
Document Number: 252046-034

Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Documentation Changes

December 2011

Notice: The Intel® 64 and IA-32 architectures may contain design defects or errors known as errata
that may cause the product to deviate from published specifications. Current characterized errata are
documented in the specification updates.

2 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Legal Lines and DisclaimersINFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER,
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or
life sustaining applications.
Intel may make changes to specifications and product descriptions at any time, without notice.
64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device
drivers and applications enabled for Intel® 64 architecture. Performance will vary depending on your hardware and software
configurations. Consult with your system vendor for more information.
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
I2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I2C bus/protocol and was developed
by Intel. Implementations of the I2C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and
North American Philips Corporation.
Intel, Pentium, Intel Core, Intel Xeon, Intel 64, Intel NetBurst, and the Intel logo are trademarks of Intel Corporation in the U.S.
and other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2002–2011, Intel Corporation. All rights reserved.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 3

Contents

Revision History . 4

Preface . 7

Summary Tables of Changes . 8

Documentation Changes. 9

Revision History

4 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Revision History

Revision Description Date

-001 • Initial release November 2002

-002
• Added 1-10 Documentation Changes.
• Removed old Documentation Changes items that already have been

incorporated in the published Software Developer’s manual
December 2002

-003

• Added 9 -17 Documentation Changes.
• Removed Documentation Change #6 - References to bits Gen and Len

Deleted.
• Removed Documentation Change #4 - VIF Information Added to CLI

Discussion

February 2003

-004 • Removed Documentation changes 1-17.
• Added Documentation changes 1-24. June 2003

-005 • Removed Documentation Changes 1-24.
• Added Documentation Changes 1-15.

September 2003

-006 • Added Documentation Changes 16- 34. November 2003

-007 • Updated Documentation changes 14, 16, 17, and 28.
• Added Documentation Changes 35-45.

January 2004

-008 • Removed Documentation Changes 1-45.
• Added Documentation Changes 1-5.

March 2004

-009 • Added Documentation Changes 7-27. May 2004

-010 • Removed Documentation Changes 1-27.
• Added Documentation Changes 1.

August 2004

-011 • Added Documentation Changes 2-28. November 2004

-012 • Removed Documentation Changes 1-28.
• Added Documentation Changes 1-16.

March 2005

-013
• Updated title.
• There are no Documentation Changes for this revision of the

document.
July 2005

-014 • Added Documentation Changes 1-21. September 2005

-015 • Removed Documentation Changes 1-21.
• Added Documentation Changes 1-20.

March 9, 2006

-016 • Added Documentation changes 21-23. March 27, 2006

-017 • Removed Documentation Changes 1-23.
• Added Documentation Changes 1-36.

September 2006

-018 • Added Documentation Changes 37-42. October 2006

-019 • Removed Documentation Changes 1-42.
• Added Documentation Changes 1-19.

March 2007

-020 • Added Documentation Changes 20-27. May 2007

-021 • Removed Documentation Changes 1-27.
• Added Documentation Changes 1-6

November 2007

-022 • Removed Documentation Changes 1-6
• Added Documentation Changes 1-6

August 2008

-023 • Removed Documentation Changes 1-6
• Added Documentation Changes 1-21

March 2009

Revision History

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 5

§

-024 • Removed Documentation Changes 1-21
• Added Documentation Changes 1-16

June 2009

-025 • Removed Documentation Changes 1-16
• Added Documentation Changes 1-18

September 2009

-026 • Removed Documentation Changes 1-18
• Added Documentation Changes 1-15

December 2009

-027 • Removed Documentation Changes 1-15
• Added Documentation Changes 1-24

March 2010

-028 • Removed Documentation Changes 1-24
• Added Documentation Changes 1-29

June 2010

-029 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

September 2010

-030 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

January 2011

-031 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

April 2011

-032 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-14

May 2011

-033 • Removed Documentation Changes 1-14
• Added Documentation Changes 1-38

October 2011

-034 • Removed Documentation Changes 1-38
• Added Documentation Changes 1-16

December 2011

Revision Description Date

Revision History

6 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 7

Preface

This document is an update to the specifications contained in the Affected Documents
table below. This document is a compilation of device and documentation errata,
specification clarifications and changes. It is intended for hardware system
manufacturers and software developers of applications, operating systems, or tools.

Affected Documents

Nomenclature
Documentation Changes include typos, errors, or omissions from the current
published specifications. These will be incorporated in any new release of the
specification.

Document Title Document
Number/Location

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
1: Basic Architecture 253665

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2A: Instruction Set Reference, A-M 253666

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2B: Instruction Set Reference, N-Z 253667

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3A: System Programming Guide, Part 1 253668

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3B: System Programming Guide, Part 2 253669

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 8

Summary Tables of Changes

The following table indicates documentation changes which apply to the Intel® 64 and
IA-32 architectures. This table uses the following notations:

Codes Used in Summary Tables
Change bar to left of table row indicates this erratum is either new or modified from the
previous version of the document.

Documentation Changes
No. DOCUMENTATION CHANGES

1 Updates to Chapter 7, Volume 1

2 Updates to Chapter 12, Volume 1

3 Updates to Chapter 13, Volume 1

4 Updates to Chapter 1, Volume 2A

5 Updates to Chapter 2, Volume 2A

6 Updates to Chapter 3, Volume 2A

7 Updates to Chapter 4, Volume 2B

8 Updates to Chapter 6, Volume 3A

9 Updates to Chapter 8, Volume 3A

10 Updates to Chapter 9, Volume 3A

11 Updates to Chapter 17, Volume 3B

12 Updates to Chapter 18, Volume 3B

13 Updates to Chapter 19, Volume 3B

14 Updates to Chapter 25, Volume 3C

15 Updates to Chapter 33, Volume 3C

16 Updates to Chapter 34, Volume 3C

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

Documentation Changes

1. Updates to Chapter 7, Volume 1
Change bars show changes to Chapter 7 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1: Basic Architecture.

--

...

7.3 SUMMARY OF GP INSTRUCTIONS
General purpose instructions are divided into the following subgroups:
• Data transfer
• Binary arithmetic
• Decimal arithmetic
• Logical
• Shift and rotate
• Bit and byte
• Control transfer
• String
• I/O
• Enter and Leave
• Flag control
• Segment register
• Miscellaneous

Each sub-group of general-purpose instructions is discussed in the context of non-64-bit
mode operation first. Changes in 64-bit mode beyond those affected by the use of the
REX prefixes are discussed in separate sub-sections within each subgroup. For a simple
list of general-purpose instructions by subgroup, see Chapter 5.

...

7.3.9 String Operations
The GP instructions includes a set of string instructions that are designed to access
large data structures; these are introduced in Section 7.3.9.1. Section 7.3.9.2 describes
how REP prefixes can be used with these instructions to perform more complex
repeated string operations. Certain processors optimize repeated string operations
with fast-string operation, as described in Section 7.3.9.3. Section 7.3.9.4 explains
how string operations can be used in 64-bit mode.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 10

7.3.9.1 String Instructions
The MOVS (Move String), CMPS (Compare string), SCAS (Scan string), LODS (Load
string), and STOS (Store string) instructions permit large data structures, such as alpha-
numeric character strings, to be moved and examined in memory. These instructions
operate on individual elements in a string, which can be a byte, word, or doubleword.
The string elements to be operated on are identified with the ESI (source string element)
and EDI (destination string element) registers. Both of these registers contain absolute
addresses (offsets into a segment) that point to a string element.

...

7.3.9.2 Repeated String Operations
Each of the string instructions described in Section 7.3.9.1 each perform one iteration of
a string operation. To operate strings longer than a doubleword, the string instructions
can be combined with a repeat prefix (REP) to create a repeating instruction or be placed
in a loop.

When used in string instructions, the ESI and EDI registers are automatically incre-
mented or decremented after each iteration of an instruction to point to the next
element (byte, word, or doubleword) in the string. String operations can thus begin at
higher addresses and work toward lower ones, or they can begin at lower addresses and
work toward higher ones. The DF flag in the EFLAGS register controls whether the regis-
ters are incremented (DF = 0) or decremented (DF = 1). The STD and CLD instructions
set and clear this flag, respectively.

The following repeat prefixes can be used in conjunction with a count in the ECX register
to cause a string instruction to repeat:
• REP — Repeat while the ECX register not zero.
• REPE/REPZ — Repeat while the ECX register not zero and the ZF flag is set.
• REPNE/REPNZ — Repeat while the ECX register not zero and the ZF flag is clear.

When a string instruction has a repeat prefix, the operation executes until one of the
termination conditions specified by the prefix is satisfied. The REPE/REPZ and REPNE/
REPNZ prefixes are used only with the CMPS and SCAS instructions. Also, note that a
REP STOS instruction is the fastest way to initialize a large block of memory.

7.3.9.3 Fast-String Operation
To improve performance, more recent processors support modifications to the
processor’s operation during the string store operations initiated with the MOVS,
MOVSB, STOS, and STOSB instructions. This optimized operation, called fast-string
operation, is used when the execution of one of those instructions meets certain initial
conditions (see below). Instructions using fast-string operation effectively operate on
the string in groups that may include multiple elements of the native data size (byte,
word, doubleword, or quadword). With fast-string operation, the processor recognizes
interrupts and data breakpoints only on boundaries between these groups. Fast-string
operation is used only if the source and destination addresses both use either the WB or
WC memory types.

The initial conditions for fast-string operation are implementation-specific and may vary
with the native string size. Examples of parameters that may impact the use of fast-
string operation include the following:
• the alignment indicated in the EDI and ESI alignment registers;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 11

• the address order of the string operation;
• the value of the initial operation counter (ECX); and
• the difference between the source and destination addresses.

NOTE
Initial conditions for fast-string operation in future Intel 64 or IA-32
processor families may differ from above. The Intel® 64 and IA-32
Architectures Optimization Reference Manual may contain model-
specific information.

Software can disable fast-string operation by clearing the fast-string-enable bit (bit 0) of
IA32_MISC_ENABLE MSR. However, Intel recommends that system software always
enable fast-string operation.

When fast-string operation is enabled (because IA32_MISC_ENABLE[0] = 1), some
processors may further enhance the operation of the REP MOVSB and REP STOSB
instructions. A processors supports these enhancements if
CPUID.(EAX=07H, ECX=0H):EBX[bit 9] is 1. The Intel® 64 and IA-32 Architectures
Optimization Reference Manual may include model-specific recommendations for use of
these enhancements.

The stores produced by fast-string operation may appear to execute out of order. Soft-
ware dependent upon sequential store ordering should not use string operations for the
entire data structure to be stored. Data and semaphores should be separated. Order-
dependent code should write to a discrete semaphore variable after any string opera-
tions to allow correctly ordered data to be seen by all processors. Atomicity of load and
store operations is guaranteed only for native data elements of the string with native
data size, and only if they are included in a single cache line. See Section 8.2.4, “Fast-
String Operation and Out-of-Order Stores” of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A.

7.3.9.4 String Operations in 64-Bit Mode
The behavior of MOVS (Move String), CMPS (Compare string), SCAS (Scan string), LODS
(Load string), and STOS (Store string) instructions in 64-bit mode is similar to their
behavior in non-64-bit modes, with the following differences:
• The source operand is specified by RSI or DS:ESI, depending on the address size

attribute of the operation.
• The destination operand is specified by RDI or DS:EDI, depending on the address

size attribute of the operation.
• Operation on 64-bit data is supported by using the REX.W prefix.

When using REP prefixes for string operations in 64-bit mode, the repeat count is speci-
fied by RCX or ECX (depending on the address size attribute of the operation). The
default address size is 64 bits.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 12

2. Updates to Chapter 12, Volume 1
Change bars show changes to Chapter 12 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1: Basic Architecture.

--

...

12.10.4 Packed Blending Instructions
SSE4.1 adds 6 instructions used for blending (BLENDPS, BLENDPD, BLENDVPS,
BLENDVPD, PBLENDVB, PBLENDW).

Blending conditionally copies a data element in a source operand to the same element in
the destination. SSE4.1 instructions improve blending operations for most field sizes. A
single new SSE4.1 instruction can generally replace a sequence of 2 to 4 operations
using previous architectures.

The variable blend instructions (BLENDVPS, PBLENDVPD, PBLENDW) introduce the use
of control bits stored in an implicit XMM register (XMM0). The most significant bit in each
field (the sign bit, for 2’s complement integer or floating-point) is used as a selector. See
Table 12-3.

...

3. Updates to Chapter 13, Volume 1
Change bars show changes to Chapter 13 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1: Basic Architecture.

--

...

13.2.3 Arithmetic Primitives for 128-bit Vector and Scalar processing
Intel AVX provides a full complement of 128-bit numeric processing instructions that
employ VEX-prefix encoding. These VEX-encoded instructions generally provide the
same functionality over instructions operating on XMM register that are encoded using
SIMD prefixes. The 128-bit numeric processing instructions in AVX cover floating-point
and integer data processing; across 128-bit vector and scalar processing. Table 13-5
lists the state of promotion of legacy SIMD arithmetic ISA to VEX-128 encoding. Legacy
SIMD floating-point arithmetic ISA promoted to VEX-256 encoding also support VEX-128
encoding (see Table 13-2).

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 13

13.2.4 Non-Arithmetic Primitives for 128-bit Vector and Scalar
Processing

Intel AVX provides a full complement of data processing instructions that employ VEX-
prefix encoding. These VEX-encoded instructions generally provide the same function-
ality over instructions operating on XMM register that are encoded using SIMD prefixes.

...

4. Updates to Chapter 1, Volume 2A
Change bars show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A: Instruction Set Reference, A-L.

--

...

1.2 OVERVIEW OF VOLUME 2A, 2B AND 2C: INSTRUCTION
SET REFERENCE

A description of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volumes 2A, 2B & 2C, content follows:

Chapter 1 — About This Manual. Gives an overview of all seven volumes of the Intel®
64 and IA-32 Architectures Software Developer’s Manual. It also describes the notational
conventions in these manuals and lists related Intel® manuals and documentation of
interest to programmers and hardware designers.

Chapter 2 — Instruction Format. Describes the machine-level instruction format used
for all IA-32 instructions and gives the allowable encodings of prefixes, the operand-
identifier byte (ModR/M byte), the addressing-mode specifier byte (SIB byte), and the
displacement and immediate bytes.

Chapter 3 — Instruction Set Reference, A-L. Describes Intel 64 and IA-32 instruc-
tions in detail, including an algorithmic description of operations, the effect on flags, the
effect of operand- and address-size attributes, and the exceptions that may be gener-
ated. The instructions are arranged in alphabetical order. General-purpose, x87 FPU,
Intel MMX™ technology, SSE/SSE2/SSE3/SSSE3/SSE4 extensions, and system instruc-
tions are included.

Chapter 4 — Instruction Set Reference, M-Z. Continues the description of Intel 64
and IA-32 instructions started in Chapter 3. It provides the balance of the alphabetized
list of instructions and starts Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2B.

Chapter 5— Safer Mode Extensions Reference. Describes the safer mode extensions
(SMX). SMX is intended for a system executive to support launching a measured envi-
ronment in a platform where the identity of the software controlling the platform hard-
ware can be measured for the purpose of making trust decisions. This chapter starts
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2C.

Appendix A — Opcode Map. Gives an opcode map for the IA-32 instruction set.

Appendix B — Instruction Formats and Encodings. Gives the binary encoding of
each form of each IA-32 instruction.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 14

Appendix C — Intel® C/C++ Compiler Intrinsics and Functional Equivalents. Lists
the Intel® C/C++ compiler intrinsics and their assembly code equivalents for each of the
IA-32 MMX and SSE/SSE2/SSE3 instructions.

...

5. Updates to Chapter 2, Volume 2A
Change bars show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A: Instruction Set Reference, A-L.

--

...

2.5 CONTROL REGISTERS

...
OSXMMEXCPT

Operating System Support for Unmasked SIMD Floating-Point Excep-
tions (bit 10 of CR4) — When set, indicates that the operating system supports
the handling of unmasked SIMD floating-point exceptions through an exception
handler that is invoked when a SIMD floating-point exception (#XF) is gener-
ated. SIMD floating-point exceptions are only generated by SSE/SSE2/SSE3/
SSE4.1 SIMD floating-point instructions.

The operating system or executive must explicitly set this flag. If this flag is not
set, the processor will generate an invalid opcode exception (#UD) whenever it
detects an unmasked SIMD floating-point exception.

VMXE
VMX-Enable Bit (bit 13 of CR4) — Enables VMX operation when set. See
Chapter 23, “Introduction to Virtual-Machine Extensions.”

SMXE
SMX-Enable Bit (bit 14 of CR4) — Enables SMX operation when set. See
Chapter 33, “VMX Instruction Reference” of Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3C.

FSGSBASE
FSGSBASE-Enable Bit (bit 16 of CR4) — Enables the instructions RDFSBASE,
RDGSBASE, WRFSBASE, and WRGSBASE.

PCIDE
PCID-Enable Bit (bit 17 of CR4) — Enables process-context identifiers
(PCIDs) when set. See Section 4.10.1, “Process-Context Identifiers (PCIDs)”.
Can be set only in IA-32e mode (if IA32_EFER.LMA = 1).

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 15

6. Updates to Chapter 3, Volume 2A
Change bars show changes to Chapter 3 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A: Instruction Set Reference, A-L.

--

...

CLFLUSH—Flush Cache Line

...

Real-Address Mode Exceptions
#GP If any part of the operand lies outside the effective address space

from 0 to FFFFH.
#UD If CPUID.01H:EDX.CLFSH[bit 19] = 0.

If the LOCK prefix is used.

...

CPUID—CPU Identification

Instruction Operand Encoding

Description

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. If
a software procedure can set and clear this flag, the processor executing the procedure
supports the CPUID instruction. This instruction operates the same in non-64-bit modes
and 64-bit mode.

CPUID returns processor identification and feature information in the EAX, EBX, ECX,
and EDX registers.1 The instruction’s output is dependent on the contents of the EAX
register upon execution (in some cases, ECX as well). For example, the following
pseudocode loads EAX with 00H and causes CPUID to return a Maximum Return Value
and the Vendor Identification String in the appropriate registers:

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F A2 CPUID NP Valid Valid Returns processor
identification and feature
information to the EAX,
EBX, ECX, and EDX
registers, as determined by
input entered in EAX (in
some cases, ECX as well).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

1. On Intel 64 processors, CPUID clears the high 32 bits of the RAX/RBX/RCX/RDX registers in all
modes.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 16

MOV EAX, 00H
CPUID

Table 3-17 shows information returned, depending on the initial value loaded into the
EAX register. Table 3-18 shows the maximum CPUID input value recognized for each
family of IA-32 processors on which CPUID is implemented.

