
Document Number: 252046-028

Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Documentation Changes

June 2010

Notice: The Intel® 64 and IA-32 architectures may contain design defects or errors known as errata
that may cause the product to deviate from published specifications. Current characterized errata are
documented in the specification updates.

2 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Legal Lines and DisclaimersINFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,

BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS

PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER,

AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING

LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY

PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or

life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device

drivers and applications enabled for Intel® 64 architecture. Performance will vary depending on your hardware and software

configurations. Consult with your system vendor for more information.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel

reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future

changes to them.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

I2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I2C bus/protocol and was developed

by Intel. Implementations of the I2C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and

North American Philips Corporation.

Intel, Pentium, Intel Core, Intel Xeon, Intel 64, Intel NetBurst, and the Intel logo are trademarks of Intel Corporation in the U.S.
and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2002–2010, Intel Corporation. All rights reserved.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 3

Contents

Revision History . 4

Preface . 7

Summary Tables of Changes . 8

Documentation Changes. 9

Revision History

4 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Revision History

Revision Description Date

-001 • Initial release November 2002

-002
• Added 1-10 Documentation Changes.
• Removed old Documentation Changes items that already have been

incorporated in the published Software Developer’s manual
December 2002

-003

• Added 9 -17 Documentation Changes.
• Removed Documentation Change #6 - References to bits Gen and Len

Deleted.
• Removed Documentation Change #4 - VIF Information Added to CLI

Discussion

February 2003

-004
• Removed Documentation changes 1-17.
• Added Documentation changes 1-24. June 2003

-005
• Removed Documentation Changes 1-24.
• Added Documentation Changes 1-15.

September 2003

-006 • Added Documentation Changes 16- 34. November 2003

-007
• Updated Documentation changes 14, 16, 17, and 28.
• Added Documentation Changes 35-45.

January 2004

-008
• Removed Documentation Changes 1-45.
• Added Documentation Changes 1-5.

March 2004

-009 • Added Documentation Changes 7-27. May 2004

-010
• Removed Documentation Changes 1-27.
• Added Documentation Changes 1.

August 2004

-011 • Added Documentation Changes 2-28. November 2004

-012
• Removed Documentation Changes 1-28.
• Added Documentation Changes 1-16.

March 2005

-013
• Updated title.
• There are no Documentation Changes for this revision of the

document.
July 2005

-014 • Added Documentation Changes 1-21. September 2005

-015
• Removed Documentation Changes 1-21.
• Added Documentation Changes 1-20.

March 9, 2006

-016 • Added Documentation changes 21-23. March 27, 2006

-017
• Removed Documentation Changes 1-23.
• Added Documentation Changes 1-36.

September 2006

-018 • Added Documentation Changes 37-42. October 2006

-019
• Removed Documentation Changes 1-42.
• Added Documentation Changes 1-19.

March 2007

-020 • Added Documentation Changes 20-27. May 2007

-021
• Removed Documentation Changes 1-27.
• Added Documentation Changes 1-6

November 2007

-022
• Removed Documentation Changes 1-6
• Added Documentation Changes 1-6

August 2008

-023
• Removed Documentation Changes 1-6
• Added Documentation Changes 1-21

March 2009

Revision History

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 5

§

-024
• Removed Documentation Changes 1-21
• Added Documentation Changes 1-16

June 2009

-025
• Removed Documentation Changes 1-16
• Added Documentation Changes 1-18

September 2009

-026
• Removed Documentation Changes 1-18
• Added Documentation Changes 1-15

December 2009

-027
• Removed Documentation Changes 1-15
• Added Documentation Changes 1-24

March 2010

-028
• Removed Documentation Changes 1-24
• Added Documentation Changes 1-29

June 2010

Revision Description Date

Revision History

6 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 7

Preface

Preface

This document is an update to the specifications contained in the Affected Documents
table below. This document is a compilation of device and documentation errata,
specification clarifications and changes. It is intended for hardware system
manufacturers and software developers of applications, operating systems, or tools.

Affected Documents

Nomenclature

Documentation Changes include typos, errors, or omissions from the current
published specifications. These will be incorporated in any new release of the
specification.

Document Title
Document

Number/Location

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
1: Basic Architecture

253665

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2A: Instruction Set Reference, A-M

253666

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2B: Instruction Set Reference, N-Z

253667

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3A: System Programming Guide, Part 1

253668

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3B: System Programming Guide, Part 2

253669

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 8

Summary Tables of Changes

Summary Tables of Changes

The following table indicates documentation changes which apply to the Intel® 64 and
IA-32 architectures. This table uses the following notations:

Codes Used in Summary Tables

Change bar to left of table row indicates this erratum is either new or modified from the
previous version of the document.

Documentation Changes (Sheet 1 of 2)
No. DOCUMENTATION CHANGES

1 Updates to Chapter 7, Volume 1

2 Updates to Chapter 9, Volume 1

3 Updates to Chapter 11, Volume 1

4 Updates to Chapter 12, Volume 1

5 Updates to Chapter 13, Volume 1

6 Updates to Appendix D, Volume 1

7 Updates to Chapter 2, Volume 2A

8 Updates to Chapter 3, Volume 2A

9 Updates to Chapter 4, Volume 2B

10 Updates to Chapter 5, Volume 2B

11 Updates to Chapter 6, Volume 2B

12 Updates to Appendix A, Volume 2B

13 Updates to Chapter 3, Volume 3A

14 Updates to Chapter 6, Volume 3A

15 Updates to Chapter 8, Volume 3A

16 Updates to Chapter 10, Volume 3A

17 Updates to Chapter 14, Volume 3A

18 Updates to Chapter 16, Volume 3A

19 Updates to Chapter 20, Volume 3B

20 Updates to Chapter 22, Volume 3B

21 Updates to Chapter 23, Volume 3B

22 Updates to Chapter 24, Volume 3B

23 Updates to Chapter 25, Volume 3B

24 Updates to Chapter 26, Volume 3B

25 Updates to Chapter 29, Volume 3B

26 Updates to Chapter 30, Volume 3B

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

Summary Tables of Changes

27 Updates to Appendix B, Volume 3B

28 Updates to Appendix E, Volume 3B

29 Updates to Appendix H, Volume 3B

Documentation Changes (Sheet 2 of 2)
No. DOCUMENTATION CHANGES

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 10

Documentation Changes

Documentation Changes

1. Updates to Chapter 7, Volume 1

Change bars show changes to Chapter 7 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1: Basic Architecture.

--

...

7.3.8.2 Conditional Transfer Instructions
The conditional transfer instructions execute jumps or loops that transfer program
control to another instruction in the instruction stream if specified conditions are met.
The conditions for control transfer are specified with a set of condition codes that define
various states of the status flags (CF, ZF, OF, PF, and SF) in the EFLAGS register.

...

Jump if zero instructions — The JECXZ (jump if ECX zero) instruction jumps to the
location specified in the destination operand if the ECX register contains the value zero.
This instruction can be used in combination with a loop instruction (LOOP, LOOPE,
LOOPZ, LOOPNE, or LOOPNZ) to test the ECX register prior to beginning a loop. As
described in “Loop instructions on page 7-24, the loop instructions decrement the
contents of the ECX register before testing for zero. If the value in the ECX register is
zero initially, it will be decremented to FFFFFFFFH on the first loop instruction, causing
the loop to be executed 232 times. To prevent this problem, a JECXZ instruction can be
inserted at the beginning of the code block for the loop, causing a jump out the loop if
the EAX register count is initially zero. When used with repeated string scan and
compare instructions, the JECXZ instruction can determine whether the loop terminated
because the count reached zero or because the scan or compare conditions were satis-
fied.

...

7.3.14.2 EFLAGS Transfer Instructions
The EFLAGS transfer instructions allow groups of flags in the EFLAGS register to be
copied to a register or memory or be loaded from a register or memory.

The LAHF (load AH from flags) and SAHF (store AH into flags) instructions operate on
five of the EFLAGS status flags (SF, ZF, AF, PF, and CF). The LAHF instruction copies the
status flags to bits 7, 6, 4, 2, and 0 of the AH register, respectively. The contents of the
remaining bits in the register (bits 5, 3, and 1) are unaffected, and the contents of the
EFLAGS register remain unchanged. The SAHF instruction copies bits 7, 6, 4, 2, and 0
from the AH register into the SF, ZF, AF, PF, and CF flags, respectively in the EFLAGS
register.

The PUSHF (push flags), PUSHFD (push flags double), POPF (pop flags), and POPFD (pop
flags double) instructions copy the flags in the EFLAGS register to and from the stack.
The PUSHF instruction pushes the lower word of the EFLAGS register onto the stack (see
Figure 7-11). The PUSHFD instruction pushes the entire EFLAGS register onto the stack
(with the RF and VM flags read as clear).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 11

Documentation Changes

2. Updates to Chapter 9, Volume 1

Change bars show changes to Chapter 9 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1: Basic Architecture.

--

9.4 MMX INSTRUCTIONS
The MMX instruction set consists of 47 instructions, grouped into the following catego-
ries:

• Data transfer

• Arithmetic

• Comparison

• Conversion

• Unpacking

• Logical

• Shift

• Empty MMX state instruction (EMMS)

Table 9-2 gives a summary of the instructions in the MMX instruction set. The following
sections give a brief overview of the instructions within each group.

NOTES
The MMX instructions described in this chapter are those instructions
that are available in an IA-32 processor when
CPUID.01H:EDX.MMX[bit 23] = 1.

Section 10.4.4, “SSE 64-Bit SIMD Integer Instructions,” and Section
11.4.2, “SSE2 64-Bit and 128-Bit SIMD Integer Instructions,” list
additional instructions included with SSE/SSE2 extensions that operate
on the MMX registers but are not considered part of the MMX instruction
set.

...

3. Updates to Chapter 11, Volume 1

Change bars show changes to Chapter 11 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1: Basic Architecture.

--

...

11.6.4 Initialization of SSE/SSE2 Extensions
The SSE and SSE2 state is contained in the XMM and MXCSR registers. Upon a hardware
reset of the processor, this state is initialized as follows (see Table 11-2):

• All SIMD floating-point exceptions are masked (bits 7 through 12 of the MXCSR
register is set to 1).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 12

Documentation Changes

• All SIMD floating-point exception flags are cleared (bits 0 through 5 of the MXCSR
register is set to 0).

• The rounding control is set to round-nearest (bits 13 and 14 of the MXCSR register
are set to 00B).

• The flush-to-zero mode is disabled (bit 15 of the MXCSR register is set to 0).

• The denormals-are-zeros mode is disabled (bit 6 of the MXCSR register is set to 0).
If the denormals-are-zeros mode is not supported, this bit is reserved and will be set
to 0 on initialization.

• Each of the XMM registers is cleared (set to all zeros).

...

4. Updates to Chapter 12, Volume 1

Change bars show changes to Chapter 12 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1: Basic Architecture.

--

...

12.12.3 Checking for SSE4.2 Support
Before an application attempts to use the following SSE4.2 instructions: PCMPESTRI/
PCMPESTRM/PCMPISTRI/PCMPISTRM, PCMPGTQ; the application should follow the steps
illustrated in Section 11.6.2, “Checking for SSE/SSE2 Support.” Next, use the additional
step provided below:

Check that the processor supports SSE4.2 (if CPUID.01H:ECX.SSE4_2[bit 20] = 1),
SSE4.1 (if CPUID.01H:ECX.SSE4_1[bit 19] = 1), and SSSE3 (if
CPUID.01H:ECX.SSSE3[bit 9] = 1).

Before an application attempts to use the CRC32 instruction, it must check that the
processor supports SSE4.2 (if CPUID.01H:ECX.SSE4_2[bit 20] = 1).

Before an application attempts to use the POPCNT instruction, it must check that the
processor supports SSE4.2 (if CPUID.01H:ECX.SSE4_2[bit 20] = 1) and POPCNT (if
CPUID.01H:ECX.POPCNT[bit 23] = 1).

...

5. Updates to Chapter 13, Volume 1

Change bars show changes to Chapter 13 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1: Basic Architecture.

--

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 13

Documentation Changes

...

6. Updates to Appendix D, Volume 1

Change bars show changes to Appendix D of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1: Basic Architecture.

--

...

Example D-4. Reduced-Latency Exception Handler

SAVE_ENVIRONMENTPROC
;
;SAVE REGISTERS, ALLOCATE STACK SPACE FOR x87 FPU ENVIRONMENT

PUSH EBP
.
.
MOV EBP, ESP
SUB ESP, 28 ;ALLOCATES 28 BYTES (32-bit PROTECTED MODE SIZE)

;SAVE ENVIRONMENT, RESTORE INTERRUPT ENABLE FLAG (IF)
FNSTENV [EBP - 28]
PUSH [EBP + OFFSET_TO_EFLAGS] ; COPY OLD EFLAGS TO STACK TOP
POPFD ;RESTORE IF TO VALUE BEFORE x87 FPU EXCEPTION

;
;APPLICATION-DEPENDENT EXCEPTION HANDLING CODE GOES HERE
;
;CLEAR EXCEPTION FLAGS IN STATUS WORD (WHICH IS IN MEMORY)

MOV BYTE PTR [EBP-24], 0H
FLDENV [EBP-28]

;DE-ALLOCATE STACK SPACE, RESTORE REGISTERS
MOV ESP, EBP

Figure 13-2 I/O Permission Bit Map

I/O Map Base

Task State Segment (TSS)

64H

31 24 23 0

1 1111111

I/O Permission Bit Map

0

I/O map base
must not
exceed DFFFH.

Last byte of
bitmap must be
followed by a
byte with all
bits set.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 14

Documentation Changes

.

.
POP EBP

;
;RETURN TO INTERRUPTED CALCULATION

IRETD
SAVE_ENVIRONMENT ENDP

;RESTORE MODIFIED ENVIRONMENT IMAGE

...

Case #2: x87 FPU State Swap with Discarded Numeric Exception
Again, assume two threads A and B, both using the floating-point unit. Let A be the
thread to have most recently executed a floating-point instruction, but this time let there
be a pending numeric exception. Let B be the currently executing thread. When B starts
to execute a floating-point instruction the instruction will fault with the DNA exception
and enter the DNA handler. (If both numeric and DNA exceptions are pending, the DNA
exception takes precedence, in order to support handling the numeric exception in its
own context.)

When the FNSAVE starts, it will trigger an interrupt via FERR# because of the pending
numeric exception. After some system dependent delay, the numeric exception handler
is entered. It may be entered before the FNSAVE starts to execute, or it may be entered
shortly after execution of the FNSAVE. Since the x87 FPU Owner is the kernel, the
numeric exception handler simply exits, discarding the exception. The DNA handler
resumes execution, completing the FNSAVE of the old floating-point context of thread A
and the FRSTOR of the floating-point context for thread B.

Thread A eventually gets an opportunity to handle the exception that was discarded
during the task switch. After some time, thread B is suspended, and thread A resumes
execution. When thread A starts to execute an floating-point instruction, once again the
DNA exception handler is entered. B’s x87 FPU state is saved with FNSAVE, and A’s x87
FPU state is restored with FRSTOR. Note that in restoring the x87 FPU state from A’s save
area, the pending numeric exception flags are reloaded into the floating-point status
word. Now when the DNA exception handler returns, thread A resumes execution of the
faulting floating-point instruction just long enough to immediately generate a numeric
exception, which now gets handled in the normal way. The net result is that the task
switch and resulting x87 FPU state swap via the DNA exception handler causes an extra
numeric exception which can be safely discarded.

...

D.4.2 Changes with Intel486, Pentium and PentiumPro Processors
with CR0.NE[bit 5] = 1

With these three generations of the IA-32 architecture, more enhancements and
speedup features have been added to the corresponding x87 FPUs. Also, the x87 FPU is
now built into the same chip as the processor, which allows further increases in the speed
at which the x87 FPU can operate as part of the integrated system. This also means that
the native mode of x87 FPU exception handling, selected by setting bit NE of register
CR0 to 1, is now entirely internal.

If an unmasked exception occurs during an x87 FPU instruction, the x87 FPU records the
exception internally, and triggers the exception handler through interrupt 16 immedi-

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 15

Documentation Changes

ately before execution of the next WAIT or x87 FPU instruction (except for no-wait
instructions, which will be executed as described in Section D.4.1, “Origin with the Intel
286 and Intel 287, and Intel386 and Intel 387 Processors”).

An unmasked numerical exception causes the FERR# output to be activated even with
NE = 1, and at exactly the same point in the program flow as it would have been
asserted if NE were zero. However, the system would not connect FERR# to a PIC to
generate INTR when operating in the native, internal mode. (If the hardware of a system
has FERR# connected to trigger IRQ13 in order to support MS-DOS, but an operating
system using the native mode is actually running the system, it is the operating system’s
responsibility to make sure that IRQ13 is not enabled in the slave PIC.) With this config-
uration a system is immune to the problem discussed in Section D.2.1.3, “No-Wait x87
FPU Instructions Can Get x87 FPU Interrupt in Window,” where for Intel486 and Pentium
processors a no-wait x87 FPU instruction can get an x87 FPU exception.

...

7. Updates to Chapter 2, Volume 2A

Change bars show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A: Instruction Set Reference, A-M.

--

...

Table 2-5 Special Cases of REX Encodings

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 16

Documentation Changes

...

Table 2-7 RIP-Relative Addressing

ModR/M or
SIB

Sub-field
Encodings

Compatibility
Mode Operation

Compatibility
Mode Implications Additional Implications

ModR/M Byte mod != 11 SIB byte present. SIB byte required
for ESP-based
addressing.

REX prefix adds a fourth
bit (b) which is not
decoded (don't care).

SIB byte also required for
R12-based addressing.

r/m =
b*100(ESP)

ModR/M Byte mod = 0 Base register not
used.

EBP without a
displacement must
be done using

mod = 01 with
displacement of 0.

REX prefix adds a fourth
bit (b) which is not
decoded (don't care).

Using RBP or R13 without
displacement must be
done using mod = 01 with
a displacement of 0.

r/m =
b*101(EBP)

SIB Byte index =
0100(ESP)

Index register not
used.

ESP cannot be used
as an index
register.

REX prefix adds a fourth
bit (b) which is decoded.

There are no additional
implications. The
expanded index field
allows distinguishing RSP
from R12, therefore R12
can be used as an index.

SIB Byte base =
0101(EBP)

Base register is
unused if
mod = 0.

Base register
depends on mod
encoding.

REX prefix adds a fourth
bit (b) which is not
decoded.

This requires explicit
displacement to be used
with EBP/RBP or R13.

NOTES:
* Don’t care about value of REX.B

ModR/M and SIB Sub-field
Encodings

Compatibility
Mode Operation

64-bit Mode
Operation

Additional Implications
in 64-bit mode

ModR/M
Byte

mod = 00 Disp32 RIP + Disp32 Must use SIB form with
normal (zero-based)
displacement addressing

r/m = 101 (none)

SIB Byte base = 101 (none) if mod = 00,
Disp32

Same as
legacy

None

index = 100 (none)

scale = 0, 1, 2, 4

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 17

Documentation Changes

...

8. Updates to Chapter 3, Volume 2A

Change bars show changes to Chapter 3 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A: Instruction Set Reference, A-M.

--

...

BLENDPD — Blend Packed Double Precision Floating-Point Values

Instruction Operand Encoding

Description

Packed double-precision floating-point values from the source operand (second
operand) are conditionally copied to the destination operand depending on the mask bits
in the immediate operand. The mask bits are bits [1:0] of the immediate byte (third
operand). Each mask bit corresponds to a quadword element in a 128-bit operand.

If a mask bit is “1", then the corresponding quadword in the source operand is copied to
the destination, else the quadword element in the destination operand is left unchanged.

Operation
IF (imm8[0] = 1)

THEN DEST[63:0]  SRC[63:0];
ELSE DEST[63:0]  DEST[63:0]; FI;

IF (imm8[1] = 1)
THEN DEST[127:64]  SRC[127:64];
ELSE DEST[127:64]  DEST[127:64]; FI;

...

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

66 0F 3A 0D /r
ib

BLENDPD xmm1,
xmm2/m128,
imm8

A Valid Valid Select packed DP-FP values
from xmm1 and xmm2/
m128 from mask specified
in imm8 and store the
values into xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 18

Documentation Changes

BLENDPS — Blend Packed Single Precision Floating-Point Values

Instruction Operand Encoding

Description

Packed single-precision floating-point values from the source operand (second operand)
are conditionally copied to the destination operand (first operand) depending on the
mask bits in the immediate operand. The mask bits are bits [3:0] of the immediate byte
(third operand). Each mask bit corresponds to a dword element in a 128-bit operand.

If a mask bit is “1", then the corresponding dword in the source operand is copied to the
destination, else the dword element in the destination operand is left unchanged.

Operation

IF (imm8[0] = 1)
THEN DEST[31:0]  SRC[31:0];
ELSE DEST[31:0]  DEST[31:0]; FI;

IF (imm8[1] = 1)
THEN DEST[63:32]  SRC[63:32];
ELSE DEST[63:32]  DEST[63:32]; FI;

IF (imm8[2] = 1)
THEN DEST[95:64]  SRC[95:64];
ELSE DEST[95:64]  DEST[95:64]; FI;

IF (imm8[3] = 1)
THEN DEST[127:96]  SRC[127:96];
ELSE DEST[127:96]  DEST[127:96]; FI;

...

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

66 0F 3A 0C /r
ib

BLENDPS xmm1,
xmm2/m128,
imm8

A Valid Valid Select packed single
precision floating-point
values from xmm1 and
xmm2/m128 from mask
specified in imm8 and store
the values into xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 19

Documentation Changes

BLENDVPD — Variable Blend Packed Double Precision Floating-Point
Values

Instruction Operand Encoding

Description

Packed double-precision floating-point values from the source operand (second argu-
ment) are conditionally copied to the destination operand (first argument) depending on
the mask bits in the implicit third register argument, XMM0. The mask bits are the most
significant bit in each qword element of XMM0. Each mask bit corresponds to a quadword
element in a 128-bit operand.

If a mask bit is “1", then the corresponding quadword element in the source operand is
copied to the destination, else the quadword element in the destination operand is left
unchanged.

The register assignment of the third operand is defined to be the architectural register
XMM0.

Operation

MASK  XMM0;
IF (MASK[63] = 1)

THEN DEST[63:0]  SRC[63:0];
ELSE DEST[63:0]  DEST[63:0]; FI;

IF (MASK[127] = 1)
THEN DEST[127:64]  SRC[127:64];
ELSE DEST[127:64]  DEST[127:64]; FI;

...

BLENDVPS — Variable Blend Packed Single Precision Floating-Point
Values

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

66 0F 38 15 /r BLENDVPD xmm1,
xmm2/m128 ,
<XMM0>

A Valid Valid Select packed DP FP values
from xmm1 and xmm2 from
mask specified in XMM0 and
store the values in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r, w) ModRM:r/m (r) implicit XMM0 NA

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

66 0F 38 14 /r BLENDVPS xmm1,
xmm2/m128,
<XMM0>

A Valid Valid Select packed single
precision floating-point
values from xmm1 and
xmm2/m128 from mask
specified in XMM0 and store
the values into xmm1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 20

Documentation Changes

Instruction Operand Encoding

Description

Packed single-precision floating-point values from the source operand (second argu-
ment) are conditionally written to the destination operand (first argument) depending on
the mask bits in the third register argument. The mask bits are the most significant bit in
each dword element of XMM0. Each mask bit corresponds to a dword element in a 128-
bit operand.

If a mask bit is “1", then the corresponding dword element in the source operand is
copied to the destination, else the dword element in the destination operand is left
unchanged.

The register assignment of the third operand is defined to be the architectural register
XMM0.

Operation

MASK  XMM0;
IF (MASK[31] = 1)

THEN DEST[31:0]  SRC[31:0];
ELSE DEST[31:0]  DEST[31:0]); FI;

IF (MASK[63] = 1)
THEN DEST[63:32]  SRC[63:32]);
ELSE DEST[63:32]  DEST[63:32]); FI;

IF (MASK[95] = 1)
THEN DEST[95:64]  SRC[95:64]);
ELSE DEST[95:64]  DEST[95:64]); FI;

IF (MASK[127] = 1)
THEN DEST[127:96]  SRC[127:96]);
ELSE DEST[127:96]  DEST[127:96]); FI;

...

CMOVcc—Conditional Move

...

Operation

temp SRC
IF condition TRUE

THEN
DEST  temp;

FI;
ELSE

IF (OperandSize = 32 and IA-32e mode active)
THEN

DEST[63:32]  0;
FI;

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r, w) ModRM:r/m (r) implicit XMM0 NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 21

Documentation Changes

FI;

...

CPUID—CPU Identification

...

Table 3-12 Information Returned by CPUID Instruction

...

INPUT EAX = 0: Returns CPUID’s Highest Value for Basic Processor Information and the
Vendor Identification String

When CPUID executes with EAX set to 0, the processor returns the highest value the
CPUID recognizes for returning basic processor information. The value is returned in the
EAX register (see Table 3-13) and is processor specific.

A vendor identification string is also returned in EBX, EDX, and ECX. For Intel proces-
sors, the string is “GenuineIntel” and is expressed:

EBX  756e6547h (* "Genu", with G in the low eight bits of BL *)
EDX  49656e69h (* "ineI", with i in the low eight bits of DL *)
ECX  6c65746eh (* "ntel", with n in the low eight bits of CL *)

Initial EAX
Value Information Provided about the Processor

...

Thermal and Power Management Leaf

06H EAX

EBX

Bit 00: Digital temperature sensor is supported if set
Bit 01: Intel Turbo Boost Technology Available (see description of
IA32_MISC_ENABLES[38]).
Bit 02: ARAT. APIC-Timer-always-running feature is supported if set.
Bit 03: Reserved
Bit 04: PLN. Power limit notification controls are supported if set.
Bit 05: ECMD. Clock modulation duty cycle extension is supported if set.
Bit 06: PTM. Package thermal management is supported if set.
Bits 31 - 07: Reserved
Bits 03 - 00: Number of Interrupt Thresholds in Digital Thermal Sensor
Bits 31 - 04: Reserved

ECX Bit 00: Hardware Coordination Feedback Capability (Presence of
IA32_MPERF and IA32_APERF). The capability to provide a measure of
delivered processor performance (since last reset of the counters), as
a percentage of expected processor performance at frequency speci-
fied in CPUID Brand String
Bits 02 - 01: Reserved = 0
Bit 03: The processor supports performance-energy bias preference if
CPUID.06H:ECX.SETBH[bit 3] is set and it also implies the presence of a
new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H)
Bits 31 - 04: Reserved = 0

EDX Reserved = 0

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 22

Documentation Changes

INPUT EAX = 80000000H: Returns CPUID’s Highest Value for Extended Processor Infor-
mation

When CPUID executes with EAX set to 80000000H, the processor returns the highest
value the processor recognizes for returning extended processor information.

...

Figure 3-6 Feature Information Returned in the ECX Register

Table 3-15 Feature Information Returned in the ECX Register

Bit # Mnemonic Description

0 SSE3 Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the
processor supports this technology.

1 PCLMULQDQ PCLMULQDQ. A value of 1 indicates the processor supports the
PCLMULQDQ instruction

2 DTES64 64-bit DS Area. A value of 1 indicates the processor supports DS
area using 64-bit layout

OM16524b

CNXT-ID — L1 Context ID

012345678910111213141516171819202122232425262728293031

ECX

TM2 — Thermal Monitor 2
EST — Enhanced Intel SpeedStep® Technology

DS-CPL — CPL Qualified Debug Store
MONITOR — MONITOR/MWAIT

PCLMULQDQ — Carryless Multiplication

Reserved

CMPXCHG16B

SMX — Safer Mode Extensions

xTPR Update Control

SSSE3 — SSSE3 Extensions

PDCM — Perf/Debug Capability MSR

VMX — Virtual Machine Extensions

SSE4_1 — SSE4.1

OSXSAVE

SSE4_2 — SSE4.2

DCA — Direct Cache Access

x2APIC

POPCNT

XSAVE

AVX

AES

FMA — Fused Multiply Add

SSE3 — SSE3 Extensions

PCID — Process-context Identifiers

0

DTES64 — 64-bit DS Area

MOVBE

TSC-Deadline

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 23

Documentation Changes

3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor supports
this feature.

4 DS-CPL CPL Qualified Debug Store. A value of 1 indicates the processor
supports the extensions to the Debug Store feature to allow for
branch message storage qualified by CPL.

5 VMX Virtual Machine Extensions. A value of 1 indicates that the
processor supports this technology

6 SMX Safer Mode Extensions. A value of 1 indicates that the processor
supports this technology. See Chapter 6, “Safer Mode Extensions
Reference”.

7 EST Enhanced Intel SpeedStep® technology. A value of 1 indicates
that the processor supports this technology.

8 TM2 Thermal Monitor 2. A value of 1 indicates whether the processor
supports this technology.

9 SSSE3 A value of 1 indicates the presence of the Supplemental
Streaming SIMD Extensions 3 (SSSE3). A value of 0 indicates the
instruction extensions are not present in the processor

10 CNXT-ID L1 Context ID. A value of 1 indicates the L1 data cache mode can
be set to either adaptive mode or shared mode. A value of 0
indicates this feature is not supported. See definition of the
IA32_MISC_ENABLE MSR Bit 24 (L1 Data Cache Context Mode)
for details.

11 Reserved Reserved

12 FMA A value of 1 indicates the processor supports FMA extensions
using YMM state.

13 CMPXCHG16B CMPXCHG16B Available. A value of 1 indicates that the feature is
available. See the “CMPXCHG8B/CMPXCHG16B—Compare and
Exchange Bytes” section in this chapter for a description.

14 xTPR Update
Control

xTPR Update Control. A value of 1 indicates that the processor
supports changing IA32_MISC_ENABLES[bit 23].

15 PDCM Perfmon and Debug Capability: A value of 1 indicates the
processor supports the performance and debug feature indication
MSR IA32_PERF_CAPABILITIES.

16 Reserved Reserved

17 PCID Process-context identifiers. A value of 1 indicates that the
processor supports PCIDs and that software may set CR4.PCIDE
to 1.

18 DCA A value of 1 indicates the processor supports the ability to
prefetch data from a memory mapped device.

19 SSE4.1 A value of 1 indicates that the processor supports SSE4.1.

20 SSE4.2 A value of 1 indicates that the processor supports SSE4.2.

21 x2APIC A value of 1 indicates that the processor supports x2APIC
feature.

22 MOVBE A value of 1 indicates that the processor supports MOVBE
instruction.

Table 3-15 Feature Information Returned in the ECX Register (Continued)

Bit # Mnemonic Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 24

Documentation Changes

...

