
Document Number: 252046-037

Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Documentation Changes

August 2012

Notice: The Intel® 64 and IA-32 architectures may contain design defects or errors known as errata
that may cause the product to deviate from published specifications. Current characterized errata are
documented in the specification updates.

2 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Legal Lines and DisclaimersINFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED
IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY
OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal
injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL
INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND
EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES
ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY
WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE
DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the
absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition
and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information
here is subject to change without notice. Do not finalize a design with this information.

Intel, the Intel logo, Pentium, Xeon, Intel NetBurst, Intel Core, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo, Intel Core 2
Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, Intel Atom, and VTune are trademarks of Intel Corporation in the U.S.
and/or other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copyright © 1997-2012 Intel Corporation. All rights reserved.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 3

Contents

Revision History . 4

Preface . 7

Summary Tables of Changes . 8

Documentation Changes. 9

Revision History

4 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Revision History

Revision Description Date

-001 • Initial release November 2002

-002
• Added 1-10 Documentation Changes.
• Removed old Documentation Changes items that already have been

incorporated in the published Software Developer’s manual
December 2002

-003

• Added 9 -17 Documentation Changes.
• Removed Documentation Change #6 - References to bits Gen and Len

Deleted.
• Removed Documentation Change #4 - VIF Information Added to CLI

Discussion

February 2003

-004 • Removed Documentation changes 1-17.
• Added Documentation changes 1-24. June 2003

-005 • Removed Documentation Changes 1-24.
• Added Documentation Changes 1-15.

September 2003

-006 • Added Documentation Changes 16- 34. November 2003

-007 • Updated Documentation changes 14, 16, 17, and 28.
• Added Documentation Changes 35-45.

January 2004

-008 • Removed Documentation Changes 1-45.
• Added Documentation Changes 1-5.

March 2004

-009 • Added Documentation Changes 7-27. May 2004

-010 • Removed Documentation Changes 1-27.
• Added Documentation Changes 1.

August 2004

-011 • Added Documentation Changes 2-28. November 2004

-012 • Removed Documentation Changes 1-28.
• Added Documentation Changes 1-16.

March 2005

-013
• Updated title.
• There are no Documentation Changes for this revision of the

document.
July 2005

-014 • Added Documentation Changes 1-21. September 2005

-015 • Removed Documentation Changes 1-21.
• Added Documentation Changes 1-20.

March 9, 2006

-016 • Added Documentation changes 21-23. March 27, 2006

-017 • Removed Documentation Changes 1-23.
• Added Documentation Changes 1-36.

September 2006

-018 • Added Documentation Changes 37-42. October 2006

-019 • Removed Documentation Changes 1-42.
• Added Documentation Changes 1-19.

March 2007

-020 • Added Documentation Changes 20-27. May 2007

-021 • Removed Documentation Changes 1-27.
• Added Documentation Changes 1-6

November 2007

-022 • Removed Documentation Changes 1-6
• Added Documentation Changes 1-6

August 2008

-023 • Removed Documentation Changes 1-6
• Added Documentation Changes 1-21

March 2009

Revision History

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 5

§

-024 • Removed Documentation Changes 1-21
• Added Documentation Changes 1-16

June 2009

-025 • Removed Documentation Changes 1-16
• Added Documentation Changes 1-18

September 2009

-026 • Removed Documentation Changes 1-18
• Added Documentation Changes 1-15

December 2009

-027 • Removed Documentation Changes 1-15
• Added Documentation Changes 1-24

March 2010

-028 • Removed Documentation Changes 1-24
• Added Documentation Changes 1-29

June 2010

-029 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

September 2010

-030 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

January 2011

-031 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

April 2011

-032 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-14

May 2011

-033 • Removed Documentation Changes 1-14
• Added Documentation Changes 1-38

October 2011

-034 • Removed Documentation Changes 1-38
• Added Documentation Changes 1-16

December 2011

-035 • Removed Documentation Changes 1-16
• Added Documentation Changes 1-18

March 2012

-036 • Removed Documentation Changes 1-18
• Added Documentation Changes 1-17

May 2012

-037 • Removed Documentation Changes 1-17
• Added Documentation Changes 1-28

August 2012

Revision Description Date

Revision History

6 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 7

Preface

This document is an update to the specifications contained in the Affected Documents table below. This
document is a compilation of device and documentation errata, specification clarifications and changes. It is
intended for hardware system manufacturers and software developers of applications, operating systems, or
tools.

Affected Documents

Nomenclature
Documentation Changes include typos, errors, or omissions from the current published specifications. These
will be incorporated in any new release of the specification.

Document Title Document Number/
Location

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture 253665

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A: Instruction Set
Reference, A-M 253666

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B: Instruction Set
Reference, N-Z 253667

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2C: Instruction Set
Reference 326018

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A: System
Programming Guide, Part 1 253668

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B: System
Programming Guide, Part 2 253669

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C: System
Programming Guide, Part 3 326019

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 8

Summary Tables of Changes

The following table indicates documentation changes which apply to the Intel® 64 and IA-32 architectures. This
table uses the following notations:

Codes Used in Summary Tables
Change bar to left of table row indicates this erratum is either new or modified from the previous version of the
document.

Documentation Changes(Sheet 1 of 2)
No. DOCUMENTATION CHANGES

1 Updates to Chapter 1, Volume 1

2 Updates to Chapter 6, Volume 1

3 Updates to Chapter 12, Volume 1

4 Updates to Chapter 1, Volume 2A

5 Updates to Chapter 2, Volume 2A

6 Updates to Chapter 3, Volume 2A

7 Updates to Chapter 4, Volume 2B

8 Updates to Chapter 5, Volume 2C

9 Updates to Appendix A, Volume 2C

10 Updates to Chapter 1, Volume 3A

11 Updates to Chapter 2, Volume 3A

12 Updates to Chapter 4, Volume 3A

13 Updates to Chapter 5, Volume 3A

14 Updates to Chapter 11, Volume 3A

15 Updates to Chapter 16, Volume 3B

16 Updates to Chapter 17, Volume 3B

17 Updates to Chapter 18, Volume 3B

18 Updates to Chapter 19, Volume 3B

19 Updates to Chapter 24, Volume 3C

20 Updates to Chapter 25, Volume 3C

21 Updates to Chapter 26, Volume 3C

22 Updates to Chapter 27, Volume 3C

23 Updates to Chapter 28, Volume 3C

24 Updates to Chapter 29, Volume 3C

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

25 Updates to Chapter 34, Volume 3C

26 Updates to Chapter 35, Volume 3C

27 Updates to Appendix B, Volume 3C

28 Updates to Appendix C, Volume 3C

Documentation Changes(Sheet 2 of 2)
No. DOCUMENTATION CHANGES

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 10

Documentation Changes

1. Updates to Chapter 1, Volume 1
Change bars show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL
This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which
include:
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® CoreTM Duo processor
• Intel® CoreTM Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® CoreTM2 Duo processor
• Intel® CoreTM2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® CoreTM2 Extreme processor X7000 and X6800 series
• Intel® CoreTM2 Extreme processor QX6000 series
• Intel® Xeon® processor 7100 series
• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® CoreTM2 Extreme processor QX9000 and X9000 series
• Intel® CoreTM2 Quad processor Q9000 series
• Intel® CoreTM2 Duo processor E8000, T9000 series
• Intel® AtomTM processor family
• Intel® CoreTM i7 processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 11

• Intel® CoreTM i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families
• Intel® Xeon® processor E5 family
• Intel® Xeon® processor E3-1200 family
• Intel® CoreTM i7-3930K processor
• 2nd generation Intel® CoreTM i7-2xxx, Intel® CoreTM i5-2xxx, Intel® CoreTM i3-2xxx processor series
• Intel® Xeon® processor E3-1200 v2 product family
• 3rd generation Intel® CoreTM processors
• Next generation Intel® CoreTM processors

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium®
Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst®

microarchitecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel
Xeon processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® CoreTM Duo, Intel® CoreTM Solo and dual-core Intel® Xeon® processor LV are based on an improved
Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200 and 7300 series, Intel® Pentium® dual-core, Intel®
CoreTM2 Duo, Intel® CoreTM2 Quad, and Intel® CoreTM2 Extreme processors are based on Intel® CoreTM microar-
chitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® CoreTM2 Quad processor Q9000 series, and Intel®
CoreTM2 Extreme processor QX9000, X9000 series, Intel® CoreTM2 processor E8000 series are based on Enhanced
Intel® CoreTM microarchitecture.

The Intel® AtomTM processor family is based on the Intel® AtomTM microarchitecture and supports Intel 64 archi-
tecture.

The Intel® CoreTM i7 processor and the Intel® CoreTM i5 processor are based on the Intel® microarchitecture code
name Nehalem and support Intel 64 architecture.

Processors based on Intel® microarchitecture code name Westmere support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-8800/
4800/2800 product families, Intel® CoreTM i7-3930K processor, 2nd generation Intel® CoreTM i7-2xxx, Intel®
CoreTM i5-2xxx, Intel® CoreTM i3-2xxx processor series are based on the Intel® microarchitecture code name
Sandy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E3-1200 v2 product family and 3rd generation Intel® CoreTM processors are based on
the Intel® microarchitecture code name Ivy Bridge and support Intel 64 architecture.

The Next Generation Intel® CoreTM processors are based on the Intel® microarchitecture code name Haswell and
support Intel 64 architecture.

P6 family, Pentium® M, Intel® CoreTM Solo, Intel® CoreTM Duo processors, dual-core Intel® Xeon® processor LV,
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® AtomTM
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel®
CoreTM2 Duo, Intel® CoreTM2 Extreme processors, Intel Core 2 Quad processors, Pentium® D processors,
Pentium® Dual-Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel®
64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit micropro-
cessors. Intel® 64 architecture is the instruction set architecture and programming environment which is the
superset of Intel’s 32-bit and 64-bit architectures. It is compatible with the IA-32 architecture.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 12

1.2 OVERVIEW OF VOLUME 1: BASIC ARCHITECTURE
A description of this manual’s content follows:

Chapter 1 — About This Manual. Gives an overview of all five volumes of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual. It also describes the notational conventions in these manuals and lists related Intel
manuals and documentation of interest to programmers and hardware designers.

Chapter 2 — Intel® 64 and IA-32 Architectures. Introduces the Intel 64 and IA-32 architectures along with
the families of Intel processors that are based on these architectures. It also gives an overview of the common
features found in these processors and brief history of the Intel 64 and IA-32 architectures.

Chapter 3 — Basic Execution Environment. Introduces the models of memory organization and describes the
register set used by applications.

Chapter 4 — Data Types. Describes the data types and addressing modes recognized by the processor;
provides an overview of real numbers and floating-point formats and of floating-point exceptions.

Chapter 5 — Instruction Set Summary. Lists all Intel 64 and IA-32 instructions, divided into technology
groups.

Chapter 6 — Procedure Calls, Interrupts, and Exceptions. Describes the procedure stack and mechanisms
provided for making procedure calls and for servicing interrupts and exceptions.

Chapter 7 — Programming with General-Purpose Instructions. Describes basic load and store, program
control, arithmetic, and string instructions that operate on basic data types, general-purpose and segment regis-
ters; also describes system instructions that are executed in protected mode.

Chapter 8 — Programming with the x87 FPU. Describes the x87 floating-point unit (FPU), including floating-
point registers and data types; gives an overview of the floating-point instruction set and describes the
processor's floating-point exception conditions.

Chapter 9 — Programming with Intel® MMX™ Technology. Describes Intel MMX technology, including MMX
registers and data types; also provides an overview of the MMX instruction set.

Chapter 10 — Programming with Streaming SIMD Extensions (SSE). Describes SSE extensions, including
XMM registers, the MXCSR register, and packed single-precision floating-point data types; provides an overview
of the SSE instruction set and gives guidelines for writing code that accesses the SSE extensions.

Chapter 11 — Programming with Streaming SIMD Extensions 2 (SSE2). Describes SSE2 extensions,
including XMM registers and packed double-precision floating-point data types; provides an overview of the SSE2
instruction set and gives guidelines for writing code that accesses SSE2 extensions. This chapter also describes
SIMD floating-point exceptions that can be generated with SSE and SSE2 instructions. It also provides general
guidelines for incorporating support for SSE and SSE2 extensions into operating system and applications code.

Chapter 12 — Programming with SSE3, SSSE3 and SSE4. Provides an overview of the SSE3 instruction set,
Supplemental SSE3, SSE4, and guidelines for writing code that accesses these extensions.

Chapter 13 — Programming with AVX. Provides an overview of the Intel® AVX instruction set and gives guide-
lines for writing code that accesses the AVX extensions.

Chapter 14 — Input/Output. Describes the processor’s I/O mechanism, including I/O port addressing, I/O
instructions, and I/O protection mechanisms.

Chapter 15 — Processor Identification and Feature Determination. Describes how to determine the CPU
type and features available in the processor.

Appendix A — EFLAGS Cross-Reference. Summarizes how the IA-32 instructions affect the flags in the
EFLAGS register.

Appendix B — EFLAGS Condition Codes. Summarizes how conditional jump, move, and ‘byte set on condition
code’ instructions use condition code flags (OF, CF, ZF, SF, and PF) in the EFLAGS register.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 13

Appendix C — Floating-Point Exceptions Summary. Summarizes exceptions raised by the x87 FPU floating-
point and SSE/SSE2/SSE3 floating-point instructions.

Appendix D — Guidelines for Writing x87 FPU Exception Handlers. Describes how to design and write MS-
DOS* compatible exception handling facilities for FPU exceptions (includes software and hardware requirements
and assembly-language code examples). This appendix also describes general techniques for writing robust FPU
exception handlers.

Appendix E — Guidelines for Writing SIMD Floating-Point Exception Handlers. Gives guidelines for
writing exception handlers for exceptions generated by SSE/SSE2/SSE3 floating-point instructions.

...

2. Updates to Chapter 6, Volume 1
Change bars show changes to Chapter 6 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

6.3.7 Branch Functions in 64-Bit Mode
The 64-bit extensions expand branching mechanisms to accommodate branches in 64-bit linear-address space.
These are:
• Near-branch semantics are redefined in 64-bit mode
• In 64-bit mode and compatibility mode, 64-bit call-gate descriptors for far calls are available

In 64-bit mode, the operand size for all near branches (CALL, RET, JCC, JCXZ, JMP, and LOOP) is forced to 64 bits.
These instructions update the 64-bit RIP without the need for a REX operand-size prefix.

The following aspects of near branches are controlled by the effective operand size:
• Truncation of the size of the instruction pointer
• Size of a stack pop or push, due to a CALL or RET
• Size of a stack-pointer increment or decrement, due to a CALL or RET
• Indirect-branch operand size

In 64-bit mode, all of the above actions are forced to 64 bits regardless of operand size prefixes (operand size
prefixes are silently ignored). However, the displacement field for relative branches is still limited to 32 bits and
the address size for near branches is not forced in 64-bit mode.

Address sizes affect the size of RCX used for JCXZ and LOOP; they also impact the address calculation for memory
indirect branches. Such addresses are 64 bits by default; but they can be overridden to 32 bits by an address size
prefix.

Software typically uses far branches to change privilege levels. The legacy IA-32 architecture provides the call-
gate mechanism to allow software to branch from one privilege level to another, although call gates can also be
used for branches that do not change privilege levels. When call gates are used, the selector portion of the direct
or indirect pointer references a gate descriptor (the offset in the instruction is ignored). The offset to the destina-
tion’s code segment is taken from the call-gate descriptor.

64-bit mode redefines the type value of a 32-bit call-gate descriptor type to a 64-bit call gate descriptor and
expands the size of the 64-bit descriptor to hold a 64-bit offset. The 64-bit mode call-gate descriptor allows far
branches that reference any location in the supported linear-address space. These call gates also hold the target
code selector (CS), allowing changes to privilege level and default size as a result of the gate transition.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 14

Because immediates are generally specified up to 32 bits, the only way to specify a full 64-bit absolute RIP in 64-
bit mode is with an indirect branch. For this reason, direct far branches are eliminated from the instruction set in
64-bit mode.

64-bit mode also expands the semantics of the SYSENTER and SYSEXIT instructions so that the instructions
operate within a 64-bit memory space. The mode also introduces two new instructions: SYSCALL and SYSRET
(which are valid only in 64-bit mode). For details, see “SYSENTER—Fast System Call,” “SYSEXIT—Fast Return
from Fast System Call,” “SYSCALL—Fast System Call,” and “SYSRET—Return From Fast System Call” in Chapter 4,
“Instruction Set Reference, M-Z,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2B.

...

3. Updates to Chapter 12, Volume 1
Change bars show changes to Chapter 12 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

12.5 OVERVIEW OF SSSE3 INSTRUCTIONS
SSSE3 provides 32 instructions to accelerate a variety of multimedia and signal processing applications employing
SIMD integer data. See:
• Section 12.6, “SSSE3 Instructions,” provides an introduction to individual SSSE3 instructions.
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A & 2B, provide detailed

information on individual instructions.
• Chapter 13, “System Programming for Instruction Set Extensions and Processor Extended States,” in the

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, gives guidelines for integrating
SSE/SSE2/SSE3/SSSE3 extensions into an operating-system environment.

...

12.10.4 Packed Blending Instructions
SSE4.1 adds 6 instructions used for blending (BLENDPS, BLENDPD, BLENDVPS, BLENDVPD, PBLENDVB,
PBLENDW).

Blending conditionally copies a data element in a source operand to the same element in the destination. SSE4.1
instructions improve blending operations for most field sizes. A single new SSE4.1 instruction can generally
replace a sequence of 2 to 4 operations using previous architectures.

The variable blend instructions (BLENDVPS, BLENDVPD, PBLENDW) introduce the use of control bits stored in an
implicit XMM register (XMM0). The most significant bit in each field (the sign bit, for 2’s complement integer or
floating-point) is used as a selector. See Table 12-3.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 15

4. Updates to Chapter 1, Volume 2A
Change bars show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A: Instruction Set Reference, A-L.

--

...

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL
This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which
include:
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
• Intel® Core™ Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor
• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® Core™2 Extreme processor X7000 and X6800 series
• Intel® Core™2 Extreme QX6000 series
• Intel® Xeon® processor 7100 series
• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® CoreTM2 Extreme processor QX9000 and X9000 series
• Intel® CoreTM2 Quad processor Q9000 series
• Intel® CoreTM2 Duo processor E8000, T9000 series
• Intel® AtomTM processor family
• Intel® CoreTM i7 processor
• Intel® CoreTM i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families
• Intel® Xeon® processor E5 family

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 16

• Intel® Xeon® processor E3-1200 family
• Intel® CoreTM i7-3930K processor
• 2nd generation Intel® CoreTM i7-2xxx, Intel® CoreTM i5-2xxx, Intel® CoreTM i3-2xxx processor series
• Intel® Xeon® processor E3-1200 v2 product family
• 3rd generation Intel® CoreTM processors
• Next generation Intel® CoreTM processors

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium®
Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst®

microarchitecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel
Xeon processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved
Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel® Pentium® dual-core, Intel®
Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2 Extreme processors are based on Intel® Core™ microar-
chitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® CoreTM2 Quad processor Q9000 series, and Intel®
CoreTM2 Extreme processors QX9000, X9000 series, Intel® CoreTM2 processor E8000 series are based on
Enhanced Intel® CoreTM microarchitecture.

