
Document Number: 252046-035

Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Documentation Changes

March 2012

Notice: The Intel® 64 and IA-32 architectures may contain design defects or errors known as errata
that may cause the product to deviate from published specifications. Current characterized errata are
documented in the specification updates.

2 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Legal Lines and DisclaimersINFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED
IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY
OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal
injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL
INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND
EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES
ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY
WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE
DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the
absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition
and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information
here is subject to change without notice. Do not finalize a design with this information.

Intel, the Intel logo, Pentium, Xeon, Intel NetBurst, Intel Core, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo, Intel Core 2
Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, Intel Atom, and VTune are trademarks of Intel Corporation in the U.S.
and/or other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copyright © 1997-2012 Intel Corporation. All rights reserved.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 3

Contents

Revision History . 4

Preface . 7

Summary Tables of Changes . 8

Documentation Changes. 9

Revision History

4 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Revision History

Revision Description Date

-001 • Initial release November 2002

-002
• Added 1-10 Documentation Changes.
• Removed old Documentation Changes items that already have been

incorporated in the published Software Developer’s manual
December 2002

-003

• Added 9 -17 Documentation Changes.
• Removed Documentation Change #6 - References to bits Gen and Len

Deleted.
• Removed Documentation Change #4 - VIF Information Added to CLI

Discussion

February 2003

-004 • Removed Documentation changes 1-17.
• Added Documentation changes 1-24. June 2003

-005 • Removed Documentation Changes 1-24.
• Added Documentation Changes 1-15.

September 2003

-006 • Added Documentation Changes 16- 34. November 2003

-007 • Updated Documentation changes 14, 16, 17, and 28.
• Added Documentation Changes 35-45.

January 2004

-008 • Removed Documentation Changes 1-45.
• Added Documentation Changes 1-5.

March 2004

-009 • Added Documentation Changes 7-27. May 2004

-010 • Removed Documentation Changes 1-27.
• Added Documentation Changes 1.

August 2004

-011 • Added Documentation Changes 2-28. November 2004

-012 • Removed Documentation Changes 1-28.
• Added Documentation Changes 1-16.

March 2005

-013
• Updated title.
• There are no Documentation Changes for this revision of the

document.
July 2005

-014 • Added Documentation Changes 1-21. September 2005

-015 • Removed Documentation Changes 1-21.
• Added Documentation Changes 1-20.

March 9, 2006

-016 • Added Documentation changes 21-23. March 27, 2006

-017 • Removed Documentation Changes 1-23.
• Added Documentation Changes 1-36.

September 2006

-018 • Added Documentation Changes 37-42. October 2006

-019 • Removed Documentation Changes 1-42.
• Added Documentation Changes 1-19.

March 2007

-020 • Added Documentation Changes 20-27. May 2007

-021 • Removed Documentation Changes 1-27.
• Added Documentation Changes 1-6

November 2007

-022 • Removed Documentation Changes 1-6
• Added Documentation Changes 1-6

August 2008

-023 • Removed Documentation Changes 1-6
• Added Documentation Changes 1-21

March 2009

Revision History

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 5

§

-024 • Removed Documentation Changes 1-21
• Added Documentation Changes 1-16

June 2009

-025 • Removed Documentation Changes 1-16
• Added Documentation Changes 1-18

September 2009

-026 • Removed Documentation Changes 1-18
• Added Documentation Changes 1-15

December 2009

-027 • Removed Documentation Changes 1-15
• Added Documentation Changes 1-24

March 2010

-028 • Removed Documentation Changes 1-24
• Added Documentation Changes 1-29

June 2010

-029 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

September 2010

-030 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

January 2011

-031 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

April 2011

-032 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-14

May 2011

-033 • Removed Documentation Changes 1-14
• Added Documentation Changes 1-38

October 2011

-034 • Removed Documentation Changes 1-38
• Added Documentation Changes 1-16

December 2011

-035 • Removed Documentation Changes 1-16
• Added Documentation Changes 1-18

March 2012

Revision Description Date

Revision History

6 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 7

Preface

This document is an update to the specifications contained in the Affected Documents
table below. This document is a compilation of device and documentation errata,
specification clarifications and changes. It is intended for hardware system
manufacturers and software developers of applications, operating systems, or tools.

Affected Documents

Nomenclature
Documentation Changes include typos, errors, or omissions from the current
published specifications. These will be incorporated in any new release of the
specification.

Document Title Document
Number/Location

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
1: Basic Architecture 253665

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2A: Instruction Set Reference, A-M 253666

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2B: Instruction Set Reference, N-Z 253667

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2C: Instruction Set Reference 326018

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3A: System Programming Guide, Part 1 253668

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3B: System Programming Guide, Part 2 253669

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3C: System Programming Guide, Part 3 326019

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 8

Summary Tables of Changes

The following table indicates documentation changes which apply to the Intel® 64 and
IA-32 architectures. This table uses the following notations:

Codes Used in Summary Tables
Change bar to left of table row indicates this erratum is either new or modified from the
previous version of the document.

Documentation Changes
No. DOCUMENTATION CHANGES

1 Updates to Chapter 1, Volume 1

2 Updates to Chapter 1, Volume 2A

3 Updates to Chapter 3, Volume 2A

4 Updates to Chapter 4, Volume 2B

5 Updates to Appendix A, Volume 2C

6 Updates to Appendix B, Volume 2C

7 Updates to Chapter 1, Volume 3A

8 Updates to Chapter 4, Volume 3A

9 Updates to Chapter 10, Volume 3A

10 Updates to Chapter 14, Volume 3B

11 Updates to Chapter 17, Volume 3B

12 Updates to Chapter 18, Volume 3B

13 Updates to Chapter 19, Volume 3B

14 Updates to Chapter 25, Volume 3C

15 Updates to Chapter 26, Volume 3C

16 Updates to Chapter 27, Volume 3C

17 Update to Volume 3C

18 Updates to Chapter 33, Volume 3C

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

Documentation Changes

1. Updates to Chapter 1, Volume 1
Change bars show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1: Basic Architecture.

--

...

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS
MANUAL

This manual set includes information pertaining primarily to the most recent Intel 64 and
IA-32 processors, which include:
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® CoreTM Duo processor
• Intel® CoreTM Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® CoreTM2 Duo processor
• Intel® CoreTM2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® CoreTM2 Extreme processor X7000 and X6800 series
• Intel® CoreTM2 Extreme processor QX6000 series
• Intel® Xeon® processor 7100 series
• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® CoreTM2 Extreme processor QX9000 and X9000 series
• Intel® CoreTM2 Quad processor Q9000 series
• Intel® CoreTM2 Duo processor E8000, T9000 series
• Intel® AtomTM processor family

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 10

• Intel® CoreTM i7 processor
• Intel® CoreTM i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families
• Intel® Xeon® processor E5 family
• Intel® Xeon® processor E3 family
• Intel® CoreTM i7-3930K processor
• 2nd generation Intel® CoreTM i7-2xxx, Intel® CoreTM i5-2xxx, Intel® CoreTM i3-2xxx

processor series

P6 family processors are IA-32 processors based on the P6 family microarchitecture.
This includes the Pentium® Pro, Pentium® II, Pentium® III, and Pentium® III Xeon®
processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on
the Intel NetBurst® microarchitecture. Most early Intel® Xeon® processors are based on
the Intel NetBurst® microarchitecture. Intel Xeon processor 5000, 7100 series are based
on the Intel NetBurst® microarchitecture.

The Intel® CoreTM Duo, Intel® CoreTM Solo and dual-core Intel® Xeon® processor LV are
based on an improved Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200 and 7300 series, Intel®
Pentium® dual-core, Intel® CoreTM2 Duo, Intel® CoreTM2 Quad, and Intel® CoreTM2
Extreme processors are based on Intel® CoreTM microarchitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® CoreTM2 Quad processor
Q9000 series, and Intel® CoreTM2 Extreme processor QX9000, X9000 series, Intel®
CoreTM2 processor E8000 series are based on Enhanced Intel® CoreTM microarchitecture.

The Intel® AtomTM processor family is based on the Intel® AtomTM microarchitecture and
supports Intel 64 architecture.

The Intel® CoreTM i7 processor and the Intel® CoreTM i5 processor are based on the Intel®
microarchitecture code name Nehalem and support Intel 64 architecture.

Processors based on Intel® microarchitecture code name Westmere support Intel 64
architecture.

P6 family, Pentium® M, Intel® CoreTM Solo, Intel® CoreTM Duo processors, dual-core
Intel® Xeon® processor LV, and early generations of Pentium 4 and Intel Xeon proces-
sors support IA-32 architecture. The Intel® AtomTM processor Z5xx series support IA-32
architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3 family, Intel® CoreTM
i7-3930K processor, 2nd generation Intel® CoreTM i7-2xxx, Intel® CoreTM i5-2xxx, Intel®
CoreTM i3-2xxx processor series, Intel® Xeon® processor E7-8800/4800/2800 product
families, Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100,
7200, 7300, 7400 series, Intel® CoreTM2 Duo, Intel® CoreTM2 Extreme processors, Intel
Core 2 Quad processors, Pentium® D processors, Pentium® Dual-Core processor, newer
generations of Pentium 4 and Intel Xeon processor family support Intel® 64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for
Intel's 32-bit microprocessors.

Intel® 64 architecture is the instruction set architecture and programming environment
which is the superset of Intel’s 32-bit and 64-bit architectures. It is compatible with the
IA-32 architecture.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 11

...

2. Updates to Chapter 1, Volume 2A
Change bars show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A: Instruction Set Reference, A-L.

--

...

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS
MANUAL

This manual set includes information pertaining primarily to the most recent Intel 64 and
IA-32 processors, which include:
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
• Intel® Core™ Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor
• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® Core™2 Extreme processor X7000 and X6800 series
• Intel® Core™2 Extreme QX6000 series
• Intel® Xeon® processor 7100 series
• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® CoreTM2 Extreme processor QX9000 and X9000 series
• Intel® CoreTM2 Quad processor Q9000 series
• Intel® CoreTM2 Duo processor E8000, T9000 series
• Intel® AtomTM processor family
• Intel® CoreTM i7 processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 12

• Intel® CoreTM i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families
• Intel® Xeon® processor E5 family
• Intel® Xeon® processor E3 family
• Intel® CoreTM i7-3930K processor
• 2nd generation Intel® CoreTM i7-2xxx, Intel® CoreTM i5-2xxx, Intel® CoreTM i3-2xxx

processor series

P6 family processors are IA-32 processors based on the P6 family microarchitecture.
This includes the Pentium® Pro, Pentium® II, Pentium® III, and Pentium® III Xeon®
processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on
the Intel NetBurst® microarchitecture. Most early Intel® Xeon® processors are based on
the Intel NetBurst® microarchitecture. Intel Xeon processor 5000, 7100 series are based
on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are
based on an improved Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel®
Pentium® dual-core, Intel® Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2
Extreme processors are based on Intel® Core™ microarchitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® CoreTM2 Quad processor
Q9000 series, and Intel® CoreTM2 Extreme processors QX9000, X9000 series, Intel®
CoreTM2 processor E8000 series are based on Enhanced Intel® CoreTM microarchitecture.

The Intel® AtomTM processor family is based on the Intel® AtomTM microarchitecture and
supports Intel 64 architecture.

The Intel® CoreTM i7 processor and the Intel® CoreTM i5 processor are based on the Intel®
microarchitecture code name Nehalem and support Intel 64 architecture.

Processors based on Intel® microarchitecture code name Westmere support Intel 64
architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core
Intel® Xeon® processor LV, and early generations of Pentium 4 and Intel Xeon proces-
sors support IA-32 architecture. The Intel® AtomTM processor Z5xx series support IA-32
architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3 family, Intel® CoreTM
i7-3930K processor, 2nd generation Intel® CoreTM i7-2xxx, Intel® CoreTM i5-2xxx, Intel®
CoreTM i3-2xxx processor series, Intel® Xeon® processor E7-8800/4800/2800 product
families, Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100,
7200, 7300, 7400 series, Intel® Core™2 Duo, Intel® Core™2 Extreme, Intel® Core™2
Quad processors, Pentium® D processors, Pentium® Dual-Core processor, newer gener-
ations of Pentium 4 and Intel Xeon processor family support Intel® 64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for
Intel's 32-bit microprocessors.

Intel® 64 architecture is the instruction set architecture and programming environment
which is the superset of Intel’s 32-bit and 64-bit architectures. It is compatible with the
IA-32 architecture.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 13

...

3. Updates to Chapter 3, Volume 2A
Change bars show changes to Chapter 3 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A: Instruction Set Reference, A-L.

--

...

AAS—ASCII Adjust AL After Subtraction

Instruction Operand Encoding

Description

Adjusts the result of the subtraction of two unpacked BCD values to create a unpacked
BCD result. The AL register is the implied source and destination operand for this instruc-
tion. The AAS instruction is only useful when it follows a SUB instruction that subtracts
(binary subtraction) one unpacked BCD value from another and stores a byte result in
the AL register. The AAA instruction then adjusts the contents of the AL register to
contain the correct 1-digit unpacked BCD result.

If the subtraction produced a decimal carry, the AH register decrements by 1, and the CF
and AF flags are set. If no decimal carry occurred, the CF and AF flags are cleared, and
the AH register is unchanged. In either case, the AL register is left with its top four bits
set to 0.

This instruction executes as described in compatibility mode and legacy mode. It is not
valid in 64-bit mode.

Operation

IF 64-bit mode
THEN

#UD;
ELSE

IF ((AL AND 0FH) > 9) or (AF = 1)
THEN

AX ← AX – 6;
AH ← AH – 1;
AF ← 1;
CF ← 1;
AL ← AL AND 0FH;

ELSE

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

3F AAS NP Invalid Valid ASCII adjust AL after
subtraction.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 14

CF ← 0;
AF ← 0;
AL ← AL AND 0FH;

FI;
FI;

...

CRC32 — Accumulate CRC32 Value

Instruction Operand Encoding

Description

Starting with an initial value in the first operand (destination operand), accumulates a
CRC32 (polynomial 0x11EDC6F41) value for the second operand (source operand) and
stores the result in the destination operand. The source operand can be a register or a
memory location. The destination operand must be an r32 or r64 register. If the destina-
tion is an r64 register, then the 32-bit result is stored in the least significant double word
and 00000000H is stored in the most significant double word of the r64 register.

The initial value supplied in the destination operand is a double word integer stored in
the r32 register or the least significant double word of the r64 register. To incrementally
accumulate a CRC32 value, software retains the result of the previous CRC32 operation
in the destination operand, then executes the CRC32 instruction again with new input
data in the source operand. Data contained in the source operand is processed in
reflected bit order. This means that the most significant bit of the source operand is
treated as the least significant bit of the quotient, and so on, for all the bits of the source
operand. Likewise, the result of the CRC operation is stored in the destination operand in
reflected bit order. This means that the most significant bit of the resulting CRC (bit 31)
is stored in the least significant bit of the destination operand (bit 0), and so on, for all
the bits of the CRC.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F2 0F 38 F0 /r CRC32 r32, r/m8 RM Valid Valid Accumulate CRC32 on r/m8.

F2 REX 0F 38
F0 /r

CRC32 r32, r/m8* RM Valid N.E. Accumulate CRC32 on r/m8.

F2 0F 38 F1 /r CRC32 r32, r/m16 RM Valid Valid Accumulate CRC32 on r/
m16.

F2 0F 38 F1 /r CRC32 r32, r/m32 RM Valid Valid Accumulate CRC32 on r/
m32.

F2 REX.W 0F 38
F0 /r

CRC32 r64, r/m8 RM Valid N.E. Accumulate CRC32 on r/m8.

F2 REX.W 0F 38
F1 /r

CRC32 r64, r/m64 RM Valid N.E. Accumulate CRC32 on r/
m64.

NOTES:
*In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 15

Operation

Notes:

BIT_REFLECT64: DST[63-0] = SRC[0-63]
BIT_REFLECT32: DST[31-0] = SRC[0-31]
BIT_REFLECT16: DST[15-0] = SRC[0-15]
BIT_REFLECT8: DST[7-0] = SRC[0-7]
MOD2: Remainder from Polynomial division modulus 2

CRC32 instruction for 64-bit source operand and 64-bit destination operand:

TEMP1[63-0]  BIT_REFLECT64 (SRC[63-0])
TEMP2[31-0]  BIT_REFLECT32 (DEST[31-0])
TEMP3[95-0]  TEMP1[63-0] « 32
TEMP4[95-0]  TEMP2[31-0] « 64
TEMP5[95-0]  TEMP3[95-0] XOR TEMP4[95-0]
TEMP6[31-0]  TEMP5[95-0] MOD2 11EDC6F41H
DEST[31-0]  BIT_REFLECT (TEMP6[31-0])
DEST[63-32]  00000000H

CRC32 instruction for 32-bit source operand and 32-bit destination operand:

TEMP1[31-0]  BIT_REFLECT32 (SRC[31-0])
TEMP2[31-0]  BIT_REFLECT32 (DEST[31-0])
TEMP3[63-0]  TEMP1[31-0] « 32
TEMP4[63-0]  TEMP2[31-0] « 32
TEMP5[63-0]  TEMP3[63-0] XOR TEMP4[63-0]
TEMP6[31-0]  TEMP5[63-0] MOD2 11EDC6F41H
DEST[31-0]  BIT_REFLECT (TEMP6[31-0])

CRC32 instruction for 16-bit source operand and 32-bit destination operand:

TEMP1[15-0]  BIT_REFLECT16 (SRC[15-0])
TEMP2[31-0]  BIT_REFLECT32 (DEST[31-0])
TEMP3[47-0]  TEMP1[15-0] « 32
TEMP4[47-0]  TEMP2[31-0] « 16
TEMP5[47-0]  TEMP3[47-0] XOR TEMP4[47-0]
TEMP6[31-0]  TEMP5[47-0] MOD2 11EDC6F41H
DEST[31-0]  BIT_REFLECT (TEMP6[31-0])

CRC32 instruction for 8-bit source operand and 64-bit destination operand:

TEMP1[7-0]  BIT_REFLECT8(SRC[7-0])
TEMP2[31-0]  BIT_REFLECT32 (DEST[31-0])
TEMP3[39-0]  TEMP1[7-0] « 32
TEMP4[39-0]  TEMP2[31-0] « 8
TEMP5[39-0]  TEMP3[39-0] XOR TEMP4[39-0]
TEMP6[31-0]  TEMP5[39-0] MOD2 11EDC6F41H
DEST[31-0]  BIT_REFLECT (TEMP6[31-0])
DEST[63-32]  00000000H

CRC32 instruction for 8-bit source operand and 32-bit destination operand:

TEMP1[7-0]  BIT_REFLECT8(SRC[7-0])

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 16

TEMP2[31-0]  BIT_REFLECT32 (DEST[31-0])
TEMP3[39-0]  TEMP1[7-0] « 32
TEMP4[39-0]  TEMP2[31-0] « 8
TEMP5[39-0]  TEMP3[39-0] XOR TEMP4[39-0]
TEMP6[31-0]  TEMP5[39-0] MOD2 11EDC6F41H
DEST[31-0]  BIT_REFLECT (TEMP6[31-0])

Flags Affected

None

Intel C/C++ Compiler Intrinsic Equivalent
unsigned int _mm_crc32_u8(unsigned int crc, unsigned char data)
unsigned int _mm_crc32_u16(unsigned int crc, unsigned short data)
unsigned int _mm_crc32_u32(unsigned int crc, unsigned int data)
unsinged __int64 _mm_crc32_u64(unsinged __int64 crc, unsigned __int64 data)

SIMD Floating Point Exceptions

None

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS

or GS segments.
#SS(0) If a memory operand effective address is outside the SS segment

limit.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory refer-

ence is made while the current privilege level is 3.
#UD If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.

Real Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space

from 0 to 0FFFFH.
#SS(0) If a memory operand effective address is outside the SS segment

limit.
#UD If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space

from 0 to 0FFFFH.
#SS(0) If a memory operand effective address is outside the SS segment

limit.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory refer-

ence is made.
#UD If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 17

If LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If a memory address referencing the SS segment is in a non-canon-

ical form.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory refer-

ence is made while the current privilege level is 3.
#UD If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.

...