Table 3-17 Encoding of CPUID Leaf 2 Descriptors

...

DPPS — Dot Product of Packed Single Precision Floating-Point Values

...

Operation

IF (imm8[4] = 1)
THEN Temp1[31:0]  DEST[31:0] * SRC[31:0];
ELSE Temp1[31:0]  +0.0; FI;

IF (imm8[5] = 1)
THEN Temp1[63:32]  DEST[63:32] * SRC[63:32];
ELSE Temp1[63:32]  +0.0; FI;

IF (imm8[6] = 1)

23 POPCNT A value of 1 indicates that the processor supports the POPCNT
instruction.

24 TSC-Deadline A value of 1 indicates that the processor’s local APIC timer
supports one-shot operation using a TSC deadline value.

25 AESNI A value of 1 indicates that the processor supports the AESNI
instruction extensions.

26 XSAVE A value of 1 indicates that the processor supports the XSAVE/
XRSTOR processor extended states feature, the XSETBV/
XGETBV instructions, and the XFEATURE_ENABLED_MASK
register (XCR0).

27 OSXSAVE A value of 1 indicates that the OS has enabled XSETBV/XGETBV
instructions to access the XFEATURE_ENABLED_MASK register
(XCR0), and support for processor extended state management
using XSAVE/XRSTOR.

28 AVX A value of 1 indicates the processor supports the AVX instruction
extensions.

30 - 29 Reserved Reserved

31 Not Used Always returns 0

 Value Type Description

...

E4H Cache 3rd-level cache: 8 MByte, 16-way set associative, 64 byte line size

EAH Cache 3rd-level cache: 12MByte, 24-way set associative, 64 byte line size

EBH Cache 3rd-level cache: 18MByte, 24-way set associative, 64 byte line size

ECH Cache 3rd-level cache: 24MByte, 24-way set associative, 64 byte line size

F0H Prefetch 64-Byte prefetching

...

Table 3-15 Feature Information Returned in the ECX Register (Continued)

Bit # Mnemonic Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 25

Documentation Changes

THEN Temp1[95:64]  DEST[95:64] * SRC[95:64];
ELSE Temp1[95:64]  +0.0; FI;

IF (imm8[7] = 1)
THEN Temp1[127:96]  DEST[127:96] * SRC[127:96];
ELSE Temp1[127:96]  +0.0; FI;

Temp2[31:0]  Temp1[31:0] + Temp1[63:32];
Temp3[31:0]  Temp1[95:64] + Temp1[127:96];
Temp4[31:0]  Temp2[31:0] + Temp3[31:0];

IF (imm8[0] = 1)
THEN DEST[31:0]  Temp4[31:0];
ELSE DEST[31:0]  +0.0; FI;

IF (imm8[1] = 1)
THEN DEST[63:32]  Temp4[31:0];
ELSE DEST[63:32]  +0.0; FI;

IF (imm8[2] = 1)
THEN DEST[95:64]  Temp4[31:0];
ELSE DEST[95:64]  +0.0; FI;

IF (imm8[3] = 1)
THEN DEST[127:96]  Temp4[31:0];
ELSE DEST[127:96]  +0.0; FI;

...

INSERTPS — Insert Packed Single Precision Floating-Point Value

...

Operation

IF (SRC = REG) THEN COUNT_S  imm8[7:6];
ELSE COUNT_S  0; FI;

COUNT_D  imm8[5:4];
ZMASK  imm8[3:0];

CASE (COUNT_S) OF
0: TMP  SRC[31:0];
1: TMP  SRC[63:32];
2: TMP  SRC[95:64];
3: TMP  SRC[127:96];

CASE (COUNT_D) OF
0: TMP2[31:0]  TMP;

TMP2[127:32]  DEST[127:32];
1: TMP2[63:32]  TMP;

TMP2[31:0]  DEST[31:0];
TMP2[127:64]  DEST[127:64];

2: TMP2[95:64]  TMP;
TMP2[63:0]  DEST[63:0];
TMP2[127:96]  DEST[127:96];

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 26

Documentation Changes

3: TMP2[127:96]  TMP;
TMP2[95:0]  DEST[95:0];

IF (ZMASK[0] = 1) THEN DEST[31:0]  00000000H;
ELSE DEST[31:0]  TMP2[31:0];
IF (ZMASK[1] = 1) THEN DEST[63:32]  00000000H;

ELSE DEST[63:32]  TMP2[63:32];
IF (ZMASK[2] = 1) THEN DEST[95:64]  00000000H;

ELSE DEST[95:64]  TMP2[95:64];
IF (ZMASK[3] = 1) THEN DEST[127:96]  00000000H;

ELSE DEST[127:96]  TMP2[127:96];
FI;

FI;
FI;

FI;

...

INT n/INTO/INT 3—Call to Interrupt Procedure

...

Operation

The following operational description applies not only to the INT n and INTO instructions,
but also to external interrupts and exceptions.

IF PE 0
THEN

GOTO REAL-ADDRESS-MODE;
ELSE (* PE  1 *)

IF (VM  1 and IOPL  3 AND INT n)
THEN

 #GP(0);
ELSE (* Protected mode, IA-32e mode, or virtual-8086 mode interrupt *)

IF (IA32_EFER.LMA  0)
THEN (* Protected mode, or virtual-8086 mode interrupt *)

GOTO PROTECTED-MODE;
ELSE (* IA-32e mode interrupt *)

GOTO IA-32e-MODE;
FI;

FI;
FI;
REAL-ADDRESS-MODE:

IF ((vector_number  4)  3) is not within IDT limit
THEN #GP; FI;

IF stack not large enough for a 6-byte return information
THEN #SS; FI;

Push (EFLAGS[15:0]);
IF  0; (* Clear interrupt flag *)
TF  0; (* Clear trap flag *)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

Documentation Changes

AC  0; (* Clear AC flag *)
Push(CS);
Push(IP);
(* No error codes are pushed *)
CS  IDT(Descriptor (vector_number  4), selector));
EIP  IDT(Descriptor (vector_number  4), offset)); (* 16 bit offset AND 0000FFFFH *)

END;
PROTECTED-MODE:

IF ((vector_number « 3)  7) is not within IDT limits
or selected IDT descriptor is not an interrupt-, trap-, or task-gate type

THEN #GP((vector_number  8)  2  EXT); FI;
(* EXT is bit 0 in error code *)

IF software interrupt (* Generated by INT n, INT 3, or INTO *)
THEN

IF gate DPL  CPL
THEN #GP((vector_number  8)  2); FI;
(* PE1, DPLCPL, software interrupt *)

FI;
IF gate not present

THEN #NP((vector_number « 3)  2  EXT); FI;
IF task gate (* Specified in the selected interrupt table descriptor *)

THEN GOTO TASK-GATE;
ELSE GOTO TRAP-OR-INTERRUPT-GATE; (* PE 1, trap/interrupt gate *)

FI;
END;
IA-32e-MODE:

IF ((vector_number  16)  15) is not in IDT limits
or selected IDT descriptor is not an interrupt-, or trap-gate type

THEN #GP((vector_number « 3)  2  EXT);
(* EXT is bit 0 in error code *)

FI;
IF software interrupt (* Generated by INT n, INT 3, but not INTO *)

THEN
IF gate DPL  CPL

THEN #GP((vector_number « 3)  2);
(* PE1, DPL CPL, software interrupt *)

FI;
ELSE (* Generated by INTO *)

#UD;
FI;
IF gate not present

THEN #NP((vector_number « 3)  2  EXT);
FI;
GOTO TRAP-OR-INTERRUPT-GATE; (* Trap/interrupt gate *)

END;
TASK-GATE: (* PE 1, task gate *)

Read TSS selector in task gate (IDT descriptor);
IF local/global bit is set to local or index not within GDT limits

THEN #GP(TSS selector); FI;
Access TSS descriptor in GDT;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 28

Documentation Changes

IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)
THEN #GP(TSS selector); FI;

IF TSS not present
THEN #NP(TSS selector); FI;

SWITCH-TASKS (with nesting) to TSS;
IF interrupt caused by fault with error code

THEN
IF stack limit does not allow push of error code

THEN #SS(0); FI;
Push(error code);

FI;
IF EIP not within code segment limit

THEN #GP(0); FI;
END;
TRAP-OR-INTERRUPT-GATE:

Read new code-segment selector for trap or interrupt gate (IDT descriptor);
IF new code-segment selector is NULL

THEN #GP(0H  EXT); FI; (* NULL selector with EXT flag set *)
IF new code-segment selector is not within its descriptor table limits

THEN #GP(new code-segment selector  EXT); FI;
Read descriptor referenced by new code-segment selector;
IF descriptor does not indicate a code segment
or new code-segment DPL CPL

THEN #GP(new code-segment selector  EXT); FI;
IF new code-segment descriptor is not present,

THEN #NP(new code-segment selector  EXT); FI;
IF new code segment is non-conforming with DPL  CPL

THEN
IF VM 0

THEN
GOTO INTER-PRIVILEGE-LEVEL-INTERRUPT;
(* PE 1, VM = 0, interrupt or trap gate, nonconforming code segment,
DPL CPL *)

ELSE (* VM  1 *)
IF new code-segment DPL  0

THEN #GP(new code-segment selector);
GOTO INTERRUPT-FROM-VIRTUAL-8086-MODE; FI;
(* PE  1, interrupt or trap gate, DPL CPL, VM 1 *)

FI;
ELSE (* PE  1, interrupt or trap gate, DPL  CPL *)

IF VM  1
THEN #GP(new code-segment selector); FI;

IF new code segment is conforming or new code-segment DPL  CPL
THEN

GOTO INTRA-PRIVILEGE-LEVEL-INTERRUPT;
ELSE

#GP(new code-segment selector  EXT);
(* PE 1, interrupt or trap gate, nonconforming code segment, DPL CPL *)

FI;
FI;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 29

Documentation Changes

END;
INTER-PRIVILEGE-LEVEL-INTERRUPT:

(* PE 1, interrupt or trap gate, non-conforming code segment, DPL CPL *)
IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)

THEN
(* Identify stack-segment selector for new privilege level in current TSS *)

IF current TSS is 32-bit
THEN

TSSstackAddress  (new code-segment DPL  8)  4;
IF (TSSstackAddress  5)  current TSS limit

THEN #TS(current TSS selector); FI;
NewSS  2 bytes loaded from (TSS base + TSSstackAddress  4);
NewESP  4 bytes loaded from (TSS base + TSSstackAddress);

ELSE (* current TSS is 16-bit *)
TSSstackAddress  (new code-segment DPL  4)  2
IF (TSSstackAddress  3)  current TSS limit

THEN #TS(current TSS selector); FI;
NewSS  2 bytes loaded from (TSS base + TSSstackAddress  2);
NewESP  2 bytes loaded from (TSS base + TSSstackAddress);

FI;
IF NewSS is NULL

THEN #TS(EXT); FI;
IF NewSS index is not within its descriptor-table limits
or NewSS RPL  new code-segment DPL

THEN #TS(NewSS  EXT); FI;
Read new stack-segment descriptor for NewSS in GDT or LDT;
IF new stack-segment DPL  new code-segment DPL
or new stack-segment Type does not indicate writable data segment

THEN #TS(NewSS  EXT); FI;
IF NewSS is not present

THEN #SS(NewSS EXT); FI;
ELSE (* IA-32e mode *)

IF IDT-gate IST = 0
THEN TSSstackAddress  (new code-segment DPL  8)  4;
ELSE TSSstackAddress  (IDT gate IST  8)  28;

FI;
IF (TSSstackAddress  7)  current TSS limit

THEN #TS(current TSS selector); FI;
NewRSP  8 bytes loaded from (current TSS base + TSSstackAddress);
NewSS  new code-segment DPL; (* null selector with RPL = new CPL *)

FI;
IF IDT gate is 32-bit

THEN
IF new stack does not have room for 24 bytes (error code pushed)
or 20 bytes (no error code pushed)

THEN #SS(NewSS  EXT); FI;
FI

ELSE
IF IDT gate is 16-bit

THEN

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 30

Documentation Changes

IF new stack does not have room for 12 bytes (error code pushed)
or 10 bytes (no error code pushed);

THEN #SS(NewSS  EXT); FI;
ELSE (* 64-bit IDT gate*)

IF StackAddress is non-canonical
THEN #SS(0);FI;

FI;
FI;
IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)

THEN
IF instruction pointer from IDT gate is not within new code-segment limits

THEN #GP(0); FI;
ESP  NewESP;
SS  NewSS; (* Segment descriptor information also loaded *)

ELSE (* IA-32e mode *)
IF instruction pointer from IDT gate contains a non-canonical address

THEN #GP(0); FI:
RSP  NewRSP & FFFFFFFFFFFFFFF0H;
SS  NewSS;

FI;
IF IDT gate is 32-bit

THEN
CS:EIP  Gate(CS:EIP); (* Segment descriptor information also loaded *)

ELSE
IF IDT gate 16-bit

THEN
CS:IPGate(CS:IP);
(* Segment descriptor information also loaded *)

ELSE (* 64-bit IDT gate *)
CS:RIP Gate(CS:RIP);
(* Segment descriptor information also loaded *)

FI;
FI;
IF IDT gate is 32-bit

THEN
Push(far pointer to old stack);
(* Old SS and ESP, 3 words padded to 4 *)
Push(EFLAGS);
Push(far pointer to return instruction);
(* Old CS and EIP, 3 words padded to 4 *)
Push(ErrorCode); (* If needed, 4 bytes *)

ELSE
IF IDT gate 16-bit

THEN
Push(far pointer to old stack);
(* Old SS and SP, 2 words *)
Push(EFLAGS(15-0]);
Push(far pointer to return instruction);
(* Old CS and IP, 2 words *)
Push(ErrorCode); (* If needed, 2 bytes *)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 31

Documentation Changes

ELSE (* 64-bit IDT gate *)
Push(far pointer to old stack);
(* Old SS and SP, each an 8-byte push *)
Push(RFLAGS); (* 8-byte push *)
Push(far pointer to return instruction);
(* Old CS and RIP, each an 8-byte push *)
Push(ErrorCode); (* If needed, 8-bytes *)

FI;
FI;
CPL  new code-segment DPL;
CS(RPL)  CPL;
IF IDT gate is interrupt gate

THEN IF  0 (* Interrupt flag set to 0, interrupts disabled *); FI;
TF  0;
VM  0;
RF  0;
NT  0;

END;
INTERRUPT-FROM-VIRTUAL-8086-MODE:

(* Identify stack-segment selector for privilege level 0 in current TSS *)
IF current TSS is 32-bit

THEN
IF TSS limit  9

THEN #TS(current TSS selector); FI;
NewSS  2 bytes loaded from (current TSS base + 8);
NewESP  4 bytes loaded from (current TSS base + 4);

ELSE (* current TSS is 16-bit *)
IF TSS limit  5

THEN #TS(current TSS selector); FI;
NewSS  2 bytes loaded from (current TSS base + 4);
NewESP  2 bytes loaded from (current TSS base + 2);

FI;
IF NewSS is NULL

THEN #TS(EXT); FI;
IF NewSS index is not within its descriptor table limits
or NewSS RPL  0

THEN #TS(NewSS  EXT); FI;
Read new stack-segment descriptor for NewSS in GDT or LDT;
IF new stack-segment DPL  0 or stack segment does not indicate writable data segment

THEN #TS(NewSS  EXT); FI;
IF new stack segment not present

THEN #SS(NewSS EXT); FI;
IF IDT gate is 32-bit

THEN
IF new stack does not have room for 40 bytes (error code pushed)
or 36 bytes (no error code pushed)

THEN #SS(NewSS  EXT); FI;
ELSE (* IDT gate is 16-bit)

IF new stack does not have room for 20 bytes (error code pushed)
or 18 bytes (no error code pushed)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 32

Documentation Changes

THEN #SS(NewSS  EXT); FI;
FI;
IF instruction pointer from IDT gate is not within new code-segment limits

THEN #GP(0); FI;
tempEFLAGS  EFLAGS;
VM  0;
TF  0;
RF  0;
NT  0;
IF service through interrupt gate

THEN IF  0; FI;
TempSS  SS;
TempESP  ESP;
SS  NewSS;
ESP  NewESP;
(* Following pushes are 16 bits for 16-bit IDT gates and 32 bits for 32-bit IDT gates;
Segment selector pushes in 32-bit mode are padded to two words *)
Push(GS);
Push(FS);
Push(DS);
Push(ES);
Push(TempSS);
Push(TempESP);
Push(TempEFlags);
Push(CS);
Push(EIP);
GS  0; (* Segment registers made NULL, invalid for use in protected mode *)
FS  0;
DS  0;
ES  0;
CS:IPGate(CS); (* Segment descriptor information also loaded *)
IF OperandSize  32

THEN
EIP  Gate(instruction pointer);

ELSE (* OperandSize is 16 *)
EIP  Gate(instruction pointer) AND 0000FFFFH;

FI;
(* Start execution of new routine in Protected Mode *)

END;
INTRA-PRIVILEGE-LEVEL-INTERRUPT:

(* PE 1, DPL  CPL or conforming segment *)
IF IA32_EFER.LMA = 1 (* IA-32e mode *)

IF IDT-descriptor IST  0
THEN

TSSstackAddress  (IDT-descriptor IST  8)  28;
IF (TSSstackAddress  7)  TSS limit

THEN #TS(current TSS selector); FI;
NewRSP  8 bytes loaded from (current TSS base + TSSstackAddress);

FI;
IF 32-bit gate (* implies IA32_EFER.LMA = 0 *)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 33

Documentation Changes

THEN
IF current stack does not have room for 16 bytes (error code pushed)
or 12 bytes (no error code pushed)

THEN #SS(0); FI;
ELSE IF 16-bit gate (* implies IA32_EFER.LMA = 0 *)

IF current stack does not have room for 8 bytes (error code pushed)
or 6 bytes (no error code pushed)

THEN #SS(0); FI;
ELSE (* IA32_EFER.LMA = 1, 64-bit gate*)

IF NewRSP contains a non-canonical address
THEN #SS(0);

FI;
FI;
IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)

THEN
IF instruction pointer from IDT gate is not within new code-segment limit

THEN #GP(0); FI;
ELSE

IF instruction pointer from IDT gate contains a non-canonical address
THEN #GP(0); FI:

RSP  NewRSP & FFFFFFFFFFFFFFF0H;
FI;
IF IDT gate is 32-bit (* implies IA32_EFER.LMA = 0 *)

THEN
Push (EFLAGS);
Push (far pointer to return instruction); (* 3 words padded to 4 *)
CS:EIP  Gate(CS:EIP); (* Segment descriptor information also loaded *)
Push (ErrorCode); (* If any *)

ELSE
IF IDT gate is 16-bit (* implies IA32_EFER.LMA = 0 *)

THEN
Push (FLAGS);
Push (far pointer to return location); (* 2 words *)
CS:IP  Gate(CS:IP);
(* Segment descriptor information also loaded *)
Push (ErrorCode); (* If any *)

ELSE (* IA32_EFER.LMA = 1, 64-bit gate*)
Push(far pointer to old stack);
(* Old SS and SP, each an 8-byte push *)
Push(RFLAGS); (* 8-byte push *)
Push(far pointer to return instruction);
(* Old CS and RIP, each an 8-byte push *)
Push(ErrorCode); (* If needed, 8 bytes *)
CS:RIP  GATE(CS:RIP);
(* Segment descriptor information also loaded *)

FI;
FI;
CS(RPL)  CPL;
IF IDT gate is interrupt gate

THEN IF  0; FI; (* Interrupt flag set to 0; interrupts disabled *)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 34

Documentation Changes

TF  0;
NT  0;
VM  0;
RF  0;

END;

...

LDDQU—Load Unaligned Integer 128 Bits

...

Implementation Notes

• If the source is aligned to a 16-byte boundary, based on the implementation, the 16
bytes may be loaded more than once. For that reason, the usage of LDDQU should be
avoided when using uncached or write-combining (WC) memory regions. For
uncached or WC memory regions, keep using MOVDQU.

• This instruction is a replacement for MOVDQU (load) in situations where cache line
splits significantly affect performance. It should not be used in situations where
store-load forwarding is performance critical. If performance of store-load
forwarding is critical to the application, use MOVDQA store-load pairs when data is
128-bit aligned or MOVDQU store-load pairs when data is 128-bit unaligned.

• If the memory address is not aligned on 16-byte boundary, some implementations
may load up to 32 bytes and return 16 bytes in the destination. Some processor
implementations may issue multiple loads to access the appropriate 16 bytes.
Developers of multi-threaded or multi-processor software should be aware that on
these processors the loads will be performed in a non-atomic way.

• If alignment checking is enabled (CR0.AM = 1, RFLAGS.AC = 1, and CPL = 3), an
alignment-check exception (#AC) may or may not be generated (depending on
processor implementation) when the memory address is not aligned on an 8-byte
boundary.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

xmm[127:0] = m128;

Intel C/C Compiler Intrinsic Equivalent

LDDQU __m128i _mm_lddqu_si128(__m128i const *p)

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES,

FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 35

Documentation Changes

#NM If CR0.TS[bit 3] = 1.

#UD If CR4.OSFXSR[bit 9] = 0.

If CR0.EM[bit 2] = 1.

If CPUID.01H:ECX.SSE3[bit 0] = 0.

If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and a memory reference is made
that is not aligned on an 8-byte boundary. (Generation of this
exception depends on processor implementation.)

Real Address Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address

space from 0 to 0FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.

If the LOCK prefix is used.

Virtual 8086 Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address

space from 0 to 0FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.

If the LOCK prefix is used.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and a memory reference is made
that is not aligned on an 8-byte boundary. (Generation of this
exception depends on processor implementation.)

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canon-

ical form.

#GP(0) If the memory address is in a non-canonical form.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.

If the LOCK prefix is used.

#PF(fault-code) If a page fault occurs.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 36

Documentation Changes

#AC(0) If alignment checking is enabled and a memory reference is made
that is not aligned on an 8-byte boundary. (Generation of this
exception depends on processor implementation.)

...

LFENCE—Load Fence

...

Exceptions (All Modes of Operation)
#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

...

MASKMOVDQU—Store Selected Bytes of Double Quadword

...

MASKMOVQ—Store Selected Bytes of Quadword

...

MOVDDUP—Move One Double-FP and Duplicate

...

Operation

IF (Source = m64)
THEN

(* Load instruction *)

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

66 0F F7 /r MASKMOVDQU
xmm1, xmm2

A Valid Valid Selectively write bytes from
xmm1 to memory location
using the byte mask in
xmm2. The default memory
location is specified by
DS:EDI/RDI.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F F7 /r MASKMOVQ mm1,
mm2

A Valid Valid Selectively write bytes from
mm1 to memory location
using the byte mask in mm2.
The default memory
location is specified by
DS:EDI/RDI.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 37

Documentation Changes

xmm1[63:0] = m64;
xmm1[127:64] = m64;

ELSE
(* Move instruction *)
xmm1[63:0] = xmm2[63:0];
xmm1[127:64] = xmm2[63:0];

FI;

...

MOVDQU—Move Unaligned Double Quadword

...

Description

Moves a double quadword from the source operand (second operand) to the destination
operand (first operand). This instruction can be used to load an XMM register from a
128-bit memory location, to store the contents of an XMM register into a 128-bit
memory location, or to move data between two XMM registers. When the source or
destination operand is a memory operand, the operand may be unaligned on a 16-byte
boundary without causing a general-protection exception (#GP) to be generated.1

To move a double quadword to or from memory locations that are known to be aligned
on 16-byte boundaries, use the MOVDQA instruction.

While executing in 16-bit addressing mode, a linear address for a 128-bit data access
that overlaps the end of a 16-bit segment is not allowed and is defined as reserved
behavior. A specific processor implementation may or may not generate a general-
protection exception (#GP) in this situation, and the address that spans the end of the
segment may or may not wrap around to the beginning of the segment.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

DEST  SRC;

Intel C/C Compiler Intrinsic Equivalent

MOVDQU void _mm_storeu_si128 (__m128i *p, __m128i a)

MOVDQU __m128i _mm_loadu_si128 (__m128i *p)

SIMD Floating-Point Exceptions

None.

1. If alignment checking is enabled (CR0.AM = 1, RFLAGS.AC = 1, and CPL = 3), an alignment-check
exception (#AC) may or may not be generated (depending on processor implementation) when the
operand is not aligned on an 8-byte boundary.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 38

Documentation Changes

Protected Mode Exceptions
#AC(0) If alignment checking is enabled and a memory reference is made

that is not aligned on an 8-byte boundary. (Generation of this
exception depends on processor implementation.)

#GP(0) If a memory operand effective address is outside the CS, DS, ES,
FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside of the effective address space

from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#AC(0) If alignment checking is enabled and a memory reference is made
that is not aligned on an 8-byte boundary. (Generation of this
exception depends on processor implementation.)

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#AC(0) If alignment checking is enabled and a memory reference is made

that is not aligned on an 8-byte boundary. (Generation of this
exception depends on processor implementation.)

#SS(0) If a memory address referencing the SS segment is in a non-canon-
ical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 39

Documentation Changes

...

MOVSHDUP—Move Packed Single-FP High and Duplicate

...

Operation

IF (Source = m128)
THEN (* Load instruction *)

xmm1[31:0] = m128[63:32];
xmm1[63:32] = m128[63:32];
xmm1[95:64] = m128[127:96];
xmm1[127:96] = m128[127:96];

ELSE (* Move instruction *)
xmm1[31:0] = xmm2[63:32];
xmm1[63:32] = xmm2[63:32];
xmm1[95:64] = xmm2[127:96];
xmm1[127:96] = xmm2[127:96];

FI;

...

MOVSLDUP—Move Packed Single-FP Low and Duplicate

...

Operation

IF (Source = m128)
THEN (* Load instruction *)

xmm1[31:0] = m128[31:0];
xmm1[63:32] = m128[31:0];
xmm1[95:64] = m128[95:64];
xmm1[127:96] = m128[95::64];

ELSE (* Move instruction *)
xmm1[31:0] = xmm2[31:0];
xmm1[63:32] = xmm2[31:0];
xmm1[95:64] = xmm2[95:64];
xmm1[127:96] = xmm2[95:64];

FI;

...

MOVUPD—Move Unaligned Packed Double-Precision Floating-Point
Values

...

Description

Moves a double quadword containing two packed double-precision floating-point values
from the source operand (second operand) to the destination operand (first operand).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 40

Documentation Changes

This instruction can be used to load an XMM register from a 128-bit memory location,
store the contents of an XMM register into a 128-bit memory location, or move data
between two XMM registers. When the source or destination operand is a memory
operand, the operand may be unaligned on a 16-byte boundary without causing a
general-protection exception (#GP) to be generated.1

To move double-precision floating-point values to and from memory locations that are
known to be aligned on 16-byte boundaries, use the MOVAPD instruction.

While executing in 16-bit addressing mode, a linear address for a 128-bit data access
that overlaps the end of a 16-bit segment is not allowed and is defined as reserved
behavior. A specific processor implementation may or may not generate a general-
protection exception (#GP) in this situation, and the address that spans the end of the
segment may or may not wrap around to the beginning of the segment.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

DEST  SRC;

Intel C/C Compiler Intrinsic Equivalent

MOVUPD __m128 _mm_loadu_pd(double * p)

MOVUPD void _mm_storeu_pd(double *p, __m128 a)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#AC(0) If alignment checking is enabled and a memory reference is made

that is not aligned on an 8-byte boundary. (Generation of this
exception depends on processor implementation.)

#GP(0) For an illegal memory operand effective address in the CS, DS, ES,
FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions
GP If any part of the operand lies outside the effective address space

from 0 to FFFFH.

1. If alignment checking is enabled (CR0.AM = 1, RFLAGS.AC = 1, and CPL = 3), an alignment-check
exception (#AC) may or may not be generated (depending on processor implementation) when the
operand is not aligned on an 8-byte boundary.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 41

Documentation Changes

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#AC(0) If alignment checking is enabled and a memory reference is made
that is not aligned on an 8-byte boundary. (Generation of this
exception depends on processor implementation.)

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#AC(0) If alignment checking is enabled and a memory reference is made

that is not aligned on an 8-byte boundary. (Generation of this
exception depends on processor implementation.)

#SS(0) If a memory address referencing the SS segment is in a non-canon-
ical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

...

MOVUPS—Move Unaligned Packed Single-Precision Floating-Point Values

...

Description

Moves a double quadword containing four packed single-precision floating-point values
from the source operand (second operand) to the destination operand (first operand).
This instruction can be used to load an XMM register from a 128-bit memory location,
store the contents of an XMM register into a 128-bit memory location, or move data
between two XMM registers. When the source or destination operand is a memory
operand, the operand may be unaligned on a 16-byte boundary without causing a
general-protection exception (#GP) to be generated.1

1. If alignment checking is enabled (CR0.AM = 1, RFLAGS.AC = 1, and CPL = 3), an alignment-check
exception (#AC) may or may not be generated (depending on processor implementation) when the
operand is not aligned on an 8-byte boundary.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 42

Documentation Changes

To move packed single-precision floating-point values to and from memory locations that
are known to be aligned on 16-byte boundaries, use the MOVAPS instruction.

While executing in 16-bit addressing mode, a linear address for a 128-bit data access
that overlaps the end of a 16-bit segment is not allowed and is defined as reserved
behavior. A specific processor implementation may or may not generate a general-
protection exception (#GP) in this situation, and the address that spans the end of the
segment may or may not wrap around to the beginning of the segment.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

DEST  SRC;

Intel C/C Compiler Intrinsic Equivalent

MOVUPS __m128 _mm_loadu_ps(double * p)

MOVUPS void _mm_storeu_ps(double *p, __m128 a)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#AC(0) If alignment checking is enabled and a memory reference is made

that is not aligned on an 8-byte boundary. (Generation of this
exception depends on processor implementation.)

#GP(0) For an illegal memory operand effective address in the CS, DS, ES,
FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions
GP If any part of the operand lies outside the effective address space

from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 43

Documentation Changes

#AC(0) If alignment checking is enabled and a memory reference is made
that is not aligned on an 8-byte boundary. (Generation of this
exception depends on processor implementation.)

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#AC(0) If alignment checking is enabled and a memory reference is made

that is not aligned on an 8-byte boundary. (Generation of this
exception depends on processor implementation.)

#SS(0) If a memory address referencing the SS segment is in a non-canon-
ical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

...

9. Updates to Chapter 4, Volume 2B

Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2B: Instruction Set Reference, N-Z.

--

...

PACKUSDW — Pack with Unsigned Saturation

...

