
Document Number: 252046-036

Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Documentation Changes

May 2012

Notice: The Intel® 64 and IA-32 architectures may contain design defects or errors known as errata
that may cause the product to deviate from published specifications. Current characterized errata are
documented in the specification updates.

2 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Legal Lines and DisclaimersINFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED
IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY
OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal
injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL
INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND
EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES
ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY
WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE
DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the
absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition
and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information
here is subject to change without notice. Do not finalize a design with this information.

Intel, the Intel logo, Pentium, Xeon, Intel NetBurst, Intel Core, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo, Intel Core 2
Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, Intel Atom, and VTune are trademarks of Intel Corporation in the U.S.
and/or other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copyright © 1997-2012 Intel Corporation. All rights reserved.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 3

Contents

Revision History . 4

Preface . 7

Summary Tables of Changes . 8

Documentation Changes. 9

Revision History

4 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Revision History

Revision Description Date

-001 • Initial release November 2002

-002
• Added 1-10 Documentation Changes.
• Removed old Documentation Changes items that already have been

incorporated in the published Software Developer’s manual
December 2002

-003

• Added 9 -17 Documentation Changes.
• Removed Documentation Change #6 - References to bits Gen and Len

Deleted.
• Removed Documentation Change #4 - VIF Information Added to CLI

Discussion

February 2003

-004 • Removed Documentation changes 1-17.
• Added Documentation changes 1-24. June 2003

-005 • Removed Documentation Changes 1-24.
• Added Documentation Changes 1-15.

September 2003

-006 • Added Documentation Changes 16- 34. November 2003

-007 • Updated Documentation changes 14, 16, 17, and 28.
• Added Documentation Changes 35-45.

January 2004

-008 • Removed Documentation Changes 1-45.
• Added Documentation Changes 1-5.

March 2004

-009 • Added Documentation Changes 7-27. May 2004

-010 • Removed Documentation Changes 1-27.
• Added Documentation Changes 1.

August 2004

-011 • Added Documentation Changes 2-28. November 2004

-012 • Removed Documentation Changes 1-28.
• Added Documentation Changes 1-16.

March 2005

-013
• Updated title.
• There are no Documentation Changes for this revision of the

document.
July 2005

-014 • Added Documentation Changes 1-21. September 2005

-015 • Removed Documentation Changes 1-21.
• Added Documentation Changes 1-20.

March 9, 2006

-016 • Added Documentation changes 21-23. March 27, 2006

-017 • Removed Documentation Changes 1-23.
• Added Documentation Changes 1-36.

September 2006

-018 • Added Documentation Changes 37-42. October 2006

-019 • Removed Documentation Changes 1-42.
• Added Documentation Changes 1-19.

March 2007

-020 • Added Documentation Changes 20-27. May 2007

-021 • Removed Documentation Changes 1-27.
• Added Documentation Changes 1-6

November 2007

-022 • Removed Documentation Changes 1-6
• Added Documentation Changes 1-6

August 2008

-023 • Removed Documentation Changes 1-6
• Added Documentation Changes 1-21

March 2009

Revision History

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 5

§

-024 • Removed Documentation Changes 1-21
• Added Documentation Changes 1-16

June 2009

-025 • Removed Documentation Changes 1-16
• Added Documentation Changes 1-18

September 2009

-026 • Removed Documentation Changes 1-18
• Added Documentation Changes 1-15

December 2009

-027 • Removed Documentation Changes 1-15
• Added Documentation Changes 1-24

March 2010

-028 • Removed Documentation Changes 1-24
• Added Documentation Changes 1-29

June 2010

-029 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

September 2010

-030 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

January 2011

-031 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

April 2011

-032 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-14

May 2011

-033 • Removed Documentation Changes 1-14
• Added Documentation Changes 1-38

October 2011

-034 • Removed Documentation Changes 1-38
• Added Documentation Changes 1-16

December 2011

-035 • Removed Documentation Changes 1-16
• Added Documentation Changes 1-18

March 2012

-036 • Removed Documentation Changes 1-18
• Added Documentation Changes 1-17

May 2012

Revision Description Date

Revision History

6 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 7

Preface

This document is an update to the specifications contained in the Affected Documents
table below. This document is a compilation of device and documentation errata,
specification clarifications and changes. It is intended for hardware system
manufacturers and software developers of applications, operating systems, or tools.

Affected Documents

Nomenclature
Documentation Changes include typos, errors, or omissions from the current
published specifications. These will be incorporated in any new release of the
specification.

Document Title Document
Number/Location

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
1: Basic Architecture 253665

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2A: Instruction Set Reference, A-M 253666

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2B: Instruction Set Reference, N-Z 253667

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2C: Instruction Set Reference 326018

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3A: System Programming Guide, Part 1 253668

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3B: System Programming Guide, Part 2 253669

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3C: System Programming Guide, Part 3 326019

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 8

Summary Tables of Changes

The following table indicates documentation changes which apply to the Intel® 64 and
IA-32 architectures. This table uses the following notations:

Codes Used in Summary Tables
Change bar to left of table row indicates this erratum is either new or modified from the
previous version of the document.

Documentation Changes
No. DOCUMENTATION CHANGES

1 Updates to Chapter 3, Volume 1

2 Updates to Chapter 7, Volume 1

3 Updates to Chapter 3, Volume 2A

4 Updates to Chapter 4, Volume 2B

5 Updates to Appendix B, Volume 2C

6 Updates to Chapter 2, Volume 3A

7 Updates to Chapter 4, Volume 3A

8 Updates to Chapter 10, Volume 3A

9 Updates to Chapter 17, Volume 3B

10 Updates to Chapter 18, Volume 3B

11 Updates to Chapter 19, Volume 3B

12 Updates to Chapter 24, Volume 3C

13 Updates to Chapter 26, Volume 3C

14 Updates to Chapter 27, Volume 3C

15 Updates to Chapter 28, Volume 3C

16 Updates to Chapter 34, Volume 3C

17 Updates to Appendix A, Volume 3C

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

Documentation Changes

1. Updates to Chapter 3, Volume 1
Change bars show changes to Chapter 3 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1: Basic Architecture.

--

...

3.3.2 Paging and Virtual Memory
With the flat or the segmented memory model, linear address space is mapped into the
processor’s physical address space either directly or through paging. When using direct
mapping (paging disabled), each linear address has a one-to-one correspondence with a
physical address. Linear addresses are sent out on the processor’s address lines without
translation.

When using the IA-32 architecture’s paging mechanism (paging enabled), linear address
space is divided into pages which are mapped to virtual memory. The pages of virtual
memory are then mapped as needed into physical memory. When an operating system
or executive uses paging, the paging mechanism is transparent to an application
program. All that the application sees is linear address space.

In addition, IA-32 architecture’s paging mechanism includes extensions that support:
• Physical Address Extensions (PAE) to address physical address space greater than

4 GBytes.
• Page Size Extensions (PSE) to map linear address to physical address in 4-MBytes

pages.

See also: Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

...

2. Updates to Chapter 7, Volume 1
Change bars show changes to Chapter 7 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1: Basic Architecture.

--

...

7.3.17 Random Number Generator Instruction
The RDRAND instruction returns a random number. All Intel processors that support the
RDRAND instruction indicate the availability of the RDRAND instruction via reporting
CPUID.01H:ECX.RDRAND[bit 30] = 1.
RDRAND returns random numbers that are supplied by a cryptographically secure,
deterministic random bit generator DRBG. The DRBG is designed to meet the NIST SP
800-90A standard. The DRBG is re-seeded frequently from a on-chip non-deterministic

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 10

entropy source to guarantee data returned by RDRAND is statistically uniform, non-peri-
odic and non-deterministic.
In order for the hardware design to meet its security goals, the random number gener-
ator continuously tests itself and the random data it is generating. Runtime failures in
the random number generator circuitry or statistically anomalous data occurring by
chance will be detected by the self test hardware and flag the resulting data as being
bad. In such extremely rare cases, the RDRAND instruction will return no data instead of
bad data.
Under heavy load, with multiple cores executing RDRAND in parallel, it is possible,
though unlikely, for the demand of random numbers by software processes/threads to
exceed the rate at which the random number generator hardware can supply them. This
will lead to the RDRAND instruction returning no data transitorily. The RDRAND instruc-
tion indicates the occurrence of this rare situation by clearing the CF flag.
The RDRAND instruction returns with the carry flag set (CF = 1) to indicate valid data is
returned. It is recommended that software using the RDRAND instruction to get random
numbers retry for a limited number of iterations while RDRAND returns CF=0 and
complete when valid data is returned, indicated with CF=1. This will deal with transitory
underflows. A retry limit should be employed to prevent a hard failure in the RNG
(expected to be extremely rare) leading to a busy loop in software.
The intrinsic primitive for RDRAND is defined to address software’s need for the common
cases (CF = 1) and the rare situations (CF = 0). The intrinsic primitive returns a value
that reflects the value of the carry flag returned by the underlying RDRAND instruction.
The example below illustrates the recommended usage of an RDRAND instrinsic in a
utility function, a loop to fetch a 64 bit random value with a retry count limit of 10. A C
implementation might be written as follows:

--
#define SUCCESS 1
#define RETRY_LIMIT_EXCEEDED 0
#define RETRY_LIMIT 10

int get_random_64(unsigned __int 64 * arand)
{int i ;

for (i = 0; i < RETRY_LIMIT; i ++) {
if(_rdrand64_step(arand)) return SUCCESS;

}
return RETRY_LIMIT_EXCEEDED;

}

...

3. Updates to Chapter 3, Volume 2A
Change bars show changes to Chapter 3 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A: Instruction Set Reference, A-L.

--

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 11

Table 3-17 Information Returned by CPUID Instruction

Initial EAX
Value Information Provided about the Processor

Basic CPUID Information

0H EAX
EBX
ECX
EDX

Maximum Input Value for Basic CPUID Information (see Table 3-18)
“Genu”
“ntel”
“ineI”

01H EAX

EBX

ECX
EDX

Version Information: Type, Family, Model, and Stepping ID (see
Figure 3-5)

Bits 07-00: Brand Index
Bits 15-08: CLFLUSH line size (Value ∗ 8 = cache line size in bytes)
Bits 23-16: Maximum number of addressable IDs for logical processors
in this physical package*.
Bits 31-24: Initial APIC ID

Feature Information (see Figure 3-6 and Table 3-20)
Feature Information (see Figure 3-7 and Table 3-21)

NOTES:
* The nearest power-of-2 integer that is not smaller than EBX[23:16]

is the number of unique initial APIC IDs reserved for addressing dif-
ferent logical processors in a physical package. This field is only valid
if CPUID.1.EDX.HTT[bit 28]= 1.

02H EAX
EBX
ECX
EDX

Cache and TLB Information (see Table 3-22)
Cache and TLB Information
Cache and TLB Information
Cache and TLB Information

03H EAX
EBX
ECX

EDX

Reserved.
Reserved.
Bits 00-31 of 96 bit processor serial number. (Available in Pentium III
processor only; otherwise, the value in this register is reserved.)
Bits 32-63 of 96 bit processor serial number. (Available in Pentium III
processor only; otherwise, the value in this register is reserved.)

NOTES:
Processor serial number (PSN) is not supported in the Pentium 4 pro-
cessor or later. On all models, use the PSN flag (returned using
CPUID) to check for PSN support before accessing the feature.

See AP-485, Intel Processor Identification and the CPUID Instruc-
tion (Order Number 241618) for more information on PSN.

CPUID leaves > 3 < 80000000 are visible only when
IA32_MISC_ENABLE.BOOT_NT4[bit 22] = 0 (default).

Deterministic Cache Parameters Leaf

04H NOTES:
Leaf 04H output depends on the initial value in ECX.*
See also: “INPUT EAX = 4: Returns Deterministic Cache Parameters
for each level on page 3-224.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 12

EAX Bits 04-00: Cache Type Field
0 = Null - No more caches
1 = Data Cache
2 = Instruction Cache
3 = Unified Cache
4-31 = Reserved

Bits 07-05: Cache Level (starts at 1)
Bit 08: Self Initializing cache level (does not need SW initialization)
Bit 09: Fully Associative cache

Bits 13-10: Reserved
Bits 25-14: Maximum number of addressable IDs for logical processors
sharing this cache**, ***
Bits 31-26: Maximum number of addressable IDs for processor cores in
the physical package**, ****, *****

EBX Bits 11-00: L = System Coherency Line Size**
Bits 21-12: P = Physical Line partitions**
Bits 31-22: W = Ways of associativity**

ECX Bits 31-00: S = Number of Sets**

EDX Bit 0: Write-Back Invalidate/Invalidate
0 = WBINVD/INVD from threads sharing this cache acts upon lower
level caches for threads sharing this cache.
1 = WBINVD/INVD is not guaranteed to act upon lower level caches
of non-originating threads sharing this cache.

Bit 1: Cache Inclusiveness
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.

Bit 2: Complex Cache Indexing
0 = Direct mapped cache.
1 = A complex function is used to index the cache, potentially using

all address bits.
Bits 31-03: Reserved = 0

NOTES:
* If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0.

Invalid sub-leaves of EAX = 04H: ECX = n, n > 3.
** Add one to the return value to get the result.
***The nearest power-of-2 integer that is not smaller than (1 +

EAX[25:14]) is the number of unique initial APIC IDs reserved for
addressing different logical processors sharing this cache

**** The nearest power-of-2 integer that is not smaller than (1 +
EAX[31:26]) is the number of unique Core_IDs reserved for address-
ing different processor cores in a physical package. Core ID is a sub-
set of bits of the initial APIC ID.

***** The returned value is constant for valid initial values in ECX. Valid
ECX values start from 0.

MONITOR/MWAIT Leaf

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 13

05H EAX Bits 15-00: Smallest monitor-line size in bytes (default is processor's
monitor granularity)
Bits 31-16: Reserved = 0

EBX Bits 15-00: Largest monitor-line size in bytes (default is processor's
monitor granularity)
Bits 31-16: Reserved = 0

ECX Bit 00: Enumeration of Monitor-Mwait extensions (beyond EAX and
EBX registers) supported

Bit 01: Supports treating interrupts as break-event for MWAIT, even
when interrupts disabled

Bits 31 - 02: Reserved

EDX Bits 03 - 00: Number of C0* sub C-states supported using MWAIT
Bits 07 - 04: Number of C1* sub C-states supported using MWAIT
Bits 11 - 08: Number of C2* sub C-states supported using MWAIT
Bits 15 - 12: Number of C3* sub C-states supported using MWAIT
Bits 19 - 16: Number of C4* sub C-states supported using MWAIT
Bits 31 - 20: Reserved = 0
NOTE:
* The definition of C0 through C4 states for MWAIT extension are pro-

cessor-specific C-states, not ACPI C-states.

Thermal and Power Management Leaf

06H EAX

EBX

Bit 00: Digital temperature sensor is supported if set
Bit 01: Intel Turbo Boost Technology Available (see description of
IA32_MISC_ENABLE[38]).
Bit 02: ARAT. APIC-Timer-always-running feature is supported if set.
Bit 03: Reserved
Bit 04: PLN. Power limit notification controls are supported if set.
Bit 05: ECMD. Clock modulation duty cycle extension is supported if set.
Bit 06: PTM. Package thermal management is supported if set.
Bits 31 - 07: Reserved
Bits 03 - 00: Number of Interrupt Thresholds in Digital Thermal Sensor
Bits 31 - 04: Reserved

ECX Bit 00: Hardware Coordination Feedback Capability (Presence of
IA32_MPERF and IA32_APERF). The capability to provide a measure of
delivered processor performance (since last reset of the counters), as
a percentage of expected processor performance at frequency speci-
fied in CPUID Brand String
Bits 02 - 01: Reserved = 0
Bit 03: The processor supports performance-energy bias preference if
CPUID.06H:ECX.SETBH[bit 3] is set and it also implies the presence of a
new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H)
Bits 31 - 04: Reserved = 0

EDX Reserved = 0

Structured Extended Feature Flags Enumeration Leaf (Output depends on ECX
input value)

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 14

07H Sub-leaf 0 (Input ECX = 0). *

EAX Bits 31-00: Reports the maximum input value for supported leaf 7 sub-
leaves.

EBX Bit 00: FSGSBASE. Supports RDFSBASE/RDGSBASE/WRFSBASE/WRGS-
BASE if 1.
Bit 06: Reserved
Bit 07: SMEP. Supports Supervisor Mode Execution Protection if 1.
Bit 08: Reserved
Bit 09: Supports Enhanced REP MOVSB/STOSB if 1.
Bit 10: INVPCID. If 1, supports INVPCID instruction for system software
that manages process-context identifiers.
Bit 31:11: Reserved

ECX Reserved

EDX Reserved

NOTE:
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0.

Invalid sub-leaves of EAX = 07H: ECX = n, n > 0.

Direct Cache Access Information Leaf

09H EAX

EBX

ECX

EDX

Value of bits [31:0] of IA32_PLATFORM_DCA_CAP MSR (address
1F8H)

Reserved

Reserved

Reserved

Architectural Performance Monitoring Leaf

0AH EAX Bits 07 - 00: Version ID of architectural performance monitoring
Bits 15- 08: Number of general-purpose performance monitoring
counter per logical processor
Bits 23 - 16: Bit width of general-purpose, performance monitoring
counter
Bits 31 - 24: Length of EBX bit vector to enumerate architectural per-
formance monitoring events

EBX Bit 00: Core cycle event not available if 1
Bit 01: Instruction retired event not available if 1
Bit 02: Reference cycles event not available if 1
Bit 03: Last-level cache reference event not available if 1
Bit 04: Last-level cache misses event not available if 1
Bit 05: Branch instruction retired event not available if 1
Bit 06: Branch mispredict retired event not available if 1
Bits 31- 07: Reserved = 0

ECX Reserved = 0

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 15

EDX Bits 04 - 00: Number of fixed-function performance counters (if Ver-
sion ID > 1)
Bits 12- 05: Bit width of fixed-function performance counters (if Ver-
sion ID > 1)
Reserved = 0

Extended Topology Enumeration Leaf

0BH NOTES:
Most of Leaf 0BH output depends on the initial value in ECX.
EDX output do not vary with initial value in ECX.
ECX[7:0] output always reflect initial value in ECX.
If ECX contains an invalid sub-leaf index, EAX/EBX/EDX return 0; ECX
returns same ECX input. Invalid sub-leaves of EAX = 0BH: ECX = n, n
> 1.
Leaf 0BH exists if EBX[15:0] is not zero.

EAX Bits 04-00: Number of bits to shift right on x2APIC ID to get a unique
topology ID of the next level type*. All logical processors with the
same next level ID share current level.
Bits 31-05: Reserved.

EBX Bits 15 - 00: Number of logical processors at this level type. The num-
ber reflects configuration as shipped by Intel**.
Bits 31- 16: Reserved.

ECX Bits 07 - 00: Level number. Same value in ECX input
Bits 15 - 08: Level type***.
Bits 31 - 16:: Reserved.

EDX Bits 31- 00: x2APIC ID the current logical processor.

NOTES:
* Software should use this field (EAX[4:0]) to enumerate processor
topology of the system.

** Software must not use EBX[15:0] to enumerate processor topology
of the system. This value in this field (EBX[15:0]) is only intended for
display/diagnostic purposes. The actual number of logical processors
available to BIOS/OS/Applications may be different from the value of
EBX[15:0], depending on software and platform hardware configura-
tions.

*** The value of the “level type” field is not related to level numbers in
any way, higher “level type” values do not mean higher levels. Level
type field has the following encoding:
0 : invalid
1 : SMT
2 : Core
3-255 : Reserved

Processor Extended State Enumeration Main Leaf (EAX = 0DH, ECX = 0)

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 16

0DH NOTES:
Leaf 0DH main leaf (ECX = 0).

EAX Bits 31-00: Reports the valid bit fields of the lower 32 bits of XCR0. If
a bit is 0, the corresponding bit field in XCR0 is reserved.
Bit 00: legacy x87
Bit 01: 128-bit SSE
Bit 02: 256-bit AVX
Bits 31- 03: Reserved

EBX Bits 31-00: Maximum size (bytes, from the beginning of the XSAVE/
XRSTOR save area) required by enabled features in XCR0. May be dif-
ferent than ECX if some features at the end of the XSAVE save area
are not enabled.

ECX Bit 31-00: Maximum size (bytes, from the beginning of the XSAVE/
XRSTOR save area) of the XSAVE/XRSTOR save area required by all
supported features in the processor, i.e all the valid bit fields in XCR0.

EDX Bit 31-00: Reports the valid bit fields of the upper 32 bits of XCR0. If a
bit is 0, the corresponding bit field in XCR0 is reserved.

Processor Extended State Enumeration Sub-leaf (EAX = 0DH, ECX = 1)

0DH EAX

EBX

ECX

EDX

Bits 31-01: Reserved

Bit 00: XSAVEOPT is available;

Reserved

Reserved

Reserved

Processor Extended State Enumeration Sub-leaves (EAX = 0DH, ECX = n, n > 1)

0DH NOTES:
Leaf 0DH output depends on the initial value in ECX.
Each valid sub-leaf index maps to a valid bit in the XCR0 register
starting at bit position 2
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return

0. Invalid sub-leaves of EAX = 0DH: ECX = n, n > 2.

EAX Bits 31-0: The size in bytes (from the offset specified in EBX) of the
save area for an extended state feature associated with a valid sub-
leaf index, n. This field reports 0 if the sub-leaf index, n, is invalid*.

EBX Bits 31-0: The offset in bytes of this extended state component’s save
area from the beginning of the XSAVE/XRSTOR area.
This field reports 0 if the sub-leaf index, n, is invalid*.

ECX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is
reserved.

EDX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is
reserved.

Unimplemented CPUID Leaf Functions

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 17

40000000H
-

4FFFFFFFH

Invalid. No existing or future CPU will return processor identification or
feature information if the initial EAX value is in the range 40000000H
to 4FFFFFFFH.

Extended Function CPUID Information

80000000H EAX Maximum Input Value for Extended Function CPUID Information (see
Table 3-18).

EBX
ECX
EDX

Reserved
Reserved
Reserved

80000001H EAX

EBX

ECX

Extended Processor Signature and Feature Bits.

Reserved

Bit 00: LAHF/SAHF available in 64-bit mode
Bits 31-01 Reserved

EDX Bits 10-00: Reserved
Bit 11: SYSCALL/SYSRET available (when in 64-bit mode)
Bits 19-12: Reserved = 0
Bit 20: Execute Disable Bit available
Bits 25-21: Reserved = 0
Bit 26: 1-GByte pages are available if 1
Bit 27: RDTSCP and IA32_TSC_AUX are available if 1
Bits 28: Reserved = 0
Bit 29: Intel® 64 Architecture available if 1
Bits 31-30: Reserved = 0

80000002H EAX
EBX
ECX
EDX

Processor Brand String
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000003H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000004H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000005H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Reserved = 0

80000006H EAX
EBX

Reserved = 0
Reserved = 0

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 18

...

INPUT EAX = 07H: Returns Structured Extended Feature Enumeration Information

When CPUID executes with EAX set to 07H and ECX = 0, the processor returns informa-
tion about the maximum input value for sub-leaves that contain extended feature flags.
See Table Table 3-17.

When CPUID executes with EAX set to 07H and the input value of ECX is invalid (see
leaf 07H entry in Table Table 3-17), the processor returns 0 in EAX/EBX/ECX/EDX. In
subleaf 0, EAX returns the maximum input value of the highest leaf 7 sub-leaf, and

ECX

EDX

Bits 07-00: Cache Line size in bytes
Bits 11-08: Reserved
Bits 15-12: L2 Associativity field *
Bits 31-16: Cache size in 1K units
Reserved = 0

NOTES:
* L2 associativity field encodings:

00H - Disabled
01H - Direct mapped
02H - 2-way
04H - 4-way
06H - 8-way
08H - 16-way
0FH - Fully associative

80000007H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Bits 07-00: Reserved = 0
Bit 08: Invariant TSC available if 1
Bits 31-09: Reserved = 0

80000008H EAX Linear/Physical Address size
Bits 07-00: #Physical Address Bits*
Bits 15-8: #Linear Address Bits
Bits 31-16: Reserved = 0

EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0

NOTES:
* If CPUID.80000008H:EAX[7:0] is supported, the maximum physical

address number supported should come from this field.

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 19

EBX, ECX & EDX contain information of extended feature flags.

...

4. Updates to Chapter 4, Volume 2B
Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2B: Instruction Set Reference, M-Z.

--

...

MASKMOVDQU—Store Selected Bytes of Double Quadword

Instruction Operand Encoding1

Description

Stores selected bytes from the source operand (first operand) into an 128-bit memory
location. The mask operand (second operand) selects which bytes from the source
operand are written to memory. The source and mask operands are XMM registers. The
memory location specified by the effective address in the DI/EDI/RDI register (the
default segment register is DS, but this may be overridden with a segment-override
prefix). The memory location does not need to be aligned on a natural boundary. (The
size of the store address depends on the address-size attribute.)

The most significant bit in each byte of the mask operand determines whether the corre-
sponding byte in the source operand is written to the corresponding byte location in
memory: 0 indicates no write and 1 indicates write.

The MASKMOVDQU instruction generates a non-temporal hint to the processor to mini-
mize cache pollution. The non-temporal hint is implemented by using a write combining
(WC) memory type protocol (see “Caching of Temporal vs. Non-Temporal Data” in

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F F7 /r

MASKMOVDQU xmm1, xmm2

RM V/V SSE2 Selectively write bytes from
xmm1 to memory location
using the byte mask in
xmm2. The default memory
location is specified by
DS:DI/EDI/RDI.

VEX.128.66.0F.WIG F7 /r

VMASKMOVDQU xmm1, xmm2

RM V/V AVX Selectively write bytes from
xmm1 to memory location
using the byte mask in
xmm2. The default memory
location is specified by
DS:DI/EDI/RDI.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA

1.ModRM.MOD = 011B required

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 20

Chapter 10, of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1). Because the WC protocol uses a weakly-ordered memory consistency model,
a fencing operation implemented with the SFENCE or MFENCE instruction should be used
in conjunction with MASKMOVDQU instructions if multiple processors might use different
memory types to read/write the destination memory locations.

Behavior with a mask of all 0s is as follows:
• No data will be written to memory.
• Signaling of breakpoints (code or data) is not guaranteed; different processor imple-

mentations may signal or not signal these breakpoints.
• Exceptions associated with addressing memory and page faults may still be signaled

(implementation dependent).
• If the destination memory region is mapped as UC or WP, enforcement of associated

semantics for these memory types is not guaranteed (that is, is reserved) and is
implementation-specific.

The MASKMOVDQU instruction can be used to improve performance of algorithms that
need to merge data on a byte-by-byte basis. MASKMOVDQU should not cause a read for
ownership; doing so generates unnecessary bandwidth since data is to be written
directly using the byte-mask without allocating old data prior to the store.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.
If VMASKMOVDQU is encoded with VEX.L= 1, an attempt to execute the instruction
encoded with VEX.L= 1 will cause an #UD exception.

