
Document Number: 252046-029

Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Documentation Changes

September 2010

Notice: The Intel® 64 and IA-32 architectures may contain design defects or errors known as errata
that may cause the product to deviate from published specifications. Current characterized errata are
documented in the specification updates.

2 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Legal Lines and DisclaimersINFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,

BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS

PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER,

AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING

LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY

PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or

life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device

drivers and applications enabled for Intel® 64 architecture. Performance will vary depending on your hardware and software

configurations. Consult with your system vendor for more information.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel

reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future

changes to them.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

I2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I2C bus/protocol and was developed

by Intel. Implementations of the I2C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and

North American Philips Corporation.

Intel, Pentium, Intel Core, Intel Xeon, Intel 64, Intel NetBurst, and the Intel logo are trademarks of Intel Corporation in the U.S.
and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2002–2010, Intel Corporation. All rights reserved.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 3

Contents

Revision History . 4

Preface . 7

Summary Tables of Changes . 8

Documentation Changes. 9

Revision History

4 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Revision History

Revision Description Date

-001 • Initial release November 2002

-002
• Added 1-10 Documentation Changes.
• Removed old Documentation Changes items that already have been

incorporated in the published Software Developer’s manual
December 2002

-003

• Added 9 -17 Documentation Changes.
• Removed Documentation Change #6 - References to bits Gen and Len

Deleted.
• Removed Documentation Change #4 - VIF Information Added to CLI

Discussion

February 2003

-004
• Removed Documentation changes 1-17.
• Added Documentation changes 1-24. June 2003

-005
• Removed Documentation Changes 1-24.
• Added Documentation Changes 1-15.

September 2003

-006 • Added Documentation Changes 16- 34. November 2003

-007
• Updated Documentation changes 14, 16, 17, and 28.
• Added Documentation Changes 35-45.

January 2004

-008
• Removed Documentation Changes 1-45.
• Added Documentation Changes 1-5.

March 2004

-009 • Added Documentation Changes 7-27. May 2004

-010
• Removed Documentation Changes 1-27.
• Added Documentation Changes 1.

August 2004

-011 • Added Documentation Changes 2-28. November 2004

-012
• Removed Documentation Changes 1-28.
• Added Documentation Changes 1-16.

March 2005

-013
• Updated title.
• There are no Documentation Changes for this revision of the

document.
July 2005

-014 • Added Documentation Changes 1-21. September 2005

-015
• Removed Documentation Changes 1-21.
• Added Documentation Changes 1-20.

March 9, 2006

-016 • Added Documentation changes 21-23. March 27, 2006

-017
• Removed Documentation Changes 1-23.
• Added Documentation Changes 1-36.

September 2006

-018 • Added Documentation Changes 37-42. October 2006

-019
• Removed Documentation Changes 1-42.
• Added Documentation Changes 1-19.

March 2007

-020 • Added Documentation Changes 20-27. May 2007

-021
• Removed Documentation Changes 1-27.
• Added Documentation Changes 1-6

November 2007

-022
• Removed Documentation Changes 1-6
• Added Documentation Changes 1-6

August 2008

-023
• Removed Documentation Changes 1-6
• Added Documentation Changes 1-21

March 2009

Revision History

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 5

§

-024
• Removed Documentation Changes 1-21
• Added Documentation Changes 1-16

June 2009

-025
• Removed Documentation Changes 1-16
• Added Documentation Changes 1-18

September 2009

-026
• Removed Documentation Changes 1-18
• Added Documentation Changes 1-15

December 2009

-027
• Removed Documentation Changes 1-15
• Added Documentation Changes 1-24

March 2010

-028
• Removed Documentation Changes 1-24
• Added Documentation Changes 1-29

June 2010

-029
• Removed Documentation Changes 1-29
• Added Documentation Changes 1-24

September 2010

Revision Description Date

Revision History

6 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 7

Preface

Preface

This document is an update to the specifications contained in the Affected Documents
table below. This document is a compilation of device and documentation errata,
specification clarifications and changes. It is intended for hardware system
manufacturers and software developers of applications, operating systems, or tools.

Affected Documents

Nomenclature

Documentation Changes include typos, errors, or omissions from the current
published specifications. These will be incorporated in any new release of the
specification.

Document Title
Document

Number/Location

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
1: Basic Architecture

253665

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2A: Instruction Set Reference, A-M

253666

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2B: Instruction Set Reference, N-Z

253667

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3A: System Programming Guide, Part 1

253668

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3B: System Programming Guide, Part 2

253669

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 8

Summary Tables of Changes

Summary Tables of Changes

The following table indicates documentation changes which apply to the Intel® 64 and
IA-32 architectures. This table uses the following notations:

Codes Used in Summary Tables

Change bar to left of table row indicates this erratum is either new or modified from the
previous version of the document.

Documentation Changes
No. DOCUMENTATION CHANGES

1 Updates to Chapter 3, Volume 1

2 Updates to Chapter 3, Volume 2A

3 Updates to Chapter 4, Volume 2B

4 Updates to Chapter 5, Volume 2B

5 Updates to Chapter 6, Volume 2B

6 Updates to Chapter 2, Volume 3A

7 Updates to Chapter 4, Volume 3A

8 Updates to Chapter 6, Volume 3A

9 Updates to Chapter 8, Volume 3A

10 Updates to Chapter 9, Volume 3A

11 Updates to Chapter 10, Volume 3A

12 Updates to Chapter 13, Volume 3A

13 Updates to Chapter 15, Volume 3A

14 Updates to Chapter 16, Volume 3A

15 Updates to Chapter 22, Volume 3B

16 Updates to Chapter 23, Volume 3B

17 Updates to Chapter 24, Volume 3B

18 Updates to Chapter 25, Volume 3B

19 Updates to Chapter 27, Volume 3B

20 Updates to Chapter 30, Volume 3B

21 Updates to Appendix B, Volume 3B

22 Updates to Appendix E, Volume 3B

23 Updates to Appendix G, Volume 3B

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

Documentation Changes

Documentation Changes

1. Updates to Chapter 3, Volume 1

Change bars show changes to Chapter 3 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1: Basic Architecture.

--

...

3.7.5.1 Specifying an Offset in 64-Bit Mode
The offset part of a memory address in 64-bit mode can be specified directly as a static
value or through an address computation made up of one or more of the following
components:

• Displacement — An 8-bit or 32-bit value.

• Base — The value in a 32-bit (or 64-bit if REX.W is set) general-purpose register.

• Index — The value in a 32-bit (or 64-bit if REX.W is set) general-purpose register.

• Scale factor — A value of 2, 4, or 8 that is multiplied by the index value.

...

2. Updates to Chapter 3, Volume 2A

Change bars show changes to Chapter 3 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A: Instruction Set Reference, A-M.

--

...

3.1.1.8 Operation Section
The “Operation” section contains an algorithm description (frequently written in pseudo-
code) for the instruction. Algorithms are composed of the following elements:

• Comments are enclosed within the symbol pairs “(*” and “*)”.

• Compound statements are enclosed in keywords, such as: IF, THEN, ELSE and FI for
an if statement; DO and OD for a do statement; or CASE... OF for a case statement.

• A register name implies the contents of the register. A register name enclosed in
brackets implies the contents of the location whose address is contained in that
register. For example, ES:[DI] indicates the contents of the location whose ES
segment relative address is in register DI. [SI] indicates the contents of the address
contained in register SI relative to the SI register’s default segment (DS) or the
overridden segment.

• Parentheses around the “E” in a general-purpose register name, such as (E)SI,
indicates that the offset is read from the SI register if the address-size attribute is
16, from the ESI register if the address-size attribute is 32. Parentheses around the
“R” in a general-purpose register name, (R)SI, in the presence of a 64-bit register

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 10

Documentation Changes

definition such as (R)SI, indicates that the offset is read from the 64-bit RSI register
if the address-size attribute is 64.

• Brackets are used for memory operands where they mean that the contents of the
memory location is a segment-relative offset. For example, [SRC] indicates that the
content of the source operand is a segment-relative offset.

• A B indicates that the value of B is assigned to A.

• The symbols =, , , <, , and are relational operators used to compare two
values: meaning equal, not equal, greater or equal, less or equal, respectively. A
relational expression such as A B is TRUE if the value of A is equal to B; otherwise
it is FALSE.

• The expression “« COUNT” and “» COUNT” indicates that the destination operand
should be shifted left or right by the number of bits indicated by the count operand.

The following identifiers are used in the algorithmic descriptions:

• OperandSize and AddressSize — The OperandSize identifier represents the
operand-size attribute of the instruction, which is 16, 32 or 64-bits. The AddressSize
identifier represents the address-size attribute, which is 16, 32 or 64-bits. For
example, the following pseudo-code indicates that the operand-size attribute
depends on the form of the MOV instruction used.

IF Instruction MOVW
THEN OperandSize 16;

ELSE
IF Instruction MOVD

THEN OperandSize 32;
ELSE

IF Instruction MOVQ
THEN OperandSize 64;

FI;
FI;

FI;

See “Operand-Size and Address-Size Attributes” in Chapter 3 of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1, for guidelines on how
these attributes are determined.

...

AND—Logical AND

...

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

...

REX + 80 /4 ib AND r/m8*, imm8 B Valid N.E. r/m8 AND imm8.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 11

Documentation Changes

CALL—Call Procedure

...

Operation

...
CALL-GATE:

IF call gate (DPL CPL) or (RPL DPL)
THEN #GP(call-gate selector); FI;

IF call gate not present
THEN #NP(call-gate selector); FI;

IF call-gate code-segment selector is NULL
THEN #GP(0); FI;

IF call-gate code-segment selector index is outside descriptor table limits
THEN #GP(call-gate code-segment selector); FI;

Read call-gate code-segment descriptor;
IF call-gate code-segment descriptor does not indicate a code segment
or call-gate code-segment descriptor DPL CPL

THEN #GP(call-gate code-segment selector); FI;
IF IA32_EFER.LMA = 1 AND (call-gate code-segment descriptor is
not a 64-bit code segment or call-gate code-segment descriptor has both L-bit and D-bit set)

THEN #GP(call-gate code-segment selector); FI;
IF call-gate code segment not present

THEN #NP(call-gate code-segment selector); FI;
IF call-gate code segment is non-conforming and DPL CPL

THEN go to MORE-PRIVILEGE;
ELSE go to SAME-PRIVILEGE;

FI;
END;

MORE-PRIVILEGE:
IF current TSS is 32-bit

THEN
TSSstackAddress (new code-segment DPL 8) 4;
IF (TSSstackAddress 5) current TSS limit

THEN #TS(current TSS selector); FI;
NewSS 2 bytes loaded from (TSS base + TSSstackAddress 4);
NewESP 4 bytes loaded from (TSS base + TSSstackAddress);

ELSE
IF current TSS is 16-bit

THEN
TSSstackAddress (new code-segment DPL 4) 2
IF (TSSstackAddress 3) current TSS limit

THEN #TS(current TSS selector); FI;
NewSS 2 bytes loaded from (TSS base + TSSstackAddress 2);
NewESP 2 bytes loaded from (TSS base + TSSstackAddress);

ELSE (* current TSS is 64-bit *)
TSSstackAddress (new code-segment DPL 8) 4;
IF (TSSstackAddress 7) current TSS limit

THEN #TS(current TSS selector); FI;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 12

Documentation Changes

NewSS new code-segment DPL; (* NULL selector with RPL = new CPL *)
NewRSP 8 bytes loaded from (current TSS base + TSSstackAddress);

FI;
FI;
IF IA32_EFER.LMA = 0 and NewSS is NULL

THEN #TS(NewSS); FI;
Read new code-segment descriptor and new stack-segment descriptor;
IF IA32_EFER.LMA = 0 and (NewSS RPL new code-segment DPL
or new stack-segment DPL new code-segment DPL or new stack segment is not a
writable data segment)

THEN #TS(NewSS); FI
IF IA32_EFER.LMA = 0 and new stack segment not present

THEN #SS(NewSS); FI;
IF CallGateSize = 32

THEN
IF new stack does not have room for parameters plus 16 bytes

THEN #SS(NewSS); FI;
IF CallGate(InstructionPointer) not within new code-segment limit

THEN #GP(0); FI;
SS newSS; (* Segment descriptor information also loaded *)
ESP newESP;
CS:EIP CallGate(CS:InstructionPointer);
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
temp parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* Return address to calling procedure *)

ELSE
IF CallGateSize = 16

THEN
IF new stack does not have room for parameters plus 8 bytes

THEN #SS(NewSS); FI;
IF (CallGate(InstructionPointer) AND FFFFH) not in new code-segment limit

THEN #GP(0); FI;
SS newSS; (* Segment descriptor information also loaded *)
ESP newESP;
CS:IP CallGate(CS:InstructionPointer);
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
temp parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* Return address to calling procedure *)

ELSE (* CallGateSize = 64 *)
IF pushing 32 bytes on the stack would use a non-canonical address

THEN #SS(NewSS); FI;
IF (CallGate(InstructionPointer) is non-canonical)

THEN #GP(0); FI;
SS NewSS; (* NewSS is NULL)
RSP NewESP;
CS:IP CallGate(CS:InstructionPointer);

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 13

Documentation Changes

(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
Push(oldCS:oldEIP); (* Return address to calling procedure *)

FI;
FI;
CPL CodeSegment(DPL)
CS(RPL) CPL

END;

...

CMOVcc—Conditional Move

...

CPUID—CPU Identification

...

INPUT EAX = 1: Returns Model, Family, Stepping Information

...

The Extended Family ID needs to be examined only when the Family ID is 0FH. Integrate
the fields into a display using the following rule:

IF Family_ID 0FH
THEN DisplayFamily = Family_ID;
ELSE DisplayFamily = Extended_Family_ID + Family_ID;
(* Right justify and zero-extend 4-bit field. *)

FI;
(* Show DisplayFamily as HEX field. *)

The Extended Model ID needs to be examined only when the Family ID is 06H or 0FH.
Integrate the field into a display using the following rule:

IF (Family_ID = 06H or Family_ID = 0FH)
THEN DisplayModel = (Extended_Model_ID « 4) + Model_ID;
(* Right justify and zero-extend 4-bit field; display Model_ID as HEX field.*)
ELSE DisplayModel = Model_ID;

FI;
(* Show DisplayModel as HEX field. *)

...

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

...

0F 40 /r CMOVO r16, r/m16 A Valid Valid Move if overflow (OF=1).

0F 40 /r CMOVO r32, r/m32 A Valid Valid Move if overflow (OF=1).

REX.W + 0F 40
/r

CMOVO r64, r/m64 A Valid N.E. Move if overflow (OF=1).

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 14

Documentation Changes

...

CVTPI2PD—Convert Packed Dword Integers to Packed Double-Precision
FP Values

...

SIMD Floating-Point Exceptions

Precision

...

Figure 3-9. Algorithm for Extracting Maximum Processor Frequency

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 15

Documentation Changes

CVTSI2SD—Convert Dword Integer to Scalar Double-Precision FP Value

...

SIMD Floating-Point Exceptions

Precision

...

FXSAVE—Save x87 FPU, MMX Technology, and SSE State

...

The fields in Table 3-48 are defined in Table 3-49.

Table 3-49 Field Definitions

Field Definition

FCW x87 FPU Control Word (16 bits). See Figure 8-6 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for the layout of
the x87 FPU control word.

FSW x87 FPU Status Word (16 bits). See Figure 8-4 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for the layout of
the x87 FPU status word.

Abridged FTW x87 FPU Tag Word (8 bits). The tag information saved here is abridged, as
described in the following paragraphs.

FOP x87 FPU Opcode (16 bits). The lower 11 bits of this field contain the
opcode, upper 5 bits are reserved. See Figure 8-8 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for the layout of
the x87 FPU opcode field.

FPU IP x87 FPU Instruction Pointer Offset (32 bits). The contents of this field
differ depending on the current addressing mode (32-bit or 16-bit) of the
processor when the FXSAVE instruction was executed:

32-bit mode — 32-bit IP offset.

16-bit mode — low 16 bits are IP offset; high 16 bits are reserved.

See “x87 FPU Instruction and Operand (Data) Pointers” in Chapter 8 of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
for a description of the x87 FPU instruction pointer.

CS x87 FPU Instruction Pointer Selector (16 bits).

FPU DP x87 FPU Instruction Operand (Data) Pointer Offset (32 bits). The contents
of this field differ depending on the current addressing mode (32-bit or 16-
bit) of the processor when the FXSAVE instruction was executed:

32-bit mode — 32-bit DP offset.

16-bit mode — low 16 bits are DP offset; high 16 bits are reserved.

See “x87 FPU Instruction and Operand (Data) Pointers” in Chapter 8 of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
for a description of the x87 FPU operand pointer.

DS x87 FPU Instruction Operand (Data) Pointer Selector (16 bits).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 16

Documentation Changes

...

INT n/INTO/INT 3—Call to Interrupt Procedure

...

Description

The INT n instruction generates a call to the interrupt or exception handler specified with
the destination operand (see the section titled “Interrupts and Exceptions” in Chapter 6
of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1). The
destination operand specifies an interrupt vector number from 0 to 255, encoded as an
8-bit unsigned intermediate value. Each interrupt vector number provides an index to a
gate descriptor in the IDT. The first 32 interrupt vector numbers are reserved by Intel for
system use. Some of these interrupts are used for internally generated exceptions.

The INT n instruction is the general mnemonic for executing a software-generated call to
an interrupt handler. The INTO instruction is a special mnemonic for calling overflow
exception (#OF), interrupt vector number 4. The overflow interrupt checks the OF flag in
the EFLAGS register and calls the overflow interrupt handler if the OF flag is set to 1.
(The INTO instruction cannot be used in 64-bit mode.)

...

MXCSR MXCSR Register State (32 bits). See Figure 10-3 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for the layout of
the MXCSR register. If the OSFXSR bit in control register CR4 is not set, the
FXSAVE instruction may not save this register. This behavior is
implementation dependent.

MXCSR_
MASK

MXCSR_MASK (32 bits). This mask can be used to adjust values written to
the MXCSR register, ensuring that reserved bits are set to 0. Set the mask
bits and flags in MXCSR to the mode of operation desired for SSE and SSE2
SIMD floating-point instructions. See “Guidelines for Writing to the MXCSR
Register” in Chapter 11 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for instructions for how to determine and
use the MXCSR_MASK value.

ST0/MM0 through
ST7/MM7

x87 FPU or MMX technology registers. These 80-bit fields contain the x87
FPU data registers or the MMX technology registers, depending on the
state of the processor prior to the execution of the FXSAVE instruction. If
the processor had been executing x87 FPU instruction prior to the FXSAVE
instruction, the x87 FPU data registers are saved; if it had been executing
MMX instructions (or SSE or SSE2 instructions that operated on the MMX
technology registers), the MMX technology registers are saved. When the
MMX technology registers are saved, the high 16 bits of the field are
reserved.

XMM0 through
XMM7

XMM registers (128 bits per field). If the OSFXSR bit in control register CR4
is not set, the FXSAVE instruction may not save these registers. This
behavior is implementation dependent.

Table 3-49 Field Definitions (Continued)

Field Definition

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 17

Documentation Changes

Operation

The following operational description applies not only to the INT n and INTO instructions,
but also to external interrupts, nonmaskable interrupts (NMIs), and exceptions. Some of
these events push onto the stack an error code.

The operational description specifies numerous checks whose failure may result in
delivery of a nested exception. In these cases, the original event is not delivered.

The operational description specifies the error code delivered by any nested exception.
In some cases, the error code is specified with a pseudofunction
error_code(num,idt,ext), where idt and ext are bit values. The pseudofunction produces
an error code as follows: (1) if idt is 0, the error code is (num & FCH) | ext; (2) if idt is
1, the error code is (num « 3) | 2 | ext.

In many cases, the pseudofunction error_code is invoked with a pseudovariable EXT.
The value of EXT depends on the nature of the event whose delivery encountered a
nested exception: if that event is a software interrupt, EXT is 0; otherwise, EXT is 1.

IF PE = 0
THEN

GOTO REAL-ADDRESS-MODE;
ELSE (* PE = 1 *)

IF (VM = 1 and IOPL < 3 AND INT n)
THEN

 #GP(0); (* Bit 0 of error code is 0 because INT n *)
ELSE (* Protected mode, IA-32e mode, or virtual-8086 mode interrupt *)

IF (IA32_EFER.LMA = 0)
THEN (* Protected mode, or virtual-8086 mode interrupt *)

GOTO PROTECTED-MODE;
ELSE (* IA-32e mode interrupt *)

GOTO IA-32e-MODE;
FI;

FI;
FI;
REAL-ADDRESS-MODE:

IF ((vector_number « 2) + 3) is not within IDT limit
THEN #GP; FI;

IF stack not large enough for a 6-byte return information
THEN #SS; FI;

Push (EFLAGS[15:0]);
IF 0; (* Clear interrupt flag *)
TF 0; (* Clear trap flag *)
AC 0; (* Clear AC flag *)
Push(CS);
Push(IP);
(* No error codes are pushed in real-address mode*)
CS IDT(Descriptor (vector_number « 2), selector));
EIP IDT(Descriptor (vector_number « 2), offset)); (* 16 bit offset AND 0000FFFFH *)

END;
PROTECTED-MODE:

IF ((vector_number « 3) + 7) is not within IDT limits
or selected IDT descriptor is not an interrupt-, trap-, or task-gate type

THEN #GP(error_code(vector_number,1,EXT)); FI;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 18

Documentation Changes

(* idt operand to error_code set because vector is used *)
IF software interrupt (* Generated by INT n, INT3, or INTO *)

THEN
IF gate DPL < CPL (* PE = 1, DPL < CPL, software interrupt *)

THEN #GP(error_code(vector_number,1,0)); FI;
(* idt operand to error_code set because vector is used *)
(* ext operand to error_code is 0 because INT n, INT3, or INTO*)

FI;
IF gate not present

THEN #NP(error_code(vector_number,1,EXT)); FI;
(* idt operand to error_code set because vector is used *)

IF task gate (* Specified in the selected interrupt table descriptor *)
THEN GOTO TASK-GATE;
ELSE GOTO TRAP-OR-INTERRUPT-GATE; (* PE = 1, trap/interrupt gate *)

FI;
END;
IA-32e-MODE:

IF INTO and CS.L = 1 (64-bit mode)
THEN #UD;

FI;
IF ((vector_number « 4) + 15) is not in IDT limits
or selected IDT descriptor is not an interrupt-, or trap-gate type

THEN #GP(error_code(vector_number,1,EXT));
(* idt operand to error_code set because vector is used *)

FI;
IF software interrupt (* Generated by INT n, INT 3, or INTO *)

THEN
IF gate DPL < CPL (* PE = 1, DPL < CPL, software interrupt *)

THEN #GP(error_code(vector_number,1,0));
(* idt operand to error_code set because vector is used *)
(* ext operand to error_code is 0 because INT n, INT3, or INTO*)

FI;
FI;
IF gate not present

THEN #NP(error_code(vector_number,1,EXT));
(* idt operand to error_code set because vector is used *)

FI;
GOTO TRAP-OR-INTERRUPT-GATE; (* Trap/interrupt gate *)

END;
TASK-GATE: (* PE = 1, task gate *)

Read TSS selector in task gate (IDT descriptor);
IF local/global bit is set to local or index not within GDT limits

THEN #GP(error_code(TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

Access TSS descriptor in GDT;
IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)

THEN #GP(TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

IF TSS not present
THEN #NP(TSS selector,0,EXT)); FI;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 19

Documentation Changes

(* idt operand to error_code is 0 because selector is used *)
SWITCH-TASKS (with nesting) to TSS;
IF interrupt caused by fault with error code

THEN
IF stack limit does not allow push of error code

THEN #SS(EXT); FI;
Push(error code);

FI;
IF EIP not within code segment limit

THEN #GP(EXT); FI;
END;
TRAP-OR-INTERRUPT-GATE:

Read new code-segment selector for trap or interrupt gate (IDT descriptor);
IF new code-segment selector is NULL

THEN #GP(EXT); FI; (* Error code contains NULL selector *)
IF new code-segment selector is not within its descriptor table limits

THEN #GP(error_code(new code-segment selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

Read descriptor referenced by new code-segment selector;
IF descriptor does not indicate a code segment or new code-segment DPL > CPL

THEN #GP(error_code(new code-segment selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

IF new code-segment descriptor is not present,
THEN #NP(error_code(new code-segment selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

IF new code segment is non-conforming with DPL < CPL
THEN

IF VM = 0
THEN

GOTO INTER-PRIVILEGE-LEVEL-INTERRUPT;
(* PE = 1, VM = 0, interrupt or trap gate, nonconforming code segment,
DPL < CPL *)

ELSE (* VM = 1 *)
IF new code-segment DPL 0

THEN #GP(error_code(new code-segment selector,0,EXT));
(* idt operand to error_code is 0 because selector is used *)

GOTO INTERRUPT-FROM-VIRTUAL-8086-MODE; FI;
(* PE = 1, interrupt or trap gate, DPL < CPL, VM = 1 *)

FI;
ELSE (* PE = 1, interrupt or trap gate, DPL CPL *)

IF VM = 1
THEN #GP(error_code(new code-segment selector,0,EXT));
(* idt operand to error_code is 0 because selector is used *)

IF new code segment is conforming or new code-segment DPL = CPL
THEN

GOTO INTRA-PRIVILEGE-LEVEL-INTERRUPT;
ELSE (* PE = 1, interrupt or trap gate, nonconforming code segment, DPL > CPL *)

#GP(error_code(new code-segment selector,0,EXT));
(* idt operand to error_code is 0 because selector is used *)

FI;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 20

Documentation Changes

FI;
END;
INTER-PRIVILEGE-LEVEL-INTERRUPT:

(* PE = 1, interrupt or trap gate, non-conforming code segment, DPL < CPL *)
IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)

THEN
(* Identify stack-segment selector for new privilege level in current TSS *)

IF current TSS is 32-bit
THEN

TSSstackAddress (new code-segment DPL « 3) + 4;
IF (TSSstackAddress + 5) > current TSS limit

THEN #TS(error_code(current TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

NewSS 2 bytes loaded from (TSS base + TSSstackAddress + 4);
NewESP 4 bytes loaded from (TSS base + TSSstackAddress);

ELSE (* current TSS is 16-bit *)
TSSstackAddress (new code-segment DPL « 2) + 2
IF (TSSstackAddress + 3) > current TSS limit

THEN #TS(error_code(current TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

NewSS 2 bytes loaded from (TSS base + TSSstackAddress + 2);
NewESP 2 bytes loaded from (TSS base + TSSstackAddress);

FI;
IF NewSS is NULL

THEN #TS(EXT); FI;
IF NewSS index is not within its descriptor-table limits
or NewSS RPL new code-segment DPL

THEN #TS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

Read new stack-segment descriptor for NewSS in GDT or LDT;
IF new stack-segment DPL new code-segment DPL
or new stack-segment Type does not indicate writable data segment

THEN #TS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

IF NewSS is not present
THEN #SS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

ELSE (* IA-32e mode *)
IF IDT-gate IST = 0

THEN TSSstackAddress (new code-segment DPL « 3) + 4;
ELSE TSSstackAddress (IDT gate IST « 3) + 28;

FI;
IF (TSSstackAddress + 7) > current TSS limit

THEN #TS(error_code(current TSS selector,0,EXT); FI;
(* idt operand to error_code is 0 because selector is used *)

NewRSP 8 bytes loaded from (current TSS base + TSSstackAddress);
NewSS new code-segment DPL; (* NULL selector with RPL = new CPL *)