Two types of information are returned: basic and extended function information. If a
value entered for CPUID.EAX is higher than the maximum input value for basic or
extended function for that processor then the data for the highest basic information leaf
is returned. For example, using the Intel Core i7 processor, the following is true:

CPUID.EAX = 05H (* Returns MONITOR/MWAIT leaf. *)
CPUID.EAX = 0AH (* Returns Architectural Performance Monitoring leaf. *)
CPUID.EAX = 0BH (* Returns Extended Topology Enumeration leaf. *)
CPUID.EAX = 0CH (* INVALID: Returns the same information as CPUID.EAX = 0BH. *)
CPUID.EAX = 80000008H (* Returns linear/physical address size data. *)
CPUID.EAX = 8000000AH (* INVALID: Returns same information as CPUID.EAX = 0BH. *)

If a value entered for CPUID.EAX is less than or equal to the maximum input value and
the leaf is not supported on that processor then 0 is returned in all the registers. For
example, using the Intel Core i7 processor, the following is true:

CPUID.EAX = 07H (*Returns EAX=EBX=ECX=EDX=0. *)

When CPUID returns the highest basic leaf information as a result of an invalid input EAX
value, any dependence on input ECX value in the basic leaf is honored.

CPUID can be executed at any privilege level to serialize instruction execution. Serial-
izing instruction execution guarantees that any modifications to flags, registers, and
memory for previous instructions are completed before the next instruction is fetched
and executed.

See also:

“Serializing Instructions” in Chapter 8, “Multiple-Processor Management,” in the Intel®

64 and IA-32 Architectures Software Developer’s Manual, Volume 3A

“Caching Translation Information” in Chapter 4, “Paging,” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Table 3-17 Information Returned by CPUID Instruction

Initial EAX
Value Information Provided about the Processor

Basic CPUID Information

0H EAX
EBX
ECX
EDX

Maximum Input Value for Basic CPUID Information (see Table 3-18)
“Genu”
“ntel”
“ineI”

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 17

01H EAX

EBX

ECX
EDX

Version Information: Type, Family, Model, and Stepping ID (see
Figure 3-5)

Bits 07-00: Brand Index
Bits 15-08: CLFLUSH line size (Value ∗ 8 = cache line size in bytes)
Bits 23-16: Maximum number of addressable IDs for logical processors
in this physical package*.
Bits 31-24: Initial APIC ID

Feature Information (see Figure 3-6 and Table 3-20)
Feature Information (see Figure 3-7 and Table 3-21)

NOTES:
* The nearest power-of-2 integer that is not smaller than EBX[23:16]

is the number of unique initial APIC IDs reserved for addressing dif-
ferent logical processors in a physical package. This field is only valid
if CPUID.1.EDX.HTT[bit 28]= 1.

02H EAX
EBX
ECX
EDX

Cache and TLB Information (see Table 3-22)
Cache and TLB Information
Cache and TLB Information
Cache and TLB Information

03H EAX
EBX

ECX

EDX

Reserved.
Reserved.

Bits 00-31 of 96 bit processor serial number. (Available in Pentium III
processor only; otherwise, the value in this register is reserved.)

Bits 32-63 of 96 bit processor serial number. (Available in Pentium III
processor only; otherwise, the value in this register is reserved.)

NOTES:
Processor serial number (PSN) is not supported in the Pentium 4 pro-
cessor or later. On all models, use the PSN flag (returned using
CPUID) to check for PSN support before accessing the feature.

See AP-485, Intel Processor Identification and the CPUID Instruc-
tion (Order Number 241618) for more information on PSN.

CPUID leaves > 3 < 80000000 are visible only when
IA32_MISC_ENABLE.BOOT_NT4[bit 22] = 0 (default).

Deterministic Cache Parameters Leaf

04H NOTES:
Leaf 04H output depends on the initial value in ECX.
See also: “INPUT EAX = 4: Returns Deterministic Cache Parameters
for each level on page 3-224.

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 18

EAX Bits 04-00: Cache Type Field
0 = Null - No more caches
1 = Data Cache
2 = Instruction Cache
3 = Unified Cache
4-31 = Reserved

Bits 07-05: Cache Level (starts at 1)
Bit 08: Self Initializing cache level (does not need SW initialization)
Bit 09: Fully Associative cache

Bits 13-10: Reserved
Bits 25-14: Maximum number of addressable IDs for logical processors
sharing this cache*, **
Bits 31-26: Maximum number of addressable IDs for processor cores in
the physical package*, ***, ****

EBX Bits 11-00: L = System Coherency Line Size*
Bits 21-12: P = Physical Line partitions*
Bits 31-22: W = Ways of associativity*

ECX Bits 31-00: S = Number of Sets*

EDX Bit 0: Write-Back Invalidate/Invalidate
0 = WBINVD/INVD from threads sharing this cache acts upon lower
level caches for threads sharing this cache.
1 = WBINVD/INVD is not guaranteed to act upon lower level caches
of non-originating threads sharing this cache.

Bit 1: Cache Inclusiveness
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.

Bit 2: Complex Cache Indexing
0 = Direct mapped cache.
1 = A complex function is used to index the cache, potentially using

all address bits.
Bits 31-03: Reserved = 0

NOTES:
* Add one to the return value to get the result.
** The nearest power-of-2 integer that is not smaller than (1 +

EAX[25:14]) is the number of unique initial APIC IDs reserved for
addressing different logical processors sharing this cache

*** The nearest power-of-2 integer that is not smaller than (1 +
EAX[31:26]) is the number of unique Core_IDs reserved for address-
ing different processor cores in a physical package. Core ID is a sub-
set of bits of the initial APIC ID.

****The returned value is constant for valid initial values in ECX. Valid
ECX values start from 0.

MONITOR/MWAIT Leaf

05H EAX Bits 15-00: Smallest monitor-line size in bytes (default is processor's
monitor granularity)
Bits 31-16: Reserved = 0

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 19

EBX Bits 15-00: Largest monitor-line size in bytes (default is processor's
monitor granularity)
Bits 31-16: Reserved = 0

ECX Bit 00: Enumeration of Monitor-Mwait extensions (beyond EAX and
EBX registers) supported

Bit 01: Supports treating interrupts as break-event for MWAIT, even
when interrupts disabled

Bits 31 - 02: Reserved

EDX Bits 03 - 00: Number of C0* sub C-states supported using MWAIT
Bits 07 - 04: Number of C1* sub C-states supported using MWAIT
Bits 11 - 08: Number of C2* sub C-states supported using MWAIT
Bits 15 - 12: Number of C3* sub C-states supported using MWAIT
Bits 19 - 16: Number of C4* sub C-states supported using MWAIT
Bits 31 - 20: Reserved = 0
NOTE:
* The definition of C0 through C4 states for MWAIT extension are pro-

cessor-specific C-states, not ACPI C-states.

Thermal and Power Management Leaf

06H EAX

EBX

Bit 00: Digital temperature sensor is supported if set
Bit 01: Intel Turbo Boost Technology Available (see description of
IA32_MISC_ENABLE[38]).
Bit 02: ARAT. APIC-Timer-always-running feature is supported if set.
Bit 03: Reserved
Bit 04: PLN. Power limit notification controls are supported if set.
Bit 05: ECMD. Clock modulation duty cycle extension is supported if set.
Bit 06: PTM. Package thermal management is supported if set.
Bits 31 - 07: Reserved
Bits 03 - 00: Number of Interrupt Thresholds in Digital Thermal Sensor
Bits 31 - 04: Reserved

ECX Bit 00: Hardware Coordination Feedback Capability (Presence of
IA32_MPERF and IA32_APERF). The capability to provide a measure of
delivered processor performance (since last reset of the counters), as
a percentage of expected processor performance at frequency speci-
fied in CPUID Brand String
Bits 02 - 01: Reserved = 0
Bit 03: The processor supports performance-energy bias preference if
CPUID.06H:ECX.SETBH[bit 3] is set and it also implies the presence of a
new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H)
Bits 31 - 04: Reserved = 0

EDX Reserved = 0

Structured Extended Feature Flags Enumeration Leaf (Output depends on ECX
input value)

07H Sub leaf 0 (Input ECX = 0).

EAX Bits 31-00: Reports the maximum number of supported leaf 7 sub-
leaves.

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 20

EBX Bit 00: FSGSBASE. Supports RDFSBASE/RDGSBASE/WRFSBASE/WRGS-
BASE if 1.
Bit 06: Reserved
Bit 07: SMEP. Supports Supervisor Mode Execution Protection if 1.
Bit 08: Reserved
Bit 09: Supports Enhanced REP MOVSB/STOSB if 1.
Bit 10: INVPCID. If 1, supports INVPCID instruction for system software
that manages process-context identifiers.
Bit 31:11: Reserved

ECX Reserved

EDX Reserved.

Direct Cache Access Information Leaf

09H EAX

EBX

ECX

EDX

Value of bits [31:0] of IA32_PLATFORM_DCA_CAP MSR (address
1F8H)

Reserved

Reserved

Reserved

Architectural Performance Monitoring Leaf

0AH EAX Bits 07 - 00: Version ID of architectural performance monitoring
Bits 15- 08: Number of general-purpose performance monitoring
counter per logical processor
Bits 23 - 16: Bit width of general-purpose, performance monitoring
counter
Bits 31 - 24: Length of EBX bit vector to enumerate architectural per-
formance monitoring events

EBX Bit 00: Core cycle event not available if 1
Bit 01: Instruction retired event not available if 1
Bit 02: Reference cycles event not available if 1
Bit 03: Last-level cache reference event not available if 1
Bit 04: Last-level cache misses event not available if 1
Bit 05: Branch instruction retired event not available if 1
Bit 06: Branch mispredict retired event not available if 1
Bits 31- 07: Reserved = 0

ECX Reserved = 0

EDX Bits 04 - 00: Number of fixed-function performance counters (if Ver-
sion ID > 1)
Bits 12- 05: Bit width of fixed-function performance counters (if Ver-
sion ID > 1)
Reserved = 0

Extended Topology Enumeration Leaf

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 21

0BH NOTES:
Most of Leaf 0BH output depends on the initial value in ECX.
EDX output do not vary with initial value in ECX.
ECX[7:0] output always reflect initial value in ECX.
All other output value for an invalid initial value in ECX are 0.
Leaf 0BH exists if EBX[15:0] is not zero.

EAX Bits 04-00: Number of bits to shift right on x2APIC ID to get a unique
topology ID of the next level type*. All logical processors with the
same next level ID share current level.
Bits 31-05: Reserved.

EBX Bits 15 - 00: Number of logical processors at this level type. The num-
ber reflects configuration as shipped by Intel**.
Bits 31- 16: Reserved.

ECX Bits 07 - 00: Level number. Same value in ECX input
Bits 15 - 08: Level type***.
Bits 31 - 16:: Reserved.

EDX Bits 31- 00: x2APIC ID the current logical processor.

NOTES:
* Software should use this field (EAX[4:0]) to enumerate processor
topology of the system.

** Software must not use EBX[15:0] to enumerate processor topology
of the system. This value in this field (EBX[15:0]) is only intended for
display/diagnostic purposes. The actual number of logical processors
available to BIOS/OS/Applications may be different from the value of
EBX[15:0], depending on software and platform hardware configura-
tions.

*** The value of the “level type” field is not related to level numbers in
any way, higher “level type” values do not mean higher levels. Level
type field has the following encoding:
0 : invalid
1 : SMT
2 : Core
3-255 : Reserved

Processor Extended State Enumeration Main Leaf (EAX = 0DH, ECX = 0)

0DH NOTES:
Leaf 0DH main leaf (ECX = 0).

EAX Bits 31-00: Reports the valid bit fields of the lower 32 bits of XCR0. If
a bit is 0, the corresponding bit field in XCR0 is reserved.
Bit 00: legacy x87
Bit 01: 128-bit SSE
Bit 02: 256-bit AVX
Bits 31- 03: Reserved

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 22

EBX Bits 31-00: Maximum size (bytes, from the beginning of the
XSAVE/XRSTOR save area) required by enabled features in XCR0. May
be different than ECX if some features at the end of the XSAVE save
area are not enabled.

ECX Bit 31-00: Maximum size (bytes, from the beginning of the
XSAVE/XRSTOR save area) of the XSAVE/XRSTOR save area required
by all supported features in the processor, i.e all the valid bit fields in
XCR0.

EDX Bit 31-00: Reports the valid bit fields of the upper 32 bits of XCR0. If a
bit is 0, the corresponding bit field in XCR0 is reserved.

Processor Extended State Enumeration Sub-leaf (EAX = 0DH, ECX = 1)

EAX

EBX

ECX

EDX

Bits 31-01: Reserved

Bit 00: XSAVEOPT is available;

Reserved

Reserved

Reserved

Processor Extended State Enumeration Sub-leaves (EAX = 0DH, ECX = n, n > 1)

0DH NOTES:
Leaf 0DH output depends on the initial value in ECX.
If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0.
Each valid sub-leaf index maps to a valid bit in the XCR0 register
starting at bit position 2

EAX Bits 31-0: The size in bytes (from the offset specified in EBX) of the
save area for an extended state feature associated with a valid sub-
leaf index, n. This field reports 0 if the sub-leaf index, n, is invalid*.

EBX Bits 31-0: The offset in bytes of this extended state component’s save
area from the beginning of the XSAVE/XRSTOR area.
This field reports 0 if the sub-leaf index, n, is invalid*.

ECX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is
reserved.

EDX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is
reserved.

Unimplemented CPUID Leaf Functions

40000000H
-

4FFFFFFFH

Invalid. No existing or future CPU will return processor identification or
feature information if the initial EAX value is in the range 40000000H
to 4FFFFFFFH.

Extended Function CPUID Information

80000000H EAX Maximum Input Value for Extended Function CPUID Information (see
Table 3-18).

EBX
ECX
EDX

Reserved
Reserved
Reserved

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 23

80000001H EAX

EBX

ECX

Extended Processor Signature and Feature Bits.

Reserved

Bit 00: LAHF/SAHF available in 64-bit mode
Bits 31-01 Reserved

EDX Bits 10-00: Reserved
Bit 11: SYSCALL/SYSRET available (when in 64-bit mode)
Bits 19-12: Reserved = 0
Bit 20: Execute Disable Bit available
Bits 25-21: Reserved = 0
Bit 26: 1-GByte pages are available if 1
Bit 27: RDTSCP and IA32_TSC_AUX are available if 1
Bits 28: Reserved = 0
Bit 29: Intel® 64 Architecture available if 1
Bits 31-30: Reserved = 0

80000002H EAX
EBX
ECX
EDX

Processor Brand String
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000003H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000004H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000005H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Reserved = 0

80000006H EAX
EBX

Reserved = 0
Reserved = 0

ECX

EDX

Bits 07-00: Cache Line size in bytes
Bits 11-08: Reserved
Bits 15-12: L2 Associativity field *
Bits 31-16: Cache size in 1K units
Reserved = 0

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 24

...

7. Updates to Chapter 4, Volume 2B
Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2B: Instruction Set Reference, M-Z.

--

...

4.1.4 Polarity
IntRes1 may then be further modified by performing a 1’s complement, according to the
value of the Imm8 Control Byte bit[4]. Optionally, a mask may be used such that only
those IntRes1 bits which correspond to “valid” reg/mem input elements are comple-
mented (note that the definition of a valid input element is dependant on the specific
opcode and is defined in each opcode’s description). The result of the possible negation
is referred to as IntRes2.

...

NOTES:
* L2 associativity field encodings:

00H - Disabled
01H - Direct mapped
02H - 2-way
04H - 4-way
06H - 8-way
08H - 16-way
0FH - Fully associative

80000007H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Bits 07-00: Reserved = 0
Bit 08: Invariant TSC available if 1
Bits 31-09: Reserved = 0

80000008H EAX Linear/Physical Address size
Bits 07-00: #Physical Address Bits*
Bits 15-8: #Linear Address Bits
Bits 31-16: Reserved = 0

EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0

NOTES:
* If CPUID.80000008H:EAX[7:0] is supported, the maximum physical

address number supported should come from this field.

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 25

MOVD/MOVQ—Move Doubleword/Move Quadword

...

MOVNTI—Store Doubleword Using Non-Temporal Hint

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F 6E /r

MOVD mm, r/m32

RM V/V MMX Move doubleword from
r/m32 to mm.

REX.W + 0F 6E /r

MOVQ mm, r/m64

RM V/N.E. MMX Move quadword from r/m64
to mm.

0F 7E /r

MOVD r/m32, mm

MR V/V MMX Move doubleword from mm
to r/m32.

REX.W + 0F 7E /r

MOVQ r/m64, mm

MR V/N.E. MMX Move quadword from mm to
r/m64.

VEX.128.66.0F.W0 6E /

VMOVD xmm1, r32/m32

RM V/V AVX Move doubleword from
r/m32 to xmm1.

VEX.128.66.0F.W1 6E /r

VMOVQ xmm1, r64/m64

RM V/N.E. AVX Move quadword from r/m64
to xmm1.

66 0F 6E /r

MOVD xmm, r/m32

RM V/V SSE2 Move doubleword from
r/m32 to xmm.

66 REX.W 0F 6E /r

MOVQ xmm, r/m64

RM V/N.E. SSE2 Move quadword from r/m64
to xmm.

66 0F 7E /r

MOVD r/m32, xmm

MR V/V SSE2 Move doubleword from
xmm register to r/m32.

 66 REX.W 0F 7E /r

MOVQ r/m64, xmm

MR V/N.E. SSE2 Move quadword from xmm
register to r/m64.

VEX.128.66.0F.W0 7E /r

VMOVD r32/m32, xmm1

MR V/V AVX Move doubleword from
xmm1 register to r/m32.

VEX.128.66.0F.W1 7E /r

VMOVQ r64/m64, xmm1

MR V/N.E. AVX Move quadword from xmm1
register to r/m64.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F C3 /r MOVNTI m32, r32 MR Valid Valid Move doubleword from r32
to m32 using non-temporal
hint.

REX.W + 0F C3
/r

MOVNTI m64, r64 MR Valid N.E. Move quadword from r64 to
m64 using non-temporal
hint.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 26

Instruction Operand Encoding

Description

Moves the doubleword integer in the source operand (second operand) to the destination
operand (first operand) using a non-temporal hint to minimize cache pollution during the
write to memory. The source operand is a general-purpose register. The destination
operand is a 32-bit memory location.

The non-temporal hint is implemented by using a write combining (WC) memory type
protocol when writing the data to memory. Using this protocol, the processor does not
write the data into the cache hierarchy, nor does it fetch the corresponding cache line
from memory into the cache hierarchy. The memory type of the region being written to
can override the non-temporal hint, if the memory address specified for the non-
temporal store is in an uncacheable (UC) or write protected (WP) memory region. For
more information on non-temporal stores, see “Caching of Temporal vs. Non-Temporal
Data” in Chapter 10 in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1.

Because the WC protocol uses a weakly-ordered memory consistency model, a fencing
operation implemented with the SFENCE or MFENCE instruction should be used in
conjunction with MOVNTI instructions if multiple processors might use different memory
types to read/write the destination memory locations.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix
permits access to additional registers (R8-R15). Use of the REX.W prefix promotes oper-
ation to 64 bits. See the summary chart at the beginning of this section for encoding data
and limits.