Operation

IF (MASK[7] = 1)
THEN DEST[DI/EDI] ← SRC[7:0] ELSE (* Memory location unchanged *); FI;

IF (MASK[15] = 1)
THEN DEST[DI/EDI +1] ← SRC[15:8] ELSE (* Memory location unchanged *); FI;
(* Repeat operation for 3rd through 14th bytes in source operand *)

IF (MASK[127] = 1)
THEN DEST[DI/EDI +15] ← SRC[127:120] ELSE (* Memory location unchanged *); FI;

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_maskmoveu_si128(__m128i d, __m128i n, char * p)

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L= 1

If VEX.vvvv != 1111B.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 21

MFENCE—Memory Fence

Instruction Operand Encoding

Description

Performs a serializing operation on all load-from-memory and store-to-memory instruc-
tions that were issued prior the MFENCE instruction. This serializing operation guaran-
tees that every load and store instruction that precedes the MFENCE instruction in
program order becomes globally visible before any load or store instruction that follows
the MFENCE instruction.1 The MFENCE instruction is ordered with respect to all load and
store instructions, other MFENCE instructions, any LFENCE and SFENCE instructions, and
any serializing instructions (such as the CPUID instruction). MFENCE does not serialize
the instruction stream.

Weakly ordered memory types can be used to achieve higher processor performance
through such techniques as out-of-order issue, speculative reads, write-combining, and
write-collapsing. The degree to which a consumer of data recognizes or knows that the
data is weakly ordered varies among applications and may be unknown to the producer
of this data. The MFENCE instruction provides a performance-efficient way of ensuring
load and store ordering between routines that produce weakly-ordered results and
routines that consume that data.

Processors are free to fetch and cache data speculatively from regions of system
memory that use the WB, WC, and WT memory types. This speculative fetching can
occur at any time and is not tied to instruction execution. Thus, it is not ordered with
respect to executions of the MFENCE instruction; data can be brought into the caches
speculatively just before, during, or after the execution of an MFENCE instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

Wait_On_Following_Loads_And_Stores_Until(preceding_loads_and_stores_globally_visible);

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_mfence(void)

Exceptions (All Modes of Operation)
#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F AE /6 MFENCE NP Valid Valid Serializes load and store
operations.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

1. A load instruction is considered to become globally visible when the value to be loaded into its desti-
nation register is determined.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 22

If the LOCK prefix is used.

...

MONITOR—Set Up Monitor Address

Instruction Operand Encoding

Description

The MONITOR instruction arms address monitoring hardware using an address specified
in EAX (the address range that the monitoring hardware checks for store operations can
be determined by using CPUID). A store to an address within the specified address range
triggers the monitoring hardware. The state of monitor hardware is used by MWAIT.

The content of EAX is an effective address (in 64-bit mode, RAX is used). By default, the
DS segment is used to create a linear address that is monitored. Segment overrides can
be used.

ECX and EDX are also used. They communicate other information to MONITOR. ECX
specifies optional extensions. EDX specifies optional hints; it does not change the archi-
tectural behavior of the instruction. For the Pentium 4 processor (family 15, model 3), no
extensions or hints are defined. Undefined hints in EDX are ignored by the processor;
undefined extensions in ECX raises a general protection fault.

The address range must use memory of the write-back type. Only write-back memory
will correctly trigger the monitoring hardware. Additional information on determining
what address range to use in order to prevent false wake-ups is described in Chapter 8,
“Multiple-Processor Management” of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A.

The MONITOR instruction is ordered as a load operation with respect to other memory
transactions. The instruction is subject to the permission checking and faults associated
with a byte load. Like a load, MONITOR sets the A-bit but not the D-bit in page tables.

CPUID.01H:ECX.MONITOR[bit 3] indicates the availability of MONITOR and MWAIT in the
processor. When set, MONITOR may be executed only at privilege level 0 (use at any
other privilege level results in an invalid-opcode exception). The operating system or
system BIOS may disable this instruction by using the IA32_MISC_ENABLE MSR;
disabling MONITOR clears the CPUID feature flag and causes execution to generate an
invalid-opcode exception.

The instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 C8 MONITOR NP Valid Valid Sets up a linear address
range to be monitored by
hardware and activates the
monitor. The address range
should be a write-back
memory caching type. The
address is DS:EAX (DS:RAX
in 64-bit mode).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 23

Operation

MONITOR sets up an address range for the monitor hardware using the content of EAX
(RAX in 64-bit mode) as an effective address and puts the monitor hardware in armed
state. Always use memory of the write-back caching type. A store to the specified
address range will trigger the monitor hardware. The content of ECX and EDX are used
to communicate other information to the monitor hardware.

Intel C/C++ Compiler Intrinsic Equivalent

MONITOR: void _mm_monitor(void const *p, unsigned extensions,unsigned hints)

Numeric Exceptions

None

Protected Mode Exceptions
#GP(0) If the value in EAX is outside the CS, DS, ES, FS, or GS segment

limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.
If ECX ≠ 0.

#SS(0) If the value in EAX is outside the SS segment limit.
#PF(fault-code) For a page fault.
#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.

If current privilege level is not 0.

Real Address Mode Exceptions
#GP If the CS, DS, ES, FS, or GS register is used to access memory and

the value in EAX is outside of the effective address space from 0 to
FFFFH.
If ECX ≠ 0.

#SS If the SS register is used to access memory and the value in EAX is
outside of the effective address space from 0 to FFFFH.

#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.

Virtual 8086 Mode Exceptions
#UD The MONITOR instruction is not recognized in virtual-8086 mode

(even if CPUID.01H:ECX.MONITOR[bit 3] = 1).

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the linear address of the operand in the CS, DS, ES, FS, or GS

segment is in a non-canonical form.
If RCX ≠ 0.

#SS(0) If the SS register is used to access memory and the value in EAX is
in a non-canonical form.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 24

#PF(fault-code) For a page fault.
#UD If the current privilege level is not 0.

If CPUID.01H:ECX.MONITOR[bit 3] = 0.

...

MOVBE—Move Data After Swapping Bytes

Instruction Operand Encoding

Description

Performs a byte swap operation on the data copied from the second operand (source
operand) and store the result in the first operand (destination operand). The source
operand can be a general-purpose register, or memory location; the destination register
can be a general-purpose register, or a memory location; however, both operands can
not be registers, and only one operand can be a memory location. Both operands must
be the same size, which can be a word, a doubleword or quadword.

The MOVBE instruction is provided for swapping the bytes on a read from memory or on
a write to memory; thus providing support for converting little-endian values to big-
endian format and vice versa.

In 64-bit mode, the instruction's default operation size is 32 bits. Use of the REX.R prefix
permits access to additional registers (R8-R15). Use of the REX.W prefix promotes oper-
ation to 64 bits. See the summary chart at the beginning of this section for encoding data
and limits.

Operation

TEMP ← SRC

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 38 F0 /r MOVBE r16, m16 RM Valid Valid Reverse byte order in m16
and move to r16

0F 38 F0 /r MOVBE r32, m32 RM Valid Valid Reverse byte order in m32
and move to r32

REX.W + 0F 38
F0 /r

MOVBE r64, m64 RM Valid N.E. Reverse byte order in m64
and move to r64.

0F 38 F1 /r MOVBE m16, r16 MR Valid Valid Reverse byte order in r16
and move to m16

0F 38 F1 /r MOVBE m32, r32 MR Valid Valid Reverse byte order in r32
and move to m32

REX.W + 0F 38
F1 /r

MOVBE m64, r64 MR Valid N.E. Reverse byte order in r64
and move to m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 25

IF (OperandSize = 16)
THEN

DEST[7:0] ← TEMP[15:8];
DEST[15:8] ← TEMP[7:0];

ELES IF (OperandSize = 32)
DEST[7:0] ← TEMP[31:24];
DEST[15:8] ← TEMP[23:16];
DEST[23:16] ← TEMP[15:8];
DEST[31:23] ← TEMP[7:0];

ELSE IF (OperandSize = 64)
DEST[7:0] ← TEMP[63:56];
DEST[15:8] ← TEMP[55:48];
DEST[23:16] ← TEMP[47:40];
DEST[31:24] ← TEMP[39:32];
DEST[39:32] ← TEMP[31:24];
DEST[47:40] ← TEMP[23:16];
DEST[55:48] ← TEMP[15:8];
DEST[63:56] ← TEMP[7:0];

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination operand is in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES,
FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory refer-

ence is made while the current privilege level is 3.
#UD If CPUID.01H:ECX.MOVBE[bit 22] = 0 .

If the LOCK prefix is used.
If REP (F3H) prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES,

FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment

limit.
#UD If CPUID.01H:ECX.MOVBE[bit 22] = 0 .

If the LOCK prefix is used.
If REP (F3H) prefix is used.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 26

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES,

FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment

limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory refer-

ence is made while the current privilege level is 3.
#UD If CPUID.01H:ECX.MOVBE[bit 22] = 0 .

If the LOCK prefix is used.
If REP (F3H) prefix is used.
If REPNE (F2H) prefix is used and CPUID.01H:ECX.SSE4_2[bit 20]
= 0.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If the stack address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory refer-

ence is made while the current privilege level is 3.
#UD If CPUID.01H:ECX.MOVBE[bit 22] = 0 .

If the LOCK prefix is used.
If REP (F3H) prefix is used.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from String to String
\

Instruction Operand Encoding

Description

Moves the byte, word, or doubleword specified with the second operand (source
operand) to the location specified with the first operand (destination operand). Both the
source and destination operands are located in memory. The address of the source
operand is read from the DS:ESI or the DS:SI registers (depending on the address-size
attribute of the instruction, 32 or 16, respectively). The address of the destination

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

A4 MOVS m8, m8 NP Valid Valid For legacy mode, Move byte
from address DS:(E)SI to
ES:(E)DI. For 64-bit mode
move byte from address
(R|E)SI to (R|E)DI.

A5 MOVS m16, m16 NP Valid Valid For legacy mode, move
word from address DS:(E)SI
to ES:(E)DI. For 64-bit mode
move word at address
(R|E)SI to (R|E)DI.

A5 MOVS m32, m32 NP Valid Valid For legacy mode, move
dword from address DS:(E)SI
to ES:(E)DI. For 64-bit mode
move dword from address
(R|E)SI to (R|E)DI.

REX.W + A5 MOVS m64, m64 NP Valid N.E. Move qword from address
(R|E)SI to (R|E)DI.

A4 MOVSB NP Valid Valid For legacy mode, Move byte
from address DS:(E)SI to
ES:(E)DI. For 64-bit mode
move byte from address
(R|E)SI to (R|E)DI.

A5 MOVSW NP Valid Valid For legacy mode, move
word from address DS:(E)SI
to ES:(E)DI. For 64-bit mode
move word at address
(R|E)SI to (R|E)DI.

A5 MOVSD NP Valid Valid For legacy mode, move
dword from address DS:(E)SI
to ES:(E)DI. For 64-bit mode
move dword from address
(R|E)SI to (R|E)DI.

REX.W + A5 MOVSQ NP Valid N.E. Move qword from address
(R|E)SI to (R|E)DI.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 28

operand is read from the ES:EDI or the ES:DI registers (again depending on the
address-size attribute of the instruction). The DS segment may be overridden with a
segment override prefix, but the ES segment cannot be overridden.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-oper-
ands” form and the “no-operands” form. The explicit-operands form (specified with the
MOVS mnemonic) allows the source and destination operands to be specified explicitly.
Here, the source and destination operands should be symbols that indicate the size and
location of the source value and the destination, respectively. This explicit-operands
form is provided to allow documentation; however, note that the documentation
provided by this form can be misleading. That is, the source and destination operand
symbols must specify the correct type (size) of the operands (bytes, words, or double-
words), but they do not have to specify the correct location. The locations of the source
and destination operands are always specified by the DS:(E)SI and ES:(E)DI registers,
which must be loaded correctly before the move string instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword
versions of the MOVS instructions. Here also DS:(E)SI and ES:(E)DI are assumed to be
the source and destination operands, respectively. The size of the source and destination
operands is selected with the mnemonic: MOVSB (byte move), MOVSW (word move), or
MOVSD (doubleword move).

After the move operation, the (E)SI and (E)DI registers are incremented or decremented
automatically according to the setting of the DF flag in the EFLAGS register. (If the DF
flag is 0, the (E)SI and (E)DI register are incremented; if the DF flag is 1, the (E)SI and
(E)DI registers are decremented.) The registers are incremented or decremented by 1
for byte operations, by 2 for word operations, or by 4 for doubleword operations.

NOTE
To improve performance, more recent processors support modifications
to the processor’s operation during the string store operations initiated
with MOVS and MOVSB. See Section 7.3.9.3 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1 for additional
information on fast-string operation.

The MOVS, MOVSB, MOVSW, and MOVSD instructions can be preceded by the REP prefix
(see “REP/REPE/REPZ /REPNE/REPNZ—Repeat String Operation Prefix” in Chapter 4 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B, for a
description of the REP prefix) for block moves of ECX bytes, words, or doublewords.

In 64-bit mode, the instruction’s default address size is 64 bits, 32-bit address size is
supported using the prefix 67H. The 64-bit addresses are specified by RSI and RDI; 32-
bit address are specified by ESI and EDI. Use of the REX.W prefix promotes doubleword
operation to 64 bits. See the summary chart at the beginning of this section for encoding
data and limits.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 29

MWAIT—Monitor Wait

Instruction Operand Encoding

Description

MWAIT instruction provides hints to allow the processor to enter an implementation-
dependent optimized state. There are two principal targeted usages: address-range
monitor and advanced power management. Both usages of MWAIT require the use of the
MONITOR instruction.

CPUID.01H:ECX.MONITOR[bit 3] indicates the availability of MONITOR and MWAIT in the
processor. When set, MWAIT may be executed only at privilege level 0 (use at any other
privilege level results in an invalid-opcode exception). The operating system or system
BIOS may disable this instruction by using the IA32_MISC_ENABLE MSR; disabling
MWAIT clears the CPUID feature flag and causes execution to generate an invalid-
opcode exception.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

ECX specifies optional extensions for the MWAIT instruction. EAX may contain hints such
as the preferred optimized state the processor should enter. The first processors to
implement MWAIT supported only the zero value for EAX and ECX. Later processors
allowed setting ECX[0] to enable masked interrupts as break events for MWAIT (see
below). Software can use the CPUID instruction to determine the extensions and hints
supported by the processor.

MWAIT for Address Range Monitoring

For address-range monitoring, the MWAIT instruction operates with the MONITOR
instruction. The two instructions allow the definition of an address at which to wait
(MONITOR) and a implementation-dependent-optimized operation to commence at the
wait address (MWAIT). The execution of MWAIT is a hint to the processor that it can
enter an implementation-dependent-optimized state while waiting for an event or a
store operation to the address range armed by MONITOR.

The following cause the processor to exit the implementation-dependent-optimized
state: a store to the address range armed by the MONITOR instruction, an NMI or SMI, a
debug exception, a machine check exception, the BINIT# signal, the INIT# signal, and
the RESET# signal. Other implementation-dependent events may also cause the
processor to exit the implementation-dependent-optimized state.

In addition, an external interrupt causes the processor to exit the implementation-
dependent-optimized state either (1) if the interrupt would be delivered to software

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 C9 MWAIT NP Valid Valid A hint that allow the
processor to stop
instruction execution and
enter an implementation-
dependent optimized state
until occurrence of a class of
events.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 30

(e.g., as it would be if HLT had been executed instead of MWAIT); or (2) if ECX[0] = 1.
Software can execute MWAIT with ECX[0] = 1 only if CPUID.05H:ECX[bit 1] = 1. (Imple-
mentation-specific conditions may result in an interrupt causing the processor to exit the
implementation-dependent-optimized state even if interrupts are masked and ECX[0] =
0.)

Following exit from the implementation-dependent-optimized state, control passes to
the instruction following the MWAIT instruction. A pending interrupt that is not masked
(including an NMI or an SMI) may be delivered before execution of that instruction.
Unlike the HLT instruction, the MWAIT instruction does not support a restart at the
MWAIT instruction following the handling of an SMI.

If the preceding MONITOR instruction did not successfully arm an address range or if the
MONITOR instruction has not been executed prior to executing MWAIT, then the
processor will not enter the implementation-dependent-optimized state. Execution will
resume at the instruction following the MWAIT.

MWAIT for Power Management

MWAIT accepts a hint and optional extension to the processor that it can enter a speci-
fied target C state while waiting for an event or a store operation to the address range
armed by MONITOR. Support for MWAIT extensions for power management is indicated
by CPUID.05H:ECX[bit 0] reporting 1.

EAX and ECX are used to communicate the additional information to the MWAIT instruc-
tion, such as the kind of optimized state the processor should enter. ECX specifies
optional extensions for the MWAIT instruction. EAX may contain hints such as the
preferred optimized state the processor should enter. Implementation-specific condi-
tions may cause a processor to ignore the hint and enter a different optimized state.
Future processor implementations may implement several optimized “waiting” states
and will select among those states based on the hint argument.

Table 4-10 describes the meaning of ECX and EAX registers for MWAIT extensions.

Table 4-10 MWAIT Extension Register (ECX)
Bits Description

0 Treat interrupts as break events even if masked (e.g., even if EFLAGS.IF=0).
May be set only if CPUID.05H:ECX[bit 1] = 1.

31: 1 Reserved

Table 4-11 MWAIT Hints Register (EAX)
Bits Description

3 : 0 Sub C-state within a C-state, indicated by bits [7:4]

7 : 4 Target C-state*

Value of 0 means C1; 1 means C2 and so on

Value of 01111B means C0

Note: Target C states for MWAIT extensions are processor-specific C-
states, not ACPI C-states

31: 8 Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 31

Note that if MWAIT is used to enter any of the C-states that are numerically higher than
C1, a store to the address range armed by the MONITOR instruction will cause the
processor to exit MWAIT only if the store was originated by other processor agents. A
store from non-processor agent might not cause the processor to exit MWAIT in such
cases.

For additional details of MWAIT extensions, see Chapter 14, “Power and Thermal
Management,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A.

Operation

(* MWAIT takes the argument in EAX as a hint extension and is architected to take the argument in ECX
as an instruction extension MWAIT EAX, ECX *)
{
WHILE (("Monitor Hardware is in armed state")) {

implementation_dependent_optimized_state(EAX, ECX); }
Set the state of Monitor Hardware as triggered;
}

Intel C/C++ Compiler Intrinsic Equivalent

MWAIT: void _mm_mwait(unsigned extensions, unsigned hints)

Example

MONITOR/MWAIT instruction pair must be coded in the same loop because execution of
the MWAIT instruction will trigger the monitor hardware. It is not a proper usage to
execute MONITOR once and then execute MWAIT in a loop. Setting up MONITOR without
executing MWAIT has no adverse effects.

Typically the MONITOR/MWAIT pair is used in a sequence, such as:

EAX = Logical Address(Trigger)
ECX = 0 (*Hints *)
EDX = 0 (* Hints *)

IF (!trigger_store_happened) {
MONITOR EAX, ECX, EDX
IF (!trigger_store_happened) {

MWAIT EAX, ECX
}

}

The above code sequence makes sure that a triggering store does not happen between
the first check of the trigger and the execution of the monitor instruction. Without the
second check that triggering store would go un-noticed. Typical usage of MONITOR and
MWAIT would have the above code sequence within a loop.

Numeric Exceptions
None

Protected Mode Exceptions
#GP(0) If ECX[31:1] ≠ 0.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 32

If ECX[0] = 1 and CPUID.05H:ECX[bit 1] = 0.
#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.

If current privilege level is not 0.

Real Address Mode Exceptions
#GP If ECX[31:1] ≠ 0.

If ECX[0] = 1 and CPUID.05H:ECX[bit 1] = 0.
#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.

Virtual 8086 Mode Exceptions
#UD The MWAIT instruction is not recognized in virtual-8086 mode (even

if CPUID.01H:ECX.MONITOR[bit 3] = 1).

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If RCX[63:1] ≠ 0.

If RCX[0] = 1 and CPUID.05H:ECX[bit 1] = 0.
#UD If the current privilege level is not 0.

If CPUID.01H:ECX.MONITOR[bit 3] = 0.

...

PAUSE—Spin Loop Hint

Instruction Operand Encoding

Description

Improves the performance of spin-wait loops. When executing a “spin-wait loop,”
processors will suffer a severe performance penalty when exiting the loop because it
detects a possible memory order violation. The PAUSE instruction provides a hint to the
processor that the code sequence is a spin-wait loop. The processor uses this hint to
avoid the memory order violation in most situations, which greatly improves processor
performance. For this reason, it is recommended that a PAUSE instruction be placed in
all spin-wait loops.

An additional function of the PAUSE instruction is to reduce the power consumed by a
processor while executing a spin loop. A processor can execute a spin-wait loop
extremely quickly, causing the processor to consume a lot of power while it waits for the

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F3 90 PAUSE NP Valid Valid Gives hint to processor that
improves performance of
spin-wait loops.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 33

resource it is spinning on to become available. Inserting a pause instruction in a spin-
wait loop greatly reduces the processor’s power consumption.

This instruction was introduced in the Pentium 4 processors, but is backward compatible
with all IA-32 processors. In earlier IA-32 processors, the PAUSE instruction operates
like a NOP instruction. The Pentium 4 and Intel Xeon processors implement the PAUSE
instruction as a delay. The delay is finite and can be zero for some processors. This
instruction does not change the architectural state of the processor (that is, it performs
essentially a delaying no-op operation).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

Execute_Next_Instruction(DELAY);

Numeric Exceptions

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

...

POPCNT — Return the Count of Number of Bits Set to 1

Instruction Operand Encoding

Description

This instruction calculates of number of bits set to 1 in the second operand (source)
and returns the count in the first operand (a destination register).

Operation

Count = 0;
For (i=0; i < OperandSize; i++)
{ IF (SRC[i] = 1) // i’th bit

THEN Count++; FI;
}

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F3 0F B8 /r POPCNT r16, r/
m16

RM Valid Valid POPCNT on r/m16

F3 0F B8 /r POPCNT r32, r/
m32

RM Valid Valid POPCNT on r/m32

F3 REX.W 0F B8
/r

POPCNT r64, r/
m64

RM Valid N.E. POPCNT on r/m64

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 34

DEST Count;

Flags Affected

OF, SF, ZF, AF, CF, PF are all cleared. ZF is set if SRC = 0, otherwise ZF is cleared

Intel C/C++ Compiler Intrinsic Equivalent

POPCNT: int _mm_popcnt_u32(unsigned int a);

POPCNT: int64_t _mm_popcnt_u64(unsigned __int64 a);

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS

or GS segments.
#SS(0) If a memory operand effective address is outside the SS segment

limit.
#PF (fault-code) For a page fault.
#AC(0) If an unaligned memory reference is made while the current privi-

lege level is 3 and alignment checking is enabled.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space

from 0 to 0FFFFH.
#SS(0) If a memory operand effective address is outside the SS segment

limit.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space

from 0 to 0FFFFH.
#SS(0) If a memory operand effective address is outside the SS segment

limit.
#PF (fault-code) For a page fault.
#AC(0) If an unaligned memory reference is made while alignment

checking is enabled.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 35

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If a memory address referencing the SS segment is in a non-canon-

ical form.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory refer-

ence is made while the current privilege level is 3.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

...

STOS/STOSB/STOSW/STOSD/STOSQ—Store String
Opcode Instruction Op/

En
64-Bit
Mode

Compat/
Leg Mode

Description

AA STOS m8 NA Valid Valid For legacy mode, store AL at
address ES:(E)DI; For 64-bit
mode store AL at address
RDI or EDI.

AB STOS m16 NA Valid Valid For legacy mode, store AX
at address ES:(E)DI; For 64-
bit mode store AX at
address RDI or EDI.

AB STOS m32 NA Valid Valid For legacy mode, store EAX
at address ES:(E)DI; For 64-
bit mode store EAX at
address RDI or EDI.

REX.W + AB STOS m64 NA Valid N.E. Store RAX at address RDI or
EDI.

AA STOSB NA Valid Valid For legacy mode, store AL at
address ES:(E)DI; For 64-bit
mode store AL at address
RDI or EDI.

AB STOSW NA Valid Valid For legacy mode, store AX
at address ES:(E)DI; For 64-
bit mode store AX at
address RDI or EDI.

AB STOSD NA Valid Valid For legacy mode, store EAX
at address ES:(E)DI; For 64-
bit mode store EAX at
address RDI or EDI.

REX.W + AB STOSQ NA Valid N.E. Store RAX at address RDI or
EDI.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 36

Instruction Operand Encoding

Description

In non-64-bit and default 64-bit mode; stores a byte, word, or doubleword from the AL,
AX, or EAX register (respectively) into the destination operand. The destination operand
is a memory location, the address of which is read from either the ES:EDI or ES:DI
register (depending on the address-size attribute of the instruction and the mode of
operation). The ES segment cannot be overridden with a segment override prefix.

At the assembly-code level, two forms of the instruction are allowed: the “explicit-oper-
ands” form and the “no-operands” form. The explicit-operands form (specified with the
STOS mnemonic) allows the destination operand to be specified explicitly. Here, the
destination operand should be a symbol that indicates the size and location of the desti-
nation value. The source operand is then automatically selected to match the size of the
destination operand (the AL register for byte operands, AX for word operands, EAX for
doubleword operands). The explicit-operands form is provided to allow documentation;
however, note that the documentation provided by this form can be misleading. That is,
the destination operand symbol must specify the correct type (size) of the operand
(byte, word, or doubleword), but it does not have to specify the correct location. The
location is always specified by the ES:(E)DI register. These must be loaded correctly
before the store string instruction is executed.

The no-operands form provides “short forms” of the byte, word, doubleword, and quad-
word versions of the STOS instructions. Here also ES:(E)DI is assumed to be the desti-
nation operand and AL, AX, or EAX is assumed to be the source operand. The size of the
destination and source operands is selected by the mnemonic: STOSB (byte read from
register AL), STOSW (word from AX), STOSD (doubleword from EAX).

After the byte, word, or doubleword is transferred from the register to the memory loca-
tion, the (E)DI register is incremented or decremented according to the setting of the DF
flag in the EFLAGS register. If the DF flag is 0, the register is incremented; if the DF flag
is 1, the register is decremented (the register is incremented or decremented by 1 for
byte operations, by 2 for word operations, by 4 for doubleword operations).

NOTE
To improve performance, more recent processors support modifications
to the processor’s operation during the string store operations initiated
with STOS and STOSB. See Section 7.3.9.3 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1 for additional
information on fast-string operation.

In 64-bit mode, the default address size is 64 bits, 32-bit address size is supported using
the prefix 67H. Using a REX prefix in the form of REX.W promotes operation on double-
word operand to 64 bits. The promoted no-operand mnemonic is STOSQ. STOSQ (and its
explicit operands variant) store a quadword from the RAX register into the destination
addressed by RDI or EDI. See the summary chart at the beginning of this section for
encoding data and limits.