FI;
IF IDT gate is 32-bit

THEN

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 21

Documentation Changes

IF new stack does not have room for 24 bytes (error code pushed)
or 20 bytes (no error code pushed)

THEN #SS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

FI
ELSE

IF IDT gate is 16-bit
THEN

IF new stack does not have room for 12 bytes (error code pushed)
or 10 bytes (no error code pushed);

THEN #SS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

ELSE (* 64-bit IDT gate*)
IF StackAddress is non-canonical

THEN #SS(EXT); FI; (* Error code contains NULL selector *)
FI;

FI;
IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)

THEN
IF instruction pointer from IDT gate is not within new code-segment limits

THEN #GP(EXT); FI; (* Error code contains NULL selector *)
ESP NewESP;
SS NewSS; (* Segment descriptor information also loaded *)

ELSE (* IA-32e mode *)
IF instruction pointer from IDT gate contains a non-canonical address

THEN #GP(EXT); FI; (* Error code contains NULL selector *)
RSP NewRSP & FFFFFFFFFFFFFFF0H;
SS NewSS;

FI;
IF IDT gate is 32-bit

THEN
CS:EIP Gate(CS:EIP); (* Segment descriptor information also loaded *)

ELSE
IF IDT gate 16-bit

THEN
CS:IPGate(CS:IP);
(* Segment descriptor information also loaded *)

ELSE (* 64-bit IDT gate *)
CS:RIP Gate(CS:RIP);
(* Segment descriptor information also loaded *)

FI;
FI;
IF IDT gate is 32-bit

THEN
Push(far pointer to old stack);
(* Old SS and ESP, 3 words padded to 4 *)
Push(EFLAGS);
Push(far pointer to return instruction);
(* Old CS and EIP, 3 words padded to 4 *)
Push(ErrorCode); (* If needed, 4 bytes *)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 22

Documentation Changes

ELSE
IF IDT gate 16-bit

THEN
Push(far pointer to old stack);
(* Old SS and SP, 2 words *)
Push(EFLAGS(15-0]);
Push(far pointer to return instruction);
(* Old CS and IP, 2 words *)
Push(ErrorCode); (* If needed, 2 bytes *)

ELSE (* 64-bit IDT gate *)
Push(far pointer to old stack);
(* Old SS and SP, each an 8-byte push *)
Push(RFLAGS); (* 8-byte push *)
Push(far pointer to return instruction);
(* Old CS and RIP, each an 8-byte push *)
Push(ErrorCode); (* If needed, 8-bytes *)

FI;
FI;
CPL new code-segment DPL;
CS(RPL) CPL;
IF IDT gate is interrupt gate

THEN IF 0 (* Interrupt flag set to 0, interrupts disabled *); FI;
TF 0;
VM 0;
RF 0;
NT 0;

END;
INTERRUPT-FROM-VIRTUAL-8086-MODE:

(* Identify stack-segment selector for privilege level 0 in current TSS *)
IF current TSS is 32-bit

THEN
IF TSS limit < 9

THEN #TS(error_code(current TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

NewSS 2 bytes loaded from (current TSS base + 8);
NewESP 4 bytes loaded from (current TSS base + 4);

ELSE (* current TSS is 16-bit *)
IF TSS limit < 5

THEN #TS(error_code(current TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

NewSS 2 bytes loaded from (current TSS base + 4);
NewESP 2 bytes loaded from (current TSS base + 2);

FI;
IF NewSS is NULL

THEN #TS(EXT); FI; (* Error code contains NULL selector *)
IF NewSS index is not within its descriptor table limits
or NewSS RPL 0

THEN #TS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

Read new stack-segment descriptor for NewSS in GDT or LDT;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 23

Documentation Changes

IF new stack-segment DPL 0 or stack segment does not indicate writable data segment
THEN #TS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

IF new stack segment not present
THEN #SS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

IF IDT gate is 32-bit
THEN

IF new stack does not have room for 40 bytes (error code pushed)
or 36 bytes (no error code pushed)

THEN #SS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

ELSE (* IDT gate is 16-bit)
IF new stack does not have room for 20 bytes (error code pushed)
or 18 bytes (no error code pushed)

THEN #SS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

FI;
IF instruction pointer from IDT gate is not within new code-segment limits

THEN #GP(EXT); FI; (* Error code contains NULL selector *)
tempEFLAGS EFLAGS;
VM 0;
TF 0;
RF 0;
NT 0;
IF service through interrupt gate

THEN IF = 0; FI;
TempSS SS;
TempESP ESP;
SS NewSS;
ESP NewESP;
(* Following pushes are 16 bits for 16-bit IDT gates and 32 bits for 32-bit IDT gates;
Segment selector pushes in 32-bit mode are padded to two words *)
Push(GS);
Push(FS);
Push(DS);
Push(ES);
Push(TempSS);
Push(TempESP);
Push(TempEFlags);
Push(CS);
Push(EIP);
GS 0; (* Segment registers made NULL, invalid for use in protected mode *)
FS 0;
DS 0;
ES 0;
CS:IPGate(CS); (* Segment descriptor information also loaded *)
IF OperandSize = 32

THEN
EIP Gate(instruction pointer);

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 24

Documentation Changes

ELSE (* OperandSize is 16 *)
EIP Gate(instruction pointer) AND 0000FFFFH;

FI;
(* Start execution of new routine in Protected Mode *)

END;
INTRA-PRIVILEGE-LEVEL-INTERRUPT:

(* PE = 1, DPL = CPL or conforming segment *)
IF IA32_EFER.LMA = 1 (* IA-32e mode *)

IF IDT-descriptor IST 0
THEN

TSSstackAddress (IDT-descriptor IST « 3) + 28;
IF (TSSstackAddress + 7) > TSS limit

THEN #TS(error_code(current TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

NewRSP 8 bytes loaded from (current TSS base + TSSstackAddress);
FI;
IF 32-bit gate (* implies IA32_EFER.LMA = 0 *)

THEN
IF current stack does not have room for 16 bytes (error code pushed)
or 12 bytes (no error code pushed)

THEN #SS(EXT); FI; (* Error code contains NULL selector *)
ELSE IF 16-bit gate (* implies IA32_EFER.LMA = 0 *)

IF current stack does not have room for 8 bytes (error code pushed)
or 6 bytes (no error code pushed)

THEN #SS(EXT); FI; (* Error code contains NULL selector *)
ELSE (* IA32_EFER.LMA = 1, 64-bit gate*)

IF NewRSP contains a non-canonical address
THEN #SS(EXT); (* Error code contains NULL selector *)

FI;
FI;
IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)

THEN
IF instruction pointer from IDT gate is not within new code-segment limit

THEN #GP(EXT); FI; (* Error code contains NULL selector *)
ELSE

IF instruction pointer from IDT gate contains a non-canonical address
THEN #GP(EXT); FI; (* Error code contains NULL selector *)

RSP NewRSP & FFFFFFFFFFFFFFF0H;
FI;
IF IDT gate is 32-bit (* implies IA32_EFER.LMA = 0 *)

THEN
Push (EFLAGS);
Push (far pointer to return instruction); (* 3 words padded to 4 *)
CS:EIP Gate(CS:EIP); (* Segment descriptor information also loaded *)
Push (ErrorCode); (* If any *)

ELSE
IF IDT gate is 16-bit (* implies IA32_EFER.LMA = 0 *)

THEN
Push (FLAGS);
Push (far pointer to return location); (* 2 words *)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 25

Documentation Changes

CS:IP Gate(CS:IP);
(* Segment descriptor information also loaded *)
Push (ErrorCode); (* If any *)

ELSE (* IA32_EFER.LMA = 1, 64-bit gate*)
Push(far pointer to old stack);
(* Old SS and SP, each an 8-byte push *)
Push(RFLAGS); (* 8-byte push *)
Push(far pointer to return instruction);
(* Old CS and RIP, each an 8-byte push *)
Push(ErrorCode); (* If needed, 8 bytes *)
CS:RIP GATE(CS:RIP);
(* Segment descriptor information also loaded *)

FI;
FI;
CS(RPL) CPL;
IF IDT gate is interrupt gate

THEN IF 0; FI; (* Interrupt flag set to 0; interrupts disabled *)
TF 0;
NT 0;
VM 0;
RF 0;

END;

...

Protected Mode Exceptions
#GP(error_code) If the instruction pointer in the IDT or in the interrupt-, trap-, or

task gate is beyond the code segment limits.

If the segment selector in the interrupt-, trap-, or task gate is NULL.

If an interrupt-, trap-, or task gate, code segment, or TSS segment
selector index is outside its descriptor table limits.

If the interrupt vector number is outside the IDT limits.

If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.

If an interrupt is generated by the INT n, INT 3, or INTO instruction
and the DPL of an interrupt-, trap-, or task-descriptor is less than
the CPL.

If the segment selector in an interrupt- or trap-gate does not point
to a segment descriptor for a code segment.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not
available.

#SS(error_code) If pushing the return address, flags, or error code onto the stack
exceeds the bounds of the stack segment and no stack switch
occurs.

If the SS register is being loaded and the segment pointed to is
marked not present.

If pushing the return address, flags, error code, or stack segment
pointer exceeds the bounds of the new stack segment when a stack
switch occurs.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 26

Documentation Changes

#NP(error_code) If code segment, interrupt-, trap-, or task gate, or TSS is not
present.

#TS(error_code) If the RPL of the stack segment selector in the TSS is not equal to
the DPL of the code segment being accessed by the interrupt or trap
gate.

If DPL of the stack segment descriptor pointed to by the stack
segment selector in the TSS is not equal to the DPL of the code
segment descriptor for the interrupt or trap gate.

If the stack segment selector in the TSS is NULL.

If the stack segment for the TSS is not a writable data segment.

If segment-selector index for stack segment is outside descriptor
table limits.

#PF(fault-code) If a page fault occurs.

#UD If the LOCK prefix is used.

#AC(EXT) If alignment checking is enabled, the gate DPL is 3, and a stack
push is unaligned.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES,

FS, or GS segment limit.

If the interrupt vector number is outside the IDT limits.

#SS If stack limit violation on push.

If pushing the return address, flags, or error code onto the stack
exceeds the bounds of the stack segment.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(error_code) (For INT n, INTO, or BOUND instruction) If the IOPL is less than 3 or

the DPL of the interrupt-, trap-, or task-gate descriptor is not equal
to 3.

If the instruction pointer in the IDT or in the interrupt-, trap-, or
task gate is beyond the code segment limits.

If the segment selector in the interrupt-, trap-, or task gate is NULL.

If a interrupt-, trap-, or task gate, code segment, or TSS segment
selector index is outside its descriptor table limits.

If the interrupt vector number is outside the IDT limits.

If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.

If an interrupt is generated by the INT n instruction and the DPL of
an interrupt-, trap-, or task-descriptor is less than the CPL.

If the segment selector in an interrupt- or trap-gate does not point
to a segment descriptor for a code segment.

If the segment selector for a TSS has its local/global bit set for local.

#SS(error_code) If the SS register is being loaded and the segment pointed to is
marked not present.

If pushing the return address, flags, error code, stack segment
pointer, or data segments exceeds the bounds of the stack
segment.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

Documentation Changes

#NP(error_code) If code segment, interrupt-, trap-, or task gate, or TSS is not
present.

#TS(error_code) If the RPL of the stack segment selector in the TSS is not equal to
the DPL of the code segment being accessed by the interrupt or trap
gate.

If DPL of the stack segment descriptor for the TSS’s stack segment
is not equal to the DPL of the code segment descriptor for the inter-
rupt or trap gate.

If the stack segment selector in the TSS is NULL.

If the stack segment for the TSS is not a writable data segment.

If segment-selector index for stack segment is outside descriptor
table limits.

#PF(fault-code) If a page fault occurs.

#BP If the INT 3 instruction is executed.

#OF If the INTO instruction is executed and the OF flag is set.

#UD If the LOCK prefix is used.

#AC(EXT) If alignment checking is enabled, the gate DPL is 3, and a stack
push is unaligned.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(error_code) If the instruction pointer in the 64-bit interrupt gate or 64-bit trap

gate is non-canonical.

If the segment selector in the 64-bit interrupt or trap gate is NULL.

If the interrupt vector number is outside the IDT limits.

If the interrupt vector number points to a gate which is in non-
canonical space.

If the interrupt vector number points to a descriptor which is not a
64-bit interrupt gate or 64-bit trap gate.

If the descriptor pointed to by the gate selector is outside the
descriptor table limit.

If the descriptor pointed to by the gate selector is in non-canonical
space.

If the descriptor pointed to by the gate selector is not a code
segment.

If the descriptor pointed to by the gate selector doesn’t have the L-
bit set, or has both the L-bit and D-bit set.

If the descriptor pointed to by the gate selector has DPL > CPL.

#SS(error_code) If a push of the old EFLAGS, CS selector, EIP, or error code is in non-
canonical space with no stack switch.

If a push of the old SS selector, ESP, EFLAGS, CS selector, EIP, or
error code is in non-canonical space on a stack switch (either CPL
change or no-CPL with IST).

#NP(error_code) If the 64-bit interrupt-gate, 64-bit trap-gate, or code segment is
not present.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 28

Documentation Changes

#TS(error_code) If an attempt to load RSP from the TSS causes an access to non-
canonical space.

If the RSP from the TSS is outside descriptor table limits.

#PF(fault-code) If a page fault occurs.

#UD If the LOCK prefix is used.

If INTO.

#AC(EXT) If alignment checking is enabled, the gate DPL is 3, and a stack
push is unaligned.

...

IRET/IRETD—Interrupt Return

...

Operation

IF PE = 0
THEN

GOTO REAL-ADDRESS-MODE;
ELSE

IF (IA32_EFER.LMA 0)
THEN (* Protected mode *)

GOTO PROTECTED-MODE;
ELSE (* IA-32e mode *)

GOTO IA-32e-MODE;
FI;

FI;
REAL-ADDRESS-MODE;

IF OperandSize = 32
THEN

IF top 12 bytes of stack not within stack limits
THEN #SS; FI;

tempEIP 4 bytes at end of stack
IF tempEIP[31:16] is not zero THEN #GP(0); FI;
EIP Pop();
CS Pop(); (* 32-bit pop, high-order 16 bits discarded *)
tempEFLAGS Pop();
EFLAGS (tempEFLAGS AND 257FD5H) OR (EFLAGS AND 1A0000H);

ELSE (* OperandSize 16 *)
IF top 6 bytes of stack are not within stack limits

THEN #SS; FI;
EIP Pop(); (* 16-bit pop; clear upper 16 bits *)
CS Pop(); (* 16-bit pop *)
EFLAGS[15:0] Pop();

FI;
END;

PROTECTED-MODE:
IF VM 1 (* Virtual-8086 mode: PE 1, VM 1 *)

THEN

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 29

Documentation Changes

GOTO RETURN-FROM-VIRTUAL-8086-MODE; (* PE 1, VM 1 *)
FI;
IF NT 1

THEN
GOTO TASK-RETURN; (* PE 1, VM 0, NT 1 *)

FI;
IF OperandSize 32

THEN
IF top 12 bytes of stack not within stack limits

THEN #SS(0); FI;
tempEIP Pop();
tempCS Pop();
tempEFLAGS Pop();

ELSE (* OperandSize 16 *)
IF top 6 bytes of stack are not within stack limits

THEN #SS(0); FI;
tempEIP Pop();
tempCS Pop();
tempEFLAGS Pop();
tempEIP tempEIP AND FFFFH;
tempEFLAGS tempEFLAGS AND FFFFH;

FI;
IF tempEFLAGS(VM) 1 and CPL 0

THEN
GOTO RETURN-TO-VIRTUAL-8086-MODE;

ELSE
GOTO PROTECTED-MODE-RETURN;

FI;
IA-32e-MODE:

IF NT = 1
THEN #GP(0);

ELSE IF OperandSize 32
THEN

IF top 12 bytes of stack not within stack limits
THEN #SS(0); FI;

tempEIP Pop();
tempCS Pop();
tempEFLAGS Pop();

ELSE IF OperandSize 16
THEN

IF top 6 bytes of stack are not within stack limits
THEN #SS(0); FI;

tempEIP Pop();
tempCS Pop();
tempEFLAGS Pop();
tempEIP tempEIP AND FFFFH;
tempEFLAGS tempEFLAGS AND FFFFH;

FI;
ELSE (* OperandSize 64 *)

THEN

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 30

Documentation Changes

tempRIP Pop();
tempCS Pop();
tempEFLAGS Pop();
tempRSP Pop();
tempSS Pop();

FI;
GOTO IA-32e-MODE-RETURN;

...

JMP—Jump

...

Operation

IF near jump
IF 64-bit Mode
 THEN

IF near relative jump
 THEN

tempRIP RIP DEST; (* RIP is instruction following JMP instruction*)
 ELSE (* Near absolute jump *)

tempRIP DEST;
FI;

ELSE
IF near relative jump
 THEN

tempEIP EIP DEST; (* EIP is instruction following JMP instruction*)
 ELSE (* Near absolute jump *)

tempEIP DEST;
FI;

FI;
IF (IA32_EFER.LMA 0 or target mode Compatibility mode)
and tempEIP outside code segment limit

THEN #GP(0); FI
IF 64-bit mode and tempRIP is not canonical

THEN #GP(0);
FI;
IF OperandSize 32

 THEN
EIP tempEIP;

 ELSE
IF OperandSize 16

THEN (* OperandSize 16 *)
EIP tempEIP AND 0000FFFFH;

 ELSE (* OperandSize 64)
 RIP tempRIP;

FI;
 FI;

FI;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 31

Documentation Changes

IF far jump and (PE 0 or (PE 1 AND VM 1)) (* Real-address or virtual-8086 mode *)
 THEN

 tempEIP DEST(Offset); (* DEST is ptr16:32 or [m16:32] *)
 IF tempEIP is beyond code segment limit

THEN #GP(0); FI;
 CS DEST(segment selector); (* DEST is ptr16:32 or [m16:32] *)
 IF OperandSize 32

 THEN
EIP tempEIP; (* DEST is ptr16:32 or [m16:32] *)

 ELSE (* OperandSize 16 *)
EIP tempEIP AND 0000FFFFH; (* Clear upper 16 bits *)

 FI;
FI;
IF far jump and (PE 1 and VM 0)
(* IA-32e mode or protected mode, not virtual-8086 mode *)

 THEN
 IF effective address in the CS, DS, ES, FS, GS, or SS segment is illegal
or segment selector in target operand NULL

THEN #GP(0); FI;
 IF segment selector index not within descriptor table limits

THEN #GP(new selector); FI;
Read type and access rights of segment descriptor;
IF (EFER.LMA 0)

THEN
IF segment type is not a conforming or nonconforming code
segment, call gate, task gate, or TSS

THEN #GP(segment selector); FI;
ELSE

IF segment type is not a conforming or nonconforming code segment
call gate

THEN #GP(segment selector); FI;
FI;
Depending on type and access rights:

GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;

 ELSE
 #GP(segment selector);

FI;

...

LSL—Load Segment Limit

...

Real-Address Mode Exceptions
#UD The LSL instruction cannot be executed in real-address mode.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 32

Documentation Changes

Virtual-8086 Mode Exceptions
#UD The LSL instruction cannot be executed in virtual-8086 mode.

...

3. Updates to Chapter 4, Volume 2B

Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2B: Instruction Set Reference, N-Z.

--

...

PMOVMSKB—Move Byte Mask

Instruction Operand Encoding

Description

Creates a mask made up of the most significant bit of each byte of the source operand
(second operand) and stores the result in the low byte or word of the destination
operand (first operand). The source operand is an MMX technology register or an XMM
register; the destination operand is a general-purpose register. When operating on 64-
bit operands, the byte mask is 8 bits; when operating on 128-bit operands, the byte
mask is 16-bits.

In 64-bit mode, the instruction can access additional registers (XMM8-XMM15, R8-R15)
when used with a REX.R prefix. The default operand size is 64-bit in 64-bit mode.

...

PUSH—Push Word, Doubleword or Quadword Onto the Stack

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F D7 /r PMOVMSKB reg,
mm

A Valid Valid Move a byte mask of mm to
reg. The upper bits of r32 or
r64 are zeroed

66 0F D7 /r PMOVMSKB reg,
xmm

A Valid Valid Move a byte mask of xmm
to reg. The upper bits of r32
or r64 are zeroed

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (w) ModRM:reg (r) NA NA

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

...

68 PUSH imm16 C Valid Valid Push imm16. Stack pointer
is decremented by the size
of stack pointer.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 33

Documentation Changes

...

Table 4-12 lists valid indices of the general-purpose and special-purpose performance
counters according to the derived DisplayFamily_DisplayModel values of CPUID encoding
for each processor family (see CPUID instruction in Chapter 3, “Instruction Set Refer-
ence, A-M” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A).

...

Table 4-12 Valid General and Special Purpose Performance Counter Index Range for
RDPMC

Processor Family DisplayFamily_Display
Model/ Other
Signatures

Valid PMC
Index Range

General-
purpose
Counters

P6 06H_01H, 06H_03H,
06H_05H, 06H_06H,
06H_07H, 06H_08H,
06H_0AH, 06H_0BH

0, 1 0, 1

Pentium® 4, Intel® Xeon
processors

0FH_00H, 0FH_01H,
0FH_02H

 0 and 17 0 and 17

Pentium 4, Intel Xeon processors (0FH_03H, 0FH_04H,
0FH_06H) and (L3 is
absent)

 0 and 17 0 and 17

Pentium M processors 06H_09H, 06H_0DH 0, 1 0, 1

64-bit Intel Xeon processors
with L3

0FH_03H, 0FH_04H)
and (L3 is present)

 0 and 25 0 and 17

Intel® Core™ Solo and Intel®
Core™ Duo processors, Dual-core
Intel® Xeon® processor LV

06H_0EH 0, 1 0, 1

Intel® Core™2 Duo processor,
Intel Xeon processor 3000,
5100, 5300, 7300 Series -
general-purpose PMC

06H_0FH 0, 1 0, 1

Intel Xeon processors 7100
series with L3

(0FH_06H) and (L3 is
present)

 0 and 25 0 and 17

Intel® Core™2 Duo processor
family, Intel Xeon processor
family - general-purpose PMC

06H_17H 0, 1 0, 1

Intel Xeon processors 7400
series

(06H_1DH) 0 and 9

Intel® Atom™ processor family 06H_1CH 0, 1 0, 1

Intel® Core™i7 processor, Intel
Xeon processors 5500 series

06H_1AH, 06H_1EH,
06H_1FH, 06H_2EH

0-3 0, 1, 2, 3

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 34

Documentation Changes

RSM—Resume from System Management Mode

...

Operation

ReturnFromSMM;
IF (IA-32e mode supported) or (CPUID DisplayFamily_DisplayModel = 06H_0CH)

THEN
ProcessorState Restore(SMMDump(IA-32e SMM STATE MAP));

Else
ProcessorState Restore(SMMDump(Non-32-Bit-Mode SMM STATE MAP));

FI

...

SYSENTER—Fast System Call

...

Operation

IF CR0.PE 0 THEN #GP(0); FI;
IF SYSENTER_CS_MSR[15:2] 0 THEN #GP(0); FI;
EFLAGS.VM 0; (* ensures protected mode execution *)
EFLAGS.IF 0; (* Mask interrupts *)
EFLAGS.RF 0;

CS.SEL SYSENTER_CS_MSR (* Operating system provides CS *)
(* Set rest of CS to a fixed value *)
CS.SEL.RPL 0;
CS.BASE 0; (* Flat segment *)
CS.ARbyte.G 1; (* 4-KByte granularity *)
CS.ARbyte.S 1;
CS.ARbyte.TYPE 1011B; (* Execute Read, Accessed *)
CS.ARbyte.D 1; (* 32-bit code segment*)
CS.ARbyte.DPL 0;
CS.ARbyte.P 1;
CS.LIMIT FFFFFH; (* with 4-KByte granularity, implies a 4-GByte limit *)
CPL 0;

SS.SEL CS.SEL 8;
(* Set rest of SS to a fixed value *)
SS.SEL.RPL 0;
SS.BASE 0; (* Flat segment *)
SS.ARbyte.G 1; (* 4-KByte granularity *)
SS.ARbyte.S 1;
SS.ARbyte.TYPE 0011B; (* Read/Write, Accessed *)
SS.ARbyte.D 1; (* 32-bit stack segment*)
SS.ARbyte.DPL 0;
SS.ARbyte.P 1;
SS.LIMIT FFFFFH; (* with 4-KByte granularity, implies a 4-GByte limit *)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 35

Documentation Changes

ESP SYSENTER_ESP_MSR;
EIP SYSENTER_EIP_MSR;

...

SYSEXIT—Fast Return from Fast System Call

...

Operation

IF SYSENTER_CS_MSR[15:2] 0 THEN #GP(0); FI;
IF CR0.PE 0 THEN #GP(0); FI;
IF CPL 0 THEN #GP(0); FI;

CS.SEL (SYSENTER_CS_MSR 16); (* Segment selector for return CS *)
(* Set rest of CS to a fixed value *)
CS.SEL.RPL 3;
CS.BASE 0; (* Flat segment *)
CS.ARbyte.G 1; (* 4-KByte granularity *)
CS.ARbyte.S 1;
CS.ARbyte.TYPE 1011B; (* Execute, Read, Non-Conforming Code *)
CS.ARbyte.D 1; (* 32-bit code segment*)
CS.ARbyte.DPL 3;
CS.ARbyte.P 1;
CS.LIMIT FFFFFH; (* with 4-KByte granularity, implies a 4-GByte limit *)
CPL 3;

SS.SEL (SYSENTER_CS_MSR 24); (* Segment selector for return SS *)
(* Set rest of SS to a fixed value *);
SS.SEL.RPL 3;
SS.BASE 0; (* Flat segment *)
SS.ARbyte.G 1; (* 4-KByte granularity *)
SS.ARbyte.S 1;
SS.ARbyte.TYPE 0011B; (* Expand Up, Read/Write, Data *)
SS.ARbyte.D 1; (* 32-bit stack segment*)
SS.ARbyte.DPL 3;
SS.ARbyte.P 1;
SS.LIMIT FFFFFH; (* with 4-KByte granularity, implies a 4-GByte limit *)

ESP ECX;
EIP EDX;

...

4. Updates to Chapter 5, Volume 2B

Change bars show changes to Chapter 5 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2B: Instruction Set Reference, N-Z.

--

VMXON—Enter VMX Operation

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 36

Documentation Changes

...

Operation

IF (register operand) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF not in VMX operation
THEN

IF (CPL > 0) or (in A20M mode) or
(the values of CR0 and CR4 are not supported in VMX operation1) or
(bit 0 (lock bit) of IA32_FEATURE_CONTROL MSR is clear) or
(in SMX operation2 and bit 1 of IA32_FEATURE_CONTROL MSR is clear) or
(outside SMX operation and bit 2 of IA32_FEATURE_CONTROL MSR is clear)

THEN #GP(0);
ELSE

addr contents of 64-bit in-memory source operand;
IF addr is not 4KB-aligned or
(processor supports Intel 64 architecture and
addr sets any bits beyond the VMX physical-address width) or
(processor does not support Intel 64 architecture and
addr sets any bits in the range 63:32)

THEN VMfailInvalid;
ELSE

rev 32 bits located at physical address addr;
IF rev VMCS revision identifier supported by processor

THEN VMfailInvalid;
ELSE

current-VMCS pointer FFFFFFFF_FFFFFFFFH;
enter VMX operation;
block INIT signals;
block and disable A20M;
clear address-range monitoring;
VMsucceed;

FI;
FI;

FI;
ELSIF in VMX non-root operation

THEN VMexit;
ELSIF CPL > 0

THEN #GP(0);
ELSE VMfail(“VMXON executed in VMX root operation”);

FI;

...

