: L = System Coherency Line Size*
Bits 21-12: P = Physical Line partitions*
Bits 31-22: W = Ways of associativity*

ECX Bits 31-00: S = Number of Sets*

EDX Bit 0: Write-Back Invalidate/Invalidate
0 = WBINVD/INVD from threads sharing this cache acts upon lower
level caches for threads sharing this cache.
1 = WBINVD/INVD is not guaranteed to act upon lower level caches
of non-originating threads sharing this cache.

Bit 1: Cache Inclusiveness
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.

Bit 2: Complex Cache Indexing
0 = Direct mapped cache.
1 = A complex function is used to index the cache, potentially using

all address bits.
Bits 31-03: Reserved = 0

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 36

Instruction Set Reference, A-M

FXRSTOR—Restore x87 FPU, MMX , XMM, and MXCSR State

...

Description

Reloads the x87 FPU, MMX technology, XMM, and MXCSR registers from the 512-byte
memory image specified in the source operand. This data should have been written to
memory previously using the FXSAVE instruction, and in the same format as required by
the operating modes. The first byte of the data should be located on a 16-byte boundary.
There are three distinct layouts of the FXSAVE state map: one for legacy and compati-
bility mode, a second format for 64-bit mode FXSAVE/FXRSTOR with REX.W=0, and the
third format is for 64-bit mode with FXSAVE64/FXRSTOR64. Table 3-48 shows the layout
of the legacy/compatibility mode state information in memory and describes the fields in
the memory image for the FXRSTOR and FXSAVE instructions. Table Table 3-51 shows
the layout of the 64-bit mode state information when REX.W is set (FXSAVE64/
FXRSTOR64). Table Table 3-52 shows the layout of the 64-bit mode state information
when REX.W is clear (FXSAVE/FXRSTOR).

The state image referenced with an FXRSTOR instruction must have been saved using an
FXSAVE instruction or be in the same format as required by Table 3-48, Table Table 3-51,
or Table Table 3-52. Referencing a state image saved with an FSAVE, FNSAVE instruction
or incompatible field layout will result in an incorrect state restoration.

The FXRSTOR instruction does not flush pending x87 FPU exceptions. To check and raise
exceptions when loading x87 FPU state information with the FXRSTOR instruction, use
an FWAIT instruction after the FXRSTOR instruction.

If the OSFXSR bit in control register CR4 is not set, the FXRSTOR instruction may not
restore the states of the XMM and MXCSR registers. This behavior is implementation
dependent.

If the MXCSR state contains an unmasked exception with a corresponding status flag
also set, loading the register with the FXRSTOR instruction will not result in a SIMD
floating-point error condition being generated. Only the next occurrence of this
unmasked exception will result in the exception being generated.

Bits 16 through 32 of the MXCSR register are defined as reserved and should be set to 0.
Attempting to write a 1 in any of these bits from the saved state image will result in a
general protection exception (#GP) being generated.

Bytes 464:511 of an FXSAVE image are available for software use. FXRSTOR ignores the
content of bytes 464:511 in an FXSAVE state image.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 37

Instruction Set Reference, A-M

Table 3-48 Non-64-bit-Mode Layout of FXSAVE and FXRSTOR
Memory Region

...

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rsrvd CS FPU IP FOP Rs
rvd

FTW FSW FCW 0

MXCSR_MASK MXCSR Rsrvd DS FPU DP 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

Reserved 288

Reserved 304

Reserved 320

Reserved 336

Reserved 352

Reserved 368

Reserved 384

Reserved 400

Reserved 416

Reserved 432

Reserved 448

Available 464

Available 480

Available 496

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 38

Instruction Set Reference, A-M

FXSAVE—Save x87 FPU, MMX Technology, and SSE State

...

Table 3-49 Field Definitions
Field Definition

FCW x87 FPU Control Word (16 bits). See Figure 8-6 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for the layout of
the x87 FPU control word.

FSW x87 FPU Status Word (16 bits). See Figure 8-4 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for the layout of
the x87 FPU status word.

Abridged FTW x87 FPU Tag Word (8 bits). The tag information saved here is abridged, as
described in the following paragraphs.

FOP x87 FPU Opcode (16 bits). The lower 11 bits of this field contain the
opcode, upper 5 bits are reserved. See Figure 8-8 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for the layout of
the x87 FPU opcode field.

FPU IP x87 FPU Instruction Pointer Offset (32 bits). The contents of this field
differ depending on the current addressing mode (32-bit or 16-bit) of the
processor when the FXSAVE instruction was executed:

32-bit mode — 32-bit IP offset.

16-bit mode — low 16 bits are IP offset; high 16 bits are reserved.

See “x87 FPU Instruction and Operand (Data) Pointers” in Chapter 8 of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
for a description of the x87 FPU instruction pointer.

CS x87 FPU Instruction Pointer Selector (16 bits).

FPU DP x87 FPU Instruction Operand (Data) Pointer Offset (32 bits). The contents
of this field differ depending on the current addressing mode (32-bit or 16-
bit) of the processor when the FXSAVE instruction was executed:

32-bit mode — 32-bit IP offset.

16-bit mode — low 16 bits are IP offset; high 16 bits are reserved.

See “x87 FPU Instruction and Operand (Data) Pointers” in Chapter 8 of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
for a description of the x87 FPU operand pointer.

DS x87 FPU Instruction Operand (Data) Pointer Selector (16 bits).

MXCSR MXCSR Register State (32 bits). See Figure 10-3 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for the layout of
the MXCSR register. If the OSFXSR bit in control register CR4 is not set, the
FXSAVE instruction may not save this register. This behavior is
implementation dependent.

MXCSR_
MASK

MXCSR_MASK (32 bits). This mask can be used to adjust values written to
the MXCSR register, ensuring that reserved bits are set to 0. Set the mask
bits and flags in MXCSR to the mode of operation desired for SSE and SSE2
SIMD floating-point instructions. See “Guidelines for Writing to the MXCSR
Register” in Chapter 11 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for instructions for how to determine and
use the MXCSR_MASK value.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 39

Instruction Set Reference, A-M

...

IA-32e Mode Operation

In compatibility sub-mode of IA-32e mode, legacy SSE registers, XMM0 through XMM7,
are saved according to the legacy FXSAVE map. In 64-bit mode, all of the SSE
registers, XMM0 through XMM15, are saved. Additionally, there are two different
layouts of the FXSAVE map in 64-bit mode, corresponding to FXSAVE64 (which requires
REX.W=1) and FXSAVE (REX.W=0). In the FXSAVE64 map (Table Table 3-51), the FPU
IP and FPU DP pointers are 64-bit wide. In the FXSAVE map for 64-bit mode
(Table Table 3-52), the FPU IP and FPU DP pointers are 32-bits.
...

ST0/MM0 through
ST7/MM7

x87 FPU or MMX technology registers. These 80-bit fields contain the x87
FPU data registers or the MMX technology registers, depending on the
state of the processor prior to the execution of the FXSAVE instruction. If
the processor had been executing x87 FPU instruction prior to the FXSAVE
instruction, the x87 FPU data registers are saved; if it had been executing
MMX instructions (or SSE or SSE2 instructions that operated on the MMX
technology registers), the MMX technology registers are saved. When the
MMX technology registers are saved, the high 16 bits of the field are
reserved.

XMM0 through
XMM7

XMM registers (128 bits per field). If the OSFXSR bit in control register CR4
is not set, the FXSAVE instruction may not save these registers. This
behavior is implementation dependent.

Field Definition

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 40

Instruction Set Reference, A-M

Table 3-51 Layout of the 64-bit-mode FXSAVE64 Map (requires REX.W = 1)

...

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FPU IP FOP Re-
served

FTW FSW FCW 0

MXCSR_MASK MXCSR FPU DP 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

XMM8 288

XMM9 304

XMM10 320

XMM11 336

XMM12 352

XMM13 368

XMM14 384

XMM15 400

Reserved 416

Reserved 432

Reserved 448

Available 464

Available 480

Available 496

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 41

Instruction Set Reference, A-M

Table 3-52 Layout of the 64-bit-mode FXSAVE Map (REX.W = 0)

...

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved CS FPU IP FOP Re-
served

FTW FSW FCW 0

MXCSR_MASK MXCSR Re-
served

FPU DP 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

XMM8 288

XMM9 304

XMM10 320

XMM11 336

XMM12 352

XMM13 368

XMM14 384

XMM15 400

Reserved 416

Reserved 432

Reserved 448

Available 464

Available 480

Available 496

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 42

Instruction Set Reference, A-M

INS/INSB/INSW/INSD—Input from Port to String

...

The INS, INSB, INSW, and INSD instructions can be preceded by the REP prefix for block
input of ECX bytes, words, or doublewords. See “REP/REPE/REPZ /REPNE/REPNZ—
Repeat String Operation Prefix” in Chapter 4 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2B, for a description of the REP prefix.

...

JMP—Jump

...

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

EB cb JMP rel8 A Valid Valid Jump short, RIP = RIP + 8-bit
displacement sign extended
to 64-bits

E9 cw JMP rel16 A N.S. Valid Jump near, relative,
displacement relative to
next instruction. Not
supported in 64-bit mode.

E9 cd JMP rel32 A Valid Valid Jump near, relative, RIP =
RIP + 32-bit displacement
sign extended to 64-bits

FF /4 JMP r/m16 B N.S. Valid Jump near, absolute indirect,
address = zero-extended
r/m16. Not supported in 64-
bit mode.

FF /4 JMP r/m32 B N.S. Valid Jump near, absolute indirect,
address given in r/m32. Not
supported in 64-bit mode.

FF /4 JMP r/m64 B Valid N.E. Jump near, absolute indirect,
RIP = 64-Bit offset from
register or memory

EA cd JMP ptr16:16 A Inv. Valid Jump far, absolute, address
given in operand

EA cp JMP ptr16:32 A Inv. Valid Jump far, absolute, address
given in operand

FF /5 JMP m16:16 A Valid Valid Jump far, absolute indirect,
address given in m16:16

FF /5 JMP m16:32 A Valid Valid Jump far, absolute indirect,
address given in m16:32.

REX.W + FF /5 JMP m16:64 A Valid N.E. Jump far, absolute indirect,
address given in m16:64.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 43

Instruction Set Reference, A-M

LODS/LODSB/LODSW/LODSD/LODSQ—Load String

...

The LODS, LODSB, LODSW, and LODSD instructions can be preceded by the REP prefix
for block loads of ECX bytes, words, or doublewords. More often, however, these instruc-
tions are used within a LOOP construct because further processing of the data moved
into the register is usually necessary before the next transfer can be made. See “REP/
REPE/REPZ /REPNE/REPNZ—Repeat String Operation Prefix” in Chapter 4 of the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 2B, for a description of
the REP prefix.

...

MASKMOVQ—Store Selected Bytes of Quadword

Instruction Operand Encoding

Description

Stores selected bytes from the source operand (first operand) into a 64-bit memory
location. The mask operand (second operand) selects which bytes from the source
operand are written to memory. The source and mask operands are MMX technology
registers. The location of the first byte of the memory location is specified by DI/EDI and
DS registers. (The size of the store address depends on the address-size attribute.)

The most significant bit in each byte of the mask operand determines whether the corre-
sponding byte in the source operand is written to the corresponding byte location in
memory: 0 indicates no write and 1 indicates write.

The MASKMOVQ instruction generates a non-temporal hint to the processor to minimize
cache pollution. The non-temporal hint is implemented by using a write combining (WC)
memory type protocol (see “Caching of Temporal vs. Non-Temporal Data” in Chapter 10,
of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1).
Because the WC protocol uses a weakly-ordered memory consistency model, a fencing
operation implemented with the SFENCE or MFENCE instruction should be used in
conjunction with MASKMOVQ instructions if multiple processors might use different
memory types to read/write the destination memory locations.

This instruction causes a transition from x87 FPU to MMX technology state (that is, the
x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]).

The behavior of the MASKMOVQ instruction with a mask of all 0s is as follows:

• No data will be written to memory.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F F7 /r MASKMOVQ mm1,
mm2

A Valid Valid Selectively write bytes from
mm1 to memory location
using the byte mask in mm2.
The default memory
location is specified by
DS:EDI.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r) ModRM:r/m (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 44

Instruction Set Reference, A-M

• Transition from x87 FPU to MMX technology state will occur.

• Exceptions associated with addressing memory and page faults may still be signaled
(implementation dependent).

• Signaling of breakpoints (code or data) is not guaranteed (implementation
dependent).

• If the destination memory region is mapped as UC or WP, enforcement of associated
semantics for these memory types is not guaranteed (that is, is reserved) and is
implementation-specific.

The MASKMOVQ instruction can be used to improve performance for algorithms that
need to merge data on a byte-by-byte basis. It should not cause a read for ownership;
doing so generates unnecessary bandwidth since data is to be written directly using the
byte-mask without allocating old data prior to the store.

In 64-bit mode, the memory address is specified by DS:RDI.

Operation

IF (MASK[7] = 1)
THEN DEST[DI/EDI] ← SRC[7:0] ELSE (* Memory location unchanged *); FI;

IF (MASK[15] = 1)
THEN DEST[DI/EDI +1] ← SRC[15:8] ELSE (* Memory location unchanged *); FI;
(* Repeat operation for 3rd through 6th bytes in source operand *)

IF (MASK[63] = 1)
THEN DEST[DI/EDI +15] ← SRC[63:56] ELSE (* Memory location unchanged *); FI;

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_maskmove_si64(__m64d, __m64n, char * p)

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES,

FS or GS segments (even if mask is all 0s).

If the destination operand is in a nonwritable segment.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) For an illegal address in the SS segment (even if mask is all 0s).

#PF(fault-code) For a page fault (implementation specific).

#NM If CR0.TS[bit 3] = 1.

#MF If there is a pending FPU exception.

#UD If CR0.EM[bit 2] = 1.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If Mod field of the ModR/M byte not 11B.

If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory refer-
ence is made while the current privilege level is 3.

Real-Address Mode Exceptions
GP If any part of the operand lies outside the effective address space

from 0 to FFFFH. (even if mask is all 0s).

#NM If CR0.TS[bit 3] = 1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 45

Instruction Set Reference, A-M

#MF If there is a pending FPU exception.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault (implementation specific).

#AC(0) If alignment checking is enabled and an unaligned memory refer-
ence is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-canon-
ical form.

#PF(fault-code) For a page fault (implementation specific).

#NM If CR0.TS[bit 3] = 1.

#MF If there is a pending FPU exception.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If Mod field of the ModR/M byte not 11B.

If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory refer-
ence is made while the current privilege level is 3.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 46

Instruction Set Reference, A-M

MOV—Move to/from Control Registers

Instruction Operand Encoding

Description

Moves the contents of a control register (CR0, CR2, CR3, CR4, or CR8) to a general-
purpose register or the contents of a general purpose register to a control register. The
operand size for these instructions is always 32 bits in non-64-bit modes, regardless of
the operand-size attribute. (See “Control Registers” in Chapter 2 of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A, for a detailed description
of the flags and fields in the control registers.) This instruction can be executed only
when the current privilege level is 0.

At the opcode level, the reg field within the ModR/M byte specifies which of the control
registers is loaded or read. The 2 bits in the mod field are ignored. The r/m field specifies
the general-purpose register loaded or read. Attempts to reference CR1, CR5, CR6, CR7,
and CR9–CR15 result in undefined opcode (#UD) exceptions.

When loading control registers, programs should not attempt to change the reserved
bits; that is, always set reserved bits to the value previously read. An attempt to change
CR4's reserved bits will cause a general protection fault. Reserved bits in CR0 and CR3
remain clear after any load of those registers; attempts to set them have no impact. On
Pentium 4, Intel Xeon and P6 family processors, CR0.ET remains set after any load of
CR0; attempts to clear this bit have no impact.

In certain cases, these instructions have the side effect of invalidating entries in the TLBs
and the paging-structure caches. See Section 4.10.4.1, “Operations that Invalidate TLBs
and Paging-Structure Caches,” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A for details.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 20/r MOV r32, CR0–
CR7

A N.E. Valid Move control register to r32

0F 20/r MOV r64, CR0–
CR7

A Valid N.E. Move extended control
register to r64.

REX.R + 0F 20
/0

MOV r64, CR8 A Valid N.E. Move extended CR8 to
r64.1

0F 22 /r MOV CR0–CR7,
r32

A N.E. Valid Move r32 to control register

0F 22 /r MOV CR0–CR7,
r64

A Valid N.E. Move r64 to extended
control register.

REX.R + 0F 22
/0

MOV CR8, r64 A Valid N.E. Move r64 to extended
CR8.1

NOTE:

1. MOV CR* instructions, except for MOV CR8, are serializing instructions. MOV CR8 is not
architecturally defined as a serializing instruction. For more information, see Chapter 8 in Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (w) ModRM:r/m (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 47

Instruction Set Reference, A-M

The following side effects are implementation-specific for the Pentium 4, Intel Xeon, and
P6 processor family: when modifying PE or PG in register CR0, or PSE or PAE in register
CR4, all TLB entries are flushed, including global entries. Software should not depend on
this functionality in all Intel 64 or IA-32 processors.

In 64-bit mode, the instruction’s default operation size is 64 bits. The REX.R prefix must
be used to access CR8. Use of REX.B permits access to additional registers (R8-R15).
Use of the REX.W prefix or 66H prefix is ignored. Use of the REX.R prefix to specify a
register other than CR8 causes an invalid-opcode exception. See the summary chart at
the beginning of this section for encoding data and limits.

If CR4.PCIDE = 1, bit 63 of the source operand to MOV to CR3 determines whether the
instruction invalidates entries in the TLBs and the paging-structure caches (see Section
4.10.4.1, “Operations that Invalidate TLBs and Paging-Structure Caches,” in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). The instruction
does not modify bit 63 of CR3, which is reserved and always 0.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 22 of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, for more
information about the behavior of this instruction in VMX non-root operation.

Operation

DEST ← SRC;

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are undefined.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If an attempt is made to write invalid bit combinations in CR0 (such
as setting the PG flag to 1 when the PE flag is set to 0, or setting the
CD flag to 0 when the NW flag is set to 1).

If an attempt is made to write a 1 to any reserved bit in CR4.

If an attempt is made to write 1 to CR4.PCIDE.

If any of the reserved bits are set in the page-directory pointers
table (PDPT) and the loading of a control register causes the PDPT
to be loaded into the processor.

#UD If the LOCK prefix is used.

If an attempt is made to access CR1, CR5, CR6, or CR7.

Real-Address Mode Exceptions
#GP If an attempt is made to write a 1 to any reserved bit in CR4.

If an attempt is made to write 1 to CR4.PCIDE.

If an attempt is made to write invalid bit combinations in CR0 (such
as setting the PG flag to 1 when the PE flag is set to 0).

#UD If the LOCK prefix is used.

If an attempt is made to access CR1, CR5, CR6, or CR7.

Virtual-8086 Mode Exceptions
#GP(0) These instructions cannot be executed in virtual-8086 mode.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 48

Instruction Set Reference, A-M

Compatibility Mode Exceptions
#GP(0) If the current privilege level is not 0.

If an attempt is made to write invalid bit combinations in CR0 (such
as setting the PG flag to 1 when the PE flag is set to 0, or setting the
CD flag to 0 when the NW flag is set to 1).

If an attempt is made to change CR4.PCIDE from 0 to 1 while
CR3[11:0] ≠ 000H.

If an attempt is made to clear CR0.PG[bit 31] while CR4.PCIDE = 1.

If an attempt is made to write a 1 to any reserved bit in CR3.

If an attempt is made to leave IA-32e mode by clearing CR4.PAE[bit
5].

#UD If the LOCK prefix is used.

If an attempt is made to access CR1, CR5, CR6, or CR7.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If an attempt is made to write invalid bit combinations in CR0 (such
as setting the PG flag to 1 when the PE flag is set to 0, or setting the
CD flag to 0 when the NW flag is set to 1).

If an attempt is made to change CR4.PCIDE from 0 to 1 while
CR3[11:0] ≠ 000H.

If an attempt is made to clear CR0.PG[bit 31].

If an attempt is made to write a 1 to any reserved bit in CR4.

If an attempt is made to write a 1 to any reserved bit in CR8.

If an attempt is made to write a 1 to any reserved bit in CR3.

If an attempt is made to leave IA-32e mode by clearing CR4.PAE[bit
5].

#UD If the LOCK prefix is used.

If an attempt is made to access CR1, CR5, CR6, or CR7.

If the REX.R prefix is used to specify a register other than CR8.

...

MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from String to String

...

The MOVS, MOVSB, MOVSW, and MOVSD instructions can be preceded by the REP prefix
(see “REP/REPE/REPZ /REPNE/REPNZ—Repeat String Operation Prefix” in Chapter 4 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B, for a
description of the REP prefix) for block moves of ECX bytes, words, or doublewords.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 49

Instruction Set Reference, A-M

MWAIT—Monitor Wait

Instruction Operand Encoding

Description

MWAIT instruction provides hints to allow the processor to enter an implementation-
dependent optimized state. There are two principal targeted usages: address-range
monitor and advanced power management. Both usages of MWAIT require the use of the
MONITOR instruction.

A CPUID feature flag (ECX bit 3; CPUID executed EAX = 1) indicates the availability of
MONITOR and MWAIT in the processor. When set, MWAIT may be executed only at priv-
ilege level 0 (use at any other privilege level results in an invalid-opcode exception). The
operating system or system BIOS may disable this instruction by using the
IA32_MISC_ENABLES MSR; disabling MWAIT clears the CPUID feature flag and causes
execution to generate an illegal opcode exception.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

MWAIT for Address Range Monitoring

For address-range monitoring, the MWAIT instruction operates with the MONITOR
instruction. The two instructions allow the definition of an address at which to wait
(MONITOR) and a implementation-dependent-optimized operation to commence at the
wait address (MWAIT). The execution of MWAIT is a hint to the processor that it can
enter an implementation-dependent-optimized state while waiting for an event or a
store operation to the address range armed by MONITOR.

ECX specifies optional extensions for the MWAIT instruction. EAX may contain hints such
as the preferred optimized state the processor should enter.

For Pentium 4 processors (CPUID signature family 15 and model 3), non-zero values for
EAX and ECX are reserved. Later processors defined ECX=1 as a valid extension (see
below).

The following cause the processor to exit the implementation-dependent-optimized
state: a store to the address range armed by the MONITOR instruction, an NMI or SMI, a
debug exception, a machine check exception, the BINIT# signal, the INIT# signal, and
the RESET# signal. Other implementation-dependent events may also cause the
processor to exit the implementation-dependent-optimized state.

In addition, an external interrupt causes the processor to exit the implementation-
dependent-optimized state if either (1) the interrupt would be delivered to software

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 C9 MWAIT A Valid Valid A hint that allow the
processor to stop
instruction execution and
enter an implementation-
dependent optimized state
until occurrence of a class of
events.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 50

Instruction Set Reference, A-M

(e.g., if HLT had been executed instead of MWAIT); or (2) ECX[0] = 1. Implementation-
specific conditions may result in an interrupt causing the processor to exit the implemen-
tation-dependent-optimized state even if interrupts are masked and ECX[0] = 0.

Following exit from the implementation-dependent-optimized state, control passes to
the instruction following the MWAIT instruction. A pending interrupt that is not masked
(including an NMI or an SMI) may be delivered before execution of that instruction.
Unlike the HLT instruction, the MWAIT instruction does not support a restart at the
MWAIT instruction following the handling of an SMI.

If the preceding MONITOR instruction did not successfully arm an address range or if the
MONITOR instruction has not been executed prior to executing MWAIT, then the
processor will not enter the implementation-dependent-optimized state. Execution will
resume at the instruction following the MWAIT.

MWAIT for Power Management

MWAIT accepts a hint and optional extension to the processor that it can enter a speci-
fied target C state while waiting for an event or a store operation to the address range
armed by MONITOR. Support for MWAIT extensions for power management is indicated
by CPUID.05H.ECX[0] reporting 1.

EAX and ECX will be used to communicate the additional information to the MWAIT
instruction, such as the kind of optimized state the processor should enter. ECX specifies
optional extensions for the MWAIT instruction. EAX may contain hints such as the
preferred optimized state the processor should enter. Implementation-specific condi-
tions may cause a processor to ignore the hint and enter a different optimized state.
Future processor implementations may implement several optimized “waiting” states
and will select among those states based on the hint argument.

Table 3-62 describes the meaning of ECX and EAX registers for MWAIT extensions.

Table 3-62 MWAIT Extension Register (ECX)
Bits Description

0 Treat masked interrupts as break events (e.g., if EFLAGS.IF=0). May be set
only if CPUID.01H:ECX.MONITOR[bit 3] = 1.

31: 1 Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 51

Instruction Set Reference, A-M

Note that if MWAIT is used to enter any of the C-states that are numerically higher than
C1, a store to the address range armed by the MONITOR instruction will cause the
processor to exit MWAIT only if the store was originated by other processor agents. A
store from non-processor agent might not cause the processor to exit MWAIT in such
cases.

For additional details of MWAIT extensions, see Chapter 14, “Power and Thermal
Management,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A.

Operation

(* MWAIT takes the argument in EAX as a hint extension and is architected to take the argument in ECX
as an instruction extension MWAIT EAX, ECX *)
{
WHILE (("Monitor Hardware is in armed state")) {

implementation_dependent_optimized_state(EAX, ECX); }
Set the state of Monitor Hardware as triggered;
}

Intel C/C++ Compiler Intrinsic Equivalent

MWAIT void _mm_mwait(unsigned extensions, unsigned hints)

Example

MONITOR/MWAIT instruction pair must be coded in the same loop because execution of
the MWAIT instruction will trigger the monitor hardware. It is not a proper usage to
execute MONITOR once and then execute MWAIT in a loop. Setting up MONITOR without
executing MWAIT has no adverse effects.

Typically the MONITOR/MWAIT pair is used in a sequence, such as:

EAX = Logical Address(Trigger)
ECX = 0 (*Hints *)
EDX = 0 (* Hints *)

IF (!trigger_store_happened) {
MONITOR EAX, ECX, EDX
IF (!trigger_store_happened) {

MWAIT EAX, ECX
}

Table 3-63 MWAIT Hints Register (EAX)
Bits Description

3 : 0 Sub C-state within a C-state, indicated by bits [7:4]

7 : 4 Target C-state*

Value of 0 means C1; 1 means C2 and so on

Value of 01111B means C0

Note: Target C states for MWAIT extensions are processor-specific C-
states, not ACPI C-states

31: 8 Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 52

Instruction Set Reference, A-M

}

The above code sequence makes sure that a triggering store does not happen between
the first check of the trigger and the execution of the monitor instruction. Without the
second check that triggering store would go un-noticed. Typical usage of MONITOR and
MWAIT would have the above code sequence within a loop.

Numeric Exceptions
None

Protected Mode Exceptions
#GP(0) If ECX[31:1] ≠ 0.

If ECX[0] = 1 and CPUID.05H:ECX[bit 3] = 0.

#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.

If current privilege level is not 0.

Real Address Mode Exceptions
#GP If ECX[31:1] ≠ 0.

If ECX[0] = 1 and CPUID.05H:ECX[bit 3] = 0.

#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.

Virtual 8086 Mode Exceptions
#UD The MWAIT instruction is not recognized in virtual-8086 mode (even

if CPUID.01H:ECX.MONITOR[bit 3] = 1).

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If RCX[63:1] ≠ 0.

If RCX[0] = 1 and CPUID.05H:ECX[bit 3] = 0.

#UD If the current privilege level is not 0.

If CPUID.01H:ECX.MONITOR[bit 3] = 0.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 53

Instruction Set Reference, N-Z

5. Updates to Chapter 4, Volume 2B

Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2B: Instruction Set Reference, N-Z.

--

CHAPTER 4
INSTRUCTION SET REFERENCE, N-Z

4.1 IMM8 CONTROL BYTE OPERATION FOR PCMPESTRI /
PCMPESTRM / PCMPISTRI / PCMPISTRM

The notations introduced in this section are referenced in the reference pages of
PCMPESTRI, PCMPESTRM, PCMPISTRI, PCMPISTRM. The operation of the immediate
control byte is common to these four string text processing instructions of SSE4.2. This
section describes the common operations.

4.1.1 General Description
The operation of PCMPESTRI, PCMPESTRM, PCMPISTRI, PCMPISTRM is defined by the
combination of the respective opcode and the interpretation of an immediate control
byte that is part of the instruction encoding.

The opcode controls the relationship of input bytes/words to each other (determines
whether the inputs terminated strings or whether lengths are expressed explicitly) as
well as the desired output (index or mask).

The Imm8 Control Byte for PCMPESTRM/PCMPESTRI/PCMPISTRM/PCMPISTRI encodes a
significant amount of programmable control over the functionality of those instructions.
Some functionality is unique to each instruction while some is common across some or
all of the four instructions. This section describes functionality which is common across
the four instructions.

The arithmetic flags (ZF, CF, SF, OF, AF, PF) are set as a result of these instructions.
However, the meanings of the flags have been overloaded from their typical meanings in
order to provide additional information regarding the relationships of the two inputs.

PCMPxSTRx instructions perform arithmetic comparisons between all possible pairs of
bytes or words, one from each packed input source operand. The boolean results of
those comparisons are then aggregated in order to produce meaningful results. The
Imm8 Control Byte is used to affect the interpretation of individual input elements as
well as control the arithmetic comparisons used and the specific aggregation scheme.

Specifically, the Imm8 Control Byte consists of bit fields that control the following
attributes:

• Source data format — Byte/word data element granularity, signed or unsigned
elements

• Aggregation operation — Encodes the mode of per-element comparison operation
and the aggregation of per-element comparisons into an intermediate result

• Polarity — Specifies intermediate processing to be performed on the intermediate
result

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 54

Instruction Set Reference, N-Z

• Output selection — Specifies final operation to produce the output (depending on
index or mask) from the intermediate result

4.1.2 Source Data Format

If the Imm8 Control Byte has bit[0] cleared, each source contains 16 packed bytes. If
the bit is set each source contains 8 packed words. If the Imm8 Control Byte has bit[1]
cleared, each input contains unsigned data. If the bit is set each source contains signed
data.

4.1.3 Aggregation Operation

All 256 (64) possible comparisons are always performed. The individual Boolean results
of those comparisons are referred by “BoolRes[Reg/Mem element index, Reg element
index].” Comparisons evaluating to “True” are represented with a 1, False with a 0 (posi-
tive logic). The initial results are then aggregated into a 16-bit (8-bit) intermediate
result (IntRes1) using one of the modes described in the table below, as determined by
Imm8 Control Byte bit[3:2].

Table 4-1 Source Data Format

Imm8[1:
0] Meaning Description

00b Unsigned bytes Both 128-bit sources are treated as packed, unsigned
bytes.

01b Unsigned words Both 128-bit sources are treated as packed, unsigned
words.

10b Signed bytes Both 128-bit sources are treated as packed, signed bytes.

11b Signed words Both 128-bit sources are treated as packed, signed words.

Table 4-2 Aggregation Operation

Imm8[3:2
] Mode Comparison

00b Equal any The arithmetic comparison is “equal.”

01b Ranges Arithmetic comparison is “greater than or equal” between
even indexed bytes/words of reg and each byte/word of
reg/mem.

Arithmetic comparison is “less than or equal” between odd
indexed bytes/words of reg and each byte/word of reg/mem.

(reg/mem[m] >= reg[n] for n = even, reg/mem[m] <= reg[n]
for n = odd)

10b Equal each The arithmetic comparison is “equal.”

11b Equal ordered The arithmetic comparison is “equal.”

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 55

Instruction Set Reference, N-Z

See Section 4.1.6 for a description of the overrideIfDataInvalid() function used in
Table Table 4-3.

4.1.4 Polarity
IntRes1 may then be further modified by performing a 1’s compliment, according to the
value of the Imm8 Control Byte bit[4]. Optionally, a mask may be used such that only
those IntRes1 bits which correspond to “valid” reg/mem input elements are compli-
mented (note that the definition of a valid input element is dependant on the specific
opcode and is defined in each opcode’s description). The result of the possible negation
is referred to as IntRes2.

Table 4-3 Aggregation Operation

Mode Pseudocode

Equal any

(find characters from a set)

UpperBound = imm8[0] ? 7 : 15;

IntRes1 = 0;

For j = 0 to UpperBound, j++

For i = 0 to UpperBound, i++

IntRes1[j] OR= overrideIfDataInvalid(BoolRes[j,i])

Ranges

(find characters from ranges)

UpperBound = imm8[0] ? 7 : 15;

IntRes1 = 0;

For j = 0 to UpperBound, j++

For i = 0 to UpperBound, i+=2

IntRes1[j] OR= (overrideIfDataInvalid(BoolRes[j,i]) AND
overrideIfDataInvalid(BoolRes[j,i+1]))

Equal each

(string compare)

UpperBound = imm8[0] ? 7 : 15;

IntRes1 = 0;

For i = 0 to UpperBound, i++

IntRes1[i] = overrideIfDataInvalid(BoolRes[i,i])

Equal ordered

(substring search)

UpperBound = imm8[0] ? 7 :15;

IntRes1 = imm8[0] ? 0xFF : 0xFFFF

For j = 0 to UpperBound, j++

For i = 0 to UpperBound-j, k=j to UpperBound, k++, i++

IntRes1[j] AND= overrideIfDataInvalid(BoolRes[k,i])

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 56

Instruction Set Reference, N-Z

4.1.5 Output Selection

For PCMPESTRI/PCMPISTRI, the Imm8 Control Byte bit[6] is used to determine if the
index is of the least significant or most significant bit of IntRes2.

Specifically for PCMPESTRM/PCMPISTRM, the Imm8 Control Byte bit[6] is used to deter-
mine if the mask is a 16 (8) bit mask or a 128 bit byte/word mask.