Intel C/C++ Compiler Intrinsic Equivalent

PACKUSDW __m128i _mm_packus_epi16(__m128i m1, __m128i m2);

...

PBLENDVB — Variable Blend Packed Bytes

...

Operation

MASK  XMM0;
IF (MASK[7] = 1)

THEN DEST[7:0]  SRC[7:0];

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 44

Documentation Changes

ELSE DEST[7:0]  DEST[7:0]; FI;
IF (MASK[15] = 1)

THEN DEST[15:8]  SRC[15:8];
ELSE DEST[15:8]  DEST[15:8]; FI;

IF (MASK[23] = 1)
THEN DEST[23:16]  SRC[23:16]
ELSE DEST[23:16]  DEST[23:16]; FI;

IF (MASK[31] = 1)
THEN DEST[31:24]  SRC[31:24]
ELSE DEST[31:24]  DEST[31:24]; FI;

IF (MASK[39] = 1)
THEN DEST[39:32]  SRC[39:32]
ELSE DEST[39:32]  DEST[39:32]; FI;

IF (MASK[47] = 1)
THEN DEST[47:40]  SRC[47:40]
ELSE DEST[47:40]  DEST[47:40]; FI;

IF (MASK[55] = 1)
THEN DEST[55:48]  SRC[55:48]
ELSE DEST[55:48]  DEST[55:48]; FI;

IF (MASK[63] = 1)
THEN DEST[63:56]  SRC[63:56]
ELSE DEST[63:56]  DEST[63:56]; FI;

IF (MASK[71] = 1)
THEN DEST[71:64]  SRC[71:64]
ELSE DEST[71:64]  DEST[71:64]; FI;

IF (MASK[79] = 1)
THEN DEST[79:72]  SRC[79:72]
ELSE DEST[79:72]  DEST[79:72]; FI;

IF (MASK[87] = 1)
THEN DEST[87:80]  SRC[87:80]
ELSE DEST[87:80]  DEST[87:80]; FI;

IF (MASK[95] = 1)
THEN DEST[95:88]  SRC[95:88]
ELSE DEST[95:88]  DEST[95:88]; FI;

IF (MASK[103] = 1)
THEN DEST[103:96]  SRC[103:96]
ELSE DEST[103:96]  DEST[103:96]; FI;

IF (MASK[111] = 1)
THEN DEST[111:104]  SRC[111:104]
ELSE DEST[111:104]  DEST[111:104]; FI;

IF (MASK[119] = 1)
THEN DEST[119:112]  SRC[119:112]
ELSE DEST[119:112]  DEST[119:112]; FI;

IF (MASK[127] = 1)
THEN DEST[127:120]  SRC[127:120]
ELSE DEST[127:120]  DEST[127:120]); FI;

...

PBLENDW — Blend Packed Words

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 45

Documentation Changes

...

Operation

IF (imm8[0] = 1)
THEN DEST[15:0]  SRC[15:0];
ELSE DEST[15:0]  DEST[15:0]; FI;

IF (imm8[1] = 1)
THEN DEST[31:16]  SRC[31:16];
ELSE DEST[31:16]  DEST[31:16]); FI;

IF (imm8[2] = 1)
THEN DEST[47:32]  SRC[47:32];
ELSE DEST[47:32]  DEST[47:32]; FI;

IF (imm8[3] = 1)
THEN DEST[63:48]  SRC[63:48];
ELSE DEST[63:48]  DEST[63:48]; FI;

IF (imm8[4] = 1)
THEN DEST[79:64]  SRC[79:64];
ELSE DEST[79:64]  DEST[79:64]; FI;

IF (imm8[5] = 1)
THEN DEST[95:80]  SRC[95:80];
ELSE DEST[95:80]  DEST[95:80]; FI;

IF (imm8[6] = 1)
THEN DEST[111:96]  SRC[111:96];
ELSE DEST[111:96]  DEST[111:96]; FI;

IF (imm8[7] = 1)
THEN DEST[127:112]  SRC[127:112];
ELSE DEST[127:112]  DEST[127:112]; FI;

...

PCMPESTRI — Packed Compare Explicit Length Strings, Return Index

...

Description

The instruction compares and processes data from two string fragments based on the
encoded value in the Imm8 Control Byte (see Section 4.1, “Imm8 Control Byte Operation
for PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM”), and generates an index
stored to ECX.

Each string fragment is represented by two values. The first value is an xmm (or possibly
m128 for the second operand) which contains the data elements of the string (byte or
word data). The second value is stored in EAX (for xmm1) or EDX (for xmm2/m128) and
represents the number of bytes/words which are valid for the respective xmm/m128
data.

The length of each input is interpreted as being the absolute-value of the value in EAX
(EDX). The absolute-value computation saturates to 16 (for bytes) and 8 (for words),
based on the value of imm8[bit0] when the value in EAX (EDX) is greater than 16 (8) or
less than -16 (-8).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 46

Documentation Changes

The comparison and aggregation operations are performed according to the encoded
value of Imm8 bit fields (see Section 4.1). The index of the first (or last, according to
imm8[6]) set bit of IntRes2 (see Section 4.1.4) is returned in ECX. If no bits are set in
IntRes2, ECX is set to 16 (8).

Note that the Arithmetic Flags are written in a non-standard manner in order to supply
the most relevant information:

CFlag – Reset if IntRes2 is equal to zero, set otherwise
ZFlag – Set if absolute-value of EDX is < 16 (8), reset otherwise
SFlag – Set if absolute-value of EAX is < 16 (8), reset otherwise
OFlag – IntRes2[0]
AFlag – Reset
PFlag – Reset

...

PCMPESTRM — Packed Compare Explicit Length Strings, Return Mask

...

Description

The instruction compares data from two string fragments based on the encoded value in
the imm8 control byte (see Section 4.1, “Imm8 Control Byte Operation for PCMPESTRI /
PCMPESTRM / PCMPISTRI / PCMPISTRM”), and generates a mask stored to XMM0.

Each string fragment is represented by two values. The first value is an xmm (or possibly
m128 for the second operand) which contains the data elements of the string (byte or
word data). The second value is stored in EAX (for xmm1) or EDX (for xmm2/m128) and
represents the number of bytes/words which are valid for the respective xmm/m128
data.

The length of each input is interpreted as being the absolute-value of the value in EAX
(EDX). The absolute-value computation saturates to 16 (for bytes) and 8 (for words),
based on the value of imm8[bit0] when the value in EAX (EDX) is greater than 16 (8) or
less than -16 (-8).

The comparison and aggregation operations are performed according to the encoded
value of Imm8 bit fields (see Section 4.1). As defined by imm8[6], IntRes2 is then either
stored to the least significant bits of XMM0 (zero extended to 128 bits) or expanded into
a byte/word-mask and then stored to XMM0.

Note that the Arithmetic Flags are written in a non-standard manner in order to supply
the most relevant information:

CFlag – Reset if IntRes2 is equal to zero, set otherwise
ZFlag – Set if absolute-value of EDX is < 16 (8), reset otherwise
SFlag – Set if absolute-value of EAX is < 16 (8), reset otherwise
OFlag –IntRes2[0]
AFlag – Reset
PFlag – Reset

...

PEXTRW—Extract Word

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 47

Documentation Changes

...

Instruction Operand Encoding

...

POPCNT — Return the Count of Number of Bits Set to 1

...

Flags Affected

OF, SF, ZF, AF, CF, PF are all cleared. ZF is set if SRC = 0, otherwise ZF is cleared

...

PSHUFB — Packed Shuffle Bytes

...

Operation

PSHUFB with 64 bit operands:

for i = 0 to 7 {
if (SRC[(i * 8)+7] = 1) then

DEST[(i*8)+7...(i*8)+0]  0;
else

index[2..0]  SRC[(i*8)+2 .. (i*8)+0];
DEST[(i*8)+7...(i*8)+0]  DEST[(index*8+7)..(index*8+0)];

endif;
}

PSHUFB with 128 bit operands:

for i = 0 to 15 {
if (SRC[(i * 8)+7] = 1) then

DEST[(i*8)+7..(i*8)+0]  0;
 else

index[3..0]  SRC[(i*8)+3 .. (i*8)+0];
DEST[(i*8)+7..(i*8)+0]  DEST[(index*8+7)..(index*8+0)];

endif
}

...

PSIGNB/PSIGNW/PSIGND — Packed SIGN

...

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (w) ModRM:r/m (r) imm8 NA

B ModRM:r/m (w) ModRM:reg (r) imm8 NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 48

Documentation Changes

Operation

PSIGNB with 64 bit operands:

IF (SRC[7:0] < 0)
DEST[7:0]  Neg(DEST[7:0])

ELSEIF (SRC[7:0] = 0)
DEST[7:0]  0

ELSEIF (SRC[7:0] > 0)
DEST[7:0]  DEST[7:0]

Repeat operation for 2nd through 7th bytes

IF (SRC[63:56] < 0)
DEST[63:56]  Neg(DEST[63:56])

ELSEIF (SRC[63:56] = 0)
DEST[63:56]  0

ELSEIF (SRC[63:56] > 0)
DEST[63:56]  DEST[63:56]

PSIGNB with 128 bit operands:

IF (SRC[7:0] < 0)
DEST[7:0]  Neg(DEST[7:0])

ELSEIF (SRC[7:0] = 0)
DEST[7:0]  0

ELSEIF (SRC[7:0] > 0)
DEST[7:0]  DEST[7:0]

Repeat operation for 2nd through 15th bytes
IF (SRC[127:120] < 0)

DEST[127:120]  Neg(DEST[127:120])
ELSEIF (SRC[127:120] = 0)

DEST[127:120]  0
ELSEIF (SRC[127:120] > 0)

DEST[127:120]  DEST[127:120]

PSIGNW with 64 bit operands:

IF (SRC[15:0] < 0)
DEST[15:0]  Neg(DEST[15:0])

ELSEIF (SRC[15:0] = 0)
DEST[15:0]  0

ELSEIF (SRC[15:0] > 0)
DEST[15:0]  DEST[15:0]

Repeat operation for 2nd through 3rd words
IF (SRC[63:48] < 0)

DEST[63:48]  Neg(DEST[63:48])
ELSEIF (SRC[63:48] = 0)

DEST[63:48]  0
ELSEIF (SRC[63:48] > 0)

DEST[63:48]  DEST[63:48]

PSIGNW with 128 bit operands:

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 49

Documentation Changes

IF (SRC[15:0] < 0)
DEST[15:0]  Neg(DEST[15:0])

ELSEIF (SRC[15:0] = 0)
DEST[15:0]  0

ELSEIF (SRC[15:0] > 0)
DEST[15:0]  DEST[15:0]

Repeat operation for 2nd through 7th words
IF (SRC[127:112] < 0)

DEST[127:112]  Neg(DEST[127:112])
ELSEIF (SRC[127:112] = 0)

DEST[127:112]  0
ELSEIF (SRC[127:112] > 0)

DEST[127:112]  DEST[127:112]

PSIGND with 64 bit operands:

IF (SRC[31:0] < 0)
DEST[31:0]  Neg(DEST[31:0])

ELSEIF (SRC[31:0] = 0)
DEST[31:0]  0

ELSEIF (SRC[31:0] > 0)
DEST[31:0]  DEST[31:0]

IF (SRC[63:32] < 0)
DEST[63:32]  Neg(DEST[63:32])

ELSEIF (SRC[63:32] = 0)
DEST[63:32]  0

ELSEIF (SRC[63:32] > 0)
DEST[63:32]  DEST[63:32]

PSIGND with 128 bit operands:

IF (SRC[31:0] < 0)
DEST[31:0]  Neg(DEST[31:0])

ELSEIF (SRC[31:0] = 0)
DEST[31:0]  0

ELSEIF (SRC[31:0] > 0)
DEST[31:0]  DEST[31:0]

Repeat operation for 2nd through 3rd double words
IF (SRC[127:96] < 0)

DEST[127:96]  Neg(DEST[127:96])
ELSEIF (SRC[127:96] = 0)

DEST[127:96]  0
ELSEIF (SRC[127:96] > 0)

DEST[127:96]  DEST[127:96]

...

ROUNDPD — Round Packed Double Precision Floating-Point Values

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 50

Documentation Changes

Operation

IF (imm[2] = ‘1)
THEN // rounding mode is determined by MXCSR.RC

DEST[63:0]  ConvertDPFPToInteger_M(SRC[63:0]);
DEST[127:64]  ConvertDPFPToInteger_M(SRC[127:64]);

ELSE // rounding mode is determined by IMM8.RC
DEST[63:0]  ConvertDPFPToInteger_Imm(SRC[63:0]);
DEST[127:64]  ConvertDPFPToInteger_Imm(SRC[127:64]);

FI

Intel C/C++ Compiler Intrinsic Equivalent

ROUNDPD __m128 mm_round_pd(__m128d s1, int iRoundMode);
__m128 mm_floor_pd(__m128d s1);
__m128 mm_ceil_pd(__m128d s1);

SIMD Floating-Point Exceptions

Invalid (signaled only if SRC = SNaN)

Precision (signaled only if imm[3] = ‘0; if imm[3] = ‘1, then the Precision Mask in the
MXSCSR is ignored and precision exception is not signaled.)

Note that Denormal is not signaled by ROUNDPD.

...

ROUNDPS — Round Packed Single Precision Floating-Point Values

...

Operation

IF (imm[2] = ‘1)
THEN // rounding mode is determined by MXCSR.RC

DEST[31:0]  ConvertSPFPToInteger_M(SRC[31:0]);
DEST[63:32]  ConvertSPFPToInteger_M(SRC[63:32]);
DEST[95:64]  ConvertSPFPToInteger_M(SRC[95:64]);
DEST[127:96]  ConvertSPFPToInteger_M(SRC[127:96]);

ELSE // rounding mode is determined by IMM8.RC
DEST[31:0]  ConvertSPFPToInteger_Imm(SRC[31:0]);
DEST[63:32]  ConvertSPFPToInteger_Imm(SRC[63:32]);
DEST[95:64]  ConvertSPFPToInteger_Imm(SRC[95:64]);
DEST[127:96]  ConvertSPFPToInteger_Imm(SRC[127:96]);

FI;

Intel C/C++ Compiler Intrinsic Equivalent

ROUNDPS __m128 mm_round_ps(__m128 s1, int iRoundMode);
__m128 mm_floor_ps(__m128 s1);
__m128 mm_ceil_ps(__m128 s1);

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 51

Documentation Changes

SIMD Floating-Point Exceptions

Invalid (signaled only if SRC = SNaN)

Precision (signaled only if imm[3] = ‘0; if imm[3] = ‘1, then the Precision Mask in the
MXSCSR is ignored and precision exception is not signaled.)

Note that Denormal is not signaled by ROUNDPS.

...

ROUNDSD — Round Scalar Double Precision Floating-Point Values

...

Operation

IF (imm[2] = ‘1)
THEN // rounding mode is determined by MXCSR.RC

DEST[63:0]  ConvertDPFPToInteger_M(SRC[63:0]);
ELSE // rounding mode is determined by IMM8.RC

DEST[63:0]  ConvertDPFPToInteger_Imm(SRC[63:0]);
FI;
DEST[127:63] remains unchanged ;

Intel C/C++ Compiler Intrinsic Equivalent

ROUNDSD __m128d mm_round_sd(__m128d dst, __m128d s1, int iRoundMode);
__m128d mm_floor_sd(__m128d dst, __m128d s1);
__m128d mm_ceil_sd(__m128d dst, __m128d s1);

SIMD Floating-Point Exceptions

Invalid (signaled only if SRC = SNaN)

Precision (signaled only if imm[3] = ‘0; if imm[3] = ‘1, then the Precision Mask in the
MXSCSR is ignored and precision exception is not signaled.)

Note that Denormal is not signaled by ROUNDSD.

...

ROUNDSS — Round Scalar Single Precision Floating-Point Values

...

Operation

IF (imm[2] = ‘1)
THEN // rounding mode is determined by MXCSR.RC

DEST[31:0]  ConvertSPFPToInteger_M(SRC[31:0]);
ELSE // rounding mode is determined by IMM8.RC

DEST[31:0]  ConvertSPFPToInteger_Imm(SRC[31:0]);
FI;
DEST[127:32] remains unchanged ;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 52

Documentation Changes

Intel C/C++ Compiler Intrinsic Equivalent

ROUNDSS __m128 mm_round_ss(__m128 dst, __m128 s1, int iRoundMode);
__m128 mm_floor_ss(__m128 dst, __m128 s1);
__m128 mm_ceil_ss(__m128 dst, __m128 s1);

SIMD Floating-Point Exceptions

Invalid (signaled only if SRC = SNaN)

Precision (signaled only if imm[3] = ‘0; if imm[3] = ‘1, then the Precision Mask in the
MXSCSR is ignored and precision exception is not signaled.)

Note that Denormal is not signaled by ROUNDSS.

...

SFENCE—Store Fence

...

Exceptions (All Operating Modes)
#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

...

SWAPGS—Swap GS Base Register

...

See Table 4-16.

...

SYSEXIT—Fast Return from Fast System Call

...

Description

Executes a fast return to privilege level 3 user code. SYSEXIT is a companion instruction
to the SYSENTER instruction. The instruction is optimized to provide the maximum
performance for returns from system procedures executing at protections levels 0 to
user procedures executing at protection level 3. It must be executed from code
executing at privilege level 0.

Table 4-16 SWAPGS Operation Parameters

Opcode ModR/M Byte Instruction

MOD REG R/M Not 64-bit
Mode

64-bit Mode

OF 01 MOD  11 111 xxx INVLPG INVLPG

11 111 000 #UD SWAPGS

11 111  000 #UD #UD

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 53

Documentation Changes

Prior to executing SYSEXIT, software must specify the privilege level 3 code segment and
code entry point, and the privilege level 3 stack segment and stack pointer by writing
values into the following MSR and general-purpose registers:

• IA32_SYSENTER_CS — Contains a 32-bit value, of which the lower 16 bits are the
segment selector for the privilege level 0 code segment in which the processor is
currently executing. This value is used to compute the segment selectors for the
privilege level 3 code and stack segments.

• EDX — Contains the 32-bit offset into the privilege level 3 code segment to the first
instruction to be executed in the user code.

• ECX — Contains the 32-bit stack pointer for the privilege level 3 stack.

The IA32_SYSENTER_CS MSR can be read from and written to using RDMSR/WRMSR.
The register address is listed in Table 4-17. This address is defined to remain fixed for
future Intel 64 and IA-32 processors.

When SYSEXIT is executed, the processor:

1. Adds 16 to the value in IA32_SYSENTER_CS and loads the sum into the CS selector
register.

2. Loads the instruction pointer from the EDX register into the EIP register.

3. Adds 24 to the value in IA32_SYSENTER_CS and loads the sum into the SS selector
register.

4. Loads the stack pointer from the ECX register into the ESP register.

5. Switches to privilege level 3.

6. Begins executing the user code at the EIP address.

See “SWAPGS—Swap GS Base Register” in this chapter for information about using the
SYSENTER and SYSEXIT instructions as companion call and return instructions.

The SYSEXIT instruction always transfers program control to a protected-mode code
segment with a DPL of 3. The instruction requires that the following conditions are met
by the operating system:

• The segment descriptor for the selected user code segment selects a flat, 32-bit code
segment of up to 4 GBytes, with execute, read, accessed, and non-conforming
permissions.

• The segment descriptor for selected user stack segment selects a flat, 32-bit stack
segment of up to 4 GBytes, with expand-up, read, write, and accessed permissions.

The SYSEXIT instruction can be invoked from all operating modes except real-address
mode and virtual 8086 mode.

The SYSENTER and SYSEXIT instructions were introduced into the IA-32 architecture in
the Pentium II processor. The availability of these instructions on a processor is indicated
with the SYSENTER/SYSEXIT present (SEP) feature flag returned to the EDX register by
the CPUID instruction. An operating system that qualifies the SEP flag must also qualify
the processor family and model to ensure that the SYSENTER/SYSEXIT instructions are
actually present. For example:

IF CPUID SEP bit is set
THEN IF (Family  6) and (Model  3) and (Stepping  3)

THEN
SYSENTER/SYSEXIT_Not_Supported; FI;

ELSE
SYSENTER/SYSEXIT_Supported; FI;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 54

Documentation Changes

FI;

When the CPUID instruction is executed on the Pentium Pro processor (model 1), the
processor returns a the SEP flag as set, but does not support the SYSENTER/SYSEXIT
instructions.

...

SYSRET—Return From Fast System Call

...

UD2—Undefined Instruction

...

Description

Generates an invalid opcode exception. This instruction is provided for software testing
to explicitly generate an invalid opcode exception. The opcode for this instruction is
reserved for this purpose.

Other than raising the invalid opcode exception, this instruction has no effect on
processor state or memory.

Even though it is the execution of the UD2 instruction that causes the invalid opcode
exception, the instruction pointer saved by delivery of the exception references the UD2
instruction (and not the following instruction).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

...

XRSTOR—Restore Processor Extended States

...

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES,

FS, or GS segment limit.

If a memory operand is not aligned on a 64-byte boundary, regard-
less of segment.

If a bit in XCR0 is 0 and the corresponding bit in
HEADER.XSTATE_BV field of the source operand is 1.

If bytes 23:8 of HEADER is not zero.

If attempting to write any reserved bits of the MXCSR register with
1.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 07 SYSRET A Valid Invalid Return to compatibility
mode from fast system call

REX.W + 0F 07 SYSRET A Valid Invalid Return to 64-bit mode from
fast system call

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 55

Documentation Changes

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#NM If CR0.TS[bit 3] = 1.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.

If the LOCK prefix is used.

If 66H, F3H or F2H prefix is used.

#AC If this exception is disabled a general protection exception (#GP) is
signaled if the memory operand is not aligned on a 16-byte
boundary, as described above. If the alignment check exception
(#AC) is enabled (and the CPL is 3), signaling of #AC is not guaran-
teed and may vary with implementation, as follows. In all imple-
mentations where #AC is not signaled, a general protection
exception is signaled in its place. In addition, the width of the align-
ment check may also vary with implementation. For instance, for a
given implementation, an alignment check exception might be
signaled for a 2-byte misalignment, whereas a general protection
exception might be signaled for all other misalignments (4-, 8-, or
16-byte misalignments).

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary, regard-

less of segment.

If any part of the operand lies outside the effective address space
from 0 to FFFFH.

If a bit in XCR0 is 0 and the corresponding bit in
HEADER.XSTATE_BV field of the source operand is 1.

If bytes 23:8 of HEADER is not zero.

If attempting to write any reserved bits of the MXCSR register with
1.

#NM If CR0.TS[bit 3] = 1.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.

If the LOCK prefix is used.

If 66H, F3H or F2H prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary, regard-
less of segment.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 56

Documentation Changes

If a bit in XCR0 is 0 and the corresponding bit in
XSAVE.HEADER.XSTATE_BV is 1.

If bytes 23:8 of HEADER is not zero.

If attempting to write any reserved bits of the MXCSR register with
1.

#SS(0) If a memory address referencing the SS segment is in a non-canon-
ical form.

#PF(fault-code) If a page fault occurs.

#NM If CR0.TS[bit 3] = 1.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.

If the LOCK prefix is used.

If 66H, F3H or F2H prefix is used.

#AC If this exception is disabled a general protection exception (#GP) is
signaled if the memory operand is not aligned on a 16-byte
boundary, as described above. If the alignment check exception
(#AC) is enabled (and the CPL is 3), signaling of #AC is not guaran-
teed and may vary with implementation, as follows. In all imple-
mentations where #AC is not signaled, a general protection
exception is signaled in its place. In addition, the width of the align-
ment check may also vary with implementation. For instance, for a
given implementation, an alignment check exception might be
signaled for a 2-byte misalignment, whereas a general protection
exception might be signaled for all other misalignments (4-, 8-, or
16-byte misalignments).

...

XSAVE—Save Processor Extended States

...

Description

Performs a full or partial save of the enabled processor state components to a memory
address specified in the destination operand. A full or partial save of the processor states
is specified by an implicit mask operand via the register pair, EDX:EAX. The destination
operand is a memory location that must be 64-byte aligned.

The implicit 64-bit mask operand in EDX:EAX specifies the subset of enabled processor
state components to save into the XSAVE/XRSTOR save area. The XSAVE/XRSTOR save
area comprises of individual save area for each processor state components and a
header section, see Table 4-18. Each component save area is written if both the corre-
sponding bits in the save mask operand and in the XFEATURE_ENABLED_MASK (XCR0)
register are 1. A processor state component save area is not updated if either one of the
corresponding bits in the mask operand or the XFEATURE_ENABLED_MASK register is 0.
If the mask operand (EDX:EAX) contains all 1's, all enabled processor state components
in XFEATURE_ENABLED_MASK is written to the respective component save area.

The bit assignment used for the EDX:EAX register pair matches the
XFEATURE_ENABLED_MASK register (see chapter 2 of Vol. 3B). For the XSAVE instruc-
tion, software can specify "1" in any bit position of EDX:EAX, irrespective of whether the
corresponding bit position in XFEATURE_ENABLED_MASK is valid for the processor. The

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 57

Documentation Changes

bit vector in EDX:EAX is "anded" with the XFEATURE_ENABLED_MASK to determine
which save area will be written.

The content layout of the XSAVE/XRSTOR save area is architecturally defined to be
extendable and enumerated via the sub-leaves of CPUID.0DH leaf. The extendable
framework of the XSAVE/XRSTOR layout is depicted by Table 4-18. The layout of the
XSAVE/XRSTOR save area is fixed and may contain non-contiguous individual save
areas. The XSAVE/XRSTOR save area is not compacted if some features are not saved or
are not supported by the processor and/or by system software.

The layout of the register fields of first 512 bytes of the XSAVE/XRSTOR is the same as
the FXSAVE/FXRSTOR area (refer to “FXSAVE—Save x87 FPU, MMX Technology, and SSE
State” on page 476). But XSAVE/XRSTOR organizes the 512 byte area as x87 FPU states
(including FPU operation states, x87/MMX data registers), MXCSR (including
MXCSR_MASK), and XMM registers.

Bytes 464:511 are available for software use. The processor does not write to bytes
464:511 when executing XSAVE.

The processor writes 1 or 0 to each HEADER.XSTATE_BV[i] bit field of an enabled
processor state component in a manner that is consistent to XRSTOR's interaction with
HEADER.XSTATE_BV (see the operation section of XRSTOR instruction). If a processor
implementation discern that a processor state component is in its initialized state
(according to Table 4-20) it may modify the corresponding bit in the
HEADER.XSTATE_BV as ‘0’.

A destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit modes)
will result in a general-protection (#GP) exception being generated. In 64-bit mode, the
upper 32 bits of RDX and RAX are ignored.

...

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES,

FS, or GS segment limit.

If a memory operand is not aligned on a 64-byte boundary, regard-
less of segment.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#NM If CR0.TS[bit 3] = 1.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.

If the LOCK prefix is used.

If 66H, F3H or F2H prefix is used.

#AC If this exception is disabled a general protection exception (#GP) is
signaled if the memory operand is not aligned on a 16-byte
boundary, as described above. If the alignment check exception
(#AC) is enabled (and the CPL is 3), signaling of #AC is not guaran-
teed and may vary with implementation, as follows. In all imple-
mentations where #AC is not signaled, a general protection
exception is signaled in its place. In addition, the width of the align-
ment check may also vary with implementation. For instance, for a
given implementation, an alignment check exception might be
signaled for a 2-byte misalignment, whereas a general protection

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 58

Documentation Changes

exception might be signaled for all other misalignments (4-, 8-, or
16-byte misalignments).

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary, regard-

less of segment.

If any part of the operand lies outside the effective address space
from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.

If the LOCK prefix is used.

If 66H, F3H or F2H prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canon-

ical form.

#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary, regard-
less of segment.

#PF(fault-code) If a page fault occurs.

#NM If CR0.TS[bit 3] = 1.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.

If the LOCK prefix is used.

If 66H, F3H or F2H prefix is used.

#AC If this exception is disabled a general protection exception (#GP) is
signaled if the memory operand is not aligned on a 16-byte
boundary, as described above. If the alignment check exception
(#AC) is enabled (and the CPL is 3), signaling of #AC is not guaran-
teed and may vary with implementation, as follows. In all imple-
mentations where #AC is not signaled, a general protection
exception is signaled in its place. In addition, the width of the align-
ment check may also vary with implementation. For instance, for a
given implementation, an alignment check exception might be
signaled for a 2-byte misalignment, whereas a general protection
exception might be signaled for all other misalignments (4-, 8-, or
16-byte misalignments).

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 59

Documentation Changes

10. Updates to Chapter 5, Volume 2B

Change bars show changes to Chapter 5 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2B: Instruction Set Reference, N-Z.

--

...

INVEPT— Invalidate Translations Derived from EPT

...

Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VM exit;

ELSIF CPL > 0
THEN #GP(0);
ELSE

INVEPT_TYPE value of register operand;
IF IA32_VMX_EPT_VPID_CAP MSR indicates that processor does not support INVEPT_TYPE

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE // INVEPT_TYPE must be 1 or 2

INVEPT_DESC value of memory operand;
EPTP  INVEPT_DESC[63:0];
CASE INVEPT_TYPE OF

1: // single-context invalidation
IF VM entry with the “enable EPT“ VM execution control set to 1
would fail due to the EPTP value

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

Invalidate mappings associated with EPTP[51:12];
VMsucceed;

FI;
BREAK;

2: // global invalidation
Invalidate mappings associated with all EPTPs;
VMsucceed;
BREAK;

ESAC;
FI;

FI;

...

INVVPID— Invalidate Translations Based on VPID

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 60

Documentation Changes

Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VM exit;

ELSIF CPL > 0
THEN #GP(0);
ELSE

INVVPID_TYPE value of register operand;
IF IA32_VMX_EPT_VPID_CAP MSR indicates that processor does not support
INVVPID_TYPE

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE // INVVPID_TYPE must be in the range 0–3

INVVPID_DESC value of memory operand;
IF INVVPID_DESC[63:16]  0

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

CASE INVVPID_TYPE OF
0: // individual-address invalidation

VPID  INVVPID_DESC[15:0];
IF VPID = 0

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

GL_ADDR  INVVPID_DESC[127:64];
IF (GL_ADDR is not in a canonical form)

THEN
VMfail(Invalid operand to INVEPT/INVVPID);

ELSE
Invalidate mappings for GL_ADDR tagged with

VPID;
VMsucceed;

FI;
FI;
BREAK;

1: // single-context invalidation
VPID_CTX  INVVPID_DESC[15:0];
IF VPID = 0

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

Invalidate all mappings tagged with VPID;
VMsucceed;

FI;
BREAK;

2: // all-context invalidation
Invalidate all mappings tagged with all non-zero VPIDs;
VMsucceed;
BREAK;

3: // single-context invalidation retaining globals
VPID  INVVPID_DESC[15:0];

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 61

Documentation Changes

IF VPID = 0
THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

Invalidate all mappings tagged with VPID except global
translations;

VMsucceed;
FI;
BREAK;

ESAC;
FI;

FI;
FI;

...