The STOS, STOSB, STOSW, STOSD, STOSQ instructions can be preceded by the REP
prefix for block loads of ECX bytes, words, or doublewords. More often, however, these
instructions are used within a LOOP construct because data needs to be moved into the

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NA NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 37

AL, AX, or EAX register before it can be stored. See “REP/REPE/REPZ /REPNE/REPNZ—
Repeat String Operation Prefix” in this chapter for a description of the REP prefix.

...

VINSERTF128 — Insert Packed Floating-Point Values

Instruction Operand Encoding

Description

Performs an insertion of 128-bits of packed floating-point values from the second source
operand (third operand) into an the destination operand (first operand) at an 128-bit
offset from imm8[0]. The remaining portions of the destination are written by the corre-
sponding fields of the first source operand (second operand). The second source operand
can be either an XMM register or a 128-bit memory location.
The high 7 bits of the immediate are ignored.

Operation

TEMP[255:0] SRC1[255:0]
CASE (imm8[0]) OF

0: TEMP[127:0] SRC2[127:0]
1: TEMP[255:128] SRC2[127:0]

ESAC
DEST TEMP

Intel C/C++ Compiler Intrinsic Equivalent

INSERTF128: __m256 _mm256_insertf128_ps (__m256 a, __m128 b, int offset);

INSERTF128: __m256d _mm256_insertf128_pd (__m256d a, __m128d b, int offset);

INSERTF128: __m256i _mm256_insertf128_si256 (__m256i a, __m128i b, int offset);

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

VEX.NDS.256.66.0F3A.W0 18 /r ib

VINSERTF128 ymm1, ymm2, xmm3/
m128, imm8

RVM V/V AVX Insert a single precision
floating-point value
selected by imm8 from
xmm3/m128 into ymm2 at
the specified destination
element specified by imm8
and zero out destination
elements in ymm1 as
indicated in imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 38

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 6; additionally
#UD If VEX.W = 1.

...

WBINVD—Write Back and Invalidate Cache

Instruction Operand Encoding

Description

Writes back all modified cache lines in the processor’s internal cache to main memory
and invalidates (flushes) the internal caches. The instruction then issues a special-func-
tion bus cycle that directs external caches to also write back modified data and another
bus cycle to indicate that the external caches should be invalidated.

After executing this instruction, the processor does not wait for the external caches to
complete their write-back and flushing operations before proceeding with instruction
execution. It is the responsibility of hardware to respond to the cache write-back and
flush signals. The amount of time or cycles for WBINVD to complete will vary due to size
and other factors of different cache hierarchies. As a consequence, the use of the
WBINVD instruction can have an impact on logical processor interrupt/event response
time. Additional information of WBINVD behavior in a cache hierarchy with hierarchical
sharing topology can be found in Chapter 2 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A.

The WBINVD instruction is a privileged instruction. When the processor is running in
protected mode, the CPL of a program or procedure must be 0 to execute this instruc-
tion. This instruction is also a serializing instruction (see “Serializing Instructions” in
Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A).

In situations where cache coherency with main memory is not a concern, software can
use the INVD instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 09 WBINVD NP Valid Valid Write back and flush Internal
caches; initiate writing-back
and flushing of external
caches.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 39

IA-32 Architecture Compatibility

The WBINVD instruction is implementation dependent, and its function may be imple-
mented differently on future Intel 64 and IA-32 processors. The instruction is not
supported on IA-32 processors earlier than the Intel486 processor.

Operation

WriteBack(InternalCaches);
Flush(InternalCaches);
SignalWriteBack(ExternalCaches);
SignalFlush(ExternalCaches);
Continue; (* Continue execution *)

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) WBINVD cannot be executed at the virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 40

WRMSR—Write to Model Specific Register

Instruction Operand Encoding

Description

Writes the contents of registers EDX:EAX into the 64-bit model specific register (MSR)
specified in the ECX register. (On processors that support the Intel 64 architecture, the
high-order 32 bits of RCX are ignored.) The contents of the EDX register are copied to
high-order 32 bits of the selected MSR and the contents of the EAX register are copied to
low-order 32 bits of the MSR. (On processors that support the Intel 64 architecture, the
high-order 32 bits of each of RAX and RDX are ignored.) Undefined or reserved bits in an
MSR should be set to values previously read.

This instruction must be executed at privilege level 0 or in real-address mode; other-
wise, a general protection exception #GP(0) is generated. Specifying a reserved or
unimplemented MSR address in ECX will also cause a general protection exception. The
processor will also generate a general protection exception if software attempts to write
to bits in a reserved MSR.

When the WRMSR instruction is used to write to an MTRR, the TLBs are invalidated. This
includes global entries (see “Translation Lookaside Buffers (TLBs)” in Chapter 3 of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A).

MSRs control functions for testability, execution tracing, performance-monitoring and
machine check errors. Chapter 34, “Model-Specific Registers (MSRs)”, in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3C, lists all MSRs that can
be written with this instruction and their addresses. Note that each processor family has
its own set of MSRs.

The WRMSR instruction is a serializing instruction (see “Serializing Instructions” in
Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A). Note that WRMSR to the IA32_TSC_DEADLINE MSR (MSR index 6E0H) and
the X2APIC MSRs (MSR indices 802H to 83FH) are not serializing.

The CPUID instruction should be used to determine whether MSRs are supported
(CPUID.01H:EDX[5] = 1) before using this instruction.

IA-32 Architecture Compatibility

The MSRs and the ability to read them with the WRMSR instruction were introduced into
the IA-32 architecture with the Pentium processor. Execution of this instruction by an IA-
32 processor earlier than the Pentium processor results in an invalid opcode exception
#UD.

Operation

MSR[ECX] ← EDX:EAX;

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 30 WRMSR NP Valid Valid Write the value in EDX:EAX
to MSR specified by ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 41

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the value in ECX specifies a reserved or unimplemented MSR
address.
If the value in EDX:EAX sets bits that are reserved in the MSR spec-
ified by ECX.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If the value in ECX specifies a reserved or unimplemented MSR

address.
If the value in EDX:EAX sets bits that are reserved in the MSR spec-
ified by ECX.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The WRMSR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 42

5. Updates to Appendix B, Volume 2C
Change bars show changes to Appendix B of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2C: Instruction Set Reference.

--

...

B.2.1 General Purpose Instruction Formats and Encodings for 64-Bit
Mode

Table B-15 shows machine instruction formats and encodings for general purpose
instructions in 64-bit mode.

...

Table B-14 Special Symbols
Symbol Application

S If the value of REX.W. is 1, it overrides the presence of 66H.

w The value of bit W. in REX is has no effect.

Table B-15 General Purpose Instruction Formats and Encodings
for 64-Bit Mode

Instruction and Format Encoding

...

SWAPGS – Swap GS Base Register

Exchanges the current GS base register
value for value in MSR C0000102H

0000 1111 0000 0001 1111 1000

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 43

B.17 FLOATING-POINT INSTRUCTION FORMATS AND
ENCODINGS

Table B-38 shows the five different formats used for floating-point instructions. In all
cases, instructions are at least two bytes long and begin with the bit pattern 11011.

The Mod and R/M fields of the ModR/M byte have the same interpretation as the corre-
sponding fields of the integer instructions. The SIB byte and disp (displacement) are
optionally present in instructions that have Mod and R/M fields. Their presence depends
on the values of Mod and R/M, as for integer instructions.

Table B-39 shows the formats and encodings of the floating-point instructions.

Table B-38 General Floating-Point Instruction Formats

Instruction

First Byte Second Byte Optional Fields

1 11011 OPA 1 mod 1 OPB r/m s-i-b disp

2 11011 MF OPA mod OPB r/m s-i-b disp

3 11011 d P OPA 1 1 OPB R ST(i)

4 11011 0 0 1 1 1 1 OP

5 11011 0 1 1 1 1 1 OP

15–11 10 9 8 7 6 5 4 3 2 1 0

MF = Memory Format
00 — 32-bit real
01 — 32-bit integer
10 — 64-bit real
11 — 16-bit integer

P = Pop
0 — Do not pop stack
1 — Pop stack after operation

d = Destination
0 — Destination is ST(0)
1 — Destination is ST(i)

R XOR d = 0 — Destination OP Source
R XOR d = 1 — Source OP Destination

ST(i) = Register stack element i
000 = Stack Top
001 = Second stack element
 ⋅
 ⋅
 ⋅
111 = Eighth stack element

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 44

...

Table B-39 Floating-Point Instruction Formats and Encodings

Instruction and Format Encoding

...

FICOMP – Compare Integer and Pop

16-bit memory 11011 110 : mod 011 r/m

32-bit memory 11011 010 : mod 011 r/m

FIDIV – Divide

ST(0) ← ST(0) ÷ 16-bit memory 11011 110 : mod 110 r/m

ST(0) ← ST(0) ÷ 32-bit memory 11011 010 : mod 110 r/m

FIDIVR – Reverse Divide

ST(0) ← 16-bit memory ÷ ST(0) 11011 110 : mod 111 r/m

ST(0) ← 32-bit memory ÷ ST(0) 11011 010 : mod 111 r/m

FILD – Load Integer

16-bit memory 11011 111 : mod 000 r/m

32-bit memory 11011 011 : mod 000 r/m

64-bit memory 11011 111 : mod 101 r/m

FIMUL– Multiply

ST(0) ← ST(0) × 16-bit memory 11011 110 : mod 001 r/m

ST(0) ← ST(0) × 32-bit memory 11011 010 : mod 001 r/m

FINCSTP – Increment Stack Pointer 11011 001 : 1111 0111

FINIT – Initialize Floating-Point Unit

FIST – Store Integer

16-bit memory 11011 111 : mod 010 r/m

32-bit memory 11011 011 : mod 010 r/m

FISTP – Store Integer and Pop

16-bit memory 11011 111 : mod 011 r/m

32-bit memory 11011 011 : mod 011 r/m

64-bit memory 11011 111 : mod 111 r/m

FISUB – Subtract

ST(0) ← ST(0) - 16-bit memory 11011 110 : mod 100 r/m

ST(0) ← ST(0) - 32-bit memory 11011 010 : mod 100 r/m

FISUBR – Reverse Subtract

ST(0) ← 16-bit memory − ST(0) 11011 110 : mod 101 r/m

ST(0) ← 32-bit memory − ST(0) 11011 010 : mod 101 r/m

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 45

6. Updates to Chapter 2, Volume 3A
Change bars show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

--

...

2.7.4 Invalidating Caches and TLBs
The processor provides several instructions for use in explicitly invalidating its caches
and TLB entries. The INVD (invalidate cache with no writeback) instruction invalidates all
data and instruction entries in the internal caches and sends a signal to the external
caches indicating that they should be also be invalidated.

The WBINVD (invalidate cache with writeback) instruction performs the same function as
the INVD instruction, except that it writes back modified lines in its internal caches to
memory before it invalidates the caches. After invalidating the caches local to the
executing logical processor or processor core, WBINVD signals caches higher in the
cache hierarchy (caches shared with the invalidating logical processor or core) to write
back any data they have in modified state, at the time of instruction execution and to
invalidate their contents.

Note, non-shared caches may not be written back nor invalidated. In Figure 2-8 below, if
code executing on either LP0 or LP1 were to execute a WBINVD, the shared L1 and L2 for
LP0/LP1 will be written back and invalidated as do the shared L3. However, the L1 and L2
caches not shared with LP0 and LP1 will not be written back nor invalidated.

The INVLPG (invalidate TLB entry) instruction invalidates (flushes) the TLB entry for a
specified page.

...

Figure 2-8 WBINVD Invalidation of Shared and Non-Shared Cache Hierarchy

Logical Processors

L1 & L2 Cache

LP0 LP5

QPI

LP1 LP2 LP3 LP4 LP6 LP7

Execution Engine

L3 Cache

Uncore

DDR3

Written back

Written back and Invalidated

Not Written back and
not Invalidated

& Invalidated

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 46

7. Updates to Chapter 4, Volume 3A
Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

--

...

4.1.3 Paging-Mode Modifiers
Details of how each paging mode operates are determined by the following control bits:
• The WP flag in CR0 (bit 16).
• The PSE, PGE, PCIDE, and SMEP flags in CR4 (bit 4, bit 7, bit 17, and bit 20, respec-

tively).
• The NXE flag in the IA32_EFER MSR (bit 11).

CR0.WP allows pages to be protected from supervisor-mode writes. If CR0.WP = 0,
supervisor-mode write accesses are allowed to linear addresses with read-only access
rights; if CR0.WP = 1, they are not. (User-mode write accesses are never allowed to
linear addresses with read-only access rights, regardless of the value of CR0.WP.)
Section 4.6 explains how access rights are determined, including the definition of super-
visor-mode and user-mode accesses.

CR4.PSE enables 4-MByte pages for 32-bit paging. If CR4.PSE = 0, 32-bit paging can
use only 4-KByte pages; if CR4.PSE = 1, 32-bit paging can use both 4-KByte pages and
4-MByte pages. See Section 4.3 for more information. (PAE paging and IA-32e paging
can use multiple page sizes regardless of the value of CR4.PSE.)

CR4.PGE enables global pages. If CR4.PGE = 0, no translations are shared across
address spaces; if CR4.PGE = 1, specified translations may be shared across address
spaces. See Section 4.10.2.4 for more information.

CR4.PCIDE enables process-context identifiers (PCIDs) for IA-32e paging (CR4.PCIDE
can be 1 only when IA-32e paging is in use). PCIDs allow a logical processor to cache
information for multiple linear-address spaces. See Section 4.10.1 for more information.

CR4.SMEP allows pages to be protected from supervisor-mode instruction fetches. If
CR4.SMEP = 1, software operating in supervisor mode cannot fetch instructions from
linear addresses that are accessible in user mode. Section 4.6 explains how access rights
are determined, including the definition of supervisor-mode accesses and user-mode
accessibility.

IA32_EFER.NXE enables execute-disable access rights for PAE paging and IA-32e
paging. If IA32_EFER.NXE = 1, instructions fetches can be prevented from specified
linear addresses (even if data reads from the addresses are allowed). Section 4.6
explains how access rights are determined. (IA32_EFER.NXE has no effect with 32-bit
paging. Software that wants to use this feature to limit instruction fetches from readable
pages must use either PAE paging or IA-32e paging.)

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 47

...

Table 4-4 Format of a 32-Bit Page-Directory Entry that Maps a 4-MByte Page

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-MByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-MByte page referenced by
this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 4-MByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 4-MByte page referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 4-MByte page referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 4-MByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-MByte page referenced by
this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see Table 4-5)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

12 (PAT) If the PAT is supported, indirectly determines the memory type used to access the
4-MByte page referenced by this entry (see Section 4.9.2); otherwise, reserved
(must be 0)1

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.

(M–20):13 Bits (M–1):32 of physical address of the 4-MByte page referenced by this entry2

2. If the PSE-36 mechanism is not supported, M is 32, and this row does not apply. If the PSE-36
mechanism is supported, M is the minimum of 40 and MAXPHYADDR (this row does not apply if
MAXPHYADDR = 32). See Section 4.1.4 for how to determine MAXPHYADDR and whether the
PSE-36 mechanism is supported.

21:(M–19) Reserved (must be 0)

31:22 Bits 31:22 of physical address of the 4-MByte page referenced by this entry

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 48

...

Table 4-5 Format of a 32-Bit Page-Directory Entry that References a Page Table

Bit
Position(s)

Contents

0 (P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-MByte region controlled by
this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 4-MByte region
controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether this entry has been used for linear-address
translation (see Section 4.8)

6 Ignored

7 (PS) If CR4.PSE = 1, must be 0 (otherwise, this entry maps a 4-MByte page; see Table
4-4); otherwise, ignored

11:8 Ignored

31:12 Physical address of 4-KByte aligned page table referenced by this entry

Table 4-6 Format of a 32-Bit Page-Table Entry that Maps a 4-KByte Page

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by this
entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 4-KByte page referenced
by this entry (see Section 4.8)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 49

...

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by
this entry (see Section 4.8)

7 (PAT) If the PAT is supported, indirectly determines the memory type used to access the
4-KByte page referenced by this entry (see Section 4.9.2); otherwise, reserved
(must be 0)1

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

31:12 Physical address of the 4-KByte page referenced by this entry

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.

Table 4-9 Format of a PAE Page-Directory Entry that Maps a 2-MByte Page

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 2-MByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte page referenced by
this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 2-MByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 2-MByte page referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 2-MByte page referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 2-MByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 2-MByte page referenced by
this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see Table 4-
10)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

Table 4-6 Format of a 32-Bit Page-Table Entry that Maps a 4-KByte Page (Contd.)

Bit
Position(s)

Contents

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 50

12 (PAT) If the PAT is supported, indirectly determines the memory type used to access the
2-MByte page referenced by this entry (see Section 4.9.2); otherwise, reserved
(must be 0)1

20:13 Reserved (must be 0)

(M–1):21 Physical address of the 2-MByte page referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 2-MByte page controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.

...

Table 4-10 Format of a PAE Page-Directory Entry that References a Page Table

Bit
Position(s)

Contents

0 (P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte region controlled by
this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 2-MByte region
controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether this entry has been used for linear-address
translation (see Section 4.8)

6 Ignored

7 (PS) Page size; must be 0 (otherwise, this entry maps a 2-MByte page; see Table 4-9)

Table 4-9 Format of a PAE Page-Directory Entry that Maps a 2-MByte Page (Contd.)

Bit
Position(s)

Contents

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 51

...

11:8 Ignored

(M–1):12 Physical address of 4-KByte aligned page table referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 2-MByte region controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

Table 4-11 Format of a PAE Page-Table Entry that Maps a 4-KByte Page

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by this
entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 4-KByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by
this entry (see Section 4.8)

7 (PAT) If the PAT is supported, indirectly determines the memory type used to access the
4-KByte page referenced by this entry (see Section 4.9.2); otherwise, reserved
(must be 0)1

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

Table 4-10 Format of a PAE Page-Directory Entry that References a Page Table (Contd.)

Bit
Position(s)

Contents

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 52

...

11:9 Ignored

(M–1):12 Physical address of the 4-KByte page referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 4-KByte page controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.

Table 4-11 Format of a PAE Page-Table Entry that Maps a 4-KByte Page (Contd.)

Bit
Position(s)

Contents

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 53

...

Table 4-14 Format of an IA-32e PML4 Entry (PML4E) that References a Page-Directory-
Pointer Table

Bit
Position(s)

Contents

0 (P) Present; must be 1 to reference a page-directory-pointer table

1 (R/W) Read/write; if 0, writes may not be allowed to the 512-GByte region controlled by
this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 512-GByte
region controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page-directory-pointer table referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page-directory-pointer table referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address
translation (see Section 4.8)

6 Ignored

7 (PS) Reserved (must be 0)

11:8 Ignored

M–1:12 Physical address of 4-KByte aligned page-directory-pointer table referenced by
this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 512-GByte region controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 54

...

Table 4-15 Format of an IA-32e Page-Directory-Pointer-Table Entry (PDPTE) that Maps
a 1-GByte Page

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 1-GByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 1-GByte page referenced by this
entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 1-GByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 1-GByte page referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 1-GByte page referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether software has accessed the 1-GByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 1-GByte page referenced by
this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page directory; see Table
4-16)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

12 (PAT) Indirectly determines the memory type used to access the 1-GByte page
referenced by this entry (see Section 4.9.2)1

NOTES:
1. The PAT is supported on all processors that support IA-32e paging.

29:13 Reserved (must be 0)

(M–1):30 Physical address of the 1-GByte page referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 1-GByte page controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 55

...

Table 4-16 Format of an IA-32e Page-Directory-Pointer-Table Entry (PDPTE) that
References a Page Directory

Bit
Position(s)

Contents

0 (P) Present; must be 1 to reference a page directory

1 (R/W) Read/write; if 0, writes may not be allowed to the 1-GByte region controlled by
this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 1-GByte region
controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page directory referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page directory referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address
translation (see Section 4.8)

6 Ignored

7 (PS) Page size; must be 0 (otherwise, this entry maps a 1-GByte page; see Table 4-15)

11:8 Ignored

(M–1):12 Physical address of 4-KByte aligned page directory referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 1-GByte region controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 56

...

Table 4-17 Format of an IA-32e Page-Directory Entry that Maps a 2-MByte Page

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 2-MByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte page referenced by
this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 2-MByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 2-MByte page referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 2-MByte page referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether software has accessed the 2-MByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 2-MByte page referenced by
this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see Table 4-
18)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

12 (PAT) Indirectly determines the memory type used to access the 2-MByte page
referenced by this entry (see Section 4.9.2)

20:13 Reserved (must be 0)

(M–1):21 Physical address of the 2-MByte page referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 2-MByte page controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 57

...

Table 4-18 Format of an IA-32e Page-Directory Entry that References a Page Table

Bit
Position(s)

Contents

0 (P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte region controlled by
this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 2-MByte region
controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address
translation (see Section 4.8)

6 Ignored

7 (PS) Page size; must be 0 (otherwise, this entry maps a 2-MByte page; see Table 4-17)

11:8 Ignored

(M–1):12 Physical address of 4-KByte aligned page table referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 2-MByte region controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 58

...

4.6 ACCESS RIGHTS
There is a translation for a linear address if the processes described in Section 4.3,
Section 4.4.2, and Section 4.5 (depending upon the paging mode) completes and
produces a physical address. Whether an access is permitted by a translation is deter-
mined by the access rights specified by the paging-structure entries controlling the
translation;1 paging-mode modifiers in CR0, CR4, and the IA32_EFERMSR; and the
mode of the access.

Table 4-19 Format of an IA-32e Page-Table Entry that Maps a 4-KByte Page

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by this
entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether software has accessed the 4-KByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by
this entry (see Section 4.8)

7 (PAT) Indirectly determines the memory type used to access the 4-KByte page
referenced by this entry (see Section 4.9.2)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

(M–1):12 Physical address of the 4-KByte page referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 4-KByte page controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 59

Every access to a linear address is either a supervisor-mode access or a user-mode
access. All accesses performed while the current privilege level (CPL) is less than 3 are
supervisor-mode accesses. If CPL = 3, accesses are generally user-mode accesses.
However, some operations implicitly access system data structures with linear
addresses; the resulting accesses to those data structures are supervisor-mode
accesses regardless of CPL. Examples of such implicit supervisor accesses include the
following: accesses to the global descriptor table (GDT) or local descriptor table (LDT) to
load a segment descriptor; accesses to the interrupt descriptor table (IDT) when deliv-
ering an interrupt or exception; and accesses to the task-state segment (TSS) as part of
a task switch or change of CPL.

The following items detail how paging determines access rights:
• For supervisor-mode accesses:

— Data reads.
Data may be read from any linear address with a valid translation.

— Data writes.

• If CR0.WP = 0, data may be written to any linear address with a valid trans-
lation.

• If CR0.WP = 1, data may be written to any linear address with a valid
translation for which the R/W flag (bit 1) is 1 in every paging-structure entry
controlling the translation.

— Instruction fetches.

• For 32-bit paging or if IA32_EFER.NXE = 0, access rights depend on the
value of CR4.SMEP:

— If CR4.SMEP = 0, instructions may be fetched from any linear address
with a valid translation.

— If CR4.SMEP = 1, instructions may be fetched from any linear address
with a valid translation for which the U/S flag (bit 2) is 0 in at least one
of the paging-structure entries controlling the translation.

• For PAE paging or IA-32e paging with IA32_EFER.NXE = 1, access rights
depend on the value of CR4.SMEP:

— If CR4.SMEP = 0, instructions may be fetched from any linear address
with a valid translation for which the XD flag (bit 63) is 0 in every
paging-structure entry controlling the translation.

— If CR4.SMEP = 1, instructions may be fetched from any linear address
with a valid translation for which (1) the U/S flag is 0 in at least one of
the paging-structure entries controlling the translation; and (2) the XD
flag is 0 in every paging-structure entry controlling the translation.

• For user-mode accesses:

— Data reads.
Data may be read from any linear address with a valid translation for which the
U/S flag (bit 2) is 1 in every paging-structure entry controlling the translation.

— Data writes.
Data may be written to any linear address with a valid translation for which both
the R/W flag and the U/S flag are 1 in every paging-structure entry controlling
the translation.

1. With PAE paging, the PDPTEs do not determine access rights.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 60

— Instruction fetches.

• For 32-bit paging or if IA32_EFER.NXE = 0, instructions may be fetched from
any linear address with a valid translation for which the U/S flag is 1 in every
paging-structure entry controlling the translation.

• For PAE paging or IA-32e paging with IA32_EFER.NXE = 1, instructions may
be fetched from any linear address with a valid translation for which the U/S
flag is 1 and the XD flag is 0 in every paging-structure entry controlling the
translation.

A processor may cache information from the paging-structure entries in TLBs and
paging-structure caches (see Section 4.10). These structures may include information
about access rights. The processor may enforce access rights based on the TLBs and
paging-structure caches instead of on the paging structures in memory.

This fact implies that, if software modifies a paging-structure entry to change access
rights, the processor might not use that change for a subsequent access to an affected
linear address (see Section 4.10.4.3). See Section 4.10.4.2 for how software can ensure
that the processor uses the modified access rights.

4.7 PAGE-FAULT EXCEPTIONS
Accesses using linear addresses may cause page-fault exceptions (#PF; exception
14). An access to a linear address may cause page-fault exception for either of two
reasons: (1) there is no valid translation for the linear address; or (2) there is a valid
translation for the linear address, but its access rights do not permit the access.

As noted in Section 4.3, Section 4.4.2, and Section 4.5, there is no valid translation for a
linear address if the translation process for that address would use a paging-structure
entry in which the P flag (bit 0) is 0 or one that sets a reserved bit. If there is a valid
translation for a linear address, its access rights are determined as specified in Section
4.6.

Figure 4-12 illustrates the error code that the processor provides on delivery of a page-
fault exception. The following items explain how the bits in the error code describe the
nature of the page-fault exception:

Figure 4-12 Page-Fault Error Code

The fault was caused by a non-present page.
The fault was caused by a page-level protection violation.

The access causing the fault was a read.
The access causing the fault was a write.

A supervisor-mode access caused the fault.
A user-mode access caused the fault.

31 0

Reserved

1234

The fault was not caused by reserved bit violation.
The fault was caused by a reserved bit set to 1 in some

P 0
1

W/R 0
1

U/S 0

RSVD 0
1

1

I/D

I/D 0 The fault was not caused by an instruction fetch.
1 The fault was caused by an instruction fetch.

PW
/R

U/S
RSVD

paging-structure entry.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 61

• P flag (bit 0).
This flag is 0 if there is no valid translation for the linear address because the P flag
was 0 in one of the paging-structure entries used to translate that address.

• W/R (bit 1).
If the access causing the page-fault exception was a write, this flag is 1; otherwise,
it is 0. This flag describes the access causing the page-fault exception, not the access
rights specified by paging.

• U/S (bit 2).
If a user-mode access caused the page-fault exception, this flag is 1; it is 0 if a
supervisor-mode access did so. This flag describes the access causing the page-fault
exception, not the access rights specified by paging. User-mode and supervisor-
mode accesses are defined in Section 4.6.

