
Document Number: 252046-032

Intel® 64 and IA-32 Architectures
Software Developer’s Manual 

Documentation Changes

May 2011

Notice: The Intel® 64 and IA-32 architectures may contain design defects or errors known as errata 
that may cause the product to deviate from published specifications. Current characterized errata are 
documented in the specification updates.



2 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Legal Lines and DisclaimersINFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER,
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or
life sustaining applications.
Intel may make changes to specifications and product descriptions at any time, without notice.
64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device
drivers and applications enabled for Intel® 64 architecture. Performance will vary depending on your hardware and software
configurations. Consult with your system vendor for more information.
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
I2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I2C bus/protocol and was developed
by Intel. Implementations of the I2C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and
North American Philips Corporation.
Intel, Pentium, Intel Core, Intel Xeon, Intel 64, Intel NetBurst, and the Intel logo are trademarks of Intel Corporation in the U.S. 
and other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2002–2011, Intel Corporation. All rights reserved.



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 3

Contents

Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Summary Tables of Changes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Documentation Changes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9



Revision History

4 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Revision History

Revision Description Date

-001 • Initial release November 2002

-002
•  Added 1-10 Documentation Changes.
• Removed old Documentation Changes items that already have been 

incorporated in the published Software Developer’s manual
December 2002

-003

• Added 9 -17 Documentation Changes.
• Removed Documentation Change #6 - References to bits Gen and Len 

Deleted.
• Removed Documentation Change #4 - VIF Information Added to CLI 

Discussion

February 2003

-004 • Removed Documentation changes 1-17.
• Added Documentation changes 1-24. June 2003

-005 • Removed Documentation Changes 1-24.
• Added Documentation Changes 1-15.

September 2003

-006 • Added Documentation Changes 16- 34. November 2003

-007 • Updated Documentation changes 14, 16, 17, and 28.
• Added Documentation Changes 35-45.

January 2004

-008 • Removed Documentation Changes 1-45.
• Added Documentation Changes 1-5.

March 2004

-009 • Added Documentation Changes 7-27. May 2004

-010 • Removed Documentation Changes 1-27.
• Added Documentation Changes 1.

August 2004

-011 • Added Documentation Changes 2-28. November 2004

-012 • Removed Documentation Changes 1-28.
• Added Documentation Changes 1-16.

March 2005

-013
• Updated title.
• There are no Documentation Changes for this revision of the 

document.
July 2005

-014 • Added Documentation Changes 1-21. September 2005

-015 • Removed Documentation Changes 1-21.
• Added Documentation Changes 1-20.

March 9, 2006

-016 • Added Documentation changes 21-23. March 27, 2006

-017 • Removed Documentation Changes 1-23.
• Added Documentation Changes 1-36.

September 2006

-018 • Added Documentation Changes 37-42. October 2006

-019 • Removed Documentation Changes 1-42.
• Added Documentation Changes 1-19.

March 2007

-020 • Added Documentation Changes 20-27. May 2007

-021 • Removed Documentation Changes 1-27.
• Added Documentation Changes 1-6

November 2007

-022 • Removed Documentation Changes 1-6
• Added Documentation Changes 1-6

August 2008

-023 • Removed Documentation Changes 1-6
• Added Documentation Changes 1-21

March 2009



Revision History

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 5

§

-024 • Removed Documentation Changes 1-21
• Added Documentation Changes 1-16

June 2009

-025 • Removed Documentation Changes 1-16
• Added Documentation Changes 1-18

September 2009

-026 • Removed Documentation Changes 1-18
• Added Documentation Changes 1-15

December 2009

-027 • Removed Documentation Changes 1-15
• Added Documentation Changes 1-24

March 2010

-028 • Removed Documentation Changes 1-24
• Added Documentation Changes 1-29

June 2010

-029 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

September 2010

-030 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

January 2011

-031 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

April 2011

-032 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-14

May 2011

Revision Description Date



Revision History

6 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -7

Preface

This document is an update to the specifications contained in the Affected Documents 
table below. This document is a compilation of device and documentation errata, 
specification clarifications and changes. It is intended for hardware system 
manufacturers and software developers of applications, operating systems, or tools.

Affected Documents

Nomenclature
Documentation Changes include typos, errors, or omissions from the current 
published specifications. These will be incorporated in any new release of the 
specification.

Document Title Document 
Number/Location

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
1: Basic Architecture 253665

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
2A: Instruction Set Reference, A-M 253666

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
2B: Instruction Set Reference, N-Z 253667

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
3A: System Programming Guide, Part 1 253668

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
3B: System Programming Guide, Part 2 253669



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -8

Summary Tables of Changes

The following table indicates documentation changes which apply to the Intel® 64 and 
IA-32 architectures. This table uses the following notations:

Codes Used in Summary Tables
Change bar to left of table row indicates this erratum is either new or modified from the 
previous version of the document.

Documentation Changes
No. DOCUMENTATION CHANGES

1 Updates to Chapter 3, Volume 1

2 Updates to Chapter 7, Volume 1

3 Updates to Chapter 3, Volume 2A

4 Updates to Chapter 4, Volume 2B

5 Updates to Appendix A, Volume 2B

6 Updates to Chapter 2, Volume 3A

7 Updates to Chapter 4, Volume 3A

8 Updates to Chapter 8, Volume 3A

9 Updates to Chapter 10, Volume 3A

10 Updates to Chapter 11, Volume 3A

11 Updates to Chapter 16, Volume 3A

12 Updates to Chapter 28, Volume 3B

13 Updates to Appendix A, Volume 3B

14 Updates to Appendix B, Volume 3B



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -9

Documentation Changes

1. Updates to Chapter 3, Volume 1
Change bars show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1: Basic Architecture.

------------------------------------------------------------------------------------------

...

3.4.1.1  General-Purpose Registers in 64-Bit Mode
In 64-bit mode, there are 16 general purpose registers and the default operand size is 32 
bits. However, general-purpose registers are able to work with either 32-bit or 64-bit 
operands. If a 32-bit operand size is specified: EAX, EBX, ECX, EDX, EDI, ESI, EBP, ESP, 
R8D - R15D are available. If a 64-bit operand size is specified: RAX, RBX, RCX, RDX, 
RDI, RSI, RBP, RSP, R8-R15 are available. R8D-R15D/R8-R15 represent eight new 
general-purpose registers. All of these registers can be accessed at the byte, word, 
dword, and qword level. REX prefixes are used to generate 64-bit operand sizes or to 
reference registers R8-R15.

Registers only available in 64-bit mode (R8-R15 and XMM8-XMM15) are preserved 
across transitions from 64-bit mode into compatibility mode then back into 64-bit mode. 
However, values of R8-R15 and XMM8-XMM15 are undefined after transitions from 64-bit 
mode through compatibility mode to legacy or real mode and then back through compat-
ibility mode to 64-bit mode.



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -10

In 64-bit mode, there are limitations on accessing byte registers. An instruction cannot 
reference legacy high-bytes (for example: AH, BH, CH, DH) and one of the new byte 
registers at the same time (for example: the low byte of the RAX register). However, 
instructions may reference legacy low-bytes (for example: AL, BL, CL or DL) and new 
byte registers at the same time (for example: the low byte of the R8 register, or RBP). 
The architecture enforces this limitation by changing high-byte references (AH, BH, CH, 
DH) to low byte references (BPL, SPL, DIL, SIL: the low 8 bits for RBP, RSP, RDI and RSI) 
for instructions using a REX prefix.

When in 64-bit mode, operand size determines the number of valid bits in the destina-
tion general-purpose register: 
• 64-bit operands generate a 64-bit result in the destination general-purpose register.
• 32-bit operands generate a 32-bit result, zero-extended to a 64-bit result in the 

destination general-purpose register.
• 8-bit and 16-bit operands generate an 8-bit or 16-bit result. The upper 56 bits or 48 

bits (respectively) of the destination general-purpose register are not modified by 
the operation. If the result of an 8-bit or 16-bit operation is intended for 64-bit 
address calculation, explicitly sign-extend the register to the full 64-bits. 

Because the upper 32 bits of 64-bit general-purpose registers are undefined in 32-bit 
modes, the upper 32 bits of any general-purpose register are not preserved when 
switching from 64-bit mode to a 32-bit mode (to protected mode or compatibility mode). 
Software must not depend on these bits to maintain a value after a 64-bit to 32-bit mode 
switch.

...

2. Updates to Chapter 7, Volume 1
Change bars show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1: Basic Architecture.

------------------------------------------------------------------------------------------

...

7.3.18 Random Number Generator Instruction
The RDRAND instruction can provide software with sequences of random numbers 
generated from white noise. 

Table 3-2   Addressable General Purpose Registers
Register Type Without REX With REX

Byte Registers AL, BL, CL, DL, AH, BH, CH, 
DH

AL, BL, CL, DL, DIL, SIL, BPL, SPL, 
R8L - R15L

Word Registers AX, BX, CX, DX, DI, SI, BP, SP AX, BX, CX, DX, DI, SI, BP, SP, R8W - 
R15W

Doubleword Registers EAX, EBX, ECX, EDX, EDI, ESI, 
EBP, ESP

EAX, EBX, ECX, EDX, EDI, ESI, EBP, 
ESP, R8D - R15D

Quadword Registers N.A. RAX, RBX, RCX, RDX, RDI, RSI, 
RBP, RSP, R8 - R15



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -11

Truly random numbers can help programmers improve the security of software agents 
running in a system. The RDRAND instruction provides a facility for programmers to 
achieve that goal. All Intel processors that support the RDRAND instruction indicate the 
availability of the RDRAND instruction via reporting CPUID.01H:ECX.RDRAND[bit 30] = 
1.
The random numbers that are returned by the RDRAND instruction are supplied by a 
cryptographically secure Random Number Generator that employs a hardware DRBG 
(Digital Random Bit Generator, also known as a Pseudo Random Number Generator) 
seeded by a hardware NRBG (Nondeterministic Random Bit Generator, also known as a 
TRNG or True Random Number generator).
In order for the hardware design to meet its security goals, the random number gener-
ator continuously tests itself and the random data it is generating. Runtime failures in 
the random number generator circuitry or statistically anomalous data occurring by 
chance will be detected by the self test hardware and flag the resulting data as being 
bad. In such extremely rare cases, the RDRAND instruction will return no data instead of 
bad data.
Under heavy load, with multiple cores executing RDRAND in parallel, it is possible, 
though unlikely, for the demand of random numbers by software processes/threads to 
exceed the rate at which the random number generator hardware can supply them. This 
will lead to the RDRAND instruction returning no data transitorily. The RDRAND instruc-
tion indicates the occurrence of this rare situation by clearing the CF flag.
The RDRAND instruction returns with the carry flag set (CF = 1) to indicate data was 
returned. Software using the RDRAND instruction to get random numbers should retry 
for a limited number of iterations while RDRAND returns CF=0 and should complete 
when data is returned, indicated with CF=1. This will deal with transitory underflows. A 
retry limit should be employed to prevent a hard failure in the RNG (expected to be 
extremely rare) leading to a busy loop in software.
The intrinsic primitive for RDRAND is defined to address software’s need for the common 
cases (CF = 1) and the rare situations (CF = 0). The intrinsic primitive returns a value 
that reflects the value of the carry flag returned by the underlying RDRAND instruction. 
The example below illustrates the recommended usage of an RDRAND instrinsic in a 
utility function, a loop to fetch a 64 bit random value with a retry count limit of 10. A C 
implementation might be written as follows:

----------------------------------------------------------------------------------------
#define SUCCESS 1
#define RETRY_LIMIT_EXCEEDED 0
#define RETRY_LIMIT 10

int get_random_64( unsigned __int 64 * arand)
{int i ; 

for ( i = 0; i < RETRY_LIMIT; i ++) {
if(_rdrand64_step(arand) ) return SUCCESS;

}
return RETRY_LIMIT_EXCEEDED;

}

-------------------------------------------------------------------------------



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -12

...

3. Updates to Chapter 3, Volume 2A
Change bars show changes to Chapter 3 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A: Instruction Set Reference, A-M.

------------------------------------------------------------------------------------------

...

3.1.1.6  CPUID Support Column in the Instruction Summary Table
The fourth column holds abbreviated CPUID feature flags (e.g. appropriate bit in
CPUID.1.ECX, CPUID.1.EDX for SSE/SSE2/SSE3/SSSE3/SSE4.1/SSE4.2/AESNI/
PCLMULQDQ/AVX/RDRAND support) that indicate processor support for the instruc-
tion. If the corresponding flag is ‘0’, the instruction will #UD.

...

CPUID—CPU Identification

Instruction Operand Encoding

Description

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. If 
a software procedure can set and clear this flag, the processor executing the procedure 
supports the CPUID instruction. This instruction operates the same in non-64-bit modes 
and 64-bit mode.

CPUID returns processor identification and feature information in the EAX, EBX, ECX, 
and EDX registers.1 The instruction’s output is dependent on the contents of the EAX 
register upon execution (in some cases, ECX as well). For example, the following 
pseudocode loads EAX with 00H and causes CPUID to return a Maximum Return Value 
and the Vendor Identification String in the appropriate registers:

MOV EAX, 00H
CPUID

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F A2 CPUID A Valid Valid Returns processor 
identification and feature 
information to the EAX, 
EBX, ECX, and EDX 
registers, as determined by 
input entered in EAX (in 
some cases, ECX as well).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A NA NA NA NA

1. On Intel 64 processors, CPUID clears the high 32 bits of the RAX/RBX/RCX/RDX registers in all 
modes.



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -13

Table 3-17 shows information returned, depending on the initial value loaded into the 
EAX register. Table 3-18 shows the maximum CPUID input value recognized for each 
family of IA-32 processors on which CPUID is implemented. 

Two types of information are returned: basic and extended function information. If a 
value entered for CPUID.EAX is higher than the maximum input value for basic or 
extended function for that processor then the data for the highest basic information leaf 
is returned. For example, using the Intel Core i7 processor, the following is true:

CPUID.EAX = 05H (* Returns MONITOR/MWAIT leaf. *) 
CPUID.EAX = 0AH (* Returns Architectural Performance Monitoring leaf. *) 
CPUID.EAX = 0BH (* Returns Extended Topology Enumeration leaf. *) 
CPUID.EAX = 0CH (* INVALID: Returns the same information as CPUID.EAX = 0BH. *) 
CPUID.EAX = 80000008H (* Returns linear/physical address size data. *)
CPUID.EAX = 8000000AH (* INVALID: Returns same information as CPUID.EAX = 0BH. *)

If a value entered for CPUID.EAX is less than or equal to the maximum input value and 
the leaf is not supported on that processor then 0 is returned in all the registers. For 
example, using the Intel Core i7 processor, the following is true:

CPUID.EAX = 07H (*Returns EAX=EBX=ECX=EDX=0. *)

When CPUID returns the highest basic leaf information as a result of an invalid input EAX 
value, any dependence on input ECX value in the basic leaf is honored.

CPUID can be executed at any privilege level to serialize instruction execution. Serial-
izing instruction execution guarantees that any modifications to flags, registers, and 
memory for previous instructions are completed before the next instruction is fetched 
and executed.

See also: 

“Serializing Instructions” in Chapter 8, “Multiple-Processor Management,” in the Intel® 

64 and IA-32 Architectures Software Developer’s Manual, Volume 3A

“Caching Translation Information” in Chapter 4, “Paging,” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Table 3-17   Information Returned by CPUID Instruction

Initial EAX 
Value Information Provided about the Processor

Basic CPUID Information

0H EAX
EBX
ECX
EDX

Maximum Input Value for Basic CPUID Information (see Table 3-18)
“Genu”
“ntel”
“ineI”

01H EAX

EBX

ECX
EDX

Version Information: Type, Family, Model, and Stepping ID (see 
Figure 3-5)

Bits 07-00: Brand Index
Bits 15-08: CLFLUSH line size (Value ∗ 8 = cache line size in bytes)
Bits 23-16: Maximum number of addressable IDs for logical processors 
in this physical package*. 
Bits 31-24: Initial APIC ID

Feature Information (see Figure 3-6 and Table 3-20)
Feature Information (see Figure 3-7 and Table 3-21)



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -14

NOTES: 
* The nearest power-of-2 integer that is not smaller than EBX[23:16]

is the number of unique initial APIC IDs reserved for addressing dif-
ferent logical processors in a physical package. 

02H EAX
EBX
ECX
EDX

Cache and TLB Information (see Table 3-22)
Cache and TLB Information
Cache and TLB Information
Cache and TLB Information

03H EAX
EBX

ECX

EDX

Reserved.
Reserved.

Bits 00-31 of 96 bit processor serial number. (Available in Pentium III 
processor only; otherwise, the value in this register is reserved.)

Bits 32-63 of 96 bit processor serial number. (Available in Pentium III 
processor only; otherwise, the value in this register is reserved.)

NOTES: 
Processor serial number (PSN) is not supported in the Pentium 4 pro-
cessor or later. On all models, use the PSN flag (returned using
CPUID) to check for PSN support before accessing the feature. 

See AP-485, Intel Processor Identification and the CPUID Instruc-
tion (Order Number 241618) for more information on PSN.

CPUID leaves > 3 < 80000000 are visible only when 
IA32_MISC_ENABLE.BOOT_NT4[bit 22] = 0 (default).

Deterministic Cache Parameters Leaf 

04H NOTES:
Leaf 04H output depends on the initial value in ECX. 
See also: “INPUT EAX = 4: Returns Deterministic Cache Parameters 
for each level on page 3-224.

