intel.

Intel® 64 and 1A-32 Architectures
Software Developer’s Manual

Documentation Changes

March 2010

Notice: The Intel® 64 and 1A-32 architectures may contain design defects or errors known as errata
that may cause the product to deviate from published specifications. Current characterized errata are
documented in the specification updates.

Document Number: 252046-027

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER,
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or
life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device
drivers and applications enabled for Intel® 64 architecture. Performance will vary depending on your hardware and software
configurations. Consult with your system vendor for more information.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

12C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the 12Cc bus/protocol and was developed
by Intel. Implementations of the 12c bus/protocol may require licenses from various entities, including Philips Electronics N.V. and
North American Philips Corporation.

Intel, Pentium, Intel Core, Intel Xeon, Intel 64, Intel NetBurst, and the Intel logo are trademarks of Intel Corporation in the U.S.
and other countries.

*Other names and brands may be claimed as the property of others.
Copyright © 2002-2010, Intel Corporation. All rights reserved..

2 Intel® 64 and IA-32 Architectures Software Developer’'s Manual Documentation Changes

Contents

Revision History e e
Preface. e
Summary Tables of Changes

Documentation Changes. e

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

intel.

Revision History

Revision History

Revision Description Date

-001 Initial release November 2002
Added 1-10 Documentation Changes.

-002 Removed old Documentation Changes items that already have been December 2002
incorporated in the published Software Developer’s manual
Added 9 -17 Documentation Changes.
Removed Documentation Change #6 - References to bits Gen and Len

-003 Deleted. February 2003
Removed Documentation Change #4 - VIF Information Added to CLI
Discussion
Removed Documentation changes 1-17.

-004 Added Documentation changes 1-24. June 2003
Removed Documentation Changes 1-24.

-005 Added Documentation Changes 1-15. September 2003

-006 Added Documentation Changes 16- 34. November 2003
Updated Documentation changes 14, 16, 17, and 28.

-007 Added Documentation Changes 35-45. January 2004
Removed Documentation Changes 1-45.

-008 Added Documentation Changes 1-5. March 2004

-009 Added Documentation Changes 7-27. May 2004
Removed Documentation Changes 1-27.

-010 Added Documentation Changes 1. August 2004

-011 Added Documentation Changes 2-28. November 2004
Removed Documentation Changes 1-28.

-012 Added Documentation Changes 1-16. March 2005
Updated title.

-013 There are no Documentation Changes for this revision of the July 2005
document.

-014 Added Documentation Changes 1-21. September 2005
Removed Documentation Changes 1-21.

-015 Added Documentation Changes 1-20. March 9, 2006

-016 Added Documentation changes 21-23. March 27, 2006
Removed Documentation Changes 1-23.

-017 Added Documentation Changes 1-36. September 2006

-018 Added Documentation Changes 37-42. October 2006
Removed Documentation Changes 1-42.

-019 Added Documentation Changes 1-19. March 2007

-020 Added Documentation Changes 20-27. May 2007
Removed Documentation Changes 1-27.

-021 Added Documentation Changes 1-6 November 2007
Removed Documentation Changes 1-6

-022 Added Documentation Changes 1-6 August 2008
Removed Documentation Changes 1-6

-023 Added Documentation Changes 1-21 March 2009

Intel® 64 and IA-32 Architectures Software Developer’'s Manual Documentation Changes

Revision History

intel.

Revision Description Date

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

8

Revision History

Intel® 64 and IA-32 Architectures Software Developer’'s Manual Documentation Changes

Preface i n tel '

Preface

This document is an update to the specifications contained in the Affected Documents
table below. This document is a compilation of device and documentation errata,
specification clarifications and changes. It is intended for hardware system
manufacturers and software developers of applications, operating systems, or tools.

Affected Documents

. Document
Document Title Number/Location

Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume

. . 253665
1: Basic Architecture
Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 253666
2A: Instruction Set Reference, A-M
Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 253667
2B: Instruction Set Reference, N-Z
Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 253668
3A: System Programming Guide, Part 1
Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 253669
3B: System Programming Guide, Part 2

Nomenclature

Documentation Changes include typos, errors, or omissions from the current
published specifications. These will be incorporated in any new release of the
specification.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 7

Summary Tables of Changes

intel.

Summary Tables of Changes

The following table indicates documentation changes which apply to the Intel® 64 and
IA-32 architectures. This table uses the following notations:

Codes Used in Summary Tables

Change bar to left of table row indicates this erratum is either new or modified from the
previous version of the document.

Documentation Changes

No. DOCUMENTATION CHANGES
Updates to Chapter 2, Volume 1
2 Updates to Chapter 12, Volume 1
3 Updates to Appendix A, Volume 1
4 Updates to Chapter 3, Volume 2A
5 Updates to Chapter 4, Volume 2B
6 Updates to Chapter 5, Volume 2B
7 Updates to Appendix A, Volume 2B
8 Updates to Appendix B, Volume 2B
9 Updates to Appendix C, Volume 2B
10 Updates to Chapter 2, Volume 3A
11 Updates to Chapter 4, Volume 3A
12 Updates to Chapter 6, Volume 3A
13 Updates to Chapter 10, Volume 3A
14 Updates to Chapter 11, Volume 3A
15 Updates to Chapter 22, Volume 3B
16 Updates to Chapter 23, Volume 3B
17 Updates to Chapter 24, Volume 3B
18 Updates to Chapter 25, Volume 3B
19 Updates to Chapter 26, Volume 3B
20 Updates to Chapter 27, Volume 3B
21 Updates to Chapter 30, Volume 3B
22 Updates to Appendix A, Volume 3B
23 Updates to Appendix B, Volume 3B
24 Updates to Appendix E, Volume 3B

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

[®
Documentation Changes l n tel >

Documentation Changes

1. Updates to Chapter 2, Volume 1

Change bars show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’'s Manual, Volume 1: Basic Architecture.

2.1.15 The Intel® Core™i7 Processor Family (2008-Current)

The Intel Core i7 processor 900 series support Intel 64 architecture; they are based on
Intel microarchitecture codename Nehalem using 45 nm process technology. The Intel

Core i7 processor and Intel Xeon processor 5500 series include the following innovative
features:

- Intel® Turbo Boost Technology converts thermal headroom into higher performance.

- Intel® HyperThreading Technology in conjunction with Quadcore to provide four
cores and eight threads.

« Dedicated power control unit to reduce active and idle power consumption.

« Integrated memory controller on the processor supporting three channel of DDR3
memory.

- 8 MB inclusive Intel® Smart Cache.

- Intel® QuickPath interconnect (QPI) providing point-to-point link to chipset.
e Support for SSE4.2 and SSE4.1 instruction sets.

« Second generation Intel Virtualization Technology.

2.1.16 The Intel® Xeon® Processor 7500 Series (2010)

The Intel Xeon processor 7500 and 6500 series are based on Intel microarchitecture
codename Nehalem using 45 nm process technology. They support the same features
described in Section 2.1.15, plus the following innovative features:

= Up to eight cores per physical processor package.
- Up to 24 MB inclusive Intel® Smart Cache.

« Provides Intel® Scalable Memory Interconnect (Intel® SMI) channels with Intel®
7500 Scalable Memory Buffer to connect to system memory.

< Advanced RAS supporting software recoverable machine check architecture.

2.1.17 2010 Intel® Core™ Processor Family (2010)

2010 Intel Core processor family spans Intel Core i7, i5 and i3 processors. They are
based on Intel microarchitecture (Westmere) using 32 nm process technology. They
provide the following innovative features:

« Deliver smart performance using Intel Hyper-Threading Technology plus Intel Turbo
Boost Technology.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

[®
Documentation Changes l n tel

< Enhanced Intel Smart Cache and integrated memory controller.

« Intelligent power gating.

* Repartitioned platform with on-die integration of 45nm integrated graphics.
e Support for AESNI, PCLMULQDQ, SSE4.2 and SSE4.1 instruction sets.

2.1.18 The Intel® Xeon® Processor 5600 Series (2010)

The Intel Xeon processor 5600 series are based on Intel microarchitecture (Westmere)
using 32 nm process technology. They support the same features described in Section
2.1.15, plus the following innovative features:

= Up to six cores per physical processor package.

e Upto 12 MB enhanced Intel® Smart Cache.

e Support for AESNI, PCLMULQDQ, SSE4.2 and SSE4.1 instruction sets.
= Flexible Intel Virtualization Technologies across processor and 1/0.

Table 2-2 Key Features of Most Recent Intel 64 Processors

Intel Date | Micro- Top-Bin | Tran- | Register | System | Max. On-Die
Processor | Intro- | architec-ture | Fre- sistor | Sizes Bus/ Extern | Caches
duced quency |S QPI . Addr.

at Intro- Link Space

duction Speed
Intel Core i7-965 | 2008 Intel microarchitecture | 3.20 GHz 731M GP: 32, 64 QPI: 6.4 64 GB L1: 64 KB
Processor codename Nehalem; FPU: 80 GTls; L2: 256KB
Extreme Edition Quadcore; MMX: 64 Memory: 25 L3: 8MB

HyperThreading XMM: 128 GB/s

Technology; Intel QPI;
Intel 64 Architecture;
Intel Virtualization
Technology.