Operation

DEST ← SRC;

Intel C/C++ Compiler Intrinsic Equivalent

MOVNTI: void _mm_stream_si32 (int *p, int a)

MOVNTI: void _mm_stream_si64(__int64 *p, __int64 a)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES,

FS or GS segments.
#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary, regard-

less of segment.
If any part of the operand lies outside the effective address space
from 0 to FFFFH.

#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canon-

ical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.
#AC(0) If alignment checking is enabled and an unaligned memory refer-

ence is made while the current privilege level is 3.

...

MOVQ—Move Quadword

...

Opcode Instruction Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F 6F /r MOVQ mm,
mm/m64

RM V/V MMX Move quadword from
mm/m64 to mm.

0F 7F /r MOVQ mm/m64,
mm

MR V/V MMX Move quadword from mm to
mm/m64.

F3 0F 7E MOVQ xmm1,
xmm2/m64

RM V/V SSE2 Move quadword from
xmm2/mem64 to xmm1.

66 0F D6 MOVQ
xmm2/m64,
xmm1

MR V/V SSE2 Move quadword from xmm1
to xmm2/mem64.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 28

XADD—Exchange and Add

Instruction Operand Encoding

...

8. Updates to Chapter 6, Volume 3A
Change bars show changes to Chapter 6 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

--

...

Interrupt 14—Page-Fault Exception (#PF)

Exception Class Fault.

Description

Indicates that, with paging enabled (the PG flag in the CR0 register is set), the processor
detected one of the following conditions while using the page-translation mechanism to
translate a linear address to a physical address:
• The P (present) flag in a page-directory or page-table entry needed for the address

translation is clear, indicating that a page table or the page containing the operand is
not present in physical memory.

• The procedure does not have sufficient privilege to access the indicated page (that
is, a procedure running in user mode attempts to access a supervisor-mode page).

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F C0 /r XADD r/m8, r8 MR Valid Valid Exchange r8 and r/m8; load
sum into r/m8.

REX + 0F C0 /r XADD r/m8*, r8* MR Valid N.E. Exchange r8 and r/m8; load
sum into r/m8.

0F C1 /r XADD r/m16, r16 MR Valid Valid Exchange r16 and r/m16;
load sum into r/m16.

0F C1 /r XADD r/m32, r32 MR Valid Valid Exchange r32 and r/m32;
load sum into r/m32.

REX.W + 0F C1
/r

XADD r/m64, r64 MR Valid N.E. Exchange r64 and r/m64;
load sum into r/m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (r, w) ModRM:reg (W) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 29

• Code running in user mode attempts to write to a read-only page. In the Intel486
and later processors, if the WP flag is set in CR0, the page fault will also be triggered
by code running in supervisor mode that tries to write to a read-only page.

• An instruction fetch to a linear address that translates to a physical address in a
memory page with the execute-disable bit set (for information about the execute-
disable bit, see Chapter 4, “Paging”).

• One or more reserved bits in page directory entry are set to 1. See description below
of RSVD error code flag.

The exception handler can recover from page-not-present conditions and restart the
program or task without any loss of program continuity. It can also restart the program
or task after a privilege violation, but the problem that caused the privilege violation may
be uncorrectable.

See also: Section 4.7, “Page-Fault Exceptions.”

Exception Error Code

Yes (special format). The processor provides the page-fault handler with two items of
information to aid in diagnosing the exception and recovering from it:
• An error code on the stack. The error code for a page fault has a format different

from that for other exceptions (see Figure 6-9). The error code tells the exception
handler four things:

— The P flag indicates whether the exception was due to a not-present page (0) or
to either an access rights violation or the use of a reserved bit (1).

— The W/R flag indicates whether the memory access that caused the exception
was a read (0) or write (1).

— The U/S flag indicates whether the processor was executing at user mode (1) or
supervisor mode (0) at the time of the exception.

— The RSVD flag indicates that the processor detected 1s in reserved bits of the
page directory, when the PSE or PAE flags in control register CR4 are set to 1.
Note:

• The PSE flag is only available in recent Intel 64 and IA-32 processors
including the Pentium 4, Intel Xeon, P6 family, and Pentium processors.

• The PAE flag is only available on recent Intel 64 and IA-32 processors
including the Pentium 4, Intel Xeon, and P6 family processors.

• In earlier IA-32 processors, the bit position of the RSVD flag is reserved and
is cleared to 0.

— The I/D flag indicates whether the exception was caused by an instruction fetch.
This flag is reserved and cleared to 0 if CR4.SMEP = 0 (supervisor-mode
execution prevention is either unsupported or not enabled) and either CR4.PAE =
0 (32-bit paging is in use) or IA32_EFER.NXE= 0 (the execute-disable feature is
either unsupported or not enabled). See Section 4.7, “Page-Fault Exceptions,” for
details.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 30

• The contents of the CR2 register. The processor loads the CR2 register with the 32-
bit linear address that generated the exception. The page-fault handler can use this
address to locate the corresponding page directory and page-table entries. Another
page fault can potentially occur during execution of the page-fault handler; the
handler should save the contents of the CR2 register before a second page fault can
occur.1 If a page fault is caused by a page-level protection violation, the access flag
in the page-directory entry is set when the fault occurs. The behavior of IA-32
processors regarding the access flag in the corresponding page-table entry is model
specific and not architecturally defined.

...

9. Updates to Chapter 8, Volume 3A
Change bars show changes to Chapter 8 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

--

8.2.4 Fast-String Operation and Out-of-Order Stores
Section 7.3.9.3 of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1 described an optimization of repeated string operations called fast-string
operation.

Figure 6-9 Page-Fault Error Code

1. Processors update CR2 whenever a page fault is detected. If a second page fault occurs while an ear-
lier page fault is being delivered, the faulting linear address of the second fault will overwrite the
contents of CR2 (replacing the previous address). These updates to CR2 occur even if the page fault
results in a double fault or occurs during the delivery of a double fault.

The fault was caused by a non-present page.
The fault was caused by a page-level protection violation.

The access causing the fault was a read.
The access causing the fault was a write.

The access causing the fault originated when the processor
was executing in supervisor mode.
The access causing the fault originated when the processor
was executing in user mode.

31 0

Reserved

1234

The fault was not caused by reserved bit violation.
The fault was caused by reserved bits set to 1 in a page directory.

P 0
1

W/R 0
1

U/S 0

RSVD 0
1

1

I/D

I/D 0 The fault was not caused by an instruction fetch.
1 The fault was caused by an instruction fetch.

PW
/R

U/S
RSVD

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 31

As explained in that section, the stores produced by fast-string operation may appear to
execute out of order. Software dependent upon sequential store ordering should not use
string operations for the entire data structure to be stored. Data and semaphores should
be separated. Order-dependent code should write to a discrete semaphore variable after
any string operations to allow correctly ordered data to be seen by all processors. Atom-
icity of load and store operations is guaranteed only for native data elements of the
string with native data size, and only if they are included in a single cache line.

Section 8.2.4.1 and Section 8.2.4.2 provide further explain and examples.

8.2.4.1 Memory-Ordering Model for String Operations on Write-Back (WB)
Memory

This section deals with the memory-ordering model for string operations on write-back
(WB) memory for the Intel 64 architecture.

The memory-ordering model respects the follow principles:

1. Stores within a single string operation may be executed out of order.

2. Stores from separate string operations (for example, stores from consecutive string
operations) do not execute out of order. All the stores from an earlier string operation
will complete before any store from a later string operation.

3. String operations are not reordered with other store operations.

...

8.3 SERIALIZING INSTRUCTIONS
The Intel 64 and IA-32 architectures define several serializing instructions. These
instructions force the processor to complete all modifications to flags, registers, and
memory by previous instructions and to drain all buffered writes to memory before the
next instruction is fetched and executed. For example, when a MOV to control register
instruction is used to load a new value into control register CR0 to enable protected
mode, the processor must perform a serializing operation before it enters protected
mode. This serializing operation ensures that all operations that were started while the
processor was in real-address mode are completed before the switch to protected mode
is made.

The concept of serializing instructions was introduced into the IA-32 architecture with
the Pentium processor to support parallel instruction execution. Serializing instructions
have no meaning for the Intel486 and earlier processors that do not implement parallel
instruction execution.

It is important to note that executing of serializing instructions on P6 and more recent
processor families constrain speculative execution because the results of speculatively
executed instructions are discarded. The following instructions are serializing instruc-
tions:
• Privileged serializing instructions — INVD, INVEPT, INVLPG, INVVPID, LGDT,

LIDT, LLDT, LTR, MOV (to control register, with the exception of MOV CR81), MOV (to
debug register), WBINVD, and WRMSR2.

1. MOV CR8 is not defined architecturally as a serializing instruction.

2. WRMSR to the IA32_TSC_DEADLINE MSR (MSR index 6E0H) and the X2APIC MSRs (MSR indices
802H to 83FH) are not serializing.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 32

• Non-privileged serializing instructions — CPUID, IRET, and RSM.

When the processor serializes instruction execution, it ensures that all pending memory
transactions are completed (including writes stored in its store buffer) before it executes
the next instruction. Nothing can pass a serializing instruction and a serializing instruc-
tion cannot pass any other instruction (read, write, instruction fetch, or I/O). For
example, CPUID can be executed at any privilege level to serialize instruction execution
with no effect on program flow, except that the EAX, EBX, ECX, and EDX registers are
modified.

The following instructions are memory-ordering instructions, not serializing instructions.
These drain the data memory subsystem. They do not serialize the instruction execution
stream:1

• Non-privileged memory-ordering instructions — SFENCE, LFENCE, and
MFENCE.

The SFENCE, LFENCE, and MFENCE instructions provide more granularity in controlling
the serialization of memory loads and stores (see Section 8.2.5, “Strengthening or
Weakening the Memory-Ordering Model”).

The following additional information is worth noting regarding serializing instructions:
• The processor does not write back the contents of modified data in its data cache to

external memory when it serializes instruction execution. Software can force
modified data to be written back by executing the WBINVD instruction, which is a
serializing instruction. The amount of time or cycles for WBINVD to complete will
vary due to the size of different cache hierarchies and other factors. As a conse-
quence, the use of the WBINVD instruction can have an impact on interrupt/event
response time.

...

8.12 PROGRAMMING THE LINT0 AND LINT1 INPUTS
The following procedure describes how to program the LINT0 and LINT1 local APIC pins
on a processor after multiple processors have been booted and initialized (as described
in Section 8.11, “MP Initialization For P6 Family Processors”). In this example, LINT0 is
programmed to be the ExtINT pin and LINT1 is programmed to be the NMI pin.

8.12.1 Constants
The following constants are defined:

LVT1EQU 0FEE00350H
LVT2EQU 0FEE00360H
LVT3 EQU 0FEE00370H
SVR EQU 0FEE000F0H

1. LFENCE does provide some guarantees on instruction ordering. It does not execute until all prior
instructions have completed locally, and no later instruction begins execution until LFENCE com-
pletes.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 33

8.12.2 LINT[0:1] Pins Programming Procedure
Use the following to program the LINT[1:0] pins:

1. Mask 8259 interrupts.

2. Enable APIC via SVR (spurious vector register) if not already enabled.

MOV ESI, SVR ; address of SVR
MOV EAX, [ESI]
OR EAX, APIC_ENABLED ; set bit 8 to enable (0 on reset)
MOV [ESI], EAX

3. Program LVT1 as an ExtINT which delivers the signal to the INTR signal of all
processors cores listed in the destination as an interrupt that originated in an
externally connected interrupt controller.

MOV ESI, LVT1
MOV EAX, [ESI]
AND EAX, 0FFFE58FFH; mask off bits 8-10, 12, 14 and 16
OR EAX, 700H; Bit 16=0 for not masked, Bit 15=0 for edge

; triggered, Bit 13=0 for high active input
; polarity, Bits 8-10 are 111b for ExtINT

MOV [ESI], EAX; Write to LVT1

4. Program LVT2 as NMI, which delivers the signal on the NMI signal of all processor
cores listed in the destination.

MOV ESI, LVT2
MOV EAX, [ESI]
AND EAX, 0FFFE58FFH; mask off bits 8-10 and 15
OR EAX, 000000400H ; Bit 16=0 for not masked, Bit 15=0 edge

; triggered, Bit 13=0 for high active input
; polarity, Bits 8-10 are 100b for NMI

MOV [ESI], EAX; Write to LVT2
;Unmask 8259 interrupts and allow NMI.

...

10. Updates to Chapter 9, Volume 3A
Change bars show changes to Chapter 9 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

--

...

9.1.2 Processor Built-In Self-Test (BIST)
Hardware may request that the BIST be performed at power-up. The EAX register is
cleared (0H) if the processor passes the BIST. A nonzero value in the EAX register after
the BIST indicates that a processor fault was detected. If the BIST is not requested, the
contents of the EAX register after a hardware reset is 0H.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 34

The overhead for performing a BIST varies between processor families. For example, the
BIST takes approximately 30 million processor clock periods to execute on the Pentium 4
processor. This clock count is model-specific; Intel reserves the right to change the
number of periods for any Intel 64 or IA-32 processor, without notification.

Table 9-1 IA-32 Processor States Following Power-up, Reset, or INIT

Register Pentium 4 and Intel
Xeon Processor

P6 Family Processor Pentium Processor

EFLAGS1 00000002H 00000002H 00000002H

EIP 0000FFF0H 0000FFF0H 0000FFF0H

CR0 60000010H2 60000010H2 60000010H2

CR2, CR3, CR4 00000000H 00000000H 00000000H

CS Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W,
Accessed

Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W,
Accessed

Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W,
Accessed

SS, DS, ES, FS, GS Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W,
Accessed

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W,
Accessed

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W,
Accessed

EDX 00000FxxH 000n06xxH3 000005xxH

EAX 04 04 04

EBX, ECX, ESI, EDI,
EBP, ESP

00000000H 00000000H 00000000H

ST0 through ST75 Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

x87 FPU Control
Word5

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

x87 FPU Status
Word5

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

x87 FPU Tag
Word5

Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

x87 FPU Data
Operand and CS
Seg. Selectors5

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

x87 FPU Data
Operand and Inst.
Pointers5

Pwr up or Reset:
 00000000H
FINIT/FNINIT: 00000000H

Pwr up or Reset:
 00000000H
FINIT/FNINIT: 00000000H

Pwr up or Reset:
 00000000H
FINIT/FNINIT: 00000000H

MM0 through
MM75

Pwr up or Reset:
 0000000000000000H
INIT or FINIT/FNINIT:
 Unchanged

Pentium II and Pentium III
Processors Only—
Pwr up or Reset:
 0000000000000000H
INIT or FINIT/FNINIT:
 Unchanged

Pentium with MMX
Technology Only—
Pwr up or Reset:
 0000000000000000H
INIT or FINIT/FNINIT:
 Unchanged

XMM0 through
XMM7

Pwr up or Reset:
 0000000000000000H
INIT: Unchanged

Pentium III processor Only—
Pwr up or Reset:
 0000000000000000H
INIT: Unchanged

NA

MXCSR Pwr up or Reset: 1F80H
INIT: Unchanged

Pentium III processor only-
Pwr up or Reset: 1F80H
INIT: Unchanged

NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 35

...

GDTR, IDTR Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Base = 00000000H
Limit = FFFFH
AR = Present, R/W

LDTR, Task
Register

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

DR0, DR1, DR2,
DR3

00000000H 00000000H 00000000H

DR6 FFFF0FF0H FFFF0FF0H FFFF0FF0H

DR7 00000400H 00000400H 00000400H

Time-Stamp
Counter

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Perf. Counters and
Event Select

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

All Other MSRs Pwr up or Reset:
 Undefined
INIT: Unchanged

Pwr up or Reset:
 Undefined
INIT: Unchanged

Pwr up or Reset:
 Undefined
INIT: Unchanged

Data and Code
Cache, TLBs

Invalid6 Invalid6 Invalid6

Fixed MTRRs Pwr up or Reset: Disabled
INIT: Unchanged

Pwr up or Reset: Disabled
INIT: Unchanged

Not Implemented

Variable MTRRs Pwr up or Reset: Disabled
INIT: Unchanged

Pwr up or Reset: Disabled
INIT: Unchanged

Not Implemented

Machine-Check
Architecture

Pwr up or Reset:
 Undefined
INIT: Unchanged

Pwr up or Reset:
 Undefined
INIT: Unchanged

Not Implemented

APIC Pwr up or Reset: Enabled
INIT: Unchanged

Pwr up or Reset: Enabled
INIT: Unchanged

Pwr up or Reset: Enabled
INIT: Unchanged

NOTES:
1. The 10 most-significant bits of the EFLAGS register are undefined following a reset. Software

should not depend on the states of any of these bits.
2. The CD and NW flags are unchanged, bit 4 is set to 1, all other bits are cleared.
3. Where “n” is the Extended Model Value for the respective processor.
4. If Built-In Self-Test (BIST) is invoked on power up or reset, EAX is 0 only if all tests passed. (BIST

cannot be invoked during an INIT.)
5. The state of the x87 FPU and MMX registers is not changed by the execution of an INIT.
6. Internal caches are invalid after power-up and RESET, but left unchanged with an INIT.

Table 9-1 IA-32 Processor States Following Power-up, Reset, or INIT (Contd.)

Register Pentium 4 and Intel
Xeon Processor

P6 Family Processor Pentium Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 36

11. Updates to Chapter 17, Volume 3B
Change bars show changes to Chapter 17 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...
CHAPTER 17

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP
COUNTER

Intel 64 and IA-32 architectures provide debug facilities for use in debugging code and
monitoring performance. These facilities are valuable for debugging application soft-
ware, system software, and multitasking operating systems. Debug support is accessed
using debug registers (DR0 through DR7) and model-specific registers (MSRs):
• Debug registers hold the addresses of memory and I/O locations called breakpoints.

Breakpoints are user-selected locations in a program, a data-storage area in
memory, or specific I/O ports. They are set where a programmer or system designer
wishes to halt execution of a program and examine the state of the processor by
invoking debugger software. A debug exception (#DB) is generated when a memory
or I/O access is made to a breakpoint address.

• MSRs monitor branches, interrupts, and exceptions; they record addresses of the
last branch, interrupt or exception taken and the last branch taken before an
interrupt or exception.

...

17.3.1.2 Data Memory and I/O Breakpoint Exception Conditions
Data memory and I/O breakpoints are reported when the processor attempts to access
a memory or I/O address specified in a breakpoint-address register (DR0 through DR3)
that has been set up to detect data or I/O accesses (R/W flag is set to 1, 2, or 3). The
processor generates the exception after it executes the instruction that made the access,
so these breakpoint condition causes a trap-class exception to be generated.