LAR—Load Access Rights Byte

Instruction Operand Encoding

Description

Loads the access rights from the segment descriptor specified by the second operand
(source operand) into the first operand (destination operand) and sets the ZF flag in the
flag register. The source operand (which can be a register or a memory location)
contains the segment selector for the segment descriptor being accessed. If the source
operand is a memory address, only 16 bits of data are accessed. The destination
operand is a general-purpose register.

The processor performs access checks as part of the loading process. Once loaded in the
destination register, software can perform additional checks on the access rights infor-
mation.

The access rights for a segment descriptor include fields located in the second double-
word (bytes 4–7) of the segment descriptor. The following fields are loaded by the LAR
instruction:
• Bits 7:0 are returned as 0

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 02 /r LAR r16, r16/m16 RM Valid Valid r16 ← access rights
referenced by r16/m16

0F 02 /r LAR reg, r32/
m161

RM Valid Valid reg ← access rights
referenced by r32/m16

NOTES:
1. For all loads (regardless of source or destination sizing) only bits 16-0 are used. Other bits are
ignored.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 18

• Bits 11:8 return the segment type.
• Bit 12 returns the S flag.
• Bits 14:13 return the DPL.
• Bit 15 returns the P flag.
• The following fields are returned only if the operand size is greater than 16 bits:

— Bits 19:16 are undefined.

— Bit 20 returns the software-available bit in the descriptor.

— Bit 21 returns the L flag.

— Bit 22 returns the D/B flag.

— Bit 23 returns the G flag.

— Bits 31:24 are returned as 0.

This instruction performs the following checks before it loads the access rights in the
destination register:
• Checks that the segment selector is not NULL.
• Checks that the segment selector points to a descriptor that is within the limits of the

GDT or LDT being accessed
• Checks that the descriptor type is valid for this instruction. All code and data

segment descriptors are valid for (can be accessed with) the LAR instruction. The
valid system segment and gate descriptor types are given in Table 3-62.

• If the segment is not a conforming code segment, it checks that the specified
segment descriptor is visible at the CPL (that is, if the CPL and the RPL of the
segment selector are less than or equal to the DPL of the segment selector).

If the segment descriptor cannot be accessed or is an invalid type for the instruction, the
ZF flag is cleared and no access rights are loaded in the destination operand.

The LAR instruction can only be executed in protected mode and IA-32e mode.

Table 3-62 Segment and Gate Types

Type Protected Mode IA-32e Mode

Name Valid Name Valid

0 Reserved No Reserved No

1 Available 16-bit TSS Yes Reserved No

2 LDT Yes LDT No

3 Busy 16-bit TSS Yes Reserved No

4 16-bit call gate Yes Reserved No

5 16-bit/32-bit task gate Yes Reserved No

6 16-bit interrupt gate No Reserved No

7 16-bit trap gate No Reserved No

8 Reserved No Reserved No

9 Available 32-bit TSS Yes Available 64-bit TSS Yes

A Reserved No Reserved No

B Busy 32-bit TSS Yes Busy 64-bit TSS Yes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 19

Operation

IF Offset(SRC) > descriptor table limit
THEN

ZF ← 0;
ELSE

SegmentDescriptor ← descriptor referenced by SRC;
IF SegmentDescriptor(Type) ≠ conforming code segment
and (CPL > DPL) or (RPL > DPL)
or SegmentDescriptor(Type) is not valid for instruction

THEN
ZF ← 0;

ELSE
DEST ← access rights from SegmentDescriptor as given in Description section;
ZF ← 1;

FI;
FI;

Flags Affected

The ZF flag is set to 1 if the access rights are loaded successfully; otherwise, it is cleared
to 0.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES,

FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and the memory operand effective

address is unaligned while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The LAR instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The LAR instruction cannot be executed in virtual-8086 mode.

C 32-bit call gate Yes 64-bit call gate Yes

D Reserved No Reserved No

E 32-bit interrupt gate No 64-bit interrupt gate No

F 32-bit trap gate No 64-bit trap gate No

Table 3-62 Segment and Gate Types

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 20

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If the memory operand effective address referencing the SS

segment is in a non-canonical form.
#GP(0) If the memory operand effective address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and the memory operand effective

address is unaligned while the current privilege level is 3.
#UD If the LOCK prefix is used.

...

LOCK—Assert LOCK# Signal Prefix

Instruction Operand Encoding

Description

Causes the processor’s LOCK# signal to be asserted during execution of the accompa-
nying instruction (turns the instruction into an atomic instruction). In a multiprocessor
environment, the LOCK# signal ensures that the processor has exclusive use of any
shared memory while the signal is asserted.

Note that, in later Intel 64 and IA-32 processors (including the Pentium 4, Intel Xeon,
and P6 family processors), locking may occur without the LOCK# signal being asserted.
See the “IA-32 Architecture Compatibility” section below.

The LOCK prefix can be prepended only to the following instructions and only to those
forms of the instructions where the destination operand is a memory operand: ADD,
ADC, AND, BTC, BTR, BTS, CMPXCHG, CMPXCH8B, CMPXCHG16B, DEC, INC, NEG, NOT,
OR, SBB, SUB, XOR, XADD, and XCHG. If the LOCK prefix is used with one of these
instructions and the source operand is a memory operand, an undefined opcode excep-
tion (#UD) may be generated. An undefined opcode exception will also be generated if
the LOCK prefix is used with any instruction not in the above list. The XCHG instruction
always asserts the LOCK# signal regardless of the presence or absence of the LOCK
prefix.

The LOCK prefix is typically used with the BTS instruction to perform a read-modify-write
operation on a memory location in shared memory environment.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F0 LOCK NP Valid Valid Asserts LOCK# signal for
duration of the
accompanying instruction.

NOTES:
* See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 21

The integrity of the LOCK prefix is not affected by the alignment of the memory field.
Memory locking is observed for arbitrarily misaligned fields.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

...

4. Updates to Chapter 4, Volume 2B
Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2B: Instruction Set Reference, M-Z.

--

...

MASKMOVDQU—Store Selected Bytes of Double Quadword

...

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F F7 /r

MASKMOVDQU xmm1, xmm2

RM V/V SSE2 Selectively write bytes from
xmm1 to memory location
using the byte mask in
xmm2. The default memory
location is specified by
DS:DI/EDI/RDI.

VEX.128.66.0F.WIG F7 /r

VMASKMOVDQU xmm1, xmm2

RM V/V AVX Selectively write bytes from
xmm1 to memory location
using the byte mask in
xmm2. The default memory
location is specified by
DS:DI/EDI/RDI.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 22

MFENCE—Memory Fence

Instruction Operand Encoding

Description

Performs a serializing operation on all load-from-memory and store-to-memory instruc-
tions that were issued prior the MFENCE instruction. This serializing operation guaran-
tees that every load and store instruction that precedes the MFENCE instruction in
program order becomes globally visible before any load or store instruction that follows
the MFENCE instruction.1 The MFENCE instruction is ordered with respect to all load and
store instructions, other MFENCE instructions, any LFENCE and SFENCE instructions, and
any serializing instructions (such as the CPUID instruction). MFENCE does not serialize
the instruction stream.

Weakly ordered memory types can be used to achieve higher processor performance
through such techniques as out-of-order issue, speculative reads, write-combining, and
write-collapsing. The degree to which a consumer of data recognizes or knows that the
data is weakly ordered varies among applications and may be unknown to the producer
of this data. The MFENCE instruction provides a performance-efficient way of ensuring
load and store ordering between routines that produce weakly-ordered results and
routines that consume that data.

Processors are free to fetch and cache data speculatively from regions of system
memory that use the WB, WC, and WT memory types. This speculative fetching can
occur at any time and is not tied to instruction execution. Thus, it is not ordered with
respect to executions of the MFENCE instruction; data can be brought into the caches
speculatively just before, during, or after the execution of an MFENCE instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

...

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F AE /6 MFENCE NP Valid Valid Serializes load and store
operations.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

1. A load instruction is considered to become globally visible when the value to be loaded into its desti-
nation register is determined.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 23

MONITOR—Set Up Monitor Address

Instruction Operand Encoding

Description

The MONITOR instruction arms address monitoring hardware using an address specified
in EAX (the address range that the monitoring hardware checks for store operations can
be determined by using CPUID). A store to an address within the specified address range
triggers the monitoring hardware. The state of monitor hardware is used by MWAIT.

The content of EAX is an effective address (in 64-bit mode, RAX is used). By default, the
DS segment is used to create a linear address that is monitored. Segment overrides can
be used.

ECX and EDX are also used. They communicate other information to MONITOR. ECX
specifies optional extensions. EDX specifies optional hints; it does not change the archi-
tectural behavior of the instruction. For the Pentium 4 processor (family 15, model 3), no
extensions or hints are defined. Undefined hints in EDX are ignored by the processor;
undefined extensions in ECX raises a general protection fault.

The address range must use memory of the write-back type. Only write-back memory
will correctly trigger the monitoring hardware. Additional information on determining
what address range to use in order to prevent false wake-ups is described in Chapter 8,
“Multiple-Processor Management” of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A.

The MONITOR instruction is ordered as a load operation with respect to other memory
transactions. The instruction is subject to the permission checking and faults associated
with a byte load. Like a load, MONITOR sets the A-bit but not the D-bit in page tables.

CPUID.01H:ECX.MONITOR[bit 3] indicates the availability of MONITOR and MWAIT in the
processor. When set, MONITOR may be executed only at privilege level 0 (use at any
other privilege level results in an invalid-opcode exception). The operating system or
system BIOS may disable this instruction by using the IA32_MISC_ENABLE MSR;
disabling MONITOR clears the CPUID feature flag and causes execution to generate an
invalid-opcode exception.

The instruction’s operation is the same in non-64-bit modes and 64-bit mode.

...

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 C8 MONITOR NP Valid Valid Sets up a linear address
range to be monitored by
hardware and activates the
monitor. The address range
should be a write-back
memory caching type. The
address is DS:EAX (DS:RAX
in 64-bit mode).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 24

MOVHLPS— Move Packed Single-Precision Floating-Point Values High to
Low

...

MWAIT—Monitor Wait

Instruction Operand Encoding

Description

MWAIT instruction provides hints to allow the processor to enter an implementation-
dependent optimized state. There are two principal targeted usages: address-range
monitor and advanced power management. Both usages of MWAIT require the use of the
MONITOR instruction.

CPUID.01H:ECX.MONITOR[bit 3] indicates the availability of MONITOR and MWAIT in the
processor. When set, MWAIT may be executed only at privilege level 0 (use at any other
privilege level results in an invalid-opcode exception). The operating system or system
BIOS may disable this instruction by using the IA32_MISC_ENABLE MSR; disabling
MWAIT clears the CPUID feature flag and causes execution to generate an invalid-
opcode exception.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

ECX specifies optional extensions for the MWAIT instruction. EAX may contain hints such
as the preferred optimized state the processor should enter. The first processors to

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F 12 /r

MOVHLPS xmm1, xmm2

RM V/V SSE Move two packed single-
precision floating-point
values from high quadword
of xmm2 to low quadword
of xmm1.

VEX.NDS.128.0F.WIG 12 /r

VMOVHLPS xmm1, xmm2, xmm3

RVM V/V AVX Merge two packed single-
precision floating-point
values from high quadword
of xmm3 and low quadword
of xmm2.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 C9 MWAIT NP Valid Valid A hint that allow the
processor to stop
instruction execution and
enter an implementation-
dependent optimized state
until occurrence of a class of
events.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 25

implement MWAIT supported only the zero value for EAX and ECX. Later processors
allowed setting ECX[0] to enable masked interrupts as break events for MWAIT (see
below). Software can use the CPUID instruction to determine the extensions and hints
supported by the processor.

MWAIT for Address Range Monitoring

For address-range monitoring, the MWAIT instruction operates with the MONITOR
instruction. The two instructions allow the definition of an address at which to wait
(MONITOR) and a implementation-dependent-optimized operation to commence at the
wait address (MWAIT). The execution of MWAIT is a hint to the processor that it can
enter an implementation-dependent-optimized state while waiting for an event or a
store operation to the address range armed by MONITOR.

The following cause the processor to exit the implementation-dependent-optimized
state: a store to the address range armed by the MONITOR instruction, an NMI or SMI, a
debug exception, a machine check exception, the BINIT# signal, the INIT# signal, and
the RESET# signal. Other implementation-dependent events may also cause the
processor to exit the implementation-dependent-optimized state.

In addition, an external interrupt causes the processor to exit the implementation-
dependent-optimized state either (1) if the interrupt would be delivered to software
(e.g., as it would be if HLT had been executed instead of MWAIT); or (2) if ECX[0] = 1.
Software can execute MWAIT with ECX[0] = 1 only if CPUID.05H:ECX[bit 1] = 1. (Imple-
mentation-specific conditions may result in an interrupt causing the processor to exit the
implementation-dependent-optimized state even if interrupts are masked and ECX[0] =
0.)

Following exit from the implementation-dependent-optimized state, control passes to
the instruction following the MWAIT instruction. A pending interrupt that is not masked
(including an NMI or an SMI) may be delivered before execution of that instruction.
Unlike the HLT instruction, the MWAIT instruction does not support a restart at the
MWAIT instruction following the handling of an SMI.

If the preceding MONITOR instruction did not successfully arm an address range or if the
MONITOR instruction has not been executed prior to executing MWAIT, then the
processor will not enter the implementation-dependent-optimized state. Execution will
resume at the instruction following the MWAIT.

MWAIT for Power Management

MWAIT accepts a hint and optional extension to the processor that it can enter a speci-
fied target C state while waiting for an event or a store operation to the address range
armed by MONITOR. Support for MWAIT extensions for power management is indicated
by CPUID.05H:ECX[bit 0] reporting 1.

EAX and ECX are used to communicate the additional information to the MWAIT instruc-
tion, such as the kind of optimized state the processor should enter. ECX specifies
optional extensions for the MWAIT instruction. EAX may contain hints such as the
preferred optimized state the processor should enter. Implementation-specific condi-
tions may cause a processor to ignore the hint and enter a different optimized state.
Future processor implementations may implement several optimized “waiting” states
and will select among those states based on the hint argument.

Table 4-10 describes the meaning of ECX and EAX registers for MWAIT extensions.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 26

Note that if MWAIT is used to enter any of the C-states that are numerically higher than
C1, a store to the address range armed by the MONITOR instruction will cause the
processor to exit MWAIT only if the store was originated by other processor agents. A
store from non-processor agent might not cause the processor to exit MWAIT in such
cases.

For additional details of MWAIT extensions, see Chapter 14, “Power and Thermal
Management,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A.

Operation

(* MWAIT takes the argument in EAX as a hint extension and is architected to take the argument in ECX
as an instruction extension MWAIT EAX, ECX *)
{
WHILE (("Monitor Hardware is in armed state")) {

implementation_dependent_optimized_state(EAX, ECX); }
Set the state of Monitor Hardware as triggered;
}

Intel C/C++ Compiler Intrinsic Equivalent

MWAIT: void _mm_mwait(unsigned extensions, unsigned hints)

Example

MONITOR/MWAIT instruction pair must be coded in the same loop because execution of
the MWAIT instruction will trigger the monitor hardware. It is not a proper usage to
execute MONITOR once and then execute MWAIT in a loop. Setting up MONITOR without
executing MWAIT has no adverse effects.

Typically the MONITOR/MWAIT pair is used in a sequence, such as:

Table 4-10 MWAIT Extension Register (ECX)
Bits Description

0 Treat interrupts as break events even if masked (e.g., even if EFLAGS.IF=0).
May be set only if CPUID.05H:ECX[bit 1] = 1.

31: 1 Reserved

Table 4-11 MWAIT Hints Register (EAX)
Bits Description

3 : 0 Sub C-state within a C-state, indicated by bits [7:4]

7 : 4 Target C-state*

Value of 0 means C1; 1 means C2 and so on

Value of 01111B means C0

Note: Target C states for MWAIT extensions are processor-specific C-
states, not ACPI C-states

31: 8 Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

EAX = Logical Address(Trigger)
ECX = 0 (*Hints *)
EDX = 0 (* Hints *)

IF (!trigger_store_happened) {
MONITOR EAX, ECX, EDX
IF (!trigger_store_happened) {

MWAIT EAX, ECX
}

}

The above code sequence makes sure that a triggering store does not happen between
the first check of the trigger and the execution of the monitor instruction. Without the
second check that triggering store would go un-noticed. Typical usage of MONITOR and
MWAIT would have the above code sequence within a loop.

Numeric Exceptions
None

Protected Mode Exceptions
#GP(0) If ECX[31:1] ≠ 0.

If ECX[0] = 1 and CPUID.05H:ECX[bit 1] = 0.
#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.

If current privilege level is not 0.

Real Address Mode Exceptions
#GP If ECX[31:1] ≠ 0.

If ECX[0] = 1 and CPUID.05H:ECX[bit 1] = 0.
#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.

Virtual 8086 Mode Exceptions
#UD The MWAIT instruction is not recognized in virtual-8086 mode (even

if CPUID.01H:ECX.MONITOR[bit 3] = 1).

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If RCX[63:1] ≠ 0.

If RCX[0] = 1 and CPUID.05H:ECX[bit 1] = 0.
#UD If the current privilege level is not 0.

If CPUID.01H:ECX.MONITOR[bit 3] = 0.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 28

PAUSE—Spin Loop Hint

Instruction Operand Encoding

Description

Improves the performance of spin-wait loops. When executing a “spin-wait loop,”
processors will suffer a severe performance penalty when exiting the loop because it
detects a possible memory order violation. The PAUSE instruction provides a hint to the
processor that the code sequence is a spin-wait loop. The processor uses this hint to
avoid the memory order violation in most situations, which greatly improves processor
performance. For this reason, it is recommended that a PAUSE instruction be placed in
all spin-wait loops.

An additional function of the PAUSE instruction is to reduce the power consumed by a
processor while executing a spin loop. A processor can execute a spin-wait loop
extremely quickly, causing the processor to consume a lot of power while it waits for the
resource it is spinning on to become available. Inserting a pause instruction in a spin-
wait loop greatly reduces the processor’s power consumption.

This instruction was introduced in the Pentium 4 processors, but is backward compatible
with all IA-32 processors. In earlier IA-32 processors, the PAUSE instruction operates
like a NOP instruction. The Pentium 4 and Intel Xeon processors implement the PAUSE
instruction as a delay. The delay is finite and can be zero for some processors. This
instruction does not change the architectural state of the processor (that is, it performs
essentially a delaying no-op operation).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

...

POPCNT — Return the Count of Number of Bits Set to 1

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F3 90 PAUSE NP Valid Valid Gives hint to processor that
improves performance of
spin-wait loops.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F3 0F B8 /r POPCNT r16, r/
m16

RM Valid Valid POPCNT on r/m16

F3 0F B8 /r POPCNT r32, r/
m32

RM Valid Valid POPCNT on r/m32

F3 REX.W 0F B8
/r

POPCNT r64, r/
m64

RM Valid N.E. POPCNT on r/m64

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 29

Instruction Operand Encoding

Description

This instruction calculates of number of bits set to 1 in the second operand (source)
and returns the count in the first operand (a destination register).

Operation

Count = 0;
For (i=0; i < OperandSize; i++)
{ IF (SRC[i] = 1) // i’th bit

THEN Count++; FI;
}
DEST  Count;

Flags Affected

OF, SF, ZF, AF, CF, PF are all cleared. ZF is set if SRC = 0, otherwise ZF is cleared

Intel C/C++ Compiler Intrinsic Equivalent

POPCNT: int _mm_popcnt_u32(unsigned int a);

POPCNT: int64_t _mm_popcnt_u64(unsigned __int64 a);

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS

or GS segments.
#SS(0) If a memory operand effective address is outside the SS segment

limit.
#PF (fault-code) For a page fault.
#AC(0) If an unaligned memory reference is made while the current privi-

lege level is 3 and alignment checking is enabled.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space

from 0 to 0FFFFH.
#SS(0) If a memory operand effective address is outside the SS segment

limit.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 30

Virtual 8086 Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space

from 0 to 0FFFFH.
#SS(0) If a memory operand effective address is outside the SS segment

limit.
#PF (fault-code) For a page fault.
#AC(0) If an unaligned memory reference is made while alignment

checking is enabled.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If a memory address referencing the SS segment is in a non-canon-

ical form.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory refer-

ence is made while the current privilege level is 3.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 31

WRMSR—Write to Model Specific Register

Instruction Operand Encoding

Description

Writes the contents of registers EDX:EAX into the 64-bit model specific register (MSR)
specified in the ECX register. (On processors that support the Intel 64 architecture, the
high-order 32 bits of RCX are ignored.) The contents of the EDX register are copied to
high-order 32 bits of the selected MSR and the contents of the EAX register are copied to
low-order 32 bits of the MSR. (On processors that support the Intel 64 architecture, the
high-order 32 bits of each of RAX and RDX are ignored.) Undefined or reserved bits in an
MSR should be set to values previously read.