Intel Core i7- 2010 Intel Turbo Boost 2.66 GHz 383 M GP: 32, 64 64 GB L1: 64 KB
620M Technology, Intel FPU: 80 L2: 256KB
Processor microarchitecture MMX: 64 L3: 4MB
(Westmere); XMM: 128
Dualcore;
HyperThreading
Technology; Intel 64
Architecture;

Intel Virtualization
Technology.,
Integrated graphics

Intel Xeon- 2010 Intel Turbo Boost 2.26 GHz 2.3B GP: 32, 64 QPI: 6.4 16 TB L1: 64 KB
Processor 7560 Technology, Intel FPU: 80 GTls; L2: 256KB
microarchitecture MMX: 64 Memory: 50 L3: 24MB
codename Nehalem; XMM: 128 GB/s
Eight core;
HyperThreading
Technology; Intel 64
Architecture;

Intel Virtualization
Technology.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 10

[®
. Programming with SSE3, SSSE3, SSE4 and AESNI l n tel >

2. Updates to Chapter 12, Volume 1

Change bars show changes to Chapter 12 of the Intel® 64 and 1A-32 Architectures Soft-
ware Developer’s Manual, Volume 1: Basic Architecture.

CHAPTER 12.
PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI

The Pentium 4 processor supporting Hyper-Threading Technology (HT Technology) intro-
duces Streaming SIMD Extensions 3 (SSE3). The Intel Xeon processor 5100 series, Intel
Core 2 processor families introduced Supplemental Streaming SIMD Extensions 3
(SSSE3). SSE4 are introduced in Intel processor generations built from 45nm process
technology. This chapter describes SSE3, SSSE3, SSE4, and provides information to
assist in writing application programs that use these extensions.

AESNI and PCLMLQDQ are instruction extensions targeted to accelerate high-speed
block encryption and cryptographic processing. Section 12.13 covers these instructions
and their relationship to the Advanced Encryption Standard (AES).

12.13 AESNI OVERVIEW

The AESNI extension provides six instructions to accelerate symmetric block encryption/
decryption of 128-bit data blocks using the Advanced Encryption Standard (AES) speci-
fied by the NIST publication FIPS 197. Specifically, two instructions (AESENC, AESEN-
CLAST) target the AES encryption rounds, two instructions (AESDEC, AESDECLAST)
target AES decryption rounds using the Equivalent Inverse Cipher. One instruction
(AESIMC) targets the Inverse MixColumn transformation primitive and one instruction
(AESKEYGEN) targets generation of round keys from the cipher key for the AES encryp-
tion/decryption rounds.

AES supports encryption/decryption using cipher key lengths of 128, 192, and 256 bits
by processing the data block in 10, 12, 14 rounds of predefined transformations.
Figure Figure 12-5 depicts the cryptographic processing of a block of 128-bit plain text
into cipher text.

RK(0) RK(1) RK(n-1)

LB B

Round 1 Last

Round
n-1

Plain text AES State AES State AES State Cipher text

AES-128: n =10
AES-192: n =12
AES-256: n =14

Figure 12-5 AES State Flow

Intel® 64 and 1A-32 Architectures Software Developer's Manual Documentation Changes 11

[®
. Programming with SSE3, SSSE3, SSE4 and AESNI l n tel >

The predefined AES transformation primitives are described in the next few sections,
they are also referenced in the operation flow of instruction reference page of these
instructions.

12.13.1 Little-Endian Architecture and Big-Endian Specification (FIPS
197)

FIPS 197 document defines the Advanced Encryption Standard (AES) and includes a set
of test vectors for testing all of the steps in the algorithm, and can be used for testing
and debugging.

The following observation is important for using the AES instructions offered in Intel 64
Architecture: FIPS 197 text convention is to write hex strings with the low-memory byte
on the left and the high-memory byte on the right. Intel’s convention is the reverse. It is
similar to the difference between Big Endian and Little Endian notations.

In other words, a 128 bits vector in the FIPS document, when read from left to right, is
encoded as [7:0, 15:8, 23:16, 31:24, ..127:120]. Note that inside the byte, the
encoding is [7:0], so the first bit from the left is the most significant bit. In practice, the
test vectors are written in hexadecimal notation, where pairs of hexadecimal digits
define the different bytes. To translate the FIPS 197 notation to an Intel 64 architecture
compatible (“Little Endian”) format, each test vector needs to be byte-reflected to
[127:120,... 31:24, 23:16, 15:8, 7:0].

Example A:
FIPS Test vector: 0x000102030405060708090a0b0c0d0eOf
Intel AES Hardware: 0x0fO0e0d0cOb0a09080706050403020100

It should be pointed out that the only thing at issue is a textual convention, and
programmers do not need to perform byte-reversal in their code, when using the AES
instructions.

12.13.1.1 AES Data Structure in Intel 64 Architecture

he AES instructions that are defined in this document operate on one or on two 128 bits
source operands: State and Round Key. From the architectural point of view, the state is
input in an xmm register and the Round key is input either in an xmm register or a 128-
bit memory location.

In AES algorithm, the state (128 bits) can be viewed as 4 32-bit doublewords (“Word”s
in AES terminology): X3, X2, X1, XO.

The state may also be viewed as a set of 16 bytes. The 16 bytes can also be viewed as a
4x4 matrix of bytes where S(i, j) with i, j =0, 1, 2, 3 compose the 32-bit “word”s as
follows:

X0 =S (3,0)S (2,0)S (1, 0) S (0, 0)
X1=S(3,1)S(2,1)S(1,1)S (0, 1)
X2=5(3,2)S(2,2)S (1, 2) S (0, 2)
X3=S(3,3)S (2, 3)S(1,3)S (0, 3)

The following tables, Table Table 12-8 through Table Table 12-11, illustrate various
representations of a 128-bit state.

Intel® 64 and 1A-32 Architectures Software Developer's Manual Documentation Changes 12

. Programming with SSE3, SSSE3, SSE4 and AESNI

intel)

Table 12-8 Byte and 32-bit Word Representation of a 128-bit State

Byte# |15 |14 |13 |12 |11|10| 9 |8 |7 |6 |5 |4 |3 |2 |1|0
Bit 127 | 119 | 111 [103 |95 |87 |79 |71 |63 |55 |47 |39 |31 (23 |15 |7-
Position | - - - - -88|-80|-72|-64|-56|-48|-40|-32|-24|-16 |-8 |0
120 | 112 | 103 | 96
127 - 96 95 - 64 64 - 32 31-0
State Word X3 X2 X1 X0
saeByte | P o [N |[m[L[k|u]1|H]c][F]E|D|c]B]|A
Table 12-9 Matrix Representation of a 128-bit State
A E I M S(0,0) | S(0,1) | S(0,2) | S(0,3)
B F J N S(1,0) | S(1,1) | S(,2) | S(@3)
c G K 0 S(2,0) | S2,1) | S(2,2) | S(@,3)
D H L P S(3,00) | SB3,1) | S(3,2) | S(G3.,3)
Example:

FIPS vector: d4 bf 5d 30 e0 b4 52 ae b8 41 11 f1 1e 27 98 €5

This vector has the “least significant” byte d4 and the significant byte e5 (written in Big
Endian format in the FIPS document). When it is translated to IA notations, the encoding

IS:
Table 12-10 Little Endian Representation of a 128-bit State
Byte # 15|14 |13 (12|11 |10 9| 8|7 |6 |5]|4]3]|2 0
StateByte | P |O | N|M|L|K|J|I |H|G|F|E|D|C|B]|A
State Value | e5 |98 | 27 | 1le | f1 | 11 | 41 [b8 | ae | 52 | b4 | e0O | 30 | 5d | bf | d4
Table 12-11 Little Endian Representation of a 4x4 Byte Matrix

A E I M d4 e0 b8 le

B F J N bf b4 41 27

c G K o 5d 52 1 98

D H L P 30 ae fl e5

12.13.2 AES Transformations and Functions

The following functions and transformations are used in the algorithmic descriptions of
AES instruction extensions AESDEC, AESDECLAST, AESENC, AESENCLAST, AESIMC,
AESKEYGENASSIST.

Note that these transformations are expressed here in a Little Endian format (and not as

in the FIPS 197 document).

e MixColumns(): A byte-oriented 4x4 matrix transformation on the matrix represen-
tation of a 128-bit AES state. A FIPS-197 defined 4x4 matrix is multiplied to each 4x1

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

13

[®
. Programming with SSE3, SSSE3, SSE4 and AESNI l n tel >

column vector of the AES state. The columns are considered polynomials with coeffi-
cients in the Finite Field that is used in the definition of FIPS 197, the operations
(“multiplication” and “addition”) are in that Finite Field, and the polynomials are
reduced modulo x*+1.