• RSVD flag (bit 3).
This flag is 1 if there is no valid translation for the linear address because a reserved
bit was set in one of the paging-structure entries used to translate that address.
(Because reserved bits are not checked in a paging-structure entry whose P flag is 0,
bit 3 of the error code can be set only if bit 0 is also set.)
Bits reserved in the paging-structure entries are reserved for future functionality.
Software developers should be aware that such bits may be used in the future and
that a paging-structure entry that causes a page-fault exception on one processor
might not do so in the future.

• I/D flag (bit 4).
This flag is 1 if (1) the access causing the page-fault exception was an instruction
fetch; and (2) either (a) CR4.SMEP = 1; or (b) both (i) CR4.PAE = 1 (either PAE
paging or IA-32e paging is in use); and (ii) IA32_EFER.NXE = 1. Otherwise, the flag
is 0. This flag describes the access causing the page-fault exception, not the access
rights specified by paging.

Page-fault exceptions occur only due to an attempt to use a linear address. Failures to
load the PDPTE registers with PAE paging (see Section 4.4.1) cause general-protection
exceptions (#GP(0)) and not page-fault exceptions.

...

8. Updates to Chapter 10, Volume 3A
Change bars show changes to Chapter 10 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

--

...

10.4.7.4 Local APIC State After It Receives an INIT-Deassert IPI
Only the Pentium and P6 family processors support the INIT-deassert IPI. An INIT-deas-
sert IPI has no affect on the state of the APIC, other than to reload the arbitration ID
register with the value in the APIC ID register.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 62

10.5.4 APIC Timer
The local APIC unit contains a 32-bit programmable timer that is available to software to
time events or operations. This timer is set up by programming four registers: the divide
configuration register (see Figure 10-10), the initial-count and current-count registers
(see Figure 10-11), and the LVT timer register (see Figure 10-8).

If CPUID.06H:EAX.ARAT[bit 2] = 1, the processor’s APIC timer runs at a constant rate
regardless of P-state transitions and it continues to run at the same rate in deep C-
states.

If CPUID.06H:EAX.ARAT[bit 2] = 0 or if CPUID 06H is not supported, the APIC timer may
temporarily stop while the processor is in deep C-states or during transitions caused by
Enhanced Intel SpeedStep® Technology.

The time base for the timer is derived from the processor’s bus clock, divided by the
value specified in the divide configuration register.

...

Figure 10-10 Divide Configuration Register

Figure 10-11 Initial Count and Current Count Registers

Address: FEE0 03E0H
Value after reset: 0H

0

Divide Value (bits 0, 1 and 3)
000: Divide by 2
001: Divide by 4
010: Divide by 8
011: Divide by 16
100: Divide by 32
101: Divide by 64
110: Divide by 128
111: Divide by 1

31 0

Reserved

1234

31 0

Initial Count

Address: Initial Count

Value after reset: 0H

Current Count

Current Count FEE0 0390H
FEE0 0380H

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 63

9. Updates to Chapter 17, Volume 3B
Change bars show changes to Chapter 17 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...

17.2 DEBUG REGISTERS
Eight debug registers (see Figure 17-1 for 32-bit operation and Figure 17-2 for 64-bit
operation) control the debug operation of the processor. These registers can be written
to and read using the move to/from debug register form of the MOV instruction. A debug
register may be the source or destination operand for one of these instructions.

Debug registers are privileged resources; a MOV instruction that accesses these regis-
ters can only be executed in real-address mode, in SMM or in protected mode at a CPL of
0. An attempt to read or write the debug registers from any other privilege level gener-
ates a general-protection exception (#GP).

The primary function of the debug registers is to set up and monitor from 1 to 4 break-
points, numbered 0 though 3. For each breakpoint, the following information can be
specified:
• The linear address where the breakpoint is to occur.
• The length of the breakpoint location: 1, 2, 4, or 8 bytes (refer to the notes in Section

17.2.4).
• The operation that must be performed at the address for a debug exception to be

generated.
• Whether the breakpoint is enabled.
• Whether the breakpoint condition was present when the debug exception was

generated.

...

17.2.6 Debug Registers and Intel® 64 Processors
For Intel 64 architecture processors, debug registers DR0–DR7 are 64 bits. In 16-bit or
32-bit modes (protected mode and compatibility mode), writes to a debug register fill
the upper 32 bits with zeros. Reads from a debug register return the lower 32 bits. In 64-
bit mode, MOV DRn instructions read or write all 64 bits. Operand-size prefixes are
ignored.

In 64-bit mode, the upper 32 bits of DR6 and DR7 are reserved and must be written with
zeros. Writing 1 to any of the upper 32 bits results in a #GP(0) exception (see Figure 17-
2). All 64 bits of DR0–DR3 are writable by software. However, MOV DRn instructions do
not check that addresses written to DR0–DR3 are in the linear-address limits of the
processor implementation (address matching is supported only on valid addresses
generated by the processor implementation). Break point conditions for 8-byte memory
read/writes are supported in all modes.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 64

...

Figure 17-2 DR6/DR7 Layout on Processors Supporting Intel® 64 Architecture

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

DR7L

Reserved

0

1234569101718252627282930

G
0

L
1

L
2

L
3

G
3

L
E

G
E

G
2

G
1

G
D

R/W
0

LEN
0

R/W
1

LEN
1

R/W
2

LEN
2

R/W
3

LEN
3

31 16 15 1314 12 11 8 7 0

DR6B
0

123456910

B
1

B
2

B
3

0 1 1 1 1 1 1 1 1 1B
D

B
S

B
T

63 32

63 32

DR6

DR7

0 0 0 0 1

Reserved (set to 1)

63 0

DR3Breakpoint 3 Linear Address

63 0

DR2Breakpoint 2 Linear Address

63 0

DR1Breakpoint 1 Linear Address

63 0

DR0Breakpoint 0 Linear Address

63 0

DR5

63 0

DR4

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 65

17.12 TIME-STAMP COUNTER
The Intel 64 and IA-32 architectures (beginning with the Pentium processor) define a
time-stamp counter mechanism that can be used to monitor and identify the relative
time occurrence of processor events. The counter’s architecture includes the following
components:
• TSC flag — A feature bit that indicates the availability of the time-stamp counter.

The counter is available in an if the function CPUID.1:EDX.TSC[bit 4] = 1.
• IA32_TIME_STAMP_COUNTER MSR (called TSC MSR in P6 family and Pentium

processors) — The MSR used as the counter.
• RDTSC instruction — An instruction used to read the time-stamp counter.
• TSD flag — A control register flag is used to enable or disable the time-stamp

counter (enabled if CR4.TSD[bit 2] = 1).

The time-stamp counter (as implemented in the P6 family, Pentium, Pentium M, Pentium
4, Intel Xeon, Intel Core Solo and Intel Core Duo processors and later processors) is a
64-bit counter that is set to 0 following a RESET of the processor. Following a RESET, the
counter increments even when the processor is halted by the HLT instruction or the
external STPCLK# pin. Note that the assertion of the external DPSLP# pin may cause the
time-stamp counter to stop.

Processor families increment the time-stamp counter differently:
• For Pentium M processors (family [06H], models [09H, 0DH]); for Pentium 4

processors, Intel Xeon processors (family [0FH], models [00H, 01H, or 02H]); and
for P6 family processors: the time-stamp counter increments with every internal
processor clock cycle.
The internal processor clock cycle is determined by the current core-clock to bus-
clock ratio. Intel® SpeedStep® technology transitions may also impact the
processor clock.

• For Pentium 4 processors, Intel Xeon processors (family [0FH], models [03H and
higher]); for Intel Core Solo and Intel Core Duo processors (family [06H], model
[0EH]); for the Intel Xeon processor 5100 series and Intel Core 2 Duo processors
(family [06H], model [0FH]); for Intel Core 2 and Intel Xeon processors (family
[06H], DisplayModel [17H]); for Intel Atom processors (family [06H],
DisplayModel [1CH]): the time-stamp counter increments at a constant rate. That
rate may be set by the maximum core-clock to bus-clock ratio of the processor or
may be set by the maximum resolved frequency at which the processor is booted.
The maximum resolved frequency may differ from the maximum qualified frequency
of the processor, see Section 18.12.5 for more detail. On certain processors, the TSC
frequency may not be the same as the frequency in the brand string.
The specific processor configuration determines the behavior. Constant TSC behavior
ensures that the duration of each clock tick is uniform and supports the use of the
TSC as a wall clock timer even if the processor core changes frequency. This is the
architectural behavior moving forward.

NOTE
To determine average processor clock frequency, Intel recommends the
use of performance monitoring logic to count processor core clocks over
the period of time for which the average is required. See Section 18.12,
“Counting Clocks,” and Chapter 19, “Performance-Monitoring Events,”
for more information.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 66

The RDTSC instruction reads the time-stamp counter and is guaranteed to return a
monotonically increasing unique value whenever executed, except for a 64-bit counter
wraparound. Intel guarantees that the time-stamp counter will not wraparound within
10 years after being reset. The period for counter wrap is longer for Pentium 4, Intel
Xeon, P6 family, and Pentium processors.

Normally, the RDTSC instruction can be executed by programs and procedures running
at any privilege level and in virtual-8086 mode. The TSD flag allows use of this instruc-
tion to be restricted to programs and procedures running at privilege level 0. A secure
operating system would set the TSD flag during system initialization to disable user
access to the time-stamp counter. An operating system that disables user access to the
time-stamp counter should emulate the instruction through a user-accessible program-
ming interface.

The RDTSC instruction is not serializing or ordered with other instructions. It does not
necessarily wait until all previous instructions have been executed before reading the
counter. Similarly, subsequent instructions may begin execution before the RDTSC
instruction operation is performed.

The RDMSR and WRMSR instructions read and write the time-stamp counter, treating the
time-stamp counter as an ordinary MSR (address 10H). In the Pentium 4, Intel Xeon,
and P6 family processors, all 64-bits of the time-stamp counter are read using RDMSR
(just as with RDTSC). When WRMSR is used to write the time-stamp counter on proces-
sors before family [0FH], models [03H, 04H]: only the low-order 32-bits of the time-
stamp counter can be written (the high-order 32 bits are cleared to 0). For family [0FH],
models [03H, 04H, 06H]; for family [06H]], model [0EH, 0FH]; for family [06H]],
DisplayModel [17H, 1AH, 1CH, 1DH]: all 64 bits are writable.

...

10. Updates to Chapter 18, Volume 3B
Change bars show changes to Chapter 18 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...

18.4.2 Global Counter Control Facilities
Processors based on Intel Core microarchitecture provides simplified performance
counter control that simplifies the most frequent operations in programming perfor-
mance events, i.e. enabling/disabling event counting and checking the status of counter
overflows. This is done by the following three MSRs:
• MSR_PERF_GLOBAL_CTRL enables/disables event counting for all or any

combination of fixed-function PMCs (MSR_PERF_FIXED_CTRx) or general-purpose
PMCs via a single WRMSR.

• MSR_PERF_GLOBAL_STATUS allows software to query counter overflow conditions
on any combination of fixed-function PMCs (MSR_PERF_FIXED_CTRx) or general-
purpose PMCs via a single RDMSR.

• MSR_PERF_GLOBAL_OVF_CTRL allows software to clear counter overflow conditions
on any combination of fixed-function PMCs (MSR_PERF_FIXED_CTRx) or general-
purpose PMCs via a single WRMSR.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 67

MSR_PERF_GLOBAL_CTRL MSR provides single-bit controls to enable counting in each
performance counter (see Figure 18-10). Each enable bit in MSR_PERF_GLOBAL_CTRL is
AND’ed with the enable bits for all privilege levels in the respective IA32_PERFEVTSELx
or MSR_PERF_FIXED_CTR_CTRL MSRs to start/stop the counting of respective counters.
Counting is enabled if the AND’ed results is true; counting is disabled when the result is
false.

MSR_PERF_GLOBAL_STATUS MSR provides single-bit status used by software to query
the overflow condition of each performance counter. The MSR also provides additional
status bit to indicate overflow conditions when counters are programmed for precise-
event-based sampling (PEBS). The MSR_PERF_GLOBAL_STATUS MSR also provides a
‘sticky bit’ to indicate changes to the state of performance monitoring hardware (see
Figure 18-11). A value of 1 in bits 34:32, 1, 0 indicates an overflow condition has
occurred in the associated counter.

When a performance counter is configured for PEBS, an overflow condition in the counter
will arm PEBS. On the subsequent event following overflow, the processor will generate
a PEBS event. On a PEBS event, the processor will perform bounds checks based on the
parameters defined in the DS Save Area (see Section 17.4.9). Upon successful bounds
checks, the processor will store the data record in the defined buffer area, clear the
counter overflow status, and reload the counter. If the bounds checks fail, the PEBS will

Figure 18-10 Layout of MSR_PERF_GLOBAL_CTRL MSR

Figure 18-11 Layout of MSR_PERF_GLOBAL_STATUS MSR

FIXED_CTR2 enable
FIXED_CTR1 enable
FIXED_CTR0 enable
PMC1 enable

2 1 0

PMC0 enable

3132333435

Reserved

63

62

FIXED_CTR2 Overflow
FIXED_CTR1 Overflow
FIXED_CTR0 Overflow
PMC1 Overflow

2 1 0

PMC0 Overflow

3132333435

Reserved

63

CondChgd
OvfBuffer

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 68

be skipped entirely. In the event that the PEBS buffer fills up, the processor will set the
OvfBuffer bit in MSR_PERF_GLOBAL_STATUS.

MSR_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow the indicators for
general-purpose or fixed-function counters via a single WRMSR (see Figure 18-12).
Clear overflow indications when:
• Setting up new values in the event select and/or UMASK field for counting or

sampling
• Reloading counter values to continue sampling
• Disabling event counting or sampling

...

18.8.1 Global Counter Control Facilities In Intel® Microarchitecture
Code Name Sandy Bridge

The number of general-purpose performance counters visible to a logical processor can
vary across Processors based on Intel microarchitecture code name Sandy Bridge. Soft-
ware must use CPUID to determine the number performance counters/event select
registers (See Section 18.2.1.1).

Figure 18-12 Layout of MSR_PERF_GLOBAL_OVF_CTRL MSR

62

FIXED_CTR2 ClrOverflow
FIXED_CTR1 ClrOverflow
FIXED_CTR0 ClrOverflow
PMC1 ClrOverflow

2 1 0

PMC0 ClrOverflow

3132333435

Reserved

63

ClrCondChgd
ClrOvfBuffer

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 69

Figure 18-10 depicts the layout of IA32_PERF_GLOBAL_CTRL MSR. The enable bits
(PMC4_EN, PMC5_EN, PMC6_EN, PMC7_EN) corresponding to IA32_PMC4-IA32_PMC7
are valid only if CPUID.0AH:EAX[15:8] reports a value of ‘8’. If CPUID.0AH:EAX[15:8] =
4, attempts to set the invalid bits will cause #GP.

Each enable bit in IA32_PERF_GLOBAL_CTRL is AND’ed with the enable bits for all privi-
lege levels in the respective IA32_PERFEVTSELx or IA32_PERF_FIXED_CTR_CTRL MSRs
to start/stop the counting of respective counters. Counting is enabled if the AND’ed
results is true; counting is disabled when the result is false.
IA32_PERF_GLOBAL_STATUS MSR provides single-bit status used by software to query
the overflow condition of each performance counter. The MSR also provides additional
status bit to indicate overflow conditions when counters are programmed for precise-
event-based sampling (PEBS). The IA32_PERF_GLOBAL_STATUS MSR also provides a
‘sticky bit’ to indicate changes to the state of performance monitoring hardware (see
Figure 18-26). A value of 1 in each bit of the PMCx_OVF field indicates an overflow condi-
tion has occurred in the associated counter.

Figure 18-25 IA32_PERF_GLOBAL_CTRL MSR in Intel® Microarchitecture Code Name
Sandy Bridge

FIXED_CTR2 enable
FIXED_CTR1 enable
FIXED_CTR0 enable

PMC7_EN (if PMC7 present)

2 1 0

PMC6_EN (if PMC6 present)

3132333435

Reserved

63

PMC5_EN (if PMC5 present)
PMC4_EN (if PMC4 present)
PMC3_EN
PMC2_EN
PMC1_EN

Valid if CPUID.0AH:EAX[15:8] = 8, else reserved.

PMC0_EN

8 7 6 5 4 3

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 70

When a performance counter is configured for PEBS, an overflow condition in the counter
will arm PEBS. On the subsequent event following overflow, the processor will generate
a PEBS event. On a PEBS event, the processor will perform bounds checks based on the
parameters defined in the DS Save Area (see Section 17.4.9). Upon successful bounds
checks, the processor will store the data record in the defined buffer area, clear the
counter overflow status, and reload the counter. If the bounds checks fail, the PEBS will
be skipped entirely. In the event that the PEBS buffer fills up, the processor will set the
OvfBuffer bit in MSR_PERF_GLOBAL_STATUS.

IA32_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow the indicators for
general-purpose or fixed-function counters via a single WRMSR (see Figure 18-27).
Clear overflow indications when:
• Setting up new values in the event select and/or UMASK field for counting or

sampling
• Reloading counter values to continue sampling
• Disabling event counting or sampling

Figure 18-26 IA32_PERF_GLOBAL_STATUS MSR in Intel® Microarchitecture Code Name
Sandy Bridge

62

FIXED_CTR2 Overflow (RO)
FIXED_CTR1 Overflow (RO)
FIXED_CTR0 Overflow (RO)
PMC7_OVF (RO, If PMC7 present)

2 1 0

PMC6_OVF (RO, If PMC6 present)

3132333435

Reserved

63

CondChgd
OvfBuffer

8 7 6 5 4 3

PMC5_OVF (RO, If PMC5 present)
PMC4_OVF (RO, If PMC4 present)
PMC3_OVF (RO)
PMC2_OVF (RO)
PMC1_OVF (RO)
PMC0_OVF (RO)

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 71

...

18.8.4.4 Precise Distribution of Instructions Retired (PDIR)
Upon triggering a PEBS assist, there will be a finite delay between the time the counter
overflows and when the microcode starts to carry out its data collection obligations.
INST_RETIRED is a very common event that is used to sample where performance
bottleneck happened and to help identify its location in instruction address space. Even
if the delay is constant in core clock space, it invariably manifest as variable “skids” in
instruction address space. This creates a challenge for programmers to profile a work-
load and pinpoint the location of bottlenecks.

The core PMU in processors based on Intel microarchitecture code name Sandy Bridge
include a facility referred to as precise distribution of Instruction Retired (PDIR).

The PDIR facility mitigates the “skid“ problem by providing an early indication of when
the INST_RETIRED counter is about to overflow, allowing the machine to more precisely
trap on the instruction that actually caused the counter overflow thus eliminating skid.

PDIR applies only to the INST_RETIRED.ALL precise event, and must use IA32_PMC1
with PerfEvtSel1 property configured and bit 1 in the IA32_PEBS_ENABLE set to 1.
INST_RETIRED.ALL is a non-architectural performance event, it is not supported in prior
generation microarchitectures. Additionally, current implementation of PDIR limits tool
to quiesce the rest of the programmable counters in the core when PDIR is active.

...

Figure 18-27 IA32_PERF_GLOBAL_OVF_CTRL MSR in Intel microarchitecture code name
Sandy Bridge

62

FIXED_CTR2 ClrOverflow
FIXED_CTR1 ClrOverflow
FIXED_CTR0 ClrOverflow
PMC7_ClrOvf (if PMC7 present)

2 1 0

PMC6_ClrOvf (if PMC6 present)

3132333435

Reserved

63

ClrCondChgd
ClrOvfBuffer

8 7 6 5 4 3

PMC5_ClrOvf (if PMC5 present)
PMC4_ClrOvf (if PMC4 present)
PMC3_ClrOvf
PMC2_ClrOvf
PMC1_ClrOvf
PMC0_ClrOvf

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 72

18.8.6 Uncore Performance Monitoring Facilities In Intel® Core™ i7-
2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor
Series

The uncore sub-system in Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™
i3-2xxx processor series provides a unified L3 that can support up to four processor
cores. The L3 cache consists multiple slices, each slice interface with a processor via a
coherence engine, referred to as a C-Box. Each C-Box provides dedicated facility of MSRs
to select uncore performance monitoring events and each C-Box event select MSR is
paired with a counter register, similar in style as those described in Section 18.6.2.2. The
layout of the event select MSRs in the C-Boxes are shown in Figure Figure 18-31.

The bit fields of the uncore event select MSRs for a C-box unit or the ARB unit are
summarized below:
• Event_Select (bits 7:0) and UMASK (bits 15:8): Specifies the microarchitectural

condition to count in a local uncore PMU counter, see Table 19-6.
• E (bit 18): Enables edge detection filtering, if 1.
• OVF_EN (bit 20): Enables the overflow indicator from the uncore counter forwarded

to MSR_UNC_PERF_GLOBAL_CTRL, if 1.
• EN (bit 22): Enables the local counter associated with this event select MSR.
• INV (bit 23): Event count increments with non-negative value if 0, with negated

value if 1.
• CMASK (bits 28:24): Specifies a positive threshold value to filter raw event count

input.

At the uncore domain level, there is a master set of control MSRs that centrally manages
all the performance monitoring facility of uncore units. Figure Figure 18-32 shows the
layout of the uncore domain global control.

When an uncore counter overflows, a PMI can be routed to a processor core. Bits 3:0 of
MSR_UNC_PERF_GLOBAL_CTRL can be used to select which processor core to handle
the uncore PMI. Software must then write to bit 13 of IA32_DEBUG_CTL (at address
0x1D9) to enable this capability.
• PMI_SEL_Core#: Enables the forwarding of an uncore PMI request to a processor

core, if 1. If bit 30 (WakePMI) is ‘1’, a wake request is sent to the respective
processor core prior to sending the PMI.

Figure 18-31 Layout of Uncore PERFEVTSEL MSR for a C-Box Unit or the ARB Unit

28

INV—Invert counter mask
EN—Enable counter

E—Edge detect

8 7 0

Event Select
Counter Mask

19 1618 15172021222324

Reserved

Unit Mask (UMASK)(CMASK)

63

OVF_EN—Overflow forwarding

RESET Value — 0x00000000_00000000

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 73

• EN: Enables the fixed uncore counter, the ARB counters, and the CBO counters in the
uncore PMU, if 1. This bit is cleared if bit 31 (FREEZE) is set and any enabled uncore
counters overflow.

• WakePMI: Controls sending a wake request to any halted processor core before
issuing the uncore PMI request. If a processor core was halted and not sent a wake
request, the uncore PMI will not be serviced by the processor core.

• FREEZE: Provides the capability to freeze all uncore counters when an overflow
condition occurs in a unit counter. When this bit is set, and a counter overflow occurs,
the uncore PMU logic will clear the global enable bit (bit 29).

Additionally, there is also a fixed counter, counting uncore clockticks, for the uncore
domain. Table 18-28 summarizes the number MSRs for uncore PMU for each box.

...

11. Updates to Chapter 19, Volume 3B
Change bars show changes to Chapter 19 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

--

...

Figure 18-32 Layout of MSR_UNC_PERF_GLOBAL_CTRL MSR for Uncore

Table 18-28 Uncore PMU MSR Summary

Box # of Boxes
Counters
per Box

Counter
Width

General
Purpose

Global
Enable Comment

C-Box SKU specific 2 44 Yes Per-box Up to 4, see Table 34-
11
MSR_UNC_CBO_CONFIG

ARB 1 2 44 No Uncore

Fixed
Counter

N.A. N.A. 48 No Uncore

FREEZE—Freeze counters

EN—Enable all uncore counters

02829303132

Reserved

63

WakePMI—Wake cores on PMI

RESET Value — 0x00000000_00000000

4 3 2 1

PMI_Sel_Core3 — Uncore PMI to core 3
PMI_Sel_Core2 — Uncore PMI to core 2
PMI_Sel_Core1 — Uncore PMI to core 1
PMI_Sel_Core0 — Uncore PMI to core 0

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 74

19.2 PERFORMANCE MONITORING EVENTS FOR THIRD
GENERATION INTEL® CORE™ PROCESSORS

Third generation Intel® Core™ Processors are based on the Intel microarchitecture code
name Ivy Bridge. They support architectural performance-monitoring events listed in
Table 19-1. Non-architectural performance-monitoring events in the processor core are
listed in Table 19-2. The events in Table 19-2 apply to processors with CPUID signature
of DisplayFamily_DisplayModel encoding with the following values: 06_3AH.

Table 19-2 Non-Architectural Performance Events In the Processor Core of Third
Generation Intel Core i7, i5, i3 Processors

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

03H 02H LD_BLOCKS.STORE_F
ORWARD

loads blocked by overlapping with
store buffer that cannot be
forwarded .

05H 01H MISALIGN_MEM_REF.
LOADS

Speculative cache-line split load
uops dispatched to L1D.

05H 02H MISALIGN_MEM_REF.
STORES

Speculative cache-line split Store-
address uops dispatched to L1D.

07H 01H LD_BLOCKS_PARTIA
L.ADDRESS_ALIAS

False dependencies in MOB due to
partial compare on address.

08H 81H DTLB_LOAD_MISSES.
DEMAND_LD_MISS_C
AUSES_A_WALK

Misses in all TLB levels that cause a
page walk of any page size from
demand loads.

08H 82H DTLB_LOAD_MISSES.
DEMAND_LD_WALK_
COMPLETED

Misses in all TLB levels that caused
page walk completed of any size by
demand loads.

08H 84H DTLB_LOAD_MISSES.
DEMAND_LD_WALK_
DURATION

Cycle PMH is busy with a walk due
to demand loads.

0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of Uops
issued by the RAT to RS.

Set Cmask = 1, Inv = 1, Any= 1to
count stalled cycles of this core.

Set Cmask = 1,
Inv = 1to count
stalled cycles

0EH 10H UOPS_ISSUED.FLAGS
_MERGE

Number of flags-merge uops
allocated. Such uops adds delay.

0EH 20H UOPS_ISSUED.SLOW
_LEA

Number of slow LEA or similar uops
allocated. Such uop has 3 sources
(e.g. 2 sources + immediate)
regardless if as a result of LEA
instruction or not.

0EH 40H UOPS_ISSUED.SiNGL
E_MUL

Number of multiply packed/scalar
single precision uops allocated.

14H 01H ARITH.FPU_DIV_ACT
IVE

Cycles that the divider is active,
includes INT and FP. Set 'edge =1,
cmask=1' to count the number of
divides.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 75

24H 01H L2_RQSTS.DEMAND_
DATA_RD_HIT

Demand Data Read requests that
hit L2 cache

24H 03H L2_RQSTS.ALL_DEM
AND_DATA_RD

Counts any demand and L1 HW
prefetch data load requests to L2.

24H 04H L2_RQSTS.RFO_HITS Counts the number of store RFO
requests that hit the L2 cache.

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO
requests that miss the L2 cache.

24H 0CH L2_RQSTS.ALL_RFO Counts all L2 store RFO requests.