1. See Section 19.8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

2. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execu-
tion of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER] has not
been executed or if GETSEC[SEXIT] was executed after the last execution of GETSEC[SENTER]. See
Chapter 6, “Safer Mode Extensions Reference.”

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 37

Documentation Changes

VMXON—Enter VMX Operation

...

Operation

IF (register operand) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF not in VMX operation
THEN

IF (CPL > 0) or (in A20M mode) or
(the values of CR0 and CR4 are not supported in VMX operation1) or
(bit 0 (lock bit) of IA32_FEATURE_CONTROL MSR is clear) or
(in SMX operation2 and bit 1 of IA32_FEATURE_CONTROL MSR is clear) or
(outside SMX operation and bit 2 of IA32_FEATURE_CONTROL MSR is clear)

THEN #GP(0);
ELSE

addr contents of 64-bit in-memory source operand;
IF addr is not 4KB-aligned or
(processor supports Intel 64 architecture and
addr sets any bits beyond the VMX physical-address width) or
(processor does not support Intel 64 architecture and
addr sets any bits in the range 63:32)

THEN VMfailInvalid;
ELSE

rev 32 bits located at physical address addr;
IF rev VMCS revision identifier supported by processor

THEN VMfailInvalid;
ELSE

current-VMCS pointer FFFFFFFF_FFFFFFFFH;
enter VMX operation;
block INIT signals;
block and disable A20M;
clear address-range monitoring;
VMsucceed;

FI;
FI;

FI;
ELSIF in VMX non-root operation

THEN VMexit;
ELSIF CPL > 0

THEN #GP(0);
ELSE VMfail(“VMXON executed in VMX root operation”);

FI;

1. See Section 19.8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

2. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execu-
tion of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER] has not
been executed or if GETSEC[SEXIT] was executed after the last execution of GETSEC[SENTER]. See
Chapter 6, “Safer Mode Extensions Reference.”

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 38

Documentation Changes

...

5. Updates to Chapter 6, Volume 2B

Change bars show changes to Chapter 6 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2B: Instruction Set Reference, N-Z.

--

GETSEC[EXITAC]—Exit Authenticated Code Execution Mode

...

Operation
(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction boundary *)
IF (CR4.SMXE=0)

THEN #UD;
ELSIF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSIF (GETSEC leaf unsupported)

THEN #UD;
ELSIF ((in VMX operation) or ((in 64-bit mode) and (RBX is non-canonical))

(CR0.PE=0) or (CPL>0) or (EFLAGS.VM=1) or
(ACMODEFLAG=0) or (IN_SMM=1)) or (EDX != 0))
THEN #GP(0);

IF (OperandSize = 32)
THEN tempEIP EBX;

ELSIF (OperandSize = 64)
THEN tempEIP RBX;

ELSE
tempEIP EBX AND 0000FFFFH;

IF (tempEIP > code segment limit)
THEN #GP(0);

Invalidate ACRAM contents;
Invalidate processor TLB(s);
Drain outgoing messages;
SignalTXTMsg(CloseLocality3);
SignalTXTMsg(LockSMRAM);
SignalTXTMsg(ProcessorRelease);
Unmask INIT;
IF (SENTERFLAG=0)

THEN Unmask SMI, INIT, NMI, and A20M pin event;
ELSEIF (IA32_SMM_MONITOR_CTL[0] = 0)

THEN Unmask SMI pin event;
ACMODEFLAG 0;
EIP tempEIP;
END;

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 39

Documentation Changes

GETSEC[WAKEUP]—Wake up sleeping processors in measured
environment

...

Operation
(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction boundary *)
IF (CR4.SMXE=0)

THEN #UD;
ELSE IF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSE IF (GETSEC leaf unsupported)

THEN #UD;
ELSE IF ((CR0.PE=0) or (CPL>0) or (EFLAGS.VM=1) or (SENTERFLAG=0) or (ACMODEFLAG=1) or
(IN_SMM=0) or (in VMX operation) or (IA32_APIC_BASE.BSP=0) or (TXT chipset not present))

THEN #GP(0);
ELSE

SignalTXTMsg(WAKEUP);
END;

RLP_SIPI_WAKEUP_FROM_SENTER_ROUTINE: (RLP only)
WHILE (no SignalWAKEUP event);
IF (IA32_SMM_MONITOR_CTL[0] != ILP.IA32_SMM_MONITOR_CTL[0])

THEN TXT-SHUTDOWN(#IllegalEvent)
IF (IA32_SMM_MONITOR_CTL[0] = 0)

THEN Unmask SMI pin event;
ELSE

Mask SMI pin event;
Mask A20M, and NMI external pin events (unmask INIT);
Mask SignalWAKEUP event;
Invalidate processor TLB(s);
Drain outgoing transactions;
TempGDTRLIMIT LOAD(LT.MLE.JOIN);
TempGDTRBASE LOAD(LT.MLE.JOIN+4);
TempSegSel LOAD(LT.MLE.JOIN+8);
TempEIP LOAD(LT.MLE.JOIN+12);
IF (TempGDTLimit & FFFF0000h)

THEN TXT-SHUTDOWN(#BadJOINFormat);
IF ((TempSegSel > TempGDTRLIMIT-15) or (TempSegSel < 8))

THEN TXT-SHUTDOWN(#BadJOINFormat);
IF ((TempSegSel.TI=1) or (TempSegSel.RPL!=0))

THEN TXT-SHUTDOWN(#BadJOINFormat);
CR0.[PG,CD,W,AM,WP] 0;
CR0.[NE,PE] 1;
CR4 00004000h;
EFLAGS 00000002h;
IA32_EFER 0;
GDTR.BASE TempGDTRBASE;
GDTR.LIMIT TempGDTRLIMIT;
CS.SEL TempSegSel;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 40

Documentation Changes

CS.BASE 0;
CS.LIMIT FFFFFh;
CS.G 1;
CS.D 1;
CS.AR 9Bh;
DS.SEL TempSegSel+8;
DS.BASE 0;
DS.LIMIT FFFFFh;
DS.G 1;
DS.D 1;
DS.AR 93h;
SS DS;
ES DS;
DR7 00000400h;
IA32_DEBUGCTL 0;
EIP TempEIP;
END;

...

6. Updates to Chapter 2, Volume 3A

Change bars show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

--

...

2.2 MODES OF OPERATION

...

The VM flag in the EFLAGS register determines whether the processor is operating in
protected mode or virtual-8086 mode. Transitions between protected mode and virtual-
8086 mode are generally carried out as part of a task switch or a return from an interrupt
or exception handler. See also: Section 17.2.5, “Entering Virtual-8086 Mode.”

The LMA bit (IA32_EFER.LMA[bit 10]) determines whether the processor is operating in
IA-32e mode. When running in IA-32e mode, 64-bit or compatibility sub-mode operation
is determined by CS.L bit of the code segment. The processor enters into IA-32e mode
from protected mode by enabling paging and setting the LME bit (IA32_EFER.LME[bit
8]). See also: Chapter 9, “Processor Management and Initialization.”

The processor switches to SMM whenever it receives an SMI while the processor is in
real-address, protected, virtual-8086, or IA-32e modes. Upon execution of the RSM
instruction, the processor always returns to the mode it was in when the SMI occurred.

...

7. Updates to Chapter 4, Volume 3A

Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 41

Documentation Changes

--

...

4.1.1 Three Paging Modes
If CR0.PG = 0, paging is not used. The logical processor treats all linear addresses as if
they were physical addresses. CR4.PAE and IA32_EFER.LME are ignored by the
processor, as are CR0.WP, CR4.PSE, and CR4.PGE, and IA32_EFER.NXE.

Paging is enabled if CR0.PG = 1. Paging can be enabled only if protection is enabled
(CR0.PE = 1). If paging is enabled, one of three paging modes is used. The values of
CR4.PAE and IA32_EFER.LME determine which paging mode is used:

• If CR0.PG = 1 and CR4.PAE = 0, 32-bit paging is used. 32-bit paging is detailed in
Section 4.3. 32-bit paging uses CR0.WP, CR4.PSE, and CR4.PGE as described in
Section 4.1.3.

• If CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 0, PAE paging is used. PAE
paging is detailed in Section 4.4. PAE paging uses CR0.WP, CR4.PGE, and
IA32_EFER.NXE as described in Section 4.1.3.

• If CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 1, IA-32e paging is used.1
IA-32e paging is detailed in Section 4.5. IA-32e paging uses CR0.WP, CR4.PGE,
CR4.PCIDE, and IA32_EFER.NXE as described in Section 4.1.3. IA-32e paging is
available only on processors that support the Intel 64 architecture.

The three paging modes differ with regard to the following details:

• Linear-address width. The size of the linear addresses that can be translated.

• Physical-address width. The size of the physical addresses produced by paging.

• Page size. The granularity at which linear addresses are translated. Linear addresses
on the same page are translated to corresponding physical addresses on the same
page.

• Support for execute-disable access rights. In some paging modes, software can be
prevented from fetching instructions from pages that are otherwise readable.

Table Table 4-1. illustrates the key differences between the three paging modes.

1. The LMA flag in the IA32_EFER MSR (bit 10) is a status bit that indicates whether the logical proces-
sor is in IA-32e mode (and thus using IA-32e paging). The processor always sets IA32_EFER.LMA to
CR0.PG & IA32_EFER.LME. Software cannot directly modify IA32_EFER.LMA; an execution of WRMSR
to the IA32_EFER MSR ignores bit 10 of its source operand.

Table 4-1. Properties of Different Paging Modes

Paging
Mode CR0.PG CR4.PAE LME in

IA32_EFER

Linear-
Address
Width

Physical-
Address
Width1

Page
Size(s)

Supports
Execute-
Disable?

None 0 N/A N/A 32 32 N/A No

32-bit 1 0 02 32 Up to 403 4-KByte
4-MByte4 No

PAE 1 1 0 32 Up to 52
4-KByte
2-MByte

Yes5

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 42

Documentation Changes

Because they are used only if IA32_EFER.LME = 0, 32-bit paging and PAE paging is used
only in legacy protected mode. Because legacy protected mode cannot produce linear
addresses larger than 32 bits, 32-bit paging and PAE paging translate 32-bit linear
addresses.

Because it is used only if IA32_EFER.LME = 1, IA-32e paging is used only in IA-32e
mode. (In fact, it is the use of IA-32e paging that defines IA-32e mode.) IA-32e mode
has two sub-modes:

• Compatibility mode. This mode uses only 32-bit linear addresses. IA-32e paging
treats bits 47:32 of such an address as all 0.

• 64-bit mode. While this mode produces 64-bit linear addresses, the processor
ensures that bits 63:47 of such an address are identical.1 IA-32e paging does not
use bits 63:48 of such addresses.

4.1.2 Paging-Mode Enabling
If CR0.PG = 1, a logical processor is in one of three paging modes, depending on the
values of CR4.PAE and IA32_EFER.LME. Figure Figure 4-1. illustrates how software can
enable these modes and make transitions between them. The following items identify
certain limitations and other details:

• IA32_EFER.LME cannot be modified while paging is enabled (CR0.PG = 1). Attempts
to do so using WRMSR cause a general-protection exception (#GP(0)).

• Paging cannot be enabled (by setting CR0.PG to 1) while CR4.PAE = 0 and
IA32_EFER.LME = 1. Attempts to do so using MOV to CR0 cause a general-protection
exception (#GP(0)).

• CR4.PAE cannot be cleared while IA-32e paging is active (CR0.PG = 1 and
IA32_EFER.LME = 1). Attempts to do so using MOV to CR4 cause a general-
protection exception (#GP(0)).

IA-32e 1 1 2 48 Up to 52
4-KByte
2-MByte
1-GByte6

Yes5

NOTES:
1. The physical-address width is always bounded by MAXPHYADDR; see Section 4.1.4.
2. The processor ensures that IA32_EFER.LME must be 0 if CR0.PG = 1 and CR4.PAE = 0.
3. 32-bit paging supports physical-address widths of more than 32 bits only for 4-MByte pages and

only if the PSE-36 mechanism is supported; see Section 4.1.4 and Section 4.3.
4. 4-MByte pages are used with 32-bit paging only if CR4.PSE = 1; see Section 4.3.
5. Execute-disable access rights are applied only if IA32_EFER.NXE = 1; see Section 4.6.
6. Not all processors that support IA-32e paging support 1-GByte pages; see Section 4.1.4.

1. Such an address is called canonical. Use of a non-canonical linear address in 64-bit mode produces a
general-protection exception (#GP(0)); the processor does not attempt to translate non-canonical
linear addresses using IA-32e paging.

Table 4-1. Properties of Different Paging Modes (Continued)

Paging
Mode CR0.PG CR4.PAE LME in

IA32_EFER

Linear-
Address
Width

Physical-
Address
Width1

Page
Size(s)

Supports
Execute-
Disable?

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 43

Documentation Changes

• Regardless of the current paging mode, software can disable paging by clearing
CR0.PG with MOV to CR0.1

• Software can make transitions between 32-bit paging and PAE paging by changing
the value of CR4.PAE with MOV to CR4.

• Software cannot make transitions directly between IA-32e paging and either of the
other two paging modes. It must first disable paging (by clearing CR0.PG with MOV
to CR0), then set CR4.PAE and IA32_EFER.LME to the desired values (with MOV to
CR4 and WRMSR), and then re-enable paging (by setting CR0.PG with MOV to CR0).
As noted earlier, an attempt to clear either CR4.PAE or IA32_EFER.LME cause a
general-protection exception (#GP(0)).

• VMX transitions allow transitions between paging modes that are not possible using
MOV to CR or WRMSR. This is because VMX transitions can load CR0, CR4, and
IA32_EFER in one operation. See Section 4.11.1.

Figure 4-1. Enabling and Changing Paging Modes

1. If CR4.PCIDE = 1, an attempt to clear CR0.PG causes a general-protection exception (#GP); software
should clear CR4.PCIDE before attempting to disable paging.

PG = 1

No Paging
PAE Paging

PAE = 1
LME = 0

PG = 0
PAE = 0
LME = 0

32-bit Paging

PG = 1
PAE = 0
LME = 0

PG = 0
PAE = 0
LME = 1

Set PG Set PAE

Clear PAEClear PG

No Paging

PG = 0
PAE = 1
LME = 0

No Paging

PG = 1

IA-32e Paging

PAE = 1
LME = 1

Clear LME

Setr LME

PG = 0
PAE = 1
LME = 1

No Paging

Clear PAE
Set PAE Clear PG

Set PG

Set PAE
Clear PAE

Setr LME

Clear LME

Clear PG

Set PG

#GP

Set LME

#GP

Set LME

#GP

Set PG

Clear PAE

#GP

Clear LME

#GP

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 44

Documentation Changes

4.1.3 Paging-Mode Modifiers
Details of how each paging mode operates are determined by the following control bits:

• The WP flag in CR0 (bit 16).

• The PSE, PGE, and PCIDE flags in CR4 (bit 4, bit 7, and bit 17, respectively).

• The NXE flag in the IA32_EFER MSR (bit 11).

CR0.WP allows pages to be protected from supervisor-mode writes. If CR0.WP = 0, soft-
ware operating with CPL < 3 (supervisor mode) can write to linear addresses with read-
only access rights; if CR0.WP = 1, it cannot. (Software operating with CPL = 3 — user
mode — cannot write to linear addresses with read-only access rights, regardless of the
value of CR0.WP.) Section 4.6 explains how access rights are determined.

CR4.PSE enables 4-MByte pages for 32-bit paging. If CR4.PSE = 0, 32-bit paging can
use only 4-KByte pages; if CR4.PSE = 1, 32-bit paging can use both 4-KByte pages and
4-MByte pages. See Section 4.3 for more information. (PAE paging and IA-32e paging
can use multiple page sizes regardless of the value of CR4.PSE.)

CR4.PGE enables global pages. If CR4.PGE = 0, no translations are shared across
address spaces; if CR4.PGE = 1, specified translations may be shared across address
spaces. See Section 4.10.2.4 for more information.

CR4.PCIDE enables process-context identifiers (PCIDs) for IA-32e paging (CR4.PCIDE
can be 1 only when IA-32e paging is in use). PCIDs allow a logical processor to cache
information for multiple linear-address spaces. See Section 4.10.1 for more information.

IA32_EFER.NXE enables execute-disable access rights for PAE paging and IA-32e
paging. If IA32_EFER.NXE = 0, software may fetch instructions from any linear address
that paging allows the software to read; if IA32_EFER.NXE = 1, instructions fetches can
be prevented from specified linear addresses (even if data reads from the addresses are
allowed). Section 4.6 explains how access rights are determined. (32-bit paging always
allows software to fetch instructions from any linear address that may be read;
IA32_EFER.NXE has no effect with 32-bit paging. Software that wants to limit instruction
fetches from readable pages must use either PAE paging or IA-32e paging.)

4.1.4 Enumeration of Paging Features by CPUID
Software can discover support for different paging features using the CPUID instruction:

• PSE: page-size extensions for 32-bit paging.
If CPUID.01H:EDX.PSE [bit 3] = 1, CR4.PSE may be set to 1, enabling support for 4-
MByte pages with 32-bit paging (see Section 4.3).

• PAE: physical-address extension.
If CPUID.01H:EDX.PAE [bit 6] = 1, CR4.PAE may be set to 1, enabling PAE paging
(this setting is also required for IA-32e paging).

• PGE: global-page support.
If CPUID.01H:EDX.PGE [bit 13] = 1, CR4.PGE may be set to 1, enabling the global-
page feature (see Section 4.10.2.4).

• PAT: page-attribute table.
If CPUID.01H:EDX.PAT [bit 16] = 1, the 8-entry page-attribute table (PAT) is
supported. When the PAT is supported, three bits in certain paging-structure entries
select a memory type (used to determine type of caching used) from the PAT (see
Section 4.9.2).

• PSE-36: 36-Bit page size extension.
If CPUID.01H:EDX.PSE-36 [bit 17] = 1, the PSE-36 mechanism is supported,

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 45

Documentation Changes

indicating that translations using 4-MByte pages with 32-bit paging may produce
physical addresses with more than 32 bits (see Section 4.3).

• PCID: process-context identifiers.
If CPUID.01H:ECX.PCID [bit 17] = 1, CR4.PCIDE may be set to 1, enabling process-
context identifiers (see Section 4.10.1).

• NX: execute disable.
If CPUID.80000001H:EDX.NX [bit 20] = 1, IA32_EFER.NXE may be set to 1,
allowing PAE paging and IA-32e paging to disable execute access to selected pages
(see Section 4.6). (Processors that do not support CPUID function 80000001H do not
allow IA32_EFER.NXE to be set to 1.)

• Page1GB: 1-GByte pages.
If CPUID.80000001H:EDX.Page1GB [bit 26] = 1, 1-GByte pages are supported with
IA-32e paging (see Section 4.5).

• LM: IA-32e mode support.
If CPUID.80000001H:EDX.LM [bit 29] = 1, IA32_EFER.LME may be set to 1,
enabling IA-32e paging. (Processors that do not support CPUID function 80000001H
do not allow IA32_EFER.LME to be set to 1.)

• CPUID.80000008H:EAX[7:0] reports the physical-address width supported by the
processor. (For processors that do not support CPUID function 80000008H, the
width is generally 36 if CPUID.01H:EDX.PAE [bit 6] = 1 and 32 otherwise.) This
width is referred to as MAXPHYADDR. MAXPHYADDR is at most 52.

• CPUID.80000008H:EAX[15:8] reports the linear-address width supported by the
processor. Generally, this value is 48 if CPUID.80000001H:EDX.LM [bit 29] = 1 and
32 otherwise. (Processors that do not support CPUID function 80000008H, support a
linear-address width of 32.)

4.2 HIERARCHICAL PAGING STRUCTURES: AN OVERVIEW
All three paging modes translate linear addresses use hierarchical paging structures.
This section provides an overview of their operation. Section 4.3, Section 4.4, and
Section 4.5 provide details for the three paging modes.

Every paging structure is 4096 Bytes in size and comprises a number of individual
entries. With 32-bit paging, each entry is 32 bits (4 bytes); there are thus 1024 entries
in each structure. With PAE paging and IA-32e paging, each entry is 64 bits (8 bytes);
there are thus 512 entries in each structure. (PAE paging includes one exception, a
paging structure that is 32 bytes in size, containing 4 64-bit entries.)

The processor uses the upper portion of a linear address to identify a series of paging-
structure entries. The last of these entries identifies the physical address of the region to
which the linear address translates (called the page frame). The lower portion of the
linear address (called the page offset) identifies the specific address within that region
to which the linear address translates.

Each paging-structure entry contains a physical address, which is either the address of
another paging structure or the address of a page frame. In the first case, the entry is
said to reference the other paging structure; in the latter, the entry is said to map a
page.

The first paging structure used for any translation is located at the physical address in
CR3. A linear address is translated using the following iterative procedure. A portion of
the linear address (initially the uppermost bits) select an entry in a paging structure
(initially the one located using CR3). If that entry references another paging structure,

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 46

Documentation Changes

the process continues with that paging structure and with the portion of the linear
address immediately below that just used. If instead the entry maps a page, the process
completes: the physical address in the entry is that of the page frame and the remaining
lower portion of the linear address is the page offset.

The following items give an example for each of the three paging modes (each example
locates a 4-KByte page frame):

• With 32-bit paging, each paging structure comprises 1024 = 210 entries. For this
reason, the translation process uses 10 bits at a time from a 32-bit linear address.
Bits 31:22 identify the first paging-structure entry and bits 21:12 identify a second.
The latter identifies the page frame. Bits 11:0 of the linear address are the page
offset within the 4-KByte page frame. (See Figure Figure 4-2 for an illustration.)

• With PAE paging, the first paging structure comprises only 4 = 22 entries.
Translation thus begins by using bits 31:30 from a 32-bit linear address to identify
the first paging-structure entry. Other paging structures comprise 512 =29 entries,
so the process continues by using 9 bits at a time. Bits 29:21 identify a second
paging-structure entry and bits 20:12 identify a third. This last identifies the page
frame. (See Figure 4-5 for an illustration.)

• With IA-32e paging, each paging structure comprises 512 = 29 entries and
translation uses 9 bits at a time from a 48-bit linear address. Bits 47:39 identify the
first paging-structure entry, bits 38:30 identify a second, bits 29:21 a third, and
bits 20:12 identify a fourth. Again, the last identifies the page frame. (See
Figure 4-8 for an illustration.)

The translation process in each of the examples above completes by identifying a page
frame. However, the paging structures may be configured so that translation terminates
before doing so. This occurs if process encounters a paging-structure entry that is
marked “not present” (because its P flag — bit 0 — is clear) or in which a reserved bit is
set. In this case, there is no translation for the linear address; an access to that address
causes a page-fault exception (see Section 4.7).

In the examples above, a paging-structure entry maps a page with 4-KByte page frame
when only 12 bits remain in the linear address; entries identified earlier always reference
other paging structures. That may not apply in other cases. The following items identify
when an entry maps a page and when it references another paging structure:

• If more than 12 bits remain in the linear address, bit 7 (PS — page size) of the
current paging-structure entry is consulted. If the bit is 0, the entry references
another paging structure; if the bit is 1, the entry maps a page.

• If only 12 bits remain in the linear address, the current paging-structure entry
always maps a page (bit 7 is used for other purposes).

If a paging-structure entry maps a page when more than 12 bits remain in the linear
address, the entry identifies a page frame larger than 4 KBytes. For example, 32-bit
paging uses the upper 10 bits of a linear address to locate the first paging-structure
entry; 22 bits remain. If that entry maps a page, the page frame is 222 Bytes = 4
MBytes. 32-bit paging supports 4-MByte pages if CR4.PSE = 1. PAE paging and IA-32e
paging support 2-MByte pages (regardless of the value of CR4.PSE). IA-32e paging may
support 1-GByte pages (see Section 4.1.4).

Paging structures are given different names based their uses in the translation process.
Table Table 4-2 gives the names of the different paging structures. It also provides, for
each structure, the source of the physical address used to locate it (CR3 or a different

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 47

Documentation Changes

paging-structure entry); the bits in the linear address used to select an entry from the
structure; and details of about whether and how such an entry can map a page.

4.3 32-BIT PAGING
A logical processor uses 32-bit paging if CR0.PG = 1 and CR4.PAE = 0. 32-bit paging
translates 32-bit linear addresses to 40-bit physical addresses.1 Although 40 bits corre-
sponds to 1 TByte, linear addresses are limited to 32 bits; at most 4 GBytes of linear-
address space may be accessed at any given time.

32-bit paging uses a hierarchy of paging structures to produce a translation for a linear
address. CR3 is used to locate the first paging-structure, the page directory. Table 4-3
illustrates how CR3 is used with 32-bit paging.

32-bit paging may map linear addresses to either 4-KByte pages or 4-MByte pages.
Figure Figure 4-2 illustrates the translation process when it uses a 4-KByte page;
Figure Figure 4-3 covers the case of a 4-MByte page. The following items describe the
32-bit paging process in more detail as well has how the page size is determined:

Table 4-2 Paging Structures in the Different Paging Modes

Paging
Structure

Entry
Name Paging Mode

Physical
Address of
Structure

Bits
Selecting
Entry

Page Mapping

PML4 table PML4E
32-bit, PAE N/A

IA-32e CR3 47:39 N/A (PS must be 0)

Page-directory-
pointer table

PDPTE

32-bit N/A

PAE CR3 31:30 N/A (PS must be 0)

IA-32e PML4E 38:30 1-GByte page if PS=11

NOTES:
1. Not all processors allow the PS flag to be 1 in PDPTEs; see Section 4.1.4 for how to determine

whether 1-GByte pages are supported.

Page directory PDE
32-bit CR3 31:22 4-MByte page if PS=12

2. 32-bit paging ignores the PS flag in a PDE (and uses the entry to reference a page table) unless
CR4.PSE = 1. Not all processors allow CR4.PSE to be 1; see Section 4.1.4 for how to determine
whether 4-MByte pages are supported with 32-bit paging.

PAE, IA-32e PDPTE 29:21 2-MByte page if PS=1

Page table PTE
32-bit

PDE
21:12 4-KByte page

PAE, IA-32e 20:12 4-KByte page

1. Bits in the range 39:32 are 0 in any physical address used by 32-bit paging except those used to map
4-MByte pages. If the processor does not support the PSE-36 mechanism, this is true also for physi-
cal addresses used to map 4-MByte pages. If the processor does support the PSE-36 mechanism and
MAXPHYADDR < 40, bits in the range 39:MAXPHYADDR are 0 in any physical address used to map a
4-MByte page. (The corresponding bits are reserved in PDEs.) See Section 4.1.4 for how to determine
MAXPHYADDR and whether the PSE-36 mechanism is supported.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 48

Documentation Changes

• A 4-KByte naturally aligned page directory is located at the physical address
specified in bits 31:12 of CR3 (see Table 4-3). A page directory comprises 1024 32-
bit entries (PDEs). A PDE is selected using the physical address defined as follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from CR3.

— Bits 11:2 are bits 31:22 of the linear address.

— Bits 1:0 are 0.

Because a PDE is identified using bits 31:22 of the linear address, it controls access to a
4-Mbyte region of the linear-address space. Use of the PDE depends on CR.PSE and the
PDE’s PS flag (bit 7):

• If CR4.PSE = 1 and the PDE’s PS flag is 1, the PDE maps a 4-MByte page (see
Table Table 4-4). The final physical address is computed as follows:

— Bits 39:32 are bits 20:13 of the PDE.