The MixColumns() transformation defines the relationship between each byte of the
result state, represented as S’(i, j) of a 4x4 matrix (see Section 12.13.1), as a
function of input state bytes, S(i, j), as follows

S'(0, j) € FF_MUL(02H, S(0, j)) XOR FF_MUL(03H, S(1, j)) XOR S(2, j) XOR S(3,
J_s)'(l, i) € S(0, j) XOR FF_MUL(02H, S(1, j)) XOR FF_MUL(03H, S(2, j)) XOR S(3,
Js)’(z, j) € S(0, j) XOR S(1, j) XOR FF_MUL(02H, S(2, j)) XOR FF_MUL(03H, S(3, j)
zs’(s, j) € FF_MUL(03H, S(0, j)) XOR S(1, j) XOR S(2, j) XOR FF_MUL(02H, S(3, j)

where j = 0, 1, 2, 3. FF_MUL(Bytel, Byte2) denotes the result of multiplying two
elements (represented by Bytel and byte2) in the Finite Field representation that
defines AES. The result of produced bye FF_MUL(Bytel, Byte2) is an element in the
Finite Field (represented as a byte). A Finite Field is a field with a finite number of
elements, and when this number can be represented as a power of 2 (2n), its
elements can be represented as the set of 2n binary strings of length n. AES uses a
finite field with n=8 (having 256 elements). With this representation, “addition” of
two elements in that field is a bit-wise XOR of their binary-string representation,
producing another element in the field. Multiplication of two elements in that field is
defined using an irreducible polynomial (for AES, this polynomial is m(x) = x8 + x*
+ x3 + x + 1). In this Finite Field representation, the bit value of bit position k of a
byte represents the coefficient of a polynomial of order k, e.g., 1010_1101B (ADH)
is represented by the polynomial (x’ + x> + x3 + x? + 1). The byte value result of
multiplication of two elements is obtained by a carry-less multiplication of the two
corresponding polynomials, followed by reduction modulo the polynomial, where
the remainder is calculated using operations defined in the field. For example,
FF_MUL(57H, 83H) = C1H, because the carry-less polynomial multiplication of the
polynomials represented by 57H and 83H produces (x'2 + x11 + x% + x& + x8 + x°
+ x* + x3 + 1), and the remainder modulo m(x) is (x’ + x% + 1).

< RotWord(): performs a byte-wise cyclic permutation (rotate right in little-endian byte
order) on a 32-bit AES word.

The output word X'[j] of RotWord(X[j]) where X[j] represent the four bytes of
column j, S(i, j), in descending order X[j] = (S(3, j), S(2, j), S(1, j), S0, j)); X'[i]
=(S'@, 1,521,511, S(0,))) € (S, 1), S@B. 1), S(2, 1), SA. 1))

= ShiftRows(): A byte-oriented matrix transformation that processes the matrix repre-

sentation of a 16-byte AES state by cyclically shifting the last three rows of the state
by different offset to the left, see Table 12-12.

Table 12-12 The ShiftRows Transformation

Matrix Representation of Input State Output of ShiftRows
E | M A E | M
B F J N F J N B
C G K o K o] C G
D H L P P D H L

Intel® 64 and 1A-32 Architectures Software Developer's Manual Documentation Changes 14

[®
. Programming with SSE3, SSSE3, SSE4 and AESNI l n tel >

= SubBytes(): A byte-oriented transformation that processes the 128-bit AES state by
applying a non-linear substitution table (S-BOX) on each byte of the state.

The SubBytes() function defines the relationship between each byte of the result
state S’(i, j) as a function of input state byte S(i, j), by

S'(i, j) € S-Box (S(, j)[7:4]. s, H[3:0])

where S-BOX(S[7:4], S[3:0]) represents a look-up operation on a 16x16 table to
return a byte value, see Table 12-13.

Table 12-13 Look-up Table Associated with S-Box Transformation
S[3:0]

0|12 |3|4|5|6|7|8|]9|a|bjci|d e f
63 |7c |77 |7b |f2 |6b |6f |c5 |30 |01 |67 |2b [fe |d7 |ab |76
ca [82 |c9 |7d |fa |59 |47 |fO |ad |d4 [a2 |af [9c |ad4 |72 |cO
b7 |fd |93 |26 |36 |[3f [f7 |cc |34 |ab |e5 |[fl |71 |d8 |31 |15
04 [c7 |23 [c3 |18 [96 |05 |9a |07 |12 |80 |e2 |eb |27 |b2 |75
09 [83 |2c [1la |1b [6e |5a |a0 |52 |3b [d6 |b3 |29 |e3 |2f |84
53 |d1 |00 |ed |20 |fc |bl |[5b |6a |[cb |be |39 |4a |4c |58 |cf
do |ef |aa |[fb |43 |[4d |33 |85 |45 |f9 |02 |7f |50 |3c |9f |a8
51 |a3 |40 [8f |92 (9d |38 |f5 |bc |b6 |da |21 |10 |ff |f3 |d2
cd |Oc |13 |ec |5f |97 |44 |17 |c4 |a7 |7e |3d |64 |5d |19 |73
60 [81 |4f |dc |22 [2a |90 |88 |46 |ee [b8 |14 |de |5e |Ob |db
e0 [32 |3a [0a |49 (06 |24 |5c [c2 |d3 |ac |62 |91 |95 |ed |79
e7 |c8 |37 [6d |8d |d5 |4e |a9 |6c |56 |f4 |ea |65 |7a |ae |08
ba 78 |25 |2e |1c |a6 |[b4 |c6 |e8 |dd |74 |1f |4b |bd |8b |8a
70 [3e |b5 |66 |48 |03 |f6 |0e |61 |35 |57 |b9 (86 |cl |1d |9e
el |f8 |98 |11 |69 |d9 |8e |94 [9b |1le 87 |e9 |ce |55 |28 |df
f [8 |al |89 |0Od |bf [e6 |42 |68 |41 |99 |2d |Of |bO |54 |bb |16

S[7:4]

| N[O | B|[lW|N|FL,|O

o | o

o

o

e SubWord(): produces an output AES word (four bytes) from the four bytes of an
input word using a non-linear substitution table (S-BOX).

X[l = (S'3.). $'2.). S,). S0, J)) € (S-Box (S(3, j)), S-Box(S(2, j)). S-
Box(S(1, j)), S-Box(S(O, j)))

* InvMixColumns(): The inverse transformation of MixColumns().

The InvMixColumns() transformation defines the relationship between each byte of
the result state S’(i, j) as a function of input state bytes, S, j), by

S'(0, j) € FF_MUL(OeH, S(0, j)) XOR FF_MUL(ObH, S(1, j)) XOR FF_MUL(OdH,
S(2, j)) XOR FF_MUL(09H, S(3, j))

S'(1, j) € FF_MUL(09H, S(O, j)) XOR FF_MUL(OeH, S(1, j)) XOR FF_MUL(ObH,
S(2, j)) XOR FF_MUL(0dH, S(3, j))

S'(2, j) € FF_MUL(0dH, S(O, j)) XOR FF_MUL(09H, S(1, j)) XOR FF_MUL(OeH,
S(2, j)) XOR FF_MUL(ObH, S(3, j))

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 15

. Programming with SSE3, SSSE3, SSE4 and AESNI

S(2, j)) XOR FF_MUL(OeH, S(3, j)), where j = 0, 1, 2, 3.

intel)

S'(3, j) € FF_MUL(ObH, S(O, j)) XOR FF_MUL(OdH, S(1, j)) XOR FF_MUL(O9H,

« InvShiftRows(): The inverse transformation of InvShiftRows(). The InvShiftRows()
transforms the matrix representation of a 16-byte AES state by cyclically shifting the
last three rows of the state by different offset to the right, see Table 12-14.

Table 12-14 The InvShiftRows Transformation

Matrix Representation of Input State Output of ShiftRows

A E | M A E | M
B F J N N B F J
C G K e} K 0} C G
D H L P H L P D

= InvSubBytes(): The inverse transformation of SubBytes().

The InvSubBytes() transformation defines the relationship between each byte of
the result state S’(i, j) as a function of input state byte S(i, j), by

S'(i, j) € InvS-Box (S(i, j)[7:41, SGi,)[3:01)

where InvS-BOX(S[7:4], S[3:0]) represents a look-up operation on a 16x16 table to
return a byte value, see Table 12-15.