The Intel® AtomTM processor family is based on the Intel® AtomTM microarchitecture and supports Intel 64 archi-
tecture.

The Intel® CoreTM i7 processor and the Intel® CoreTM i5 processor are based on the Intel® microarchitecture code
name Nehalem and support Intel 64 architecture.

Processors based on Intel® microarchitecture code name Westmere support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-8800/
4800/2800 product families, Intel® CoreTM i7-3930K processor, 2nd generation Intel® CoreTM i7-2xxx, Intel®
CoreTM i5-2xxx, Intel® CoreTM i3-2xxx processor series are based on the Intel® microarchitecture code name
Sandy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E3-1200 v2 product family and 3rd generation Intel® CoreTM processors are based on
the Intel® microarchitecture code name Ivy Bridge and support Intel 64 architecture.

The Next Generation Intel® CoreTM processors are based on the Intel® microarchitecture code name Haswell and
support Intel 64 architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV,
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® AtomTM
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel®
Core™2 Duo, Intel® Core™2 Extreme, Intel® Core™2 Quad processors, Pentium® D processors, Pentium® Dual-
Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel® 64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit micropro-
cessors. Intel® 64 architecture is the instruction set architecture and programming environment which is the
superset of Intel’s 32-bit and 64-bit architectures. It is compatible with the IA-32 architecture.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 17

...

5. Updates to Chapter 2, Volume 2A
Change bars show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A: Instruction Set Reference, A-L.

--

...

Table 2-14 Instructions in each Exception Class

(*) - Additional exception restrictions are present - see the Instruction description for details
(**) - Instruction behavior on alignment check reporting with mask bits of less than all 1s are the same as with

mask bits of all 1s, i.e. no alignment checks are performed.

Exception Class Instruction

Type 1 (V)MOVAPD, (V)MOVAPS, (V)MOVDQA, (V)MOVNTDQ, (V)MOVNTDQA, (V)MOVNTPD, (V)MOVNTPS

Type 2

(V)ADDPD, (V)ADDPS, (V)ADDSUBPD, (V)ADDSUBPS, (V)CMPPD, (V)CMPPS, (V)CVTDQ2PS, (V)CVTPD2DQ,
(V)CVTPD2PS, (V)CVTPS2DQ, (V)CVTTPD2DQ, (V)CVTTPS2DQ, (V)DIVPD, (V)DIVPS, (V)DPPD*, (V)DPPS*,
(V)HADDPD, (V)HADDPS, (V)HSUBPD, (V)HSUBPS, (V)MAXPD, (V)MAXPS, (V)MINPD, (V)MINPS, (V)MULPD,
(V)MULPS, (V)ROUNDPD, (V)ROUNDPS, (V)SQRTPD, (V)SQRTPS, (V)SUBPD, (V)SUBPS

Type 3

(V)ADDSD, (V)ADDSS, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)COMISS, (V)CVTPS2PD, (V)CVTSD2SI, (V)CVTSD2SS,
(V)CVTSI2SD, (V)CVTSI2SS, (V)CVTSS2SD, (V)CVTSS2SI, (V)CVTTSD2SI, (V)CVTTSS2SI, (V)DIVSD, (V)DIVSS,
(V)MAXSD, (V)MAXSS, (V)MINSD, (V)MINSS, (V)MULSD, (V)MULSS, (V)ROUNDSD, (V)ROUNDSS, (V)SQRTSD,
(V)SQRTSS, (V)SUBSD, (V)SUBSS, (V)UCOMISD, (V)UCOMISS

Type 4

(V)AESDEC, (V)AESDECLAST, (V)AESENC, (V)AESENCLAST, (V)AESIMC, (V)AESKEYGENASSIST, (V)ANDPD,
(V)ANDPS, (V)ANDNPD, (V)ANDNPS, (V)BLENDPD, (V)BLENDPS, VBLENDVPD, VBLENDVPS, (V)LDDQU, (V)MASK-
MOVDQU, (V)PTEST, VTESTPS, VTESTPD, (V)MOVDQU*, (V)MOVSHDUP, (V)MOVSLDUP, (V)MOVUPD*,
(V)MOVUPS*, (V)MPSADBW, (V)ORPD, (V)ORPS, (V)PABSB, (V)PABSW, (V)PABSD, (V)PACKSSWB, (V)PACKSSDW,
(V)PACKUSWB, (V)PACKUSDW, (V)PADDB, (V)PADDW, (V)PADDD, (V)PADDQ, (V)PADDSB, (V)PADDSW, (V)PAD-
DUSB, (V)PADDUSW, (V)PALIGNR, (V)PAND, (V)PANDN, (V)PAVGB, (V)PAVGW, (V)PBLENDVB, (V)PBLENDW,
(V)PCMP(E/I)STRI/M***, (V)PCMPEQB, (V)PCMPEQW, (V)PCMPEQD, (V)PCMPEQQ, (V)PCMPGTB, (V)PCMPGTW,
(V)PCMPGTD, (V)PCMPGTQ, (V)PCLMULQDQ, (V)PHADDW, (V)PHADDD, (V)PHADDSW, (V)PHMINPOSUW,
(V)PHSUBD, (V)PHSUBW, (V)PHSUBSW, (V)PMADDWD, (V)PMADDUBSW,

(V)PMAXSB, (V)PMAXSW, (V)PMAXSD, (V)PMAXUB, (V)PMAXUW, (V)PMAXUD, (V)PMINSB, (V)PMINSW,
(V)PMINSD, (V)PMINUB, (V)PMINUW, (V)PMINUD, (V)PMULHUW, (V)PMULHRSW, (V)PMULHW, (V)PMULLW,
(V)PMULLD, (V)PMULUDQ, (V)PMULDQ, (V)POR, (V)PSADBW, (V)PSHUFB, (V)PSHUFD, (V)PSHUFHW,
(V)PSHUFLW, (V)PSIGNB, (V)PSIGNW, (V)PSIGND, (V)PSLLW, (V)PSLLD, (V)PSLLQ, (V)PSRAW, (V)PSRAD,
(V)PSRLW, (V)PSRLD, (V)PSRLQ, (V)PSUBB, (V)PSUBW, (V)PSUBD, (V)PSUBQ, (V)PSUBSB, (V)PSUBSW,
(V)PUNPCKHBW, (V)PUNPCKHWD, (V)PUNPCKHDQ, (V)PUNPCKHQDQ, (V)PUNPCKLBW, (V)PUNPCKLWD,
(V)PUNPCKLDQ, (V)PUNPCKLQDQ, (V)PXOR, (V)RCPPS, (V)RSQRTPS, (V)SHUFPD, (V)SHUFPS, (V)UNPCKHPD,
(V)UNPCKHPS, (V)UNPCKLPD, (V)UNPCKLPS, (V)XORPD, (V)XORPS

Type 5
(V)CVTDQ2PD, (V)EXTRACTPS, (V)INSERTPS, (V)MOVD, (V)MOVQ, (V)MOVDDUP, (V)MOVLPD, (V)MOVLPS,
(V)MOVHPD, (V)MOVHPS, (V)MOVSD, (V)MOVSS, (V)PEXTRB, (V)PEXTRD, (V)PEXTRW, (V)PEXTRQ, (V)PINSRB,
(V)PINSRD, (V)PINSRW, (V)PINSRQ, (V)RCPSS, (V)RSQRTSS, (V)PMOVSX/ZX, VLDMXCSR*, VSTMXCSR

Type 6
VEXTRACTF128, VPERMILPD, VPERMILPS, VPERM2F128, VBROADCASTSS, VBROADCASTSD,
VBROADCASTF128, VINSERTF128, VMASKMOVPS**, VMASKMOVPD**

Type 7
(V)MOVLHPS, (V)MOVHLPS, (V)MOVMSKPD, (V)MOVMSKPS, (V)PMOVMSKB, (V)PSLLDQ, (V)PSRLDQ, (V)PSLLW,
(V)PSLLD, (V)PSLLQ, (V)PSRAW, (V)PSRAD, (V)PSRLW, (V)PSRLD, (V)PSRLQ

Type 8 VZEROALL, VZEROUPPER

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 18

(***) - PCMPESTRI, PCMPESTRM, PCMPISTRI, and PCMPISTRM instructions do not cause #GP if the memory
operand is not aligned to 16-Byte boundary.

...

2.4.4 Exceptions Type 4 (>=16 Byte mem arg no alignment, no floating-point exceptions)

Table 2-20 Type 4 Class Exception Conditions

...

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X
VEX prefix:
If XCR0[2:1] != ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X X X X Legacy SSE: Memory operand is not 16-byte aligned.1

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault
#PF(fault-code)

X X X For a page fault.

NOTES:
1. PCMPESTRI, PCMPESTRM, PCMPISTRI, and PCMPISTRM instructions do not cause #GP if the memory operand is not aligned to 16-

Byte boundary.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 19

6. Updates to Chapter 3, Volume 2A
Change bars show changes to Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A: Instruction Set Reference, A-L.

--

...

ADC—Add with Carry
Opcode Instruction Op/

En
64-bit
Mode

Compat/
Leg Mode

Description

14 ib ADC AL, imm8 I Valid Valid Add with carry imm8 to AL.

15 iw ADC AX, imm16 I Valid Valid Add with carry imm16 to AX.

15 id ADC EAX, imm32 I Valid Valid Add with carry imm32 to EAX.

REX.W + 15 id ADC RAX, imm32 I Valid N.E. Add with carry imm32 sign extended to 64-
bits to RAX.

80 /2 ib ADC r/m8, imm8 MI Valid Valid Add with carry imm8 to r/m8.

REX + 80 /2 ib ADC r/m8*, imm8 MI Valid N.E. Add with carry imm8 to r/m8.

81 /2 iw ADC r/m16, imm16 MI Valid Valid Add with carry imm16 to r/m16.

81 /2 id ADC r/m32, imm32 MI Valid Valid Add with CF imm32 to r/m32.

REX.W + 81 /2 id ADC r/m64, imm32 MI Valid N.E. Add with CF imm32 sign extended to 64-bits
to r/m64.

83 /2 ib ADC r/m16, imm8 MI Valid Valid Add with CF sign-extended imm8 to r/m16.

83 /2 ib ADC r/m32, imm8 MI Valid Valid Add with CF sign-extended imm8 into r/m32.

REX.W + 83 /2 ib ADC r/m64, imm8 MI Valid N.E. Add with CF sign-extended imm8 into r/m64.

10 /r ADC r/m8, r8 MR Valid Valid Add with carry byte register to r/m8.

REX + 10 /r ADC r/m8*, r8* MR Valid N.E. Add with carry byte register to r/m64.

11 /r ADC r/m16, r16 MR Valid Valid Add with carry r16 to r/m16.

11 /r ADC r/m32, r32 MR Valid Valid Add with CF r32 to r/m32.

REX.W + 11 /r ADC r/m64, r64 MR Valid N.E. Add with CF r64 to r/m64.

12 /r ADC r8, r/m8 RM Valid Valid Add with carry r/m8 to byte register.

REX + 12 /r ADC r8*, r/m8* RM Valid N.E. Add with carry r/m64 to byte register.

13 /r ADC r16, r/m16 RM Valid Valid Add with carry r/m16 to r16.

13 /r ADC r32, r/m32 RM Valid Valid Add with CF r/m32 to r32.

REX.W + 13 /r ADC r64, r/m64 RM Valid N.E. Add with CF r/m64 to r64.

NOTES:
*In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 20

Instruction Operand Encoding

Description

Adds the destination operand (first operand), the source operand (second operand), and the carry (CF) flag and
stores the result in the destination operand. The destination operand can be a register or a memory location; the
source operand can be an immediate, a register, or a memory location. (However, two memory operands cannot
be used in one instruction.) The state of the CF flag represents a carry from a previous addition. When an imme-
diate value is used as an operand, it is sign-extended to the length of the destination operand format.

The ADC instruction does not distinguish between signed or unsigned operands. Instead, the processor evaluates
the result for both data types and sets the OF and CF flags to indicate a carry in the signed or unsigned result,
respectively. The SF flag indicates the sign of the signed result.

The ADC instruction is usually executed as part of a multibyte or multiword addition in which an ADD instruction
is followed by an ADC instruction.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits.
See the summary chart at the beginning of this section for encoding data and limits.

Operation

DEST ← DEST + SRC + CF;

Intel C/C++ Compiler Intrinsic Equivalent

ADC: extern unsigned char _addcarry_u8(unsigned char c_in, unsigned char src1, unsigned char src2, unsigned char *sum_out);

ADC: extern unsigned char _addcarry_u16(unsigned char c_in, unsigned short src1, unsigned short src2, unsigned short
*sum_out);

ADC: extern unsigned char _addcarry_u32(unsigned char c_in, unsigned int src1, unsigned char int, unsigned int *sum_out);

ADC: extern unsigned char _addcarry_u64(unsigned char c_in, unsigned __int64 src1, unsigned __int64 src2, unsigned __int64
*sum_out);

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

MI ModRM:r/m (r, w) imm8 NA NA

I AL/AX/EAX/RAX imm8 NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 21

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

...

CLFLUSH—Flush Cache Line

Instruction Operand Encoding

Description

Invalidates the cache line that contains the linear address specified with the source operand from all levels of the
processor cache hierarchy (data and instruction). The invalidation is broadcast throughout the cache coherence
domain. If, at any level of the cache hierarchy, the line is inconsistent with memory (dirty) it is written to memory
before invalidation. The source operand is a byte memory location.

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

0F AE /7 CLFLUSH m8 M Valid Valid Flushes cache line containing m8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 22

The availability of CLFLUSH is indicated by the presence of the CPUID feature flag CLFSH (bit 19 of the EDX
register, see “CPUID—CPU Identification” in this chapter). The aligned cache line size affected is also indicated
with the CPUID instruction (bits 8 through 15 of the EBX register when the initial value in the EAX register is 1).

The memory attribute of the page containing the affected line has no effect on the behavior of this instruction. It
should be noted that processors are free to speculatively fetch and cache data from system memory regions
assigned a memory-type allowing for speculative reads (such as, the WB, WC, and WT memory types).
PREFETCHh instructions can be used to provide the processor with hints for this speculative behavior. Because
this speculative fetching can occur at any time and is not tied to instruction execution, the CLFLUSH instruction is
not ordered with respect to PREFETCHh instructions or any of the speculative fetching mechanisms (that is, data
can be speculatively loaded into a cache line just before, during, or after the execution of a CLFLUSH instruction
that references the cache line).

CLFLUSH is only ordered by the MFENCE instruction. It is not guaranteed to be ordered by any other fencing or
serializing instructions or by another CLFLUSH instruction. For example, software can use an MFENCE instruction
to ensure that previous stores are included in the write-back.

The CLFLUSH instruction can be used at all privilege levels and is subject to all permission checking and faults
associated with a byte load (and in addition, a CLFLUSH instruction is allowed to flush a linear address in an
execute-only segment). Like a load, the CLFLUSH instruction sets the A bit but not the D bit in the page tables.
The CLFLUSH instruction was introduced with the SSE2 extensions; however, because it has its own CPUID
feature flag, it can be implemented in IA-32 processors that do not include the SSE2 extensions. Also, detecting
the presence of the SSE2 extensions with the CPUID instruction does not guarantee that the CLFLUSH instruction
is implemented in the processor.

CLFLUSH operation is the same in non-64-bit modes and 64-bit mode.

Operation

Flush_Cache_Line(SRC);

Intel C/C++ Compiler Intrinsic Equivalents

CLFLUSH: void _mm_clflush(void const *p)

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.
#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#UD If CPUID.01H:EDX.CLFSH[bit 19] = 0.

If the LOCK prefix is used.
If instruction prefix is 66H, F2H or F3H.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside the effective address space from 0 to FFFFH.
#UD If CPUID.01H:EDX.CLFSH[bit 19] = 0.

If the LOCK prefix is used.
If instruction prefix is 66H, F2H or F3H.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 23

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#UD If CPUID.01H:EDX.CLFSH[bit 19] = 0.

If the LOCK prefix is used.
If instruction prefix is 66H, F2H or F3H.

...

Table 3-17 Information Returned by CPUID Instruction

Initial EAX
Value Information Provided about the Processor

Basic CPUID Information

0H EAX
EBX
ECX
EDX

Maximum Input Value for Basic CPUID Information (see Table 3-18)
“Genu”
“ntel”
“ineI”

01H EAX

EBX

ECX
EDX

Version Information: Type, Family, Model, and Stepping ID (see Figure 3-5)

Bits 07-00: Brand Index
Bits 15-08: CLFLUSH line size (Value ∗ 8 = cache line size in bytes)
Bits 23-16: Maximum number of addressable IDs for logical processors in this physical package*.
Bits 31-24: Initial APIC ID

Feature Information (see Figure and Table 3-20)
Feature Information (see Figure 3-7 and Table 3-21)

NOTES:
* The nearest power-of-2 integer that is not smaller than EBX[23:16] is the number of unique initial APIC

IDs reserved for addressing different logical processors in a physical package. This field is only valid if
CPUID.1.EDX.HTT[bit 28]= 1.

02H EAX
EBX
ECX
EDX

Cache and TLB Information (see Table 3-22)
Cache and TLB Information
Cache and TLB Information
Cache and TLB Information

03H EAX
EBX
ECX

EDX

Reserved.
Reserved.
Bits 00-31 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the value
in this register is reserved.)
Bits 32-63 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the value
in this register is reserved.)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 24

NOTES:
Processor serial number (PSN) is not supported in the Pentium 4 processor or later. On all models, use
the PSN flag (returned using CPUID) to check for PSN support before accessing the feature.

See AP-485, Intel Processor Identification and the CPUID Instruction (Order Number 241618) for more
information on PSN.

CPUID leaves > 3 < 80000000 are visible only when IA32_MISC_ENABLE.BOOT_NT4[bit 22] = 0 (default).

Deterministic Cache Parameters Leaf

04H NOTES:
Leaf 04H output depends on the initial value in ECX.*
See also: “INPUT EAX = 4: Returns Deterministic Cache Parameters for each level on page 3-166.

EAX Bits 04-00: Cache Type Field
0 = Null - No more caches
1 = Data Cache
2 = Instruction Cache
3 = Unified Cache
4-31 = Reserved

Bits 07-05: Cache Level (starts at 1)
Bit 08: Self Initializing cache level (does not need SW initialization)
Bit 09: Fully Associative cache

Bits 13-10: Reserved
Bits 25-14: Maximum number of addressable IDs for logical processors sharing this cache**, ***
Bits 31-26: Maximum number of addressable IDs for processor cores in the physical
package**, ****, *****

EBX Bits 11-00: L = System Coherency Line Size**
Bits 21-12: P = Physical Line partitions**
Bits 31-22: W = Ways of associativity**

ECX Bits 31-00: S = Number of Sets**

EDX Bit 0: Write-Back Invalidate/Invalidate
0 = WBINVD/INVD from threads sharing this cache acts upon lower level caches for threads sharing this
cache.
1 = WBINVD/INVD is not guaranteed to act upon lower level caches of non-originating threads sharing
this cache.

Bit 1: Cache Inclusiveness
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.