4.1.6 Valid/Invalid Override of Comparisons
PCMPxSTRx instructions allow for the possibility that an end-of-string (EOS) situation
may occur within the 128-bit packed data value (see the instruction descriptions below
for details). Any data elements on either source that are determined to be past the EOS
are considered to be invalid, and the treatment of invalid data within a comparison pair
varies depending on the aggregation function being performed.

In general, the individual comparison result for each element pair BoolRes[i.j] can be
forced true or false if one or more elements in the pair are invalid. See Table Table 4-7.

Table 4-4 Polarity

Imm8[5:4] Operation Description

00b Positive Polarity (+) IntRes2 = IntRes1

01b Negative Polarity (-) IntRes2 = -1 XOR IntRes1

10b Masked (+) IntRes2 = IntRes1

11b Masked (-) IntRes2[i] = IntRes1[i] if reg/mem[i] invalid, else =
~IntRes1[i]

Table 4-5 Ouput Selection

Imm8[6
]

Operation Description

0b Least significant index The index returned to ECX is of the least significant set bit in
IntRes2.

1b Most significant index The index returned to ECX is of the most significant set bit in
IntRes2.

Table 4-6 Output Selection

Imm8[6] Operation Description

0b Bit mask IntRes2 is returned as the mask to the least significant bits of
XMM0 with zero extension to 128 bits.

1b Byte/word mask IntRes2 is expanded into a byte/word mask (based on imm8[1])
and placed in XMM0. The expansion is performed by replicating
each bit into all of the bits of the byte/word of the same index.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 57

Instruction Set Reference, N-Z

4.1.7 Summary of Im8 Control byte

Table 4-7 Comparison Result for Each Element Pair BoolRes[i.j]

xmm1
byte/ word

xmm2/
m128
byte/word

Imm8[3:2] =
00b
(equal any)

Imm8[3:2] =
01b
(ranges)

Imm8[3:2] =
10b
(equal each)

Imm8[3:2] = 11b
(equal ordered)

Invalid Invalid Force false Force false Force true Force true

Invalid Valid Force false Force false Force false Force true

Valid Invalid Force false Force false Force false Force false

Valid Valid Do not force Do not force Do not force Do not force

Table 4-8 Summary of Imm8 Control Byte

Imm8 Description

-------0b 128-bit sources treated as 16 packed bytes.

-------1b 128-bit sources treated as 8 packed words.

------0-b Packed bytes/words are unsigned.

------1-b Packed bytes/words are signed.

----00--b Mode is equal any.

----01--b Mode is ranges.

----10--b Mode is equal each.

----11--b Mode is equal ordered.

---0----b IntRes1 is unmodified.

---1----b IntRes1 is negated (1’s compliment).

--0-----b Negation of IntRes1 is for all 16 (8) bits.

--1-----b Negation of IntRes1 is masked by reg/mem validity.

-0------b Index of the least significant, set, bit is used (regardless of corresponding
input element validity).

IntRes2 is returned in least significant bits of XMM0.

-1------b Index of the most significant, set, bit is used (regardless of corresponding
input element validity).

Each bit of IntRes2 is expanded to byte/word.

0-------b This bit currently has no defined effect, should be 0.

1-------b This bit currently has no defined effect, should be 0.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 58

Instruction Set Reference, N-Z

4.1.8 Diagram Comparison and Aggregation Process

...

Figure 4-1 Operation of PCMPSTRx and PCMPESTRx

PCMP*STRM onlyPCMP*STRI only

String A (xmm1) String B (xmm2/mem)

Compare all pairs of
(Ai, Bj)

Determine end -of-
string and mark
invalid elements

PCMPESTR* only

EAX/RAX

EDX/RDX

Aggregation function

BoolRes[i,j]

Optional boolean
negation

IntRes1

Generate index

IntRes2

Generate mask

imm8[1:0] =
 00B: unsigned byte compares
 01B: unsigned word compares
 10B: signed byte compares
 11B: signed word compares

imm8[3:2] =
 00B: Equal any
 01B: Ranges
 10B: Equal each
 11B: Equal ordered

imm8[6:5] =
 x0B: don’t negate IntRes1
 01B: negate all bits of IntRes1
 11B: negate only bits of IntRes1
 corresponding to valid
 elements in String B

imm8[6] =
 0: Return zero-extended IntRes2
 1: expand IntRes2 to byte (word)
 mask

imm8[6] =
 0 : index encodes least signifi-
 cant true bit of IntRes 2
 1 : index encodes most signifi-
 cant true bit of IntRes 2

ECX(RCX) XMM0

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 59

Instruction Set Reference, N-Z

PCLMULQDQ - Carry-Less Multiplication Quadword

Instruction Operand Encoding

Description

Performs a carry-less multiplication of two quadwords, selected from the first source and
second source operand according to the value of the immediate byte. Bits 4 and 0 are
used to select which 64-bit half of each operand to use according to Table 4-10, other
bits of the immediate byte are ignored.

 The first source operand and the destination operand are the same and must be an XMM
register. The second source operand can be an XMM register or a 128-bit memory loca-
tion.

Compilers and assemblers may implement the following pseudo-op syntax to simply
programming and emit the required encoding for Imm8.

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

66 0F 3A 44 /r
ib

PCLMULQDQ
xmm1,
xmm2/m128,
imm8

A Valid Valid Carry-less multiplication of
one quadword of xmm1 by
one quadword of
xmm2/m128, stores the
128-bit result in xmm1. The
immediate is used to deter-
mine which quadwords of
xmm1 and xmm2/m128
should be used.

Op/En Operand 1 Operand2 Operand3 Operand4

A ModRM:reg (r, w) ModRM:r/m (r) NA NA

Table 4-10 PCLMULQDQ Quadword Selection of Immediate Byte

Imm[4] Imm[0] PCLMULQDQ Operation

0 0 CL_MUL(SRC21[63:0], SRC1[63:0])

NOTES:
1. SRC2 denotes the second source operand, which can be a register or memory; SRC1

denotes the first source and destination operand.

0 1 CL_MUL(SRC2[63:0], SRC1[127:64])

1 0 CL_MUL(SRC2[127:64], SRC1[63:0])

1 1 CL_MUL(SRC2[127:64], SRC1[127:64])

Table 4-11 Pseudo-Op and PCLMULQDQ Implementation

Pseudo-Op Imm8 Encoding

PCLMULLQLQDQ xmm1, xmm2 0000_0000B

PCLMULHQLQDQ xmm1, xmm2 0000_0001B

PCLMULLQHDQ xmm1, xmm2 0001_0000B

PCLMULHQHDQ xmm1, xmm2 0001_0001B

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 60

Instruction Set Reference, N-Z

Operation
PCLMULQDQ
IF (Imm8[0] = 0)

THEN
TEMP1 SRC1 [63:0];

ELSE
TEMP1 SRC1 [127:64];

FI
IF (Imm8[4] = 0)

THEN
TEMP2 SRC2 [63:0];

ELSE
TEMP2 SRC2 [127:64];

FI
For i = 0 to 63 {

TmpB [i] (TEMP1[0] and TEMP2[i]);
For j = 1 to i {

TmpB [i] TmpB [i] xor (TEMP1[j] and TEMP2[i - j])
}
DEST[i] TmpB[i];

}
For i = 64 to 126 {

TmpB [i] 0;
For j = i - 63 to 63 {

TmpB [i] TmpB [i] xor (TEMP1[j] and TEMP2[i - j])
}
DEST[i] TmpB[i];

}
DEST[127] 0;
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PCLMULQDQ __m128i _mm_clmulepi64_si128 (__m128i, __m128i, const int)

SIMD Floating-Point Exceptions

None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES,

FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary, regard-
less of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 61

Instruction Set Reference, N-Z

If CPUID.01H:ECX.PCLMULQDQ[bit 1] = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary, regard-

less of segment.

If any part of the operand lies outside the effective address space
from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.PCLMULQDQ[bit 1] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canon-

ical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regard-
less of segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.PCLMULQDQ[bit 1] = 0.

If the LOCK prefix is used.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 62

Instruction Set Reference, N-Z

PCMPISTRI — Packed Compare Implicit Length Strings, Return Index

Instruction Operand Encoding

Description

The instruction compares data from two strings based on the encoded value in the Imm8
Control Byte (see Section 4.1, “Imm8 Control Byte Operation for PCMPESTRI /
PCMPESTRM / PCMPISTRI / PCMPISTRM”), and generates an index stored to ECX.

Each string is represented by a single value. The value is an xmm (or possibly m128 for
the second operand) which contains the data elements of the string (byte or word data).
Each input byte/word is augmented with a valid/invalid tag. A byte/word is considered
valid only if it has a lower index than the least significant null byte/word. (The least
significant null byte/word is also considered invalid.)

The comparison and aggregation operations are performed according to the encoded
value of Imm8 bit fields (see Section 4.1). The index of the first (or last, according to
imm8[6]) set bit of IntRes2 is returned in ECX. If no bits are set in IntRes2, ECX is set
to 16 (8).

Note that the Arithmetic Flags are written in a non-standard manner in order to supply
the most relevant information:

CFlag – Reset if IntRes2 is equal to zero, set otherwise
ZFlag – Set if any byte/word of xmm2/mem128 is null, reset otherwise
SFlag – Set if any byte/word of xmm1 is null, reset otherwise
OFlag –IntRes2[0]
AFlag – Reset
PFlag – Reset

Effective Operand Size

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

66 0F 3A 63 /r
imm8

PCMPISTRI xmm1,
xmm2/m128,
imm8

A Valid Valid Perform a packed
comparison of string data
with implicit lengths,
generating an index, and
storing the result in ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r) ModRM:r/m (r) imm8 NA

Operating mode/size Operand1 Operand 2 Result

16 bit xmm xmm/m128 ECX

32 bit xmm xmm/m128 ECX

64 bit xmm xmm/m128 ECX

64 bit + REX.W xmm xmm/m128 RCX

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 63

Instruction Set Reference, N-Z

Intel C/C++ Compiler Intrinsic Equivalent For Returning Index

int _mm_cmpistri (__m128i a, __m128i b, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpistra (__m128i a, __m128i b, const int mode);
int _mm_cmpistrc (__m128i a, __m128i b, const int mode);
int _mm_cmpistro (__m128i a, __m128i b, const int mode);
int _mm_cmpistrs (__m128i a, __m128i b, const int mode);
int _mm_cmpistrz (__m128i a, __m128i b, const int mode);

SIMD Floating-Point Exceptions

N/A.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES,

FS or GS segments.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#SS(0) For an illegal address in the SS segment.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] is 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside the effective address space

from 0 to FFFFH.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] is 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 64

Instruction Set Reference, N-Z

#SS(0) If a memory address referencing the SS segment is in a non-canon-
ical form.

#PF (fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

PCMPISTRM — Packed Compare Implicit Length Strings, Return Mask

Instruction Operand Encoding

Description

The instruction compares data from two strings based on the encoded value in the imm8
byte (see Section 4.1, “Imm8 Control Byte Operation for PCMPESTRI / PCMPESTRM /
PCMPISTRI / PCMPISTRM”) generating a mask stored to XMM0.

Each string is represented by a single value. The value is an xmm (or possibly m128 for
the second operand) which contains the data elements of the string (byte or word data).
Each input byte/word is augmented with a valid/invalid tag. A byte/word is considered
valid only if it has a lower index than the least significant null byte/word. (The least
significant null byte/word is also considered invalid.)

The comparison and aggregation operation are performed according to the encoded
value of Imm8 bit fields (see Section 4.1). As defined by imm8[6], IntRes2 is then either
stored to the least significant bits of XMM0 (zero extended to 128 bits) or expanded into
a byte/word-mask and then stored to XMM0.

Note that the Arithmetic Flags are written in a non-standard manner in order to supply
the most relevant information:

CFlag – Reset if IntRes2 is equal to zero, set otherwise
ZFlag – Set if any byte/word of xmm2/mem128 is null, reset otherwise
SFlag – Set if any byte/word of xmm1 is null, reset otherwise
OFlag – IntRes2[0]
AFlag – Reset
PFlag – Reset

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

66 0F 3A 62 /r
imm8

PCMPISTRM
xmm1,
xmm2/m128,
imm8

A Valid Valid Perform a packed
comparison of string data
with implicit lengths,
generating a mask, and
storing the result in XMM0.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r) ModRM:r/m (r) imm8 NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 65

Instruction Set Reference, N-Z

Effective Operand Size

Intel C/C++ Compiler Intrinsic Equivalent For Returning Mask

__m128i _mm_cmpistrm (__m128i a, __m128i b, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpistra (__m128i a, __m128i b, const int mode);
int _mm_cmpistrc (__m128i a, __m128i b, const int mode);
int _mm_cmpistro (__m128i a, __m128i b, const int mode);
int _mm_cmpistrs (__m128i a, __m128i b, const int mode);
int _mm_cmpistrz (__m128i a, __m128i b, const int mode);

SIMD Floating-Point Exceptions

N/A.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES,

FS or GS segments.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#SS(0) For an illegal address in the SS segment

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] is 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside the effective address space

from 0 to FFFFH.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] is 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Operating mode/size Operand1 Operand 2 Result

16 bit xmm xmm/m128 XMM0

32 bit xmm xmm/m128 XMM0

64 bit xmm xmm/m128 XMM0

64 bit + REX.W xmm xmm/m128 XMM0

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 66

Instruction Set Reference, N-Z

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-canon-
ical form.

#PF (fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

...

PUSH—Push Word, Doubleword or Quadword Onto the Stack

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

FF /6 PUSH r/m16 A Valid Valid Push r/m16.

FF /6 PUSH r/m32 A N.E. Valid Push r/m32.

FF /6 PUSH r/m64 A Valid N.E. Push r/m64. Default
operand size 64-bits.

50+rw PUSH r16 B Valid Valid Push r16.

50+rd PUSH r32 B N.E. Valid Push r32.

50+rd PUSH r64 B Valid N.E. Push r64. Default operand
size 64-bits.

6A PUSH imm8 C Valid Valid Push sign-extended imm8.
Stack pointer is
decremented by the size of
stack pointer.

68 PUSH imm16 C Valid Valid Push sign-extended imm16.
Stack pointer is
decremented by the size of
stack pointer.

68 PUSH imm32 C Valid Valid Push sign-extended imm32.
Stack pointer is
decremented by the size of
stack pointer.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 67

Instruction Set Reference, N-Z

...

RET—Return from Procedure

...

Operation

...
(* Real-address mode or virtual-8086 mode *)
IF ((PE = 0) or (PE = 1 AND VM = 1)) and instruction = far return

THEN
IF OperandSize = 32

THEN
IF top 8 bytes of stack not within stack limits

THEN #SS(0); FI;
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)

ELSE (* OperandSize = 16 *)
IF top 4 bytes of stack not within stack limits

THEN #SS(0); FI;
tempEIP ← Pop();
tempEIP ← tempEIP AND 0000FFFFH;
IF tempEIP not within code segment limits

THEN #GP(0); FI;
EIP ← tempEIP;

0E PUSH CS D Invalid Valid Push CS.

16 PUSH SS D Invalid Valid Push SS.

1E PUSH DS D Invalid Valid Push DS.

06 PUSH ES D Invalid Valid Push ES.

0F A0 PUSH FS D Valid Valid Push FS and decrement
stack pointer by 16 bits.

0F A0 PUSH FS D N.E. Valid Push FS and decrement
stack pointer by 32 bits.

0F A0 PUSH FS D Valid N.E. Push FS. Default operand
size 64-bits. (66H override
causes 16-bit operation).

0F A8 PUSH GS D Valid Valid Push GS and decrement
stack pointer by 16 bits.

0F A8 PUSH GS D N.E. Valid Push GS and decrement
stack pointer by 32 bits.

0F A8 PUSH GS D Valid N.E. Push GS, default operand
size 64-bits. (66H override
causes 16-bit operation).

NOTES:
* See IA-32 Architecture Compatibility section below.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 68

Instruction Set Reference, N-Z

CS ← Pop(); (* 16-bit pop *)
FI;

IF instruction has immediate operand
THEN

SP ← SP + (SRC AND FFFFH); (* Release parameters from stack *)
FI;

FI;

...

SCAS/SCASB/SCASW/SCASD—Scan String

...

SCAS, SCASB, SCASW, SCASD, and SCASQ can be preceded by the REP prefix for block
comparisons of ECX bytes, words, doublewords, or quadwords. Often, however, these
instructions will be used in a LOOP construct that takes some action based on the setting
of status flags. See “REP/REPE/REPZ /REPNE/REPNZ—Repeat String Operation Prefix” in
this chapter for a description of the REP prefix.

...

STOS/STOSB/STOSW/STOSD/STOSQ—Store String

...

The STOS, STOSB, STOSW, STOSD, STOSQ instructions can be preceded by the REP
prefix for block loads of ECX bytes, words, or doublewords. More often, however, these
instructions are used within a LOOP construct because data needs to be moved into the
AL, AX, or EAX register before it can be stored. See “REP/REPE/REPZ /REPNE/REPNZ—
Repeat String Operation Prefix” in this chapter for a description of the REP prefix.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 69

Instruction Set Reference, N-Z

XRSTOR—Restore Processor Extended States

...

XSAVE—Save Processor Extended States

...

6. Updates to Chapter 5, Volume 2B

Change bars show changes to Chapter 5 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2B: Instruction Set Reference, N-Z.

--

...

INVEPT— Invalidate Translations Derived from EPT

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F AE /5 XRSTOR mem A Valid Valid Restore processor extended
states from memory. The
states are specified by
EDX:EAX

REX.W+ 0F AE
/5

XRSTOR64 mem A Valid N.E. Restore processor extended
states from memory. The
states are specified by
EDX:EAX

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F AE /4 XSAVE mem A Valid Valid Save processor extended
states to memory. The
states are specified by
EDX:EAX

REX.W+ 0F AE
/4

XSAVE64 mem A Valid N.E. Save processor extended
states to memory. The
states are specified by
EDX:EAX

Opcode Instruction Description

66 0F 38 80 INVEPT r64, m128 Invalidates EPT-derived entries in the TLBs and
paging-structure caches (in 64-bit mode)

66 0F 38 80 INVEPT r32, m128 Invalidates EPT-derived entries in the TLBs and
paging-structure caches (outside 64-bit mode)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 70

Instruction Set Reference, N-Z

Description

Invalidates mappings in the translation lookaside buffers (TLBs) and paging-structure
caches that were derived from extended page tables (EPT). (See Chapter 25,
“Support for Address Translation” in IA-32 Intel Architecture Software Developer’s
Manual, Volume 3B.) Invalidation is based on the INVEPT type specified in the register
operand and the INVEPT descriptor specified in the memory operand.

Outside IA-32e mode, the register operand is always 32 bits, regardless of the value of
CS.D. In 64-bit mode, the register operand has 64 bits; however, if bits 63:32 of the
register operand are not zero, INVEPT fails due to an attempt to use an unsupported
INVEPT type (see below).

The INVEPT types supported by a logical processors are reported in the
IA32_VMX_EPT_VPID_CAP MSR (see Appendix “VMX Capability Reporting Facility” in IA-
32 Intel Architecture Software Developer’s Manual, Volume 3B). There are two INVEPT
types currently defined:

• Single-context invalidation. If the INVEPT type is 1, the logical processor invalidates
all mappings associated with bits 51:12 of the EPT pointer (EPTP) specified in the
INVEPT descriptor. It may invalidate other mappings as well.

• Global invalidation: If the INVEPT type is 2, the logical processor invalidates
mappings associated with all EPTPs.

If an unsupported INVEPT type is specified, the instruction fails.

INVEPT invalidates all the specified mappings for the indicated EPTP(s) regardless of the
VPID and PCID values with which those mappings may be associated.

...

Operation

IF (not in VMX operation) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VM exit;

ELSIF CPL > 0
THEN #GP(0);
ELSE

INVEPT_TYPE ← value of register operand;
IF IA32_VMX_EPT_VPID_CAP MSR indicates that processor does not support INVEPT_TYPE

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE // INVEPT_TYPE must be 1 or 2

INVEPT_DESC ← value of memory operand;
EPTP ← INVEPT_DESC[63:0];
CASE INVEPT_TYPE OF

1: // single-context invalidation
IF VM entry with the “enable EPT“ VM execution control set to 1
would fail due to the EPTP value

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

Invalidate mappings associated with EPTP[51:12];
VMsucceed;

FI;
BREAK;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 71

Instruction Set Reference, N-Z

2: // global invalidation
Invalidate mappings associated with all EPTPs;
VMsucceed;
BREAK;

ESAC;
FI;

FI;

Flags Affected

See the operation section and Section 5.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand effective address is outside the CS, DS, ES,
FS, or GS segment limit.

If the DS, ES, FS, or GS register contains an unusable segment.

If the source operand is located in an execute-only code segment.

#PF(fault-code) If a page fault occurs in accessing the memory operand.

#SS(0) If the memory operand effective address is outside the SS segment
limit.

If the SS register contains an unusable segment.

#UD If not in VMX operation.

If the logical processor does not support EPT
(IA32_VMX_PROCBASED_CTLS2[33]=0).

If the logical processor supports EPT
(IA32_VMX_PROCBASED_CTLS2[33]=1) but does not support the
INVEPT instruction (IA32_VMX_EPT_VPID_CAP[20]=0).

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX

operation and the INVEPT instruction is not recognized outside VMX
operation.

Virtual-8086 Mode Exceptions
#UD The INVEPT instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The INVEPT instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand is in the CS, DS, ES, FS, or GS segments
and the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory operand.

#SS(0) If the memory operand is in the SS segment and the memory
address is in a non-canonical form.

#UD If not in VMX operation.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 72

Instruction Set Reference, N-Z

If the logical processor does not support EPT
(IA32_VMX_PROCBASED_CTLS2[33]=0).

If the logical processor supports EPT
(IA32_VMX_PROCBASED_CTLS2[33]=1) but does not support the
INVEPT instruction (IA32_VMX_EPT_VPID_CAP[20]=0).

...

INVVPID— Invalidate Translations Based on VPID

Description

Invalidates mappings in the translation lookaside buffers (TLBs) and paging-structure
caches based on virtual-processor identifier (VPID). (See Chapter 25, “Support for
Address Translation” in IA-32 Intel Architecture Software Developer’s Manual, Volume
3B.) Invalidation is based on the INVVPID type specified in the register operand and
the INVVPID descriptor specified in the memory operand.

Outside IA-32e mode, the register operand is always 32 bits, regardless of the value of
CS.D. In 64-bit mode, the register operand has 64 bits; however, if bits 63:32 of the
register operand are not zero, INVVPID fails due to an attempt to use an unsupported
INVVPID type (see below).

The INVVPID types supported by a logical processors are reported in the
IA32_VMX_EPT_VPID_CAP MSR (see Appendix “VMX Capability Reporting Facility” in IA-
32 Intel Architecture Software Developer’s Manual, Volume 3B). There are four INVVPID
types currently defined:

• Individual-address invalidation: If the INVVPID type is 0, the logical processor
invalidates mappings for a single linear address and tagged with the VPID specified
in the INVVPID descriptor. In some cases, it may invalidate mappings for other linear
addresses (or with other VPIDs) as well.

• Single-context invalidation: If the INVVPID type is 1, the logical processor
invalidates all mappings tagged with the VPID specified in the INVVPID descriptor. In
some cases, it may invalidate mappings for other VPIDs as well.

• All-contexts invalidation: If the INVVPID type is 2, the logical processor invalidates
all mappings tagged with all VPIDs except VPID 0000H. In some cases, it may
invalidate translations with VPID 0000H as well.

• Single-context invalidation, retaining global translations: If the INVVPID type is 3,
the logical processor invalidates all mappings tagged with the VPID specified in the
INVVPID descriptor except global translations. In some cases, it may invalidate
global translations (and mappings with other VPIDs) as well. See the “Caching
Translation Information” section in Chapter 4 of the IA-32 Intel Architecture
Software Developer’s Manual, Volumes 3A for information about global translations.

If an unsupported INVVPID type is specified, the instruction fails.

INVVPID invalidates all the specified mappings for the indicated VPID(s) regardless of
the EPTP and PCID values with which those mappings may be associated.

Opcode Instruction Description

66 0F 38 81 INVVPID r64, m128 Invalidates entries in the TLBs and paging-structure
caches based on VPID (in 64-bit mode)

66 0F 38 81 INVVPID r32, m128 Invalidates entries in the TLBs and paging-structure
caches based on VPID (outside 64-bit mode)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 73

Instruction Set Reference, N-Z

...

Operation

IF (not in VMX operation) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VM exit;

ELSIF CPL > 0
THEN #GP(0);
ELSE

INVVPID_TYPE ← value of register operand;
IF IA32_VMX_EPT_VPID_CAP MSR indicates that processor does not support
INVVPID_TYPE

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE // INVVPID_TYPE must be in the range 0–3

INVVPID_DESC ← value of memory operand;
IF INVVPID_DESC[63:16] ≠ 0

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

CASE INVVPID_TYPE OF
0: // individual-address invalidation

VPID ← INVVPID_DESC[15:0];
IF VPID = 0

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

GL_ADDR ← INVVPID_DESC[127:64];
IF (GL_ADDR is not in a canonical form)

THEN
VMfail(Invalid operand to INVEPT/INVVPID);

ELSE
Invalidate mappings for GL_ADDR tagged with

VPID;
VMsucceed;

FI;
FI;
BREAK;

1: // single-context invalidation
VPID_CTX ← INVVPID_DESC[15:0];
IF VPID = 0

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

Invalidate all mappings tagged with VPID;
VMsucceed;

FI;
BREAK;

2: // all-context invalidation
Invalidate all mappings tagged with all non-zero VPIDs;
VMsucceed;
BREAK;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 74

Instruction Set Reference, N-Z

3: // single-context invalidation retaining globals
VPID ← INVVPID_DESC[15:0];
IF VPID = 0

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

Invalidate all mappings tagged with VPID except global
translations;

VMsucceed;
FI;
BREAK;

ESAC;
FI;

FI;
FI;

Flags Affected

See the operation section and Section 5.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand effective address is outside the CS, DS, ES,
FS, or GS segment limit.

If the DS, ES, FS, or GS register contains an unusable segment.

If the source operand is located in an execute-only code segment.

#PF(fault-code) If a page fault occurs in accessing the memory operand.

#SS(0) If the memory operand effective address is outside the SS segment
limit.

If the SS register contains an unusable segment.

#UD If not in VMX operation.

If the logical processor does not support VPIDs
(IA32_VMX_PROCBASED_CTLS2[37]=0).

If the logical processor supports VPIDs
(IA32_VMX_PROCBASED_CTLS2[37]=1) but does not support the
INVVPID instruction (IA32_VMX_EPT_VPID_CAP[32]=0).

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX

operation and the INVVPID instruction is not recognized outside
VMX operation.

Virtual-8086 Mode Exceptions
#UD The INVVPID instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The INVVPID instruction is not recognized in compatibility mode.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 75

Instruction Set Reference, N-Z

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand is in the CS, DS, ES, FS, or GS segments
and the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory operand.

#SS(0) If the memory destination operand is in the SS segment and the
memory address is in a non-canonical form.

#UD If not in VMX operation.

If the logical processor does not support VPIDs
(IA32_VMX_PROCBASED_CTLS2[37]=0).

If the logical processor supports VPIDs
(IA32_VMX_PROCBASED_CTLS2[37]=1) but does not support the
INVVPID instruction (IA32_VMX_EPT_VPID_CAP[32]=0).

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 76

Instruction Set Reference, N-Z

5.4 VM INSTRUCTION ERROR NUMBERS
For certain error conditions, the VM-instruction error field is loaded with an error number
to indicate the source of the error. Table Table 5-1 lists VM-instruction error numbers.

Table 5-1 VM-Instruction Error Numbers
Error
Number Description

1 VMCALL executed in VMX root operation

2 VMCLEAR with invalid physical address

3 VMCLEAR with VMXON pointer

4 VMLAUNCH with non-clear VMCS

5 VMRESUME with non-launched VMCS

6 VMRESUME after VMXOFF (VMXOFF and VMXON between VMLAUNCH and VMRESUME)1

NOTES:
1. Earlier versions of this manual described this error as “VMRESUME with a corrupted VMCS”.

7 VM entry with invalid control field(s)2,3

2. VM-entry checks on control fields and host-state fields may be performed in any order. Thus, an
indication by error number of one cause does not imply that there are not also other errors. Differ-
ent processors may give different error numbers for the same VMCS.

8 VM entry with invalid host-state field(s)2

9 VMPTRLD with invalid physical address

10 VMPTRLD with VMXON pointer

11 VMPTRLD with incorrect VMCS revision identifier

12 VMREAD/VMWRITE from/to unsupported VMCS component

13 VMWRITE to read-only VMCS component

15 VMXON executed in VMX root operation

16 VM entry with invalid executive-VMCS pointer2

17 VM entry with non-launched executive VMCS2

18 VM entry with executive-VMCS pointer not VMXON pointer (when attempting to
deactivate the dual-monitor treatment of SMIs and SMM)2

19 VMCALL with non-clear VMCS (when attempting to activate the dual-monitor treatment
of SMIs and SMM)

20 VMCALL with invalid VM-exit control fields

22 VMCALL with incorrect MSEG revision identifier (when attempting to activate the dual-
monitor treatment of SMIs and SMM)

23 VMXOFF under dual-monitor treatment of SMIs and SMM

24 VMCALL with invalid SMM-monitor features (when attempting to activate the dual-
monitor treatment of SMIs and SMM)

25 VM entry with invalid VM-execution control fields in executive VMCS (when attempting to
return from SMM)2,3

26 VM entry with events blocked by MOV SS.

28 Invalid operand to INVEPT/INVVPID.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 77

Instruction Set Reference, N-Z

...

7. Updates to Appendix A, Volume 2B

Change bars show changes to Appendix A of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2B: Instruction Set Reference, N-Z.

--

...

A.2 KEY TO ABBREVIATIONS
Operands are identified by a two-character code of the form Zz. The first character, an
uppercase letter, specifies the addressing method; the second character, a lowercase
letter, specifies the type of operand.

A.2.1 Codes for Addressing Method
The following abbreviations are used to document addressing methods:

A Direct address: the instruction has no ModR/M byte; the address of the operand
is encoded in the instruction. No base register, index register, or scaling factor
can be applied (for example, far JMP (EA)).

C The reg field of the ModR/M byte selects a control register (for example, MOV
(0F20, 0F22)).

D The reg field of the ModR/M byte selects a debug register (for example,
MOV (0F21,0F23)).

E A ModR/M byte follows the opcode and specifies the operand. The operand is
either a general-purpose register or a memory address. If it is a memory
address, the address is computed from a segment register and any of the
following values: a base register, an index register, a scaling factor, a displace-
ment.

F EFLAGS/RFLAGS Register.

G The reg field of the ModR/M byte selects a general register (for example, AX
(000)).

I Immediate data: the operand value is encoded in subsequent bytes of the
instruction.

J The instruction contains a relative offset to be added to the instruction pointer
register (for example, JMP (0E9), LOOP).

M The ModR/M byte may refer only to memory (for example, BOUND, LES, LDS,
LSS, LFS, LGS, CMPXCHG8B).

N The R/M field of the ModR/M byte selects a packed-quadword, MMX technology
register.

O The instruction has no ModR/M byte. The offset of the operand is coded as a
word or double word (depending on address size attribute) in the instruction. No

3. Error number 7 is not used for VM entries that return from SMM that fail due to invalid
VM-execution control fields in the executive VMCS. Error number 25 is used for these cases.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 78

Instruction Set Reference, N-Z

base register, index register, or scaling factor can be applied (for example, MOV
(A0–A3)).

P The reg field of the ModR/M byte selects a packed quadword MMX technology
register.

Q A ModR/M byte follows the opcode and specifies the operand. The operand is
either an MMX technology register or a memory address. If it is a memory
address, the address is computed from a segment register and any of the
following values: a base register, an index register, a scaling factor, and a
displacement.

R The R/M field of the ModR/M byte may refer only to a general register (for
example, MOV (0F20-0F23)).

S The reg field of the ModR/M byte selects a segment register (for example, MOV
(8C,8E)).

U The R/M field of the ModR/M byte selects a 128-bit XMM register.

V The reg field of the ModR/M byte selects a 128-bit XMM register.

W A ModR/M byte follows the opcode and specifies the operand. The operand is
either a 128-bit XMM register or a memory address. If it is a memory address,
the address is computed from a segment register and any of the following
values: a base register, an index register, a scaling factor, and a displacement.

X Memory addressed by the DS:rSI register pair (for example, MOVS, CMPS,
OUTS, or LODS).

Y Memory addressed by the ES:rDI register pair (for example, MOVS, CMPS, INS,
STOS, or SCAS).

A.2.2 Codes for Operand Type
The following abbreviations are used to document operand types:

a Two one-word operands in memory or two double-word operands in memory,
depending on operand-size attribute (used only by the BOUND instruction).

b Byte, regardless of operand-size attribute.

c Byte or word, depending on operand-size attribute.

d Doubleword, regardless of operand-size attribute.

dq Double-quadword, regardless of operand-size attribute.

p 32-bit, 48-bit, or 80-bit pointer, depending on operand-size attribute.

pd 128-bit packed double-precision floating-point data.

pi Quadword MMX technology register (for example: mm0).

ps 128-bit packed single-precision floating-point data.

q Quadword, regardless of operand-size attribute.

s 6-byte or 10-byte pseudo-descriptor.

sd Scalar element of a 128-bit double-precision floating data.

ss Scalar element of a 128-bit single-precision floating data.

si Doubleword integer register (for example: eax).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 79

Instruction Set Reference, N-Z

v Word, doubleword or quadword (in 64-bit mode), depending on operand-size
attribute.

w Word, regardless of operand-size attribute.

y Doubleword or quadword (in 64-bit mode), depending on operand-size
attribute.

z Word for 16-bit operand-size or doubleword for 32 or 64-bit operand-size.