Table 12-15 Look-up Table Associated with InvS-Box Transformation

S[3:0]

7

8

S[7:4]

52

09

6a

d5

30

36

ab

38

bf

40

a3

9e

81

3

d7

fb

7c

e3

39

82

9b

2f

ff

87

34

8e

43

44

c4

de

e9

ch

54

b

94

32

ab

c2

23

3d

ee

4c

95

Ob

42

fa

c3

4e

08

2e

al

66

28

d9

24

b2

76

5b

a2

49

6d

8b

dl

25

72

8

6

64

86

68

98

16

d4

a4

5c

cC

5d

65

b6

92

6c

70

48

50

fd

ed

b9

da

5e

15

46

57

a7

8d

9d

84

90

ds

ab

00

8c

bc

a3

Oa

7

ed

58

05

b8

b3

45

06

do

2c

le

8f

ca

3f

of

02

cl

af

bd

03

01

13

8a

6b

3a

91

11

41

4f

67

dc

ea

97

2

cf

ce

fo

b4

€6

73

|| N[O | Dd[lW|IN|FL,|O

96

ac

74

22

e’

ad

35

85

e2

9

37

e8

1c

75

df

6e

47

fl

la

71

1d

29

c5

89

6f

b7

62

Oe

aa

18

be

1b

T | o

fc

56

3e

4b

c6

d2

79

20

9a

db

c0

fe

78

cd

ba

f4

o

1f

dd

a8

33

88

07

c7

31

bl

12

10

59

27

80

ec

5f

o

60

51

Tf

a9

19

b5

4a

od

2d

e5

Ta

of

93

c9

9c

ef

a0

e0

3b

4d

ae

2a

5

b0

c8

eb

bb

3c

83

53

99

61

17

2b

04

Te

ba

77

dé

26

el

69

14

63

55

21

Oc

7d

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

16

[®
. Programming with SSE3, SSSE3, SSE4 and AESNI l n tel >

12.13.3 PCLMULQDQ

The PCLMULQDQ instruction performs carry-less multiplication of two 64-bit data into a
128-bit result. Carry-less multiplication of two 128-bit data into a 256-bit result can use
PCLMULQDQ as building blocks.

Carry-less multiplication is a component of many cryptographic systems. It is an impor-
tant piece of implementing Galois Counter Mode (GCM) operation of block ciphers. GCM
operation can be used in conjunction with AES algorithms to add authentication capa-
bility. GCM usage models also include IPsec, storage standard, and security protocols
over fiber channel. Additionally, PCLMULQDQ can be used in calculations of hash func-
tions and CRC using arbitrary polynomials.

12.13.4 Checking for AESNI Support

Before an application attempts to use AESNI instructions or PCLMULQDQ, the application
should follow the steps illustrated in Section 11.6.2, “Checking for SSE/SSE2 Support.”
Next, use the additional step provided below:

Check that the processor supports AESNI (if CPUID.01H:ECX.AESNI[bit 25] = 1); Check
that the processor supports PCLMULQDQ (if CPUID.01H:ECX.PCLMULQDQ[bit 1] = 1)

3. Updates to Appendix A, Volume 1

Change bars show changes to Appendix A of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1: Basic Architecture.

Table A-2 EFLAGS Cross-Reference
Instruction OF [(SF |ZF |AF |PF |CF |TF IF DF |NT |RF

BT/BTS/BTR/BTC - - - - M

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 17

[®
Instruction Set Reference, A-M l n tel >

4. Updates to Chapter 3, Volume 2A

Change bars show changes to Chapter 3 of the Intel® 64 and 1A-32 Architectures Soft-
ware Developer’s Manual, Volume 2A: Instruction Set Reference, A-M.

CHAPTER 3
INSTRUCTION SET REFERENCE, A-M

This chapter describes the instruction set for the Intel 64 and 1A-32 architectures (A-M)
in 1A-32e, protected, Virtual-8086, and real modes of operation. The set includes
general-purpose, x87 FPU, MMX, SSE/SSE2/SSE3/SSSE3/SSE4, AESNI/PCLMULQDQ,
and system instructions. See also Chapter 4, “Instruction Set Reference, N-Z,” in the
Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 2B.

AESDEC—Perform One Round of an AES Decryption Flow

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode
66 OF 38 DE /r AESDEC xmm1, A Valid Valid Perform one round of an
xmm2/m128 AES decryption flow, using

the Equivalent Inverse
Cipher, operating on a 128-
bit data (state) from xmm1
with a 128-bit round key
from xmm2/m128.

Instruction Operand Encoding

Op/En Operand 1 Operand2 Operand3 Operand4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

This instruction performs a single round of the AES decryption flow using the Equivalent
Inverse Cipher, with the round key from the second source operand, operating on a 128-
bit data (state) from the first source operand, and store the result in the destination
operand.

Use the AESDEC instruction for all but the last decryption round. For the last decryption
round, use the AESDECCLAST instruction.

The first source operand and the destination operand are the same and must be an XMM

register. The second source operand can be an XMM register or a 128-bit memory loca-
tion.

Operation
AESDEC

STATE « SRCT1;
RoundKey « SRC2;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 18

[®
Instruction Set Reference, A-M l n tel >

STATE « InvShiftRows(STATE);
STATE <« InvSubBytes(STATE);
STATE « InvMixColumns(STATE);
DEST[127:0] < STATE XOR RoundKey;
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

AESDEC __m128i _mm_aesdec (__m128i, __m128i)

SIMD Floating-Point Exceptions

None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES,
FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary, regard-
less of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.AESNI[bit 25] = O.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary, regard-
less of segment.

If any part of the operand lies outside the effective address space
from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.AESNI[bit 25] = O.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 19

[®
Instruction Set Reference, A-M (l n tel >

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canon-
ical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regard-
less of segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.AESNI[bit 25] = O.
If the LOCK prefix is used.

AESDECLAST—Perform Last Round of an AES Decryption Flow

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode
66 OF 38 DF /r AESDECLAST A Valid Valid Perform the last round of an
xmm1, AES decryption flow, using
xmm2/m128 the Equivalent Inverse

Cipher, operatingon a 128-
bit data (state) from xmm1
with a 128-bit round key
from xmm2/m128.

Instruction Operand Encoding

Op/En Operand 1 Operand2 Operand3 Operand4
A ModRM:reqg (r, w) ModRM:r/m (r) NA NA
Description

This instruction performs the last round of the AES decryption flow using the Equivalent
Inverse Cipher, with the round key from the second source operand, operating on a 128-
bit data (state) from the first source operand, and store the result in the destination
operand.

The first source operand and the destination operand are the same and must be an XMM
register. The second source operand can be an XMM register or a 128-bit memory loca-
tion.

Operation

AESDECLAST

STATE « SRC1;

RoundKey « SRC2;

STATE <« InvShiftRows(STATE);
STATE <« InvSubBytes(STATE);
DEST[127:0] <~ STATE XOR RoundKey;
DEST[255:128] (Unmodified)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 20

[®
Instruction Set Reference, A-M l n tel >

Intel C/C++ Compiler Intrinsic Equivalent

AESDECLAST _m128i _mm_aesdeclast (__m128i, __m128i)

SIMD Floating-Point Exceptions

None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES,
FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary, regard-
less of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.0O1H:ECX.AESNI[bit 25] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary, regard-
less of segment.

If any part of the operand lies outside the effective address space
from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.AESNI[bit 25] = O.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canon-
ical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regard-
less of segment.

#PF(fault-code) For a page fault.

Intel® 64 and 1A-32 Architectures Software Developer's Manual Documentation Changes 21

[®
Instruction Set Reference, A-M l n tel >

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.0O1H:ECX.AESNI[bit 25] = 0.
If the LOCK prefix is used.

AESENC—Perform One Round of an AES Encryption Flow

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode
66 OF 38 DC/r AESENC xmmT1, A Valid Valid Perform one round of an
xmm2/m128 AES encryption flow, operat-

ing on a 128-bit data (state)
from xmm1 with a 128-bit
round key from

xmm2/m128.
Instruction Operand Encoding
Op/En Operand 1 Operand2 Operand3 Operand4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA

Description

This instruction performs a single round of an AES encryption flow using a round key
from the second source operand, operating on 128-bit data (state) from the first source
operand, and store the result in the destination operand.

Use the AESENC instruction for all but the last encryption rounds. For the last encryption
round, use the AESENCCLAST instruction.

The first source operand and the destination operand are the same and must be an XMM
register. The second source operand can be an XMM register or a 128-bit memory loca-
tion.

Operation

AESENC

STATE « SRC1;

RoundKey « SRCZ;

STATE « ShiftRows(STATE);

STATE « SubBytes(STATE);

STATE « MixColumns(STATE);
DEST[127:0] «- STATE XOR RoundKey;
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

AESENC _m128i _mm_aesenc (__m128i,__m128i)

Intel® 64 and 1A-32 Architectures Software Developer's Manual Documentation Changes 22

[®
Instruction Set Reference, A-M l n tel >

SIMD Floating-Point Exceptions

None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES,
FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary, regard-
less of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.AESNI[bit 25] = O.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary, regard-
less of segment.

If any part of the operand lies outside the effective address space
from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.AESNI[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canon-
ical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regard-
less of segment.

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.AESNI[bit 25] = 0.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 23

[®
Instruction Set Reference, A-M l n tel >

If the LOCK prefix is used.

AESENCLAST—Perform Last Round of an AES Encryption Flow

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode
66 OF 38 DD /r AESENCLAST A Valid Valid Perform the last round of an
xmm1, AES encryption flow, operat-
xmm2/m128 ing on a 128-bit data (state)

from xmm1 with a 128-bit
round key from

xmm2/m128.
Instruction Operand Encoding
Op/En Operand 1 Operand2 Operand3 Operand4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA

Description

This instruction performs the last round of an AES encryption flow using a round key
from the second source operand, operating on 128-bit data (state) from the first source
operand, and store the result in the destination operand.

The first source operand and the destination operand are the same and must be an XMM
register. The second source operand can be an XMM register or a 128-bit memory loca-
tion.