Because data breakpoints are traps, an instruction that writes memory overwrites the
original data before the debug exception generated by a data breakpoint is generated. If
a debugger needs to save the contents of a write breakpoint location, it should save the
original contents before setting the breakpoint. The handler can report the saved value
after the breakpoint is triggered. The address in the debug registers can be used to
locate the new value stored by the instruction that triggered the breakpoint.

If a data breakpoint is detected during an iteration of a string instruction executed with
fast-string operation (see Section 7.3.9.3 of Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1), delivery of the resulting debug exception may be
delayed until completion of the corresponding group of iterations.

Intel486 and later processors ignore the GE and LE flags in DR7. In Intel386 processors,
exact data breakpoint matching does not occur unless it is enabled by setting the LE
and/or the GE flags.

For repeated INS and OUTS instructions that generate an I/O-breakpoint debug excep-
tion, the processor generates the exception after the completion of the first iteration.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 37

Repeated INS and OUTS instructions generate a data-breakpoint debug exception after
the iteration in which the memory address breakpoint location is accessed.

...

17.4.9 BTS and DS Save Area
The Debug store (DS) feature flag (bit 21), returned by CPUID.1:EDX[21] Indicates
that the processor provides the debug store (DS) mechanism. This mechanism allows
BTMs to be stored in a memory-resident BTS buffer. See Section 17.4.5, “Branch Trace
Store (BTS).” Precise event-based sampling (PEBS, see Section 18.4.4, “Precise Event
Based Sampling (PEBS),”) also uses the DS save area provided by debug store mecha-
nism. When CPUID.1:EDX[21] is set, the following BTS facilities are available:
• The BTS_UNAVAILABLE flag in the IA32_MISC_ENABLE MSR indicates (when clear)

the availability of the BTS facilities, including the ability to set the BTS and BTINT bits
in the MSR_DEBUGCTLA MSR.

• The IA32_DS_AREA MSR can be programmed to point to the DS save area.

The debug store (DS) save area is a software-designated area of memory that is used to
collect the following two types of information:
• Branch records — When the BTS flag in the IA32_DEBUGCTL MSR is set, a branch

record is stored in the BTS buffer in the DS save area whenever a taken branch,
interrupt, or exception is detected.

• PEBS records — When a performance counter is configured for PEBS, a PEBS record
is stored in the PEBS buffer in the DS save area after the counter overflow occurs.
This record contains the architectural state of the processor (state of the 8 general
purpose registers, EIP register, and EFLAGS register) at the next occurrence of the
PEBS event that caused the counter to overflow. When the state information has
been logged, the counter is automatically reset to a preselected value, and event
counting begins again.

NOTE
On processors based on Intel Core microarchitecture and for Intel Atom
processor family, PEBS is supported only for a subset of the performance
events.

NOTES
DS save area and recording mechanism is not available in the SMM. The
feature is disabled on transition to the SMM mode. Similarly DS recording
is disabled on the generation of a machine check exception and is cleared
on processor RESET and INIT. DS recording is available in real address
mode.
The BTS and PEBS facilities may not be available on all processors. The
availability of these facilities is indicated by the BTS_UNAVAILABLE and
PEBS_UNAVAILABLE flags, respectively, in the IA32_MISC_ENABLE MSR
(see Chapter 34).

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 38

12. Updates to Chapter 18, Volume 3B
Change bars show changes to Chapter 18 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...

18.1 PERFORMANCE MONITORING OVERVIEW
Performance monitoring was introduced in the Pentium processor with a set of model-
specific performance-monitoring counter MSRs. These counters permit selection of
processor performance parameters to be monitored and measured. The information
obtained from these counters can be used for tuning system and compiler performance.

In Intel P6 family of processors, the performance monitoring mechanism was enhanced
to permit a wider selection of events to be monitored and to allow greater control events
to be monitored. Next, Pentium 4 and Intel Xeon processors introduced a new perfor-
mance monitoring mechanism and new set of performance events.

The performance monitoring mechanisms and performance events defined for the
Pentium, P6 family, Pentium 4, and Intel Xeon processors are not architectural. They are
all model specific (not compatible among processor families). Intel Core Solo and Intel
Core Duo processors support a set of architectural performance events and a set of non-
architectural performance events. Processors based on Intel Core microarchitecture and
Intel® Atom™ microarchitecture support enhanced architectural performance events
and non-architectural performance events.

Starting with Intel Core Solo and Intel Core Duo processors, there are two classes of
performance monitoring capabilities. The first class supports events for monitoring
performance using counting or sampling usage. These events are non-architectural and
vary from one processor model to another. They are similar to those available in Pentium
M processors. These non-architectural performance monitoring events are specific to the
microarchitecture and may change with enhancements. They are discussed in Section
18.3, “Performance Monitoring (Intel® Core™ Solo and Intel® Core™ Duo Processors).”
Non-architectural events for a given microarchitecture can not be enumerated using
CPUID; and they are listed in Chapter 19, “Performance-Monitoring Events.”

The second class of performance monitoring capabilities is referred to as architectural
performance monitoring. This class supports the same counting and sampling usages,
with a smaller set of available events. The visible behavior of architectural performance
events is consistent across processor implementations. Availability of architectural
performance monitoring capabilities is enumerated using the CPUID.0AH. These events
are discussed in Section 18.2.

See also:

— Section 18.2, “Architectural Performance Monitoring”

— Section 18.3, “Performance Monitoring (Intel® Core™ Solo and Intel® Core™ Duo
Processors)”

— Section 18.4, “Performance Monitoring (Processors Based on Intel® Core™
Microarchitecture)”

— Section 18.5, “Performance Monitoring (Processors Based on Intel® Atom™
Microarchitecture)”

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 39

— Section 18.6, “Performance Monitoring for Processors Based on Intel® Microar-
chitecture Code Name Nehalem”

— Section 18.7, “Performance Monitoring for Processors Based on Intel® Microar-
chitecture Code Name Westmere”

— Section 18.8, “Performance Monitoring for Processors Based on Intel® Microar-
chitecture Code Name Sandy Bridge”

— Section 18.9, “Next Generation Intel Core Processor Performance Monitoring
Facility”

— Section 18.10, “Performance Monitoring (Processors Based on Intel NetBurst®
Microarchitecture)”

— Section 18.11, “Performance Monitoring and Intel Hyper-Threading Technology
in Processors Based on Intel NetBurst® Microarchitecture”

— Section 18.14, “Performance Monitoring and Dual-Core Technology”

— Section 18.15, “Performance Monitoring on 64-bit Intel Xeon Processor MP with
Up to 8-MByte L3 Cache”

— Section 18.17, “Performance Monitoring (P6 Family Processor)”

— Section 18.18, “Performance Monitoring (Pentium Processors)”

...

18.8 PERFORMANCE MONITORING FOR PROCESSORS BASED
ON INTEL® MICROARCHITECTURE CODE NAME SANDY
BRIDGE

Intel Core i7, i5, i3 processors 2xxx series are based on Intel microarchitecture code
name Sandy Bridge, this section describes the performance monitoring facilities
provided in the processor core. The core PMU supports architectural performance moni-
toring capability with version ID 3 (see Section 18.2.2.2) and a host of non-architectural
monitoring capabilities.

Architectural performance monitoring events and non-architectural monitoring events
are programmed using fixed counters and programmable counters/event select MSRS
described in Section 18.2.2.2.

The core PMU’s capability is similar to those described in Section 18.6.1 and Section
18.7, with some differences and enhancements relative to Intel microarchitecture code
name Westmere summarized in Table 18-19.

Table 18-19 Core PMU Comparison

Box Sandy Bridge Westmere Comment

of Fixed counters
per thread

3 3 Use CPUID to enumerate
of counters.

of general-purpose
counters per core

8 8

Counter width (R,W) R:48 , W: 32/48 R:48, W:32 See Section 18.2.2.3.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 40

...

18.8.4 PEBS Support in Intel® microarchitecture code name Sandy
Bridge

Processors based on Intel microarchitecture code name Sandy Bridge support PEBS,
similar to those offered in prior generation, with several enhanced features. The key
components and differences of PEBS facility relative to Intel microarchitecture code
name Westmere is summarized in Table 18-20.

of programmable
counters per thread

4 or (8 if a core not shared
by two threads)

4 Use CPUID to enumerate
of counters.

Precise Event Based
Sampling (PEBS)
Events

See Table 18-21 See Table 18-10 IA32_PMC4-IA32_PMC7
do not support PEBS.

PEBS-Load Latency See Section 18.8.4.2;
Data source encoding,

STLB miss encoding,

Lock transaction encoding

Data source
encoding

PEBS-Precise Store Section 18.8.4.3 No

PEBS-PDIR yes (using precise
INST_RETIRED.ALL)

No

Off-core Response
Event

MSR 1A6H and 1A7H;
Extended request and
response types

MSR 1A6H and
1A7H, limited
response types

Nehalem supports 1A6H
only.

Table 18-20 PEBS Facility Comparison

Box Sandy Bridge Westmere Comment

Valid IA32_PMCx PMC0-PMC3 PMC0-PMC3 No PEBS on PMC4-PMC7

PEBS Buffer
Programming

 Section 18.6.1.1 Section 18.6.1.1 Unchanged

IA32_PEBS_ENABLE
Layout

 Figure 18-28 Figure 18-14

PEBS record layout Physical Layout same
as Table 18-12

Table 18-12 Enhanced fields at
offsets 98H, A0H, A8H

PEBS Events See Table 18-21 See Table 18-10 IA32_PMC4-IA32_PMC7
do not support PEBS.

PEBS-Load Latency See Table 18-22 Table 18-13

PEBS-Precise Store yes; see Section
18.8.4.3

No IA32_PMC3 only

PEBS-PDIR yes No IA32_PMC1 only

Table 18-19 Core PMU Comparison

Box Sandy Bridge Westmere Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 41

Only IA32_PMC0 through IA32_PMC3 support PEBS.

NOTE
PEBS events are only valid when the following fields of
IA32_PERFEVTSELx are all zero: AnyThread, Edge, Invert, CMask.

In IA32_PEBS_ENABLE MSR, bit 63 is defined as PS_ENABLE: When set, this enables
IA32_PMC3 to capture precise store information. Only IA32_PMC3 supports the precise
store facility. In typical usage of PEBS, the bit fields in IA32_PEBS_ENABLE are written to
when the agent software starts PEBS operation; the enabled bit fields should be modified
only when re-programming another PEBS event or cleared when the agent uses the
performance counters for non-PEBS operations.

...

SAMPLING
Restriction

Small SAV(CountDown) value incur higher
overhead than prior generation.

Figure 18-28 Layout of IA32_PEBS_ENABLE MSR

Table 18-20 PEBS Facility Comparison

Box Sandy Bridge Westmere Comment

LL_EN_PMC3 (R/W)
LL_EN_PMC2 (R/W)

8 7 0

LL_EN_PMC1 (R/W)

32 333 1

Reserved

63 2431 56343536

PEBS_EN_PMC3 (R/W)
PEBS_EN_PMC2 (R/W)
PEBS_EN_PMC1 (R/W)
PEBS_EN_PMC0 (R/W)

LL_EN_PMC0 (R/W)

RESET Value — 0x00000000_00000000

62

PS_EN (R/W)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 42

To properly program this extra register, software must set at least one request type bit
and a valid response type pattern. Otherwise, the event count reported will be zero. It
is permissible and useful to set multiple request and response type bits in order to obtain
various classes of off-core response events. Although MSR_OFFCORE_RSP_x allow an
agent software to program numerous combinations that meet the above guideline, not
all combinations produce meaningful data.

To specify a complete offcore response filter, software must properly program bits in the
request and response type fields. A valid request type must have at least one bit set in
the non-reserved bits of 15:0. A valid response type must be a non-zero value of the
following expression:

Figure 18-30 Response_Supplier and Snoop Info Fields for MSR_OFFCORE_RSP_x

Table 18-26 MSR_OFFCORE_RSP_x Response Supplier Info Field Definition

Subtype Bit Name Offset Description

Common Any 16 (R/W). Catch all value for any response types.

Supplier
Info

NO_SUPP 17 (R/W). No Supplier Information available

LLC_HITM 18 (R/W). M-state initial lookup stat in L3.

LLC_HITE 19 (R/W). E-state

LLC_HITS 20 (R/W). S-state

LLC_HITF 21 (R/W). F-state

LOCAL 22 (R/W). Local DRAM Controller

Reserved 30:23 Reserved

RESPONSE TYPE — NON_DRAM (R/W)
RSPNS_SNOOP — HITM (R/W)

16

RSPNS_SNOOP — HIT_FWD

33 1934 17

Reserved

63 182031 212232353637

RSPNS_SNOOP — HIT_NO_FWD (R/W)
RSPNS_SNOOP — SNP_MISS (R/W)
RSPNS_SNOOP — SNP_NOT_NEEDED (R/W)
RSPNS_SNOOP — SNPl_NONE (R/W)
RSPNS_SUPPLIER — RESERVED

RSPNS_SUPPLIER — LLC_HITF (R/W)
RSPNS_SUPPLIER — LLC_HITS (R/W)
RSPNS_SUPPLIER — LLC_HITE (R/W)
RSPNS_SUPPLIER — LLC_HITM (R/W)
RSPNS_SUPPLIER — No_SUPP (R/W)
RSPNS_SUPPLIER — ANY (R/W)

RESET Value — 0x00000000_00000000

RSPNS_SUPPLIER — Local

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 43

ANY | [(‘OR’ of Supplier Info Bits) & (‘OR’ of Snoop Info Bits)]

If “ANY“ bit is set, the supplier and snoop info bits are ignored.

...

18.8.7 Next Generation Intel Xeon Processor Performance Monitoring
Facility

The Next Generation Intel Xeon processor is based on Intel microarchitecture code name
Sandy Bridge. The performance monitoring facilities in the processor core generally are
the same as those described in Section 18.8 through Section 18.8.5. However, the
MSR_OFFCORE_RSP_0/MSR_OFFCORE_RSP_1 Response Supplier Info field shown in
Table 18-26 applies to Intel Core Processors with CPUID signature of
DisplayFamily_DisplayModel encoding of 06_2AH; next generation Intel Xeon processor

Table 18-27 MSR_OFFCORE_RSP_x Snoop Info Field Definition

Subtype Bit Name Offset Description

Snoop
Info

SNP_NONE 31 (R/W). No details on snoop-related information

SNP_NOT_NEEDED 32 (R/W). No snoop was needed to satisfy the request.

SNP_MISS 33 (R/W). A snoop was needed and it missed all snooped
caches:

-For LLC Hit, ReslHitl was returned by all cores

-For LLC Miss, Rspl was returned by all sockets and data
was returned from DRAM.

SNP_NO_FWD 34 (R/W). A snoop was needed and it hits in at least one
snooped cache. Hit denotes a cache-line was valid before
snoop effect. This includes:

-Snoop Hit w/ Invalidation (LLC Hit, RFO)

-Snoop Hit, Left Shared (LLC Hit/Miss, IFetch/Data_RD)

-Snoop Hit w/ Invalidation and No Forward (LLC Miss, RFO
Hit S)

In the LLC Miss case, data is returned from DRAM.

SNP_FWD 35 (R/W). A snoop was needed and data was forwarded
from a remote socket. This includes:

-Snoop Forward Clean, Left Shared (LLC Hit/Miss,
IFetch/Data_RD/RFT).

HITM 36 (R/W). A snoop was needed and it HitM-ed in local or
remote cache. HitM denotes a cache-line was in modified
state before effect as a results of snoop. This includes:

-Snoop HitM w/ WB (LLC miss, IFetch/Data_RD)

-Snoop Forward Modified w/ Invalidation (LLC Hit/Miss,
RFO)

-Snoop MtoS (LLC Hit, IFetch/Data_RD).

NON_DRAM 37 (R/W). Target was non-DRAM system address. This
includes MMIO transactions.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 44

with CPUID signature of DisplayFamily_DisplayModel encoding of 06_2DH supports an
additional field for remote DRAM controller shown in Table 18-29. Additionally, the are
some small differences in the non-architectural performance monitoring events. See
(Table 19-4).

18.9 NEXT GENERATION INTEL CORE PROCESSOR
PERFORMANCE MONITORING FACILITY

The Next Generation Intel Core processor is based on Intel microarchitecture code name
Ivy Bridge. The performance monitoring facilities in the processor core generally are the
same as those described in Section 18.8 through Section 18.8.5. The non-architectural
performance monitoring events supported by the processor core are listed in Table 19-4.

...

13. Updates to Chapter 19, Volume 3B
Change bars show changes to Chapter 19 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...
This chapter lists the performance-monitoring events that can be monitored with the
Intel 64 or IA-32 processors. The ability to monitor performance events and the events
that can be monitored in these processors are mostly model-specific, except for archi-
tectural performance events, described in Section 19.1.

Non-architectural performance events (i.e. model-specific events) are listed for each
generation of microarchitecture:
• Section 19.2 - Processors based on Intel® microarchitecture code name Ivy Bridge
• Section 19.3 - Processors based on Intel® microarchitecture code name Sandy

Bridge
• Section 19.4 - Processors based on Intel® microarchitecture code name Nehalem
• Section 19.5 - Processors based on Intel® microarchitecture code name Westmere

Table 18-29 MSR_OFFCORE_RSP_x Supplier Info Field Definition for Next Generation
Intel Xeon Processor

Subtype Bit Name Offset Description

Common Any 16 (R/W). Catch all value for any response types.

Supplier
Info

NO_SUPP 17 (R/W). No Supplier Information available

LLC_HITM 18 (R/W). M-state initial lookup stat in L3.

LLC_HITE 19 (R/W). E-state

LLC_HITS 20 (R/W). S-state

LLC_HITF 21 (R/W). F-state

LOCAL 22 (R/W). Local DRAM Controller

Remote 30:23 (R/W): Remote DRAM Controller (either all 0s or all 1s)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 45

• Section 19.6 - Processors based on Enhanced Intel® Core™ microarchitecture
• Section 19.7 - Processors based on Intel® Core™ microarchitecture
• Section 19.8 - Processors based on Intel® Atom™ microarchitecture
• Section 19.9 - Intel® Core™ Solo and Intel® Core™ Duo processors
• Section 19.10 - Processors based on Intel NetBurst® microarchitecture
• Section 19.11 - Pentium® M family processors
• Section 19.12 - P6 family processors
• Section 19.13 - Pentium® processors

NOTE
These performance-monitoring events are intended to be used as guides
for performance tuning. The counter values reported by the
performance-monitoring events are approximate and believed to be
useful as relative guides for tuning software. Known discrepancies are
documented where applicable.

...

19.2 PERFORMANCE MONITORING EVENTS FOR NEXT
GENERATION INTEL® CORE™ PROCESSORS

Next generation Intel® Core™ Processors are based on the Intel microarchitecture code
name Ivy Bridge. They support architectural performance-monitoring events listed in
Table 19-1. Non-architectural performance-monitoring events in the processor core are
listed in Table 19-2. The events in Table 19-2 apply to processors with CPUID signature
of DisplayFamily_DisplayModel encoding with the following values: 06_3AH.