— Bits 31:22 are bits 31:22 of the PDE.1

— Bits 21:0 are from the original linear address.

• If CR4.PSE = 0 or the PDE’s PS flag is 0, a 4-KByte naturally aligned page table is
located at the physical address specified in bits 31:12 of the PDE (see Table Table 4-
5). A page table comprises 1024 32-bit entries (PTEs). A PTE is selected using the
physical address defined as follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from the PDE.

— Bits 11:2 are bits 21:12 of the linear address.

— Bits 1:0 are 0.

• Because a PTE is identified using bits 31:12 of the linear address, every PTE maps a
4-KByte page (see Table Table 4-6). The final physical address is computed as
follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from the PTE.

— Bits 11:0 are from the original linear address.

If a paging-structure entry’s P flag (bit 0) is 0 or if the entry sets any reserved bit, the
entry is used neither to reference another paging-structure entry nor to map a page. A
reference using a linear address whose translation would use such a paging-structure
entry causes a page-fault exception (see Section 4.7).

With 32-bit paging, there are reserved bits only if CR4.PSE = 1:

• If the P flag and the PS flag (bit 7) of a PDE are both 1, the bits reserved depend on
MAXPHYADDR whether the PSE-36 mechanism is supported:2

— If the PSE-36 mechanism is not supported, bits 21:13 are reserved.

— If the PSE-36 mechanism is supported, bits 21:(M–19) are reserved, where M is
the minimum of 40 and MAXPHYADDR.

1. The upper bits in the final physical address do not all come from corresponding positions in the PDE;
the physical-address bits in the PDE are not all contiguous.

2. See Section 1.1.5 for how to determine MAXPHYADDR and whether the PSE-36 mechanism is sup-
ported.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 49

Documentation Changes

• If the PAT is not supported:1

— If the P flag of a PTE is 1, bit 7 is reserved.

— If the P flag and the PS flag of a PDE are both 1, bit 12 is reserved.

(If CR4.PSE = 0, no bits are reserved with 32-bit paging.)

A reference using a linear address that is successfully translated to a physical address is
performed only if allowed by the access rights of the translation; see Section 4.6.

1. See Section 4.1.4 for how to determine whether the PAT is supported.

Figure 4-2 Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

Figure 4-3 Linear-Address Translation to a 4-MByte Page using 32-Bit Paging

0

Directory Table Offset

Page Directory

PDE with PS=0

CR3

Page Table

PTE

4-KByte Page

Physical Address

31 21 111222
Linear Address

32

10

12

10

20

20

0

Directory Offset

Page Directory

PDE with PS=1

CR3

4-MByte Page

Physical Address

31 2122
Linear Address

10

22

32

18

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 50

Documentation Changes

Figure Figure 4-4 gives a summary of the formats of CR3 and the paging-structure
entries with 32-bit paging. For the paging structure entries, it identifies separately the
format of entries that map pages, those that reference other paging structures, and
those that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are high-
lighted because they determine how such an entry is used..

31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

Address of page directory1

NOTES:
1. CR3 has 64 bits on processors supporting the Intel-64 architecture. These bits are ignored with

32-bit paging.

Ignored
P
C
D

P
W
T

Ignored CR3

Bits 31:22 of address
of 2MB page frame

Reserved
(must be 0)

Bits 39:32
of

address2

2. This example illustrates a processor in which MAXPHYADDR is 36. If this value is larger or smaller,
the number of bits reserved in positions 20:13 of a PDE mapping a 4-MByte will change.

P
A
T

Ignored G 1 D A
P
C
D

P
W
T

U
/
S

R
/
W

1
PDE:
4MB
page

Address of page table Ignored 0
I
g
n

A
P
C
D

P
W
T

U
/
S

R
/
W

1
PDE:
page
table

Ignored 0
PDE:
not

present

Address of 4KB page frame Ignored G
P
A
T

D A
P
C
D

P
W
T

U
/
S

R
/
W

1
PTE:
4KB
page

Ignored 0
PTE:
not

present

Figure 4-4 Formats of CR3 and Paging-Structure Entries with 32-Bit Paging

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 51

Documentation Changes

Table 4-3 Use of CR3 with 32-Bit Paging

Bit
Position(s)

Contents

2:0 Ignored

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page directory during linear-address translation (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page directory during linear-address translation (see Section 4.9)

11:5 Ignored

31:12 Physical address of the 4-KByte aligned page directory used for linear-address
translation

63:32 Ignored (these bits exist only on processors supporting the Intel-64 architecture)

Table 4-4 Format of a 32-Bit Page-Directory Entry that Maps a 4-MByte Page

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-MByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-MByte page referenced by
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-MByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 4-MByte page referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 4-MByte page referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 4-MByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-MByte page referenced by
this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see
Table Table 4-5)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 52

Documentation Changes

12 (PAT) If the PAT is supported, indirectly determines the memory type used to access the
4-MByte page referenced by this entry (see Section 4.9.2); otherwise, reserved
(must be 0)1

(M–20):13 Bits (M–1):32 of physical address of the 4-MByte page referenced by this entry2

21:(M–19) Reserved (must be 0)

31:22 Bits 31:22 of physical address of the 4-MByte page referenced by this entry

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.
2. If the PSE-36 mechanism is not supported, M is 32, and this row does not apply. If the PSE-36

mechanism is supported, M is the minimum of 40 and MAXPHYADDR (this row does not apply if
MAXPHYADDR = 32). See Section 4.1.4 for how to determine MAXPHYADDR and whether the
PSE-36 mechanism is supported.

Table 4-5 Format of a 32-Bit Page-Directory Entry that References a Page Table

Bit
Position(s)

Contents

0 (P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-MByte region controlled by
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-MByte region
controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether this entry has been used for linear-address
translation (see Section 4.8)

6 Ignored

7 (PS) If CR4.PSE = 1, must be 0 (otherwise, this entry maps a 4-MByte page; see
Table Table 4-4); otherwise, ignored

11:8 Ignored

31:12 Physical address of 4-KByte aligned page table referenced by this entry

Table 4-4 Format of a 32-Bit Page-Directory Entry that Maps a 4-MByte Page

Bit
Position(s)

Contents

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 53

Documentation Changes

4.4 PAE PAGING
A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LME =
0. PAE paging translates 32-bit linear addresses to 52-bit physical addresses.1 Although
52 bits corresponds to 4 PBytes, linear addresses are limited to 32 bits; at most 4 GBytes
of linear-address space may be accessed at any given time.

With PAE paging, a logical processor maintains a set of four (4) PDPTE registers, which
are loaded from an address in CR3. Linear address are translated using 4 hierarchies of
in-memory paging structures, each located using one of the PDPTE registers. (This is
different from the other paging modes, in which there is one hierarchy referenced by
CR3.)

Table 4-6 Format of a 32-Bit Page-Table Entry that Maps a 4-KByte Page

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-KByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 4-KByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by
this entry (see Section 4.8)

7 (PAT) If the PAT is supported, indirectly determines the memory type used to access the
4-KByte page referenced by this entry (see Section 4.9.2); otherwise, reserved
(must be 0)1

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

31:12 Physical address of the 4-KByte page referenced by this entry

1. If MAXPHYADDR < 52, bits in the range 51:MAXPHYADDR will be 0 in any physical address used by
PAE paging. (The corresponding bits are reserved in the paging-structure entries.) See Section 4.1.4
for how to determine MAXPHYADDR.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 54

Documentation Changes

Section 4.4.1 discusses the PDPTE registers. Section 4.4.2 describes linear-address
translation with PAE paging.

4.4.1 PDPTE Registers
When PAE paging is used, CR3 references the base of a 32-Byte page-directory-
pointer table. Table Table 4-7 illustrates how CR3 is used with PAE paging.

The page-directory-pointer-table comprises four (4) 64-bit entries called PDPTEs. Each
PDPTE controls access to a 1-GByte region of the linear-address space. Corresponding
to the PDPTEs, the logical processor maintains a set of four (4) internal, non-
architectural PDPTE registers, called PDPTE0, PDPTE1, PDPTE2, and PDPTE3.

The logical processor loads these registers from the PDPTEs in memory as part of certain
executions the MOV to CR instruction:

• If PAE paging would be in use following an execution of MOV to CR0 or MOV to CR4
(see Section 4.1.1) and the instruction is modifying any of CR0.CD, CR0.NW,
CR0.PG, CR4.PAE, CR4.PGE, or CR4.PSE; then the PDPTEs are loaded from the
address in CR3.

• If MOV to CR3 is executed while the logical processor is using PAE paging, the
PDPTEs are loaded from the address being loaded into CR3.

• If PAE paging is in use and a task switch changes the value of CR3, the PDPTEs are
loaded from the address in the new CR3 value.

• Certain VMX transitions load the PDPTE registers. See Section 4.11.1.

Unless the caches are disabled, the processor uses the WB memory type to load the
PDPTEs from memory.1

Table 4-8 gives the format of a PDPTE. If any of the PDPTEs sets both the P flag (bit 0)
and any reserved bit, the MOV to CR instruction causes a general-protection exception
(#GP(0)) and the PDPTEs are not loaded.2 As show in Table 4-8, bits 2:1, 8:5, and
63:MAXPHYADDR are reserved in the PDPTEs.

Table 4-7 Use of CR3 with PAE Paging

Bit
Position(s)

Contents

4:0 Ignored

31:5 Physical address of the 32-Byte aligned page-directory-pointer table used for
linear-address translation

63:32 Ignored (these bits exist only on processors supporting the Intel-64 architecture)

1. Older IA-32 processors used the UC memory type when loading the PDPTEs. This behavior is model-
specific and not architectural.

Table 4-8 Format of a PAE Page-Directory-Pointer-Table Entry (PDPTE)

Bit
Position(s)

Contents

0 (P) Present; must be 1 to reference a page directory

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 55

Documentation Changes

4.4.2 Linear-Address Translation with PAE Paging
PAE paging may map linear addresses to either 4-KByte pages or 2-MByte pages.
Figure 4-5 illustrates the translation process when it produces a 4-KByte page;
Figure 4-6 covers the case of a 2-MByte page. The following items describe the PAE
paging process in more detail as well has how the page size is determined:

• Bits 31:30 of the linear address select a PDPTE register (see Section 4.4.1); this is
PDPTEi, where i is the value of bits 31:30.1 Because a PDPTE register is identified
using bits 31:30 of the linear address, it controls access to a 1-GByte region of the
linear-address space. If the P flag (bit 0) of PDPTEi is 0, the processor ignores bits
63:1, and there is no mapping for the 1-GByte region controlled by PDPTEi. A
reference using a linear address in this region causes a page-fault exception (see
Section 4.7).

• If the P flag of PDPTEi is 1, 4-KByte naturally aligned page directory is located at the
physical address specified in bits 51:12 of PDPTEi (see Table 4-8 in Section 4.4.1) A
page directory comprises 512 64-bit entries (PDEs). A PDE is selected using the
physical address defined as follows:

— Bits 51:12 are from PDPTEi.

— Bits 11:3 are bits 29:21 of the linear address.

— Bits 2:0 are 0.

Because a PDE is identified using bits 31:21 of the linear address, it controls access to a
2-Mbyte region of the linear-address space. Use of the PDE depends on its PS flag
(bit 7):

2. On some processors, reserved bits are checked even in PDPTEs in which the P flag (bit 0) is 0.

2:1 Reserved (must be 0)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page directory referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page directory referenced by this entry (see Section 4.9)

8:5 Reserved (must be 0)

11:9 Ignored

(M–1):12 Physical address of 4-KByte aligned page directory referenced by this entry1

63:M Reserved (must be 0)

NOTES:
1. M is an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.

1. With PAE paging, the processor does not use CR3 when translating a linear address (as it does the
other paging modes). It does not access the PDPTEs in the page-directory-pointer table during linear-
address translation.

Table 4-8 Format of a PAE Page-Directory-Pointer-Table Entry (PDPTE) (Continued)

Bit
Position(s)

Contents

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 56

Documentation Changes

• If the PDE’s PS flag is 1, the PDE maps a 2-MByte page (see Table 4-9). The final
physical address is computed as follows:

— Bits 51:21 are from the PDE.

— Bits 20:0 are from the original linear address.

• If the PDE’s PS flag is 0, a 4-KByte naturally aligned page table is located at the
physical address specified in bits 51:12 of the PDE (see Table 4-10). A page
directory comprises 512 64-bit entries (PTEs). A PTE is selected using the physical
address defined as follows:

— Bits 51:12 are from the PDE.

— Bits 11:3 are bits 20:12 of the linear address.

— Bits 2:0 are 0.

• Because a PTE is identified using bits 31:12 of the linear address, every PTE maps a
4-KByte page (see Table 4-11). The final physical address is computed as follows:

— Bits 51:12 are from the PTE.

— Bits 11:0 are from the original linear address.

If the P flag (bit 0) of a PDE or a PTE is 0 or if a PDE or a PTE sets any reserved bit, the
entry is used neither to reference another paging-structure entry nor to map a page. A
reference using a linear address whose translation would use such a paging-structure
entry causes a page-fault exception (see Section 4.7).

The following bits are reserved with PAE paging:

• If the P flag (bit 0) of a PDE or a PTE is 1, bits 62:MAXPHYADDR are reserved.

• If the P flag and the PS flag (bit 7) of a PDE are both 1, bits 20:13 are reserved.

• If IA32_EFER.NXE = 0 and the P flag of a PDE or a PTE is 1, the XD flag (bit 63) is
reserved.

• If the PAT is not supported:1

— If the P flag of a PTE is 1, bit 7 is reserved.

— If the P flag and the PS flag of a PDE are both 1, bit 12 is reserved.

A reference using a linear address that is successfully translated to a physical address is
performed only if allowed by the access rights of the translation; see Section 4.6.

...

1. See Section 4.1.4 for how to determine whether the PAT is supported.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 57

Documentation Changes

4.5 IA-32E PAGING
A logical processor uses IA-32e paging if CR0.PG = 1, CR4.PAE = 1, and
IA32_EFER.LME = 1. With IA-32e paging, linear address are translated using a hierarchy
of in-memory paging structures located using the contents of CR3. IA-32e paging trans-
lates 48-bit linear addresses to 52-bit physical addresses.1 Although 52 bits corresponds
to 4 PBytes, linear addresses are limited to 48 bits; at most 256 TBytes of linear-address
space may be accessed at any given time.

IA-32e paging uses a hierarchy of paging structures to produce a translation for a linear
address. CR3 is used to locate the first paging-structure, the PML4 table. Use of CR3 with
IA-32e paging depends on whether process-context identifiers (PCIDs) have been
enabled by setting CR4.PCIDE:

• Table Table 4-12 illustrates how CR3 is used with IA-32e paging if CR4.PCIDE = 0.

• Table Table 4-13 illustrates how CR3 is used with IA-32e paging if CR4.PCIDE = 1.

1. If MAXPHYADDR < 52, bits in the range 51:MAXPHYADDR will be 0 in any physical address used by
IA-32e paging. (The corresponding bits are reserved in the paging-structure entries.) See Section
4.1.4 for how to determine MAXPHYADDR.

Table 4-12 Use of CR3 with IA-32e Paging and CR4.PCIDE = 0

Bit
Position(s)

Contents

2:0 Ignored

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the PML4 table during linear-address translation (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the PML4 table during linear-address translation (see Section 4.9.2)

11:5 Ignored

M–1:12 Physical address of the 4-KByte aligned PML4 table used for linear-address
translation1

NOTES:
1. M is an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.

63:M Reserved (must be 0)

Table 4-13 Use of CR3 with IA-32e Paging and CR4.PCIDE = 1

Bit
Position(s)

Contents

11:0 PCID (see Section 4.10.1)1

M–1:12 Physical address of the 4-KByte aligned PML4 table used for linear-address
translation2

63:M Reserved (must be 0)3

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 58

Documentation Changes

After software modifies the value of CR4.PCIDE, the logical processor immediately
begins using CR3 as specified for the new value. For example, if software changes
CR4.PCIDE from 1 to 0, the current PCID immediately changes from CR3[11:0] to 000H
(see also Section 4.10.4.1). In addition, the logical processor subsequently determines
the memory type used to access the PML4 table using CR3.PWT and CR3.PCD, which had
been bits 4:3 of the PCID.

IA-32e paging may map linear addresses to 4-KByte pages, 2-MByte pages, or 1-GByte
pages.1 Figure 4-8 illustrates the translation process when it produces a 4-KByte page;
Figure 4-9 covers the case of a 2-MByte page, and Figure 4-10 the case of a 1-GByte
page.

...

8. Updates to Chapter 6, Volume 3A

Change bars show changes to Chapter 6 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

--

...

6.13 ERROR CODE
When an exception condition is related to a specific segment selector or IDT vector, the
processor pushes an error code onto the stack of the exception handler (whether it is a
procedure or task). The error code has the format shown in Figure Figure 6-6.. The error
code resembles a segment selector; however, instead of a TI flag and RPL field, the error
code contains 3 flags:

EXT External event (bit 0) — When set, indicates that the exception
occurred during delivery of an event external to the program, such as an
interrupt or an earlier exception.

IDT Descriptor location (bit 1) — When set, indicates that the index
portion of the error code refers to a gate descriptor in the IDT; when
clear, indicates that the index refers to a descriptor in the GDT or the
current LDT.

TI GDT/LDT (bit 2) — Only used when the IDT flag is clear. When set, the
TI flag indicates that the index portion of the error code refers to a
segment or gate descriptor in the LDT; when clear, it indicates that the
index refers to a descriptor in the current GDT.

NOTES:
1. Section 4.9.2 explains how the processor determines the memory type used to access the PML4

table during linear-address translation with CR4.PCIDE = 1.
2. M is an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.
3. See Section 4.10.4.1 for use of bit 63 of the source operand of the MOV to CR3 instruction.

1. Not all processors support 1-GByte pages; see Section 4.1.4.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 59

Documentation Changes

The segment selector index field provides an index into the IDT, GDT, or current LDT to
the segment or gate selector being referenced by the error code. In some cases the error
code is null (all bits are clear except possibly EXT). A null error code indicates that the
error was not caused by a reference to a specific segment or that a null segment
descriptor was referenced in an operation.

The format of the error code is different for page-fault exceptions (#PF). See the “Inter-
rupt 14—Page-Fault Exception (#PF)” section in this chapter.

The error code is pushed on the stack as a doubleword or word (depending on the default
interrupt, trap, or task gate size). To keep the stack aligned for doubleword pushes, the
upper half of the error code is reserved. Note that the error code is not popped when the
IRET instruction is executed to return from an exception handler, so the handler must
remove the error code before executing a return.

Error codes are not pushed on the stack for exceptions that are generated externally
(with the INTR or LINT[1:0] pins) or the INT n instruction, even if an error code is
normally produced for those exceptions.

...

Interrupt 17—Alignment Check Exception (#AC)

...

Exception Error Code

Yes. The error code is null; all bits are clear except possibly bit 0 — EXT; see Section
6.13. EXT is set if the #AC is recognized during delivery of an event other than a soft-
ware interrupt (see “INT n/INTO/INT 3—Call to Interrupt Procedure” in Chapter 3 of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A).

...

9. Updates to Chapter 8, Volume 3A

Change bars show changes to Chapter 8 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

--

...

Figure 6-6. Error Code

31 0

Reserved
I
D
T

T
I

123

Segment Selector Index
E
X
T

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 60

Documentation Changes

8.2.3.2 Neither Loads Nor Stores Are Reordered with Like Operations
The Intel-64 memory-ordering model allows neither loads nor stores to be reordered
with the same kind of operation. That is, it ensures that loads are seen in program order
and that stores are seen in program order. This is illustrated by the following example:

The disallowed return values could be exhibited only if processor 0’s two stores are reor-
dered (with the two loads occurring between them) or if processor 1’s two loads are
reordered (with the two stores occurring between them).

If r1 = 1, the store to y occurs before the load from y. Because the Intel-64 memory-
ordering model does not allow stores to be reordered, the earlier store to x occurs before
the load from y. Because the Intel-64 memory-ordering model does not allow loads to be
reordered, the store to x also occurs before the later load from x. This r2 = 1.

8.2.3.3 Stores Are Not Reordered With Earlier Loads
The Intel-64 memory-ordering model ensures that a store by a processor may not occur
before a previous load by the same processor. This is illustrated by the following
example:

Assume r1 = 1.

• Because r1 = 1, processor 1’s store to x occurs before processor 0’s load from x.

• Because the Intel-64 memory-ordering model prevents each store from being
reordered with the earlier load by the same processor, processor 1’s load from y
occurs before its store to x.

• Similarly, processor 0’s load from x occurs before its store to y.

• Thus, processor 1’s load from y occurs before processor 0’s store to y, implying r2 =
0.

8.2.3.4 Loads May Be Reordered with Earlier Stores to Different Locations
The Intel-64 memory-ordering model allows a load to be reordered with an earlier store
to a different location. However, loads are not reordered with stores to the same loca-
tion.

Example 8-1. Stores Are Not Reordered with Other Stores
Processor 0 Processor 1

mov [_x], 1 mov r1, [_y]

mov [_y], 1 mov r2, [_x]

Initially x = y = 0

r1 = 1 and r2 = 0 is not allowed

Example 8-2. Stores Are Not Reordered with Older Loads
Processor 0 Processor 1

mov r1, [_x] mov r2, [_y]

mov [_y], 1 mov [_x], 1

Initially x = y = 0

r1 = 1 and r2 = 1 is not allowed

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 61

Documentation Changes

The fact that a load may be reordered with an earlier store to a different location is illus-
trated by the following example:

At each processor, the load and the store are to different locations and hence may be
reordered. Any interleaving of the operations is thus allowed. One such interleaving has
the two loads occurring before the two stores. This would result in each load returning
value 0.

The fact that a load may not be reordered with an earlier store to the same location is
illustrated by the following example:

The Intel-64 memory-ordering model does not allow the load to be reordered with the
earlier store because the accesses are to the same location. Therefore, r1 = 1 must hold.

8.2.3.5 Intra-Processor Forwarding Is Allowed
The memory-ordering model allows concurrent stores by two processors to be seen in
different orders by those two processors; specifically, each processor may perceive its
own store occurring before that of the other. This is illustrated by the following example:

The memory-ordering model imposes no constraints on the order in which the two stores
appear to execute by the two processors. This fact allows processor 0 to see its store
before seeing processor 1's, while processor 1 sees its store before seeing processor 0's.
(Each processor is self consistent.) This allows r2 = 0 and r4 = 0.

In practice, the reordering in this example can arise as a result of store-buffer
forwarding. While a store is temporarily held in a processor's store buffer, it can satisfy
the processor's own loads but is not visible to (and cannot satisfy) loads by other proces-
sors.

Example 8-3. Loads May be Reordered with Older Stores
Processor 0 Processor 1

mov [_x], 1 mov [_y], 1

mov r1, [_y] mov r2, [_x]

Initially x = y = 0

r1 = 0 and r2 = 0 is allowed

Example 8-4. Loads Are not Reordered with Older Stores to the Same Location
Processor 0

mov [_x], 1

mov r1, [_x]

Initially x = 0

r1 = 0 is not allowed

Example 8-5. Intra-Processor Forwarding is Allowed
Processor 0 Processor 1

mov [_x], 1 mov [_y], 1

mov r1, [_x] mov r3, [_y]

mov r2, [_y] mov r4, [_x]

Initially x = y = 0

r2 = 0 and r4 = 0 is allowed

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 62

Documentation Changes

8.2.3.6 Stores Are Transitively Visible
The memory-ordering model ensures transitive visibility of stores; stores that are caus-
ally related appear to all processors to occur in an order consistent with the causality
relation. This is illustrated by the following example:

Assume that r1 = 1 and r2 = 1.

• Because r1 = 1, processor 0’s store occurs before processor 1’s load.

• Because the memory-ordering model prevents a store from being reordered with an
earlier load (see Section 8.2.3.3), processor 1’s load occurs before its store. Thus,
processor 0’s store causally precedes processor 1’s store.

• Because processor 0’s store causally precedes processor 1’s store, the memory-
ordering model ensures that processor 0’s store appears to occur before
processor 1’s store from the point of view of all processors.

• Because r2 = 1, processor 1’s store occurs before processor 2’s load.

• Because the Intel-64 memory-ordering model prevents loads from being reordered
(see Section 8.2.3.2), processor 2’s load occur in order.

• The above items imply that processor 0’s store to x occurs before processor 2’s load
from x. This implies that r3 = 1.

8.2.3.7 Stores Are Seen in a Consistent Order by Other Processors
As noted in Section 8.2.3.5, the memory-ordering model allows stores by two processors
to be seen in different orders by those two processors. However, any two stores must
appear to execute in the same order to all processors other than those performing the
stores. This is illustrated by the following example:

By the principles discussed in Section 8.2.3.2,

• processor 2’s first and second load cannot be reordered,

• processor 3’s first and second load cannot be reordered.

• If r1 = 1 and r2 = 0, processor 0’s store appears to precede processor 1’s store with
respect to processor 2.

Example 8-6. Stores Are Transitively Visible
Processor 0 Processor 1 Processor 2

mov [_x], 1 mov r1, [_x]

mov [_y], 1 mov r2, [_y]

mov r3, [_x]

Initially x = y = 0

r1 = 1, r2 = 1, r3 = 0 is not allowed

Example 8-7. Stores Are Seen in a Consistent Order by Other Processors
Processor 0 Processor 1 Processor 2 Processor 3

mov [_x], 1 mov [_y], 1 mov r1, [_x] mov r3, [_y]

mov r2, [_y] mov r4, [_x]

Initially x = y =0

r1 = 1, r2 = 0, r3 = 1, r4 = 0 is not allowed

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 63

Documentation Changes

• Similarly, r3 = 1 and r4 = 0 imply that processor 1’s store appears to precede
processor 0’s store with respect to processor 1.

Because the memory-ordering model ensures that any two stores appear to execute in
the same order to all processors (other than those performing the stores), this set of
return values is not allowed

8.2.3.8 Locked Instructions Have a Total Order
The memory-ordering model ensures that all processors agree on a single execution
order of all locked instructions, including those that are larger than 8 bytes or are not
naturally aligned. This is illustrated by the following example:

Processor 2 and processor 3 must agree on the order of the two executions of XCHG.
Without loss of generality, suppose that processor 0’s XCHG occurs first.

• If r5 = 1, processor 1’s XCHG into y occurs before processor 3’s load from y.

• Because the Intel-64 memory-ordering model prevents loads from being reordered
(see Section 8.2.3.2), processor 3’s loads occur in order and, therefore,
processor 1’s XCHG occurs before processor 3’s load from x.

• Since processor 0’s XCHG into x occurs before processor 1’s XCHG (by assumption),
it occurs before processor 3’s load from x. Thus, r6 = 1.

A similar argument (referring instead to processor 2’s loads) applies if processor 1’s
XCHG occurs before processor 0’s XCHG.

8.2.3.9 Loads and Stores Are Not Reordered with Locked Instructions
The memory-ordering model prevents loads and stores from being reordered with locked
instructions that execute earlier or later. The examples in this section illustrate only
cases in which a locked instruction is executed before a load or a store. The reader
should note that reordering is prevented also if the locked instruction is executed after a
load or a store.