VMCLEAR—Clear Virtual-Machine Control Structure

...

Operation

IF (register operand) or (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA =
1 and CS.L = 0)

THEN #UD;
ELSIF in VMX non-root operation

THEN VM exit;
ELSIF CPL > 0

THEN #GP(0);
ELSE

addr  contents of 64-bit in-memory operand;
IF addr is not 4KB-aligned OR
(processor supports Intel 64 architecture and
addr sets any bits beyond the physical-address width) OR
(processor does not support Intel 64 architecture, addr sets any bits in the range 63:32)

THEN VMfail(VMCLEAR with invalid physical address);
ELSIF addr = VMXON pointer

THEN VMfail(VMCLEAR with VMXON pointer);
ELSE

ensure that data for VMCS referenced by the operand is in memory;
initialize implementation-specific data in VMCS region;
launch state of VMCS referenced by the operand  “clear”
IF operand addr = current-VMCS pointer

THEN current-VMCS pointer  FFFFFFFF_FFFFFFFFH;
FI;
VMsucceed;

FI;
FI;

...

VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 62

Documentation Changes

...

Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VMexit;

ELSIF CPL > 0
THEN #GP(0);

ELSIF current-VMCS pointer is not valid
THEN VMfailInvalid;

ELSIF events are being blocked by MOV SS
THEN VMfailValid(VM entry with events blocked by MOV SS);

ELSIF (VMLAUNCH and launch state of current VMCS is not “clear”)
THEN VMfailValid(VMLAUNCH with non-clear VMCS);

ELSIF (VMRESUME and launch state of current VMCS is not “launched”)
THEN VMfailValid(VMRESUME with non-launched VMCS);
ELSE

Check settings of VMX controls and host-state area;
IF invalid settings

THEN VMfailValid(VM entry with invalid VMX-control field(s)) or
VMfailValid(VM entry with invalid host-state field(s)) or
VMfailValid(VM entry with invalid executive-VMCS pointer)) or
VMfailValid(VM entry with non-launched executive VMCS) or
VMfailValid(VM entry with executive-VMCS pointer not VMXON pointer) or
VMfailValid(VM entry with invalid VM-execution control fields in executive
VMCS)
as appropriate;

ELSE
Attempt to load guest state and PDPTRs as appropriate;
clear address-range monitoring;
IF failure in checking guest state or PDPTRs

THEN VM entry fails (see Section 22.7, in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B);
ELSE

Attempt to load MSRs from VM-entry MSR-load area;
IF failure

THEN VM entry fails (see Section 22.7, in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3B);

ELSE
IF VMLAUNCH

THEN launch state of VMCS  “launched”;
FI;
IF in SMM and “entry to SMM” VM-entry control is 0

THEN
IF “deactivate dual-monitor treatment” VM-entry
control is 0

THEN SMM-transfer VMCS pointer 
current-VMCS pointer;

FI;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 63

Documentation Changes

IF executive-VMCS pointer is VMX pointer
THEN current-VMCS pointer 
VMCS-link pointer;
ELSE current-VMCS pointer 
executive-VMCS pointer;

FI;
leave SMM;

FI;
VM entry succeeds;

FI;
FI;

FI;
FI;

...

VMPTRLD—Load Pointer to Virtual-Machine Control Structure

Operation

IF (register operand) or (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA =
1 and CS.L = 0)

THEN #UD;
ELSIF in VMX non-root operation

THEN VMexit;
ELSIF CPL > 0

THEN #GP(0);
ELSE

addr  contents of 64-bit in-memory source operand;
IF addr is not 4KB-aligned OR
(processor supports Intel 64 architecture and
addr sets any bits beyond the processor’s physical-address width) OR
processor does not support Intel 64 architecture and addr sets any bits in the range 63:32

THEN VMfail(VMPTRLD with invalid physical address);
ELSIF addr = VMXON pointer

THEN VMfail(VMPTRLD with VMXON pointer);
ELSE

rev  32 bits located at physical address addr;
IF rev  VMCS revision identifier supported by processor

THEN VMfail(VMPTRLD with incorrect VMCS revision identifier);
ELSE

current-VMCS pointer  addr;
VMsucceed;

FI;
FI;

FI;

...

VMPTRST—Store Pointer to Virtual-Machine Control Structure

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 64

Documentation Changes

...

Operation

IF (register operand) or (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA =
1 and CS.L = 0)

THEN #UD;
ELSIF in VMX non-root operation

THEN VMexit;
ELSIF CPL > 0

THEN #GP(0);
ELSE

64-bit in-memory destination operand  current-VMCS pointer;
VMsucceed;

FI;

...

VMWRITE—Write Field to Virtual-Machine Control Structure

...

Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VMexit;

ELSIF CPL > 0
THEN #GP(0);

ELSIF current-VMCS pointer is not valid
THEN VMfailInvalid;

ELSIF register destination operand does not correspond to any VMCS field
THEN VMfailValid(VMREAD/VMWRITE from/to unsupported VMCS component);

ELSIF VMCS field indexed by register destination operand is read-only)
THEN VMfailValid(VMWRITE to read-only VMCS component);
ELSE

VMCS field indexed by register destination operand  SRC;
VMsucceed;

FI;

...

VMXOFF—Leave VMX Operation

Opcode Instruction Description

0F 01 C4 VMXOFF Leaves VMX operation.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 65

Documentation Changes

Description

Takes the logical processor out of VMX operation, unblocks INIT signals, conditionally re-
enables A20M, and clears any address-range monitoring.1

Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VMexit;

ELSIF CPL > 0
THEN #GP(0);

ELSIF dual-monitor treatment of SMIs and SMM is active
THEN VMfail(VMXOFF under dual-monitor treatment of SMIs and SMM);
ELSE

leave VMX operation;
unblock INIT;
unblock SMI;
IF outside SMX operation2

THEN unblock and enable A20M;
FI;
clear address-range monitoring;
VMsucceed;

FI;

...

VMXON—Enter VMX Operation

...

Operation

IF (register operand) or (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA =
1 and CS.L = 0)

THEN #UD;
ELSIF not in VMX operation

THEN
IF (CPL > 0) or (in A20M mode) or
(the values of CR0 and CR4 are not supported in VMX operation3) or
(bit 0 (lock bit) of IA32_FEATURE_CONTROL MSR is clear) or
(in SMX operation4 and bit 1 of IA32_FEATURE_CONTROL MSR is clear) or
(outside SMX operation and bit 2 of IA32_FEATURE_CONTROL MSR is clear)

THEN #GP(0);

1. See the information on MONITOR/MWAIT in Chapter 8, “Multiple-Processor Management,” of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

2. A logical processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GET-
SEC[SEXIT] was executed after the last execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode
Extensions Reference.”

3. See Section 19.8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 66

Documentation Changes

ELSE
addr  contents of 64-bit in-memory source operand;
IF addr is not 4KB-aligned or
(processor supports Intel 64 architecture and
addr sets any bits beyond the VMX physical-address width) or
(processor does not support Intel 64 architecture and
addr sets any bits in the range 63:32)

THEN VMfailInvalid;
ELSE

rev  32 bits located at physical address addr;
IF rev  VMCS revision identifier supported by processor

THEN VMfailInvalid;
ELSE

current-VMCS pointer  FFFFFFFF_FFFFFFFFH;
enter VMX operation;
block INIT signals;
block and disable A20M;
clear address-range monitoring;
VMsucceed;

FI;
FI;

FI;
ELSIF in VMX non-root operation

THEN VMexit;
ELSIF CPL > 0

THEN #GP(0);
ELSE VMfail(“VMXON executed in VMX root operation”);

FI;

...

11. Updates to Chapter 6, Volume 2B

Change bars show changes to Chapter 6 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2B: Instruction Set Reference, N-Z.

--

...

GETSEC[ENTERACCS] - Execute Authenticated Chipset Code

...

Operation in a Uni-Processor Platform
(* The state of the internal flag ACMODEFLAG persists across instruction boundary *)
IF (CR4.SMXE=0)

4. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execu-
tion of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER] has not
been executed or if GETSEC[SEXIT] was executed after the last execution of GETSEC[SENTER]. See
Chapter 6, “Safer Mode Extensions Reference.”

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 67

Documentation Changes

THEN #UD;
ELSIF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSIF (GETSEC leaf unsupported)

THEN #UD;
ELSIF ((in VMX operation) or

(CR0.PE=0) or (CR0.CD=1) or (CR0.NW=1) or (CR0.NE=0) or
(CPL>0) or (EFLAGS.VM=1) or
(IA32_APIC_BASE.BSP=0) or
(TXT chipset not present) or
(ACMODEFLAG=1) or (IN_SMM=1))

THEN #GP(0);
FOR I = 0 to IA32_MCG_CAP.COUNT-1 DO

IF (IA32_MC[I]_STATUS uncorrectable error)
THEN #GP(0);

OD;
IF (IA32_MCG_STATUS.MCIP=1) or (IERR pin is asserted)

THEN #GP(0);
ACBASE EBX;
ACSIZE ECX;
IF (((ACBASE MOD 4096) != 0) or ((ACSIZE MOD 64)!= 0) or (ACSIZE < minimum module size) OR (ACSIZE
> authenticated RAM capacity)) or ((ACBASE+ACSIZE) > (2^32 -1)))

THEN #GP(0);
IF (secondary thread(s) CR0.CD = 1) or ((secondary thread(s) NOT(wait-for-SIPI)) and

(secondary thread(s) not in SENTER sleep state)
THEN #GP(0);

Mask SMI, INIT, A20M, and NMI external pin events;
IA32_MISC_ENABLE (IA32_MISC_ENABLE & MASK_CONST*)
(* The hexadecimal value of MASK_CONST may vary due to processor implementations *)
A20M 0;
IA32_DEBUGCTL 0;
Invalidate processor TLB(s);
Drain Outgoing Transactions;
ACMODEFLAG 1;
SignalTXTMessage(ProcessorHold);
Load the internal ACRAM based on the AC module size;
(* Ensure that all ACRAM loads hit Write Back memory space *)
IF (ACRAM memory type != WB)

THEN TXT-SHUTDOWN(#BadACMMType);
IF (AC module header version isnot supported) OR (ACRAM[ModuleType] <> 2)

THEN TXT-SHUTDOWN(#UnsupportedACM);
 (* Authenticate the AC Module and shutdown with an error if it fails *)
KEY GETKEY(ACRAM, ACBASE);
KEYHASH HASH(KEY);
CSKEYHASH READ(TXT.PUBLIC.KEY);
IF (KEYHASH <> CSKEYHASH)

THEN TXT-SHUTDOWN(#AuthenticateFail);
SIGNATURE DECRYPT(ACRAM, ACBASE, KEY);
(* The value of SIGNATURE_LEN_CONST is implementation-specific*)
FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 68

Documentation Changes

ACRAM[SCRATCH.I] SIGNATURE[I];
COMPUTEDSIGNATURE HASH(ACRAM, ACBASE, ACSIZE);
FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

ACRAM[SCRATCH.SIGNATURE_LEN_CONST+I] COMPUTEDSIGNATURE[I];
IF (SIGNATURE<>COMPUTEDSIGNATURE)

THEN TXT-SHUTDOWN(#AuthenticateFail);
ACMCONTROL ACRAM[CodeControl];
IF ((ACMCONTROL.0 = 0) and (ACMCONTROL.1 = 1) and (snoop hit to modified line detected on ACRAM
load))

THEN TXT-SHUTDOWN(#UnexpectedHITM);
IF (ACMCONTROL reserved bits are set)

THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[GDTBasePtr] < (ACRAM[HeaderLen] * 4 + Scratch_size)) OR

((ACRAM[GDTBasePtr] + ACRAM[GDTLimit]) >= ACSIZE))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACMCONTROL.0 = 1) and (ACMCONTROL.1 = 1) and (snoop hit to modified line detected on ACRAM
load))

THEN ACEntryPoint ACBASE+ACRAM[ErrorEntryPoint];
ELSE

ACEntryPoint ACBASE+ACRAM[EntryPoint];
IF ((ACEntryPoint >= ACSIZE) OR (ACEntryPoint < (ACRAM[HeaderLen] * 4 + Scratch_size)))THEN TXT-
SHUTDOWN(#BadACMFormat);
IF (ACRAM[GDTLimit] & FFFF0000h)

THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[SegSel] > (ACRAM[GDTLimit] - 15)) OR (ACRAM[SegSel] < 8))

THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[SegSel].TI=1) OR (ACRAM[SegSel].RPL!=0))

THEN TXT-SHUTDOWN(#BadACMFormat);
CR0.[PG.AM.WP] 0;
CR4.MCE 0;
EFLAGS 00000002h;
IA32_EFER 0h;
[E|R]BX [E|R]IP of the instruction after GETSEC[ENTERACCS];
ECX Pre-GETSEC[ENTERACCS] GDT.limit:CS.sel;
[E|R]DX Pre-GETSEC[ENTERACCS] GDT.base;
EBP ACBASE;
GDTR.BASE ACBASE+ACRAM[GDTBasePtr];
GDTR.LIMIT ACRAM[GDTLimit];
CS.SEL ACRAM[SegSel];
CS.BASE 0;
CS.LIMIT FFFFFh;
CS.G 1;
CS.D 1;
CS.AR 9Bh;
DS.SEL ACRAM[SegSel]+8;
DS.BASE 0;
DS.LIMIT FFFFFh;
DS.G 1;
DS.D 1;
DS.AR 93h;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 69

Documentation Changes

DR7 00000400h;
IA32_DEBUGCTL 0;
SignalTXTMsg(OpenPrivate);
SignalTXTMsg(OpenLocality3);
EIP ACEntryPoint;
END;

...

GETSEC[PARAMETERS]—Report the SMX Parameters

...

Table 6-7 SMX Reporting Parameters Format

Parameter
Type EAX[4:0]

Parameter
Description EAX[31:5] EBX[31:0] ECX[31:0]

0 NULL Reserved (0
returned)

Reserved
(unmodified)

Reserved
(unmodified)

1 Supported AC
module versions

Reserved (0
returned)

version
comparison
mask

version
numbers
supported

2 Max size of
authenticated
code execution
area

Multiply by 32 for
size in bytes

Reserved
(unmodified)

Reserved
(unmodified)

3 External memory
types supported
during AC mode

Memory type bit
mask

Reserved
(unmodified)

Reserved
(unmodified)

4 Selective SENTER
functionality
control

EAX[14:8]
correspond to
available SENTER
function disable
controls

Reserved
(unmodified)

Reserved
(unmodified)

5 TXT extensions
support

TXT Feature
Extensions Flags
(see Table 6-8)

Reserved Reserved

6-31 Undefined Reserved
(unmodified)

Reserved
(unmodified)

Reserved
(unmodified)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 70

Documentation Changes

Table 6-8 TXT Feature Extensions Flags

...

Supported AC module versions (as defined by the AC module HeaderVersion field) can be
determined for a particular SMX capable processor by the type 1 parameter. Using EBX
to index through the available parameters reported by GETSEC[PARAMETERS] for each
unique parameter set returned for type 1, software can determine the complete list of AC
module version(s) supported.

For each parameter set, EBX returns the comparison mask and ECX returns the available
HeaderVersion field values supported, after AND'ing the target HeaderVersion with the
comparison mask. Software can then determine if a particular AC module version is
supported by following the pseudo-code search routine given below:

parameter_search_index= 0
do {

EBX= parameter_search_index++
EAX= 6
GETSEC
if (EAX[4:0] = 1) {

if ((version_query & EBX) = ECX) {
version_is_supported= 1
break

}
}

} while (EAX[4:0]!= 0)

...

GETSEC[SENTER]—Enter a Measured Environment

...

Operation in a Uni-Processor Platform
(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction boundary *)

Bit Definition Description

5 Processor based
S-CRTM support

Returns 1 if this processor implements a processor-
rooted S-CRTM capability and 0 if not (S-CRTM is rooted in
BIOS).
This flag cannot be used to infer whether the chipset
supports TXT or whether the processor support SMX.

6 Machine Check
Handling

Returns 1 if it machine check status registers can be
preserved through ENTERACCS and SENTER. If this bit is
1, the caller of ENTERACCS and SENTER is not required to
clear machine check error status bits before invoking
these GETSEC leaves.

If this bit returns 0, the caller of ENTERACCS and SENTER
must clear all machine check error status bits before
invoking these GETSEC leaves.

31:7 Reserved Reserved for future use. Will return 0.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 71

Documentation Changes

GETSEC[SENTER] (ILP only):
IF (CR4.SMXE=0)

THEN #UD;
ELSE IF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSE IF (GETSEC leaf unsupported)

THEN #UD;
ELSE IF ((in VMX root operation) or

(CR0.PE=0) or (CR0.CD=1) or (CR0.NW=1) or (CR0.NE=0) or
(CPL>0) or (EFLAGS.VM=1) or
(IA32_APIC_BASE.BSP=0) or (TXT chipset not present) or
(SENTERFLAG=1) or (ACMODEFLAG=1) or (IN_SMM=1) or
(TPM interface is not present) or
(EDX != (SENTER_EDX_support_mask & EDX)) or
(IA32_CR_FEATURE_CONTROL[0]=0) or (IA32_CR_FEATURE_CONTROL[15]=0) or
((IA32_CR_FEATURE_CONTROL[14:8] & EDX[6:0]) != EDX[6:0]))

THEN #GP(0);
FOR I = 0 to IA32_MCG_CAP.COUNT-1 DO

IF IA32_MC[I]_STATUS = uncorrectable error
THEN #GP(0);

FI;
OD;
IF (IA32_MCG_STATUS.MCIP=1) or (IERR pin is asserted)

THEN #GP(0);
ACBASE EBX;
ACSIZE ECX;
IF (((ACBASE MOD 4096) != 0) or ((ACSIZE MOD 64) != 0) or (ACSIZE < minimum

module size) or (ACSIZE > AC RAM capacity) or ((ACBASE+ACSIZE) > (2^32 -1)))
THEN #GP(0);

Mask SMI, INIT, A20M, and NMI external pin events;
SignalTXTMsg(SENTER);
DO
WHILE (no SignalSENTER message);

TXT_SENTER__MSG_EVENT (ILP & RLP):
Mask and clear SignalSENTER event;
Unmask SignalSEXIT event;
IF (in VMX operation)

THEN TXT-SHUTDOWN(#IllegalEvent);
FOR I = 0 to IA32_MCG_CAP.COUNT-1 DO

IF IA32_MC[I]_STATUS = uncorrectable error
THEN TXT-SHUTDOWN(#UnrecovMCError);

FI;
OD;
IF (IA32_MCG_STATUS.MCIP=1) or (IERR pin is asserted)

THEN TXT-SHUTDOWN(#UnrecovMCError);
IF (Voltage or bus ratio status are NOT at a known good state)

THEN IF (Voltage select and bus ratio are internally adjustable)
THEN

Make product-specific adjustment on operating parameters;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 72

Documentation Changes

ELSE
TXT-SHUTDOWN(#IIlegalVIDBRatio);

FI;

IA32_MISC_ENABLE (IA32_MISC_ENABLE & MASK_CONST*)
(* The hexadecimal value of MASK_CONST may vary due to processor implementations *)
A20M 0;
IA32_DEBUGCTL 0;
Invalidate processor TLB(s);
Drain outgoing transactions;
Clear performance monitor counters and control;
SENTERFLAG 1;
SignalTXTMsg(SENTERAck);
IF (logical processor is not ILP)

THEN GOTO RLP_SENTER_ROUTINE;
(* ILP waits for all logical processors to ACK *)
DO

DONE TXT.READ(LT.STS);
WHILE (not DONE);
SignalTXTMsg(SENTERContinue);
SignalTXTMsg(ProcessorHold);
FOR I=ACBASE to ACBASE+ACSIZE-1 DO

ACRAM[I-ACBASE].ADDR I;
ACRAM[I-ACBASE].DATA LOAD(I);

OD;
IF (ACRAM memory type != WB)

THEN TXT-SHUTDOWN(#BadACMMType);
IF (AC module header version is not supported) OR (ACRAM[ModuleType] <> 2)

THEN TXT-SHUTDOWN(#UnsupportedACM);
KEY GETKEY(ACRAM, ACBASE);
KEYHASH HASH(KEY);
CSKEYHASH LT.READ(LT.PUBLIC.KEY);
IF (KEYHASH <> CSKEYHASH)

THEN TXT-SHUTDOWN(#AuthenticateFail);
SIGNATURE DECRYPT(ACRAM, ACBASE, KEY);
(* The value of SIGNATURE_LEN_CONST is implementation-specific*)
FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

ACRAM[SCRATCH.I] SIGNATURE[I];
COMPUTEDSIGNATURE HASH(ACRAM, ACBASE, ACSIZE);
FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

ACRAM[SCRATCH.SIGNATURE_LEN_CONST+I] COMPUTEDSIGNATURE[I];
IF (SIGNATURE != COMPUTEDSIGNATURE)

THEN TXT-SHUTDOWN(#AuthenticateFail);
ACMCONTROL ACRAM[CodeControl];
IF ((ACMCONTROL.0 = 0) and (ACMCONTROL.1 = 1) and (snoop hit to modified line detected on ACRAM
load))

THEN TXT-SHUTDOWN(#UnexpectedHITM);
IF (ACMCONTROL reserved bits are set)

THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[GDTBasePtr] < (ACRAM[HeaderLen] * 4 + Scratch_size)) OR

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 73

Documentation Changes

((ACRAM[GDTBasePtr] + ACRAM[GDTLimit]) >= ACSIZE))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACMCONTROL.0 = 1) and (ACMCONTROL.1 = 1) and (snoop hit to modified
line detected on ACRAM load))
THEN ACEntryPoint ACBASE+ACRAM[ErrorEntryPoint];

ELSE
ACEntryPoint ACBASE+ACRAM[EntryPoint];

IF ((ACEntryPoint >= ACSIZE) or (ACEntryPoint < (ACRAM[HeaderLen] * 4 + Scratch_size)))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACRAM[SegSel] > (ACRAM[GDTLimit] - 15)) or (ACRAM[SegSel] < 8))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACRAM[SegSel].TI=1) or (ACRAM[SegSel].RPL!=0))
THEN TXT-SHUTDOWN(#BadACMFormat);

ACRAM[SCRATCH.SIGNATURE_LEN_CONST] EDX;
WRITE(TPM.HASH.START) 0;
FOR I=0 to SIGNATURE_LEN_CONST + 3 DO

WRITE(TPM.HASH.DATA) ACRAM[SCRATCH.I];
WRITE(TPM.HASH.END) 0;
ACMODEFLAG 1;
CR0.[PG.AM.WP] 0;
CR4 00004000h;
EFLAGS 00000002h;
IA32_EFER 0;
EBP ACBASE;
GDTR.BASE ACBASE+ACRAM[GDTBasePtr];
GDTR.LIMIT ACRAM[GDTLimit];
CS.SEL ACRAM[SegSel];
CS.BASE 0;
CS.LIMIT FFFFFh;
CS.G 1;
CS.D 1;
CS.AR 9Bh;
DS.SEL ACRAM[SegSel]+8;
DS.BASE 0;
DS.LIMIT FFFFFh;
DS.G 1;
DS.D 1;
DS.AR 93h;
SS DS;
ES DS;
DR7 00000400h;
IA32_DEBUGCTL 0;
SignalTXTMsg(UnlockSMRAM);
SignalTXTMsg(OpenPrivate);
SignalTXTMsg(OpenLocality3);
EIP ACEntryPoint;
END;

RLP_SENTER_ROUTINE: (RLP only)
Mask SMI, INIT, A20M, and NMI external pin events

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 74

Documentation Changes

Unmask SignalWAKEUP event;
Wait for SignalSENTERContinue message;
IA32_APIC_BASE.BSP 0;
GOTO SENTER sleep state;
END;

...

GETSEC[WAKEUP]—Wake up sleeping processors in measured
environment

...

Description

The GETSEC[WAKEUP] leaf function broadcasts a wake-up message to all logical proces-
sors currently in the SENTER sleep state. This GETSEC leaf must be executed only by the
ILP, in order to wake-up the RLPs. Responding logical processors (RLPs) enter the
SENTER sleep state after completion of the SENTER rendezvous sequence.

...

Operation
(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction boundary *)
IF (CR4.SMXE=0)

THEN #UD;
ELSE IF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSE IF (GETSEC leaf unsupported)

THEN #UD;
ELSE IF ((CR0.PE=0) or (CPL>0) or (EFLAGS.VM=1) or (SENTERFLAG=0) or (ACMODEFLAG=1) or
(IN_SMM=0) or (in VMX operation) or (IA32_APIC_BASE.BSP=0) or (TXT chipset not present))

THEN #GP(0);
ELSE

SignalTXTMsg(WAKEUP);
END;

RLP_SIPI_WAKEUP_FROM_SENTER_ROUTINE: (RLP only)
WHILE (no SignalWAKEUP event);
Mask SMI, A20M, and NMI external pin events (unmask INIT);
Mask SignalWAKEUP event;
Invalidate processor TLB(s);
Drain outgoing transactions;
TempGDTRLIMIT LOAD(LT.MLE.JOIN);
TempGDTRBASE LOAD(LT.MLE.JOIN+4);
TempSegSel LOAD(LT.MLE.JOIN+8);
TempEIP LOAD(LT.MLE.JOIN+12);
IF (TempGDTLimit & FFFF0000h)

THEN TXT-SHUTDOWN(#BadJOINFormat);
IF ((TempSegSel > TempGDTRLIMIT-15) or (TempSegSel < 8))

THEN TXT-SHUTDOWN(#BadJOINFormat);
IF ((TempSegSel.TI=1) or (TempSegSel.RPL!=0))

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 75

Documentation Changes

THEN TXT-SHUTDOWN(#BadJOINFormat);
CR0.[PG,CD,W,AM,WP] 0;
CR0.[NE,PE] 1;
CR4 00004000h;
EFLAGS 00000002h;
IA32_EFER 0;
GDTR.BASE TempGDTRBASE;
GDTR.LIMIT TempGDTRLIMIT;
CS.SEL TempSegSel;
CS.BASE 0;
CS.LIMIT FFFFFh;
CS.G 1;
CS.D 1;
CS.AR 9Bh;
DS.SEL TempSegSel+8;
DS.BASE 0;
DS.LIMIT FFFFFh;
DS.G 1;
DS.D 1;
DS.AR 93h;
SS DS;
ES DS;
DR7 00000400h;
IA32_DEBUGCTL 0;
EIP TempEIP;
END;

12. Updates to Appendix A, Volume 2B

Change bars show changes to Appendix A of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2B: Instruction Set Reference, N-Z.

--

Table A-2. One-byte Opcode Map: (08H — FFH) *

8 9 A B C D E F

0 OR PUSH
CSi64

2-byte
escape

(Table A-3) Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

1 SBB PUSH
DSi64

POP
DSi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

2 SUB SEG=CS
(Prefix)

DASi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

3 CMP SEG=DS
(Prefix)

AASi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

4 DECi64 general register / REXo64 Prefixes

eAX
REX.W

eCX
REX.WB

eDX
REX.WX

eBX
REX.WXB

eSP
REX.WR

eBP
REX.WRB

eSI
REX.WRX

eDI
REX.WRXB

5 POPd64 into general register

rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 76

Documentation Changes

13. Updates to Chapter 3, Volume 3A

Change bars show changes to Chapter 3 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

--

...

3.4.5 Segment Descriptors

...

The flags and fields in a segment descriptor are as follows:

Segment limit field
Specifies the size of the segment. The processor puts together the two
segment limit fields to form a 20-bit value. The processor interprets the
segment limit in one of two ways, depending on the setting of the G
(granularity) flag:

• If the granularity flag is clear, the segment size can range from 1 byte
to 1 MByte, in byte increments.

• If the granularity flag is set, the segment size can range from
4 KBytes to 4 GBytes, in 4-KByte increments.

6 PUSHd64

Iz
IMUL

Gv, Ev, Iz
PUSHd64

Ib
IMUL

Gv, Ev, Ib
INS/
INSB

Yb, DX

INS/
INSW/
INSD

Yz, DX

OUTS/
OUTSB
DX, Xb

OUTS/
OUTSW/
OUTSD
DX, Xz

7 Jccf64, Jb- Short displacement jump on condition

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

8 MOV MOV
Ev, Sw

LEA
Gv, M

MOV
Sw, Ew

Grp 1A1A
POPd64 Ev

Eb, Gb Ev, Gv Gb, Eb Gv, Ev

9 CBW/
CWDE/
CDQE

CWD/
CDQ/
CQO

CALLFi64

Ap
FWAIT/
WAIT

PUSHF/D/Q
d64/
Fv

POPF/D/Q
d64/
Fv

SAHF LAHF

A TEST STOS/B
Yb, AL

STOS/W/D/Q
Yv, rAX

LODS/B
AL, Xb

LODS/W/D/Q
rAX, Xv

SCAS/B
AL, Yb

SCAS/W/D/Q
rAX, Xv

AL, Ib rAX, Iz

B MOV immediate word or double into word, double, or quad register

rAX/r8, Iv rCX/r9, Iv rDX/r10, Iv rBX/r11, Iv rSP/r12, Iv rBP/r13, Iv rSI/r14, Iv rDI/r15 , Iv

C ENTER LEAVEd64 RETF RETF INT 3 INT INTOi64 IRET/D/Q

Iw, Ib Iw Ib

D ESC (Escape to coprocessor instruction set)

E CALLf64 JMP IN OUT

Jz nearf64

Jz
fari64

Ap
shortf64

Jb
AL, DX eAX, DX DX, AL DX, eAX

F CLC STC CLI STI CLD STD INC/DEC INC/DEC

Grp 41A Grp 51A

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

8 9 A B C D E F

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 77

Documentation Changes

The processor uses the segment limit in two different ways, depending on
whether the segment is an expand-up or an expand-down segment. See
Section 3.4.5.1, “Code- and Data-Segment Descriptor Types”, for more
information about segment types. For expand-up segments, the offset in
a logical address can range from 0 to the segment limit. Offsets greater
than the segment limit generate general-protection exceptions (#GP, for
all segment other than SS) or stack-fault exceptions (#SS for the SS
segment). For expand-down segments, the segment limit has the reverse
function; the offset can range from the segment limit plus 1 to FFFFFFFFH
or FFFFH, depending on the setting of the B flag. Offsets less than or
equal to the segment limit generate general-protection exceptions or
stack-fault exceptions. Decreasing the value in the segment limit field for
an expand-down segment allocates new memory at the bottom of the
segment's address space, rather than at the top. IA-32 architecture
stacks always grow downwards, making this mechanism convenient for
expandable stacks.