...

A.2.4.1 One-Byte Opcode Instructions
The opcode map for 1-byte opcodes is shown in Table Table A-2. The opcode map for 1-
byte opcodes is arranged by row (the least-significant 4 bits of the hexadecimal value)
and column (the most-significant 4 bits of the hexadecimal value). Each entry in the
table lists one of the following types of opcodes:

• Instruction mnemonics and operand types using the notations listed in Section A.2

• Opcodes used as an instruction prefix

For each entry in the opcode map that corresponds to an instruction, the rules for inter-
preting the byte following the primary opcode fall into one of the following cases:

• A ModR/M byte is required and is interpreted according to the abbreviations listed in
Section A.1 and Chapter 2, “Instruction Format,” of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2A. Operand types are listed according
to notations listed in Section A.2.

• A ModR/M byte is required and includes an opcode extension in the reg field in the
ModR/M byte. Use Table Table A-6 when interpreting the ModR/M byte.

• Use of the ModR/M byte is reserved or undefined. This applies to entries that
represent an instruction prefix or entries for instructions without operands that use
ModR/M (for example: 60H, PUSHA; 06H, PUSH ES).

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 80

Instruction Set Reference, N-Z

Table A-2 One-byte Opcode Map: (00H — F7H) *

0 1 2 3 4 5 6 7

0 ADD PUSH
ESi64

POP
ESi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

1 ADC PUSH
SSi64

POP
SSi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

2 AND SEG=ES
(Prefix)

DAAi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

3 XOR SEG=SS
(Prefix)

AAAi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

4 INCi64 general register / REXo64 Prefixes

eAX
REX

eCX
REX.B

eDX
REX.X

eBX
REX.XB

eSP
REX.R

eBP
REX.RB

eSI
REX.RX

eDI
REX.RXB

5 PUSHd64 general register

rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15

6 PUSHAi64/
PUSHADi64

POPAi64/
POPADi64

BOUNDi64

Gv, Ma
ARPLi64

Ew, Gw
MOVSXDo64

Gv, Ev

SEG=FS
(Prefix)

SEG=GS
(Prefix)

Operand
Size

(Prefix)

Address
Size

(Prefix)

7 Jccf64, Jb - Short-displacement jump on condition

O NO B/NAE/C NB/AE/NC Z/E NZ/NE BE/NA NBE/A

8 Immediate Grp 11A TEST XCHG

Eb, Ib Ev, Iz Eb, Ibi64 Ev, Ib Eb, Gb Ev, Gv Eb, Gb Ev, Gv

9 NOP
PAUSE(F3)

XCHG r8, rAX

XCHG word, double-word or quad-word register with rAX

rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15

A MOV MOVS/B
Xb, Yb

MOVS/W/D/Q
Xv, Yv

CMPS/B
Xb, Yb

CMPS/W/D
Xv, YvAL, Ob rAX, Ov Ob, AL Ov, rAX

B MOV immediate byte into byte register

AL/R8L, Ib CL/R9L, Ib DL/R10L, Ib BL/R11L, Ib AH/R12L, Ib CH/R13L, Ib DH/R14L, Ib BH/R15L, Ib

C Shift Grp 21A RETNf64

Iw
RETNf64 LESi64

Gz, Mp
LDSi64

Gz, Mp
Grp 111A - MOV

Eb, Ib Ev, Ib Eb, Ib Ev, Iz

D Shift Grp 21A AAMi64

Ib
AADi64

Ib
XLAT/
XLATB Eb, 1 Ev, 1 Eb, CL Ev, CL

E LOOPNEf64/
LOOPNZf64

Jb

LOOPEf64/
LOOPZf64

Jb

LOOPf64

Jb
JrCXZf64/

Jb
IN OUT

AL, Ib eAX, Ib Ib, AL Ib, eAX

F LOCK
(Prefix)

REPNE

(Prefix)

REP/REPE

(Prefix)

HLT CMC Unary Grp 31A

Eb Ev

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 81

Instruction Set Reference, N-Z

Table A-2. One-byte Opcode Map: (08H — FFH) *

8 9 A B C D E F

0 OR PUSH
CSi64

2-byte
escape

(Table A-3) Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

1 SBB PUSH
DSi64

POP
DSi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

2 SUB SEG=CS
(Prefix)

DASi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

3 CMP SEG=DS
(Prefix)

AASi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

4 DECi64 general register / REXo64 Prefixes

eAX
REX.W

eCX
REX.WB

eDX
REX.WX

eBX
REX.WXB

eSP
REX.WR

eBP
REX.WRB

eSI
REX.WRX

eDI
REX.WRXB

5 POPd64 into general register

rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15

6 PUSHd64

Iz
IMUL

Gv, Ev, Iz
PUSHd64

Ib
IMUL

Gv, Ev, Ib
INS/
INSB

Yb, DX

INS/
INSW/
INSD

Yz, DX

OUTS/
OUTSB
DX, Xb

OUTS/
OUTSW/
OUTSD
DX, Xz

7 Jccf64, Jb- Short displacement jump on condition

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

8 MOV MOV
Ev, Sw

LEA
Gv, M

MOV
Sw, Ew

Grp 1A1A
POPd64 EvEb, Gb Ev, Gv Gb, Eb Gv, Ev

9 CBW/
CWDE/
CDQE

CWD/
CDQ/
CQO

CALLFi64

Ap
FWAIT/
WAIT

PUSHF/D/Q
d64/
Fv

POPF/D/Q
d64/
Fv

SAHF LAHF

A TEST STOS/B
Yb, AL

STOS/W/D/Q
Yv, rAX

LODS/B
AL, Xb

LODS/W/D/Q
rAX, Xv

SCAS/B
AL, Yb

SCAS/W/D/Q
rAX, XvAL, Ib rAX, Iz

B MOV immediate word or double into word, double, or quad register

rAX/r8, Iv rCX/r9, Iv rDX/r10, Iv rBX/r11, Iv rSP/r12, Iv rBP/r13, Iv rSI/r14, Iv rDI/r15 , Iv

C ENTER LEAVEd64 RETF RETF INT 3 INT INTOi64 IRET/D/Q

Iw, Ib Iw Ib

D ESC (Escape to coprocessor instruction set)

E CALLf64 JMP IN OUT

Jz nearf64

Jz
fari64

AP
shortf64

Jb
AL, DX eAX, DX DX, AL DX, eAX

F CLC STC CLI STI CLD STD INC/DEC INC/DEC

Grp 41A Grp 51A

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 82

Instruction Set Reference, N-Z

Table A-3 Two-byte Opcode Map: 00H — 77H (First Byte is 0FH) *

pfx 0 1 2 3 4 5 6 7

0
Grp 61A Grp 71A LAR

Gv, Ew
LSL

Gv, Ew
 SYSCALLo64 CLTS SYSRETo64

1

movups movups movlps
Vq, Mq
movhlps
Vq, Uq

movlps
Mq, Vq

unpcklps
Vps, Wq

unpckhps
Vps, Wq

movhps
Vq, Mq
movlhps
Vq, Uq

movhps
Mq, Vq

66 movupd movupd
Wpd,Vpd

movlpd
Vq, Mq

movlpd
Mq, Vq

unpcklpd unpckhpd movhpd
Vq, Mq

movhpd
Mq, Vq

F3 movss
Vss, Wss

movss
Wss, Vss

movsldup movshdup

F2 movsd
Vsd, Wsd

movsd
Vsd, Wsd

movddup

2 2

MOV
Rd, Cd

MOV
Rd, Dd

MOV
Cd, Rd

MOV
Dd, Rd

3 3
WRMSR RDTSC RDMSR RDPMC SYSENTER SYSEXIT GETSEC

4 4
CMOVcc, (Gv, Ev) - Conditional Move

O NO B/C/NAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

5

movmskps
Gy, U

sqrtps rsqrtps rcpps andps
Vps, Wps

andnps
Vps, Wps

orps
Vps, Wps

xorps
Vps, Wps

66 movmskpd
Gy,U

sqrtpd
Wpd,Vpd

andpd
Wpd, Vpd

andnpd
Wpd, Vpd

orpd
Wpd, Vpd

xorpd
Wpd, Vpd

F3 sqrtss
Vss, Wss

rsqrtss
Vss, Wss

rcpss
Vss, Wss

F2 sqrtsd
Vsd, Wsd

6

punpcklbw
Pq, Qd

punpcklwd
Pq, Qd

punpckldq
Pq, Qd

packsswb
Pq, Qq

pcmpgtb
Pq, Qq

pcmpgtw
Pq, Qq

pcmpgtd
Pq, Qq

packuswb
Pq, Qq

66 punpcklbw
Vdq, Wdq

punpcklwd
Vdq, Wdq

punpckldq
Vdq, Wdq

packsswb
Vdq, Wdq

pcmpgtb
Vdq, Wdq

pcmpgtw
Vdq, Wdq

pcmpgtd
Vdq, Wdq

packuswb
Vdq, Wdq

F3

7

pshufw
Pq, Qq, Ib

(Grp 121A) (Grp 131A) (Grp 141A) pcmpeqb
Pq, Qq

pcmpeqw
Pq, Qq

pcmpeqd
Pq, Qq

emms

66 pshufd
Vdq,Wdq,Ib

pcmpeqb
Vdq, Wdq

pcmpeqw
Vdq, Wdq

pcmpeqd
Vdq, Wdq

F3 pshufhw
Vdq,Wdq,Ib

F2 pshuflw
Vdq,Wdq,Ib

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 83

Instruction Set Reference, N-Z

Table A-3. Two-byte Opcode Map: 08H — 7FH (First Byte is 0FH) *

pfx 8 9 A B C D E F

0
INVD WBINVD 2-byte Illegal

Opcodes
UD21B

 NOP Ev

1

Prefetch1C

(Grp 161A)
NOP Ev

2

movaps
Vps, Wps

movaps
Wps, Vps

cvtpi2ps
Vps, Qpi

movntps
Mps, Vps

cvttps2pi
Ppi, Wps

cvtps2pi
Ppi, Wps

ucomiss
Vss, Wss

comiss
Vss, Wss

66 movapd
Vpd, Wpd

movapd
Wpd,Vpd

cvtpi2pd
Vpd, Qpi

movntpd
Mpd, Vpd

cvttpd2pi
Ppi, Wpd

cvtpd2pi
Qpi, Wpd

ucomisd
Vsd, Wsd

comisd
Vsd, Wsd

F3 cvtsi2ss
Vss, Ey

cvttss2si
Gy, Wss

cvtss2si
Gy, Wss

F2 cvtsi2sd
Vsd, Ey

cvttsd2si
Gy, Wsd

cvtsd2si
Gy, Wsd

3 3
3-byte escape

(Table A-4)
3-byte escape

(Table A-5)

4 4
CMOVcc(Gv, Ev) - Conditional Move

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

5

addps
Vps, Wps

mulps
Vps, Wps

cvtps2pd cvtdq2ps subps
Vps, Wps

minps
Vps, Wps

divps
Vps, Wps

maxps
Vps, Wps

66 addpd
Vpd, Wpd

mulpd
Vpd, Wpd

cvtpd2ps
Vps, Wpd

cvtps2dq
Vdq, Wps

subpd
Vpd, Wpd

minpd
Vpd, Wpd

divpd
Vpd, Wpd

maxpd
Vpd, Wpd

F3 addss
Vss, Wss

mulss
Vss, Wss

cvtss2sd
Vsd, Wss

cvttps2dq
Vdq, Wps

subss
Vss, Wss

minss
Vss, Wss

divss
Vss, Wss

maxss
Vss, Wss

F2 addsd
Vsd, Wsd

mulsd
Vsd, Wsd

cvtsd2ss
Vss, Wsd

subsd
Vsd, Wsd

minsd
Vsd, Wsd

divsd
Vsd, Wsd

maxsd
Vsd, Wsd

6

punpckhbw
Pq, Qd

punpckhwd
Pq, Qd

punpckhdq
Pq, Qd

packssdw
Pq, Qd

movd/q
Pd, Ey

movq
Pq, Qq

66 punpckhbw
Vdq, Wdq

punpckhwd
Vdq, Wdq

punpckhdq
Vdq, Wdq

packssdw
Vdq, Wdq

punpcklqdq
Vdq, Wdq

punpckhqdq
Vdq, Wdq

movd/q
Vy, Ey

movdqa

F3 movdqu

7

VMREAD
Ey, Gy

VMWRITE
Gy, Ey

movd/q
Ey, Pd

movq
Qq, Pq

66 haddpd
Vpd, Wpd

hsubpd
Vpd, Wpd

movd/q
Ey, Vy

movdqa

F3 movq
Vq, Wq

movdqu

F2 haddps
Vps, Wps

hsubps
Vps, Wps

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 84

Instruction Set Reference, N-Z

Table A-3. Two-byte Opcode Map: 80H — F7H (First Byte is 0FH) *

pfx 0 1 2 3 4 5 6 7

8
Jccf64, Jz - Long-displacement jump on condition

O NO B/CNAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

9
SETcc, Eb - Byte Set on condition

O NO B/C/NAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

A
PUSHd64

FS
POPd64

FS
CPUID BT

Ev, Gv
SHLD

Ev, Gv, Ib
SHLD

Ev, Gv, CL

B

CMPXCHG LSS
Gv, Mp

BTR
Ev, Gv

LFS
Gv, Mp

LGS
Gv, Mp

MOVZX

Eb, Gb Ev, Gv Gv, Eb Gv, Ew

C

XADD
Eb, Gb

XADD
Ev, Gv

cmpps
Vps,Wps,Ib

movnti
My, Gy

pinsrw
Pq,Ry/Mw,Ib

pextrw
Gd, Nq, Ib

shufps
Vps,Wps,Ib

Grp 91A

66 cmppd
Vpd,Wpd,Ib

pinsrw
Vdq,Ry/Mw,Ib

pextrw
Gd, Udq, Ib

shufpd
Vpd,Wpd,Ib

F3 cmpss
Vss,Wss,Ib

F2 cmpsd
Vsd,Wsd,Ib

D

psrlw
Pq, Qq

psrld
Pq, Qq

psrlq
Pq, Qq

paddq
Pq, Qq

pmullw
Pq, Qq

pmovmskb
Gd, Nq

66 addsubpd
Vpd, Wpd

psrlw
Vdq, Wdq

psrld
Vdq, Wdq

psrlq
Vdq, Wdq

paddq
Vdq, Wdq

pmullw
Vdq, Wdq

movq
Wq, Vq

pmovmskb Gd,
Udq

F3 movq2dq
Vdq, Nq

F2 addsubps
Vps, Wps

movdq2q
Pq, Uq

E

pavgb
Pq, Qq

psraw
Pq, Qq

psrad
Pq, Qq

pavgw
Pq, Qq

pmulhuw
Pq, Qq

pmulhw
Pq, Qq

movntq
Mq, Pq

66 pavgb
Vdq, Wdq

psraw
Vdq, Wdq

psrad
Vdq, Wdq

pavgw
Vdq, Wdq

pmulhuw
Vdq, Wdq

pmulhw
Vdq, Wdq

cvttpd2dq movntdq

F3 cvtdq2pd

F2 cvtpd2dq

F

psllw
Pq, Qq

pslld
Pq, Qq

psllq
Pq, Qq

pmuludq
Pq, Qq

pmaddwd
Pq, Qq

psadbw
Pq, Qq

maskmovq
Pq, Nq

66 psllw
Vdq, Wdq

pslld
Vdq, Wdq

psllq
Vdq, Wdq

pmuludq
Vdq, Wdq

pmaddwd Vdq,
Wdq

psadbw
Vdq, Wdq

maskmovdqu
Vdq, Udq

F2 lddqu

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 85

Instruction Set Reference, N-Z

Table A-3. Two-byte Opcode Map: 88H — FFH (First Byte is 0FH) *

pfx 8 9 A B C D E F

8
Jccf64, Jz - Long-displacement jump on condition

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

9
SETcc, Eb - Byte Set on condition

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

A PUSHd64

GS
POPd64

GS
RSM BTS

Ev, Gv
SHRD

Ev, Gv, Ib
SHRD

Ev, Gv, CL
(Grp 151A)1C IMUL

Gv, Ev

B

JMPE
(reserved for

emulator on IPF)

Grp 101A

Invalid
Opcode1B

Grp 81A

Ev, Ib
BTC

Ev, Gv
BSF

Gv, Ev
BSR

Gv, Ev
MOVSX

Gv, Eb Gv, Ew

F3 POPCNT Gv,
Ev

C

BSWAP

RAX/EAX/
R8/R8D

RCX/ECX/
R9/R9D

RDX/EDX/
R10/R10D

RBX/EBX/
R11/R11D

RSP/ESP/
R12/R12D

RBP/EBP/
R13/R13D

RSI/ESI/
R14/R14D

RDI/EDI/
R15/R15D

D

psubusb
Pq, Qq

psubusw
Pq, Qq

pminub
Pq, Qq

pand
Pq, Qq

paddusb
Pq, Qq

paddusw
Pq, Qq

pmaxub
Pq, Qq

pandn
Pq, Qq

66 psubusb
Vdq, Wdq

psubusw
Vdq, Wdq

pminub
Vdq, Wdq

pand
Vdq, Wdq

paddusb
Vdq, Wdq

paddusw
Vdq, Wdq

pmaxub
Vdq, Wdq

pandn
Vdq, Wdq

F3

F2

E

psubsb
Pq, Qq

psubsw
Pq, Qq

pminsw
Pq, Qq

por
Pq, Qq

paddsb
Pq, Qq

paddsw
Pq, Qq

pmaxsw
Pq, Qq

pxor
Pq, Qq

66 psubsb
Vdq, Wdq

psubsw
Vdq, Wdq

pminsw
Vdq, Wdq

por
Vdq, Wdq

paddsb
Vdq, Wdq

paddsw
Vdq, Wdq

pmaxsw
Vdq, Wdq

pxor
Vdq, Wdq

F3

F2

F

psubb
Pq, Qq

psubw
Pq, Qq

psubd
Pq, Qq

psubq
Pq, Qq

paddb
Pq, Qq

paddw
Pq, Qq

paddd
Pq, Qq

66 psubb
Vdq, Wdq

psubw
Vdq, Wdq

psubd
Vdq, Wdq

psubq
Vdq, Wdq

paddb
Vdq, Wdq

paddw
Vdq, Wdq

paddd
Vdq, Wdq

F2

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of unde-

fined or reserved locations.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 86

Instruction Set Reference, N-Z

Table A-4 Three-byte Opcode Map: 00H — F7H (First Two Bytes are 0F 38H) *

pfx 0 1 2 3 4 5 6 7

0

pshufb
Pq, Qq

phaddw
Pq, Qq

phaddd
Pq, Qq

phaddsw
Pq, Qq

pmaddubsw
Pq, Qq

phsubw
Pq, Qq

phsubd
Pq, Qq

phsubsw
Pq, Qq

66 pshufb
Vdq, Wdq

phaddw
Vdq, Wdq

phaddd
Vdq, Wdq

phaddsw
Vdq, Wdq

pmaddubsw
Vdq, Wdq

phsubw
Vdq, Wdq

phsubd
Vdq, Wdq

phsubsw
Vdq, Wdq

1 66

pblendvb
Vdq, Wdq

blendvps blendvpd

ptest

2 66 pmovsxbw Vdq,
Udq/Mq

pmovsxbd Vdq,
Udq/Md

pmovsxbq Vdq,
Udq/Mw

pmovsxwd Vdq,
Udq/Mq

pmovsxwq Vdq,
Udq/Md

pmovsxdq Vdq,
Udq/Mq

3 66 pmovzxbw Vdq,
Udq/Mq

pmovzxbd Vdq,
Udq/Md

pmovzxbq Vdq,
Udq/Mw

pmovzxwd Vdq,
Udq/Mq

pmovzxwq Vdq,
Udq/Md

pmovzxdq Vdq,
Udq/Mq

pcmpgtq Vdq,
Wdq

4 66 pmulld
Vdq, Wdq

phminposuw
Vdq, Wdq

5
6
7

8 66 INVEPT
Gy, Mdq

INVVPID
Gy, Mdq

9
A
B
C

D

E

F

MOVBE
Gy, My

MOVBE
My, Gy

66 MOVBE
Gw, Mw

MOVBE
Mw, Gw

F3

F2 CRC32
Gd, Eb

CRC32
Gd, Ey

66 &
F2

CRC32
Gd, Eb

CRC32
Gd, Ew

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 87

Instruction Set Reference, N-Z

Table A-4. Three-byte Opcode Map: 08H — FFH (First Two Bytes are 0F 38H) *

pfx 8 9 A B C D E F

0

psignb
Pq, Qq

psignw
Pq, Qq

psignd
Pq, Qq

pmulhrsw
Pq, Qq

66 psignb
Vdq, Wdq

psignw
Vdq, Wdq

psignd
Vdq, Wdq

pmulhrsw Vdq,
Wdq

1

pabsb
Pq, Qq

pabsw
Pq, Qq

pabsd
Pq, Qq

66 pabsb
Vdq, Wdq

pabsw
Vdq, Wdq

pabsd
Vdq, Wdq

2 66 pmuldq
Vdq, Wdq

pcmpeqq Vdq,
Wdq

movntdqa
Vdq, Mdq

packusdw Vdq,
Wdq

3 66 pminsb
Vdq, Wdq

pminsd
Vdq, Wdq

pminuw
Vdq, Wdq

pminud
Vdq, Wdq

pmaxsb
Vdq, Wdq

pmaxsd
Vdq, Wdq

pmaxuw
Vdq, Wdq

pmaxud
Vdq, Wdq

4

5
6
7

8

9
A
B
C

D 66 AESIMC
Vdq, Wdq

AESENC
Vdq,Wdq

AESENCLAST
Vdq,Wdq

AESDEC
Vdq,Wdq

AESDECLAST
Vdq,Wdq

E

F
66

F3

F2

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of unde-
fined or reserved locations.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 88

Instruction Set Reference, N-Z

Table A-5 Three-byte Opcode Map: 00H — F7H (First two bytes are 0F 3AH) *

pfx 0 1 2 3 4 5 6 7

0

1 66 pextrb
Rd/Mb, Vdq, Ib

pextrw
Rd/Mw, Vdq, Ib

pextrd/q Ey,
Vdq, Ib

extractps
Ed, Vdq, Ib

2 66 pinsrb
Vdq,Ry/Mb,Ib

insertps
Vdq,Udq/Md,Ib

pinsrd/q
Vdq,Ey,Ib

3

4 66 dpps dppd mpsadbw
Vdq,Wdq,Ib

pclmulqdq
Vdq,Wdq,Ib

5

6 66 pcmpestrm
dq, Wdq, Ib

pcmpestri Vdq,
Wdq, Ib

pcmpistrm Vdq,
Wdq, Ib

pcmpistri
Vdq, Wdq, Ib

7
8
9
A
B
C

D

E
F

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 89

Instruction Set Reference, N-Z

Table A-5. Three-byte Opcode Map: 08H — FFH (First Two Bytes are 0F 3AH) *

...

pfx 8 9 A B C D E F

0
palignr

Pq, Qq, Ib

66 roundps roundpd roundss
Vss,Wss,Ib

roundsd
Vss,Wss,Ib

blendps blendpd pblendw
Vdq,Wdq,Ib

palignr
Vdq,Wdq,Ib

1

2

3

4

5

6

7
8
9
A
B
C

D 66 AESKEYGEN Vdq,
Wdq, Ib

E
F

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 90

Instruction Set Reference, N-Z

A.4.2 Opcode Extension Tables
See Table Table A-6 below.

Table A-6 Opcode Extensions for One- and Two-byte Opcodes by Group Number *

Opcode Group Mod 7,6 pfx

Encoding of Bits 5,4,3 of the ModR/M Byte (bits 2,1,0 in parenthesis)
000 001 010 011 100 101 110 111

80-83 1 mem,
11B

ADD OR ADC SBB AND SUB XOR CMP

8F 1A mem,
11B

POP

C0,C1 reg, imm
D0, D1 reg, 1

D2, D3 reg, CL
2

mem,
11B

ROL ROR RCL RCR SHL/SAL SHR SAR

F6, F7 3 mem,
11B

TEST
Ib/Iz

NOT NEG MUL
AL/rAX

IMUL
AL/rAX

DIV
AL/rAX

IDIV
AL/rAX

FE 4 mem,
11B

INC
Eb

DEC
Eb

FF 5 mem,
11B

INC
Ev

DEC
Ev

CALLNf64

Ev
CALLF

Ep
JMPNf64

Ev
JMPF

Ep
PUSHd64

Ev

0F 00 6 mem,
11B

SLDT
Rv/Mw

STR
Rv/Mw

LLDT
Ew

LTR
Ew

VERR
Ew

VERW
Ew

0F 01 7

mem SGDT
Ms

SIDT
Ms

LGDT
Ms

LIDT
Ms

SMSW
Mw/Rv

LMSW
Ew

INVLPG
Mb

11B VMCALL (001)
VMLAUNCH

(010)
VMRESUME

(011)
VMXOFF

(100)

MONITOR
(000)

MWAIT (001)

XGETBV
(000)

XSETBV
(001)

SWAPGS
o64(000)

RDTSCP (001)

0F BA 8 mem,
11B

BT BTS BTR BTC

0F C7 9
mem

CMPXCH8B
Mq

CMPXCHG16B
 Mdq

VMPTRLD Mq VMPTRST Mq

66 VMCLEAR
Mq

F3 VMXON
Mq

VMPTRST Mq

11B

0F B9 10
mem

11B

C6

11

mem,
11B

MOV
Eb, Ib

C7
mem MOV

Ev, Iz11B

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 91

Instruction Set Reference, N-Z

Table A-6 Opcode Extensions for One- and Two-byte Opcodes by Group
Number * (Continued)

...

Opcode Group Mod 7,6 pfx

Encoding of Bits 5,4,3 of the ModR/M Byte (bits 2,1,0 in parenthesis)
000 001 010 011 100 101 110 111

0F 71 12

mem

11B

psrlw
Nq, Ib

psraw
Nq, Ib

psllw
Nq, Ib

66 psrlw
Udq,Ib

psraw
Udq,Ib

psllw
Udq,Ib

0F 72 13

mem

11B

psrld
Nq, Ib

psrad
Nq, Ib

pslld
Nq, Ib

66 psrld
Udq,Ib

psrad
Udq,Ib

pslld
Udq,Ib

0F 73 14

mem

11B

psrlq
Nq, Ib

psllq
Nq, Ib

66 psrlq
Udq,Ib

psrldq
Udq,Ib

psllq
Udq,Ib

pslldq
Udq,Ib

0F AE 15 mem fxsave fxrstor ldmxcsr stmxcsr XSAVE XRSTOR clflush

11B lfence mfence sfence

0F 18 16
mem prefetch

NTA
prefetch

T0
prefetch

T1
prefetch

T2

11B

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined
or reserved locations.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 92

Instruction Set Reference, N-Z

8. Updates to Appendix B, Volume 2B

Change bars show changes to Appendix B of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2B: Instruction Set Reference, N-Z.

--

...

B.12 AESNI AND PCLMULQDQ INSTRUCTION FORMATS AND
ENCODINGS

Table Table B-33 shows the formats and encodings for AESNI and PCLMULQDQ instruc-
tions.

Table B-33 Formats and Encodings of AESNI and PCLMULQDQ Instructions
Instruction and Format Encoding

AESDEC—Perform One Round of an AES
Decryption Flow

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000:1101
1110:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000:1101 1110:
mod xmmreg r/m

AESDECLAST—Perform Last Round of an
AES Decryption Flow

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000:1101
1111:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000:1101 1111:
mod xmmreg r/m

AESENC—Perform One Round of an AES
Encryption Flow

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000:1101
1100:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000:1101 1100:
mod xmmreg r/m

AESENCLAST—Perform Last Round of an
AES Encryption Flow

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000:1101
1101:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000:1101 1101:
mod xmmreg r/m

AESIMC—Perform the AES InvMixColumn
Transformation

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000:1101
1011:11 xmmreg1 xmmreg2

 mem to xmmreg1 0110 0110:0000 1111:0011 1000:1101 1011:
mod xmmreg r/m

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 93

Instruction Set Reference, N-Z

...

9. Updates to Appendix C, Volume 2B

Change bars show changes to Appendix C of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2B: Instruction Set Reference, N-Z.

--

...

Table C-1 Simple Intrinsics

...

10. Updates to Chapter 2, Volume 3A

Change bars show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

--

...

AESKEYGENASSIST—AES Round Key
Generation Assist

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010:1101
1111:11 xmmreg1 xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010:1101 1111:
mod xmmreg r/m: imm8

PCLMULQDQ—Carry-Less Multiplication
Quadword

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010:0100
0100:11 xmmreg1 xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010:0100 0100:
mod xmmreg r/m: imm8

Instruction and Format Encoding

Mnemonic Intrinsic

...

AESDEC __m128i _mm_aesdec (__m128i, __m128i)

AESDECLAST __m128i _mm_aesdeclast (__m128i, __m128i)

AESENC __m128i _mm_aesenc (__m128i, __m128i)

AESENCLAST __m128i _mm_aesenclast (__m128i, __m128i)

AESIMC __m128i _mm_aesimc (__m128i)

AESKEYGENASSIST __m128i _mm_aesimc (__m128i, const int)

...

PCLMULQDQ __m128i _mm_clmulepi64_si128 (__m128i, __m128i, const int)

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 94

Instruction Set Reference, N-Z

2.1.6.1 System Registers in IA-32e Mode
In IA-32e mode, the four system-descriptor-table registers (GDTR, IDTR, LDTR, and TR)
are expanded in hardware to hold 64-bit base addresses. EFLAGS becomes the 64-bit
RFLAGS register. CR0–CR4 are expanded to 64 bits. CR8 becomes available. CR8
provides read-write access to the task priority register (TPR) so that the operating
system can control the priority classes of external interrupts.

In 64-bit mode, debug registers DR0–DR7 are 64 bits. In compatibility mode, address-
matching in DR0–DR3 is also done at 64-bit granularity.

...

OSFXSR
Operating System Support for FXSAVE and FXRSTOR instructions (bit 9
of CR4) — When set, this flag: (1) indicates to software that the operating
system supports the use of the FXSAVE and FXRSTOR instructions, (2) enables
the FXSAVE and FXRSTOR instructions to save and restore the contents of the
XMM and MXCSR registers along with the contents of the x87 FPU and MMX
registers, and (3) enables the processor to execute SSE/SSE2/SSE3/SSSE3/
SSE4 instructions, with the exception of the PAUSE, PREFETCHh, SFENCE,
LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and POPCNT.

If this flag is clear, the FXSAVE and FXRSTOR instructions will save and restore
the contents of the x87 FPU and MMX instructions, but they may not save and
restore the contents of the XMM and MXCSR registers. Also, the processor will
generate an invalid opcode exception (#UD) if it attempts to execute any SSE/
SSE2/SSE3 instruction, with the exception of PAUSE, PREFETCHh, SFENCE,
LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and POPCNT. The operating
system or executive must explicitly set this flag.

NOTE
CPUID feature flags FXSR indicates availability of the FXSAVE/FXRSTOR
instructions. The OSFXSR bit provides operating system software with a
means of enabling FXSAVE/FXRSTOR to save/restore the contents of the
X87 FPU, XMM and MXCSR registers. Consequently OSFXSR bit indicates
that the operating system provides context switch support for SSE/
SSE2/SSE3/SSSE3/SSE4.

OSXMMEXCPT
Operating System Support for Unmasked SIMD Floating-Point Excep-
tions (bit 10 of CR4) — When set, indicates that the operating system supports
the handling of unmasked SIMD floating-point exceptions through an exception
handler that is invoked when a SIMD floating-point exception (#XF) is gener-
ated. SIMD floating-point exceptions are only generated by SSE/SSE2/SSE3/
SSE4.1 SIMD floating-point instructions.

The operating system or executive must explicitly set this flag. If this flag is not
set, the processor will generate an invalid opcode exception (#UD) whenever it
detects an unmasked SIMD floating-point exception.

VMXE
VMX-Enable Bit (bit 13 of CR4) — Enables VMX operation when set. See
Chapter 20, “Introduction to Virtual-Machine Extensions.”

SMXE
SMX-Enable Bit (bit 14 of CR4) — Enables SMX operation when set. See

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 95

Instruction Set Reference, N-Z

Chapter 6, “Safer Mode Extensions Reference” of Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2B.

PCIDE
PCID-Enable Bit (bit 17 of CR4) — Enables process-context identifiers
(PCIDs) when set. See Section 4.10.1, “Process-Context Identifiers (PCIDs)”.
Can be set only in IA-32e mode (if IA32_EFER.LMA = 1).

...

2.5.1 CPUID Qualification of Control Register Flags
Not all flags in control register CR4 are implemented on all processors. With the excep-
tion of the PCE flag, they can be qualified with the CPUID instruction to determine if they
are implemented on the processor before they are used.

The CR8 register is available on processors that support Intel 64 architecture.

...

•

...

Figure 2-6 Control Registers

CR1

W
P

A
M

Page-Directory Base

V
M
E

P
S
E

T
S
D

D
E

P
V
I

P
G
E

M
C
E

P
A
E

P
C
E

N
W

P
G

C
D

P
W
T

P
C
D

Page-Fault Linear Address

P
E

E
M

M
P

T
S

N
E

E
T

CR2

CR0

CR4

Reserved

CR3

Reserved (set to 0)

31 2930 28 19 18 17 16 15 6 5 4 3 2 1 0

31(63) 0

31(63) 0

31(63) 12 11 5 4 3 2

31(63) 9 8 7 6 5 4 3 2 1 0

(PDBR)

13 12 11 10

OSFXSR
OSXMMEXCPT

V
M
X
E

00

E
X
M
S

1418

OSXSAVE
PCIDE

17

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 96

Instruction Set Reference, N-Z

11. Updates to Chapter 4, Volume 3A

Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

--

...