Table 19-2 Non-Architectural Performance Events In the Processor Core of Next
Generation Intel Core i7, i5, i3 Processors

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

03H 02H LD_BLOCKS.STORE_F
ORWARD

loads blocked by overlapping with
store buffer that cannot be
forwarded .

05H 01H MISALIGN_MEM_REF.
LOADS

Speculative cache-line split load
uops dispatched to L1D.

05H 02H MISALIGN_MEM_REF.
STORES

Speculative cache-line split Store-
address uops dispatched to L1D.

07H 01H LD_BLOCKS_PARTIA
L.ADDRESS_ALIAS

False dependencies in MOB due to
partial compare on address.

08H 81H DTLB_LOAD_MISSES.
DEMAND_LD_MISS_C
AUSES_A_WALK

Misses in all TLB levels that cause a
page walk of any page size from
demand loads.

08H 82H DTLB_LOAD_MISSES.
DEMAND_LD_WALK_
COMPLETED

Misses in all TLB levels that caused
page walk completed of any size by
demand loads.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 46

08H 84H DTLB_LOAD_MISSES.
DEMAND_LD_WALK_
DURATION

Cycle PMH is busy with a walk due
to demand loads.

0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of Uops
issued by the RAT to RS.

Set Cmask = 1, Inv = 1, Any= 1to
count stalled cycles of this core.

Set Cmask = 1,
Inv = 1to count
stalled cycles

14H 01H ARITH.FPU_DIV_ACT
IVE

Cycles that the divider is active,
includes INT and FP. Set 'edge =1,
cmask=1' to count the number of
divides.

24H 01H L2_RQSTS.DEMAND_
DATA_RD_HIT

Demand Data Read requests that
hit L2 cache

24H 03H L2_RQSTS.ALL_DEM
AND_DATA_RD

Counts any demand and L1 HW
prefetch data load requests to L2.

24H 04H L2_RQSTS.RFO_HITS Counts the number of store RFO
requests that hit the L2 cache.

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO
requests that miss the L2 cache.

24H 0CH L2_RQSTS.ALL_RFO Counts all L2 store RFO requests.

24H 10H L2_RQSTS.CODE_RD
_HIT

Number of instruction fetches that
hit the L2 cache.

24H 20H L2_RQSTS.CODE_RD
_MISS

Number of instruction fetches that
missed the L2 cache.

24H 30H L2_RQSTS.ALL_COD
E_RD

Counts all L2 code requests.

27H 01H L2_STORE_LOCK_RQ
STS.MISS

RFOs that miss cache lines

27H 08H L2_STORE_LOCK_RQ
STS.HIT_M

RFOs that hit cache lines in M state

27H 0FH L2_STORE_LOCK_RQ
STS.ALL

RFOs that access cache lines in any
state

28H 01H L2_L1D_WB_RQSTS.
MISS

Not rejected writebacks that missed
LLC.

28H 04H L2_L1D_WB_RQSTS.
HIT_E

Not rejected writebacks from L1D
to L2 cache lines in E state.

28H 08H L2_L1D_WB_RQSTS.
HIT_M

Not rejected writebacks from L1D
to L2 cache lines in M state.

2EH 4FH LONGEST_LAT_CACH
E.REFERENCE

This event counts requests
originating from the core that
reference a cache line in the last
level cache.

see Table 19-1

Table 19-2 Non-Architectural Performance Events In the Processor Core of Next
Generation Intel Core i7, i5, i3 Processors

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 47

2EH 41H LONGEST_LAT_CACH
E.MISS

This event counts each cache miss
condition for references to the last
level cache.

see Table 19-1

3CH 00H CPU_CLK_UNHALTED
.THREAD_P

Counts the number of thread cycles
while the thread is not in a halt
state. The thread enters the halt
state when it is running the HLT
instruction. The core frequency may
change from time to time due to
power or thermal throttling.

see Table 19-1

3CH 01H CPU_CLK_THREAD_
UNHALTED.REF_XCL
K

Increments at the frequency of
XCLK (100 MHz) when not halted.

see Table 19-1

48H 01H L1D_PEND_MISS.PE
NDING

Increments the number of
outstanding L1D misses every cycle.
Set Cmaks = 1 and Edge =1 to count
occurrences.

Counter 2 only;

Set Cmask = 1 to
count cycles.

49H 01H DTLB_STORE_MISSE
S.MISS_CAUSES_A_
WALK

Miss in all TLB levels causes an page
walk of any page size
(4K/2M/4M/1G).

49H 02H DTLB_STORE_MISSE
S.WALK_COMPLETED

Miss in all TLB levels causes a page
walk that completes of any page
size (4K/2M/4M/1G).

49H 04H DTLB_STORE_MISSE
S.WALK_DURATION

Cycles PMH is busy with this walk.

49H 10H DTLB_STORE_MISSE
S.STLB_HIT

Store operations that miss the first
TLB level but hit the second and do
not cause page walks

4CH 01H LOAD_HIT_PRE.SW_
PF

Not SW-prefetch load dispatches
that hit fill buffer allocated for S/W
prefetch.

51H 01H L1D.REPLACEMENT Counts the number of lines brought
into the L1 data cache.

58H 01H MOVE_ELIMINATION.I
NT_NOT_ELIMINATE
D

Number of integer Move Elimination
candidate uops that were not
eliminated.

58H 02H MOVE_ELIMINATION.
SIMD_NOT_ELIMINAT
ED

Number of SIMD Move Elimination
candidate uops that were not
eliminated.

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the
thread is in ring 0

Use Edge to
count transition

5CH 02H CPL_CYCLES.RING12
3

Unhalted core cycles when the
thread is not in ring 0

5EH 01H RS_EVENTS.EMPTY_
CYCLES

Cycles the RS is empty for the
thread.

Table 19-2 Non-Architectural Performance Events In the Processor Core of Next
Generation Intel Core i7, i5, i3 Processors

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 48

5FH 01H TLB_ACCESS.LOAD_S
TLB_HIT

Counts load operations that missed
1st level DTLB but hit the 2nd level.

60H 01H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND_DATA_RD

Offcore outstanding Demand Data
Read transactions in SQ to uncore.
Set Cmask=1 to count cycles.

60H 04H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND_RFO

Offcore outstanding RFO store
transactions in SQ to uncore. Set
Cmask=1 to count cycles.

60H 08H OFFCORE_REQUEST
S_OUTSTANDING.AL
L_DATA_RD

Offcore outstanding cacheable data
read transactions in SQ to uncore.
Set Cmask=1 to count cycles.

63H 01H LOCK_CYCLES.SPLIT_
LOCK_UC_LOCK_DUR
ATION

Cycles in which the L1D and L2 are
locked, due to a UC lock or split lock.

63H 02H LOCK_CYCLES.CACHE
_LOCK_DURATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops
delivered to IDQ from MITE path.

Set Cmask = 1 to count cycles.

Can combine
Umask 04H and
20H

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops
delivered to IDQ from DSB path.

Set Cmask = 1 to count cycles.

Can combine
Umask 08H and
10H

79H 30H IDQ.MS_UOPS Increment each cycle # of uops
delivered to IDQ from MS by either
DSB or MITE. Set Cmask = 1 to count
cycles.

Can combine
Umask 04H, 08H
and 30H

80H 02H ICACHE.MISSES Number of Instruction Cache,
Streaming Buffer and Victim Cache
Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_C
AUSES_A_WALK

Misses in all ITLB levels that cause
page walks

85H 02H ITLB_MISSES.WALK_
COMPLETED

Misses in all ITLB levels that cause
completed page walks

85H 04H ITLB_MISSES.WALK_
DURATION

Cycle PMH is busy with a walk.

85H 10H ITLB_MISSES.STLB_H
IT

Number of cache load STLB hits. No
page walk.

87H 01H ILD_STALL.LCP Stalls caused by changing prefix
length of the instruction.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to IQ is full.

Table 19-2 Non-Architectural Performance Events In the Processor Core of Next
Generation Intel Core i7, i5, i3 Processors

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 49

88H 01H BR_INST_EXEC.COND Qualify conditional near branch
instructions executed, but not
necessarily retired.

Must combine
with umask 40H,
80H

88H 02H BR_INST_EXEC.DIRE
CT_JMP

Qualify all unconditional near branch
instructions excluding calls and
indirect branches.

Must combine
with umask 80H

88H 04H BR_INST_EXEC.INDIR
ECT_JMP_NON_CALL
_RET

Qualify executed indirect near
branch instructions that are not
calls nor returns.

Must combine
with umask 80H

88H 08H BR_INST_EXEC.RETU
RN_NEAR

Qualify indirect near branches that
have a return mnemonic.

Must combine
with umask 80H

88H 10H BR_INST_EXEC.DIRE
CT_NEAR_CALL

Qualify unconditional near call
branch instructions, excluding non
call branch, executed.

Must combine
with umask 80H

88H 20H BR_INST_EXEC.INDIR
ECT_NEAR_CALL

Qualify indirect near calls, including
both register and memory indirect,
executed.

Must combine
with umask 80H

88H 40H BR_INST_EXEC.NON
TAKEN

Qualify non-taken near branches
executed.

Applicable to
umask 01H only

88H 80H BR_INST_EXEC.TAKE
N

Qualify taken near branches
executed. Must combine with
01H,02H, 04H, 08H, 10H, 20H

88H FFH BR_INST_EXEC.ALL_
BRANCHES

Counts all near executed branches
(not necessarily retired).

89H 01H BR_MISP_EXEC.CON
D

Qualify conditional near branch
instructions mispredicted.

Must combine
with umask 40H,
80H

89H 04H BR_MISP_EXEC.INDIR
ECT_JMP_NON_CALL
_RET

Qualify mispredicted indirect near
branch instructions that are not
calls nor returns.

Must combine
with umask 80H

89H 08H BR_MISP_EXEC.RETU
RN_NEAR

Qualify mispredicted indirect near
branches that have a return
mnemonic.

Must combine
with umask 80H

89H 10H BR_MISP_EXEC.DIRE
CT_NEAR_CALL

Qualify mispredicted unconditional
near call branch instructions,
excluding non call branch, executed.

Must combine
with umask 80H

89H 20H BR_MISP_EXEC.INDIR
ECT_NEAR_CALL

Qualify mispredicted indirect near
calls, including both register and
memory indirect, executed.

Must combine
with umask 80H

89H 40H BR_MISP_EXEC.NON
TAKEN

Qualify mispredicted non-taken
near branches executed,.

Applicable to
umask 01H only

89H 80H BR_MISP_EXEC.TAKE
N

Qualify mispredicted taken near
branches executed. Must combine
with 01H,02H, 04H, 08H, 10H, 20H

Table 19-2 Non-Architectural Performance Events In the Processor Core of Next
Generation Intel Core i7, i5, i3 Processors

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 50

89H FFH BR_MISP_EXEC.ALL_
BRANCHES

Counts all near executed branches
(not necessarily retired).

9CH 01H IDQ_UOPS_NOT_DEL
IVERED.CORE

Count number of non-delivered
uops to RAT per thread.

Use Cmask to
qualify uop b/w

A1H 01H UOPS_DISPATCHED_
PORT.PORT_0

Cycles which a Uop is dispatched on
port 0.

A1H 02H UOPS_DISPATCHED_
PORT.PORT_1

Cycles which a Uop is dispatched on
port 1.

A1H 04H UOPS_DISPATCHED_
PORT.PORT_2_LD

Cycles which a load uop is
dispatched on port 2.

A1H 08H UOPS_DISPATCHED_
PORT.PORT_2_STA

Cycles which a store address uop is
dispatched on port 2.

A1H 0CH UOPS_DISPATCHED_
PORT.PORT_2

Cycles which a Uop is dispatched on
port 2.

A1H 10H UOPS_DISPATCHED_
PORT.PORT_3_LD

Cycles which a load uop is
dispatched on port 3.

A1H 20H UOPS_DISPATCHED_
PORT.PORT_3_STA

Cycles which a store address uop is
dispatched on port 3.

A1H 30H UOPS_DISPATCHED_
PORT.PORT_3

Cycles which a Uop is dispatched on
port 3.

A1H 40H UOPS_DISPATCHED_
PORT.PORT_4

Cycles which a Uop is dispatched on
port 4.

A1H 80H UOPS_DISPATCHED_
PORT.PORT_5

Cycles which a Uop is dispatched on
port 5.

A2H 01H RESOURCE_STALLS.
ANY

Cycles Allocation is stalled due to
Resource Related reason.

A2H 04H RESOURCE_STALLS.R
S

Cycles stalled due to no eligible RS
entry available.

A2H 08H RESOURCE_STALLS.S
B

Cycles stalled due to no store
buffers available. (not including
draining form sync).

A2H 10H RESOURCE_STALLS.R
OB

Cycles stalled due to re-order buffer
full.

ABH 01H DSB2MITE_SWITCHE
S.COUNT

Number of DSB to MITE switches.

ABH 02H DSB2MITE_SWITCHE
S.PENALTY_CYCLES

Cycles DSB to MITE switches caused
delay.

ACH 08H DSB_FILL.EXCEED_D
SB_LINES

DSB Fill encountered > 3 DSB lines.

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes,
includes 4k/2M/4M pages.

Table 19-2 Non-Architectural Performance Events In the Processor Core of Next
Generation Intel Core i7, i5, i3 Processors

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 51

B0H 01H OFFCORE_REQUEST
S.DEMAND_DATA_RD

Demand data read requests sent to
uncore.

B0H 02H OFFCORE_REQUEST
S.DEMAND_CODE_RD

Demand code read requests sent to
uncore.

B0H 04H OFFCORE_REQUEST
S.DEMAND_RFO

Demand RFO read requests sent to
uncore., including regular RFOs,
locks, ItoM

B0H 08H OFFCORE_REQUEST
S.ALL_DATA_RD

Data read requests sent to uncore
(demand and prefetch).

B1H 01H UOPS_DISPATCHED.T
HREAD

Counts total number of uops to be
dispatched per-thread each cycle.
Set Cmask = 1, INV =1 to count stall
cycles.

B1H 02H UOPS_DISPATCHED.C
ORE

Counts total number of uops to be
dispatched per-core each cycle.

Do not need to
set ANY

B7H 01H OFF_CORE_RESPONS
E_0

see Section 18.8.5, “Off-core
Response Performance Monitoring”;
PMC0 only.

Requires
programming
MSR 01A6H

BBH 01H OFF_CORE_RESPONS
E_1

See Section 18.8.5, “Off-core
Response Performance Monitoring”.
PMC3 only.

Requires
programming
MSR 01A7H

C0H 00H INST_RETIRED.ANY_
P

Number of instructions at
retirement

See Table 19-1

C0H 01H INST_RETIRED.PREC
_DIST

Precise instruction retired event
with HW to reduce effect of PEBS
shadow in IP distribution

PMC1 only; Must
quiesce other
PMCs.

C1H 08H OTHER_ASSISTS.AVX
_STORE

Number of assists associated with
256-bit AVX store operations.

C1H 10H OTHER_ASSISTS.AVX
_TO_SSE

Number of transitions from AVX-
256 to legacy SSE when penalty
applicable.

C1H 20H OTHER_ASSISTS.SSE
_TO_AVX

Number of transitions from SSE to
AVX-256 when penalty applicable.

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops
retired, Use cmask=1 and invert to
count active cycles or stalled cycles.

Supports PEBS

C2H 02H UOPS_RETIRED.RETI
RE_SLOTS

Counts the number of retirement
slots used each cycle.

C3H 02H MACHINE_CLEARS.M
EMORY_ORDERING

Counts the number of machine
clears due to memory order
conflicts.

Table 19-2 Non-Architectural Performance Events In the Processor Core of Next
Generation Intel Core i7, i5, i3 Processors

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 52

C3H 20H MACHINE_CLEARS.M
ASKMOV

Counts the number of executed
AVX masked load operations that
refer to an illegal address range
with the mask bits set to 0.

C4H 00H BR_INST_RETIRED.A
LL_BRANCHES

Branch instructions at retirement See Table 19-1

C4H 01H BR_INST_RETIRED.C
ONDITIONAL

Counts the number of conditional
branch instructions retired.

Supports PEBS

C4H 02H BR_INST_RETIRED.N
EAR_CALL

Direct and indirect near call
instructions retired.

C4H 04H BR_INST_RETIRED.A
LL_BRANCHES

Counts the number of branch
instructions retired.

C4H 08H BR_INST_RETIRED.N
EAR_RETURN

Counts the number of near return
instructions retired.

C4H 10H BR_INST_RETIRED.N
OT_TAKEN

Counts the number of not taken
branch instructions retired.

C4H 20H BR_INST_RETIRED.N
EAR_TAKEN

Number of near taken branches
retired.

C4H 40H BR_INST_RETIRED.F
AR_BRANCH

Number of far branches retired.

C5H 00H BR_MISP_RETIRED.A
LL_BRANCHES

Mispredicted branch instructions at
retirement

See Table 19-1

C5H 01H BR_MISP_RETIRED.C
ONDITIONAL

Mispredicted conditional branch
instructions retired.

Supports PEBS

C5H 02H BR_MISP_RETIRED.N
EAR_CALL

Direct and indirect mispredicted
near call instructions retired.

C5H 04H BR_MISP_RETIRED.A
LL_BRANCHES

Mispredicted macro branch
instructions retired.

C5H 10H BR_MISP_RETIRED.N
OT_TAKEN

Mispredicted not taken branch
instructions retired.

C5H 20H BR_MISP_RETIRED.T
AKEN

Mispredicted taken branch
instructions retired.

CAH 08H FP_ASSIST.SIMD_OU
TPUT

Number of SIMD FP assists due to
Output values

CAH 10H FP_ASSIST.SIMD_INP
UT

Number of SIMD FP assists due to
input values

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE*
or FP assists

CCH 20H ROB_MISC_EVENTS.L
BR_INSERTS

Count cases of saving new LBR
records by hardware.

CDH 01H MEM_TRANS_RETIR
ED.LOAD_LATENCY

Sample loads with specified latency
threshold. PMC3 only.

Specify threshold
in MSR 0x3F6

Table 19-2 Non-Architectural Performance Events In the Processor Core of Next
Generation Intel Core i7, i5, i3 Processors

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 53

CDH 02H MEM_TRANS_RETIR
ED.PRECISE_STORE

Sample stores and collect precise
store operation via PEBS record.
PMC3 only.

See Section
18.8.4.3

D0H 01H MEM_UOP_RETIRED.
LOADS

Qualify retired memory uops that
are loads. Combine with umask 10H,
20H, 40H, 80H.

Supports PEBS

D0H 02H MEM_UOP_RETIRED.
STORES

Qualify retired memory uops that
are stores. Combine with umask
10H, 20H, 40H, 80H.

D0H 10H MEM_UOP_RETIRED.
STLB_MISS

Qualify retired memory uops with
STLB miss. Must combine with
umask 01H, 02H, to produce counts.