...

14. Updates to Chapter 6, Volume 3A

Change bars show changes to Chapter 6 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

--

...

6.15 EXCEPTION AND INTERRUPT REFERENCE

...

Interrupt 17—Alignment Check Exception (#AC)

Exception Class Fault.

Description

Indicates that the processor detected an unaligned memory operand when alignment
checking was enabled. Alignment checks are only carried out in data (or stack) accesses
(not in code fetches or system segment accesses). An example of an alignment-check
violation is a word stored at an odd byte address, or a doubleword stored at an address
that is not an integer multiple of 4. Table 6-7 lists the alignment requirements various
data types recognized by the processor.

Table 6-7 Alignment Requirements by Data Type

Data Type Address Must Be Divisible By

Word 2

Doubleword 4

Single-precision floating-point (32-bits) 4

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 78

Documentation Changes

Note that the alignment check exception (#AC) is generated only for data types that
must be aligned on word, doubleword, and quadword boundaries. A general-protection
exception (#GP) is generated 128-bit data types that are not aligned on a 16-byte
boundary.

To enable alignment checking, the following conditions must be true:

• AM flag in CR0 register is set.

• AC flag in the EFLAGS register is set.

• The CPL is 3 (protected mode or virtual-8086 mode).

Alignment-check exceptions (#AC) are generated only when operating at privilege level
3 (user mode). Memory references that default to privilege level 0, such as segment
descriptor loads, do not generate alignment-check exceptions, even when caused by a
memory reference made from privilege level 3.

Storing the contents of the GDTR, IDTR, LDTR, or task register in memory while at priv-
ilege level 3 can generate an alignment-check exception. Although application programs
do not normally store these registers, the fault can be avoided by aligning the informa-
tion stored on an even word-address.

The FXSAVE/XSAVE and FXRSTOR/XRSTOR instructions save and restore a 512-byte
data structure, the first byte of which must be aligned on a 16-byte boundary. If the
alignment-check exception (#AC) is enabled when executing these instructions (and CPL
is 3), a misaligned memory operand can cause either an alignment-check exception or a
general-protection exception (#GP) depending on the processor implementation (see
“FXSAVE-Save x87 FPU, MMX, SSE, and SSE2 State” and “FXRSTOR-Restore x87 FPU,
MMX, SSE, and SSE2 State” in Chapter 3 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A; see “XSAVE—Save Processor Extended States”
and “XRSTOR—Restore Processor Extended States” in Chapter 4 of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2B).

The MOVDQU, MOVUPS, and MOVUPD instructions perform 128-bit unaligned loads or
stores. The LDDQU instructions loads 128-bit unaligned data.They do not generate
general-protection exceptions (#GP) when operands are not aligned on a 16-byte
boundary. If alignment checking is enabled, alignment-check exceptions (#AC) may or

Double-precision floating-point (64-bits) 8

Double extended-precision floating-point (80-
bits)

8

Quadword 8

Double quadword 16

Segment Selector 2

32-bit Far Pointer 2

48-bit Far Pointer 4

32-bit Pointer 4

GDTR, IDTR, LDTR, or Task Register Contents 4

FSTENV/FLDENV Save Area 4 or 2, depending on operand size

FSAVE/FRSTOR Save Area 4 or 2, depending on operand size

Bit String 2 or 4 depending on the operand-size attribute.

Table 6-7 Alignment Requirements by Data Type

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 79

Documentation Changes

may not be generated depending on processor implementation when data addresses are
not aligned on an 8-byte boundary.

FSAVE and FRSTOR instructions can generate unaligned references, which can cause
alignment-check faults. These instructions are rarely needed by application programs.

Exception Error Code

Yes (always zero).

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the
exception.

Program State Change

A program-state change does not accompany an alignment-check fault, because the
instruction is not executed.

15. Updates to Chapter 8, Volume 3A

Change bars show changes to Chapter 8 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

--

...

8.1.1 Guaranteed Atomic Operations
The Intel486 processor (and newer processors since) guarantees that the following basic
memory operations will always be carried out atomically:

• Reading or writing a byte

• Reading or writing a word aligned on a 16-bit boundary

• Reading or writing a doubleword aligned on a 32-bit boundary

The Pentium processor (and newer processors since) guarantees that the following addi-
tional memory operations will always be carried out atomically:

• Reading or writing a quadword aligned on a 64-bit boundary

• 16-bit accesses to uncached memory locations that fit within a 32-bit data bus

The P6 family processors (and newer processors since) guarantee that the following
additional memory operation will always be carried out atomically:

• Unaligned 16-, 32-, and 64-bit accesses to cached memory that fit within a cache
line

Accesses to cacheable memory that are split across cache lines and page boundaries are
not guaranteed to be atomic by the Intel Core 2 Duo, Intel® Atom™, Intel Core Duo,
Pentium M, Pentium 4, Intel Xeon, P6 family, Pentium, and Intel486 processors. The
Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium M, Pentium 4, Intel Xeon, and P6
family processors provide bus control signals that permit external memory subsystems
to make split accesses atomic; however, nonaligned data accesses will seriously impact
the performance of the processor and should be avoided.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 80

Documentation Changes

...

16. Updates to Chapter 10, Volume 3A

Change bars show changes to Chapter 10 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

--

...

10.5.1 Local Vector Table
The local vector table (LVT) allows software to specify the manner in which the local
interrupts are delivered to the processor core. It consists of the following 32-bit APIC
registers (see Figure 10-8), one for each local interrupt:

...
Timer Mode Bits 18:17 selects the timer mode (see Section 10.5.4):

(00b) one-shot mode using a count-down value,

(01b) periodic mode reloading a count-down value,

(10b) TSC-Deadline mode using absolute target value in
IA32_TSC_DEADLINE MSR (see Section 10.5.4.1),

(11b) is reserved.

...

10.5.4.1 TSC-Deadline Mode
If CPUID.01H:ECX.TSC_Deadline[bit 24] = 1, the local APIC timer mode is determined
by bits 18:17 of the LVT Timer Register (see Figure 10-8). If
CPUID.01H:ECX.TSC_Deadline[bit 24] = 0, the local APIC timer mode is determined by
bit 17 of the LVT Timer Register; bit 18 of the register is reserved. A write to the LVT
timer register that changes the timer mode disarms the local APIC timer. The supported
timer mode is given in Table 10-3.

The TSC-Deadline mode allows software to use local APIC timer to generate one-shot
event with an absolute target value. The three modes of the local APIC timer are mutu-
ally exclusive.

In TSC-Deadline mode, writes to the initial-count register are ignored; and current-
count register always reads 0.

Table 10-3 Local APIC Timer Modes

LVT Bits [18:17] Timer Mode

00b One-shot mode, program count-down value in an initial-count
register. See Section 10.5.4

01b Periodic mode, program interval value in an initial-count register. See
Section 10.5.4

10b TSC-Deadline mode, program target value in IA32_TSC_DEADLINE
MSR.

11b Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 81

Documentation Changes

• IA32_TSC_DEADLINE MSR

The TSC-Deadline mode local APIC timer is disarmed by writing 0 into the
IA32_TSC_DEADLINE MSR. Writing a non-zero value into IA32_TSC_DEADLINE
arms the timer. When the timer generates the timer event, it disarms by clearing
IA32_TSC_DEADLINE. Transitioning between TSC-Deadline mode and other Local
APIC timer modes always disarms the timer. A timer event is generated when the
logical processor's timestamp counter equals or exceeds the target value in the
IA32_TSC_DEADLINE MSR.

IA32_TSC_DEADLINE is a per-logical processor MSR with non-serializing behavior,
i.e., it has been optimized for low cost of access.

Software specifies an unsigned 64-bit target value in the IA32_TSC_DEADLINE MSR
for each logical processor that needs a one-shot timer event. Each logical processor
may have a unique timer event. The target value represents an absolute time tick on
which the timer event can be delivered to that logical processor.

The hardware reset value of IA32_TSC_DEADLINE is 0. In Local APIC Timer mode
(LVT bit 18 = 0), IA32_TSC_DEADLINE reads zero and writes are ignored.

• TSC-Deadline Mode Programming Model

Software can configure the TSC-Deadline Timer to deliver a one shot timer event
using the following algorithm:

a. Detect TSC-Deadline Timer feature support by verifying CPUID.1:ECX.24 = 1.

b. Select the TSC-Deadline Timer mode by programming bits 18:17 of the LVT
Timer register with 10b.

c. Program the IA32_TSC_DEADLINE MSR with the target TSC value when the
timer tick is needed. This causes the processor to "arm" the TSC-Deadline Timer.

d. The processor generates a timer event when the value of IA32_TSC MSR is
greater than or equal to that of IA32_TSC_DEADLINE, then "disarms" the local
APIC Timer and sets IA32_TSC_DEADLINE to 0. Both IA32_TSC MSR and
IA32_TSC_DEADLINE are 64-bit unsigned integers.

e. Software can re-arm the TSC-Deadline Timer by repeating step c.

• TSC-Deadline Mode Usage Guidelines

a. Writes to the IA32_TSC_DEADLINE MSR are not serialized. Therefore, system
software should not use "WRMSR to IA32_TSC_DEADLINE" as a serializing
instruction. Read and write accesses to the IA32_TSC_DEADLINE and other MSR
registers will occur in program order.

b. Software can cancel or disarm the TSC-Deadline Timer at any time by writing a
value of 0 to IA32_TSC_DEADLINE.

c. If TSC-Deadline Timer is already in armed state, software can move TSC deadline
forward or backward by writing the new TSC value to the IA32_TSC_DEADLINE
MSR.

d. If software cancels or moves the TSC deadline forward or backward, race
conditions caused by "in-flight" interrupts can still result in the delivery of a
spurious timer interrupt. Software is expected to detect the spurious interrupt by
checking the current value in IA32_TSC MSR to see if the interrupt was expected.

e. If the processor’s xAPIC is in the legacy mode (local APIC registers are
programmed via MMIO interfaces), software must serialize between the MMIO
write to the LVT entry and the MSR write to IA32_TSC_DEADLINE. Note that if
the APIC is in the extended (X2APIC) mode, no serialization is required between
the two MSR writes to the LVT and IA32_TSC_DEADLINE MSR.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 82

Documentation Changes

An example for serializing writes in legacy xAPIC mode is shown below:

1. MMIO write to LVT Timer Register bit 18:17 = 10b.

2. WRMSR(IA32_TSC_DEADLINE) with a value much larger than current TSC.

3. If RDMSR of IA32_TSC_DEADLINE returns zero, go to step 2.

4. WRMSR(IA32_TSC_DEADLINE) with a desired TSC-Deadline Timer value.

...

10.12.6 System Software Transitions
This section describes implications for the x2APIC across system state transitions -
specifically initialization and booting.

Support for the x2APIC architecture can be implemented in the local APIC unit. All
existing PCI/MSI capable devices and IOxAPIC unit should work with the x2APIC exten-
sions defined in this document. The x2APIC architecture also provides flexibility to cope
with the underlying fabrics that connect the PCI devices, IOxAPICs and Local APIC units.

The extensions provided in this specification translate into modifications to:

• the local APIC unit,

• the underlying fabrics connecting Message Signaled Interrupts (MSI) capable PCI
devices to local xAPICs,

• the underlying fabrics connecting the IOxAPICs to the local APIC units.

However no modifications are required to PCI or PCIe devices that support direct inter-
rupt delivery to the processors via Message Signaled Interrupts. Similarly no modifica-
tions are required to the IOxAPIC. The routing of interrupts from these devices in x2APIC
mode leverages the interrupt remapping architecture specified in the Intel® Virtualiza-
tion Technology for Directed I/O, Rev 1.2 specification. As a result, BIOS must
enumerate support for and software must enable interrupt remapping with Extended
Interrupt Mode Enabled (EIME) before it enables x2APIC.

Modifications to ACPI interfaces to support x2APIC are described in Appendix A, “ACPI
Extensions for x2APIC Support”, of the Intel® 64 Architecture x2APIC Specification.

The default will be for the BIOS to pass the control to the OS with the local x2APICs in
xAPIC mode if all x2APIC IDs reported by CPUID.0BH:EDX are less than 255, and in
x2APIC mode if there are any logical processor reporting its x2APIC ID at 255 or greater.

...

17. Updates to Chapter 14, Volume 3A

Change bars show changes to Chapter 14 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

--

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 83

Documentation Changes

14.5.3.1 Extension of Software Controlled Clock Modulation
Extension of the software controlled clock modulation facility supports on-demand clock
modulation duty cycle with 4-bit dynamic range (increased from 3-bit range). Granu-
larity of clock modulation duty cycle is increased to 6.25% (compared to 12.5%).

Four bit dynamic range control is provided by using bit 0 in conjunction with bits 3:1 of
the IA32_CLOCK_MODULATION MSR (see Figure 14-11).

Extension to software controlled clock modulation is supported only if
CPUID.06H:EAX[Bit 5] = 1. If CPUID.06H:EAX[Bit 5] = 0, then bit 0 of
IA32_CLOCK_MODULATION is reserved.

...

14.5.4.1 Detection of Software Controlled Clock Modulation Extension
Processor’s support of software controlled clock modulation extension is indicated by
CPUID.06H:EAX[Bit 5] = 1.

...

14.5.5.2 Reading the Digital Sensor

...

• Power Limitation Status (bit 10, RO) — Indicates whether the processor is
currently operating below OS-requested P-state (specified in IA32_PERF_CTL) or
OS-requested clock modulation duty cycle (specified in
IA32_CLOCK_MODULATION). This field is supported only if CPUID.06H:EAX[bit 4] =
1. Package level power limit notification can be delivered independently to
IA32_PACKAGE_THERM_STATUS MSR.

• Power Notification Log (bit 11, R/WCO) — Sticky bit that indicates the
processor went below OS-requested P-state or OS-requested clock modulation duty
cycle since the last clearing of this or RESET. This field is supported only if
CPUID.06H:EAX[bit 4] = 1. Package level power limit notification is indicated
independently in IA32_PACKAGE_THERM_STATUS MSR.

...

• Power Limit Notification Enable (bit 24, R/W) — Enables the generation of
power notification events when the processor went below OS-requested P-state or
OS-requested clock modulation duty cycle. This field is supported only if
CPUID.06H:EAX[bit 4] = 1. Package level power limit notification can be enabled
independently by IA32_PACKAGE_THERM_INTERRUPT MSR.

Figure 14-11 IA32_CLOCK_MODULATION MSR with Clock Modulation Extension

63 0

Reserved

3

Extended On-Demand Clock Modulation Duty Cycle
On-Demand Clock Modulation Enable

45

Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 84

Documentation Changes

14.5.6 Power Limit Notification
Platform firmware may be capable of specifying a power limit to restrict power delivered
to a platform component, such as a physical processor package. This constraint imposed
by platform firmware may occasionally cause the processor to operate below OS-
requested P or T-state. A power limit notification event can be delivered using the
existing thermal LVT entry in the local APIC.

Software can enumerate the presence of the processor’s support for power limit notifica-
tion by verifying CPUID.06H:EAX[bit 4] = 1.

If CPUID.06H:EAX[bit 4] = 1, then IA32_THERM_INTERRUPT and IA32_THERM_STATUS
provides the following facility to manage power limit notification:

• Bits 10 and 11 in IA32_THERM_STATUS informs software of the occurrence of
processor operating below OS-requested P-state or clock modulation duty cycle
setting (see Figure 14-12).

• Bit 24 in IA32_THERM_INTERRUPT enables the local APIC to deliver a thermal event
when the processor went below OS-requested P-state or clock modulation duty cycle
setting (see Figure 14-13).

14.6 PACKAGE LEVEL THERMAL MANAGEMENT
The thermal management facilities like IA32_THERM_INTERRUPT and
IA32_THERM_STATUS are often implemented with a processor core granularity. To facil-
itate software manage thermal events from a package level granularity, two architec-
tural MSR is provided for package level thermal management. The
IA32_PACKAGE_THERM_STATUS and IA32_PACKAGE_THERM_INTERRUPT MSRs use
similar interfaces as IA32_THERM_STATUS and IA32_THERM_INTERRUPT, but are
shared in each physical processor package.

Software can enumerate the presence of the processor’s support for package level
thermal management facility (IA32_PACKAGE_THERM_STATUS and
IA32_PACKAGE_THERM_INTERRUPT) by verifying CPUID.06H:EAX[bit 6] = 1.

The layout of IA32_PACKAGE_THERM_STATUS MSR is shown in Figure 14-14.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 85

Documentation Changes

• Package Thermal Status (bit 0, RO) — This bit indicates whether the digital
thermal sensor high-temperature output signal (PROCHOT#) for the package is
currently active. Bit 0 = 1 indicates the feature is active. This bit may not be written
by software; it reflects the state of the digital thermal sensor.

• Package Thermal Status Log (bit 1, R/WC0) — This is a sticky bit that indicates
the history of the thermal sensor high temperature output signal (PROCHOT#) of the
package. Bit 1 = 1 if package PROCHOT# has been asserted since a previous RESET
or the last time software cleared the bit. Software may clear this bit by writing a zero.

• Package PROCHOT# Event (bit 2, RO) — Indicates whether package PROCHOT#
is being asserted by another agent on the platform.

• Package PROCHOT# Log (bit 3, R/WC0) — Sticky bit that indicates whether
package PROCHOT# has been asserted by another agent on the platform since the
last clearing of this bit or a reset. If bit 3 = 1, package PROCHOT# has been
externally asserted. Software may clear this bit by writing a zero.

• Package Critical Temperature Status (bit 4, RO) — Indicates whether the
package critical temperature detector output signal is currently active. If bit 4 = 1,
the package critical temperature detector output signal is currently active.

• Package Critical Temperature Log (bit 5, R/WC0) — Sticky bit that indicates
whether the package critical temperature detector output signal has been asserted
since the last clearing of this bit or reset. If bit 5 = 1, the output signal has been
asserted. Software may clear this bit by writing a zero.

• Package Thermal Threshold #1 Status (bit 6, RO) — Indicates whether the
actual package temperature is currently higher than or equal to the value set in
Package Thermal Threshold #1. If bit 6 = 0, the actual temperature is lower. If
bit 6 = 1, the actual temperature is greater than or equal to PTT#1. Quantitative
information of actual package temperature can be inferred from Package Digital
Readout, bits 22:16.

Figure 14-14 IA32_PACKAGE_THERM_STATUS Register

63 0

Reserved

15 1234581016222327

PKG Digital Readout

PKG Thermal Threshold #2 Log
PKG Thermal Threshold #2 Status
PKG Thermal Threshold #1 Log
PKG Thermal Threshold #1 Status
PKG Critical Temperature Log

6793132

PKG Critical Temperature Status
PKG PROCHOT# or FORCEPR# Log
PKG PROCHOT# or FORCEPR# Event
PKG Thermal Status Log
PKG Thermal Status

11

PKG Power Limit Notification Log
PKG Power Limit Notification Status

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 86

Documentation Changes

• Package Thermal Threshold #1 Log (bit 7, R/WC0) — Sticky bit that indicates
whether the Package Thermal Threshold #1 has been reached since the last clearing
of this bit or a reset. If bit 7 = 1, the Package Threshold #1 has been reached.
Software may clear this bit by writing a zero.

• Package Thermal Threshold #2 Status (bit 8, RO) — Indicates whether actual
package temperature is currently higher than or equal to the value set in Package
Thermal Threshold #2. If bit 8 = 0, the actual temperature is lower. If bit 8 = 1, the
actual temperature is greater than or equal to PTT#2. Quantitative information of
actual temperature can be inferred from Package Digital Readout, bits 22:16.

• Package Thermal Threshold #2 Log (bit 9, R/WC0) — Sticky bit that indicates
whether the Package Thermal Threshold #2 has been reached since the last clearing
of this bit or a reset. If bit 9 = 1, the Package Thermal Threshold #2 has been
reached. Software may clear this bit by writing a zero.

• Package Power Limitation Status (bit 10, RO) — Indicates package power limit
is forcing one ore more processors to operate below OS-requested P-state. Note that
package power limit violation may be caused by processor cores or by devices
residing in the uncore. Software can examine IA32_THERM_STATUS to determine if
the cause originates from a processor core (see Figure 14-12).

• Package Power Notification Log (bit 11, R/WCO) — Sticky bit that indicates
any processor in the package went below OS-requested P-state or OS-requested
clock modulation duty cycle since the last clearing of this or RESET.

• Package Digital Readout (bits 22:16, RO) — Package digital temperature
reading in 1 degree Celsius relative to the package TCC activation temperature.

0: Package TCC Activation temperature,

1: (PTCC Activation - 1) , etc. See the processor’s data sheet for details regarding
PTCC activation.

A lower reading in the Package Digital Readout field (bits 22:16) indicates a higher
actual temperature.

The layout of IA32_PACKAGE_THERM_INTERRUPT MSR is shown in Figure 14-15.

• Package High-Temperature Interrupt Enable (bit 0, R/W) — This bit allows
the BIOS to enable the generation of an interrupt on the transition from low-

Figure 14-15 IA32_PACKAGE_THERM_INTERRUPT Register

63 0

Reserved

15

Pkg Threshold #2 Interrupt Enable

1234581416222324

Pkg Threshold #2 Value
Pkg Threshold #1 Interrupt Enable
Pkg Threshold #1 Value
Pkg Overheat Interrupt Enable
Pkg PROCHOT# Interrupt Enable
Pkg Low Temp. Interrupt Enable
Pkg High Temp. Interrupt Enable

25

Pkg Power Limit Notification Enable

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 87

Documentation Changes

temperature to a package high-temperature threshold. Bit 0 = 0 (default) disables
interrupts; bit 0 = 1 enables interrupts.

• Package Low-Temperature Interrupt Enable (bit 1, R/W) — This bit allows the
BIOS to enable the generation of an interrupt on the transition from high-
temperature to a low-temperature (TCC de-activation). Bit 1 = 0 (default) disables
interrupts; bit 1 = 1 enables interrupts.

• Package PROCHOT# Interrupt Enable (bit 2, R/W) — This bit allows the BIOS
or OS to enable the generation of an interrupt when Package PROCHOT# has been
asserted by another agent on the platform and the Bidirectional Prochot feature is
enabled. Bit 2 = 0 disables the interrupt; bit 2 = 1 enables the interrupt.

• Package Critical Temperature Interrupt Enable (bit 4, R/W) — Enables the
generation of an interrupt when the Package Critical Temperature Detector has
detected a critical thermal condition. The recommended response to this condition is
a system shutdown. Bit 4 = 0 disables the interrupt; bit 4 = 1 enables the interrupt.

• Package Threshold #1 Value (bits 14:8, R/W) — A temperature threshold,
encoded relative to the Package TCC Activation temperature (using the same format
as the Digital Readout). This threshold is compared against the Package Digital
Readout and is used to generate the Package Thermal Threshold #1 Status and Log
bits as well as the Package Threshold #1 thermal interrupt delivery.

• Package Threshold #1 Interrupt Enable (bit 15, R/W) — Enables the
generation of an interrupt when the actual temperature crosses the Package
Threshold #1 setting in any direction. Bit 15 = 0 enables the interrupt; bit 15 = 1
disables the interrupt.

• Package Threshold #2 Value (bits 22:16, R/W) —A temperature threshold,
encoded relative to the PTCC Activation temperature (using the same format as the
Package Digital Readout). This threshold is compared against the Package Digital
Readout and is used to generate the Package Thermal Threshold #2 Status and Log
bits as well as the Package Threshold #2 thermal interrupt delivery.

• Package Threshold #2 Interrupt Enable (bit 23, R/W) — Enables the
generation of an interrupt when the actual temperature crosses the Package
Threshold #2 setting in any direction. Bit 23 = 0 enables the interrupt; bit 23 = 1
disables the interrupt.

• Package Power Limit Notification Enable (bit 24, R/W) — Enables the
generation of package power notification events.

14.6.1 Support for Passive and Active cooling
Passive and active cooling may be controlled by the OS power management agent
through ACPI control methods. On platforms providing package level thermal manage-
ment facility described in the previous section, it is recommended that active cooling
(FAN control) should be driven by measuring the package temperature using the
IA32_PACKAGE_THERM_INTERRUPT MSR.

Passive cooling (frequency throttling) should be driven by measuring (a) the core and
package temperatures, or (b) only the package temperature. If measured package
temperature led the power management agent to choose which core to execute passive
cooling, then all cores need to execute passive cooling. Core temperature is measured
using the IA32_THERMAL_STATUS and IA32_THERMAL_INTERRUPT MSRs. The exact
implementation details depend on the platform firmware and possible solutions include
defining two different thermal zones (one for core temperature and passive cooling and
the other for package temperature and active cooling).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 88

Documentation Changes

14.7 PLATFORM SPECIFIC POWER MANAGEMENT SUPPORT
This section covers power management interfaces that are not architectural but
addresses the power management needs of several platform specific components.
Specifically, RAPL (Running Average Power Limit) interfaces provide mechanisms to
enforce power consumption limit. Power limiting usages have specific usages in client
and server platforms.

For client platform power limit control and for server platforms used in a data center, the
following power and thermal related usages are desirable:

• Platform Thermal Management: Robust mechanisms to manage component,
platform, and group-level thermals, either proactively or reactively (e.g., in response
to a platform-level thermal trip point).

• Platform Power Limiting: More deterministic control over the system's power
consumption, for example to meet battery life targets on rack- or container-level
power consumption goals within a datacenter.

• Power/Performance Budgeting: Efficient means to control the power consumed (and
therefore the sustained performance delivered) within and across platforms.

The server and client usage models are addressed by RAPL interfaces, which exposes
multiple domains of power rationing within each processor socket. Generally, these RAPL
domains may be viewed to include hierarchically:

• Package domain is the processor die.

• Memory domain include the directly-attached DRAM; additional power plane may
constitutes a separate domain.

In order to manage the power consumed across multiple sockets via RAPL, individual
limits must be programmed for each processor complex. Programming specific RAPL
domain across multiple sockets is not supported.

14.7.1 RAPL Interfaces
RAPL interfaces consist of non-architectural MSRs. Each RAPL domain supports the
following set of capabilities, some of which are optional as stated below.

• Power limit - MSR interfaces to specify power limit, time window; lock bit, clamp bit
etc.

• Energy Status - Power metering interface providing energy consumption infor-
mation.

• Perf Status (Optional) - Interface providing information on the performance effects
(regression) due to power limits. It is defined as a duration metric that measures the
power limit effect in the respective domain. The meaning of duration is domain
specific.

• Power Info (Optional) - Interface providing information on the range of parameters
for a given domain, minimum power, maximum power etc.

• Policy (Optional) - 4-bit priority information which is a hint to hardware for dividing
budget between sub-domains in a parent domain.

Each of the above capabilities requires specific units in order to describe them. Power is
expressed in Watts, Time is expressed in Seconds and Energy is expressed in Joules.
Scaling factors are supplied to each unit to make the information presented meaningful
in a finite number of bits. Units for power, energy and time are exposed in the read-only
MSR_RAPL_POWER_UNIT MSR.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 89

Documentation Changes

MSR_RAPL_POWER_UNIT (Figure 14-16) provides the following information across all
RAPL domains:

• Power Units (bits 3:0): Power related information (in Watts) is based on the
multiplier, 1/ 2^PU; where PU is an unsigned integer represented by bits 3:0. Default
value is 0011b, indicating power unit is in 1/8 Watts increment.

• Energy Status Units (bit 12:8): Energy related information (in Joules) is based on
the multiplier, 1/2^ESU; where ESU is an unsigned integer represented by bits 12:8.
Default value is 10000b, indicating energy status unit is in 15.3 micro-Joules
increment.

• Time Units (bits 19:16): Time related information (in Seconds) is based on the
multiplier, 1/ 2^TU; where TU is an unsigned integer represented by bits 19:16.
Default value is 1010b, indicating time unit is in 976 micro-seconds increment.

14.7.2 RAPL Domains and Platform Specificity
The specific RAPL domains available in a platform varies across product segments. Plat-
forms targeting client segment support the following RAPL domain hierarchy:

• Package

• Two power planes: PP0 and PP1 (PP1 may reflect to uncore devices)

Platforms targeting server segment support the following RAPL domain hierarchy:

• Package

• Power plane: PP0

• DRAM

Each level of the RAPL hierarchy provides respective set of RAPL interface MSRs. Table
14-2 lists the RAPL MSR interfaces available for each RAPL domain. The power limit MSR
of each RAPL domain is located at offset 0 relative to an MSR base address which is non-
architectural (see Appendix B). The energy status MSR of each domain is located at
offset 1 relative to the MSR base address of respective domain.

Figure 14-16 MSR_RAPL_POWER_UNIT Register

Table 14-2 RAPL MSR Interfaces and RAPL Domains

 Domain Power Limit
(Offset 0)

 Energy Status
(Offset 1)

 Policy
(Offset 2)

 Perf Status
(Offset 3)

 Power Info
(Offset 4)

63 0

Reserved

13 347812151920

Time units
Energy status units
Power units

16

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 90

Documentation Changes

The presence of the optional MSR interfaces (the three right-most columns of Table 14-
2) may be model-specific. See Appendix B for detail.

14.7.3 Package RAPL Domain
The MSR interfaces defined for the package RAPL domain are:

• MSR_PKG_POWER_LIMIT allows software to set power limits for the package and
measurement attributes associated with each limit,

• MSR_PKG_ENERGY_STATUS reports measured actual energy usage,

• MSR_PKG_POWER_INFO reports the package power range information for RAPL
usage.

MSR_PKG_RAPL_PERF_STATUS can report the performance impact of power limiting,
but its availability may be model-specific

MSR_PKG_POWER_LIMIT allows a software agent to define power limitation for the
package domain. Power limitation is defined in terms of average power usage (Watts)
over a time window specified in MSR_PKG_POWER_LIMIT. Two power limits can be spec-
ified, corresponding to time windows of different sizes. Each power limit provides inde-
pendent clamping control that would permit the processor cores to go below OS-
requested state to meet the power limits. A lock mechanism allow the software agent to
enforce power limit settings. Once the lock bit is set, the power limit settings are static
and un-modifiable until next RESET.