EAX Bits 04-00: Cache Type Field
0 = Null - No more caches
1 = Data Cache 
2 = Instruction Cache
3 = Unified Cache
4-31 = Reserved

Bits 07-05: Cache Level (starts at 1) 
Bit 08: Self Initializing cache level (does not need SW initialization)
Bit 09: Fully Associative cache

Bits 13-10: Reserved
Bits 25-14: Maximum number of addressable IDs for logical processors 
sharing this cache*, ** 
Bits 31-26: Maximum number of addressable IDs for processor cores in 
the physical package*, ***, ****

Table 3-17   Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -15

EBX Bits 11-00: L = System Coherency Line Size*
Bits 21-12: P = Physical Line partitions*
Bits 31-22: W = Ways of associativity*

ECX Bits 31-00: S = Number of Sets*

EDX Bit 0: Write-Back Invalidate/Invalidate
0 = WBINVD/INVD from threads sharing this cache acts upon lower 
level caches for threads sharing this cache.
1 = WBINVD/INVD is not guaranteed to act upon lower level caches 
of non-originating threads sharing this cache.

Bit 1: Cache Inclusiveness
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.

Bit 2: Complex Cache Indexing
0 = Direct mapped cache.
1 = A complex function is used to index the cache, potentially using 

all address bits.
Bits 31-03: Reserved = 0

NOTES:
* Add one to the return value to get the result. 
** The nearest power-of-2 integer that is not smaller than (1 + 

EAX[25:14]) is the number of unique initial APIC IDs reserved for 
addressing different logical processors sharing this cache

*** The nearest power-of-2 integer that is not smaller than (1 + 
EAX[31:26]) is the number of unique Core_IDs reserved for address-
ing different processor cores in a physical package. Core ID is a sub-
set of bits of the initial APIC ID. 

****The returned value is constant for valid initial values in ECX. Valid 
ECX values start from 0. 

MONITOR/MWAIT Leaf 

05H EAX Bits 15-00: Smallest monitor-line size in bytes (default is processor's 
monitor granularity) 
Bits 31-16: Reserved = 0

EBX Bits 15-00: Largest monitor-line size in bytes (default is processor's 
monitor granularity) 
Bits 31-16: Reserved = 0

ECX Bit 00: Enumeration of Monitor-Mwait extensions (beyond EAX and 
EBX registers) supported

Bit 01: Supports treating interrupts as break-event for MWAIT, even 
when interrupts disabled

Bits 31 - 02: Reserved 

Table 3-17   Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -16

EDX Bits 03 - 00: Number of C0* sub C-states supported using MWAIT
Bits 07 - 04: Number of C1* sub C-states supported using MWAIT
Bits 11 - 08: Number of C2* sub C-states supported using MWAIT
Bits 15 - 12: Number of C3* sub C-states supported using MWAIT
Bits 19 - 16: Number of C4* sub C-states supported using MWAIT
Bits 31 - 20: Reserved = 0
NOTE:
* The definition of C0 through C4 states for MWAIT extension are pro-

cessor-specific C-states, not ACPI C-states.

Thermal and Power Management Leaf 

06H EAX

EBX

Bit 00: Digital temperature sensor is supported if set
Bit 01: Intel Turbo Boost Technology Available (see description of 
IA32_MISC_ENABLE[38]).
Bit 02: ARAT. APIC-Timer-always-running feature is supported if set.
Bit 03: Reserved 
Bit 04: PLN. Power limit notification controls are supported if set.
Bit 05: ECMD. Clock modulation duty cycle extension is supported if set.
Bit 06: PTM. Package thermal management is supported if set.
Bits 31 - 07: Reserved 
Bits 03 - 00: Number of Interrupt Thresholds in Digital Thermal Sensor
Bits 31 - 04: Reserved 

ECX Bit 00: Hardware Coordination Feedback Capability (Presence of 
IA32_MPERF and IA32_APERF). The capability to provide a measure of 
delivered processor performance (since last reset of the counters), as 
a percentage of expected processor performance at frequency speci-
fied in CPUID Brand String
Bits 02 - 01: Reserved = 0
Bit 03: The processor supports performance-energy bias preference if 
CPUID.06H:ECX.SETBH[bit 3] is set and it also implies the presence of a 
new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H)
Bits 31 - 04: Reserved = 0

EDX Reserved = 0

Structured Extended Feature Flags Enumeration Leaf (Output depends on ECX 
input value)

07H Sub leaf 0 (Input ECX = 0). 

EAX Bits 31-00: Reports the maximum number of supported leaf 7 sub-
leaves.

EBX Bit 00: Supports RDFSBASE/RDGSBASE/WRFSBASE/WRGSBASE if 1.
Bit 06:01: Reserved
Bit 07: Supports Supervisor Mode Execution Protection (SMEP) if 1
Bit 08: Reserved
Bit 09: Supports Enhanced REP MOVSB/STOSB if 1.
Bit 31:10: Reserved

ECX Reserved 

EDX Reserved.

Table 3-17   Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -17

Direct Cache Access Information Leaf 

09H EAX

EBX

ECX

EDX

Value of bits [31:0] of IA32_PLATFORM_DCA_CAP MSR (address 
1F8H)

Reserved 

Reserved 

Reserved 

Architectural Performance Monitoring Leaf 

0AH EAX Bits 07 - 00: Version ID of architectural performance monitoring
Bits 15- 08: Number of general-purpose performance monitoring 
counter per logical processor
Bits 23 - 16: Bit width of general-purpose, performance monitoring 
counter 
Bits 31 - 24: Length of EBX bit vector to enumerate architectural per-
formance monitoring events

EBX Bit 00: Core cycle event not available if 1
Bit 01: Instruction retired event not available if 1
Bit 02: Reference cycles event not available if 1
Bit 03: Last-level cache reference event not available if 1
Bit 04: Last-level cache misses event not available if 1
Bit 05: Branch instruction retired event not available if 1
Bit 06: Branch mispredict retired event not available if 1
Bits 31- 07: Reserved = 0

ECX Reserved = 0

EDX Bits 04 - 00: Number of fixed-function performance counters (if Ver-
sion ID > 1)
Bits 12- 05: Bit width of fixed-function performance counters (if Ver-
sion ID > 1)
Reserved = 0

Extended Topology Enumeration Leaf 

0BH NOTES:
Most of Leaf 0BH output depends on the initial value in ECX. 
EDX output do not vary with initial value in ECX.
ECX[7:0] output always reflect initial value in ECX.
All other output value for an invalid initial value in ECX are 0.
Leaf 0BH exists if EBX[15:0] is not zero.

EAX Bits 04-00: Number of bits to shift right on x2APIC ID to get a unique 
topology ID of the next level type*. All logical processors with the 
same next level ID share current level.
Bits 31-05: Reserved.

EBX Bits 15 - 00: Number of logical processors at this level type. The num-
ber reflects configuration as shipped by Intel**.
Bits 31- 16: Reserved.

Table 3-17   Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -18

ECX Bits 07 - 00: Level number. Same value in ECX input
Bits 15 - 08: Level type***.
Bits 31 - 16:: Reserved.

EDX Bits 31- 00: x2APIC ID the current logical processor.

NOTES:
* Software should use this field (EAX[4:0]) to enumerate processor 
topology of the system.

** Software must not use EBX[15:0] to enumerate processor topology 
of the system. This value in this field (EBX[15:0]) is only intended for 
display/diagnostic purposes. The actual number of logical processors 
available to BIOS/OS/Applications may be different from the value of 
EBX[15:0], depending on software and platform hardware configura-
tions. 

*** The value of the “level type” field is not related to level numbers in 
any way, higher “level type” values do not mean higher levels. Level 
type field has the following encoding:
0 : invalid
1 : SMT
2 : Core
3-255 : Reserved

Processor Extended State Enumeration Main Leaf (EAX = 0DH, ECX = 0)

0DH NOTES:
Leaf 0DH main leaf (ECX = 0). 

EAX Bits 31-00: Reports the valid bit fields of the lower 32 bits of XCR0. If 
a bit is 0, the corresponding bit field in XCR0 is reserved.
Bit 00: legacy x87 
Bit 01: 128-bit SSE
Bit 02: 256-bit AVX
Bits 31- 03: Reserved

EBX Bits 31-00: Maximum size (bytes, from the beginning of the 
XSAVE/XRSTOR save area) required by enabled features in XCR0. May 
be different than ECX if some features at the end of the XSAVE save 
area are not enabled.

ECX Bit 31-00: Maximum size (bytes, from the beginning of the 
XSAVE/XRSTOR save area) of the XSAVE/XRSTOR save area required 
by all supported features in the processor, i.e all the valid bit fields in 
XCR0. 

EDX Bit 31-00: Reports the valid bit fields of the upper 32 bits of XCR0. If a 
bit is 0, the corresponding bit field in XCR0 is reserved.

Processor Extended State Enumeration Sub-leaf (EAX = 0DH, ECX = 1)

Table 3-17   Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -19

EAX

EBX

ECX

EDX

Bits 31-01: Reserved

Bit 00: XSAVEOPT is available;

Reserved

Reserved

Reserved

Processor Extended State Enumeration Sub-leaves (EAX = 0DH, ECX = n, n > 1)

0DH NOTES:
Leaf 0DH output depends on the initial value in ECX. 
If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0.
Each valid sub-leaf index maps to a valid bit in the XCR0 register 
starting at bit position 2

EAX Bits 31-0: The size in bytes (from the offset specified in EBX) of the 
save area for an extended state feature associated with a valid sub-
leaf index, n. This field reports 0 if the sub-leaf index, n, is invalid*.

EBX Bits 31-0: The offset in bytes of this extended state component’s save 
area from the beginning of the XSAVE/XRSTOR area.
This field reports 0 if the sub-leaf index, n, is invalid*.

ECX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is 
reserved.

EDX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is 
reserved.

Unimplemented CPUID Leaf Functions

40000000H 
-

4FFFFFFFH

Invalid. No existing or future CPU will return processor identification or 
feature information if the initial EAX value is in the range 40000000H 
to 4FFFFFFFH.

Extended Function CPUID Information

80000000H EAX Maximum Input Value for Extended Function CPUID Information (see 
Table 3-18).

EBX
ECX
EDX

Reserved
Reserved
Reserved

80000001H EAX

EBX

ECX

Extended Processor Signature and Feature Bits.

Reserved

Bit 00: LAHF/SAHF available in 64-bit mode
Bits 31-01 Reserved

Table 3-17   Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -20

EDX Bits 10-00: Reserved
Bit 11: SYSCALL/SYSRET available (when in 64-bit mode)
Bits 19-12: Reserved = 0
Bit 20: Execute Disable Bit available
Bits 25-21: Reserved = 0
Bit 26: 1-GByte pages are available if 1
Bit 27: RDTSCP and IA32_TSC_AUX are available if 1
Bits 28: Reserved = 0
Bit 29: Intel® 64 Architecture available if 1
Bits 31-30: Reserved = 0

80000002H EAX
EBX
ECX
EDX

Processor Brand String
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000003H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000004H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000005H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Reserved = 0

80000006H EAX
EBX

Reserved = 0
Reserved = 0

ECX

EDX

Bits 07-00: Cache Line size in bytes
Bits 11-08: Reserved
Bits 15-12: L2 Associativity field *
Bits 31-16: Cache size in 1K units
Reserved = 0

NOTES:
* L2 associativity field encodings:

00H - Disabled
01H - Direct mapped
02H - 2-way
04H - 4-way
06H - 8-way
08H - 16-way
0FH - Fully associative

Table 3-17   Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -21

...

80000007H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Bits 07-00: Reserved = 0
Bit 08: Invariant TSC available if 1
Bits 31-09: Reserved = 0

80000008H EAX Linear/Physical Address size 
Bits 07-00: #Physical Address Bits*
Bits 15-8: #Linear Address Bits
Bits 31-16: Reserved = 0

EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0

NOTES:
* If CPUID.80000008H:EAX[7:0] is supported, the maximum physical 

address number supported should come from this field.

Table 3-17   Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -22

Figure 3-6   Feature Information Returned in the ECX Register

Table 3-20   Feature Information Returned in the ECX Register 

Bit # Mnemonic Description

0 SSE3 Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the 
processor supports this technology.

1 PCLMULQDQ PCLMULQDQ. A value of 1 indicates the processor supports the 
PCLMULQDQ instruction

2 DTES64 64-bit DS Area. A value of 1 indicates the processor supports DS 
area using 64-bit layout

3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor supports 
this feature. 

4 DS-CPL CPL Qualified Debug Store. A value of 1 indicates the processor 
supports the extensions to the Debug Store feature to allow for 
branch message storage qualified by CPL.

OM16524b

CNXT-ID — L1 Context ID

012345678910111213141516171819202122232425262728293031

ECX

TM2 — Thermal Monitor 2
EST —  Enhanced  Intel  SpeedStep®  Technology

DS-CPL — CPL Qualified Debug Store
MONITOR — MONITOR/MWAIT

PCLMULQDQ  —  Carryless Multiplication

Reserved

CMPXCHG16B

SMX — Safer Mode Extensions

xTPR Update Control

SSSE3 —  SSSE3 Extensions

PDCM —  Perf/Debug Capability MSR

VMX — Virtual Machine Extensions 

SSE4_1 —  SSE4.1

OSXSAVE

SSE4_2 —  SSE4.2

DCA —  Direct Cache Access

x2APIC

POPCNT

XSAVE

AVX

AES

FMA —  Fused Multiply Add

SSE3  —  SSE3 Extensions

PCID —  Process-context Identifiers

0

DTES64  —  64-bit DS Area

MOVBE

TSC-Deadline

RDRAND



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -23

5 VMX Virtual Machine Extensions. A value of 1 indicates that the 
processor supports this technology

6 SMX Safer Mode Extensions. A value of 1 indicates that the 
processor supports this technology. See Chapter 6, “Safer Mode 
Extensions Reference”.

7 EIST Enhanced Intel SpeedStep® technology. A value of 1 indicates 
that the processor supports this technology.

8 TM2 Thermal Monitor 2. A value of 1 indicates whether the processor 
supports this technology. 

9 SSSE3 A value of 1 indicates the presence of the Supplemental 
Streaming SIMD Extensions 3 (SSSE3). A value of 0 indicates the 
instruction extensions are not present in the processor

10 CNXT-ID L1 Context ID. A value of 1 indicates the L1 data cache mode can 
be set to either adaptive mode or shared mode. A value of 0 
indicates this feature is not supported. See definition of the 
IA32_MISC_ENABLE MSR Bit 24 (L1 Data Cache Context Mode) 
for details.

11 Reserved Reserved

12 FMA A value of 1 indicates the processor supports FMA extensions 
using YMM state.

13 CMPXCHG16B CMPXCHG16B Available. A value of 1 indicates that the feature 
is available. See the “CMPXCHG8B/CMPXCHG16B—Compare and 
Exchange Bytes” section in this chapter for a description.

14 xTPR Update 
Control

xTPR Update Control. A value of 1 indicates that the processor 
supports changing IA32_MISC_ENABLE[bit 23]. 

15 PDCM Perfmon and Debug Capability: A value of 1 indicates the 
processor supports the performance and debug feature indication 
MSR IA32_PERF_CAPABILITIES.

16 Reserved Reserved

17 PCID Process-context identifiers. A value of 1 indicates that the 
processor supports PCIDs and that software may set CR4.PCIDE 
to 1.

18 DCA  A value of 1 indicates the processor supports the ability to 
prefetch data from a memory mapped device.

19 SSE4.1 A value of 1 indicates that the processor supports SSE4.1. 

20 SSE4.2 A value of 1 indicates that the processor supports SSE4.2. 

21 x2APIC A value of 1 indicates that the processor supports x2APIC 
feature.

22 MOVBE A value of 1 indicates that the processor supports MOVBE 
instruction.

23 POPCNT A value of 1 indicates that the processor supports the POPCNT 
instruction.

24 TSC-Deadline A value of 1 indicates that the processor’s local APIC timer 
supports one-shot operation using a TSC deadline value.

25 AESNI A value of 1 indicates that the processor supports the AESNI 
instruction extensions.

Table 3-20   Feature Information Returned in the ECX Register  (Contd.)

Bit # Mnemonic Description



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -24

...

INPUT EAX = 07H: Returns Structured Extended Feature Enumeration Information

When CPUID executes with EAX set to 7 and ECX = 0, the processor returns information 
about the maximum number of sub-leaves that contain extended feature flags. See 
Table 3-17. 

When CPUID executes with EAX set to 7 and ECX = n (n > 1and less than the number 
of non-zero bits in CPUID.(EAX=07H, ECX= 0H).EAX, the processor returns information 
about extended feature flags. See Table 3-17. In subleaf 0, only EAX has the number of 
subleafs.  In subleaf 0, EBX, ECX & EDX all contain extended feature flags.

...

IA-32 Architecture Compatibility

CPUID is not supported in early models of the Intel486 processor or in any IA-32 
processor earlier than the Intel486 processor.

Operation

IA32_BIOS_SIGN_ID MSR ← Update with installed microcode revision number;

CASE (EAX) OF
EAX = 0:

EAX ← Highest basic function input value understood by CPUID;
EBX ← Vendor identification string;
EDX ← Vendor identification string;
ECX ← Vendor identification string;

BREAK;
EAX = 1H:

EAX[3:0] ← Stepping ID; 
EAX[7:4] ← Model; 
EAX[11:8] ← Family; 
EAX[13:12] ← Processor type; 
EAX[15:14] ← Reserved;

26 XSAVE A value of 1 indicates that the processor supports the 
XSAVE/XRSTOR processor extended states feature, the 
XSETBV/XGETBV instructions, and XCR0.

27 OSXSAVE A value of 1 indicates that the OS has enabled XSETBV/XGETBV 
instructions to access XCR0, and support for processor extended 
state management using XSAVE/XRSTOR.

28 AVX A value of 1 indicates the processor supports the AVX instruction 
extensions.

29 Reserved Reserved

30
RDRAND

A value of 1 indicates that processor supports RDRAND 
instruction.

31 Not Used Always returns 0

Table 3-20   Feature Information Returned in the ECX Register  (Contd.)