D0H 20H MEM_UOP_RETIRED.
LOCK

Qualify retired memory uops with
lock. Must combine with umask 01H,
02H, to produce counts.

D0H 40H MEM_UOP_RETIRED.
SPLIT

Qualify retired memory uops with
line split. Must combine with umask
01H, 02H, to produce counts.

D0H 80H MEM_UOP_RETIRED.
ALL

Qualify any retired memory uops.
Must combine with umask 01H,
02H, to produce counts.

D1H 01H MEM_LOAD_UOPS_R
ETIRED.L1_HIT

Retired load uops with L1 cache hits
as data sources.

Supports PEBS

D1H 02H MEM_LOAD_UOPS_R
ETIRED.L2_HIT

Retired load uops with L2 cache hits
as data sources.

D1H 04H MEM_LOAD_UOPS_R
ETIRED.LLC_HIT

Retired load uops with LLC cache
hits as data sources.

D1H 40H MEM_LOAD_UOPS_R
ETIRED.HIT_LFB

Retired load uops which data
sources were load uops missed L1
but hit FB due to preceding miss to
the same cache line with data not
ready.

D2H 02H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_HIT

Retired load uops which data
sources were LLC and cross-core
snoop hits in on-pkg core cache.

Supports PEBS

D2H 04H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_HITM

Retired load uops which data
sources were HitM responses from
shared LLC.

D2H 08H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_NONE

Retired load uops which data
sources were hits in LLC without
snoops required.

D3H 01H MEM_LOAD_UOPS_L
LC_MISS_RETIRED.LO
CAL_DRAM

Retired load uops which data
sources missed LLC but serviced
from local dram.

Supports PEBS.

Table 19-2 Non-Architectural Performance Events In the Processor Core of Next
Generation Intel Core i7, i5, i3 Processors

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 54

19.3 PERFORMANCE MONITORING EVENTS FOR
INTEL® CORE™ PROCESSOR 2XXX SERIES

Second generation Intel® Core™ Processor 2xxx Series are based on the Intel microar-
chitecture code name Sandy Bridge. They support architectural performance-monitoring
events listed in Table 19-1. Non-architectural performance-monitoring events in the
processor core are listed in Table 19-3, Table 19-4, and Table 19-5. The events in Table
19-3 apply to processors with CPUID signature of DisplayFamily_DisplayModel encoding
with the following values: 06_2AH and 06_2DH. The events in Table 19-4 apply to
processors with CPUID signature 06_2AH. The events in Table 19-5 apply to processors
with CPUID signature 06_2DH.

F0H 01H L2_TRANS.DEMAND_
DATA_RD

Demand Data Read requests that
access L2 cache

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching
instructions

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2
cache

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache

F0H 80H L2_TRANS.ALL_REQ
UESTS

Transactions accessing L2 pipe

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2 Counting does
not cover rejects.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2 Counting does
not cover rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2 Counting does
not cover rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2 Counting does
not cover rejects.

F2H 01H L2_LINES_OUT.DEMA
ND_CLEAN

Clean L2 cache lines evicted by
demand

F2H 02H L2_LINES_OUT.DEMA
ND_DIRTY

Dirty L2 cache lines evicted by
demand

F2H 0AH L2_LINES_OUT.DIRT
Y_ALL

Dirty L2 cache lines filling the L2 Counting does
not cover rejects.

Table 19-2 Non-Architectural Performance Events In the Processor Core of Next
Generation Intel Core i7, i5, i3 Processors

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 55

Table 19-3 Non-Architectural Performance Events In the Processor Core common to
Intel Core i7, i5, i3 Processors 2xxx Series and Next Generation Intel Xeon Processors
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

03H 01H LD_BLOCKS.DATA_U
NKNOWN

blocked loads due to store buffer
blocks with unknown data.

03H 02H LD_BLOCKS.STORE_F
ORWARD

loads blocked by overlapping with
store buffer that cannot be
forwarded .

03H 08H LD_BLOCKS.NO_SR # of Split loads blocked due to
resource not available.

03H 10H LD_BLOCKS.ALL_BLO
CK

Number of cases where any load is
blocked but has no DCU miss.

05H 01H MISALIGN_MEM_REF.
LOADS

Speculative cache-line split load
uops dispatched to L1D.

05H 02H MISALIGN_MEM_REF.
STORES

Speculative cache-line split Store-
address uops dispatched to L1D.

07H 01H LD_BLOCKS_PARTIA
L.ADDRESS_ALIAS

False dependencies in MOB due to
partial compare on address.

07H 08H LD_BLOCKS_PARTIA
L.ALL_STA_BLOCK

The number of times that load
operations are temporarily blocked
because of older stores, with
addresses that are not yet known. A
load operation may incur more than
one block of this type.

08H 01H DTLB_LOAD_MISSES.
MISS_CAUSES_A_WA
LK

Misses in all TLB levels that cause a
page walk of any page size.

08H 02H DTLB_LOAD_MISSES.
WALK_COMPLETED

Misses in all TLB levels that caused
page walk completed of any size.

08H 04H DTLB_LOAD_MISSES.
WALK_DURATION

Cycle PMH is busy with a walk.

08H 10H DTLB_LOAD_MISSES.
STLB_HIT

Number of cache load STLB hits. No
page walk.

0DH 03H INT_MISC.RECOVERY
_CYCLES

Cycles waiting to recover after
Machine Clears or JEClear. Set
Cmask= 1.

Set Edge to
count
occurrences

0DH 40H INT_MISC.RAT_STALL
_CYCLES

Cycles RAT external stall is sent to
IDQ for this thread.

0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of Uops
issued by the RAT to RS.

Set Cmask = 1, Inv = 1, Any= 1to
count stalled cycles of this core.

Set Cmask = 1,
Inv = 1to count
stalled cycles

10H 01H FP_COMP_OPS_EXE.
X87

Counts number of X87 uops
executed.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 56

10H 10H FP_COMP_OPS_EXE.
SSE_FP_PACKED_DO
UBLE

Counts number of SSE* double
precision FP packed uops executed.

10H 20H FP_COMP_OPS_EXE.
SSE_FP_SCALAR_SIN
GLE

Counts number of SSE* single
precision FP scalar uops executed.

10H 40H FP_COMP_OPS_EXE.
SSE_PACKED SINGLE

Counts number of SSE* single
precision FP packed uops executed.

10H 80H FP_COMP_OPS_EXE.
SSE_SCALAR_DOUBL
E

Counts number of SSE* double
precision FP scalar uops executed.

11H 01H SIMD_FP_256.PACKE
D_SINGLE

Counts 256-bit packed single-
precision floating-point instructions

11H 02H SIMD_FP_256.PACKE
D_DOUBLE

Counts 256-bit packed double-
precision floating-point instructions

14H 01H ARITH.FPU_DIV_ACT
IVE

Cycles that the divider is active,
includes INT and FP. Set 'edge =1,
cmask=1' to count the number of
divides.

17H 01H INSTS_WRITTEN_TO
_IQ.INSTS

Counts the number of instructions
written into the IQ every cycle.

24H 01H L2_RQSTS.DEMAND_
DATA_RD_HIT

Demand Data Read requests that
hit L2 cache

24H 03H L2_RQSTS.ALL_DEM
AND_DATA_RD

Counts any demand and L1 HW
prefetch data load requests to L2.

24H 04H L2_RQSTS.RFO_HITS Counts the number of store RFO
requests that hit the L2 cache.

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO
requests that miss the L2 cache.

24H 0CH L2_RQSTS.ALL_RFO Counts all L2 store RFO requests.

24H 10H L2_RQSTS.CODE_RD
_HIT

Number of instruction fetches that
hit the L2 cache.

24H 20H L2_RQSTS.CODE_RD
_MISS

Number of instruction fetches that
missed the L2 cache.

24H 30H L2_RQSTS.ALL_COD
E_RD

Counts all L2 code requests.

24H 40H L2_RQSTS.PF_HIT Requests from L2 Hardware
prefetcher that hit L2.

24H 80H L2_RQSTS.PF_MISS Requests from L2 Hardware
prefetcher that missed L2.

24H C0H L2_RQSTS.ALL_PF Any requests from L2 Hardware
prefetchers

Table 19-3 Non-Architectural Performance Events In the Processor Core common to
Intel Core i7, i5, i3 Processors 2xxx Series and Next Generation Intel Xeon Processors
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 57

27H 01H L2_STORE_LOCK_RQ
STS.MISS

RFOs that miss cache lines

27H 04H L2_STORE_LOCK_RQ
STS.HIT_E

RFOs that hit cache lines in E state

27H 08H L2_STORE_LOCK_RQ
STS.HIT_M

RFOs that hit cache lines in M state

27H 0FH L2_STORE_LOCK_RQ
STS.ALL

RFOs that access cache lines in any
state

28H 04H L2_L1D_WB_RQSTS.
HIT_E

Not rejected writebacks from L1D
to L2 cache lines in E state.

28H 08H L2_L1D_WB_RQSTS.
HIT_M

Not rejected writebacks from L1D
to L2 cache lines in M state.

2EH 4FH LONGEST_LAT_CACH
E.REFERENCE

This event counts requests
originating from the core that
reference a cache line in the last
level cache.

see Table 19-1

2EH 41H LONGEST_LAT_CACH
E.MISS

This event counts each cache miss
condition for references to the last
level cache.

see Table 19-1

3CH 00H CPU_CLK_UNHALTED
.THREAD_P

Counts the number of thread cycles
while the thread is not in a halt
state. The thread enters the halt
state when it is running the HLT
instruction. The core frequency may
change from time to time due to
power or thermal throttling.

see Table 19-1

3CH 01H CPU_CLK_THREAD_
UNHALTED.REF_XCL
K

Increments at the frequency of
XCLK (100 MHz) when not halted.

see Table 19-1

48H 01H L1D_PEND_MISS.PE
NDING

Increments the number of
outstanding L1D misses every cycle.
Set Cmaks = 1 and Edge =1 to count
occurrences.

Counter 2 only;

Set Cmask = 1 to
count cycles.

49H 01H DTLB_STORE_MISSE
S.MISS_CAUSES_A_
WALK

Miss in all TLB levels causes an page
walk of any page size
(4K/2M/4M/1G).

49H 02H DTLB_STORE_MISSE
S.WALK_COMPLETED

Miss in all TLB levels causes a page
walk that completes of any page
size (4K/2M/4M/1G).

49H 04H DTLB_STORE_MISSE
S.WALK_DURATION

Cycles PMH is busy with this walk.

49H 10H DTLB_STORE_MISSE
S.STLB_HIT

Store operations that miss the first
TLB level but hit the second and do
not cause page walks

Table 19-3 Non-Architectural Performance Events In the Processor Core common to
Intel Core i7, i5, i3 Processors 2xxx Series and Next Generation Intel Xeon Processors
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 58

4CH 01H LOAD_HIT_PRE.SW_
PF

Not SW-prefetch load dispatches
that hit fill buffer allocated for S/W
prefetch.

4CH 02H LOAD_HIT_PRE.HW_
PF

Not SW-prefetch load dispatches
that hit fill buffer allocated for H/W
prefetch.

4EH 02H HW_PRE_REQ.DL1_
MISS

Hardware Prefetch requests that
miss the L1D cache. A request is
being counted each time it access
the cache & miss it, including if a
block is applicable or if hit the Fill
Buffer for example.

This accounts for
both L1 streamer
and IP-based
(IPP) HW
prefetchers.

51H 01H L1D.REPLACEMENT Counts the number of lines brought
into the L1 data cache.

51H 02H L1D.ALLOCATED_IN_
M

Counts the number of allocations of
modified L1D cache lines.

51H 04H L1D.EVICTION Counts the number of modified lines
evicted from the L1 data cache due
to replacement.

51H 08H L1D.ALL_M_REPLAC
EMENT

Cache lines in M state evicted out of
L1D due to Snoop HitM or dirty line
replacement

59H 20H PARTIAL_RAT_STALL
S.FLAGS_MERGE_UO
P

Increments the number of flags-
merge uops in flight each cycle.

Set Cmask = 1 to count cycles.

59H 40H PARTIAL_RAT_STALL
S.SLOW_LEA_WINDO
W

Cycles with at least one slow LEA
uop allocated.

59H 80H PARTIAL_RAT_STALL
S.MUL_SINGLE_UOP

Number of Multiply packed/scalar
single precision uops allocated.

5BH 0CH RESOURCE_STALLS2.
ALL_FL_EMPTY

Cycles stalled due to free list empty

5BH 0FH RESOURCE_STALLS2.
ALL_PRF_CONTROL

Cycles stalled due to control
structures full for physical registers

5BH 40H RESOURCE_STALLS2.
BOB_FULL

Cycles Allocator is stalled due
Branch Order Buffer.

5BH 4FH RESOURCE_STALLS2.
OOO_RSRC

Cycles stalled due to out of order
resources full

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the
thread is in ring 0

Use Edge to
count transition

5CH 02H CPL_CYCLES.RING12
3

Unhalted core cycles when the
thread is not in ring 0

5EH 01H RS_EVENTS.EMPTY_
CYCLES

Cycles the RS is empty for the
thread.

Table 19-3 Non-Architectural Performance Events In the Processor Core common to
Intel Core i7, i5, i3 Processors 2xxx Series and Next Generation Intel Xeon Processors
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 59

60H 01H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND_DATA_RD

Offcore outstanding Demand Data
Read transactions in SQ to uncore.
Set Cmask=1 to count cycles.

60H 04H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND_RFO

Offcore outstanding RFO store
transactions in SQ to uncore. Set
Cmask=1 to count cycles.

60H 08H OFFCORE_REQUEST
S_OUTSTANDING.AL
L_DATA_RD

Offcore outstanding cacheable data
read transactions in SQ to uncore.
Set Cmask=1 to count cycles.

63H 01H LOCK_CYCLES.SPLIT_
LOCK_UC_LOCK_DUR
ATION

Cycles in which the L1D and L2 are
locked, due to a UC lock or split lock.

63H 02H LOCK_CYCLES.CACHE
_LOCK_DURATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops
delivered to IDQ from MITE path.

Set Cmask = 1 to count cycles.

Can combine
Umask 04H and
20H

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops
delivered to IDQ from DSB path.

Set Cmask = 1 to count cycles.

Can combine
Umask 08H and
10H

79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops
delivered to IDQ when MS busy by
DSB. Set Cmask = 1 to count cycles
MS is busy. Set Cmask=1 and Edge
=1 to count MS activations.

Can combine
Umask 08H and
10H

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops
delivered to IDQ when MS is busy by
MITE. Set Cmask = 1 to count cycles.

Can combine
Umask 04H and
20H

79H 30H IDQ.MS_UOPS Increment each cycle # of uops
delivered to IDQ from MS by either
DSB or MITE. Set Cmask = 1 to count
cycles.

Can combine
Umask 04H, 08H
and 30H

80H 02H ICACHE.MISSES Number of Instruction Cache,
Streaming Buffer and Victim Cache
Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_C
AUSES_A_WALK

Misses in all ITLB levels that cause
page walks

85H 02H ITLB_MISSES.WALK_
COMPLETED

Misses in all ITLB levels that cause
completed page walks

85H 04H ITLB_MISSES.WALK_
DURATION

Cycle PMH is busy with a walk.

85H 10H ITLB_MISSES.STLB_H
IT

Number of cache load STLB hits. No
page walk.

Table 19-3 Non-Architectural Performance Events In the Processor Core common to
Intel Core i7, i5, i3 Processors 2xxx Series and Next Generation Intel Xeon Processors
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 60

87H 01H ILD_STALL.LCP Stalls caused by changing prefix
length of the instruction.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to IQ is full.

88H 01H BR_INST_EXEC.COND Qualify conditional near branch
instructions executed, but not
necessarily retired.

Must combine
with umask 40H,
80H

88H 02H BR_INST_EXEC.DIRE
CT_JMP

Qualify all unconditional near branch
instructions excluding calls and
indirect branches.

Must combine
with umask 80H

88H 04H BR_INST_EXEC.INDIR
ECT_JMP_NON_CALL
_RET

Qualify executed indirect near
branch instructions that are not
calls nor returns.

Must combine
with umask 80H

88H 08H BR_INST_EXEC.RETU
RN_NEAR

Qualify indirect near branches that
have a return mnemonic.

Must combine
with umask 80H

88H 10H BR_INST_EXEC.DIRE
CT_NEAR_CALL

Qualify unconditional near call
branch instructions, excluding non
call branch, executed.

Must combine
with umask 80H

88H 20H BR_INST_EXEC.INDIR
ECT_NEAR_CALL

Qualify indirect near calls, including
both register and memory indirect,
executed.

Must combine
with umask 80H

88H 40H BR_INST_EXEC.NON
TAKEN

Qualify non-taken near branches
executed.

Applicable to
umask 01H only

88H 80H BR_INST_EXEC.TAKE
N

Qualify taken near branches
executed. Must combine with
01H,02H, 04H, 08H, 10H, 20H

88H FFH BR_INST_EXEC.ALL_
BRANCHES

Counts all near executed branches
(not necessarily retired).

89H 01H BR_MISP_EXEC.CON
D

Qualify conditional near branch
instructions mispredicted.

Must combine
with umask 40H,
80H

89H 04H BR_MISP_EXEC.INDIR
ECT_JMP_NON_CALL
_RET

Qualify mispredicted indirect near
branch instructions that are not
calls nor returns.

Must combine
with umask 80H

89H 08H BR_MISP_EXEC.RETU
RN_NEAR

Qualify mispredicted indirect near
branches that have a return
mnemonic.

Must combine
with umask 80H

89H 10H BR_MISP_EXEC.DIRE
CT_NEAR_CALL

Qualify mispredicted unconditional
near call branch instructions,
excluding non call branch, executed.

Must combine
with umask 80H

89H 20H BR_MISP_EXEC.INDIR
ECT_NEAR_CALL

Qualify mispredicted indirect near
calls, including both register and
memory indirect, executed.

Must combine
with umask 80H

89H 40H BR_MISP_EXEC.NON
TAKEN

Qualify mispredicted non-taken
near branches executed,.

Applicable to
umask 01H only

Table 19-3 Non-Architectural Performance Events In the Processor Core common to
Intel Core i7, i5, i3 Processors 2xxx Series and Next Generation Intel Xeon Processors
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 61

89H 80H BR_MISP_EXEC.TAKE
N

Qualify mispredicted taken near
branches executed. Must combine
with 01H,02H, 04H, 08H, 10H, 20H

89H FFH BR_MISP_EXEC.ALL_
BRANCHES

Counts all near executed branches
(not necessarily retired).

9CH 01H IDQ_UOPS_NOT_DEL
IVERED.CORE

Count number of non-delivered
uops to RAT per thread.

Use Cmask to
qualify uop b/w

A1H 01H UOPS_DISPATCHED_
PORT.PORT_0

Cycles which a Uop is dispatched on
port 0.