4.1 PAGING MODES AND CONTROL BITS
Paging behavior is controlled by the following control bits:

• The WP and PG flags in control register CR0 (bit 16 and bit 31, respectively).

• The PSE, PAE, PGE, and PCIDE flags in control register CR4 (bit 4, bit 5, bit 7, and
bit 17, respectively).

• The LME and NXE flags in the IA32_EFER MSR (bit 8 and bit 11, respectively).

Software enables paging by using the MOV to CR0 instruction to set CR0.PG. Before
doing so, software should ensure that control register CR3 contains the physical address
of the first paging structure that the processor will use for linear-address translation (see
Section 4.2) and that structure is initialized as desired. See Table 4-3, Table 4-7, and
Table Table 4-12 for the use of CR3 in the different paging modes.

Section 4.1.1 describes how the values of CR0.PG, CR4.PAE, and IA32_EFER.LME deter-
mine whether paging is in use and, if so, which of three paging modes is in use. Section
4.1.2 explains how to manage these bits to establish or make changes in paging modes.
Section 4.1.3 discusses how CR0.WP, CR4.PSE, CR4.PGE, CR4.PCIDE, and
IA32_EFER.NXE modify the operation of the different paging modes.

4.1.1 Three Paging Modes
If CR0.PG = 0, paging is not used. The logical processor treats all linear addresses as if
they were physical addresses. CR4.PAE and IA32_EFER.LME are ignored by the
processor, as are CR0.WP, CR4.PSE, and CR4.PGE, and IA32_EFER.NXE.

Paging is enabled if CR0.PG = 1. Paging can be enabled only if protection is enabled
(CR0.PE = 1). If paging is enabled, one of three paging modes is used. The values of
CR4.PAE and IA32_EFER.LME determine which paging mode is used:

• If CR0.PG = 1 and CR4.PAE = 0, 32-bit paging is used. 32-bit paging is detailed in
Section 4.3. 32-bit paging uses CR0.WP, CR4.PSE, and CR4.PGE as described in
Section 4.1.3.

• If CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 0, PAE paging is used. PAE
paging is detailed in Section 4.4. PAE paging uses CR0.WP, CR4.PGE, and
IA32_EFER.NXE as described in Section 4.1.3.

• If CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 1, IA-32e paging is used.1
IA-32e paging is detailed in Section 4.5. IA-32e paging uses CR0.WP, CR4.PGE,

1. The LMA flag in the IA32_EFER MSR (bit 10) is a status bit that indicates whether the logical proces-
sor is in IA-32e mode (and thus using IA-32e paging). The processor always sets IA32_EFER.LMA to
CR0.PG & IA32_EFER.LME. Software cannot directly modify IA32_EFER.LMA; an execution of WRMSR
to the IA32_EFER MSR ignores bit 10 of its source operand.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 97

Instruction Set Reference, N-Z

CR4.PCIDE, and IA32_EFER.NXE as described in Section 4.1.3. IA-32e paging is
available only on processors that support the Intel 64 architecture.

...

4.1.2 Paging-Mode Enabling

If CR0.PG = 1, a logical processor is in one of three paging modes, depending on the
values of CR4.PAE and IA32_EFER.LME. Figure 4-1 illustrates how software can enable
these modes and make transitions between them. The following items identify certain
limitations and other details:

...

• CR4.PAE cannot be cleared while IA-32e paging is active (CR0.PG = 1 and
IA32_EFER.LME = 1). Attempts to do so using MOV to CR4 cause a general-
protection exception (#GP(0)).

• Regardless of the current paging mode, software can disable paging by clearing
CR0.PG with MOV to CR0.1

• Software can make transitions between 32-bit paging and PAE paging by changing
the value of CR4.PAE with MOV to CR4.

...

4.1.3 Paging-Mode Modifiers
Details of how each paging mode operates are determined by the following control bits:

• The WP flag in CR0 (bit 16).

• The PSE, PGE, and PCIDE flags in CR4 (bit 4, bit 7, and bit 17, respectively).

• The NXE flag in the IA32_EFER MSR (bit 11).

CR0.WP allows pages to be protected from supervisor-mode writes. If CR0.WP = 0, soft-
ware operating with CPL < 3 (supervisor mode) can write to linear addresses with read-
only access rights; if CR0.WP = 1, it cannot. (Software operating with CPL = 3 — user
mode — cannot write to linear addresses with read-only access rights, regardless of the
value of CR0.WP.) Section 4.6 explains how access rights are determined.

CR4.PSE enables 4-MByte pages for 32-bit paging. If CR4.PSE = 0, 32-bit paging can
use only 4-KByte pages; if CR4.PSE = 1, 32-bit paging can use both 4-KByte pages and
4-MByte pages. See Section 4.3 for more information. (PAE paging and IA-32e paging
can use multiple page sizes regardless of the value of CR4.PSE.)

CR4.PGE enables global pages. If CR4.PGE = 0, no translations are shared across
address spaces; if CR4.PGE = 1, specified translations may be shared across address
spaces. See Section 4.10.2.4 for more information.

CR4.PCIDE enables process-context identifiers (PCIDs) for IA-32e paging (CR4.PCIDE
can be 1 only when IA-32e paging is in use). PCIDs allow a logical processor to cache
information for multiple linear-address spaces. See Section 4.10.1 for more information.

...

1. If CR4.PCIDE = 1, an attempt to clear CR0.PG causes a general-protection exception (#GP); software
should clear CR4.PCIDE before attempting to disable paging.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 98

Instruction Set Reference, N-Z

4.1.4 Enumeration of Paging Features by CPUID
Software can discover support for different paging features using the CPUID instruction:

• PSE: page-size extensions for 32-bit paging.
If CPUID.01H:EDX.PSE [bit 3] = 1, CR4.PSE may be set to 1, enabling support for 4-
MByte pages with 32-bit paging (see Section 4.3).

• PAE: physical-address extension.
If CPUID.01H:EDX.PAE [bit 6] = 1, CR4.PAE may be set to 1, enabling PAE paging
(this setting is also required for IA-32e paging).

• PGE: global-page support.
If CPUID.01H:EDX.PGE [bit 13] = 1, CR4.PGE may be set to 1, enabling the global-
page feature (see Section 4.10.2.4).

• PAT: page-attribute table.
If CPUID.01H:EDX.PAT [bit 16] = 1, the 8-entry page-attribute table (PAT) is
supported. When the PAT is supported, three bits in certain paging-structure entries
select a memory type (used to determine type of caching used) from the PAT (see
Section 4.9.2).

• PSE-36: 36-Bit page size extension.
If CPUID.01H:EDX.PSE-36 [bit 17] = 1, the PSE-36 mechanism is supported,
indicating that translations using 4-MByte pages with 32-bit paging may produce
physical addresses with more than 32 bits (see Section 4.3).

• PCID: process-context identifiers.
If CPUID.01H:ECX.PCID [bit 17] = 1, CR4.PCIDE may be set to 1, enabling process-
context identifiers (see Section 4.10.1).

...

Table 4-4 Format of a 32-Bit Page-Directory Entry that Maps a 4-MByte Page

...

Table 4-6 Format of a 32-Bit Page-Table Entry that Maps a 4-KByte Page

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 99

Instruction Set Reference, N-Z

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-MByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-MByte page referenced by
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-MByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 4-MByte page referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 4-MByte page referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 4-MByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-MByte page referenced by
this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see Table 4-5)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

12 (PAT) If the PAT is supported, indirectly determines the memory type used to access the
4-MByte page referenced by this entry (see Section 4.9.2); otherwise, reserved
(must be 0)1

(M–20):13 Bits (M–1):32 of physical address of the 4-MByte page referenced by this entry2

21:(M–19) Reserved (must be 0)

31:22 Bits 31:22 of physical address of the 4-MByte page referenced by this entry

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.
2. If the PSE-36 mechanism is not supported, M is 32, and this row does not apply. If the PSE-36

mechanism is supported, M is the minimum of 40 and MAXPHYADDR (this row does not apply if
MAXPHYADDR = 32). See Section 4.1.4 for how to determine MAXPHYADDR and whether the
PSE-36 mechanism is supported.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 100

Instruction Set Reference, N-Z

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by this
entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-KByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 4-KByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by
this entry (see Section 4.8)

7 (PAT) If the PAT is supported, indirectly determines the memory type used to access the
4-KByte page referenced by this entry (see Section 4.9.2); otherwise, reserved
(must be 0)1

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

31:12 Physical address of the 4-KByte page referenced by this entry

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 101

Instruction Set Reference, N-Z

Table 4-9 Format of a PAE Page-Directory Entry that Maps a 2-MByte Page

...

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 2-MByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte page referenced by
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 2-MByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 2-MByte page referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 2-MByte page referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 2-MByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 2-MByte page referenced by
this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see
Table 4-10)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

12 (PAT) If the PAT is supported, indirectly determines the memory type used to access the
2-MByte page referenced by this entry (see Section 4.9.2); otherwise, reserved
(must be 0)1

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.

20:13 Reserved (must be 0)

(M–1):21 Physical address of the 2-MByte page referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 2-MByte page controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 102

Instruction Set Reference, N-Z

Table 4-11 Format of a PAE Page-Table Entry that Maps a 4-KByte Page

...

4.5 IA-32E PAGING
A logical processor uses IA-32e paging if CR0.PG = 1, CR4.PAE = 1, and
IA32_EFER.LME = 1. With IA-32e paging, linear address are translated using a hierarchy
of in-memory paging structures located using the contents of CR3. IA-32e paging trans-
lates 48-bit linear addresses to 52-bit physical addresses.1 Although 52 bits corresponds
to 4 PBytes, linear addresses are limited to 48 bits; at most 256 TBytes of linear-address
space may be accessed at any given time.

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by this
entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-KByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 4-KByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by
this entry (see Section 4.8)

7 (PAT) If the PAT is supported, indirectly determines the memory type used to access the
4-KByte page referenced by this entry (see Section 4.9.2); otherwise, reserved
(must be 0)1

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

(M–1):12 Physical address of the 4-KByte page referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 4-KByte page controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 103

Instruction Set Reference, N-Z

IA-32e paging uses a hierarchy of paging structures to produce a translation for a linear
address. CR3 is used to locate the first paging-structure, the PML4 table. Use of CR3 with
IA-32e paging depends on whether process-context identifiers (PCIDs) have been
enabled by setting CR4.PCIDE:

• Table Table 4-12 illustrates how CR3 is used with IA-32e paging if CR4.PCIDE = 0.

• Table Table 4-13 illustrates how CR3 is used with IA-32e paging if CR4.PCIDE = 1.

After software modifies the value of CR4.PCIDE, the logical processor immediately
begins using CR3 as specified for the new value. For example, if software changes
CR4.PCIDE from 1 to 0, the current PCID immediately changes from CR3[11:0] to 000H
(see also Section 4.10.4.1). In addition, the logical processor subsequently determines

1. If MAXPHYADDR < 52, bits in the range 51:MAXPHYADDR will be 0 in any physical address used by
IA-32e paging. (The corresponding bits are reserved in the paging-structure entries.) See Section
4.1.4 for how to determine MAXPHYADDR.

Table 4-12 Use of CR3 with IA-32e Paging and CR3.PCIDE = 0

Bit
Position(s)

Contents

2:0 Ignored

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the PML4 table during linear-address translation (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the PML4 table during linear-address translation (see Section 4.9.2)

11:5 Ignored

M–1:12 Physical address of the 4-KByte aligned PML4 table used for linear-address
translation1

NOTES:
1. M is an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.

63:M Reserved (must be 0)

Table 4-13 Use of CR3 with IA-32e Paging and CR3.PCIDE = 1

Bit
Position(s)

Contents

11:0 PCID (see Section 4.10.1)1

NOTES:
1. Section 4.9.2 explains how the processor determines the memory type used to access the PML4

table during linear-address translation with CR4.PCIDE = 1.

M–1:12 Physical address of the 4-KByte aligned PML4 table used for linear-address
translation2

2. M is an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.

63:M Reserved (must be 0)3

3. See Section 4.10.4.1 for use of bit 63 of the source operand of the MOV to CR3 instruction.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 104

Instruction Set Reference, N-Z

the memory type used to access the PML4 table using CR3.PWT and CR3.PCD, which had
been bits 4:3 of the PCID.

...

Table 4-14 Format of an IA-32e PML4 Entry (PML4E) that References a Page-Directory-
Pointer Table

...

Bit
Position(s)

Contents

0 (P) Present; must be 1 to reference a page-directory-pointer table

1 (R/W) Read/write; if 0, writes may not be allowed to the 512-GByte region controlled by
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 512-GByte
region controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page-directory-pointer table referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page-directory-pointer table referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address
translation (see Section 4.8)

6 Ignored

7 (PS) Reserved (must be 0)

11:8 Ignored

M–1:12 Physical address of 4-KByte aligned page-directory-pointer table referenced by
this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 512-GByte region controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 105

Instruction Set Reference, N-Z

Table 4-15 Format of an IA-32e Page-Directory-Pointer-Table Entry (PDPTE) that Maps a
1-GByte Page

...

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 1-GByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 1-GByte page referenced by this
entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 1-GByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 1-GByte page referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 1-GByte page referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether software has accessed the 1-GByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 1-GByte page referenced by
this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page directory; see
Table Table 4-16)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

12 (PAT) Indirectly determines the memory type used to access the 1-GByte page
referenced by this entry (see Section 4.9.2)1

NOTES:
1. The PAT is supported on all processors that support IA-32e paging.

29:13 Reserved (must be 0)

(M–1):30 Physical address of the 1-GByte page referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 1-GByte page controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 106

Instruction Set Reference, N-Z

Table 4-16 Format of an IA-32e Page-Directory-Pointer-Table Entry (PDPTE) that
References a Page Directory

...

Bit
Position(s)

Contents

0 (P) Present; must be 1 to reference a page directory

1 (R/W) Read/write; if 0, writes may not be allowed to the 1-GByte region controlled by
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 1-GByte region
controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page directory referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page directory referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address
translation (see Section 4.8)

6 Ignored

7 (PS) Page size; must be 0 (otherwise, this entry maps a 1-GByte page; see Table Table
4-15)

11:8 Ignored

(M–1):12 Physical address of 4-KByte aligned page directory referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 1-GByte region controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 107

Instruction Set Reference, N-Z

Table 4-17 Format of an IA-32e Page-Directory Entry that References a Page
Table

...

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 2-MByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte page referenced by
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 2-MByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 2-MByte page referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 2-MByte page referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether software has accessed the 2-MByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 2-MByte page referenced by
this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see
Table Table 4-17)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

12 (PAT) Indirectly determines the memory type used to access the 2-MByte page
referenced by this entry (see Section 4.9.2)

20:13 Reserved (must be 0)

(M–1):21 Physical address of the 2-MByte page referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 2-MByte page controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 108

Instruction Set Reference, N-Z

Table 4-18 Format of an IA-32e Page-Directory Entry that References a Page
Table

...

Bit
Position(s)

Contents

0 (P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte region controlled by
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 2-MByte region
controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address
translation (see Section 4.8)

6 Ignored

7 (PS) Page size; must be 0 (otherwise, this entry maps a 2-MByte page; see Table 4-17)

11:8 Ignored

(M–1):12 Physical address of 4-KByte aligned page table referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 2-MByte region controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 109

Instruction Set Reference, N-Z

Table 4-19 Format of an IA-32e Page-Table Entry that Maps a 4-KByte Page

...

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by this
entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-KByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether software has accessed the 4-KByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by
this entry (see Section 4.8)

7 (PAT) Indirectly determines the memory type used to access the 2-MByte page
referenced by this entry (see Section 4.9.2)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

(M–1):12 Physical address of the 4-KByte page referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 4-KByte page controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 110

Instruction Set Reference, N-Z

Figure 4-12 Page-Fault Error Code

...

4.9.2 Paging and Memory Typing When the PAT is Supported
(Pentium III and More Recent Processor Families)

If the PAT is supported, paging contributes to memory typing in conjunction with the PAT
and the memory-type range registers (MTRRs) as specified in Table 11-7 in Section
11.5.2.2.

The PAT is a 64-bit MSR (IA32_PAT; MSR index 277H) comprising eight (8) 8-bit entries
(entry i comprises bits 8i+7:8i of the MSR).

For any access to a physical address, the table combines the memory type specified for
that physical address by the MTRRs with a memory type selected from the PAT.
Table 11-11 in Section 11.12.3 specifies how a memory type is selected from the PAT.
Specifically, it comes from entry i of the PAT, where i is defined as follows:

• For an access to an entry in a paging structure whose address is in CR3 (e.g., the
PML4 table with IA-32e paging):

— For IA-32e paging with CR4.PCIDE = 1, i = 0.

— Otherwise, i = 2*PCD+PWT, where the PCD and PWT values come from CR3.

• For an access to a PDE with PAE paging, i = 2*PCD+PWT, where the PCD and PWT
values come from the relevant PDPTE register.

• For an access to a paging-structure entry X whose address is in another paging-
structure entry Y, i = 2*PCD+PWT, where the PCD and PWT values come from Y.

• For an access to the physical address that is the translation of a linear address, i =
4*PAT+2*PCD+PWT, where the PAT, PCD, and PWT values come from the relevant
PTE (if the translation uses a 4-KByte page), the relevant PDE (if the translation uses

The fault was caused by a non-present page.
The fault was caused by a page-level protection violation.

The access causing the fault was a read.
The access causing the fault was a write.

The access causing the fault originated when the processor
was executing in supervisor mode (CPL < 3).
The access causing the fault originated when the processor
was executing in user mode (CPL = 3).

31 0

Reserved

1234

The fault was not caused by reserved bit violation.
The fault was caused by a reserved bit set to 1 in some

P 0
1

W/R 0
1

U/S 0

RSVD 0
1

1

I/D

I/D 0 The fault was not caused by an instruction fetch.
1 The fault was caused by an instruction fetch.

PW
/R

U/S
RSVD

paging-structure entry.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 111

Instruction Set Reference, N-Z

a 2-MByte page or a 4-MByte page), or the relevant PDPTE (if the translation uses a
1-GByte page).

...

4.10 CACHING TRANSLATION INFORMATION
The Intel-64 and IA-32 architectures may accelerate the address-translation process by
caching data from the paging structures on the processor. Because the processor does
not ensure that the data that it caches are always consistent with the structures in
memory, it is important for software developers to understand how and when the
processor may cache such data. They should also understand what actions software can
take to remove cached data that may be inconsistent and when it should do so. This
section provides software developers information about the relevant processor opera-
tion.

Section 4.10.1 introduces process-context identifiers (PCIDs), which a logical processor
may use to distinguish information cached for different linear-address spaces. Section
4.10.2 and Section 4.10.3 describe how the processor may cache information in transla-
tion lookaside buffers (TLBs) and paging-structure caches, respectively. Section 4.10.4
explains how software can remove inconsistent cached information by invalidating
portions of the TLBs and paging-structure caches. Section 4.10.5 describes special
considerations for multiprocessor systems.

4.10.1 Process-Context Identifiers (PCIDs)
Process-context identifiers (PCIDs) are a facility by which a logical processor may cache
information for multiple linear-address spaces. The processor may retain cached infor-
mation when software switches to a different linear-address space with a different PCID
(e.g., by loading CR3; see Section 4.10.4.1 for details).

A PCID is a 12-bit identifier. Non-zero PCIDs are enabled by setting the PCIDE flag
(bit 17) of CR4. If CR4.PCIDE = 0, the current PCID is always 000H; otherwise, the
current PCID is the value of bits 11:0 of CR3. Not all processors allow CR4.PCIDE to be
set to 1; see Section 4.1.4 for how to determine whether this is allowed.

The processor ensures that CR4.PCIDE can be 1 only in IA-32e mode (thus, 32-bit
paging and PAE paging use only PCID 000H). In addition, software can change
CR4.PCIDE from 0 to 1 only if CR3[11:0] = 000H. These requirements are enforced by
the following limitations on the MOV CR instruction:

• MOV to CR4 causes a general-protection exception (#GP) if it would change
CR4.PCIDE from 0 to 1 and either IA32_EFER.LMA = 0 or CR3[11:0] ≠ 000H.

• MOV to CR0 causes a general-protection exception if it would clear CR0.PG to 0 while
CR4.PCIDE = 1.

When a logical processor creates entries in the TLBs (Section 4.10.2) and paging-struc-
ture caches (Section 4.10.3), it associates those entries with the current PCID. When
using entries in the TLBs and paging-structure caches to translate a linear address, a
logical processor uses only those entries associated with the current PCID (see Section
4.10.2.4 for an exception).

If CR4.PCIDE = 0, a logical processor does not cache information for any PCID other
than 000H. This is because (1) if CR4.PCIDE = 0, the logical processor will associate any

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 112

Instruction Set Reference, N-Z

newly cached information with the current PCID, 000H; and (2) if MOV to CR4 clears
CR4.PCIDE, all cached information is invalidated (see Section 4.10.4.1).

NOTE
In revisions of this manual that were produced when no processors
allowed CR4.PCIDE to be set to 1, Section 4.10 discussed the caching of
translation information without any reference to PCIDs. While the section
now refers to PCIDs in its specification of this caching, this documen-
tation change is not intended to imply any change to the behavior of
processors that do not allow CR4.PCIDE to be set to 1.

...

4.10.2.2 Caching Translations in TLBs
The processor may accelerate the paging process by caching individual translations in
translation lookaside buffers (TLBs). Each entry in a TLB is an individual translation.
Each translation is referenced by a page number. It contains the following information
from the paging-structure entries used to translate linear addresses with the page
number:

• The physical address corresponding to the page number (the page frame).

• The access rights from the paging-structure entries used to translate linear
addresses with the page number (see Section 4.6):

— The logical-AND of the R/W flags.

— The logical-AND of the U/S flags.

— The logical-OR of the XD flags (necessary only if IA32_EFER.NXE = 1).

• Attributes from a paging-structure entry that identifies the final page frame for the
page number (either a PTE or a paging-structure entry in which the PS flag is 1):

— The dirty flag (see Section 4.8).

— The memory type (see Section 4.9).

(TLB entries may contain other information as well. A processor may implement multiple
TLBs, and some of these may be for special purposes, e.g., only for instruction fetches.
Such special-purpose TLBs may not contain some of this information if it is not neces-
sary. For example, a TLB used only for instruction fetches need not contain information
about the R/W and dirty flags.)

As noted in Section 4.10.1, any TLB entries created by a logical processor are associated
with the current PCID.

Processors need not implement any TLBs. Processors that do implement TLBs may inval-
idate any TLB entry at any time. Software should not rely on the existence of TLBs or on
the retention of TLB entries.

4.10.2.3 Details of TLB Use
Because the TLBs cache only valid translations, there can be a TLB entry for a page
number only if the P flag is 1 and the reserved bits are 0 in each of the paging-structure
entries used to translate that page number. In addition, the processor does not cache a
translation for a page number unless the accessed flag is 1 in each of the paging-struc-
ture entries used during translation; before caching a translation, the processor sets any
of these accessed flags that is not already 1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 113

Instruction Set Reference, N-Z

The processor may cache translations required for prefetches and for accesses that are
a result of speculative execution that would never actually occur in the executed code
path.

If the page number of a linear address corresponds to a TLB entry associated with the
current PCID, the processor may use that TLB entry to determine the page frame, access
rights, and other attributes for accesses to that linear address. In this case, the
processor may not actually consult the paging structures in memory. The processor may
retain a TLB entry unmodified even if software subsequently modifies the relevant
paging-structure entries in memory. See Section 4.10.4.2 for how software can ensure
that the processor uses the modified paging-structure entries.

If the paging structures specify a translation using a page larger than 4 KBytes, some
processors may choose to cache multiple smaller-page TLB entries for that translation.
Each such TLB entry would be associated with a page number corresponding to the
smaller page size (e.g., bits 47:12 of a linear address with IA-32e paging), even though
part of that page number (e.g., bits 20:12) are part of the offset with respect to the page
specified by the paging structures. The upper bits of the physical address in such a TLB
entry are derived from the physical address in the PDE used to create the translation,
while the lower bits come from the linear address of the access for which the translation
is created. There is no way for software to be aware that multiple translations for smaller
pages have been used for a large page.

If software modifies the paging structures so that the page size used for a 4-KByte range
of linear addresses changes, the TLBs may subsequently contain multiple translations for
the address range (one for each page size). A reference to a linear address in the
address range may use any of these translations. Which translation is used may vary
from one execution to another, and the choice may be implementation-specific.

4.10.2.4 Global Pages
The Intel-64 and IA-32 architectures also allow for global pages when the PGE flag
(bit 7) is 1 in CR4. If the G flag (bit 8) is 1 in a paging-structure entry that maps a page
(either a PTE or a paging-structure entry in which the PS flag is 1), any TLB entry cached
for a linear address using that paging-structure entry is considered to be global.
Because the G flag is used only in paging-structure entries that map a page, and because
information from such entries are not cached in the paging-structure caches, the global-
page feature does not affect the behavior of the paging-structure caches.

A logical processor may use a global TLB entry to translate a linear address, even if the
TLB entry is associated with a PCID different from the current PCID.

...

4.10.3.1 Caches for Paging Structures
A processor may support any or of all the following paging-structure caches:

• PML4 cache (IA-32e paging only). Each PML4-cache entry is referenced by a 9-bit
value and is used for linear addresses for which bits 47:39 have that value. The entry
contains information from the PML4E used to translate such linear addresses:

— The physical address from the PML4E (the address of the page-directory-pointer
table).

— The value of the R/W flag of the PML4E.

— The value of the U/S flag of the PML4E.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 114

Instruction Set Reference, N-Z

— The value of the XD flag of the PML4E.

— The values of the PCD and PWT flags of the PML4E.

The following items detail how a processor may use the PML4 cache:

— If the processor has a PML4-cache entry for a linear address, it may use that
entry when translating the linear address (instead of the PML4E in memory).

— The processor does not create a PML4-cache entry unless the P flag is 1 and all
reserved bits are 0 in the PML4E in memory.

— The processor does not create a PML4-cache entry unless the accessed flag is 1
in the PML4E in memory; before caching a translation, the processor sets the
accessed flag if it is not already 1.

— The processor may create a PML4-cache entry even if there are no translations
for any linear address that might use that entry (e.g., because the P flags are 0
in all entries in the referenced page-directory-pointer table).

— If the processor creates a PML4-cache entry, the processor may retain it
unmodified even if software subsequently modifies the corresponding PML4E in
memory.

• PDPTE cache (IA-32e paging only).1 Each PDPTE-cache entry is referenced by an
18-bit value and is used for linear addresses for which bits 47:30 have that value.
The entry contains information from the PML4E and PDPTE used to translate such
linear addresses:

— The physical address from the PDPTE (the address of the page directory). (No
PDPTE-cache entry is created for a PDPTE that maps a 1-GByte page.)

— The logical-AND of the R/W flags in the PML4E and the PDPTE.

— The logical-AND of the U/S flags in the PML4E and the PDPTE.

— The logical-OR of the XD flags in the PML4E and the PDPTE.

— The values of the PCD and PWT flags of the PDPTE.

The following items detail how a processor may use the PDPTE cache:

— If the processor has a PDPTE-cache entry for a linear address, it may use that
entry when translating the linear address (instead of the PML4E and the PDPTE in
memory).

— The processor does not create a PDPTE-cache entry unless the P flag is 1, the PS
flag is 0, and the reserved bits are 0 in the PML4E and the PDPTE in memory.

— The processor does not create a PDPTE-cache entry unless the accessed flags are
1 in the PML4E and the PDPTE in memory; before caching a translation, the
processor sets any accessed flags that are not already 1.

— The processor may create a PDPTE-cache entry even if there are no translations
for any linear address that might use that entry.

— If the processor creates a PDPTE-cache entry, the processor may retain it
unmodified even if software subsequently modifies the corresponding PML4E or
PDPTE in memory.

• PDE cache. The use of the PDE cache depends on the paging mode:

1. With PAE paging, the PDPTEs are stored in internal, non-architectural registers. The operation of
these registers is described in Section 4.4.1 and differs from that described here.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 115

Instruction Set Reference, N-Z

— For 32-bit paging, each PDE-cache entry is referenced by a 10-bit value and is
used for linear addresses for which bits 31:22 have that value.

— For PAE paging, each PDE-cache entry is referenced by an 11-bit value and is
used for linear addresses for which bits 31:21 have that value.

— For IA-32e paging, each PDE-cache entry is referenced by a 27-bit value and is
used for linear addresses for which bits 47:21 have that value.

A PDE-cache entry contains information from the PML4E, PDPTE, and PDE used to
translate the relevant linear addresses (for 32-bit paging and PAE paging, only the
PDE applies):

— The physical address from the PDE (the address of the page table). (No PDE-
cache entry is created for a PDE that maps a page.)

— The logical-AND of the R/W flags in the PML4E, PDPTE, and PDE.

— The logical-AND of the U/S flags in the PML4E, PDPTE, and PDE.

— The logical-OR of the XD flags in the PML4E, PDPTE, and PDE.

— The values of the PCD and PWT flags of the PDE.

The following items detail how a processor may use the PDE cache (references below
to PML4Es and PDPTEs apply on to IA-32e paging):

— If the processor has a PDE-cache entry for a linear address, it may use that entry
when translating the linear address (instead of the PML4E, the PDPTE, and the
PDE in memory).

— The processor does not create a PDE-cache entry unless the P flag is 1, the PS
flag is 0, and the reserved bits are 0 in the PML4E, the PDPTE, and the PDE in
memory.

— The processor does not create a PDE-cache entry unless the accessed flag is 1 in
the PML4E, the PDPTE, and the PDE in memory; before caching a translation, the
processor sets any accessed flags that are not already 1.

— The processor may create a PDE-cache entry even if there are no translations for
any linear address that might use that entry.

— If the processor creates a PDE-cache entry, the processor may retain it
unmodified even if software subsequently modifies the corresponding PML4E, the
PDPTE, or the PDE in memory.

Information from a paging-structure entry can be included in entries in the paging-struc-
ture caches for other paging-structure entries referenced by the original entry. For
example, if the R/W flag is 0 in a PML4E, then the R/W flag will be 0 in any PDPTE-cache
entry for a PDPTE from the page-directory-pointer table referenced by that PML4E. This
is because the R/W flag of each such PDPTE-cache entry is the logical-AND of the R/W
flags in the appropriate PML4E and PDPTE.

The paging-structure caches contain information only from paging-structure entries that
reference other paging structures (and not those that map pages). Because the G flag is
not used in such paging-structure entries, the global-page feature does not affect the
behavior of the paging-structure caches.

The processor may create entries in paging-structure caches for translations required for
prefetches and for accesses that are a result of speculative execution that would never
actually occur in the executed code path.

As noted in Section 4.10.1, any entries created in paging-structure caches by a logical
processor are associated with the current PCID.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 116

Instruction Set Reference, N-Z

A processor may or may not implement any of the paging-structure caches. Software
should rely on neither their presence nor their absence. The processor may invalidate
entries in these caches at any time. Because the processor may create the cache entries
at the time of translation and not update them following subsequent modifications to the
paging structures in memory, software should take care to invalidate the cache entries
appropriately when causing such modifications. The invalidation of TLBs and the paging-
structure caches is described in Section 4.10.4.

4.10.3.2 Using the Paging-Structure Caches to Translate Linear Addresses
When a linear address is accessed, the processor uses a procedure such as the following
to determine the physical address to which it translates and whether the access should
be allowed:

• If the processor finds a TLB entry that is for the page number of the linear address
and that is associated with the current PCID (or which is global), it may use the
physical address, access rights, and other attributes from that entry.

• If the processor does not find a relevant TLB entry, it may use the upper bits of the
linear address to select an entry from the PDE cache that is associated with the
current PCID (Section 4.10.3.1 indicates which bits are used in each paging mode).
It can then use that entry to complete the translation process (locating a PTE, etc.)
as if it had traversed the PDE (and, for IA-32e paging, the PDPTE and PML4) corre-
sponding to the PDE-cache entry.

• The following items apply when IA-32e paging is used:

— If the processor does not find a relevant TLB entry or a relevant PDE-cache entry,
it may use bits 47:30 of the linear address to select an entry from the PDPTE
cache that is associated with the current PCID. It can then use that entry to
complete the translation process (locating a PDE, etc.) as if it had traversed the
PDPTE and the PML4 corresponding to the PDPTE-cache entry.

— If the processor does not find a relevant TLB entry, a relevant PDE-cache entry,
or a relevant PDPTE-cache entry, it may use bits 47:39 of the linear address to
select an entry from the PML4 cache that is associated with the current PCID. It
can then use that entry to complete the translation process (locating a PDPTE,
etc.) as if it had traversed the corresponding PML4.

(Any of the above steps would be skipped if the processor does not support the cache in
question.)

If the processor does not find a TLB or paging-structure-cache entry for the linear
address, it uses the linear address to traverse the entire paging-structure hierarchy, as
described in Section 4.3, Section 4.4.2, and Section 4.5.