Bit 2: Complex Cache Indexing
0 = Direct mapped cache.
1 = A complex function is used to index the cache, potentially using all address bits.

Bits 31-03: Reserved = 0

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 25

NOTES:
* If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0. Invalid sub-leaves of EAX = 04H:

ECX = n, n > 3.
** Add one to the return value to get the result.
***The nearest power-of-2 integer that is not smaller than (1 + EAX[25:14]) is the number of unique ini-

tial APIC IDs reserved for addressing different logical processors sharing this cache
**** The nearest power-of-2 integer that is not smaller than (1 + EAX[31:26]) is the number of unique

Core_IDs reserved for addressing different processor cores in a physical package. Core ID is a subset of
bits of the initial APIC ID.

***** The returned value is constant for valid initial values in ECX. Valid ECX values start from 0.

MONITOR/MWAIT Leaf

05H EAX Bits 15-00: Smallest monitor-line size in bytes (default is processor's monitor granularity)
Bits 31-16: Reserved = 0

EBX Bits 15-00: Largest monitor-line size in bytes (default is processor's monitor granularity)
Bits 31-16: Reserved = 0

ECX Bit 00: Enumeration of Monitor-Mwait extensions (beyond EAX and EBX registers) supported

Bit 01: Supports treating interrupts as break-event for MWAIT, even when interrupts disabled

Bits 31 - 02: Reserved

EDX Bits 03 - 00: Number of C0* sub C-states supported using MWAIT
Bits 07 - 04: Number of C1* sub C-states supported using MWAIT
Bits 11 - 08: Number of C2* sub C-states supported using MWAIT
Bits 15 - 12: Number of C3* sub C-states supported using MWAIT
Bits 19 - 16: Number of C4* sub C-states supported using MWAIT
Bits 31 - 20: Reserved = 0
NOTE:
* The definition of C0 through C4 states for MWAIT extension are processor-specific C-states, not ACPI C-

states.

Thermal and Power Management Leaf

06H EAX

EBX

Bit 00: Digital temperature sensor is supported if set
Bit 01: Intel Turbo Boost Technology Available (see description of IA32_MISC_ENABLE[38]).
Bit 02: ARAT. APIC-Timer-always-running feature is supported if set.
Bit 03: Reserved
Bit 04: PLN. Power limit notification controls are supported if set.
Bit 05: ECMD. Clock modulation duty cycle extension is supported if set.
Bit 06: PTM. Package thermal management is supported if set.
Bits 31 - 07: Reserved
Bits 03 - 00: Number of Interrupt Thresholds in Digital Thermal Sensor
Bits 31 - 04: Reserved

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 26

ECX Bit 00: Hardware Coordination Feedback Capability (Presence of IA32_MPERF and IA32_APERF). The
capability to provide a measure of delivered processor performance (since last reset of the counters), as
a percentage of expected processor performance at frequency specified in CPUID Brand String
Bits 02 - 01: Reserved = 0
Bit 03: The processor supports performance-energy bias preference if CPUID.06H:ECX.SETBH[bit 3] is set
and it also implies the presence of a new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H)
Bits 31 - 04: Reserved = 0

EDX Reserved = 0

Structured Extended Feature Flags Enumeration Leaf (Output depends on ECX input value)

07H Sub-leaf 0 (Input ECX = 0). *

EAX Bits 31-00: Reports the maximum input value for supported leaf 7 sub-leaves.

EBX Bit 00: FSGSBASE. Supports RDFSBASE/RDGSBASE/WRFSBASE/WRGSBASE if 1.
Bit 01: IA32_TSC_ADJUST MSR is supported if 1.
Bit 06: Reserved
Bit 07: SMEP. Supports Supervisor Mode Execution Protection if 1.
Bit 08: Reserved
Bit 09: Supports Enhanced REP MOVSB/STOSB if 1.
Bit 10: INVPCID. If 1, supports INVPCID instruction for system software that manages process-context
identifiers.
Bit 31:11: Reserved

ECX Reserved

EDX Reserved

NOTE:
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Invalid sub-leaves of EAX = 07H:

ECX = n, n > 0.

Direct Cache Access Information Leaf

09H EAX

EBX

ECX

EDX

Value of bits [31:0] of IA32_PLATFORM_DCA_CAP MSR (address 1F8H)

Reserved

Reserved

Reserved

Architectural Performance Monitoring Leaf

0AH EAX Bits 07 - 00: Version ID of architectural performance monitoring
Bits 15- 08: Number of general-purpose performance monitoring counter per logical processor
Bits 23 - 16: Bit width of general-purpose, performance monitoring counter
Bits 31 - 24: Length of EBX bit vector to enumerate architectural performance monitoring events

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

EBX Bit 00: Core cycle event not available if 1
Bit 01: Instruction retired event not available if 1
Bit 02: Reference cycles event not available if 1
Bit 03: Last-level cache reference event not available if 1
Bit 04: Last-level cache misses event not available if 1
Bit 05: Branch instruction retired event not available if 1
Bit 06: Branch mispredict retired event not available if 1
Bits 31- 07: Reserved = 0

ECX Reserved = 0

EDX Bits 04 - 00: Number of fixed-function performance counters (if Version ID > 1)
Bits 12- 05: Bit width of fixed-function performance counters (if Version ID > 1)
Reserved = 0

Extended Topology Enumeration Leaf

0BH NOTES:
Most of Leaf 0BH output depends on the initial value in ECX.
EDX output do not vary with initial value in ECX.
ECX[7:0] output always reflect initial value in ECX.
If ECX contains an invalid sub-leaf index, EAX/EBX/EDX return 0; ECX returns same ECX input. Invalid
sub-leaves of EAX = 0BH: ECX = n, n > 1.
Leaf 0BH exists if EBX[15:0] is not zero.

EAX Bits 04-00: Number of bits to shift right on x2APIC ID to get a unique topology ID of the next level type*.
All logical processors with the same next level ID share current level.
Bits 31-05: Reserved.

EBX Bits 15 - 00: Number of logical processors at this level type. The number reflects configuration as shipped
by Intel**.
Bits 31- 16: Reserved.

ECX Bits 07 - 00: Level number. Same value in ECX input
Bits 15 - 08: Level type***.
Bits 31 - 16:: Reserved.

EDX Bits 31- 00: x2APIC ID the current logical processor.

NOTES:
* Software should use this field (EAX[4:0]) to enumerate processor topology of the system.

** Software must not use EBX[15:0] to enumerate processor topology of the system. This value in this
field (EBX[15:0]) is only intended for display/diagnostic purposes. The actual number of logical processors
available to BIOS/OS/Applications may be different from the value of EBX[15:0], depending on software
and platform hardware configurations.

*** The value of the “level type” field is not related to level numbers in any way, higher “level type” val-
ues do not mean higher levels. Level type field has the following encoding:
0 : invalid
1 : SMT
2 : Core
3-255 : Reserved

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 28

Processor Extended State Enumeration Main Leaf (EAX = 0DH, ECX = 0)

0DH NOTES:
Leaf 0DH main leaf (ECX = 0).

EAX Bits 31-00: Reports the valid bit fields of the lower 32 bits of XCR0. If a bit is 0, the corresponding bit
field in XCR0 is reserved.
Bit 00: legacy x87
Bit 01: 128-bit SSE
Bit 02: 256-bit AVX
Bits 31- 03: Reserved

EBX Bits 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) required by
enabled features in XCR0. May be different than ECX if some features at the end of the XSAVE save area
are not enabled.

ECX Bit 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) of the
XSAVE/XRSTOR save area required by all supported features in the processor, i.e all the valid bit fields in
XCR0.

EDX Bit 31-00: Reports the valid bit fields of the upper 32 bits of XCR0. If a bit is 0, the corresponding bit field
in XCR0 is reserved.

Processor Extended State Enumeration Sub-leaf (EAX = 0DH, ECX = 1)

0DH EAX

EBX

ECX

EDX

Bits 31-01: Reserved

Bit 00: XSAVEOPT is available;

Reserved

Reserved

Reserved

Processor Extended State Enumeration Sub-leaves (EAX = 0DH, ECX = n, n > 1)

0DH NOTES:
Leaf 0DH output depends on the initial value in ECX.
Each valid sub-leaf index maps to a valid bit in the XCR0 register starting at bit position 2
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Invalid sub-leaves of EAX = 0DH:

ECX = n, n > 2.

EAX Bits 31-0: The size in bytes (from the offset specified in EBX) of the save area for an extended state fea-
ture associated with a valid sub-leaf index, n. This field reports 0 if the sub-leaf index, n, is invalid*.

EBX Bits 31-0: The offset in bytes of this extended state component’s save area from the beginning of the
XSAVE/XRSTOR area.
This field reports 0 if the sub-leaf index, n, is invalid*.

ECX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.

EDX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.

Unimplemented CPUID Leaf Functions

40000000H
-

4FFFFFFFH

Invalid. No existing or future CPU will return processor identification or feature information if the initial
EAX value is in the range 40000000H to 4FFFFFFFH.

Extended Function CPUID Information

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 29

80000000H EAX Maximum Input Value for Extended Function CPUID Information (see
Table 3-18).

EBX
ECX
EDX

Reserved
Reserved
Reserved

80000001H EAX

EBX

ECX

Extended Processor Signature and Feature Bits.

Reserved

Bit 00: LAHF/SAHF available in 64-bit mode
Bits 31-01 Reserved

EDX Bits 10-00: Reserved
Bit 11: SYSCALL/SYSRET available in 64-bit mode
Bits 19-12: Reserved = 0
Bit 20: Execute Disable Bit available
Bits 25-21: Reserved = 0
Bit 26: 1-GByte pages are available if 1
Bit 27: RDTSCP and IA32_TSC_AUX are available if 1
Bits 28: Reserved = 0
Bit 29: Intel® 64 Architecture available if 1
Bits 31-30: Reserved = 0

80000002H EAX
EBX
ECX
EDX

Processor Brand String
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000003H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000004H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000005H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Reserved = 0

80000006H EAX
EBX

Reserved = 0
Reserved = 0

ECX

EDX

Bits 07-00: Cache Line size in bytes
Bits 11-08: Reserved
Bits 15-12: L2 Associativity field *
Bits 31-16: Cache size in 1K units
Reserved = 0

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 30

...

NOTES:
* L2 associativity field encodings:

00H - Disabled
01H - Direct mapped
02H - 2-way
04H - 4-way
06H - 8-way
08H - 16-way
0FH - Fully associative

80000007H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Bits 07-00: Reserved = 0
Bit 08: Invariant TSC available if 1
Bits 31-09: Reserved = 0

80000008H EAX Linear/Physical Address size
Bits 07-00: #Physical Address Bits*
Bits 15-8: #Linear Address Bits
Bits 31-16: Reserved = 0

EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0

NOTES:
* If CPUID.80000008H:EAX[7:0] is supported, the maximum physical address number supported should

come from this field.

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 31

CRC32 — Accumulate CRC32 Value

Instruction Operand Encoding

Description

Starting with an initial value in the first operand (destination operand), accumulates a CRC32 (polynomial
0x11EDC6F41) value for the second operand (source operand) and stores the result in the destination operand.
The source operand can be a register or a memory location. The destination operand must be an r32 or r64
register. If the destination is an r64 register, then the 32-bit result is stored in the least significant double word
and 00000000H is stored in the most significant double word of the r64 register.

The initial value supplied in the destination operand is a double word integer stored in the r32 register or the least
significant double word of the r64 register. To incrementally accumulate a CRC32 value, software retains the
result of the previous CRC32 operation in the destination operand, then executes the CRC32 instruction again
with new input data in the source operand. Data contained in the source operand is processed in reflected bit
order. This means that the most significant bit of the source operand is treated as the least significant bit of the
quotient, and so on, for all the bits of the source operand. Likewise, the result of the CRC operation is stored in
the destination operand in reflected bit order. This means that the most significant bit of the resulting CRC (bit 31)
is stored in the least significant bit of the destination operand (bit 0), and so on, for all the bits of the CRC.

Operation

Notes:

BIT_REFLECT64: DST[63-0] = SRC[0-63]
BIT_REFLECT32: DST[31-0] = SRC[0-31]
BIT_REFLECT16: DST[15-0] = SRC[0-15]
BIT_REFLECT8: DST[7-0] = SRC[0-7]

Opcode/
Instruction

Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F2 0F 38 F0 /r

CRC32 r32, r/m8

RM Valid Valid Accumulate CRC32 on r/m8.

F2 REX 0F 38 F0 /r

CRC32 r32, r/m8*

RM Valid N.E. Accumulate CRC32 on r/m8.

F2 0F 38 F1 /r

CRC32 r32, r/m16

RM Valid Valid Accumulate CRC32 on r/m16.

F2 0F 38 F1 /r

CRC32 r32, r/m32

RM Valid Valid Accumulate CRC32 on r/m32.

F2 REX.W 0F 38 F0 /r

CRC32 r64, r/m8

RM Valid N.E. Accumulate CRC32 on r/m8.

F2 REX.W 0F 38 F1 /r

CRC32 r64, r/m64

RM Valid N.E. Accumulate CRC32 on r/m64.

NOTES:
*In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 32

MOD2: Remainder from Polynomial division modulus 2

CRC32 instruction for 64-bit source operand and 64-bit destination operand:

TEMP1[63-0] BIT_REFLECT64 (SRC[63-0])
TEMP2[31-0] BIT_REFLECT32 (DEST[31-0])
TEMP3[95-0] TEMP1[63-0] « 32
TEMP4[95-0] TEMP2[31-0] « 64
TEMP5[95-0] TEMP3[95-0] XOR TEMP4[95-0]
TEMP6[31-0] TEMP5[95-0] MOD2 11EDC6F41H
DEST[31-0] BIT_REFLECT (TEMP6[31-0])
DEST[63-32] 00000000H

CRC32 instruction for 32-bit source operand and 32-bit destination operand:

TEMP1[31-0] BIT_REFLECT32 (SRC[31-0])
TEMP2[31-0] BIT_REFLECT32 (DEST[31-0])
TEMP3[63-0] TEMP1[31-0] « 32
TEMP4[63-0] TEMP2[31-0] « 32
TEMP5[63-0] TEMP3[63-0] XOR TEMP4[63-0]
TEMP6[31-0] TEMP5[63-0] MOD2 11EDC6F41H
DEST[31-0] BIT_REFLECT (TEMP6[31-0])

CRC32 instruction for 16-bit source operand and 32-bit destination operand:

TEMP1[15-0] BIT_REFLECT16 (SRC[15-0])
TEMP2[31-0] BIT_REFLECT32 (DEST[31-0])
TEMP3[47-0] TEMP1[15-0] « 32
TEMP4[47-0] TEMP2[31-0] « 16
TEMP5[47-0] TEMP3[47-0] XOR TEMP4[47-0]
TEMP6[31-0] TEMP5[47-0] MOD2 11EDC6F41H
DEST[31-0] BIT_REFLECT (TEMP6[31-0])

CRC32 instruction for 8-bit source operand and 64-bit destination operand:

TEMP1[7-0] BIT_REFLECT8(SRC[7-0])
TEMP2[31-0] BIT_REFLECT32 (DEST[31-0])
TEMP3[39-0] TEMP1[7-0] « 32
TEMP4[39-0] TEMP2[31-0] « 8
TEMP5[39-0] TEMP3[39-0] XOR TEMP4[39-0]
TEMP6[31-0] TEMP5[39-0] MOD2 11EDC6F41H
DEST[31-0] BIT_REFLECT (TEMP6[31-0])
DEST[63-32] 00000000H

CRC32 instruction for 8-bit source operand and 32-bit destination operand:

TEMP1[7-0] BIT_REFLECT8(SRC[7-0])
TEMP2[31-0] BIT_REFLECT32 (DEST[31-0])
TEMP3[39-0] TEMP1[7-0] « 32
TEMP4[39-0] TEMP2[31-0] « 8
TEMP5[39-0] TEMP3[39-0] XOR TEMP4[39-0]
TEMP6[31-0] TEMP5[39-0] MOD2 11EDC6F41H
DEST[31-0] BIT_REFLECT (TEMP6[31-0])

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 33

Flags Affected

None

Intel C/C++ Compiler Intrinsic Equivalent
unsigned int _mm_crc32_u8(unsigned int crc, unsigned char data)
unsigned int _mm_crc32_u16(unsigned int crc, unsigned short data)
unsigned int _mm_crc32_u32(unsigned int crc, unsigned int data)
unsinged __int64 _mm_crc32_u64(unsinged __int64 crc, unsigned __int64 data)

SIMD Floating Point Exceptions

None

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS segments.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.

Real-Address Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space from 0 to 0FFFFH.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space from 0 to 0FFFFH.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 34

If LOCK prefix is used.

...

DPPD — Dot Product of Packed Double Precision Floating-Point Values

Instruction Operand Encoding

Description

Conditionally multiplies the packed double-precision floating-point values in the destination operand (first
operand) with the packed double-precision floating-point values in the source (second operand) depending on a
mask extracted from bits [5:4] of the immediate operand (third operand). If a condition mask bit is zero, the
corresponding multiplication is replaced by a value of 0.0.

The two resulting double-precision values are summed into an intermediate result. The intermediate result is
conditionally broadcasted to the destination using a broadcast mask specified by bits [1:0] of the immediate byte.

If a broadcast mask bit is "1", the intermediate result is copied to the corresponding qword element in the desti-
nation operand. If a broadcast mask bit is zero, the corresponding element in the destination is set to zero.
DPPD follows the NaN forwarding rules stated in the Software Developer’s Manual, vol. 1, table 4.7. These rules
do not cover horizontal prioritization of NaNs. Horizontal propagation of NaNs to the destination and the posi-
tioning of those NaNs in the destination is implementation dependent. NaNs on the input sources or computation-
ally generated NaNs will have at least one NaN propagated to the destination.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destina-
tion operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are
zeroed.
If VDPPD is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will cause an
#UD exception.

...

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 3A 41 /r ib

DPPD xmm1, xmm2/m128, imm8

RMI V/V SSE4_1 Selectively multiply packed DP floating-point
values from xmm1 with packed DP floating-
point values from xmm2, add and selectively
store the packed DP floating-point values to
xmm1.

VEX.NDS.128.66.0F3A.WIG 41 /r ib

VDPPD xmm1,xmm2, xmm3/m128, imm8

RVMI V/V AVX Selectively multiply packed DP floating-point
values from xmm2 with packed DP floating-
point values from xmm3, add and selectively
store the packed DP floating-point values to
xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 35

DPPS — Dot Product of Packed Single Precision Floating-Point Values

Instruction Operand Encoding

Description

Conditionally multiplies the packed single precision floating-point values in the destination operand (first
operand) with the packed single-precision floats in the source (second operand) depending on a mask extracted
from the high 4 bits of the immediate byte (third operand). If a condition mask bit in Imm8[7:4] is zero, the corre-
sponding multiplication is replaced by a value of 0.0.

The four resulting single-precision values are summed into an intermediate result. The intermediate result is
conditionally broadcasted to the destination using a broadcast mask specified by bits [3:0] of the immediate byte.