The bit fields of MSR_PKG_POWER_LIMIT (Figure 14-17) are:

PKG MSR_PKG_PO
WER_LIMIT

MSR_PKG_ENER
GY_STATUS

RESERVED MSR_PKG_RAPL_
PERF_STATUS

MSR_PKG_PO
WER_INFO

DRAM MSR_DRAM_
POWER_LIMIT

MSR_DRAM_EN
ERGY_STATUS

RESERVED MSR_DRAM_RAPL
_PERF_STATUS

MSR_DRAM_P
OWER_INFO

PP0 MSR_PP0_PO
WER_LIMIT

MSR_PP0_ENER
GY_STATUS

MSR_PP0_P
OLICY

RESERVED RESERVED

PP1 MSR_PP1_PO
WER_LIMIT

MSR_PP1_ENER
GY_STATUS

MSR_PP1_P
OLICY

RESERVED RESERVED

Figure 14-17 MSR_PKG_POWER_LIMIT Register

Table 14-2 RAPL MSR Interfaces and RAPL Domains

63

Enable limit #1
Pkg clamping limit #1
Enable limit #2
Pkg clamping limit #2

31 24 23 15 0

Pkg Power Limit #1

48 47 3262 56 55 49 46 14
L
O
C

Pkg Power Limit #2

1617

K

Time window
Power Limit #2

Time window
Power Limit #1

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 91

Documentation Changes

• Package Power Limit #1(bits 14:0): Sets the average power usage limit of the
package domain corresponding to time window # 1. The unit of this field is specified
by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Enable Power Limit #1(bit 15): 0 = disabled; 1 = enabled.

• Package Clamping Limitation #1 (bits 16): Allow going below OS-requested P/T
state setting during time window specified by bits 23:17.

• Time Window for Power Limit #1 (bits 23:17): Indicates the length of time
window over which the power limit #1 The numeric value encoded by bits 23:17 is
represented by the product of 2^Y *F; where F is a single-digit decimal floating-point
value between 1.0 and 1.3 with the fraction digit represented by bits 23:22, Y is an
unsigned integer represented by bits 21:17. The unit of this field is specified by the
“Time Units” field of MSR_RAPL_POWER_UNIT.

• Package Power Limit #2(bits 46:32): Sets the average power usage limit of the
package domain corresponding to time window # 2. The unit of this field is specified
by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Enable Power Limit #2(bit 47): 0 = disabled; 1 = enabled.

• Package Clamping Limitation #2 (bits 48): Allow going below OS-requested P/T
state setting during time window specified by bits 23:17.

• Time Window for Power Limit #2 (bits 55:49): Indicates the length of time
window over which the power limit #2 The numeric value encoded by bits 23:17 is
represented by the product of 2^Y *F; where F is a single-digit decimal floating-point
value between 1.0 and 1.3 with the fraction digit represented by bits 23:22, Y is an
unsigned integer represented by bits 21:17. The unit of this field is specified by the
“Time Units” field of MSR_RAPL_POWER_UNIT. This field may have a hard-coded
value in hardware and ignores values written by software.

• Lock (bits 63): If set, all write attempts to this MSR are ignored until next RESET.

MSR_PKG_ENERGY_STATUS is a read-only MSR. It reports the actual energy use for the
package domain. This MSR is updated every ~1msec. It has a wraparound time of
around 60 secs when power consumption is high, and may be longer otherwise.

• Total Energy Consumed (bits 31:0): The unsigned integer value represents the
total amount of energy consumed since that last time this register is cleared. The
unit of this field is specified by the “Energy Status Units” field of
MSR_RAPL_POWER_UNIT.

MSR_PKG_POWER_INFO is a read-only MSR. It reports the package power range infor-
mation for RAPL usage. This MSR provides maximum/minimum values (derived from

Figure 14-18 MSR_PKG_ENERGY_STATUS MSR

63 0

Reserved

Total Energy Consumed

3132

Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 92

Documentation Changes

electrical specification), thermal specification power of the package domain. It also
provides the largest possible time window for software to program the RAPL interface.

• Thermal Spec Power (bits 14:0): The unsigned integer value is the equivalent of
thermal specification power of the package domain. The unit of this field is specified
by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Minimum Power (bits 30:16): The unsigned integer value is the equivalent of
minimum power derived from electrical spec of the package domain. The unit of this
field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Maximum Power (bits 46:32): The unsigned integer value is the equivalent of
maximum power derived from the electrical spec of the package domain. The unit of
this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Maximum Time Window (bits 46:32): The unsigned integer value is the equivalent
of largest acceptable value to program the time window of MSR_PKG_POWER_LIMIT.
The unit of this field is specified by the “Time Units” field of
MSR_RAPL_POWER_UNIT.

MSR_PKG_PERF_STATUS is a read-only MSR. It reports the total time for which the
package was throttled due to the RAPL power limits. Throttling in this context is defined
as going below the OS-requested P-state or T-state. It has a wrap-around time of many
hours. The availability of this MSR is platform specific (see Appendix B).

• Accumulated Package Throttled Time (bits 31:0): The unsigned integer value
represents the cumulative time (since the last time this register is cleared) that the
package has throttled. The unit of this field is specified by the “Time Units” field of
MSR_RAPL_POWER_UNIT.

14.7.4 PP0/PP1 RAPL Domains
The MSR interfaces defined for the PP0 and PP1 domains are identical in layout. Gener-
ally, PP0 refers to the processor cores. The availability of PP1 RAPL domain interface is

Figure 14-19 MSR_PKG_POWER_INFO Register

Figure 14-20 MSR_PKG_PERF_STATUS MSR

63 31 30 15 0

Thermal Spec Power

48 47 3254 53 46 14

Maximum Power

16

Maximum Time window Minimum Power

63 0

Reserved

Accumulated pkg throttled time

3132

Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 93

Documentation Changes

platform-specific. For a client platform, PP1 domain refers to the power plane of a
specific device in the uncore. For server platforms, PP1 domain is not supported, but its
PP0 domain supports the MSR_PP0_PERF_STATUS interface.

• MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT allow software to set power
limits for the respective power plane domain.

• MSR_PP0_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS report actual energy usage
on a power plane.

• MSR_PP0_POLICY/MSR_PP1_POLICY allow software to adjust balance for respective
power plane.

MSR_PP0_PERF_STATUS can report the performance impact of power limiting, but it is
not available in client platform.

MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT allows a software agent to define
power limitation for the respective power plane domain. A lock mechanism in each power
plane domain allow the software agent to enforce power limit settings independently.
Once a lock bit is set, the power limit settings in that power plane are static and un-
modifiable until next RESET.

The bit fields of MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT (Figure 14-21) are:

• Power Limit (bits 14:0): Sets the average power usage limit of the respective
power plane domain. The unit of this field is specified by the “Power Units” field of
MSR_RAPL_POWER_UNIT.

• Enable Power Limit (bit 15): 0 = disabled; 1 = enabled.

• Clamping Limitation (bits 16): Allow going below OS-requested P/T state setting
during time window specified by bits 23:17.

• Time Window for Power Limit (bits 23:17): Indicates the length of time window
over which the power limit #1 The numeric value encoded by bits 23:17 is
represented by the product of 2^Y *F; where F is a single-digit decimal floating-point
value between 1.0 and 1.3 with the fraction digit represented by bits 23:22, Y is an
unsigned integer represented by bits 21:17. The unit of this field is specified by the
“Time Units” field of MSR_RAPL_POWER_UNIT.

• Lock (bits 63): If set, all write attempts to the MSR and corresponding policy
MSR_PP0_POLICY/MSR_PP1_POLICY are ignored until next RESET.

Figure 14-21 MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT Register

63

Enable limit
Clamping limit

30 24 23 15 0

Power Limit

3132 14
L
O
C

1617

K

Time window
Power Limit

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 94

Documentation Changes

MSR_PP0_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS is a read-only MSR. It reports
the actual energy use for the respective power plane domain. This MSR is updated every
~1msec.

• Total Energy Consumed (bits 31:0): The unsigned integer value represents the
total amount of energy consumed since that last time this register is cleared. The
unit of this field is specified by the “Energy Status Units” field of
MSR_RAPL_POWER_UNIT.

MSR_PP0_POLICY/MSR_PP1_POLICY provide balance power policy control for each
power plane by providing inputs to the power budgeting management algorithm. On the
platform that supports PP0 (IA cores) and PP1 (uncore graphic device), the default value
give priority to the non-IA power plane. These MSRs enable the PCU to balance power
consumption between the IA cores and uncore graphic device.

• Priority Level (bits 4:0): Priority level input to the PCU for respective power plane.
PP0 covers the IA processor cores, PP1 covers the uncore graphic device. The value
31 is considered highest priority.

MSR_PP0_PERF_STATUS is a read-only MSR. It reports the total time for which the PP0
domain was throttled due to the power limits. This MSR is supported only in server plat-
form. Throttling in this context is defined as going below the OS-requested P-state or T-
state.

Figure 14-22 MSR_PP0_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS MSR

Figure 14-23 MSR_PP0_POLICY/MSR_PP1_POLICY Register

63 0

Reserved

Total Energy Consumed

3132

Reserved

63 4 0

Priority Level

5

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 95

Documentation Changes

• Accumulated PP0 Throttled Time (bits 31:0): The unsigned integer value
represents the cumulative time (since the last time this register is cleared) that the
PP0 domain has throttled. The unit of this field is specified by the “Time Units” field
of MSR_RAPL_POWER_UNIT.

14.7.5 DRAM RAPL Domain
The MSR interfaces defined for the DRAM domain is supported only in the server plat-
form. The MSR interfaces are:

• MSR_DRAM_POWER_LIMIT allows software to set power limits for the DRAM domain
and measurement attributes associated with each limit,

• MSR_DRAM_ENERGY_STATUS reports measured actual energy usage,

• MSR_DRAM_POWER_INFO reports the DRAM domain power range information for
RAPL usage.

• MSR_DRAM_RAPL_PERF_STATUS can report the performance impact of power
limiting.

MSR_DRAM_POWER_LIMIT allows a software agent to define power limitation for the
DRAM domain. Power limitation is defined in terms of average power usage (Watts) over
a time window specified in MSR_DRAM_POWER_LIMIT. A power limit can be specified
along with a time window. A lock mechanism allow the software agent to enforce power
limit settings. Once the lock bit is set, the power limit settings are static and un-modifi-
able until next RESET.

The bit fields of MSR_DRAM_POWER_LIMIT (Figure 14-17) are:

Figure 14-24 MSR_PP0_PERF_STATUS MSR

Figure 14-25 MSR_DRAM_POWER_LIMIT Register

63 0

Reserved

Accumulated PP0 throttled time

3132

Reserved

63

Enable limit
Clamping limit

30 24 23 15 0

Power Limit

3132 14
L
O
C

1617

K

Time window
Power Limit

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 96

Documentation Changes

• DRAM Power Limit #1(bits 14:0): Sets the average power usage limit of the DRAM
domain corresponding to time window # 1. The unit of this field is specified by the
“Power Units” field of MSR_RAPL_POWER_UNIT.

• Enable Power Limit #1(bit 15): 0 = disabled; 1 = enabled.

• Time Window for Power Limit (bits 23:17): Indicates the length of time window
over which the power limit The numeric value encoded by bits 23:17 is represented
by the product of 2^Y *F; where F is a single-digit decimal floating-point value
between 1.0 and 1.3 with the fraction digit represented by bits 23:22, Y is an
unsigned integer represented by bits 21:17. The unit of this field is specified by the
“Time Units” field of MSR_RAPL_POWER_UNIT.

• Lock (bits 63): If set, all write attempts to this MSR are ignored until next RESET.

MSR_DRAM_ENERGY_STATUS is a read-only MSR. It reports the actual energy use for
the DRAM domain. This MSR is updated every ~1msec.

• Total Energy Consumed (bits 31:0): The unsigned integer value represents the
total amount of energy consumed since that last time this register is cleared. The
unit of this field is specified by the “Energy Status Units” field of
MSR_RAPL_POWER_UNIT.

MSR_DRAM_POWER_INFO is a read-only MSR. It reports the DRAM power range infor-
mation for RAPL usage. This MSR provides maximum/minimum values (derived from
electrical specification), thermal specification power of the DRAM domain. It also
provides the largest possible time window for software to program the RAPL interface.

• Thermal Spec Power (bits 14:0): The unsigned integer value is the equivalent of
thermal specification power of the DRAM domain. The unit of this field is specified by
the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Minimum Power (bits 30:16): The unsigned integer value is the equivalent of
minimum power derived from electrical spec of the DRAM domain. The unit of this
field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

Figure 14-26 MSR_DRAM_ENERGY_STATUS MSR

Figure 14-27 MSR_DRAM_POWER_INFO Register

63 0

Reserved

Total Energy Consumed

3132

Reserved

63 31 30 15 0

Thermal Spec Power

48 47 3254 53 46 14

Maximum Power

16

Maximum Time window Minimum Power

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 97

Documentation Changes

• Maximum Power (bits 46:32): The unsigned integer value is the equivalent of
maximum power derived from the electrical spec of the DRAM domain. The unit of
this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Maximum Time Window (bits 46:32): The unsigned integer value is the equivalent
of largest acceptable value to program the time window of
MSR_DRAM_POWER_LIMIT. The unit of this field is specified by the “Time Units” field
of MSR_RAPL_POWER_UNIT.

MSR_DRAM_PERF_STATUS is a read-only MSR. It reports the total time for which the
package was throttled due to the RAPL power limits. Throttling in this context is defined
as going below the OS-requested P-state or T-state. It has a wrap-around time of many
hours. The availability of this MSR is platform specific (see Appendix B).

• Accumulated Package Throttled Time (bits 31:0): The unsigned integer value
represents the cumulative time (since the last time this register is cleared) that the
DRAM domain has throttled. The unit of this field is specified by the “Time Units” field
of MSR_RAPL_POWER_UNIT.

...

18. Updates to Chapter 16, Volume 3A

Change bars show changes to Chapter 16 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

--

...

16.4.4 Branch Trace Messages
Setting the TR flag (bit 6) in the IA32_DEBUGCTL MSR enables branch trace messages
(BTMs). Thereafter, when the processor detects a branch, exception, or interrupt, it
sends a branch record out on the system bus as a BTM. A debugging device that is moni-
toring the system bus can read these messages and synchronize operations with taken
branch, interrupt, and exception events.

When interrupts or exceptions occur in conjunction with a taken branch, additional BTMs
are sent out on the bus, as described in Section 16.4.2, “Monitoring Branches, Excep-
tions, and Interrupts.”

For IA processor families starting with Pentium 4, Pentium M and through Intel Core 2
processors and most of the initial Atom processor family, the processor can collect
branch records in the LBR stack and at the same time sending/storing BTMs when both

Figure 14-28 MSR_DRAM_PERF_STATUS MSR

63 0

Reserved

Accumulated DRAM throttled time

3132

Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 98

Documentation Changes

the TR and LBR flags are set in the IA32_DEBUGCTL MSR (or the equivalent
MSR_DEBUGCTLA, MSR_DEBUGCTLB). The following exceptions apply:

• The content of LBR stack is undefined when TR is set for the P6 processor family;

• BTM may not be observable on Intel Atom processor family processors that do not
provide an externally visible system bus.

...

16.4.9 BTS and DS Save Area
The Debug store (DS) feature flag (bit 21), returned by CPUID.1:EDX[21] Indicates
that the processor provides the debug store (DS) mechanism. This mechanism allows
BTMs to be stored in a memory-resident BTS buffer. See Section 16.4.5, “Branch Trace
Store (BTS).” Precise event-based sampling (PEBS, see Section 30.4.4, “Precise Event
Based Sampling (PEBS),”) also uses the DS save area provided by debug store mecha-
nism. When CPUID.1:EDX[21] is set, the following BTS facilities are available:

• The BTS_UNAVAILABLE flag in the IA32_MISC_ENABLE MSR indicates (when clear)
the availability of the BTS facilities, including the ability to set the BTS and BTINT bits
in the MSR_DEBUGCTLA MSR.

• The IA32_DS_AREA MSR can be programmed to point to the DS save area.

The debug store (DS) save area is a software-designated area of memory that is used to
collect the following two types of information:

• Branch records — When the BTS flag in the IA32_DEBUGCTL MSR is set, a branch
record is stored in the BTS buffer in the DS save area whenever a taken branch,
interrupt, or exception is detected.

• PEBS records — When a performance counter is configured for PEBS, a PEBS record
is stored in the PEBS buffer in the DS save area after the counter overflow occurs.
This record contains the architectural state of the processor (state of the 8 general
purpose registers, EIP register, and EFLAGS register) at the next occurrence of the
PEBS event that caused the counter to overflow. When the state information has
been logged, the counter is automatically reset to a preselected value, and event
counting begins again.

NOTE
On processors based on Intel Core microarchitecture, PEBS is supported
only for a subset of the performance events. In Intel Atom processor
family, all performance monitoring events can be programmed to use
PEBS.

...

16.5.1 LBR Stack
The last branch record stack and top-of-stack (TOS) pointer MSRs are supported across
Intel Core 2, Intel Xeon and Intel Atom processor families.

Four pairs of MSRs are supported in the LBR stack for Intel Core 2 and Intel Xeon
processor families:

• Last Branch Record (LBR) Stack

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 99

Documentation Changes

— MSR_LASTBRANCH_0_FROM_IP (address 40H) through
MSR_LASTBRANCH_3_FROM_IP (address 43H) store source addresses

— MSR_LASTBRANCH_0_TO_IP (address 60H) through
MSR_LASTBRANCH_3_TO_IP (address 63H) store destination addresses

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant 2 bits
of the TOS Pointer MSR (MSR_LASTBRANCH_TOS, address 1C9H) contains a pointer
to the MSR in the LBR stack that contains the most recent branch, interrupt, or
exception recorded.

Eight pairs of MSRs are supported in the LBR stack for Intel Atom processors:

• Last Branch Record (LBR) Stack

— MSR_LASTBRANCH_0_FROM_IP (address 40H) through
MSR_LASTBRANCH_7_FROM_IP (address 47H) store source addresses

— MSR_LASTBRANCH_0_TO_IP (address 60H) through
MSR_LASTBRANCH_7_TO_IP (address 67H) store destination addresses

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant 3 bits
of the TOS Pointer MSR (MSR_LASTBRANCH_TOS, address 1C9H) contains a pointer
to the MSR in the LBR stack that contains the most recent branch, interrupt, or
exception recorded.

For compatibility, the MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) duplicate
functions of the LastExceptionToIP and LastExceptionFromIP MSRs found in P6 family
processors.

...

19. Updates to Chapter 20, Volume 3B

Change bars show changes to Chapter 20 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...

20.8 RESTRICTIONS ON VMX OPERATION

...

NOTES
The first processors to support VMX operation require that the following
bits be 1 in VMX operation: CR0.PE, CR0.NE, CR0.PG, and CR4.VMXE.
The restrictions on CR0.PE and CR0.PG imply that VMX operation is
supported only in paged protected mode (including IA-32e mode).
Therefore, guest software cannot be run in unpaged protected mode or
in real-address mode. See Section 27.2, “Supporting Processor
Operating Modes in Guest Environments,” for a discussion of how a VMM
might support guest software that expects to run in unpaged protected
mode or in real-address mode.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 100

Documentation Changes

Later processors support a VM-execution control called “unrestricted guest” (see
Section 21.6.2). If this control is 1, CR0.PE and CR0.PG may be 0 in VMX non-root
operation (even if the capability MSR IA32_VMX_CR0_FIXED0 reports otherwise).1
Such processors allow guest software to run in unpaged protected mode or in real-
address mode.
...

20. Updates to Chapter 22, Volume 3B

Change bars show changes to Chapter 22 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...

22.1.3 Instructions That Cause VM Exits Conditionally

...

• MWAIT. The MWAIT instruction causes a VM exit if the “MWAIT exiting”
VM-execution control is 1. If this control is 0, the behavior of the MWAIT instruction
may be modified (see Section 22.4).

...

22.2.1.1 Linear Accesses That Cause APIC-Access VM Exits
Whether a linear access to the APIC-access page causes an APIC-access VM exit
depends in part of the nature of the translation used by the linear address:

• If the linear access uses a translation with a 4-KByte page, it causes an APIC-access
VM exit.

• If the linear access uses a translation with a large page (2-MByte, 4-MByte, or
1-GByte), the access may or may not cause an APIC-access VM exit. Section 22.5.1
describes the treatment of such accesses that do not cause an APIC-access VM exits.

If CR0.PG = 1 and EPT is in use (the “enable EPT” VM-execution control is 1), a
linear access uses a translation with a large page only if a large page is specified by
both the guest paging structures and the EPT paging structures.2

...

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the primary
processor-based VM-execution controls is 0, VMX non-root operation functions as if the “unrestricted
guest” VM-execution control were 0. See Section 21.6.2.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation,
CR0.PG must be 1 unless the “unrestricted guest” VM-execution control and bit 31 of the primary
processor-based VM-execution controls are both 1. “Enable EPT” is a secondary processor-based VM-
execution control. If bit 31 of the primary processor-based VM-execution controls is 0, VMX non-root
operation functions as if the “enable EPT” VM-execution control were 0. See Section 21.6.2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 101

Documentation Changes

22.2.2 Guest-Physical Accesses to the APIC-Access Page
An access to the APIC-access page is called a guest-physical access if (1) CR0.PG =
1;1 (2) the “enable EPT” VM-execution control is 1;2 (3) the access’s physical address is
the result of an EPT translation; and (4) either (a) the access was not generated by a
linear address; or (b) the access’s guest-physical address is not the translation of the
access’s linear address. Guest-physical accesses include the following when guest-phys-
ical addresses are being translated using EPT:

• Reads from the guest paging structures when translating a linear address (such an
access uses a guest-physical address that is not the translation of that linear
address).

• Loads of the page-directory-pointer-table entries by MOV to CR when the logical
processor is using (or that causes the logical processor to use) PAE paging.3

• Updates to the accessed and dirty bits in the guest paging structures when using a
linear address (such an access uses a guest-physical address that is not the
translation of that linear address).

Section 22.2.2.1 specifies when guest-physical accesses to the APIC-access page might
not cause APIC-access VM exits. In general, the treatment of APIC-access VM exits
caused by guest-physical accesses is similar to that of EPT violations. Based upon this
treatment, Section 22.2.2.2 specifies the priority of such VM exits with respect to other
events.

22.2.2.1 Guest-Physical Accesses That Might Not Cause APIC-Access VM Exits
Whether a guest-physical access to the APIC-access page causes an APIC-access VM exit
depends on the nature of the EPT translation used by the guest-physical address and on
how software is managing information cached from the EPT paging structures. The
following items detail cases in which a guest-physical access to the APIC-access page
might not cause an APIC-access VM exit:

• If the access uses a guest-physical address whose translation to the APIC-access
page uses an EPT PDPTE that maps a 1-GByte page (because bit 7 of the EPT PDPTE
is 1).

• If the access uses a guest-physical address whose translation to the APIC-access
page uses an EPT PDE that maps a 2-MByte page (because bit 7 of the EPT PDE is 1).

...

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation,
CR0.PG must be 1 unless the “unrestricted guest” VM-execution control and bit 31 of the primary
processor-based VM-execution controls are both 1.

2. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary proces-
sor-based VM-execution controls is 0, VMX non-root operation functions as if the “enable EPT” VM-
execution control were 0. See Section 21.6.2.

3. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See Section
4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 102

Documentation Changes

22.4 CHANGES TO INSTRUCTION BEHAVIOR IN VMX NON-
ROOT OPERATION

...

• MWAIT. Behavior of the MWAIT instruction (which always causes an invalid-opcode
exception—#UD—if CPL > 0) is determined by the setting of the “MWAIT exiting”
VM-execution control:

— If the “MWAIT exiting” VM-execution control is 1, MWAIT causes a VM exit (see
Section 22.1.3).

— If the “MWAIT exiting” VM-execution control is 0, MWAIT operates normally if
any of the following is true: (1) the “interrupt-window exiting” VM-execution
control is 0; (2) ECX[0] is 0; or (3) RFLAGS.IF = 1.

— If the “MWAIT exiting” VM-execution control is 0, the “interrupt-window exiting”
VM-execution control is 1, ECX[0] = 1, and RFLAGS.IF = 0, MWAIT does not
cause the processor to enter an implementation-dependent optimized state;
instead, control passes to the instruction following the MWAIT instruction.

...

21. Updates to Chapter 23, Volume 3B

Change bars show changes to Chapter 23 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...

23.3.1.1 Checks on Guest Control Registers, Debug Registers, and MSRs
The following checks are performed on fields in the guest-state area corresponding to
control registers, debug registers, and MSRs:

• The CR0 field must not set any bit to a value not supported in VMX operation (see
Section 20.8). The following are exceptions:

— Bit 0 (corresponding to CR0.PE) and bit 31 (PG) are not checked if the
“unrestricted guest” VM-execution control is 1.1

— Bit 29 (corresponding to CR0.NW) and bit 30 (CD) are never checked because
the values of these bits are not changed by VM entry; see Section 23.3.2.1.

• If bit 31 in the CR0 field (corresponding to PG) is 1, bit 0 in that field (PE) must also
be 1.2

• The CR4 field must not set any bit to a value not supported in VMX operation (see
Section 20.8).

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the primary
processor-based VM-execution controls is 0, VM entry functions as if the “unrestricted guest” VM-
execution control were 0. See Section 21.6.2.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, bit 0
in the CR0 field must be 1 unless the “unrestricted guest” VM-execution control and bit 31 of the pri-
mary processor-based VM-execution controls are both 1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 103

Documentation Changes

• If the “load debug controls” VM-entry control is 1, bits reserved in the
IA32_DEBUGCTL MSR must be 0 in the field for that register. The first processors to
support the virtual-machine extensions supported only the 1-setting of this control
and thus performed this check unconditionally.

• The following checks are performed on processors that support Intel 64 architecture:

— If the “IA-32e mode guest” VM-entry control is 1, bit 31 in the CR0 field (corre-
sponding to CR0.PG) and bit 5 in the CR4 field (corresponding to CR4.PAE) must
each be 1.1

— If the “IA-32e mode guest” VM-entry control is 0, bit 17 in the CR4 field (corre-
sponding to CR4.PCIDE) must each be 0.

— The CR3 field must be such that bits 63:52 and bits in the range 51:32 beyond
the processor’s physical-address width are 0.2,3

— If the “load debug controls” VM-entry control is 1, bits 63:32 in the DR7 field
must be 0. The first processors to support the virtual-machine extensions
supported only the 1-setting of this control and thus performed this check uncon-
ditionally (if they supported Intel 64 architecture).

— The IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field must each
contain a canonical address.

• If the “load IA32_PERF_GLOBAL_CTRL” VM-entry control is 1, bits reserved in the
IA32_PERF_GLOBAL_CTRL MSR must be 0 in the field for that register (see
Figure 30-3).

• If the “load IA32_PAT” VM-entry control is 1, the value of the field for the IA32_PAT
MSR must be one that could be written by WRMSR without fault at CPL 0. Specifically,
each of the 8 bytes in the field must have one of the values 0 (UC), 1 (WC), 4 (WT),
5 (WP), 6 (WB), or 7 (UC-).

• If the “load IA32_EFER” VM-entry control is 1, the following checks are performed on
the field for the IA32_EFER MSR :

— Bits reserved in the IA32_EFER MSR must be 0.

— Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of the “IA-32e
mode guest” VM-exit control. It must also be identical to bit 8 (LME) if bit 31 in
the CR0 field (corresponding to CR0.PG) is 1.4

...

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation,
bit 31 in the CR0 field must be 1 unless the “unrestricted guest” VM-execution control and bit 31 of
the primary processor-based VM-execution controls are both 1.

2. Software can determine a processor’s physical-address width by executing CPUID with 80000008H
in EAX. The physical-address width is returned in bits 7:0 of EAX.

3. Bit 63 of the CR3 field in the guest-state area must be 0. This is true even though, If CR4.PCIDE = 1,
bit 63 of the source operand to MOV to CR3 is used to determine whether cached translation infor-
mation is invalidated.

4. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation,
bit 31 in the CR0 field must be 1 unless the “unrestricted guest” VM-execution control and bit 31 of
the primary processor-based VM-execution controls are both 1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 104

Documentation Changes

23.3.1.2 Checks on Guest Segment Registers

...

• If the guest will not be virtual-8086, the different sub-fields are considered
separately:

— Bits 3:0 (Type).

• CS. The values allowed depend on the setting of the “unrestricted
guest” VM-execution control:

— If the control is 0, the Type must be 9, 11, 13, or 15 (accessed
code segment).

— If the control is 1, the Type must be either 3 (read/write
accessed expand-up data segment) or one of 9, 11, 13, and 15
(accessed code segment).

• SS. If SS is usable, the Type must be 3 or 7 (read/write, accessed
data segment).

• DS, ES, FS, GS. The following checks apply if the register is usable:

— Bit 0 of the Type must be 1 (accessed).

— If bit 3 of the Type is 1 (code segment), then bit 1 of the Type
must be 1 (readable).

— Bit 4 (S). If the register is CS or if the register is usable, S must be 1.

— Bits 6:5 (DPL).

• CS.

— If the Type is 3 (read/write accessed expand-up data segment),
the DPL must be 0. The Type can be 3 only if the “unrestricted
guest” VM-execution control is 1.

— If the Type is 9 or 11 (non-conforming code segment), the DPL
must equal the DPL in the access-rights field for SS.

— If the Type is 13 or 15 (conforming code segment), the DPL
cannot be greater than the DPL in the access-rights field for SS.

• SS.

— If the “unrestricted guest” VM-execution control is 0, the DPL
must equal the RPL from the selector field.

— The DPL must be 0 either if the Type in the access-rights field for
CS is 3 (read/write accessed expand-up data segment) or if bit 0
in the CR0 field (corresponding to CR0.PE) is 0.1

...

1. The following apply if either the “unrestricted guest” VM-execution control or bit 31 of the primary
processor-based VM-execution controls is 0: (1) bit 0 in the CR0 field must be 1 if the capability MSR
IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation; and (2) the Type in the
access-rights field for CS cannot be 3.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 105

Documentation Changes

23.3.1.4 Checks on Guest RIP and RFLAGS
The following checks are performed on fields in the guest-state area corresponding to
RIP and RFLAGS:

• RIP. The following checks are performed on processors that support Intel 64 archi-
tecture:

— Bits 63:32 must be 0 if the “IA-32e mode guest” VM-entry control is 0 or if the L
bit (bit 13) in the access-rights field for CS is 0.

— If the processor supports N < 64 linear-address bits, bits 63:N must be identical
if the “IA-32e mode guest” VM-entry control is 1 and the L bit in the access-rights
field for CS is 1.1 (No check applies if the processor supports 64 linear-address
bits.)