This instruction must be executed at privilege level 0 or in real-address mode; other-
wise, a general protection exception #GP(0) is generated. Specifying a reserved or
unimplemented MSR address in ECX will also cause a general protection exception. The
processor will also generate a general protection exception if software attempts to write
to bits in a reserved MSR.

When the WRMSR instruction is used to write to an MTRR, the TLBs are invalidated. This
includes global entries (see “Translation Lookaside Buffers (TLBs)” in Chapter 3 of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A).

MSRs control functions for testability, execution tracing, performance-monitoring and
machine check errors. Chapter 34, “Model-Specific Registers (MSRs)”, in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3C, lists all MSRs that can
be written with this instruction and their addresses. Note that each processor family has
its own set of MSRs.

The WRMSR instruction is a serializing instruction (see “Serializing Instructions” in
Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A). Note that WRMSR to the IA32_TSC_DEADLINE MSR (MSR index 6E0H) and
the X2APIC MSRs (MSR indices 802H to 83FH) are not serializing.

The CPUID instruction should be used to determine whether MSRs are supported
(CPUID.01H:EDX[5] = 1) before using this instruction.

...

5. Updates to Appendix A, Volume 2C
Change bars show changes to Appendix A of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2C: Instruction Set Reference.

--

...

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 30 WRMSR NP Valid Valid Write the value in EDX:EAX
to MSR specified by ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 32

...

Table A-2 One-byte Opcode Map: (00H — F7H) *

0 1 2 3 4 5 6 7

0 ADD PUSH
ESi64

POP
ESi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

1 ADC PUSH
SSi64

POP
SSi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

2 AND SEG=ES
(Prefix)

DAAi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

3 XOR SEG=SS
(Prefix)

AAAi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

4 INCi64 general register / REXo64 Prefixes

eAX
REX

eCX
REX.B

eDX
REX.X

eBX
REX.XB

eSP
REX.R

eBP
REX.RB

eSI
REX.RX

eDI
REX.RXB

5 PUSHd64 general register

rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15

6 PUSHAi64/
PUSHADi64

POPAi64/
POPADi64

BOUNDi64

Gv, Ma
ARPLi64

Ew, Gw
MOVSXDo64

Gv, Ev

SEG=FS
(Prefix)

SEG=GS
(Prefix)

Operand
Size

(Prefix)

Address
Size

(Prefix)

7 Jccf64, Jb - Short-displacement jump on condition

O NO B/NAE/C NB/AE/NC Z/E NZ/NE BE/NA NBE/A

8 Immediate Grp 11A TEST XCHG

Eb, Ib Ev, Iz Eb, Ibi64 Ev, Ib Eb, Gb Ev, Gv Eb, Gb Ev, Gv

9 NOP
PAUSE(F3)

XCHG r8, rAX

XCHG word, double-word or quad-word register with rAX

rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15

A MOV MOVS/B
Yb, Xb

MOVS/W/D/Q
Yv, Xv

CMPS/B
Xb, Yb

CMPS/W/D
Xv, Yv

AL, Ob rAX, Ov Ob, AL Ov, rAX

B MOV immediate byte into byte register

AL/R8L, Ib CL/R9L, Ib DL/R10L, Ib BL/R11L, Ib AH/R12L, Ib CH/R13L, Ib DH/R14L, Ib BH/R15L, Ib

C Shift Grp 21A RETNf64

Iw
RETNf64 LESi64

Gz, Mp
VEX+2byte

LDSi64

Gz, Mp
VEX+1byte

Grp 111A - MOV

Eb, Ib Ev, Ib Eb, Ib Ev, Iz

D Shift Grp 21A AAMi64

Ib
AADi64

Ib
XLAT/
XLATB

Eb, 1 Ev, 1 Eb, CL Ev, CL

E LOOPNEf64/
LOOPNZf64

Jb

LOOPEf64/
LOOPZf64

Jb

LOOPf64

Jb
JrCXZf64/

Jb
IN OUT

AL, Ib eAX, Ib Ib, AL Ib, eAX

F LOCK
(Prefix)

REPNE
XACQUIRE

(Prefix)

REP/REPE
XRELEASE

(Prefix)

HLT CMC Unary Grp 31A

Eb Ev

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 33

Table A-3 Two-byte Opcode Map: 00H — 77H (First Byte is 0FH) *

pfx 0 1 2 3 4 5 6 7

0
Grp 61A Grp 71A LAR

Gv, Ew
LSL

Gv, Ew
 SYSCALLo64 CLTS SYSRETo64

1

vmovups vmovups vmovlps
Vq, Hq, Mq
vmovhlps

Vq, Hq, Uq

vmovlps
Mq, Vq

vunpcklps
Vx, Hx, Wx

vunpckhps
Vx, Hx, Wx

vmovhpsv1

Vdq, Hq, Mq
vmovlhps

Vdq, Hq, Uq

vmovhpsv1

Mq, Vq

66
vmovupd vmovupd

Wpd,Vpd
vmovlpd

Vq, Hq, Mq
vmovlpd
Mq, Vq

vunpcklpd
Vx,Hx,Wx

vunpckhpd
Vx,Hx,Wx

vmovhpdv1

Vdq, Hq, Mq
vmovhpdv1

Mq, Vq

F3
vmovss

Vx, Hx, Wss
vmovss

Wss, Hx, Vss
vmovsldup

Vx, Wx
vmovshdup

Vx, Wx

F2
vmovsd

Vx, Hx, Wsd
vmovsd

Wsd, Hx, Vsd
vmovddup

Vx, Wx

2

MOV
Rd, Cd

MOV
Rd, Dd

MOV
Cd, Rd

MOV
Dd, Rd

3
WRMSR RDTSC RDMSR RDPMC SYSENTER SYSEXIT GETSEC

4

CMOVcc, (Gv, Ev) - Conditional Move

O NO B/C/NAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

5

vmovmskps
Gy, Ups

vsqrtps
Vps, Wps

vrsqrtps
Vps, Wps

vrcpps
Vps, Wps

vandps
Vps, Hps, Wps

vandnps
Vps, Hps, Wps

vorps
Vps, Hps, Wps

vxorps
Vps, Hps, Wps

66
vmovmskpd

Gy,Upd
vsqrtpd

Vpd, Wpd
vandpd

Vpd, Hpd, Wpd
vandnpd

Vpd, Hpd, Wpd
vorpd

Vpd, Hpd, Wpd
vxorpd

Vpd, Hpd, Wpd

F3
vsqrtss

Vss, Hss, Wss
vrsqrtss

Vss, Hss, Wss
vrcpss

Vss, Hss, Wss

F2
vsqrtsd

Vsd, Hsd, Wsd

6

punpcklbw
Pq, Qd

punpcklwd
Pq, Qd

punpckldq
Pq, Qd

packsswb
Pq, Qq

pcmpgtb
Pq, Qq

pcmpgtw
Pq, Qq

pcmpgtd
Pq, Qq

packuswb
Pq, Qq

66
vpunpcklbw
Vx, Hx, Wx

vpunpcklwd
Vx, Hx, Wx

vpunpckldq
Vx, Hx, Wx

vpacksswb
Vx, Hx, Wx

vpcmpgtb
Vx, Hx, Wx

vpcmpgtw
Vx, Hx, Wx

vpcmpgtd
Vx, Hx, Wx

vpackuswb
Vx, Hx, Wx

F3

7

pshufw
Pq, Qq, Ib

(Grp 121A) (Grp 131A) (Grp 141A) pcmpeqb
Pq, Qq

pcmpeqw
Pq, Qq

pcmpeqd
Pq, Qq

emms
vzeroupperv

vzeroallv

66
vpshufd

Vx, Wx, Ib
vpcmpeqb
Vx, Hx, Wx

vpcmpeqw
Vx, Hx, Wx

vpcmpeqd
Vx, Hx, Wx

F3
vpshufhw
Vx, Wx, Ib

F2
vpshuflw

Vx, Wx, Ib

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 34

Table A-3. Two-byte Opcode Map: 08H — 7FH (First Byte is 0FH) *

pfx 8 9 A B C D E F

0
INVD WBINVD 2-byte Illegal

Opcodes
UD21B

 NOP Ev

1

Prefetch1C

(Grp 161A)
NOP Ev

2

vmovaps
Vps, Wps

vmovaps
Wps, Vps

cvtpi2ps
Vps, Qpi

vmovntps
Mps, Vps

cvttps2pi
Ppi, Wps

cvtps2pi
Ppi, Wps

vucomiss
Vss, Wss

vcomiss
Vss, Wss

66
vmovapd
Vpd, Wpd

vmovapd
Wpd,Vpd

cvtpi2pd
Vpd, Qpi

vmovntpd
Mpd, Vpd

cvttpd2pi
Ppi, Wpd

cvtpd2pi
Qpi, Wpd

vucomisd
Vsd, Wsd

vcomisd
Vsd, Wsd

F3
vcvtsi2ss

Vss, Hss, Ey
vcvttss2si
Gy, Wss

vcvtss2si
Gy, Wss

F2
vcvtsi2sd

Vsd, Hsd, Ey
vcvttsd2si
Gy, Wsd

vcvtsd2si
Gy, Wsd

3
3-byte escape

(Table A-4)
3-byte escape

(Table A-5)

4

CMOVcc(Gv, Ev) - Conditional Move

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

5

vaddps
Vps, Hps, Wps

vmulps
Vps, Hps, Wps

vcvtps2pd
Vpd, Wps

vcvtdq2ps
Vps, Wdq

vsubps
Vps, Hps, Wps

vminps
Vps, Hps, Wps

vdivps
Vps, Hps, Wps

vmaxps
Vps, Hps, Wps

66
vaddpd

Vpd, Hpd, Wpd
vmulpd

Vpd, Hpd, Wpd
vcvtpd2ps
Vps, Wpd

vcvtps2dq
Vdq, Wps

vsubpd
Vpd, Hpd, Wpd

vminpd
Vpd, Hpd, Wpd

vdivpd
Vpd, Hpd, Wpd

vmaxpd
Vpd, Hpd, Wpd

F3
vaddss

Vss, Hss, Wss
vmulss

Vss, Hss, Wss
vcvtss2sd

Vsd, Hx, Wss
vcvttps2dq
Vdq, Wps

vsubss
Vss, Hss, Wss

vminss
Vss, Hss, Wss

vdivss
Vss, Hss, Wss

vmaxss
Vss, Hss, Wss

F2
vaddsd

Vsd, Hsd, Wsd
vmulsd

Vsd, Hsd, Wsd
vcvtsd2ss

Vss, Hx, Wsd
vsubsd

Vsd, Hsd, Wsd
vminsd

Vsd, Hsd, Wsd
vdivsd

Vsd, Hsd, Wsd
vmaxsd

Vsd, Hsd, Wsd

6

punpckhbw
Pq, Qd

punpckhwd
Pq, Qd

punpckhdq
Pq, Qd

packssdw
Pq, Qd

movd/q
Pd, Ey

movq
Pq, Qq

66
vpunpckhbw
Vx, Hx, Wx

vpunpckhwd
Vx, Hx, Wx

vpunpckhdq
Vx, Hx, Wx

vpackssdw
Vx, Hx, Wx

vpunpcklqdq
Vx, Hx, Wx

vpunpckhqdq
Vx, Hx, Wx

vmovd/q
Vy, Ey

vmovdqa
Vx, Wx

F3 vmovdqu
Vx, Wx

7

VMREAD
Ey, Gy

VMWRITE
Gy, Ey

movd/q
Ey, Pd

movq
Qq, Pq

66
vhaddpd

Vpd, Hpd, Wpd
vhsubpd

Vpd, Hpd, Wpd
vmovd/q
Ey, Vy

vmovdqa
Wx,Vx

F3
vmovq
Vq, Wq

vmovdqu
Wx,Vx

F2
vhaddps

Vps, Hps, Wps
vhsubps

Vps, Hps, Wps

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 35

Table A-3. Two-byte Opcode Map: 80H — F7H (First Byte is 0FH) *

pfx 0 1 2 3 4 5 6 7

8

Jccf64, Jz - Long-displacement jump on condition

O NO B/CNAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

9

SETcc, Eb - Byte Set on condition

O NO B/C/NAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

A
PUSHd64

FS
POPd64

FS
CPUID BT

Ev, Gv
SHLD

Ev, Gv, Ib
SHLD

Ev, Gv, CL

B
CMPXCHG LSS

Gv, Mp
BTR

Ev, Gv
LFS

Gv, Mp
LGS

Gv, Mp
MOVZX

Eb, Gb Ev, Gv Gv, Eb Gv, Ew

C

XADD
Eb, Gb

XADD
Ev, Gv

vcmpps
Vps,Hps,Wps,Ib

movnti
My, Gy

pinsrw
Pq,Ry/Mw,Ib

pextrw
Gd, Nq, Ib

vshufps
Vps,Hps,Wps,Ib

Grp 91A

66
vcmppd

Vpd,Hpd,Wpd,Ib
vpinsrw

Vdq,Hdq,Ry/Mw,Ib
vpextrw

Gd, Udq, Ib
vshufpd

Vpd,Hpd,Wpd,Ib

F3
vcmpss

Vss,Hss,Wss,Ib

F2
vcmpsd

Vsd,Hsd,Wsd,Ib

D

psrlw
Pq, Qq

psrld
Pq, Qq

psrlq
Pq, Qq

paddq
Pq, Qq

pmullw
Pq, Qq

pmovmskb
Gd, Nq

66
vaddsubpd

Vpd, Hpd, Wpd
vpsrlw

Vx, Hx, Wx
vpsrld

Vx, Hx, Wx
vpsrlq

Vx, Hx, Wx
vpaddq

Vx, Hx, Wx
vpmullw

Vx, Hx, Wx
vmovq
Wq, Vq

vpmovmskb
Gd, Ux

F3
movq2dq
Vdq, Nq

F2
vaddsubps

Vps, Hps, Wps
movdq2q
Pq, Uq

E

pavgb
Pq, Qq

psraw
Pq, Qq

psrad
Pq, Qq

pavgw
Pq, Qq

pmulhuw
Pq, Qq

pmulhw
Pq, Qq

movntq
Mq, Pq

66
vpavgb

Vx, Hx, Wx
vpsraw

Vx, Hx, Wx
vpsrad

Vx, Hx, Wx
vpavgw

Vx, Hx, Wx
vpmulhuw
Vx, Hx, Wx

vpmulhw
Vx, Hx, Wx

vcvttpd2dq
Vx, Wpd

vmovntdq
Mx, Vx

F3
vcvtdq2pd
Vx, Wpd

F2
vcvtpd2dq
Vx, Wpd

F

psllw
Pq, Qq

pslld
Pq, Qq

psllq
Pq, Qq

pmuludq
Pq, Qq

pmaddwd
Pq, Qq

psadbw
Pq, Qq

maskmovq
Pq, Nq

66
vpsllw

Vx, Hx, Wx
vpslld

Vx, Hx, Wx
vpsllq

Vx, Hx, Wx
vpmuludq

Vx, Hx, Wx
vpmaddwd
Vx, Hx, Wx

vpsadbw
Vx, Hx, Wx

vmaskmovdqu
Vdq, Udq

F2
vlddqu
Vx, Mx

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 36

Table A-3. Two-byte Opcode Map: 88H — FFH (First Byte is 0FH) *

pfx 8 9 A B C D E F

8
Jccf64, Jz - Long-displacement jump on condition

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

9

SETcc, Eb - Byte Set on condition

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

A
PUSHd64

GS
POPd64

GS
RSM BTS

Ev, Gv
SHRD

Ev, Gv, Ib
SHRD

Ev, Gv, CL
(Grp 151A)1C IMUL

Gv, Ev

B

JMPE

(reserved for
emulator on IPF)

Grp 101A

Invalid
Opcode1B

Grp 81A

Ev, Ib
BTC

Ev, Gv
BSF

Gv, Ev
BSR

Gv, Ev
MOVSX

Gv, Eb Gv, Ew

F3
POPCNT Gv,

Ev
TZCNT
Gv, Ev

LZCNT
Gv, Ev

C

BSWAP

RAX/EAX/
R8/R8D

RCX/ECX/ R9/
R9D

RDX/EDX/
R10/R10D

RBX/EBX/ R11/
R11D

RSP/ESP/ R12/
R12D

RBP/EBP/ R13/
R13D

RSI/ESI/ R14/
R14D

RDI/EDI/ R15/
R15D

D

psubusb
Pq, Qq

psubusw
Pq, Qq

pminub
Pq, Qq

pand
Pq, Qq

paddusb
Pq, Qq

paddusw
Pq, Qq

pmaxub
Pq, Qq

pandn
Pq, Qq

66
vpsubusb

Vx, Hx, Wx
vpsubusw
Vx, Hx, Wx

vpminub
Vx, Hx, Wx

vpand
Vx, Hx, Wx

vpaddusb
Vx, Hx, Wx

vpaddusw
Vx, Hx, Wx

vpmaxub
Vx, Hx, Wx

vpandn
Vx, Hx, Wx

F3

F2

E

psubsb
Pq, Qq

psubsw
Pq, Qq

pminsw
Pq, Qq

por
Pq, Qq

paddsb
Pq, Qq

paddsw
Pq, Qq

pmaxsw
Pq, Qq

pxor
Pq, Qq

66
vpsubsb

Vx, Hx, Wx
vpsubsw

Vx, Hx, Wx
vpminsw

Vx, Hx, Wx
vpor

Vx, Hx, Wx
vpaddsb

Vx, Hx, Wx
vpaddsw

Vx, Hx, Wx
vpmaxsw

Vx, Hx, Wx
vpxor

Vx, Hx, Wx

F3

F2

F

psubb
Pq, Qq

psubw
Pq, Qq

psubd
Pq, Qq

psubq
Pq, Qq

paddb
Pq, Qq

paddw
Pq, Qq

paddd
Pq, Qq

66
vpsubb

Vx, Hx, Wx
vpsubw

Vx, Hx, Wx
vpsubd

Vx, Hx, Wx
vpsubq

Vx, Hx, Wx
vpaddb

Vx, Hx, Wx
vpaddw

Vx, Hx, Wx
vpaddd

Vx, Hx, Wx

F2

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of unde-
fined or reserved locations.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 37