Bit # Mnemonic Description



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -25

EAX[19:16] ← Extended Model;
EAX[27:20] ← Extended Family;
EAX[31:28] ← Reserved;
EBX[7:0] ← Brand Index; (* Reserved if the value is zero. *)
EBX[15:8] ← CLFLUSH Line Size;
EBX[16:23] ← Reserved; (* Number of threads enabled = 2 if MT enable fuse set. *)
EBX[24:31] ← Initial APIC ID;
ECX ← Feature flags; (* See Figure 3-6. *)
EDX ← Feature flags; (* See Figure 3-7. *)

BREAK;
EAX = 2H:

EAX ← Cache and TLB information; 
 EBX ← Cache and TLB information; 
 ECX ← Cache and TLB information; 

EDX ← Cache and TLB information; 
BREAK;
EAX = 3H:

EAX ← Reserved; 
 EBX ← Reserved; 
 ECX ← ProcessorSerialNumber[31:0]; 

(* Pentium III processors only, otherwise reserved. *)
EDX ← ProcessorSerialNumber[63:32]; 
(* Pentium III processors only, otherwise reserved. *

BREAK
EAX = 4H:

EAX ← Deterministic Cache Parameters Leaf; (* See Table 3-17. *)
EBX ← Deterministic Cache Parameters Leaf; 

 ECX ← Deterministic Cache Parameters Leaf; 
EDX ← Deterministic Cache Parameters Leaf; 

BREAK;
EAX = 5H:

EAX ← MONITOR/MWAIT Leaf; (* See Table 3-17. *)
 EBX ← MONITOR/MWAIT Leaf; 
 ECX ← MONITOR/MWAIT Leaf; 

EDX ← MONITOR/MWAIT Leaf; 
BREAK;
EAX = 6H:

EAX ← Thermal and Power Management Leaf; (* See Table 3-17. *)
 EBX ← Thermal and Power Management Leaf; 
 ECX ← Thermal and Power Management Leaf; 

EDX ← Thermal and Power Management Leaf; 
BREAK;
EAX = 7H:

EAX ← Structured Extended Feature Flags Enumeration Leaf; (* See Table 3-17. *)
EBX ← Structured Extended Feature Flags Enumeration Leaf; 

 ECX ← Structured Extended Feature Flags Enumeration Leaf; 
EDX ← Structured Extended Feature Flags Enumeration Leaf; 

BREAK;
EAX = 8H:

EAX ← Reserved = 0;



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -26

 EBX ← Reserved = 0; 
 ECX ← Reserved = 0; 

EDX ← Reserved = 0; 
BREAK;
EAX = 9H:

EAX ← Direct Cache Access Information Leaf; (* See Table 3-17. *)
 EBX ← Direct Cache Access Information Leaf; 
 ECX ← Direct Cache Access Information Leaf; 

EDX ← Direct Cache Access Information Leaf; 
BREAK;
EAX = AH:

EAX ← Architectural Performance Monitoring Leaf; (* See Table 3-17. *)
 EBX ← Architectural Performance Monitoring Leaf; 
 ECX ← Architectural Performance Monitoring Leaf; 

EDX ← Architectural Performance Monitoring Leaf; 
BREAK

EAX = BH:
EAX ← Extended Topology Enumeration Leaf; (* See Table 3-17. *)
EBX ← Extended Topology Enumeration Leaf; 

 ECX ← Extended Topology Enumeration Leaf; 
EDX ← Extended Topology Enumeration Leaf; 

BREAK;
EAX = CH:

EAX ← Reserved = 0;
 EBX ← Reserved = 0; 
 ECX ← Reserved = 0; 

EDX ← Reserved = 0; 
BREAK;
EAX = DH:

EAX ← Processor Extended State Enumeration Leaf; (* See Table 3-17. *)
 EBX ← Processor Extended State Enumeration Leaf; 
 ECX ← Processor Extended State Enumeration Leaf; 

EDX ← Processor Extended State Enumeration Leaf; 
BREAK;

BREAK;
EAX = 80000000H:

EAX ← Highest extended function input value understood by CPUID;
EBX ← Reserved; 
ECX ← Reserved; 
EDX ← Reserved; 

BREAK;
EAX = 80000001H:

EAX ← Reserved; 
EBX ← Reserved; 
ECX ← Extended Feature Bits (* See Table 3-17.*); 
EDX ← Extended Feature Bits (* See Table 3-17. *); 

BREAK;
EAX = 80000002H:

EAX ← Processor Brand String; 
EBX ← Processor Brand String, continued;



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -27

ECX ← Processor Brand String, continued; 
EDX ← Processor Brand String, continued; 

BREAK;
EAX = 80000003H:

EAX ← Processor Brand String, continued; 
EBX ← Processor Brand String, continued; 
ECX ← Processor Brand String, continued; 
EDX ← Processor Brand String, continued; 

BREAK;
EAX = 80000004H:

EAX ← Processor Brand String, continued; 
EBX ← Processor Brand String, continued; 
ECX ← Processor Brand String, continued; 
EDX ← Processor Brand String, continued;

BREAK;
EAX = 80000005H:

EAX ← Reserved = 0; 
EBX ← Reserved = 0; 
ECX ← Reserved = 0; 
EDX ← Reserved = 0; 

BREAK;
EAX = 80000006H:

EAX ← Reserved = 0; 
EBX ← Reserved = 0; 
ECX ← Cache information; 
EDX ← Reserved = 0; 

BREAK;
EAX = 80000007H:

EAX ← Reserved = 0; 
EBX ← Reserved = 0; 
ECX ← Reserved = 0; 
EDX ← Reserved = Misc Feature Flags; 

BREAK;
EAX = 80000008H:

EAX ← Reserved = Physical Address Size Information; 
EBX ← Reserved = Virtual Address Size Information; 
ECX ← Reserved = 0; 
EDX ← Reserved = 0; 

BREAK;
EAX >= 40000000H and EAX <= 4FFFFFFFH:
DEFAULT: (* EAX = Value outside of recognized range for CPUID. *)

(* If the highest basic information leaf data depend on ECX input value, ECX is honored.*)
EAX ← Reserved; (* Information returned for highest basic information leaf. *)
EBX ← Reserved; (* Information returned for highest basic information leaf. *)
ECX ← Reserved; (* Information returned for highest basic information leaf. *)
EDX ← Reserved; (* Information returned for highest basic information leaf. *)

BREAK;
ESAC;



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -28

Flags Affected

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

In earlier IA-32 processors that do not support the CPUID instruc-
tion, execution of the instruction results in an invalid opcode (#UD) 
exception being generated.

...

4. Updates to Chapter 4, Volume 2B
Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2B: Instruction Set Reference, N-Z.

------------------------------------------------------------------------------------------

...

RDRAND—Read Random Number

Instruction Operand Encoding

Description

Loads a hardware generated random value and store it in the destination register.  The 
size of the random value is determined by the destination register size and operating 
mode.  The Carry Flag indicates whether  a random value is available at the time the 
instruction is executed.  CF=1 indicates that the data in the destination is valid.  Other-
wise CF=0 and the data in the destination operand will be returned as zeros for the spec-
ified width.  All other flags are forced to 0 in either situation.  Software must check the 
state of CF=1 for determining if a valid random value has been returned, otherwise it is 
expected to loop and retry execution of RDRAND (see Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 1, Section 7.3.18, “Random Number Generator 
Instruction”).

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F C7 /6

RDRAND r16

A V/V RDRAND Read a 16-bit random 
number and store in the 
destination register.

0F C7 /6

RDRAND r32

A V/V RDRAND Read a 32-bit random 
number and store in the 
destination register.

REX.W + 0F C7 /6

RDRAND r64

A V/I RDRAND Read a 64-bit random 
number and store in the 
destination register.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:r/m (w) NA NA NA



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -29

This instruction is available at all privilege levels.  For virtualization supporting lockstep 
operation, a virtualization control exists that allows the virtual machine monitor to trap 
on the instruction. "RDRAND exiting" will be controlled by bit 11 of the secondary 
processor-based VM-execution control.  A VMEXIT due to RDRAND will have exit reason 
57 (decimal).
In 64-bit mode, the instruction's default operation size is 32 bits. Using a REX prefix in 
the form of REX.B permits access to additional registers (R8-R15). Using a REX prefix in 
the form of REX.W promotes operation to 64 bit operands. See the summary chart at the 
beginning of this section for encoding data and limits.

THEN 

CASE of

osize is 64: DEST[63:0] ← HW_RND_GEN.data;

osize is 32: DEST[31:0] ← HW_RND_GEN.data;

osize is 16: DEST[15:0] ← HW_RND_GEN.data;

ESAC

CF ← 1;

ELSE

CASE of

osize is 64: DEST[63:0] ← 0;

osize is 32: DEST[31:0] ← 0;

osize is 16: DEST[15:0] ← 0;

ESAC

CF ← 0;

FI

OF, SF, ZF, AF, PF ← 0;

Flags Affected

All flags are affected.

Intel C/C++ Compiler Intrinsic Equivalent

RDRAND int _rdrand16_step( unsigned short * );

RDRAND int _rdrand32_step( unsigned int * );

RDRAND int _rdrand64_step( unsigned __int64 *);

Protected Mode Exceptions
#UD If the LOCK prefix is used.

If the F2H or F3H prefix is used.
If CPUID.01H:ECX.RDRAND[bit 30] = 0.



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -30

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

...

XRSTOR—Restore Processor Extended States

Instruction Operand Encoding

Description

Performs a full or partial restore of the enabled processor states using the state informa-
tion stored in the memory address specified by the source operand. The implicit 
EDX:EAX register pair specifies a 64-bit restore mask.

The format of the XSAVE/XRSTOR area is shown in Table 4-18. The memory layout of the 
XSAVE/XRSTOR area may have holes between save areas written by the processor as a 
result of the processor not supporting certain processor extended states or system soft-
ware not supporting certain processor extended states. There is no relationship between 
the order of XCR0 bits and the order of the state layout. States corresponding to higher 
and lower XCR0 bits may be intermingled in the layout.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F AE /5 XRSTOR mem A Valid Valid Restore processor extended 
states from memory. The 
states are specified by 
EDX:EAX

REX.W+ 0F AE 
/5

XRSTOR64 mem A Valid N.E. Restore processor extended 
states from memory. The 
states are specified by 
EDX:EAX

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:r/m (r) NA NA NA



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -31

XRSTOR operates on each subset of the processor state or a processor extended state in 
one of three ways (depending on the corresponding bit in XCR0 
(XFEATURE_ENABLED_MASK register), the restore mask EDX:EAX, and the save mask 
XSAVE.HEADER.XSTATE_BV in memory):
• Updates the processor state component using the state information stored in the 

respective save area (see Table 4-18) of the source operand, if the corresponding bit 
in XCR0, EDX:EAX, and XSAVE.HEADER.XSTATE_BV are all 1.

• Writes certain registers in the processor state component using processor-supplied 
values (see Table 4-20) without using state information stored in respective save 
area of the memory region, if the corresponding bit in XCR0 and EDX:EAX are both 
1, but the corresponding bit in XSAVE.HEADER.XSTATE_BV is 0.

• The processor state component is unchanged, if the corresponding bit in XCR0 or 
EDX:EAX is 0.

The format of the header section (XSAVE.HEADER) of the XSAVE/XRSTOR area is shown 
in Table 4-19. 

Table 4-18    General Layout of XSAVE/XRSTOR Save Area

Save Areas Offset (Byte) Size (Bytes)

FPU/SSE SaveArea1

NOTES:
1. Bytes 464:511 are available for software use. XRSTOR ignores the value contained in bytes 

464:511 of an XSAVE SAVE image.

0 512

Header 512 64

Reserved 
(Ext_Save_Area_2)

CPUID.(EAX=0DH, ECX=2):EBX CPUID.(EAX=0DH, ECX=2):EAX

Reserved(Ext_Save_A
rea_4)2

2. State corresponding to higher and lower XCR0 bits may be intermingled in layout.

CPUID.(EAX=0DH, ECX=4):EBX CPUID.(EAX=0DH, ECX=4):EAX

Reserved(Ext_Save_A
rea_3)

CPUID.(EAX=0DH, ECX=3):EBX CPUID.(EAX=0DH, ECX=3):EAX

Reserved(...) ... ...



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -32

If a processor state component is not enabled in XCR0 but the corresponding save mask 
bit in XSAVE.HEADER.XSTATE_BV is 1, an attempt to execute XRSTOR will cause a 
#GP(0) exception. Software may specify all 1’s in the implicit restore mask EDX:EAX, so 
that all the enabled processors states in XCR0 are restored from state information stored 
in memory or from processor supplied values. When using all 1's as the restore mask, 
software is required to determine the total size of the XSAVE/XRSTOR save area (speci-
fied as source operand) to fit all enabled processor states by using the value enumerated 
in CPUID.(EAX=0D, ECX=0):EBX. While it's legal to set any bit in the EDX:EAX mask to 
1, it is strongly recommended to set only the bits that are required to save/restore 
specific states.

An attempt to restore processor states with writing 1s to reserved bits in certain regis-
ters (see Table 4-21) will cause a #GP(0) exception. 

Because bit 63 of XCR0 is reserved for future bit vector expansion, it will not be used for 
any future processor state feature, and XRSTOR will ignore bit 63 of EDX:EAX 
(EDX[31]).

...

5. Updates to Appendix A, Volume 2B
Change bars show changes to Appendix A of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2B: Instruction Set Reference, N-Z.

------------------------------------------------------------------------------------------

...

A.2.1  Codes for Addressing Method
The following abbreviations are used to document addressing methods:

A Direct address: the instruction has no ModR/M byte; the address of the operand 
is encoded in the instruction. No base register, index register, or scaling factor 
can be applied (for example, far JMP (EA)).

C The reg field of the ModR/M byte selects a control register (for example, MOV 
(0F20, 0F22)).

D The reg field of the ModR/M byte selects a debug register (for example, 
MOV (0F21,0F23)).

E A ModR/M byte follows the opcode and specifies the operand. The operand is 
either a general-purpose register or a memory address. If it is a memory 
address, the address is computed from a segment register and any of the 

Table 4-19   XSAVE.HEADER Layout

15 8 7 0 Byte Offset 
from Header

Byte Offset from 
XSAVE/XRSTOR Area

Rsrvd (Must be 0) XSTATE_BV 0 512

Reserved Rsrvd (Must be 0) 16 528

Reserved Reserved 32 544

Reserved Reserved 48 560



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -33

following values: a base register, an index register, a scaling factor, a displace-
ment.

F EFLAGS/RFLAGS Register.

G The reg field of the ModR/M byte selects a general register (for example, AX 
(000)).

H The VEX.vvvv field of the VEX prefix selects a 128-bit XMM register or a 256-bit 
YMM register, determined by operand type. For legacy SSE encodings this 
operand does not exist, changing the instruction to destructive form.

I Immediate data: the operand value is encoded in subsequent bytes of the 
instruction.

J The instruction contains a relative offset to be added to the instruction pointer 
register (for example, JMP (0E9), LOOP).

L The upper 4 bits of the 8-bit immediate selects a 128-bit XMM register or a 256-
bit YMM register, determined by operand type. (the MSB is ignored in 32-bit 
mode)

M The ModR/M byte may refer only to memory (for example, BOUND, LES, LDS, 
LSS, LFS, LGS, CMPXCHG8B).

N The R/M field of the ModR/M byte selects a packed-quadword, MMX technology 
register.

O The instruction has no ModR/M byte. The offset of the operand is coded as a 
word or double word (depending on address size attribute) in the instruction. No 
base register, index register, or scaling factor can be applied (for example, MOV 
(A0–A3)).

P The reg field of the ModR/M byte selects a packed quadword MMX technology 
register.

Q A ModR/M byte follows the opcode and specifies the operand. The operand is 
either an MMX technology register or a memory address. If it is a memory 
address, the address is computed from a segment register and any of the 
following values: a base register, an index register, a scaling factor, and a 
displacement.

R The R/M field of the ModR/M byte may refer only to a general register (for 
example, MOV (0F20-0F23)).

S The reg field of the ModR/M byte selects a segment register (for example, MOV 
(8C,8E)).

U The R/M field of the ModR/M byte selects a 128-bit XMM register or a 256-bit 
YMM register, determined by operand type.

V The reg field of the ModR/M byte selects a 128-bit XMM register or a 256-bit YMM 
register, determined by operand type.

W A ModR/M byte follows the opcode and specifies the operand. The operand is 
either a 128-bit XMM register, a 256-bit YMM register (determined by operand 
type), or a memory address. If it is a memory address, the address is computed 
from a segment register and any of the following values: a base register, an 
index register, a scaling factor, and a displacement.

X Memory addressed by the DS:rSI register pair (for example, MOVS, CMPS, 
OUTS, or LODS).



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -34

Y Memory addressed by the ES:rDI register pair (for example, MOVS, CMPS, INS, 
STOS, or SCAS).

A.2.2  Codes for Operand Type
The following abbreviations are used to document operand types:

a Two one-word operands in memory or two double-word operands in memory, 
depending on operand-size attribute (used only by the BOUND instruction).

b Byte, regardless of operand-size attribute.

c Byte or word, depending on operand-size attribute.

d Doubleword, regardless of operand-size attribute.

dq Double-quadword, regardless of operand-size attribute.

p 32-bit, 48-bit, or 80-bit pointer, depending on operand-size attribute.

pd 128-bit or 256-bit packed double-precision floating-point data.

pi Quadword MMX technology register (for example: mm0).

ps 128-bit or 256-bit packed single-precision floating-point data.

q Quadword, regardless of operand-size attribute.

qq Quad-Quadword (256-bits), regardless of operand-size attribute.

s 6-byte or 10-byte pseudo-descriptor.

sd Scalar element of a 128-bit double-precision floating data.

ss Scalar element of a 128-bit single-precision floating data.

si Doubleword integer register (for example: eax).

v Word, doubleword or quadword (in 64-bit mode), depending on operand-size 
attribute.

w Word, regardless of operand-size attribute.

x dq or qq based on the operand-size attribute.

y Doubleword or quadword (in 64-bit mode), depending on operand-size 
attribute.

z Word for 16-bit operand-size or doubleword for 32 or 64-bit operand-size.

...