The first example illustrates that loads may not be reordered with earlier locked instruc-
tions:

Example 8-8. Locked Instructions Have a Total Order
Processor 0 Processor 1 Processor 2 Processor 3

xchg [_x], r1 xchg [_y], r2

mov r3, [_x] mov r5, [_y]

mov r4, [_y] mov r6, [_x]

Initially r1 = r2 = 1, x = y = 0

r3 = 1, r4 = 0, r5 = 1, r6 = 0 is not allowed

Example 8-9. Loads Are not Reordered with Locks
Processor 0 Processor 1

xchg [_x], r1 xchg [_y], r3

mov r2, [_y] mov r4, [_x]

Initially x = y = 0, r1 = r3 = 1

r2 = 0 and r4 = 0 is not allowed

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 64

Documentation Changes

As explained in Section 8.2.3.8, there is a total order of the executions of locked instruc-
tions. Without loss of generality, suppose that processor 0’s XCHG occurs first.

Because the Intel-64 memory-ordering model prevents processor 1’s load from being
reordered with its earlier XCHG, processor 0’s XCHG occurs before processor 1’s load.
This implies r4 = 1.

A similar argument (referring instead to processor 2’s accesses) applies if processor 1’s
XCHG occurs before processor 0’s XCHG.

The second example illustrates that a store may not be reordered with an earlier locked
instruction:

Assume r2 = 1.

• Because r2 = 1, processor 0’s store to y occurs before processor 1’s load from y.

• Because the memory-ordering model prevents a store from being reordered with an
earlier locked instruction, processor 0’s XCHG into x occurs before its store to y.
Thus, processor 0’s XCHG into x occurs before processor 1’s load from y.

• Because the memory-ordering model prevents loads from being reordered (see
Section 8.2.3.2), processor 1’s loads occur in order and, therefore, processor 1’s
XCHG into x occurs before processor 1’s load from x. Thus, r3 = 1.

...

8.2.4.2 Examples Illustrating Memory-Ordering Principles for String
Operations

The following examples uses the same notation and convention as described in Section
8.2.3.1.

In Example Example 8-11., processor 0 does one round of (128 iterations) doubleword
string store operation via rep:stosd, writing the value 1 (value in EAX) into a block of 512
bytes from location _x (kept in ES:EDI) in ascending order. Since each operation stores
a doubleword (4 bytes), the operation is repeated 128 times (value in ECX). The block of
memory initially contained 0. Processor 1 is reading two memory locations that are part
of the memory block being updated by processor 0, i.e, reading locations in the range _x
to (_x+511).

Example 8-10. Stores Are not Reordered with Locks
Processor 0 Processor 1

xchg [_x], r1 mov r2, [_y]

mov [_y], 1 mov r3, [_x]

Initially x = y = 0, r1 = 1

r2 = 1 and r3 = 0 is not allowed

Example 8-11. Stores Within a String Operation May be Reordered
Processor 0 Processor 1

rep:stosd [_x] mov r1, [_z]

mov r2, [_y]

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 65

Documentation Changes

It is possible for processor 1 to perceive that the repeated string stores in processor 0
are happening out of order. Assume that fast string operations are enabled on processor
0.

In Example Example 8-12., processor 0 does two separate rounds of rep stosd operation
of 128 doubleword stores, writing the value 1 (value in EAX) into the first block of 512
bytes from location _x (kept in ES:EDI) in ascending order. It then writes 1 into a second
block of memory from (_x+512) to (_x+1023). All of the memory locations initially
contain 0. The block of memory initially contained 0. Processor 1 performs two load
operations from the two blocks of memory.

It is not possible in the above example for processor 1 to perceive any of the stores from
the later string operation (to the second 512 block) in processor 0 before seeing the
stores from the earlier string operation to the first 512 block.

The above example assumes that writes to the second block (_x+512 to _x+1023) does
not get executed while processor 0’s string operation to the first block has been inter-
rupted. If the string operation to the first block by processor 0 is interrupted, and a write
to the second memory block is executed by the interrupt handler, then that change in
the second memory block will be visible before the string operation to the first memory
block resumes.

In Example Example 8-13., processor 0 does one round of (128 iterations) doubleword
string store operation via rep:stosd, writing the value 1 (value in EAX) into a block of 512
bytes from location _x (kept in ES:EDI) in ascending order. It then writes to a second
memory location outside the memory block of the previous string operation. Processor 1
performs two read operations, the first read is from an address outside the 512-byte
block but to be updated by processor 0, the second ready is from inside the block of
memory of string operation.

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x

Initially [_x] to 511[_x]= 0, _x <= _y < _z < _x+512

r1 = 1 and r2 = 0 is allowed

Example 8-12. Stores Across String Operations Are not Reordered
Processor 0 Processor 1

rep:stosd [_x]

mov r1, [_z]

mov ecx, $128

mov r2, [_y]

rep:stosd 512[_x]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x

Initially [_x] to 1023[_x]= 0, _x <= _y < _x+512 < _z < _x+1024

r1 = 1 and r2 = 0 is not allowed

Example 8-11. Stores Within a String Operation May be Reordered
Processor 0 Processor 1

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 66

Documentation Changes

Processor 1 cannot perceive the later store by processor 0 until it sees all the stores from
the string operation. Example Example 8-13. assumes that processor 0’s store to [_z] is
not executed while the string operation has been interrupted. If the string operation is
interrupted and the store to [_z] by processor 0 is executed by the interrupt handler,
then changes to [_z] will become visible before the string operation resumes.

Example Example 8-14. illustrates the visibility principle when a string operation is inter-
rupted.

In Example Example 8-14., processor 0 started a string operation to write to a memory
block of 512 bytes starting at address _x. Processor 0 got interrupted after k iterations
of store operations. The address _y has not yet been updated by processor 0 when
processor 0 got interrupted. The interrupt handler that took control on processor 0
writes to the address _z. Processor 1 may see the store to _z from the interrupt handler,
before seeing the remaining stores to the 512-byte memory block that are executed
when the string operation resumes.

Example Example 8-15. illustrates the ordering of string operations with earlier stores.
No store from a string operation can be visible before all prior stores are visible.

...

Example 8-13. String Operations Are not Reordered with later Stores
Processor 0 Processor 1

rep:stosd [_x] mov r1, [_z]

mov [_z], $1 mov r2, [_y]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x

Initially [_y] = [_z] = 0, [_x] to 511[_x]= 0, _x <= _y < _x+512, _z is a separate memory location

r1 = 1 and r2 = 0 is not allowed

Example 8-14. Interrupted String Operation
Processor 0 Processor 1

rep:stosd [_x] // interrupted before es:edi reach
_y

mov r1, [_z]

mov [_z], $1 // interrupt handler mov r2, [_y]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x

Initially [_y] = [_z] = 0, [_x] to 511[_x]= 0, _x <= _y < _x+512, _z is a separate memory location

r1 = 1 and r2 = 0 is allowed

Example 8-15. String Operations Are not Reordered with Earlier Stores
Processor 0 Processor 1

mov [_z], $1 mov r1, [_y]

rep:stosd [_x] mov r2, [_z]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x

Initially [_y] = [_z] = 0, [_x] to 511[_x]= 0, _x <= _y < _x+512, _z is a separate memory location

r1 = 1 and r2 = 0 is not allowed

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 67

Documentation Changes

8.3 SERIALIZING INSTRUCTIONS
The Intel 64 and IA-32 architectures define several serializing instructions. These
instructions force the processor to complete all modifications to flags, registers, and
memory by previous instructions and to drain all buffered writes to memory before the
next instruction is fetched and executed. For example, when a MOV to control register
instruction is used to load a new value into control register CR0 to enable protected
mode, the processor must perform a serializing operation before it enters protected
mode. This serializing operation ensures that all operations that were started while the
processor was in real-address mode are completed before the switch to protected mode
is made.

The concept of serializing instructions was introduced into the IA-32 architecture with
the Pentium processor to support parallel instruction execution. Serializing instructions
have no meaning for the Intel486 and earlier processors that do not implement parallel
instruction execution.

It is important to note that executing of serializing instructions on P6 and more recent
processor families constrain speculative execution because the results of speculatively
executed instructions are discarded. The following instructions are serializing instruc-
tions:

• Privileged serializing instructions — INVD, INVEPT, INVLPG, INVVPID, LGDT,
LIDT, LLDT, LTR, MOV (to control register, with the exception of MOV CR81), MOV (to
debug register), WBINVD, and WRMSR2.

• Non-privileged serializing instructions — CPUID, IRET, and RSM.

When the processor serializes instruction execution, it ensures that all pending memory
transactions are completed (including writes stored in its store buffer) before it executes
the next instruction. Nothing can pass a serializing instruction and a serializing instruc-
tion cannot pass any other instruction (read, write, instruction fetch, or I/O). For
example, CPUID can be executed at any privilege level to serialize instruction execution
with no effect on program flow, except that the EAX, EBX, ECX, and EDX registers are
modified.

...

8.7.11 MICROCODE UPDATE Resources
In an Intel processor supporting Intel Hyper-Threading Technology, the microcode
update facilities are shared between the logical processors; either logical processor can
initiate an update. Each logical processor has its own BIOS signature MSR
(IA32_BIOS_SIGN_ID at MSR address 8BH). When a logical processor performs an
update for the physical processor, the IA32_BIOS_SIGN_ID MSRs for resident logical
processors are updated with identical information. If logical processors initiate an update
simultaneously, the processor core provides the necessary synchronization needed to
ensure that only one update is performed at a time.

NOTE
Some processors (prior to the introduction of Intel 64 Architecture and
based on Intel NetBurst microarchitecture) do not support simultaneous

1. MOV CR8 is not defined architecturally as a serializing instruction.

2. WRMSR to the IA32_TSC_DEADLINE MSR (MSR index 6E0H) and the X2APIC MSRs (MSR indices
802H to 83FH) are not serializing..

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 68

Documentation Changes

loading of microcode update to the sibling logical processors in the same
core. All other processors support logical processors initiating an update
simultaneously. Intel recommends a common approach that the
microcode loader use the sequential technique described in Section
9.11.6.3.

...

8.8.5 MICROCODE UPDATE Resources
Microcode update facilities are shared between two logical processors sharing a
processor core if the physical package supports Intel Hyper-Threading Technology. They
are not shared between logical processors in different cores or different physical pack-
ages. Either logical processor that has access to the microcode update facility can initiate
an update.

Each logical processor has its own BIOS signature MSR (IA32_BIOS_SIGN_ID at MSR
address 8BH). When a logical processor performs an update for the physical processor,
the IA32_BIOS_SIGN_ID MSRs for resident logical processors are updated with identical
information.

NOTE
Some processors (prior to the introduction of Intel 64 Architecture and
based on Intel NetBurst microarchitecture) do not support simultaneous
loading of microcode update to the sibling logical processors in the same
core. All other processors support logical processors initiating an update
simultaneously. Intel recommends a common approach that the
microcode loader use the sequential technique described in Section
9.11.6.3.

...

Example 8-22. Compute the Number of Packages, Cores, and Processor Relationships in a MP
System

a) Assemble lists of PACKAGE_ID, CORE_ID, and SMT_ID of each enabled logical processors

//The BIOS and/or OS may limit the number of logical processors available to applications
// after system boot. The below algorithm will compute topology for the processors visible
// to the thread that is computing it.

// Extract the 3-levels of IDs on every processor
// SystemAffinity is a bitmask of all the processors started by the OS. Use OS specific APIs to
// obtain it.
// ThreadAffinityMask is used to affinitize the topology enumeration thread to each processor
using OS specific APIs.
// Allocate per processor arrays to store the Package_ID, Core_ID and SMT_ID for every started
// processor.

ThreadAffinityMask = 1;
 ProcessorNum = 0;

while (ThreadAffinityMask != 0 && ThreadAffinityMask <= SystemAffinity) {
// Check to make sure we can utilize this processor first.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 69

Documentation Changes

if (ThreadAffinityMask & SystemAffinity){
Set thread to run on the processor specified in ThreadAffinityMask
Wait if necessary and ensure thread is running on specified processor

APIC_ID = GetAPIC_ID(); // 32 bit ID in Example 8-19 or 8-bit ID in Example 8-20
Extract the Package_ID, Core_ID and SMT_ID as explained in three level extraction

algorithm of Example 8-21
PackageID[ProcessorNUM] = PACKAGE_ID;
CoreID[ProcessorNum] = CORE_ID;
SmtID[ProcessorNum] = SMT_ID;
ProcessorNum++;

}
ThreadAffinityMask <<= 1;

}
NumStartedLPs = ProcessorNum;

b) Using the list of PACKAGE_ID to count the number of physical packages in a MP system and
construct, for each package, a multi-bit mask corresponding to those logical processors residing in the
same package.

// Compute the number of packages by counting the number of processors
// with unique PACKAGE_IDs in the PackageID array.
// Compute the mask of processors in each package.

PackageIDBucket is an array of unique PACKAGE_ID values. Allocate an array of
NumStartedLPs count of entries in this array.
PackageProcessorMask is a corresponding array of the bit mask of processors belonging to
the same package, these are processors with the same PACKAGE_ID
The algorithm below assumes there is symmetry across package boundary if more than
one socket is populated in an MP system.
// Bucket Package IDs and compute processor mask for every package.

PackageNum = 1;
PackageIDBucket[0] = PackageID[0];
ProcessorMask = 1;
PackageProcessorMask[0] = ProcessorMask;
For (ProcessorNum = 1; ProcessorNum < NumStartedLPs; ProcessorNum++) {

ProcessorMask << = 1;
For (i=0; i < PackageNum; i++) {

// we may be comparing bit-fields of logical processors residing in different
// packages, the code below assume package symmetry
If (PackageID[ProcessorNum] = PackageIDBucket[i]) {

PackageProcessorMask[i] |= ProcessorMask;
Break; // found in existing bucket, skip to next iteration

}
}
if (i =PackageNum) {

//PACKAGE_ID did not match any bucket, start new bucket
PackageIDBucket[i] = PackageID[ProcessorNum];
PackageProcessorMask[i] = ProcessorMask;
PackageNum++;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 70

Documentation Changes

}
}
// PackageNum has the number of Packages started in OS
// PackageProcessorMask[] array has the processor set of each package

c) Using the list of CORE_ID to count the number of cores in a MP system and construct, for each core, a
multi-bit mask corresponding to those logical processors residing in the same core.

Processors in the same core can be determined by bucketing the processors with the same
PACKAGE_ID and CORE_ID. Note that code below can BIT OR the values of PACKGE and CORE ID
because they have not been shifted right.
The algorithm below assumes there is symmetry across package boundary if more than one socket is
populated in an MP system.

//Bucketing PACKAGE and CORE IDs and computing processor mask for every core
CoreNum = 1;
CoreIDBucket[0] = PackageID[0] | CoreID[0];
ProcessorMask = 1;
CoreProcessorMask[0] = ProcessorMask;
For (ProcessorNum = 1; ProcessorNum < NumStartedLPs; ProcessorNum++) {

ProcessorMask << = 1;
For (i=0; i < CoreNum; i++) {

// we may be comparing bit-fields of logical processors residing in different
// packages, the code below assume package symmetry
If ((PackageID[ProcessorNum] | CoreID[ProcessorNum]) = CoreIDBucket[i]) {

CoreProcessorMask[i] |= ProcessorMask;
Break; // found in existing bucket, skip to next iteration

}
}
if (i = CoreNum) {

//Did not match any bucket, start new bucket
CoreIDBucket[i] = PackageID[ProcessorNum] | CoreID[ProcessorNum];
CoreProcessorMask[i] = ProcessorMask;
CoreNum++;

}
}
// CoreNum has the number of cores started in the OS
// CoreProcessorMask[] array has the processor set of each core

Other processor relationships such as processor mask of sibling cores can be computed
from set operations of the PackageProcessorMask[] and CoreProcessorMask[].

The algorithm shown above can be adapted to work with earlier generations of single-
core IA-32 processors that support Intel Hyper-Threading Technology and in situations
that the deterministic cache parameter leaf is not supported (provided CPUID supports
initial APIC ID). A reference code example is available (see Intel® 64 Architecture
Processor Topology Enumeration).

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 71

Documentation Changes

10. Updates to Chapter 9, Volume 3A

Change bars show changes to Chapter 9 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

--

...

9.9.2 Switching Back to Real-Address Mode
The processor switches from protected mode back to real-address mode if software
clears the PE bit in the CR0 register with a MOV CR0 instruction. A procedure that re-
enters real-address mode should perform the following steps:

1. Disable interrupts. A CLI instruction disables maskable hardware interrupts. NMI
interrupts can be disabled with external circuitry.

2. If paging is enabled, perform the following operations:

— Transfer program control to linear addresses that are identity mapped to physical
addresses (that is, linear addresses equal physical addresses).

— Insure that the GDT and IDT are in identity mapped pages.

— Clear the PG bit in the CR0 register.

— Move 0H into the CR3 register to flush the TLB.

3. Transfer program control to a readable segment that has a limit of 64 KBytes
(FFFFH). This operation loads the CS register with the segment limit required in real-
address mode.

4. Load segment registers SS, DS, ES, FS, and GS with a selector for a descriptor
containing the following values, which are appropriate for real-address mode:

— Limit = 64 KBytes (0FFFFH)

— Byte granular (G = 0)

— Expand up (E = 0)

— Writable (W = 1)

— Present (P = 1)

— Base = any value

The segment registers must be loaded with non-null segment selectors or the
segment registers will be unusable in real-address mode. Note that if the segment
registers are not reloaded, execution continues using the descriptor attributes
loaded during protected mode.

5. Execute an LIDT instruction to point to a real-address mode interrupt table that is
within the 1-MByte real-address mode address range.

6. Clear the PE flag in the CR0 register to switch to real-address mode.

7. Execute a far JMP instruction to jump to a real-address mode program. This
operation flushes the instruction queue and loads the appropriate base-address
value in the CS register.

8. Load the SS, DS, ES, FS, and GS registers as needed by the real-address mode code.
If any of the registers are not going to be used in real-address mode, write 0s to
them.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 72

Documentation Changes

9. Execute the STI instruction to enable maskable hardware interrupts and perform the
necessary hardware operation to enable NMI interrupts.

NOTE
All the code that is executed in steps 1 through 9 must be in a single
page and the linear addresses in that page must be identity mapped to
physical addresses.

...

Example 9-5. Pseudo Code to Validate the Processor Signature

ProcessorSignature CPUID(1):EAX

If (Update.HeaderVersion = 00000001h)
{

// first check the ProcessorSignature field
If (ProcessorSignature = Update.ProcessorSignature)

Success

// if extended signature is present
Else If (Update.TotalSize > (Update.DataSize + 48))
{

//
// Assume the Data Size has been used to calculate the
// location of Update.ProcessorSignature[0].
//

For (N 0; ((N < Update.ExtendedSignatureCount) AND
 (ProcessorSignature != Update.ProcessorSignature[N])); N++);

// if the loops ended when the iteration count is
// less than the number of processor signatures in
// the table, we have a match

If (N < Update.ExtendedSignatureCount)
Success

Else
Fail

}
Else

Fail
Else

Fail

...

Example 9-6. Pseudo Code Example of Processor Flags Test

Flag 1 << IA32_PLATFORM_ID[52:50]

If (Update.HeaderVersion = 00000001h)
{

If (Update.ProcessorFlags & Flag)
{

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 73

Documentation Changes

Load Update
}
Else
{

//
// Assume the Data Size has been used to calculate the
// location of Update.ProcessorSignature[N] and a match
// on Update.ProcessorSignature[N] has already succeeded
//

If (Update.ProcessorFlags[n] & Flag)
{

Load Update
}

}
}

...

Example 9-7. Pseudo Code Example of Checksum Test

N 512

If (Update.DataSize != 00000000H)
N Update.TotalSize / 4

ChkSum 0
For (I 0; I < N; I++)
{

ChkSum ChkSum + MicrocodeUpdate[I]
}

If (ChkSum = 00000000H)
Success

Else
Fail

...

Example 9-10. Pseudo Code to Authenticate the Update

Z Obtain Update Revision from the Update Header to be authenticated;
X Obtain Current Update Signature from MSR 8BH;

If (Z > X)
{

Load Update that is to be authenticated;
Y Obtain New Signature from MSR 8BH;

If (Z = Y)
Success

Else
Fail

}

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 74

Documentation Changes

Else
Fail

...

Example 9-11. Pseudo Code, Checks Required Prior to Loading an Update

For each processor in the system
{

Determine the Processor Signature via CPUID function 1;
Determine the Platform Bits 1 << IA32_PLATFORM_ID[52:50];

For (I UpdateBlock 0, I < NumOfBlocks; I++)
{

If (Update.Header_Version = 0x00000001)
{

If ((Update.ProcessorSignature = Processor Signature) &&
 (Update.ProcessorFlags & Platform Bits))

{
Load Update.UpdateData into the Processor;
Verify update was correctly loaded into the processor
Go on to next processor

Break;
}
Else If (Update.TotalSize > (Update.DataSize + 48))
{

N 0
While (N < Update.ExtendedSignatureCount)
{

If ((Update.ProcessorSignature[N] =
 Processor Signature) &&
 (Update.ProcessorFlags[N] & Platform Bits))

{
Load Update.UpdateData into the Processor;
Verify update correctly loaded into the processor
Go on to next processor

Break;
}
N N + 1

}
I I + (Update.TotalSize / 2048)
If ((Update.TotalSize MOD 2048) = 0)

I I + 1
}

}
}

}

...

Example 9-12. INT 15 DO42 Calling Program Pseudo-code

//
// We must be in real mode
//

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 75

Documentation Changes

If the system is not in Real mode exit
//
// Detect presence of Genuine Intel processor(s) that can be updated
// using(CPUID)
//
If no Intel processors exist that can be updated exit
//
// Detect the presence of the Intel microcode update extensions
//
If the BIOS fails the PresenceTestexit
//
// If the APIC is enabled, see if any other processors are out there
//
Read IA32_APICBASE
If APIC enabled
{

Send Broadcast Message to all processors except self via APIC
Have all processors execute CPUID, record the Processor Signature
(i.e.,Extended Family, Extended Model, Type, Family, Model, Stepping)
Have all processors read IA32_PLATFORM_ID[52:50], record Platform
 Id Bits

If current processor cannot be updated
exit

}
//
// Determine the number of unique update blocks needed for this system
//
NumBlocks = 0
For each processor
{

If ((this is a unique processor stepping) AND
(we have a unique update in the database for this processor))

{
Checksum the update from the database;
If Checksum fails

exit
NumBlocks NumBlocks + size of microcode update / 2048

}
}

//
// Do we have enough update slots for all CPUs?
//
If there are more blocks required to support the unique processor
steppings than update blocks provided by the BIOS exit
//
// Do we need any update blocks at all? If not, we are done
//
If (NumBlocks = 0)

exit
//
// Record updates for processors in NVRAM.
//
For (I=0; I<NumBlocks; I++)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 76

Documentation Changes

{
//
// Load each Update
//
Issue the WriteUpdate function

If (STORAGE_FULL) returned
{

Display Error -- BIOS is not managing NVRAM appropriately
exit

}

If (INVALID_REVISION) returned
{

Display Message: More recent update already loaded in NVRAM for
 this stepping
continue

}

If any other error returned
{

Display Diagnostic
exit

}

//
// Verify the update was loaded correctly
//
Issue the ReadUpdate function

If an error occurred
{

Display Diagnostic
exit

}
//
// Compare the Update read to that written
//
If (Update read != Update written)
{

Display Diagnostic
exit

}

I I + (size of microcode update / 2048)
}
//
// Enable Update Loading, and inform user
//
Issue the Update Control function with Task = Enable.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 77

Documentation Changes

11. Updates to Chapter 10, Volume 3A

Change bars show changes to Chapter 10 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

--

...

10.3 THE INTEL® 82489DX EXTERNAL APIC, THE APIC, THE
XAPIC, AND THE X2APIC

The local APIC in the P6 family and Pentium processors is an architectural subset of the
Intel® 82489DX external APIC. See Section 19.27.1, “Software Visible Differences
Between the Local APIC and the 82489DX.”

The APIC architecture used in the Pentium 4 and Intel Xeon processors (called the xAPIC
architecture) is an extension of the APIC architecture found in the P6 family processors.
The primary difference between the APIC and xAPIC architectures is that with the xAPIC
architecture, the local APICs and the I/O APIC communicate through the system bus.
With the APIC architecture, they communication through the APIC bus (see Section
10.2, “System Bus Vs. APIC Bus”). Also, some APIC architectural features have been
extended and/or modified in the xAPIC architecture. These extensions and modifications
are described in Section 10.4 through Section 10.10.

The basic operating mode of the xAPIC is xAPIC mode. The x2APIC architecture is an
extension of the xAPIC architecture, primarily to increase processor addressability. The
x2APIC architecture provides backward compatibility to the xAPIC architecture and
forward extendability for future Intel platform innovations. These extensions and modi-
fications are supported by a new mode of execution (x2APIC mode) are detailed in
Section 10.12.

...

10.4.1 The Local APIC Block Diagram
Figure 10-4 gives a functional block diagram for the local APIC. Software interacts with
the local APIC by reading and writing its registers. APIC registers are memory-mapped
to a 4-KByte region of the processor’s physical address space with an initial starting
address of FEE00000H. For correct APIC operation, this address space must be mapped
to an area of memory that has been designated as strong uncacheable (UC). See Section
11.3, “Methods of Caching Available.”

In MP system configurations, the APIC registers for Intel 64 or IA-32 processors on the
system bus are initially mapped to the same 4-KByte region of the physical address
space. Software has the option of changing initial mapping to a different 4-KByte region
for all the local APICs or of mapping the APIC registers for each local APIC to its own
4-KByte region. Section 10.4.5, “Relocating the Local APIC Registers,” describes how to
relocate the base address for APIC registers.

On processors supporting x2APIC architecture (indicated by CPUID.01H:ECX[21] = 1),
the local APIC supports operation both in xAPIC mode and (if enabled by software) in
x2APIC mode. x2APIC mode provides extended processor addressability (see Section
10.12).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 78

Documentation Changes

...

10.5.3 Error Handling
The local APIC records errors detected during interrupt handling in the error status
register (ESR). The format of the ESR is given in Figure Figure 10-9.; it contains the
following flags:

• Bit 0: Send Checksum Error.
Set when the local APIC detects a checksum error for a message that it sent on the
APIC bus. Used only on P6 family and Pentium processors.

• Bit 1: Receive Checksum Error.
Set when the local APIC detects a checksum error for a message that it received on
the APIC bus. Used only on P6 family and Pentium processors.

• Bit 2: Send Accept Error.
Set when the local APIC detects that a message it sent was not accepted by any APIC
on the APIC bus. Used only on P6 family and Pentium processors.

• Bit 3: Receive Accept Error.
Set when the local APIC detects that the message it received was not accepted by
any APIC on the APIC bus, including itself. Used only on P6 family and Pentium
processors.

• Bit 4: Redirectable IPI.
Set when the local APIC detects an attempt to send an IPI with the lowest-priority
delivery mode and the local APIC does not support the sending of such IPIs. This bit
is used on some Intel Core and Intel Xeon processors. As noted in Section 10.6.2,
the ability of a processor to send a lowest-priority IPI is model-specific and should be
avoided.

Figure 10-9. Error Status Register (ESR)

Address: FEE0 0280H
Value after reset: 0H

31 0

Reserved

78 123456

Illegal Register Address1

Received Illegal Vector
Send Illegal Vector
Redirectable IPI2

Receive Accept Error3

Send Accept Error3

Receive Checksum Error3

Send Checksum Error3

2. Used only by some Intel Core and Intel Xeon processors;
reserved on other processors.

1. Used only by Intel Core, Pentium 4, Intel Xeon, and P6 family
processors; reserved on the Pentium processor.

NOTES:

3. Used only by the P6 family and Pentium processors;
reserved on Intel Core, Pentium 4 and Intel Xeon processors.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 79

Documentation Changes

• Bit 5: Send Illegal Vector.
Set when the local APIC detects an illegal vector (one in the range 0 to 15) in the
message that it is sending. This occurs as the result of a write to the ICR (in both
xAPIC and x2APIC modes) or to SELF IPI register (x2APIC mode only) with an illegal
vector.