Table A-4 Three-byte Opcode Map: 00H — F7H (First Two Bytes are 0F 38H) *

pfx 0 1 2 3 4 5 6 7

0

pshufb
Pq, Qq

phaddw
Pq, Qq

phaddd
Pq, Qq

phaddsw
Pq, Qq

pmaddubsw
Pq, Qq

phsubw
Pq, Qq

phsubd
Pq, Qq

phsubsw
Pq, Qq

66
vpshufb

Vx, Hx, Wx
vphaddw

Vx, Hx, Wx
vphaddd

Vx, Hx, Wx
vphaddsw
Vx, Hx, Wx

vpmaddubsw
Vx, Hx, Wx

vphsubw
Vx, Hx, Wx

vphsubd
Vx, Hx, Wx

vphsubsw
Vx, Hx, Wx

1 66
pblendvb
Vdq, Wdq

vcvtph2psv

Vx, Wx, Ib
blendvps
Vdq, Wdq

blendvpd
Vdq, Wdq

vpermpsv

Vqq, Hqq, Wqq
vptest
Vx, Wx

2 66
vpmovsxbw
Vx, Ux/Mq

vpmovsxbd
Vx, Ux/Md

vpmovsxbq
Vx, Ux/Mw

vpmovsxwd
Vx, Ux/Mq

vpmovsxwq
Vx, Ux/Md

vpmovsxdq
Vx, Ux/Mq

3 66
vpmovzxbw
Vx, Ux/Mq

vpmovzxbd
Vx, Ux/Md

vpmovzxbq
Vx, Ux/Mw

vpmovzxwd
Vx, Ux/Mq

vpmovzxwq
Vx, Ux/Md

vpmovzxdq
Vx, Ux/Mq

vpermdv

Vqq, Hqq, Wqq
vpcmpgtq

Vx, Hx, Wx

4 66
vpmulld

Vx, Hx, Wx
vphminposuw

Vdq, Wdq
vpsrlvd/qv

Vx, Hx, Wx
vpsravdv

Vx, Hx, Wx
vpsllvd/qv

Vx, Hx, Wx

5

6

7

8 66
INVEPT
Gy, Mdq

INVVPID
Gy, Mdq

INVPCID
Gy, Mdq

9 66
vgatherdd/qv

Vx,Hx,Wx
vgatherqd/qv

Vx,Hx,Wx
vgatherdps/dv

Vx,Hx,Wx
vgatherqps/dv

Vx,Hx,Wx
vfmaddsub132ps/

dv Vx,Hx,Wx
vfmsubadd132ps/

dv Vx,Hx,Wx

A 66
vfmaddsub213ps/

dv Vx,Hx,Wx
vfmsubadd213ps/

dv Vx,Hx,Wx

B 66
vfmaddsub231ps/

dv Vx,Hx,Wx
vfmsubadd231ps/

dv Vx,Hx,Wx

C

D

E

F

MOVBE
Gy, My

MOVBE
My, Gy

ANDNv

Gy, By, Ey

Grp 171A

BZHIv

Gy, Ey, By
BEXTRv

Gy, Ey, By

66
MOVBE
Gw, Mw

MOVBE
Mw, Gw

SHLXv

Gy, Ey, By

F3
PEXTv

Gy, By, Ey
SARXv

Gy, Ey, By

F2
CRC32
Gd, Eb

CRC32
Gd, Ey

PDEPv

Gy, By, Ey
MULXv

By,Gy,rDX,Ey
SHRXv

Gy, Ey, By

66 &
F2

CRC32
Gd, Eb

CRC32
Gd, Ew

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 38

Table A-4. Three-byte Opcode Map: 08H — FFH (First Two Bytes are 0F 38H) *

pfx 8 9 A B C D E F

0

psignb
Pq, Qq

psignw
Pq, Qq

psignd
Pq, Qq

pmulhrsw
Pq, Qq

66
vpsignb

Vx, Hx, Wx
vpsignw

Vx, Hx, Wx
vpsignd

Vx, Hx, Wx
vpmulhrsw
Vx, Hx, Wx

vpermilpsv
Vx,Hx,Wx

vpermilpdv
Vx,Hx,Wx

vtestpsv
Vx, Wx

vtestpdv
Vx, Wx

1

pabsb
Pq, Qq

pabsw
Pq, Qq

pabsd
Pq, Qq

66
vbroadcastssv

Vx, Wd
vbroadcastsdv

Vqq, Wq
vbroadcastf128v

Vqq, Mdq
vpabsb
Vx, Wx

vpabsw
Vx, Wx

vpabsd
Vx, Wx

2 66
vpmuldq

Vx, Hx, Wx
vpcmpeqq
Vx, Hx, Wx

vmovntdqa
Vx, Mx

vpackusdw
Vx, Hx, Wx

vmaskmovpsv
Vx,Hx,Mx

vmaskmovpdv
Vx,Hx,Mx

vmaskmovpsv
Mx,Hx,Vx

vmaskmovpdv
Mx,Hx,Vx

3 66
vpminsb

Vx, Hx, Wx
vpminsd

Vx, Hx, Wx
vpminuw

Vx, Hx, Wx
vpminud

Vx, Hx, Wx
vpmaxsb

Vx, Hx, Wx
vpmaxsd

Vx, Hx, Wx
vpmaxuw

Vx, Hx, Wx
vpmaxud

Vx, Hx, Wx

4

5 66
vpbroadcastdv

Vx, Wx
vpbroadcastqv

Vx, Wx
vbroadcasti128v

Vqq, Mdq

6

7 66
vpbroadcastbv

Vx, Wx
vpbroadcastwv

Vx, Wx

8 66
vpmaskmovd/qv

Vx,Hx,Mx
vpmaskmovd/qv

Mx,Vx,Hx

9 66
vfmadd132ps/dv

Vx, Hx, Wx
vfmadd132ss/dv

Vx, Hx, Wx
vfmsub132ps/dv

Vx, Hx, Wx
vfmsub132ss/dv

Vx, Hx, Wx
vfnmadd132ps/dv

Vx, Hx, Wx
vfnmadd132ss/dv

Vx, Hx, Wx
vfnmsub132ps/dv

Vx, Hx, Wx
vfnmsub132ss/dv

Vx, Hx, Wx

A 66
vfmadd213ps/dv

Vx, Hx, Wx
vfmadd213ss/dv

Vx, Hx, Wx
vfmsub213ps/dv

Vx, Hx, Wx
vfmsub213ss/dv

Vx, Hx, Wx
vfnmadd213ps/dv

Vx, Hx, Wx
vfnmadd213ss/dv

Vx, Hx, W
vfnmsub213ps/dv

Vx, Hx, Wx
vfnmsub213ss/dv

Vx, Hx, Wx

B 66
vfmadd231ps/dv

Vx, Hx, Wx
vfmadd231ss/dv

Vx, Hx, Wx
vfmsub231ps/dv

Vx, Hx, Wx
vfmsub231ss/dv

Vx, Hx, Wx
vfnmadd231ps/dv

Vx, Hx, Wx
vfnmadd231ss/dv

Vx, Hx, Wx
vfnmsub231ps/dv

Vx, Hx, Wx
vfnmsub231ss/dv

Vx, Hx, Wx

C

D 66
VAESIMC
Vdq, Wdq

VAESENC
Vdq,Hdq,Wdq

VAESENCLAST
Vdq,Hdq,Wdq

VAESDEC
Vdq,Hdq,Wdq

VAESDECLAST
Vdq,Hdq,Wdq

E

F

66

F3

F2

66 &
F2

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of unde-
fined or reserved locations.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 39

Table A-5 Three-byte Opcode Map: 00H — F7H (First two bytes are 0F 3AH) *

pfx 0 1 2 3 4 5 6 7

0 66

vpermqv

Vqq, Wqq, Ib
vpermpdv

Vqq, Wqq, Ib
vpblenddv

Vx,Hx,Wx,Ib
vpermilpsv
Vx, Wx, Ib

vpermilpdv
Vx, Wx, Ib

vperm2f128v
Vqq,Hqq,Wqq,Ib

1 66
vpextrb

Rd/Mb, Vdq, Ib
vpextrw

Rd/Mw, Vdq, Ib
vpextrd/q

Ey, Vdq, Ib
vextractps
Ed, Vdq, Ib

2 66
vpinsrb

Vdq,Hdq, Ry/
Mb,Ib

vinsertps
Vdq,Hdq, Udq/

Md,Ib

vpinsrd/q
Vdq,Hdq,Ey,Ib

3

4 66
vdpps

Vx,Hx,Wx,Ib
vdppd

Vdq,Hdq,Wdq,Ib
vmpsadbw

Vx,Hx,Wx,Ib
vpclmulqdq

Vdq,Hdq,Wdq,Ib
vperm2i128v

Vqq,Hqq,Wqq,Ib

5

6 66
vpcmpestrm
Vdq, Wdq, Ib

vpcmpestri
Vdq, Wdq, Ib

vpcmpistrm
Vdq, Wdq, Ib

vpcmpistri
Vdq, Wdq, Ib

7

8

9

A

B

C

D

E

F
F2

RORXv

Gy, Ey, Ib

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 40

...

Table A-5. Three-byte Opcode Map: 08H — FFH (First Two Bytes are 0F 3AH) *

pfx 8 9 A B C D E F

0

palignr
Pq, Qq, Ib

66
vroundps
Vx,Wx,Ib

vroundpd
Vx,Wx,Ib

vroundss
Vss,Wss,Ib

vroundsd
Vsd,Wsd,Ib

vblendps
Vx,Hx,Wx,Ib

vblendpd
Vx,Hx,Wx,Ib

vpblendw
Vx,Hx,Wx,Ib

vpalignr
Vx,Hx,Wx,Ib

1 66
vinsertf128v

Vqq,Hqq,Wqq,Ib
vextractf128v
Wdq,Vqq,Ib

vcvtps2phv

Wx, Vx, Ib

2

3 66
vinserti128v

Vqq,Hqq,Wqq,Ib
vextracti128v
Wdq,Vqq,Ib

4 66
vblendvpsv

 Vx,Hx,Wx,Lx
vblendvpdv

Vx,Hx,Wx,Lx
vpblendvbv

Vx,Hx,Wx,Lx

5

6

7

8

9

A

B

C

D 66
VAESKEYGEN
Vdq, Wdq, Ib

E

F

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 41

Table A-6 Opcode Extensions for One- and Two-byte Opcodes by Group Number *

Opcode Group Mod 7,6 pfx

Encoding of Bits 5,4,3 of the ModR/M Byte (bits 2,1,0 in parenthesis)
000 001 010 011 100 101 110 111

80-83 1
mem,
11B

ADD OR ADC SBB AND SUB XOR CMP

8F 1A
mem,
11B

POP

C0,C1 reg, imm
D0, D1 reg, 1

D2, D3 reg, CL
2

mem,
11B

ROL ROR RCL RCR SHL/SAL SHR SAR

F6, F7 3
mem,
11B

TEST
Ib/Iz

NOT NEG MUL
AL/rAX

IMUL
AL/rAX

DIV
AL/rAX

IDIV
AL/rAX

FE 4
mem,
11B

INC
Eb

DEC
Eb

FF 5
mem,
11B

INC
Ev

DEC
Ev

CALLNf64

Ev
CALLF

Ep
JMPNf64

Ev
JMPF

Mp
PUSHd64

Ev

0F 00 6
mem,
11B

SLDT
Rv/Mw

STR
Rv/Mw

LLDT
Ew

LTR
Ew

VERR
Ew

VERW
Ew

0F 01 7

mem SGDT
Ms

SIDT
Ms

LGDT
Ms

LIDT
Ms

SMSW
Mw/Rv

LMSW
Ew

INVLPG
Mb

11B VMCALL (001)
VMLAUNCH

(010)
VMRESUME

(011)
VMXOFF

(100)

MONITOR
(000)

MWAIT (001)

XGETBV
(000)

XSETBV
(001)

VMFUNC
(100)

XEND (101)
XTEST (110)

SWAPGS
o64(000)

RDTSCP (001)

0F BA 8
mem,
11B

BT BTS BTR BTC

0F C7 9

mem

CMPXCH8B
Mq

CMPXCHG16B
 Mdq

VMPTRLD
Mq

VMPTRST
Mq

66 VMCLEAR
Mq

F3 VMXON
Mq

VMPTRST
Mq

11B
RDRAND

Rv

0F B9 10
mem

11B

C6

11

mem MOV
Eb, Ib

11B
XABORT
(000) Ib

C7

mem MOV
Ev, Iz

11B
XBEGIN (000)

Jz

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 42

...

6. Updates to Appendix B, Volume 2C
Change bars show changes to Appendix B of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2C: Instruction Set Reference.

--

...

B.2 GENERAL-PURPOSE INSTRUCTION FORMATS AND
ENCODINGS FOR NON-64-BIT MODES

Table B-13 shows machine instruction formats and encodings for general purpose
instructions in non-64-bit modes.

Opcode Group Mod 7,6 pfx

Encoding of Bits 5,4,3 of the ModR/M Byte (bits 2,1,0 in parenthesis)
000 001 010 011 100 101 110 111

0F 71 12

mem

11B

psrlw
Nq, Ib

psraw
Nq, Ib

psllw
Nq, Ib

66 vpsrlw
Hx,Ux,Ib

vpsraw
Hx,Ux,Ib

vpsllw
Hx,Ux,Ib

0F 72 13

mem

11B

psrld
Nq, Ib

psrad
Nq, Ib

pslld
Nq, Ib

66 vpsrld
Hx,Ux,Ib

vpsrad
Hx,Ux,Ib

vpslld
Hx,Ux,Ib

0F 73 14

mem

11B

psrlq
Nq, Ib

psllq
Nq, Ib

66 vpsrlq
Hx,Ux,Ib

vpsrldq
Hx,Ux,Ib

vpsllq
Hx,Ux,Ib

vpslldq
Hx,Ux,Ib

0F AE 15

mem fxsave fxrstor ldmxcsr stmxcsr XSAVE XRSTOR XSAVEOPT clflush

11B

lfence mfence sfence

F3 RDFSBASE
Ry

RDGSBASE
Ry

WRFSBASE
Ry

WRGSBASE
Ry

0F 18 16
mem

prefetch
NTA

prefetch
T0

prefetch
T1

prefetch
T2

11B

VEX.0F38 F3 17
mem BLSRv

By, Ey
BLSMSKv

By, Ey
BLSIv

By, Ey
11B

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined
or reserved locations.

Table A-6 Opcode Extensions for One- and Two-byte Opcodes by Group Number *

Table B-13 General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes

Instruction and Format Encoding

...

MOV – Move Data

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 43

...

7. Updates to Chapter 1, Volume 3A
Change bars show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

register1 to register2 1000 100w : 11 reg1 reg2

register2 to register1 1000 101w : 11 reg1 reg2

memory to reg 1000 101w : mod reg r/m

reg to memory 1000 100w : mod reg r/m

immediate to register 1100 011w : 11 000 reg : immediate data

immediate to register (alternate encoding) 1011 w reg : immediate data

immediate to memory 1100 011w : mod 000 r/m : immediate data

memory to AL, AX, or EAX 1010 000w : full displacement

AL, AX, or EAX to memory 1010 001w : full displacement

MOV – Move to/from Control Registers

CR0 from register 0000 1111 : 0010 0010 : -- 000 reg

CR2 from register 0000 1111 : 0010 0010 : -- 010reg

CR3 from register 0000 1111 : 0010 0010 : -- 011 reg

CR4 from register 0000 1111 : 0010 0010 : -- 100 reg

register from CR0-CR4 0000 1111 : 0010 0000 : -- eee reg

MOV – Move to/from Debug Registers

DR0-DR3 from register 0000 1111 : 0010 0011 : -- eee reg

DR4-DR5 from register 0000 1111 : 0010 0011 : -- eee reg

DR6-DR7 from register 0000 1111 : 0010 0011 : -- eee reg

register from DR6-DR7 0000 1111 : 0010 0001 : -- eee reg

register from DR4-DR5 0000 1111 : 0010 0001 : -- eee reg

register from DR0-DR3 0000 1111 : 0010 0001 : -- eee reg

MOV – Move to/from Segment Registers

register to segment register 1000 1110 : 11 sreg3 reg

register to SS 1000 1110 : 11 sreg3 reg

memory to segment reg 1000 1110 : mod sreg3 r/m

memory to SS 1000 1110 : mod sreg3 r/m

segment register to register 1000 1100 : 11 sreg3 reg

segment register to memory 1000 1100 : mod sreg3 r/m

...

Table B-13 General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 44

--

...

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS
MANUAL

This manual set includes information pertaining primarily to the most recent Intel 64 and
IA-32 processors, which include:
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
• Intel® Core™ Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor
• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® Core™2 Extreme processor X7000 and X6800 series
• Intel® Core™2 Extreme QX6000 series
• Intel® Xeon® processor 7100 series
• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Core™2 Extreme QX9000 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® CoreTM2 Extreme processor QX9000 and X9000 series
• Intel® CoreTM2 Quad processor Q9000 series
• Intel® CoreTM2 Duo processor E8000, T9000 series
• Intel® AtomTM processor family
• Intel® CoreTM i7 processor
• Intel® CoreTM i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families
• Intel® Xeon® processor E5 family
• Intel® Xeon® processor E3 family

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 45

• Intel® CoreTM i7-3930K processor
• 2nd generation Intel® CoreTM i7-2xxx, Intel® CoreTM i5-2xxx, Intel® CoreTM i3-2xxx

processor series

P6 family processors are IA-32 processors based on the P6 family microarchitecture.
This includes the Pentium® Pro, Pentium® II, Pentium® III, and Pentium® III Xeon®
processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on
the Intel NetBurst® microarchitecture. Most early Intel® Xeon® processors are based on
the Intel NetBurst® microarchitecture. Intel Xeon processor 5000, 7100 series are based
on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are
based on an improved Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel®
Pentium® dual-core, Intel® Core™2 Duo, Intel® Core™2 Quad and Intel® Core™2
Extreme processors are based on Intel® Core™ microarchitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® CoreTM2 Quad processor
Q9000 series, and Intel® CoreTM2 Extreme processors QX9000, X9000 series, Intel®
CoreTM2 processor E8000 series are based on Enhanced Intel® CoreTM microarchitecture.

The Intel® AtomTM processor family is based on the Intel® AtomTM microarchitecture and
supports Intel 64 architecture.

The Intel® CoreTM i7 processor and the Intel® CoreTM i5 processor are based on the Intel®
microarchitecture code name Nehalem and support Intel 64 architecture.

Processors based on Intel® microarchitecture code name Westmere support Intel 64
architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core
Intel® Xeon® processor LV, and early generations of Pentium 4 and Intel Xeon proces-
sors support IA-32 architecture. The Intel® Atom™ processor Z5xx series support IA-32
architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3 family, Intel® CoreTM
i7-3930K processor, 2nd generation Intel® CoreTM i7-2xxx, Intel® CoreTM i5-2xxx, Intel®
CoreTM i3-2xxx processor series, Intel® Xeon® processor E7-8800/4800/2800 product
families, Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100,
7200, 7300, 7400 series, Intel® Core™2 Duo, Intel® Core™2 Extreme processors, Intel
Core 2 Quad processors, Pentium® D processors, Pentium® Dual-Core processor, newer
generations of Pentium 4 and Intel Xeon processor family support Intel® 64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for
Intel's 32-bit microprocessors. Intel® 64 architecture is the instruction set architecture
and programming environment which is a superset of and compatible with IA-32 archi-
tecture.

...

8. Updates to Chapter 4, Volume 3A
Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

--

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 46

...

9. Updates to Chapter 10, Volume 3A
Change bars show changes to Chapter 10 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

--

...

10.5.1 Local Vector Table
The local vector table (LVT) allows software to specify the manner in which the local
interrupts are delivered to the processor core. It consists of the following 32-bit APIC
registers (see Figure 10-8), one for each local interrupt:
• LVT CMCI Register (FEE0 02F0H) — Specifies interrupt delivery when an overflow

condition of corrected machine check error count reaching a threshold value
occurred in a machine check bank supporting CMCI (see Section 15.5.1, “CMCI Local
APIC Interface”).

• LVT Timer Register (FEE0 0320H) — Specifies interrupt delivery when the APIC
timer signals an interrupt (see Section 10.5.4, “APIC Timer”).

• LVT Thermal Monitor Register (FEE0 0330H) — Specifies interrupt delivery
when the thermal sensor generates an interrupt (see Section 14.5.2, “Thermal
Monitor”). This LVT entry is implementation specific, not architectural. If imple-
mented, it will always be at base address FEE0 0330H.

• LVT Performance Counter Register (FEE0 0340H) — Specifies interrupt
delivery when a performance counter generates an interrupt on overflow (see

Figure 4-5 Linear-Address Translation to a 4-KByte Page using PAE Paging

0

Directory Table Offset

Page Directory

PDE with PS=0

Page Table

PTE

4-KByte Page

Physical Address

31 20 111221
Linear Address

PDPTE value

30 29

PDPTE Registers

Directory Pointer

2

9

12

9

40

40

40

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 47

Section 18.10.5.8, “Generating an Interrupt on Overflow”). This LVT entry is imple-
mentation specific, not architectural. If implemented, it is not guaranteed to be at
base address FEE0 0340H.

• LVT LINT0 Register (FEE0 0350H) — Specifies interrupt delivery when an
interrupt is signaled at the LINT0 pin.

• LVT LINT1 Register (FEE0 0360H) — Specifies interrupt delivery when an
interrupt is signaled at the LINT1 pin.

• LVT Error Register (FEE0 0370H) — Specifies interrupt delivery when the APIC
detects an internal error (see Section 10.5.3, “Error Handling”).

The LVT performance counter register and its associated interrupt were introduced in the
P6 processors and are also present in the Pentium 4 and Intel Xeon processors. The LVT
thermal monitor register and its associated interrupt were introduced in the Pentium 4
and Intel Xeon processors. The LVT CMCI register and its associated interrupt were intro-
duced in the Intel Xeon 5500 processors.

As shown in Figure 10-8, some of these fields and flags are not available (and reserved)
for some entries.