A.2.4.4  VEX Prefix Instructions
Instructions that include a VEX prefix are organized relative to the 2-byte and 3-byte 
opcode maps, based on the VEX.mmmmm field encoding of implied 0F, 0F38H, 0F3AH, 
respectively. Each entry in the opcode map of a VEX-encoded instruction is based on the 
value of the opcode byte, similar to non-VEX-encoded instructions. 

A VEX prefix includes several bit fields that encode implied 66H, F2H, F3H prefix func-
tionality (VEX.pp) and operand size/opcode information (VEX.L). See chapter 4 for 
details. 

Opcode tables A2-A6 include both instructions with a VEX prefix and instructions without 
a VEX prefix. Many entries are only made once, but represent both the VEX and non-VEX 



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -35

forms of the instruction. If the VEX prefix is present all the operands are valid and the 
mnemonic is usually prefixed with a “v”. If the VEX prefix is not present the VEX.vvvv 
operand is not available and the prefix “v” is dropped from the mnemonic. 

A few instructions exist only in VEX form and these are marked with a superscript “v”.

Operand size of VEX prefix instructions can be determined by the operand type code. 
128-bit vectors are indicated by 'dq', 256-bit vectors are indicated by 'qq', and instruc-
tions with operands supporting either 128 or 256-bit, determined by VEX.L, are indi-
cated by 'x'. For example, the entry "VMOVUPD Vx,Wx" indicates both VEX.L=0 and 
VEX.L=1 are supported. 

...

A.2.5  Superscripts Utilized in Opcode Tables
Table A-1 contains notes on particular encodings. These notes are indicated in the 
following opcode maps by superscripts. Gray cells indicate instruction groupings.

...

Table A-1   Superscripts Utilized in Opcode Tables
Superscript
Symbol

Meaning of Symbol

1A Bits 5, 4, and 3 of ModR/M byte used as an opcode extension (refer to Section 
A.4, “Opcode Extensions For One-Byte And Two-byte Opcodes”).

1B Use the 0F0B opcode (UD2 instruction) or the 0FB9H opcode when deliberately 
trying to generate an invalid opcode exception (#UD).

1C Some instructions use the same two-byte opcode. If the instruction has 
variations, or the opcode represents different instructions, the ModR/M byte 
will be used to differentiate the instruction. For the value of the ModR/M byte 
needed to decode the instruction, see Table A-6. 

i64 The instruction is invalid or not encodable in 64-bit mode. 40 through 4F (single-
byte INC and DEC) are REX prefix combinations when in 64-bit mode (use FE/FF 
Grp 4 and 5 for INC and DEC).

o64 Instruction is only available when in 64-bit mode.

d64 When in 64-bit mode, instruction defaults to 64-bit operand size and cannot 
encode 32-bit operand size. 

f64 The operand size is forced to a 64-bit operand size when in 64-bit mode 
(prefixes that change operand size are ignored for this instruction in 64-bit 
mode).

v VEX form only exists. There is no legacy SSE form of the instruction. 

v1 VEX128 & SSE forms only exist (no VEX256), when can’t be inferred from the 
data size.



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -36

Table A-2. One-byte Opcode Map: (08H — FFH) *

8 9 A B C D E F

0 OR PUSH
CSi64

2-byte
escape

(Table A-3) Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

1 SBB PUSH
DSi64

POP
DSi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

2 SUB SEG=CS 
(Prefix)

DASi64 

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

3 CMP SEG=DS 
(Prefix)

AASi64 

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

4 DECi64 general register / REXo64 Prefixes

eAX
REX.W

eCX
REX.WB

eDX
REX.WX

eBX
REX.WXB

eSP
REX.WR

eBP
REX.WRB

eSI
REX.WRX

eDI 
REX.WRXB

5 POPd64 into general register

rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15 

6 PUSHd64

Iz
IMUL

Gv, Ev, Iz
PUSHd64

Ib
IMUL

Gv, Ev, Ib
INS/
INSB

Yb, DX

INS/
INSW/
INSD

Yz, DX

OUTS/
OUTSB
DX, Xb

OUTS/
OUTSW/
OUTSD
DX, Xz

7 Jccf64, Jb- Short displacement jump on condition

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G 

8 MOV MOV
Ev, Sw

LEA
Gv, M 

MOV
Sw, Ew

Grp 1A1A 
POPd64 Ev

Eb, Gb Ev, Gv Gb, Eb Gv, Ev 

9 CBW/
CWDE/
CDQE

CWD/
CDQ/
CQO

CALLFi64

Ap
FWAIT/
WAIT

PUSHF/D/Q 
d64/
Fv

POPF/D/Q 
d64/
Fv

SAHF LAHF

A TEST STOS/B
Yb, AL 

STOS/W/D/Q
Yv, rAX 

LODS/B
AL, Xb 

LODS/W/D/Q
rAX, Xv

SCAS/B
AL, Yb

SCAS/W/D/Q
rAX, Xv

AL, Ib rAX, Iz

B MOV immediate word or double into word, double, or quad register

rAX/r8, Iv rCX/r9, Iv rDX/r10, Iv rBX/r11, Iv rSP/r12, Iv rBP/r13, Iv rSI/r14, Iv rDI/r15 , Iv

C ENTER LEAVEd64 RETF RETF INT 3 INT INTOi64 IRET/D/Q 

Iw, Ib Iw Ib

D ESC (Escape to coprocessor instruction set)

E CALLf64 JMP IN OUT

Jz nearf64

Jz
fari64

Ap
shortf64

Jb
AL, DX eAX, DX DX, AL DX, eAX 

F CLC STC CLI STI CLD STD INC/DEC INC/DEC

Grp 41A Grp 51A

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of 
undefined or reserved locations.



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -37

Table A-3   Two-byte Opcode Map: 00H — 77H (First Byte is 0FH) *

pfx 0 1 2 3 4 5 6 7

0
Grp 61A Grp 71A LAR

Gv, Ew 
LSL

Gv, Ew 
 SYSCALLo64 CLTS SYSRETo64

1

vmovups
Vps, Wps

vmovups
Wps, Vps

vmovlps
Vq, Hq, Mq
vmovhlps

Vq, Hq, Uq

vmovlps
Mq, Vq

vunpcklps
Vps, Wq

Vx, Hx, Wx

vunpckhps
Vps, Wq

Vx, Hx, Wx

vmovhpsv1

Vdq, Hq, Mq 
vmovlhps

Vdq, Hq, Uq

vmovhpsv1

Mq, Vq

66
vmovupd
Vpd, Wpd

vmovupd
Wpd,Vpd

vmovlpd
Vq, Hq, Mq

vmovlpd
Mq, Vq

vunpcklpd
Vx,Hx,Wx

vunpckhpd
Vx,Hx,Wx

vmovhpdv1

Vdq, Hq, Mq
vmovhpdv1

Mq, Vq

F3
vmovss

Vss, Wss
Vss, Hss, Uss

vmovss
Wss, Vss

Uss, Hss, Vss

vmovsldup 
Vx, Wx

vmovshdup 
Vx, Wx

F2
vmovsd

Vsd, Wsd
Usd, Hsd, Vsd

vmovsd
Vsd, Wsd

Usd, Hsd, Vsd

vmovddup 
Vx, Wx

2 2

MOV
Rd, Cd

MOV
Rd, Dd

MOV
Cd, Rd

MOV
Dd, Rd

3 3
WRMSR RDTSC  RDMSR RDPMC SYSENTER SYSEXIT GETSEC

4 4

CMOVcc, (Gv, Ev) - Conditional Move

O NO B/C/NAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

5

vmovmskps
Gy, Ups

vsqrtps
Vps, Wps

vrsqrtps
Vps, Wps

vrcpps
Vps, Wps

vandps
Vps, Hps, Wps

vandnps
Vps, Hps, Wps

vorps
Vps, Hps, Wps

vxorps
Vps, Hps, Wps

66
vmovmskpd 

Gy,Upd
vsqrtpd

Vpd, Wpd
vandpd

Vpd, Hpd, Wpd
vandnpd

Vpd, Hpd, Wpd
vorpd

Vpd, Hpd, Wpd
vxorpd

Vpd, Hpd, Wpd

F3
vsqrtss

Vss, Hss, Wss
vrsqrtss

Vss, Hss, Wss
vrcpss

Vss, Hss, Wss

F2
vsqrtsd

Vsd, Hsd, Wsd 

6

punpcklbw
Pq, Qd

punpcklwd
Pq, Qd

punpckldq
Pq, Qd

packsswb
Pq, Qq

pcmpgtb
Pq, Qq

pcmpgtw
Pq, Qq

pcmpgtd
Pq, Qq

packuswb
Pq, Qq

66
vpunpcklbw

Vdq, Hdq, Wdq
vpunpcklwd

Vdq, Hdq, Wdq
vpunpckldq

Vdq, Hdq, Wdq
vpacksswb

Vdq, Hdq,Wdq
vpcmpgtb

Vdq, Hdq, Wdq
vpcmpgtw

Vdq, Hdq, Wdq
vpcmpgtd

Vdq, Hdq, Wdq
vpackuswb

Vdq, Hdq, Wdq

F3

7

pshufw
Pq, Qq, Ib

(Grp 121A) (Grp 131A) (Grp 141A) pcmpeqb
Pq, Qq

pcmpeqw
Pq, Qq

pcmpeqd
Pq, Qq

emms
 vzeroupperv 

vzeroallv

66
vpshufd

Vdq,Wdq,Ib
vpcmpeqb

Vdq, Hdq, Wdq 
vpcmpeqw

Vdq, Hdq, Wdq 
vpcmpeqd

Vdq, Hdq, Wdq 

F3
vpshufhw

Vdq,Wdq,Ib

F2
vpshuflw

Vdq,Wdq,Ib



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -38

Table A-3. Two-byte Opcode Map: 08H — 7FH (First Byte is 0FH) *

pfx 8 9 A B C D E F

0 
INVD WBINVD 2-byte Illegal 

Opcodes
UD21B

 NOP Ev

1

Prefetch1C

(Grp 161A)
NOP Ev

2 

vmovaps
Vps, Wps

vmovaps
Wps, Vps

cvtpi2ps
Vps, Qpi

vmovntps
Mps, Vps 

cvttps2pi
Ppi, Wps

cvtps2pi
Ppi, Wps

vucomiss
Vss, Wss

vcomiss
Vss, Wss

66
vmovapd
Vpd, Wpd

vmovapd
Wpd,Vpd

cvtpi2pd
Vpd, Qpi

vmovntpd
Mpd, Vpd

cvttpd2pi
Ppi, Wpd

cvtpd2pi
Qpi, Wpd

vucomisd
Vsd, Wsd

vcomisd
Vsd, Wsd

F3
vcvtsi2ss

Vss, Hss, Ey
vcvttss2si
Gy, Wss

vcvtss2si
Gy, Wss

F2
vcvtsi2sd

Vsd, Hsd, Ey 
vcvttsd2si
Gy, Wsd 

vcvtsd2si
Gy, Wsd 

3 3 
3-byte escape

(Table A-4) 
3-byte escape

(Table A-5) 

4 4 

CMOVcc(Gv, Ev) - Conditional Move 

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

5

vaddps
Vps, Hps, Wps

vmulps
Vps, Hps, Wps

vcvtps2pd
Vpd, Wps

vcvtdq2ps
Vps, Wdq

vsubps 
Vps, Hps, Wps

vminps
Vps, Hps, Wps

vdivps
Vps, Hps, Wps

vmaxps
Vps, Hps, Wps

66
vaddpd

Vpd, Hpd, Wpd
vmulpd

Vpd, Hpd, Wpd
vcvtpd2ps
Vps, Wpd

vcvtps2dq
Vdq, Wps

vsubpd
Vpd, Hpd, Wpd

vminpd
Vpd, Hpd, Wpd

vdivpd
Vpd, Hpd, Wpd

vmaxpd
Vpd, Hpd, Wpd

F3
vaddss

Vss, Hss, Wss
vmulss

Vss, Hss, Wss
vcvtss2sd

Vsd, Hx, Wss
vcvttps2dq
Vdq, Wps

vsubss
Vss, Hss, Wss

vminss
Vss, Hss, Wss

vdivss
Vss, Hss, Wss

vmaxss
Vss, Hss, Wss

F2
vaddsd

Vsd, Hsd, Wsd 
vmulsd

Vsd, Hsd, Wsd 
vcvtsd2ss

Vss, Hx, Wsd 
vsubsd

Vsd, Hsd, Wsd 
vminsd

Vsd, Hsd, Wsd 
vdivsd

Vsd, Hsd, Wsd 
vmaxsd

Vsd, Hsd, Wsd 

6

punpckhbw
Pq, Qd

punpckhwd
Pq, Qd

punpckhdq
Pq, Qd

packssdw
Pq, Qd

movd/q
Pd, Ey

movq
Pq, Qq

66
vpunpckhbw

Vdq, Hdq, Wdq
vpunpckhwd

Vdq, Hdq, Wdq
vpunpckhdq

Vdq, Hdq, Wdq
vpackssdw

Vdq, Hdq, Wdq
vpunpcklqdq

Vdq, Hdq, Wdq
vpunpckhqdq

Vdq, Hdq, Wdq
vmovd/q
Vy, Ey

vmovdqa
Vx, Wx

F3
vmovdqu
Vx, Wx

7

VMREAD
Ey, Gy

VMWRITE
Gy, Ey

movd/q
Ey, Pd

movq
Qq, Pq

66
vhaddpd

Vpd, Hpd, Wpd
vhsubpd

Vpd, Hpd, Wpd
vmovd/q
Ey, Vy

vmovdqa
Wx,Vx

F3
vmovq
Vq, Wq

vmovdqu
Wx,Vx

F2
vhaddps

Vps, Hps, Wps
vhsubps

Vps, Hps, Wps



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -39

Table A-3. Two-byte Opcode Map: 80H — F7H (First Byte is 0FH) *

pfx 0 1 2 3 4 5 6 7

8

Jccf64, Jz - Long-displacement jump on condition

O NO B/CNAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

9

SETcc, Eb - Byte Set on condition

O NO B/C/NAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

A
PUSHd64

FS
POPd64

FS
CPUID BT

Ev, Gv 
SHLD

Ev, Gv, Ib 
SHLD

Ev, Gv, CL 
 

B
CMPXCHG LSS

Gv, Mp 
BTR

Ev, Gv 
LFS

Gv, Mp 
LGS

Gv, Mp 
MOVZX

Eb, Gb Ev, Gv Gv, Eb Gv, Ew 

C

XADD
Eb, Gb

XADD
Ev, Gv

vcmpps
Vps,Hps,Wps,Ib

movnti
My, Gy

pinsrw
Pq,Ry/Mw,Ib

pextrw
Gd, Nq, Ib

vshufps
Vps,Hps,Wps,Ib

Grp 91A

66
vcmppd

Vpd,Hpd,Wpd,Ib
vpinsrw

Vdq,Hdq,Ry/Mw,Ib
vpextrw

Gd, Udq, Ib
vshufpd

Vpd,Hpd,Wpd,Ib

F3
vcmpss

Vss,Hss,Wss,Ib

F2
vcmpsd

Vsd,Hsd,Wsd,Ib

D

psrlw
Pq, Qq

psrld
Pq, Qq

psrlq
Pq, Qq

paddq
Pq, Qq

pmullw
Pq, Qq

pmovmskb
Gd, Nq

66
vaddsubpd

Vpd, Hpd, Wpd
vpsrlw

Vdq, Hdq, Wdq
vpsrld

Vdq, Hdq, Wdq
vpsrlq

Vdq, Hdq, Wdq
vpaddq

Vdq, Hdq, Wdq
vpmullw

Vdq, Hdq, Wdq
vmovq
Wq, Vq

vpmovmskb Gd, 
Udq

F3
movq2dq
Vdq, Nq

F2
vaddsubps

Vps, Hps, Wps
movdq2q
Pq, Uq

E

pavgb
Pq, Qq

psraw
Pq, Qq

psrad
Pq, Qq

pavgw
Pq, Qq

pmulhuw
Pq, Qq

pmulhw
Pq, Qq

movntq
Mq, Pq

66
vpavgb

Vdq, Hdq, Wdq
vpsraw

Vdq, Hdq, Wdq
vpsrad

Vdq, Hdq, Wdq
vpavgw

Vdq, Hdq, Wdq
vpmulhuw

Vdq, Hdq, Wdq
vpmulhw

Vdq, Hdq, Wdq
vcvttpd2dq
Vx, Wpd

vmovntdq
Mx, Vx

F3
vcvtdq2pd
Vx, Wpd

F2
vcvtpd2dq
Vx, Wpd

F

psllw
Pq, Qq

pslld
Pq, Qq

psllq
Pq, Qq

pmuludq
Pq, Qq

pmaddwd
Pq, Qq

psadbw
Pq, Qq

maskmovq
Pq, Nq

66
vpsllw

Vdq, Hdq, Wdq
vpslld

Vdq, Hdq, Wdq
vpsllq

Vdq, Hdq, Wdq
vpmuludq

Vdq, Hdq, Wdq
vpmaddwd Vdq, 

Hdq, Wdq
vpsadbw

Vdq, Hdq, Wdq
vmaskmovdqu 

Vdq, Udq

F2
vlddqu
Vx, Mx



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -40

Table A-3. Two-byte Opcode Map: 88H — FFH (First Byte is 0FH) * 

pfx 8 9 A B C D E F

8  
Jccf64, Jz - Long-displacement jump on condition

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

9 

SETcc, Eb - Byte Set on condition

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

A 
PUSHd64

GS
POPd64

GS
RSM BTS

Ev, Gv 
SHRD

Ev, Gv, Ib 
SHRD

Ev, Gv, CL 
(Grp 151A)1C IMUL

Gv, Ev 

B 

 
JMPE

(reserved for 
emulator on IPF)

Grp 101A

Invalid 
Opcode1B

Grp 81A

Ev, Ib
BTC

Ev, Gv
BSF

Gv, Ev
BSR

Gv, Ev
MOVSX

Gv, Eb Gv, Ew

F3
POPCNT Gv, 

Ev

C  

BSWAP

RAX/EAX/
R8/R8D

RCX/ECX/ R9/
R9D

RDX/EDX/ 
R10/R10D

RBX/EBX/ R11/
R11D

RSP/ESP/ R12/
R12D

RBP/EBP/ R13/
R13D

RSI/ESI/ R14/
R14D

RDI/EDI/ R15/
R15D

D

psubusb
Pq, Qq

psubusw
Pq, Qq

pminub
Pq, Qq

pand
Pq, Qq

paddusb
Pq, Qq

paddusw
Pq, Qq

pmaxub
Pq, Qq

pandn
Pq, Qq

66
vpsubusb

Vdq, Hdq, Wdq
vpsubusw

Vdq, Hdq, Wdq
vpminub

Vdq, Hdq, Wdq
vpand

Vdq, Hdq, Wdq
vpaddusb

Vdq, Hdq, Wdq
vpaddusw

Vdq, Hdq, Wdq
vpmaxub

Vdq, Hdq, Wdq
vpandn

Vdq, Hdq, Wdq

F3

F2

E

psubsb
Pq, Qq

psubsw
Pq, Qq

pminsw
Pq, Qq

por
Pq, Qq

paddsb
Pq, Qq

paddsw
Pq, Qq

pmaxsw
Pq, Qq

pxor
Pq, Qq

66
vpsubsb

Vdq, Hdq, Wdq
vpsubsw

Vdq, Hdq, Wdq
vpminsw

Vdq, Hdq, Wdq
vpor

Vdq, Hdq, Wdq
vpaddsb

Vdq, Hdq, Wdq
vpaddsw

Vdq, Hdq, Wdq
vpmaxsw

Vdq, Hdq, Wdq
vpxor

Vdq, Hdq, Wdq

F3

F2

F

psubb
Pq, Qq

psubw
Pq, Qq

psubd
Pq, Qq

psubq
Pq, Qq

paddb
Pq, Qq

paddw
Pq, Qq

paddd
Pq, Qq

66
vpsubb

Vdq, Hdq, Wdq
vpsubw

Vdq, Hdq, Wdq
vpsubd

Vdq, Hdq, Wdq
vpsubq

Vdq, Hdq, Wdq
vpaddb

Vdq, Hdq, Wdq
vpaddw

Vdq, Hdq, Wdq
vpaddd

Vdq, Hdq, Wdq

F2

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of unde-
fined or reserved locations.