Operation

AESENCLAST

STATE « SRC1;

RoundKey « SRCZ;

STATE <« ShiftRows(STATE);

STATE <« SubBytes(STATE);
DEST[127:0] <« STATE XOR RoundKey;
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

AESENCLAST _m128i _mm_aesenclast (__m128i, __m128i)

SIMD Floating-Point Exceptions
None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES,
FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary, regard-
less of segment.

#SS(0) For an illegal address in the SS segment.

Intel® 64 and 1A-32 Architectures Software Developer's Manual Documentation Changes 24

[®
Instruction Set Reference, A-M l n tel >

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.0O1H:ECX.AESNI[bit 25] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary, regard-
less of segment.

If any part of the operand lies outside the effective address space
from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.AESNI[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canon-
ical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regard-
less of segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.AESNI[bit 25] = 0.
If the LOCK prefix is used.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 25

[®
Instruction Set Reference, A-M (l n tel >

AESIMC- Perform the AES InvMixColumn Transformation

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode
66 OF 38 DB /r AESIMC xmmT1, A Valid Valid Perform the InvMixColumn
xmm2/m128 transformation on a 128-bit

round key from
xmm2/m128 and store the
resultin xmm1.

Instruction Operand Encoding

Op/En Operand 1 Operand2 Operand3 Operand4
A ModRM:reg (w) ModRM:r/m (r) NA NA
Description

Perform the InvMixColumns transformation on the source operand and store the resultin
the destination operand. The destination operand is an XMM register. The source
operand can be an XMM register or a 128-bit memory location.

Note the AESIMC instruction should be applied to the expanded AES round keys (except
for the first and last round key) in order to prepare them for decryption using the “Equiv-
alent Inverse Cipher” (defined in FIPS 197).

Operation
DEST[127:0] « InvMixColumns(SRC);
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

AESIMC_m128i _mm_aesimc (__m128i)

SIMD Floating-Point Exceptions

None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES,
FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary, regard-
less of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.AESNI[bit 25] = O.
If the LOCK prefix is used.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 26

[®
Instruction Set Reference, A-M l n tel >

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary, regard-
less of segment.

If any part of the operand lies outside the effective address space
from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.AESNI[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canon-
ical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regard-
less of segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.0O1H:ECX.AESNI[bit 25] = O.
If the LOCK prefix is used.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

[®
Instruction Set Reference, A-M (l n tel >

AESKEYGENASSIST - AES Round Key Generation Assist

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode
66 OF 3ADF /r AESKEYGENAS- A Valid Valid Assist in AES round key gen-
ib SIST xmm1, eration using an 8 bits
xmm2/m128, Round Constant (RCON)
imm8 specified in the immediate

byte, operating on 128 bits
of data specified in
xmm2/m128 and stores the
resultin xmm1.

Instruction Operand Encoding

Op/En Operand 1 Operand2 Operand3 Operand4
A ModRM:reg (w) ModRM:r/m (r) imm8 NA
Description

Assist in expanding the AES cipher key, by computing steps towards generating a round
key for encryption, using 128-bit data specified in the source operand and an 8-bit round
constant specified as an immediate, store the result in the destination operand.

The destination operand is an XMM register. The source operand can be an XMM register
or a 128-bit memory location.

Operation

X3[31:0] «- SRC[127:96];

X2[31:0] «- SRC[95: 64];

X1[31:0] «- SRC[63: 32];

X0[31:0] «- SRC[31:0];

RCON[31:0] « ZeroExtend(Imm8[7:0]);

DEST[31:0] « SubWord(X1);

DEST[63:32] «— RotWord(SubWord(X1)) XOR RCON;
DEST[95:64] «— SubWord(X3);

DEST[127:96] < RotWord(SubWord(X3)) XOR RCON;
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

AESKEYGENASSIST _m128i _mm_aesimc (__m128i, const int)

SIMD Floating-Point Exceptions
None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES,
FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary, regard-
less of segment.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 28

[®
Instruction Set Reference, A-M l n tel >

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.AESNI[bit 25] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary, regard-
less of segment.

If any part of the operand lies outside the effective address space
from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.0O1H:ECX.AESNI[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canon-
ical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regard-
less of segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.0O1H:ECX.AESNI[bit 25] = O.
If the LOCK prefix is used.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 29

[®
Instruction Set Reference, A-M l n tel >

BT—Bit Test

Flags Affected

The CF flag contains the value of the selected bit. The ZF flag is unaffected. The OF, SF,
AF, and PF flags are undefined.

BTC—Bit Test and Complement

Flags Affected

The CF flag contains the value of the selected bit before it is complemented. The ZF flag
is unaffected. The OF, SF, AF, and PF flags are undefined.

BTR—BIt Test and Reset

Flags Affected

The CF flag contains the value of the selected bit before it is cleared. The ZF flag is unaf-
fected. The OF, SF, AF, and PF flags are undefined.

BTS—BIt Test and Set

Flags Affected

The CF flag contains the value of the selected bit before it is set. The ZF flag is unaf-
fected. The OF, SF, AF, and PF flags are undefined.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 30

[®
Instruction Set Reference, A-M l n tel >

CLTS—Clear Task-Switched Flag in CRO

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode
OF 06 CLTS A Valid Valid Clears TS flag in CRO.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A NA NA NA NA
Description

Clears the task-switched (TS) flag in the CRO register. This instruction is intended for use
in operating-system procedures. It is a privileged instruction that can only be executed
at a CPL of O. It is allowed to be executed in real-address mode to allow initialization for
protected mode.

The processor sets the TS flag every time a task switch occurs. The flag is used to
synchronize the saving of FPU context in multitasking applications. See the description of
the TS flag in the section titled “Control Registers” in Chapter 2 of the Intel® 64 and
1A-32 Architectures Software Developer’s Manual, Volume 3A, for more information
about this flag.

CLTS operation is the same in non-64-bit modes and 64-bit mode.

See Chapter 22, “VMX Non-Root Operation,” of the Intel® 64 and 1A-32 Architectures
Software Developer’s Manual, Volume 3B, for more information about the behavior of
this instruction in VMX non-root operation.

Operation

CRO.TS[bit 3] « O;

Flags Affected
The TS flag in CRO register is cleared.

Protected Mode Exceptions
#GP(0) If the current privilege level is not O.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) CLTS is not recognized in virtual-8086 mode.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 31

Instruction Set Reference, A-M

64-Bit Mode
#GP(0)
#UD

Exceptions

intel)

If the CPL is greater than O.
If the LOCK prefix is used.

Table 3-15. Feature Information Returned in the ECX Register

Bit # Mnemonic Description

0 SSE3 Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the
processor supports this technology.

1 PCLMULQDQ PCLMULQDAQ. A value of 1 indicates the processor supports the
PCLMULQDQ instruction

2 DTES64 64-bit DS Area. A value of 1 indicates the processor supports DS
area using 64-bit layout

3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor supports
this feature.

4 DS-CPL CPL Qualified Debug Store. A value of 1 indicates the processor
supports the extensions to the Debug Store feature to allow for
branch message storage qualified by CPL.

5 VMX Virtual Machine Extensions. A value of 1 indicates that the
processor supports this technology

6 SMX Safer Mode Extensions. A value of 1 indicates that the processor
supports this technology. See Chapter 6, “Safer Mode Extensions
Reference”.

7 EST Enhanced Intel SpeedStep® technology. A value of 1 indicates
that the processor supports this technology.

8 ™2 Thermal Monitor 2. A value of 1 indicates whether the processor
supports this technology.

9 SSSE3 A value of 1 indicates the presence of the Supplemental
Streaming SIMD Extensions 3 (SSSE3). A value of 0 indicates the
instruction extensions are not present in the processor

10 CNXT-ID L1 Context ID. A value of 1 indicates the L1 data cache mode can
be set to either adaptive mode or shared mode. A value of O
indicates this feature is not supported. See definition of the
IA32_MISC_ENABLE MSR Bit 24 (L1 Data Cache Context Mode)
for details.

12-11 Reserved Reserved

13 CMPXCHG16B CMPXCHG16B Available. A value of 1 indicates that the feature is
available. See the “CMPXCHG8B/CMPXCHG16B—Compare and
Exchange Bytes"” section in this chapter for a description.

14 XTPR Update xTPR Update Control. A value of 1 indicates that the processor

Control supports changing IA32_MISC_ENABLES[bit 23].

15 PDCM Perfmon and Debug Capability: A value of 1 indicates the
processor supports the performance and debug feature indication
MSR IA32_PERF_CAPABILITIES.

16 Reserved Reserved

17 PCID Process-context identifiers. A value of 1 indicates that the
processor supports PCIDs and that software may set CR4.PCIDE
to 1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 32

Instruction Set Reference, A-M

Bit # Mnemonic Description

18 DCA A value of 1 indicates the processor supports the ability to
prefetch data from a memory mapped device.

19 SSE4.1 A value of 1 indicates that the processor supports SSE4.1.

20 SSE4.2 A value of 1 indicates that the processor supports SSE4.2.

21 Xx2APIC A value of 1 indicates that the processor supports x2APIC
feature.

22 MOVBE A value of 1 indicates that the processor supports MOVBE
instruction.

23 POPCNT A value of 1 indicates that the processor supports the POPCNT
instruction.

24 Reserved Reserved

25 AESNI A value of 1 indicates that the processor supports the AESNI
instruction extensions.

26 XSAVE A value of 1 indicates that the processor supports the
XSAVE/XRSTOR processor extended states feature, the
XSETBV/XGETBYV instructions, and the
XFEATURE_ENABLED_MASK register (XCRO).