If a broadcast mask bit is "1", the intermediate result is copied to the corresponding dword element in the desti-
nation operand. If a broadcast mask bit is zero, the corresponding element in the destination is set to zero.
DPPS follows the NaN forwarding rules stated in the Software Developer’s Manual, vol. 1, table 4.7. These rules
do not cover horizontal prioritization of NaNs. Horizontal propagation of NaNs to the destination and the posi-
tioning of those NaNs in the destination is implementation dependent. NaNs on the input sources or computation-
ally generated NaNs will have at least one NaN propagated to the destination.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destina-
tion operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are
zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM
register or a 256-bit memory location. The destination operand is a YMM register.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 3A 40 /r ib

DPPS xmm1, xmm2/m128, imm8

RMI V/V SSE4_1 Selectively multiply packed SP floating-point
values from xmm1 with packed SP floating-
point values from xmm2, add and selectively
store the packed SP floating-point values or
zero values to xmm1.

VEX.NDS.128.66.0F3A.WIG 40 /r ib

VDPPS xmm1,xmm2, xmm3/m128, imm8

RVMI V/V AVX Multiply packed SP floating point values from
xmm1 with packed SP floating point values
from xmm2/mem selectively add and store to
xmm1.

VEX.NDS.256.66.0F3A.WIG 40 /r ib

VDPPS ymm1, ymm2, ymm3/m256, imm8

RVMI V/V AVX Multiply packed single-precision floating-point
values from ymm2 with packed SP floating
point values from ymm3/mem, selectively add
pairs of elements and store to ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 36

Operation

DP_primitive (SRC1, SRC2)
IF (imm8[4] = 1)

THEN Temp1[31:0] DEST[31:0] * SRC[31:0];
ELSE Temp1[31:0] +0.0; FI;

IF (imm8[5] = 1)
THEN Temp1[63:32] DEST[63:32] * SRC[63:32];
ELSE Temp1[63:32] +0.0; FI;

IF (imm8[6] = 1)
THEN Temp1[95:64] DEST[95:64] * SRC[95:64];
ELSE Temp1[95:64] +0.0; FI;

IF (imm8[7] = 1)
THEN Temp1[127:96] DEST[127:96] * SRC[127:96];
ELSE Temp1[127:96] +0.0; FI;

Temp2[31:0] Temp1[31:0] + Temp1[63:32];
Temp3[31:0] Temp1[95:64] + Temp1[127:96];
Temp4[31:0] Temp2[31:0] + Temp3[31:0];

IF (imm8[0] = 1)
THEN DEST[31:0] Temp4[31:0];
ELSE DEST[31:0] +0.0; FI;

IF (imm8[1] = 1)
THEN DEST[63:32] Temp4[31:0];
ELSE DEST[63:32] +0.0; FI;

IF (imm8[2] = 1)
THEN DEST[95:64] Temp4[31:0];
ELSE DEST[95:64] +0.0; FI;

IF (imm8[3] = 1)
THEN DEST[127:96] Temp4[31:0];
ELSE DEST[127:96] +0.0; FI;

DPPS (128-bit Legacy SSE version)
DEST[127:0]DP_Primitive(SRC1[127:0], SRC2[127:0]);
DEST[VLMAX-1:128] (Unmodified)
VDPPS (VEX.128 encoded version)
DEST[127:0]DP_Primitive(SRC1[127:0], SRC2[127:0]);
DEST[VLMAX-1:128] 0

VDPPS (VEX.256 encoded version)
DEST[127:0]DP_Primitive(SRC1[127:0], SRC2[127:0]);
DEST[255:128]DP_Primitive(SRC1[255:128], SRC2[255:128]);

Flags Affected

None

Intel C/C++ Compiler Intrinsic Equivalent

(V)DPPS: __m128 _mm_dp_ps (__m128 a, __m128 b, const int mask);

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 37

VDPPS: __m256 _mm256_dp_ps (__m256 a, __m256 b, const int mask);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Exceptions are determined separately for each add and multiply operation, in the order of their execution.
Unmasked exceptions will leave the destination operands unchanged.

Other Exceptions
See Exceptions Type 2.

...

FSIN—Sine

Description

Computes the sine of the source operand in register ST(0) and stores the result in ST(0). The source operand
must be given in radians and must be within the range −263 to +263. The following table shows the results
obtained when taking the sine of various classes of numbers, assuming that underflow does not occur.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set, and the value in
register ST(0) remains unchanged. The instruction does not raise an exception when the source operand is out of
range. It is up to the program to check the C2 flag for out-of-range conditions. Source values outside the range −
263 to +263 can be reduced to the range of the instruction by subtracting an appropriate integer multiple of 2π or
by using the FPREM instruction with a divisor of 2π. See the section titled “Pi” in Chapter 8 of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1, for a discussion of the proper value to use for π in
performing such reductions.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D9 FE FSIN Valid Valid Replace ST(0) with its sine.

Table 3-45 FSIN Results
SRC (ST(0)) DEST (ST(0))

− ∞ *

− F − 1 to + 1

− 0 −0

+ 0 + 0

+ F − 1 to +1

+ ∞ *

NaN NaN

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 38

Operation

IF -263 < ST(0) < 263

THEN
C2 ← 0;
ST(0) ← sin(ST(0));

ELSE (* Source operand out of range *)
C2 ← 1;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C2 Set to 1 if outside range (−263 < source operand < +263); otherwise, set to 0.
C0, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Source operand is an SNaN value, ∞, or unsupported format.
#D Source operand is a denormal value.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 39

INVD—Invalidate Internal Caches

Instruction Operand Encoding

Description

Invalidates (flushes) the processor’s internal caches and issues a special-function bus cycle that directs external
caches to also flush themselves. Data held in internal caches is not written back to main memory.

After executing this instruction, the processor does not wait for the external caches to complete their flushing
operation before proceeding with instruction execution. It is the responsibility of hardware to respond to the
cache flush signal.

The INVD instruction is a privileged instruction. When the processor is running in protected mode, the CPL of a
program or procedure must be 0 to execute this instruction.

The INVD instruction may be used when the cache is used as temporary memory and the cache contents need to
be invalidated rather than written back to memory. When the cache is used as temporary memory, no external
device should be actively writing data to main memory.

Use this instruction with care. Data cached internally and not written back to main memory will be lost. Note that
any data from an external device to main memory (for example, via a PCIWrite) can be temporarily stored in the
caches; these data can be lost when an INVD instruction is executed. Unless there is a specific requirement or
benefit to flushing caches without writing back modified cache lines (for example, temporary memory, testing, or
fault recovery where cache coherency with main memory is not a concern), software should instead use the
WBINVD instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

The INVD instruction is implementation dependent; it may be implemented differently on different families of
Intel 64 or IA-32 processors. This instruction is not supported on IA-32 processors earlier than the Intel486
processor.

Operation

Flush(InternalCaches);
SignalFlush(ExternalCaches);
Continue (* Continue execution *)

Flags Affected

None.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 08 INVD NP Valid Valid Flush internal caches; initiate flushing of
external caches.

NOTES:
* See the IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 40

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The INVD instruction cannot be executed in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

...

INVLPG—Invalidate TLB Entry

Instruction Operand Encoding

Description

Invalidates (flushes) the translation lookaside buffer (TLB) entry specified with the source operand. The source
operand is a memory address. The processor determines the page that contains that address and flushes the TLB
entry for that page.

The INVLPG instruction is a privileged instruction. When the processor is running in protected mode, the CPL must
be 0 to execute this instruction.

The INVLPG instruction normally flushes the TLB entry only for the specified page; however, in some cases, it may
flush more entries, even the entire TLB. The instruction is guaranteed to invalidates only TLB entries associated
with the current PCID. (If PCIDs are disabled — CR4.PCIDE = 0 — the current PCID is 000H.) The instruction also
invalidates any global TLB entries for the specified page, regardless of PCID.

For more details on operations that flush the TLB, see “MOV—Move to/from Control Registers” in Chapter 4 of
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B and Section 4.10.4.1, “Operations
that Invalidate TLBs and Paging-Structure Caches,” of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A).

This instruction’s operation is the same in all non-64-bit modes. It also operates the same in 64-bit mode, except
if the memory address is in non-canonical form. In this case, INVLPG is the same as a NOP.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 01/7 INVLPG m M Valid Valid Invalidate TLB Entry for page that contains m.

NOTES:
* See the IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 41

IA-32 Architecture Compatibility

The INVLPG instruction is implementation dependent, and its function may be implemented differently on
different families of Intel 64 or IA-32 processors. This instruction is not supported on IA-32 processors earlier
than the Intel486 processor.

Operation

Flush(RelevantTLBEntries);
Continue; (* Continue execution *)

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD Operand is a register.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD Operand is a register.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The INVLPG instruction cannot be executed at the virtual-8086 mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD Operand is a register.

If the LOCK prefix is used.

...

IRET/IRETD—Interrupt Return

Instruction Operand Encoding

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

CF IRET NP Valid Valid Interrupt return (16-bit operand size).

CF IRETD NP Valid Valid Interrupt return (32-bit operand size).

REX.W + CF IRETQ NP Valid N.E. Interrupt return (64-bit operand size).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 42

Description

Returns program control from an exception or interrupt handler to a program or procedure that was interrupted
by an exception, an external interrupt, or a software-generated interrupt. These instructions are also used to
perform a return from a nested task. (A nested task is created when a CALL instruction is used to initiate a task
switch or when an interrupt or exception causes a task switch to an interrupt or exception handler.) See the
section titled “Task Linking” in Chapter 7 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A.

IRET and IRETD are mnemonics for the same opcode. The IRETD mnemonic (interrupt return double) is intended
for use when returning from an interrupt when using the 32-bit operand size; however, most assemblers use the
IRET mnemonic interchangeably for both operand sizes.

In Real-Address Mode, the IRET instruction preforms a far return to the interrupted program or procedure. During
this operation, the processor pops the return instruction pointer, return code segment selector, and EFLAGS image
from the stack to the EIP, CS, and EFLAGS registers, respectively, and then resumes execution of the interrupted
program or procedure.

In Protected Mode, the action of the IRET instruction depends on the settings of the NT (nested task) and VM flags
in the EFLAGS register and the VM flag in the EFLAGS image stored on the current stack. Depending on the setting
of these flags, the processor performs the following types of interrupt returns:
• Return from virtual-8086 mode.
• Return to virtual-8086 mode.
• Intra-privilege level return.
• Inter-privilege level return.
• Return from nested task (task switch).

If the NT flag (EFLAGS register) is cleared, the IRET instruction performs a far return from the interrupt proce-
dure, without a task switch. The code segment being returned to must be equally or less privileged than the inter-
rupt handler routine (as indicated by the RPL field of the code segment selector popped from the stack).

As with a real-address mode interrupt return, the IRET instruction pops the return instruction pointer, return code
segment selector, and EFLAGS image from the stack to the EIP, CS, and EFLAGS registers, respectively, and then
resumes execution of the interrupted program or procedure. If the return is to another privilege level, the IRET
instruction also pops the stack pointer and SS from the stack, before resuming program execution. If the return
is to virtual-8086 mode, the processor also pops the data segment registers from the stack.

If the NT flag is set, the IRET instruction performs a task switch (return) from a nested task (a task called with a
CALL instruction, an interrupt, or an exception) back to the calling or interrupted task. The updated state of the
task executing the IRET instruction is saved in its TSS. If the task is re-entered later, the code that follows the
IRET instruction is executed.

If the NT flag is set and the processor is in IA-32e mode, the IRET instruction causes a general protection excep-
tion.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.W prefix promotes operation to
64 bits (IRETQ). See the summary chart at the beginning of this section for encoding data and limits.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3C, for more information about the behavior of this instruc-
tion in VMX non-root operation.

Operation

IF PE = 0
THEN

GOTO REAL-ADDRESS-MODE;
ELSE

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 43

IF (IA32_EFER.LMA = 0)
THEN (* Protected mode *)

GOTO PROTECTED-MODE;
ELSE (* IA-32e mode *)

GOTO IA-32e-MODE;
FI;

FI;
REAL-ADDRESS-MODE;

IF OperandSize = 32
THEN

IF top 12 bytes of stack not within stack limits
THEN #SS; FI;

tempEIP ← 4 bytes at end of stack
IF tempEIP[31:16] is not zero THEN #GP(0); FI;
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)
tempEFLAGS ← Pop();
EFLAGS ← (tempEFLAGS AND 257FD5H) OR (EFLAGS AND 1A0000H);

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits

THEN #SS; FI;
EIP ← Pop(); (* 16-bit pop; clear upper 16 bits *)
CS ← Pop(); (* 16-bit pop *)
EFLAGS[15:0] ← Pop();

FI;
END;

PROTECTED-MODE:
IF VM = 1 (* Virtual-8086 mode: PE = 1, VM = 1 *)

THEN
GOTO RETURN-FROM-VIRTUAL-8086-MODE; (* PE = 1, VM = 1 *)

FI;
IF NT = 1

THEN
GOTO TASK-RETURN; (* PE = 1, VM = 0, NT = 1 *)

FI;
IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits

THEN #SS(0); FI;
tempEIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits

THEN #SS(0); FI;
tempEIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();
tempEIP ← tempEIP AND FFFFH;
tempEFLAGS ← tempEFLAGS AND FFFFH;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 44

FI;
IF tempEFLAGS(VM) = 1 and CPL = 0

THEN
GOTO RETURN-TO-VIRTUAL-8086-MODE;

ELSE
GOTO PROTECTED-MODE-RETURN;

FI;
IA-32e-MODE:

IF NT = 1
THEN #GP(0);

ELSE IF OperandSize = 32
THEN

IF top 12 bytes of stack not within stack limits
THEN #SS(0); FI;

tempEIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();

ELSE IF OperandSize = 16
THEN

IF top 6 bytes of stack are not within stack limits
THEN #SS(0); FI;

tempEIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();
tempEIP ← tempEIP AND FFFFH;
tempEFLAGS ← tempEFLAGS AND FFFFH;

FI;
ELSE (* OperandSize = 64 *)

THEN
tempRIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();
tempRSP ← Pop();
tempSS ← Pop();

FI;
GOTO IA-32e-MODE-RETURN;

RETURN-FROM-VIRTUAL-8086-MODE:
(* Processor is in virtual-8086 mode when IRET is executed and stays in virtual-8086 mode *)

IF IOPL = 3 (* Virtual mode: PE = 1, VM = 1, IOPL = 3 *)
THEN IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits

THEN #SS(0); FI;
IF instruction pointer not within code segment limits

THEN #GP(0); FI;
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)
EFLAGS ← Pop();
(* VM, IOPL,VIP and VIF EFLAG bits not modified by pop *)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 45

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits

THEN #SS(0); FI;
IF instruction pointer not within code segment limits

THEN #GP(0); FI;
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop *)
EFLAGS[15:0] ← Pop(); (* IOPL in EFLAGS not modified by pop *)

FI;
ELSE

#GP(0); (* Trap to virtual-8086 monitor: PE = 1, VM = 1, IOPL < 3 *)
FI;

END;

RETURN-TO-VIRTUAL-8086-MODE:
(* Interrupted procedure was in virtual-8086 mode: PE = 1, CPL=0, VM = 1 in flag image *)
IF top 24 bytes of stack are not within stack segment limits

THEN #SS(0); FI;
IF instruction pointer not within code segment limits

THEN #GP(0); FI;
CS ← tempCS;
EIP ← tempEIP & FFFFH;
EFLAGS ← tempEFLAGS;
TempESP ← Pop();
TempSS ← Pop();
ES ← Pop(); (* Pop 2 words; throw away high-order word *)
DS ← Pop(); (* Pop 2 words; throw away high-order word *)
FS ← Pop(); (* Pop 2 words; throw away high-order word *)
GS ← Pop(); (* Pop 2 words; throw away high-order word *)
SS:ESP ← TempSS:TempESP;
CPL ← 3;
(* Resume execution in Virtual-8086 mode *)

END;

TASK-RETURN: (* PE = 1, VM = 0, NT = 1 *)
Read segment selector in link field of current TSS;
IF local/global bit is set to local
or index not within GDT limits

THEN #TS (TSS selector); FI;
Access TSS for task specified in link field of current TSS;
IF TSS descriptor type is not TSS or if the TSS is marked not busy

THEN #TS (TSS selector); FI;
IF TSS not present

THEN #NP(TSS selector); FI;
SWITCH-TASKS (without nesting) to TSS specified in link field of current TSS;
Mark the task just abandoned as NOT BUSY;
IF EIP is not within code segment limit

THEN #GP(0); FI;
END;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 46

PROTECTED-MODE-RETURN: (* PE = 1 *)
IF return code segment selector is NULL

THEN GP(0); FI;
IF return code segment selector addresses descriptor beyond descriptor table limit

THEN GP(selector); FI;
Read segment descriptor pointed to by the return code segment selector;
IF return code segment descriptor is not a code segment

THEN #GP(selector); FI;
IF return code segment selector RPL < CPL

THEN #GP(selector); FI;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is not present

THEN #NP(selector); FI;
IF return code segment selector RPL > CPL

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL; FI;

END;

RETURN-TO-SAME-PRIVILEGE-LEVEL: (* PE = 1, RPL = CPL *)
IF new mode ≠ 64-Bit Mode

THEN
IF tempEIP is not within code segment limits

THEN #GP(0); FI;
EIP ← tempEIP;

ELSE (* new mode = 64-bit mode *)
IF tempRIP is non-canonical

THEN #GP(0); FI;
RIP ← tempRIP;

FI;
CS ← tempCS; (* Segment descriptor information also loaded *)
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) ← tempEFLAGS;
IF OperandSize = 32 or OperandSize = 64

THEN EFLAGS(RF, AC, ID) ← tempEFLAGS; FI;
IF CPL ≤ IOPL

THEN EFLAGS(IF) ← tempEFLAGS; FI;
IF CPL = 0

 THEN (* VM = 0 in flags image *)
 EFLAGS(IOPL) ← tempEFLAGS;
 IF OperandSize = 32 or OperandSize = 64

THEN EFLAGS(VIF, VIP) ← tempEFLAGS; FI;
 FI;
END;

RETURN-TO-OUTER-PRIVILEGE-LEVEL:
IF OperandSize = 32

THEN
IF top 8 bytes on stack are not within limits

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 47

THEN #SS(0); FI;
ELSE (* OperandSize = 16 *)

IF top 4 bytes on stack are not within limits
THEN #SS(0); FI;

FI;
Read return segment selector;
IF stack segment selector is NULL

THEN #GP(0); FI;
IF return stack segment selector index is not within its descriptor table limits

THEN #GP(SSselector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL ≠ RPL of the return code segment selector
or the stack segment descriptor does not indicate a a writable data segment;
or the stack segment DPL ≠ RPL of the return code segment selector

THEN #GP(SS selector); FI;
IF stack segment is not present

THEN #SS(SS selector); FI;
IF new mode ≠ 64-Bit Mode

THEN
IF tempEIP is not within code segment limits

THEN #GP(0); FI;
EIP ← tempEIP;

ELSE (* new mode = 64-bit mode *)
IF tempRIP is non-canonical

THEN #GP(0); FI;
RIP ← tempRIP;

FI;
CS ← tempCS;
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) ← tempEFLAGS;
IF OperandSize = 32

THEN EFLAGS(RF, AC, ID) ← tempEFLAGS; FI;
IF CPL ≤ IOPL

THEN EFLAGS(IF) ← tempEFLAGS; FI;
IF CPL = 0

THEN
EFLAGS(IOPL) ← tempEFLAGS;
IF OperandSize = 32

THEN EFLAGS(VM, VIF, VIP) ← tempEFLAGS; FI;
IF OperandSize = 64

THEN EFLAGS(VIF, VIP) ← tempEFLAGS; FI;
FI;
CPL ← RPL of the return code segment selector;
FOR each of segment register (ES, FS, GS, and DS)

DO
IF segment register points to data or non-conforming code segment
and CPL > segment descriptor DPL (* Stored in hidden part of segment register *)

THEN (* Segment register invalid *)
SegmentSelector ← 0; (* NULL segment selector *)

FI;
OD;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 48

END;

IA-32e-MODE-RETURN: (* IA32_EFER.LMA = 1, PE = 1 *)
IF ((return code segment selector is NULL) or (return RIP is non-canonical) or

(SS selector is NULL going back to compatibility mode) or
(SS selector is NULL going back to CPL3 64-bit mode) or
(RPL <> CPL going back to non-CPL3 64-bit mode for a NULL SS selector))

THEN GP(0); FI;
IF return code segment selector addresses descriptor beyond descriptor table limit

THEN GP(selector); FI;
Read segment descriptor pointed to by the return code segment selector;
IF return code segment descriptor is not a code segment

THEN #GP(selector); FI;
IF return code segment selector RPL < CPL

THEN #GP(selector); FI;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is not present

THEN #NP(selector); FI;
IF return code segment selector RPL > CPL

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL; FI;

END;

Flags Affected

All the flags and fields in the EFLAGS register are potentially modified, depending on the mode of operation of the
processor. If performing a return from a nested task to a previous task, the EFLAGS register will be modified
according to the EFLAGS image stored in the previous task’s TSS.