24H 10H L2_RQSTS.CODE_RD
_HIT

Number of instruction fetches that
hit the L2 cache.

24H 20H L2_RQSTS.CODE_RD
_MISS

Number of instruction fetches that
missed the L2 cache.

24H 30H L2_RQSTS.ALL_COD
E_RD

Counts all L2 code requests.

24H 40H L2_RQSTS.PF_HIT Counts all L2 HW prefetcher
requests that hit L2.

24H 80H L2_RQSTS.PF_MISS Counts all L2 HW prefetcher
requests that missed L2.

24H C0H L2_RQSTS.ALL_PF Counts all L2 HW prefetcher
requests.

27H 01H L2_STORE_LOCK_RQ
STS.MISS

RFOs that miss cache lines

27H 08H L2_STORE_LOCK_RQ
STS.HIT_M

RFOs that hit cache lines in M state

27H 0FH L2_STORE_LOCK_RQ
STS.ALL

RFOs that access cache lines in any
state

28H 01H L2_L1D_WB_RQSTS.
MISS

Not rejected writebacks that missed
LLC.

28H 04H L2_L1D_WB_RQSTS.
HIT_E

Not rejected writebacks from L1D
to L2 cache lines in E state.

28H 08H L2_L1D_WB_RQSTS.
HIT_M

Not rejected writebacks from L1D
to L2 cache lines in M state.

28H 0FH L2_L1D_WB_RQSTS.
ALL

Not rejected writebacks from L1D
to L2 cache lines in any state.

2EH 4FH LONGEST_LAT_CACH
E.REFERENCE

This event counts requests
originating from the core that
reference a cache line in the last
level cache.

see Table 19-1

2EH 41H LONGEST_LAT_CACH
E.MISS

This event counts each cache miss
condition for references to the last
level cache.

see Table 19-1

Table 19-2 Non-Architectural Performance Events In the Processor Core of Third
Generation Intel Core i7, i5, i3 Processors

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 76

3CH 00H CPU_CLK_UNHALTED
.THREAD_P

Counts the number of thread cycles
while the thread is not in a halt
state. The thread enters the halt
state when it is running the HLT
instruction. The core frequency may
change from time to time due to
power or thermal throttling.

see Table 19-1

3CH 01H CPU_CLK_THREAD_
UNHALTED.REF_XCL
K

Increments at the frequency of
XCLK (100 MHz) when not halted.

see Table 19-1

48H 01H L1D_PEND_MISS.PE
NDING

Increments the number of
outstanding L1D misses every cycle.
Set Cmaks = 1 and Edge =1 to count
occurrences.

Counter 2 only;

Set Cmask = 1 to
count cycles.

49H 01H DTLB_STORE_MISSE
S.MISS_CAUSES_A_
WALK

Miss in all TLB levels causes an page
walk of any page size (4K/2M/4M/
1G).

49H 02H DTLB_STORE_MISSE
S.WALK_COMPLETED

Miss in all TLB levels causes a page
walk that completes of any page
size (4K/2M/4M/1G).

49H 04H DTLB_STORE_MISSE
S.WALK_DURATION

Cycles PMH is busy with this walk.

49H 10H DTLB_STORE_MISSE
S.STLB_HIT

Store operations that miss the first
TLB level but hit the second and do
not cause page walks

4CH 01H LOAD_HIT_PRE.SW_
PF

Non-SW-prefetch load dispatches
that hit fill buffer allocated for S/W
prefetch.

4CH 02H LOAD_HIT_PRE.HW_
PF

Non-SW-prefetch load dispatches
that hit fill buffer allocated for H/W
prefetch.

51H 01H L1D.REPLACEMENT Counts the number of lines brought
into the L1 data cache.

58H 01H MOVE_ELIMINATION.I
NT_NOT_ELIMINATE
D

Number of integer Move Elimination
candidate uops that were not
eliminated.

58H 02H MOVE_ELIMINATION.
SIMD_NOT_ELIMINAT
ED

Number of SIMD Move Elimination
candidate uops that were not
eliminated.

58H 04H MOVE_ELIMINATION.I
NT_ELIMINATED

Number of integer Move Elimination
candidate uops that were
eliminated.

58H 08H MOVE_ELIMINATION.
SIMD_ELIMINATED

Number of SIMD Move Elimination
candidate uops that were
eliminated.

Table 19-2 Non-Architectural Performance Events In the Processor Core of Third
Generation Intel Core i7, i5, i3 Processors

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 77

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the
thread is in ring 0

Use Edge to
count transition

5CH 02H CPL_CYCLES.RING12
3

Unhalted core cycles when the
thread is not in ring 0

5EH 01H RS_EVENTS.EMPTY_
CYCLES

Cycles the RS is empty for the
thread.

5FH 01H TLB_ACCESS.LOAD_S
TLB_HIT

Counts load operations that missed
1st level DTLB but hit the 2nd level.

60H 01H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND_DATA_RD

Offcore outstanding Demand Data
Read transactions in SQ to uncore.
Set Cmask=1 to count cycles.

60H 02H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND_CODE_RD

Offcore outstanding Demand Code
Read transactions in SQ to uncore.
Set Cmask=1 to count cycles.

60H 04H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND_RFO

Offcore outstanding RFO store
transactions in SQ to uncore. Set
Cmask=1 to count cycles.

60H 08H OFFCORE_REQUEST
S_OUTSTANDING.AL
L_DATA_RD

Offcore outstanding cacheable data
read transactions in SQ to uncore.
Set Cmask=1 to count cycles.

63H 01H LOCK_CYCLES.SPLIT_
LOCK_UC_LOCK_DUR
ATION

Cycles in which the L1D and L2 are
locked, due to a UC lock or split lock.

63H 02H LOCK_CYCLES.CACHE
_LOCK_DURATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops
delivered to IDQ from MITE path.

Set Cmask = 1 to count cycles.

Can combine
Umask 04H and
20H

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops
delivered to IDQ from DSB path.

Set Cmask = 1 to count cycles.

Can combine
Umask 08H and
10H

79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops
delivered to IDQ when MS_busy by
DSB. Set Cmask = 1 to count cycles.
Add Edge=1 to count # of delivery.

Can combine
Umask 04H, 08H

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops
delivered to IDQ when MS_busy by
MITE. Set Cmask = 1 to count cycles.

Can combine
Umask 04H, 08H

79H 30H IDQ.MS_UOPS Increment each cycle # of uops
delivered to IDQ from MS by either
DSB or MITE. Set Cmask = 1 to count
cycles.

Can combine
Umask 04H, 08H

Table 19-2 Non-Architectural Performance Events In the Processor Core of Third
Generation Intel Core i7, i5, i3 Processors

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 78

79H 18H IDQ.ALL_DSB_CYCLE
S_ANY_UOPS

Counts cycles DSB is delivered at
least one uops. Set Cmask = 1.

79H 18H IDQ.ALL_DSB_CYCLE
S_4_UOPS

Counts cycles DSB is delivered four
uops. Set Cmask = 4.

79H 24H IDQ.ALL_MITE_CYCLE
S_ANY_UOPS

Counts cycles MITE is delivered at
least one uops. Set Cmask = 1.

79H 24H IDQ.ALL_MITE_CYCLE
S_4_UOPS

Counts cycles MITE is delivered four
uops. Set Cmask = 4.

79H 3CH IDQ.MITE_ALL_UOPS # of uops delivered to IDQ from any
path.

80H 02H ICACHE.MISSES Number of Instruction Cache,
Streaming Buffer and Victim Cache
Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_C
AUSES_A_WALK

Misses in all ITLB levels that cause
page walks

85H 02H ITLB_MISSES.WALK_
COMPLETED

Misses in all ITLB levels that cause
completed page walks

85H 04H ITLB_MISSES.WALK_
DURATION

Cycle PMH is busy with a walk.

85H 10H ITLB_MISSES.STLB_H
IT

Number of cache load STLB hits. No
page walk.

87H 01H ILD_STALL.LCP Stalls caused by changing prefix
length of the instruction.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to IQ is full.

88H 01H BR_INST_EXEC.COND Qualify conditional near branch
instructions executed, but not
necessarily retired.

Must combine
with umask 40H,
80H

88H 02H BR_INST_EXEC.DIRE
CT_JMP

Qualify all unconditional near branch
instructions excluding calls and
indirect branches.

Must combine
with umask 80H

88H 04H BR_INST_EXEC.INDIR
ECT_JMP_NON_CALL
_RET

Qualify executed indirect near
branch instructions that are not
calls nor returns.

Must combine
with umask 80H

88H 08H BR_INST_EXEC.RETU
RN_NEAR

Qualify indirect near branches that
have a return mnemonic.

Must combine
with umask 80H

88H 10H BR_INST_EXEC.DIRE
CT_NEAR_CALL

Qualify unconditional near call
branch instructions, excluding non
call branch, executed.

Must combine
with umask 80H

88H 20H BR_INST_EXEC.INDIR
ECT_NEAR_CALL

Qualify indirect near calls, including
both register and memory indirect,
executed.

Must combine
with umask 80H

88H 40H BR_INST_EXEC.NON
TAKEN

Qualify non-taken near branches
executed.

Applicable to
umask 01H only

Table 19-2 Non-Architectural Performance Events In the Processor Core of Third
Generation Intel Core i7, i5, i3 Processors

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 79

88H 80H BR_INST_EXEC.TAKE
N

Qualify taken near branches
executed. Must combine with
01H,02H, 04H, 08H, 10H, 20H

88H FFH BR_INST_EXEC.ALL_
BRANCHES

Counts all near executed branches
(not necessarily retired).

89H 01H BR_MISP_EXEC.CON
D

Qualify conditional near branch
instructions mispredicted.

Must combine
with umask 40H,
80H

89H 04H BR_MISP_EXEC.INDIR
ECT_JMP_NON_CALL
_RET

Qualify mispredicted indirect near
branch instructions that are not
calls nor returns.

Must combine
with umask 80H

89H 08H BR_MISP_EXEC.RETU
RN_NEAR

Qualify mispredicted indirect near
branches that have a return
mnemonic.

Must combine
with umask 80H

89H 10H BR_MISP_EXEC.DIRE
CT_NEAR_CALL

Qualify mispredicted unconditional
near call branch instructions,
excluding non call branch, executed.

Must combine
with umask 80H

89H 20H BR_MISP_EXEC.INDIR
ECT_NEAR_CALL

Qualify mispredicted indirect near
calls, including both register and
memory indirect, executed.

Must combine
with umask 80H

89H 40H BR_MISP_EXEC.NON
TAKEN

Qualify mispredicted non-taken
near branches executed,.

Applicable to
umask 01H only

89H 80H BR_MISP_EXEC.TAKE
N

Qualify mispredicted taken near
branches executed. Must combine
with 01H,02H, 04H, 08H, 10H, 20H

89H FFH BR_MISP_EXEC.ALL_
BRANCHES

Counts all near executed branches
(not necessarily retired).

9CH 01H IDQ_UOPS_NOT_DEL
IVERED.CORE

Count number of non-delivered
uops to RAT per thread.

Use Cmask to
qualify uop b/w

A1H 01H UOPS_DISPATCHED_
PORT.PORT_0

Cycles which a Uop is dispatched on
port 0.

A1H 02H UOPS_DISPATCHED_
PORT.PORT_1

Cycles which a Uop is dispatched on
port 1.

A1H 04H UOPS_DISPATCHED_
PORT.PORT_2_LD

Cycles which a load uop is
dispatched on port 2.

A1H 08H UOPS_DISPATCHED_
PORT.PORT_2_STA

Cycles which a store address uop is
dispatched on port 2.

A1H 0CH UOPS_DISPATCHED_
PORT.PORT_2

Cycles which a Uop is dispatched on
port 2.

A1H 10H UOPS_DISPATCHED_
PORT.PORT_3_LD

Cycles which a load uop is
dispatched on port 3.

A1H 20H UOPS_DISPATCHED_
PORT.PORT_3_STA

Cycles which a store address uop is
dispatched on port 3.

Table 19-2 Non-Architectural Performance Events In the Processor Core of Third
Generation Intel Core i7, i5, i3 Processors

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 80

A1H 30H UOPS_DISPATCHED_
PORT.PORT_3

Cycles which a Uop is dispatched on
port 3.

A1H 40H UOPS_DISPATCHED_
PORT.PORT_4

Cycles which a Uop is dispatched on
port 4.

A1H 80H UOPS_DISPATCHED_
PORT.PORT_5

Cycles which a Uop is dispatched on
port 5.

A2H 01H RESOURCE_STALLS.
ANY

Cycles Allocation is stalled due to
Resource Related reason.

A2H 04H RESOURCE_STALLS.R
S

Cycles stalled due to no eligible RS
entry available.

A2H 08H RESOURCE_STALLS.S
B

Cycles stalled due to no store
buffers available. (not including
draining form sync).

A2H 10H RESOURCE_STALLS.R
OB

Cycles stalled due to re-order buffer
full.

ABH 01H DSB2MITE_SWITCHE
S.COUNT

Number of DSB to MITE switches.

ABH 02H DSB2MITE_SWITCHE
S.PENALTY_CYCLES

Cycles DSB to MITE switches caused
delay.

ACH 08H DSB_FILL.EXCEED_D
SB_LINES

DSB Fill encountered > 3 DSB lines.

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes,
includes 4k/2M/4M pages.

B0H 01H OFFCORE_REQUEST
S.DEMAND_DATA_RD

Demand data read requests sent to
uncore.

B0H 02H OFFCORE_REQUEST
S.DEMAND_CODE_RD

Demand code read requests sent to
uncore.

B0H 04H OFFCORE_REQUEST
S.DEMAND_RFO

Demand RFO read requests sent to
uncore., including regular RFOs,
locks, ItoM

B0H 08H OFFCORE_REQUEST
S.ALL_DATA_RD

Data read requests sent to uncore
(demand and prefetch).

B1H 01H UOPS_EXECUTED.TH
READ

Counts total number of uops to be
executed per-thread each cycle. Set
Cmask = 1, INV =1 to count stall
cycles.

B1H 02H UOPS_EXECUTED.CO
RE

Counts total number of uops to be
executed per-core each cycle.

Do not need to
set ANY

B7H 01H OFF_CORE_RESPONS
E_0

see Section 18.8.5, “Off-core
Response Performance Monitoring”;
PMC0 only.

Requires
programming
MSR 01A6H

Table 19-2 Non-Architectural Performance Events In the Processor Core of Third
Generation Intel Core i7, i5, i3 Processors

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 81

BBH 01H OFF_CORE_RESPONS
E_1

See Section 18.8.5, “Off-core
Response Performance Monitoring”.
PMC3 only.

Requires
programming
MSR 01A7H

BDH 01H TLB_FLUSH.DTLB_T
HREAD

DTLB flush attempts of the thread-
specific entries.

BDH 20H TLB_FLUSH.STLB_A
NY

Count number of STLB flush
attempts.

C0H 00H INST_RETIRED.ANY_
P

Number of instructions at
retirement.

See Table 19-1

C0H 01H INST_RETIRED.ALL Precise instruction retired event
with HW to reduce effect of PEBS
shadow in IP distribution.

PMC1 only; Must
quiesce other
PMCs.

C1H 08H OTHER_ASSISTS.AVX
_STORE

Number of assists associated with
256-bit AVX store operations.

C1H 10H OTHER_ASSISTS.AVX
_TO_SSE

Number of transitions from AVX-
256 to legacy SSE when penalty
applicable.

C1H 20H OTHER_ASSISTS.SSE
_TO_AVX

Number of transitions from SSE to
AVX-256 when penalty applicable.

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops
retired, Use cmask=1 and invert to
count active cycles or stalled cycles.

Supports PEBS,
use Any=1 for
core granular.

C2H 02H UOPS_RETIRED.RETI
RE_SLOTS

Counts the number of retirement
slots used each cycle.

C3H 02H MACHINE_CLEARS.M
EMORY_ORDERING

Counts the number of machine
clears due to memory order
conflicts.

C3H 04H MACHINE_CLEARS.S
MC

Number of self-modifying-code
machine clears detected.

C3H 20H MACHINE_CLEARS.M
ASKMOV

Counts the number of executed
AVX masked load operations that
refer to an illegal address range
with the mask bits set to 0.

C4H 00H BR_INST_RETIRED.A
LL_BRANCHES

Branch instructions at retirement See Table 19-1

C4H 01H BR_INST_RETIRED.C
ONDITIONAL

Counts the number of conditional
branch instructions retired.

Supports PEBS

C4H 02H BR_INST_RETIRED.N
EAR_CALL

Direct and indirect near call
instructions retired.

C4H 04H BR_INST_RETIRED.A
LL_BRANCHES

Counts the number of branch
instructions retired.

C4H 08H BR_INST_RETIRED.N
EAR_RETURN

Counts the number of near return
instructions retired.

Table 19-2 Non-Architectural Performance Events In the Processor Core of Third
Generation Intel Core i7, i5, i3 Processors

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 82

C4H 10H BR_INST_RETIRED.N
OT_TAKEN

Counts the number of not taken
branch instructions retired.

C4H 20H BR_INST_RETIRED.N
EAR_TAKEN

Number of near taken branches
retired.

C4H 40H BR_INST_RETIRED.F
AR_BRANCH

Number of far branches retired.

C5H 00H BR_MISP_RETIRED.A
LL_BRANCHES

Mispredicted branch instructions at
retirement

See Table 19-1

C5H 01H BR_MISP_RETIRED.C
ONDITIONAL

Mispredicted conditional branch
instructions retired.

Supports PEBS

C5H 02H BR_MISP_RETIRED.N
EAR_CALL

Direct and indirect mispredicted
near call instructions retired.

C5H 04H BR_MISP_RETIRED.A
LL_BRANCHES

Mispredicted macro branch
instructions retired.

C5H 10H BR_MISP_RETIRED.N
OT_TAKEN

Mispredicted not taken branch
instructions retired.

C5H 20H BR_MISP_RETIRED.T
AKEN

Mispredicted taken branch
instructions retired.

CAH 02H FP_ASSIST.X87_OUT
PUT

Number of X87 FP assists due to
Output values.

CAH 04H FP_ASSIST.X87_INP
UT

Number of X87 FP assists due to
input values.

CAH 08H FP_ASSIST.SIMD_OU
TPUT

Number of SIMD FP assists due to
Output values.

CAH 10H FP_ASSIST.SIMD_INP
UT

Number of SIMD FP assists due to
input values.

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE*
or FP assists.

CCH 20H ROB_MISC_EVENTS.L
BR_INSERTS

Count cases of saving new LBR
records by hardware.

CDH 01H MEM_TRANS_RETIR
ED.LOAD_LATENCY

Sample loads with specified latency
threshold. PMC3 only.

Specify threshold
in MSR 0x3F6

CDH 02H MEM_TRANS_RETIR
ED.PRECISE_STORE

Sample stores and collect precise
store operation via PEBS record.
PMC3 only.

See Section
18.8.4.3

D0H 01H MEM_UOP_RETIRED.
LOADS

Qualify retired memory uops that
are loads. Combine with umask 10H,
20H, 40H, 80H.

Supports PEBS

D0H 02H MEM_UOP_RETIRED.
STORES

Qualify retired memory uops that
are stores. Combine with umask
10H, 20H, 40H, 80H.

Table 19-2 Non-Architectural Performance Events In the Processor Core of Third
Generation Intel Core i7, i5, i3 Processors

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 83

D0H 10H MEM_UOP_RETIRED.
STLB_MISS

Qualify retired memory uops with
STLB miss. Must combine with
umask 01H, 02H, to produce counts.

D0H 20H MEM_UOP_RETIRED.
LOCK

Qualify retired memory uops with
lock. Must combine with umask 01H,
02H, to produce counts.

D0H 40H MEM_UOP_RETIRED.
SPLIT

Qualify retired memory uops with
line split. Must combine with umask
01H, 02H, to produce counts.

D0H 80H MEM_UOP_RETIRED.
ALL

Qualify any retired memory uops.
Must combine with umask 01H,
02H, to produce counts.

D1H 01H MEM_LOAD_UOPS_R
ETIRED.L1_HIT

Retired load uops with L1 cache hits
as data sources.

Supports PEBS

D1H 02H MEM_LOAD_UOPS_R
ETIRED.L2_HIT

Retired load uops with L2 cache hits
as data sources.

D1H 04H MEM_LOAD_UOPS_R
ETIRED.LLC_HIT

Retired load uops with LLC cache
hits as data sources.

D1H 40H MEM_LOAD_UOPS_R
ETIRED.HIT_LFB

Retired load uops which data
sources were load uops missed L1
but hit FB due to preceding miss to
the same cache line with data not
ready.

D2H 01H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_MISS

Retired load uops which data
sources were LLC hit and cross-core
snoop missed in on-pkg core cache.

Supports PEBS

D2H 02H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_HIT

Retired load uops which data
sources were LLC and cross-core
snoop hits in on-pkg core cache.

Supports PEBS

D2H 04H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_HITM

Retired load uops which data
sources were HitM responses from
shared LLC.

D2H 08H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_NONE

Retired load uops which data
sources were hits in LLC without
snoops required.

D3H 01H MEM_LOAD_UOPS_L
LC_MISS_RETIRED.LO
CAL_DRAM

Retired load uops which data
sources missed LLC but serviced
from local dram.

Supports PEBS.

F0H 01H L2_TRANS.DEMAND_
DATA_RD

Demand Data Read requests that
access L2 cache

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching
instructions

Table 19-2 Non-Architectural Performance Events In the Processor Core of Third
Generation Intel Core i7, i5, i3 Processors

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 84

19.3 PERFORMANCE MONITORING EVENTS FOR 2ND
GENERATION INTEL® CORE™ I7-2XXX, INTEL® CORE™
I5-2XXX, INTEL® CORE™ I3-2XXX PROCESSOR SERIES

Second generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx
processor series are based on the Intel microarchitecture code name Sandy Bridge. They
support architectural performance-monitoring events listed in Table 19-1. Non-architec-
tural performance-monitoring events in the processor core are listed in Table 19-3, Table
19-4, and Table 19-5. The events in Table 19-3 apply to processors with CPUID signature
of DisplayFamily_DisplayModel encoding with the following values: 06_2AH and
06_2DH. The events in Table 19-4 apply to processors with CPUID signature 06_2AH.
The events in Table 19-5 apply to processors with CPUID signature 06_2DH.

F0H 08H L2_TRANS.ALL_PF Any MLC or LLC HW prefetch
accessing L2, including rejects.

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2
cache.

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2
cache.

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache.

F0H 80H L2_TRANS.ALL_REQ
UESTS

Transactions accessing L2 pipe.

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2. Counting does
not cover rejects.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2. Counting does
not cover rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2. Counting does
not cover rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2. Counting does
not cover rejects.

F2H 01H L2_LINES_OUT.DEMA
ND_CLEAN

Clean L2 cache lines evicted by
demand.

F2H 02H L2_LINES_OUT.DEMA
ND_DIRTY

Dirty L2 cache lines evicted by
demand.

F2H 04H L2_LINES_OUT.PF_C
LEAN

Clean L2 cache lines evicted by the
MLC prefetcher.

F2H 08H L2_LINES_OUT.PF_DI
RTY

Dirty L2 cache lines evicted by the
MLC prefetcher.

F2H 0AH L2_LINES_OUT.DIRT
Y_ALL

Dirty L2 cache lines filling the L2. Counting does
not cover rejects.

Table 19-2 Non-Architectural Performance Events In the Processor Core of Third
Generation Intel Core i7, i5, i3 Processors

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 85

Table 19-3 Non-Architectural Performance Events In the Processor Core Common to
2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor

Series and Intel® Xeon® Processors E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

03H 01H LD_BLOCKS.DATA_U
NKNOWN

blocked loads due to store buffer
blocks with unknown data.

03H 02H LD_BLOCKS.STORE_F
ORWARD

loads blocked by overlapping with
store buffer that cannot be
forwarded .

03H 08H LD_BLOCKS.NO_SR # of Split loads blocked due to
resource not available.

03H 10H LD_BLOCKS.ALL_BLO
CK

Number of cases where any load is
blocked but has no DCU miss.

05H 01H MISALIGN_MEM_REF.
LOADS

Speculative cache-line split load
uops dispatched to L1D.

05H 02H MISALIGN_MEM_REF.
STORES

Speculative cache-line split Store-
address uops dispatched to L1D.

07H 01H LD_BLOCKS_PARTIA
L.ADDRESS_ALIAS

False dependencies in MOB due to
partial compare on address.

07H 08H LD_BLOCKS_PARTIA
L.ALL_STA_BLOCK

The number of times that load
operations are temporarily blocked
because of older stores, with
addresses that are not yet known. A
load operation may incur more than
one block of this type.

08H 01H DTLB_LOAD_MISSES.
MISS_CAUSES_A_WA
LK

Misses in all TLB levels that cause a
page walk of any page size.

08H 02H DTLB_LOAD_MISSES.
WALK_COMPLETED

Misses in all TLB levels that caused
page walk completed of any size.

08H 04H DTLB_LOAD_MISSES.
WALK_DURATION

Cycle PMH is busy with a walk.

08H 10H DTLB_LOAD_MISSES.
STLB_HIT

Number of cache load STLB hits. No
page walk.

0DH 03H INT_MISC.RECOVERY
_CYCLES

Cycles waiting to recover after
Machine Clears or JEClear. Set
Cmask= 1.

Set Edge to
count
occurrences

0DH 40H INT_MISC.RAT_STALL
_CYCLES

Cycles RAT external stall is sent to
IDQ for this thread.

0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of Uops
issued by the RAT to RS.

Set Cmask = 1, Inv = 1, Any= 1to
count stalled cycles of this core.

Set Cmask = 1,
Inv = 1to count
stalled cycles

10H 01H FP_COMP_OPS_EXE.
X87

Counts number of X87 uops
executed.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 86

10H 10H FP_COMP_OPS_EXE.
SSE_FP_PACKED_DO
UBLE

Counts number of SSE* double
precision FP packed uops executed.

10H 20H FP_COMP_OPS_EXE.
SSE_FP_SCALAR_SIN
GLE

Counts number of SSE* single
precision FP scalar uops executed.

10H 40H FP_COMP_OPS_EXE.
SSE_PACKED SINGLE

Counts number of SSE* single
precision FP packed uops executed.

10H 80H FP_COMP_OPS_EXE.
SSE_SCALAR_DOUBL
E

Counts number of SSE* double
precision FP scalar uops executed.

11H 01H SIMD_FP_256.PACKE
D_SINGLE

Counts 256-bit packed single-
precision floating-point instructions.

11H 02H SIMD_FP_256.PACKE
D_DOUBLE

Counts 256-bit packed double-
precision floating-point instructions.

14H 01H ARITH.FPU_DIV_ACT
IVE

Cycles that the divider is active,
includes INT and FP. Set 'edge =1,
cmask=1' to count the number of
divides.

17H 01H INSTS_WRITTEN_TO
_IQ.INSTS

Counts the number of instructions
written into the IQ every cycle.