27 OSXSAVE A value of 1 indicates that the OS has enabled XSETBV/XGETBV
instructions to access the XFEATURE_ENABLED_MASK register
(XCRO), and support for processor extended state management
using XSAVE/XRSTOR.

28 AVX A value of 1 indicates the processor supports the AVX instruction
extensions.

30-29 Reserved Reserved

31 Not Used Always returns O

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

33

™1 ®
Instruction Set Reference, A-M l n tel >

CMOVcc—Conditional Move

Operation
temp « SRC

IF condition TRUE
THEN
DEST « temp;
Fl;
ELSE
IF (OperandSize == 32 and IA-32e mode active)
THEN
DEST[63:32] « O;
Fl;
Fl;

CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands

The CMPS, CMPSB, CMPSW, CMPSD, and CMPSQ instructions can be preceded by the
REP prefix for block comparisons. More often, however, these instructions will be used in
a LOOP construct that takes some action based on the setting of the status flags before
the next comparison is made. See “REP/REPE/REPZ /REPNE/REPNZ—Repeat String
Operation Prefix” in Chapter 4 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2B, for a description of the REP prefix.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 34

Instruction Set Reference, A-M

intel)

CPUID—CPU Identification

Table 3-12 Information Returned by CPUID Instruction

Initial EAX
Value

Information Provided about the Processor

Deterministic Cache Parameters Leaf

04H

EAX

EBX

ECX

NOTES:
Leaf 04H output depends on the initial value in ECX.

See also: “INPUT EAX = 4; Returns Deterministic Cache Parameters
for each level on page 3-214.

Bits 4-0: Cache Type Field
0 = Null - No more caches
1 = Data Cache
2 = Instruction Cache
3 = Unified Cache
4-31 = Reserved

Bits 7-5: Cache Level (starts at 1)
Bits 8: Self Initializing cache level (does not need SW initialization)
Bits 9: Fully Associative cache

Bits 13-10: Reserved

Bits 25-14; Maximum number of addressable IDs for logical processors
sharing this cache*, **

Bits 31-26: Maximum number of addressable IDs for processor cores in
the physical package*, ***, ****

Bits 11-00: L = System Coherency Line Size*
Bits 21-12; P = Physical Line partitions*
Bits 31-22: W = Ways of associativity*

Bits 31-00: S = Number of Sets*

EDX

Bit O: Write-Back Invalidate/Invalidate
0 = WBINVD/INVD from threads sharing this cache acts upon lower
level caches for threads sharing this cache.
1 = WBINVD/INVD is not guaranteed to act upon lower level caches
of non-originating threads sharing this cache.
Bit 1: Cache Inclusiveness
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.
Bit 2: Complex Cache Indexing
0 = Direct mapped cache.
1 = A complex function is used to index the cache, potentially using
all address bits.
Bits 31-03: Reserved = 0

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

35

[®
Instruction Set Reference, A-M l n tel >

FXRSTOR—Restore x87 FPU, MMX , XMM, and MXCSR State

Description

Reloads the x87 FPU, MMX technology, XMM, and MXCSR registers from the 512-byte
memory image specified in the source operand. This data should have been written to
memory previously using the FXSAVE instruction, and in the same format as required by
the operating modes. The first byte of the data should be located on a 16-byte boundary.
There are three distinct layouts of the FXSAVE state map: one for legacy and compati-
bility mode, a second format for 64-bit mode FXSAVE/FXRSTOR with REX.W=0, and the
third format is for 64-bit mode with FXSAVE64/FXRSTORG64. Table 3-48 shows the layout
of the legacy/compatibility mode state information in memory and describes the fields in
the memory image for the FXRSTOR and FXSAVE instructions. Table Table 3-51 shows
the layout of the 64-bit mode state information when REX.W is set (FXSAVE64/
FXRSTORG64). Table Table 3-52 shows the layout of the 64-bit mode state information
when REX.W is clear (FXSAVE/FXRSTOR).

The state image referenced with an FXRSTOR instruction must have been saved using an
FXSAVE instruction or be in the same format as required by Table 3-48, Table Table 3-51,
or Table Table 3-52. Referencing a state image saved with an FSAVE, FNSAVE instruction
or incompatible field layout will result in an incorrect state restoration.

The FXRSTOR instruction does not flush pending x87 FPU exceptions. To check and raise
exceptions when loading x87 FPU state information with the FXRSTOR instruction, use
an FWAIT instruction after the FXRSTOR instruction.

If the OSFXSR bit in control register CR4 is not set, the FXRSTOR instruction may not
restore the states of the XMM and MXCSR registers. This behavior is implementation
dependent.

If the MXCSR state contains an unmasked exception with a corresponding status flag
also set, loading the register with the FXRSTOR instruction will not result in a SIMD
floating-point error condition being generated. Only the next occurrence of this
unmasked exception will result in the exception being generated.

Bits 16 through 32 of the MXCSR register are defined as reserved and should be set to 0.
Attempting to write a 1 in any of these bits from the saved state image will result in a
general protection exception (#GP) being generated.

Bytes 464:511 of an FXSAVE image are available for software use. FXRSTOR ignores the
content of bytes 464:511 in an FXSAVE state image.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 36

Instruction Set Reference, A-M

Table 3-48 Non-64-bit-Mode Layout of FXSAVE and FXRSTOR
Memory Region

intel)

15 1413 1211 109 8|7 65| 4 (3 2|1 0
Rsrvd CS FPU IP FOP Rs | FTW FSW FCW 0
rvd
MXCSR_MASK MXCSR Rsrvd DS FPU DP 16
Reserved STO/MMO 32
Reserved ST1/MM1 48
Reserved ST2/MM2 64
Reserved ST3/MM3 80
Reserved ST4/MM4 96
Reserved ST5/MM5 112
Reserved ST6/MM6 128
Reserved ST7/MM7 144
XMMO 160
XMM1 176
XMM2 192
XMM3 208
XMM4 224
XMM5 240
XMM6 256
XMM7 272
Reserved 288
Reserved 304
Reserved 320
Reserved 336
Reserved 352
Reserved 368
Reserved 384
Reserved 400
Reserved 416
Reserved 432
Reserved 448
Available 464
Available 480
Available 496

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

37

Instruction Set Reference, A-M

intel)

FXSAVE—Save x87 FPU, MMX Technology, and SSE State

Table 3-49 Field Definitions

Field

Definition

FCW

x87 FPU Control Word (16 bits). See Figure 8-6 in the Intel® 64 and IA-32
Architectures Software Developer's Manual, Volume 1, for the layout of
the x87 FPU control word.

FSW

x87 FPU Status Word (16 bits). See Figure 8-4 in the Intel® 64 and IA-32
Architectures Software Developer's Manual, Volume 1, for the layout of
the x87 FPU status word.

Abridged FTW

x87 FPU Tag Word (8 bits). The tag information saved here is abridged, as
described in the following paragraphs.

FOP

x87 FPU Opcode (16 bits). The lower 11 bits of this field contain the
opcode, upper 5 bits are reserved. See Figure 8-8 in the Intel® 64 and IA-32
Architectures Software Developer's Manual, Volume 1, for the layout of
the x87 FPU opcode field.

FPUIP

x87 FPU Instruction Pointer Offset (32 bits). The contents of this field
differ depending on the current addressing mode (32-bit or 16-bit) of the
processor when the FXSAVE instruction was executed:

32-bit mode — 32-bit IP offset.
16-bit mode — low 16 bits are IP offset; high 16 bits are reserved.

See “x87 FPU Instruction and Operand (Data) Pointers” in Chapter 8 of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
for a description of the x87 FPU instruction pointer.

cS

x87 FPU Instruction Pointer Selector (16 bits).

FPU DP

x87 FPU Instruction Operand (Data) Pointer Offset (32 bits). The contents
of this field differ depending on the current addressing mode (32-bit or 16-
bit) of the processor when the FXSAVE instruction was executed:

32-bit mode — 32-bit IP offset.
16-bit mode — low 16 bits are IP offset; high 16 bits are reserved.

See “x87 FPU Instruction and Operand (Data) Pointers” in Chapter 8 of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
for a description of the x87 FPU operand pointer.

DS

x87 FPU Instruction Operand (Data) Pointer Selector (16 bits).

MXCSR

MXCSR Register State (32 bits). See Figure 10-3 in the Intel® 64 and IA-32
Architectures Software Developer's Manual, Volume 1, for the layout of
the MXCSR register. If the OSFXSR bit in control register CR4 is not set, the
FXSAVE instruction may not save this register. This behavior is
implementation dependent.