Protected Mode Exceptions
#GP(0) If the return code or stack segment selector is NULL.

If the return instruction pointer is not within the return code segment limit.
#GP(selector) If a segment selector index is outside its descriptor table limits.

If the return code segment selector RPL is less than the CPL.
If the DPL of a conforming-code segment is greater than the return code segment selector
RPL.
If the DPL for a nonconforming-code segment is not equal to the RPL of the code segment
selector.
If the stack segment descriptor DPL is not equal to the RPL of the return code segment
selector.
If the stack segment is not a writable data segment.
If the stack segment selector RPL is not equal to the RPL of the return code segment selector.
If the segment descriptor for a code segment does not indicate it is a code segment.
If the segment selector for a TSS has its local/global bit set for local.
If a TSS segment descriptor specifies that the TSS is not busy.
If a TSS segment descriptor specifies that the TSS is not available.

#SS(0) If the top bytes of stack are not within stack limits.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 49

#NP(selector) If the return code or stack segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference occurs when the CPL is 3 and alignment checking is

enabled.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If the return instruction pointer is not within the return code segment limit.
#SS If the top bytes of stack are not within stack limits.

Virtual-8086 Mode Exceptions
#GP(0) If the return instruction pointer is not within the return code segment limit.

IF IOPL not equal to 3.
#PF(fault-code) If a page fault occurs.
#SS(0) If the top bytes of stack are not within stack limits.
#AC(0) If an unaligned memory reference occurs and alignment checking is enabled.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
#GP(0) If EFLAGS.NT[bit 14] = 1.
Other exceptions same as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If EFLAGS.NT[bit 14] = 1.

If the return code segment selector is NULL.
If the stack segment selector is NULL going back to compatibility mode.
If the stack segment selector is NULL going back to CPL3 64-bit mode.
If a NULL stack segment selector RPL is not equal to CPL going back to non-CPL3 64-bit
mode.
If the return instruction pointer is not within the return code segment limit.
If the return instruction pointer is non-canonical.

#GP(Selector) If a segment selector index is outside its descriptor table limits.
If a segment descriptor memory address is non-canonical.
If the segment descriptor for a code segment does not indicate it is a code segment.
If the proposed new code segment descriptor has both the D-bit and L-bit set.
If the DPL for a nonconforming-code segment is not equal to the RPL of the code segment
selector.
If CPL is greater than the RPL of the code segment selector.
If the DPL of a conforming-code segment is greater than the return code segment selector
RPL.
If the stack segment is not a writable data segment.
If the stack segment descriptor DPL is not equal to the RPL of the return code segment
selector.
If the stack segment selector RPL is not equal to the RPL of the return code segment selector.

#SS(0) If an attempt to pop a value off the stack violates the SS limit.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 50

If an attempt to pop a value off the stack causes a non-canonical address to be referenced.
#NP(selector) If the return code or stack segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference occurs when the CPL is 3 and alignment checking is

enabled.
#UD If the LOCK prefix is used.

...

7. Updates to Chapter 4, Volume 2B
Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2B: Instruction Set Reference, M-Z.

--

...

MOV—Move
Opcode Instruction Op/

En
64-Bit
Mode

Compat/
Leg Mode

Description

88 /r MOV r/m8,r8 MR Valid Valid Move r8 to r/m8.

REX + 88 /r MOV r/m8***,r8*** MR Valid N.E. Move r8 to r/m8.

89 /r MOV r/m16,r16 MR Valid Valid Move r16 to r/m16.

89 /r MOV r/m32,r32 MR Valid Valid Move r32 to r/m32.

REX.W + 89 /r MOV r/m64,r64 MR Valid N.E. Move r64 to r/m64.

8A /r MOV r8,r/m8 RM Valid Valid Move r/m8 to r8.

REX + 8A /r MOV r8***,r/m8*** RM Valid N.E. Move r/m8 to r8.

8B /r MOV r16,r/m16 RM Valid Valid Move r/m16 to r16.

8B /r MOV r32,r/m32 RM Valid Valid Move r/m32 to r32.

REX.W + 8B /r MOV r64,r/m64 RM Valid N.E. Move r/m64 to r64.

8C /r MOV r/m16,Sreg** MR Valid Valid Move segment register to r/m16.

REX.W + 8C /r MOV r/m64,Sreg** MR Valid Valid Move zero extended 16-bit segment register
to r/m64.

8E /r MOV Sreg,r/m16** RM Valid Valid Move r/m16 to segment register.

REX.W + 8E /r MOV Sreg,r/m64** RM Valid Valid Move lower 16 bits of r/m64 to segment
register.

A0 MOV AL,moffs8* FD Valid Valid Move byte at (seg:offset) to AL.

REX.W + A0 MOV AL,moffs8* FD Valid N.E. Move byte at (offset) to AL.

A1 MOV AX,moffs16* FD Valid Valid Move word at (seg:offset) to AX.

A1 MOV EAX,moffs32* FD Valid Valid Move doubleword at (seg:offset) to EAX.

REX.W + A1 MOV RAX,moffs64* FD Valid N.E. Move quadword at (offset) to RAX.

A2 MOV moffs8,AL TD Valid Valid Move AL to (seg:offset).

REX.W + A2 MOV moffs8***,AL TD Valid N.E. Move AL to (offset).

A3 MOV moffs16*,AX TD Valid Valid Move AX to (seg:offset).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 51

Instruction Operand Encoding

Description

Copies the second operand (source operand) to the first operand (destination operand). The source operand can
be an immediate value, general-purpose register, segment register, or memory location; the destination register
can be a general-purpose register, segment register, or memory location. Both operands must be the same size,
which can be a byte, a word, a doubleword, or a quadword.

The MOV instruction cannot be used to load the CS register. Attempting to do so results in an invalid opcode
exception (#UD). To load the CS register, use the far JMP, CALL, or RET instruction.

If the destination operand is a segment register (DS, ES, FS, GS, or SS), the source operand must be a valid
segment selector. In protected mode, moving a segment selector into a segment register automatically causes
the segment descriptor information associated with that segment selector to be loaded into the hidden (shadow)
part of the segment register. While loading this information, the segment selector and segment descriptor infor-

A3 MOV moffs32*,EAX TD Valid Valid Move EAX to (seg:offset).

REX.W + A3 MOV moffs64*,RAX TD Valid N.E. Move RAX to (offset).

B0+ rb MOV r8, imm8 OI Valid Valid Move imm8 to r8.

REX + B0+ rb MOV r8***, imm8 OI Valid N.E. Move imm8 to r8.

B8+ rw MOV r16, imm16 OI Valid Valid Move imm16 to r16.

B8+ rd MOV r32, imm32 OI Valid Valid Move imm32 to r32.

REX.W + B8+ rd MOV r64, imm64 OI Valid N.E. Move imm64 to r64.

C6 /0 MOV r/m8, imm8 MI Valid Valid Move imm8 to r/m8.

REX + C6 /0 MOV r/m8***, imm8 MI Valid N.E. Move imm8 to r/m8.

C7 /0 MOV r/m16, imm16 MI Valid Valid Move imm16 to r/m16.

C7 /0 MOV r/m32, imm32 MI Valid Valid Move imm32 to r/m32.

REX.W + C7 /0 MOV r/m64, imm32 MI Valid N.E. Move imm32 sign extended to 64-bits to
r/m64.

NOTES:
* The moffs8, moffs16, moffs32 and moffs64 operands specify a simple offset relative to the segment base, where 8, 16, 32 and 64

refer to the size of the data. The address-size attribute of the instruction determines the size of the offset, either 16, 32 or 64
bits.

** In 32-bit mode, the assembler may insert the 16-bit operand-size prefix with this instruction (see the following “Description” sec-
tion for further information).

***In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA

RM ModRM:reg (w) ModRM:r/m (r) NA NA

FD AL/AX/EAX/RAX Moffs NA NA

TD Moffs (w) AL/AX/EAX/RAX NA NA

OI opcode + rd (w) imm8/16/32/64 NA NA

MI ModRM:r/m (w) imm8/16/32/64 NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 52

mation is validated (see the “Operation” algorithm below). The segment descriptor data is obtained from the GDT
or LDT entry for the specified segment selector.

A NULL segment selector (values 0000-0003) can be loaded into the DS, ES, FS, and GS registers without causing
a protection exception. However, any subsequent attempt to reference a segment whose corresponding segment
register is loaded with a NULL value causes a general protection exception (#GP) and no memory reference
occurs.

Loading the SS register with a MOV instruction inhibits all interrupts until after the execution of the next instruc-
tion. This operation allows a stack pointer to be loaded into the ESP register with the next instruction (MOV ESP,
stack-pointer value) before an interrupt occurs1. Be aware that the LSS instruction offers a more efficient
method of loading the SS and ESP registers.

When operating in 32-bit mode and moving data between a segment register and a general-purpose register, the
32-bit IA-32 processors do not require the use of the 16-bit operand-size prefix (a byte with the value 66H) with
this instruction, but most assemblers will insert it if the standard form of the instruction is used (for example, MOV
DS, AX). The processor will execute this instruction correctly, but it will usually require an extra clock. With most
assemblers, using the instruction form MOV DS, EAX will avoid this unneeded 66H prefix. When the processor
executes the instruction with a 32-bit general-purpose register, it assumes that the 16 least-significant bits of
the general-purpose register are the destination or source operand. If the register is a destination operand, the
resulting value in the two high-order bytes of the register is implementation dependent. For the Pentium 4, Intel
Xeon, and P6 family processors, the two high-order bytes are filled with zeros; for earlier 32-bit IA-32 processors,
the two high order bytes are undefined.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the
beginning of this section for encoding data and limits.

Operation

DEST ← SRC;

Loading a segment register while in protected mode results in special checks and actions, as described in the
following listing. These checks are performed on the segment selector and the segment descriptor to which it
points.

IF SS is loaded
THEN

IF segment selector is NULL
THEN #GP(0); FI;

IF segment selector index is outside descriptor table limits
or segment selector's RPL ≠ CPL
or segment is not a writable data segment
or DPL ≠ CPL

THEN #GP(selector); FI;
IF segment not marked present

1. If a code instruction breakpoint (for debug) is placed on an instruction located immediately after a MOV SS instruction, the break-
point may not be triggered. However, in a sequence of instructions that load the SS register, only the first instruction in the
sequence is guaranteed to delay an interrupt.

In the following sequence, interrupts may be recognized before MOV ESP, EBP executes:

MOV SS, EDX
MOV SS, EAX
MOV ESP, EBP

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 53

THEN #SS(selector);
ELSE

SS ← segment selector;
SS ← segment descriptor; FI;

FI;

IF DS, ES, FS, or GS is loaded with non-NULL selector
THEN

IF segment selector index is outside descriptor table limits
or segment is not a data or readable code segment
or ((segment is a data or nonconforming code segment)
or ((RPL > DPL) and (CPL > DPL))

THEN #GP(selector); FI;
IF segment not marked present

THEN #NP(selector);
ELSE

SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor; FI;

FI;

IF DS, ES, FS, or GS is loaded with NULL selector
THEN

SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If attempt is made to load SS register with NULL segment selector.

If the destination operand is in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#GP(selector) If segment selector index is outside descriptor table limits.
If the SS register is being loaded and the segment selector's RPL and the segment
descriptor’s DPL are not equal to the CPL.
If the SS register is being loaded and the segment pointed to is a
non-writable data segment.
If the DS, ES, FS, or GS register is being loaded and the segment pointed to is not a data or
readable code segment.
If the DS, ES, FS, or GS register is being loaded and the segment pointed to is a data or
nonconforming code segment, but both the RPL and the CPL are greater than the DPL.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#SS(selector) If the SS register is being loaded and the segment pointed to is marked not present.
#NP If the DS, ES, FS, or GS register is being loaded and the segment pointed to is marked not

present.
#PF(fault-code) If a page fault occurs.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 54

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

#UD If attempt is made to load the CS register.
If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If attempt is made to load the CS register.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If attempt is made to load the CS register.

If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.
...

MOVD/MOVQ—Move Doubleword/Move Quadword
Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F 6E /r

MOVD mm, r/m32

RM V/V MMX Move doubleword from r/m32 to mm.

REX.W + 0F 6E /r

MOVQ mm, r/m64

RM V/N.E. MMX Move quadword from r/m64 to mm.

0F 7E /r

MOVD r/m32, mm

MR V/V MMX Move doubleword from mm to r/m32.

REX.W + 0F 7E /r

MOVQ r/m64, mm

MR V/N.E. MMX Move quadword from mm to r/m64.

VEX.128.66.0F.W0 6E /

VMOVD xmm1, r32/m32

RM V/V AVX Move doubleword from r/m32 to xmm1.

VEX.128.66.0F.W1 6E /r

VMOVQ xmm1, r64/m64

RM V/N.E. AVX Move quadword from r/m64 to xmm1.

66 0F 6E /r

MOVD xmm, r/m32

RM V/V SSE2 Move doubleword from r/m32 to xmm.

66 REX.W 0F 6E /r

MOVQ xmm, r/m64

RM V/N.E. SSE2 Move quadword from r/m64 to xmm.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 55

Instruction Operand Encoding

Description

Copies a doubleword from the source operand (second operand) to the destination operand (first operand). The
source and destination operands can be general-purpose registers, MMX technology registers, XMM registers, or
32-bit memory locations. This instruction can be used to move a doubleword to and from the low doubleword of
an MMX technology register and a general-purpose register or a 32-bit memory location, or to and from the low
doubleword of an XMM register and a general-purpose register or a 32-bit memory location. The instruction
cannot be used to transfer data between MMX technology registers, between XMM registers, between general-
purpose registers, or between memory locations.

When the destination operand is an MMX technology register, the source operand is written to the low doubleword
of the register, and the register is zero-extended to 64 bits. When the destination operand is an XMM register, the
source operand is written to the low doubleword of the register, and the register is zero-extended to 128 bits.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the
beginning of this section for encoding data and limits.

Operation

MOVD (when destination operand is MMX technology register)
DEST[31:0] ← SRC;
DEST[63:32] ← 00000000H;

MOVD (when destination operand is XMM register)
DEST[31:0] ← SRC;
DEST[127:32] ← 000000000000000000000000H;
DEST[VLMAX-1:128] (Unmodified)

MOVD (when source operand is MMX technology or XMM register)
DEST ← SRC[31:0];

VMOVD (VEX-encoded version when destination is an XMM register)
DEST[31:0] SRC[31:0]
DEST[VLMAX-1:32] 0

66 0F 7E /r

MOVD r/m32, xmm

MR V/V SSE2 Move doubleword from xmm register to r/
m32.

 66 REX.W 0F 7E /r

MOVQ r/m64, xmm

MR V/N.E. SSE2 Move quadword from xmm register to r/m64.

VEX.128.66.0F.W0 7E /r

VMOVD r32/m32, xmm1

MR V/V AVX Move doubleword from xmm1 register to
r/m32.

VEX.128.66.0F.W1 7E /r

VMOVQ r64/m64, xmm1

MR V/N.E. AVX Move quadword from xmm1 register to r/m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 56

MOVQ (when destination operand is XMM register)
DEST[63:0] ← SRC[63:0];
DEST[127:64] ← 0000000000000000H;
DEST[VLMAX-1:128] (Unmodified)

MOVQ (when destination operand is r/m64)
DEST[63:0] ← SRC[63:0];

MOVQ (when source operand is XMM register or r/m64)
DEST ← SRC[63:0];

VMOVQ (VEX-encoded version when destination is an XMM register)
DEST[63:0] SRC[63:0]
DEST[VLMAX-1:64] 0

Intel C/C++ Compiler Intrinsic Equivalent

MOVD: __m64 _mm_cvtsi32_si64 (int i)

MOVD: int _mm_cvtsi64_si32 (__m64m)

MOVD: __m128i _mm_cvtsi32_si128 (int a)

MOVD: int _mm_cvtsi128_si32 (__m128i a)

MOVQ: __int64 _mm_cvtsi128_si64(__m128i);

MOVQ: __m128i _mm_cvtsi64_si128(__int64);

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
...

MOVQ—Move Quadword
Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F 6F /r

MOVQ mm, mm/m64

RM V/V MMX Move quadword from mm/m64 to mm.

0F 7F /r

MOVQ mm/m64, mm

MR V/V MMX Move quadword from mm to mm/m64.

F3 0F 7E

MOVQ xmm1, xmm2/m64

RM V/V SSE2 Move quadword from xmm2/mem64 to
xmm1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 57

Instruction Operand Encoding

Description

Copies a quadword from the source operand (second operand) to the destination operand (first operand). The
source and destination operands can be MMX technology registers, XMM registers, or 64-bit memory locations.
This instruction can be used to move a quadword between two MMX technology registers or between an MMX
technology register and a 64-bit memory location, or to move data between two XMM registers or between an
XMM register and a 64-bit memory location. The instruction cannot be used to transfer data between memory
locations.

When the source operand is an XMM register, the low quadword is moved; when the destination operand is an
XMM register, the quadword is stored to the low quadword of the register, and the high quadword is cleared to all
0s.

In 64-bit mode, use of the REX prefix in the form of REX.R permits this instruction to access additional registers
(XMM8-XMM15).
Note: In VEX.128.66.0F D6 instruction version, VEX.vvvv and VEX.L=1 are reserved and the former must be
1111b otherwise instructions will #UD.
Note: In VEX.128.F3.0F 7E version, VEX.vvvv and VEX.L=1 are reserved and the former must be 1111b, other-
wise instructions will #UD.