24H 01H L2_RQSTS.DEMAND_
DATA_RD_HIT

Demand Data Read requests that
hit L2 cache.

24H 03H L2_RQSTS.ALL_DEM
AND_DATA_RD

Counts any demand and L1 HW
prefetch data load requests to L2.

24H 04H L2_RQSTS.RFO_HITS Counts the number of store RFO
requests that hit the L2 cache.

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO
requests that miss the L2 cache.

24H 0CH L2_RQSTS.ALL_RFO Counts all L2 store RFO requests.

24H 10H L2_RQSTS.CODE_RD
_HIT

Number of instruction fetches that
hit the L2 cache.

24H 20H L2_RQSTS.CODE_RD
_MISS

Number of instruction fetches that
missed the L2 cache.

24H 30H L2_RQSTS.ALL_COD
E_RD

Counts all L2 code requests.

24H 40H L2_RQSTS.PF_HIT Requests from L2 Hardware
prefetcher that hit L2.

24H 80H L2_RQSTS.PF_MISS Requests from L2 Hardware
prefetcher that missed L2.

24H C0H L2_RQSTS.ALL_PF Any requests from L2 Hardware
prefetchers.

Table 19-3 Non-Architectural Performance Events In the Processor Core Common to
2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor

Series and Intel® Xeon® Processors E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 87

27H 01H L2_STORE_LOCK_RQ
STS.MISS

RFOs that miss cache lines.

27H 04H L2_STORE_LOCK_RQ
STS.HIT_E

RFOs that hit cache lines in E state.

27H 08H L2_STORE_LOCK_RQ
STS.HIT_M

RFOs that hit cache lines in M state.

27H 0FH L2_STORE_LOCK_RQ
STS.ALL

RFOs that access cache lines in any
state.

28H 01H L2_L1D_WB_RQSTS.
MISS

Not rejected writebacks from L1D
to L2 cache lines that missed L2.

28H 02H L2_L1D_WB_RQSTS.
HIT_S

Not rejected writebacks from L1D
to L2 cache lines in S state.

28H 04H L2_L1D_WB_RQSTS.
HIT_E

Not rejected writebacks from L1D
to L2 cache lines in E state.

28H 08H L2_L1D_WB_RQSTS.
HIT_M

Not rejected writebacks from L1D
to L2 cache lines in M state.

28H 0FH L2_L1D_WB_RQSTS.
ALL

Not rejected writebacks from L1D
to L2 cache.

2EH 4FH LONGEST_LAT_CACH
E.REFERENCE

This event counts requests
originating from the core that
reference a cache line in the last
level cache.

see Table 19-1

2EH 41H LONGEST_LAT_CACH
E.MISS

This event counts each cache miss
condition for references to the last
level cache.

see Table 19-1

3CH 00H CPU_CLK_UNHALTED
.THREAD_P

Counts the number of thread cycles
while the thread is not in a halt
state. The thread enters the halt
state when it is running the HLT
instruction. The core frequency may
change from time to time due to
power or thermal throttling.

see Table 19-1

3CH 01H CPU_CLK_THREAD_
UNHALTED.REF_XCL
K

Increments at the frequency of
XCLK (100 MHz) when not halted.

see Table 19-1

48H 01H L1D_PEND_MISS.PE
NDING

Increments the number of
outstanding L1D misses every cycle.
Set Cmaks = 1 and Edge =1 to count
occurrences.

Counter 2 only;

Set Cmask = 1 to
count cycles.

49H 01H DTLB_STORE_MISSE
S.MISS_CAUSES_A_
WALK

Miss in all TLB levels causes an page
walk of any page size (4K/2M/4M/
1G).

Table 19-3 Non-Architectural Performance Events In the Processor Core Common to
2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor

Series and Intel® Xeon® Processors E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 88

49H 02H DTLB_STORE_MISSE
S.WALK_COMPLETED

Miss in all TLB levels causes a page
walk that completes of any page
size (4K/2M/4M/1G).

49H 04H DTLB_STORE_MISSE
S.WALK_DURATION

Cycles PMH is busy with this walk.

49H 10H DTLB_STORE_MISSE
S.STLB_HIT

Store operations that miss the first
TLB level but hit the second and do
not cause page walks

4CH 01H LOAD_HIT_PRE.SW_
PF

Not SW-prefetch load dispatches
that hit fill buffer allocated for S/W
prefetch.

4CH 02H LOAD_HIT_PRE.HW_
PF

Not SW-prefetch load dispatches
that hit fill buffer allocated for H/W
prefetch.

4EH 02H HW_PRE_REQ.DL1_
MISS

Hardware Prefetch requests that
miss the L1D cache. A request is
being counted each time it access
the cache & miss it, including if a
block is applicable or if hit the Fill
Buffer for example.

This accounts for
both L1 streamer
and IP-based
(IPP) HW
prefetchers.

51H 01H L1D.REPLACEMENT Counts the number of lines brought
into the L1 data cache.

51H 02H L1D.ALLOCATED_IN_
M

Counts the number of allocations of
modified L1D cache lines.

51H 04H L1D.EVICTION Counts the number of modified lines
evicted from the L1 data cache due
to replacement.

51H 08H L1D.ALL_M_REPLAC
EMENT

Cache lines in M state evicted out of
L1D due to Snoop HitM or dirty line
replacement.

59H 20H PARTIAL_RAT_STALL
S.FLAGS_MERGE_UO
P

Increments the number of flags-
merge uops in flight each cycle.

Set Cmask = 1 to count cycles.

59H 40H PARTIAL_RAT_STALL
S.SLOW_LEA_WINDO
W

Cycles with at least one slow LEA
uop allocated.

59H 80H PARTIAL_RAT_STALL
S.MUL_SINGLE_UOP

Number of Multiply packed/scalar
single precision uops allocated.

5BH 0CH RESOURCE_STALLS2.
ALL_FL_EMPTY

Cycles stalled due to free list empty.

5BH 0FH RESOURCE_STALLS2.
ALL_PRF_CONTROL

Cycles stalled due to control
structures full for physical registers.

Table 19-3 Non-Architectural Performance Events In the Processor Core Common to
2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor

Series and Intel® Xeon® Processors E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 89

5BH 40H RESOURCE_STALLS2.
BOB_FULL

Cycles Allocator is stalled due
Branch Order Buffer.

5BH 4FH RESOURCE_STALLS2.
OOO_RSRC

Cycles stalled due to out of order
resources full.

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the
thread is in ring 0.

Use Edge to
count transition

5CH 02H CPL_CYCLES.RING12
3

Unhalted core cycles when the
thread is not in ring 0.

5EH 01H RS_EVENTS.EMPTY_
CYCLES

Cycles the RS is empty for the
thread.

60H 01H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND_DATA_RD

Offcore outstanding Demand Data
Read transactions in SQ to uncore.
Set Cmask=1 to count cycles.

60H 04H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND_RFO

Offcore outstanding RFO store
transactions in SQ to uncore. Set
Cmask=1 to count cycles.

60H 08H OFFCORE_REQUEST
S_OUTSTANDING.AL
L_DATA_RD

Offcore outstanding cacheable data
read transactions in SQ to uncore.
Set Cmask=1 to count cycles.

63H 01H LOCK_CYCLES.SPLIT_
LOCK_UC_LOCK_DUR
ATION

Cycles in which the L1D and L2 are
locked, due to a UC lock or split lock.

63H 02H LOCK_CYCLES.CACHE
_LOCK_DURATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops
delivered to IDQ from MITE path.

Set Cmask = 1 to count cycles.

Can combine
Umask 04H and
20H

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops
delivered to IDQ from DSB path.

Set Cmask = 1 to count cycles.

Can combine
Umask 08H and
10H

79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops
delivered to IDQ when MS busy by
DSB. Set Cmask = 1 to count cycles
MS is busy. Set Cmask=1 and Edge
=1 to count MS activations.

Can combine
Umask 08H and
10H

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops
delivered to IDQ when MS is busy by
MITE. Set Cmask = 1 to count cycles.

Can combine
Umask 04H and
20H

79H 30H IDQ.MS_UOPS Increment each cycle # of uops
delivered to IDQ from MS by either
DSB or MITE. Set Cmask = 1 to count
cycles.

Can combine
Umask 04H, 08H
and 30H

Table 19-3 Non-Architectural Performance Events In the Processor Core Common to
2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor

Series and Intel® Xeon® Processors E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 90

80H 02H ICACHE.MISSES Number of Instruction Cache,
Streaming Buffer and Victim Cache
Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_C
AUSES_A_WALK

Misses in all ITLB levels that cause
page walks.

85H 02H ITLB_MISSES.WALK_
COMPLETED

Misses in all ITLB levels that cause
completed page walks.

85H 04H ITLB_MISSES.WALK_
DURATION

Cycle PMH is busy with a walk.

85H 10H ITLB_MISSES.STLB_H
IT

Number of cache load STLB hits. No
page walk.

87H 01H ILD_STALL.LCP Stalls caused by changing prefix
length of the instruction.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to IQ is full.

88H 01H BR_INST_EXEC.COND Qualify conditional near branch
instructions executed, but not
necessarily retired.

Must combine
with umask 40H,
80H

88H 02H BR_INST_EXEC.DIRE
CT_JMP

Qualify all unconditional near branch
instructions excluding calls and
indirect branches.

Must combine
with umask 80H

88H 04H BR_INST_EXEC.INDIR
ECT_JMP_NON_CALL
_RET

Qualify executed indirect near
branch instructions that are not
calls nor returns.

Must combine
with umask 80H

88H 08H BR_INST_EXEC.RETU
RN_NEAR

Qualify indirect near branches that
have a return mnemonic.

Must combine
with umask 80H

88H 10H BR_INST_EXEC.DIRE
CT_NEAR_CALL

Qualify unconditional near call
branch instructions, excluding non
call branch, executed.

Must combine
with umask 80H

88H 20H BR_INST_EXEC.INDIR
ECT_NEAR_CALL

Qualify indirect near calls, including
both register and memory indirect,
executed.

Must combine
with umask 80H

88H 40H BR_INST_EXEC.NON
TAKEN

Qualify non-taken near branches
executed.

Applicable to
umask 01H only

88H 80H BR_INST_EXEC.TAKE
N

Qualify taken near branches
executed. Must combine with
01H,02H, 04H, 08H, 10H, 20H.

88H FFH BR_INST_EXEC.ALL_
BRANCHES

Counts all near executed branches
(not necessarily retired).

89H 01H BR_MISP_EXEC.CON
D

Qualify conditional near branch
instructions mispredicted.

Must combine
with umask 40H,
80H

Table 19-3 Non-Architectural Performance Events In the Processor Core Common to
2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor

Series and Intel® Xeon® Processors E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 91

89H 04H BR_MISP_EXEC.INDIR
ECT_JMP_NON_CALL
_RET

Qualify mispredicted indirect near
branch instructions that are not
calls nor returns.

Must combine
with umask 80H

89H 08H BR_MISP_EXEC.RETU
RN_NEAR

Qualify mispredicted indirect near
branches that have a return
mnemonic.

Must combine
with umask 80H

89H 10H BR_MISP_EXEC.DIRE
CT_NEAR_CALL

Qualify mispredicted unconditional
near call branch instructions,
excluding non call branch, executed.

Must combine
with umask 80H

89H 20H BR_MISP_EXEC.INDIR
ECT_NEAR_CALL

Qualify mispredicted indirect near
calls, including both register and
memory indirect, executed.

Must combine
with umask 80H

89H 40H BR_MISP_EXEC.NON
TAKEN

Qualify mispredicted non-taken
near branches executed,.

Applicable to
umask 01H only

89H 80H BR_MISP_EXEC.TAKE
N

Qualify mispredicted taken near
branches executed. Must combine
with 01H,02H, 04H, 08H, 10H, 20H.

89H FFH BR_MISP_EXEC.ALL_
BRANCHES

Counts all near executed branches
(not necessarily retired).

9CH 01H IDQ_UOPS_NOT_DEL
IVERED.CORE

Count number of non-delivered
uops to RAT per thread.

Use Cmask to
qualify uop b/w

A1H 01H UOPS_DISPATCHED_
PORT.PORT_0

Cycles which a Uop is dispatched on
port 0.

A1H 02H UOPS_DISPATCHED_
PORT.PORT_1

Cycles which a Uop is dispatched on
port 1.

A1H 04H UOPS_DISPATCHED_
PORT.PORT_2_LD

Cycles which a load uop is
dispatched on port 2.

A1H 08H UOPS_DISPATCHED_
PORT.PORT_2_STA

Cycles which a store address uop is
dispatched on port 2.

A1H 0CH UOPS_DISPATCHED_
PORT.PORT_2

Cycles which a Uop is dispatched on
port 2.

A1H 10H UOPS_DISPATCHED_
PORT.PORT_3_LD

Cycles which a load uop is
dispatched on port 3.

A1H 20H UOPS_DISPATCHED_
PORT.PORT_3_STA

Cycles which a store address uop is
dispatched on port 3.

A1H 30H UOPS_DISPATCHED_
PORT.PORT_3

Cycles which a Uop is dispatched on
port 3.

A1H 40H UOPS_DISPATCHED_
PORT.PORT_4

Cycles which a Uop is dispatched on
port 4.

A1H 80H UOPS_DISPATCHED_
PORT.PORT_5

Cycles which a Uop is dispatched on
port 5.

Table 19-3 Non-Architectural Performance Events In the Processor Core Common to
2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor

Series and Intel® Xeon® Processors E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 92

A2H 01H RESOURCE_STALLS.
ANY

Cycles Allocation is stalled due to
Resource Related reason.

A2H 02H RESOURCE_STALLS.L
B

Counts the cycles of stall due to lack
of load buffers.

A2H 04H RESOURCE_STALLS.R
S

Cycles stalled due to no eligible RS
entry available.

A2H 08H RESOURCE_STALLS.S
B

Cycles stalled due to no store
buffers available. (not including
draining form sync).

A2H 10H RESOURCE_STALLS.R
OB

Cycles stalled due to re-order buffer
full.

A2H 20H RESOURCE_STALLS.F
CSW

Cycles stalled due to writing the
FPU control word.

A2H 40H RESOURCE_STALLS.
MXCSR

Cycles stalled due to the MXCSR
register rename occurring to close
to a previous MXCSR rename.

A2H 80H RESOURCE_STALLS.
OTHER

Cycles stalled while execution was
stalled due to other resource issues.

ABH 01H DSB2MITE_SWITCHE
S.COUNT

Number of DSB to MITE switches.

ABH 02H DSB2MITE_SWITCHE
S.PENALTY_CYCLES

Cycles DSB to MITE switches caused
delay.

ACH 02H DSB_FILL.OTHER_CA
NCEL

Cases of cancelling valid DSB fill not
because of exceeding way limit.

ACH 08H DSB_FILL.EXCEED_D
SB_LINES

DSB Fill encountered > 3 DSB lines.

ACH 0AH DSB_FILL.ALL_CANC
EL

Cases of cancelling valid Decode
Stream Buffer (DSB) fill not because
of exceeding way limit.

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes,
includes 4k/2M/4M pages.

B0H 01H OFFCORE_REQUEST
S.DEMAND_DATA_RD

Demand data read requests sent to
uncore.

B0H 04H OFFCORE_REQUEST
S.DEMAND_RFO

Demand RFO read requests sent to
uncore, including regular RFOs,
locks, ItoM

B0H 08H OFFCORE_REQUEST
S.ALL_DATA_RD

Data read requests sent to uncore
(demand and prefetch).

B1H 01H UOPS_DISPATCHED.T
HREAD

Counts total number of uops to be
dispatched per-thread each cycle.
Set Cmask = 1, INV =1 to count stall
cycles.

Table 19-3 Non-Architectural Performance Events In the Processor Core Common to
2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor

Series and Intel® Xeon® Processors E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 93

B1H 02H UOPS_DISPATCHED.C
ORE

Counts total number of uops to be
dispatched per-core each cycle.

Do not need to
set ANY

B2H 01H OFFCORE_REQUEST
S_BUFFER.SQ_FULL

Offcore requests buffer cannot take
more entries for this thread core.

B6H 01H AGU_BYPASS_CANCE
L.COUNT

Counts executed load operations
with all the following traits: 1.
addressing of the format [base +
offset], 2. the offset is between 1
and 2047, 3. the address specified
in the base register is in one page
and the address [base+offset] is in
another page.

B7H 01H OFF_CORE_RESPONS
E_0

see Section 18.8.5, “Off-core
Response Performance Monitoring”;
PMC0 only.

Requires
programming
MSR 01A6H

BBH 01H OFF_CORE_RESPONS
E_1

See Section 18.8.5, “Off-core
Response Performance Monitoring”.
PMC3 only.

Requires
programming
MSR 01A7H

BDH 01H TLB_FLUSH.DTLB_T
HREAD

DTLB flush attempts of the thread-
specific entries.

BDH 20H TLB_FLUSH.STLB_A
NY

Count number of STLB flush
attempts.

BFH 05H L1D_BLOCKS.BANK_
CONFLICT_CYCLES

Cycles when dispatched loads are
cancelled due to L1D bank conflicts
with other load ports.

cmask=1

C0H 00H INST_RETIRED.ANY_
P

Number of instructions at
retirement.

See Table 19-1

C0H 01H INST_RETIRED.ALL Precise instruction retired event
with HW to reduce effect of PEBS
shadow in IP distribution.

PMC1 only; Must
quiesce other
PMCs.

C1H 02H OTHER_ASSISTS.ITL
B_MISS_RETIRED

Instructions that experienced an
ITLB miss.

C1H 08H OTHER_ASSISTS.AVX
_STORE

Number of assists associated with
256-bit AVX store operations.

C1H 10H OTHER_ASSISTS.AVX
_TO_SSE

Number of transitions from AVX-
256 to legacy SSE when penalty
applicable.

C1H 20H OTHER_ASSISTS.SSE
_TO_AVX

Number of transitions from SSE to
AVX-256 when penalty applicable.

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops
retired, Use cmask=1 and invert to
count active cycles or stalled cycles.

Supports PEBS

Table 19-3 Non-Architectural Performance Events In the Processor Core Common to
2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor

Series and Intel® Xeon® Processors E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 94

C2H 02H UOPS_RETIRED.RETI
RE_SLOTS

Counts the number of retirement
slots used each cycle.

C3H 02H MACHINE_CLEARS.M
EMORY_ORDERING

Counts the number of machine
clears due to memory order
conflicts.

C3H 04H MACHINE_CLEARS.S
MC

Counts the number of times that a
program writes to a code section.

C3H 20H MACHINE_CLEARS.M
ASKMOV

Counts the number of executed
AVX masked load operations that
refer to an illegal address range
with the mask bits set to 0.

C4H 00H BR_INST_RETIRED.A
LL_BRANCHES

Branch instructions at retirement. See Table 19-1

C4H 01H BR_INST_RETIRED.C
ONDITIONAL

Counts the number of conditional
branch instructions retired.

Supports PEBS

C4H 02H BR_INST_RETIRED.N
EAR_CALL

Direct and indirect near call
instructions retired.

C4H 04H BR_INST_RETIRED.A
LL_BRANCHES

Counts the number of branch
instructions retired.

C4H 08H BR_INST_RETIRED.N
EAR_RETURN

Counts the number of near return
instructions retired.

C4H 10H BR_INST_RETIRED.N
OT_TAKEN

Counts the number of not taken
branch instructions retired.

C4H 20H BR_INST_RETIRED.N
EAR_TAKEN

Number of near taken branches
retired.

C4H 40H BR_INST_RETIRED.F
AR_BRANCH

Number of far branches retired.

C5H 00H BR_MISP_RETIRED.A
LL_BRANCHES

Mispredicted branch instructions at
retirement.

See Table 19-1

C5H 01H BR_MISP_RETIRED.C
ONDITIONAL

Mispredicted conditional branch
instructions retired.

Supports PEBS

C5H 02H BR_MISP_RETIRED.N
EAR_CALL

Direct and indirect mispredicted
near call instructions retired.

C5H 04H BR_MISP_RETIRED.A
LL_BRANCHES

Mispredicted macro branch
instructions retired.

C5H 10H BR_MISP_RETIRED.N
OT_TAKEN

Mispredicted not taken branch
instructions retired.

C5H 20H BR_MISP_RETIRED.T
AKEN

Mispredicted taken branch
instructions retired.

CAH 02H FP_ASSIST.X87_OUT
PUT

Number of X87 assists due to
output value.

Table 19-3 Non-Architectural Performance Events In the Processor Core Common to
2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor

Series and Intel® Xeon® Processors E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 95

CAH 04H FP_ASSIST.X87_INP
UT

Number of X87 assists due to input
value.

CAH 08H FP_ASSIST.SIMD_OU
TPUT

Number of SIMD FP assists due to
output values.

CAH 10H FP_ASSIST.SIMD_INP
UT

Number of SIMD FP assists due to
input values.

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE*
or FP assists.

CCH 20H ROB_MISC_EVENTS.L
BR_INSERTS

Count cases of saving new LBR
records by hardware.

CDH 01H MEM_TRANS_RETIR
ED.LOAD_LATENCY

Sample loads with specified latency
threshold. PMC3 only.

Specify threshold
in MSR 0x3F6

CDH 02H MEM_TRANS_RETIR
ED.PRECISE_STORE

Sample stores and collect precise
store operation via PEBS record.
PMC3 only.

See Section
18.8.4.3

D0H 01H MEM_UOP_RETIRED.
LOADS

Qualify retired memory uops that
are loads. Combine with umask 10H,
20H, 40H, 80H.

Supports PEBS

D0H 02H MEM_UOP_RETIRED.
STORES

Qualify retired memory uops that
are stores. Combine with umask
10H, 20H, 40H, 80H.

D0H 10H MEM_UOP_RETIRED.
STLB_MISS

Qualify retired memory uops with
STLB miss. Must combine with
umask 01H, 02H, to produce counts.

D0H 20H MEM_UOP_RETIRED.
LOCK

Qualify retired memory uops with
lock. Must combine with umask 01H,
02H, to produce counts.

D0H 40H MEM_UOP_RETIRED.
SPLIT

Qualify retired memory uops with
line split. Must combine with umask
01H, 02H, to produce counts.

D0H 80H MEM_UOP_RETIRED.
ALL

Qualify any retired memory uops.
Must combine with umask 01H,
02H, to produce counts.

D1H 01H MEM_LOAD_UOPS_R
ETIRED.L1_HIT

Retired load uops with L1 cache hits
as data sources.

Supports PEBS

D1H 02H MEM_LOAD_UOPS_R
ETIRED.L2_HIT

Retired load uops with L2 cache hits
as data sources.

D1H 04H MEM_LOAD_UOPS_R
ETIRED.LLC_HIT

Retired load uops which data
sources were data hits in LLC
without snoops required.

Supports PEBS

D1H 20H MEM_LOAD_UOPS_R
ETIRED.LLC_MISS

Retired load uops which data
sources were data missed LLC
(excluding unknown data source).

Supports PEBS

Table 19-3 Non-Architectural Performance Events In the Processor Core Common to
2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor

Series and Intel® Xeon® Processors E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 96

D1H 40H MEM_LOAD_UOPS_R
ETIRED.HIT_LFB

Retired load uops which data
sources were load uops missed L1
but hit FB due to preceding miss to
the same cache line with data not
ready.

D2H 01H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_MISS

Retired load uops which data
sources were LLC hit and cross-core
snoop missed in on-pkg core cache.

Supports PEBS

D2H 02H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_HIT

Retired load uops which data
sources were LLC and cross-core
snoop hits in on-pkg core cache.

D2H 04H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_HITM

Retired load uops which data
sources were HitM responses from
shared LLC.

D2H 08H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_NONE

Retired load uops which data
sources were hits in LLC without
snoops required.

D4H 02H MEM_LOAD_UOPS_M
ISC_RETIRED.LLC_MI
SS

Retired load uops with unknown
information as data source in cache
serviced the load.

Supports PEBS.

E6H 01H BACLEARS.ANY BACLEARS asserted Counts the
number of times
the front end is
resteered, mainly
when the BPU
cannot provide a
correct
prediction and
this is corrected
by other branch
handling
mechanisms at
the front end.

F0H 01H L2_TRANS.DEMAND_
DATA_RD

Demand Data Read requests that
access L2 cache.

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache.

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching
instructions.

F0H 08H L2_TRANS.ALL_PF L2 or LLC HW prefetches that
access L2 cache.

including rejects.

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2
cache.

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2
cache.

Table 19-3 Non-Architectural Performance Events In the Processor Core Common to
2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor

Series and Intel® Xeon® Processors E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 97

...
Non-architecture performance monitoring events in the processor core that are appli-
cable only to Intel Xeon processor E5 family (and Intel Core i7-3930 processor) based on
Intel microarchitecture Sandy Bridge, with CPUID signature of
DisplayFamily_DisplayModel 06_2DH, are listed in Table 19-5.

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache.

F0H 80H L2_TRANS.ALL_REQ
UESTS

Transactions accessing L2 pipe.

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2. Counting does
not cover rejects.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2. Counting does
not cover rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2. Counting does
not cover rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2. Counting does
not cover rejects.

F2H 01H L2_LINES_OUT.DEMA
ND_CLEAN

Clean L2 cache lines evicted by
demand.

F2H 02H L2_LINES_OUT.DEMA
ND_DIRTY

Dirty L2 cache lines evicted by
demand.

F2H 04H L2_LINES_OUT.PF_C
LEAN

Clean L2 cache lines evicted by L2
prefetch.

F2H 08H L2_LINES_OUT.PF_DI
RTY

Dirty L2 cache lines evicted by L2
prefetch.

F2H 0AH L2_LINES_OUT.DIRT
Y_ALL

Dirty L2 cache lines filling the L2. Counting does
not cover rejects.

F4H 10H SQ_MISC.SPLIT_LOCK Split locks in SQ

Table 19-5 Non-Architectural Performance Events Applicable only to the Processor Core
of Intel® Xeon® Processor E5 Family

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

D3H 01H MEM_LOAD_UOPS_L
LC_MISS_RETIRED.LO
CAL_DRAM

Retired load uops which data sources
were data missed LLC but serviced by
local DRAM.

Supports PEBS

D3H 04H MEM_LOAD_UOPS_L
LC_MISS_RETIRED.R
EMOTE_DRAM

Retired load uops which data sources
were data missed LLC but serviced by
remote DRAM.

Supports PEBS

Table 19-3 Non-Architectural Performance Events In the Processor Core Common to
2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor

Series and Intel® Xeon® Processors E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 98

B7H/
BBH

01H OFF_CORE_RESPONS
E_N

Sub-events of
OFF_CORE_RESPONSE_N (suffix N =
0, 1) programmed using MSR 01A6H/
01A7H with values shown in the
comment column.