• RFLAGS.

— Reserved bits 63:22 (bits 31:22 on processors that do not support Intel 64 archi-
tecture), bit 15, bit 5 and bit 3 must be 0 in the field, and reserved bit 1 must be
1.

— The VM flag (bit 17) must be 0 either if the “IA-32e mode guest” VM-entry
control is 1 or if bit 0 in the CR0 field (corresponding to CR0.PE) is 0.2

— The IF flag (RFLAGS[bit 9]) must be 1 if the valid bit (bit 31) in the VM-entry
interruption-information field is 1 and the interruption type (bits 10:8) is
external interrupt.

...

23.3.2.1 Loading Guest Control Registers, Debug Registers, and MSRs
The following items describe how guest control registers, debug registers, and MSRs are
loaded on VM entry:

• CR0 is loaded from the CR0 field with the exception of the following bits, which are
never modified on VM entry: ET (bit 4); reserved bits 15:6, 17, and 28:19; NW
(bit 29) and CD (bit 30).3 The values of these bits in the CR0 field are ignored.

• CR3 and CR4 are loaded from the CR3 field and the CR4 field, respectively.

• If the “load debug controls” VM-execution control is 1, DR7 is loaded from the DR7
field with the exception that bit 12 and bits 15:14 are always 0 and bit 10 is always
1. The values of these bits in the DR7 field are ignored.

The first processors to support the virtual-machine extensions supported only the
1-setting of the “load debug controls” VM-execution control and thus always loaded
DR7 from the DR7 field.

1. Software can determine the number N by executing CPUID with 80000008H in EAX. The number of
linear-address bits supported is returned in bits 15:8 of EAX.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, bit 0
in the CR0 field must be 1 unless the “unrestricted guest” VM-execution control and bit 31 of the pri-
mary processor-based VM-execution controls are both 1.

3. Bits 15:6, bit 17, and bit 28:19 of CR0 and CR0.ET are unchanged by executions of MOV to CR0.
Bits 15:6, bit 17, and bit 28:19 of CR0 are always 0 and CR0.ET is always 1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 106

Documentation Changes

• The following describes how some MSRs are loaded using fields in the guest-state
area:

— If the “load debug controls” VM-execution control is 1, the IA32_DEBUGCTL MSR
is loaded from the IA32_DEBUGCTL field. The first processors to support the
virtual-machine extensions supported only the 1-setting of this control and thus
always loaded the IA32_DEBUGCTL MSR from the IA32_DEBUGCTL field.

— The IA32_SYSENTER_CS MSR is loaded from the IA32_SYSENTER_CS field.
Since this field has only 32 bits, bits 63:32 of the MSR are cleared to 0.

— The IA32_SYSENTER_ESP and IA32_SYSENTER_EIP MSRs are loaded from the
IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field, respectively. On
processors that do not support Intel 64 architecture, these fields have only 32
bits; bits 63:32 of the MSRs are cleared to 0.

— The following are performed on processors that support Intel 64 architecture:

• The MSRs FS.base and GS.base are loaded from the base-address fields for
FS and GS, respectively (see Section 23.3.2.2).

• If the “load IA32_EFER” VM-entry control is 0, bits in the IA32_EFER MSR are
modified as follows:

— IA32_EFER.LMA is loaded with the setting of the “IA-32e mode guest”
VM-entry control.

— If CR0 is being loaded so that CR0.PG = 1, IA32_EFER.LME is also
loaded with the setting of the “IA-32e mode guest” VM-entry control.1

Otherwise, IA32_EFER.LME is unmodified.

...

23.3.2.2 Loading Guest Segment Registers and Descriptor-Table Registers
For each of CS, SS, DS, ES, FS, GS, TR, and LDTR, fields are loaded from the guest-state
area as follows:

• The unusable bit is loaded from the access-rights field. This bit can never be set for
TR (see Section 23.3.1.2). If it is set for one of the other registers, the following
apply:

— For each of CS, SS, DS, ES, FS, and GS, uses of the segment cause faults
(general-protection exception or stack-fault exception) outside 64-bit mode, just
as they would had the segment been loaded using a null selector. This bit does
not cause accesses to fault in 64-bit mode.

— If this bit is set for LDTR, uses of LDTR cause general-protection exceptions in all
modes, just as they would had LDTR been loaded using a null selector.

If this bit is clear for any of CS, SS, DS, ES, FS, GS, TR, and LDTR, a null selector
value does not cause a fault (general-protection exception or stack-fault
exception).

• TR. The selector, base, limit, and access-rights fields are loaded.

• CS.

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation,
VM entry must be loading CR0 so that CR0.PG = 1 unless the “unrestricted guest” VM-execution con-
trol and bit 31 of the primary processor-based VM-execution controls are both 1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 107

Documentation Changes

— The following fields are always loaded: selector, base address, limit, and (from
the access-rights field) the L, D, and G bits.

— For the other fields, the unusable bit of the access-rights field is consulted:

• If the unusable bit is 0, all of the access-rights field is loaded.

• If the unusable bit is 1, the remainder of CS access rights are undefined after
VM entry.

• SS, DS, ES, FS, GS, and LDTR.

— The selector fields are loaded.

— For the other fields, the unusable bit of the corresponding access-rights field is
consulted:

• If the unusable bit is 0, the base-address, limit, and access-rights fields are
loaded.

• If the unusable bit is 1, the base address, the segment limit, and the
remainder of the access rights are undefined after VM entry with the following
exceptions:

— Bits 3:0 of the base address for SS are cleared to 0.

— SS.DPL is always loaded from the SS access-rights field. This will be the
current privilege level (CPL) after the VM entry completes.

— SS.B is always set to 1.

— The base addresses for FS and GS are loaded from the corresponding
fields in the VMCS. On processors that support Intel 64 architecture, the
values loaded for base addresses for FS and GS are also manifest in the
FS.base and GS.base MSRs.

— On processors that support Intel 64 architecture, the base address for
LDTR is set to an undefined but canonical value.

— On processors that support Intel 64 architecture, bits 63:32 of the base
addresses for SS, DS, and ES are cleared to 0.

GDTR and IDTR are loaded using the base and limit fields.

...

23.5.1.3 Event Injection for VM Entries to Real-Address Mode
If VM entry is loading CR0.PE with 0, any injected vectored event is delivered as would
normally be done in real-address mode.1 Specifically, VM entry uses the vector provided
in the VM-entry interruption-information field to select a 4-byte entry from an interrupt-
vector table at the linear address in IDTR.base. Further details are provided in Section
15.1.4 in Volume 3A of the IA-32 Intel® Architecture Software Developer’s Manual.

Because bit 11 (deliver error code) in the VM-entry interruption-information field must
be 0 if CR0.PE will be 0 after VM entry (see Section 23.2.1.3), vectored events injected
with CR0.PE = 0 do not push an error code on the stack. This is consistent with event
delivery in real-address mode.

If event delivery encounters a fault (due to a violation of IDTR.limit or of SS.limit), the
fault is treated as if it had occurred during event delivery in VMX non-root operation.
Such a fault may lead to a VM exit as discussed in Section 23.5.1.2.

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation,
VM entry must be loading CR0.PE with 1 unless the “unrestricted guest” VM-execution control and
bit 31 of the primary processor-based VM-execution controls are both 1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 108

Documentation Changes

...

22. Updates to Chapter 24, Volume 3B

Change bars show changes to Chapter 24 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...

24.2.2 Information for VM Exits Due to Vectored Events

...

The following items detail the use of these fields:

• VM-exit interruption information (format given in Table 21-14). The following
items detail how this field is established for VM exits due to these events:

— For an exception, bits 7:0 receive the exception vector (at most 31). For an NMI,
bits 7:0 are set to 2. For an external interrupt, bits 7:0 receive the interrupt
number.

— Bits 10:8 are set to 0 (external interrupt), 2 (non-maskable interrupt), 3
(hardware exception), or 6 (software exception). Hardware exceptions comprise
all exceptions except breakpoint exceptions (#BP; generated by INT3) and
overflow exceptions (#OF; generated by INTO); these are software exceptions.
BOUND-range exceeded exceptions (#BR; generated by BOUND) and invalid
opcode exceptions (#UD) generated by UD2 are hardware exceptions.

— Bit 11 is set to 1 if the VM exit is caused by a hardware exception that would have
delivered an error code on the stack. This bit is always 0 if the VM exit occurred
while the logical processor was in real-address mode (CR0.PE=0).1 If bit 11 is set
to 1, the error code is placed in the VM-exit interruption error code (see below).

...

24.2.3 Information for VM Exits During Event Delivery

...

The following items detail the use of these fields:

• IDT-vectoring information (format given in Table 21-15). The following items detail
how this field is established for VM exits that occur during event delivery:

— If the VM exit occurred during delivery of an exception, bits 7:0 receive the
exception vector (at most 31). If the VM exit occurred during delivery of an NMI,
bits 7:0 are set to 2. If the VM exit occurred during delivery of an external
interrupt, bits 7:0 receive the interrupt number.

— Bits 10:8 are set to indicate the type of event that was being delivered when the
VM exit occurred: 0 (external interrupt), 2 (non-maskable interrupt), 3

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, a log-
ical processor cannot be in real-address mode unless the “unrestricted guest” VM-execution control
and bit 31 of the primary processor-based VM-execution controls are both 1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 109

Documentation Changes

(hardware exception), 4 (software interrupt), 5 (privileged software interrupt),
or 6 (software exception).

Hardware exceptions comprise all exceptions except breakpoint exceptions
(#BP; generated by INT3) and overflow exceptions (#OF; generated by INTO);
these are software exceptions. BOUND-range exceeded exceptions (#BR;
generated by BOUND) and invalid opcode exceptions (#UD) generated by UD2
are hardware exceptions.

Bits 10:8 may indicate privileged software interrupt if such an event was injected
as part of VM entry.

— Bit 11 is set to 1 if the VM exit occurred during delivery of a hardware exception
that would have delivered an error code on the stack. This bit is always 0 if the
VM exit occurred while the logical processor was in real-address mode
(CR0.PE=0).1 If bit 11 is set to 1, the error code is placed in the IDT-vectoring
error code (see below).

— Bit 12 is undefined.

— Bits 30:13 are always set to 0.

— Bit 31 is always set to 1.

...

24.5.1 Loading Host Control Registers, Debug Registers, MSRs
VM exits load new values for controls registers, debug registers, and some MSRs:

• CR0, CR3, and CR4 are loaded from the CR0 field, the CR3 field, and the CR4 field,
respectively, with the following exceptions:

— The following bits are not modified:

• For CR0, ET, CD, NW; bits 63:32 (on processors that support Intel 64 archi-
tecture), 28:19, 17, and 15:6; and any bits that are fixed in VMX operation
(see Section 20.8).2

• For CR3, bits 63:52 and bits in the range 51:32 beyond the processor’s
physical-address width (they are cleared to 0).3 (This item applies only to
processors that support Intel 64 architecture.)

• For CR4, any bits that are fixed in VMX operation (see Section 20.8).

— CR4.PAE is set to 1 if the “host address-space size” VM-exit control is 1.

— CR4.PCIDE is set to 0 if the “host address-space size” VM-exit control is 0.

• DR7 is set to 400H.

• The following MSRs are established as follows:

— The IA32_DEBUGCTL MSR is cleared to 00000000_00000000H.

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, a log-
ical processor cannot be in real-address mode unless the “unrestricted guest” VM-execution control
and bit 31 of the primary processor-based VM-execution controls are both 1.

2. Bits 28:19, 17, and 15:6 of CR0 and CR0.ET are unchanged by executions of MOV to CR0. CR0.ET is
always 1 and the other bits are always 0.

3. Software can determine a processor’s physical-address width by executing CPUID with 80000008H
in EAX. The physical-address width is returned in bits 7:0 of EAX.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 110

Documentation Changes

— The IA32_SYSENTER_CS MSR is loaded from the IA32_SYSENTER_CS field.
Since that field has only 32 bits, bits 63:32 of the MSR are cleared to 0.

— IA32_SYSENTER_ESP MSR and IA32_SYSENTER_EIP MSR are loaded from the
IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field, respectively.

If the processor does not support the Intel 64 architecture, these fields have only
32 bits; bits 63:32 of the MSRs are cleared to 0.

If the processor does support the Intel 64 architecture and the processor
supports N < 64 linear-address bits, each of bits 63:N is set to the value of bit N–
1.1

— The following steps are performed on processors that support Intel 64 archi-
tecture:

• The MSRs FS.base and GS.base are loaded from the base-address fields for
FS and GS, respectively (see Section 24.5.2).

• The LMA and LME bits in the IA32_EFER MSR are each loaded with the setting
of the “host address-space size” VM-exit control.

— If the “load IA32_PERF_GLOBAL_CTRL” VM-exit control is 1, the
IA32_PERF_GLOBAL_CTRL MSR is loaded from the IA32_PERF_GLOBAL_CTRL
field. Bits that are reserved in that MSR are maintained with their reserved
values.

— If the “load IA32_PAT” VM-exit control is 1, the IA32_PAT MSR is loaded from the
IA32_PAT field. Bits that are reserved in that MSR are maintained with their
reserved values.

— If the “load IA32_EFER” VM-exit control is 1, the IA32_EFER MSR is loaded from
the IA32_EFER field. Bits that are reserved in that MSR are maintained with their
reserved values.

With the exception of FS.base and GS.base, any of these MSRs is subsequently
overwritten if it appears in the VM-exit MSR-load area. See Section 24.6.

24.5.2 Loading Host Segment and Descriptor-Table Registers
Each of the registers CS, SS, DS, ES, FS, GS, and TR is loaded as follows (see below for
the treatment of LDTR):

• The selector is loaded from the selector field. The segment is unusable if its selector
is loaded with zero. The checks specified Section 23.3.1.2 limit the selector values
that may be loaded. In particular, CS and TR are never loaded with zero and are thus
never unusable. SS can be loaded with zero only on processors that support Intel 64
architecture and only if the VM exit is to 64-bit mode (64-bit mode allows use of
segments marked unusable).

• The base address is set as follows:

— CS. Cleared to zero.

— SS, DS, and ES. Undefined if the segment is unusable; otherwise, cleared to
zero.

1. Software can determine the number N by executing CPUID with 80000008H in EAX. The number of
linear-address bits supported is returned in bits 15:8 of EAX.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 111

Documentation Changes

— FS and GS. Undefined (but, on processors that support Intel 64 architecture,
canonical) if the segment is unusable and the VM exit is not to 64-bit mode;
otherwise, loaded from the base-address field.

If the processor supports the Intel 64 architecture and the processor supports N
< 64 linear-address bits, each of bits 63:N is set to the value of bit N–1.1 The
values loaded for base addresses for FS and GS are also manifest in the FS.base
and GS.base MSRs.

— TR. Loaded from the host-state area. If the processor supports the Intel 64
architecture and the processor supports N < 64 linear-address bits, each of
bits 63:N is set to the value of bit N–1.

• The segment limit is set as follows:

— CS. Set to FFFFFFFFH (corresponding to a descriptor limit of FFFFFH and a G-bit
setting of 1).

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to
FFFFFFFFH.

— TR. Set to 00000067H.

• The type field and S bit are set as follows:

— CS. Type set to 11 and S set to 1 (execute/read, accessed, non-conforming code
segment).

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, type
set to 3 and S set to 1 (read/write, accessed, expand-up data segment).

— TR. Type set to 11 and S set to 0 (busy 32-bit task-state segment).

• The DPL is set as follows:

— CS, SS, and TR. Set to 0. The current privilege level (CPL) will be 0 after the
VM exit completes.

— DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to 0.

• The P bit is set as follows:

— CS, TR. Set to 1.

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to
1.

• On processors that support Intel 64 architecture, CS.L is loaded with the setting of
the “host address-space size” VM-exit control. Because the value of this control is
also loaded into IA32_EFER.LMA (see Section 24.5.1), no VM exit is ever to compat-
ibility mode (which requires IA32_EFER.LMA = 1 and CS.L = 0).

• D/B.

— CS. Loaded with the inverse of the setting of the “host address-space size”
VM-exit control. For example, if that control is 0, indicating a 32-bit guest, CS.D/
B is set to 1.

— SS. Set to 1.

— DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to 1.

— TR. Set to 0.

1. Software can determine the number N by executing CPUID with 80000008H in EAX. The number of
linear-address bits supported is returned in bits 15:8 of EAX.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 112

Documentation Changes

• G.

— CS. Set to 1.

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to
1.

— TR. Set to 0.

The host-state area does not contain a selector field for LDTR. LDTR is established as
follows on all VM exits: the selector is cleared to 0000H, the segment is marked unus-
able and is otherwise undefined (although the base address is always canonical).

The base addresses for GDTR and IDTR are loaded from the GDTR base-address field and
the IDTR base-address field, respectively. If the processor supports the Intel 64 archi-
tecture and the processor supports N < 64 linear-address bits, each of bits 63:N of each
base address is set to the value of bit N–1 of that base address. The GDTR and IDTR
limits are each set to FFFFH.

...

24.6 LOADING MSRS
VM exits may load MSRs from the VM-exit MSR-load area (see Section 21.7.2). Specifi-
cally each entry in that area (up to the number specified in the VM-exit MSR-load count)
is processed in order by loading the MSR indexed by bits 31:0 with the contents of
bits 127:64 as they would be written by WRMSR.

Processing of an entry fails in any of the following cases:

• The value of bits 31:0 is either C0000100H (the IA32_FS_BASE MSR) or C0000101H
(the IA32_GS_BASE MSR).

• The value of bits 31:8 is 000008H, meaning that the indexed MSR is one that allows
access to an APIC register when the local APIC is in x2APIC mode.

• The value of bits 31:0 indicates an MSR that can be written only in system-
management mode (SMM) and the VM exit will not end in SMM.
(IA32_SMM_MONITOR_CTL is an MSR that can be written only in SMM.)

• The value of bits 31:0 indicates an MSR that cannot be loaded on VM exits for model-
specific reasons. A processor may prevent loading of certain MSRs even if they can
normally be written by WRMSR. Such model-specific behavior is documented in
Appendix B.

• Bits 63:32 are not all 0.

• An attempt to write bits 127:64 to the MSR indexed by bits 31:0 of the entry would
cause a general-protection exception if executed via WRMSR with CPL = 0.1

If processing fails for any entry, a VMX abort occurs. See Section 24.7.

If any MSR is being loaded in such a way that would architecturally require a TLB flush,
the TLBs are updated so that, after VM exit, the logical processor does not use any trans-
lations that were cached before the transition.

1. Note the following about processors that support Intel 64 architecture. If CR0.PG = 1, WRMSR to the
IA32_EFER MSR causes a general-protection exception if it would modify the LME bit. Since CR0.PG is
always 1 in VMX operation, the IA32_EFER MSR should not be included in the VM-exit MSR-load area
for the purpose of modifying the LME bit.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 113

Documentation Changes

23. Updates to Chapter 25, Volume 3B

Change bars show changes to Chapter 25 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...

25.2.1 EPT Overview
EPT is used when the “enable EPT” VM-execution control is 1.1 It translates the guest-
physical addresses used in VMX non-root operation and those used by VM entry for
event injection.

The translation from guest-physical addresses to physical addresses is determined by a
set of EPT paging structures. The EPT paging structures are similar to those used to
translate linear addresses while the processor is in IA-32e mode. Section 25.2.2 gives
the details of the EPT paging structures.

If CR0.PG = 1, linear addresses are translated through paging structures referenced
through control register CR3 . While the “enable EPT” VM-execution control is 1, these
are called guest paging structures. There are no guest paging structures if CR0.PG =
0.2

...

25.2.4.2 Memory Type Used for Translated Guest-Physical Addresses
The effective memory type of a memory access using a guest-physical address (an
access that is translated using EPT) is the memory type that is used to access memory.
The effective memory type is based on the value of bit 30 (cache disable—CD) in control
register CR0; the last EPT paging-structure entry used to translate the guest-physical
address (either an EPT PDE with bit 7 set to 1 or an EPT PTE); and the PAT memory type
(see below):

• The PAT memory type depends on the value of CR0.PG:

— If CR0.PG = 0, the PAT memory type is WB (writeback).3

— If CR0.PG = 1, the PAT memory type is the memory type selected from the
IA32_PAT MSR as specified in Section 11.12.3, “Selecting a Memory Type from
the PAT”.4

...

1. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary proces-
sor-based VM-execution controls is 0, the logical processor operates as if the “enable EPT” VM-exe-
cution control were 0. See Section 21.6.2.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation,
CR0.PG can be 0 in VMX non-root operation only if the “unrestricted guest” VM-execution control and
bit 31 of the primary processor-based VM-execution controls are both 1.

3. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation,
CR0.PG can be 0 in VMX non-root operation only if the “unrestricted guest” VM-execution control and
bit 31 of the primary processor-based VM-execution controls are both 1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 114

Documentation Changes

25.3.2 Creating and Using Cached Translation Information

...

• The following items describe the creation of mappings while EPT is in use:

— Guest-physical mappings may be created. They are derived from the EPT paging
structures referenced (directly or indirectly) by bits 51:12 of the current EPTP.
These 40 bits contain the address of the EPT-PML4-table. (the notation EP4TA
refers to those 40 bits). Newly created guest-physical mappings are associated
with the current EP4TA.

— Combined mappings may be created. They are derived from the EPT paging
structures referenced (directly or indirectly) by the current EP4TA. If CR0.PG =
1, they are also derived from the paging structures referenced (directly or
indirectly) by the current value of CR3. They are associated with the current
VPID, the current PCID, and the current EP4TA.1 No combined paging-structure-
cache entries are created if CR0.PG = 0.2

— No guest-physical mappings or combined mappings are created with information
derived from EPT paging-structure entries that are not present (bits 2:0 are all
0) or that are misconfigured (see Section 25.2.3.1).

— No combined mappings are created with information derived from guest paging-
structure entries that are not present or that set reserved bits.

— No linear mappings are created while EPT is in use.

...

24. Updates to Chapter 26, Volume 3B

Change bars show changes to Chapter 26 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...

4. Table 11-11 in Section 11.12.3, “Selecting a Memory Type from the PAT” illustrates how the PAT
memory type is selected based on the values of the PAT, PCD, and PWT bits in a page-table entry (or
page-directory entry with PS = 1). For accesses to a guest paging-structure entry X, the PAT memory
type is selected from the table by using a value of 0 for the PAT bit with the values of PCD and PWT
from the paging-structure entry Y that references X (or from CR3 if X is in the root paging structure).
With PAE paging, the PAT memory type for accesses to the PDPTEs is WB.

1. At any given time, a logical processor may be caching combined mappings for a VPID and a PCID that
are associated with different EP4TAs. Similarly, it may be caching combined mappings for an EP4TA
that are associated with different VPIDs and PCIDs.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation,
CR0.PG can be 0 in VMX non-root operation only if the “unrestricted guest” VM-execution control and
bit 31 of the primary processor-based VM-execution controls are both 1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 115

Documentation Changes

Table 26-3 SMRAM State Save Map for Intel 64 Architecture

...

26.14.2 Default Treatment of RSM

...

Ordinary execution of RSM restores processor state from SMRAM. Under the default
treatment, processors that support VMX operation perform RSM as follows:

IF VMXE = 1 in CR4 image in SMRAM
THEN fail and enter shutdown state;
ELSE

restore state normally from SMRAM;
invalidate linear mappings and combined mappings associated with all VPIDs and all PCIDs;

combined mappings are invalidated for all EP4TA values (EP4TA is the value of bits 51:12 of EPTP; see
Section 25.3);

IF the logical processor supports SMX operation andthe Intel® TXT private space was unlocked
at the time of the last SMI (as saved)

THEN unlock the TXT private space;
FI;
CR4.VMXE  value stored internally;
IF internal storage indicates that the logical processor
had been in VMX operation (root or non-root)

THEN
enter VMX operation (root or non-root);
restore VMX-critical state as defined in Section 26.14.1;
set to their fixed values any bits in CR0 and CR4 whose values must be fixed in VMX

operation (see Section 20.8);1

IF RFLAGS.VM = 0 AND (in VMX root operation OR the “unrestricted guest” VM-
execution control is 0)2

Offset
(Added to SMBASE +

8000H)

Register Writable?

...

7ED8H Value of EPTP VM-execution control field No

7ED7H - 7EA0H Reserved No

7E9CH LDT Base (lower 32 bits) No

7E98H Reserved No

7E94H IDT Base (lower 32 bits) No

7E90H Reserved No

7E8CH GDT Base (lower 32 bits) No

...

NOTE:
1. The two most significant bytes are reserved.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 116

Documentation Changes

THEN
CS.RPL  SS.DPL;
SS.RPL  SS.DPL;

FI;
restore current VMCS pointer;

FI;
leave SMM;
IF logical processor will be in VMX operation or in SMX operation after RSM

THEN block A20M and leave A20M mode;
FI;

FI;

RSM unblocks SMIs. It restores the state of blocking by NMI (see Table 21-3 in Section
21.4.2) as follows:

• If the RSM is not to VMX non-root operation or if the “virtual NMIs” VM-execution
control will be 0, the state of NMI blocking is restored normally.

• If the RSM is to VMX non-root operation and the “virtual NMIs” VM-execution control
will be 1, NMIs are not blocked after RSM. The state of virtual-NMI blocking is
restored as part of VMX-critical state.

INIT signals are blocked after RSM if and only if the logical processor will be in VMX root
operation.

If RSM returns a logical processor to VMX non-root operation, it re-establishes the
controls associated with the current VMCS. If the “interrupt-window exiting” VM-execu-
tion control is 1, a VM exit occurs immediately after RSM if the enabling conditions apply.
The same is true for the “NMI-window exiting” VM-execution control. Such VM exits
occur with their normal priority. See Section 22.3.

...

26.15.7 Deactivating the Dual-Monitor Treatment
An SMM monitor may deactivate the dual monitor treatment and return the processor to
default treatment of SMIs and SMM (see Section 26.14). It does this by executing a
VM entry with the “deactivate dual-monitor treatment” VM-entry control set to 1.

As noted in Section 23.2.1.3 and Section 26.15.4.1, an attempt to deactivate the dual-
monitor treatment fails in the following situations: (1) the processor is not in SMM;
(2) the “entry to SMM” VM-entry control is 1; or (3) the executive-VMCS pointer does
not contain the VMXON pointer (the VM entry is to VMX non-root operation).

As noted in Section 26.15.4.9, VM entries that deactivate the dual-monitor treatment
ignore the SMI bit in the interruptibility-state field of the guest-state area. Instead, the
blocking of SMIs following such a VM entry depends on whether the logical processor is
in SMX operation:1

1. If the RSM is to VMX non-root operation and both the “unrestricted guest” VM-execution control and
bit 31 of the primary processor-based VM-execution controls will be 1, CR0.PE and CR0.PG retain the
values that were loaded from SMRAM regardless of what is reported in the capability MSR
IA32_VMX_CR0_FIXED0.

2. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the primary
processor-based VM-execution controls is 0, VM entry functions as if the “unrestricted guest” VM-
execution control were 0. See Section 21.6.2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 117

Documentation Changes

• If the logical processor is in SMX operation, SMIs are blocked after VM entry.

• If the logical processor is outside SMX operation, SMIs are unblocked after VM entry.

...

25. Updates to Chapter 29, Volume 3B

Change bars show changes to Chapter 29 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...

29.2 INTERRUPT HANDLING IN VMX OPERATION
The following bullets summarize VMX support for handling interrupts:

• Control of processor exceptions. The VMM can get control on specific guest
exceptions through the exception-bitmap in the guest controlling VMCS. The
exception bitmap is a 32-bit field that allows the VMM to specify processor behavior
on specific exceptions (including traps, faults, and aborts). Setting a specific bit in
the exception bitmap implies VM exits will be generated when the corresponding
exception occurs. Any exceptions that are programmed not to cause VM exits are
delivered directly to the guest through the guest IDT. The exception bitmap also
controls execution of relevant instructions such as BOUND, INTO and INT3. VM exits
on page-faults are treated in such a way the page-fault error code is qualified
through the page-fault-error-code mask and match fields in the VMCS.

• Control over triple faults. If a fault occurs while attempting to call a double-fault
handler in the guest and that fault is not configured to cause a VM exit in the
exception bitmap, the resulting triple fault causes a VM exit.

• Control of external interrupts. VMX allows both host and guest control of external
interrupts through the “external-interrupt exiting” VM execution control. If the
control is 0, external-interrupts do not cause VM exits and the interrupt delivery is
masked by the guest programmed RFLAGS.IF value.1 If the control is 1, external-
interrupts causes VM exits and are not masked by RFLAGS.IF. The VMM can identify
VM exits due to external interrupts by checking the exit reason for an “external
interrupt” (value = 1).

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execu-
tion of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER] has not
been executed or if GETSEC[SEXIT] was executed after the last execution of GETSEC[SENTER]. See
Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2B.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most pro-
cessors that support VMX operation also support Intel 64 architecture. For processors that do not
support Intel 64 architecture, this notation refers to the 32-bit forms of those registers (EAX, EIP,
ESP, EFLAGS, etc.).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 118

Documentation Changes

• Control of other events. There is a pin-based VM-execution control that controls
system behavior (exit or no-exit) for NMI events. Most VMM usages will need
handling of NMI external events in the VMM and hence will specify host control of
these events.

Some processors also support a pin-based VM-execution control called “virtual
NMIs.” When this control is set, NMIs cause VM exits, but the processor tracks guest
readiness for virtual NMIs. This control interacts with the “NMI-window exiting” VM-
execution control (see below).

INIT and SIPI events always cause VM exits.

• Acknowledge interrupt on exit. The “acknowledge interrupt on exit” VM-exit
control in the controlling VMCS controls processor behavior for external interrupt
acknowledgement. If the control is 1, the processor acknowledges the interrupt
controller to acquire the interrupt vector upon VM exit, and stores the vector in the
VM-exit interruption-information field. If the control is 0, the external interrupt is not
acknowledged during VM exit. Since RFLAGS.IF is automatically cleared on VM exits
due to external interrupts, VMM re-enabling of interrupts (setting RFLAGS.IF = 1)
initiates the external interrupt acknowledgement and vectoring of the external
interrupt through the monitor/host IDT.

• Event-masking Support. VMX captures the masking conditions of specific events
while in VMX non-root operation through the interruptibility-state field in the guest-
state area of the VMCS.

This feature allows proper virtualization of various interrupt blocking states, such as:
(a) blocking of external interrupts for the instruction following STI; (b) blocking of
interrupts for the instruction following a MOV-SS or POP-SS instruction; (c) SMI
blocking of subsequent SMIs until the next execution of RSM; and (d) NMI/SMI
blocking of NMIs until the next execution of IRET or RSM.