4.10.3.3 Multiple Cached Entries for a Single Paging-Structure Entry
The paging-structure caches and TLBs and paging-structure caches may contain
multiple entries associated with a single PCID and with information derived from a single
paging-structure entry. The following items give some examples for IA-32e paging:

• Suppose that two PML4Es contain the same physical address and thus reference the
same page-directory-pointer table. Any PDPTE in that table may result in two PDPTE-
cache entries, each associated with a different set of linear addresses. Specifically,
suppose that the n1

th and n2
th entries in the PML4 table contain the same physical

address. This implies that the physical address in the mth PDPTE in the page-
directory-pointer table would appear in the PDPTE-cache entries associated with
both p1 and p2, where (p1 » 9) = n1, (p2 » 9) = n2, and (p1 & 1FFH) = (p2 & 1FFH) =

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 117

Instruction Set Reference, N-Z

m. This is because both PDPTE-cache entries use the same PDPTE, one resulting
from a reference from the n1

th PML4E and one from the n2
th PML4E.

• Suppose that the first PML4E (i.e., the one in position 0) contains the physical
address X in CR3 (the physical address of the PML4 table). This implies the following:

— Any PML4-cache entry associated with linear addresses with 0 in bits 47:39
contains address X.

— Any PDPTE-cache entry associated with linear addresses with 0 in bits 47:30
contains address X. This is because the translation for a linear address for which
the value of bits 47:30 is 0 uses the value of bits 47:39 (0) to locate a page-
directory-pointer table at address X (the address of the PML4 table). It then uses
the value of bits 38:30 (also 0) to find address X again and to store that address
in the PDPTE-cache entry.

— Any PDE-cache entry associated with linear addresses with 0 in bits 47:21
contains address X for similar reasons.

— Any TLB entry for page number 0 (associated with linear addresses with 0 in
bits 47:12) translates to page frame X » 12 for similar reasons.

The same PML4E contributes its address X to all these cache entries because the self-
referencing nature of the entry causes it to be used as a PML4E, a PDPTE, a PDE, and
a PTE.

4.10.4 Invalidation of TLBs and Paging-Structure Caches
As noted in Section 4.10.2 and Section 4.10.3, the processor may create entries in the
TLBs and the paging-structure caches when linear addresses are translated, and it may
retain these entries even after the paging structures used to create them have been
modified. To ensure that linear-address translation uses the modified paging structures,
software should take action to invalidate any cached entries that may contain informa-
tion that has since been modified.

4.10.4.1 Operations that Invalidate TLBs and Paging-Structure Caches
The following instructions invalidate entries in the TLBs and the paging-structure caches:

• INVLPG. This instruction takes a single operand, which is a linear address. The
instruction invalidates any TLB entries that are for a page number corresponding to
the linear address and that are associated with the current PCID. It also invalidates
any global TLB entries with that page number, regardless of PCID (see Section
4.10.2.4).1 INVLPG also invalidates all entries in all paging-structure caches
associated with the current PCID, regardless of the linear addresses to which they
correspond.

• MOV to CR3. The behavior of the instruction depends on the value of CR4.PCIDE:

— If CR4.PCIDE = 0, the instruction invalidates all TLB entries associated with PCID
000H except those for global pages. It also invalidates all entries in all paging-
structure caches associated with PCID 000H.

— If CR4.PCIDE = 1 and bit 63 of the instruction’s source operand is 0, the
instruction invalidates all TLB entries associated with the PCID specified in
bits 11:0 of the instruction’s source operand except those for global pages. It

1. If the paging structures map the linear address using a page larger than 4 KBytes and there are mul-
tiple TLB entries for that page (see Section 4.10.2.3), the instruction invalidates all of them.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 118

Instruction Set Reference, N-Z

also invalidates all entries in all paging-structure caches associated with that
PCID. It is not required to invalidate entries in the TLBs and paging-structure
caches that are associated with other PCIDs.

— If CR4.PCIDE = 1 and bit 63 of the instruction’s source operand is 1, the
instruction is not required to invalidate any TLB entries or entries in paging-
structure caches.

• MOV to CR4. The instruction invalidates all TLB entries (including global entries) and
all entries in all paging-structure caches (for all PCIDs) if either (1) it changes the
value of the CR4.PGE flag;1 or (2) it changes the value of the CR4.PCIDE from 1 to 0.

• Task switch. If a task switch changes the value of CR3, it invalidates all TLB entries
associated with PCID 000H except those for global pages. It also invalidates all
entries in all paging-structure caches for associated with PCID 000H.2

• VMX transitions. See Section 4.11.1.

The processor is always free to invalidate additional entries in the TLBs and paging-
structure caches. The following are some examples:

• INVLPG may invalidate TLB entries for pages other than the one corresponding to its
linear-address operand. It may invalidate TLB entries and paging-structure-cache
entries associated with PCIDs other than the current PCID.

• MOV to CR3 may invalidate TLB entries for global pages. If CR4.PCIDE = 1 and bit 63
of the instruction’s source operand is 0, it may invalidate TLB entries and entries in
the paging-structure caches associated with PCIDs other than the current PCID. It
may invalidate entries if CR4.PCIDE = 1 and bit 63 of the instruction’s source
operand is 1.

• On a processor supporting Hyper-Threading Technology, invalidations performed on
one logical processor may invalidate entries in the TLBs and paging-structure caches
used by other logical processors.

(Other instructions and operations may invalidate entries in the TLBs and the paging-
structure caches, but the instructions identified above are recommended.)

In addition to the instructions identified above, page faults invalidate entries in the TLBs
and paging-structure caches. In particular, a page-fault exception resulting from an
attempt to use a linear address will invalidate any TLB entries that are for a page number
corresponding to that linear address and that are associated with the current PCID. it
also invalidates all entries in the paging-structure caches that would be used for that
linear address and that are associated with the current PCID.3 These invalidations
ensure that the page-fault exception will not recur (if the faulting instruction is re-
executed) if it would not be caused by the contents of the paging structures in memory
(and if, therefore, it resulted from cached entries that were not invalidated after the
paging structures were modified in memory).

As noted in Section 4.10.2, some processors may choose to cache multiple smaller-page
TLB entries for a translation specified by the paging structures to use a page larger than
4 KBytes. There is no way for software to be aware that multiple translations for smaller
pages have been used for a large page. The INVLPG instruction and page faults provide

1. If CR4.PGE is changing from 0 to 1, there were no global TLB entries before the execution; if CR4.PGE
is changing from 1 to 0, there will be no global TLB entries after the execution.

2. Task switches do not occur in IA-32e mode and thus cannot occur with IA-32e paging. Since
CR4.PCIDE can be set only with IA-32e paging, task switches occur only with CR4.PCIDE = 0.

3. Unlike INVLPG, page faults need not invalidate all entries in the paging-structure caches, only those
that would be used to translate the faulting linear address.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 119

Instruction Set Reference, N-Z

the same assurances that they provide when a single TLB entry is used: they invalidate
all TLB entries corresponding to the translation specified by the paging structures.

4.10.4.2 Recommended Invalidation
The following items provide some recommendations regarding when software should
perform invalidations:

• If software modifies a paging-structure entry that identifies the final page frame for
a page number (either a PTE or a paging-structure entry in which the PS flag is 1), it
should execute INVLPG for any linear address with a page number whose translation
uses that PTE.1 (If the paging-structure entry may be used in the translation of
different page numbers — see Section 4.10.3.3 — software should execute INVLPG
for linear addresses with each of those page numbers; alternatively, it could use MOV
to CR3 or MOV to CR4.)

• If software modifies a paging-structure entry that references another paging
structure, it may use one of the following approaches depending upon the types and
number of translations controlled by the modified entry:

— Execute INVLPG for linear addresses with each of the page numbers with trans-
lations that would use the entry. However, if no page numbers that would use the
entry have translations (e.g., because the P flags are 0 in all entries in the paging
structure referenced by the modified entry), it remains necessary to execute
INVLPG at least once.

— Execute MOV to CR3 if the modified entry controls no global pages.

— Execute MOV to CR4 to modify CR4.PGE.

• If CR4.PCIDE = 1 and software modifies a paging-structure entry that does not map
a page or in which the G flag (bit 8) is 0, additional steps are required if the entry
may be used for PCIDs other than the current one. Any one of the following suffices:

— Execute MOV to CR4 to modify CR4.PGE, either immediately or before again
using any of the affected PCIDs. For example, software could use different
(previously unused) PCIDs for the processes that used the affected PCIDs.

— For each affected PCID, execute MOV to CR3 to make that PCID current (and to
load the address of the appropriate PML4 table). If the modified entry controls no
global pages and bit 63 of the source operand to MOV to CR3 was 0, no further
steps are required. Otherwise, execute INVLPG for linear addresses with each of
the page numbers with translations that would use the entry; if no page numbers
that would use the entry have translations, execute INVLPG at least once.

• If software using PAE paging modifies a PDPTE, it should reload CR3 with the
register’s current value to ensure that the modified PDPTE is loaded into the corre-
sponding PDPTE register (see Section 4.4.1).

• If the nature of the paging structures is such that a single entry may be used for
multiple purposes (see Section 4.10.3.3), software should perform invalidations for
all of these purposes. For example, if a single entry might serve as both a PDE and
PTE, it may be necessary to execute INVLPG with two (or more) linear addresses,
one that uses the entry as a PDE and one that uses it as a PTE. (Alternatively,
software could use MOV to CR3 or MOV to CR4.)

• As noted in Section 4.10.2, the TLBs may subsequently contain multiple translations
for the address range if software modifies the paging structures so that the page size

1. One execution of INVLPG is sufficient even for a page with size greater than 4 KBytes.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 120

Instruction Set Reference, N-Z

used for a 4-KByte range of linear addresses changes. A reference to a linear address
in the address range may use any of these translations.

Software wishing to prevent this uncertainty should not write to a paging-structure
entry in a way that would change, for any linear address, both the page size and
either the page frame, access rights, or other attributes. It can instead use the
following algorithm: first clear the P flag in the relevant paging-structure entry (e.g.,
PDE); then invalidate any translations for the affected linear addresses (see Section
4.10.4.2); and then modify the relevant paging-structure entry to set the P flag and
establish modified translation(s) for the new page size.

• Software should clear bit 63 of the source operand to a MOV to CR3 instruction that
establishes a PCID that had been used earlier for a different linear-address space
(e.g., with a different value in bits 51:12 of CR3). This ensures invalidation of any
information that may have been cached for the previous linear-address space.

This assumes that both linear-address spaces use the same global pages and that it
is thus not necessary to invalidate any global TLB entries. If that is not the case,
software should invalidate those entries by executing MOV to CR4 to modify
CR4.PGE.

...

4.11.2 VMX Support for Address Translation
Chapter 25, “VMX Support for Address Translation,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3B describe two features of the virtual-
machine extensions (VMX) that interact directly with paging. These are virtual-
processor identifiers (VPIDs) and the extended page table mechanism (EPT).

VPIDs provide a way for software to identify to the processor the address spaces for
different “virtual processors.” The processor may use this identification to maintain
concurrently information for multiple address spaces in its TLBs and paging-structure
caches, even when non-zero PCIDs are not being used. See Section 25.1 for details.

...

12. Updates to Chapter 6, Volume 3A

Change bars show changes to Chapter 6 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

--

...

6.2 EXCEPTION AND INTERRUPT VECTORS
To aid in handling exceptions and interrupts, each architecturally defined exception and
each interrupt condition requiring special handling by the processor is assigned a unique
identification number, called a vector number. The processor uses the vector number
assigned to an exception or interrupt as an index into the interrupt descriptor table
(IDT). The table provides the entry point to an exception or interrupt handler (see
Section 6.10, “Interrupt Descriptor Table (IDT)”).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 121

Instruction Set Reference, N-Z

The allowable range for vector numbers is 0 to 255. Vector numbers in the range 0
through 31 are reserved by the Intel 64 and IA-32 architectures for architecture-defined
exceptions and interrupts. Not all of the vector numbers in this range have a currently
defined function. The unassigned vector numbers in this range are reserved. Do not use
the reserved vector numbers.

Vector numbers in the range 32 to 255 are designated as user-defined interrupts and are
not reserved by the Intel 64 and IA-32 architecture. These interrupts are generally
assigned to external I/O devices to enable those devices to send interrupts to the
processor through one of the external hardware interrupt mechanisms (see Section 6.3,
“Sources of Interrupts”).

Table 6-1 shows vector number assignments for architecturally defined exceptions and
for the NMI interrupt. This table gives the exception type (see Section 6.5, “Exception
Classifications”) and indicates whether an error code is saved on the stack for the excep-
tion. The source of each predefined exception and the NMI interrupt is also given.

...

13. Updates to Chapter 10, Volume 3A

Change bars show changes to Chapter 10 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

--

...

10.5.4 APIC Timer
The local APIC unit contains a 32-bit programmable timer that is available to software to
time events or operations. This timer is set up by programming four registers: the divide
configuration register (see Figure Figure 10-10), the initial-count and current-count
registers (see Figure Figure 10-11), and the LVT timer register (see Figure 10-8).

If CPUID.06H:EAX.ARAT[bit 2] = 1, the processor’s APIC timer runs at a constant rate
regardless of P-state transitions and it continues to run at the same rate in deep C-
states.

If CPUID.06H:EAX.ARAT[bit 2] = 0 or if CPUID 06H is not supported, the APIC timer may
temporarily stop while the processor is in deep C-states or during transitions caused by
Enhanced Intel SpeedStep® Technology.

Figure 10-10 Divide Configuration Register

Address: FEE0 03E0H
Value after reset: 0H

0

Divide Value (bits 0, 1 and 3)
000: Divide by 2
001: Divide by 4
010: Divide by 8
011: Divide by 16
100: Divide by 32
101: Divide by 64
110: Divide by 128
111: Divide by 1

31 0

Reserved
1234

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 122

Instruction Set Reference, N-Z

The time base for the timer is derived from the processor’s bus clock, divided by the
value specified in the divide configuration register.

The timer can be configured through the timer LVT entry for one-shot or periodic opera-
tion. In one-shot mode, the timer is started by programming its initial-count register.
The initial count value is then copied into the current-count register and count-down
begins. After the timer reaches zero, an timer interrupt is generated and the timer
remains at its 0 value until reprogrammed.

In periodic mode, the current-count register is automatically reloaded from the initial-
count register when the count reaches 0 and a timer interrupt is generated, and the
count-down is repeated. If during the count-down process the initial-count register is
set, counting will restart, using the new initial-count value. The initial-count register is a
read-write register; the current-count register is read only.

A write of 0 to the initial-count register effectively stops the local APIC timer, in both one-
shot and periodic mode.

The LVT timer register determines the vector number that is delivered to the processor
with the timer interrupt that is generated when the timer count reaches zero. The mask
flag in the LVT timer register can be used to mask the timer interrupt.

...

10.6.1 Interrupt Command Register (ICR)
The interrupt command register (ICR) is a 64-bit1 local APIC register (see Figure 10-12)
that allows software running on the processor to specify and send interprocessor inter-
rupts (IPIs) to other processors in the system.

...

10.6.2.2 Logical Destination Mode

...

The interpretation of MDA for the two models is described in the following paragraphs.

1. Flat Model — This model is selected by programming DFR bits 28 through 31 to
1111. Here, a unique logical APIC ID can be established for up to 8 local APICs by

Figure 10-11 Initial Count and Current Count Registers

1. In XAPIC mode the ICR is addressed as two 32-bit registers, ICR_LOW (FFE0 0300H) and ICR_HIGH
(FFE0 0310H).

31 0

Initial Count

Address: Initial Count

Value after reset: 0H

Current Count

Current Count FEE0 0390H
FEE0 0380H

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 123

Instruction Set Reference, N-Z

setting a different bit in the logical APIC ID field of the LDR for each local APIC. A
group of local APICs can then be selected by setting one or more bits in the MDA.

Each local APIC performs a bit-wise AND of the MDA and its logical APIC ID. If a true
condition is detected, the local APIC accepts the IPI message. A broadcast to all
APICs is achieved by setting the MDA to 1s.

2. Cluster Model — This model is selected by programming DFR bits 28 through 31 to
0000. This model supports two basic destination schemes: flat cluster and hierar-
chical cluster.

The flat cluster destination model is only supported for P6 family and Pentium
processors. Using this model, all APICs are assumed to be connected through the
APIC bus. Bits 60 through 63 of the MDA contains the encoded address of the
destination cluster and bits 56 through 59 identify up to four local APICs within the
cluster (each bit is assigned to one local APIC in the cluster, as in the flat connection
model). To identify one or more local APICs, bits 60 through 63 of the MDA are
compared with bits 28 through 31 of the LDR to determine if a local APIC is part of
the cluster. Bits 56 through 59 of the MDA are compared with Bits 24 through 27 of
the LDR to identify a local APICs within the cluster.

Sets of processors within a cluster can be specified by writing the target cluster
address in bits 60 through 63 of the MDA and setting selected bits in bits 56 through
59 of the MDA, corresponding to the chosen members of the cluster. In this mode, 15
clusters (with cluster addresses of 0 through 14) each having 4 local APICs can be
specified in the message. For the P6 and Pentium processor’s local APICs, however,
the APIC arbitration ID supports only 15 APIC agents. Therefore, the total number
of processors and their local APICs supported in this mode is limited to 15.
Broadcast to all local APICs is achieved by setting all destination bits to one. This
guarantees a match on all clusters and selects all APICs in each cluster. A broadcast
IPI or I/O subsystem broadcast interrupt with lowest priority delivery mode is not
supported in cluster mode and must not be configured by software.

The hierarchical cluster destination model can be used with Pentium 4, Intel Xeon, P6
family, or Pentium processors. With this model, a hierarchical network can be
created by connecting different flat clusters via independent system or APIC buses.
This scheme requires a cluster manager within each cluster, which is responsible for
handling message passing between system or APIC buses. One cluster contains up
to 4 agents. Thus 15 cluster managers, each with 4 agents, can form a network of up
to 60 APIC agents. Note that hierarchical APIC networks requires a special cluster
manager device, which is not part of the local or the I/O APIC units.

...

14. Updates to Chapter 11, Volume 3A

Change bars show changes to Chapter 11 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

--

...

Table 11-1 Characteristics of the Caches, TLBs, Store Buffer, and

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 124

Instruction Set Reference, N-Z

Write Combining Buffer in Intel 64 and IA-32 Processors

Cache or Buffer Characteristics

Trace Cache1 • Pentium 4 and Intel Xeon processors (Based on Intel NetBurst
microarchitecture): 12 Kμops, 8-way set associative.

• Intel Core i7, Intel Core 2 Duo, Intel Atom, Intel Core Duo, Intel Core Solo,
Pentium M processor: not implemented.

• P6 family and Pentium processors: not implemented.

L1 Instruction Cache • Pentium 4 and Intel Xeon processors (Based on Intel NetBurst
microarchitecture): not implemented.

• Intel Core i7 processor: 32-KByte, 4-way set associative.
• Intel Core 2 Duo, Intel Atom, Intel Core Duo, Intel Core Solo, Pentium M

processor: 32-KByte, 8-way set associative.
• P6 family and Pentium processors: 8- or 16-KByte, 4-way set associative,

32-byte cache line size; 2-way set associative for earlier Pentium
processors.

L1 Data Cache • Pentium 4 and Intel Xeon processors (Based on Intel NetBurst
microarchitecture): 8-KByte, 4-way set associative, 64-byte cache line
size.

• Pentium 4 and Intel Xeon processors (Based on Intel NetBurst
microarchitecture): 16-KByte, 8-way set associative, 64-byte cache line
size.

• Intel Atom processors: 24-KByte, 6-way set associative, 64-byte cache
line size.

• Intel Core i7, Intel Core 2 Duo, Intel Core Duo, Intel Core Solo, Pentium M
and Intel Xeon processors: 32-KByte, 8-way set associative, 64-byte
cache line size.

• P6 family processors: 16-KByte, 4-way set associative, 32-byte cache
line size; 8-KBytes, 2-way set associative for earlier P6 family
processors.

• Pentium processors: 16-KByte, 4-way set associative, 32-byte cache line
size; 8-KByte, 2-way set associative for earlier Pentium processors.

L2 Unified Cache • Intel Core 2 Duo and Intel Xeon processors: up to 4-MByte (or 4MBx2 in
quadcore processors), 16-way set associative, 64-byte cache line size.

• Intel Core 2 Duo and Intel Xeon processors: up to 6-MByte (or 6MBx2 in
quadcore processors), 24-way set associative, 64-byte cache line size.

• Intel Core i7, i5, i3 processors: 256KBbyte, 8-way set associative,
64-byte cache line size.

• Intel Atom processors: 512-KByte, 8-way set associative, 64-byte cache
line size.

• Intel Core Duo, Intel Core Solo processors: 2-MByte, 8-way set
associative, 64-byte cache line size

• Pentium 4 and Intel Xeon processors: 256, 512, 1024, or 2048-KByte, 8-
way set associative, 64-byte cache line size, 128-byte sector size.

• Pentium M processor: 1 or 2-MByte, 8-way set associative, 64-byte
cache line size.

• P6 family processors: 128-KByte, 256-KByte, 512-KByte, 1-MByte, or 2-
MByte, 4-way set associative, 32-byte cache line size.

• Pentium processor (external optional): System specific, typically 256- or
512-KByte, 4-way set associative, 32-byte cache line size.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 125

Instruction Set Reference, N-Z

L3 Unified Cache • Intel Xeon processors: 512-KByte, 1-MByte, 2-MByte, or 4-MByte, 8-way
set associative, 64-byte cache line size, 128-byte sector size.

• Intel Core i7 processor, Intel Xeon processor 5500: Up to 8MByte, 16-
way set associative, 64-byte cache line size.

• Intel Xeon processor 5600: Up to 12MByte, 64-byte cache line size.
• Intel Xeon processor 7500: Up to 24MByte, 64-byte cache line size.

Instruction TLB
(4-KByte Pages)

• Pentium 4 and Intel Xeon processors (Based on Intel NetBurst
microarchitecture): 128 entries, 4-way set associative.

• Intel Atom processors: 32-entries, fully associative.
• Intel Core i7, i5, i3 processors: 64-entries per thread (128-entries per

core), 4-way set associative.
• Intel Core 2 Duo, Intel Core Duo, Intel Core Solo processors, Pentium M

processor: 128 entries, 4-way set associative.
• P6 family processors: 32 entries, 4-way set associative.
• Pentium processor: 32 entries, 4-way set associative; fully set

associative for Pentium processors with MMX technology.

Data TLB (4-KByte
Pages)

• Intel Core i7, i5, i3 processors, DTLB0: 64-entries, 4-way set associative.
• Intel Core 2 Duo processors: DTLB0, 16 entries, DTLB1, 256 entries, 4

ways.
• Intel Atom processors: 16-entry-per-thread micro-TLB, fully associative;

64-entry DTLB, 4-way set associative; 16-entry PDE cache, fully
associative.

• Pentium 4 and Intel Xeon processors (Based on Intel NetBurst
microarchitecture): 64 entry, fully set associative, shared with large page
DTLB.

• Intel Core Duo, Intel Core Solo processors, Pentium M processor: 128
entries, 4-way set associative.

• Pentium and P6 family processors: 64 entries, 4-way set associative;
fully set, associative for Pentium processors with MMX technology.

Instruction TLB
(Large Pages)

• Intel Core i7, i5, i3 processors: 7-entries per thread, fully associative.
• Intel Core 2 Duo processors: 4 entries, 4 ways.
• Pentium 4 and Intel Xeon processors: large pages are fragmented.
• Intel Core Duo, Intel Core Solo, Pentium M processor: 2 entries, fully

associative.
• P6 family processors: 2 entries, fully associative.
• Pentium processor: Uses same TLB as used for 4-KByte pages.

Data TLB (Large
Pages)

• Intel Core i7, i5, i3 processors, DTLB0: 32-entries, 4-way set associative.
• Intel Core 2 Duo processors: DTLB0, 16 entries, DTLB1, 32 entries, 4

ways.
• Intel Atom processors: 8 entries, 4-way set associative.
• Pentium 4 and Intel Xeon processors: 64 entries, fully set associative;

shared with small page data TLBs.
• Intel Core Duo, Intel Core Solo, Pentium M processor: 8 entries, fully

associative.
• P6 family processors: 8 entries, 4-way set associative.
• Pentium processor: 8 entries, 4-way set associative; uses same TLB as

used for 4-KByte pages in Pentium processors with MMX technology.

Second-level Unified
TLB (4-KByte
Pages)

• Intel Core i7, i5, i3 processor, STLB: 512-entries, 4-way set associative.

Cache or Buffer Characteristics

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 126

Instruction Set Reference, N-Z

Intel 64 and IA-32 processors may implement four types of caches: the trace cache, the
level 1 (L1) cache, the level 2 (L2) cache, and the level 3 (L3) cache. See Figure 11-1.
Cache availability is described below:

• Intel Core i7, i5, i3 processor Family and Intel Xeon processor Family based
on Intel microarchitecture (Nehalem and Westmere) — The L1 cache is
divided into two sections: one section is dedicated to caching instructions (pre-
decoded instructions) and the other caches data. The L2 cache is a unified data and
instruction cache. Each processor core has its own L1 and L2. The L3 cache is an
inclusive, unified data and instruction cache, shared by all processor cores inside a
physical package. No trace cache is implemented.

• Intel Core 2 processor and Intel Xeon processor Family based on Intel Core
microarchitecture — The L1 cache is divided into two sections: one section is
dedicated to caching instructions (pre-decoded instructions) and the other caches
data. The L2 cache is a unified data and instruction cache located on the processor
chip; it is shared between two processor cores in a dual-core processor implemen-
tation. Quad-core processors have two L2, each shared by two processor cores. No
trace cache is implemented.

• Intel Atom processor — The L1 cache is divided into two sections: one section is
dedicated to caching instructions (pre-decoded instructions) and the other caches
data. The L2 cache is a unified data and instruction cache is located on the processor
chip. No trace cache is implemented.

• Intel Core Solo and Intel Core Duo processors — The L1 cache is divided into
two sections: one section is dedicated to caching instructions (pre-decoded instruc-
tions) and the other caches data. The L2 cache is a unified data and instruction cache
located on the processor chip. It is shared between two processor cores in a dual-
core processor implementation. No trace cache is implemented.

• Pentium 4 and Intel Xeon processors Based on Intel NetBurst microarchi-
tecture — The trace cache caches decoded instructions (μops) from the instruction
decoder and the L1 cache contains data. The L2 and L3 caches are unified data and
instruction caches located on the processor chip. Dualcore processors have two L2,
one in each processor core. Note that the L3 cache is only implemented on some
Intel Xeon processors.

• P6 family processors — The L1 cache is divided into two sections: one dedicated to
caching instructions (pre-decoded instructions) and the other to caching data. The

Store Buffer • Intel Core i7, i5, i3 processors: 32entries.
• Intel Core 2 Duo processors: 20 entries.
• Intel Atom processors: 8 entries, used for both WC and store buffers.
• Pentium 4 and Intel Xeon processors: 24 entries.
• Pentium M processor: 16 entries.
• P6 family processors: 12 entries.
• Pentium processor: 2 buffers, 1 entry each (Pentium processors with

MMX technology have 4 buffers for 4 entries).

Write Combining
(WC) Buffer

• Intel Core 2 Duo processors: 8 entries.
• Intel Atom processors: 8 entries, used for both WC and store buffers.
• Pentium 4 and Intel Xeon processors: 6 or 8 entries.
• Intel Core Duo, Intel Core Solo, Pentium M processors: 6 entries.
• P6 family processors: 4 entries.

NOTES:
1 Introduced to the IA-32 architecture in the Pentium 4 and Intel Xeon processors.

Cache or Buffer Characteristics

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 127

Instruction Set Reference, N-Z

L2 cache is a unified data and instruction cache located on the processor chip. P6
family processors do not implement a trace cache.

• Pentium processors — The L1 cache has the same structure as on P6 family
processors. There is no trace cache. The L2 cache is a unified data and instruction
cache external to the processor chip on earlier Pentium processors and implemented
on the processor chip in later Pentium processors. For Pentium processors where the
L2 cache is external to the processor, access to the cache is through the system bus.

For Intel Core i7 processors and processors based on Intel Core, Intel Atom, and Intel
NetBurst microarchitectures, Intel Core Duo, Intel Core Solo and Pentium M processors,
the cache lines for the L1 and L2 caches (and L3 caches if supported) are 64 bytes wide.
The processor always reads a cache line from system memory beginning on a 64-byte
boundary. (A 64-byte aligned cache line begins at an address with its 6 least-significant
bits clear.) A cache line can be filled from memory with a 8-transfer burst transaction.
The caches do not support partially-filled cache lines, so caching even a single double-
word requires caching an entire line.

The L1 and L2 cache lines in the P6 family and Pentium processors are 32 bytes wide,
with cache line reads from system memory beginning on a 32-byte boundary (5 least-
significant bits of a memory address clear.) A cache line can be filled from memory with
a 4-transfer burst transaction. Partially-filled cache lines are not supported.

The trace cache in processors based on Intel NetBurst microarchitecture is available in all
execution modes: protected mode, system management mode (SMM), and real-address
mode. The L1,L2, and L3 caches are also available in all execution modes; however, use
of them must be handled carefully in SMM (see Section 26.4.2, “SMRAM Caching”).

The TLBs store the most recently used page-directory and page-table entries. They
speed up memory accesses when paging is enabled by reducing the number of memory
accesses that are required to read the page tables stored in system memory. The TLBs
are divided into four groups: instruction TLBs for 4-KByte pages, data TLBs for 4-KByte
pages; instruction TLBs for large pages (2-MByte, 4-MByte or 1-GByte pages), and data
TLBs for large pages. The TLBs are normally active only in protected mode with paging
enabled. When paging is disabled or the processor is in real-address mode, the TLBs
maintain their contents until explicitly or implicitly flushed (see Section 11.9, “Invali-
dating the Translation Lookaside Buffers (TLBs)”).

...

11.9 INVALIDATING THE TRANSLATION LOOKASIDE
BUFFERS (TLBS)

The processor updates its address translation caches (TLBs) transparently to software.
Several mechanisms are available, however, that allow software and hardware to invali-
date the TLBs either explicitly or as a side effect of another operation. Most details are
given in Section 4.10.4, “Invalidation of TLBs and Paging-Structure Caches.” In addition,
the following operations invalidate all TLB entries, irrespective of the setting of the
G flag:

• Asserting or de-asserting the FLUSH# pin.

• (Pentium 4, Intel Xeon, and later processors only.) Writing to an MTRR (with a
WRMSR instruction).

• Writing to control register CR0 to modify the PG or PE flag.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 128

Instruction Set Reference, N-Z

• (Pentium 4, Intel Xeon, and later processors only.) Writing to control register CR4 to
modify the PSE, PGE, or PAE flag.

• Writing to control register CR4 to change the PCIDE flag from 1 to 0.

See Section 4.10, “Caching Translation Information,” for additional information about
the TLBs.

...

11.11.2.3 Variable Range MTRRs
The Pentium 4, Intel Xeon, and P6 family processors permit software to specify the
memory type for m variable-size address ranges, using a pair of MTRRs for each range.
The number m of ranges supported is given in bits 7:0 of the IA32_MTRRCAP MSR (see
Figure 11-5 in Section 11.11.1).

The first entry in each pair (IA32_MTRR_PHYSBASEn) defines the base address and
memory type for the range; the second entry (IA32_MTRR_PHYSMASKn) contains a
mask used to determine the address range. The “n” suffix is in the range 0 through m–1
and identifies a specific register pair.

...

11.11.9 Large Page Size Considerations
The MTRRs provide memory typing for a limited number of regions that have a 4 KByte
granularity (the same granularity as 4-KByte pages). The memory type for a given page
is cached in the processor’s TLBs. When using large pages (2 MBytes, 4 MBytes, or 1
GBytes), a single page-table entry covers multiple 4-KByte granules, each with a single
memory type. Because the memory type for a large page is cached in the TLB, the
processor can behave in an undefined manner if a large page is mapped to a region of
memory that MTRRs have mapped with multiple memory types.

Undefined behavior can be avoided by insuring that all MTRR memory-type ranges within
a large page are of the same type. If a large page maps to a region of memory containing
different MTRR-defined memory types, the PCD and PWT flags in the page-table entry
should be set for the most conservative memory type for that range. For example, a
large page used for memory mapped I/O and regular memory is mapped as UC memory.
Alternatively, the operating system can map the region using multiple 4-KByte pages
each with its own memory type.

The requirement that all 4-KByte ranges in a large page are of the same memory type
implies that large pages with different memory types may suffer a performance penalty,
since they must be marked with the lowest common denominator memory type. The
same consideration apply to 1 GByte pages, each of which may consist of multiple 2-
Mbyte ranges.

The Pentium 4, Intel Xeon, and P6 family processors provide special support for the
physical memory range from 0 to 4 MBytes, which is potentially mapped by both the
fixed and variable MTRRs. This support is invoked when a Pentium 4, Intel Xeon, or P6
family processor detects a large page overlapping the first 1 MByte of this memory range
with a memory type that conflicts with the fixed MTRRs. Here, the processor maps the
memory range as multiple 4-KByte pages within the TLB. This operation insures correct
behavior at the cost of performance. To avoid this performance penalty, operating-
system software should reserve the large page option for regions of memory at
addresses greater than or equal to 4 MBytes.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 129

Instruction Set Reference, N-Z

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 130

Instruction Set Reference, N-Z

15. Updates to Chapter 22, Volume 3B

Change bars show changes to Chapter 22 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...

22.2.1.1 Linear Accesses That Cause APIC-Access VM Exits
Whether a linear access to the APIC-access page causes an APIC-access VM exit
depends in part of the nature of the translation used by the linear address:

• If the linear access uses a translation with a 4-KByte page, it causes an APIC-access
VM exit.