The setup information that can be specified in the registers of the LVT table is as follows:
Vector Interrupt vector number.
Delivery Mode Specifies the type of interrupt to be sent to the processor. Some

delivery modes will only operate as intended when used in conjunc-
tion with a specific trigger mode. The allowable delivery modes are
as follows:

000 (Fixed) Delivers the interrupt specified in the vector
field.

010 (SMI) Delivers an SMI interrupt to the processor core
through the processor’s local SMI signal path.
When using this delivery mode, the vector field
should be set to 00H for future compatibility.

100 (NMI) Delivers an NMI interrupt to the processor. The
vector information is ignored.

101 (INIT) Delivers an INIT request to the processor core,
which causes the processor to perform an INIT.
When using this delivery mode, the vector field
should be set to 00H for future compatibility.
Not supported for the LVT CMCI register, the LVT
thermal monitor register, or the LVT perfor-
mance counter register.

110 Reserved; not supported for any LVT register.

111 (ExtINT) Causes the processor to respond to the inter-
rupt as if the interrupt originated in an external-

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 48

ly connected (8259A-compatible) interrupt
controller. A special INTA bus cycle correspond-
ing to ExtINT, is routed to the external control-
ler. The external controller is expected to supply
the vector information. The APIC architecture
supports only one ExtINT source in a system,
usually contained in the compatibility bridge.
Only one processor in the system should have
an LVT entry configured to use the ExtINT deliv-

Figure 10-8 Local Vector Table (LVT)

31 07

Vector

Timer Mode
00: One-shot
01: Periodic

1215161718

Delivery Mode
000: Fixed

100: NMI

Mask†

0: Not Masked
1: Masked

Address: FEE0 0350H

Value After Reset: 0001 0000H

Reserved
12131516

Vector

31 07810

Address: FEE0 0360H
Address: FEE0 0370H

Vector

Vector

Error

LINT1

LINT0

Value after Reset: 0001 0000H
Address: FEE0 0320H

111: ExtlNT

All other combinations
are reserved

Interrupt Input
Pin Polarity

Trigger Mode
0: Edge
1: Level

Remote
IRR

Delivery Status
0: Idle
1: Send Pending

Timer

13 11 8

11

14

17

Address: FEE0 0340H

Performance
Vector

Thermal
Vector

Mon. Counters

Sensor

Address: FEE0 0330H
† (Pentium 4 and Intel Xeon processors.) When a

performance monitoring counters interrupt is generated,
the mask bit for its associated LVT entry is set.

010: SMI

101: INIT

19

10: TSC-Deadline

VectorCMCI

Address: FEE0 02F0H

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 49

ery mode. Not supported for the LVT CMCI reg-
ister, the LVT thermal monitor register, or the
LVT performance counter register.

Delivery Status (Read Only)
Indicates the interrupt delivery status, as follows:

0 (Idle) There is currently no activity for this interrupt
source, or the previous interrupt from this
source was delivered to the processor core and
accepted.

1 (Send Pending)
Indicates that an interrupt from this source has
been delivered to the processor core but has not
yet been accepted (see Section 10.5.5, “Local
Interrupt Acceptance”).

Interrupt Input Pin Polarity
Specifies the polarity of the corresponding interrupt pin: (0) active
high or (1) active low.

Remote IRR Flag (Read Only)
For fixed mode, level-triggered interrupts; this flag is set when the
local APIC accepts the interrupt for servicing and is reset when an
EOI command is received from the processor. The meaning of this
flag is undefined for edge-triggered interrupts and other delivery
modes.

Trigger Mode Selects the trigger mode for the local LINT0 and LINT1 pins: (0)
edge sensitive and (1) level sensitive. This flag is only used when
the delivery mode is Fixed. When the delivery mode is NMI, SMI, or
INIT, the trigger mode is always edge sensitive. When the delivery
mode is ExtINT, the trigger mode is always level sensitive. The timer
and error interrupts are always treated as edge sensitive.
If the local APIC is not used in conjunction with an I/O APIC and
fixed delivery mode is selected; the Pentium 4, Intel Xeon, and P6
family processors will always use level-sensitive triggering, regard-
less if edge-sensitive triggering is selected.

Mask Interrupt mask: (0) enables reception of the interrupt and (1)
inhibits reception of the interrupt. When the local APIC handles a
performance-monitoring counters interrupt, it automatically sets
the mask flag in the LVT performance counter register. This flag is
set to 1 on reset. It can be cleared only by software.

Timer Mode Bits 18:17 selects the timer mode (see Section 10.5.4):
(00b) one-shot mode using a count-down value,
(01b) periodic mode reloading a count-down value,
(10b) TSC-Deadline mode using absolute target value in
IA32_TSC_DEADLINE MSR (see Section 10.5.4.1),
(11b) is reserved.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 50

10.8.1 Interrupt Handling with the Pentium 4 and Intel Xeon
Processors

With the Pentium 4 and Intel Xeon processors, the local APIC handles the local inter-
rupts, interrupt messages, and IPIs it receives as follows:

1. It determines if it is the specified destination or not (see Figure 10-16). If it is the
specified destination, it accepts the message; if it is not, it discards the message.

2. If the local APIC determines that it is the designated destination for the interrupt and
if the interrupt request is an NMI, SMI, INIT, ExtINT, or SIPI, the interrupt is sent
directly to the processor core for handling.

3. If the local APIC determines that it is the designated destination for the interrupt but
the interrupt request is not one of the interrupts given in step 2, the local APIC sets
the appropriate bit in the IRR.

4. When interrupts are pending in the IRR register, the local APIC dispatches them to
the processor one at a time, based on their priority and the current processor priority
in the PPR (see Section 10.8.3.1, “Task and Processor Priorities”).

5. When a fixed interrupt has been dispatched to the processor core for handling, the
completion of the handler routine is indicated with an instruction in the instruction
handler code that writes to the end-of-interrupt (EOI) register in the local APIC (see
Section 10.8.5, “Signaling Interrupt Servicing Completion”). The act of writing to the
EOI register causes the local APIC to delete the interrupt from its ISR queue and (for
level-triggered interrupts) send a message on the bus indicating that the interrupt
handling has been completed. (A write to the EOI register must not be included in
the handler routine for an NMI, SMI, INIT, ExtINT, or SIPI.)

...

10.8.2 Interrupt Handling with the P6 Family and Pentium Processors
With the P6 family and Pentium processors, the local APIC handles the local interrupts,
interrupt messages, and IPIs it receives as follows (see Figure 10-17).

1. (IPIs only) It examines the IPI message to determines if it is the specified destination
for the IPI as described in Section 10.6.2, “Determining IPI Destination.” If it is the
specified destination, it continues its acceptance procedure; if it is not the desti-
nation, it discards the IPI message. When the message specifies lowest-priority
delivery mode, the local APIC will arbitrate with the other processors that were
designated on recipients of the IPI message (see Section 10.6.2.4, “Lowest Priority
Delivery Mode”).

Figure 10-16 Interrupt Acceptance Flow Chart for the Local APIC (Pentium 4 and Intel
Xeon Processors)

Wait to Receive
Bus Message

Belong to
Destination?Discard

Message

No Accept
Message

Yes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 51

2. If the local APIC determines that it is the designated destination for the interrupt and
if the interrupt request is an NMI, SMI, INIT, ExtINT, or INIT-deassert interrupt, or
one of the MP protocol IPI messages (BIPI, FIPI, and SIPI), the interrupt is sent
directly to the processor core for handling.

3. If the local APIC determines that it is the designated destination for the interrupt but
the interrupt request is not one of the interrupts given in step 2, the local APIC looks
for an open slot in one of its two pending interrupt queues contained in the IRR and
ISR registers (see Figure 10-20). If a slot is available (see Section 10.8.4, “Interrupt
Acceptance for Fixed Interrupts”), places the interrupt in the slot. If a slot is not
available, it rejects the interrupt request and sends it back to the sender with a retry
message.

4. When interrupts are pending in the IRR register, the local APIC dispatches them to
the processor one at a time, based on their priority and the current processor priority
in the PPR (see Section 10.8.3.1, “Task and Processor Priorities”).

5. When a fixed interrupt has been dispatched to the processor core for handling, the
completion of the handler routine is indicated with an instruction in the instruction

Figure 10-17 Interrupt Acceptance Flow Chart for the Local APIC (P6 Family and
Pentium Processors)

Wait to Receive
Bus Message

Belong
to

Destination?

Is it
NMI/SMI/

INIT/ExtINT?

Delivery

Am I
Focus?

Other
Focus?

Is Interrupt Slot
Available?

Is Status a
Retry?

Discard
Message

Accept
Message

Yes

Yes

Accept
Message

Is Interrupt
Slot Avail-

able?
Arbitrate

Yes

Am I Winner? Accept
Message

YesNo

Set Status
to Retry

No

No

Yes

Set Status
to Retry

No

Discard
Message

No

Accept
Message

Yes

Lowes
PriorityFixed

Yes No

No

Yes

No

P6 Family
Processor Specific

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 52

handler code that writes to the end-of-interrupt (EOI) register in the local APIC (see
Section 10.8.5, “Signaling Interrupt Servicing Completion”). The act of writing to the
EOI register causes the local APIC to delete the interrupt from its queue and (for
level-triggered interrupts) send a message on the bus indicating that the interrupt
handling has been completed. (A write to the EOI register must not be included in
the handler routine for an NMI, SMI, INIT, ExtINT, or SIPI.)

The following sections describe the acceptance of interrupts and their handling by the
local APIC and processor in greater detail.

...

10.8.3 Interrupt, Task, and Processor Priority
Each interrupt delivered to the processor through the local APIC has a priority based on
its vector number. The local APIC uses this priority to determine when to service the
interrupt relative to the other activities of the processor, including the servicing of other
interrupts.

Each interrupt vector is an 8-bit value. The interrupt-priority class is the value of
bits 7:4 of the interrupt vector. The lowest interrupt-priority class is 1 and the highest is
15; interrupts with vectors in the range 0–15 (with interrupt-priority class 0) are illegal
and are never delivered. Because vectors 0–31 are reserved for dedicated uses by the
Intel 64 and IA-32 architectures, software should configure interrupt vectors to use
interrupt-priority classes in the range 2–15.

Each interrupt-priority class encompasses 16 vectors. The relative priority of interrupts
within an interrupt-priority class is determined by the value of bits 3:0 of the vector
number. The higher the value of those bits, the higher the priority within that interrupt-
priority class. Thus, each interrupt vector comprises two parts, with the high 4 bits indi-
cating its interrupt-priority class and the low 4 bits indicating its ranking within the inter-
rupt-priority class.

10.8.3.1 Task and Processor Priorities
The local APIC also defines a task priority and a processor priority that determine the
order in which interrupts are handled. The task-priority class is the value of bits 7:4 of
the task-priority register (TPR), which can be written by software (TPR is a read/write
register); see Figure 10-18.

NOTE
In this discussion, the term “task” refers to a software defined task,
process, thread, program, or routine that is dispatched to run on the

Figure 10-18 Task-Priority Register (TPR)

31 078

Reserved

Address: FEE0 0080H
Value after reset: 0H

Task Priority Sub-Class

Task Priority

4 3

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 53

processor by the operating system. It does not refer to an IA-32 archi-
tecture defined task as described in Chapter 7, “Task Management.”

The task priority allows software to set a priority threshold for interrupting the processor.
This mechanism enables the operating system to temporarily block low priority inter-
rupts from disturbing high-priority work that the processor is doing. The ability to block
such interrupts using task priority results from the way that the TPR controls the value of
the processor-priority register (PPR).1

The processor-priority class is a value in the range 0–15 that is maintained in bits 7:4
of the processor-priority register (PPR); see Figure 10-19. The PPR is a read-only
register. The processor-priority class represents the current priority at which the
processor is executing.

The value of the PPR is based on the value of TPR and the value ISRV; ISRV is the vector
number of the highest priority bit that is set in the ISR or 00H if no bit is set in the ISR.
(See Section 10.8.4 for more details on the ISR.) The value of PPR is determined as
follows:
• PPR[7:4] (the processor-priority class) the maximum of TPR[7:4] (the task- priority

class) and ISRV[7:4] (the priority of the highest priority interrupt in service).
• PPR[3:0] (the processor-priority sub-class) is determined as follows:

— If TPR[7:4] > ISRV[7:4], PPR[3:0] is TPR[3:0] (the task-priority sub-class).

— If TPR[7:4] < ISRV[7:4], PPR[3:0] is 0.

— If TPR[7:4] = ISRV[7:4], PPR[3:0] may be either TPR[3:0] or 0. The actual
behavior is model-specific.

The processor-priority class determines the priority threshold for interrupting the
processor. The processor will deliver only those interrupts that have an interrupt-priority
class higher than the processor-priority class in the PPR. If the processor-priority class is
0, the PPR does not inhibit the delivery any interrupt; if it is 15, the processor inhibits the
delivery of all interrupts. (The processor-priority mechanism does not affect the delivery
of interrupts with the NMI, SMI, INIT, ExtINT, INIT-deassert, and start-up delivery
modes.)

The processor does not use the processor-priority sub-class to determine which inter-
rupts to delivery and which to inhibit. (The processor uses the processor-priority sub-
class only to satisfy reads of the PPR.)

...

1. The TPR also determines the arbitration priority of the local processor; see Section 10.6.2.4, “Lowest
Priority Delivery Mode.”

Figure 10-19 Processor-Priority Register (PPR)

31 078

Reserved

Address: FEE0 00A0H
Value after reset: 0H

Processor-Priority Sub-Class

Processor Priority

4 3

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 54

10.8.4 Interrupt Acceptance for Fixed Interrupts
The local APIC queues the fixed interrupts that it accepts in one of two interrupt pending
registers: the interrupt request register (IRR) or in-service register (ISR). These two
256-bit read-only registers are shown in Figure 10-20. The 256 bits in these registers
represent the 256 possible vectors; vectors 0 through 15 are reserved by the APIC (see
also: Section 10.5.2, “Valid Interrupt Vectors”).

NOTE
All interrupts with an NMI, SMI, INIT, ExtINT, start-up, or INIT-deassert
delivery mode bypass the IRR and ISR registers and are sent directly to
the processor core for servicing.

The IRR contains the active interrupt requests that have been accepted, but not yet
dispatched to the processor for servicing. When the local APIC accepts an interrupt, it
sets the bit in the IRR that corresponds the vector of the accepted interrupt. When the
processor core is ready to handle the next interrupt, the local APIC clears the highest
priority IRR bit that is set and sets the corresponding ISR bit. The vector for the highest
priority bit set in the ISR is then dispatched to the processor core for servicing.

While the processor is servicing the highest priority interrupt, the local APIC can send
additional fixed interrupts by setting bits in the IRR. When the interrupt service routine
issues a write to the EOI register (see Section 10.8.5, “Signaling Interrupt Servicing
Completion”), the local APIC responds by clearing the highest priority ISR bit that is set.
It then repeats the process of clearing the highest priority bit in the IRR and setting the
corresponding bit in the ISR. The processor core then begins executing the service
routing for the highest priority bit set in the ISR.

If more than one interrupt is generated with the same vector number, the local APIC can
set the bit for the vector both in the IRR and the ISR. This means that for the Pentium 4
and Intel Xeon processors, the IRR and ISR can queue two interrupts for each interrupt
vector: one in the IRR and one in the ISR. Any additional interrupts issued for the same
interrupt vector are collapsed into the single bit in the IRR.

For the P6 family and Pentium processors, the IRR and ISR registers can queue no more
than two interrupts per interrupt vector and will reject other interrupts that are received
within the same vector.

If the local APIC receives an interrupt with an interrupt-priority class higher than that of
the interrupt currently in service, and interrupts are enabled in the processor core, the
local APIC dispatches the higher priority interrupt to the processor immediately (without
waiting for a write to the EOI register). The currently executing interrupt handler is then
interrupted so the higher-priority interrupt can be handled. When the handling of the

Figure 10-20 IRR, ISR and TMR Registers

255 0

Reserved

Addresses: IRR FEE0 0200H - FEE0 0270H

Value after reset: 0H

16 15

IRR

Reserved ISR

Reserved TMR

ISR FEE0 0100H - FEE0 0170H
TMR FEE0 0180H - FEE0 01F0H

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 55

higher-priority interrupt has been completed, the servicing of the interrupted interrupt is
resumed.

The trigger mode register (TMR) indicates the trigger mode of the interrupt (see Figure
10-20). Upon acceptance of an interrupt into the IRR, the corresponding TMR bit is
cleared for edge-triggered interrupts and set for level-triggered interrupts. If a TMR bit
is set when an EOI cycle for its corresponding interrupt vector is generated, an EOI
message is sent to all I/O APICs.

...

10.8.6 Task Priority in IA-32e Mode
In IA-32e mode, operating systems can manage the 16 interrupt-priority classes (see
Section 10.8.3, “Interrupt, Task, and Processor Priority”) explicitly using the task priority
register (TPR). Operating systems can use the TPR to temporarily block specific (low-
priority) interrupts from interrupting a high-priority task. This is done by loading TPR
with a value in which the task-priority class corresponds to the highest interrupt-priority
class that is to be blocked. For example:
• Loading the TPR with a task-priority class of 8 (01000B) blocks all interrupts with an

interrupt-priority class of 8 or less while allowing all interrupts with an interrupt-
priority class of 9 or more to be recognized.

• Loading the TPR with a task-priority class of 0 enables all external interrupts.
• Loading the TPR with a task-priority class of 0FH (01111B) disables all external

interrupts.

The TPR (shown in Figure 10-18) is cleared to 0 on reset. In 64-bit mode, software can
read and write the TPR using an alternate interface, MOV CR8 instruction. The new task-
priority class is established when the MOV CR8 instruction completes execution. Soft-
ware does not need to force serialization after loading the TPR using MOV CR8.

Use of the MOV CRn instruction requires a privilege level of 0. Programs running at priv-
ilege level greater than 0 cannot read or write the TPR. An attempt to do so causes a
general-protection exception. The TPR is abstracted from the interrupt controller (IC),
which prioritizes and manages external interrupt delivery to the processor. The IC can be
an external device, such as an APIC or 8259. Typically, the IC provides a priority mecha-
nism similar or identical to the TPR. The IC, however, is considered implementation-
dependent with the under-lying priority mechanisms subject to change. CR8, by
contrast, is part of the Intel 64 architecture. Software can depend on this definition
remaining unchanged.

...

10. Updates to Chapter 14, Volume 3B
Change bars show changes to Chapter 14 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...

14.7.3 Package RAPL Domain
The MSR interfaces defined for the package RAPL domain are:

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 56

• MSR_PKG_POWER_LIMIT allows software to set power limits for the package and
measurement attributes associated with each limit,

• MSR_PKG_ENERGY_STATUS reports measured actual energy usage,
• MSR_PKG_POWER_INFO reports the package power range information for RAPL

usage.

MSR_PKG_RAPL_PERF_STATUS can report the performance impact of power limiting,
but its availability may be model-specific.

MSR_PKG_POWER_LIMIT allows a software agent to define power limitation for the
package domain. Power limitation is defined in terms of average power usage (Watts)
over a time window specified in MSR_PKG_POWER_LIMIT. Two power limits can be spec-
ified, corresponding to time windows of different sizes. Each power limit provides inde-
pendent clamping control that would permit the processor cores to go below OS-
requested state to meet the power limits. A lock mechanism allow the software agent to
enforce power limit settings. Once the lock bit is set, the power limit settings are static
and un-modifiable until next RESET.

The bit fields of MSR_PKG_POWER_LIMIT (Figure 14-17) are:
• Package Power Limit #1(bits 14:0): Sets the average power usage limit of the

package domain corresponding to time window # 1. The unit of this field is specified
by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Enable Power Limit #1(bit 15): 0 = disabled; 1 = enabled.
• Package Clamping Limitation #1 (bit 16): Allow going below OS-requested P/T

state setting during time window specified by bits 23:17.
• Time Window for Power Limit #1 (bits 23:17): Indicates the length of time

window over which the power limit #1 The numeric value encoded by bits 23:17 is
represented by the product of 2^Y *F; where F is a single-digit decimal floating-point
value between 1.0 and 1.3 with the fraction digit represented by bits 23:22, Y is an
unsigned integer represented by bits 21:17. The unit of this field is specified by the
“Time Units” field of MSR_RAPL_POWER_UNIT.