If the local APIC does not support the sending of lowest-priority IPIs and software
writes the ICR to send a lowest-priority IPI with an illegal vector, the local APIC sets
only the “redirectible IPI” error bit. The interrupt is not processed and hence the
“Send Illegal Vector” bit is not set in the ESR.

• Bit 6: Receive Illegal Vector.
Set when the local APIC detects an illegal vector (one in the range 0 to 15) in an
interrupt message it receives or in an interrupt generated locally from the local
vector table or via a self IPI. Such interrupts are not be delivered to the processor;
the local APIC will never set an IRR bit in the range 0 to 15.

• Bit 7: Illegal Register Address
Set when the local APIC is in xAPIC mode and software attempts to access a register
that is reserved in the processor's local-APIC register-address space; see Table 10-
1. (The local-APIC register-address space comprises the 4 KBytes at the physical
address specified in the IA32_APIC_BASE MSR.) Used only on Intel Core, Intel
Atom™, Pentium 4, Intel Xeon, and P6 family processors.

In x2APIC mode, software accesses the APIC registers using the RDMSR and WRMSR
instructions. Use of one of these instructions to access a reserved register cause a
general-protection exception (see Section 10.12.1.3). They do not set the “Illegal
Register Access” bit in the ESR.

The ESR is a write/read register. Before attempt to read from the ESR, software should
first write to it. (The value written does not affect the values read subsequently; only
zero may be written in x2APIC mode.) This write clears any previously logged errors and
updates the ESR with any errors detected since the last write to the ESR.

The LVT Error Register (see Section 10.5.1) allows specification of the vector of the
interrupt to be delivered to the processor core when APIC error is detected. The register
also provides a means of masking an APIC-error interrupt. This masking only prevents
delivery of APIC-error interrupts; the APIC continues to record errors in the ESR.

...

10.5.4.1 TSC-Deadline Mode
The mode of operation of the local-APIC timer is determined by the LVT Timer Register.
Specifically, if CPUID.01H:ECX.TSC_Deadline[bit 24] = 0, the mode is determined by bit
17 of the register; if CPUID.01H:ECX.TSC_Deadline[bit 24] = 1, the mode is determined
by bits 18:17. See Figure 10-8. (If CPUID.01H:ECX.TSC_Deadline[bit 24] = 0, bit 18 of
the register is reserved.) A write to the LVT Timer Register that changes the timer mode
disarms the local APIC timer. The supported timer modes are given in Table 10-2. The
three modes of the local APIC timer are mutually exclusive.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 80

Documentation Changes

The TSC-deadline mode allows software to use local APIC timer to single interrupt at an
absolute time. In TSC-deadline mode, writes to the initial-count register are ignored;
and current-count register always reads 0. Instead, timer behavior is controlled using
the IA32_TSC_DEADLINE MSR.

The IA32_TSC_DEADLINE MSR (MSR address 6E0H) is a per-logical processor MSR that
specifies the time at which a timer interrupt should occur. Writing a non-zero 64-bit
value into IA32_TSC_DEADLINE arms the timer. An interrupt is generated when the
logical processor’s time-stamp counter equals or exceeds the target value in the
IA32_TSC_DEADLINE MSR.1 When the timer generates an interrupt, it disarms itself and
clears the IA32_TSC_DEADLINE MSR. Thus, each write to the IA32_TSC_DEADLINE
MSR generates at most on timer interrupt.

In TSC-deadline mode, writing 0 to the IA32_TSC_DEADLINE MSR disarms the local-
APIC timer. Transitioning between TSC-deadline mode and other timer modes also
disarms the timer.

The hardware reset value of the IA32_TSC_DEADLINE MSR is 0. In other timer modes
(LVT bit 18 = 0), the IA32_TSC_DEADLINE MSR reads zero and writes are ignored.

Software can configure the TSC-deadline timer to deliver a single interrupt using the
following algorithm:

1. Detect support for TSC-deadline mode by verifying CPUID.1:ECX.24 = 1.

2. Select the TSC-deadline mode by programming bits 18:17 of the LVT Timer register
with 10b.

3. Program the IA32_TSC_DEADLINE MSR with the target TSC value at which the timer
interrupt is desired. This causes the processor to arm the timer.

4. The processor generates a timer interrupt when the value of time-stamp counter is
greater than or equal to that of IA32_TSC_DEADLINE. It then disarms the timer and
clear the IA32_TSC_DEADLINE MSR. (Both the time-stamp counter and the
IA32_TSC_DEADLINE MSR are 64-bit unsigned integers.)

5. Software can re-arm the timer by repeating step 3.

The following are usage guidelines for TSC-deadline mode:

• Writes to the IA32_TSC_DEADLINE MSR are not serialized. Therefore, system
software should not use WRMSR to the IA32_TSC_DEADLINE MSR as a serializing

Table 10-2 Local APIC Timer Modes

LVT Bits [18:17] Timer Mode

00b One-shot mode, program count-down value in an initial-count
register. See Section 10.5.4

01b Periodic mode, program interval value in an initial-count register. See
Section 10.5.4

10b TSC-Deadline mode, program target value in IA32_TSC_DEADLINE
MSR.

11b Reserved

1. If the logical processor is in VMX non-root operation, a read of the time-stamp counter (using either
RDMSR, RDTSC, or RDTSCP) may not return the actual value of the time-stamp counter; see Chapter
22 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B. It is the
responsibility of software operating in VMX root operation to coordinate the virtualization of the
time-stamp counter and the IA32_TSC_DEADLINE MSR.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 81

Documentation Changes

instruction. Read and write accesses to the IA32_TSC_DEADLINE and other MSR
registers will occur in program order.

• Software can disarm the timer at any time by writing 0 to the IA32_TSC_DEADLINE
MSR.

• If timer is armed, software can change the deadline (forward or backward) by writing
a new value to the IA32_TSC_DEADLINE MSR.

• If software disarms the timer or postpones the deadline, race conditions may result
in the delivery of a spurious timer interrupt. Software is expected to detect such
spurious interrupts by checking the current value of the time-stamp counter to
confirm that the interrupt was desired.1

• In xAPIC mode (in which the local-APIC registers are memory-mapped), software
must serialize between the memory-mapped write to the LVT entry and the WRMSR
to IA32_TSC_DEADLINE. In x2APIC mode, no serialization is required between the
two writes (by WRMSR) to the LVT and IA32_TSC_DEADLINE MSRs.

The following is a sample algorithm for serializing writes in xAPIC mode:

1. Memory-mapped write to LVT Timer Register, setting bits 18:17 to 10b.

2. WRMSR to the IA32_TSC_DEADLINE MSR a value much larger than current time-
stamp counter.

3. If RDMSR of the IA32_TSC_DEADLINE MSR returns zero, go to step 2.

4. WRMSR to the IA32_TSC_DEADLINE MSR the desired deadline.

...

10.6.2.2 Logical Destination Mode

...

The hierarchical cluster destination model can be used with Pentium 4, Intel Xeon,
P6 family, or Pentium processors. With this model, a hierarchical network can be
created by connecting different flat clusters via independent system or APIC buses.
This scheme requires a cluster manager within each cluster, which is responsible for
handling message passing between system or APIC buses. One cluster contains up
to 4 agents. Thus 15 cluster managers, each with 4 agents, can form a network of up
to 60 APIC agents. Note that hierarchical APIC networks requires a special cluster
manager device, which is not part of the local or the I/O APIC units.

NOTES
All processors that have their APIC software enabled (using the spurious
vector enable/disable bit) must have their DFRs (Destination Format
Registers) programmed identically.

The default mode for DFR is flat mode. If you are using cluster mode,
DFRs must be programmed before the APIC is software enabled. Since
some chipsets do not accurately track a system view of the logical mode,
program DFRs as soon as possible after starting the processor.

1. If the logical processor is in VMX non-root operation, a read of the time-stamp counter (using either
RDMSR, RDTSC, or RDTSCP) may not return the actual value of the time-stamp counter; see Chapter
22 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B. It is the
responsibility of software operating in VMX root operation to coordinate the virtualization of the
time-stamp counter and the IA32_TSC_DEADLINE MSR.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 82

Documentation Changes

...

10.12 EXTENDED XAPIC (X2APIC)
The x2APIC architecture extends the xAPIC architecture (described in Section 9.4) in a
backward compatible manner and provides forward extendability for future Intel plat-
form innovations. Specifically, the x2APIC architecture does the following:

• Retains all key elements of compatibility to the xAPIC architecture:

— delivery modes,

— interrupt and processor priorities,

— interrupt sources,

— interrupt destination types;

• Provides extensions to scale processor addressability for both the logical and
physical destination modes;

• Adds new features to enhance performance of interrupt delivery;

• Reduces complexity of logical destination mode interrupt delivery on link based
platform architectures.

• Uses MSR programming interface to access APIC registers in x2APIC mode instead of
memory-mapped interfaces. Memory-mapped interface is supported when operating
in xAPIC mode.

...

12. Updates to Chapter 13, Volume 3A

Change bars show changes to Chapter 13 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

--

...

13.1.5 Providing Non-Numeric Exception Handlers for Exceptions
Generated by the SSE/SSE2/SSE3/SSSE3/SSE4 Instructions

...

• System Exceptions:

— Invalid-opcode exception (#UD). This exception is generated when executing
SSE/SSE2/SSE3/SSSE3 instructions under the following conditions:

• SSE/SSE2/SSE3/SSSE3/SSE4_1/SSE4_2 feature flags returned by CPUID
are set to 0. This condition does not affect the CLFLUSH instruction, nor
POPCNT.

• The CLFSH feature flag returned by the CPUID instruction is set to 0. This
exception condition only pertains to the execution of the CLFLUSH
instruction.

• The POPCNT feature flag returned by the CPUID instruction is set to 0. This
exception condition only pertains to the execution of the POPCNT instruction.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 83

Documentation Changes

• The EM flag (bit 2) in control register CR0 is set to 1, regardless of the value
of TS flag (bit 3) of CR0. This condition does not affect the PAUSE,
PREFETCHh, MOVNTI, SFENCE, LFENCE, MFENCE, CLFLUSH, CRC32 and
POPCNT instructions.

• The OSFXSR flag (bit 9) in control register CR4 is set to 0. This condition does
not affect the PAVGB, PAVGW, PEXTRW, PINSRW, PMAXSW, PMAXUB,
PMINSW, PMINUB, PMOVMSKB, PMULHUW, PSADBW, PSHUFW, MASKMOVQ,
MOVNTQ, MOVNTI, PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE,
CLFLUSH, CRC32 and POPCNT instructions.

• Executing a instruction that causes a SIMD floating-point exception when the
OSXMMEXCPT flag (bit 10) in control register CR4 is set to 0. See Section
13.5.1, “Using the TS Flag to Control the Saving of the x87 FPU, MMX, SSE,
SSE2, SSE3 SSSE3 and SSE4 State.”

— Device not available (#NM). This exception is generated by executing a SSE/
SSE2/SSE3/SSSE3/SSE4 instruction when the TS flag (bit 3) of CR0 is set to 1.

...

13. Updates to Chapter 15, Volume 3A

Change bars show changes to Chapter 15 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

--

...

15.1 MACHINE-CHECK ARCHITECTURE
The Pentium 4, Intel Xeon, and P6 family processors implement a machine-check archi-
tecture that provides a mechanism for detecting and reporting hardware (machine)
errors, such as: system bus errors, ECC errors, parity errors, cache errors, and TLB
errors. It consists of a set of model-specific registers (MSRs) that are used to set up
machine checking and additional banks of MSRs used for recording errors that are
detected.

The processor signals the detection of an uncorrected machine-check error by gener-
ating a machine-check exception (#MC), which is an abort class exception. The imple-
mentation of the machine-check architecture does not ordinarily permit the processor to
be restarted reliably after generating a machine-check exception. However, the
machine-check-exception handler can collect information about the machine-check error
from the machine-check MSRs.

Starting with 45nm Intel 64 processor on which CPUID reports
DisplayFamily_DisplayModel as 06H_1AH (see CPUID instruction in Chapter 3, “Instruc-
tion Set Reference, A-M” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2A), the processor can report information on corrected machine-check
errors and deliver a programmable interrupt for software to respond to MC errors,
referred to as corrected machine-check error interrupt (CMCI). See Section 15.5 for
detail.

Intel 64 processors supporting machine-check architecture and CMCI may also support
an additional enhancement, namely, support for software recovery from certain uncor-
rected recoverable machine check errors. See Section 15.6 for detail.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 84

Documentation Changes

...

15.3.2.1 IA32_MCi_CTL MSRs

...

NOTE
For P6 family processors, processors based on Intel Core microarchi-
tecture (excluding those on which on which CPUID reports
DisplayFamily_DisplayModel as 06H_1AH and onward): the operating
system or executive software must not modify the contents of the
IA32_MC0_CTL MSR. This MSR is internally aliased to the
EBL_CR_POWERON MSR and controls platform-specific error handling
features. System specific firmware (the BIOS) is responsible for the
appropriate initialization of the IA32_MC0_CTL MSR. P6 family
processors only allow the writing of all 1s or all 0s to the IA32_MCi_CTL
MSR.

15.3.2.2 IA32_MCi_STATUS MSRS
Each IA32_MCi_STATUS MSR contains information related to a machine-check error if its
VAL (valid) flag is set (see Figure 15-5). Software is responsible for clearing
IA32_MCi_STATUS MSRs by explicitly writing 0s to them; writing 1s to them causes a
general-protection exception.

NOTE
Figure 15-5 depicts the IA32_MCi_STATUS MSR when
IA32_MCG_CAP[24] = 1, IA32_MCG_CAP[11] = 1 and
IA32_MCG_CAP[10] = 1. When IA32_MCG_CAP[24] = 0 and
IA32_MCG_CAP[11] = 1, bits 56:55 is reserved and bits 54:53 for
threshold-based error reporting. When IA32_MCG_CAP[11] = 0, bits
56:53 are part of the “Other Information” field. The use of bits 54:53 for
threshold-based error reporting began with Intel Core Duo processors,
and is currently used for cache memory. See Section 15.4, “Enhanced
Cache Error reporting,” for more information. When IA32_MCG_CAP[10]
= 0, bits 52:38 are part of the “Other Information” field. The use of bits
52:38 for corrected MC error count is introduced with Intel 64 processor
on which CPUID reports DisplayFamily_DisplayModel as 06H_1AH.

...

15.6 RECOVERY OF UNCORRECTED RECOVERABLE (UCR)
ERRORS

Recovery of uncorrected recoverable machine check errors is an enhancement in
machine-check architecture. The first processor that supports this feature is 45nm Intel
64 processor on which CPUID reports DisplayFamily_DisplayModel as 06H_2EH (see
CPUID instruction in Chapter 3, “Instruction Set Reference, A-M” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2A). This allow system soft-
ware to perform recovery action on certain class of uncorrected errors and continue
execution.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 85

Documentation Changes

...

15.10.2 Pentium Processor Machine-Check Exception Handling
Machine-check exception handler on P6 family and later processor families,
should follow the guidelines described in Section 15.10.1 and Example 15-2
that check the processor’s support of MCA.

NOTE
On processors that support MCA (CPUID.1.EDX.MCA = 1) reading the
P5_MC_TYPE and P5_MC_ADDR registers may produce invalid data.

...

15.10.4.1 Machine-Check Exception Handler for Error Recovery
When writing a machine-check exception (MCE) handler to support software recovery
from Uncorrected Recoverable (UCR) errors, consider the following:

• When IA32_MCG_CAP [24] is zero, there are no recoverable errors supported and all
machine-check are fatal exceptions. The logging of status and error information is
therefore a baseline implementation requirement.

• When IA32_MCG_CAP [24] is 1, certain uncorrected errors called uncorrected
recoverable (UCR) errors may be software recoverable. The handler can analyze the
reported error information, and in some cases attempt to recover from the
uncorrected error and continue execution.

• For processors on which CPUID reports DisplayFamily_DisplayModel as 06H_0EH
and onward, an MCA signal is broadcast to all logical processors in the system (see
CPUID instruction in Chapter 3, “Instruction Set Reference, A-M” in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 2A). Due to the
potentially shared machine check MSR resources among the logical processors on
the same package/core, the MCE handler may be required to synchronize with the
other processors that received a machine check error and serialize access to the
machine check registers when analyzing, logging and clearing the information in the
machine check registers.

• The VAL (valid) flag in each IA32_MCi_STATUS register indicates whether the error
information in the register is valid. If this flag is clear, the registers in that bank do
not contain valid error information and should not be checked.

• The MCE handler is primarily responsible for processing uncorrected errors. The UC
flag in each IA32_MCi_Status register indicates whether the reported error was
corrected (UC=0) or uncorrected (UC=1). The MCE handler can optionally log and
clear the corrected errors in the MC banks if it can implement software algorithm to
avoid the undesired race conditions with the CMCI or CMC polling handler.

• For uncorrectable errors, the EIPV flag in the IA32_MCG_STATUS register indicates
(when set) that the instruction pointed to by the instruction pointer pushed onto the
stack when the machine-check exception is generated is directly associated with the
error. When this flag is cleared, the instruction pointed to may not be associated with
the error.

• The MCIP flag in the IA32_MCG_STATUS register indicates whether a machine-check
exception was generated. When a machine check exception is generated, it is
expected that the MCIP flag in the IA32_MCG_STATUS register is set to 1. If it is not

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 86

Documentation Changes

set, this machine check was generated by either an INT 18 instruction or some piece
of hardware signaling an interrupt with vector 18.

...

14. Updates to Chapter 16, Volume 3A

Change bars show changes to Chapter 16 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

--

...

16.2.4 Debug Control Register (DR7)

...

NOTES
For Pentium® 4 and Intel® Xeon® processors with a CPUID signature
corresponding to family 15 (model 3, 4, and 6), break point conditions
permit specifying 8-byte length on data read/write with an of encoding
10B in the LENn field.

Encoding 10B is also supported in processors based on Intel Core
microarchitecture or enhanced Intel Core microarchitecture, the
respective CPUID signatures corresponding to family 6, model 15, and
family 6, DisplayModel value 23 (see CPUID instruction in Chapter 3,
“Instruction Set Reference, A-M” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2A). The Encoding 10B is
supported in processors based on Intel® Atom™ microarchitecture, with
CPUID signature of family 6, DisplayModel value 28. The encoding 10B is
undefined for other processors.

...

16.4.8 LBR Stack
The last branch record stack and top-of-stack (TOS) pointer MSRs are supported across
Intel 64 and IA-32 processor families. However, the number of MSRs in the LBR stack
and the valid range of TOS pointer value can vary between different processor families.
Table 16-3 lists the LBR stack size and TOS pointer range for several processor families
according to the CPUID signatures of DisplayFamily_DisplayModel encoding (see CPUID
instruction in Chapter 3 of Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2A).

...

The last branch recording mechanism tracks not only branch instructions (like JMP, Jcc,
LOOP and CALL instructions), but also other operations that cause a change in the
instruction pointer (like external interrupts, traps and faults). The branch recording
mechanisms generally employs a set of MSRs, referred to as last branch record (LRB)
stack. The size and exact locations of the LRB stack are generally model-specific (see
Appendix B, “Model-Specific Registers (MSRs)” of Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3B for model-specific MSR addresses).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 87

Documentation Changes

...

16.11 TIME-STAMP COUNTER
The Intel 64 and IA-32 architectures (beginning with the Pentium processor) define a
time-stamp counter mechanism that can be used to monitor and identify the relative
time occurrence of processor events. The counter’s architecture includes the following
components:

• TSC flag — A feature bit that indicates the availability of the time-stamp counter.
The counter is available in an if the function CPUID.1:EDX.TSC[bit 4] = 1.

• IA32_TIME_STAMP_COUNTER MSR (called TSC MSR in P6 family and Pentium
processors) — The MSR used as the counter.

• RDTSC instruction — An instruction used to read the time-stamp counter.

• TSD flag — A control register flag is used to enable or disable the time-stamp
counter (enabled if CR4.TSD[bit 2] = 1).

The time-stamp counter (as implemented in the P6 family, Pentium, Pentium M, Pentium
4, Intel Xeon, Intel Core Solo and Intel Core Duo processors and later processors) is a
64-bit counter that is set to 0 following a RESET of the processor. Following a RESET, the
counter increments even when the processor is halted by the HLT instruction or the
external STPCLK# pin. Note that the assertion of the external DPSLP# pin may cause the
time-stamp counter to stop.

Processor families increment the time-stamp counter differently:

• For Pentium M processors (family [06H], models [09H, 0DH]); for Pentium 4
processors, Intel Xeon processors (family [0FH], models [00H, 01H, or 02H]); and
for P6 family processors: the time-stamp counter increments with every internal
processor clock cycle.

The internal processor clock cycle is determined by the current core-clock to bus-
clock ratio. Intel® SpeedStep® technology transitions may also impact the
processor clock.

• For Pentium 4 processors, Intel Xeon processors (family [0FH], models [03H and
higher]); for Intel Core Solo and Intel Core Duo processors (family [06H], model
[0EH]); for the Intel Xeon processor 5100 series and Intel Core 2 Duo processors
(family [06H], model [0FH]); for Intel Core 2 and Intel Xeon processors (family
[06H], DisplayModel [17H]); for Intel Atom processors (family [06H], DisplayModel
[1CH]): the time-stamp counter increments at a constant rate. That rate may be set
by the maximum core-clock to bus-clock ratio of the processor or may be set by the
maximum resolved frequency at which the processor is booted. The maximum
resolved frequency may differ from the maximum qualified frequency of the
processor, see Section 30.10.5 for more detail.

The specific processor configuration determines the behavior. Constant TSC
behavior ensures that the duration of each clock tick is uniform and supports the use
of the TSC as a wall clock timer even if the processor core changes frequency. This is
the architectural behavior moving forward.

NOTE
To determine average processor clock frequency, Intel recommends the
use of EMON logic to count processor core clocks over the period of time
for which the average is required. See Section 30.10, “Counting Clocks,”
and Appendix A, “Performance-Monitoring Events,” for more infor-

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 88

Documentation Changes

mation.

The RDTSC instruction reads the time-stamp counter and is guaranteed to return a
monotonically increasing unique value whenever executed, except for a 64-bit counter
wraparound. Intel guarantees that the time-stamp counter will not wraparound within
10 years after being reset. The period for counter wrap is longer for Pentium 4, Intel
Xeon, P6 family, and Pentium processors.

Normally, the RDTSC instruction can be executed by programs and procedures running
at any privilege level and in virtual-8086 mode. The TSD flag allows use of this instruc-
tion to be restricted to programs and procedures running at privilege level 0. A secure
operating system would set the TSD flag during system initialization to disable user
access to the time-stamp counter. An operating system that disables user access to the
time-stamp counter should emulate the instruction through a user-accessible program-
ming interface.

The RDTSC instruction is not serializing or ordered with other instructions. It does not
necessarily wait until all previous instructions have been executed before reading the
counter. Similarly, subsequent instructions may begin execution before the RDTSC
instruction operation is performed.

The RDMSR and WRMSR instructions read and write the time-stamp counter, treating
the time-stamp counter as an ordinary MSR (address 10H). In the Pentium 4, Intel Xeon,
and P6 family processors, all 64-bits of the time-stamp counter are read using RDMSR
(just as with RDTSC). When WRMSR is used to write the time-stamp counter on proces-
sors before family [0FH], models [03H, 04H]: only the low-order 32-bits of the time-
stamp counter can be written (the high-order 32 bits are cleared to 0). For family [0FH],
models [03H, 04H, 06H]; for family [06H]], model [0EH, 0FH]; for family [06H]],
DisplayModel [17H, 1AH, 1CH, 1DH]: all 64 bits are writable.

...

15. Updates to Chapter 22, Volume 3B

Change bars show changes to Chapter 22 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...

22.4 CHANGES TO INSTRUCTION BEHAVIOR IN VMX NON-
ROOT OPERATION

The behavior of some instructions is changed in VMX non-root operation. Some of these
changes are determined by the settings of certain VM-execution control fields. The
following items detail such changes:

• CLTS. Behavior of the CLTS instruction is determined by the bits in position 3 (corre-
sponding to CR0.TS) in the CR0 guest/host mask and the CR0 read shadow:

— If bit 3 in the CR0 guest/host mask is 0, CLTS clears CR0.TS normally (the value
of bit 3 in the CR0 read shadow is irrelevant in this case), unless CR0.TS is fixed
to 1 in VMX operation (see Section 20.8), in which case CLTS causes a general-
protection exception.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 89

Documentation Changes

— If bit 3 in the CR0 guest/host mask is 1 and bit 3 in the CR0 read shadow is 0,
CLTS completes but does not change the contents of CR0.TS.

— If the bits in position 3 in the CR0 guest/host mask and the CR0 read shadow are
both 1, CLTS causes a VM exit (see Section 22.1.3).

• IRET. Behavior of IRET with regard to NMI blocking (see Table 21-3) is determined
by the settings of the “NMI exiting” and “virtual NMIs” VM-execution controls:

— If the “NMI exiting” VM-execution control is 0, IRET operates normally and
unblocks NMIs. (If the “NMI exiting” VM-execution control is 0, the “virtual NMIs”
control must be 0; see Section 23.2.1.1.)

— If the “NMI exiting” VM-execution control is 1, IRET does not affect blocking of
NMIs. If, in addition, the “virtual NMIs” VM-execution control is 1, the logical
processor tracks virtual-NMI blocking. In this case, IRET removes any virtual-
NMI blocking.

The unblocking of NMIs or virtual NMIs specified above occurs even if IRET causes a
fault.

...

16. Updates to Chapter 23, Volume 3B

Change bars show changes to Chapter 23 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...

23.2 CHECKS ON VMX CONTROLS AND HOST-STATE AREA
If the checks in Section 23.1 do not cause VM entry to fail, the control and host-state
areas of the VMCS are checked to ensure that they are proper for supporting VMX non-
root operation, that the VMCS is correctly configured to support the next VM exit, and
that, after the next VM exit, the processor’s state is consistent with the Intel 64 and IA-
32 architectures.

VM entry fails if any of these checks fail. When such failures occur, control is passed to
the next instruction, RFLAGS.ZF is set to 1 to indicate the failure, and the VM-instruction
error field is loaded with an error number that indicates whether the failure was due to
the controls or the host-state area (see Chapter 5 of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2B).

These checks may be performed in any order. Thus, an indication by error number of one
cause (for example, host state) does not imply that there are not also other errors.
Different processors may thus give different error numbers for the same VMCS. Some
checks prevent establishment of settings (or combinations of settings) that are currently
reserved. Future processors may allow such settings (or combinations) and may not
perform the corresponding checks. The correctness of software should not rely on VM-
entry failures resulting from the checks documented in this section.

The checks on the controls and the host-state area are presented in Section 23.2.1
through Section 23.2.4. These sections reference VMCS fields that correspond to
processor state. Unless otherwise stated, these references are to fields in the host-state
area.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 90

Documentation Changes

...

23.3.1 Checks on the Guest State Area
This section describes checks performed on fields in the guest-state area. These checks
may be performed in any order. Some checks prevent establishment of settings (or
combinations of settings) that are currently reserved. Future processors may allow such
settings (or combinations) and may not perform the corresponding checks. The correct-
ness of software should not rely on VM-entry failures resulting from the checks docu-
mented in this section.