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -41

Table A-4   Three-byte Opcode Map: 00H — F7H (First Two Bytes are 0F 38H) *

pfx 0 1 2 3 4 5 6 7

0

pshufb
Pq, Qq

phaddw
Pq, Qq

phaddd
Pq, Qq

phaddsw
Pq, Qq

pmaddubsw
Pq, Qq

phsubw
Pq, Qq

phsubd
Pq, Qq

phsubsw
Pq, Qq

66
vpshufb

Vdq, Hdq, Wdq
vphaddw

Vdq, Hdq, Wdq
vphaddd

Vdq, Hdq, Wdq
vphaddsw

Vdq, Hdq, Wdq
vpmaddubsw

Vdq, Hdq, Wdq
vphsubw

Vdq, Hdq, Wdq
vphsubd

Vdq, Hdq, Wdq
vphsubsw

Vdq, Hdq, Wdq

1 66

pblendvb
Vdq, Wdq

vcvtph2psv

Vx, Wx, Ib
blendvps
Vdq, Wdq

blendvpd
Vdq, Wdq

vptest
Vx, Wx

2 66
vpmovsxbw 

Vdq, Udq/Mq
vpmovsxbd 

Vdq, Udq/Md
vpmovsxbq 

Vdq, Udq/Mw
vpmovsxwd 

Vdq, Udq/Mq
vpmovsxwq 

Vdq, Udq/Md
vpmovsxdq 

Vdq, Udq/Mq

3 66
vpmovzxbw 

Vdq, Udq/Mq
vpmovzxbd 

Vdq, Udq/Md
vpmovzxbq 

Vdq, Udq/Mw
vpmovzxwd 

Vdq, Udq/Mq
vpmovzxwq 

Vdq, Udq/Md
vpmovzxdq 

Vdq, Udq/Mq
vpcmpgtq 

Vdq, Hdq, Wdq

4 66
vpmulld

Vdq, Hdq, Wdq
vphminposuw 

Vdq, Wdq

5

6

7

8 66
INVEPT 
Gy, Mdq

INVVPID 
Gy, Mdq

9

A

B

C

D

E

F

MOVBE 
Gy, My

MOVBE 
My, Gy

66
MOVBE 
Gw, Mw

MOVBE 
Mw, Gw

F3

F2
CRC32 
Gd, Eb

CRC32 
Gd, Ey

66 & 
F2

CRC32 
Gd, Eb

CRC32 
Gd, Ew



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -42

Table A-4. Three-byte Opcode Map: 08H — FFH (First Two Bytes are 0F 38H) *

pfx 8 9 A B C D E F

0

psignb
Pq, Qq

psignw
Pq, Qq

psignd
Pq, Qq

pmulhrsw
Pq, Qq

66
vpsignb

Vdq, Hdq, Wdq
vpsignw

Vdq, Hdq, Wdq
vpsignd

Vdq, Hdq, Wdq
vpmulhrsw Vdq, 

Hdq, Wdq
vpermilpsv 
Vx,Hx,Wx

vpermilpdv 
Vx,Hx,Wx

vtestpsv 
Vx, Wx

vtestpdv 
Vx, Wx

1

pabsb
Pq, Qq

pabsw
Pq, Qq

pabsd
Pq, Qq

66
vbroadcastssv 

Vx, Md
vbroadcastsdv 

Vqq, Mq
vbroadcastf128

v Vqq, Mdq
vpabsb

Vdq, Wdq
vpabsw

Vdq, Wdq
vpabsd

Vdq, Wdq

2 66
vpmuldq

Vdq, Hdq, Wdq
vpcmpeqq Vdq, 

Hdq, Wdq
vmovntdqa
Vdq, Mdq

vpackusdw 
Vdq, Hdq, Wdq

vmaskmovpsv 
Vx,Hx,Mx

vmaskmovpdv 
Vx,Hx,Mx

vmaskmovpsv 
Mx,Hx,Vx

vmaskmovpdv 
Mx,Hx,Vx

3 66
vpminsb

Vdq, Hdq, Wdq
vpminsd

Vdq, Hdq, Wdq
vpminuw

Vdq, Hdq, Wdq
vpminud

Vdq, Hdq, Wdq
vpmaxsb

Vdq, Hdq, Wdq
vpmaxsd

Vdq, Hdq, Wdq
vpmaxuw

Vdq, Hdq, Wdq
vpmaxud

Vdq, Hdq, Wdq

4

5

6

7

8

9

A

B

C

D 66
VAESIMC 
Vdq, Wdq

VAESENC 
Vdq,Hdq,Wdq

VAESENCLAST 
Vdq,Hdq,Wdq

VAESDEC 
Vdq,Hdq,Wdq

VAESDECLAST 
Vdq,Hdq,Wdq

E

F

66

F3

F2

66 & 
F2



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -43

Table A-5   Three-byte Opcode Map: 00H — F7H (First two bytes are 0F 3AH) *

pfx 0 1 2 3 4 5 6 7

0 66

vpermilpsv 
Vx, Wx, Ib

vpermilpdv 
Vx, Wx, Ib

vperm2f128v 
Vqq,Hqq,Wqq,Ib

1 66
vpextrb

Rd/Mb, Vdq, Ib
vpextrw

Rd/Mw, Vdq, Ib
vpextrd/q 

Ey, Vdq, Ib 
vextractps 
Ed, Vdq, Ib

2 66
vpinsrb

Vdq,Hdq, Ry/
Mb,Ib

vinsertps
Vdq,Hdq, Udq/

Md,Ib

vpinsrd/q
Vdq,Hdq,Ey,Ib 

3

4 66
vdpps

Vx,Hx,Wx,Ib
vdppd

Vdq,Hdq,Wdq,Ib
vmpsadbw 

Vdq,Hdq,Wdq,Ib
vpclmulqdq

Vdq,Hdq,Wdq,Ib

5

6 66
vpcmpestrm
dq, Wdq, Ib 

vpcmpestri Vdq, 
Wdq, Ib 

vpcmpistrm Vdq, 
Wdq, Ib 

vpcmpistri
Vdq, Wdq, Ib 

7

8

9

A

B

C

D

E

F



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -44

Table A-5. Three-byte Opcode Map: 08H — FFH (First Two Bytes are 0F 3AH) *

pfx 8 9 A B C D E F

0

palignr
Pq, Qq, Ib

66
vroundps
Vx,Wx,Ib

vroundpd
Vx,Wx,Ib

vroundss
Vss,Wss,Ib

vroundsd
Vsd,Wsd,Ib

vblendps
Vx,Hx,Wx,Ib

vblendpd
Vx,Hx,Wx,Ib

vpblendw 
Vdq,Hdq,Wdq,Ib

vpalignr
Vdq,Hdq,Wdq,Ib

1 66
vinsertf128v 

Vqq,Hqq,Wqq,Ib
vextractf128v 
Wdq,Vqq,Ib

vcvtps2phv

Wx, Vx, Ib

2

3

4 66
vblendvpsv

 Vx,Hx,Wx,Lx
vblendvpdv 

Vx,Hx,Wx,Lx
vpblendvbv 

Vdq,Hdq,Wdq, 
Ldq

5

6

7

8

9

A

B

C

D 66
VAESKEYGEN 
Vdq, Wdq, Ib

E

F

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of 
undefined or reserved locations.



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -45

A.4 OPCODE EXTENSIONS FOR ONE-BYTE AND TWO-BYTE 
OPCODES

Some 1-byte and 2-byte opcodes use bits 3-5 of the ModR/M byte (the nnn field in Figure 
A-1) as an extension of the opcode.

Opcodes that have opcode extensions are indicated in Table A-6 and organized by group 
number. Group numbers (from 1 to 16, second column) provide a table entry point. The 
encoding for the r/m field for each instruction can be established using the third column 
of the table.

A.4.1  Opcode Look-up Examples Using Opcode Extensions
An Example is provided below.

Example A-4   Interpreting an ADD Instruction

An ADD instruction with a 1-byte opcode of 80H is a Group 1 instruction:
• Table A-6 indicates that the opcode extension field encoded in the ModR/M byte for 

this instruction is 000B. 
• The r/m field can be encoded to access a register (11B) or a memory address using 

a specified addressing mode (for example: mem = 00B, 01B, 10B).

Example A-5   Looking Up 0F01C3H

Look up opcode 0F01C3 for a VMRESUME instruction by using Table A-2, Table A-3 and 
Table A-6:
• 0F tells us that this instruction is in the 2-byte opcode map.
• 01 (row 0, column 1 in Table A-3) reveals that this opcode is in Group 7 of Table A-6.
• C3 is the ModR/M byte. The first two bits of C3 are 11B. This tells us to look at the 

second of the Group 7 rows in Table A-6.
• The Op/Reg bits [5,4,3] are 000B. This tells us to look in the 000 column for Group 7.
• Finally, the R/M bits [2,1,0] are 011B. This identifies the opcode as the VMRESUME 

instruction.

mod nnn R/M

Figure A-1   ModR/M Byte nnn Field (Bits 5, 4, and 3)



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -46

A.4.2  Opcode Extension Tables
See Table A-6 below.

Table A-6   Opcode Extensions for One- and Two-byte Opcodes by Group Number *

Opcode Group Mod 7,6 pfx

Encoding of Bits 5,4,3 of the ModR/M Byte (bits 2,1,0 in parenthesis)
000 001 010 011 100 101 110 111

80-83 1
mem, 
11B

ADD OR ADC SBB AND SUB XOR CMP

8F 1A
mem, 
11B

POP

C0,C1 reg, imm
D0, D1 reg, 1

D2, D3 reg, CL
2

mem, 
11B

ROL ROR RCL RCR SHL/SAL SHR SAR

F6, F7 3
mem, 
11B

TEST 
Ib/Iz

NOT NEG MUL
AL/rAX

IMUL
AL/rAX

DIV
AL/rAX

IDIV
AL/rAX

FE 4
mem, 
11B

INC
Eb

DEC
Eb

FF 5
mem, 
11B

INC
Ev

DEC
Ev

CALLNf64

Ev
CALLF

Ep 
JMPNf64

Ev
JMPF

Mp
PUSHd64

Ev

0F 00 6
mem, 
11B

SLDT
Rv/Mw

STR
Rv/Mw

LLDT
Ew

LTR
Ew 

VERR
Ew

VERW
Ew

0F 01 7

mem SGDT
Ms

SIDT
Ms

LGDT
Ms

LIDT
Ms 

SMSW
Mw/Rv

LMSW
Ew

INVLPG
Mb

11B VMCALL (001) 
VMLAUNCH 

(010) 
VMRESUME 

(011) 
VMXOFF 

(100) 

MONITOR 
(000)

MWAIT (001)

XGETBV 
(000)

XSETBV 
(001)

SWAPGS
o64(000)

RDTSCP (001)

0F BA 8
mem, 
11B

BT BTS BTR BTC

0F C7 9

mem

CMPXCH8B 
Mq

CMPXCHG16B
 Mdq

VMPTRLD Mq VMPTRST Mq 

66 VMCLEAR 
Mq 

F3 VMXON
Mq 

VMPTRST Mq 

11B
RDRAND

Rv

0F B9 10
mem

11B

C6

11

mem, 
11B

MOV
Eb, Ib

C7
mem MOV

Ev, Iz
11B



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -47

...

6. Updates to Chapter 2, Volume 3A
Change bars show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

------------------------------------------------------------------------------------------

...

2.5 CONTROL REGISTERS

...
OSXSAVE

XSAVE and Processor Extended States-Enable Bit (bit 18 of CR4) — When 
set, this flag: (1) indicates (via CPUID.01H:ECX.OSXSAVE[bit 27]) that the 
operating system supports the use of the XGETBV, XSAVE and XRSTOR instruc-
tions by general software; (2) enables the XSAVE and XRSTOR instructions to 
save and restore the x87 FPU state (including MMX registers), the SSE state 
(XMM registers and MXCSR), along with other processor extended states 
enabled in XCR0; (3) enables the processor to execute XGETBV and XSETBV 
instructions in order to read and write XCR0. See Section 2.6 and Chapter 13, 

Opcode Group Mod 7,6 pfx

Encoding of Bits 5,4,3 of the ModR/M Byte (bits 2,1,0 in parenthesis)
000 001 010 011 100 101 110 111

0F 71 12

mem

11B

psrlw
Nq, Ib

psraw
Nq, Ib

psllw
Nq, Ib

66 vpsrlw
Hdq,Udq,Ib

vpsraw 
Hdq,Udq,Ib

vpsllw 
Hdq,Udq,Ib

0F 72 13

mem

11B

psrld
Nq, Ib

psrad
Nq, Ib

pslld
Nq, Ib

66 vpsrld
Hdq,Udq,Ib

vpsrad
Hdq,Udq,Ib

vpslld
Hdq,Udq,Ib

0F 73 14

mem

11B

psrlq
Nq, Ib

psllq
Nq, Ib

66 vpsrlq
Hdq,Udq,Ib

vpsrldq
Hdq,Udq,Ib

vpsllq
Hdq,Udq,Ib

vpslldq
Hdq,Udq,Ib

0F AE 15

mem fxsave fxrstor ldmxcsr stmxcsr XSAVE XRSTOR XSAVEOPT clflush

11B

lfence mfence sfence

F3 RDFSBASE  
Ry

RDGSBASE  
Ry

WRFSBASE  
Ry

WRGSBASE  
Ry

0F 18 16
mem

prefetch
NTA

prefetch
T0

prefetch
T1

prefetch
T2

11B

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined 
or reserved locations.

Table A-6   Opcode Extensions for One- and Two-byte Opcodes by Group Number *



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -48

“System Programming for Instruction Set Extensions and Processor Extended 
States”.

SMEP
SMEP-Enable Bit (bit 20 of CR4) — Enables supervisor-mode execution 
prevention (SMEP) when set. See Section 4.6, “Access Rights”.

TPL
Task Priority Level (bit 3:0 of CR8) — This sets the threshold value corre-
sponding to the highest-priority interrupt to be blocked. A value of 0 means all 
interrupts are enabled. This field is available in 64-bit mode. A value of 15 means 
all interrupts will be disabled.

...

7. Updates to Chapter 4, Volume 3A
Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

------------------------------------------------------------------------------------------

...

4.1 PAGING MODES AND CONTROL BITS
Paging behavior is controlled by the following control bits:
• The WP and PG flags in control register CR0 (bit 16 and bit 31, respectively).
• The PSE, PAE, PGE, PCIDE, and SMEP flags in control register CR4 (bit 4, bit 5, bit 7, 

bit 17, and bit 20 respectively).
• The LME and NXE flags in the IA32_EFER MSR (bit 8 and bit 11, respectively).

Software enables paging by using the MOV to CR0 instruction to set CR0.PG. Before 
doing so, software should ensure that control register CR3 contains the physical address 
of the first paging structure that the processor will use for linear-address translation (see 
Section 4.2) and that structure is initialized as desired. See Table 4-3, Table 4-7, and 
Table 4-12 for the use of CR3 in the different paging modes.

Section 4.1.1 describes how the values of CR0.PG, CR4.PAE, and IA32_EFER.LME deter-
mine whether paging is in use and, if so, which of three paging modes is in use. Section 
4.1.2 explains how to manage these bits to establish or make changes in paging modes. 
Section 0.0.1 discusses how CR0.WP, CR4.PSE, CR4.PGE, CR4.PCIDE, CR4.SMEP, and 
IA32_EFER.NXE modify the operation of the different paging modes.