A1H 02H UOPS_DISPATCHED_
PORT.PORT_1

Cycles which a Uop is dispatched on
port 1.

A1H 04H UOPS_DISPATCHED_
PORT.PORT_2_LD

Cycles which a load uop is
dispatched on port 2.

A1H 08H UOPS_DISPATCHED_
PORT.PORT_2_STA

Cycles which a store address uop is
dispatched on port 2.

A1H 0CH UOPS_DISPATCHED_
PORT.PORT_2

Cycles which a Uop is dispatched on
port 2.

A1H 10H UOPS_DISPATCHED_
PORT.PORT_3_LD

Cycles which a load uop is
dispatched on port 3.

A1H 20H UOPS_DISPATCHED_
PORT.PORT_3_STA

Cycles which a store address uop is
dispatched on port 3.

A1H 30H UOPS_DISPATCHED_
PORT.PORT_3

Cycles which a Uop is dispatched on
port 3.

A1H 40H UOPS_DISPATCHED_
PORT.PORT_4

Cycles which a Uop is dispatched on
port 4.

A1H 80H UOPS_DISPATCHED_
PORT.PORT_5

Cycles which a Uop is dispatched on
port 5.

A2H 01H RESOURCE_STALLS.
ANY

Cycles Allocation is stalled due to
Resource Related reason.

A2H 02H RESOURCE_STALLS.L
B

Counts the cycles of stall due to lack
of load buffers.

A2H 04H RESOURCE_STALLS.R
S

Cycles stalled due to no eligible RS
entry available.

A2H 08H RESOURCE_STALLS.S
B

Cycles stalled due to no store
buffers available. (not including
draining form sync).

A2H 10H RESOURCE_STALLS.R
OB

Cycles stalled due to re-order buffer
full.

A2H 20H RESOURCE_STALLS.F
CSW

Cycles stalled due to writing the
FPU control word.

A2H 40H RESOURCE_STALLS.
MXCSR

Cycles stalled due to the MXCSR
register rename occurring to close
to a previous MXCSR rename.

Table 19-3 Non-Architectural Performance Events In the Processor Core common to
Intel Core i7, i5, i3 Processors 2xxx Series and Next Generation Intel Xeon Processors
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 62

A2H 80H RESOURCE_STALLS.
OTHER

Cycles stalled while execution was
stalled due to other resource issues.

ABH 01H DSB2MITE_SWITCHE
S.COUNT

Number of DSB to MITE switches.

ABH 02H DSB2MITE_SWITCHE
S.PENALTY_CYCLES

Cycles DSB to MITE switches caused
delay.

ACH 02H DSB_FILL.OTHER_CA
NCEL

Cases of cancelling valid DSB fill not
because of exceeding way limit

ACH 08H DSB_FILL.EXCEED_D
SB_LINES

DSB Fill encountered > 3 DSB lines.

ACH 0AH DSB_FILL.ALL_CANC
EL

Cases of cancelling valid Decode
Stream Buffer (DSB) fill not because
of exceeding way limit

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes,
includes 4k/2M/4M pages.

B0H 01H OFFCORE_REQUEST
S.DEMAND_DATA_RD

Demand data read requests sent to
uncore.

B0H 04H OFFCORE_REQUEST
S.DEMAND_RFO

Demand RFO read requests sent to
uncore., including regular RFOs,
locks, ItoM

B0H 08H OFFCORE_REQUEST
S.ALL_DATA_RD

Data read requests sent to uncore
(demand and prefetch).

B1H 01H UOPS_DISPATCHED.T
HREAD

Counts total number of uops to be
dispatched per-thread each cycle.
Set Cmask = 1, INV =1 to count stall
cycles.

B1H 02H UOPS_DISPATCHED.C
ORE

Counts total number of uops to be
dispatched per-core each cycle.

Do not need to
set ANY

B2H 01H OFFCORE_REQUEST
S_BUFFER.SQ_FULL

Offcore requests buffer cannot take
more entries for this thread core.

B6H 01H AGU_BYPASS_CANCE
L.COUNT

Counts executed load operations
with all the following traits: 1.
addressing of the format [base +
offset], 2. the offset is between 1
and 2047, 3. the address specified
in the base register is in one page
and the address [base+offset] is in
another page.

B7H 01H OFF_CORE_RESPONS
E_0

see Section 18.8.5, “Off-core
Response Performance Monitoring”;
PMC0 only.

Requires
programming
MSR 01A6H

BBH 01H OFF_CORE_RESPONS
E_1

See Section 18.8.5, “Off-core
Response Performance Monitoring”.
PMC3 only.

Requires
programming
MSR 01A7H

Table 19-3 Non-Architectural Performance Events In the Processor Core common to
Intel Core i7, i5, i3 Processors 2xxx Series and Next Generation Intel Xeon Processors
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 63

BDH 01H TLB_FLUSH.DTLB_T
HREAD

DTLB flush attempts of the thread-
specific entries

BDH 20H TLB_FLUSH.STLB_A
NY

Count number of STLB flush
attempts

BFH 05H L1D_BLOCKS.BANK_
CONFLICT_CYCLES

Cycles when dispatched loads are
cancelled due to L1D bank conflicts
with other load ports

cmask=1

C0H 00H INST_RETIRED.ANY_
P

Number of instructions at
retirement

See Table 19-1

C0H 01H INST_RETIRED.PREC
_DIST

Precise instruction retired event
with HW to reduce effect of PEBS
shadow in IP distribution

PMC1 only; Must
quiesce other
PMCs.

C0H 02H INST_RETIRED.X87 X87 instruction retired event

C1H 02H OTHER_ASSISTS.ITL
B_MISS_RETIRED

Instructions that experienced an
ITLB miss.

C1H 08H OTHER_ASSISTS.AVX
_STORE

Number of assists associated with
256-bit AVX store operations.

C1H 10H OTHER_ASSISTS.AVX
_TO_SSE

Number of transitions from AVX-
256 to legacy SSE when penalty
applicable.

C1H 20H OTHER_ASSISTS.SSE
_TO_AVX

Number of transitions from SSE to
AVX-256 when penalty applicable.

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops
retired, Use cmask=1 and invert to
count active cycles or stalled cycles.

Supports PEBS

C2H 02H UOPS_RETIRED.RETI
RE_SLOTS

Counts the number of retirement
slots used each cycle.

C3H 02H MACHINE_CLEARS.M
EMORY_ORDERING

Counts the number of machine
clears due to memory order
conflicts.

C3H 04H MACHINE_CLEARS.S
MC

Counts the number of times that a
program writes to a code section.

C3H 20H MACHINE_CLEARS.M
ASKMOV

Counts the number of executed
AVX masked load operations that
refer to an illegal address range
with the mask bits set to 0.

C4H 00H BR_INST_RETIRED.A
LL_BRANCHES

Branch instructions at retirement See Table 19-1

C4H 01H BR_INST_RETIRED.C
ONDITIONAL

Counts the number of conditional
branch instructions retired.

Supports PEBS

C4H 02H BR_INST_RETIRED.N
EAR_CALL

Direct and indirect near call
instructions retired.

Table 19-3 Non-Architectural Performance Events In the Processor Core common to
Intel Core i7, i5, i3 Processors 2xxx Series and Next Generation Intel Xeon Processors
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 64

C4H 04H BR_INST_RETIRED.A
LL_BRANCHES

Counts the number of branch
instructions retired.

C4H 08H BR_INST_RETIRED.N
EAR_RETURN

Counts the number of near return
instructions retired.

C4H 10H BR_INST_RETIRED.N
OT_TAKEN

Counts the number of not taken
branch instructions retired.

C4H 20H BR_INST_RETIRED.N
EAR_TAKEN

Number of near taken branches
retired.

C4H 40H BR_INST_RETIRED.F
AR_BRANCH

Number of far branches retired.

C5H 00H BR_MISP_RETIRED.A
LL_BRANCHES

Mispredicted branch instructions at
retirement

See Table 19-1

C5H 01H BR_MISP_RETIRED.C
ONDITIONAL

Mispredicted conditional branch
instructions retired.

Supports PEBS

C5H 02H BR_MISP_RETIRED.N
EAR_CALL

Direct and indirect mispredicted
near call instructions retired.

C5H 04H BR_MISP_RETIRED.A
LL_BRANCHES

Mispredicted macro branch
instructions retired.

C5H 10H BR_MISP_RETIRED.N
OT_TAKEN

Mispredicted not taken branch
instructions retired.

C5H 20H BR_MISP_RETIRED.T
AKEN

Mispredicted taken branch
instructions retired.

CAH 02H FP_ASSIST.X87_OUT
PUT

Number of X87 assists due to
output value.

CAH 04H FP_ASSIST.X87_INP
UT

Number of X87 assists due to input
value.

CAH 08H FP_ASSIST.SIMD_OU
TPUT

Number of SIMD FP assists due to
Output values

CAH 10H FP_ASSIST.SIMD_INP
UT

Number of SIMD FP assists due to
input values

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE*
or FP assists

CCH 20H ROB_MISC_EVENTS.L
BR_INSERTS

Count cases of saving new LBR
records by hardware.

CDH 01H MEM_TRANS_RETIR
ED.LOAD_LATENCY

Sample loads with specified latency
threshold. PMC3 only.

Specify threshold
in MSR 0x3F6

CDH 02H MEM_TRANS_RETIR
ED.PRECISE_STORE

Sample stores and collect precise
store operation via PEBS record.
PMC3 only.

See Section
18.8.4.3

D0H 01H MEM_UOP_RETIRED.
LOADS

Qualify retired memory uops that
are loads. Combine with umask 10H,
20H, 40H, 80H.

Supports PEBS

Table 19-3 Non-Architectural Performance Events In the Processor Core common to
Intel Core i7, i5, i3 Processors 2xxx Series and Next Generation Intel Xeon Processors
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 65

D0H 02H MEM_UOP_RETIRED.
STORES

Qualify retired memory uops that
are stores. Combine with umask
10H, 20H, 40H, 80H.

D0H 10H MEM_UOP_RETIRED.
STLB_MISS

Qualify retired memory uops with
STLB miss. Must combine with
umask 01H, 02H, to produce counts.

D0H 20H MEM_UOP_RETIRED.
LOCK

Qualify retired memory uops with
lock. Must combine with umask 01H,
02H, to produce counts.

D0H 40H MEM_UOP_RETIRED.
SPLIT

Qualify retired memory uops with
line split. Must combine with umask
01H, 02H, to produce counts.

D0H 80H MEM_UOP_RETIRED.
ALL

Qualify any retired memory uops.
Must combine with umask 01H,
02H, to produce counts.

D1H 01H MEM_LOAD_UOPS_R
ETIRED.L1_HIT

Retired load uops with L1 cache hits
as data sources.

Supports PEBS

D1H 02H MEM_LOAD_UOPS_R
ETIRED.L2_HIT

Retired load uops with L2 cache hits
as data sources.

D1H 40H MEM_LOAD_UOPS_R
ETIRED.HIT_LFB

Retired load uops which data
sources were load uops missed L1
but hit FB due to preceding miss to
the same cache line with data not
ready.

D2H 01H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_MISS

Retired load uops which data
sources were LLC hit and cross-core
snoop missed in on-pkg core cache.

Supports PEBS

D2H 02H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_HIT

Retired load uops which data
sources were LLC and cross-core
snoop hits in on-pkg core cache.

D2H 04H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_HITM

Retired load uops which data
sources were HitM responses from
shared LLC.

D2H 08H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_NONE

Retired load uops which data
sources were hits in LLC without
snoops required.

D4H 02H MEM_LOAD_UOPS_M
ISC_RETIRED.LLC_MI
SS

Retired load uops with unknown
information as data source in cache
serviced the load.

Supports PEBS.

F0H 01H L2_TRANS.DEMAND_
DATA_RD

Demand Data Read requests that
access L2 cache

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching
instructions

Table 19-3 Non-Architectural Performance Events In the Processor Core common to
Intel Core i7, i5, i3 Processors 2xxx Series and Next Generation Intel Xeon Processors
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 66

Non-architecture performance monitoring events in the processor core that are appli-
cable only to the Intel processor with CPUID signature of DisplayFamily_DisplayModel
06_2AH are listed in Table 19-4.

F0H 08H L2_TRANS.ALL_PF L2 or LLC HW prefetches that
access L2 cache

including rejects.

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2
cache

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache

F0H 80H L2_TRANS.ALL_REQ
UESTS

Transactions accessing L2 pipe

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2 Counting does
not cover rejects.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2 Counting does
not cover rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2 Counting does
not cover rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2 Counting does
not cover rejects.

F2H 01H L2_LINES_OUT.DEMA
ND_CLEAN

Clean L2 cache lines evicted by
demand

F2H 02H L2_LINES_OUT.DEMA
ND_DIRTY

Dirty L2 cache lines evicted by
demand

F2H 04H L2_LINES_OUT.PF_C
LEAN

Clean L2 cache lines evicted by L2
prefetch

F2H 08H L2_LINES_OUT.PF_DI
RTY

Dirty L2 cache lines evicted by L2
prefetch

F2H 0AH L2_LINES_OUT.DIRT
Y_ALL

Dirty L2 cache lines filling the L2 Counting does
not cover rejects.

F4H 10H SQ_MISC.SPLIT_LOCK Split locks in SQ

Table 19-3 Non-Architectural Performance Events In the Processor Core common to
Intel Core i7, i5, i3 Processors 2xxx Series and Next Generation Intel Xeon Processors
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 67

Table 19-4 Non-Architectural Performance Events applicable only to the Processor Core
for Intel Core i7, i5, i3 Processor 2xxx Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

D1H 04H MEM_LOAD_UOPS_R
ETIRED.LLC_HIT

Retired load uops which data sources
were data hits in LLC without snoops
required.

Supports PEBS

B7H/BB
H

01H OFF_CORE_RESPONS
E_N

Sub-events of
OFF_CORE_RESPONSE_N (suffix N =
0, 1) programmed using MSR
01A6H/01A7H with values shown in
the comment column.

OFFCORE_RESPONSE.ALL_CODE_RD.LLC_HIT_N 0x10003C024
4

OFFCORE_RESPONSE.ALL_CODE_RD.LLC_HIT.NO_SNOOP_NE
EDED_N

0x1003C0244

OFFCORE_RESPONSE.ALL_CODE_RD.LLC_HIT.SNOOP_MISS_
N

0x2003C0244

OFFCORE_RESPONSE.ALL_CODE_RD.LLC_HIT.MISS_DRAM_N 0x300400244

OFFCORE_RESPONSE.ALL_DATA_RD.LLC_HIT.ANY_RESPONS
E_N

0x3F803C009
1

OFFCORE_RESPONSE.ALL_DATA_RD.LLC_MISS.DRAM_N 0x300400091

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.ANY_RESP
ONSE_N

0x3F803C024
0

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.HIT_OTHER
_CORE_NO_FWD_N

0x4003C0240

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.HITM_OTH
ER_CORE_N

0x10003C024
0

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.NO_SNOOP
_NEEDED_N

0x1003C0240

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.SNOOP_MIS
S_N

0x2003C0240

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_MISS.DRAM_N 0x300400240

OFFCORE_RESPONSE.ALL_PF_DATA_RD.LLC_MISS.DRAM_N 0x300400090

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_HIT.ANY_RESPONSE
_N

0x3F803C012
0

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_HIT.HIT_OTHER_COR
E_NO_FWD_N

0x4003C0120

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_HIT.HITM_OTHER_C
ORE_N

0x10003C012
0

OFFCORE_RESPONSE.ALL_PF_RfO.LLC_HIT.NO_SNOOP_NEE
DED_N

0x1003C0120

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_HIT.SNOOP_MISS_N 0x2003C0120

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_MISS.DRAM_N 0x300400120

OFFCORE_RESPONSE.ALL_READS.LLC_MISS.DRAM_N 0x3004003F7

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 68

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.ANY_RESPONSE_N 0x3F803C012
2

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.HIT_OTHER_CORE_N
O_FWD_N

0x4003C0122

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.HITM_OTHER_CORE
_N

0x10003C012
2

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.NO_SNOOP_NEEDED
_N

0x1003C0122

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.SNOOP_MISS_N 0x2003C0122

OFFCORE_RESPONSE.ALL_RFO.LLC_MISS.DRAM_N 0x300400122

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_HIT.HIT_OTHE
R_CORE_NO_FWD_N

0x4003C0004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_HIT.HITM_OT
HER_CORE_N

0x10003C000
4

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_HIT.NO_SNOO
P_NEEDED_N

0x1003C0004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_HIT.SNOOP_M
ISS_N

0x2003C0004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.DRAM_N 0x300400004

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.DRAM_N 0x300400001

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.ANY_RESPONS
E_N

0x3F803C000
2

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.HIT_OTHER_CO
RE_NO_FWD_N

0x4003C0002

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.HITM_OTHER_C
ORE_N

0x10003C000
2

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.NO_SNOOP_NE
EDED_N

0x1003C0002

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.SNOOP_MISS_N 0x2003C0002

OFFCORE_RESPONSE.DEMAND_RFO.LLC_MISS.DRAM_N 0x300400002

OFFCORE_RESPONSE.OTHER.ANY_RESPONSE_N 0x18000

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_HIT.HIT_OTHER_
CORE_NO_FWD_N

0x4003C0040

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_HIT.HITM_OTHE
R_CORE_N

0x10003C004
0

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_HIT.NO_SNOOP_
NEEDED_N

0x1003C0040

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_HIT.SNOOP_MISS
_N

0x2003C0040

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_MISS.DRAM_N 0x300400040

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.DRAM_N 0x300400010

Table 19-4 Non-Architectural Performance Events applicable only to the Processor Core
for Intel Core i7, i5, i3 Processor 2xxx Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 69

Non-architecture performance monitoring events in the processor core that are
applicable only to the next generation Intel Xeon processor with CPUID signature of
DisplayFamily_DisplayModel 06_2DH are listed in Table 19-5.

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.ANY_RESPONSE_
N

0x3F803C002
0

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.HIT_OTHER_CORE
_NO_FWD_N

0x4003C0020

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.HITM_OTHER_CO
RE_N

0x10003C002
0

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.NO_SNOOP_NEED
ED_N

0x1003C0020

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.SNOOP_MISS_N 0x2003C0020

OFFCORE_RESPONSE.PF_L2_RFO.LLC_MISS.DRAM_N 0x300400020

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_HIT.HIT_OTHER
_CORE_NO_FWD_N

0x4003C0200

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_HIT.HITM_OTHE
R_CORE_N

0x10003C020
0

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_HIT.NO_SNOOP
_NEEDED_N

0x1003C0200

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_HIT.SNOOP_MIS
S_N

0x2003C0200

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_MISS.DRAM_N 0x300400200

OFFCORE_RESPONSE.PF_LLC_DATA_RD.LLC_MISS.DRAM_N 0x300400080

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.ANY_RESPONSE
_N

0x3F803C010
0

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.HIT_OTHER_COR
E_NO_FWD_N

0x4003C0100

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.HITM_OTHER_CO
RE_N

0x10003C010
0

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.NO_SNOOP_NEE
DED_N

0x1003C0100

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.SNOOP_MISS_N 0x2003C0100

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_MISS.DRAM_N 0x300400100

Table 19-4 Non-Architectural Performance Events applicable only to the Processor Core
for Intel Core i7, i5, i3 Processor 2xxx Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 70

Table 19-5 Non-Architectural Performance Events Applicable only to the processor core
of Next Generation Intel Xeon processor

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

B7H/BB
H

01H OFF_CORE_RESPONS
E_N

Sub-events of
OFF_CORE_RESPONSE_N (suffix N =
0, 1) programmed using MSR
01A6H/01A7H with values shown in
the comment column.