• Package Power Limit #2(bits 46:32): Sets the average power usage limit of the
package domain corresponding to time window # 2. The unit of this field is specified
by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Enable Power Limit #2(bit 47): 0 = disabled; 1 = enabled.

Figure 14-17 MSR_PKG_POWER_LIMIT Register

63

Enable limit #1
Pkg clamping limit #1
Enable limit #2
Pkg clamping limit #2

31 24 23 15 0

Pkg Power Limit #1

48 47 3262 56 55 49 46 14
L
O
C

Pkg Power Limit #2

1617

K

Time window
Power Limit #2

Time window
Power Limit #1

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 57

• Package Clamping Limitation #2 (bit 48): Allow going below OS-requested P/T
state setting during time window specified by bits 23:17.

• Time Window for Power Limit #2 (bits 55:49): Indicates the length of time
window over which the power limit #2 The numeric value encoded by bits 55:49 is
represented by the product of 2^Y *F; where F is a single-digit decimal floating-point
value between 1.0 and 1.3 with the fraction digit represented by bits 55:54, Y is an
unsigned integer represented by bits 53:49. The unit of this field is specified by the
“Time Units” field of MSR_RAPL_POWER_UNIT. This field may have a hard-coded
value in hardware and ignores values written by software.

• Lock (bit 63): If set, all write attempts to this MSR are ignored until next RESET.

MSR_PKG_ENERGY_STATUS is a read-only MSR. It reports the actual energy use for the
package domain. This MSR is updated every ~1msec. It has a wraparound time of
around 60 secs when power consumption is high, and may be longer otherwise.

• Total Energy Consumed (bits 31:0): The unsigned integer value represents the
total amount of energy consumed since that last time this register is cleared. The
unit of this field is specified by the “Energy Status Units” field of
MSR_RAPL_POWER_UNIT.

MSR_PKG_POWER_INFO is a read-only MSR. It reports the package power range infor-
mation for RAPL usage. This MSR provides maximum/minimum values (derived from
electrical specification), thermal specification power of the package domain. It also
provides the largest possible time window for software to program the RAPL interface.

• Thermal Spec Power (bits 14:0): The unsigned integer value is the equivalent of
thermal specification power of the package domain. The unit of this field is specified
by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Minimum Power (bits 30:16): The unsigned integer value is the equivalent of
minimum power derived from electrical spec of the package domain. The unit of this
field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

Figure 14-18 MSR_PKG_ENERGY_STATUS MSR

Figure 14-19 MSR_PKG_POWER_INFO Register

63 0

Reserved

Total Energy Consumed

3132

Reserved

63 31 30 15 0

Thermal Spec Power

48 47 3254 53 46 14

Maximum Power

16

Maximum Time window Minimum Power

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 58

• Maximum Power (bits 46:32): The unsigned integer value is the equivalent of
maximum power derived from the electrical spec of the package domain. The unit of
this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Maximum Time Window (bits 53:48): The unsigned integer value is the equivalent
of largest acceptable value to program the time window of MSR_PKG_POWER_LIMIT.
The unit of this field is specified by the “Time Units” field of
MSR_RAPL_POWER_UNIT.

...

14.7.4 PP0/PP1 RAPL Domains
The MSR interfaces defined for the PP0 and PP1 domains are identical in layout. Gener-
ally, PP0 refers to the processor cores. The availability of PP1 RAPL domain interface is
platform-specific. For a client platform, PP1 domain refers to the power plane of a
specific device in the uncore. For server platforms, PP1 domain is not supported, but its
PP0 domain supports the MSR_PP0_PERF_STATUS interface.
• MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT allow software to set power

limits for the respective power plane domain.
• MSR_PP0_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS report actual energy usage

on a power plane.
• MSR_PP0_POLICY/MSR_PP1_POLICY allow software to adjust balance for respective

power plane.

MSR_PP0_PERF_STATUS can report the performance impact of power limiting, but it is
not available in client platform.

MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT allows a software agent to define
power limitation for the respective power plane domain. A lock mechanism in each power
plane domain allow the software agent to enforce power limit settings independently.
Once a lock bit is set, the power limit settings in that power plane are static and un-
modifiable until next RESET.

The bit fields of MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT (Figure 14-21) are:
• Power Limit (bits 14:0): Sets the average power usage limit of the respective

power plane domain. The unit of this field is specified by the “Power Units” field of
MSR_RAPL_POWER_UNIT.

Figure 14-21 MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT Register

63

Enable limit
Clamping limit

30 24 23 15 0

Power Limit

3132 14
L
O
C

1617

K

Time window
Power Limit

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 59

• Enable Power Limit (bit 15): 0 = disabled; 1 = enabled.
• Clamping Limitation (bit 16): Allow going below OS-requested P/T state setting

during time window specified by bits 23:17.
• Time Window for Power Limit (bits 23:17): Indicates the length of time window

over which the power limit #1 The numeric value encoded by bits 23:17 is
represented by the product of 2^Y *F; where F is a single-digit decimal floating-point
value between 1.0 and 1.3 with the fraction digit represented by bits 23:22, Y is an
unsigned integer represented by bits 21:17. The unit of this field is specified by the
“Time Units” field of MSR_RAPL_POWER_UNIT.

• Lock (bit 31): If set, all write attempts to the MSR and corresponding policy
MSR_PP0_POLICY/MSR_PP1_POLICY are ignored until next RESET.

...

14.7.5 DRAM RAPL Domain
The MSR interfaces defined for the DRAM domain is supported only in the server plat-
form. The MSR interfaces are:
• MSR_DRAM_POWER_LIMIT allows software to set power limits for the DRAM domain

and measurement attributes associated with each limit,
• MSR_DRAM_ENERGY_STATUS reports measured actual energy usage,
• MSR_DRAM_POWER_INFO reports the DRAM domain power range information for

RAPL usage.
• MSR_DRAM_RAPL_PERF_STATUS can report the performance impact of power

limiting.

MSR_DRAM_POWER_LIMIT allows a software agent to define power limitation for the
DRAM domain. Power limitation is defined in terms of average power usage (Watts) over
a time window specified in MSR_DRAM_POWER_LIMIT. A power limit can be specified
along with a time window. A lock mechanism allow the software agent to enforce power
limit settings. Once the lock bit is set, the power limit settings are static and un-modifi-
able until next RESET.

The bit fields of MSR_DRAM_POWER_LIMIT (Figure 14-25) are:

Figure 14-25 MSR_DRAM_POWER_LIMIT Register

63

Enable limit
Clamping limit

30 24 23 15 0

Power Limit

3132 14
L
O
C

1617

K

Time window
Power Limit

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 60

• DRAM Power Limit #1(bits 14:0): Sets the average power usage limit of the DRAM
domain corresponding to time window # 1. The unit of this field is specified by the
“Power Units” field of MSR_RAPL_POWER_UNIT.

• Enable Power Limit #1(bit 15): 0 = disabled; 1 = enabled.
• Time Window for Power Limit (bits 23:17): Indicates the length of time window

over which the power limit The numeric value encoded by bits 23:17 is represented
by the product of 2^Y *F; where F is a single-digit decimal floating-point value
between 1.0 and 1.3 with the fraction digit represented by bits 23:22, Y is an
unsigned integer represented by bits 21:17. The unit of this field is specified by the
“Time Units” field of MSR_RAPL_POWER_UNIT.

• Lock (bit 31): If set, all write attempts to this MSR are ignored until next RESET.

MSR_DRAM_ENERGY_STATUS is a read-only MSR. It reports the actual energy use for
the DRAM domain. This MSR is updated every ~1msec.

• Total Energy Consumed (bits 31:0): The unsigned integer value represents the
total amount of energy consumed since that last time this register is cleared. The
unit of this field is specified by the “Energy Status Units” field of
MSR_RAPL_POWER_UNIT.

MSR_DRAM_POWER_INFO is a read-only MSR. It reports the DRAM power range infor-
mation for RAPL usage. This MSR provides maximum/minimum values (derived from
electrical specification), thermal specification power of the DRAM domain. It also
provides the largest possible time window for software to program the RAPL interface.

• Thermal Spec Power (bits 14:0): The unsigned integer value is the equivalent of
thermal specification power of the DRAM domain. The unit of this field is specified by
the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Minimum Power (bits 30:16): The unsigned integer value is the equivalent of
minimum power derived from electrical spec of the DRAM domain. The unit of this
field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

Figure 14-26 MSR_DRAM_ENERGY_STATUS MSR

Figure 14-27 MSR_DRAM_POWER_INFO Register

63 0

Reserved

Total Energy Consumed

3132

Reserved

63 31 30 15 0

Thermal Spec Power

48 47 3254 53 46 14

Maximum Power

16

Maximum Time window Minimum Power

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 61

• Maximum Power (bits 46:32): The unsigned integer value is the equivalent of
maximum power derived from the electrical spec of the DRAM domain. The unit of
this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Maximum Time Window (bits 53:48): The unsigned integer value is the equivalent
of largest acceptable value to program the time window of
MSR_DRAM_POWER_LIMIT. The unit of this field is specified by the “Time Units” field
of MSR_RAPL_POWER_UNIT.

...

11. Updates to Chapter 17, Volume 3B
Change bars show changes to Chapter 17 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...

17.6.1 LBR Stack
Processors based on Intel microarchitecture code name Nehalem provide 16 pairs of
MSR to record last branch record information. The layout of each MSR pair is shown in
Table 17-6 and Table 17-7.

...

12. Updates to Chapter 18, Volume 3B
Change bars show changes to Chapter 18 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...

18.8.7 Intel® Xeon® Processor E5 Family Performance Monitoring
Facility

The Intel® Xeon® processor E5 Family (and Intel® Core™ i7-3930K Processor) are
based on Intel microarchitecture code name Sandy Bridge. While the processor cores

Table 17-6 IA32_LASTBRANCH_x_FROM_IP
Bit Field Bit Offset Access Description

Data 47:0 R/O The linear address of the branch instruction itself,
this is the “branch from“ address.

SIGN_EXt 62:48 R/0 Signed extension of bit 47 of this register.

MISPRED 63 R/O When set, indicates either the target of the branch
was mispredicted and/or the direction (taken/non-
taken) was mispredicted; otherwise, the target
branch was predicted.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 62

share the same microarchitecture as those of the Intel® Xeon® Processor E3 Family and
second generation Intel Core i7-2xxx, Intel Core i5-2xxx, Intel Core i3-2xxx processor
series, the uncore subsystems are different. An overview of the uncore performance
monitoring facilities of the Intel Xeon processor E5 family (and Intel Core i7-3930K
processor) is described in Section 18.8.8.

Thus, the performance monitoring facilities in the processor core generally are the same
as those described in Section 18.8 through Section 18.8.5. However, the
MSR_OFFCORE_RSP_0/MSR_OFFCORE_RSP_1 Response Supplier Info field shown in
Table 18-26 applies to Intel Core Processors with CPUID signature of
DisplayFamily_DisplayModel encoding of 06_2AH; next generation Intel Xeon processor
with CPUID signature of DisplayFamily_DisplayModel encoding of 06_2DH supports an
additional field for remote DRAM controller shown in Table 18-29. Additionally, the are
some small differences in the non-architectural performance monitoring events (see
Table 19-4).

18.8.8 Intel® Xeon® Processor E5 Family Uncore Performance
Monitoring Facility

The uncore subsystem in the Intel Xeon processor E5 family based on Intel microarchi-
tecture Sandy Bridge has some similarities with those of the Intel Xeon processor E7
family based on Intel microarchitecture Sandy Bridge. Within the uncore subsystem,
localized performance counter sets are provided at logic control unit scope. For example,
each Cbox caching agent has a set of local performance counters, and the power
controller unit (PCU) has its own local performance counters. Up to 8 C-Box units are
supported in the uncore sub-system.

Table 18-30 summarizes the uncore PMU facilities providing MSR interfaces.

Table 18-29 MSR_OFFCORE_RSP_x Supplier Info Field Definition for Next Generation
Intel Xeon Processor

Subtype Bit Name Offset Description

Common Any 16 (R/W). Catch all value for any response types.

Supplier
Info

NO_SUPP 17 (R/W). No Supplier Information available

LLC_HITM 18 (R/W). M-state initial lookup stat in L3.

LLC_HITE 19 (R/W). E-state

LLC_HITS 20 (R/W). S-state

LLC_HITF 21 (R/W). F-state

LOCAL 22 (R/W). Local DRAM Controller

Remote 30:23 (R/W): Remote DRAM Controller (either all 0s or all 1s)

Table 18-30 Uncore PMU MSR Summary for Intel® Xeon® Processor E5 Family

Box
of
Boxes Counters per Box

Counter
Width

General
Purpose

Global
Enable Sub-control MSRs

C-Box 8 4 44 Yes per-box None

PCU 1 4 48 Yes per-box Match/Mask

U-Box 1 2 44 Yes uncore None

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 63

...

13. Updates to Chapter 19, Volume 3B
Change bars show changes to Chapter 19 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...

19.3 PERFORMANCE MONITORING EVENTS FOR 2ND
GENERATION INTEL® CORE™ I7-2XXX, INTEL® CORE™
I5-2XXX, INTEL® CORE™ I3-2XXX PROCESSOR SERIES

Second generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx
processor series are based on the Intel microarchitecture code name Sandy Bridge. They
support architectural performance-monitoring events listed in Table 19-1. Non-architec-
tural performance-monitoring events in the processor core are listed in Table 19-3, Table
19-4, and Table 19-5. The events in Table 19-3 apply to processors with CPUID signature
of DisplayFamily_DisplayModel encoding with the following values: 06_2AH and
06_2DH. The events in Table 19-4 apply to processors with CPUID signature 06_2AH.
The events in Table 19-5 apply to processors with CPUID signature 06_2DH.

Table 19-3 Non-Architectural Performance Events In the Processor Core common to
Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and

Intel® Xeon® Processor E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

03H 01H LD_BLOCKS.DATA_U
NKNOWN

blocked loads due to store buffer
blocks with unknown data.

03H 02H LD_BLOCKS.STORE_F
ORWARD

loads blocked by overlapping with
store buffer that cannot be
forwarded .

03H 08H LD_BLOCKS.NO_SR # of Split loads blocked due to
resource not available.

03H 10H LD_BLOCKS.ALL_BLO
CK

Number of cases where any load is
blocked but has no DCU miss.

05H 01H MISALIGN_MEM_REF.
LOADS

Speculative cache-line split load
uops dispatched to L1D.

05H 02H MISALIGN_MEM_REF.
STORES

Speculative cache-line split Store-
address uops dispatched to L1D.

07H 01H LD_BLOCKS_PARTIA
L.ADDRESS_ALIAS

False dependencies in MOB due to
partial compare on address.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 64

07H 08H LD_BLOCKS_PARTIA
L.ALL_STA_BLOCK

The number of times that load
operations are temporarily blocked
because of older stores, with
addresses that are not yet known. A
load operation may incur more than
one block of this type.

08H 01H DTLB_LOAD_MISSES.
MISS_CAUSES_A_WA
LK

Misses in all TLB levels that cause a
page walk of any page size.

08H 02H DTLB_LOAD_MISSES.
WALK_COMPLETED

Misses in all TLB levels that caused
page walk completed of any size.

08H 04H DTLB_LOAD_MISSES.
WALK_DURATION

Cycle PMH is busy with a walk.

08H 10H DTLB_LOAD_MISSES.
STLB_HIT

Number of cache load STLB hits. No
page walk.

0DH 03H INT_MISC.RECOVERY
_CYCLES

Cycles waiting to recover after
Machine Clears or JEClear. Set
Cmask= 1.

Set Edge to
count
occurrences

0DH 40H INT_MISC.RAT_STALL
_CYCLES

Cycles RAT external stall is sent to
IDQ for this thread.

0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of Uops
issued by the RAT to RS.

Set Cmask = 1, Inv = 1, Any= 1to
count stalled cycles of this core.

Set Cmask = 1,
Inv = 1to count
stalled cycles

10H 01H FP_COMP_OPS_EXE.
X87

Counts number of X87 uops
executed.

10H 10H FP_COMP_OPS_EXE.
SSE_FP_PACKED_DO
UBLE

Counts number of SSE* double
precision FP packed uops executed.

10H 20H FP_COMP_OPS_EXE.
SSE_FP_SCALAR_SIN
GLE

Counts number of SSE* single
precision FP scalar uops executed.

10H 40H FP_COMP_OPS_EXE.
SSE_PACKED SINGLE

Counts number of SSE* single
precision FP packed uops executed.

10H 80H FP_COMP_OPS_EXE.
SSE_SCALAR_DOUBL
E

Counts number of SSE* double
precision FP scalar uops executed.

11H 01H SIMD_FP_256.PACKE
D_SINGLE

Counts 256-bit packed single-
precision floating-point instructions

11H 02H SIMD_FP_256.PACKE
D_DOUBLE

Counts 256-bit packed double-
precision floating-point instructions

Table 19-3 Non-Architectural Performance Events In the Processor Core common to
Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and

Intel® Xeon® Processor E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 65

14H 01H ARITH.FPU_DIV_ACT
IVE

Cycles that the divider is active,
includes INT and FP. Set 'edge =1,
cmask=1' to count the number of
divides.

17H 01H INSTS_WRITTEN_TO
_IQ.INSTS

Counts the number of instructions
written into the IQ every cycle.

24H 01H L2_RQSTS.DEMAND_
DATA_RD_HIT

Demand Data Read requests that
hit L2 cache

24H 03H L2_RQSTS.ALL_DEM
AND_DATA_RD

Counts any demand and L1 HW
prefetch data load requests to L2.

24H 04H L2_RQSTS.RFO_HITS Counts the number of store RFO
requests that hit the L2 cache.

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO
requests that miss the L2 cache.

24H 0CH L2_RQSTS.ALL_RFO Counts all L2 store RFO requests.

24H 10H L2_RQSTS.CODE_RD
_HIT

Number of instruction fetches that
hit the L2 cache.

24H 20H L2_RQSTS.CODE_RD
_MISS

Number of instruction fetches that
missed the L2 cache.

24H 30H L2_RQSTS.ALL_COD
E_RD

Counts all L2 code requests.

24H 40H L2_RQSTS.PF_HIT Requests from L2 Hardware
prefetcher that hit L2.

24H 80H L2_RQSTS.PF_MISS Requests from L2 Hardware
prefetcher that missed L2.

24H C0H L2_RQSTS.ALL_PF Any requests from L2 Hardware
prefetchers

27H 01H L2_STORE_LOCK_RQ
STS.MISS

RFOs that miss cache lines

27H 04H L2_STORE_LOCK_RQ
STS.HIT_E

RFOs that hit cache lines in E state

27H 08H L2_STORE_LOCK_RQ
STS.HIT_M

RFOs that hit cache lines in M state

27H 0FH L2_STORE_LOCK_RQ
STS.ALL

RFOs that access cache lines in any
state

28H 04H L2_L1D_WB_RQSTS.
HIT_E

Not rejected writebacks from L1D
to L2 cache lines in E state.

28H 08H L2_L1D_WB_RQSTS.
HIT_M

Not rejected writebacks from L1D
to L2 cache lines in M state.

Table 19-3 Non-Architectural Performance Events In the Processor Core common to
Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and

Intel® Xeon® Processor E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 66

2EH 4FH LONGEST_LAT_CACH
E.REFERENCE

This event counts requests
originating from the core that
reference a cache line in the last
level cache.

see Table 19-1

2EH 41H LONGEST_LAT_CACH
E.MISS

This event counts each cache miss
condition for references to the last
level cache.

see Table 19-1

3CH 00H CPU_CLK_UNHALTED
.THREAD_P

Counts the number of thread cycles
while the thread is not in a halt
state. The thread enters the halt
state when it is running the HLT
instruction. The core frequency may
change from time to time due to
power or thermal throttling.

see Table 19-1

3CH 01H CPU_CLK_THREAD_
UNHALTED.REF_XCL
K

Increments at the frequency of
XCLK (100 MHz) when not halted.

see Table 19-1

48H 01H L1D_PEND_MISS.PE
NDING

Increments the number of
outstanding L1D misses every cycle.
Set Cmaks = 1 and Edge =1 to count
occurrences.

Counter 2 only;

Set Cmask = 1 to
count cycles.

49H 01H DTLB_STORE_MISSE
S.MISS_CAUSES_A_
WALK

Miss in all TLB levels causes an page
walk of any page size (4K/2M/4M/
1G).

49H 02H DTLB_STORE_MISSE
S.WALK_COMPLETED

Miss in all TLB levels causes a page
walk that completes of any page
size (4K/2M/4M/1G).