4.1.1 Three Paging Modes
If CR0.PG = 0, paging is not used. The logical processor treats all linear addresses as if 
they were physical addresses. CR4.PAE and IA32_EFER.LME are ignored by the 
processor, as are CR0.WP, CR4.PSE, CR4.PGE, CR4.SMEP, and IA32_EFER.NXE.

Paging is enabled if CR0.PG = 1. Paging can be enabled only if protection is enabled 
(CR0.PE = 1). If paging is enabled, one of three paging modes is used. The values of 
CR4.PAE and IA32_EFER.LME determine which paging mode is used:



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -49

• If CR0.PG = 1 and CR4.PAE = 0, 32-bit paging is used. 32-bit paging is detailed in 
Section 4.3. 32-bit paging uses CR0.WP, CR4.PSE, CR4.PGE, and CR4.SMEP as 
described in Section 0.0.1.

• If CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 0, PAE paging is used. PAE 
paging is detailed in Section 4.4. PAE paging uses CR0.WP, CR4.PGE, CR4.SMEP, and 
IA32_EFER.NXE as described in Section 0.0.1.

• If CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 1, IA-32e paging is used.1 
IA-32e paging is detailed in Section 4.5. IA-32e paging uses CR0.WP, CR4.PGE, 
CR4.PCIDE, CR4.SMEP, and IA32_EFER.NXE as described in Section 0.0.1. IA-32e 
paging is available only on processors that support the Intel 64 architecture.

The three paging modes differ with regard to the following details:
• Linear-address width. The size of the linear addresses that can be translated.
• Physical-address width. The size of the physical addresses produced by paging.
• Page size. The granularity at which linear addresses are translated. Linear addresses 

on the same page are translated to corresponding physical addresses on the same 
page.

• Support for execute-disable access rights. In some paging modes, software can be 
prevented from fetching instructions from pages that are otherwise readable.

• Support for PCIDs. In some paging modes, software can enable a facility by which a 
logical processor caches information for multiple linear-address spaces. The 
processor may retain cached information when software switches between different 
linear-address spaces.

Table 4-1 illustrates the key differences between the three paging modes.

1. The LMA flag in the IA32_EFER MSR (bit 10) is a status bit that indicates whether the logical proces-
sor is in IA-32e mode (and thus using IA-32e paging). The processor always sets IA32_EFER.LMA to 
CR0.PG & IA32_EFER.LME. Software cannot directly modify IA32_EFER.LMA; an execution of WRMSR 
to the IA32_EFER MSR ignores bit 10 of its source operand.

Table 4-1   Properties of Different Paging Modes

Paging
Mode

PG in
CR0

PAE in
CR4

LME in
IA32_EFER

Lin.-
Addr.
Width

Phys.-
Addr.
Width1

NOTES:
1. The physical-address width is always bounded by MAXPHYADDR; see Section 4.1.3.

Page
Sizes

Supports
Execute-
Disable?

Supports
PCIDs?

None 0 N/A N/A 32 32 N/A No No

32-bit 1 0 02

2. The processor ensures that IA32_EFER.LME must be 0 if CR0.PG = 1 and CR4.PAE = 0.

32
Up to
403

3. 32-bit paging supports physical-address widths of more than 32 bits only for 4-MByte pages and 
only if the PSE-36 mechanism is supported; see Section 4.1.3 and Section 4.3.

4 KB
4 MB4 No No

PAE 1 1 0 32
Up to
52

4 KB
2 MB

Yes5 No

IA-32e 1 1 2 48
Up to
52

4 KB
2 MB
1 GB6

Yes5 Yes7



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -50

Because they are used only if IA32_EFER.LME = 0, 32-bit paging and PAE paging is used 
only in legacy protected mode. Because legacy protected mode cannot produce linear 
addresses larger than 32 bits, 32-bit paging and PAE paging translate 32-bit linear 
addresses.

Because it is used only if IA32_EFER.LME = 1, IA-32e paging is used only in IA-32e 
mode. (In fact, it is the use of IA-32e paging that defines IA-32e mode.) IA-32e mode 
has two sub-modes:
• Compatibility mode. This mode uses only 32-bit linear addresses. IA-32e paging 

treats bits 47:32 of such an address as all 0.
• 64-bit mode. While this mode produces 64-bit linear addresses, the processor 

ensures that bits 63:47 of such an address are identical.1 IA-32e paging does not 
use bits 63:48 of such addresses.

...

4.1.3 Paging-Mode Modifiers
Details of how each paging mode operates are determined by the following control bits:
• The WP flag in CR0 (bit 16).
• The PSE, PGE, PCIDE, and SMEP flags in CR4 (bit 4, bit 7, bit 17, and bit 20, respec-

tively).
• The NXE flag in the IA32_EFER MSR (bit 11).

CR0.WP allows pages to be protected from supervisor-mode writes. If CR0.WP = 0, soft-
ware operating with CPL < 3 (supervisor mode) can write to linear addresses with read-
only access rights; if CR0.WP = 1, it cannot. (Software operating with CPL = 3 — user 
mode — cannot write to linear addresses with read-only access rights, regardless of the 
value of CR0.WP.) Section 4.6 explains how access rights are determined.

CR4.PSE enables 4-MByte pages for 32-bit paging. If CR4.PSE = 0, 32-bit paging can 
use only 4-KByte pages; if CR4.PSE = 1, 32-bit paging can use both 4-KByte pages and 
4-MByte pages. See Section 4.3 for more information. (PAE paging and IA-32e paging 
can use multiple page sizes regardless of the value of CR4.PSE.)

CR4.PGE enables global pages. If CR4.PGE = 0, no translations are shared across 
address spaces; if CR4.PGE = 1, specified translations may be shared across address 
spaces. See Section 4.10.2.4 for more information.

CR4.PCIDE enables process-context identifiers (PCIDs) for IA-32e paging (CR4.PCIDE 
can be 1 only when IA-32e paging is in use). PCIDs allow a logical processor to cache 
information for multiple linear-address spaces. See Section 4.10.1 for more information.

CR4.SMEP allows pages to be protected from supervisor-mode instruction fetches. If 
CR4.SMEP = 1, software operating with CPL < 3 (supervisor mode) cannot fetch instruc-

4. 4-MByte pages are used with 32-bit paging only if CR4.PSE = 1; see Section 4.3.
5. Execute-disable access rights are applied only if IA32_EFER.NXE = 1; see Section 4.6.
6. Not all processors that support IA-32e paging support 1-GByte pages; see Section 4.1.3.
7. PCIDs are used only if CR4.PCIDE = 1; see Section 4.10.1.

1. Such an address is called canonical. Use of a non-canonical linear address in 64-bit mode produces a 
general-protection exception (#GP(0)); the processor does not attempt to translate non-canonical lin-
ear addresses using IA-32e paging.



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -51

tions from linear addresses that are accessible in user mode (CPL = 3). Section 4.6 
explains how access rights are determined.

IA32_EFER.NXE enables execute-disable access rights for PAE paging and IA-32e 
paging. If IA32_EFER.NXE = 1, instructions fetches can be prevented from specified 
linear addresses (even if data reads from the addresses are allowed). Section 4.6 
explains how access rights are determined. (IA32_EFER.NXE has no effect with 32-bit 
paging. Software that wants to use this feature to limit instruction fetches from readable 
pages must use either PAE paging or IA-32e paging.)

4.1.4 Enumeration of Paging Features by CPUID
Software can discover support for different paging features using the CPUID instruction:
• PSE: page-size extensions for 32-bit paging.

If CPUID.01H:EDX.PSE [bit 3] = 1, CR4.PSE may be set to 1, enabling support for 4-
MByte pages with 32-bit paging (see Section 4.3).

• PAE: physical-address extension.
If CPUID.01H:EDX.PAE [bit 6] = 1, CR4.PAE may be set to 1, enabling PAE paging 
(this setting is also required for IA-32e paging).

• PGE: global-page support.
If CPUID.01H:EDX.PGE [bit 13] = 1, CR4.PGE may be set to 1, enabling the global-
page feature (see Section 4.10.2.4).

• PAT: page-attribute table.
If CPUID.01H:EDX.PAT [bit 16] = 1, the 8-entry page-attribute table (PAT) is 
supported. When the PAT is supported, three bits in certain paging-structure entries 
select a memory type (used to determine type of caching used) from the PAT (see 
Section 4.9.2).

• PSE-36: page-size extensions with 40-bit physical-address extension.
If CPUID.01H:EDX.PSE-36 [bit 17] = 1, the PSE-36 mechanism is supported, 
indicating that translations using 4-MByte pages with 32-bit paging may produce 
physical addresses with up to 40 bits (see Section 4.3).

• PCID: process-context identifiers.
If CPUID.01H:ECX.PCID [bit 17] = 1, CR4.PCIDE may be set to 1, enabling process-
context identifiers (see Section 4.10.1).

• SMEP: supervisor-mode execution prevention.
If CPUID.(EAX=07H,ECX=0H):EBX.SMEP [bit 7] = 1, CR4.SMEP may be set to 1, 
enabling supervisor-mode execution prevention (see Section 4.6).

• NX: execute disable.
If CPUID.80000001H:EDX.NX [bit 20] = 1, IA32_EFER.NXE may be set to 1, 
allowing PAE paging and IA-32e paging to disable execute access to selected pages 
(see Section 4.6). (Processors that do not support CPUID function 80000001H do not 
allow IA32_EFER.NXE to be set to 1.)

• Page1GB: 1-GByte pages.
If CPUID.80000001H:EDX.Page1GB [bit 26] = 1, 1-GByte pages are supported with 
IA-32e paging (see Section 4.5).

• LM: IA-32e mode support.
If CPUID.80000001H:EDX.LM [bit 29] = 1, IA32_EFER.LME may be set to 1, 
enabling IA-32e paging. (Processors that do not support CPUID function 80000001H 
do not allow IA32_EFER.LME to be set to 1.)



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -52

• CPUID.80000008H:EAX[7:0] reports the physical-address width supported by the 
processor. (For processors that do not support CPUID function 80000008H, the width 
is generally 36 if CPUID.01H:EDX.PAE [bit 6] = 1 and 32 otherwise.) This width is 
referred to as MAXPHYADDR. MAXPHYADDR is at most 52.

• CPUID.80000008H:EAX[15:8] reports the linear-address width supported by the 
processor. Generally, this value is 48 if CPUID.80000001H:EDX.LM [bit 29] = 1 and 
32 otherwise. (Processors that do not support CPUID function 80000008H, support a 
linear-address width of 32.)

...

4.3 32-BIT PAGING
A logical processor uses 32-bit paging if CR0.PG = 1 and CR4.PAE = 0. 32-bit paging 
translates 32-bit linear addresses to 40-bit physical addresses.1 Although 40 bits corre-
sponds to 1 TByte, linear addresses are limited to 32 bits; at most 4 GBytes of linear-
address space may be accessed at any given time.

32-bit paging uses a hierarchy of paging structures to produce a translation for a linear 
address. CR3 is used to locate the first paging-structure, the page directory. Table 4-3 
illustrates how CR3 is used with 32-bit paging.

32-bit paging may map linear addresses to either 4-KByte pages or 4-MByte pages. 
Figure 4-2 illustrates the translation process when it uses a 4-KByte page; Figure 4-3 
covers the case of a 4-MByte page. The following items describe the 32-bit paging 
process in more detail as well has how the page size is determined:
• A 4-KByte naturally aligned page directory is located at the physical address 

specified in bits 31:12 of CR3 (see Table 4-3). A page directory comprises 1024 32-
bit entries (PDEs). A PDE is selected using the physical address defined as follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from CR3.

— Bits 11:2 are bits 31:22 of the linear address.

— Bits 1:0 are 0.

Because a PDE is identified using bits 31:22 of the linear address, it controls access to a 
4-Mbyte region of the linear-address space. Use of the PDE depends on CR.PSE and the 
PDE’s PS flag (bit 7):
• If CR4.PSE = 1 and the PDE’s PS flag is 1, the PDE maps a 4-MByte page (see 

Table 4-4). The final physical address is computed as follows:

— Bits 39:32 are bits 20:13 of the PDE.
— Bits 31:22 are bits 31:22 of the PDE.2

1. Bits in the range 39:32 are 0 in any physical address used by 32-bit paging except those used to map 
4-MByte pages. If the processor does not support the PSE-36 mechanism, this is true also for physi-
cal addresses used to map 4-MByte pages. If the processor does support the PSE-36 mechanism and 
MAXPHYADDR < 40, bits in the range 39:MAXPHYADDR are 0 in any physical address used to map a 
4-MByte page. (The corresponding bits are reserved in PDEs.) See Section 4.1.3 for how to determine 
MAXPHYADDR and whether the PSE-36 mechanism is supported.

2. The upper bits in the final physical address do not all come from corresponding positions in the PDE; 
the physical-address bits in the PDE are not all contiguous.



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -53

— Bits 21:0 are from the original linear address.
• If CR4.PSE = 0 or the PDE’s PS flag is 0, a 4-KByte naturally aligned page table is 

located at the physical address specified in bits 31:12 of the PDE (see Table 4-5). A 
page table comprises 1024 32-bit entries (PTEs). A PTE is selected using the physical 
address defined as follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from the PDE.

— Bits 11:2 are bits 21:12 of the linear address.

— Bits 1:0 are 0.
• Because a PTE is identified using bits 31:12 of the linear address, every PTE maps a 

4-KByte page (see Table 4-6). The final physical address is computed as follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from the PTE.

— Bits 11:0 are from the original linear address.

If a paging-structure entry’s P flag (bit 0) is 0 or if the entry sets any reserved bit, the 
entry is used neither to reference another paging-structure entry nor to map a page. A 
reference using a linear address whose translation would use such a paging-structure 
entry causes a page-fault exception (see Section 4.7).

With 32-bit paging, there are reserved bits only if CR4.PSE = 1:
• If the P flag and the PS flag (bit 7) of a PDE are both 1, the bits reserved depend on 

MAXPHYADDR whether the PSE-36 mechanism is supported:1

— If the PSE-36 mechanism is not supported, bits 21:13 are reserved.

— If the PSE-36 mechanism is supported, bits 21:(M–19) are reserved, where M is 
the minimum of 40 and MAXPHYADDR.

• If the PAT is not supported:2

— If the P flag of a PTE is 1, bit 7 is reserved.

— If the P flag and the PS flag of a PDE are both 1, bit 12 is reserved.

(If CR4.PSE = 0, no bits are reserved with 32-bit paging.)

...

4.4.1 PDPTE Registers
When PAE paging is used, CR3 references the base of a 32-Byte page-directory-
pointer table. Table 4-7 illustrates how CR3 is used with PAE paging.

1. See Section 4.1.3 for how to determine MAXPHYADDR and whether the PSE-36 mechanism is sup-
ported.

2. See Section 4.1.3 for how to determine whether the PAT is supported.

Table 4-7   Use of CR3 with PAE Paging

Bit 
Position(s)

Contents

4:0 Ignored



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -54

The page-directory-pointer-table comprises four (4) 64-bit entries called PDPTEs. Each 
PDPTE controls access to a 1-GByte region of the linear-address space. Corresponding to 
the PDPTEs, the logical processor maintains a set of four (4) internal, non-architectural 
PDPTE registers, called PDPTE0, PDPTE1, PDPTE2, and PDPTE3. The logical processor 
loads these registers from the PDPTEs in memory as part of certain operations:
• If PAE paging would be in use following an execution of MOV to CR0 or MOV to CR4 

(see Section 4.1.1) and the instruction is modifying any of CR0.CD, CR0.NW, 
CR0.PG, CR4.PAE, CR4.PGE, CR4.PSE, or CR4.SMEP; then the PDPTEs are loaded 
from the address in CR3.

• If MOV to CR3 is executed while the logical processor is using PAE paging, the 
PDPTEs are loaded from the address being loaded into CR3.

• If PAE paging is in use and a task switch changes the value of CR3, the PDPTEs are 
loaded from the address in the new CR3 value.

• Certain VMX transitions load the PDPTE registers. See Section 4.11.1.

...

4.6 ACCESS RIGHTS
There is a translation for a linear address if the processes described in Section 4.3, 
Section 4.4.2, and Section 4.5 (depending upon the paging mode) completes and 
produces a physical address. The accesses permitted by a translation is determined by 
the access rights specified by the paging-structure entries controlling the translation.1 
The following items detail how paging determines access rights:
• For accesses in supervisor mode (CPL < 3):

— Data reads.
Data may be read from any linear address with a valid translation.

— Data writes.

• If CR0.WP = 0, data may be written to any linear address with a valid trans-
lation.

• If CR0.WP = 1, data may be written to any linear address with a valid 
translation for which the R/W flag (bit 1) is 1 in every paging-structure entry 
controlling the translation.

— Instruction fetches.

• For 32-bit paging or if IA32_EFER.NXE = 0, access rights depend on the 
value of CR4.SMEP:

31:5 Physical address of the 32-Byte aligned page-directory-pointer table used for 
linear-address translation

63:32 Ignored (these bits exist only on processors supporting the Intel-64 architecture)

1. With PAE paging, the PDPTEs do not determine access rights.

Table 4-7   Use of CR3 with PAE Paging (Contd.)

Bit 
Position(s)

Contents



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -55

— If CR4.SMEP = 0, instructions may be fetched from any linear address 
with a valid translation.

— If CR4.SMEP = 1, instructions may be fetched from any linear address 
with a valid translation for which the U/S flag (bit 2) is 0 in at least one 
of the paging-structure entries controlling the translation.

• For PAE paging or IA-32e paging with IA32_EFER.NXE = 1, access rights 
depend on the value of CR4.SMEP:

— If CR4.SMEP = 0, instructions may be fetched from any linear address 
with a valid translation for which the XD flag (bit 63) is 0 in every 
paging-structure entry controlling the translation.

— If CR4.SMEP = 1, instructions may be fetched from any linear address 
with a valid translation for which (1) the U/S flag is 0 in at least one of 
the paging-structure entries controlling the translation; and (2) the XD 
flag is 0 in every paging-structure entry controlling the translation.