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.ANY_RE
SPONSE_N

0x3FFFC0000
4

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.LOCAL_D
RAM_N

0x600400004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.REMOTE
_DRAM_N

0x67F800004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.REMOTE
_HIT_FWD_N

0x87F800004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.REMOTE
_HITM_N

0x107FC0000
4

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.ANY_DR
AM_N

0x67FC00001

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.ANY_RE
SPONSE_N

0x3F803C000
1

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.LOCAL_D
RAM_N

0x600400001

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.REMOTE
_DRAM_N

0x67F800001

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.REMOTE
_HIT_FWD_N

0x87F800001

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.REMOTE
_HITM_N

0x107FC0000
1

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_MISS.ANY_RESP
ONSE_N

0x3F803C004
0

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.ANY_DRAM
_N

0x67FC00010

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.ANY_RESP
ONSE_N

0x3F803C001
0

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.LOCAL_DR
AM_N

0x600400010

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.REMOTE_D
RAM_N

0x67F800010

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.REMOTE_HI
T_FWD_N

0x87F800010

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.REMOTE_HI
TM_N

0x107FC0001
0

Table 19-5 Non-Architectural Performance Events Applicable only to the Processor Core
of Intel® Xeon® Processor E5 Family

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 99

Non-architectural Performance monitoring events that are located in the uncore sub-
system are implementation specific between different platforms using processors based
on Intel microarchitecture Sandy Bridge. Processors with CPUID signature of
DisplayFamily_DisplayModel 06_2AH support performance events listed in Table 19-6.

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_MISS.ANY_RES
PONSE_N

0x3FFFC0020
0

OFFCORE_RESPONSE.PF_LLC_DATA_RD.LLC_MISS.ANY_RES
PONSE_N

0x3FFFC0008
0

Table 19-6 Non-Architectural Performance Events In the Processor Uncore for 2nd
Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor

Series
Event
Num.1

Umask
Value

Event Mask
Mnemonic Description Comment

22H 01H UNC_CBO_XSNP_RE
SPONSE.MISS

A snoop misses in some processor
core.

Must combine
with one of the
umask values
of 20H, 40H,
80H

22H 02H UNC_CBO_XSNP_RE
SPONSE.INVAL

A snoop invalidates a non-modified
line in some processor core.

22H 04H UNC_CBO_XSNP_RE
SPONSE.HIT

A snoop hits a non-modified line in
some processor core.

22H 08H UNC_CBO_XSNP_RE
SPONSE.HITM

A snoop hits a modified line in some
processor core.

22H 10H UNC_CBO_XSNP_RE
SPONSE.INVAL_M

A snoop invalidates a modified line in
some processor core.

22H 20H UNC_CBO_XSNP_RE
SPONSE.EXTERNAL_
FILTER

Filter on cross-core snoops initiated
by this Cbox due to external snoop
request.

Must combine
with at least
one of 01H,
02H, 04H,
08H, 10H

22H 40H UNC_CBO_XSNP_RE
SPONSE.XCORE_FILT
ER

Filter on cross-core snoops initiated
by this Cbox due to processor core
memory request.

22H 80H UNC_CBO_XSNP_RE
SPONSE.EVICTION_FI
LTER

Filter on cross-core snoops initiated
by this Cbox due to LLC eviction.

34H 01H UNC_CBO_CACHE_LO
OKUP.M

LLC lookup request that access cache
and found line in M-state.

Must combine
with one of the
umask values
of 10H, 20H,
40H, 80H

34H 02H UNC_CBO_CACHE_LO
OKUP.E

LLC lookup request that access cache
and found line in E-state.

34H 04H UNC_CBO_CACHE_LO
OKUP.S

LLC lookup request that access cache
and found line in S-state.

34H 08H UNC_CBO_CACHE_LO
OKUP.I

LLC lookup request that access cache
and found line in I-state.

Table 19-5 Non-Architectural Performance Events Applicable only to the Processor Core
of Intel® Xeon® Processor E5 Family

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 100

...

34H 10H UNC_CBO_CACHE_LO
OKUP.READ_FILTER

Filter on processor core initiated
cacheable read requests. Must
combine with at least one of 01H,
02H, 04H, 08H.

34H 20H UNC_CBO_CACHE_LO
OKUP.WRITE_FILTER

Filter on processor core initiated
cacheable write requests. Must
combine with at least one of 01H,
02H, 04H, 08H.

34H 40H UNC_CBO_CACHE_LO
OKUP.EXTSNP_FILTE
R

Filter on external snoop requests.
Must combine with at least one of
01H, 02H, 04H, 08H.

34H 80H UNC_CBO_CACHE_LO
OKUP.ANY_REQUEST
_FILTER

Filter on any IRQ or IPQ initiated
requests including uncacheable, non-
coherent requests. Must combine with
at least one of 01H, 02H, 04H, 08H.

80H 01H UNC_ARB_TRK_OCC
UPANCY.ALL

Counts cycles weighted by the
number of requests waiting for data
returning from the memory controller.
Accounts for coherent and non-
coherent requests initiated by IA
cores, processor graphic units, or LLC.

Counter 0 only

81H 01H UNC_ARB_TRK_REQ
UEST.ALL

Counts the number of coherent and
in-coherent requests initiated by IA
cores, processor graphic units, or LLC.

81H 20H UNC_ARB_TRK_REQ
UEST.WRITES

Counts the number of allocated write
entries, include full, partial, and LLC
evictions.

81H 80H UNC_ARB_TRK_REQ
UEST.EVICTIONS

Counts the number of LLC evictions
allocated.

83H 01H UNC_ARB_COH_TRK
_OCCUPANCY.ALL

Cycles weighted by number of
requests pending in Coherency
Tracker.

Counter 0 only

84H 01H UNC_ARB_COH_TRK
_REQUEST.ALL

Number of requests allocated in
Coherency Tracker.

NOTES:
1. The uncore events must be programmed using MSRs located in specific performance monitoring

units in the uncore. UNC_CBO* events are supported using MSR_UNC_CBO* MSRs; UNC_ARB*
events are supported using MSR_UNC_ARB*MSRs.

Table 19-6 Non-Architectural Performance Events In the Processor Uncore for 2nd
Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor

Series
Event
Num.1

Umask
Value

Event Mask
Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 101

12. Updates to Chapter 24, Volume 3C
Change bars show changes to Chapter 24 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3C: System Programming Guide, Part 3.

--

...

24.6.11 Extended-Page-Table Pointer (EPTP)
The extended-page-table pointer (EPTP) contains the address of the base of EPT
PML4 table (see Section 28.2.2), as well as other EPT configuration information. The
format of this field is shown in Table 24-8.

The EPTP exists only on processors that support the 1-setting of the “enable EPT” VM-
execution control.

...

13. Updates to Chapter 26, Volume 3C
Change bars show changes to Chapter 26 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3C: System Programming Guide, Part 3.

--

Table 24-8 Format of Extended-Page-Table Pointer

Bit Position(s) Field

2:0 EPT paging-structure memory type (see Section 28.2.5):

0 = Uncacheable (UC)
6 = Write-back (WB)

Other values are reserved.1

NOTES:
1. Software should read the VMX capability MSR IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to

determine what EPT paging-structure memory types are supported.

5:3 This value is 1 less than the EPT page-walk length (see Section 28.2.2)

6 Setting this control to 1 enables accessed and dirty flags for EPT (see Section
28.2.4)2

2. Not all processors support accessed and dirty flags for EPT. Software should read the VMX capa-
bility MSR IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine whether the processor
supports this feature.

11:7 Reserved

N–1:12 Bits N–1:12 of the physical address of the 4-KByte aligned EPT PML4 table3

3. N is the physical-address width supported by the logical processor. Software can determine a pro-
cessor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-
address width is returned in bits 7:0 of EAX.

63:N Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 102

...

26.2.1.1 VM-Execution Control Fields
VM entries perform the following checks on the VM-execution control fields:1

• Reserved bits in the pin-based VM-execution controls must be set properly. Software
may consult the VMX capability MSRs to determine the proper settings (see
Appendix A.3.1).

• Reserved bits in the primary processor-based VM-execution controls must be set
properly. Software may consult the VMX capability MSRs to determine the proper
settings (see Appendix A.3.2).

• If the “activate secondary controls” primary processor-based VM-execution control is
1, reserved bits in the secondary processor-based VM-execution controls must be
cleared. Software may consult the VMX capability MSRs to determine which bits are
reserved (see Appendix A.3.3).
If the “activate secondary controls” primary processor-based VM-execution control
is 0 (or if the processor does not support the 1-setting of that control), no checks
are performed on the secondary processor-based VM-execution controls. The
logical processor operates as if all the secondary processor-based VM-execution
controls were 0.

• The CR3-target count must not be greater than 4. Future processors may support a
different number of CR3-target values. Software should read the VMX capability MSR
IA32_VMX_MISC to determine the number of values supported (see Appendix A.6).

• If the “use I/O bitmaps” VM-execution control is 1, bits 11:0 of each I/O-bitmap
address must be 0. Neither address should set any bits beyond the processor’s
physical-address width.2,3

• If the “use MSR bitmaps” VM-execution control is 1, bits 11:0 of the MSR-bitmap
address must be 0. The address should not set any bits beyond the processor’s
physical-address width.4

• If the “use TPR shadow” VM-execution control is 1, the virtual-APIC address must
satisfy the following checks:

— Bits 11:0 of the address must be 0.

— The address should not set any bits beyond the processor’s physical-address
width.5

If all of the above checks are satisfied and the “use TPR shadow” VM-execution
control is 1, bytes 81H-83H on the virtual-APIC page (see Section 24.6.8) may be
cleared (behavior may be implementation-specific).

1. If the “activate secondary controls” primary processor-based VM-execution control is 0, VM entry
operates as if each secondary processor-based VM-execution control were 0.

2. Software can determine a processor’s physical-address width by executing CPUID with 80000008H
in EAX. The physical-address width is returned in bits 7:0 of EAX.

3. If IA32_VMX_BASIC[48] is read as 1, these addresses must not set any bits in the range 63:32; see
Appendix A.1.

4. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see
Appendix A.1.

5. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see
Appendix A.1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 103

The clearing of these bytes may occur even if the VM entry fails. This is true either
if the failure causes control to pass to the instruction following the VM-entry
instruction or if it causes processor state to be loaded from the host-state area of
the VMCS.

• If the “use TPR shadow” VM-execution control is 1, bits 31:4 of the TPR threshold
VM-execution control field must be 0.

• The following check is performed if the “use TPR shadow” VM-execution control is 1
and the “virtualize APIC accesses” VM-execution control is 0: the value of bits 3:0 of
the TPR threshold VM-execution control field should not be greater than the value of
bits 7:4 in byte 80H on the virtual-APIC page (see Section 24.6.8).

• If the “NMI exiting” VM-execution control is 0, the “virtual NMIs” VM-execution
control must be 0.

• If the “virtual NMIs” VM-execution control is 0, the “NMI-window exiting” VM-
execution control must be 0.

• If the “virtualize APIC-accesses” VM-execution control is 1, the APIC-access address
must satisfy the following checks:

— Bits 11:0 of the address must be 0.

— The address should not set any bits beyond the processor’s physical-address
width.1

• If the “virtualize x2APIC mode” VM-execution control is 1, the “use TPR shadow” VM-
execution control must be 1 and the “virtualize APIC accesses” VM-execution control
must be 0.2

• If the “enable VPID” VM-execution control is 1, the value of the VPID VM-execution
control field must not be 0000H.3

• If the “enable EPT” VM-execution control is 1, the EPTP VM-execution control field
(see Table 24-8 in Section 24.6.11) must satisfy the following checks:4

— The EPT memory type (bits 2:0) must be a value supported by the processor as
indicated in the IA32_VMX_EPT_VPID_CAP MSR (see Appendix A.10).

— Bits 5:3 (1 less than the EPT page-walk length) must be 3, indicating an EPT
page-walk length of 4; see Section 28.2.2.

— Bit 6 (enable bit for accessed and dirty flags for EPT) must be 0 if bit 21 of the
IA32_VMX_EPT_VPID_CAP MSR (see Appendix A.10) is read as 0, indicating that
the processor does not support accessed and dirty flags for EPT.

— Reserved bits 11:7 and 63:N (where N is the processor’s physical-address width)
must all be 0.

1. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see
Appendix A.1.

2. “Virtualize x2APIC mode” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VM entry functions as if the “virtualize x2APIC
mode” VM-execution control were 0. See Section 24.6.2.

3. “Enable VPID” is a secondary processor-based VM-execution control. If bit 31 of the primary proces-
sor-based VM-execution controls is 0, VM entry functions as if the “enable VPID” VM-execution con-
trol were 0. See Section 24.6.2.

4. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary proces-
sor-based VM-execution controls is 0, VM entry functions as if the “enable EPT” VM-execution control
were 0. See Section 24.6.2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 104

— If the “unrestricted guest” VM-execution control is 1, the “enable EPT” VM-
execution control must also be 1.1

• If the “enable VM functions” processor-based VM-execution control is 1, reserved
bits in the VM-function controls must be clear.2 Software may consult the VMX
capability MSRs to determine which bits are reserved (see Appendix A.11). In
addition, the following check is performed based on the setting of bits in the VM-
function controls (see Section 24.6.14):

— If “EPTP switching” VM-function control is 1, the “enable EPT” VM-execution
control must also 1. In addition, the EPTP-list address must satisfy the following
checks:

• Bits 11:0 of the address must be 0.

• The address must not set any bits beyond the processor’s physical-address
width.

If the “enable VM functions” processor-based VM-execution control is 0, no checks
are performed on the VM-function controls.

...

14. Updates to Chapter 27, Volume 3C
Change bars show changes to Chapter 27 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3C: System Programming Guide, Part 3.

--

...

1. “Unrestricted guest” and “enable EPT” are both secondary processor-based VM-execution controls. If
bit 31 of the primary processor-based VM-execution controls is 0, VM entry functions as if both
these controls were 0. See Section 24.6.2.

2. “Enable VM functions” is a secondary processor-based VM-execution control. If bit 31 of the primary
processor-based VM-execution controls is 0, VM entry functions as if the “enable VM functions” VM-
execution control were 0. See Section 24.6.2.

Table 27-7 Exit Qualification for EPT Violations

Bit Position(s) Contents

0 Set if the access causing the EPT violation was a data read.1

1 Set if the access causing the EPT violation was a data write.1

2 Set if the access causing the EPT violation was an instruction fetch.

3 The logical-AND of bit 0 in the EPT paging-structures entries used to translate
the guest-physical address of the access causing the EPT violation (indicates
that the guest-physical address was readable).2

4 The logical-AND of bit 1 in the EPT paging-structures entries used to translate
the guest-physical address of the access causing the EPT violation (indicates
that the guest-physical address was writeable).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 105

...

15. Updates to Chapter 28, Volume 3C
Change bars show changes to Chapter 28 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3C: System Programming Guide, Part 3.

--

...

28.2.2 EPT Translation Mechanism
The EPT translation mechanism uses only bits 47:0 of each guest-physical address.1 It
uses a page-walk length of 4, meaning that at most 4 EPT paging-structure entries are
accessed to translate a guest-physical address.2

These 48 bits are partitioned by the logical processor to traverse the EPT paging struc-
tures:
• A 4-KByte naturally aligned EPT PML4 table is located at the physical address

specified in bits 51:12 of the extended-page-table pointer (EPTP), a VM-execution

5 The logical-AND of bit 2 in the EPT paging-structures entries used to translate
the guest-physical address of the access causing the EPT violation (indicates
that the guest-physical address was executable).

6 Reserved (cleared to 0).

7 Set if the guest linear-address field is valid.

The guest linear-address field is valid for all EPT violations except those
resulting from an attempt to load the guest PDPTEs as part of the execution of
the MOV CR instruction.

8 If bit 7 is 1:

• Set if the access causing the EPT violation is to a guest-physical address
that is the translation of a linear address.

• Clear if the access causing the EPT violation is to a paging-structure entry
as part of a page walk or the update of an accessed or dirty bit.

Reserved if bit 7 is 0 (cleared to 0).

11:9 Reserved (cleared to 0).

12 NMI unblocking due to IRET

63:13 Reserved (cleared to 0).

NOTES:
1. If accessed and dirty flags for EPT are enabled, processor accesses to guest paging-structure

entries are treated as writes with regard to EPT violations (see Section 28.2.3.2). If such an access
causes an EPT violation, the processor sets both bit 0 and bit 1 of the exit qualification.

2. Bits 5:3 are cleared to 0 if any of EPT paging-structures entries used to translate the guest-physi-
cal address of the access causing the EPT violation is not present (see Section 28.2.2).

Table 27-7 Exit Qualification for EPT Violations (Contd.)

Bit Position(s) Contents

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 106

control field (see Table 24-8 in Section 24.6.11). An EPT PML4 table comprises 512
64-bit entries (EPT PML4Es). An EPT PML4E is selected using the physical address
defined as follows:

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPTP.

— Bits 11:3 are bits 47:39 of the guest-physical address.

— Bits 2:0 are all 0.
Because an EPT PML4E is identified using bits 47:39 of the guest-physical address, it
controls access to a 512-GByte region of the guest-physical-address space.

• A 4-KByte naturally aligned EPT page-directory-pointer table is located at the
physical address specified in bits 51:12 of the EPT PML4E (see Table 28-1). An EPT
page-directory-pointer table comprises 512 64-bit entries (PDPTEs). An EPT PDPTE
is selected using the physical address defined as follows:

1. No processors supporting the Intel 64 architecture support more than 48 physical-address bits. Thus,
no such processor can produce a guest-physical address with more than 48 bits. An attempt to use
such an address causes a page fault. An attempt to load CR3 with such an address causes a general-
protection fault. If PAE paging is being used, an attempt to load CR3 that would load a PDPTE with
such an address causes a general-protection fault.

2. Future processors may include support for other EPT page-walk lengths. Software should read the
VMX capability MSR IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine what EPT page-
walk lengths are supported.

Table 28-1 Format of an EPT PML4 Entry (PML4E)

Bit
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 512-GByte region
controlled by this entry

1 Write access; indicates whether writes are allowed to the 512-GByte region
controlled by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 512-
GByte region controlled by this entry

7:3 Reserved (must be 0)

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has
accessed the 512-GByte region controlled by this entry (see Section 28.2.4).
Ignored if bit 6 of EPTP is 0

11:9 Ignored

(N–1):12 Physical address of 4-KByte aligned EPT page-directory-pointer table referenced
by this entry1

51:N Reserved (must be 0)

63:52 Ignored

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 107

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPT PML4 entry.

— Bits 11:3 are bits 38:30 of the guest-physical address.

— Bits 2:0 are all 0.

Because a PDPTE is identified using bits 47:30 of the guest-physical address, it controls
access to a 1-GByte region of the guest-physical-address space. Use of the PDPTE
depends on the value of bit 7 in that entry:1

• If bit 7 of the EPT PDPTE is 1, the EPT PDPTE maps a 1-GByte page (see Table 28-2).
The final physical address is computed as follows:

NOTES:
1. N is the physical-address width supported by the processor. Software can determine a processor’s

physical-address width by executing CPUID with 80000008H in EAX. The physical-address width
is returned in bits 7:0 of EAX.

1. Not all processors allow bit 7 of an EPT PDPTE to be set to 1. Software should read the VMX capabil-
ity MSR IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine whether this is allowed.

Table 28-2 Format of an EPT Page-Directory-Pointer-Table Entry (PDPTE) that Maps
a 1-GByte Page

Bit
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 1-GByte page
referenced by this entry

1 Write access; indicates whether writes are allowed to the 1-GByte page referenced
by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 1-
GByte page referenced by this entry

5:3 EPT memory type for this 1-GByte page (see Section 28.2.5)

6 Ignore PAT memory type for this 1-GByte page (see Section 28.2.5)

7 Must be 1 (otherwise, this entry references an EPT page directory)

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has
accessed the 1-GByte page referenced by this entry (see Section 28.2.4). Ignored if
bit 6 of EPTP is 0

9 If bit 6 of EPTP is 1, dirty flag for EPT; indicates whether software has written to
the 1-GByte page referenced by this entry (see Section 28.2.4). Ignored if bit 6 of
EPTP is 0

11:10 Ignored

29:12 Reserved (must be 0)

(N–1):30 Physical address of the 1-GByte page referenced by this entry1

NOTES:
1. N is the physical-address width supported by the logical processor.

51:N Reserved (must be 0)

63:52 Ignored

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 108

— Bits 63:52 are all 0.

— Bits 51:30 are from the EPT PDPTE.

— Bits 29:0 are from the original guest-physical address.
• If bit 7 of the EPT PDPTE is 0, a 4-KByte naturally aligned EPT page directory is

located at the physical address specified in bits 51:12 of the EPT PDPTE (see Table
28-3). An EPT page-directory comprises 512 64-bit entries (PDEs). An EPT PDE is
selected using the physical address defined as follows:

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPT PDPTE.

— Bits 11:3 are bits 29:21 of the guest-physical address.

— Bits 2:0 are all 0.

Because an EPT PDE is identified using bits 47:21 of the guest-physical address, it
controls access to a 2-MByte region of the guest-physical-address space. Use of the EPT
PDE depends on the value of bit 7 in that entry:
• If bit 7 of the EPT PDE is 1, the EPT PDE maps a 2-MByte page (see Table 28-4). The

final physical address is computed as follows:

Table 28-3 Format of an EPT Page-Directory-Pointer-Table Entry (PDPTE) that
References an EPT Page Directory

Bit
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 1-GByte region
controlled by this entry

1 Write access; indicates whether writes are allowed to the 1-GByte region controlled
by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 1-
GByte region controlled by this entry

7:3 Reserved (must be 0)

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has
accessed the 1-GByte region controlled by this entry (see Section 28.2.4). Ignored if
bit 6 of EPTP is 0

11:9 Ignored

(N–1):12 Physical address of 4-KByte aligned EPT page directory referenced by this entry1

NOTES:
1. N is the physical-address width supported by the logical processor.

51:N Reserved (must be 0)

63:52 Ignored

Table 28-4 Format of an EPT Page-Directory Entry (PDE) that Maps a 2-MByte Page

Bit
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 2-MByte page
referenced by this entry

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 109

— Bits 63:52 are all 0.

— Bits 51:21 are from the EPT PDE.

— Bits 20:0 are from the original guest-physical address.
• If bit 7 of the EPT PDE is 0, a 4-KByte naturally aligned EPT page table is located at

the physical address specified in bits 51:12 of the EPT PDE (see Table 28-5). An EPT
page table comprises 512 64-bit entries (PTEs). An EPT PTE is selected using a
physical address defined as follows:

1 Write access; indicates whether writes are allowed to the 2-MByte page referenced
by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 2-
MByte page referenced by this entry

5:3 EPT memory type for this 2-MByte page (see Section 28.2.5)

6 Ignore PAT memory type for this 2-MByte page (see Section 28.2.5)

7 Must be 1 (otherwise, this entry references an EPT page table)

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has
accessed the 2-MByte page referenced by this entry (see Section 28.2.4). Ignored if
bit 6 of EPTP is 0

9 If bit 6 of EPTP is 1, dirty flag for EPT; indicates whether software has written to
the 2-MByte page referenced by this entry (see Section 28.2.4). Ignored if bit 6 of
EPTP is 0

11:10 Ignored

20:12 Reserved (must be 0)

(N–1):21 Physical address of the 2-MByte page referenced by this entry1

51:N Reserved (must be 0)

63:52 Ignored
NOTES:

1. N is the physical-address width supported by the logical processor.

Table 28-5 Format of an EPT Page-Directory Entry (PDE) that References an EPT
Page Table

Bit
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 2-MByte region
controlled by this entry

1 Write access; indicates whether writes are allowed to the 2-MByte region
controlled by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 2-
MByte region controlled by this entry

6:3 Reserved (must be 0)

7 Must be 0 (otherwise, this entry maps a 2-MByte page)

Table 28-4 Format of an EPT Page-Directory Entry (PDE) that Maps a 2-MByte Page

Bit
Position(s)

Contents

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 110

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPT PDE.

— Bits 11:3 are bits 20:12 of the guest-physical address.

— Bits 2:0 are all 0.
• Because an EPT PTE is identified using bits 47:12 of the guest-physical address,

every EPT PTE maps a 4-KByte page (see Table 28-6). The final physical address is
computed as follows:

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has
accessed the 2-MByte region controlled by this entry (see Section 28.2.4). Ignored
if bit 6 of EPTP is 0

11:9 Ignored

(N–1):12 Physical address of 4-KByte aligned EPT page table referenced by this entry1

51:N Reserved (must be 0)

63:52 Ignored
NOTES:

1. N is the physical-address width supported by the logical processor.

Table 28-6 Format of an EPT Page-Table Entry

Bit
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 4-KByte page
referenced by this entry

1 Write access; indicates whether writes are allowed to the 4-KByte page referenced
by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 4-
KByte page referenced by this entry

5:3 EPT memory type for this 4-KByte page (see Section 28.2.5)

6 Ignore PAT memory type for this 4-KByte page (see Section 28.2.5)

7 Ignored

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has
accessed the 4-KByte page referenced by this entry (see Section 28.2.4). Ignored if
bit 6 of EPTP is 0

9 If bit 6 of EPTP is 1, dirty flag for EPT; indicates whether software has written to
the 4-KByte page referenced by this entry (see Section 28.2.4). Ignored if bit 6 of
EPTP is 0

11:10 Ignored

(N–1):12 Physical address of the 4-KByte page referenced by this entry1

51:N Reserved (must be 0)

Table 28-5 Format of an EPT Page-Directory Entry (PDE) that References an EPT
Page Table (Contd.)

Bit
Position(s)

Contents

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 111

• Bits 63:52 are all 0.

• Bits 51:12 are from the EPT PTE.

• Bits 11:0 are from the original guest-physical address.

If bits 2:0 of an EPT paging-structure entry are all 0, the entry is not present. The
processor ignores bits 63:3 and does uses the entry neither to reference another EPT
paging-structure entry nor to produce a physical address. A reference using a guest-
physical address whose translation encounters an EPT paging-structure that is not
present causes an EPT violation (see Section 28.2.3.2).

The discussion above describes how the EPT paging structures reference each other and
how the logical processor traverses those structures when translating a guest-physical
address. It does not cover all details of the translation process. Additional details are
provided as follows:
• Situations in which the translation process may lead to VM exits (sometimes before

the process completes) are described in Section 4.7.
• Interactions between the EPT translation mechanism and memory typing are

described in Section 28.2.5.

Figure 28-1 gives a summary of the formats of the EPTP and the EPT paging-structure
entries. For the EPT paging structure entries, it identifies separately the format of entries
that map pages, those that reference other EPT paging structures, and those that do
neither because they are “not present”; bits 2:0 and bit 7 are highlighted because they
determine how a paging-structure entry is used.

28.2.3 EPT-Induced VM Exits
Accesses using guest-physical addresses may cause VM exits due to EPT misconfigu-
rations and EPT violations. An EPT misconfiguration occurs when, in the course of
translation a guest-physical address, the logical processor encounters an EPT paging-
structure entry that contains an unsupported value. An EPT violation occurs when there
is no EPT misconfiguration but the EPT paging-structure entries disallow an access using
the guest-physical address.