Operation

MOVQ instruction when operating on MMX technology registers and memory locations:
DEST ← SRC;

MOVQ instruction when source and destination operands are XMM registers:
DEST[63:0] ← SRC[63:0];
DEST[127:64] ← 0000000000000000H;

MOVQ instruction when source operand is XMM register and destination
operand is memory location:

DEST ← SRC[63:0];

MOVQ instruction when source operand is memory location and destination
operand is XMM register:

DEST[63:0] ← SRC;

VEX.128.F3.0F.WIG 7E /r

VMOVQ xmm1, xmm2

RM V/V AVX Move quadword from xmm2 to xmm1.

VEX.128.F3.0F.WIG 7E /r

VMOVQ xmm1, m64

RM V/V AVX Load quadword from m64 to xmm1.

66 0F D6

MOVQ xmm2/m64, xmm1

MR V/V SSE2 Move quadword from xmm1 to
xmm2/mem64.

VEX.128.66.0F.WIG D6 /r

VMOVQ xmm1/m64, xmm2

MR V/V AVX Move quadword from xmm2 register to
xmm1/m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 58

DEST[127:64] ← 0000000000000000H;

VMOVQ (VEX.NDS.128.F3.0F 7E) with XMM register source and destination:
DEST[63:0] ← SRC[63:0]
DEST[VLMAX-1:64] ← 0

VMOVQ (VEX.128.66.0F D6) with XMM register source and destination:
DEST[63:0] ← SRC[63:0]
DEST[VLMAX-1:64] ← 0

VMOVQ (7E) with memory source:
DEST[63:0] ← SRC[63:0]
DEST[VLMAX-1:64] ← 0

VMOVQ (D6) with memory dest:
DEST[63:0] ← SRC2[63:0]

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

MOVQ: m128i _mm_mov_epi64(__m128i a)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Table 22-8, “Exception Conditions for Legacy SIMD/MMX Instructions without FP Exception,” in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3B.
...

PCMPESTRI — Packed Compare Explicit Length Strings, Return Index

Instruction Operand Encoding

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 61 /r imm8
PCMPESTRI xmm1, xmm2/m128, imm8

RMI V/V SSE4_2 Perform a packed comparison of string data
with explicit lengths, generating an index, and
storing the result in ECX.

VEX.128.66.0F3A.WIG 61 /r ib
VPCMPESTRI xmm1, xmm2/m128, imm8

RMI V/V AVX Perform a packed comparison of string data
with explicit lengths, generating an index, and
storing the result in ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r) ModRM:r/m (r) imm8 NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 59

Description

The instruction compares and processes data from two string fragments based on the encoded value in the Imm8
Control Byte (see Section 4.1, “Imm8 Control Byte Operation for PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMP-
ISTRM”), and generates an index stored to the count register (ECX/RCX).

Each string fragment is represented by two values. The first value is an xmm (or possibly m128 for the second
operand) which contains the data elements of the string (byte or word data). The second value is stored in an
input length register. The input length register is EAX/RAX (for xmm1) or EDX/RDX (for xmm2/m128). The length
represents the number of bytes/words which are valid for the respective xmm/m128 data.

The length of each input is interpreted as being the absolute-value of the value in the length register. The abso-
lute-value computation saturates to 16 (for bytes) and 8 (for words), based on the value of imm8[bit3] when the
value in the length register is greater than 16 (8) or less than -16 (-8).

The comparison and aggregation operations are performed according to the encoded value of Imm8 bit fields (see
Section 4.1). The index of the first (or last, according to imm8[6]) set bit of IntRes2 (see Section 4.1.4) is
returned in ECX. If no bits are set in IntRes2, ECX is set to 16 (8).

Note that the Arithmetic Flags are written in a non-standard manner in order to supply the most relevant informa-
tion:

CFlag – Reset if IntRes2 is equal to zero, set otherwise
ZFlag – Set if absolute-value of EDX is < 16 (8), reset otherwise
SFlag – Set if absolute-value of EAX is < 16 (8), reset otherwise
OFlag – IntRes2[0]
AFlag – Reset
PFlag – Reset

Effective Operand Size

Intel C/C++ Compiler Intrinsic Equivalent For Returning Index

int _mm_cmpestri (__m128i a, int la, __m128i b, int lb, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpestra (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestrc (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestro (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestrs (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestrz (__m128i a, int la, __m128i b, int lb, const int mode);

SIMD Floating-Point Exceptions

None.

Operating mode/size Operand 1 Operand 2 Length 1 Length 2 Result

16 bit xmm xmm/m128 EAX EDX ECX

32 bit xmm xmm/m128 EAX EDX ECX

64 bit xmm xmm/m128 EAX EDX ECX

64 bit + REX.W xmm xmm/m128 RAX RDX RCX

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 60

Other Exceptions
See Exceptions Type 4; additionally, this instruction does not cause #GP if the memory operand is not aligned to
16 Byte boundary, and
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
...

PCMPESTRM — Packed Compare Explicit Length Strings, Return Mask

Instruction Operand Encoding

Description

The instruction compares data from two string fragments based on the encoded value in the imm8 control byte
(see Section 4.1, “Imm8 Control Byte Operation for PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM”), and
generates a mask stored to XMM0.

Each string fragment is represented by two values. The first value is an xmm (or possibly m128 for the second
operand) which contains the data elements of the string (byte or word data). The second value is stored in an
input length register. The input length register is EAX/RAX (for xmm1) or EDX/RDX (for xmm2/m128). The length
represents the number of bytes/words which are valid for the respective xmm/m128 data.

The length of each input is interpreted as being the absolute-value of the value in the length register. The abso-
lute-value computation saturates to 16 (for bytes) and 8 (for words), based on the value of imm8[bit3] when the
value in the length register is greater than 16 (8) or less than -16 (-8).

The comparison and aggregation operations are performed according to the encoded value of Imm8 bit fields (see
Section 4.1). As defined by imm8[6], IntRes2 is then either stored to the least significant bits of XMM0 (zero
extended to 128 bits) or expanded into a byte/word-mask and then stored to XMM0.

Note that the Arithmetic Flags are written in a non-standard manner in order to supply the most relevant informa-
tion:

CFlag – Reset if IntRes2 is equal to zero, set otherwise
ZFlag – Set if absolute-value of EDX is < 16 (8), reset otherwise
SFlag – Set if absolute-value of EAX is < 16 (8), reset otherwise
OFlag –IntRes2[0]
AFlag – Reset
PFlag – Reset

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 60 /r imm8
PCMPESTRM xmm1, xmm2/m128, imm8

RMI V/V SSE4_2 Perform a packed comparison of string data
with explicit lengths, generating a mask, and
storing the result in XMM0

VEX.128.66.0F3A.WIG 60 /r ib
VPCMPESTRM xmm1, xmm2/m128, imm8

RMI V/V AVX Perform a packed comparison of string data
with explicit lengths, generating a mask, and
storing the result in XMM0.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r) ModRM:r/m (r) imm8 NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 61

Note: In VEX.128 encoded versions, bits (VLMAX-1:128) of XMM0 are zeroed. VEX.vvvv is reserved and must be
1111b, VEX.L must be 0, otherwise the instruction will #UD.

Effective Operand Size

Intel C/C++ Compiler Intrinsic Equivalent For Returning Mask

__m128i _mm_cmpestrm (__m128i a, int la, __m128i b, int lb, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpestra (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestrc (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestro (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestrs (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestrz (__m128i a, int la, __m128i b, int lb, const int mode);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally, this instruction does not cause #GP if the memory operand is not aligned to
16 Byte boundary, and
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
...

PCMPISTRI — Packed Compare Implicit Length Strings, Return Index

Operating mode/size Operand1 Operand 2 Length1 Length2 Result

16 bit xmm xmm/m128 EAX EDX XMM0

32 bit xmm xmm/m128 EAX EDX XMM0

64 bit xmm xmm/m128 EAX EDX XMM0

64 bit + REX.W xmm xmm/m128 RAX RDX XMM0

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 63 /r imm8
PCMPISTRI xmm1, xmm2/m128, imm8

RM V/V SSE4_2 Perform a packed comparison of string data
with implicit lengths, generating an index, and
storing the result in ECX.

VEX.128.66.0F3A.WIG 63 /r ib
VPCMPISTRI xmm1, xmm2/m128, imm8

RM V/V AVX Perform a packed comparison of string data
with implicit lengths, generating an index, and
storing the result in ECX.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 62

Instruction Operand Encoding

Description

The instruction compares data from two strings based on the encoded value in the Imm8 Control Byte (see
Section 4.1, “Imm8 Control Byte Operation for PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM”), and
generates an index stored to ECX.

Each string is represented by a single value. The value is an xmm (or possibly m128 for the second operand)
which contains the data elements of the string (byte or word data). Each input byte/word is augmented with a
valid/invalid tag. A byte/word is considered valid only if it has a lower index than the least significant null byte/
word. (The least significant null byte/word is also considered invalid.)

The comparison and aggregation operations are performed according to the encoded value of Imm8 bit fields (see
Section 4.1). The index of the first (or last, according to imm8[6]) set bit of IntRes2 is returned in ECX. If no bits
are set in IntRes2, ECX is set to 16 (8).

Note that the Arithmetic Flags are written in a non-standard manner in order to supply the most relevant informa-
tion:

CFlag – Reset if IntRes2 is equal to zero, set otherwise
ZFlag – Set if any byte/word of xmm2/mem128 is null, reset otherwise
SFlag – Set if any byte/word of xmm1 is null, reset otherwise
OFlag –IntRes2[0]
AFlag – Reset
PFlag – Reset

Note: In VEX.128 encoded version, VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the
instruction will #UD.

Effective Operand Size

Intel C/C++ Compiler Intrinsic Equivalent For Returning Index

int _mm_cmpistri (__m128i a, __m128i b, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpistra (__m128i a, __m128i b, const int mode);
int _mm_cmpistrc (__m128i a, __m128i b, const int mode);
int _mm_cmpistro (__m128i a, __m128i b, const int mode);
int _mm_cmpistrs (__m128i a, __m128i b, const int mode);

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) imm8 NA

Operating mode/size Operand1 Operand 2 Result

16 bit xmm xmm/m128 ECX

32 bit xmm xmm/m128 ECX

64 bit xmm xmm/m128 ECX

64 bit + REX.W xmm xmm/m128 RCX

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 63

int _mm_cmpistrz (__m128i a, __m128i b, const int mode);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally, this instruction does not cause #GP if the memory operand is not aligned to
16 Byte boundary, and
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
...

PCMPISTRM — Packed Compare Implicit Length Strings, Return Mask

Instruction Operand Encoding

Description

The instruction compares data from two strings based on the encoded value in the imm8 byte (see Section 4.1,
“Imm8 Control Byte Operation for PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM”) generating a mask
stored to XMM0.

Each string is represented by a single value. The value is an xmm (or possibly m128 for the second operand)
which contains the data elements of the string (byte or word data). Each input byte/word is augmented with a
valid/invalid tag. A byte/word is considered valid only if it has a lower index than the least significant null byte/
word. (The least significant null byte/word is also considered invalid.)

The comparison and aggregation operation are performed according to the encoded value of Imm8 bit fields (see
Section 4.1). As defined by imm8[6], IntRes2 is then either stored to the least significant bits of XMM0 (zero
extended to 128 bits) or expanded into a byte/word-mask and then stored to XMM0.

Note that the Arithmetic Flags are written in a non-standard manner in order to supply the most relevant informa-
tion:

CFlag – Reset if IntRes2 is equal to zero, set otherwise
ZFlag – Set if any byte/word of xmm2/mem128 is null, reset otherwise
SFlag – Set if any byte/word of xmm1 is null, reset otherwise
OFlag – IntRes2[0]
AFlag – Reset

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 62 /r imm8
PCMPISTRM xmm1, xmm2/m128, imm8

RM V/V SSE4_2 Perform a packed comparison of string data
with implicit lengths, generating a mask, and
storing the result in XMM0.

VEX.128.66.0F3A.WIG 62 /r ib
VPCMPISTRM xmm1, xmm2/m128, imm8

RM V/V AVX Perform a packed comparison of string data
with implicit lengths, generating a Mask, and
storing the result in XMM0.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) imm8 NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 64

PFlag – Reset

Note: In VEX.128 encoded versions, bits (VLMAX-1:128) of XMM0 are zeroed. VEX.vvvv is reserved and must be
1111b, VEX.L must be 0, otherwise the instruction will #UD.

Effective Operand Size

Intel C/C++ Compiler Intrinsic Equivalent For Returning Mask

__m128i _mm_cmpistrm (__m128i a, __m128i b, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpistra (__m128i a, __m128i b, const int mode);
int _mm_cmpistrc (__m128i a, __m128i b, const int mode);
int _mm_cmpistro (__m128i a, __m128i b, const int mode);
int _mm_cmpistrs (__m128i a, __m128i b, const int mode);
int _mm_cmpistrz (__m128i a, __m128i b, const int mode);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally, this instruction does not cause #GP if the memory operand is not aligned to
16 Byte boundary, and
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
...

PINSRB/PINSRD/PINSRQ — Insert Byte/Dword/Qword

Operating mode/size Operand1 Operand 2 Result

16 bit xmm xmm/m128 XMM0

32 bit xmm xmm/m128 XMM0

64 bit xmm xmm/m128 XMM0

64 bit + REX.W xmm xmm/m128 XMM0

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 20 /r ib
PINSRB xmm1, r32/m8, imm8

RMI V/V SSE4_1 Insert a byte integer value from r32/m8 into
xmm1 at the destination element in xmm1
specified by imm8.

66 0F 3A 22 /r ib
PINSRD xmm1, r/m32, imm8

RMI V/V SSE4_1 Insert a dword integer value from r/m32 into
the xmm1 at the destination element
specified by imm8.

66 REX.W 0F 3A 22 /r ib
PINSRQ xmm1, r/m64, imm8

RMI N. E./V SSE4_1 Insert a qword integer value from r/m64 into
the xmm1 at the destination element
specified by imm8.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 65

Instruction Operand Encoding

Description

Copies a byte/dword/qword from the source operand (second operand) and inserts it in the destination operand
(first operand) at the location specified with the count operand (third operand). (The other elements in the desti-
nation register are left untouched.) The source operand can be a general-purpose register or a memory location.
(When the source operand is a general-purpose register, PINSRB copies the low byte of the register.) The destina-
tion operand is an XMM register. The count operand is an 8-bit immediate. When specifying a qword[dword, byte]
location in an XMM register, the [2, 4] least-significant bit(s) of the count operand specify the location.
In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers
(XMM8-XMM15, R8-15). Use of REX.W permits the use of 64 bit general purpose registers.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination register remain
unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed. VEX.L must be 0,
otherwise the instruction will #UD. Attempt to execute VPINSRQ in non-64-bit mode will cause #UD.

Operation
CASE OF

PINSRB: SEL COUNT[3:0];
MASK (0FFH << (SEL * 8));
TEMP (((SRC[7:0] << (SEL *8)) AND MASK);

PINSRD: SEL COUNT[1:0];
MASK (0FFFFFFFFH << (SEL * 32));
TEMP (((SRC << (SEL *32)) AND MASK) ;

PINSRQ: SEL COUNT[0]
MASK (0FFFFFFFFFFFFFFFFH << (SEL * 64));
TEMP (((SRC << (SEL *32)) AND MASK) ;

ESAC;
DEST ((DEST AND NOT MASK) OR TEMP);

VEX.NDS.128.66.0F3A.W0 20 /r ib
VPINSRB xmm1, xmm2, r32/m8, imm8

RVMI V1/V AVX Merge a byte integer value from r32/m8 and
rest from xmm2 into xmm1 at the byte
offset in imm8.

VEX.NDS.128.66.0F3A.W0 22 /r ib
VPINSRD xmm1, xmm2, r32/m32, imm8

RVMI V/V AVX Insert a dword integer value from r32/m32
and rest from xmm2 into xmm1 at the dword
offset in imm8.

VEX.NDS.128.66.0F3A.W1 22 /r ib
VPINSRQ xmm1, xmm2, r64/m64, imm8

RVMI V/I AVX Insert a qword integer value from r64/m64
and rest from xmm2 into xmm1 at the qword
offset in imm8.

NOTES:

1. In 64-bit mode, VEX.W1 is ignored for VPINSRB (similar to legacy REX.W=1 prefix with PINSRB).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 66

VPINSRB (VEX.128 encoded version)
SEL imm8[3:0]
DEST[127:0] write_b_element(SEL, SRC2, SRC1)
DEST[VLMAX-1:128] 0

VPINSRD (VEX.128 encoded version)
SEL imm8[1:0]
DEST[127:0] write_d_element(SEL, SRC2, SRC1)
DEST[VLMAX-1:128] 0

VPINSRQ (VEX.128 encoded version)
SEL imm8[0]
DEST[127:0] write_q_element(SEL, SRC2, SRC1)
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

PINSRB: __m128i _mm_insert_epi8 (__m128i s1, int s2, const int ndx);

PINSRD: __m128i _mm_insert_epi32 (__m128i s2, int s, const int ndx);
PINSRQ: __m128i _mm_insert_epi64(__m128i s2, __int64 s, const int ndx);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L = 1.

If VPINSRQ in non-64-bit mode with VEX.W=1.
...

POPCNT — Return the Count of Number of Bits Set to 1

Instruction Operand Encoding

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F3 0F B8 /r POPCNT r16, r/m16 RM Valid Valid POPCNT on r/m16

F3 0F B8 /r POPCNT r32, r/m32 RM Valid Valid POPCNT on r/m32

F3 REX.W 0F B8 /r POPCNT r64, r/m64 RM Valid N.E. POPCNT on r/m64

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 67

Description

This instruction calculates of number of bits set to 1 in the second operand (source) and returns the count in the
first operand (a destination register).

Operation

Count = 0;
For (i=0; i < OperandSize; i++)
{ IF (SRC[i] = 1) // i’th bit

THEN Count++; FI;
}
DEST Count;

Flags Affected

OF, SF, ZF, AF, CF, PF are all cleared. ZF is set if SRC = 0, otherwise ZF is cleared

Intel C/C++ Compiler Intrinsic Equivalent

POPCNT: int _mm_popcnt_u32(unsigned int a);

POPCNT: int64_t _mm_popcnt_u64(unsigned __int64 a);

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS segments.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF (fault-code) For a page fault.
#AC(0) If an unaligned memory reference is made while the current privilege level is 3 and alignment

checking is enabled.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Real-Address Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space from 0 to 0FFFFH.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space from 0 to 0FFFFH.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF (fault-code) For a page fault.
#AC(0) If an unaligned memory reference is made while alignment checking is enabled.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 68

Either the prefix REP (F3h) or REPN (F2H) is used.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

...

SBB—Integer Subtraction with Borrow

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

1C ib SBB AL, imm8 I Valid Valid Subtract with borrow imm8 from AL.

1D iw SBB AX, imm16 I Valid Valid Subtract with borrow imm16 from AX.

1D id SBB EAX, imm32 I Valid Valid Subtract with borrow imm32 from EAX.

REX.W + 1D id SBB RAX, imm32 I Valid N.E. Subtract with borrow sign-extended imm.32
to 64-bits from RAX.

80 /3 ib SBB r/m8, imm8 MI Valid Valid Subtract with borrow imm8 from r/m8.