• For accesses in user mode (CPL = 3):

— Data reads.
Data may be read from any linear address with a valid translation for which the 
U/S flag (bit 2) is 1 in every paging-structure entry controlling the translation.

— Data writes.
Data may be written to any linear address with a valid translation for which both 
the R/W flag and the U/S flag are 1 in every paging-structure entry controlling 
the translation.

— Instruction fetches.

• For 32-bit paging or if IA32_EFER.NXE = 0, instructions may be fetched from 
any linear address with a valid translation for which the U/S flag is 1 in every 
paging-structure entry controlling the translation.

• For PAE paging or IA-32e paging with IA32_EFER.NXE = 1, instructions may 
be fetched from any linear address with a valid translation for which the U/S 
flag is 1 and the XD flag is 0 in every paging-structure entry controlling the 
translation.

A processor may cache information from the paging-structure entries in TLBs and 
paging-structure caches (see Section 4.10). These structures may include information 
about access rights. The processor may enforce access rights based on the TLBs and 
paging-structure caches instead of on the paging structures in memory.

This fact implies that, if software modifies a paging-structure entry to change access 
rights, the processor might not use that change for a subsequent access to an affected 
linear address (see Section 4.10.4.3). See Section 4.10.4.2 for how software can ensure 
that the processor uses the modified access rights.

4.7 PAGE-FAULT EXCEPTIONS
Accesses using linear addresses may cause page-fault exceptions (#PF; exception 
14). An access to a linear address may cause page-fault exception for either of two 
reasons: (1) there is no valid translation for the linear address; or (2) there is a valid 
translation for the linear address, but its access rights do not permit the access.

As noted in Section 4.3, Section 4.4.2, and Section 4.5, there is no valid translation for a 
linear address if the translation process for that address would use a paging-structure 



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -56

entry in which the P flag (bit 0) is 0 or one that sets a reserved bit. If there is a valid 
translation for a linear address, its access rights are determined as specified in Section 
4.6.

Figure 4-12 illustrates the error code that the processor provides on delivery of a page-
fault exception. The following items explain how the bits in the error code describe the 
nature of the page-fault exception:

• P flag (bit 0).
This flag is 0 if there is no valid translation for the linear address because the P flag 
was 0 in one of the paging-structure entries used to translate that address.

• W/R (bit 1).
If the access causing the page-fault exception was a write, this flag is 1; otherwise, 
it is 0. This flag describes the access causing the page-fault exception, not the access 
rights specified by paging.

• U/S (bit 2).
If a user-mode (CPL= 3) access caused the page-fault exception, this flag is 1; it is 0 
if a supervisor-mode (CPL < 3) access did so. This flag describes the access causing 
the page-fault exception, not the access rights specified by paging.

• RSVD flag (bit 3).
This flag is 1 if there is no valid translation for the linear address because a reserved 
bit was set in one of the paging-structure entries used to translate that address. 
(Because reserved bits are not checked in a paging-structure entry whose P flag is 0, 
bit 3 of the error code can be set only if bit 0 is also set.)
Bits reserved in the paging-structure entries are reserved for future functionality. 
Software developers should be aware that such bits may be used in the future and 
that a paging-structure entry that causes a page-fault exception on one processor 
might not do so in the future.

• I/D flag (bit 4).
This flag is 1 if (1) the access causing the page-fault exception was an instruction 
fetch; and (2) either (a) CR4.SMEP = 1; or (b) both (i) CR4.PAE = 1 (either PAE 

 

Figure 4-12   Page-Fault Error Code

The fault was caused by a non-present page.
The fault was caused by a page-level protection violation.

The access causing the fault was a read.
The access causing the fault was a write.

The access causing the fault originated when the processor
was executing in supervisor mode (CPL < 3).
The access causing the fault originated when the processor
was executing in user mode (CPL = 3). 

31 0

Reserved

1234

The fault was not caused by reserved bit violation.
The fault was caused by a reserved bit set to 1 in some

P 0
1

W/R 0
1

U/S 0

RSVD 0
1

1

I/D

I/D 0 The fault was not caused by an instruction fetch.
1 The fault was caused by an instruction fetch.

PW
/R

U/S
RSVD

paging-structure entry.



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -57

paging or IA-32e paging is in use); and (ii) IA32_EFER.NXE = 1. Otherwise, the flag 
is 0. This flag describes the access causing the page-fault exception, not the access 
rights specified by paging.

Page-fault exceptions occur only due to an attempt to use a linear address. Failures to 
load the PDPTE registers with PAE paging (see Section 4.4.1) cause general-protection 
exceptions (#GP(0)) and not page-fault exceptions.

...

4.10.4.1  Operations that Invalidate TLBs and Paging-Structure Caches
The following instructions invalidate entries in the TLBs and the paging-structure caches:
• INVLPG. This instruction takes a single operand, which is a linear address. The 

instruction invalidates any TLB entries that are for a page number corresponding to 
the linear address and that are associated with the current PCID. It also invalidates 
any global TLB entries with that page number, regardless of PCID (see Section 
4.10.2.4).1 INVLPG also invalidates all entries in all paging-structure caches 
associated with the current PCID, regardless of the linear addresses to which they 
correspond.

• MOV to CR0. The instruction invalidates all TLB entries (including global entries) and 
all entries in all paging-structure caches (for all PCIDs) if it changes the value of 
CR0.PG from 1 to 0.

• MOV to CR3. The behavior of the instruction depends on the value of CR4.PCIDE:

— If CR4.PCIDE = 0, the instruction invalidates all TLB entries associated with PCID 
000H except those for global pages. It also invalidates all entries in all paging-
structure caches associated with PCID 000H.

— If CR4.PCIDE = 1 and bit 63 of the instruction’s source operand is 0, the 
instruction invalidates all TLB entries associated with the PCID specified in 
bits 11:0 of the instruction’s source operand except those for global pages. It 
also invalidates all entries in all paging-structure caches associated with that 
PCID. It is not required to invalidate entries in the TLBs and paging-structure 
caches that are associated with other PCIDs.

— If CR4.PCIDE = 1 and bit 63 of the instruction’s source operand is 1, the 
instruction is not required to invalidate any TLB entries or entries in paging-
structure caches.

• MOV to CR4. The behavior of the instruction depends on the bits being modified:

— The instruction invalidates all TLB entries (including global entries) and all entries 
in all paging-structure caches (for all PCIDs) if (1) it changes the value of 
CR4.PGE;2 or (2) it changes the value of the CR4.PCIDE from 1 to 0.

— The instruction invalidates all TLB entries and all entries in all paging-structure 
caches for the current PCID if (1) it changes the value of CR4.PAE; or (2) it 
changes the value of CR4.SMEP from 0 to 1.

1. If the paging structures map the linear address using a page larger than 4 KBytes and there are mul-
tiple TLB entries for that page (see Section 4.10.2.3), the instruction invalidates all of them.

2. If CR4.PGE is changing from 0 to 1, there were no global TLB entries before the execution; if CR4.PGE 
is changing from 1 to 0, there will be no global TLB entries after the execution.



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -58

• Task switch. If a task switch changes the value of CR3, it invalidates all TLB entries 
associated with PCID 000H except those for global pages. It also invalidates all 
entries in all paging-structure caches for associated with PCID 000H.1

• VMX transitions. See Section 4.11.1.

The processor is always free to invalidate additional entries in the TLBs and paging-
structure caches. The following are some examples:
• INVLPG may invalidate TLB entries for pages other than the one corresponding to its 

linear-address operand. It may invalidate TLB entries and paging-structure-cache 
entries associated with PCIDs other than the current PCID.

• MOV to CR0 may invalidate TLB entries even if CR0.PG is not changing. For example, 
this may occur if either CR0.CD or CR0.NW is modified.

• MOV to CR3 may invalidate TLB entries for global pages. If CR4.PCIDE = 1 and bit 63 
of the instruction’s source operand is 0, it may invalidate TLB entries and entries in 
the paging-structure caches associated with PCIDs other than the current PCID. It 
may invalidate entries if CR4.PCIDE = 1 and bit 63 of the instruction’s source 
operand is 1. 

• MOV to CR4 may invalidate TLB entries when changing CR4.PSE or when changing 
CR4.SMEP from 1 to 0.

• On a processor supporting Hyper-Threading Technology, invalidations performed on 
one logical processor may invalidate entries in the TLBs and paging-structure caches 
used by other logical processors.

(Other instructions and operations may invalidate entries in the TLBs and the paging-
structure caches, but the instructions identified above are recommended.)

In addition to the instructions identified above, page faults invalidate entries in the TLBs 
and paging-structure caches. In particular, a page-fault exception resulting from an 
attempt to use a linear address will invalidate any TLB entries that are for a page number 
corresponding to that linear address and that are associated with the current PCID. it 
also invalidates all entries in the paging-structure caches that would be used for that 
linear address and that are associated with the current PCID.2 These invalidations 
ensure that the page-fault exception will not recur (if the faulting instruction is re-
executed) if it would not be caused by the contents of the paging structures in memory 
(and if, therefore, it resulted from cached entries that were not invalidated after the 
paging structures were modified in memory).

As noted in Section 4.10.2, some processors may choose to cache multiple smaller-page 
TLB entries for a translation specified by the paging structures to use a page larger than 
4 KBytes. There is no way for software to be aware that multiple translations for smaller 
pages have been used for a large page. The INVLPG instruction and page faults provide 
the same assurances that they provide when a single TLB entry is used: they invalidate 
all TLB entries corresponding to the translation specified by the paging structures.

4.10.4.2  Recommended Invalidation
The following items provide some recommendations regarding when software should 
perform invalidations:

1. Task switches do not occur in IA-32e mode and thus cannot occur with IA-32e paging. Since 
CR4.PCIDE can be set only with IA-32e paging, task switches occur only with CR4.PCIDE = 0.

2. Unlike INVLPG, page faults need not invalidate all entries in the paging-structure caches, only those 
that would be used to translate the faulting linear address.



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -59

• If software modifies a paging-structure entry that identifies the final page frame for 
a page number (either a PTE or a paging-structure entry in which the PS flag is 1), it 
should execute INVLPG for any linear address with a page number whose translation 
uses that PTE.1

(If the paging-structure entry may be used in the translation of different page 
numbers — see Section 4.10.3.3 — software should execute INVLPG for linear 
addresses with each of those page numbers; alternatively, it could use MOV to CR3 
or MOV to CR4.)

• If software modifies a paging-structure entry that references another paging 
structure, it may use one of the following approaches depending upon the types and 
number of translations controlled by the modified entry:

— Execute INVLPG for linear addresses with each of the page numbers with trans-
lations that would use the entry. However, if no page numbers that would use the 
entry have translations (e.g., because the P flags are 0 in all entries in the paging 
structure referenced by the modified entry), it remains necessary to execute 
INVLPG at least once.

— Execute MOV to CR3 if the modified entry controls no global pages.

— Execute MOV to CR4 to modify CR4.PGE.
• If CR4.PCIDE = 1 and software modifies a paging-structure entry that does not map 

a page or in which the G flag (bit 8) is 0, additional steps are required if the entry 
may be used for PCIDs other than the current one. Any one of the following suffices:

— Execute MOV to CR4 to modify CR4.PGE, either immediately or before again 
using any of the affected PCIDs. For example, software could use different 
(previously unused) PCIDs for the processes that used the affected PCIDs.

— For each affected PCID, execute MOV to CR3 to make that PCID current (and to 
load the address of the appropriate PML4 table). If the modified entry controls no 
global pages and bit 63 of the source operand to MOV to CR3 was 0, no further 
steps are required. Otherwise, execute INVLPG for linear addresses with each of 
the page numbers with translations that would use the entry; if no page numbers 
that would use the entry have translations, execute INVLPG at least once.

• If software using PAE paging modifies a PDPTE, it should reload CR3 with the 
register’s current value to ensure that the modified PDPTE is loaded into the corre-
sponding PDPTE register (see Section 4.4.1).

• If the nature of the paging structures is such that a single entry may be used for 
multiple purposes (see Section 4.10.3.3), software should perform invalidations for 
all of these purposes. For example, if a single entry might serve as both a PDE and 
PTE, it may be necessary to execute INVLPG with two (or more) linear addresses, 
one that uses the entry as a PDE and one that uses it as a PTE. (Alternatively, 
software could use MOV to CR3 or MOV to CR4.)

• As noted in Section 4.10.2, the TLBs may subsequently contain multiple translations 
for the address range if software modifies the paging structures so that the page size 
used for a 4-KByte range of linear addresses changes. A reference to a linear address 
in the address range may use any of these translations.
Software wishing to prevent this uncertainty should not write to a paging-structure 
entry in a way that would change, for any linear address, both the page size and 
either the page frame, access rights, or other attributes. It can instead use the 
following algorithm: first clear the P flag in the relevant paging-structure entry (e.g., 

1. One execution of INVLPG is sufficient even for a page with size greater than 4 KBytes.



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -60

PDE); then invalidate any translations for the affected linear addresses (see above); 
and then modify the relevant paging-structure entry to set the P flag and establish 
modified translation(s) for the new page size.

• Software should clear bit 63 of the source operand to a MOV to CR3 instruction that 
establishes a PCID that had been used earlier for a different linear-address space 
(e.g., with a different value in bits 51:12 of CR3). This ensures invalidation of any 
information that may have been cached for the previous linear-address space.
This assumes that both linear-address spaces use the same global pages and that it 
is thus not necessary to invalidate any global TLB entries. If that is not the case, 
software should invalidate those entries by executing MOV to CR4 to modify 
CR4.PGE.

4.10.4.3  Optional Invalidation
The following items describe cases in which software may choose not to invalidate and 
the potential consequences of that choice:
• If a paging-structure entry is modified to change the P flag from 0 to 1, no invali-

dation is necessary. This is because no TLB entry or paging-structure cache entry is 
created with information from a paging-structure entry in which the P flag is 0.1

• If a paging-structure entry is modified to change the accessed flag from 0 to 1, no 
invalidation is necessary (assuming that an invalidation was performed the last time 
the accessed flag was changed from 1 to 0). This is because no TLB entry or paging-
structure cache entry is created with information from a paging-structure entry in 
which the accessed flag is 0.

• If a paging-structure entry is modified to change the R/W flag from 0 to 1, failure to 
perform an invalidation may result in a “spurious” page-fault exception (e.g., in 
response to an attempted write access) but no other adverse behavior. Such an 
exception will occur at most once for each affected linear address (see Section 
4.10.4.1).

• If CR4.SMEP = 0 and a paging-structure entry is modified to change the U/S flag 
from 0 to 1, failure to perform an invalidation may result in a “spurious” page-fault 
exception (e.g., in response to an attempted user-mode access) but no other 
adverse behavior. Such an exception will occur at most once for each affected linear 
address (see Section 4.10.4.1).

• If a paging-structure entry is modified to change the XD flag from 1 to 0, failure to 
perform an invalidation may result in a “spurious” page-fault exception (e.g., in 
response to an attempted instruction fetch) but no other adverse behavior. Such an 
exception will occur at most once for each affected linear address (see Section 
4.10.4.1).

• If a paging-structure entry is modified to change the accessed flag from 1 to 0, 
failure to perform an invalidation may result in the processor not setting that bit in 
response to a subsequent access to a linear address whose translation uses the 
entry. Software cannot interpret the bit being clear as an indication that such an 
access has not occurred.

• If software modifies a paging-structure entry that identifies the final physical 
address for a linear address (either a PTE or a paging-structure entry in which the PS 
flag is 1) to change the dirty flag from 1 to 0, failure to perform an invalidation may 

1. If it is also the case that no invalidation was performed the last time the P flag was changed from 1 
to 0, the processor may use a TLB entry or paging-structure cache entry that was created when the 
P flag had earlier been 1.



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -61

result in the processor not setting that bit in response to a subsequent write to a 
linear address whose translation uses the entry. Software cannot interpret the bit 
being clear as an indication that such a write has not occurred.

• The read of a paging-structure entry in translating an address being used to fetch an 
instruction may appear to execute before an earlier write to that paging-structure 
entry if there is no serializing instruction between the write and the instruction fetch. 
Note that the invalidating instructions identified in Section 4.10.4.1 are all serializing 
instructions.

• Section 4.10.3.3 describes situations in which a single paging-structure entry may 
contain information cached in multiple entries in the paging-structure caches. 
Because all entries in these caches are invalidated by any execution of INVLPG, it is 
not necessary to follow the modification of such a paging-structure entry by 
executing INVLPG multiple times solely for the purpose of invalidating these multiple 
cached entries. (It may be necessary to do so to invalidate multiple TLB entries.)

...

8. Updates to Chapter 8, Volume 3A
Change bars show changes to Chapter 8 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

------------------------------------------------------------------------------------------

...

8.2.4 Out-of-Order Stores and Fast-String Operation 
The Intel Core 2 Duo, Intel Core, Pentium 4, and P6 family processors modify the proces-
sors operation during the string store operations (initiated with the MOVS and STOS 
instructions) to maximize performance. This optimized operation (called fast-string 
operation) is used if certain initial conditions are met (see below). With fast-string 
operation, the processor operates on (from an external perspective) the string in a cache 
line by cache line mode. This results in the processor looping on issuing a cache-line read 
for the source address and an invalidation on the external bus for the destination 
address, knowing that all bytes in the destination cache line will be modified, for the 
length of the string. With fast-string operation, interrupts are accepted by the processor 
only on cache line boundaries. It is possible that, with fast-string operation, the destina-
tion line invalidations (and therefore stores) will be issued on the external bus out of 
order. 

Code dependent upon sequential store ordering should not use string operations for the 
entire data structure to be stored. Data and semaphores should be separated. Order-
dependent code should write to a discrete semaphore variable after any string opera-
tions to allow correctly ordered data to be seen by all processors.

Initial conditions for fast-string operation are implementation specific. Example condi-
tions include:
• EDI and ESI must be 8-byte aligned for the Pentium III processor. EDI must be 8-byte 

aligned for the Pentium 4 processor.
• String operation must be performed in ascending address order.
• The initial operation counter (ECX) must be equal to or greater than 64.