INIT and SIPI events are treated specially. INIT assertions are always blocked in VMX
root operation and while in SMM, and unblocked otherwise. SIPI events are always
blocked in VMX root operation.

The interruptibility state is loaded from the VMCS guest-state area on every
VM entry and saved into the VMCS on every VM exit.

• Event injection. VMX operation allows injecting interruptions to a guest virtual
machine through the use of VM-entry interrupt-information field in VMCS. Injectable
interruptions include external interrupts, NMI, processor exceptions, software
generated interrupts, and software traps. If the interrupt-information field indicates
a valid interrupt, exception or trap event upon the next VM entry; the processor will
use the information in the field to vector a virtual interruption through the guest IDT
after all guest state and MSRs are loaded. Delivery through the guest IDT emulates
vectoring in non-VMX operation by doing the normal privilege checks and pushing
appropriate entries to the guest stack (entries may include RFLAGS, EIP and
exception error code). A VMM with host control of NMI and external interrupts can
use the event-injection facility to forward virtual interruptions to various guest
virtual machines.

• Interrupt-window exiting. When set to 1, the “interrupt-window exiting” VM-
execution control (Section 21.6.2) causes VM exits when guest RFLAGS.IF is 1 and
no other conditions block external interrupts. A VM exit occurs at the beginning of
any instruction at which RFLAGS.IF = 1 and on which the interruptibility state of the
guest would allow delivery of an interrupt. For example: when the guest executes an
STI instruction, RFLAGS = 1, and if at the completion of next instruction the inter-
ruptibility state masking due to STI is removed; a VM exit occurs if the “interrupt-
window exiting” VM-execution control is 1. This feature allows a VMM to queue a

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 119

Documentation Changes

virtual interrupt to the guest when the guest is not in an interruptible state. The VMM
can set the “interrupt-window exiting” VM-execution control for the guest and
depend on a VM exit to know when the guest becomes interruptible (and, therefore,
when it can inject a virtual interrupt). The VMM can detect such VM exits by checking
for the basic exit reason “interrupt-window” (value = 7). If this feature is not used,
the VMM will need to poll and check the interruptibility state of the guest to deliver
virtual interrupts.

• NMI-window exiting. If the “virtual NMIs” VM-execution is set, the processor
tracks virtual-NMI blocking. The “NMI-window exiting” VM-execution control
(Section 21.6.2) causes VM exits when there is no virtual-NMI blocking. For
example, after execution of the IRET instruction, a VM exit occurs if the “NMI-
window exiting” VM-execution control is 1. This feature allows a VMM to queue a
virtual NMI to a guest when the guest is not ready to receive NMIs. The VMM can set
the “NMI-window exiting” VM-execution control for the guest and depend on a
VM exit to know when the guest becomes ready for NMIs (and, therefore, when it
can inject a virtual NMI). The VMM can detect such VM exits by checking for the basic
exit reason “NMI window” (value = 8). If this feature is not used, the VMM will need
to poll and check the interruptibility state of the guest to deliver virtual NMIs.

• VM-exit information. The VM-exit information fields provide details on VM exits
due to exceptions and interrupts. This information is provided through the exit-quali-
fication, VM-exit-interruption-information, instruction-length and interruption-error-
code fields. Also, for VM exits that occur in the course of vectoring through the guest
IDT, information about the event that was being vectored through the guest IDT is
provided in the IDT-vectoring-information and IDT-vectoring-error-code fields.
These information fields allow the VMM to identify the exception cause and to handle
it properly.

...

29.3.1 Virtualization of Interrupt Vector Space
The Intel 64 and IA-32 architectures use 8-bit vectors of which 244 (20H – FFH) are
available for external interrupts. Vectors are used to select the appropriate entry in the
interrupt descriptor table (IDT). VMX operation allows each guest to control its own IDT.
Host vectors refer to vectors delivered by the platform to the processor during the inter-
rupt acknowledgement cycle. Guest vectors refer to vectors programmed by a guest to
select an entry in its guest IDT. Depending on the I/O resource management models
supported by the VMM design, the guest vector space may or may not overlap with the
underlying host vector space.

...

29.3.2.3 Local APIC Virtualization
The local APIC is responsible for the local interrupt sources, interrupt acceptance,
dispensing interrupts to the logical processor, and generating inter-processor interrupts.
Software interacts with the local APIC by reading and writing its memory-mapped regis-
ters residing within a 4-KByte uncached memory region with base address stored in the
IA32_APIC_BASE MSR. Since the local APIC registers are memory-mapped, the VMM
can utilize memory virtualization techniques (such as page-table virtualization) to trap
guest accesses to the page frame hosting the virtual local APIC registers.

Local APIC virtualization in the VMM needs to emulate the various local APIC operations
and registers, such as: APIC identification/format registers, the local vector table (LVT),

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 120

Documentation Changes

the interrupt command register (ICR), interrupt capture registers (TMR, IRR and ISR),
task and processor priority registers (TPR, PPR), the EOI register and the APIC-timer
register. Since local APICs are designed to operate with non-specific EOI, local APIC
emulation also needs to emulate broadcast of EOI to the guest’s virtual I/O APICs for
level triggered virtual interrupts.

A local APIC allows interrupt masking at two levels: (1) mask bit in the local vector table
entry for local interrupts and (2) raising processor priority through the TPR registers for
masking lower priority external interrupts. The VMM needs to comprehend these virtual
local APIC mask settings as programmed by the guest in addition to the guest virtual
processor interruptibility state (when injecting APIC routed external virtual interrupts to
a guest VM).

VMX provides several features which help the VMM to virtualize the local APIC. These
features allow many of guest TPR accesses (using CR8 only) to occur without VM exits to
the VMM:

• The VMCS contains a “virtual-APIC address” field. This 64-bit field is the physical
address of the 4-KByte virtual APIC page (4-KByte aligned). The virtual-APIC page
contains a TPR shadow, which is accessed by the MOV CR8 instruction. The TPR
shadow comprises bits 7:4 in byte 80H of the virtual-APIC page.

• The TPR threshold: bits 3:0 of this 32-bit field determine the threshold below which
the TPR shadow cannot fall. A VM exit will occur after an execution of MOV CR8 that
reduces the TPR shadow below this value.

• The processor-based VM-execution controls field contains a “use TPR shadow” bit
and a “CR8-store exiting” bit. If the “use TPR shadow” VM-execution control is 1 and
the “CR8-store exiting” VM-execution control is 0, then a MOV from CR8 reads from
the TPR shadow. If the “CR8-store exiting” VM-execution control is 1, then MOV from
CR8 causes a VM exit; the “use TPR shadow” VM-execution control is ignored in this
case.

• The processor-based VM-execution controls field contains a “CR8-load exiting” bit. If
the “use TPR shadow” VM-execution control is set and the “CR8-load exiting” VM-
execution control is clear, then MOV to CR8 writes to the “TPR shadow”. A VM exit will
occur after this write if the value written is below the TPR threshold. If the “CR8-load
exiting” VM-execution control is set, then MOV to CR8 causes a VM exit; the “use TPR
shadow” VM-execution control is ignored in this case.

...

29.3.3.2 Processor Treatment of External Interrupt
Interrupts are automatically masked by hardware in the processor on VM exit by clearing
RFLAGS.IF. The exit-reason field in VMCS is set to 1 to indicate an external interrupt as
the exit reason.

If the VMM is utilizing the acknowledge-on-exit feature (by setting the “acknowledge
interrupt on exit” VM-exit control), the processor acknowledges the interrupt, retrieves
the host vector, and saves the interrupt in the VM-exit-interruption-information field (in
the VM-exit information region of the VMCS) before transitioning control to the VMM.

29.3.3.3 Processing of External Interrupts by VMM
Upon VM exit, the VMM can determine the exit cause of an external interrupt by checking
the exit-reason field (value = 1) in VMCS. If the acknowledge-interrupt-on-exit control
(see Section 21.7.1) is enabled, the VMM can use the saved host vector (in the exit-

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 121

Documentation Changes

interruption-information field) to switch to the appropriate interrupt handler. If the
“acknowledge interrupt on exit” VM-exit control is 0, the VMM may re-enable interrupts
(by setting RFLAGS.IF) to allow vectoring of external interrupts through the monitor/
host IDT.

...

29.4.3 MCA Error Handling Guidelines for VMM
Section 29.4.2 covers general requirements for VMMs to handle machine-check excep-
tions, when normal operation of the guest machine and/or the VMM is no longer possible.
enhancements of machine check architecture in newer processors may support software
recovery of uncorrected MC errors (UCR) signaled through either machine-check excep-
tions or corrected machine-check interrupt (CMCI). Section 15.5 and Section 15.6
describes details of these more recent enhancements of machine check architecture.

In general, Virtual Machine Monitor (VMM) error handling should follow the recommen-
dations for OS error handling described in Section 15.3, Section 15.6, Section 15.9, and
Section 15.10. This section describes additional guidelines for hosted and native hyper-
visor-based VMM implementations to support corrected MC errors and recoverable
uncorrected MC errors.

Because a hosted VMM provides virtualization services in the context of an existing stan-
dard host OS, the host OS controls platform hardware through the host OS services such
as the standard OS device drivers. In hosted VMMs. MCA errors will be handled by the
host OS error handling software.

In native VMMs, the hypervisor runs on the hardware directly, and may provide only a
limited set of platform services for guest VMs. Most platform services may instead be
provided by a “control OS”. In hypervisor-based VMMs, MCA errors will either be deliv-
ered directly to the VMM MCA handler (when the error is signaled while in the VMM
context) or cause by a VM exit from a guest VM or be delivered to the MCA intercept
handler. There are two general approaches the hypervisor can use to handle the MCA
error: either within the hypervisor itself or by forwarding the error to the control OS.

...

26. Updates to Chapter 30, Volume 3B

Change bars show changes to Chapter 30 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...

30.5 PERFORMANCE MONITORING (PROCESSORS BASED ON
INTEL® ATOM™ MICROARCHITECTURE)

Intel Atom processor family supports architectural performance monitoring capability
with version ID 3 (see Section 30.2.2.2) and a host of non-architectural monitoring
capabilities. The initial implementation of Intel Atom processor family provides two
general-purpose performance counters (IA32_PMC0, IA32_PMC1) and three fixed-func-

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 122

Documentation Changes

tion performance counters (IA32_FIXED_CTR0, IA32_FIXED_CTR1,
IA32_FIXED_CTR2).

Non-architectural performance monitoring in Intel Atom processor family uses the
IA32_PERFEVTSELx MSR to configure a set of non-architecture performance monitoring
events to be counted by the corresponding general-purpose performance counter. The
list of non-architectural performance monitoring events is listed in Table A-9.

Architectural and non-architectural performance monitoring events in Intel Atom
processor family support thread qualification using bit 21 of IA32_PERFEVTSELx MSR.

The bit fields within each IA32_PERFEVTSELx MSR are defined in Figure 30-6 and
described in Section 30.2.1.1 and Section 30.2.2.2.

Valid event mask (Umask) bits are listed in Appendix A. The UMASK field may contain
sub-fields that provide the same qualifying actions like those listed in Table 30-2,
Table 30-3, Table 30-4, and Table 30-5. One or more of these sub-fields may apply to
specific events on an event-by-event basis. Details are listed in Table A-9 in Appendix A,
“Performance-Monitoring Events.” Precise Event Based Monitoring is supported using
IA32_PMC0 (see also Section 16.4.9, “BTS and DS Save Area”).

...

Table 30-15 MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 Bit Field Definition
Bit Name Offset Description

DMND_DATA_RD 0 (R/W). Counts the number of demand and DCU prefetch data reads
of full and partial cachelines as well as demand data page table
entry cacheline reads. Does not count L2 data read prefetches or
instruction fetches.

DMND_RFO 1 (R/W). Counts the number of demand and DCU prefetch reads for
ownership (RFO) requests generated by a write to data cacheline.
Does not count L2 RFO.

DMND_IFETCH 2 (R/W). Counts the number of demand and DCU prefetch instruction
cacheline reads. Does not count L2 code read prefetches.

WB 3 (R/W). Counts the number of writeback (modified to exclusive)
transactions.

PF_DATA_RD 4 (R/W). Counts the number of data cacheline reads generated by L2
prefetchers.

PF_RFO 5 (R/W). Counts the number of RFO requests generated by L2
prefetchers.

PF_IFETCH 6 (R/W). Counts the number of code reads generated by L2
prefetchers.

OTHER 7 (R/W). Counts one of the following transaction types, including L3
invalidate, I/O, full or partial writes, WC or non-temporal stores,
CLFLUSH, Fences, lock, unlock, split lock.

UNCORE_HIT 8 (R/W). L3 Hit: local or remote home requests that hit L3 cache in the
uncore with no coherency actions required (snooping).

OTHER_CORE_HI
T_SNP

9 (R/W). L3 Hit: local or remote home requests that hit L3 cache in the
uncore and was serviced by another core with a cross core snoop
where no modified copies were found (clean).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 123

Documentation Changes

...

27. Updates to Appendix B, Volume 3B

Change bars show changes to Appendix B of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

This appendix lists MSRs provided in Intel® Core™ 2 processor family, Intel® Atom™,
Intel® Core™ Duo, Intel® Core™ Solo, Pentium® 4 and Intel® Xeon® processors, P6
family processors, and Pentium® processors in TablesB-12, B17 and B-18, respectively.
All MSRs listed can be read with the RDMSR and written with the WRMSR instructions.

...

Table B-1 CPUID Signature Values of DisplayFamily_DisplayModel

...

Table B-2 IA-32 Architectural MSRs

OTHER_CORE_HI
TM

10 (R/W). L3 Hit: local or remote home requests that hit L3 cache in the
uncore and was serviced by another core with a cross core snoop
where modified copies were found (HITM).

Reserved 11 Reserved

REMOTE_CACHE_
FWD

12 (R/W). L3 Miss: local homed requests that missed the L3 cache and
was serviced by forwarded data following a cross package snoop
where no modified copies found. (Remote home requests are not
counted)

REMOTE_DRAM 13 (R/W). L3 Miss: remote home requests that missed the L3 cache and
were serviced by remote DRAM.

LOCAL_DRAM 14 (R/W). L3 Miss: local home requests that missed the L3 cache and
were serviced by local DRAM.

NON_DRAM 15 (R/W). Non-DRAM requests that were serviced by IOH.

Bit Name Offset Description

DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_2AH Next Generation Intel Core Processor

06_2DH Next Generation Intel Xeon Processor

...

Register Address Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSR
Hex Decimal

...

19AH 410 IA32_CLOCK_MODULATIO
N

Clock Modulation Control (R/
W)

See Section 14.5.3,
“Software Controlled Clock
Modulation.”

0F_0H

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 124

Documentation Changes

0 Extended On-Demand Clock
Modulation Duty Cycle:

If
CPUID.06H:EAX[5
] = 1

3:1 On-Demand Clock
Modulation Duty Cycle:
Specific encoded values for
target duty cycle modulation

4 On-Demand Clock
Modulation Enable: Set 1 to
enable modulation

63:5 Reserved

...

19BH 411 IA32_THERM_INTERRUPT Thermal Interrupt Control
(R/W)

Enables and disables the
generation of an interrupt
on temperature transitions
detected with the
processor’s thermal sensors
and thermal monitor.

See Section 14.5.2, “Thermal
Monitor.”

0F_0H

0 High-Temperature Interrupt
Enable

1 Low-Temperature Interrupt
Enable

2 PROCHOT# Interrupt Enable

3 FORCEPR# Interrupt Enable

4 Critical Temperature
Interrupt Enable

7:5 Reserved

14:8 Threshold #1 Value

15 Threshold #1 Interrupt
Enable

22:16 Threshold #2 Value

23 Threshold #2 Interrupt
Enable

24 Power Limit Notification
Enable

If
CPUID.06H:EAX[4
] = 1

63:25 Reserved

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 125

Documentation Changes

19CH 412 IA32_THERM_STATUS Thermal Status Information
(RO)

Contains status information
about the processor’s
thermal sensor and
automatic thermal
monitoring facilities.

See Section 14.5.2, “Thermal
Monitor”

0F_0H

0 Thermal Status (RO):

1 Thermal Status Log (R/W):

2 PROCHOT # or FORCEPR#
event (RO)

3 PROCHOT # or FORCEPR#
log (R/WC0)

4 Critical Temperature Status
(RO)

5 Critical Temperature Status
log (R/WC0)

6 Thermal Threshold #1
Status (RO)

If
CPUID.01H:ECX[8
] = 1

7 Thermal Threshold #1 log
(R/WC0)

If
CPUID.01H:ECX[8
] = 1

8 Thermal Threshold #2
Status (RO)

If
CPUID.01H:ECX[8
] = 1

9 Thermal Threshold #1 log
(R/WC0)

If
CPUID.01H:ECX[8
] = 1

10 Power Limitation Status (RO) If
CPUID.06H:EAX[4
] = 1

11 Power Limitation log (R/
WC0)

If
CPUID.06H:EAX[4
] = 1

15:12 Reserved

22:16 Digital Readout (RO) If
CPUID.06H:EAX[0
] = 1

26:23 Reserved

30:27 Resolution in Degrees
Celsius (RO)

If
CPUID.06H:EAX[0
] = 1

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 126

Documentation Changes

31 Reading Valid (RO) If
CPUID.06H:EAX[0
] = 1

63:32 Reserved

...

1B1H 433 IA32_PACKAGE_THERM_S
TATUS

Package Thermal Status
Information (RO)

Contains status information
about the package’s thermal
sensor.

See Section 14.6, “Package
Level Thermal Management.”

06_2AH

0 Pkg Thermal Status (RO):

1 Pkg Thermal Status Log (R/
W):

2 Pkg PROCHOT # event (RO)

3 Pkg PROCHOT # log (R/WC0)

4 Pkg Critical Temperature
Status (RO)

5 Pkg Critical Temperature
Status log (R/WC0)

6 Pkg Thermal Threshold #1
Status (RO)

7 Pkg Thermal Threshold #1
log (R/WC0)

8 Pkg Thermal Threshold #2
Status (RO)

9 Pkg Thermal Threshold #1
log (R/WC0)

10 Pkg Power Limitation Status
(RO)

11 Pkg Power Limitation log (R/
WC0)

15:12 Reserved

22:16 Pkg Digital Readout (RO)

63:23 Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 127

Documentation Changes

1B2H 434 IA32_PACKAGE_THERM_I
NTERRUPT

Pkg Thermal Interrupt
Control (R/W)

Enables and disables the
generation of an interrupt
on temperature transitions
detected with the package’s
thermal sensor.

See Section 14.6, “Package
Level Thermal Management.”

06_2AH

0 Pkg High-Temperature
Interrupt Enable

1 Pkg Low-Temperature
Interrupt Enable

2 Pkg PROCHOT# Interrupt
Enable

3 Reserved

4 Pkr Overheat Interrupt
Enable

7:5 Reserved

14:8 Pkg Threshold #1 Value

15 Pkg Threshold #1 Interrupt
Enable

22:16 Pkg Threshold #2 Value

23 Pkg Threshold #2 Interrupt
Enable

24 Pkg Power Limit Notification
Enable

63:25 Reserved

...

40CH 1036 IA32_MC3_CTL MC3_CTL P6 Family
Processors

40DH 1037 IA32_MC3_STATUS MC3_STATUS P6 Family
Processors

40EH 1038 IA32_MC3_ADDR1 MC3_ADDR P6 Family
Processors

40FH 1039 IA32_MC3_MISC MC3_MISC P6 Family
Processors

410H 1040 IA32_MC4_CTL MC4_CTL P6 Family
Processors

411H 1041 IA32_MC4_STATUS MC4_STATUS P6 Family
Processors

412H 1042 IA32_MC4_ADDR1 MC4_ADDR P6 Family
Processors

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 128

Documentation Changes

...

Table B-5 MSRs in Processors Based on Intel Microarchitecture codename
Nehalem

...

Table B-8 Additional MSRs supported by Intel Processors (Intel microarchitecture
codename Westmere)

...

B.6 MSRS IN NEXT GENERATION INTEL® PROCESSOR
FAMILY (CODENAME SANDY BRIDGE)

Table B-9 lists selected model-specific registers (MSRs) that are common to next gener-
ation for Intel® processor family (codename Sandy Bridge). All architectural MSRs listed
in Table B-2 are supported. These processors have a CPUID signature with
DisplayFamily_DisplayModel of 06_2AH, 06_2DH, see Table B-1. Additional MSRs
specific to 06_2AH are listed in Table B-10.

413H 1043 IA32_MC4_MISC MC4_MISC P6 Family
Processors

...

Register
Address Register Name

Scope
Bit Description

 Hex Dec

...

1A6H 422 MSR_OFFCORE_RS
P_0

Thread Offcore Response Event Select Register (R/W)

...

Register
Address Register Name

Scope
Bit Description

 Hex Dec

1A7H 423 MSR_OFFCORE_RS
P_1

Thread Offcore Response Event Select Register (R/W)

1B0H 432 IA32_ENERGY_PE
RF_BIAS

Package see Table B-2

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 129

Documentation Changes

B.6.1 MSRs In Next Generation Intel® Core Processor Family
(codename Sandy Bridge)

Table B-10 lists selected model-specific registers (MSRs) that are specific to next gener-
ation for Intel® Core processor family (codename Sandy Bridge). These processors have
a CPUID signature with DisplayFamily_DisplayModel of 06_2AH, see Table B-1.

Table B-9 Selected MSRs supported by Next Generation Intel Processors (Intel
microarchitecture codename Sandy Bridge)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

1B1H 433 IA32_PACKAGE_T
HERM_STATUS

Package see Table B-2

1B2H 434 IA32_PACKAGE_T
HERM_INTERRUPT

Package see Table B-2

606H 1542 MSR_RAPL_POWE
R_UNIT

Package Unit Multipliers used in RAPL Interfaces (R/O)
See Section 14.7.1, “RAPL Interfaces.”

610H 1552 MSR_PKG_RAPL_P
OWER_LIMIT

Package PKG RAPL Power Limit Control (R/W) See
Section 14.7.3, “Package RAPL Domain.”

611H 1553 MSR_PKG_ENERY_
STATUS

Package PKG Energy Status (R/O) See Section 14.7.3,
“Package RAPL Domain.”

613H 1555 MSR_PKG_PERF_S
TATUS

Package PKG Performance Throttling Status (R/O) See
Section 14.7.3, “Package RAPL Domain.”

614H 1556 MSR_PKG_POWER
_INFO

Package PKG RAPL Parameters (R/W) See Section
14.7.3, “Package RAPL Domain.”

638H 1592 MSR_PP0_POWER
_LIMIT

Package PP0 RAPL Power Limit Control (R/W) See
Section 14.7.4, “PP0/PP1 RAPL Domains.”

639H 1593 MSR_PP0_ENERY_
STATUS

Package PP0 Energy Status (R/O) See Section 14.7.4,
“PP0/PP1 RAPL Domains.”

63AH 1594 MSR_PP0_POLICY Package PP0 Balance Policy (R/W) See Section 14.7.4,
“PP0/PP1 RAPL Domains.”

63BH 1595 MSR_PP0_PERF_S
TATUS

Package PP0 Performance Throttling Status (R/O) See
Section 14.7.4, “PP0/PP1 RAPL Domains.”

Table B-10 Selected MSRs supported by Next Generation Intel Core Processors
(Intel microarchitecture codename Sandy Bridge)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

640H 1600 MSR_PP1_POWER
_LIMIT

Package PP1 RAPL Power Limit Control (R/W) See
Section 14.7.4, “PP0/PP1 RAPL Domains.”

641H 1601 MSR_PP1_ENERY_
STATUS

Package PP1 Energy Status (R/O) See Section 14.7.4,
“PP0/PP1 RAPL Domains.”

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 130

Documentation Changes

B.6.2 MSRs In Next Generation Intel® Xeon Processor Family
(codename Sandy Bridge)

Table B-11 lists selected model-specific registers (MSRs) that are specific to next gener-
ation for Intel® Xeon processor family (codename Sandy Bridge). These processors have
a CPUID signature with DisplayFamily_DisplayModel of 06_2DH, see Table B-1.

...

Table B-17 MSRs in the P6 Family Processors

642H 1602 MSR_PP1_POLICY Package PP1 Balance Policy (R/W) See Section 14.7.4,
“PP0/PP1 RAPL Domains.”

Table B-11 Selected MSRs supported by Next Generation Intel Xeon Processors
(Intel microarchitecture codename Sandy Bridge)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

618H 1560 MSR_DRAM_POWE
R_LIMIT

Package DRAM RAPL Power Limit Control (R/W) See
Section 14.7.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENER
Y_STATUS

Package DRAM Energy Status (R/O) See Section 14.7.5,
“DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF
_STATUS

Package DRAM Performance Throttling Status (R/O)
See Section 14.7.5, “DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWE
R_INFO

Package DRAM RAPL Parameters (R/W) See Section
14.7.5, “DRAM RAPL Domain.”

Register
Address

Register Name Bit Description

 Hex Dec

...

401H 1025 MC0_STATUS

15:0 MC_STATUS_MCACOD

31:16 MC_STATUS_MSCOD

57 MC_STATUS_DAM

58 MC_STATUS_ADDRV

59 MC_STATUS_MISCV

60 MC_STATUS_EN. (Note: For MC0_STATUS only, this
bit is hardcoded to 1.)

Table B-10 Selected MSRs supported by Next Generation Intel Core Processors
(Continued)(Intel microarchitecture codename Sandy Bridge)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 131

Documentation Changes

...

28. Updates to Appendix E, Volume 3B

Change bars show changes to Appendix E of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...

Table E-11 Incremental Memory Controller Error Codes of Machine Check for
IA32_MC8_STATUS

...

61 MC_STATUS_UC

62 MC_STATUS_O

63 MC_STATUS_V

...

Type Bit No. Bit Function Bit Description

MCA error
codes1

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,”

for more information.

0-15 MCACOD Memory error format: 1MMMCCCC

Model specific
errors

16 Read ECC error if 1, ECC occurred on a read

17 RAS ECC error If 1, ECC occurred on a scrub

18 Write parity error If 1, bad parity on a write

19 Redundancy loss if 1, Error in half of redundant memory

20 Reserved Reserved

21 Memory range error If 1, Memory access out of range

22 RTID out of range If 1, Internal ID invalid

23 Address parity error If 1, bad address parity

24 Byte enable parity
error

If 1, bad enable parity

Other
information

37-25 Reserved Reserved

52:38 CORE_ERR_CNT Corrected error count

56-53 Reserved Reserved

Status register
validity
indicators1

57-63

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 132

Documentation Changes

29. Updates to Appendix H, Volume 3B

Change bars show changes to Appendix H of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...

Table H-1 Encoding for 16-Bit Control Fields (0000_00xx_xxxx_xxx0B)

...

Field Name Index Encoding

Virtual-processor identifier (VPID)1

NOTES:
1. This field exists only on processors that support the 1-setting of the “enable VPID” VM-execution

control.

000000000B 00000000H

	Revision History
	Preface
	Summary Tables of Changes
	Documentation Changes
	1. Updates to Chapter 7, Volume 1
	2. Updates to Chapter 9, Volume 1
	3. Updates to Chapter 11, Volume 1
	4. Updates to Chapter 12, Volume 1
	5. Updates to Chapter 13, Volume 1
	Figure 13-2 I/O Permission Bit Map

	6. Updates to Appendix D, Volume 1
	7. Updates to Chapter 2, Volume 2A
	8. Updates to Chapter 3, Volume 2A
	Figure 3-6 Feature Information Returned in the ECX Register

	9. Updates to Chapter 4, Volume 2B
	10. Updates to Chapter 5, Volume 2B
	11. Updates to Chapter 6, Volume 2B
	12. Updates to Appendix A, Volume 2B
	Table A-2. One-byte Opcode Map: (08H - FFH) *

	13. Updates to Chapter 3, Volume 3A
	14. Updates to Chapter 6, Volume 3A
	15. Updates to Chapter 8, Volume 3A
	16. Updates to Chapter 10, Volume 3A
	17. Updates to Chapter 14, Volume 3A
	Figure 14-11 IA32_CLOCK_MODULATION MSR with Clock Modulation Extension
	Figure 14-14 IA32_PACKAGE_THERM_STATUS Register
	Figure 14-15 IA32_PACKAGE_THERM_INTERRUPT Register
	Figure 14-16 MSR_RAPL_POWER_UNIT Register
	Figure 14-17 MSR_PKG_POWER_LIMIT Register
	Figure 14-18 MSR_PKG_ENERGY_STATUS MSR
	Figure 14-19 MSR_PKG_POWER_INFO Register
	Figure 14-20 MSR_PKG_PERF_STATUS MSR
	Figure 14-21 MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT Register
	Figure 14-22 MSR_PP0_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS MSR
	Figure 14-23 MSR_PP0_POLICY/MSR_PP1_POLICY Register
	Figure 14-24 MSR_PP0_PERF_STATUS MSR
	Figure 14-25 MSR_DRAM_POWER_LIMIT Register
	Figure 14-26 MSR_DRAM_ENERGY_STATUS MSR
	Figure 14-27 MSR_DRAM_POWER_INFO Register
	Figure 14-28 MSR_DRAM_PERF_STATUS MSR

	18. Updates to Chapter 16, Volume 3A
	19. Updates to Chapter 20, Volume 3B
	20. Updates to Chapter 22, Volume 3B
	21. Updates to Chapter 23, Volume 3B
	22. Updates to Chapter 24, Volume 3B
	23. Updates to Chapter 25, Volume 3B
	24. Updates to Chapter 26, Volume 3B
	Offset (Added to SMBASE + 8000H)
	Register
	Writable?

	25. Updates to Chapter 29, Volume 3B
	26. Updates to Chapter 30, Volume 3B
	27. Updates to Appendix B, Volume 3B
	Register Address
	Architectural MSR Name and bit fields
	(Former MSR Name)
	MSR/Bit Description
	Introduced as Architectural MSR
	Hex
	Decimal
	...
	Register Address
	Register Name
	Scope
	Bit Description
	Hex
	Dec
	...
	Register Address
	Register Name
	Scope
	Bit Description
	Hex
	Dec
	Register Address
	Register Name
	Scope
	Bit Description
	Hex
	Dec
	Register Address
	Register Name
	Scope
	Bit Description
	Hex
	Dec
	Register Address
	Register Name
	Scope
	Bit Description
	Hex
	Dec
	Register Address
	Register Name
	Bit Description
	Hex
	Dec
	...

	28. Updates to Appendix E, Volume 3B
	29. Updates to Appendix H, Volume 3B