• If the linear access uses a translation with a large page (2-MByte, 4-MByte, or
1-GByte), the access may or may not cause an APIC-access VM exit. Section 22.5.1
describes the treatment of such accesses that do not cause an APIC-access VM exits.

...

22.2.2.1 Guest-Physical Accesses That Might Not Cause APIC-Access VM Exits
Whether a guest-physical access to the APIC-access page causes an APIC-access VM exit
depends on the nature of the EPT translation used by the guest-physical address and on
how software is managing information cached from the EPT paging structures. The
following items detail cases in which a guest-physical access to the APIC-access page
might not an APIC-access VM exit:

• If the access uses a guest-physical address whose translation to the APIC-access
page uses an EPT PDPTE that maps a 1-GByte page (because bit 7 of the EPT PDPTE
is 1).

...

22.5.1 Linear Accesses to the APIC-Access Page Using Large-Page
Translations

As noted in Section 22.2.1, a linear access to the APIC-access page using translation
with a large page (2-MByte, 4-MByte, or 1-GByte) may or may not cause an APIC-access
VM exit. If it does not and the access is not a VTPR access (see Section 22.2.4), the
access operates on memory on the APIC-access page. Section 22.5.3 describes the
treatment if there is no APIC-access VM exit and the access is a VTPR access.

...

22.5.3 VTPR Accesses
As noted in Section 22.2.4, a memory access is a VTPR access if all of the following hold:
(1) the “use TPR shadow” VM-execution control is 1; (2) the access is not for an instruc-
tion fetch; (3) the access is at most 32 bits in width; and (4) the access is to offset 80H
on the APIC-access page.

The treatment of VTPR accesses depends on the nature of the access:

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 131

Instruction Set Reference, N-Z

• A linear VTPR access using a translation with a 4-KByte page does not cause an
APIC-access VM exit. Instead, it is converted so that, instead of accessing offset 80H
on the APIC-access page, it accesses offset 80H on the virtual-APIC page. Further
details are provided in Section 22.5.3.1 to Section 22.5.3.3.

• A linear VTPR access using a translation with a large page (2-MByte, 4-MByte, or
1-GByte) may be treated in either of two ways:

— It may operate on memory on the APIC-access page. The details in Section
22.5.3.1 to Section 22.5.3.3 do not apply.

— It may be converted so that, instead of accessing offset 80H on the APIC-access
page, it accesses offset 80H on the virtual-APIC page. Further details are
provided in Section 22.5.3.1 to Section 22.5.3.3.

...

16. Updates to Chapter 23, Volume 3B

Change bars show changes to Chapter 23 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...

23.2.2 Checks on Host Control Registers and MSRs
The following checks are performed on fields in the host-state area that correspond to
control registers and MSRs:

• The CR0 field must not set any bit to a value not supported in VMX operation (see
Section 20.8).1

• The CR4 field must not set any bit to a value not supported in VMX operation (see
Section 20.8).

• On processors that support Intel 64 architecture, the CR3 field must be such that
bits 63:52 and bits in the range 51:32 beyond the processor’s physical-address
width must be 0.2,3

• On processors that support Intel 64 architecture, the IA32_SYSENTER_ESP field and
the IA32_SYSENTER_EIP field must each contain a canonical address.

• If the “load IA32_PERF_GLOBAL_CTRL” VM-exit control is 1, bits reserved in the
IA32_PERF_GLOBAL_CTRL MSR must be 0 in the field for that register (see
Figure 30-3).

• If the “load IA32_PAT” VM-exit control is 1, the value of the field for the IA32_PAT
MSR must be one that could be written by WRMSR without fault at CPL 0. Specifically,

1. The bits corresponding to CR0.NW (bit 29) and CR0.CD (bit 30) are never checked because the values
of these bits are not changed by VM exit; see Section 24.5.1.

2. Software can determine a processor’s physical-address width by executing CPUID with 80000008H
in EAX. The physical-address width is returned in bits 7:0 of EAX.

3. Bit 63 of the CR3 field in the host-state area must be 0. This is true even though, If CR4.PCIDE = 1,
bit 63 of the source operand to MOV to CR3 is used to determine whether cached translation infor-
mation is invalidated.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 132

Instruction Set Reference, N-Z

each of the 8 bytes in the field must have one of the values 0 (UC), 1 (WC), 4 (WT),
5 (WP), 6 (WB), or 7 (UC-).

...

23.2.4 Checks Related to Address-Space Size
On processors that support Intel 64 architecture, the following checks related to
address-space size are performed on VMX controls and fields in the host-state area:

• If the logical processor is outside IA-32e mode (if IA32_EFER.LMA = 0) at the time
of VM entry, the following must hold:

— The “IA-32e mode guest” VM-entry control is 0.

— The “host address-space size” VM-exit control is 0.

• If the logical processor is in IA-32e mode (if IA32_EFER.LMA = 1) at the time of
VM entry, the “host address-space size” VM-exit control must be 1.

• If the “host address-space size” VM-exit control is 0, the following must hold:

— The “IA-32e mode guest” VM-entry control is 0.

— Bit 17 of the CR4 field (corresponding to CR4.PCIDE) is 0.

— Bits 63:32 in the RIP field is 0.

...

23.3.1.1 Checks on Guest Control Registers, Debug Registers, and MSRs
The following checks are performed on fields in the guest-state area corresponding to
control registers, debug registers, and MSRs:

• The CR0 field must not set any bit to a value not supported in VMX operation (see
Section 20.8). The following are exceptions:

— Bit 0 (corresponding to CR0.PE) and bit 31 (PG) are not checked if the
“unrestricted guest” VM-execution control is 1.1

— Bit 29 (corresponding to CR0.NW) and bit 30 (CD) are never checked because
the values of these bits are not changed by VM entry; see Section 23.3.2.1.

• If bit 31 in the CR0 field (corresponding to PG) is 1, bit 0 in that field (PE) must also
be 1.2

• The CR4 field must not set any bit to a value not supported in VMX operation (see
Section 20.8).

• If the “load debug controls” VM-entry control is 1, bits reserved in the
IA32_DEBUGCTL MSR must be 0 in the field for that register. The first processors to
support the virtual-machine extensions supported only the 1-setting of this control
and thus performed this check unconditionally.

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the primary
processor-based VM-execution controls is 0, VM entry functions as if the “unrestricted guest” VM-
execution control were 0. See Section 21.6.2.

2. If the capability MSR IA32_VMX_CR0_FIXED1 reports that CR0.PE must be 1 in VMX operation, bit 0
in the CR0 field must be 1 unless the “unrestricted guest” VM-execution control and bit 31 of the pri-
mary processor-based VM-execution controls are both 1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 133

Instruction Set Reference, N-Z

• The following checks are performed on processors that support Intel 64 architecture:

— If the “IA-32e mode guest” VM-entry control is 1, bit 31 in the CR0 field (corre-
sponding to CR0.PG) and bit 5 in the CR4 field (corresponding to CR4.PAE) must
each be 1.1

— If the “IA-32e mode guest” VM-entry control is 0, bit 17 in the CR4 field (corre-
sponding to CR4.PCIDE) must each be 0.

— The CR3 field must be such that bits 63:52 and bits in the range 51:32 beyond
the processor’s physical-address width are 0.2,3

— If the “load debug controls” VM-entry control is 1, bits 63:32 in the DR7 field
must be 0. The first processors to support the virtual-machine extensions
supported only the 1-setting of this control and thus performed this check uncon-
ditionally (if they supported Intel 64 architecture).

— The IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field must each
contain a canonical address.

...

23.3.2.5 Updating Non-Register State
Section 25.3 describe how the VMX architecture controls how a logical processor
manages information in the TLBs and paging-structure caches. The following items
detail how VM entries invalidate cached mappings:

• If the “enable VPID” VM-execution control is 0, the logical processor invalidates
linear mappings and combined mappings associated with VPID 0000H (for all
PCIDs); combined mappings for VPID 0000H are invalidated for all EP4TA values
(EP4TA is the value of bits 51:12 of EPTP).

• VM entries are not required to invalidate any guest-physical mappings, nor are they
required to invalidate any linear mappings or combined mappings if the “enable
VPID” VM-execution control is 1.

...

1. If the capability MSR IA32_VMX_CR0_FIXED1 reports that CR0.PG must be 1 in VMX operation,
bit 31 in the CR0 field must be 1 unless the “unrestricted guest” VM-execution control and bit 31 of
the primary processor-based VM-execution controls are both 1.

2. Software can determine a processor’s physical-address width by executing CPUID with 80000008H
in EAX. The physical-address width is returned in bits 7:0 of EAX.

3. Bit 63 of the CR3 field in the guest-state area must be 0. This is true even though, If CR4.PCIDE = 1,
bit 63 of the source operand to MOV to CR3 is used to determine whether cached translation infor-
mation is invalidated.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 134

Instruction Set Reference, N-Z

17. Updates to Chapter 24, Volume 3B

Change bars show changes to Chapter 24 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...

24.2.1 Basic VM-Exit Information
Section 21.9.1 defines the basic VM-exit information fields. The following items detail
their use.

• Exit reason.

— Bits 15:0 of this field contain the basic exit reason. It is loaded with a number
indicating the general cause of the VM exit. Appendix I lists the numbers used
and their meaning.

— The remainder of the field (bits 31:16) is cleared to 0 (certain SMM VM exits may
set some of these bits; see Section 26.15.2.3).1

• Exit qualification. This field is saved for VM exits due to the following causes:
debug exceptions; page-fault exceptions; start-up IPIs (SIPIs); system-
management interrupts (SMIs) that arrive immediately after the retirement of I/O
instructions; task switches; INVEPT; INVLPG; INVVPID; LGDT; LIDT; LLDT; LTR;
SGDT; SIDT; SLDT; STR; VMCLEAR; VMPTRLD; VMPTRST; VMREAD; VMWRITE;
VMXON; control-register accesses; MOV DR; I/O instructions; MWAIT; accesses to
the APIC-access page (see Section 22.2); and EPT violations. For all other VM exits,
this field is cleared. The following items provide details:

For a debug exception, the exit qualification contains information about the debug
exception. The information has the format given in Table 24-1.
...

Table 24-9 Format of the VM-Exit Instruction-Information Field as Used for LIDT, LGDT,
SIDT, or SGDT

...

1. Bit 13 of this field is set on certain VM-entry failures; see Section 23.7.

Bit Position(s) Content

...

11 Operand size:

0: 16-bit
1: 32-bit

Undefined for VM exits from 64-bit mode.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 135

Instruction Set Reference, N-Z

24.5.1 Loading Host Control Registers, Debug Registers, MSRs
VM exits load new values for controls registers, debug registers, and some MSRs:

• CR0, CR3, and CR4 are loaded from the CR0 field, the CR3 field, and the CR4 field,
respectively, with the following exceptions:

— The following bits are not modified:

• For CR0, ET, CD, NW; bits 63:32 (on processors that support Intel 64 archi-
tecture), 28:19, 17, and 15:6; and any bits that are fixed in VMX operation
(see Section 20.8).1

• For CR3, bits 63:52 and bits in the range 51:32 beyond the processor’s
physical-address width (they are cleared to 0).2 (This item applies only to
processors that support Intel 64 architecture.)

• For CR4, any bits that are fixed in VMX operation (see Section 20.8).

— CR4.PAE is set to 1 if the “host address-space size” VM-exit control is 1.

— CR4.PCIDE is set to 0 if the “host address-space size” VM-exit control is 0.

...

24.5.5 Updating Non-Register State
VM exits affect the non-register state of a logical processor as follows:

• A logical processor is always in the active state after a VM exit.

• Event blocking is affected as follows:

— There is no blocking by STI or by MOV SS after a VM exit.

— VM exits caused directly by non-maskable interrupts (NMIs) cause blocking by
NMI (see Table 21-3). Other VM exits do not affect blocking by NMI. (See Section
24.1 for the case in which an NMI causes a VM exit indirectly.)

• There are no pending debug exceptions after a VM exit.

Section 25.3 describes how the VMX architecture controls how a logical processor
manages information in the TLBs and paging-structure caches. The following items
detail how VM exits invalidate cached mappings:

• If the “enable VPID” VM-execution control is 0, the logical processor invalidates
linear mappings and combined mappings associated with VPID 0000H (for all
PCIDs); combined mappings for VPID 0000H are invalidated for all EP4TA values
(EP4TA is the value of bits 51:12 of EPTP).

• VM exits are not required to invalidate any guest-physical mappings, nor are they
required to invalidate any linear mappings or combined mappings if the “enable
VPID” VM-execution control is 1.

...

1. Bits 28:19, 17, and 15:6 of CR0 and CR0.ET are unchanged by executions of MOV to CR0. CR0.ET is
always 1 and the other bits are always 0.

2. Software can determine a processor’s physical-address width by executing CPUID with 80000008H
in EAX. The physical-address width is returned in bits 7:0 of EAX.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 136

Instruction Set Reference, N-Z

18. Updates to Chapter 25, Volume 3B

Change bars show changes to Chapter 25 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...

25.1 VIRTUAL PROCESSOR IDENTIFIERS (VPIDS)
The original architecture for VMX operation required VMX transitions to flush the TLBs
and paging-structure caches. This ensured that translations cached for the old linear-
address space would not be used after the transition.

Virtual-processor identifiers (VPIDs) introduce to VMX operation a facility by which a
logical processor may cache information for multiple linear-address spaces. When VPIDs
are used, VMX transitions may retain cached information and the logical processor
switches to a different linear-address space.

Section 4.10 details the mechanisms by which a logical processor manages information
cached for multiple address spaces. A logical processor may tag some cached informa-
tion with a 16-bit VPID. This section specifies how the current VPID is determined at any
point in time:

• The current VPID is 0000H in the following situations:

— Outside VMX operation. (This includes operation in system-management mode
under the default treatment of SMIs and SMM with VMX operation; see Section
26.14.)

— In VMX root operation.

— In VMX non-root operation when the “enable VPID” VM-execution control is 0.

• If the logical processor is in VMX non-root operation and the “enable VPID” VM-
execution control is 1, the current VPID is the value of the VPID VM-execution control
field in the VMCS. (VM entry ensures that this value is never 0000H; see Section
23.2.1.1.)

VPIDs and PCIDs (see Section 4.10.1) can be used concurrently. When this is done, the
processor associates cached information with both a VPID and a PCID. Such information
is used only if the current VPID and PCID both match those associated with the cached
information.

...

25.3 CACHING TRANSLATION INFORMATION
Processors supporting Intel® 64 and IA-32 architectures may accelerate the address-
translation process by caching on the processor data from the structures in memory that
control that process. Such caching is discussed in Section 4.10, “Caching Translation
Information” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A. The current section describes how this caching interacts with the VMX archi-
tecture.

The VPID and EPT features of the architecture for VMX operation augment this caching
architecture. EPT defines the guest-physical address space and defines translations to

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 137

Instruction Set Reference, N-Z

that address space (from the linear-address space) and from that address space (to the
physical-address space). Both features control the ways in which a logical processor may
create and use information cached from the paging structures.

Section 25.3.1 describes the different kinds of information that may be cached. Section
25.3.2 specifies when such information may be cached and how it may be used. Section
25.3.3 details how software can invalidate cached information.

25.3.1 Information That May Be Cached
Section 4.10, “Caching Translation Information” in Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A identifies two kinds of translation-related
information that may be cached by a logical processor: translations, which are
mappings from linear page numbers to physical page frames, and paging-structure
caches, which map the upper bits of a linear page number to information from the
paging-structure entries used to translate linear addresses matching those upper bits.

The same kinds of information may be cached when VPIDs and EPT are in use. A logical
processor may cache and use such information based on its function. Information with
different functionality is identified as follows:

• Linear mappings.1 There are two kinds:

— Linear translations. Each of these is a mapping from a linear page number to the
physical page frame to which it translates, along with information about access
privileges and memory typing.

— Linear paging-structure-cache entries. Each of these is a mapping from the
upper portion of a linear address to the physical address of the paging structure
used to translate the corresponding region of the linear-address space, along
with information about access privileges. For example, bits 47:39 of a linear
address would map to the address of the relevant page-directory-pointer table.

Linear mappings do not contain information from any EPT paging structure.

• Guest-physical mappings.2 There are two kinds:

— Guest-physical translations. Each of these is a mapping from a guest-physical
page number to the physical page frame to which it translates, along with
information about access privileges and memory typing.

— Guest-physical paging-structure-cache entries. Each of these is a mapping from
the upper portion of a guest-physical address to the physical address of the EPT
paging structure used to translate the corresponding region of the guest-physical
address space, along with information about access privileges.

The information in guest-physical mappings about access privileges and memory
typing is derived from EPT paging structures.

• Combined mappings.3 There are two kinds:

— Combined translations. Each of these is a mapping from a linear page number to
the physical page frame to which it translates, along with information about
access privileges and memory typing.

1. Earlier versions of this manual used the term “VPID-tagged” to identify linear mappings.

2. Earlier versions of this manual used the term “EPTP-tagged” to identify guest-physical mappings.

3. Earlier versions of this manual used the term “dual-tagged” to identify combined mappings.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 138

Instruction Set Reference, N-Z

— Combined paging-structure-cache entries. Each of these is a mapping from the
upper portion of a linear address to the physical address of the paging structure
used to translate the corresponding region of the linear-address space, along
with information about access privileges.

The information in combined mappings about access privileges and memory typing
is derived from both guest paging structures and EPT paging structures.

25.3.2 Creating and Using Cached Translation Information
The following items detail the creation of the mappings described in the previous
section:1

• The following items describe the creation of mappings while EPT is not in use
(including execution outside VMX non-root operation):

— Linear mappings may be created. They are derived from the paging structures
referenced (directly or indirectly) by the current value of CR3 and are associated
with the current VPID and the current PCID.

— No linear mappings are created with information derived from paging-structure
entries that are not present (bit 0 is 0) or that set reserved bits. For example, if
a PTE is not present, no linear mapping are created for any linear page number
whose translation would use that PTE.

— No guest-physical or combined mappings are created while EPT is not in use.

• The following items describe the creation of mappings while EPT is in use:

— Guest-physical mappings may be created. They are derived from the EPT paging
structures referenced (directly or indirectly) by bits 51:12 of the current EPTP.
These 40 bits contain the address of the EPT-PML4-table. (the notation EP4TA
refers to those 40 bits). Newly created guest-physical mappings are associated
with the current EP4TA.

— Combined mappings may be created. They are derived from the EPT paging
structures referenced (directly or indirectly) by the current EP4TA. If CR0.PG =
1, they are also derived from the paging structures referenced (directly or
indirectly) by the current value of CR3. They are associated with the current
VPID, the current PCID, and the current EP4TA.2 No combined paging-structure-
cache entries are created if CR0.PG = 0.3

— No guest-physical mappings or combined mappings are created with information
derived from EPT paging-structure entries that are not present (bits 2:0 are all
0) or that are misconfigured (see Section 25.2.3.1).

— No combined mappings are created with information derived from guest paging-
structure entries that are not present or that set reserved bits.

1. This section associated cached information with the current VPID and PCID. If PCIDs are not sup-
ported or are not being used (e.g., because CR4.PCIDE = 0), all the information is implicitly associated
with PCID 000H; see Section 4.10.1, “Process-Context Identifiers (PCIDs),” in Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

2. At any given time, a logical processor may be caching combined mappings for a VPID and a PCID that
are associated with different EP4TAs. Similarly, it may be caching combined mappings for an EP4TA
that are associated with different VPIDs and PCIDs.

3. If the capability MSR IA32_VMX_CR0_FIXED1 reports that CR0.PG must be 1 in VMX operation,
CR0.PG can be 0 in VMX non-root operation only if the “unrestricted guest” VM-execution control and
bit 31 of the primary processor-based VM-execution controls are both 1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 139

Instruction Set Reference, N-Z

— No linear mappings are created while EPT is in use.

The following items detail the use of the various mappings:

• If EPT is not in use (e.g., when outside VMX non-root operation), a logical processor
may use cached mappings as follows:

— For accesses using linear addresses, it may use linear mappings associated with
the current VPID and the current PCID.

— No guest-physical or combined mappings are used while EPT is not in use.

• If EPT is in use, a logical processor may use cached mappings as follows:

— For accesses using linear addresses, it may use combined mappings associated
with the current VPID, the current PCID, and the current EP4TA.

— For accesses using guest-physical addresses, it may use guest-physical
mappings associated with the current EP4TA.

— No linear mappings are used while EPT is in use.

25.3.3 Invalidating Cached Translation Information
Software modifications of paging structures (including EPT paging structures) may result
in inconsistencies between those structures and the mappings cached by a logical
processor. Certain operations invalidate information cached by a logical processor and
can be used to eliminate such inconsistencies.

25.3.3.1 Operations that Invalidate Cached Mappings
The following operations invalidate cached mappings as indicated:

• Operations that architecturally invalidate entries in the TLBs or paging-structure
caches independent of VMX operation (e.g., the INVLPG instruction) invalidate linear
mappings and combined mappings.1 They are required to do so only for the current
VPID (but, for combined mappings, all EP4TAs). Linear mappings for the current
VPID are invalidated even if EPT is in use.2 Combined mappings for the current
VPID are invalidated even if EPT is not in use.3

• An EPT violation invalidates any guest-physical mappings (associated with the
current EP4TA) that would be used to translate the guest-physical address that
caused the EPT violation. If that guest-physical address was the translation of a
linear address, the EPT violation also invalidates any combined mappings for that
linear address associated with the current PCID, the current VPID and the current
EP4TA.

1. See Section 4.10.4, “Invalidation of TLBs and Paging-Structure Caches,” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A for an enumeration of operations that archi-
tecturally invalidate entries in the TLBs and paging-structure caches independent of VMX operation.

2. While no linear mappings are created while EPT is in use, a logical processor may retain, while EPT is
in use, linear mappings (for the same VPID as the current one) there were created earlier, when EPT
was not in use.

3. While no combined mappings are created while EPT is not in use, a logical processor may retain, while
EPT is in not use, combined mappings (for the same VPID as the current one) there were created ear-
lier, when EPT was in use.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 140

Instruction Set Reference, N-Z

• If the “enable VPID” VM-execution control is 0, VM entries and VM exits invalidate
linear mappings and combined mappings associated with VPID 0000H (for all
PCIDs). Combined mappings for VPID 0000H are invalidated for all EP4TAs.

• Execution of the INVVPID instruction invalidates linear mappings and combined
mappings. Invalidation is based on instruction operands, called the INVVPID type
and the INVVPID descriptor. Four INVVPID types are currently defined:

— Individual-address. If the INVVPID type is 0, the logical processor invalidates
linear mappings and combined mappings associated with the VPID specified in
the INVVPID descriptor and that would be used to translate the linear address
specified in of the INVVPID descriptor. Linear mappings and combined mappings
for that VPID and linear address are invalidated for all PCIDs and, for combined
mappings, all EP4TAs. (The instruction may also invalidate mappings associated
with other VPIDs and for other linear addresses.)

— Single-context. If the INVVPID type is 1, the logical processor invalidates all
linear mappings and combined mappings associated with the VPID specified in
the INVVPID descriptor. Linear mappings and combined mappings for that VPID
are invalidated for all PCIDs and, for combined mappings, all EP4TAs. (The
instruction may also invalidate mappings associated with other VPIDs.)

— All-context. If the INVVPID type is 2, the logical processor invalidates linear
mappings and combined mappings associated with all VPIDs except VPID 0000H
and with all PCIDs. (In some cases, it may invalidate linear mappings with VPID
0000H as well.) Combined mappings are invalidated for all EP4TAs.

— Single-context-retaining-globals. If the INVVPID type is 3, the logical
processor invalidates linear mappings and combined mappings associated with
the VPID specified in the INVVPID descriptor. Linear mappings and combined
mappings for that VPID are invalidated for all PCIDs and, for combined
mappings, all EP4TAs. The logical processor is not required to invalidate
information that was used for global translations (although it may do so). See
Section 4.10, “Caching Translation Information” for details regarding global
translations. (The instruction may invalidate mappings associated with other
VPIDs.)

See Chapter 5 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2B for details of the INVVPID instruction. See Section 25.3.3.3 for
guidelines regarding use of this instruction.

• Execution of the INVEPT instruction invalidates guest-physical mappings and
combined mappings. Invalidation is based on instruction operands, called the
INVEPT type and the INVEPT descriptor. Two INVEPT types are currently defined:

— Single-context. If the INVEPT type is 1, the logical processor invalidates all
guest-physical mappings and combined mappings associated with the EP4TA
specified in the INVEPT descriptor. Combined mappings for that EP4TA are
invalidated for all VPIDs and all PCIDs. (The instruction may invalidate mappings
associated with other EP4TAs.)

— All-context. If the INVEPT type is 2, the logical processor invalidates guest-
physical mappings and combined mappings associated with all EP4TAs (and, for
combined mappings, for all VPIDs and PCIDs).

See Chapter 5 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2B for details of the INVEPT instruction. See Section 25.3.3.4 for
guidelines regarding use of this instruction.

• A power-up or a reset invalidates all linear mappings, guest-physical mappings, and
combined mappings.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 141

Instruction Set Reference, N-Z

25.3.3.2 Operations that Need Not Invalidate Cached Mappings
The following items detail cases of operations that are not required to invalidate certain
cached mappings:

• Operations that architecturally invalidate entries in the TLBs or paging-structure
caches independent of VMX operation are not required to invalidate any guest-
physical mappings.

• The INVVPID instruction is not required to invalidate any guest-physical mappings.

• The INVEPT instruction is not required to invalidate any linear mappings.

• VMX transitions are not required to invalidate any guest-physical mappings. If the
“enable VPID” VM-execution control is 1, VMX transitions are not required to
invalidate any linear mappings or combined mappings.

• The VMXOFF and VMXON instructions are not required to invalidate any linear
mappings, guest-physical mappings, or combined mappings.

A logical processor may invalidate any cached mappings at any time. For this reason, the
operations identified above may invalidate the indicated mappings despite the fact that
doing so is not required.

25.3.3.3 Guidelines for Use of the INVVPID Instruction
The need for VMM software to use the INVVPID instruction depends on how that software
is virtualizing memory (e.g., see Section 28.3, “Memory Virtualization”).

If EPT is not in use, it is likely that the VMM is virtualizing the guest paging structures.
Such a VMM may configure the VMCS so that all or some of the operations that invalidate
entries the TLBs and the paging-structure caches (e.g., the INVLPG instruction) cause
VM exits. If VMM software is emulating these operations, it may be necessary to use the
INVVPID instruction to ensure that the logical processor’s TLBs and the paging-structure
caches are appropriately invalidated.

Requirements of when software should use the INVVPID instruction depend on the
specific algorithm being used for page-table virtualization. The following items provide
guidelines for software developers:

• Emulation of the INVLPG instruction may require execution of the INVVPID
instruction as follows:

— The INVVPID type is individual-address (0).

— The VPID in the INVVPID descriptor is the one assigned to the virtual processor
whose execution is being emulated.

— The linear address in the INVVPID descriptor is that of the operand of the INVLPG
instruction being emulated.

• Some instructions invalidate all entries in the TLBs and paging-structure caches—
except for global translations. An example is the MOV to CR3 instruction. (See
Section 4.10, “Caching Translation Information” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A for details regarding global transla-
tions.) Emulation of such an instruction may require execution of the INVVPID
instruction as follows:

— The INVVPID type is single-context-retaining-globals (3).

— The VPID in the INVVPID descriptor is the one assigned to the virtual processor
whose execution is being emulated.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 142

Instruction Set Reference, N-Z

• Some instructions invalidate all entries in the TLBs and paging-structure caches—
including for global translations. An example is the MOV to CR4 instruction if the
value of value of bit 4 (page global enable—PGE) is changing. Emulation of such an
instruction may require execution of the INVVPID instruction as follows:

— The INVVPID type is single-context (1).

— The VPID in the INVVPID descriptor is the one assigned to the virtual processor
whose execution is being emulated.

If EPT is not in use, the logical processor associates all mappings it creates with the
current VPID, and it will use such mappings to translate linear addresses. For that
reason, a VMM should not use the same VPID for different non-EPT guests that use
different page tables. Doing so may result in one guest using translations that pertain to
the other.

If EPT is in use, the instructions enumerated above might not be configured to cause
VM exits and the VMM might not be emulating them. In that case, executions of the
instructions by guest software properly invalidate the required entries in the TLBs and
paging-structure caches (see Section 25.3.3.1); execution of the INVVPID instruction is
not required.

If EPT is in use, the logical processor associates all mappings it creates with the value of
bits 51:12 of current EPTP. If a VMM uses different EPTP values for different guests, it
may use the same VPID for those guests. Doing so cannot result in one guest using
translations that pertain to the other.

The following guidelines apply more generally and are appropriate even if EPT is in use:

• As detailed in Section 22.2.1.1, an access to the APIC-access page might not cause
an APIC-access VM exit if software does not properly invalidate information that may
be cached from the paging structures. If, at one time, the current VPID on a logical
processor was a non-zero value X, it is recommended that software use the INVVPID
instruction with the “single-context” INVVPID type and with VPID X in the INVVPID
descriptor before a VM entry on the same logical processor that establishes VPID X
and either (a) the “virtualize APIC accesses” VM-execution control was changed from
0 to 1; or (b) the value of the APIC-access address was changed.

• Software can use the INVVPID instruction with the “all-context” INVVPID type
immediately after execution of the VMXON instruction or immediately prior to
execution of the VMXOFF instruction. Either prevents potentially undesired retention
of information cached from paging structures between separate uses of VMX
operation.

25.3.3.4 Guidelines for Use of the INVEPT Instruction
The following items provide guidelines for use of the INVEPT instruction to invalidate
information cached from the EPT paging structures.

• Software should use the INVEPT instruction with the “single-context” INVEPT type
after making any of the following changes to an EPT paging-structure entry (the
INVEPT descriptor should contain an EPTP value that references — directly or
indirectly — the modified EPT paging structure):

— Changing any of the privilege bits 2:0 from 1 to 0.

— Changing the physical address in bits 51:12.

— For an EPT PDPTE or an EPT PDE, changing bit 7 (which determines whether the
entry maps a page).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 143

Instruction Set Reference, N-Z

— For the last EPT paging-structure entry used to translate a guest-physical
address (either an EPT PDE with bit 7 set to 1 or an EPT PTE), changing either
bits 5:3 or bit 6. (These bits determine the effective memory type of accesses
using that EPT paging-structure entry; see Section 25.2.4.)

• Software may use the INVEPT instruction after modifying a present EPT paging-
structure entry to change any of the privilege bits 2:0 from 0 to 1. Failure to do so
may cause an EPT violation that would not otherwise occur. Because an EPT violation
invalidates any mappings that would be used by the access that caused the EPT
violation (see Section 25.3.3.1), an EPT violation will not recur if the original access
is performed again, even if the INVEPT instruction is not executed.

• Because a logical processor does not cache any information derived from EPT
paging-structure entries that are not present or misconfigured (see Section
25.2.3.1), it is not necessary to execute INVEPT following modification of an EPT
paging-structure entry that had been not present or misconfigured.

• As detailed in Section 22.2.1.1 and Section 22.2.2.1, an access to the APIC-access
page might not cause an APIC-access VM exit if software does not properly invalidate
information that may be cached from the EPT paging structures. If EPT was in use on
a logical processor at one time with EPTP X, it is recommended that software use the
INVEPT instruction with the “single-context” INVEPT type and with EPTP X in the
INVEPT descriptor before a VM entry on the same logical processor that enables EPT
with EPTP X and either (a) the “virtualize APIC accesses” VM-execution control was
changed from 0 to 1; or (b) the value of the APIC-access address was changed.

• Software can use the INVEPT instruction with the “all-context” INVEPT type
immediately after execution of the VMXON instruction or immediately prior to
execution of the VMXOFF instruction. Either prevents potentially undesired retention
of information cached from EPT paging structures between separate uses of VMX
operation.

In a system containing more than one logical processor, software must account for the
fact that information from an EPT paging-structure entry may be cached on logical
processors other than the one that modifies that entry. The process of propagating the
changes to a paging-structure entry is commonly referred to as “TLB shootdown.” A
discussion of TLB shootdown appears in Section 4.10.5, “Propagation of Paging-Struc-
ture Changes to Multiple Processors,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 144

Instruction Set Reference, N-Z

19. Updates to Chapter 26, Volume 3B

Change bars show changes to Chapter 26 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...

26.3.2 Exiting From SMM
The only way to exit SMM is to execute the RSM instruction. The RSM instruction is only
available to the SMI handler; if the processor is not in SMM, attempts to execute the RSM
instruction result in an invalid-opcode exception (#UD) being generated.

The RSM instruction restores the processor’s context by loading the state save image
from SMRAM back into the processor’s registers. The processor then returns an SMIACK
transaction on the system bus and returns program control back to the interrupted
program.

Upon successful completion of the RSM instruction, the processor signals external hard-
ware that SMM has been exited. For the P6 family processors, an SMI acknowledge
transaction is generated on the system bus and the multiplexed status signal EXF4 is no
longer generated on bus cycles. For the Pentium and Intel486 processors, the SMIACT#
pin is deserted.

If the processor detects invalid state information saved in the SMRAM, it enters the shut-
down state and generates a special bus cycle to indicate it has entered shutdown state.
Shutdown happens only in the following situations:

• A reserved bit in control register CR4 is set to 1 on a write to CR4. This error should
not happen unless SMI handler code modifies reserved areas of the SMRAM saved
state map (see Section 26.4.1). CR4 is saved in the state map in a reserved location
and cannot be read or modified in its saved state.

• An illegal combination of bits is written to control register CR0, in particular PG set to
1 and PE set to 0, or NW set to 1 and CD set to 0.

• CR4.PCIDE would be set to 1 and IA32_EFER.LMA to 0.