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -62

• Source and destination must not overlap by less than a cache line (64 bytes, for Intel 
Core 2 Duo, Intel Core, Pentium M, and Pentium 4 processors; 32 bytes P6 family 
and Pentium processors).

• The memory type for both source and destination addresses must be either WB or 
WC.

NOTE
Initial conditions for fast-string operation in future Intel 64 or IA-32 
processor families may differ from above.

Software can disable fast-string operation by clearing the fast-string-enable bit (bit 0) of 
IA32_MISC_ENABLE MSR. However, Intel recommends that system software always 
enable fast-string operation. 

When fast-string operation is enabled (because IA32_MISC_ENABLE[0] = 1), some 
processors may further enhance the operation of the REP MOVSB and REP STOSB 
instructions. A processors supports these enhancements if 
CPUID.(EAX=07H, ECX=0H):EBX[bit 9] is 1.

...

9. Updates to Chapter 10, Volume 3A
Change bars show changes to Chapter 10 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

------------------------------------------------------------------------------------------

...

10.8.5 Signaling Interrupt Servicing Completion
For all interrupts except those delivered with the NMI, SMI, INIT, ExtINT, the start-up, or 
INIT-Deassert delivery mode, the interrupt handler must include a write to the end-of-
interrupt (EOI) register (see Figure 10-21). This write must occur at the end of the 
handler routine, sometime before the IRET instruction. This action indicates that the 
servicing of the current interrupt is complete and the local APIC can issue the next inter-
rupt from the ISR. 

Upon receiving an EOI, the APIC clears the highest priority bit in the ISR and dispatches 
the next highest priority interrupt to the processor. If the terminated interrupt was a 
level-triggered interrupt, the local APIC also sends an end-of-interrupt message to all I/
O APICs. 
System software may prefer to direct EOIs to specific I/O APICs rather than having the 
local APIC send end-of-interrupt messages to all I/O APICs.

Figure 10-21   EOI Register

31 0

Address: 0FEE0 00B0H
Value after reset: 0H



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -63

Software can inhibit the broadcast of EOI message by setting bit 12 of the Spurious 
Interrupt Vector Register (see Section 10.9). If this bit is set, a broadcast EOI is not 
generated on an EOI cycle even if the associated TMR bit indicates that the current inter-
rupt was level-triggered. The default value for the bit is 0, indicating that EOI broadcasts 
are performed.

Bit 12 of the Spurious Interrupt Vector Register is reserved to 0 if the processor does not 
support suppression of EOI broadcasts. Support for EOI-broadcast suppression is 
reported in bit 24 in the Local APIC Version Register (see Section 10.4.8); the feature is 
supported if that bit is set to 1. When supported, the feature is available in both xAPIC 
mode and x2APIC mode.

System software desiring to perform directed EOIs for level-triggered interrupts should 
set bit 12 of the Spurious Interrupt Vector Register and follow each the EOI to the local 
xAPIC for a level triggered interrupt with a directed EOI to the I/O APIC generating the 
interrupt (this is done by writing to the I/O APIC’s EOI register). System software 
performing directed EOIs must retain a mapping associating level-triggered interrupts 
with the I/O APICs in the system.

...

10.12.1.2  x2APIC Register Address Space
The MSR address range 800H through BFFH is architecturally reserved and dedicated for 
accessing APIC registers in x2APIC mode. Table 10-6 lists the APIC registers that are 
available in x2APIC mode. When appropriate, the table also gives the offset at which 
each register is available on the page referenced by IA32_APIC_BASE[35:12] in xAPIC 
mode. 
There is a one-to-one mapping between the x2APIC MSRs and the legacy xAPIC register 
offsets with the following exceptions:
• The Destination Format Register (DFR): The DFR, supported at offset 0E0H in xAPIC 

mode, is not supported in x2APIC mode. There is no MSR with address 80EH.
• The Interrupt Command Register (ICR): The two 32-bit registers in xAPIC mode (at 

offsets 300H and 310H) are merged into a single 64-bit MSR in x2APIC mode (with 
MSR address 830H). There is no MSR with address 831H.

• The SELF IPI register. This register is available only in x2APIC mode at address 83FH. 
In xAPIC mode, there is no register defined at offset 3F0H.

Addresses in the range 800H–BFFH that are not listed in Table 10-6 (including 80EH and 
831H) are reserved. Executions of RDMSR and WRMSR that attempt to access such 
addresses cause general-protection exceptions.
The MSR address space is compressed to allow for future growth. Every 32 bit register 
on a 128-bit boundary in the legacy MMIO space is mapped to a single MSR in the local 
x2APIC MSR address space. The upper 32-bits of all x2APIC MSRs (except for the ICR) 
are reserved. 

...

10. Updates to Chapter 11, Volume 3A
Change bars show changes to Chapter 11 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

------------------------------------------------------------------------------------------



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -64

...

11.11.1 MTRR Feature Identification
The availability of the MTRR feature is model-specific. Software can determine if MTRRs 
are supported on a processor by executing the CPUID instruction and reading the state 
of the MTRR flag (bit 12) in the feature information register (EDX).

If the MTRR flag is set (indicating that the processor implements MTRRs), additional 
information about MTRRs can be obtained from the 64-bit IA32_MTRRCAP MSR (named 
MTRRcap MSR for the P6 family processors). The IA32_MTRRCAP MSR is a read-only 
MSR that can be read with the RDMSR instruction. Figure 11-5 shows the contents of the 
IA32_MTRRCAP MSR. The functions of the flags and field in this register are as follows:
• VCNT (variable range registers count) field, bits 0 through 7 — Indicates the 

number of variable ranges implemented on the processor.
• FIX (fixed range registers supported) flag, bit 8 — Fixed range MTRRs 

(IA32_MTRR_FIX64K_00000 through IA32_MTRR_FIX4K_0F8000) are supported 
when set; no fixed range registers are supported when clear.

• WC (write combining) flag, bit 10 — The write-combining (WC) memory type is 
supported when set; the WC type is not supported when clear.

• SMRR (System-Management Range Register) flag, bit 11 — The system-
management range register (SMRR) interface is supported when bit 11 is set; the 
SMRR interface is not supported when clear.

Bit 9 and bits 12 through 63 in the IA32_MTRRCAP MSR are reserved. If software 
attempts to write to the IA32_MTRRCAP MSR, a general-protection exception (#GP) is 
generated. 

Software must read IA32_MTRRCAP VCNT field to determine the number of variable 
MTRRs and query other feature bits in IA32_MTRRCAP to determine additional capabili-
ties that are supported in a processor. For example, some processors may report a value 
of ‘8’ in the VCNT field, other processors may report VCNT with different values. 

...

11. Updates to Chapter 16, Volume 3A
Change bars show changes to Chapter 16 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

------------------------------------------------------------------------------------------

...

16.4.4.1  Branch Trace Message Visibility
Branch trace message (BTM) visibility is implementation specific and limited to  systems 
with a front side bus (FSB). BTMs may not be visible to newer system link interfaces or a 
system bus that deviates from a traditional FSB.

...



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -65

12. Updates to Chapter 28, Volume 3B
Change bars show changes to Chapter 28 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

------------------------------------------------------------------------------------------

...

28.3.5.2  Response to Page Faults
Page faults can occur for a variety of reasons. In some cases, the page fault alerts the 
VMM to an inconsistency between the active and guest page-table hierarchy. In such 
cases, the VMM can update the former and re-execute the faulting instruction. In other 
cases, the hierarchies are already consistent and the fault should be handled by the 
guest operating system. The VMM can detect this and use an established mechanism for 
raising a page fault to guest software. 

The VMM can handle a page fault by following these steps (The steps below assume the 
guest is operating in a paging mode without PAE. Analogous steps to handle address 
translation using PAE or four-level paging mechanisms can be derived by VMM devel-
opers according to the paging behavior defined in Chapter 3 of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A):

1. First consult the active PDE, which can be located using the upper 10 bits of the 
faulting address and the current value of CR3. The active PDE is the source of the 
fault if it is marked not present or if its R/W bit and U/S bits are inconsistent with the 
attempted guest access (the guest privilege level and the values of CR0.WP and 
CR4.SMEP should also be taken into account).

2. If the active PDE is the source of the fault, consult the corresponding guest PDE using 
the same 10 bits from the faulting address and the physical address that corresponds 
to the guest address in the guest CR3. If the guest PDE would cause a page fault (for 
example: it is marked not present), then raise a page fault to the guest operating 
system. 
The following steps assume that the guest PDE would not have caused a page fault.

3. If the active PDE is the source of the fault and the guest PDE contains, as page-table 
base address (if PS = 0) or page base address (PS = 1), a guest address that the 
VMM has chosen not to support; then raise a machine check (or some other abort) to 
the guest operating system. 
The following steps assume that the guest address in the guest PDE is supported for 
the virtual machine.

4. If the active PDE is marked not-present, then set the active PDE to correspond to 
guest PDE as follows:

a. If the active PDE contains a page-table base address (if PS = 0), then allocate an 
aligned 4-KByte active page table marked completely invalid and set the page-
table base address in the active PDE to be the physical address of the newly 
allocated page table.

b. If the active PDE contains a page base address (if PS = 1), then set the page 
base address in the active PDE to be the physical page base address that 
corresponds to the guest address in the guest PDE.

c. Set the P, U/S, and PS bits in the active PDE to be identical to those in the guest 
PDE.



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -66

d. Set the PWT, PCD, and G bits according to the policy of the VMM.

e. Set A = 1 in the guest PDE.

f. If D = 1 in the guest PDE or PS = 0 (meaning that this PDE refers to a page 
table), then set the R/W bit in the active PDE as in the guest PDE.

g. If D = 0 in the guest PDE, PS = 1 (this is a 4-MByte page), and the attempted 
access is a write; then set R/W in the active PDE as in the guest PDE and set 
D = 1 in the guest PDE.

h. If D = 0 in the guest PDE, PS = 1, and the attempted access is not a write; then 
set R/W = 0 in the active PDE.

i. After modifying the active PDE, re-execute the faulting instruction. 
The remaining steps assume that the active PDE is already marked present.

5. If the active PDE is the source of the fault, the active PDE refers to a 4-MByte page 
(PS = 1), the attempted access is a write; D = 0 in the guest PDE, and the active 
PDE has caused a fault solely because it has R/W = 0; then set R/W in the active PDE 
as in the guest PDE; set D = 1 in the guest PDE, and re-execute the faulting 
instruction.

6. If the active PDE is the source of the fault and none of the above cases apply, then 
raise a page fault of the guest operating system. 
The remaining steps assume that the source of the original page fault is not the 
active PDE.

NOTE
It is possible that the active PDE might be causing a fault even though 
the guest PDE would not. However, this can happen only if the guest 
operating system increased access in the guest PDE and did not take 
action to ensure that older translations were flushed from the TLB. Such 
translations might have caused a page fault if the guest software were 
running on bare hardware.

7. If the active PDE refers to a 4-MByte page (PS = 1) but is not the source of the fault, 
then the fault resulted from an inconsistency between the active page-table 
hierarchy and the processor’s TLB. Since the transition to the VMM caused an 
address-space change and flushed the processor’s TLB, the VMM can simply re-
execute the faulting instruction. 
The remaining steps assume that PS = 0 in the active and guest PDEs.

8. Consult the active PTE, which can be located using the next 10 bits of the faulting 
address (bits 21–12) and the physical page-table base address in the active PDE. 
The active PTE is the source of the fault if it is marked not-present or if its R/W bit 
and U/S bits are inconsistent with the attempted guest access (the guest privilege 
level and the values of CR0.WP and CR4.SMEP should also be taken into account).

9. If the active PTE is not the source of the fault, then the fault has resulted from an 
inconsistency between the active page-table hierarchy and the processor’s TLB. 
Since the transition to the VMM caused an address-space change and flushed the 
processor’s TLB, the VMM simply re-executes the faulting instruction.
The remaining steps assume that the active PTE is the source of the fault.

10. Consult the corresponding guest PTE using the same 10 bits from the faulting 
address and the physical address that correspond to the guest page-table base 



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -67

address in the guest PDE. If the guest PTE would cause a page fault (it is marked not-
present), the raise a page fault to the guest operating system. 
The following steps assume that the guest PTE would not have caused a page fault.

11. If the guest PTE contains, as page base address, a physical address that is not valid 
for the virtual machine being supported; then raise a machine check (or some other 
abort) to the guest operating system. 
The following steps assume that the address in the guest PTE is valid for the virtual 
machine.

12. If the active PTE is marked not-present, then set the active PTE to correspond to 
guest PTE:

a. Set the page base address in the active PTE to be the physical address that 
corresponds to the guest page base address in the guest PTE.

b. Set the P, U/S, and PS bits in the active PTE to be identical to those in the guest 
PTE.

c. Set the PWT, PCD, and G bits according to the policy of the VMM.

d. Set A = 1 in the guest PTE.

e. If D = 1 in the guest PTE, then set the R/W bit in the active PTE as in the guest 
PTE.

f. If D = 0 in the guest PTE and the attempted access is a write, then set R/W in the 
active PTE as in the guest PTE and set D = 1 in the guest PTE.

g. If D = 0 in the guest PTE and the attempted access is not a write, then set R/
W = 0 in the active PTE.

h. After modifying the active PTE, re-execute the faulting instruction. 
The remaining steps assume that the active PTE is already marked present.

13. If the attempted access is a write, D = 0 (not dirty) in the guest PTE and the active 
PTE has caused a fault solely because it has R/W = 0 (read-only); then set R/W in 
the active PTE as in the guest PTE, set D = 1 in the guest PTE and re-execute the 
faulting instruction.

14. If none of the above cases apply, then raise a page fault of the guest operating 
system.

...



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -68

13. Updates to Appendix A, Volume 3B
Change bars show changes to Appendix A of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

------------------------------------------------------------------------------------------

...

Table A-6.  Non-Architectural Performance Events In the Processor Core for Processors 
Based on Intel Microarchitecture Code Name Westmere

...

14. Updates to Appendix B, Volume 3B
Change bars show changes to Appendix B of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

------------------------------------------------------------------------------------------

...
Model specific registers and its bit-fields may be supported for a finite range of processor 
families/models. To distinguish between different processor family and/or models, soft-
ware must use CPUID.01H leaf function to query the combination of DisplayFamily and 
DisplayModel to determine model-specific availability of MSRs (see CPUID instruction in 
Chapter 3, “Instruction Set Reference, A-M” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 2A). Table B-1 lists the signature values of 
DisplayFamily and DisplayModel for various processor families or processor number 
series.

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment

...

1EH 01H INST_QUEUE_WRITE
_CYCLES

This event counts the number of 
cycles during which instructions are 
written to the instruction queue.  
Dividing this counter by the number 
of instructions written to the 
instruction queue 
(INST_QUEUE_WRITES) yields the 
average number of instructions 
decoded each cycle. If this number is  
less than four and the pipe stalls, 
this indicates that the decoder is 
failing to decode enough 
instructions per cycle to sustain the 
4-wide pipeline. 

If SSE* 
instructions that 
are 6 bytes or 
longer arrive one 
after another, 
then front end 
throughput may 
limit execution 
speed. 

...

B0H 10H OFFCORE_REQUEST
S.ANY.RFO

Counts number of offcore RFO 
requests. Includes L2 prefetch 
requests.

...



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -69

...

Table B-1   CPUID Signature Values of DisplayFamily_DisplayModel 
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_2DH Next Generation Intel Xeon processor

06_2FH Intel Xeon processor E7 family

06_2AH Intel Xeon processor E3 family; Second Generation Intel Core i7, i5, 
i3 Processors 2xxx Series

06_2EH Intel Xeon processor 7500, 6500 series

06_25H, 06_2CH Intel Xeon processors 3600, 5600 series, Intel Core i7, i5 and i3 
Processors

06_1EH, 06_1FH Intel Core i7 and i5 Processors

06_1AH Intel Core i7 Processor, Intel Xeon Processor 3400, 3500, 5500 
series

06_1DH Intel Xeon Processor MP 7400 series

06_17H Intel Xeon Processor 3100, 3300, 5200, 5400 series, Intel Core 2 
Quad processors 8000, 9000 series

06_0FH Intel Xeon Processor 3000, 3200, 5100, 5300, 7300 series, Intel 
Core 2 Quad processor 6000 series, Intel Core 2 Extreme 6000 
series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors, 
Intel Pentium dual-core processors

06_0EH Intel Core Duo, Intel Core Solo processors

06_0DH Intel Pentium M processor

06_1CH Intel Atom processor

0F_06H Intel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP, 
Intel Pentium 4, Pentium D processors

0F_03H, 0F_04H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4, 
Pentium D processors

06_09H Intel Pentium M processor

0F_02H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 
processors

0F_0H, 0F_01H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 
processors

06_7H, 06_08H, 06_0AH, 
06_0BH

Intel Pentium III Xeon Processor, Intel Pentium III Processor

06_03H, 06_05H Intel Pentium II Xeon Processor, Intel Pentium II Processor 

06_01H Intel Pentium Pro Processor 

05_01H, 05_02H, 05_04H Intel Pentium Processor, Intel Pentium Processor with MMX 
Technology



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes -70


	Revision History
	Preface
	Summary Tables of Changes
	Documentation Changes
	1. Updates to Chapter 3, Volume 1
	2. Updates to Chapter 7, Volume 1
	3. Updates to Chapter 3, Volume 2A
	4. Updates to Chapter 4, Volume 2B
	5. Updates to Appendix A, Volume 2B
	6. Updates to Chapter 2, Volume 3A
	7. Updates to Chapter 4, Volume 3A
	8. Updates to Chapter 8, Volume 3A
	9. Updates to Chapter 10, Volume 3A
	10. Updates to Chapter 11, Volume 3A
	11. Updates to Chapter 16, Volume 3A
	12. Updates to Chapter 28, Volume 3B
	13. Updates to Appendix A, Volume 3B
	14. Updates to Appendix B, Volume 3B