The following subsections reference fields that correspond to processor state. Unless
otherwise stated, these references are to fields in the guest-state area.

...

23.6.1 Interruptibility State
The interruptibility-state field in the guest-state area (see Table 21-3) contains bits that
control blocking by STI, blocking by MOV SS, and blocking by NMI. This field impacts
event blocking after VM entry as follows:

• If the VM entry is vectoring, there is no blocking by STI or by MOV SS following the
VM entry, regardless of the contents of the interruptibility-state field.

• If the VM entry is not vectoring, the following apply:

— Events are blocked by STI if and only if bit 0 in the interruptibility-state field is 1.
This blocking is cleared after the guest executes one instruction or incurs an
exception (including a debug exception made pending by VM entry; see Section
23.6.3).

— Events are blocked by MOV SS if and only if bit 1 in the interruptibility-state field
is 1. This may affect the treatment of pending debug exceptions; see Section
23.6.3. This blocking is cleared after the guest executes one instruction or incurs
an exception (including a debug exception made pending by VM entry).

• The blocking of non-maskable interrupts (NMIs) is determined as follows:

— If the “virtual NMIs” VM-execution control is 0, NMIs are blocked if and only if
bit 3 (blocking by NMI) in the interruptibility-state field is 1. If the “NMI exiting”
VM-execution control is 0, execution of the IRET instruction removes this
blocking (even if the instruction generates a fault). If the “NMI exiting” control is
1, IRET does not affect this blocking.

— The following items describe the use of bit 3 (blocking by NMI) in the interrupt-
ibility-state field if the “virtual NMIs” VM-execution control is 1:

• The bit’s value does not affect the blocking of NMIs after VM entry. NMIs are
not blocked in VMX non-root operation (except for ordinary blocking for other
reasons, such as by the MOV SS instruction, the wait-for-SIPI state, etc.)

• The bit’s value determines whether there is virtual-NMI blocking after
VM entry. If the bit is 1, virtual-NMI blocking is in effect after VM entry. If the
bit is 0, there is no virtual-NMI blocking after VM entry unless the VM entry is
injecting an NMI (see Section 23.5.1.1). Execution of IRET removes virtual-
NMI blocking (even if the instruction generates a fault).

If the “NMI exiting” VM-execution control is 0, the “virtual NMIs” control must be 0;
see Section 23.2.1.1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 91

Documentation Changes

• Blocking of system-management interrupts (SMIs) is determined as follows:

— If the VM entry was not executed in system-management mode (SMM), SMI
blocking is unchanged by VM entry.

— If the VM entry was executed in SMM, SMIs are blocked after VM entry if and only
if the bit 2 in the interruptibility-state field is 1.

...

23.6.4 VMX-Preemption Timer
If the “activate VMX-preemption timer” VM-execution control is 1, VM entry starts the
VMX-preemption timer with the unsigned value in the VMX-preemption timer-value field.

It is possible for the VMX-preemption timer to expire during VM entry (e.g., if the value
in the VMX-preemption timer-value field is zero). If this happens (and if the VM entry
was not to the shutdown state or the wait-for-SIPI state), a VM exit occurs with its
normal priority after any event injection and before execution of any instruction
following VM entry. For example, any pending debug exceptions established by VM entry
(see Section 23.6.3) take priority over a timer-induced VM exit. (The timer-induced
VM exit will occur after delivery of the debug exception, unless that exception or its
delivery causes a different VM exit.)

See Section 22.7.1 for details of the operation of the VMX-preemption timer in VMX non-
root operation, including the blocking and priority of the VM exits that it causes.

...

17. Updates to Chapter 24, Volume 3B

Change bars show changes to Chapter 24 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...

24.3.4 Saving Non-Register State
Information corresponding to guest non-register state is saved as follows:

...

• If the “save VMX-preemption timer value” VM-exit control is 1, the value of timer is
saved into the VMX-preemption timer-value field. This is the value loaded from this
field on VM entry as subsequently decremented (see Section 22.7.1). VM exits due
to timer expiration save the value 0. Other VM exits may also save the value 0 if the
timer expired during VM exit. (If the “save VMX-preemption timer value” VM-exit
control is 0, VM exit does not modify the value of the VMX-preemption timer-value
field.)

...

18. Updates to Chapter 25, Volume 3B

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 92

Documentation Changes

Change bars show changes to Chapter 25 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...

25.3.2 Creating and Using Cached Translation Information

...

The following items detail the use of the various mappings:

• If EPT is not in use (e.g., when outside VMX non-root operation), a logical processor
may use cached mappings as follows:

— For accesses using linear addresses, it may use linear mappings associated with
the current VPID and the current PCID. It may also use global TLB entries (linear
mappings) associated with the current VPID and any PCID.

— No guest-physical or combined mappings are used while EPT is not in use.

• If EPT is in use, a logical processor may use cached mappings as follows:

— For accesses using linear addresses, it may use combined mappings associated
with the current VPID, the current PCID, and the current EP4TA. It may also use
global TLB entries (combined mappings) associated with the current VPID, the
current EP4TA, and any PCID.

— For accesses using guest-physical addresses, it may use guest-physical
mappings associated with the current EP4TA.

— No linear mappings are used while EPT is in use.

...

19. Updates to Chapter 27, Volume 3B

Change bars show changes to Chapter 27 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...

27.2.1 Using Unrestricted Guest Mode
Processors which support the “unrestricted guest” VM-execution control allow VM soft-
ware to run in real-address mode and unpaged protected mode. Since these modes do
not use paging, VMM software must virtualize guest memory using EPT.

Special notes for 64-bit VMM software using the 1-setting of the “unrestricted guest”
VM-execution control:

• It is recommended that 64-bit VMM software use the 1-settings of the "load
IA32_EFER" VM entry control and the "save IA32_EFER" VM-exit control. If VM entry
is establishing CR0.PG=0 and if the "IA-32e mode guest" and "load IA32_EFER" VM
entry controls are both 0, VM entry leaves IA32_EFER.LME unmodified (i.e., the host
value will persist in the guest).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 93

Documentation Changes

• It is not necessary for VMM software to track guest transitions into and out of IA-32e
mode for the purpose of maintaining the correct setting of the "IA-32e mode guest"
VM entry control. This is because VM exits on processors supporting the 1-setting of
the "unrestricted guest" VM-execution control save the (guest) value of
IA32_EFER.LMA into the "IA-32e mode guest" VM entry control.

...

27.13 USE OF THE VMX-PREEMPTION TIMER
The VMX-preemption timer allows VMM software to preempt guest VM execution after a
specified amount of time. Typical VMX-preemption timer usage is to program the initial
VM quantum into the timer, save the timer value on each successive VM-exit (using the
VM-exit control “save preemption timer value”) and run the VM until the timer expires.

In an alternative scenario, the VMM may use another timer (e.g. the TSC) to track the
amount of time the VM has run while still using the VMX-preemption timer for VM
preemption. In this scenario the VMM would not save the VMX-preemption timer on each
VM-exit but instead would reload the VMX-preemption timer with initial VM quantum less
the time the VM has already run. This scenario includes all the VM-entry and VM-exit
latencies in the VM run time.

In both scenarios, on each successive VM-entry the VMX-preemption timer contains a
smaller value until the VM quantum ends. If the VMX-preemption timer is loaded with a
value smaller than the VM-entry latency then the VM will not execute any instructions
before the timer expires. The VMM must ensure the initial VM quantum is greater than
the VM-entry latency; otherwise the VM will make no forward progress.

...

20. Updates to Chapter 30, Volume 3B

Change bars show changes to Chapter 30 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...

30.6.1.1 Precise Event Based Sampling (PEBS)

...

In IA-32e mode, the full 64-bit value is written to the register. If the processor is not
operating in IA-32e mode, 32-bit value is written to registers with bits 63:32 zeroed.
Registers not defined when the processor is not in IA32e mode are written to zero.

Bytes 0xAF:0x90 are enhancement to the PEBS record format. Support for this
enhanced PEBS record format is indicated by IA32_PERF_CAPABILITIES[11:8] encoding
of 0001B.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 94

Documentation Changes

30.14 PERFORMANCE MONITORING ON L3 AND CACHING BUS
CONTROLLER SUB-SYSTEMS

The Intel Xeon processor 7400 series and Dual-Core Intel Xeon processor 7100 series
employ a distinct L3/caching bus controller sub-system. These sub-system have a
unique set of performance monitoring capability and programming interfaces that are
largely common between these two processor families.

Intel Xeon processor 7400 series are based on 45nm enhanced Intel Core microarchitec-
ture. The CPUID signature is indicated by DisplayFamily_DisplayModel value of 06_1DH
(see CPUID instruction in Chapter 3, “Instruction Set Reference, A-M” in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 2A). Intel Xeon processor
7400 series have six processor cores that share an L3 cache.

...

21. Updates to Appendix B, Volume 3B

Change bars show changes to Appendix B of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...

This appendix lists MSRs provided in Intel® Core™ 2 processor family, Intel® Atom™,
Intel® Core™ Duo, Intel® Core™ Solo, Pentium® 4 and Intel® Xeon® processors, P6
family processors, and Pentium® processors in Tables B-12, B-17, and B-18, respec-
tively. All MSRs listed can be read with the RDMSR and written with the WRMSR instruc-
tions.

Register addresses are given in both hexadecimal and decimal. The register name is the
mnemonic register name and the bit description describes individual bits in registers.

Model specific registers and its bit-fields may be supported for a finite range of processor
families/models. To distinguish between different processor family and/or models, soft-
ware must use CPUID.01H leaf function to query the combination of DisplayFamily and
DisplayModel to determine model-specific availability of MSRs (see CPUID instruction in
Chapter 3, “Instruction Set Reference, A-M” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2A). Table Table B-1 lists the signature values of
DisplayFamily and DisplayModel for various processor families or processor number
series.

Table B-1 CPUID Signature Values of DisplayFamily_DisplayModel
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_2AH Next Generation Intel Core Processor

06_2DH Next Generation Intel Xeon Processor

06_1AH Intel Core i7 Processor, Intel Xeon Processor 5500 series

06_1EH, 06_1FH Intel Core i7 and i5 Processor,

06_2EH Intel Xeon Processor 7500 series

06_25H, 06_2CH Intel Xeon Processor 5600 series, Intel Core i7, i5 and i3 Processor

06_1DH Intel Xeon Processor MP 7400 series

06_17H Intel Xeon Processor 5200, 5400 series, Intel Core 2 Quad
processors 8000, 9000 series

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 95

Documentation Changes

...

Table B-2. IA-32 Architectural MSRs

06_0FH Intel Xeon Processor 3000, 3200, 5100, 5300, 7300 series, Intel
Core 2 Quad processor 6000 series, Intel Core 2 Extreme 6000
series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors,
Intel Pentium dual-core processors

06_0EH Intel Core Duo, Intel Core Solo processors

06_0DH Intel Pentium M processor

06_1CH Intel Atom processor

0F_06H Intel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP,
Intel Pentium 4, Pentium D processors

0F_03H, 0F_04H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4,
Pentium D processors

06_09H Intel Pentium M processor

0F_02H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4
processors

0F_0H, 0F_01H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4
processors

06_7H, 06_08H, 06_0AH,
06_0BH

Intel Pentium III Xeon Processor, Intel Pentium III Processor

06_03H, 06_05H Intel Pentium II Xeon Processor, Intel Pentium II Processor

06_01H Intel Pentium Pro Processor

05_01H, 05_02H, 05_04H Intel Pentium Processor, Intel Pentium Processor with MMX
Technology

Register Address Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSR
Hex Decimal

...

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor
Features. (R/W)

Allows a variety of processor
functions to be enabled and
disabled.

0 Fast-Strings Enable.

When set, the fast-strings
feature (for REP MOVS and
REP STORS) is enabled
(default); when clear, fast-
strings are disabled.

0F_0H

2:1 Reserved.

Table B-1 CPUID Signature (Continued)Values of DisplayFamily_DisplayModel
DisplayFamily_DisplayModel Processor Families/Processor Number Series

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 96

Documentation Changes

3 Automatic Thermal Control
Circuit Enable. (R/W)

1 = Setting this bit enables
the thermal control
circuit (TCC) portion of
the Intel Thermal
Monitor feature. This
allows the processor
to automatically
reduce power
consumption in
response to TCC
activation.

0 = Disabled (default).
Note: In some products
clearing this bit might be
ignored in critical thermal
conditions, and TM1, TM2
and adaptive thermal
throttling will still be
activated.

0F_0H

6:4 Reserved

7 Performance Monitoring
Available. (R)

1 = Performance
monitoring enabled

0 = Performance
monitoring disabled

0F_0H

10:8 Reserved

11 Branch Trace Storage
Unavailable. (RO)

1 = Processor doesn’t
support branch trace
storage (BTS)

0 = BTS is supported

0F_0H

...

3F1H 1009 IA32_PEBS_ENABLE PEBS Control (R/W)

0 Enable PEBS on IA32_PMC0 06_0FH

1-3 Reserved or Model specific

31:4 Reserved

35-32 Reserved or Model specific

63:36 Reserved

...

6E0H 1760 IA32_TSC_DEADLINE TSC Target of Local APIC’s
TSC Deadline Mode. (R/W)

If(
CPUID.01H:ECX.[
bit 25] = 1

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 97

Documentation Changes

...

802H 2050 IA32_X2PIC_APICID x2APIC ID Register. (R/O)

See x2APIC Specification

If (
CPUID.01H:ECX.[
bit 21] = 1)

803H 2051 IA32_X2APIC_VERSION x2APIC Version Register.
(R/O)

If (
CPUID.01H:ECX.[
bit 21] = 1)

808H 2056 IA32_X2APIC_TPR x2APIC Task Priority
Register. (R/W)

If (
CPUID.01H:ECX.[
bit 21] = 1)

80AH 2058 IA32_X2APIC_PPR x2APIC Processor Priority
Register. (R/O)

If (
CPUID.01H:ECX.[
bit 21] = 1)

80BH 2059 IA32_X2APIC_EOI x2APIC EOI Register. (W/O) If (
CPUID.01H:ECX.[
bit 21] = 1)

80DH 2061 IA32_X2APIC_LDR x2APIC Logical Destination
Register. (R/O)

If (
CPUID.01H:ECX.[
bit 21] = 1)

80FH 2063 IA32_X2APIC_SIVR x2APIC Spurious Interrupt
Vector Register. (R/W)

If (
CPUID.01H:ECX.[
bit 21] = 1)

810H 2064 IA32_X2APIC_ISR0 x2APIC In-Service Register
Bits 31:0. (R/O)

If (
CPUID.01H:ECX.[
bit 21] = 1)

811H 2065 IA32_X2APIC_ISR1 x2APIC In-Service Register
Bits 63:32. (R/O)

If (
CPUID.01H:ECX.[
bit 21] = 1)

812H 2066 IA32_X2APIC_ISR2 x2APIC In-Service Register
Bits 95:64. (R/O)

If (
CPUID.01H:ECX.[
bit 21] = 1)

813H 2067 IA32_X2APIC_ISR3 x2APIC In-Service Register
Bits 127:96. (R/O)

If (
CPUID.01H:ECX.[
bit 21] = 1)

814H 2068 IA32_X2APIC_ISR4 x2APIC In-Service Register
Bits 159:128. (R/O)

If (
CPUID.01H:ECX.[
bit 21] = 1)

815H 2069 IA32_X2APIC_ISR5 x2APIC In-Service Register
Bits 191:160. (R/O)

If (
CPUID.01H:ECX.[
bit 21] = 1)

816H 2070 IA32_X2APIC_ISR6 x2APIC In-Service Register
Bits 223:192. (R/O)

If (
CPUID.01H:ECX.[
bit 21] = 1)

817H 2071 IA32_X2APIC_ISR7 x2APIC In-Service Register
Bits 255:224. (R/O)

If (
CPUID.01H:ECX.[
bit 21] = 1)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 98

Documentation Changes

818H 2072 IA32_X2APIC_TMR0 x2APIC Trigger Mode
Register Bits 31:0. (R/O)

If (
CPUID.01H:ECX.[
bit 21] = 1)

819H 2073 IA32_X2APIC_TMR1 x2APIC Trigger Mode
Register Bits 63:32. (R/O)

If (
CPUID.01H:ECX.[
bit 21] = 1)

81AH 2074 IA32_X2APIC_TMR2 x2APIC Trigger Mode
Register Bits 95:64. (R/O)

If (
CPUID.01H:ECX.[
bit 21] = 1)

81BH 2075 IA32_X2APIC_TMR3 x2APIC Trigger Mode
Register Bits 127:96. (R/O)

If (
CPUID.01H:ECX.[
bit 21] = 1)

81CH 2076 IA32_X2APIC_TMR4 x2APIC Trigger Mode
Register Bits 159:128
(R/O)

If (
CPUID.01H:ECX.[
bit 21] = 1)

81DH 2077 IA32_X2APIC_TMR5 x2APIC Trigger Mode
Register Bits 191:160
(R/O)

If (
CPUID.01H:ECX.[
bit 21] = 1)

81EH 2078 IA32_X2APIC_TMR6 x2APIC Trigger Mode
Register Bits 223:192
(R/O)

If (
CPUID.01H:ECX.[
bit 21] = 1)

81FH 2079 IA32_X2APIC_TMR7 x2APIC Trigger Mode
Register Bits 255:224
(R/O)

If (
CPUID.01H:ECX.[
bit 21] = 1)

820H 2080 IA32_X2APIC_IRR0 x2APIC Interrupt Request
Register Bits 31:0. (R/O)

If (
CPUID.01H:ECX.[
bit 21] = 1)

821H 2081 IA32_X2APIC_IRR1 x2APIC Interrupt Request
Register Bits 63:32. (R/O)

If (
CPUID.01H:ECX.[
bit 21] = 1)

822H 2082 IA32_X2APIC_IRR2 x2APIC Interrupt Request
Register Bits 95:64. (R/O)

If (
CPUID.01H:ECX.[
bit 21] = 1)

823H 2083 IA32_X2APIC_IRR3 x2APIC Interrupt Request
Register Bits 127:96. (R/O)

If (
CPUID.01H:ECX.[
bit 21] = 1)

824H 2084 IA32_X2APIC_IRR4 x2APIC Interrupt Request
Register Bits 159:128.
(R/O)

If (
CPUID.01H:ECX.[
bit 21] = 1)

825H 2085 IA32_X2APIC_IRR5 x2APIC Interrupt Request
Register Bits 191:160.
(R/O)

If (
CPUID.01H:ECX.[
bit 21] = 1)

826H 2086 IA32_X2APIC_IRR6 x2APIC Interrupt Request
Register Bits 223:192.
(R/O)

If (
CPUID.01H:ECX.[
bit 21] = 1)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 99

Documentation Changes

...

827H 2087 IA32_X2APIC_IRR7 x2APIC Interrupt Request
Register Bits 255:224.
(R/O)

If (
CPUID.01H:ECX.[
bit 21] = 1)

828H 2088 IA32_X2APIC_ESR x2APIC Error Status
Register. (R/W)

If (
CPUID.01H:ECX.[
bit 21] = 1)

82FH 2095 IA32_X2APIC_LVT_CMCI x2APIC LVT Corrected
Machine Check Interrupt
Register. (R/W)

If (
CPUID.01H:ECX.[
bit 21] = 1)

830H 2096 IA32_X2APIC_ICR x2APIC Interrupt Command
Register. (R/W)

If (
CPUID.01H:ECX.[
bit 21] = 1)

832H 2098 IA32_X2APIC_LVT_TIMER x2APIC LVT Timer
Interrupt Register. (R/W)

If (
CPUID.01H:ECX.[
bit 21] = 1)

833H 2099 IA32_X2APIC_LVT_THER
MAL

x2APIC LVT Thermal
Sensor Interrupt Register.
(R/W)

If (
CPUID.01H:ECX.[
bit 21] = 1)

834H 2100 IA32_X2APIC_LVT_PMI x2APIC LVT Performance
Monitor Interrupt Register.
(R/W)

If (
CPUID.01H:ECX.[
bit 21] = 1)

835H 2101 IA32_X2APIC_LVT_LINT0 x2APIC LVT LINT0
Register. (R/W)

If (
CPUID.01H:ECX.[
bit 21] = 1)

836H 2102 IA32_X2APIC_LVT_LINT1 x2APIC LVT LINT1
Register. (R/W)

If (
CPUID.01H:ECX.[
bit 21] = 1)

837H 2103 IA32_X2APIC_LVT_ERROR x2APIC LVT Error Register.
(R/W)

If (
CPUID.01H:ECX.[
bit 21] = 1)

838H 2104 IA32_X2APIC_INIT_COUN
T

x2APIC Initial Count
Register. (R/W)

If (
CPUID.01H:ECX.[
bit 21] = 1)

839H 2105 IA32_X2APIC_CUR_COUN
T

x2APIC Current Count
Register. (R/O)

If (
CPUID.01H:ECX.[
bit 21] = 1)

83EH 2110 IA32_X2APIC_DIV_CONF x2APIC Divide
Configuration Register.
(R/W)

If (
CPUID.01H:ECX.[
bit 21] = 1)

83FH 2111 IA32_X2APIC_SELF_IPI x2APIC Self IPI Register.
(W/O)

If (
CPUID.01H:ECX.[
bit 21] = 1)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 100

Documentation Changes

Table B-3. MSRs in Processors Based on Intel Core Microarchitecture

...

Table B-4. MSRs in Intel Atom Processor Family

...

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

...

1C9H 457 MSR_
LASTBRANCH_
TOS

Unique Last Branch Record Stack TOS. (R)

Contains an index (bits 0-3) that points to the
MSR containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

...

3F1H 1009 MSR_PEBS_
ENABLE

Unique see Table Table B-2.. See Section 30.4.4,
“Precise Event Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

...

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

...

1C9H 457 MSR_
LASTBRANCH_
TOS

Unique Last Branch Record Stack TOS. (R)

Contains an index (bits 0-2) that points to the
MSR containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

...

3F1H 1009 MSR_PEBS_
ENABLE

Unique see Table Table B-2.. See Section 30.4.4,
“Precise Event Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 101

Documentation Changes

Table B-5. MSRs in Processors Based on Intel Microarchitecture codename
Nehalem

Register
Address Register Name

Scope
Bit Description

 Hex Dec

...

1C9H 457 MSR_
LASTBRANCH_
TOS

Thread Last Branch Record Stack TOS. (R)

Contains an index (bits 0-3) that points to the
MSR containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at
680H).

...

3F1H 1009 MSR_PEBS_
ENABLE

Thread see See Section 30.6.1.1, “Precise Event
Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

2 Enable PEBS on IA32_PMC2. (R/W)

3 Enable PEBS on IA32_PMC3. (R/W)

31:4 Reserved

32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

35 Enable Load Latency on IA32_PMC3. (R/W)

63:36 Reserved

3F6H 1014 MSR_PEBS_
LD_LAT

Thread see See Section 30.6.1.2, “Load Latency
Performance Monitoring Facility.”

15:0 Minimum threshold latency value of tagged
load operation that will be counted. (R/W)

63:36 Reserved

3F8H 1016 MSR_PKG_C3_RES
IDENCY

Package Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

63:0 Package C3 Residency Counter. (R/O)

Value since last reset that this package is in
processor-specific C3 states. Count at the
same frequency as the TSC.

3F9H 1017 MSR_PKG_C6_RES
IDENCY

Package Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 102

Documentation Changes

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in
processor-specific C6 states. Count at the
same frequency as the TSC.

3FAH 1018 MSR_PKG_C7_RES
IDENCY

Package Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

63:0 Package C7 Residency Counter. (R/O)

Value since last reset that this package is in
processor-specific C7 states. Count at the
same frequency as the TSC.

3FCH 1020 MSR_CORE_C3_RE
SIDENCY

Core Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

63:0 CORE C3 Residency Counter. (R/O)

Value since last reset that this core is in
processor-specific C3 states. Count at the
same frequency as the TSC.

3FDH 1021 MSR_CORE_C6_RE
SIDENCY

Core Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in
processor-specific C6 states. Count at the
same frequency as the TSC.

...

802H 2050 IA32_X2PIC_APICI
D

Thread x2APIC ID register (R/O) see x2APIC
specification

803H 2051 IA32_X2APIC_VER
SION

Thread x2APIC Version register (R/O)

808H 2056 IA32_X2APIC_TPR Thread x2APIC Task Priority register (R/W)

80AH 2058 IA32_X2APIC_PPR Thread x2APIC Processor Priority register (R/O)

80BH 2059 IA32_X2APIC_EOI Thread x2APIC EOI register (W/O)

80DH 2061 IA32_X2APIC_LDR Thread x2APIC Logical Destination register (R/O)

80FH 2063 IA32_X2APIC_SIV
R

Thread x2APIC Spurious Interrupt Vector register
(R/W)

810H 2064 IA32_X2APIC_ISR
0

Thread x2APIC In-Service register bits [31:0] (R/O)

811H 2065 IA32_X2APIC_ISR
1

Thread x2APIC In-Service register bits [63:32] (R/O)

812H 2066 IA32_X2APIC_ISR
2

Thread x2APIC In-Service register bits [95:64] (R/O)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 103

Documentation Changes

813H 2067 IA32_X2APIC_ISR
3

Thread x2APIC In-Service register bits [127:96] (R/O)

814H 2068 IA32_X2APIC_ISR
4

Thread x2APIC In-Service register bits [159:128]
(R/O)

815H 2069 IA32_X2APIC_ISR
5

Thread x2APIC In-Service register bits [191:160]
(R/O)

816H 2070 IA32_X2APIC_ISR
6

Thread x2APIC In-Service register bits [223:192]
(R/O)

817H 2071 IA32_X2APIC_ISR
7

Thread x2APIC In-Service register bits [255:224]
(R/O)

818H 2072 IA32_X2APIC_TM
R0

Thread x2APIC Trigger Mode register bits [31:0] (R/O)

819H 2073 IA32_X2APIC_TM
R1

Thread x2APIC Trigger Mode register bits [63:32]
(R/O)

81AH 2074 IA32_X2APIC_TM
R2

Thread x2APIC Trigger Mode register bits [95:64]
(R/O)

81BH 2075 IA32_X2APIC_TM
R3

Thread x2APIC Trigger Mode register bits [127:96]
(R/O)

81CH 2076 IA32_X2APIC_TM
R4

Thread x2APIC Trigger Mode register bits [159:128]
(R/O)

81DH 2077 IA32_X2APIC_TM
R5

Thread x2APIC Trigger Mode register bits [191:160]
(R/O)

81EH 2078 IA32_X2APIC_TM
R6

Thread x2APIC Trigger Mode register bits [223:192]
(R/O)

81FH 2079 IA32_X2APIC_TM
R7

Thread x2APIC Trigger Mode register bits [255:224]
(R/O)

820H 2080 IA32_X2APIC_IRR
0

Thread x2APIC Interrupt Request register bits [31:0]
(R/O)

821H 2081 IA32_X2APIC_IRR
1

Thread x2APIC Interrupt Request register bits [63:32]
(R/O)

822H 2082 IA32_X2APIC_IRR
2

Thread x2APIC Interrupt Request register bits [95:64]
(R/O)

823H 2083 IA32_X2APIC_IRR
3

Thread x2APIC Interrupt Request register bits
[127:96] (R/O)

824H 2084 IA32_X2APIC_IRR
4

Thread x2APIC Interrupt Request register bits
[159:128] (R/O)

825H 2085 IA32_X2APIC_IRR
5

Thread x2APIC Interrupt Request register bits
[191:160] (R/O)

826H 2086 IA32_X2APIC_IRR
6

Thread x2APIC Interrupt Request register bits
[223:192] (R/O)

827H 2087 IA32_X2APIC_IRR
7

Thread x2APIC Interrupt Request register bits
[255:224] (R/O)

828H 2088 IA32_X2APIC_ESR Thread x2APIC Error Status register (R/W)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 104

Documentation Changes

...