REX + 80 /3 ib SBB r/m8*, imm8 MI Valid N.E. Subtract with borrow imm8 from r/m8.

81 /3 iw SBB r/m16, imm16 MI Valid Valid Subtract with borrow imm16 from r/m16.

81 /3 id SBB r/m32, imm32 MI Valid Valid Subtract with borrow imm32 from r/m32.

REX.W + 81 /3 id SBB r/m64, imm32 MI Valid N.E. Subtract with borrow sign-extended imm32 to
64-bits from r/m64.

83 /3 ib SBB r/m16, imm8 MI Valid Valid Subtract with borrow sign-extended imm8
from r/m16.

83 /3 ib SBB r/m32, imm8 MI Valid Valid Subtract with borrow sign-extended imm8
from r/m32.

REX.W + 83 /3 ib SBB r/m64, imm8 MI Valid N.E. Subtract with borrow sign-extended imm8
from r/m64.

18 /r SBB r/m8, r8 MR Valid Valid Subtract with borrow r8 from r/m8.

REX + 18 /r SBB r/m8*, r8 MR Valid N.E. Subtract with borrow r8 from r/m8.

19 /r SBB r/m16, r16 MR Valid Valid Subtract with borrow r16 from r/m16.

19 /r SBB r/m32, r32 MR Valid Valid Subtract with borrow r32 from r/m32.

REX.W + 19 /r SBB r/m64, r64 MR Valid N.E. Subtract with borrow r64 from r/m64.

1A /r SBB r8, r/m8 RM Valid Valid Subtract with borrow r/m8 from r8.

REX + 1A /r SBB r8*, r/m8* RM Valid N.E. Subtract with borrow r/m8 from r8.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 69

Instruction Operand Encoding

Description

Adds the source operand (second operand) and the carry (CF) flag, and subtracts the result from the destination
operand (first operand). The result of the subtraction is stored in the destination operand. The destination
operand can be a register or a memory location; the source operand can be an immediate, a register, or a memory
location. (However, two memory operands cannot be used in one instruction.) The state of the CF flag represents
a borrow from a previous subtraction.

When an immediate value is used as an operand, it is sign-extended to the length of the destination operand
format.

The SBB instruction does not distinguish between signed or unsigned operands. Instead, the processor evaluates
the result for both data types and sets the OF and CF flags to indicate a borrow in the signed or unsigned result,
respectively. The SF flag indicates the sign of the signed result.

The SBB instruction is usually executed as part of a multibyte or multiword subtraction in which a SUB instruction
is followed by a SBB instruction.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits.
See the summary chart at the beginning of this section for encoding data and limits.

Operation

DEST ← (DEST – (SRC + CF));

Intel C/C++ Compiler Intrinsic Equivalent

SBB: extern unsigned char _subborrow_u8(unsigned char c_in, unsigned char src1, unsigned char src2, unsigned char
*diff_out);

SBB: extern unsigned char _subborrow_u16(unsigned char c_in, unsigned short src1, unsigned short src2, unsigned short
*diff_out);

SBB: extern unsigned char _subborrow_u32(unsigned char c_in, unsigned int src1, unsigned char int, unsigned int *diff_out);

SBB: extern unsigned char _subborrow_u64(unsigned char c_in, unsigned __int64 src1, unsigned __int64 src2, unsigned
__int64 *diff_out);

1B /r SBB r16, r/m16 RM Valid Valid Subtract with borrow r/m16 from r16.

1B /r SBB r32, r/m32 RM Valid Valid Subtract with borrow r/m32 from r32.

REX.W + 1B /r SBB r64, r/m64 RM Valid N.E. Subtract with borrow r/m64 from r64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

I AL/AX/EAX/RAX imm8/16/32 NA NA

MI ModRM:r/m (w) imm8/16/32 NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA

RM ModRM:reg (w) ModRM:r/m (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 70

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 71

SCAS/SCASB/SCASW/SCASD—Scan String

Instruction Operand Encoding

Description

In non-64-bit modes and in default 64-bit mode: this instruction compares a byte, word, doubleword or quadword
specified using a memory operand with the value in AL, AX, or EAX. It then sets status flags in EFLAGS recording
the results. The memory operand address is read from ES:(E)DI register (depending on the address-size attribute
of the instruction and the current operational mode). Note that ES cannot be overridden with a segment override
prefix.

At the assembly-code level, two forms of this instruction are allowed. The explicit-operand form and the no-oper-
ands form. The explicit-operand form (specified using the SCAS mnemonic) allows a memory operand to be spec-
ified explicitly. The memory operand must be a symbol that indicates the size and location of the operand value.
The register operand is then automatically selected to match the size of the memory operand (AL register for byte
comparisons, AX for word comparisons, EAX for doubleword comparisons). The explicit-operand form is provided
to allow documentation. Note that the documentation provided by this form can be misleading. That is, the
memory operand symbol must specify the correct type (size) of the operand (byte, word, or doubleword) but it
does not have to specify the correct location. The location is always specified by ES:(E)DI.

The no-operands form of the instruction uses a short form of SCAS. Again, ES:(E)DI is assumed to be the memory
operand and AL, AX, or EAX is assumed to be the register operand. The size of operands is selected by the
mnemonic: SCASB (byte comparison), SCASW (word comparison), or SCASD (doubleword comparison).

After the comparison, the (E)DI register is incremented or decremented automatically according to the setting of
the DF flag in the EFLAGS register. If the DF flag is 0, the (E)DI register is incremented; if the DF flag is 1, the

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

AE SCAS m8 NP Valid Valid Compare AL with byte at ES:(E)DI or RDI, then
set status flags.*

AF SCAS m16 NP Valid Valid Compare AX with word at ES:(E)DI or RDI, then
set status flags.*

AF SCAS m32 NP Valid Valid Compare EAX with doubleword at ES(E)DI or
RDI then set status flags.*

REX.W + AF SCAS m64 NP Valid N.E. Compare RAX with quadword at RDI or EDI
then set status flags.

AE SCASB NP Valid Valid Compare AL with byte at ES:(E)DI or RDI then
set status flags.*

AF SCASW NP Valid Valid Compare AX with word at ES:(E)DI or RDI then
set status flags.*

AF SCASD NP Valid Valid Compare EAX with doubleword at ES:(E)DI or
RDI then set status flags.*

REX.W + AF SCASQ NP Valid N.E. Compare RAX with quadword at RDI or EDI
then set status flags.

NOTES:
* In 64-bit mode, only 64-bit (RDI) and 32-bit (EDI) address sizes are supported. In non-64-bit mode, only 32-bit (EDI) and 16-bit (DI)

address sizes are supported.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 72

(E)DI register is decremented. The register is incremented or decremented by 1 for byte operations, by 2 for word
operations, and by 4 for doubleword operations.

SCAS, SCASB, SCASW, SCASD, and SCASQ can be preceded by the REP prefix for block comparisons of ECX
bytes, words, doublewords, or quadwords. Often, however, these instructions will be used in a LOOP construct
that takes some action based on the setting of status flags. See “REP/REPE/REPZ /REPNE/REPNZ—Repeat String
Operation Prefix” in this chapter for a description of the REP prefix.

In 64-bit mode, the instruction’s default address size is 64-bits, 32-bit address size is supported using the prefix
67H. Using a REX prefix in the form of REX.W promotes operation on doubleword operand to 64 bits. The 64-bit
no-operand mnemonic is SCASQ. Address of the memory operand is specified in either RDI or EDI, and AL/AX/
EAX/RAX may be used as the register operand. After a comparison, the destination register is incremented or
decremented by the current operand size (depending on the value of the DF flag). See the summary chart at the
beginning of this section for encoding data and limits.

Operation

Non-64-bit Mode:

IF (Byte comparison)
THEN

temp ← AL − SRC;
SetStatusFlags(temp);

THEN IF DF = 0
THEN (E)DI ← (E)DI + 1;
ELSE (E)DI ← (E)DI – 1; FI;

ELSE IF (Word comparison)
THEN

temp ← AX − SRC;
SetStatusFlags(temp);
IF DF = 0

THEN (E)DI ← (E)DI + 2;
ELSE (E)DI ← (E)DI – 2; FI;

FI;
ELSE IF (Doubleword comparison)

THEN
temp ← EAX – SRC;
SetStatusFlags(temp);
IF DF = 0

THEN (E)DI ← (E)DI + 4;
ELSE (E)DI ← (E)DI – 4; FI;

FI;
FI;

64-bit Mode:

IF (Byte cmparison)
THEN

temp ← AL − SRC;
SetStatusFlags(temp);

THEN IF DF = 0
THEN (R|E)DI ← (R|E)DI + 1;
ELSE (R|E)DI ← (R|E)DI – 1; FI;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 73

ELSE IF (Word comparison)
THEN

temp ← AX − SRC;
SetStatusFlags(temp);
IF DF = 0

THEN (R|E)DI ← (R|E)DI + 2;
ELSE (R|E)DI ← (R|E)DI – 2; FI;

FI;
ELSE IF (Doubleword comparison)

THEN
temp ← EAX – SRC;
SetStatusFlags(temp);
IF DF = 0

THEN (R|E)DI ← (R|E)DI + 4;
ELSE (R|E)DI ← (R|E)DI – 4; FI;

FI;
ELSE IF (Quadword comparison using REX.W)

THEN
temp ← RAX − SRC;
SetStatusFlags(temp);
IF DF = 0

THEN (R|E)DI ← (R|E)DI + 8;
ELSE (R|E)DI ← (R|E)DI – 8;

FI;
FI;

F

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the temporary result of the comparison.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the limit of the ES segment.

If the ES register contains a NULL segment selector.
If an illegal memory operand effective address in the ES segment is given.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 74

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used.

...

SWAPGS—Swap GS Base Register

Instruction Operand Encoding

Description

SWAPGS exchanges the current GS base register value with the value contained in MSR address C0000102H
(IA32_KERNEL_GS_BASE). The SWAPGS instruction is a privileged instruction intended for use by system soft-
ware.

When using SYSCALL to implement system calls, there is no kernel stack at the OS entry point. Neither is there a
straightforward method to obtain a pointer to kernel structures from which the kernel stack pointer could be read.
Thus, the kernel cannot save general purpose registers or reference memory.

By design, SWAPGS does not require any general purpose registers or memory operands. No registers need to be
saved before using the instruction. SWAPGS exchanges the CPL 0 data pointer from the IA32_KERNEL_GS_BASE
MSR with the GS base register. The kernel can then use the GS prefix on normal memory references to access
kernel data structures. Similarly, when the OS kernel is entered using an interrupt or exception (where the kernel
stack is already set up), SWAPGS can be used to quickly get a pointer to the kernel data structures.

The IA32_KERNEL_GS_BASE MSR itself is only accessible using RDMSR/WRMSR instructions. Those instructions
are only accessible at privilege level 0. The WRMSR instruction ensures that the IA32_KERNEL_GS_BASE MSR
contains a canonical address.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 F8 SWAPGS NP Valid Invalid Exchanges the current GS base register value
with the value contained in MSR address
C0000102H.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 75

Operation

IF CS.L ≠ 1 (* Not in 64-Bit Mode *)
THEN

#UD; FI;

IF CPL ≠ 0
THEN #GP(0); FI;

tmp ← GS.base;
GS.base ← IA32_KERNEL_GS_BASE;
IA32_KERNEL_GS_BASE ← tmp;

Flags Affected

None

Protected Mode Exceptions
#UD If Mode ≠ 64-Bit.

Real-Address Mode Exceptions
#UD If Mode ≠ 64-Bit.

Virtual-8086 Mode Exceptions
#UD If Mode ≠ 64-Bit.

Compatibility Mode Exceptions
#UD If Mode ≠ 64-Bit.

64-Bit Mode Exceptions
#GP(0) If CPL ≠ 0.

If the LOCK prefix is used.

...

SYSCALL—Fast System Call

Instruction Operand Encoding

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 05 SYSCALL NP Valid Invalid Fast call to privilege level 0 system
procedures.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 76

Description

SYSCALL invokes an OS system-call handler at privilege level 0. It does so by loading RIP from the IA32_LSTAR
MSR (after saving the address of the instruction following SYSCALL into RCX). (The WRMSR instruction ensures
that the IA32_LSTAR MSR always contain a canonical address.)

SYSCALL also saves RFLAGS into R11 and then masks RFLAGS using the IA32_FMASK MSR (MSR address
C0000084H); specifically, the processor clears in RFLAGS every bit corresponding to a bit that is set in the
IA32_FMASK MSR.

SYSCALL loads the CS and SS selectors with values derived from bits 47:32 of the IA32_STAR MSR. However, the
CS and SS descriptor caches are not loaded from the descriptors (in GDT or LDT) referenced by those selectors.
Instead, the descriptor caches are loaded with fixed values. See the Operation section for details. It is the respon-
sibility of OS software to ensure that the descriptors (in GDT or LDT) referenced by those selector values corre-
spond to the fixed values loaded into the descriptor caches; the SYSCALL instruction does not ensure this
correspondence.

The SYSCALL instruction does not save the stack pointer (RSP). If the OS system-call handler will change the
stack pointer, it is the responsibility of software to save the previous value of the stack pointer. This might be done
prior to executing SYSCALL, with software restoring the stack pointer with the instruction following SYSCALL
(which will be executed after SYSRET). Alternatively, the OS system-call handler may save the stack pointer and
restore it before executing SYSRET.

Operation

IF (CS.L ≠ 1) or (IA32_EFER.LMA ≠ 1) or (IA32_EFER.SCE ≠ 1)
(* Not in 64-Bit Mode or SYSCALL/SYSRET not enabled in IA32_EFER *)

THEN #UD;
FI;

RCX ← RIP; (* Will contain address of next instruction *)
RIP ← IA32_LSTAR;
R11 ← RFLAGS;
RFLAGS ← RFLAGS AND NOT(IA32_FMASK);

CS.Selector ← IA32_STAR[47:32] AND FFFCH (* Operating system provides CS; RPL forced to 0 *)
(* Set rest of CS to a fixed value *)
CS.Base ← 0; (* Flat segment *)
CS.Limit ← FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)
CS.Type ← 11; (* Execute/read code, accessed *)
CS.S ← 1;
CS.DPL ← 0;
CS.P ← 1;
CS.L ← 1; (* Entry is to 64-bit mode *)
CS.D ← 0; (* Required if CS.L = 1 *)
CS.G ← 1; (* 4-KByte granularity *)
CPL ← 0;

SS.Selector ← IA32_STAR[47:32] + 8; (* SS just above CS *)
(* Set rest of SS to a fixed value *)
SS.Base ← 0; (* Flat segment *)
SS.Limit ← FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)
SS.Type ← 3; (* Read/write data, accessed *)
SS.S ← 1;
SS.DPL ← 0;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 77

SS.P ← 1;
SS.B ← 1; (* 32-bit stack segment *)
SS.G ← 1; (* 4-KByte granularity *)

Flags Affected

All.

Protected Mode Exceptions
#UD The SYSCALL instruction is not recognized in protected mode.

Real-Address Mode Exceptions
#UD The SYSCALL instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The SYSCALL instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The SYSCALL instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#UD If IA32_EFER.SCE = 0.

If the LOCK prefix is used.

...

SYSENTER—Fast System Call

Instruction Operand Encoding

Description

Executes a fast call to a level 0 system procedure or routine. SYSENTER is a companion instruction to SYSEXIT.
The instruction is optimized to provide the maximum performance for system calls from user code running at priv-
ilege level 3 to operating system or executive procedures running at privilege level 0.

When executed in IA-32e mode, the SYSENTER instruction transitions the logical processor to 64-bit mode;
otherwise, the logical processor remains in protected mode.

Prior to executing the SYSENTER instruction, software must specify the privilege level 0 code segment and code
entry point, and the privilege level 0 stack segment and stack pointer by writing values to the following MSRs:

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 34 SYSENTER NP Valid Valid Fast call to privilege level 0 system
procedures.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 78

• IA32_SYSENTER_CS (MSR address 174H) — The lower 16 bits of this MSR are the segment selector for the
privilege level 0 code segment. This value is also used to determine the segment selector of the privilege level
0 stack segment (see the Operation section). This value cannot indicate a null selector.

• IA32_SYSENTER_EIP (MSR address 175H) — The value of this MSR is loaded into RIP (thus, this value
references the first instruction of the selected operating procedure or routine). In protected mode, only
bits 31:0 are loaded.

• IA32_SYSENTER_ESP (MSR address 176H) — The value of this MSR is loaded into RSP (thus, this value
contains the stack pointer for the privilege level 0 stack). This value cannot represent a non-canonical
address. In protected mode, only bits 31:0 are loaded.

These MSRs can be read from and written to using RDMSR/WRMSR. The WRMSR instruction ensures that the
IA32_SYSENTER_EIP and IA32_SYSENTER_ESP MSRs always contain canonical addresses.

While SYSENTER loads the CS and SS selectors with values derived from the IA32_SYSENTER_CS MSR, the CS
and SS descriptor caches are not loaded from the descriptors (in GDT or LDT) referenced by those selectors.
Instead, the descriptor caches are loaded with fixed values. See the Operation section for details. It is the respon-
sibility of OS software to ensure that the descriptors (in GDT or LDT) referenced by those selector values corre-
spond to the fixed values loaded into the descriptor caches; the SYSENTER instruction does not ensure this
correspondence.

The SYSENTER instruction can be invoked from all operating modes except real-address mode.

The SYSENTER and SYSEXIT instructions are companion instructions, but they do not constitute a call/return pair.
When executing a SYSENTER instruction, the processor does not save state information for the user code (e.g.,
the instruction pointer), and neither the SYSENTER nor the SYSEXIT instruction supports passing parameters on
the stack.

To use the SYSENTER and SYSEXIT instructions as companion instructions for transitions between privilege level
3 code and privilege level 0 operating system procedures, the following conventions must be followed:
• The segment descriptors for the privilege level 0 code and stack segments and for the privilege level 3 code

and stack segments must be contiguous in a descriptor table. This convention allows the processor to
compute the segment selectors from the value entered in the SYSENTER_CS_MSR MSR.

• The fast system call “stub” routines executed by user code (typically in shared libraries or DLLs) must save the
required return IP and processor state information if a return to the calling procedure is required. Likewise,
the operating system or executive procedures called with SYSENTER instructions must have access to and use
this saved return and state information when returning to the user code.