MXCSR_
MASK

MXCSR_MASK (32 bits). This mask can be used to adjust values written to
the MXCSR register, ensuring that reserved bits are set to 0. Set the mask
bits and flags in MXCSR to the mode of operation desired for SSE and SSE2
SIMD floating-point instructions. See “Guidelines for Writing to the MXCSR
Register” in Chapter 11 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for instructions for how to determine and
use the MXCSR_MASK value.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

38

Instruction Set Reference, A-M

Field

Definition

STO/MMO through
ST7/MM7

x87 FPU or MMX technology registers. These 80-bit fields contain the x87
FPU data registers or the MMX technology registers, depending on the
state of the processor prior to the execution of the FXSAVE instruction. If
the processor had been executing x87 FPU instruction prior to the FXSAVE
instruction, the x87 FPU data registers are saved; if it had been executing
MMX instructions (or SSE or SSE2 instructions that operated on the MMX
technology registers), the MMX technology registers are saved. When the
MMX technology registers are saved, the high 16 bits of the field are
reserved.

XMMO through
XMM7

XMM registers (128 bits per field). If the OSFXSR bit in control register CR4
is not set, the FXSAVE instruction may not save these registers. This
behavior is implementation dependent.

IA-32e Mode Operation

In compatibility sub-mode of 1A-32e mode, legacy SSE registers, XMMO through XMM7,
are saved according to the legacy FXSAVE map. In 64-bit mode, all of the SSE
registers, XMMO through XMM15, are saved. Additionally, there are two different
layouts of the FXSAVE map in 64-bit mode, corresponding to FXSAVE64 (which requires
REX.W=1) and FXSAVE (REX.W=0). In the FXSAVE64 map (Table Table 3-51), the FPU
IP and FPU DP pointers are 64-bit wide. In the FXSAVE map for 64-bit mode
(Table Table 3-52), the FPU IP and FPU DP pointers are 32-bits.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

39

Instruction Set Reference, A-M

Table 3-51 Layout of the 64-bit-mode FXSAVE64 Map (requires REX.W = 1)

15 1413 1211 10/9 8|7 6| 5 4 |3 2|1 o0

FPU IP FOP seRr\% . FTW FSW FCW 0
MXCSR_MASK ‘ MXCSR FPU DP 16
Reserved STO/MMO 32
Reserved ST1/MM1 48
Reserved ST2/MM2 64
Reserved ST3/MM3 80
Reserved ST4/MM4 96
Reserved ST5/MM5 112
Reserved ST6/MM6 128
Reserved ST7/MM7 144
XMMO 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

XMM8 288

XMM9 304

XMM10 320

XMM11 336

XMM12 352

XMM13 368

XMM14 384

XMM15 400

Reserved 416

Reserved 432

Reserved 448

Available 464

Available 480

Available 496

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

40

Instruction Set Reference, A-M

Table 3-52 Layout of the 64-bit-mode FXSAVE Map (REX.W = 0)

15 14 |13 12 | N 10|9876 5 4 3 2 1 0
Reserved CS FPU IP FOP seFﬁl\e/;ed FTW FSW FCW 0
MXCSR_MASK MXCSR seRrSt-ad FPU DP 16
Reserved STO/MMO 32
Reserved ST1/MM1 48
Reserved ST2/MM2 64
Reserved ST3/MM3 80
Reserved ST4/MM4 96
Reserved ST5/MM5 112
Reserved ST6/MM6 128
Reserved ST7/MM7 144
XMMO 160
XMM1 176
XMM2 192
XMM3 208
XMM4 224
XMM5 240
XMM6 256
XMM7 272
XMM8 288
XMM9 304
XMM10 320
XMM11 336
XMM12 352
XMM13 368
XMM14 384
XMM15 400
Reserved 416
Reserved 432
Reserved 448
Available 464
Available 480
Available 496

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

41

Instruction Set Reference, A-M

INS/INSB/INSW/INSD—Input from Port to String

The INS, INSB, INSW, and INSD instructions can be preceded by the REP prefix for block
input of ECX bytes, words, or doublewords. See “REP/REPE/REPZ /REPNE/REPNZ—

Repeat String Operation Prefix” in Chapter 4 of the Intel® 64 and 1A-32 Architectures

Software Developer’s Manual, Volume 2B, for a description of the REP prefix.

JMP—jump

Opcode

EB cb

€9 cw

€9 cd

FF /4

FF /4

FF /4

€A cd
EA cp
FF /5

FF /5

REX.W + FF /5

Instruction

JMP rel8

JMP rel16

IMP rel32

JMP r/m16

JMP r/m32

IMP r/m64

IMP ptr16:16
IMP ptr16:32
JMP m16:16
IMP m16:32

JMP m16:64

Op/ 64-Bit
En Mode
A Valid
A N.S.
A Valid
B N.S.

B N.S.

B Valid
A Inv.

A Inv.

A Valid
A Valid
A Valid

Compat/
Leg Mode

Valid

Valid

Valid

Valid

Valid

N.E.

Valid
Valid
Valid
Valid

N.E.

Description

Jump short, RIP = RIP + 8-bit
displacement sign extended
to 64-bits

Jump near, relative,
displacement relative to
next instruction. Not
supported in 64-bit mode.

Jump near, relative, RIP =
RIP + 32-bit displacement
sign extended to 64-bits

Jump near, absolute indirect,
address = zero-extended
r/m16. Not supported in 64-
bit mode.

Jump near, absolute indirect,
address given in r/m32. Not
supported in 64-bit mode.

Jump near, absolute indirect,
RIP = 64-Bit offset from
register or memory

Jump far, absolute, address
given in operand

Jump far, absolute, address
given in operand

Jump far, absolute indirect,
address givenin m16:16

Jump far, absolute indirect,
address given in m16:32.

Jump far, absolute indirect,
address given in m16:64.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

42

[®
Instruction Set Reference, A-M l n tel >

LODS/LODSB/LODSW/LODSD/LODSQ—Load String

The LODS, LODSB, LODSW, and LODSD instructions can be preceded by the REP prefix
for block loads of ECX bytes, words, or doublewords. More often, however, these instruc-
tions are used within a LOOP construct because further processing of the data moved
into the register is usually necessary before the next transfer can be made. See “REP/
REPE/REPZ /REPNE/REPNZ—Repeat String Operation Prefix” in Chapter 4 of the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 2B, for a description of
the REP prefix.

MASKMOVQ—Store Selected Bytes of Quadword

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OF F7 /It MASKMOVQ mm1, A Valid Valid Selectively write bytes from
mm2 mm1 to memory location

using the byte mask in mmZ2.
The default memory
location is specified by

DS:EDI.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r) ModRM:r/m (r) NA NA

Description

Stores selected bytes from the source operand (first operand) into a 64-bit memory
location. The mask operand (second operand) selects which bytes from the source
operand are written to memory. The source and mask operands are MMX technology
registers. The location of the first byte of the memory location is specified by DI/EDI and
DS registers. (The size of the store address depends on the address-size attribute.)

The most significant bit in each byte of the mask operand determines whether the corre-
sponding byte in the source operand is written to the corresponding byte location in
memory: 0 indicates no write and 1 indicates write.

The MASKMOVQ instruction generates a non-temporal hint to the processor to minimize
cache pollution. The non-temporal hint is implemented by using a write combining (WC)
memory type protocol (see “Caching of Temporal vs. Non-Temporal Data” in Chapter 10,
of the Intel® 64 and IA-32 Architectures Software Developer’'s Manual, Volume 1).
Because the WC protocol uses a weakly-ordered memory consistency model, a fencing
operation implemented with the SFENCE or MFENCE instruction should be used in
conjunction with MASKMOVQ instructions if multiple processors might use different
memory types to read/write the destination memory locations.

This instruction causes a transition from x87 FPU to MMX technology state (that is, the
x87 FPU top-of-stack pointer is set to O and the x87 FPU tag word is set to all Os [valid]).

The behavior of the MASKMOVQ instruction with a mask of all Os is as follows:
< No data will be written to memory.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 43

[®
Instruction Set Reference, A-M l n tel >

= Transition from x87 FPU to MMX technology state will occur.

= Exceptions associated with addressing memory and page faults may still be signaled
(implementation dependent).

= Signaling of breakpoints (code or data) is not guaranteed (implementation
dependent).

- If the destination memory region is mapped as UC or WP, enforcement of associated
semantics for these memory types is not guaranteed (that is, is reserved) and is
implementation-specific.

The MASKMOVQ instruction can be used to improve performance for algorithms that
need to merge data on a byte-by-byte basis. It should not cause a read for ownership;
doing so generates unnecessary bandwidth since data is to be written directly using the
byte-mask without allocating old data prior to the store.

In 64-bit mode, the memory address is specified by DS:RDI.

Operation

IF (MASK[7]=1)
THEN DEST[DI/EDI] <« SRC[7:0] ELSE (* Memory location unchanged *); FI;
IF (MASK[15] = 1)
THEN DESTI[DI/EDI +1] «<— SRC[15:8] ELSE (* Memory location unchanged *); Fl;
(* Repeat operation for 3rd through 6th bytes in source operand *)
IF (MASK[63]=1)
THEN DEST[DI/EDI +15] «— SRC[63:56] ELSE (* Memory location unchanged *); Fl;

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_maskmove_si64(__m64d, __m64n, char * p)

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES,
FS or GS segments (even if mask is all 0s).