49H 04H DTLB_STORE_MISSE
S.WALK_DURATION

Cycles PMH is busy with this walk.

49H 10H DTLB_STORE_MISSE
S.STLB_HIT

Store operations that miss the first
TLB level but hit the second and do
not cause page walks

4CH 01H LOAD_HIT_PRE.SW_
PF

Not SW-prefetch load dispatches
that hit fill buffer allocated for S/W
prefetch.

4CH 02H LOAD_HIT_PRE.HW_
PF

Not SW-prefetch load dispatches
that hit fill buffer allocated for H/W
prefetch.

4EH 02H HW_PRE_REQ.DL1_
MISS

Hardware Prefetch requests that
miss the L1D cache. A request is
being counted each time it access
the cache & miss it, including if a
block is applicable or if hit the Fill
Buffer for example.

This accounts for
both L1 streamer
and IP-based
(IPP) HW
prefetchers.

Table 19-3 Non-Architectural Performance Events In the Processor Core common to
Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and

Intel® Xeon® Processor E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 67

51H 01H L1D.REPLACEMENT Counts the number of lines brought
into the L1 data cache.

51H 02H L1D.ALLOCATED_IN_
M

Counts the number of allocations of
modified L1D cache lines.

51H 04H L1D.EVICTION Counts the number of modified lines
evicted from the L1 data cache due
to replacement.

51H 08H L1D.ALL_M_REPLAC
EMENT

Cache lines in M state evicted out of
L1D due to Snoop HitM or dirty line
replacement

59H 20H PARTIAL_RAT_STALL
S.FLAGS_MERGE_UO
P

Increments the number of flags-
merge uops in flight each cycle.

Set Cmask = 1 to count cycles.

59H 40H PARTIAL_RAT_STALL
S.SLOW_LEA_WINDO
W

Cycles with at least one slow LEA
uop allocated.

59H 80H PARTIAL_RAT_STALL
S.MUL_SINGLE_UOP

Number of Multiply packed/scalar
single precision uops allocated.

5BH 0CH RESOURCE_STALLS2.
ALL_FL_EMPTY

Cycles stalled due to free list empty

5BH 0FH RESOURCE_STALLS2.
ALL_PRF_CONTROL

Cycles stalled due to control
structures full for physical registers

5BH 40H RESOURCE_STALLS2.
BOB_FULL

Cycles Allocator is stalled due
Branch Order Buffer.

5BH 4FH RESOURCE_STALLS2.
OOO_RSRC

Cycles stalled due to out of order
resources full

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the
thread is in ring 0

Use Edge to
count transition

5CH 02H CPL_CYCLES.RING12
3

Unhalted core cycles when the
thread is not in ring 0

5EH 01H RS_EVENTS.EMPTY_
CYCLES

Cycles the RS is empty for the
thread.

60H 01H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND_DATA_RD

Offcore outstanding Demand Data
Read transactions in SQ to uncore.
Set Cmask=1 to count cycles.

60H 04H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND_RFO

Offcore outstanding RFO store
transactions in SQ to uncore. Set
Cmask=1 to count cycles.

60H 08H OFFCORE_REQUEST
S_OUTSTANDING.AL
L_DATA_RD

Offcore outstanding cacheable data
read transactions in SQ to uncore.
Set Cmask=1 to count cycles.

Table 19-3 Non-Architectural Performance Events In the Processor Core common to
Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and

Intel® Xeon® Processor E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 68

63H 01H LOCK_CYCLES.SPLIT_
LOCK_UC_LOCK_DUR
ATION

Cycles in which the L1D and L2 are
locked, due to a UC lock or split lock.

63H 02H LOCK_CYCLES.CACHE
_LOCK_DURATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops
delivered to IDQ from MITE path.

Set Cmask = 1 to count cycles.

Can combine
Umask 04H and
20H

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops
delivered to IDQ from DSB path.

Set Cmask = 1 to count cycles.

Can combine
Umask 08H and
10H

79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops
delivered to IDQ when MS busy by
DSB. Set Cmask = 1 to count cycles
MS is busy. Set Cmask=1 and Edge
=1 to count MS activations.

Can combine
Umask 08H and
10H

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops
delivered to IDQ when MS is busy by
MITE. Set Cmask = 1 to count cycles.

Can combine
Umask 04H and
20H

79H 30H IDQ.MS_UOPS Increment each cycle # of uops
delivered to IDQ from MS by either
DSB or MITE. Set Cmask = 1 to count
cycles.

Can combine
Umask 04H, 08H
and 30H

80H 02H ICACHE.MISSES Number of Instruction Cache,
Streaming Buffer and Victim Cache
Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_C
AUSES_A_WALK

Misses in all ITLB levels that cause
page walks

85H 02H ITLB_MISSES.WALK_
COMPLETED

Misses in all ITLB levels that cause
completed page walks

85H 04H ITLB_MISSES.WALK_
DURATION

Cycle PMH is busy with a walk.

85H 10H ITLB_MISSES.STLB_H
IT

Number of cache load STLB hits. No
page walk.

87H 01H ILD_STALL.LCP Stalls caused by changing prefix
length of the instruction.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to IQ is full.

88H 01H BR_INST_EXEC.COND Qualify conditional near branch
instructions executed, but not
necessarily retired.

Must combine
with umask 40H,
80H

Table 19-3 Non-Architectural Performance Events In the Processor Core common to
Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and

Intel® Xeon® Processor E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 69

88H 02H BR_INST_EXEC.DIRE
CT_JMP

Qualify all unconditional near branch
instructions excluding calls and
indirect branches.

Must combine
with umask 80H

88H 04H BR_INST_EXEC.INDIR
ECT_JMP_NON_CALL
_RET

Qualify executed indirect near
branch instructions that are not
calls nor returns.

Must combine
with umask 80H

88H 08H BR_INST_EXEC.RETU
RN_NEAR

Qualify indirect near branches that
have a return mnemonic.

Must combine
with umask 80H

88H 10H BR_INST_EXEC.DIRE
CT_NEAR_CALL

Qualify unconditional near call
branch instructions, excluding non
call branch, executed.

Must combine
with umask 80H

88H 20H BR_INST_EXEC.INDIR
ECT_NEAR_CALL

Qualify indirect near calls, including
both register and memory indirect,
executed.

Must combine
with umask 80H

88H 40H BR_INST_EXEC.NON
TAKEN

Qualify non-taken near branches
executed.

Applicable to
umask 01H only

88H 80H BR_INST_EXEC.TAKE
N

Qualify taken near branches
executed. Must combine with
01H,02H, 04H, 08H, 10H, 20H

88H FFH BR_INST_EXEC.ALL_
BRANCHES

Counts all near executed branches
(not necessarily retired).

89H 01H BR_MISP_EXEC.CON
D

Qualify conditional near branch
instructions mispredicted.

Must combine
with umask 40H,
80H

89H 04H BR_MISP_EXEC.INDIR
ECT_JMP_NON_CALL
_RET

Qualify mispredicted indirect near
branch instructions that are not
calls nor returns.

Must combine
with umask 80H

89H 08H BR_MISP_EXEC.RETU
RN_NEAR

Qualify mispredicted indirect near
branches that have a return
mnemonic.

Must combine
with umask 80H

89H 10H BR_MISP_EXEC.DIRE
CT_NEAR_CALL

Qualify mispredicted unconditional
near call branch instructions,
excluding non call branch, executed.

Must combine
with umask 80H

89H 20H BR_MISP_EXEC.INDIR
ECT_NEAR_CALL

Qualify mispredicted indirect near
calls, including both register and
memory indirect, executed.

Must combine
with umask 80H

89H 40H BR_MISP_EXEC.NON
TAKEN

Qualify mispredicted non-taken
near branches executed,.

Applicable to
umask 01H only

89H 80H BR_MISP_EXEC.TAKE
N

Qualify mispredicted taken near
branches executed. Must combine
with 01H,02H, 04H, 08H, 10H, 20H

89H FFH BR_MISP_EXEC.ALL_
BRANCHES

Counts all near executed branches
(not necessarily retired).

Table 19-3 Non-Architectural Performance Events In the Processor Core common to
Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and

Intel® Xeon® Processor E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 70

9CH 01H IDQ_UOPS_NOT_DEL
IVERED.CORE

Count number of non-delivered
uops to RAT per thread.

Use Cmask to
qualify uop b/w

A1H 01H UOPS_DISPATCHED_
PORT.PORT_0

Cycles which a Uop is dispatched on
port 0.

A1H 02H UOPS_DISPATCHED_
PORT.PORT_1

Cycles which a Uop is dispatched on
port 1.

A1H 04H UOPS_DISPATCHED_
PORT.PORT_2_LD

Cycles which a load uop is
dispatched on port 2.

A1H 08H UOPS_DISPATCHED_
PORT.PORT_2_STA

Cycles which a store address uop is
dispatched on port 2.

A1H 0CH UOPS_DISPATCHED_
PORT.PORT_2

Cycles which a Uop is dispatched on
port 2.

A1H 10H UOPS_DISPATCHED_
PORT.PORT_3_LD

Cycles which a load uop is
dispatched on port 3.

A1H 20H UOPS_DISPATCHED_
PORT.PORT_3_STA

Cycles which a store address uop is
dispatched on port 3.

A1H 30H UOPS_DISPATCHED_
PORT.PORT_3

Cycles which a Uop is dispatched on
port 3.

A1H 40H UOPS_DISPATCHED_
PORT.PORT_4

Cycles which a Uop is dispatched on
port 4.

A1H 80H UOPS_DISPATCHED_
PORT.PORT_5

Cycles which a Uop is dispatched on
port 5.

A2H 01H RESOURCE_STALLS.
ANY

Cycles Allocation is stalled due to
Resource Related reason.

A2H 02H RESOURCE_STALLS.L
B

Counts the cycles of stall due to lack
of load buffers.

A2H 04H RESOURCE_STALLS.R
S

Cycles stalled due to no eligible RS
entry available.

A2H 08H RESOURCE_STALLS.S
B

Cycles stalled due to no store
buffers available. (not including
draining form sync).

A2H 10H RESOURCE_STALLS.R
OB

Cycles stalled due to re-order buffer
full.

A2H 20H RESOURCE_STALLS.F
CSW

Cycles stalled due to writing the
FPU control word.

A2H 40H RESOURCE_STALLS.
MXCSR

Cycles stalled due to the MXCSR
register rename occurring to close
to a previous MXCSR rename.

A2H 80H RESOURCE_STALLS.
OTHER

Cycles stalled while execution was
stalled due to other resource issues.

ABH 01H DSB2MITE_SWITCHE
S.COUNT

Number of DSB to MITE switches.

Table 19-3 Non-Architectural Performance Events In the Processor Core common to
Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and

Intel® Xeon® Processor E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 71

ABH 02H DSB2MITE_SWITCHE
S.PENALTY_CYCLES

Cycles DSB to MITE switches caused
delay.

ACH 02H DSB_FILL.OTHER_CA
NCEL

Cases of cancelling valid DSB fill not
because of exceeding way limit

ACH 08H DSB_FILL.EXCEED_D
SB_LINES

DSB Fill encountered > 3 DSB lines.

ACH 0AH DSB_FILL.ALL_CANC
EL

Cases of cancelling valid Decode
Stream Buffer (DSB) fill not because
of exceeding way limit

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes,
includes 4k/2M/4M pages.

B0H 01H OFFCORE_REQUEST
S.DEMAND_DATA_RD

Demand data read requests sent to
uncore.

B0H 04H OFFCORE_REQUEST
S.DEMAND_RFO

Demand RFO read requests sent to
uncore., including regular RFOs,
locks, ItoM

B0H 08H OFFCORE_REQUEST
S.ALL_DATA_RD

Data read requests sent to uncore
(demand and prefetch).

B1H 01H UOPS_DISPATCHED.T
HREAD

Counts total number of uops to be
dispatched per-thread each cycle.
Set Cmask = 1, INV =1 to count stall
cycles.

B1H 02H UOPS_DISPATCHED.C
ORE

Counts total number of uops to be
dispatched per-core each cycle.

Do not need to
set ANY

B2H 01H OFFCORE_REQUEST
S_BUFFER.SQ_FULL

Offcore requests buffer cannot take
more entries for this thread core.

B6H 01H AGU_BYPASS_CANCE
L.COUNT

Counts executed load operations
with all the following traits: 1.
addressing of the format [base +
offset], 2. the offset is between 1
and 2047, 3. the address specified
in the base register is in one page
and the address [base+offset] is in
another page.

B7H 01H OFF_CORE_RESPONS
E_0

see Section 18.8.5, “Off-core
Response Performance Monitoring”;
PMC0 only.

Requires
programming
MSR 01A6H

BBH 01H OFF_CORE_RESPONS
E_1

See Section 18.8.5, “Off-core
Response Performance Monitoring”.
PMC3 only.

Requires
programming
MSR 01A7H

BDH 01H TLB_FLUSH.DTLB_T
HREAD

DTLB flush attempts of the thread-
specific entries

Table 19-3 Non-Architectural Performance Events In the Processor Core common to
Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and

Intel® Xeon® Processor E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 72

BDH 20H TLB_FLUSH.STLB_A
NY

Count number of STLB flush
attempts

BFH 05H L1D_BLOCKS.BANK_
CONFLICT_CYCLES

Cycles when dispatched loads are
cancelled due to L1D bank conflicts
with other load ports

cmask=1

C0H 00H INST_RETIRED.ANY_
P

Number of instructions at
retirement

See Table 19-1

C0H 01H INST_RETIRED.PREC
_DIST

Precise instruction retired event
with HW to reduce effect of PEBS
shadow in IP distribution

PMC1 only; Must
quiesce other
PMCs.

C1H 02H OTHER_ASSISTS.ITL
B_MISS_RETIRED

Instructions that experienced an
ITLB miss.

C1H 08H OTHER_ASSISTS.AVX
_STORE

Number of assists associated with
256-bit AVX store operations.

C1H 10H OTHER_ASSISTS.AVX
_TO_SSE

Number of transitions from AVX-
256 to legacy SSE when penalty
applicable.

C1H 20H OTHER_ASSISTS.SSE
_TO_AVX

Number of transitions from SSE to
AVX-256 when penalty applicable.

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops
retired, Use cmask=1 and invert to
count active cycles or stalled cycles.

Supports PEBS

C2H 02H UOPS_RETIRED.RETI
RE_SLOTS

Counts the number of retirement
slots used each cycle.

C3H 02H MACHINE_CLEARS.M
EMORY_ORDERING

Counts the number of machine
clears due to memory order
conflicts.

C3H 04H MACHINE_CLEARS.S
MC

Counts the number of times that a
program writes to a code section.

C3H 20H MACHINE_CLEARS.M
ASKMOV

Counts the number of executed
AVX masked load operations that
refer to an illegal address range
with the mask bits set to 0.

C4H 00H BR_INST_RETIRED.A
LL_BRANCHES

Branch instructions at retirement See Table 19-1

C4H 01H BR_INST_RETIRED.C
ONDITIONAL

Counts the number of conditional
branch instructions retired.

Supports PEBS

C4H 02H BR_INST_RETIRED.N
EAR_CALL

Direct and indirect near call
instructions retired.

C4H 04H BR_INST_RETIRED.A
LL_BRANCHES

Counts the number of branch
instructions retired.

Table 19-3 Non-Architectural Performance Events In the Processor Core common to
Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and

Intel® Xeon® Processor E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 73

C4H 08H BR_INST_RETIRED.N
EAR_RETURN

Counts the number of near return
instructions retired.

C4H 10H BR_INST_RETIRED.N
OT_TAKEN

Counts the number of not taken
branch instructions retired.

C4H 20H BR_INST_RETIRED.N
EAR_TAKEN

Number of near taken branches
retired.

C4H 40H BR_INST_RETIRED.F
AR_BRANCH

Number of far branches retired.

C5H 00H BR_MISP_RETIRED.A
LL_BRANCHES

Mispredicted branch instructions at
retirement

See Table 19-1

C5H 01H BR_MISP_RETIRED.C
ONDITIONAL

Mispredicted conditional branch
instructions retired.

Supports PEBS

C5H 02H BR_MISP_RETIRED.N
EAR_CALL

Direct and indirect mispredicted
near call instructions retired.

C5H 04H BR_MISP_RETIRED.A
LL_BRANCHES

Mispredicted macro branch
instructions retired.

C5H 10H BR_MISP_RETIRED.N
OT_TAKEN

Mispredicted not taken branch
instructions retired.

C5H 20H BR_MISP_RETIRED.T
AKEN

Mispredicted taken branch
instructions retired.

CAH 02H FP_ASSIST.X87_OUT
PUT

Number of X87 assists due to
output value.

CAH 04H FP_ASSIST.X87_INP
UT

Number of X87 assists due to input
value.

CAH 08H FP_ASSIST.SIMD_OU
TPUT

Number of SIMD FP assists due to
Output values

CAH 10H FP_ASSIST.SIMD_INP
UT

Number of SIMD FP assists due to
input values

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE*
or FP assists

CCH 20H ROB_MISC_EVENTS.L
BR_INSERTS

Count cases of saving new LBR
records by hardware.

CDH 01H MEM_TRANS_RETIR
ED.LOAD_LATENCY

Sample loads with specified latency
threshold. PMC3 only.

Specify threshold
in MSR 0x3F6

CDH 02H MEM_TRANS_RETIR
ED.PRECISE_STORE

Sample stores and collect precise
store operation via PEBS record.
PMC3 only.

See Section
18.8.4.3

D0H 01H MEM_UOP_RETIRED.
LOADS

Qualify retired memory uops that
are loads. Combine with umask 10H,
20H, 40H, 80H.

Supports PEBS

Table 19-3 Non-Architectural Performance Events In the Processor Core common to
Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and

Intel® Xeon® Processor E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 74

D0H 02H MEM_UOP_RETIRED.
STORES

Qualify retired memory uops that
are stores. Combine with umask
10H, 20H, 40H, 80H.

D0H 10H MEM_UOP_RETIRED.
STLB_MISS

Qualify retired memory uops with
STLB miss. Must combine with
umask 01H, 02H, to produce counts.

D0H 20H MEM_UOP_RETIRED.
LOCK

Qualify retired memory uops with
lock. Must combine with umask 01H,
02H, to produce counts.

D0H 40H MEM_UOP_RETIRED.
SPLIT

Qualify retired memory uops with
line split. Must combine with umask
01H, 02H, to produce counts.

D0H 80H MEM_UOP_RETIRED.
ALL

Qualify any retired memory uops.
Must combine with umask 01H,
02H, to produce counts.

D1H 01H MEM_LOAD_UOPS_R
ETIRED.L1_HIT

Retired load uops with L1 cache hits
as data sources.

Supports PEBS

D1H 02H MEM_LOAD_UOPS_R
ETIRED.L2_HIT

Retired load uops with L2 cache hits
as data sources.

D1H 40H MEM_LOAD_UOPS_R
ETIRED.HIT_LFB

Retired load uops which data
sources were load uops missed L1
but hit FB due to preceding miss to
the same cache line with data not
ready.

D2H 01H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_MISS

Retired load uops which data
sources were LLC hit and cross-core
snoop missed in on-pkg core cache.

Supports PEBS

D2H 02H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_HIT

Retired load uops which data
sources were LLC and cross-core
snoop hits in on-pkg core cache.

D2H 04H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_HITM

Retired load uops which data
sources were HitM responses from
shared LLC.

D2H 08H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_NONE

Retired load uops which data
sources were hits in LLC without
snoops required.

D4H 02H MEM_LOAD_UOPS_M
ISC_RETIRED.LLC_MI
SS

Retired load uops with unknown
information as data source in cache
serviced the load.

Supports PEBS.

F0H 01H L2_TRANS.DEMAND_
DATA_RD

Demand Data Read requests that
access L2 cache

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache

Table 19-3 Non-Architectural Performance Events In the Processor Core common to
Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and

Intel® Xeon® Processor E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 75

...
Non-architecture performance monitoring events in the processor core that are appli-
cable only to Intel Xeon processor E5 family (and Intel Core i7-3930 processor) based on
Intel microarchitecture Sandy Bridge, with CPUID signature of
DisplayFamily_DisplayModel 06_2DH, are listed in Table 19-5.

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching
instructions

F0H 08H L2_TRANS.ALL_PF L2 or LLC HW prefetches that
access L2 cache

including rejects.