Table B-9. Selected MSRs supported by Next Generation Intel Processors (Intel
microarchitecture codename Sandy Bridge)

82FH 2095 IA32_X2APIC_LVT
_CMCI

Thread x2APIC LVT Corrected Machine Check
Interrupt register (R/W)

830H 2096 IA32_X2APIC_ICR Thread x2APIC Interrupt Command register (R/W)

832H 2098 IA32_X2APIC_LVT
_TIMER

Thread x2APIC LVT Timer Interrupt register (R/W)

833H 2099 IA32_X2APIC_LVT
_THERMAL

Thread x2APIC LVT Thermal Sensor Interrupt register
(R/W)

834H 2100 IA32_X2APIC_LVT
_PMI

Thread x2APIC LVT Performance Monitor register
(R/W)

835H 2101 IA32_X2APIC_LVT
_LINT0

Thread x2APIC LVT LINT0 register (R/W)

836H 2102 IA32_X2APIC_LVT
_LINT1

Thread x2APIC LVT LINT1 register (R/W)

837H 2103 IA32_X2APIC_LVT
_ERROR

Thread x2APIC LVT Error register (R/W)

838H 2104 IA32_X2APIC_INIT
_COUNT

Thread x2APIC Initial Count register (R/W)

839H 2105 IA32_X2APIC_CUR
_COUNT

Thread x2APIC Current Count register (R/O)

83EH 2110 IA32_X2APIC_DIV
_CONF

Thread x2APIC Divide Configuration register (R/W)

83FH 2111 IA32_X2APIC_SEL
F_IPI

Thread x2APIC Self IPI register (W/O)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

...

E2H 226 MSR_PKG_CST_CO
NFIG_CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 105

Documentation Changes

2:0 Package C-State limit. (R/W)

Specifies the lowest processor-specific C-
state code name (consuming the least power).
for the package. The default is set as factory-
configured package C-state limit.

The following C-state code name encodings
are supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit
package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable. (R/W)

When set, will map IO_read instructions sent
to IO register specified by
MSR_PMG_IO_CAPTURE_BASE to MWAIT
instructions

14:11 Reserved.

15 CFG Lock. (R/WO)

When set, lock bits 15:0 of this register until
next reset

24:16 Reserved.

25 C3 state auto demotion enable. (R/W)

When set, the processor will conditionally
demote C6/C7 requests to C3 based on uncore
auto-demote information

26 C1 state auto demotion enable. (R/W)

When set, the processor will conditionally
demote C3/C6/C7 requests to C1 based on
uncore auto-demote information

27 Enable C3 undemotion (R/W)

When set, enables undemotion from demoted
C3

28 Enable C1 undemotion (R/W)

When set, enables undemotion from demoted
C1

63:29 Reserved.

E4H 228 MSR_PMG_IO_CAP
TURE_BASE

Core Power Management IO Redirection in C-state
(R/W)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 106

Documentation Changes

15:0 LVL_2 Base Address. (R/W)

Specifies the base address visible to software
for IO redirection. If IO MWAIT Redirection is
enabled, reads to this address will be
consumed by the power management logic
and decoded to MWAIT instructions. When IO
port address redirection is enabled, this is the
IO port address reported to the OS/software

18:16 C-state Range. (R/W)

Specifies the encoding value of the maximum
C-State code name to be included when IO
read to MWAIT redirection is enabled by
MSR_PMG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - C6 is the max C-State to include

010b - C7 is the max C-State to include

63:19 Reserved.

1B0H 432 IA32_ENERGY_PE
RF_BIAS

Package see Table Table B-2.

1B2H 434 IA32_PACKAGE_T
HERM_INTERRUPT

Package see Table B-2.

1FCH 508 POWER_CTL Core Power Control Register

280H 640 IA32_MC0_CTL2 Core see Table B-2.

281H 641 IA32_MC1_CTL2 Core see Table B-2.

282H 642 IA32_MC2_CTL2 Core see Table B-2.

283H 643 IA32_MC3_CTL2 Core see Table B-2.

284H 644 MSR_MC4_CTL2 Package Always 0 (CMCI not supported)

400H 1024 IA32_MC0_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

402H 1026 IA32_MC0_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

403H 1027 IA32_MC0_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

404H 1028 IA32_MC1_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

406H 1030 IA32_MC1_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

407H 1031 IA32_MC1_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40BH 1035 IA32_MC2_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 107

Documentation Changes

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

40EH 1038 IA32_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40FH 1039 IA32_MC3_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

410H 1040 MSR_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

0 PCU Hardware Error. (R/W)

When set, enables signaling of PCU hardware
detected errors.

1 PCU Controller Error. (R/W)

When set, enables signaling of PCU controller
detected errors

2 PCU Firmware Error. (R/W)

When set, enables signaling of PCU firmware
detected errors

63:2 Reserved.

411H 1041 IA32_MC4_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

606H 1542 MSR_RAPL_POWE
R_UNIT

Package Unit Multipliers used in RAPL Interfaces (R/O)
See Section 14.7.1, “RAPL Interfaces.”

60AH 1546 MSR_PKGC3_IRTL Package Package C3 Interrupt Response Limit (R/W)

Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit. (R/W)

Specifies the limit that should be used to
decide if the package should be put into a
package C3 state.

12:10 Time Unit. (R/W)

Specifies the encoding value of time unit of
the interrupt response time limit. The
following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid. (R/W)

Indicates whether the values in bits 12:0 are
valid and can be used by the processor for
package C-sate management.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 108

Documentation Changes

63:16 Reserved.

60BH 1547 MSR_PKGC6_IRTL Package Package C6 Interrupt Response Limit (R/W)

This MSR defines the budget allocated for the
package to exit from C6 to a C0 state, where
interrupt request can be delivered to the core
and serviced. Additional core-exit latency amy
be applicable depending on the actual C-state
the core is in.

Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit. (R/W)

Specifies the limit that should be used to
decide if the package should be put into a
package C6 state.

12:10 Time Unit. (R/W)

Specifies the encoding value of time unit of
the interrupt response time limit. The
following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid. (R/W)

Indicates whether the values in bits 12:0 are
valid and can be used by the processor for
package C-sate management.

63:16 Reserved.

60CH 1548 MSR_PKGC7_IRTL Package Package C7 Interrupt Response Limit (R/W)

This MSR defines the budget allocated for the
package to exit from C7 to a C0 state, where
interrupt request can be delivered to the core
and serviced. Additional core-exit latency amy
be applicable depending on the actual C-state
the core is in.

Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit. (R/W)

Specifies the limit that should be used to
decide if the package should be put into a
package C7 state.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 109

Documentation Changes

...

Table B-11. Selected MSRs supported by Next Generation Intel Xeon Processors (Intel
microarchitecture codename Sandy Bridge)

12:10 Time Unit. (R/W)

Specifies the encoding value of time unit of
the interrupt response time limit. The
following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid. (R/W)

Indicates whether the values in bits 12:0 are
valid and can be used by the processor for
package C-sate management.

63:16 Reserved.

610H 1552 MSR_PKG_RAPL_P
OWER_LIMIT

Package PKG RAPL Power Limit Control (R/W) See
Section 14.7.3, “Package RAPL Domain.”

611H 1553 MSR_PKG_ENERY_
STATUS

Package PKG Energy Status (R/O) See Section 14.7.3,
“Package RAPL Domain.”

613H 1555 MSR_PKG_PERF_S
TATUS

Package PKG Performance Throttling Status (R/O) See
Section 14.7.3, “Package RAPL Domain.”

614H 1556 MSR_PKG_POWER
_INFO

Package PKG RAPL Parameters (R/W) See Section
14.7.3, “Package RAPL Domain.”

638H 1592 MSR_PP0_POWER
_LIMIT

Package PP0 RAPL Power Limit Control (R/W) See
Section 14.7.4, “PP0/PP1 RAPL Domains.”

639H 1593 MSR_PP0_ENERY_
STATUS

Package PP0 Energy Status (R/O) See Section 14.7.4,
“PP0/PP1 RAPL Domains.”

63AH 1594 MSR_PP0_POLICY Package PP0 Balance Policy (R/W) See Section 14.7.4,
“PP0/PP1 RAPL Domains.”

63BH 1595 MSR_PP0_PERF_S
TATUS

Package PP0 Performance Throttling Status (R/O) See
Section 14.7.4, “PP0/PP1 RAPL Domains.”

6E0H 1760 IA32_TSC_DEADLI
NE

Thread See Table Table B-2.

Register
Address Register Name

Scope
Bit Description

 Hex Dec

285H 645 IA32_MC5_CTL2 Package see Table Table B-2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 110

Documentation Changes

286H 646 IA32_MC6_CTL2 Package see Table Table B-2.

287H 647 IA32_MC7_CTL2 Package see Table Table B-2.

288H 648 IA32_MC8_CTL2 Package see Table Table B-2.

289H 649 IA32_MC9_CTL2 Package see Table Table B-2.

28AH 650 IA32_MC10_CTL2 Package see Table Table B-2.

28BH 651 IA32_MC11_CTL2 Package see Table Table B-2.

28CH 652 IA32_MC12_CTL2 Package see Table Table B-2.

28DH 653 IA32_MC13_CTL2 Package see Table Table B-2.

28EH 654 IA32_MC14_CTL2 Package see Table Table B-2.

28FH 655 IA32_MC15_CTL2 Package see Table Table B-2.

290H 656 IA32_MC16_CTL2 Package see Table Table B-2.

291H 657 IA32_MC17_CTL2 Package see Table Table B-2.

292H 658 IA32_MC18_CTL2 Package see Table Table B-2.

293H 659 IA32_MC19_CTL2 Package see Table Table B-2.

414H 1044 MSR_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 MSR_MC5_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

416H 1046 MSR_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

417H 1047 MSR_MC5_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

418H 1048 MSR_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 MSR_MC6_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

41AH 1050 MSR_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41BH 1051 MSR_MC6_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

41CH 1052 MSR_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

41DH 1053 MSR_MC7_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

41EH 1054 MSR_MC7_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41FH 1055 MSR_MC7_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

420H 1056 MSR_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

421H 1057 MSR_MC8_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

422H 1058 MSR_MC8_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

423H 1059 MSR_MC8_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

424H 1060 MSR_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 111

Documentation Changes

425H 1061 MSR_MC9_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

426H 1062 MSR_MC9_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

427H 1063 MSR_MC9_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

428H 1064 MSR_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

429H 1065 MSR_MC10_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

42AH 1066 MSR_MC10_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42BH 1067 MSR_MC10_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

42CH 1068 MSR_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

42DH 1069 MSR_MC11_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

42EH 1070 MSR_MC11_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42FH 1071 MSR_MC11_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

430H 1072 MSR_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

431H 1073 MSR_MC12_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

432H 1074 MSR_MC12_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

433H 1075 MSR_MC12_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

434H 1076 MSR_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

435H 1077 MSR_MC13_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

436H 1078 MSR_MC13_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

437H 1079 MSR_MC13_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

438H 1080 MSR_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

439H 1081 MSR_MC14_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

43AH 1082 MSR_MC14_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43BH 1083 MSR_MC14_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

43CH 1084 MSR_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

43DH 1085 MSR_MC15_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

43EH 1086 MSR_MC15_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43FH 1087 MSR_MC15_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

440H 1088 MSR_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

441H 1089 MSR_MC16_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 112

Documentation Changes

...

Table B-15. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel Xeon
Processor LV

442H 1090 MSR_MC16_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

443H 1091 MSR_MC16_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

444H 1092 MSR_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

445H 1093 MSR_MC17_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

446H 1094 MSR_MC17_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

447H 1095 MSR_MC17_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

448H 1096 MSR_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

449H 1097 MSR_MC18_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

44AH 1098 MSR_MC18_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44BH 1099 MSR_MC18_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

44CH 1100 MSR_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

44DH 1101 MSR_MC19_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

44EH 1102 MSR_MC19_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44FH 1103 MSR_MC19_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

618H 1560 MSR_DRAM_POWE
R_LIMIT

Package DRAM RAPL Power Limit Control (R/W) See
Section 14.7.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENER
Y_STATUS

Package DRAM Energy Status (R/O) See Section 14.7.5,
“DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF
_STATUS

Package DRAM Performance Throttling Status (R/O)
See Section 14.7.5, “DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWE
R_INFO

Package DRAM RAPL Parameters (R/W) See Section
14.7.5, “DRAM RAPL Domain.”

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

...

1C9H 457 MSR_
LASTBRANCH_
TOS

Unique Last Branch Record Stack TOS. (R)

Contains an index (bits 0-3) that points to the
MSR containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H)

...

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 113

Documentation Changes

...

Table B-16. MSRs in Pentium M Processors

...

22. Updates to Appendix E, Volume 3B

Change bars show changes to Appendix E of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...

E.4 INCREMENTAL DECODING INFORMATION: PROCESSOR
FAMILY WITH CPUID DISPLAYFAMILY_DISPLAYMODEL
SIGNATURE 06_2DH, MACHINE ERROR CODES FOR
MACHINE CHECK

Table E-8 through Table E-12 provide information for interpreting additional model-
specific fields for memory controller errors relating to the processor family with CPUID
DisplayFamily_DisplaySignature 06_2DH, which supports Intel QuickPath Interconnect
links. Incremental MC error codes related to the Intel QPI links are reported in the
register banks IA32_MC6 and IA32_MC7, incremental error codes for internal machine
check error from PCU controller is reported in the register bank IA32_MC4, and incre-
mental error codes for the memory controller unit is reported in the register banks
IA32_MC8-IA32_MC11.

Register
Address

Register Name Bit Description

 Hex Dec

...

1C9H 457 MSR_LASTBRANCH_TOS Last Branch Record Stack TOS. (R)

Contains an index (bits 0-3) that points to the MSR
containing the most recent branch record. See also:

• MSR_LASTBRANCH_0_FROM_IP (at 40H)
• Section 16.9, “Last Branch, Interrupt, and

Exception Recording (Pentium M Processors)”

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 114

Documentation Changes

E.4.1 Internal Machine Check Errors

Table E-13. Machine Check Error codes for IA32_MC4_STATUS
Type Bit No. Bit Function Bit Description

MCA error
codes1

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,”

for more information.

0-15 MCACOD

Model specific
errors

19:16 Reserved except for
the following

0000b - No Error

0001b - Non_IMem_Sel

0010b - I_Parity_Error

0011b - Bad_OpCode

0100b - I_Stack_Underflow

0101b - I_Stack_Overflow

0110b - D_Stack_Underflow

0111b - D_Stack_Overflow

1000b - Non-DMem_Sel

1001b - D_Parity_Error

23-20 Reserved Reserved

31-24 Reserved except for
the following

00h - No Error

20h - MC_RCLK_PLL_LOCK_TIMEOUT

21h - MC_PCIE_PLL_LOCK_TIMEOT

22h - MC_BOOT_VID_SET_TIMEOUT

23h - MC_BOOT_FREQUENCY_SET_TIMEOUT

24h - MC_START_IA_CORES_TIMEOUT

26h - MC_PCIE_RCOMP_TIMEOUT

27h - MC_PMA_DNS_COMMAND_TIMEOUT

28h - MC_MESSAGE_CHANNEL_TIMEOUT

29h - MC_GVFSM_BGF_PROGRAM_TIMEOUT

2Ah - MC_MC_PLL_LOCK_TIMEOUT

2Bh - MC_MS_BGF_PROGRAM_TIMEOUT

56-32 Reserved Reserved

Status register
validity
indicators1

57-63

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 115

Documentation Changes

E.4.2 Intel QPI Machine Check Errors

Table E-14. Intel QPI MC Error codes for IA32_MC6_STATUS and IA32_MC7_STATUS

E.4.3 Integrated Memory Controller Machine Check Errors
MC error codes associated with integrated memory controllers are reported in the MSRs
IA32_MC8_STATUS-IA32_MC11_STATUS. The supported error codes are follows the
architectural MCACOD definition type 1MMMCCCC (see Chapter 15, “Machine-
Check Architecture,”).

...

23. Updates to Appendix G, Volume 3B

Change bars show changes to Appendix G of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...

G.3.1 Pin-Based VM-Execution Controls
The IA32_VMX_PINBASED_CTLS MSR (index 481H) reports on the allowed settings of
most of the pin-based VM-execution controls (see Section 21.6.1):

• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control
X (bit X of the pin-based VM-execution controls) to be 0 if bit X in the MSR is cleared
to 0; if bit X in the MSR is set to 1, VM entry fails if control X is 0.

Exceptions are made for the pin-based VM-execution controls in the default1 class
(see Appendix G.2). These are bits 1, 2, and 4; the corresponding bits of the
IA32_VMX_PINBASED_CTLS MSR are always read as 1. The treatment of these
controls by VM entry is determined by bit 55 in the IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any pin-
based VM-execution control in the default1 class is 0.

Type Bit No. Bit Function Bit Description

MCA error
codes1

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,”

for more information.

0-15 MCACOD Bus error format: 1PPTRRRRIILL

Model specific
errors

56-16 Reserved Reserved

Status register
validity
indicators1

57-63

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 116

Documentation Changes

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the
IA32_VMX_TRUE_PINBASED_CTLS MSR (see below) reports which of the pin-
based VM-execution controls in the default1 class can be 0 on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows
control X to be 1 if bit 32+X in the MSR is set to 1; if bit 32+X in the MSR is cleared
to 0, VM entry fails if control X is 1.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1,
the IA32_VMX_TRUE_PINBASED_CTLS MSR (index 48DH) reports on the allowed
settings of all of the pin-based VM-execution controls:

• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X
to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1, VM entry fails
if control X is 0. There are no exceptions.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control
X to be 1 if bit 32+X in the MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM
entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine the
allowed settings of the pin-based VM-execution controls:

• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the allowed
settings of the pin-based VM-execution controls is contained in
the IA32_VMX_PINBASED_CTLS MSR. (The IA32_VMX_TRUE_PINBASED_CTLS MSR
is not supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the allowed
settings of the pin-based VM-execution controls is contained in
the IA32_VMX_TRUE_PINBASED_CTLS MSR. Assuming that software knows that the
default1 class of pin-based VM-execution controls contains bits 1, 2, and 4, there is
no need for software to consult the IA32_VMX_PINBASED_CTLS MSR.

G.3.2 Primary Processor-Based VM-Execution Controls
The IA32_VMX_PROCBASED_CTLS MSR (index 482H) reports on the allowed settings of
most of the primary processor-based VM-execution controls (see Section 21.6.2):

• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X
(bit X of the primary processor-based VM-execution controls) to be 0 if bit X in the
MSR is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if control X is 0.

Exceptions are made for the primary processor-based VM-execution controls in the
default1 class (see Appendix G.2). These are bits 1, 4–6, 8, 13–16, and 26; the
corresponding bits of the IA32_VMX_PROCBASED_CTLS MSR are always read as 1.
The treatment of these controls by VM entry is determined by bit 55 in the
IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any of the
primary processor-based VM-execution controls in the default1 class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the
IA32_VMX_TRUE_PROCBASED_CTLS MSR (see below) reports which of the
primary processor-based VM-execution controls in the default1 class can be 0 on
VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control
X to be 1 if bit 32+X in the MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM
entry fails if control X is 1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 117

Documentation Changes

If bit 55 in the IA32_VMX_BASIC MSR is read as 1,
the IA32_VMX_TRUE_PROCBASED_CTLS MSR (index 48EH) reports on the allowed
settings of all of the primary processor-based VM-execution controls:

• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X
to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1, VM entry fails
if control X is 0. There are no exceptions.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control
X to be 1 if bit 32+X in the MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM
entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine the
allowed settings of the primary processor-based VM-execution controls:

• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the allowed
settings of the primary processor-based VM-execution controls is contained in the
IA32_VMX_PROCBASED_CTLS MSR. (The IA32_VMX_TRUE_PROCBASED_CTLS MSR
is not supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the allowed
settings of the processor-based VM-execution controls is contained in the
IA32_VMX_TRUE_PROCBASED_CTLS MSR. Assuming that software knows that the
default1 class of processor-based VM-execution controls contains bits 1, 4–6, 8, 13–
16, and 26, there is no need for software to consult the
IA32_VMX_PROCBASED_CTLS MSR.

G.3.3 Secondary Processor-Based VM-Execution Controls
The IA32_VMX_PROCBASED_CTLS2 MSR (index 48BH) reports on the allowed settings
of the secondary processor-based VM-execution controls (see Section 21.6.2).
VM entries perform the following checks:

• Bits 31:0 indicate the allowed 0-settings of these controls. These bits are always 0.
This fact indicates that VM entry allows each bit of the secondary processor-based
VM-execution controls to be 0.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control
X (bit X of the secondary processor-based VM-execution controls) to be 1 if bit 32+X
in the MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control
X and the “activate secondary controls” primary processor-based VM-execution
control are both 1.

The IA32_VMX_PROCBASED_CTLS2 MSR exists only on processors that support the 1-
setting of the “activate secondary controls” VM-execution control (only if bit 63 of the
IA32_VMX_PROCBASED_CTLS MSR is 1).

G.4 VM-EXIT CONTROLS
The IA32_VMX_EXIT_CTLS MSR (index 483H) reports on the allowed settings of most
of the VM-exit controls (see Section 21.7.1):

• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X
(bit X of the VM-exit controls) to be 0 if bit X in the MSR is cleared to 0; if bit X in the
MSR is set to 1, VM entry fails if control X is 0.

Exceptions are made for the VM-exit controls in the default1 class (see Appendix
G.2). These are bits 0–8, 10, 11, 13, 14, 16, and 17; the corresponding bits of the

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 118

Documentation Changes

IA32_VMX_EXIT_CTLS MSR are always read as 1. The treatment of these controls by
VM entry is determined by bit 55 in the IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any VM-exit
control in the default1 class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the
IA32_VMX_TRUE_EXIT_CTLS MSR (see below) reports which of the VM-exit
controls in the default1 class can be 0 on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control
32+X to be 1 if bit X in the MSR is set to 1; if bit 32+X in the MSR is cleared to 0,
VM entry fails if control X is 1.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_EXIT_CTLS
MSR (index 48FH) reports on the allowed settings of all of the VM-exit controls:

• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X
to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1, VM entry fails
if control X is 0. There are no exceptions.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control
X to be 1 if bit 32+X in the MSR is set to 1; if bit 32+X in the MSR is cleared to 0,
VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine the
allowed settings of the VM-exit controls:

• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the allowed
settings of the VM-exit controls is contained in the IA32_VMX_EXIT_CTLS MSR. (The
IA32_VMX_TRUE_EXIT_CTLS MSR is not supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the allowed
settings of the VM-exit controls is contained in the IA32_VMX_TRUE_EXIT_CTLS
MSR. Assuming that software knows that the default1 class of VM-exit controls
contains bits 0–8, 10, 11, 13, 14, 16, and 17, there is no need for software to consult
the IA32_VMX_EXIT_CTLS MSR.

G.5 VM-ENTRY CONTROLS
The IA32_VMX_ENTRY_CTLS MSR (index 484H) reports on the allowed settings of most
of the VM-entry controls (see Section 21.8.1):

• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X
(bit X of the VM-entry controls) to be 0 if bit X in the MSR is cleared to 0; if bit X in
the MSR is set to 1, VM entry fails if control X is 0.

Exceptions are made for the VM-entry controls in the default1 class (see Appendix
G.2). These are bits 0–8 and 12; the corresponding bits of the
IA32_VMX_ENTRY_CTLS MSR are always read as 1. The treatment of these controls
by VM entry is determined by bit 55 in the IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any VM-entry
control in the default1 class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the
IA32_VMX_TRUE_ENTRY_CTLS MSR (see below) reports which of the VM-entry
controls in the default1 class can be 0 on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry fails if bit X is
1 in the VM-entry controls and bit 32+X is 0 in this MSR.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 119

Documentation Changes

If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_ENTRY_CTLS
MSR (index 490H) reports on the allowed settings of all of the VM-entry controls:

• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X
to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1, VM entry fails
if control X is 0. There are no exceptions.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control
32+X to be 1 if bit X in the MSR is set to 1; if bit 32+X in the MSR is cleared to 0,
VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine the
allowed settings of the VM-entry controls:

• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the allowed
settings of the VM-entry controls is contained in the IA32_VMX_ENTRY_CTLS MSR.
(The IA32_VMX_TRUE_ENTRY_CTLS MSR is not supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the allowed
settings of the VM-entry controls is contained in the IA32_VMX_TRUE_ENTRY_CTLS
MSR. Assuming that software knows that the default1 class of VM-entry controls
contains bits 0–8 and 12, there is no need for software to consult the
IA32_VMX_ENTRY_CTLS MSR.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 120

Documentation Changes

	Revision History
	Preface
	Summary Tables of Changes
	Documentation Changes
	1. Updates to Chapter 3, Volume 1
	2. Updates to Chapter 3, Volume 2A
	Figure 3-9. Algorithm for Extracting Maximum Processor Frequency

	3. Updates to Chapter 4, Volume 2B
	4. Updates to Chapter 5, Volume 2B
	5. Updates to Chapter 6, Volume 2B
	6. Updates to Chapter 2, Volume 3A
	7. Updates to Chapter 4, Volume 3A
	Figure 4-1. Enabling and Changing Paging Modes
	Figure 4-2 Linear-Address Translation to a 4-KByte Page using 32-Bit Paging
	Figure 4-3 Linear-Address Translation to a 4-MByte Page using 32-Bit Paging
	Figure 4-4 Formats of CR3 and Paging-Structure Entries with 32-Bit Paging

	8. Updates to Chapter 6, Volume 3A
	Figure 6-6. Error Code

	9. Updates to Chapter 8, Volume 3A
	10. Updates to Chapter 9, Volume 3A
	11. Updates to Chapter 10, Volume 3A
	Figure 10-9. Error Status Register (ESR)

	12. Updates to Chapter 13, Volume 3A
	13. Updates to Chapter 15, Volume 3A
	14. Updates to Chapter 16, Volume 3A
	15. Updates to Chapter 22, Volume 3B
	16. Updates to Chapter 23, Volume 3B
	17. Updates to Chapter 24, Volume 3B
	18. Updates to Chapter 25, Volume 3B
	19. Updates to Chapter 27, Volume 3B
	20. Updates to Chapter 30, Volume 3B
	21. Updates to Appendix B, Volume 3B
	Register Address
	Architectural MSR Name and bit fields
	(Former MSR Name)
	MSR/Bit Description
	Introduced as Architectural MSR
	Hex
	Decimal
	...
	...
	...
	Register Address
	Register Name
	Shared/ Unique
	Bit Description
	Hex
	Dec
	...
	...
	...
	Register Address
	Register Name
	Shared/ Unique
	Bit Description
	Hex
	Dec
	...
	...
	...
	Register Address
	Register Name
	Scope
	Bit Description
	Hex
	Dec
	...
	...
	...
	Register Address
	Register Name
	Scope
	Bit Description
	Hex
	Dec
	...
	Register Address
	Register Name
	Scope
	Bit Description
	Hex
	Dec
	Register Address
	Register Name
	Shared/ Unique
	Bit Description
	Hex
	Dec
	...
	...
	Register Address
	Register Name
	Bit Description
	Hex
	Dec
	...
	...

	22. Updates to Appendix E, Volume 3B
	23. Updates to Appendix G, Volume 3B