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.ANY_RE
SPONSE_N

0x3FFFC0000
4

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.LOCAL_D
RAM_N

0x600400004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.REMOTE
_DRAM_N

0x67F800004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.REMOTE
_HIT_FWD_N

0x87F800004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.REMOTE
_HITM_N

0x107FC0000
4

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.ANY_DR
AM_N

0x67FC00001

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.ANY_RE
SPONSE_N

0x3F803C000
1

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.LOCAL_D
RAM_N

0x600400001

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.REMOTE
_DRAM_N

0x67F800001

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.REMOTE
_HIT_FWD_N

0x87F800001

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.REMOTE
_HITM_N

0x107FC0000
1

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_MISS.ANY_RESP
ONSE_N

0x3F803C004
0

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.ANY_DRAM
_N

0x67FC00010

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.ANY_RESP
ONSE_N

0x3F803C001
0

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.LOCAL_DR
AM_N

0x600400010

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.REMOTE_D
RAM_N

0x67F800010

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.REMOTE_HI
T_FWD_N

0x87F800010

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.REMOTE_HI
TM_N

0x107FC0001
0

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 71

...

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_MISS.ANY_RES
PONSE_N

0x3FFFC0020
0

OFFCORE_RESPONSE.PF_LLC_DATA_RD.LLC_MISS.ANY_RES
PONSE_N

0x3FFFC0008
0

Table 19-5 Non-Architectural Performance Events Applicable only to the processor core
of Next Generation Intel Xeon processor

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 72

14. Updates to Chapter 25, Volume 3C
Change bars show changes to Chapter 25 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3C: System Programming Guide, Part 3.

--

...

25.7.4.2 General Operation of the VMFUNC Instruction
The VMFUNC instruction causes an invalid-opcode exception (#UD) if the “enable
VM functions” VM-execution controls is 01 or the value of EAX is greater than 63 (only
VM functions 0–63 can be enable). Otherwise, the instruction causes a VM exit if the bit
at position EAX is 0 in the VM-function controls (the selected VM function is not enabled).
If such a VM exit occurs, the basic exit reason used is 59 (3BH), indicating “VMFUNC”,
and the length of the VMFUNC instruction is saved into the VM-exit instruction-length
field. If the instruction causes neither an invalid-opcode exception nor a VM exit due to a
disabled VM function, it performs the functionality of the VM function specified by the
value in EAX.

Individual VM functions may perform additional fault checking (e.g., one might cause a
general-protection exception if CPL > 0). In addition, specific VM functions may include
checks that might result in a VM exit. If such a VM exit occurs, VM-exit information is
saved as described in the previous paragraph. The specification of a VM function may
indicate that additional VM-exit information is provided.

The specific behavior of the EPTP-switching VM function (including checks that result in
VM exits) is given in Section 25.7.4.3.

25.7.4.3 EPTP Switching
EPTP switching is VM function 0. This VM function allows software in VMX non-root oper-
ation to load a new value for the EPT pointer (EPTP), thereby establishing a different EPT
paging-structure hierarchy (see Section 28.2 for details of the operation of EPT). Soft-
ware is limited to selecting from a list of potential EPTP values configured in advance by
software in VMX root operation.

Specifically, the value of ECX is used to select an entry from the EPTP list, the 4-KByte
structure referenced by the EPTP-list address (see Section 24.6.14; because this struc-
ture contains 512 8-Byte entries, VMFUNC causes a VM exit if ECX ≥ 512). If the selected
entry is a valid EPTP value (it would not cause VM entry to fail; see Section 26.2.1.1), it
is stored in the EPTP field of the current VMCS and is used for subsequent accesses using
guest-physical addresses. The following pseudocode provides details:

IF ECX ≥ 512
THEN VM exit;
ELSE

tent_EPTP ← 8 bytes from EPTP-list address + 8 * ECX;
IF tent_EPTP is not a valid EPTP value (would cause VM entry to fail if in EPTP)

THEN VMexit;
ELSE

1. “Enable VM functions” is a secondary processor-based VM-execution control. If bit 31 of the primary
processor-based VM-execution controls is 0, VMX non-root operation functions as if the “enable
VM functions” VM-execution control were 0. See Section 24.6.2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 73

write tent_EPTP to the EPTP field in the current VMCS;
start using tent_EPTP as the new EPTP value for address translation;

FI;
FI;

Execution of the EPTP-switching VM function does not modify the state of any registers;
no flags are modified.

As noted in Section 25.7.4.2, an execution of the EPTP-switching VM function that
causes a VM exit (as specified above), uses the basic exit reason 59, indicating
“VMFUNC”. The length of the VMFUNC instruction is saved into the VM-exit instruction-
length field. No additional VM-exit information is provided.

An execution of VMFUNC loads EPTP from the EPTP list (and thus does not cause a fault
or VM exit) is called an EPTP-switching VMFUNC. After an EPTP-switching VMFUNC,
control passes to the next instruction. The logical processor starts creating and using
guest-physical and combined mappings associated with the new value of bits 51:12 of
EPTP; the combined mappings created and used are associated with the current VPID
and PCID (these are not changed by VMFUNC).1 If the “enable VPID” VM-execution
control is 0, an EPTP-switching VMFUNC invalidates combined mappings associated with
VPID 0000H (for all PCIDs and for all EP4TA values, where EP4TA is the value of bits
51:12 of EPTP).

Because an EPTP-switching VMFUNC may change the translation of guest-physical
addresses, it may affect use of the guest-physical address in CR3. The EPTP-switching
VMFUNC cannot itself cause a VM exit due to an EPT violation or an EPT misconfiguration
due to the translation of that guest-physical address through the new EPT paging struc-
tures. The following items provide details that apply if CR0.PG = 1:
• If 32-bit paging or IA-32e paging is in use (either CR4.PAE = 0 or IA32_EFER.LMA =

1), the next memory access with a linear address uses the translation of the guest-
physical address in CR3 through the new EPT paging structures. As a result, this
access may cause a VM exit due to an EPT violation or an EPT misconfiguration
encountered during that translation.

• If PAE paging is in use (CR4.PAE = 1 and IA32_EFER.LMA = 0), an EPTP-switching
VMFUNC does not load the four page-directory-pointer-table entries (PDPTEs) from
the guest-physical address in CR3. The logical processor continues to use the four
guest-physical addresses already present in the PDPTEs. The guest-physical address
in CR3 is not translated through the new EPT paging structures (until some operation
that would load the PDPTEs).
The EPTP-switching VMFUNC cannot itself cause a VM exit due to an EPT violation
or an EPT misconfiguration encountered during the translation of a guest-physical
address in any of the PDPTEs. A subsequent memory access with a linear address
uses the translation of the guest-physical address in the appropriate PDPTE through
the new EPT paging structures. As a result, such an access may cause a VM exit
due to an EPT violation or an EPT misconfiguration encountered during that trans-
lation.

...

1. If the “enable VPID” VM-execution control is 0, the current VPID is 0000H; if CR4.PCIDE = 0, the cur-
rent PCID is 000H.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 74

15. Updates to Chapter 33, Volume 3C
Change bars show changes to Chapter 33 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3C: System Programming Guide, Part 3.

--

...

33.1 OVERVIEW
This chapter describes the virtual-machine extensions (VMX) for the Intel 64 and IA-32
architectures. VMX is intended to support virtualization of processor hardware and a
system software layer acting as a host to multiple guest software environments. The
virtual-machine extensions (VMX) includes five instructions that manage the virtual-
machine control structure (VMCS), four instructions that manage VMX operation, two
TLB-management instructions, and two instructions for use by guest software. Addi-
tional details of VMX are described in Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3C.

The behavior of the VMCS-maintenance instructions is summarized below:
• VMPTRLD — This instruction takes a single 64-bit source operand that is in memory.

It makes the referenced VMCS active and current, loading the current-VMCS pointer
with this operand and establishes the current VMCS based on the contents of VMCS-
data area in the referenced VMCS region. Because this makes the referenced VMCS
active, a logical processor may start maintaining on the processor some of the VMCS
data for the VMCS.

• VMPTRST — This instruction takes a single 64-bit destination operand that is in
memory. The current-VMCS pointer is stored into the destination operand.

• VMCLEAR — This instruction takes a single 64-bit operand that is in memory. The
instruction sets the launch state of the VMCS referenced by the operand to “clear”,
renders that VMCS inactive, and ensures that data for the VMCS have been written
to the VMCS-data area in the referenced VMCS region. If the operand is the same as
the current-VMCS pointer, that pointer is made invalid.

• VMREAD — This instruction reads a component from the VMCS (the encoding of that
field is given in a register operand) and stores it into a destination operand that may
be a register or in memory.

• VMWRITE — This instruction writes a component to the VMCS (the encoding of that
field is given in a register operand) from a source operand that may be a register or
in memory.

The behavior of the VMX management instructions is summarized below:
• VMLAUNCH — This instruction launches a virtual machine managed by the VMCS. A

VM entry occurs, transferring control to the VM.
• VMRESUME — This instruction resumes a virtual machine managed by the VMCS. A

VM entry occurs, transferring control to the VM.
• VMXOFF — This instruction causes the processor to leave VMX operation.
• VMXON — This instruction takes a single 64-bit source operand that is in memory. It

causes a logical processor to enter VMX root operation and to use the memory
referenced by the operand to support VMX operation.

The behavior of the VMX-specific TLB-management instructions is summarized below:

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 75

• INVEPT — This instruction invalidates entries in the TLBs and paging-structure
caches that were derived from extended page tables (EPT).

• INVVPID — This instruction invalidates entries in the TLBs and paging-structure
caches based on a Virtual-Processor Identifier (VPID).

None of the instructions above can be executed in compatibility mode; they generate
invalid-opcode exceptions if executed in compatibility mode.

The behavior of the guest-available instructions is summarized below:
• VMCALL — This instruction allows software in VMX non-root operation to call the

VMM for service. A VM exit occurs, transferring control to the VMM.
• VMFUNC — This instruction allows software in VMX non-root operation to invoke a

VM function (processor functionality enabled and configured by software in VMX root
operation) without a VM exit.

...

VMFUNC—Invoke VM function

Description

This instruction allows software in VMX non-root operation to invoke a VM function, which
is processor functionality enabled and configured by software in VMX root operation. The
value of EAX selects the specific VM function being invoked.

The behavior of each VM function (including any additional fault checking) is specified in
Section 25.7.4, “VM Functions,” in Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3C.

Operation

Perform functionality of the VM function specified in EAX;

Flags Affected
Depends on the VM function specified in EAX. See Section 25.7.4, “VM Functions,” in
Intel 64 and IA-32 Architecture Software Developer’s Manual, Volume 3C.

Protected Mode Exceptions (not including those defined by specific VM functions)
#UD If executed outside VMX non-root operation.

If “enable VM functions” VM-execution control is 0.
If EAX ≥ 64.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Exceptions
Same exceptions as in protected mode.

Opcode Instruction Description

0F 01 D4 VMFUNC Invoke VM function specified in EAX.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 76

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.

...

16. Updates to Chapter 34, Volume 3C
Change bars show changes to Chapter 34 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3C: System Programming Guide, Part 3.

--

...
This chapter lists MSRs provided in Intel® Core™ 2 processor family, Intel® Atom™,
Intel® Core™ Duo, Intel® Core™ Solo, Pentium® 4 and Intel® Xeon® processors, P6
family processors, and Pentium® processors in Tables 34-13, 34-18, and 34-19, respec-
tively. All MSRs listed can be read with the RDMSR and written with the WRMSR instruc-
tions.

Register addresses are given in both hexadecimal and decimal. The register name is the
mnemonic register name and the bit description describes individual bits in registers.

Model specific registers and its bit-fields may be supported for a finite range of processor
families/models. To distinguish between different processor family and/or models, soft-
ware must use CPUID.01H leaf function to query the combination of DisplayFamily and
DisplayModel to determine model-specific availability of MSRs (see CPUID instruction in
Chapter 3, “Instruction Set Reference, A-L” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2A). Table 34-1 lists the signature values of
DisplayFamily and DisplayModel for various processor families or processor number
series.

Table 34-1 CPUID Signature Values of DisplayFamily_DisplayModel
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_3AH Next Generation Intel Core processor based on Intel
microarchitecture Ivy Bridge

06_2DH Next Generation Intel Xeon processor

06_2FH Intel Xeon processor E7 family

06_2AH Intel Xeon processor E3 family; Second Generation Intel Core i7, i5,
i3 Processors 2xxx Series

06_2EH Intel Xeon processor 7500, 6500 series

06_25H, 06_2CH Intel Xeon processors 3600, 5600 series, Intel Core i7, i5 and i3
Processors

06_1EH, 06_1FH Intel Core i7 and i5 Processors

06_1AH Intel Core i7 Processor, Intel Xeon Processor 3400, 3500, 5500
series

06_1DH Intel Xeon Processor MP 7400 series

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 77

...

34.4 MSRS IN THE INTEL® MICROARCHITECTURE CODE
NAME NEHALEM

Table 34-5 lists model-specific registers (MSRs) that are common for Intel® microarchi-
tecture code name Nehalem. These include Intel Core i7 and i5 processor family. Archi-
tectural MSR addresses are also included in Table 34-5. These processors have a CPUID
signature with DisplayFamily_DisplayModel of 06_1AH, 06_1EH, 06_1FH, 06_2EH, see
Table 34-1. Additional MSRs specific to 06_1AH, 06_1EH, 06_1FH are listed in Table
34-6. Some MSRs listed in these tables are used by BIOS. More information about these
MSR can be found at http://biosbits.org.

The column “Scope” represents the package/core/thread scope of individual bit field of
an MSR. “Thread” means this bit field must be programmed on each logical processor
independently. “Core” means the bit field must be programmed on each processor core
independently, logical processors in the same core will be affected by change of this bit
on the other logical processor in the same core. “Package“ means the bit field must be

06_17H Intel Xeon Processor 3100, 3300, 5200, 5400 series, Intel Core 2
Quad processors 8000, 9000 series

06_0FH Intel Xeon Processor 3000, 3200, 5100, 5300, 7300 series, Intel
Core 2 Quad processor 6000 series, Intel Core 2 Extreme 6000
series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors,
Intel Pentium dual-core processors

06_0EH Intel Core Duo, Intel Core Solo processors

06_0DH Intel Pentium M processor

06_1CH Intel Atom processor

0F_06H Intel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP,
Intel Pentium 4, Pentium D processors

0F_03H, 0F_04H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4,
Pentium D processors

06_09H Intel Pentium M processor

0F_02H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4
processors

0F_0H, 0F_01H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4
processors

06_7H, 06_08H, 06_0AH,
06_0BH

Intel Pentium III Xeon Processor, Intel Pentium III Processor

06_03H, 06_05H Intel Pentium II Xeon Processor, Intel Pentium II Processor

06_01H Intel Pentium Pro Processor

05_01H, 05_02H, 05_04H Intel Pentium Processor, Intel Pentium Processor with MMX
Technology

Table 34-1 CPUID Signature (Contd.)Values of DisplayFamily_DisplayModel (Contd.)
DisplayFamily_DisplayModel Processor Families/Processor Number Series

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 78

programmed once for each physical package. Change of a bit filed with a package scope
will affect all logical processors in that physical package.

Table 34-5 MSRs in Processors Based on Intel Microarchitecture Code Name Nehalem

...

34.7 MSRS IN THE INTEL® ATOM™ PROCESSOR FAMILY
Table 34-4 lists model-specific registers (MSRs) for Intel Atom processor family, archi-
tectural MSR addresses are also included in Table 34-4. These processors have a CPUID
signature with DisplayFamily_DisplayModel of 06_1CH, see Table 34-1.

The column “Shared/Unique” applies to logical processors sharing the same core in
processors based on the Intel Atom microarchitecture. “Unique” means each logical
processor has a separate MSR, or a bit field in an MSR governs only a logical processor.
“Shared” means the MSR or the bit field in an MSR address governs the operation of both
logical processors in the same core.

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

...

1ADH 428 MSR_TURBO_POW
ER_CURRENT_LIMI
T

See http://biosbits.org.

14:0 Package TDP Limit (R/W)

TDP limit in 1/8 Watt granularity.

15 Package TDP Limit Override Enable (R/W)

A value = 0 indicates override is not active,
and a value = 1 indicates active.

30:16 Package TDC Limit (R/W)

TDC limit in 1/8 Amp granularity.

31 Package TDC Limit Override Enable (R/W)

A value = 0 indicates override is not active,
and a value = 1 indicates active.

63:32 Reserved.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 79

Table 34-10 MSRs Supported by Intel Processors Based on Intel Microarchitecture Code
Name Sandy Bridge

...

34.8 MSRS IN THE NEXT GENERATION INTEL CORE
PROCESSOR (INTEL® MICROARCHITECTURE CODE NAME
IVY BRIDGE)

Next Generation Intel Core processor (Intel® microarchitecture code name Ivy Bridge)
supports the MSR interfaces listed in Table 34-10 and Table 34-11.

...

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

...

1A7H 422 MSR_OFFCORE_RS
P_1

Thread Offcore Response Event Select Register (R/W)

1AAH 426 MSR_MISC_PWR_
MGMT

See http://biosbits.org.

1ADH 428 MSR_TURBO_PWR
_CURRENT_LIMIT

See http://biosbits.org.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 80

	Revision History
	Preface
	Summary Tables of Changes
	Documentation Changes
	1. Updates to Chapter 7, Volume 1
	2. Updates to Chapter 12, Volume 1
	3. Updates to Chapter 13, Volume 1
	4. Updates to Chapter 1, Volume 2A
	5. Updates to Chapter 2, Volume 2A
	6. Updates to Chapter 3, Volume 2A
	7. Updates to Chapter 4, Volume 2B
	8. Updates to Chapter 6, Volume 3A
	9. Updates to Chapter 8, Volume 3A
	10. Updates to Chapter 9, Volume 3A
	11. Updates to Chapter 17, Volume 3B
	12. Updates to Chapter 18, Volume 3B
	13. Updates to Chapter 19, Volume 3B
	14. Updates to Chapter 25, Volume 3C
	15. Updates to Chapter 33, Volume 3C
	16. Updates to Chapter 34, Volume 3C