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2
cache

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache

F0H 80H L2_TRANS.ALL_REQ
UESTS

Transactions accessing L2 pipe

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2 Counting does
not cover rejects.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2 Counting does
not cover rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2 Counting does
not cover rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2 Counting does
not cover rejects.

F2H 01H L2_LINES_OUT.DEMA
ND_CLEAN

Clean L2 cache lines evicted by
demand

F2H 02H L2_LINES_OUT.DEMA
ND_DIRTY

Dirty L2 cache lines evicted by
demand

F2H 04H L2_LINES_OUT.PF_C
LEAN

Clean L2 cache lines evicted by L2
prefetch

F2H 08H L2_LINES_OUT.PF_DI
RTY

Dirty L2 cache lines evicted by L2
prefetch

F2H 0AH L2_LINES_OUT.DIRT
Y_ALL

Dirty L2 cache lines filling the L2 Counting does
not cover rejects.

F4H 10H SQ_MISC.SPLIT_LOCK Split locks in SQ

Table 19-3 Non-Architectural Performance Events In the Processor Core common to
Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and

Intel® Xeon® Processor E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 76

Table 19-5 Non-Architectural Performance Events Applicable only to the Processor Core
of Intel® Xeon® Processor E5 Family

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

B7H/
BBH

01H OFF_CORE_RESPONS
E_N

Sub-events of
OFF_CORE_RESPONSE_N (suffix N =
0, 1) programmed using MSR 01A6H/
01A7H with values shown in the
comment column.

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.ANY_RE
SPONSE_N

0x3FFFC0000
4

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.LOCAL_D
RAM_N

0x600400004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.REMOTE
_DRAM_N

0x67F800004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.REMOTE
_HIT_FWD_N

0x87F800004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.REMOTE
_HITM_N

0x107FC0000
4

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.ANY_DR
AM_N

0x67FC00001

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.ANY_RE
SPONSE_N

0x3F803C000
1

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.LOCAL_D
RAM_N

0x600400001

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.REMOTE
_DRAM_N

0x67F800001

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.REMOTE
_HIT_FWD_N

0x87F800001

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.REMOTE
_HITM_N

0x107FC0000
1

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_MISS.ANY_RESP
ONSE_N

0x3F803C004
0

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.ANY_DRAM
_N

0x67FC00010

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.ANY_RESP
ONSE_N

0x3F803C001
0

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.LOCAL_DR
AM_N

0x600400010

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.REMOTE_D
RAM_N

0x67F800010

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.REMOTE_HI
T_FWD_N

0x87F800010

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.REMOTE_HI
TM_N

0x107FC0001
0

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 77

...

Table 19-7 Non-Architectural Performance Events In the Processor Core for Intel® Core™
i7 Processor and Intel® Xeon® Processor 5500 Series

...

Table 19-9 Non-Architectural Performance Events In the Processor Core for Processors

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_MISS.ANY_RES
PONSE_N

0x3FFFC0020
0

OFFCORE_RESPONSE.PF_LLC_DATA_RD.LLC_MISS.ANY_RES
PONSE_N

0x3FFFC0008
0

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

...

C0H 00H INST_RETIRED.ANY_
P

See Table 19-1
Notes: INST_RETIRED.ANY is
counted by a designated fixed
counter. INST_RETIRED.ANY_P is
counted by a programmable counter
and is an architectural performance
event. Event is supported if
CPUID.A.EBX[1] = 0.

Counting:
Faulting
executions of
GETSEC/VM
entry/VM Exit/
MWait will not
count as retired
instructions.

...

Table 19-5 Non-Architectural Performance Events Applicable only to the Processor Core
of Intel® Xeon® Processor E5 Family

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 78

Based on Intel® Microarchitecture Code Name Westmere

...

14. Updates to Chapter 25, Volume 3C
Change bars show changes to Chapter 25 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3C: System Programming Guide, Part 3.

--

...

25.3 OTHER CAUSES OF VM EXITS
In addition to VM exits caused by instruction execution, the following events can cause
VM exits:
• Exceptions. Exceptions (faults, traps, and aborts) cause VM exits based on the

exception bitmap (see Section 24.6.3). If an exception occurs, its vector (in the
range 0–31) is used to select a bit in the exception bitmap. If the bit is 1, a VM exit
occurs; if the bit is 0, the exception is delivered normally through the guest IDT. This
use of the exception bitmap applies also to exceptions generated by the instructions
INT3, INTO, BOUND, and UD2.

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

...

2EH 41H L3_LAT_CACHE.MISS Counts uncore Last Level Cache
misses. Because cache hierarchy,
cache sizes and other
implementation-specific
characteristics; value comparison to
estimate performance differences is
not recommended.

see Table 19-1

2EH 4FH L3_LAT_CACHE.REFE
RENCE

Counts uncore Last Level Cache
references. Because cache
hierarchy, cache sizes and other
implementation-specific
characteristics; value comparison to
estimate performance differences is
not recommended.

see Table 19-1

...

C0H 00H INST_RETIRED.ANY_
P

See Table 19-1
Notes: INST_RETIRED.ANY is
counted by a designated fixed
counter. INST_RETIRED.ANY_P is
counted by a programmable counter
and is an architectural performance
event. Event is supported if
CPUID.A.EBX[1] = 0.

Counting:
Faulting
executions of
GETSEC/VM
entry/VM Exit/
MWait will not
count as retired
instructions.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 79

Page faults (exceptions with vector 14) are specially treated. When a page fault
occurs, a logical processor consults (1) bit 14 of the exception bitmap; (2) the error
code produced with the page fault [PFEC]; (3) the page-fault error-code mask field
[PFEC_MASK]; and (4) the page-fault error-code match field [PFEC_MATCH]. It
checks if PFEC & PFEC_MASK = PFEC_MATCH. If there is equality, the specification
of bit 14 in the exception bitmap is followed (for example, a VM exit occurs if that bit
is set). If there is inequality, the meaning of that bit is reversed (for example, a
VM exit occurs if that bit is clear).
Thus, if software desires VM exits on all page faults, it can set bit 14 in the exception
bitmap to 1 and set the page-fault error-code mask and match fields each to
00000000H. If software desires VM exits on no page faults, it can set bit 14 in the
exception bitmap to 1, the page-fault error-code mask field to 00000000H, and the
page-fault error-code match field to FFFFFFFFH.

• Triple fault. A VM exit occurs if the logical processor encounters an exception while
attempting to call the double-fault handler and that exception itself does not cause a
VM exit due to the exception bitmap. This applies to the case in which the double-
fault exception was generated within VMX non-root operation, the case in which the
double-fault exception was generated during event injection by VM entry, and to the
case in which VM entry is injecting a double-fault exception.

• External interrupts. An external interrupt causes a VM exit if the “external-
interrupt exiting” VM-execution control is 1. Otherwise, the interrupt is delivered
normally through the IDT. (If a logical processor is in the shutdown state or the wait-
for-SIPI state, external interrupts are blocked. The interrupt is not delivered through
the IDT and no VM exit occurs.)

• Non-maskable interrupts (NMIs). An NMI causes a VM exit if the “NMI exiting”
VM-execution control is 1. Otherwise, it is delivered using descriptor 2 of the IDT. (If
a logical processor is in the wait-for-SIPI state, NMIs are blocked. The NMI is not
delivered through the IDT and no VM exit occurs.)

• INIT signals. INIT signals cause VM exits. A logical processor performs none of the
operations normally associated with these events. Such exits do not modify register
state or clear pending events as they would outside of VMX operation. (If a logical
processor is in the wait-for-SIPI state, INIT signals are blocked. They do not cause
VM exits in this case.)

• Start-up IPIs (SIPIs). SIPIs cause VM exits. If a logical processor is not in the
wait-for-SIPI activity state when a SIPI arrives, no VM exit occurs and the SIPI is
discarded. VM exits due to SIPIs do not perform any of the normal operations
associated with those events: they do not modify register state as they would
outside of VMX operation. (If a logical processor is not in the wait-for-SIPI state,
SIPIs are blocked. They do not cause VM exits in this case.)

• Task switches. Task switches are not allowed in VMX non-root operation. Any
attempt to effect a task switch in VMX non-root operation causes a VM exit. See
Section 25.6.2.

• System-management interrupts (SMIs). If the logical processor is using the
dual-monitor treatment of SMIs and system-management mode (SMM), SMIs cause
SMM VM exits. See Section 33.15.2.1

• VMX-preemption timer. A VM exit occurs when the timer counts down to zero. See
Section 25.7.1 for details of operation of the VMX-preemption timer.

1. Under the dual-monitor treatment of SMIs and SMM, SMIs also cause SMM VM exits if they occur in
VMX root operation outside SMM. If the processor is using the default treatment of SMIs and SMM,
SMIs are delivered as described in Section 33.14.1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 80

Debug-trap exceptions and higher priority events take priority over VM exits caused
by the VMX-preemption timer. VM exits caused by the VMX-preemption timer take
priority over VM exits caused by the “NMI-window exiting” VM-execution control and
lower priority events.
These VM exits wake a logical processor from the same inactive states as would a
non-maskable interrupt. Specifically, they wake a logical processor from the
shutdown state and from the states entered using the HLT and MWAIT instructions.
These VM exits do not occur if the logical processor is in the wait-for-SIPI state.

...

25.7.1 VMX-Preemption Timer
If the last VM entry was performed with the 1-setting of “activate VMX-preemption
timer” VM-execution control, the VMX-preemption timer counts down (from the value
loaded by VM entry; see Section 26.6.4) in VMX non-root operation. When the timer
counts down to zero, it stops counting down and a VM exit occurs (see Section 25.3).

The VMX-preemption timer counts down at rate proportional to that of the timestamp
counter (TSC). Specifically, the timer counts down by 1 every time bit X in the TSC
changes due to a TSC increment. The value of X is in the range 0–31 and can be deter-
mined by consulting the VMX capability MSR IA32_VMX_MISC (see Appendix A.6).

The VMX-preemption timer operates in the C-states C0, C1, and C2; it also operates in
the shutdown and wait-for-SIPI states. If the timer counts down to zero in any state
other than the wait-for SIPI state, the logical processor transitions to the C0 C-state and
causes a VM exit; the timer does not cause a VM exit if it counts down to zero in the wait-
for-SIPI state. The timer is not decremented in C-states deeper than C2.

...

15. Updates to Chapter 26, Volume 3C
Change bars show changes to Chapter 26 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3C: System Programming Guide, Part 3.

--

...

26.2.1.1 VM-Execution Control Fields
VM entries perform the following checks on the VM-execution control fields:1

• Reserved bits in the pin-based VM-execution controls must be set properly. Software
may consult the VMX capability MSRs to determine the proper settings (see
Appendix A.3.1).

• Reserved bits in the primary processor-based VM-execution controls must be set
properly. Software may consult the VMX capability MSRs to determine the proper
settings (see Appendix A.3.2).

• If the “activate secondary controls” primary processor-based VM-execution control is
1, reserved bits in the secondary processor-based VM-execution controls must be

1. If the “activate secondary controls” primary processor-based VM-execution control is 0, VM entry
operates as if each secondary processor-based VM-execution control were 0.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 81

cleared. Software may consult the VMX capability MSRs to determine which bits are
reserved (see Appendix A.3.3).
If the “activate secondary controls” primary processor-based VM-execution control
is 0 (or if the processor does not support the 1-setting of that control), no checks
are performed on the secondary processor-based VM-execution controls. The
logical processor operates as if all the secondary processor-based VM-execution
controls were 0.

• The CR3-target count must not be greater than 4. Future processors may support a
different number of CR3-target values. Software should read the VMX capability MSR
IA32_VMX_MISC to determine the number of values supported (see Appendix A.6).

• If the “use I/O bitmaps” VM-execution control is 1, bits 11:0 of each I/O-bitmap
address must be 0. Neither address should set any bits beyond the processor’s
physical-address width.1,2

• If the “use MSR bitmaps” VM-execution control is 1, bits 11:0 of the MSR-bitmap
address must be 0. The address should not set any bits beyond the processor’s
physical-address width.3

• If the “use TPR shadow” VM-execution control is 1, the virtual-APIC address must
satisfy the following checks:

— Bits 11:0 of the address must be 0.

— The address should not set any bits beyond the processor’s physical-address
width.4

If all of the above checks are satisfied and the “use TPR shadow” VM-execution
control is 1, bytes 81H-83H on the virtual-APIC page (see Section 24.6.8) may be
cleared (behavior may be implementation-specific).
The clearing of these bytes may occur even if the VM entry fails. This is true either
if the failure causes control to pass to the instruction following the VM-entry
instruction or if it causes processor state to be loaded from the host-state area of
the VMCS.

• If the “use TPR shadow” VM-execution control is 1, bits 31:4 of the TPR threshold
VM-execution control field must be 0.

• The following check is performed if the “use TPR shadow” VM-execution control is 1
and the “virtualize APIC accesses” VM-execution control is 0: the value of bits 3:0 of
the TPR threshold VM-execution control field should not be greater than the value of
bits 7:4 in byte 80H on the virtual-APIC page (see Section 24.6.8).

• If the “NMI exiting” VM-execution control is 0, the “virtual NMIs” VM-execution
control must be 0.

• If the “virtual NMIs” VM-execution control is 0, the “NMI-window exiting” VM-
execution control must be 0.

1. Software can determine a processor’s physical-address width by executing CPUID with 80000008H
in EAX. The physical-address width is returned in bits 7:0 of EAX.

2. If IA32_VMX_BASIC[48] is read as 1, these addresses must not set any bits in the range 63:32; see
Appendix A.1.

3. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see
Appendix A.1.

4. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see
Appendix A.1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 82

• If the “virtualize APIC-accesses” VM-execution control is 1, the APIC-access address
must satisfy the following checks:

— Bits 11:0 of the address must be 0.

— The address should not set any bits beyond the processor’s physical-address
width.1

...

16. Updates to Chapter 27, Volume 3C
Change bars show changes to Chapter 27 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3C: System Programming Guide, Part 3.

--

...

27.2.4 Information for VM Exits Due to Instruction Execution
Section 24.9.4 defined fields containing information for VM exits that occur due to
instruction execution. (The VM-exit instruction length is also used for VM exits that occur
during the delivery of a software interrupt or software exception.) The following items
detail their use.
• VM-exit instruction length. This field is used in the following cases:

— For fault-like VM exits due to attempts to execute one of the following instruc-
tions that cause VM exits unconditionally (see Section 25.1.2) or based on the
settings of VM-execution controls (see Section 25.1.3): CLTS, CPUID, GETSEC,
HLT, IN, INS, INVD, INVEPT, INVLPG, INVPCID, INVVPID, LGDT, LIDT, LLDT,
LMSW, LTR, MONITOR, MOV CR, MOV DR, MWAIT, OUT, OUTS, PAUSE, RDMSR,
RDPMC, RDRAND, RDTSC, RDTSCP, RSM, SGDT, SIDT, SLDT, STR, VMCALL,
VMCLEAR, VMLAUNCH, VMPTRLD, VMPTRST, VMREAD, VMRESUME, VMWRITE,
VMXOFF, VMXON, WBINVD, WRMSR, and XSETBV.2

— For VM exits due to software exceptions (those generated by executions of INT3
or INTO).

— For VM exits due to faults encountered during delivery of a software interrupt,
privileged software exception, or software exception.

— For VM exits due to attempts to effect a task switch via instruction execution.
These are VM exits that produce an exit reason indicating task switch and either
of the following:

• An exit qualification indicating execution of CALL, IRET, or JMP instruction.

• An exit qualification indicating a task gate in the IDT and an IDT-vectoring
information field indicating that the task gate was encountered during

1. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see
Appendix A.1.

2. This item applies only to fault-like VM exits. It does not apply to trap-like VM exits following execu-
tions of the MOV to CR8 instruction when the “use TPR shadow” VM-execution control is 1 or to
those following executions of the WRMSR instruction when the “virtualize x2APIC mode” VM-execu-
tion control is 1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 83

delivery of a software interrupt, privileged software exception, or software
exception.

— For APIC-access VM exits resulting from linear accesses (see Section 25.2.1) and
encountered during delivery of a software interrupt, privileged software
exception, or software exception.1

— For VM exits due executions of VMFUNC that fail because one of the following is
true:

• EAX indicates a VM function that is not enabled (the bit at position EAX is 0 in
the VM-function controls; see Section 25.7.4.2).

• EAX = 0 and either ECX ≥ 512 or the value of ECX selects an invalid tentative
EPTP value (see Section 25.7.4.3).

In all the above cases, this field receives the length in bytes (1–15) of the instruction
(including any instruction prefixes) whose execution led to the VM exit (see the next
paragraph for one exception).
The cases of VM exits encountered during delivery of a software interrupt, privileged
software exception, or software exception include those encountered during delivery
of events injected as part of VM entry (see Section 26.5.1.2). If the original event
was injected as part of VM entry, this field receives the value of the VM-entry
instruction length.
All VM exits other than those listed in the above items leave this field undefined.

...

17. Update to Volume 3C
Chapter 29 and chapter 33 were swapped in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3C: System Programming Guide, Part 3.

18. Updates to Chapter 33, Volume 3C
Change bars show changes to Chapter 33 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3C: System Programming Guide, Part 3.

--

...

33.4.2 SMRAM Caching
An IA-32 processor does not automatically write back and invalidate its caches before
entering SMM or before exiting SMM. Because of this behavior, care must be taken in the
placement of the SMRAM in system memory and in the caching of the SMRAM to prevent
cache incoherence when switching back and forth between SMM and protected mode
operation. Either of the following three methods of locating the SMRAM in system
memory will guarantee cache coherency:
• Place the SRAM in a dedicated section of system memory that the operating system

and applications are prevented from accessing. Here, the SRAM can be designated as

1. The VM-exit instruction-length field is not defined following APIC-access VM exits resulting from
physical accesses (see Section 25.2.3) even if encountered during delivery of a software interrupt,
privileged software exception, or software exception.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 84

cacheable (WB, WT, or WC) for optimum processor performance, without risking
cache incoherence when entering or exiting SMM.

• Place the SRAM in a section of memory that overlaps an area used by the operating
system (such as the video memory), but designate the SMRAM as uncacheable (UC).
This method prevents cache access when in SMM to maintain cache coherency, but
the use of uncacheable memory reduces the performance of SMM code.

• Place the SRAM in a section of system memory that overlaps an area used by the
operating system and/or application code, but explicitly flush (write back and
invalidate) the caches upon entering and exiting SMM mode. This method maintains
cache coherency, but incurs the overhead of two complete cache flushes.

...

33.5 SMI HANDLER EXECUTION ENVIRONMENT
After saving the current context of the processor, the processor initializes its core regis-
ters to the values shown in Table 33-4. Upon entering SMM, the PE and PG flags in
control register CR0 are cleared, which places the processor in an environment similar to
real-address mode. The differences between the SMM execution environment and the
real-address mode execution environment are as follows:
• The addressable SMRAM address space ranges from 0 to FFFFFFFFH (4 GBytes). (The

physical address extension — enabled with the PAE flag in control register CR4 — is
not supported in SMM.)

• The normal 64-KByte segment limit for real-address mode is increased to 4 GBytes.
• The default operand and address sizes are set to 16 bits, which restricts the

addressable SMRAM address space to the 1-MByte real-address mode limit for native
real-address-mode code. However, operand-size and address-size override prefixes
can be used to access the address space beyond the 1-MByte.

...

	Revision History
	Preface
	Summary Tables of Changes
	Documentation Changes
	1. Updates to Chapter 1, Volume 1
	2. Updates to Chapter 1, Volume 2A
	3. Updates to Chapter 3, Volume 2A
	4. Updates to Chapter 4, Volume 2B
	5. Updates to Appendix A, Volume 2C
	6. Updates to Appendix B, Volume 2C
	7. Updates to Chapter 1, Volume 3A
	8. Updates to Chapter 4, Volume 3A
	9. Updates to Chapter 10, Volume 3A
	10. Updates to Chapter 14, Volume 3B
	11. Updates to Chapter 17, Volume 3B
	12. Updates to Chapter 18, Volume 3B
	13. Updates to Chapter 19, Volume 3B
	14. Updates to Chapter 25, Volume 3C
	15. Updates to Chapter 26, Volume 3C
	16. Updates to Chapter 27, Volume 3C
	17. Update to Volume 3C
	18. Updates to Chapter 33, Volume 3C