EPT misconfigurations and EPT violations occur only due to an attempt to access memory
with a guest-physical address. Loading CR3 with a guest-physical address with the MOV
to CR3 instruction can cause neither an EPT configuration nor an EPT violation until that
address is used to access a paging structure.1

63:52 Ignored
NOTES:

1. N is the physical-address width supported by the logical processor.

1. If the logical processor is using PAE paging—because CR0.PG = CR4.PAE = 1 and IA32_EFER.LMA =
0—the MOV to CR3 instruction loads the PDPTEs from memory using the guest-physical address
being loaded into CR3. In this case, therefore, the MOV to CR3 instruction may cause an EPT miscon-
figuration or an EPT violation.

Table 28-6 Format of an EPT Page-Table Entry (Contd.)

Bit
Position(s)

Contents

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 112

— The entry is the last one used to translate a guest physical address (either an EPT
PDE with bit 7 set to 1 or an EPT PTE) and the value of bits 5:3 (EPT memory
type) is 2, 3, or 7 (these values are reserved).

EPT misconfigurations result when an EPT paging-structure entry is configured with
settings reserved for future functionality. Software developers should be aware that such
settings may be used in the future and that an EPT paging-structure entry that causes an
EPT misconfiguration on one processor might not do so in the future.

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

M1 M-1 3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Reserved Address of EPT PML4 table Rsvd.
A
/
D

EPT
PWL–

1

EPT
PS
MT

EPTP2

Ignored Rsvd. Address of EPT page-directory-pointer table Ign. A Reserved XW R PML4E:
present

Ignored 0 0 0
PML4E:

not
present

Ignored Rsvd.
Physical

address of
1GB page

Reserved Ign. D A 1

I
P
A
T

EPT
MT XW R

PDPTE:
1GB
page

Ignored Rsvd. Address of EPT page directory Ign. A 0 Rsvd. XW R
PDPTE:
page

directory

Ignored 0 0 0
PDTPE:

not
present

Ignored Rsvd. Physical address
of 2MB page Reserved Ign. D A 1

I
P
A
T

EPT
MT XW R

PDE:
2MB
page

Ignored Rsvd. Address of EPT page table Ign. A 0 Rsvd. XW R
PDE:
page
table

Ignored 0 0 0
PDE:
not

present

Ignored Rsvd. Physical address of 4KB page Ign. D A
I
g
n

I
P
A
T

EPT
MT XW R

PTE:
4KB
page

Ignored 0 0 0
PTE:
not

present

Figure 28-1 Formats of EPTP and EPT Paging-Structure Entries
NOTES:

1. M is an abbreviation for MAXPHYADDR.
2. See Section 24.6.11 for details of the EPTP.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 113

28.2.3.2 EPT Violations
An EPT violation may occur during an access using a guest-physical address whose
translation does not cause an EPT misconfiguration. An EPT violation occurs in any of the
following situations:
• Translation of the guest-physical address encounters an EPT paging-structure entry

that is not present (see Section 28.2.2).
• The access is a data read and bit 0 was clear in any of the EPT paging-structure

entries used to translate the guest-physical address. Reads by the logical processor
of guest paging structures to translate a linear address are considered to be data
reads.

• The access is a data write and bit 1 was clear in any of the EPT paging-structure
entries used to translate the guest-physical address. Writes by the logical processor
to guest paging structures to update accessed and dirty flags are considered to be
data writes.
If bit 6 of the EPT pointer (EPTP) is 1 (enabling accessed and dirty flags for EPT),
processor accesses to guest paging-structure entries are treated as writes with
regard to EPT violations. Thus, if bit 1 is clear in any of the EPT paging-structure
entries used to translate the guest-physical address of a guest paging-structure
entry, an attempt to use that entry to translate a linear address causes an EPT
violation.
(This does not apply to loads of the PDPTE registers by the MOV to CR instruction for
PAE paging; see Section 4.4.1. Those loads of guest PDPTEs are treated as reads and
do not cause EPT violations due to a guest-physical address not being writable.)

• The access is an instruction fetch and bit 2 was clear in any of the EPT paging-
structure entries used to translate the guest-physical address.

...

28.2.4 Accessed and Dirty Flags for EPT
The Intel 64 architecture supports accessed and dirty flags in ordinary paging-struc-
ture entries (see Section 4.8). Some processors also support corresponding flags in EPT
paging-structure entries. Software should read the VMX capability MSR
IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine whether the processor
supports this feature.

Software can enable accessed and dirty flags for EPT using bit 6 of the extended-page-
table pointer (EPTP), a VM-execution control field (see Table 24-8 in Section 24.6.11). If
this bit is 1, the processor will set the accessed and dirty flags for EPT as described
below. In addition, setting this flag causes processor accesses to guest paging-structure
entries to be treated as writes (see below and Section 28.2.3.2).

For any EPT paging-structure entry that is used during guest-physical-address transla-
tion, bit 8 is the accessed flag. For a EPT paging-structure entry that maps a page (as
opposed to referencing another EPT paging structure), bit 9 is the dirty flag.

Whenever the processor uses an EPT paging-structure entry as part of guest-physical-
address translation, it sets the accessed flag in that entry (if it is not already set).

Whenever there is a write to a guest-physical address, the processor sets the dirty flag
(if it is not already set) in the EPT paging-structure entry that identifies the final physical
address for the guest-physical address (either an EPT PTE or an EPT paging-structure
entry in which bit 7 is 1).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 114

When accessed and dirty flags for EPT are enabled, processor accesses to guest paging-
structure entries are treated as writes (see Section 28.2.3.2). Thus, such an access will
cause the processor to set the dirty flag in the EPT paging-structure entry that identifies
the final physical address of the guest paging-structure entry.

(This does not apply to loads of the PDPTE registers for PAE paging by the MOV to CR
instruction; see Section 4.4.1. Those loads of guest PDPTEs are treated as reads and do
not cause the processor to set the dirty flag in any EPT paging-structure entry.)

These flags are “sticky,” meaning that, once set, the processor does not clear them; only
software can clear them.

A processor may cache information from the EPT paging-structure entries in TLBs and
paging-structure caches (see Section 28.3). This fact implies that, if software changes
an accessed flag or a dirty flag from 1 to 0, the processor might not set the corre-
sponding bit in memory on a subsequent access using an affected guest-physical
address.

16. Updates to Chapter 34, Volume 3C
Change bars show changes to Chapter 34 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3C: System Programming Guide, Part 3.

--

...
This chapter lists MSRs provided in Intel® Core™ 2 processor family, Intel® Atom™,
Intel® Core™ Duo, Intel® Core™ Solo, Pentium® 4 and Intel® Xeon® processors, P6
family processors, and Pentium® processors in Tables 34-14, 34-19, and 34-20, respec-
tively. All MSRs listed can be read with the RDMSR and written with the WRMSR instruc-
tions.

Register addresses are given in both hexadecimal and decimal. The register name is the
mnemonic register name and the bit description describes individual bits in registers.

Model specific registers and its bit-fields may be supported for a finite range of processor
families/models. To distinguish between different processor family and/or models, soft-
ware must use CPUID.01H leaf function to query the combination of DisplayFamily and
DisplayModel to determine model-specific availability of MSRs (see CPUID instruction in
Chapter 3, “Instruction Set Reference, A-L” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2A). Table 34-1 lists the signature values of
DisplayFamily and DisplayModel for various processor families or processor number
series.

Table 34-1 CPUID Signature Values of DisplayFamily_DisplayModel
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_3AH Third Generation Intel Core processor family based on Intel
microarchitecture Ivy Bridge

06_2DH Intel Xeon processor E5 family

06_2FH Intel Xeon processor E7 family

06_2AH Intel Xeon processor E3 family; Second Generation Intel Core i7, i5,
i3 Processors 2xxx Series

06_2EH Intel Xeon processor 7500, 6500 series

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 115

...

34.7.1 MSRs In Second Generation Intel® Core Processor Family
(Intel® Microarchitecture Code Name Sandy Bridge)

Table 34-11 lists model-specific registers (MSRs) that are specific to second generation
for Intel® Core processor family (Intel® microarchitecture code name Sandy Bridge).
These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_2AH,
see Table 34-1.

06_25H, 06_2CH Intel Xeon processors 3600, 5600 series, Intel Core i7, i5 and i3
Processors

06_1EH, 06_1FH Intel Core i7 and i5 Processors

06_1AH Intel Core i7 Processor, Intel Xeon Processor 3400, 3500, 5500
series

06_1DH Intel Xeon Processor MP 7400 series

06_17H Intel Xeon Processor 3100, 3300, 5200, 5400 series, Intel Core 2
Quad processors 8000, 9000 series

06_0FH Intel Xeon Processor 3000, 3200, 5100, 5300, 7300 series, Intel
Core 2 Quad processor 6000 series, Intel Core 2 Extreme 6000
series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors,
Intel Pentium dual-core processors

06_0EH Intel Core Duo, Intel Core Solo processors

06_0DH Intel Pentium M processor

06_1CH Intel Atom processor

0F_06H Intel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP,
Intel Pentium 4, Pentium D processors

0F_03H, 0F_04H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4,
Pentium D processors

06_09H Intel Pentium M processor

0F_02H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4
processors

0F_0H, 0F_01H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4
processors

06_7H, 06_08H, 06_0AH,
06_0BH

Intel Pentium III Xeon Processor, Intel Pentium III Processor

06_03H, 06_05H Intel Pentium II Xeon Processor, Intel Pentium II Processor

06_01H Intel Pentium Pro Processor

05_01H, 05_02H, 05_04H Intel Pentium Processor, Intel Pentium Processor with MMX
Technology

Table 34-1 CPUID Signature (Contd.)Values of DisplayFamily_DisplayModel (Contd.)
DisplayFamily_DisplayModel Processor Families/Processor Number Series

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 116

Table 34-11 MSRs Supported by Second Generation Intel Core Processors (Intel
Microarchitecture Code Name Sandy Bridge)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

1ADH 429 MSR_TURBO_RATI
O_LIMIT

Package Maximum Ratio Limit of Turbo Mode.

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C.

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C.

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C.

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C.

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

391H 913 MSR_UNC_PERF_
GLOBAL_CTRL

Package Uncore PMU global control

0 Core 0 select

1 Core 1 select

2 Core 2 select

3 Core 3 select

18:4 Reserved.

29 Enable all uncore counters

30 Enable wake on PMI

31 Enable Freezing counter when overflow

63:32 Reserved.

392H 914 MSR_UNC_PERF_
GLOBAL_STATUS

Package Uncore PMU main status

0 Fixed counter overflowed

1 An ARB counter overflowed

2 Reserved

3 A CBox counter overflowed (on any slice)

63:4 Reserved.

394H 916 MSR_UNC_PERF_
FIXED_CTRL

Package Uncore fixed counter control (R/W)

19:0 Reserved

20 Enable overflow propagation

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 117

21 Reserved

22 Enable counting

63:23 Reserved.

395H 917 MSR_UNC_PERF_
FIXED_CTR

Package Uncore fixed counter

47:0 Current count

63:48 Reserved.

396H 918 MSR_UNC_CBO_
CONFIG

Package Uncore C-Box Configuration Information (R/O)

3:0 Encoded number of C-Box, derive value by “-1”

63:4 Reserved.

3B0H 946 MSR_UNC_ARB_P
ER_CTR0

Package Uncore Arb unit, performance counter 0

3B1H 947 MSR_UNC_ARB_P
ER_CTR1

Package Uncore Arb unit, performance counter 1

3B2H 944 MSR_UNC_ARB_P
ERFEVTSEL0

Package Uncore Arb unit, counter 0 event select MSR

3B3H 945 MSR_UNC_ARB_P
ERFEVTSEL1

Package Uncore Arb unit, counter 1 event select MSR

640H 1600 MSR_PP1_POWER
_LIMIT

Package PP1 RAPL Power Limit Control (R/W) See
Section 14.7.4, “PP0/PP1 RAPL Domains.”

641H 1601 MSR_PP1_ENERY_
STATUS

Package PP1 Energy Status (R/O) See Section 14.7.4,
“PP0/PP1 RAPL Domains.”

642H 1602 MSR_PP1_POLICY Package PP1 Balance Policy (R/W) See Section 14.7.4,
“PP0/PP1 RAPL Domains.”

700H 1792 MSR_UNC_CBO_0_
PERFEVTSEL0

Package Uncore C-Box 0, counter 0 event select MSR

701H 1793 MSR_UNC_CBO_0_
PERFEVTSEL1

Package Uncore C-Box 0, counter 1 event select MSR

706H 1798 MSR_UNC_CBO_0_
PER_CTR0

Package Uncore C-Box 0, performance counter 0

707H 1799 MSR_UNC_CBO_0_
PER_CTR1

Package Uncore C-Box 0, performance counter 1

710H 1808 MSR_UNC_CBO_1_
PERFEVTSEL0

Package Uncore C-Box 1, counter 0 event select MSR

711H 1809 MSR_UNC_CBO_1_
PERFEVTSEL1

Package Uncore C-Box 1, counter 1 event select MSR

Table 34-11 MSRs Supported by Second Generation Intel Core Processors
(Contd.)(Intel Microarchitecture Code Name Sandy Bridge)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 118

34.7.2 MSRs In Intel® Xeon Processor E5 Family (Intel®
Microarchitecture Code Name Sandy Bridge)

Table 34-12 lists selected model-specific registers (MSRs) that are specific to the Intel®
Xeon processor E5 family (Intel® microarchitecture code name Sandy Bridge). These
processors have a CPUID signature with DisplayFamily_DisplayModel of 06_2DH, see
Table 34-1.

716H 1814 MSR_UNC_CBO_1_
PER_CTR0

Package Uncore C-Box 1, performance counter 0

717H 1815 MSR_UNC_CBO_1_
PER_CTR1

Package Uncore C-Box 1, performance counter 1

720H 1824 MSR_UNC_CBO_2_
PERFEVTSEL0

Package Uncore C-Box 2, counter 0 event select MSR

721H 1824 MSR_UNC_CBO_2_
PERFEVTSEL1

Package Uncore C-Box 2, counter 1 event select MSR

726H 1830 MSR_UNC_CBO_2_
PER_CTR0

Package Uncore C-Box 2, performance counter 0

727H 1831 MSR_UNC_CBO_2_
PER_CTR1

Package Uncore C-Box 2, performance counter 1

730H 1840 MSR_UNC_CBO_3_
PERFEVTSEL0

Package Uncore C-Box 3, counter 0 event select MSR

731H 1841 MSR_UNC_CBO_3_
PERFEVTSEL1

Package Uncore C-Box 3, counter 1 event select MSR

736H 1846 MSR_UNC_CBO_3_
PER_CTR0

Package Uncore C-Box 3, performance counter 0

737H 1847 MSR_UNC_CBO_3_
PER_CTR1

Package Uncore C-Box 3, performance counter 1

Table 34-12 Selected MSRs Supported by Intel Xeon Processors E5 Family (Intel
Microarchitecture Code Name Sandy Bridge)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

285H 645 IA32_MC5_CTL2 Package See Table 34-2.

286H 646 IA32_MC6_CTL2 Package See Table 34-2.

287H 647 IA32_MC7_CTL2 Package See Table 34-2.

288H 648 IA32_MC8_CTL2 Package See Table 34-2.

Table 34-11 MSRs Supported by Second Generation Intel Core Processors
(Contd.)(Intel Microarchitecture Code Name Sandy Bridge)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 119

289H 649 IA32_MC9_CTL2 Package See Table 34-2.

28AH 650 IA32_MC10_CTL2 Package See Table 34-2.

28BH 651 IA32_MC11_CTL2 Package See Table 34-2.

28CH 652 IA32_MC12_CTL2 Package See Table 34-2.

28DH 653 IA32_MC13_CTL2 Package See Table 34-2.

28EH 654 IA32_MC14_CTL2 Package See Table 34-2.

28FH 655 IA32_MC15_CTL2 Package See Table 34-2.

290H 656 IA32_MC16_CTL2 Package See Table 34-2.

291H 657 IA32_MC17_CTL2 Package See Table 34-2.

292H 658 IA32_MC18_CTL2 Package See Table 34-2.

293H 659 IA32_MC19_CTL2 Package See Table 34-2.

414H 1044 MSR_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 MSR_MC5_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

416H 1046 MSR_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

417H 1047 MSR_MC5_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

418H 1048 MSR_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 MSR_MC6_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

41AH 1050 MSR_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41BH 1051 MSR_MC6_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

41CH 1052 MSR_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

41DH 1053 MSR_MC7_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

41EH 1054 MSR_MC7_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41FH 1055 MSR_MC7_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

420H 1056 MSR_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

421H 1057 MSR_MC8_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

422H 1058 MSR_MC8_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

423H 1059 MSR_MC8_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

424H 1060 MSR_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

425H 1061 MSR_MC9_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

426H 1062 MSR_MC9_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

Table 34-12 Selected MSRs Supported by Intel Xeon Processors E5 Family (Intel
Microarchitecture Code Name Sandy Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 120

427H 1063 MSR_MC9_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

428H 1064 MSR_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

429H 1065 MSR_MC10_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

42AH 1066 MSR_MC10_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42BH 1067 MSR_MC10_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

42CH 1068 MSR_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

42DH 1069 MSR_MC11_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

42EH 1070 MSR_MC11_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42FH 1071 MSR_MC11_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

430H 1072 MSR_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

431H 1073 MSR_MC12_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

432H 1074 MSR_MC12_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

433H 1075 MSR_MC12_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

434H 1076 MSR_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

435H 1077 MSR_MC13_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

436H 1078 MSR_MC13_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

437H 1079 MSR_MC13_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

438H 1080 MSR_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

439H 1081 MSR_MC14_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

43AH 1082 MSR_MC14_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43BH 1083 MSR_MC14_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

43CH 1084 MSR_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

43DH 1085 MSR_MC15_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

43EH 1086 MSR_MC15_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43FH 1087 MSR_MC15_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

440H 1088 MSR_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

441H 1089 MSR_MC16_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

442H 1090 MSR_MC16_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

Table 34-12 Selected MSRs Supported by Intel Xeon Processors E5 Family (Intel
Microarchitecture Code Name Sandy Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 121

34.8 MSRS IN THE THIRD GENERATION INTEL CORE
PROCESSOR FAMILY (INTEL® MICROARCHITECTURE
CODE NAME IVY BRIDGE)

The third generation Intel Core processor family (Intel® microarchitecture code name
Ivy Bridge) supports the MSR interfaces listed in Table 34-10, Table 34-11 and Table 34-
13.

443H 1091 MSR_MC16_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

444H 1092 MSR_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

445H 1093 MSR_MC17_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

446H 1094 MSR_MC17_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

447H 1095 MSR_MC17_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

448H 1096 MSR_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

449H 1097 MSR_MC18_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

44AH 1098 MSR_MC18_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44BH 1099 MSR_MC18_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

44CH 1100 MSR_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

44DH 1101 MSR_MC19_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

44EH 1102 MSR_MC19_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44FH 1103 MSR_MC19_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

613H 1555 MSR_RAPL_PERF_
STATUS

Package RAPL Perf Status (R/O)

618H 1560 MSR_DRAM_POWE
R_LIMIT

Package DRAM RAPL Power Limit Control (R/W) See
Section 14.7.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENER
Y_STATUS

Package DRAM Energy Status (R/O) See Section 14.7.5,
“DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF
_STATUS

Package DRAM Performance Throttling Status (R/O)
See Section 14.7.5, “DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWE
R_INFO

Package DRAM RAPL Parameters (R/W) See Section
14.7.5, “DRAM RAPL Domain.”

Table 34-12 Selected MSRs Supported by Intel Xeon Processors E5 Family (Intel
Microarchitecture Code Name Sandy Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 122

Table 34-13 Additional MSRs Supported by Third Generation Intel Core Processors
(Intel Microarchitecture Code Name Ivy Bridge)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

CEH 206 MSR_PLATFORM_I
NFO

Package See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio. (R/O)

The is the ratio of the frequency that invariant
TSC runs at. Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode.
(R/O)

When set to 1, indicates that Programmable
Ratio Limits for Turbo mode is enabled, and
when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode.
(R/O)

When set to 1, indicates that TDP Limits for
Turbo mode are programmable, and when set
to 0, indicates TDP Limit for Turbo mode is not
programmable.

31:30 Reserved

32 Package Low Power Mode Support (LPM). (R/O)

When set to 1, indicates that LPM is
supported, and when set to 0, indicates LPM is
not supported.

34:33 Package Number of ConfigTDP Levels. (R/O)

00: Only nominal TDP level available.

01: One additional TDP level available.

02: Two additional TDP level available.

11: Reserved

39:35 Reserved.

47:40 Package Maximum Efficiency Ratio. (R/O)

The is the minimum ratio (maximum
efficiency) that the processor can operates, in
units of 100MHz.

55:48 Package Minimum Operating Ratio. (R/O)

Contains the minimum supported

operating ratio in units of 100 MHz.

63:56 Reserved.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 123

648H 1608 MSR_CONFIG_TDP
_NOMINAL

Package Nominal TDP Ratio. (R/O)

7:0 Config_TDP_Nominal.

Nominal TDP level ratio to be used for this
specific processor (in units of 100 MHz).

63:8 Reserved.

649H 1609 MSR_CONFIG_TDP
_LEVEL1

Package ConfigTDP Level 1 ratio and power level (R/O)

14:0 PKG_TDP_LVL1. Power setting for ConfigTDP
Level 1.

15 Reserved

23:16 Config_TDP_LVL1_Ratio. ConfigTDP level 1
ratio to be used for this specific processor.

31:24 Reserved

46:32 PKG_MAX_PWR_LVL1. Max Power setting
allowed for ConfigTDP Level 1.

47 Reserved

62:48 PKG_MIN_PWR_LVL1. MIN Power setting
allowed for ConfigTDP Level 1.

63 Reserved.

64AH 1610 MSR_CONFIG_TDP
_LEVEL2

Package ConfigTDP Level 2 ratio and power level (R/O)

14:0 PKG_TDP_LVL2. Power setting for ConfigTDP
Level 2.

15 Reserved

23:16 Config_TDP_LVL2_Ratio. ConfigTDP level 2
ratio to be used for this specific processor.

31:24 Reserved

46:32 PKG_MAX_PWR_LVL2. Max Power setting
allowed for ConfigTDP Level 2.

47 Reserved

62:48 PKG_MIN_PWR_LVL2. MIN Power setting
allowed for ConfigTDP Level 2.

63 Reserved.

64BH 1611 MSR_CONFIG_TDP
_CONTROL

Package ConfigTDP Control. (R/W)

Table 34-13 Additional MSRs Supported by Third Generation Intel Core Processors
(Contd.)(Intel Microarchitecture Code Name Ivy Bridge)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 124

...

17. Updates to Appendix A, Volume 3C
Change bars show changes to Appendix A of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3C: System Programming Guide, Part 3.

--

...

A.10 VPID AND EPT CAPABILITIES
The IA32_VMX_EPT_VPID_CAP MSR (index 48CH) reports information about the capa-
bilities of the logical processor with regard to virtual-processor identifiers (VPIDs,
Section 28.1) and extended page tables (EPT, Section 28.2):
• If bit 0 is read as 1, the logical processor allows software to configure EPT paging-

structure entries in which bits 2:0 have value 100b (indicating an execute-only
translation).

• Bit 6 indicates support for a page-walk length of 4.
• If bit 8 is read as 1, the logical processor allows software to configure the EPT

paging-structure memory type to be uncacheable (UC); see Section 24.6.11.
• If bit 14 is read as 1, the logical processor allows software to configure the EPT

paging-structure memory type to be write-back (WB).

1:0 TDP_LEVEL (RW/L).

System BIOS can program this field.

30:2 Reserved.

31 Config_TDP_Lock (RW/L).

When this bit is set, the content of this
register is locked until a reset.

63:32 Reserved.

64CH 1612 MSR_TURBO_ACTI
VATION_RATIO

Package ConfigTDP Control. (R/W)

7:0 MAX_NON_TURBO_RATIO (RW/L).

System BIOS can program this field.

30:8 Reserved.

31 TURBO_ACTIVATION_RATIO_Lock (RW/L).

When this bit is set, the content of this
register is locked until a reset.

63:32 Reserved.

Table 34-13 Additional MSRs Supported by Third Generation Intel Core Processors
(Contd.)(Intel Microarchitecture Code Name Ivy Bridge)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 125

• If bit 16 is read as 1, the logical processor allows software to configure a EPT PDE to
map a 2-Mbyte page (by setting bit 7 in the EPT PDE).

• If bit 17 is read as 1, the logical processor allows software to configure a EPT PDPTE
to map a 1-Gbyte page (by setting bit 7 in the EPT PDPTE).

• Support for the INVEPT instruction (see Chapter 29 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C and Section 28.3.3.1).

— If bit 20 is read as 1, the INVEPT instruction is supported.

— If bit 25 is read as 1, the single-context INVEPT type is supported.

— If bit 26 is read as 1, the all-context INVEPT type is supported.
• If bit 21 is read as 1, accessed and dirty flags for EPT are supported (see Section

28.2.4).
• Support for the INVVPID instruction (see Chapter 29 of the Intel® 64 and IA-32

Architectures Software Developer’s Manual, Volume 3C and Section 28.3.3.1).

— If bit 32 is read as 1, the INVVPID instruction is supported.

— If bit 40 is read as 1, the individual-address INVVPID type is supported.

— If bit 41 is read as 1, the single-context INVVPID type is supported.

— If bit 42 is read as 1, the all-context INVVPID type is supported.

— If bit 43 is read as 1, the single-context-retaining-globals INVVPID type is
supported.

• Bits 5:1, bit 7, bits 13:9, bit 15, bits 19:17, bits 24:21, bits 31:27, bits 39:33, and
bits 63:44 are reserved and are read as 0.

The IA32_VMX_EPT_VPID_CAP MSR exists only on processors that support the 1-setting
of the “activate secondary controls” VM-execution control (only if bit 63 of the
IA32_VMX_PROCBASED_CTLS MSR is 1) and that support either the 1-setting of the
“enable EPT” VM-execution control (only if bit 33 of the IA32_VMX_PROCBASED_CTLS2
MSR is 1) or the 1-setting of the “enable VPID” VM-execution control (only if bit 37 of the
IA32_VMX_PROCBASED_CTLS2 MSR is 1).

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 126

	Revision History
	Preface
	Summary Tables of Changes
	Documentation Changes
	1. Updates to Chapter 3, Volume 1
	2. Updates to Chapter 7, Volume 1
	3. Updates to Chapter 3, Volume 2A
	4. Updates to Chapter 4, Volume 2B
	5. Updates to Appendix B, Volume 2C
	6. Updates to Chapter 2, Volume 3A
	7. Updates to Chapter 4, Volume 3A
	8. Updates to Chapter 10, Volume 3A
	9. Updates to Chapter 17, Volume 3B
	10. Updates to Chapter 18, Volume 3B
	11. Updates to Chapter 19, Volume 3B
	12. Updates to Chapter 24, Volume 3C
	13. Updates to Chapter 26, Volume 3C
	14. Updates to Chapter 27, Volume 3C
	15. Updates to Chapter 28, Volume 3C
	16. Updates to Chapter 34, Volume 3C
	17. Updates to Appendix A, Volume 3C