If the destination operand is in a nonwritable segment.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) For an illegal address in the SS segment (even if mask is all 0s).
#PF(fault-code) For a page fault (implementation specific).

#NM If CRO.TS[bit 3] = 1.

H#MF If there is a pending FPU exception.

#UD If CRO.EM[bit 2] = 1.

If CPUID.0O1H:EDX.SSE[bit 25] = 0.
If Mod field of the ModR/M byte not 11B.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory refer-
ence is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP If any part of the operand lies outside the effective address space
from O to FFFFH. (even if mask is all 0s).
#NM If CRO.TS[bit 3] = 1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 44

[®
Instruction Set Reference, A-M l n tel >

H#MF If there is a pending FPU exception.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault (implementation specific).

#AC(0) If alignment checking is enabled and an unaligned memory refer-
ence is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-canon-
ical form.

#PF(fault-code) For a page fault (implementation specific).

#NM If CRO.TS[bit 3] = 1.

H#MF If there is a pending FPU exception.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE[bit 25] = 0.

If Mod field of the ModR/M byte not 11B.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory refer-
ence is made while the current privilege level is 3.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 45

[®
Instruction Set Reference, A-M l n tel >

MOV—Move to/from Control Registers

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OF 20/r MOV r32, CRO- A N.E. Valid Move control register to r32
CR7
OF 20/r MOV r64, CRO- A Valid N.E. Move extended control
CR7 register to r64.
REXR+0F20 MOV r64, CR8 A Valid N.E. Move extended CR8 to
/0 r64.!
OF 22 /r MOV CRO-CR7, A N.E. Valid Move r32 to control register
r32
OF22/r MOV CRO-CR7, A Valid N.E. Move r64 to extended
r64 control register.
REXR+0F 22 MOV CR8, r64 A Valid N.E. Move r64 to extended
/0 cre!
NOTE:

1. MOV CR* instructions, except for MOV CR8, are serializing instructions. MOV CR8 is not
architecturally defined as a serializing instruction. For more information, see Chapter 8 in Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) ModRM:r/m (r) NA NA
Description

Moves the contents of a control register (CRO, CR2, CR3, CR4, or CR8) to a general-
purpose register or the contents of a general purpose register to a control register. The
operand size for these instructions is always 32 bits in non-64-bit modes, regardless of
the operand-size attribute. (See “Control Registers” in Chapter 2 of the Intel® 64 and
1A-32 Architectures Software Developer’s Manual, Volume 3A, for a detailed description
of the flags and fields in the control registers.) This instruction can be executed only
when the current privilege level is O.

At the opcode level, the reg field within the ModR/M byte specifies which of the control
registers is loaded or read. The 2 bits in the mod field are ignored. The r/m field specifies
the general-purpose register loaded or read. Attempts to reference CR1, CR5, CR6, CR7,
and CR9—CR15 result in undefined opcode (#UD) exceptions.

When loading control registers, programs should not attempt to change the reserved
bits; that is, always set reserved bits to the value previously read. An attempt to change
CRA4's reserved bits will cause a general protection fault. Reserved bits in CRO and CR3
remain clear after any load of those registers; attempts to set them have no impact. On
Pentium 4, Intel Xeon and P6 family processors, CRO.ET remains set after any load of
CRO; attempts to clear this bit have no impact.

In certain cases, these instructions have the side effect of invalidating entries in the TLBs
and the paging-structure caches. See Section 4.10.4.1, “Operations that Invalidate TLBs
and Paging-Structure Caches,” in the Intel® 64 and 1A-32 Architectures Software Devel-
oper’s Manual, Volume 3A for details.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 46

[®
Instruction Set Reference, A-M l n tel >

The following side effects are implementation-specific for the Pentium 4, Intel Xeon, and
P6 processor family: when modifying PE or PG in register CRO, or PSE or PAE in register
CR4, all TLB entries are flushed, including global entries. Software should not depend on
this functionality in all Intel 64 or 1A-32 processors.

In 64-bit mode, the instruction’s default operation size is 64 bits. The REX.R prefix must
be used to access CR8. Use of REX.B permits access to additional registers (R8-R15).
Use of the REX.W prefix or 66H prefix is ignored. Use of the REX.R prefix to specify a
register other than CR8 causes an invalid-opcode exception. See the summary chart at
the beginning of this section for encoding data and limits.

If CR4.PCIDE = 1, bit 63 of the source operand to MOV to CR3 determines whether the
instruction invalidates entries in the TLBs and the paging-structure caches (see Section
4.10.4.1, “Operations that Invalidate TLBs and Paging-Structure Caches,” in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). The instruction

does not modify bit 63 of CR3, which is reserved and always 0.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 22 of the
Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3B, for more
information about the behavior of this instruction in VMX non-root operation.

Operation

DEST « SRC,

Flags Affected
The OF, SF, ZF, AF, PF, and CF flags are undefined.

Protected Mode Exceptions
#GP(0) If the current privilege level is not O.

If an attempt is made to write invalid bit combinations in CRO (such
as setting the PG flag to 1 when the PE flag is set to O, or setting the
CD flag to 0 when the NW flag is set to 1).

If an attempt is made to write a 1 to any reserved bit in CR4.
If an attempt is made to write 1 to CR4.PCIDE.

If any of the reserved bits are set in the page-directory pointers
table (PDPT) and the loading of a control register causes the PDPT
to be loaded into the processor.

#UD If the LOCK prefix is used.
If an attempt is made to access CR1, CR5, CR6, or CR7.

Real-Address Mode Exceptions
#GP If an attempt is made to write a 1 to any reserved bit in CR4.
If an attempt is made to write 1 to CR4.PCIDE.

If an attempt is made to write invalid bit combinations in CRO (such
as setting the PG flag to 1 when the PE flag is set to 0).

#UD If the LOCK prefix is used.
If an attempt is made to access CR1, CR5, CR6, or CR7.

Virtual-8086 Mode Exceptions
#GP(0) These instructions cannot be executed in virtual-8086 mode.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 47

Instruction Set Reference, A-M

intel)

Compatibility Mode Exceptions

#GP(0)

#UD

If the current privilege level is not O.

If an attempt is made to write invalid bit combinations in CRO (such
as setting the PG flag to 1 when the PE flag is set to O, or setting the
CD flag to 0 when the NW flag is set to 1).

If an attempt is made to change CR4.PCIDE from O to 1 while
CR3[11:0] = O00H.

If an attempt is made to clear CRO.PG[bit 31] while CR4.PCIDE = 1.
If an attempt is made to write a 1 to any reserved bit in CR3.

If an attempt is made to leave 1A-32e mode by clearing CR4.PAE[bit
5].

If the LOCK prefix is used.

If an attempt is made to access CR1, CR5, CR6, or CR7.

64-Bit Mode Exceptions

#GP(0)

#UD

If the current privilege level is not 0.

If an attempt is made to write invalid bit combinations in CRO (such
as setting the PG flag to 1 when the PE flag is set to O, or setting the
CD flag to 0 when the NW flag is set to 1).

If an attempt is made to change CR4.PCIDE from O to 1 while
CR3[11:0] = O00H.

If an attempt is made to clear CRO.PG[bit 31].

If an attempt is made to write a 1 to any reserved bit in CR4.

If an attempt is made to write a 1 to any reserved bit in CR8.

If an attempt is made to write a 1 to any reserved bit in CR3.

If an attempt is made to leave 1A-32e mode by clearing CR4.PAE[bit
5].

If the LOCK prefix is used.

If an attempt is made to access CR1, CR5, CR6, or CR7.

If the REX.R prefix is used to specify a register other than CR8.

MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from String to String

The MOVS, MOVSB, MOVSW, and MOVSD instructions can be preceded by the REP prefix
(see “REP/REPE/REPZ /REPNE/REPNZ—Repeat String Operation Prefix” in Chapter 4 of
the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 2B, for a

description of the REP prefix) for block moves of ECX bytes, words, or doublewords.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 48

[®
Instruction Set Reference, A-M l n tel >

MWAIT—Monitor Wait

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OF 01 C9 MWAIT A Valid Valid A hint that allow the

processor to stop
instruction execution and
enter an implementation-
dependent optimized state
until occurrence of a class of

events.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A NA NA NA NA

Description

MWAIT instruction provides hints to allow the processor to enter an implementation-
dependent optimized state. There are two principal targeted usages: address-range
monitor and advanced power management. Both usages of MWAIT require the use of the
MONITOR instruction.

A CPUID feature flag (ECX bit 3; CPUID executed EAX = 1) indicates the availability of
MONITOR and MWAIT in the processor. When set, MWAIT may be executed only at priv-
ilege level O (use at any other privilege level results in an invalid-opcode exception). The
operating system or system BIOS may disable this instruction by using the
1A32_MISC_ENABLES MSR; disabling MWAIT clears the CPUID feature flag and causes
execution to generate an illegal opcode exception.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

MWAIT for Address Range Monitoring

For ad