• (For the Pentium and Intel486 processors only.) If the address stored in the SMBASE
register when an RSM instruction is executed is not aligned on a 32-KByte boundary.
This restriction does not apply to the P6 family processors.

...

26.4.1 SMRAM State Save Map
When an IA-32 processor that does not support Intel 64 architecture initially enters
SMM, it writes its state to the state save area of the SMRAM. The state save area begins
at [SMBASE + 8000H + 7FFFH] and extends down to [SMBASE + 8000H + 7E00H]. Table
26-1 shows the state save map. The offset in column 1 is relative to the SMBASE value
plus 8000H. Reserved spaces should not be used by software.

...

The following registers are saved (but not readable) and restored upon exiting SMM:

• Control register CR4. (This register is cleared to all 0s when entering SMM).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 145

Instruction Set Reference, N-Z

• The hidden segment descriptor information stored in segment registers CS, DS, ES,
FS, GS, and SS.

...

26.5 SMI HANDLER EXECUTION ENVIRONMENT
After saving the current context of the processor, the processor initializes its core regis-
ters to the values shown in Table 26-4. Upon entering SMM, the PE and PG flags in
control register CR0 are cleared, which places the processor is in an environment similar
to real-address mode. The differences between the SMM execution environment and the
real-address mode execution environment are as follows:

• The addressable SMRAM address space ranges from 0 to FFFFFFFFH (4 GBytes). (The
physical address extension — enabled with the PAE flag in control register CR4 — is
not supported in SMM.)

...

26.15.2.5 Updating Non-Register State
SMM VM exits affect the non-register state of a logical processor as follows:

• SMM VM exits cause non-maskable interrupts (NMIs) to be blocked; they may be
unblocked through execution of IRET or through a VM entry (depending on the value
loaded for the interruptibility state and the setting of the “virtual NMIs”
VM-execution control).

• SMM VM exits cause SMIs to be blocked; they may be unblocked by a VM entry that
returns from SMM (see Section 26.15.4).

SMM VM exits invalidate linear mappings and combined mappings associated with VPID
0000H for all PCIDs. Combined mappings for VPID 0000H are invalidated for all EP4TA
values (EP4TA is the value of bits 51:12 of EPTP; see Section 25.3). (Ordinary VM exits
are not required to perform such invalidation if the “enable VPID” VM-execution control
is 1; see Section 24.5.5.)

...

26.15.4.5 Loading Guest State
VM entries that return from SMM load the SMBASE register from the SMBASE field.

VM entries that return from SMM invalidate linear mappings and combined mappings
associated with all VPIDs. Combined mappings are invalidated for all EP4TA values
(EP4TA is the value of bits 51:12 of EPTP; see Section 25.3). (Ordinary VM entries are
required to perform such invalidation only for VPID 0000H and are not required to do
even that if the “enable VPID” VM-execution control is 1; see Section 23.3.2.5.)

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 146

Instruction Set Reference, N-Z

20. Updates to Chapter 27, Volume 3B

Change bars show changes to Chapter 27 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...

27.4 USING VMX INSTRUCTIONS
VMX instructions are allowed only in VMX root operation. An attempt to execute a VMX
instruction in VMX non-root operation causes a VM exit.

Processors perform various checks while executing any VMX instruction. They follow
well-defined error handling on failures. VMX instruction execution failures detected
before loading of a guest state are handled by the processor as follows:

• If the working-VMCS pointer is not valid, the instruction fails by setting RFLAGS.CF
to 1.

• If the working-VMCS pointer is valid, RFLAGS.ZF is set to 1 and the proper error-code
is saved in the VM-instruction error field of the working-VMCS.

Software is required to check RFLAGS.CF and RFLAGS.ZF to determine the success or
failure of VMX instruction executions.

The following items provide details regarding use of the VM-entry instructions
(VMLAUNCH and VMRESUME):

• If the working-VMCS pointer is valid, the state of the working VMCS may cause the
VM-entry instruction to fail. RFLAGS.ZF is set to 1 and one of the following values is
saved in the VM-instruction error field:

— 4: VMLAUNCH with non-clear VMCS.
If this error occurs, software can avoid the error by executing VMRESUME.

— 5: VMRESUME with non-launched VMCS.
If this error occurs, software can avoid the error by executing VMLAUNCH.

— 6: VMRESUME after VMXOFF.1

If this error occurs, software can avoid the error by executing the following
sequence of instructions:

VMPTRST 〈working-VMCS pointer〉
VMCLEAR 〈working-VMCS pointer〉
VMPTRLD 〈working-VMCS pointer〉
VMLAUNCH

(VMPTRST may not be necessary is software already knows the working-VMCS
pointer.)

• If none of the above errors occur, the processor checks on the VMX controls and
host-state area. If any of these checks fail, the VM-entry instruction fails. RFLAGS.ZF
is set to 1 and either 7 (VM entry with invalid control field(s)) or 8 (VM entry with
invalid host-state field(s)) is saved in the VM-instruction error field.

• After a VM-entry instruction (VMRESUME or VMLAUNCH) successfully completes the
general checks and checks on VMX controls and the host-state area (see Section

1. Earlier versions of this manual described this error as “VMRESUME with a corrupted VMCS”.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 147

Instruction Set Reference, N-Z

23.2), any errors encountered while loading of guest-state (due to bad guest-state
or bad MSR loading) causes the processor to load state from the host-state area of
the working VMCS as if a VM exit had occurred (see Section 27.7).

This failure behavior differs from that of VM exits in that no guest-state is saved to
the guest-state area. A VMM can detect its VM-exit handler was invoked by such a
failure by checking bit 31 (for 1) in the exit reason field of the working VMCS and
further identify the failure by using the exit qualification field.

See Chapter 23 for more details about the VM-entry instructions.

...

21. Updates to Chapter 30, Volume 3B

Change bars show changes to Chapter 30 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...

30.6.2 Performance Monitoring Facility in the Uncore
The “uncore” in Intel microarchitecture codename Nehalem refers to subsystems in the
physical processor package that are shared by multiple processor cores. Some of the
sub-systems in the uncore include the L3 cache, Intel QuickPath Interconnect link logic,
and integrated memory controller. The performance monitoring facilities inside the
uncore operates in the same clock domain as the uncore (U-clock domain), which is
usually different from the processor core clock domain. The uncore performance moni-
toring facilities described in this section apply to Intel Xeon processor 5500 series and
processors with the following CPUID signatures: 06_1AH, 06_1EH, 06_1FH (see
Appendix B). An overview of the uncore performance monitoring facilities is described
separately.

...

30.6.3 Intel Xeon Processor 7500 Series Performance Monitoring
Facility

The performance monitoring facility in the processor core of Intel Xeon processor 7500
series are the same as those supported in Intel Xeon processor 5500 series. The uncore
subsystem in Intel Xeon processor 7500 series are significantly different The uncore
performance monitoring facility consist of many distributed units associated with indi-
vidual logic control units (referred to as boxes) within the uncore subsystem. A high level
block diagram of the various box units of the uncore is shown in Figure Figure 30-23.

Uncore PMUs are programmed via MSR interfaces. Each of the distributed uncore PMU
units have several general-purpose counters. Each counter requires an associated event
select MSR, and may require additional MSRs to configure sub-event conditions. The
uncore PMU MSRs associated with each box can be categorized based on its functional
scope: per-counter, per-box, or global across the uncore. The number counters available
in each box type are different. Each box generally provides a set of MSRs to enable/
disable, check status/overflow of multiple counters within each box.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 148

Instruction Set Reference, N-Z

Table 30-17 summarizes the number MSRs for uncore PMU for each box.

The W-Box provides 4 general-purpose counters, each requiring an event select config-
uration MSR, similar to the general-purpose counters in other boxes. There is also a
fixed-function counter that increments clockticks in the uncore clock domain.

For C,S,B,M,R, and W boxes, each box provides an MSR to enable/disable counting,
configuring PMI of multiple counters within the same box, this is somewhat similar the
“global control“ programming interface, IA32_PERF_GLOBAL_CTRL, offered in the core

Figure 30-23 Distributed Units of the Uncore of Intel Xeon Processor 7500 Series

Table 30-17 Uncore PMU MSR Summary

Box
of
Boxes

Counters
per Box

Counter
Width

General
Purpose

Global
Enable Sub-control MSRs

C-Box 8 6 48 Yes per-box None

S-Box 2 4 48 Yes per-box Match/Mask

B-Box 2 4 48 Yes per-box Match/Mask

M-Box 2 6 48 Yes per-box Yes

R-Box 1 16 (2 port, 8
per port)

48 Yes per-box Yes

W-Box 1 4 48 Yes per-box None

1 48 No per-box None

U-Box 1 1 48 Yes uncore None

PBox

L3 Cache

PBoxPBox PBox UBoxWBox

RBox BBoxBBoxMBox MBox PBoxPBox

SBox SBox

CBox CBoxCBoxCBox CBoxCBox CBoxCBox

4 Intel QPI Links

SMI Channels

SMI Channels

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 149

Instruction Set Reference, N-Z

PMU. Similarly status information and counter overflow control for multiple counters
within the same box are also provided in C,S,B,M,R, and W boxes.

In the U-Box, MSR_U_PMON_GLOBAL_CTL provides overall uncore PMU enable/disable
and PMI configuration control. The scope of status information in the U-box is at per-box
granularity, in contrast to the per-box status information MSR (in the C,S,B,M,R, and W
boxes) providing status information of individual counter overflow. The difference in
scope also apply to the overflow control MSR in the U-Box versus those in the other
Boxes.

The individual MSRs that provide uncore PMU interfaces are listed in Appendix B.
Table B-7 under the general naming style of MSR_%box#%_PMON_%scope_function%,
where %box#% designates the type of box and zero-based index if there are more the
one box of the same type, %scope_function% follows the examples below:

• Multi-counter enabling MSRs: MSR_U_PMON_GLOBAL_CTL,
MSR_S0_PMON_BOX_CTL, MSR_C7_PMON_BOX_CTL, etc.

• Multi-counter status MSRs: MSR_U_PMON_GLOBAL_STATUS,
MSR_S0_PMON_BOX_STATUS, MSR_C7_PMON_BOX_STATUS, etc.

• Multi-counter overflow control MSRs: MSR_U_PMON_GLOBAL_OVF_CTL,
MSR_S0_PMON_BOX_OVF_CTL, MSR_C7_PMON_BOX_OVF_CTL, etc.

• Performance counters MSRs: the scope is implicitly per counter, e.g.
MSR_U_PMON_CTR, MSR_S0_PMON_CTR0, MSR_C7_PMON_CTR5, etc

• Event select MSRs: the scope is implicitly per counter, e.g.
MSR_U_PMON_EVNT_SEL, MSR_S0_PMON_EVNT_SEL0,
MSR_C7_PMON_EVNT_SEL5, etc

• Sub-control MSRs: the scope is implicitly per-box granularity, e.g.
MSR_M0_PMON_TIMESTAMP, MSR_R0_PMON_IPERF0_P1, MSR_S1_PMON_MATCH.

Details of uncore PMU MSR bit field definitions can be found in a separate document
“Intel Xeon Processor 7500 Series Uncore Performance Monitoring Guide“.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 150

Instruction Set Reference, N-Z

22. Updates to Appendix A, Volume 3B

Change bars show changes to Appendix A of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...

Table A-2 Non-Architectural Performance Events In the Processor Core for Intel Core i7
Processor and Intel Xeon Processor 5500 Series

...

23. Updates to Appendix B, Volume 3B

Change bars show changes to Appendix B of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...

Table B-1 CPUID Signature Values of DisplayFamily_DisplayModel

...

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

...

BBH 01H OFF_CORE_RESPONS
E_1

See Section 30.7, “Performance
Monitoring for Processors based on
Intel® microarchitecture CodeName
Westmere”.

Requires
programming
MSR 01A7H

...

DisplayFamily_DisplayModel Processor Families/Processor Number Series

...

06_2EH Intel Xeon Processor 7500 series

06_25H, 06_2CH Intel Xeon Processor 5600 series, Intel Core i7, i5 and i3 Processor

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 151

Instruction Set Reference, N-Z

Table B-2 Architectural MSRs

Register Address Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSR
Hex Decimal

...

1BH 27 IA32_APIC_BASE
(APIC_BASE)

06_01H

7:0 Reserved

8 BSP flag (R/W)

9 Reserved

10 Enable x2APIC mode 06_1AH

11 APIC Global Enable (R/W)

(MAXPHYWID - 1):12 APIC Base (R/W)

63: MAXPHYWID Reserved

...

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor
Features. (R/W)

Allows a variety of processor
functions to be enabled and
disabled.

0 Fast-Strings Enable.

When set, the fast-strings
feature (for REP MOVS and
REP STORS) is enabled
(default); when clear, fast-
strings are disabled.

0F_0H

2:1 Reserved.

3 Automatic Thermal Control
Circuit Enable. (R/W)

1 = Setting this bit enables
the thermal control
circuit (TCC) portion of
the Intel Thermal
Monitor feature. This
allows the processor
to automatically
reduce power
consumption in
response to TCC
activation..

0 = Disabled (default).

0F_0H

6:4 Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 152

Instruction Set Reference, N-Z

7 Performance Monitoring
Available. (R)

1 = Performance
monitoring enabled

0 = Performance
monitoring disabled

0F_0H

10:8 Reserved

11 Branch Trace Storage
Unavailable. (RO)

1 = Processor doesn’t
support branch trace
storage (BTS)

0 = BTS is supported

0F_0H

12 Precise Event Based
Sampling (PEBS)
Unavailable. (RO)

1 = PEBS is not supported;
0 = PEBS is supported.

06_0FH

15:13 Reserved

16 Enhanced Intel SpeedStep
Technology Enable. (R/W)

0= Enhanced Intel
SpeedStep Technology
disabled

1 = Enhanced Intel
SpeedStep Technology
enabled

06_0DH

17 Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 153

Instruction Set Reference, N-Z

18 ENABLE MONITOR FSM.
(R/W)

When this bit is set to 0, the
MONITOR feature flag is not
set (CPUID.01H:ECX[bit
3] = 0). This indicates that
MONITOR/MWAIT are not
supported.

Software attempts to
execute MONITOR/MWAIT
will cause #UD when this bit
is 0.

When this bit is set to 1
(default), MONITOR/MWAIT
are supported
(CPUID.01H:ECX[bit 3] = 1).

If the SSE3 feature flag
ECX[0] is not set
(CPUID.01H:ECX[bit 0] = 0),
the OS must not attempt to
alter this bit. BIOS must
leave it in the default state.
Writing this bit when the
SSE3 feature flag is set to 0
may generate a #GP
exception.

0F_03H

21:19 Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 154

Instruction Set Reference, N-Z

22 Limit CPUID Maxval. (R/W)

When this bit is set to 1,
CPUID.00H returns a
maximum value in EAX[7:0]
of 3.

BIOS should contain a setup
question that allows users
to specify when the installed
OS does not support CPUID
functions greater than 3.

Before setting this bit, BIOS
must execute the CPUID.0H
and examine the maximum
value returned in EAX[7:0]. If
the maximum value is
greater than 3, the bit is
supported.

Otherwise, the bit is not
supported. Writing to this
bit when the maximum value
is greater than 3 may
generate a #GP exception.

Setting this bit may cause
unexpected behavior in
software that depends on
the availability of CPUID
leaves greater than 3.

0F_03H

23 xTPR Message Disable.
(R/W)

When set to 1, xTPR
messages are disabled. xTPR
messages are optional
messages that allow the
processor to inform the
chipset of its priority.

if
CPUID.01H:ECX[1
4] = 1

33:24 Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 155

Instruction Set Reference, N-Z

34 XD Bit Disable. (R/W)

When set to 1, the Execute
Disable Bit feature (XD Bit) is
disabled and the XD Bit
extended feature flag will be
clear (CPUID.80000001H:
EDX[20]=0).

When set to a 0 (default),
the Execute Disable Bit
feature (if available) allows
the OS to enable PAE paging
and take advantage of data
only pages.

BIOS must not alter the
contents of this bit location,
if XD bit is not supported..
Writing this bit to 1 when
the XD Bit extended feature
flag is set to 0 may generate
a #GP exception.

if
CPUID.80000001
H:EDX[20] = 1

63:35 Reserved

...

1F2H 498 IA32_SMRR_PHYSBASE SMRR Base Address.
(Writeable only in SMM)

Base address of SMM
memory range.

06_1AH

7:0 Type. Specifies memory type
of the range.

11:8 Reserved.

31:12 PhysBase.

SMRR physical Base
Address.

63:32 Reserved.

1F3H 499 IA32_SMRR_PHYSMASK SMRR Range Mask.
(Writeable only in SMM)

Range Mask of SMM memory
range.

06_1AH

10:0 Reserved.

11 Valid.

Enable range mask

31:12 PhysMask.

SMRR address range mask.

63:32 Reserved.

1F8H 504 IA32_PLATFORM_DCA_CA
P

DCA Capability (R) 06_0FH

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 156

Instruction Set Reference, N-Z

1F9H 505 IA32_CPU_DCA_CAP If set, CPU supports
Prefetch-Hint type.

1FAH 506 IA32_DCA_0_CAP DCA type 0 Status and
Control register

06_2EH

0 DCA_ACTIVE: Set by HW
when DCA is fuse-enabled
and no defeatures are set.

06_2EH

2:1 TRANSACTION 06_2EH

6:3 DCA_TYPE 06_2EH

10:7 DCA_QUEUE_SIZE 06_2EH

12:11 Reserved. 06_2EH

16:13 DCA_DELAY: Writes will
update the register but have
no HW side-effect.

06_2EH

23:17 Reserved. 06_2EH

24 SW_BLOCK: SW can request
DCA block by setting this bit.

06_2EH

25 Reserved. 06_2EH

26 HW_BLOCK: Set when DCA is
blocked by HW (e.g. CR0.CD =
1).

06_2EH

31:27 Reserved. 06_2EH

...

38EH 910 IA32_PERF_GLOBAL_STAT
US
(MSR_PERF_GLOBAL_STA
TUS)

Global Performance Counter
Status (RO)

If CPUID.0AH:
EAX[7:0] > 0

0 Ovf_PMC0: Overflow status
of IA32_PMC0

If CPUID.0AH:
EAX[7:0] > 0

1 Ovf_PMC1: Overflow status
of IA32_PMC1

If CPUID.0AH:
EAX[7:0] > 0

2 Ovf_PMC2: Overflow status
of IA32_PMC2

06_2EH

3 Ovf_PMC3: Overflow status
of IA32_PMC3

06_2EH

31:4 Reserved

32 Ovf_FixedCtr0: Overflow
status of IA32_FIXED_CTR0

If CPUID.0AH:
EAX[7:0] > 1

33 Ovf_FixedCtr1: Overflow
status of IA32_FIXED_CTR1

If CPUID.0AH:
EAX[7:0] > 1

34 Ovf_FixedCtr2: Overflow
status of IA32_FIXED_CTR2

If CPUID.0AH:
EAX[7:0] > 1

60:35 Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 157

Instruction Set Reference, N-Z

61 Ovf_Uncore: Uncore counter
overflow status

06_2EH

62 OvfBuf: DS SAVE area Buffer
overflow status

If CPUID.0AH:
EAX[7:0] > 0

63 CondChg: status bits of this
register has changed

If CPUID.0AH:
EAX[7:0] > 0

...

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL
(MSR_PERF_GLOBAL_OVF
_CTRL)

Global Performance Counter
Overflow Control (R/W)

If CPUID.0AH:
EAX[7:0] > 0

0 Set 1 to Clear Ovf_PMC0 bit If CPUID.0AH:
EAX[7:0] > 0

1 Set 1 to Clear Ovf_PMC1 bit If CPUID.0AH:
EAX[7:0] > 0

31:2 Reserved

32 Set 1 to Clear
Ovf_FIXED_CTR0 bit

If CPUID.0AH:
EAX[7:0] > 1

33 Set 1 to Clear
Ovf_FIXED_CTR1 bit

If CPUID.0AH:
EAX[7:0] > 1

34 Set 1 to Clear
Ovf_FIXED_CTR2 bit

If CPUID.0AH:
EAX[7:0] > 1

60:35 Reserved

61 Set 1 to Clear Ovf_Uncore:
bit

06_2EH

62 Set 1 to Clear OvfBuf: bit If CPUID.0AH:
EAX[7:0] > 0

63 Set to 1to clear CondChg: bit If CPUID.0AH:
EAX[7:0] > 0

3F1H 1009 IA32_PEBS_ENABLE PEBS Control (R/W)

0 Enable PEBS on IA32_PMC0 06_0FH

1 Enable PEBS on IA32_PMC1 06_0FH

2 Enable PEBS on IA32_PMC2 06_0FH

3 Enable PEBS on IA32_PMC3 06_0FH

31:4 Reserved

32 Enable Load Latency on
IA32_PMC0

06_0FH

33 Enable Load Latency on
IA32_PMC1

06_0FH

34 Enable Load Latency on
IA32_PMC2

06_0FH

35 Enable Load Latency on
IA32_PMC3

06_0FH

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 158

Instruction Set Reference, N-Z

...

B.4 MSRS IN THE INTEL® MICROARCHITECTURE CODENAME
NEHALEM

Table B-5 lists model-specific registers (MSRs) that are common for Intel microarchitec-
ture codename Nehalem. These include Intel Core i7 and i5 processor family. Architec-
tural MSR addresses are also included in Table B-5. These processors have a CPUID
signature with DisplayFamily_DisplayModel of 06_1AH, 06_1EH, 06_1FH, 06_2EH, see
Table B-1. Additional MSRs specific to 06_1AH, 06_1EH, 06_1FH are listed in Table Table
B-6.

...

B.4.1 Additional MSRs In the Intel® Xeon Processor 5500 and 3400
Series

Intel Xeon Processor 5500 and 3400 series support additional model-specific registers
listed in Table Table B-6. These MSRs also apply to Intel Core i7 and i5 processor family
CPUID signature with DisplayFamily_DisplayModel of 06_1AH, 06_1EH and 06_1FH, see
Table B-1.

63:36 Reserved

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 159

Instruction Set Reference, N-Z

Table B-6 Additional MSRs in Intel Xeon Processor 5500 and
3400 Series

...

Register
Address Register Name

Scope
Bit Description

 Hex Dec

1ADH 429 MSR_TURBO_RATI
O_LIMIT

Package Actual maximum turbo frequency is multiplied
by 133.33MHz. (not available to model
06_2EH)

7:0 Maximum Turbo Ratio Limit 1C. (R/O)

maximum Turbo mode ratio limit with 1 core
active.

15:8 Maximum Turbo Ratio Limit 2C. (R/O)

maximum Turbo mode ratio limit with 2cores
active.

23:16 Maximum Turbo Ratio Limit 3C. (R/O)

maximum Turbo mode ratio limit with 3cores
active.

31:24 Maximum Turbo Ratio Limit 4C. (R/O)

maximum Turbo mode ratio limit with 4 cores
active.

63:32 Reserved.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 160

Instruction Set Reference, N-Z

B.4.2 Additional MSRs In the Intel® Xeon Processor 7500 Series
Intel Xeon Processor 7500 series support MSRs listed in Table B-5 and additional model-
specific registers listed in Table Table B-7.

Table B-7 Additional MSRs in Intel Xeon Processor 7500 Series

Register
Address Register Name

Scope
Bit Description

 Hex Dec

...

394H 816 MSR_W_PMON_FI
XED_CTR

Package Uncore W-box perfmon fixed counter

395H 817 MSR_W_PMON_FI
XED_CTR_CTL

Package Uncore U-box perfmon fixed counter control
MSR

...

C00H 3072 MSR_U_PMON_GL
OBAL_CTRL

Package Uncore U-box perfmon global control MSR

C01H 3073 MSR_U_PMON_GL
OBAL_STATUS

Package Uncore U-box perfmon global status MSR

C02H 3074 MSR_U_PMON_GL
OBAL_OVF_CTRL

Package Uncore U-box perfmon global overflow control
MSR

C10H 3088 MSR_U_PMON_EV
NT_SEL

Package Uncore U-box perfmon event select MSR

C11H 3089 MSR_U_PMON_CT
R

Package Uncore U-box perfmon counter MSR

C20H 3104 MSR_B0_PMON_B
OX_CTRL

Package Uncore B-box 0 perfmon local box control MSR

C21H 3105 MSR_B0_PMON_B
OX_STATUS

Package Uncore B-box 0 perfmon local box status MSR

C22H 3106 MSR_B0_PMON_B
OX_OVF_CTRL

Package Uncore B-box 0 perfmon local box overflow
control MSR

C30H 3120 MSR_B0_PMON_E
VNT_SEL0

Package Uncore B-box 0 perfmon event select MSR

C31H 3121 MSR_B0_PMON_C
TR0

Package Uncore B-box 0 perfmon counter MSR

C32H 3122 MSR_B0_PMON_E
VNT_SEL1

Package Uncore B-box 0 perfmon event select MSR

C33H 3123 MSR_B0_PMON_C
TR1

Package Uncore B-box 0 perfmon counter MSR

C34H 3124 MSR_B0_PMON_E
VNT_SEL2

Package Uncore B-box 0 perfmon event select MSR

C35H 3125 MSR_B0_PMON_C
TR2

Package Uncore B-box 0 perfmon counter MSR

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 161

Instruction Set Reference, N-Z

C36H 3126 MSR_B0_PMON_E
VNT_SEL3

Package Uncore B-box 0 perfmon event select MSR

C37H 3127 MSR_B0_PMON_C
TR3

Package Uncore B-box 0 perfmon counter MSR

C40H 3136 MSR_S0_PMON_B
OX_CTRL

Package Uncore S-box 0 perfmon local box control MSR

C41H 3137 MSR_S0_PMON_B
OX_STATUS

Package Uncore S-box 0 perfmon local box status MSR

C42H 3138 MSR_S0_PMON_B
OX_OVF_CTRL

Package Uncore S-box 0 perfmon local box overflow
control MSR

C50H 3152 MSR_S0_PMON_E
VNT_SEL0

Package Uncore S-box 0 perfmon event select MSR

C51H 3153 MSR_S0_PMON_C
TR0

Package Uncore S-box 0 perfmon counter MSR

C52H 3154 MSR_S0_PMON_E
VNT_SEL1

Package Uncore S-box 0 perfmon event select MSR

C53H 3155 MSR_S0_PMON_C
TR1

Package Uncore S-box 0 perfmon counter MSR

C54H 3156 MSR_S0_PMON_E
VNT_SEL2

Package Uncore S-box 0 perfmon event select MSR

C55H 3157 MSR_S0_PMON_C
TR2

Package Uncore S-box 0 perfmon counter MSR

C56H 3158 MSR_S0_PMON_E
VNT_SEL3

Package Uncore S-box 0 perfmon event select MSR

C57H 3159 MSR_S0_PMON_C
TR3

Package Uncore S-box 0 perfmon counter MSR

C60H 3168 MSR_B1_PMON_B
OX_CTRL

Package Uncore B-box 1 perfmon local box control MSR

C61H 3169 MSR_B1_PMON_B
OX_STATUS

Package Uncore B-box 1 perfmon local box status MSR

C62H 3170 MSR_B1_PMON_B
OX_OVF_CTRL

Package Uncore B-box 1 perfmon local box overflow
control MSR

C70H 3184 MSR_B1_PMON_E
VNT_SEL0

Package Uncore B-box 1 perfmon event select MSR

C71H 3185 MSR_B1_PMON_C
TR0

Package Uncore B-box 1 perfmon counter MSR

C72H 3186 MSR_B1_PMON_E
VNT_SEL1

Package Uncore B-box 1 perfmon event select MSR

C73H 3187 MSR_B1_PMON_C
TR1

Package Uncore B-box 1 perfmon counter MSR

C74H 3188 MSR_B1_PMON_E
VNT_SEL2

Package Uncore B-box 1 perfmon event select MSR

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 162

Instruction Set Reference, N-Z

C75H 3189 MSR_B1_PMON_C
TR2

Package Uncore B-box 1 perfmon counter MSR

C76H 3190 MSR_B1_PMON_E
VNT_SEL3

Package Uncore B-box 1vperfmon event select MSR

C77H 3191 MSR_B1_PMON_C
TR3

Package Uncore B-box 1 perfmon counter MSR

C80H 3120 MSR_W_PMON_BO
X_CTRL

Package Uncore W-box perfmon local box control MSR

C81H 3121 MSR_W_PMON_BO
X_STATUS

Package Uncore W-box perfmon local box status MSR

C82H 3122 MSR_W_PMON_BO
X_OVF_CTRL

Package Uncore W-box perfmon local box overflow
control MSR

C90H 3136 MSR_W_PMON_EV
NT_SEL0

Package Uncore W-box perfmon event select MSR

C91H 3137 MSR_W_PMON_CT
R0

Package Uncore W-box perfmon counter MSR

C92H 3138 MSR_W_PMON_EV
NT_SEL1

Package Uncore W-box perfmon event select MSR

C93H 3139 MSR_W_PMON_CT
R1

Package Uncore W-box perfmon counter MSR

C94H 3140 MSR_W_PMON_EV
NT_SEL2

Package Uncore W-box perfmon event select MSR

C95H 3141 MSR_W_PMON_CT
R2

Package Uncore W-box perfmon counter MSR

C96H 3142 MSR_W_PMON_EV
NT_SEL3

Package Uncore W-box perfmon event select MSR

C97H 3143 MSR_W_PMON_CT
R3

Package Uncore W-box perfmon counter MSR

CA0H 3232 MSR_M0_PMON_B
OX_CTRL

Package Uncore M-box 0 perfmon local box control MSR

CA1H 3233 MSR_M0_PMON_B
OX_STATUS

Package Uncore M-box 0 perfmon local box status MSR

CA2H 3234 MSR_M0_PMON_B
OX_OVF_CTRL

Package Uncore M-box 0 perfmon local box overflow
control MSR

CA4H 3236 MSR_M0_PMON_T
IMESTAMP

Package Uncore M-box 0 perfmon time stamp unit
select MSR

CA5H 3237 MSR_M0_PMON_D
SP

Package Uncore M-box 0 perfmon DSP unit select MSR

CA6H 3238 MSR_M0_PMON_I
SS

Package Uncore M-box 0 perfmon ISS unit select MSR

CA7H 3239 MSR_M0_PMON_M
AP

Package Uncore M-box 0 perfmon MAP unit select MSR

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 163

Instruction Set Reference, N-Z

CA8H 3240 MSR_M0_PMON_M
SC_THR

Package Uncore M-box 0 perfmon MIC THR select MSR

CA9H 3241 MSR_M0_PMON_P
GT

Package Uncore M-box 0 perfmon PGT unit select MSR

CAAH 3242 MSR_M0_PMON_P
LD

Package Uncore M-box 0 perfmon PLD unit select MSR

CABH 3243 MSR_M0_PMON_Z
DP

Package Uncore M-box 0 perfmon ZDP unit select MSR

CB0H 3248 MSR_M0_PMON_E
VNT_SEL0

Package Uncore M-box 0 perfmon event select MSR

CB1H 3249 MSR_M0_PMON_C
TR0

Package Uncore M-box 0 perfmon counter MSR

CB2H 3250 MSR_M0_PMON_E
VNT_SEL1

Package Uncore M-box 0 perfmon event select MSR

CB3H 3251 MSR_M0_PMON_C
TR1

Package Uncore M-box 0 perfmon counter MSR

CB4H 3252 MSR_M0_PMON_E
VNT_SEL2

Package Uncore M-box 0 perfmon event select MSR

CB5H 3253 MSR_M0_PMON_C
TR2

Package Uncore M-box 0 perfmon counter MSR

CB6H 3254 MSR_M0_PMON_E
VNT_SEL3

Package Uncore M-box 0 perfmon event select MSR

CB7H 3255 MSR_M0_PMON_C
TR3

Package Uncore M-box 0 perfmon counter MSR

CB8H 3256 MSR_M0_PMON_E
VNT_SEL4

Package Uncore M-box 0 perfmon event select MSR

CB9H 3257 MSR_M0_PMON_C
TR4

Package Uncore M-box 0 perfmon counter MSR

CBAH 3258 MSR_M0_PMON_E
VNT_SEL5

Package Uncore M-box 0 perfmon event select MSR

CBBH 3259 MSR_M0_PMON_C
TR5

Package Uncore M-box 0 perfmon counter MSR

CC0H 3264 MSR_S1_PMON_B
OX_CTRL

Package Uncore S-box 1 perfmon local box control MSR

CC1H 3265 MSR_S1_PMON_B
OX_STATUS

Package Uncore S-box 1 perfmon local box status MSR

CC2H 3266 MSR_S1_PMON_B
OX_OVF_CTRL

Package Uncore S-box 1 perfmon local box overflow
control MSR

CD0H 3280 MSR_S1_PMON_E
VNT_SEL0

Package Uncore S-box 1 perfmon event select MSR

CD1H 3281 MSR_S1_PMON_C
TR0

Package Uncore S-box 1 perfmon counter MSR

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 164

Instruction Set Reference, N-Z

CD2H 3282 MSR_S1_PMON_E
VNT_SEL1

Package Uncore S-box 1 perfmon event select MSR

CD3H 3283 MSR_S1_PMON_C
TR1

Package Uncore S-box 1 perfmon counter MSR

CD4H 3284 MSR_S1_PMON_E
VNT_SEL2

Package Uncore S-box 1 perfmon event select MSR

CD5H 3285 MSR_S1_PMON_C
TR2

Package Uncore S-box 1 perfmon counter MSR

CD6H 3286 MSR_S1_PMON_E
VNT_SEL3

Package Uncore S-box 1 perfmon event select MSR

CD7H 3287 MSR_S1_PMON_C
TR3

Package Uncore S-box 1 perfmon counter MSR

CE0H 3296 MSR_M1_PMON_B
OX_CTRL

Package Uncore M-box 1 perfmon local box control MSR

CE1H 3297 MSR_M1_PMON_B
OX_STATUS

Package Uncore M-box 1 perfmon local box status MSR

CE2H 3298 MSR_M1_PMON_B
OX_OVF_CTRL

Package Uncore M-box 1 perfmon local box overflow
control MSR

CE4H 3300 MSR_M1_PMON_T
IMESTAMP

Package Uncore M-box 1 perfmon time stamp unit
select MSR

CE5H 3301 MSR_M1_PMON_D
SP

Package Uncore M-box 1 perfmon DSP unit select MSR

CE6H 3302 MSR_M1_PMON_I
SS

Package Uncore M-box 1 perfmon ISS unit select MSR

CE7H 3303 MSR_M1_PMON_M
AP

Package Uncore M-box 1 perfmon MAP unit select MSR

CE8H 3304 MSR_M1_PMON_M
SC_THR

Package Uncore M-box 1 perfmon MIC THR select MSR

CE9H 3305 MSR_M1_PMON_P
GT

Package Uncore M-box 1 perfmon PGT unit select MSR

CEAH 3306 MSR_M1_PMON_P
LD

Package Uncore M-box 1 perfmon PLD unit select MSR

CEBH 3307 MSR_M1_PMON_Z
DP

Package Uncore M-box 1 perfmon ZDP unit select MSR

CF0H 3312 MSR_M1_PMON_E
VNT_SEL0

Package Uncore M-box 1 perfmon event select MSR

CF1H 3313 MSR_M1_PMON_C
TR0

Package Uncore M-box 1 perfmon counter MSR

CF2H 3314 MSR_M1_PMON_E
VNT_SEL1

Package Uncore M-box 1 perfmon event select MSR

CF3H 3315 MSR_M1_PMON_C
TR1

Package Uncore M-box 1 perfmon counter MSR

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 165

Instruction Set Reference, N-Z

CF4H 3316 MSR_M1_PMON_E
VNT_SEL2

Package Uncore M-box 1 perfmon event select MSR

CF5H 3317 MSR_M1_PMON_C
TR2

Package Uncore M-box 1 perfmon counter MSR

CF6H 3318 MSR_M1_PMON_E
VNT_SEL3

Package Uncore M-box 1 perfmon event select MSR

CF7H 3319 MSR_M1_PMON_C
TR3

Package Uncore M-box 1 perfmon counter MSR

CF8H 3320 MSR_M1_PMON_E
VNT_SEL4

Package Uncore M-box 1 perfmon event select MSR

CF9H 3321 MSR_M1_PMON_C
TR4

Package Uncore M-box 1 perfmon counter MSR

CFAH 3322 MSR_M1_PMON_E
VNT_SEL5

Package Uncore M-box 1 perfmon event select MSR

CFBH 3323 MSR_M1_PMON_C
TR5

Package Uncore M-box 1 perfmon counter MSR

D00H 3328 MSR_C0_PMON_B
OX_CTRL

Package Uncore C-box 0 perfmon local box control MSR

D01H 3329 MSR_C0_PMON_B
OX_STATUS

Package Uncore C-box 0 perfmon local box status MSR

D02H 3330 MSR_C0_PMON_B
OX_OVF_CTRL

Package Uncore C-box 0 perfmon local box overflow
control MSR

D10H 3344 MSR_C0_PMON_E
VNT_SEL0

Package Uncore C-box 0 perfmon event select MSR

D11H 3345 MSR_C0_PMON_C
TR0

Package Uncore C-box 0 perfmon counter MSR

D12H 3346 MSR_C0_PMON_E
VNT_SEL1

Package Uncore C-box 0 perfmon event select MSR

D13H 3347 MSR_C0_PMON_C
TR1

Package Uncore C-box 0 perfmon counter MSR

D14H 3348 MSR_C0_PMON_E
VNT_SEL2

Package Uncore C-box 0 perfmon event select MSR

D15H 3349 MSR_C0_PMON_C
TR2

Package Uncore C-box 0 perfmon counter MSR

D16H 3350 MSR_C0_PMON_E
VNT_SEL3

Package Uncore C-box 0 perfmon event select MSR

D17H 3351 MSR_C0_PMON_C
TR3

Package Uncore C-box 0 perfmon counter MSR

D18H 3352 MSR_C0_PMON_E
VNT_SEL4

Package Uncore C-box 0 perfmon event select MSR

D19H 3353 MSR_C0_PMON_C
TR4

Package Uncore C-box 0 perfmon counter MSR

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 166

Instruction Set Reference, N-Z

D1AH 3354 MSR_C0_PMON_E
VNT_SEL5

Package Uncore C-box 0 perfmon event select MSR

D1BH 3355 MSR_C0_PMON_C
TR5

Package Uncore C-box 0 perfmon counter MSR

D20H 3360 MSR_C4_PMON_B
OX_CTRL

Package Uncore C-box 4 perfmon local box control MSR

D21H 3361 MSR_C4_PMON_B
OX_STATUS

Package Uncore C-box 4 perfmon local box status MSR

D22H 3362 MSR_C4_PMON_B
OX_OVF_CTRL

Package Uncore C-box 4 perfmon local box overflow
control MSR

D30H 3376 MSR_C4_PMON_E
VNT_SEL0

Package Uncore C-box 4 perfmon event select MSR

D31H 3377 MSR_C4_PMON_C
TR0

Package Uncore C-box 4 perfmon counter MSR

D32H 3378 MSR_C4_PMON_E
VNT_SEL1

Package Uncore C-box 4 perfmon event select MSR

D33H 3379 MSR_C4_PMON_C
TR1

Package Uncore C-box 4 perfmon counter MSR

D34H 3380 MSR_C4_PMON_E
VNT_SEL2

Package Uncore C-box 4 perfmon event select MSR

D35H 3381 MSR_C4_PMON_C
TR2

Package Uncore C-box 4 perfmon counter MSR

D36H 3382 MSR_C4_PMON_E
VNT_SEL3

Package Uncore C-box 4 perfmon event select MSR

D37H 3383 MSR_C4_PMON_C
TR3

Package Uncore C-box 4 perfmon counter MSR

D38H 3384 MSR_C4_PMON_E
VNT_SEL4

Package Uncore C-box 4 perfmon event select MSR

D39H 3385 MSR_C4_PMON_C
TR4

Package Uncore C-box 4 perfmon counter MSR

D3AH 3386 MSR_C4_PMON_E
VNT_SEL5

Package Uncore C-box 4 perfmon event select MSR

D3BH 3387 MSR_C4_PMON_C
TR5

Package Uncore C-box 4 perfmon counter MSR

D40H 3392 MSR_C2_PMON_B
OX_CTRL

Package Uncore C-box 2 perfmon local box control MSR

D41H 3393 MSR_C2_PMON_B
OX_STATUS

Package Uncore C-box 2 perfmon local box status MSR

D42H 3394 MSR_C2_PMON_B
OX_OVF_CTRL

Package Uncore C-box 2 perfmon local box overflow
control MSR

D50H 3408 MSR_C2_PMON_E
VNT_SEL0

Package Uncore C-box 2 perfmon event select MSR

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 167

Instruction Set Reference, N-Z

D51H 3409 MSR_C2_PMON_C
TR0

Package Uncore C-box 2 perfmon counter MSR

D52H 3410 MSR_C2_PMON_E
VNT_SEL1

Package Uncore C-box 2 perfmon event select MSR

D53H 3411 MSR_C2_PMON_C
TR1

Package Uncore C-box 2 perfmon counter MSR

D54H 3412 MSR_C2_PMON_E
VNT_SEL2

Package Uncore C-box 2 perfmon event select MSR

D55H 3413 MSR_C2_PMON_C
TR2

Package Uncore C-box 2 perfmon counter MSR

D56H 3414 MSR_C2_PMON_E
VNT_SEL3

Package Uncore C-box 2 perfmon event select MSR

D57H 3415 MSR_C2_PMON_C
TR3

Package Uncore C-box 2 perfmon counter MSR

D58H 3416 MSR_C2_PMON_E
VNT_SEL4

Package Uncore C-box 2 perfmon event select MSR

D59H 3417 MSR_C2_PMON_C
TR4

Package Uncore C-box 2 perfmon counter MSR

D5AH 3418 MSR_C2_PMON_E
VNT_SEL5

Package Uncore C-box 2 perfmon event select MSR

D5BH 3419 MSR_C2_PMON_C
TR5

Package Uncore C-box 2 perfmon counter MSR

D60H 3424 MSR_C6_PMON_B
OX_CTRL

Package Uncore C-box 6 perfmon local box control MSR

D61H 3425 MSR_C6_PMON_B
OX_STATUS

Package Uncore C-box 6 perfmon local box status MSR

D62H 3426 MSR_C6_PMON_B
OX_OVF_CTRL

Package Uncore C-box 6 perfmon local box overflow
control MSR

D70H 3440 MSR_C6_PMON_E
VNT_SEL0

Package Uncore C-box 6 perfmon event select MSR

D71H 3441 MSR_C6_PMON_C
TR0

Package Uncore C-box 6 perfmon counter MSR

D72H 3442 MSR_C6_PMON_E
VNT_SEL1

Package Uncore C-box 6 perfmon event select MSR

D73H 3443 MSR_C6_PMON_C
TR1

Package Uncore C-box 6 perfmon counter MSR

D74H 3444 MSR_C6_PMON_E
VNT_SEL2

Package Uncore C-box 6 perfmon event select MSR

D75H 3445 MSR_C6_PMON_C
TR2

Package Uncore C-box 6 perfmon counter MSR

D76H 3446 MSR_C6_PMON_E
VNT_SEL3

Package Uncore C-box 6 perfmon event select MSR

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 168

Instruction Set Reference, N-Z

D77H 3447 MSR_C6_PMON_C
TR3

Package Uncore C-box 6 perfmon counter MSR

D78H 3448 MSR_C6_PMON_E
VNT_SEL4

Package Uncore C-box 6 perfmon event select MSR

D79H 3449 MSR_C6_PMON_C
TR4

Package Uncore C-box 6 perfmon counter MSR

D7AH 3450 MSR_C6_PMON_E
VNT_SEL5

Package Uncore C-box 6 perfmon event select MSR

D7BH 3451 MSR_C6_PMON_C
TR5

Package Uncore C-box 6 perfmon counter MSR

D80H 3456 MSR_C1_PMON_B
OX_CTRL

Package Uncore C-box 1 perfmon local box control MSR

D81H 3457 MSR_C1_PMON_B
OX_STATUS

Package Uncore C-box 1 perfmon local box status MSR

D82H 3458 MSR_C1_PMON_B
OX_OVF_CTRL

Package Uncore C-box 1 perfmon local box overflow
control MSR

D90H 3472 MSR_C1_PMON_E
VNT_SEL0

Package Uncore C-box 1 perfmon event select MSR

D91H 3473 MSR_C1_PMON_C
TR0

Package Uncore C-box 1 perfmon counter MSR

D92H 3474 MSR_C1_PMON_E
VNT_SEL1

Package Uncore C-box 1 perfmon event select MSR

D93H 3475 MSR_C1_PMON_C
TR1

Package Uncore C-box 1 perfmon counter MSR

D94H 3476 MSR_C1_PMON_E
VNT_SEL2

Package Uncore C-box 1 perfmon event select MSR

D95H 3477 MSR_C1_PMON_C
TR2

Package Uncore C-box 1 perfmon counter MSR

D96H 3478 MSR_C1_PMON_E
VNT_SEL3

Package Uncore C-box 1 perfmon event select MSR

D97H 3479 MSR_C1_PMON_C
TR3

Package Uncore C-box 1 perfmon counter MSR

D98H 3480 MSR_C1_PMON_E
VNT_SEL4

Package Uncore C-box 1 perfmon event select MSR

D99H 3481 MSR_C1_PMON_C
TR4

Package Uncore C-box 1 perfmon counter MSR

D9AH 3482 MSR_C1_PMON_E
VNT_SEL5

Package Uncore C-box 1 perfmon event select MSR

D9BH 3483 MSR_C1_PMON_C
TR5

Package Uncore C-box 1 perfmon counter MSR

DA0H 3488 MSR_C5_PMON_B
OX_CTRL

Package Uncore C-box 5 perfmon local box control MSR

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 169

Instruction Set Reference, N-Z

DA1H 3489 MSR_C5_PMON_B
OX_STATUS

Package Uncore C-box 5 perfmon local box status MSR

DA2H 3490 MSR_C5_PMON_B
OX_OVF_CTRL

Package Uncore C-box 5 perfmon local box overflow
control MSR

DB0H 3504 MSR_C5_PMON_E
VNT_SEL0

Package Uncore C-box 5 perfmon event select MSR

DB1H 3505 MSR_C5_PMON_C
TR0

Package Uncore C-box 5 perfmon counter MSR

DB2H 3506 MSR_C5_PMON_E
VNT_SEL1

Package Uncore C-box 5 perfmon event select MSR

DB3H 3507 MSR_C5_PMON_C
TR1

Package Uncore C-box 5 perfmon counter MSR

DB4H 3508 MSR_C5_PMON_E
VNT_SEL2

Package Uncore C-box 5 perfmon event select MSR

DB5H 3509 MSR_C5_PMON_C
TR2

Package Uncore C-box 5 perfmon counter MSR

DB6H 3510 MSR_C5_PMON_E
VNT_SEL3

Package Uncore C-box 5 perfmon event select MSR

DB7H 3511 MSR_C5_PMON_C
TR3

Package Uncore C-box 5 perfmon counter MSR

DB8H 3512 MSR_C5_PMON_E
VNT_SEL4

Package Uncore C-box 5 perfmon event select MSR

DB9H 3513 MSR_C5_PMON_C
TR4

Package Uncore C-box 5 perfmon counter MSR

DBAH 3514 MSR_C5_PMON_E
VNT_SEL5

Package Uncore C-box 5 perfmon event select MSR

DBBH 3515 MSR_C5_PMON_C
TR5

Package Uncore C-box 5 perfmon counter MSR

DC0H 3520 MSR_C3_PMON_B
OX_CTRL

Package Uncore C-box 3 perfmon local box control MSR

DC1H 3521 MSR_C3_PMON_B
OX_STATUS

Package Uncore C-box 3 perfmon local box status MSR

DC2H 3522 MSR_C3_PMON_B
OX_OVF_CTRL

Package Uncore C-box 3 perfmon local box overflow
control MSR

DD0H 3536 MSR_C3_PMON_E
VNT_SEL0

Package Uncore C-box 3 perfmon event select MSR

DD1H 3537 MSR_C3_PMON_C
TR0

Package Uncore C-box 3 perfmon counter MSR

DD2H 3538 MSR_C3_PMON_E
VNT_SEL1

Package Uncore C-box 3 perfmon event select MSR

DD3H 3539 MSR_C3_PMON_C
TR1

Package Uncore C-box 3 perfmon counter MSR

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 170

Instruction Set Reference, N-Z

DD4H 3540 MSR_C3_PMON_E
VNT_SEL2

Package Uncore C-box 3 perfmon event select MSR

DD5H 3541 MSR_C3_PMON_C
TR2

Package Uncore C-box 3 perfmon counter MSR

DD6H 3542 MSR_C3_PMON_E
VNT_SEL3

Package Uncore C-box 3 perfmon event select MSR

DD7H 3543 MSR_C3_PMON_C
TR3

Package Uncore C-box 3 perfmon counter MSR

DD8H 3544 MSR_C3_PMON_E
VNT_SEL4

Package Uncore C-box 3 perfmon event select MSR

DD9H 3545 MSR_C3_PMON_C
TR4

Package Uncore C-box 3 perfmon counter MSR

DDAH 3546 MSR_C3_PMON_E
VNT_SEL5

Package Uncore C-box 3 perfmon event select MSR

DDBH 3547 MSR_C3_PMON_C
TR5

Package Uncore C-box 3 perfmon counter MSR

DE0H 3552 MSR_C7_PMON_B
OX_CTRL

Package Uncore C-box 7 perfmon local box control MSR

DE1H 3553 MSR_C7_PMON_B
OX_STATUS

Package Uncore C-box 7 perfmon local box status MSR

DE2H 3554 MSR_C7_PMON_B
OX_OVF_CTRL

Package Uncore C-box 7 perfmon local box overflow
control MSR

DF0H 3568 MSR_C7_PMON_E
VNT_SEL0

Package Uncore C-box 7 perfmon event select MSR

DF1H 3569 MSR_C7_PMON_C
TR0

Package Uncore C-box 7 perfmon counter MSR

DF2H 3570 MSR_C7_PMON_E
VNT_SEL1

Package Uncore C-box 7 perfmon event select MSR

DF3H 3571 MSR_C7_PMON_C
TR1

Package Uncore C-box 7 perfmon counter MSR

DF4H 3572 MSR_C7_PMON_E
VNT_SEL2

Package Uncore C-box 7 perfmon event select MSR

DF5H 3573 MSR_C7_PMON_C
TR2

Package Uncore C-box 7 perfmon counter MSR

DF6H 3574 MSR_C7_PMON_E
VNT_SEL3

Package Uncore C-box 7 perfmon event select MSR

DF7H 3575 MSR_C7_PMON_C
TR3

Package Uncore C-box 7 perfmon counter MSR

DF8H 3576 MSR_C7_PMON_E
VNT_SEL4

Package Uncore C-box 7 perfmon event select MSR

DF9H 3577 MSR_C7_PMON_C
TR4

Package Uncore C-box 7 perfmon counter MSR

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 171

Instruction Set Reference, N-Z

DFAH 3578 MSR_C7_PMON_E
VNT_SEL5

Package Uncore C-box 7 perfmon event select MSR

DFBH 3579 MSR_C7_PMON_C
TR5

Package Uncore C-box 7 perfmon counter MSR

E00H 3584 MSR_R0_PMON_B
OX_CTRL

Package Uncore R-box 0 perfmon local box control MSR

E01H 3585 MSR_R0_PMON_B
OX_STATUS

Package Uncore R-box 0 perfmon local box status MSR

E02H 3586 MSR_R0_PMON_B
OX_OVF_CTRL

Package Uncore R-box 0 perfmon local box overflow
control MSR

E04H 3588 MSR_R0_PMON_IP
ERF0_P0

Package Uncore R-box 0 perfmon IPERF0 unit Port 0
select MSR

E05H 3589 MSR_R0_PMON_IP
ERF0_P1

Package Uncore R-box 0 perfmon IPERF0 unit Port 1
select MSR

E06H 3590 MSR_R0_PMON_IP
ERF0_P2

Package Uncore R-box 0 perfmon IPERF0 unit Port 2
select MSR

E07H 3591 MSR_R0_PMON_IP
ERF0_P3

Package Uncore R-box 0 perfmon IPERF0 unit Port 3
select MSR

E08H 3592 MSR_R0_PMON_IP
ERF0_P4

Package Uncore R-box 0 perfmon IPERF0 unit Port 4
select MSR

E09H 3593 MSR_R0_PMON_IP
ERF0_P5

Package Uncore R-box 0 perfmon IPERF0 unit Port 5
select MSR

E0AH 3594 MSR_R0_PMON_IP
ERF0_P6

Package Uncore R-box 0 perfmon IPERF0 unit Port 6
select MSR

E0BH 3595 MSR_R0_PMON_IP
ERF0_P7

Package Uncore R-box 0 perfmon IPERF0 unit Port 7
select MSR

E0CH 3596 MSR_R0_PMON_Q
LX_P0

Package Uncore R-box 0 perfmon QLX unit Port 0
select MSR

E0DH 3597 MSR_R0_PMON_Q
LX_P1

Package Uncore R-box 0 perfmon QLX unit Port 1
select MSR

E0EH 3598 MSR_R0_PMON_Q
LX_P2

Package Uncore R-box 0 perfmon QLX unit Port 2
select MSR

E0FH 3599 MSR_R0_PMON_Q
LX_P3

Package Uncore R-box 0 perfmon QLX unit Port 3
select MSR

E10H 3600 MSR_R0_PMON_E
VNT_SEL0

Package Uncore R-box 0 perfmon event select MSR

E11H 3601 MSR_R0_PMON_C
TR0

Package Uncore R-box 0 perfmon counter MSR

E12H 3602 MSR_R0_PMON_E
VNT_SEL1

Package Uncore R-box 0 perfmon event select MSR

E13H 3603 MSR_R0_PMON_C
TR1

Package Uncore R-box 0 perfmon counter MSR

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 172

Instruction Set Reference, N-Z

E14H 3604 MSR_R0_PMON_E
VNT_SEL2

Package Uncore R-box 0 perfmon event select MSR

E15H 3605 MSR_R0_PMON_C
TR2

Package Uncore R-box 0 perfmon counter MSR

E16H 3606 MSR_R0_PMON_E
VNT_SEL3

Package Uncore R-box 0 perfmon event select MSR

E17H 3607 MSR_R0_PMON_C
TR3

Package Uncore R-box 0 perfmon counter MSR

E18H 3608 MSR_R0_PMON_E
VNT_SEL4

Package Uncore R-box 0 perfmon event select MSR

E19H 3609 MSR_R0_PMON_C
TR4

Package Uncore R-box 0 perfmon counter MSR

E1AH 3610 MSR_R0_PMON_E
VNT_SEL5

Package Uncore R-box 0 perfmon event select MSR

E1BH 3611 MSR_R0_PMON_C
TR5

Package Uncore R-box 0 perfmon counter MSR

E1CH 3612 MSR_R0_PMON_E
VNT_SEL6

Package Uncore R-box 0 perfmon event select MSR

E1DH 3613 MSR_R0_PMON_C
TR6

Package Uncore R-box 0 perfmon counter MSR

E1EH 3614 MSR_R0_PMON_E
VNT_SEL7

Package Uncore R-box 0 perfmon event select MSR

E1FH 3615 MSR_R0_PMON_C
TR7

Package Uncore R-box 0 perfmon counter MSR

E20H 3616 MSR_R1_PMON_B
OX_CTRL

Package Uncore R-box 1 perfmon local box control MSR

E21H 3617 MSR_R1_PMON_B
OX_STATUS

Package Uncore R-box 1 perfmon local box status MSR

E22H 3618 MSR_R1_PMON_B
OX_OVF_CTRL

Package Uncore R-box 1 perfmon local box overflow
control MSR

E24H 3620 MSR_R1_PMON_IP
ERF1_P8

Package Uncore R-box 1 perfmon IPERF1 unit Port 8
select MSR

E25H 3621 MSR_R1_PMON_IP
ERF1_P9

Package Uncore R-box 1 perfmon IPERF1 unit Port 9
select MSR

E26H 3622 MSR_R1_PMON_IP
ERF1_P10

Package Uncore R-box 1 perfmon IPERF1 unit Port 10
select MSR

E27H 3623 MSR_R1_PMON_IP
ERF1_P11

Package Uncore R-box 1 perfmon IPERF1 unit Port 11
select MSR

E28H 3624 MSR_R1_PMON_IP
ERF1_P12

Package Uncore R-box 1 perfmon IPERF1 unit Port 12
select MSR

E29H 3625 MSR_R1_PMON_IP
ERF1_P13

Package Uncore R-box 1 perfmon IPERF1 unit Port 13
select MSR

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 173

Instruction Set Reference, N-Z

E2AH 3626 MSR_R1_PMON_IP
ERF1_P14

Package Uncore R-box 1 perfmon IPERF1 unit Port 14
select MSR

E2BH 3627 MSR_R1_PMON_IP
ERF1_P15

Package Uncore R-box 1 perfmon IPERF1 unit Port 15
select MSR

E2CH 3628 MSR_R1_PMON_Q
LX_P4

Package Uncore R-box 1 perfmon QLX unit Port 4
select MSR

E2DH 3629 MSR_R1_PMON_Q
LX_P5

Package Uncore R-box 1 perfmon QLX unit Port 5
select MSR

E2EH 3630 MSR_R1_PMON_Q
LX_P6

Package Uncore R-box 1 perfmon QLX unit Port 6
select MSR

E2FH 3631 MSR_R1_PMON_Q
LX_P7

Package Uncore R-box 1 perfmon QLX unit Port 7
select MSR

E30H 3632 MSR_R1_PMON_E
VNT_SEL8

Package Uncore R-box 1 perfmon event select MSR

E31H 3633 MSR_R1_PMON_C
TR8

Package Uncore R-box 1 perfmon counter MSR

E32H 3634 MSR_R1_PMON_E
VNT_SEL9

Package Uncore R-box 1 perfmon event select MSR

E33H 3635 MSR_R1_PMON_C
TR9

Package Uncore R-box 1 perfmon counter MSR

E34H 3636 MSR_R1_PMON_E
VNT_SEL10

Package Uncore R-box 1 perfmon event select MSR

E35H 3637 MSR_R1_PMON_C
TR10

Package Uncore R-box 1 perfmon counter MSR

E36H 3638 MSR_R1_PMON_E
VNT_SEL11

Package Uncore R-box 1 perfmon event select MSR

E37H 3639 MSR_R1_PMON_C
TR11

Package Uncore R-box 1 perfmon counter MSR

E38H 3640 MSR_R1_PMON_E
VNT_SEL12

Package Uncore R-box 1 perfmon event select MSR

E39H 3641 MSR_R1_PMON_C
TR12

Package Uncore R-box 1 perfmon counter MSR

E3AH 3642 MSR_R1_PMON_E
VNT_SEL13

Package Uncore R-box 1 perfmon event select MSR

E3BH 3643 MSR_R1_PMON_C
TR13

Package Uncore R-box 1perfmon counter MSR

E3CH 3644 MSR_R1_PMON_E
VNT_SEL14

Package Uncore R-box 1 perfmon event select MSR

E3DH 3645 MSR_R1_PMON_C
TR14

Package Uncore R-box 1 perfmon counter MSR

E3EH 3646 MSR_R1_PMON_E
VNT_SEL15

Package Uncore R-box 1 perfmon event select MSR

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 174

Instruction Set Reference, N-Z

B.5 MSRS IN THE INTEL® XEON PROCESSOR 5600 SERIES
(INTEL MICROARCHITECTURE CODENAME WESTMERE)

Intel Xeon processor 5600 series (Intel® microarchitecture codename Westmere)
supports the MSR interfaces listed in Table B-5, Table Table B-6, plus additional MSR
listed in Table B-8. These MSRs also apply to Intel Core i7, i5 and i3 processor family with
CPUID signature DisplayFamily_DisplayModel of 06_25H and 06_2CH, see Table B-1.

...

E3FH 3647 MSR_R1_PMON_C
TR15

Package Uncore R-box 1 perfmon counter MSR

E45H 3653 MSR_B0_PMON_M
ATCH

Package Uncore B-box 0 perfmon local box match MSR

E46H 3654 MSR_B0_PMON_M
ASK

Package Uncore B-box 0 perfmon local box mask MSR

E49H 3657 MSR_S0_PMON_M
ATCH

Package Uncore S-box 0 perfmon local box match MSR

E4AH 3658 MSR_S0_PMON_M
ASK

Package Uncore S-box 0 perfmon local box mask MSR

E4DH 3661 MSR_B1_PMON_M
ATCH

Package Uncore B-box 1 perfmon local box match MSR

E4EH 3662 MSR_B1_PMON_M
ASK

Package Uncore B-box 1 perfmon local box mask MSR

E54H 3668 MSR_M0_PMON_M
M_CONFIG

Package Uncore M-box 0 perfmon local box address
match/mask config MSR

E55H 3669 MSR_M0_PMON_A
DDR_MATCH

Package Uncore M-box 0 perfmon local box address
match MSR

E56H 3670 MSR_M0_PMON_A
DDR_MASK

Package Uncore M-box 0 perfmon local box address
mask MSR

E59H 3673 MSR_S1_PMON_M
ATCH

Package Uncore S-box 1 perfmon local box match MSR

E5AH 3674 MSR_S1_PMON_M
ASK

Package Uncore S-box 1 perfmon local box mask MSR

E5CH 3676 MSR_M1_PMON_M
M_CONFIG

Package Uncore M-box 1 perfmon local box address
match/mask config MSR

E5DH 3677 MSR_M1_PMON_A
DDR_MATCH

Package Uncore M-box 1 perfmon local box address
match MSR

E5EH 3678 MSR_M1_PMON_A
DDR_MASK

Package Uncore M-box 1 perfmon local box address
mask MSR

3B5H 965 MSR_UNCORE_PM
C5

Package See Section 30.6.2.2, “Uncore Performance
Event Configuration Facility.”

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 175

Instruction Set Reference, N-Z

24. Updates to Appendix E, Volume 3B

Change bars show changes to Appendix E of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...

Table E-2 Incremental Decoding Information: Processor Family 06H
Machine Error Codes For Machine Check

...

Table E-4 Incremental Bus Error Codes of Machine Check for Processors Based on Intel
Core Microarchitecture

...

Type Bit No. Bit Function Bit Description

...

38 Timeout BINIT This bit is asserted in IA32_MCi_STATUS if this
component has experienced a ROB time-out,
which indicates that no micro-instruction has
been retired for a predetermined period of
time.

A ROB time-out occurs when the 15-bit ROB
time-out counter carries a 1 out of its high
order bit. 1 The timer is cleared when a micro-
instruction retires, an exception is detected by
the core processor, RESET is asserted, or when
a ROB BINIT occurs.

NOTES:
1. For processors with a CPUID signature of 06_0EH, a ROB time-out occurs when the 23-bit ROB

time-out counter carries a 1 out of its high order bit.

...

Type Bit No. Bit Function Bit Description

...

38 Timeout BINIT This bit is asserted in IA32_MCi_STATUS if this
component has experienced a ROB time-out,
which indicates that no micro-instruction has
been retired for a predetermined period of
time.

A ROB time-out occurs when the 23-bit ROB
time-out counter carries a 1 out of its high
order bit. The timer is cleared when a micro-
instruction retires, an exception is detected by
the core processor, RESET is asserted, or when
a ROB BINIT occurs.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 176

Instruction Set Reference, N-Z

	Revision History
	Preface
	Affected Documents
	Nomenclature

	Summary Tables of Changes
	Codes Used in Summary Tables
	Documentation Changes

	Documentation Changes
	2.1.15 The Intel® Core™i7 Processor Family (2008-Current)
	2.1.16 The Intel® Xeon® Processor 7500 Series (2010)
	2.1.17 2010 Intel® Core™ Processor Family (2010)
	2.1.18 The Intel® Xeon® Processor 5600 Series (2010)

	Chapter 12 . Programming with SSE3, SSSE3, SSE4 and AESNI
	12.13 AESNI Overview
	12.13.1 Little-Endian Architecture and Big-Endian Specification (FIPS 197)
	12.13.2 AES Transformations and Functions
	12.13.3 PCLMULQDQ
	12.13.4 Checking for AESNI Support

	Chapter 3 Instruction Set Reference, A-M
	Chapter 4 Instruction Set Reference, N-Z
	4.1 Imm8 Control Byte Operation for PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM
	4.1.1 General Description
	4.1.2 Source Data Format
	4.1.3 Aggregation Operation
	4.1.4 Polarity
	4.1.5 Output Selection
	4.1.6 Valid/Invalid Override of Comparisons
	4.1.7 Summary of Im8 Control byte
	4.1.8 Diagram Comparison and Aggregation Process

	5.4 VM Instruction Error Numbers
	A.2 Key to Abbreviations
	A.2.1 Codes for Addressing Method
	A.2.2 Codes for Operand Type
	A.4.2 Opcode Extension Tables

	B.12 AESNI and PCLMULQDQ INstruction Formats and Encodings
	2.5.1 CPUID Qualification of Control Register Flags

	4.1 Paging Modes and Control Bits
	4.1.1 Three Paging Modes
	4.1.2 Paging-Mode Enabling
	4.1.3 Paging-Mode Modifiers
	4.1.4 Enumeration of Paging Features by CPUID

	4.5 IA-32e Paging
	4.9.2 Paging and Memory Typing When the PAT is Supported (Pentium III and More Recent Processor Families)

	4.10 Caching Translation Information
	4.10.1 Process-Context Identifiers (PCIDs)
	4.10.4 Invalidation of TLBs and Paging-Structure Caches
	4.11.2 VMX Support for Address Translation

	6.2 Exception and Interrupt Vectors
	10.5.4 APIC Timer
	10.6.1 Interrupt Command Register (ICR)

	11.9 Invalidating the Translation Lookaside Buffers (TLBs)
	11.11.9 Large Page Size Considerations
	22.5.1 Linear Accesses to the APIC-Access Page Using Large-Page Translations
	22.5.3 VTPR Accesses
	23.2.2 Checks on Host Control Registers and MSRs
	23.2.4 Checks Related to Address-Space Size
	24.2.1 Basic VM-Exit Information
	24.5.1 Loading Host Control Registers, Debug Registers, MSRs
	24.5.5 Updating Non-Register State

	25.1 Virtual Processor Identifiers (VPIDs)
	25.3 Caching Translation Information
	25.3.1 Information That May Be Cached
	25.3.2 Creating and Using Cached Translation Information
	25.3.3 Invalidating Cached Translation Information
	26.3.2 Exiting From SMM
	26.4.1 SMRAM State Save Map

	26.5 SMI Handler Execution Environment
	27.4 Using VMX Instructions
	30.6.2 Performance Monitoring Facility in the Uncore
	30.6.3 Intel Xeon Processor 7500 Series Performance Monitoring Facility

	B.4 MSRs In the Intel® Microarchitecture codename Nehalem
	B.4.1 Additional MSRs In the Intel® Xeon Processor 5500 and 3400 Series
	B.4.2 Additional MSRs In the Intel® Xeon Processor 7500 Series

	B.5 MSRs In the Intel® Xeon Processor 5600 Series (Intel microarchitecture Codename Westmere)