The SYSENTER and SYSEXIT instructions were introduced into the IA-32 architecture in the Pentium II processor.
The availability of these instructions on a processor is indicated with the SYSENTER/SYSEXIT present (SEP)
feature flag returned to the EDX register by the CPUID instruction. An operating system that qualifies the SEP flag
must also qualify the processor family and model to ensure that the SYSENTER/SYSEXIT instructions are actually
present. For example:

IF CPUID SEP bit is set
THEN IF (Family = 6) and (Model < 3) and (Stepping < 3)

THEN
SYSENTER/SYSEXIT_Not_Supported; FI;

ELSE
SYSENTER/SYSEXIT_Supported; FI;

FI;

When the CPUID instruction is executed on the Pentium Pro processor (model 1), the processor returns a the SEP
flag as set, but does not support the SYSENTER/SYSEXIT instructions.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 79

Operation

IF CR0.PE = 0 OR IA32_SYSENTER_CS[15:2] = 0 THEN #GP(0); FI;

RFLAGS.VM ← 0; (* Ensures protected mode execution *)
RFLAGS.IF ← 0; (* Mask interrupts *)
IF in IA-32e mode

THEN
RSP ← IA32_SYSENTER_ESP;
RIP ← IA32_SYSENTER_EIP;

ELSE
ESP ← IA32_SYSENTER_ESP[31:0];
EIP ← IA32_SYSENTER_EIP[31:0];

FI;

CS.Selector ← IA32_SYSENTER_CS[15:0] AND FFFCH;
(* Operating system provides CS; RPL forced to 0 *)

(* Set rest of CS to a fixed value *)
CS.Base ← 0; (* Flat segment *)
CS.Limit ← FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)
CS.Type ← 11; (* Execute/read code, accessed *)
CS.S ← 1;
CS.DPL ← 0;
CS.P ← 1;
IF in IA-32e mode

THEN
CS.L ← 1; (* Entry is to 64-bit mode *)
CS.D ← 0; (* Required if CS.L = 1 *)

ELSE
CS.L ← 0;
CS.D ← 1; (* 32-bit code segment*)

FI;
CS.G ← 1; (* 4-KByte granularity *)
CPL ← 0;

SS.Selector ← CS.Selector + 8; (* SS just above CS *)
(* Set rest of SS to a fixed value *)
SS.Base ← 0; (* Flat segment *)
SS.Limit ← FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)
SS.Type ← 3; (* Read/write data, accessed *)
SS.S ← 1;
SS.DPL ← 0;
SS.P ← 1;
SS.B ← 1; (* 32-bit stack segment*)
SS.G ← 1; (* 4-KByte granularity *)

Flags Affected

VM, IF (see Operation above)

Protected Mode Exceptions
#GP(0) If IA32_SYSENTER_CS[15:2] = 0.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 80

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP The SYSENTER instruction is not recognized in real-address mode.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

...

SYSEXIT—Fast Return from Fast System Call

Instruction Operand Encoding

Description

Executes a fast return to privilege level 3 user code. SYSEXIT is a companion instruction to the SYSENTER instruc-
tion. The instruction is optimized to provide the maximum performance for returns from system procedures
executing at protections levels 0 to user procedures executing at protection level 3. It must be executed from
code executing at privilege level 0.

With a 64-bit operand size, SYSEXIT remains in 64-bit mode; otherwise, it either enters compatibility mode (if the
logical processor is in IA-32e mode) or remains in protected mode (if it is not).

Prior to executing SYSEXIT, software must specify the privilege level 3 code segment and code entry point, and
the privilege level 3 stack segment and stack pointer by writing values into the following MSR and general-
purpose registers:
• IA32_SYSENTER_CS (MSR address 174H) — Contains a 32-bit value that is used to determine the segment

selectors for the privilege level 3 code and stack segments (see the Operation section)
• RDX — The canonical address in this register is loaded into RIP (thus, this value references the first

instruction to be executed in the user code). If the return is not to 64-bit mode, only bits 31:0 are loaded.
• ECX — The canonical address in this register is loaded into RSP (thus, this value contains the stack pointer for

the privilege level 3 stack). If the return is not to 64-bit mode, only bits 31:0 are loaded.

The IA32_SYSENTER_CS MSR can be read from and written to using RDMSR and WRMSR.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 35 SYSEXIT NP Valid Valid Fast return to privilege level 3 user code.

REX.W + 0F 35 SYSEXIT NP Valid Valid Fast return to 64-bit mode privilege level 3
user code.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 81

While SYSEXIT loads the CS and SS selectors with values derived from the IA32_SYSENTER_CS MSR, the CS and
SS descriptor caches are not loaded from the descriptors (in GDT or LDT) referenced by those selectors. Instead,
the descriptor caches are loaded with fixed values. See the Operation section for details. It is the responsibility of
OS software to ensure that the descriptors (in GDT or LDT) referenced by those selector values correspond to the
fixed values loaded into the descriptor caches; the SYSEXIT instruction does not ensure this correspondence.

The SYSEXIT instruction can be invoked from all operating modes except real-address mode and virtual-8086
mode.

The SYSENTER and SYSEXIT instructions were introduced into the IA-32 architecture in the Pentium II processor.
The availability of these instructions on a processor is indicated with the SYSENTER/SYSEXIT present (SEP)
feature flag returned to the EDX register by the CPUID instruction. An operating system that qualifies the SEP flag
must also qualify the processor family and model to ensure that the SYSENTER/SYSEXIT instructions are actually
present. For example:

IF CPUID SEP bit is set
THEN IF (Family = 6) and (Model < 3) and (Stepping < 3)

THEN
SYSENTER/SYSEXIT_Not_Supported; FI;

ELSE
SYSENTER/SYSEXIT_Supported; FI;

FI;

When the CPUID instruction is executed on the Pentium Pro processor (model 1), the processor returns a the SEP
flag as set, but does not support the SYSENTER/SYSEXIT instructions.

Operation

IF IA32_SYSENTER_CS[15:2] = 0 OR CR0.PE = 0 OR CPL ≠ 0 THEN #GP(0); FI;

IF operand size is 64-bit
THEN (* Return to 64-bit mode *)

RSP ← RCX;
RIP ← RDX;

ELSE (* Return to protected mode or compatibility mode *)
RSP ← ECX;
RIP ← EDX;

FI;

IF operand size is 64-bit (* Operating system provides CS; RPL forced to 3 *)
THEN CS.Selector ← IA32_SYSENTER_CS[15:0] + 32;
ELSE CS.Selector ← IA32_SYSENTER_CS[15:0] + 16;

FI;
CS.Selector ← CS.Selector OR 3; (* RPL forced to 3 *)
(* Set rest of CS to a fixed value *)
CS.Base ← 0; (* Flat segment *)
CS.Limit ← FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)
CS.Type ← 11; (* Execute/read code, accessed *)
CS.S ← 1;
CS.DPL ← 3;
CS.P ← 1;
IF operand size is 64-bit

THEN (* return to 64-bit mode *)
CS.L ← 1; (* 64-bit code segment *)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 82

CS.D ← 0; (* Required if CS.L = 1 *)
ELSE (* return to protected mode or compatibility mode *)

CS.L ← 0;
CS.D ← 1; (* 32-bit code segment*)

FI;
CS.G ← 1; (* 4-KByte granularity *)
CPL ← 3;

SS.Selector ← CS.Selector + 8; (* SS just above CS *)
(* Set rest of SS to a fixed value *)
SS.Base ← 0; (* Flat segment *)
SS.Limit ← FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)
SS.Type ← 3; (* Read/write data, accessed *)
SS.S ← 1;
SS.DPL ← 3;
SS.P ← 1;
SS.B ← 1; (* 32-bit stack segment*)
SS.G ← 1; (* 4-KByte granularity *)

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If IA32_SYSENTER_CS[15:2] = 0.

If CPL ≠ 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP The SYSEXIT instruction is not recognized in real-address mode.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The SYSEXIT instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If IA32_SYSENTER_CS = 0.

If CPL ≠ 0.
If RCX or RDX contains a non-canonical address.

#UD If the LOCK prefix is used.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 83

SYSRET—Return From Fast System Call

Instruction Operand Encoding

Description

SYSRET is a companion instruction to the SYSCALL instruction. It returns from an OS system-call handler to user
code at privilege level 3. It does so by loading RIP from RCX and loading RFLAGS from R11.1 With a 64-bit
operand size, SYSRET remains in 64-bit mode; otherwise, it enters compatibility mode and only the low 32 bits of
the registers are loaded.

SYSRET loads the CS and SS selectors with values derived from bits 63:48 of the IA32_STAR MSR. However, the
CS and SS descriptor caches are not loaded from the descriptors (in GDT or LDT) referenced by those selectors.
Instead, the descriptor caches are loaded with fixed values. See the Operation section for details. It is the respon-
sibility of OS software to ensure that the descriptors (in GDT or LDT) referenced by those selector values corre-
spond to the fixed values loaded into the descriptor caches; the SYSRET instruction does not ensure this
correspondence.

The SYSRET instruction does not modify the stack pointer (ESP or RSP). For that reason, it is necessary for soft-
ware to switch to the user stack. The OS may load the user stack pointer (if it was saved after SYSCALL) before
executing SYSRET; alternatively, user code may load the stack pointer (if it was saved before SYSCALL) after
receiving control from SYSRET.

If the OS loads the stack pointer before executing SYSRET, it must ensure that the handler of any interrupt or
exception delivered between restoring the stack pointer and successful execution of SYSRET is not invoked with
the user stack. It can do so using approaches such as the following:
• External interrupts. The OS can prevent an external interrupt from being delivered by clearing EFLAGS.IF

before loading the user stack pointer.
• Nonmaskable interrupts (NMIs). The OS can ensure that the NMI handler is invoked with the correct stack by

using the interrupt stack table (IST) mechanism for gate 2 (NMI) in the IDT (see Section 6.14.5, “Interrupt
Stack Table,” in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A).

• General-protection exceptions (#GP). The SYSRET instruction generates #GP(0) if the value of RCX is not
canonical. The OS can address this possibility using one or more of the following approaches:

— Confirming that the value of RCX is canonical before executing SYSRET.

— Using paging to ensure that the SYSCALL instruction will never save a non-canonical value into RCX.

— Using the IST mechanism for gate 13 (#GP) in the IDT.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 07 SYSRET NP Valid Invalid Return to compatibility mode from fast
system call

REX.W + 0F 07 SYSRET NP Valid Invalid Return to 64-bit mode from fast system call

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

1. Regardless of the value of R11, the RF and VM flags are always 0 in RFLAGS after execution of SYSRET. In addition, all reserved
bits in RFLAGS retain the fixed values.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 84

Operation

IF (CS.L ≠ 1) or (IA32_EFER.LMA ≠ 1) or (IA32_EFER.SCE ≠ 1)
(* Not in 64-Bit Mode or SYSCALL/SYSRET not enabled in IA32_EFER *)

THEN #UD; FI;
IF (CPL ≠ 0) OR (RCX is not canonical) THEN #GP(0); FI;

IF (operand size is 64-bit)
THEN (* Return to 64-Bit Mode *)

RIP ← RCX;
ELSE (* Return to Compatibility Mode *)

RIP ← ECX;
FI;
RFLAGS ← (R11 & 3C7FD7H) | 2; (* Clear RF, VM, reserved bits; set bit 2 *)

IF (operand size is 64-bit)
THEN CS.Selector ← IA32_STAR[63:48]+16;
ELSE CS.Selector ← IA32_STAR[63:48];

FI;
CS.Selector ← CS.Selector OR 3; (* RPL forced to 3 *)
(* Set rest of CS to a fixed value *)
CS.Base ← 0; (* Flat segment *)
CS.Limit ← FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)
CS.Type ← 11; (* Execute/read code, accessed *)
CS.S ← 1;
CS.DPL ← 3;
CS.P ← 1;
IF (operand size is 64-bit)

THEN (* Return to 64-Bit Mode *)
CS.L ← 1; (* 64-bit code segment *)
CS.D ← 0; (* Required if CS.L = 1 *)

ELSE (* Return to Compatibility Mode *)
CS.L ← 0; (* Compatibility mode *)
CS.D ← 1; (* 32-bit code segment *)

FI;
CS.G ← 1; (* 4-KByte granularity *)
CPL ← 0;

SS.Selector ← (IA32_STAR[63:48]+8) OR 3; (* RPL forced to 3 *)
(* Set rest of SS to a fixed value *)
SS.Base ← 0; (* Flat segment *)
SS.Limit ← FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)
SS.Type ← 3; (* Read/write data, accessed *)
SS.S ← 1;
SS.DPL ← 3;
SS.P ← 1;
SS.B ← 1; (* 32-bit stack segment*)
SS.G ← 1; (* 4-KByte granularity *)

Flags Affected

All.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 85

Protected Mode Exceptions
#UD The SYSRET instruction is not recognized in protected mode.

Real-Address Mode Exceptions
#UD The SYSRET instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The SYSRET instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The SYSRET instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#UD If IA32_EFER.SCE = 0.

If the LOCK prefix is used.
#GP(0) If CPL ≠ 0.

If RCX contains a non-canonical address.

...

UCOMISD—Unordered Compare Scalar Double-Precision Floating-Point Values and Set EFLAGS

Instruction Operand Encoding

Description

Performs an unordered compare of the double-precision floating-point values in the low quadwords of source
operand 1 (first operand) and source operand 2 (second operand), and sets the ZF, PF, and CF flags in the EFLAGS
register according to the result (unordered, greater than, less than, or equal). The OF, SF and AF flags in the
EFLAGS register are set to 0. The unordered result is returned if either source operand is a NaN (QNaN or SNaN).

Source operand 1 is an XMM register; source operand 2 can be an XMM register or a 64 bit memory location.

The UCOMISD instruction differs from the COMISD instruction in that it signals a SIMD floating-point invalid oper-
ation exception (#I) only when a source operand is an SNaN. The COMISD instruction signals an invalid operation
exception if a source operand is either a QNaN or an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is generated.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 2E /r

UCOMISD xmm1, xmm2/m64

RM V/V SSE2 Compares (unordered) the low double-
precision floating-point values in xmm1 and
xmm2/m64 and set the EFLAGS accordingly.

VEX.LIG.66.0F.WIG 2E /r

VUCOMISD xmm1, xmm2/m64

RM V/V AVX Compare low double precision floating-point
values in xmm1 and xmm2/mem64 and set
the EFLAGS flags accordingly.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 86

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers
(XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

RESULT ← UnorderedCompare(SRC1[63:0] < > SRC2[63:0]) {
(* Set EFLAGS *)
CASE (RESULT) OF

UNORDERED: ZF, PF, CF ← 111;
GREATER_THAN: ZF, PF, CF ← 000;
LESS_THAN: ZF, PF, CF ← 001;
EQUAL: ZF, PF, CF ← 100;

ESAC;
OF, AF, SF ← 0;

Intel C/C++ Compiler Intrinsic Equivalent

int _mm_ucomieq_sd(__m128d a, __m128d b)

int _mm_ucomilt_sd(__m128d a, __m128d b)

int _mm_ucomile_sd(__m128d a, __m128d b)

int _mm_ucomigt_sd(__m128d a, __m128d b)

int _mm_ucomige_sd(__m128d a, __m128d b)

int _mm_ucomineq_sd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Invalid (if SNaN operands), Denormal.

Other Exceptions
See Exceptions Type 3; additionally
#UD If VEX.vvvv != 1111B.

...

WRMSR—Write to Model Specific Register

Instruction Operand Encoding

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 30 WRMSR NP Valid Valid Write the value in EDX:EAX to MSR specified
by ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 87

Description

Writes the contents of registers EDX:EAX into the 64-bit model specific register (MSR) specified in the ECX
register. (On processors that support the Intel 64 architecture, the high-order 32 bits of RCX are ignored.) The
contents of the EDX register are copied to high-order 32 bits of the selected MSR and the contents of the EAX
register are copied to low-order 32 bits of the MSR. (On processors that support the Intel 64 architecture, the
high-order 32 bits of each of RAX and RDX are ignored.) Undefined or reserved bits in an MSR should be set to
values previously read.

This instruction must be executed at privilege level 0 or in real-address mode; otherwise, a general protection
exception #GP(0) is generated. Specifying a reserved or unimplemented MSR address in ECX will also cause a
general protection exception. The processor will also generate a general protection exception if software attempts
to write to bits in a reserved MSR.

When the WRMSR instruction is used to write to an MTRR, the TLBs are invalidated. This includes global entries
(see “Translation Lookaside Buffers (TLBs)” in Chapter 3 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A).

MSRs control functions for testability, execution tracing, performance-monitoring and machine check errors.
Chapter 35, “Model-Specific Registers (MSRs)”, in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3C, lists all MSRs that can be written with this instruction and their addresses. Note that each
processor family has its own set of MSRs.

The WRMSR instruction is a serializing instruction (see “Serializing Instructions” in Chapter 8 of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A). Note that WRMSR to the IA32_TSC_DEADLINE
MSR (MSR index 6E0H) and the X2APIC MSRs (MSR indices 802H to 83FH) are not serializing.

The CPUID instruction should be used to determine whether MSRs are supported (CPUID.01H:EDX[5] = 1) before
using this instruction.

IA-32 Architecture Compatibility

The MSRs and the ability to read them with the WRMSR instruction were introduced into the IA-32 architecture
with the Pentium processor. Execution of this instruction by an IA-32 processor earlier than the Pentium processor
results in an invalid opcode exception #UD.

Operation

MSR[ECX] ← EDX:EAX;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the value in ECX specifies a reserved or unimplemented MSR address.
If the value in EDX:EAX sets bits that are reserved in the MSR specified by ECX.
If the source register contains a non-canonical address and ECX specifies one of the following
MSRs: IA32_DS_AREA, IA32_FS_BASE, IA32_GS_BASE, IA32_KERNEL_GS_BASE,
IA32_LSTAR, IA32_SYSENTER_EIP, IA32_SYSENTER_ESP.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If the value in ECX specifies a reserved or unimplemented MSR address.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 88

If the value in EDX:EAX sets bits that are reserved in the MSR specified by ECX.
If the source register contains a non-canonical address and ECX specifies one of the following
MSRs: IA32_DS_AREA, IA32_FS_BASE, IA32_GS_BASE, IA32_KERNEL_GS_BASE,
IA32_LSTAR, IA32_SYSENTER_EIP, IA32_SYSENTER_ESP.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The WRMSR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

...

8. Updates to Chapter 5, Volume 2C
Change bars show changes to Chapter 5 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2C: Instruction Set Reference.

--

...

GETSEC[ENTERACCS] - Execute Authenticated Chipset Code

Description

The GETSEC[ENTERACCS] function loads, authenticates and executes an authenticated code module using an
Intel® TXT platform chipset's public key. The ENTERACCS leaf of GETSEC is selected with EAX set to 2 at entry.

There are certain restrictions enforced by the processor for the execution of the GETSEC[ENTERACCS] instruc-
tion:
• Execution is not allowed unless the processor is in protected mode or IA-32e mode with CPL = 0 and

EFLAGS.VM = 0.
• Processor cache must be available and not disabled, that is, CR0.CD and CR0.NW bits must be 0.
• For processor packages containing more than one logical processor, CR0.CD is checked to ensure consistency

between enabled logical processors.
• For enforcing consistency of operation with numeric exception reporting using Interrupt 16, CR0.NE must be

set.

Opcode Instruction Description

0F 37

(EAX = 2)

GETSEC[ENTERACCS] Enter authenticated code execution mode.

EBX holds the authenticated code module physical base address. ECX holds the authenticated
code module size (bytes).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 89

• An Intel TXT-capable chipset must be present as communicated to the processor by sampling of the power-on
configuration capability field after reset.

• The processor can not already be in authenticated code execution mode as launched by a previous
GETSEC[ENTERACCS] or GETSEC[SENTER] instruction without a subsequent exiting using GETSEC[EXITAC]).

• To avoid potential operability conflicts between modes, the processor is not allowed to execute this instruction
if it currently is in SMM or VMX operation.

• To insure consistent handling of SIPI messages, the processor executing the GETSEC[ENTERACCS] instruction
must also be designated the BSP (boot-strap processor) as defined by A32_APIC_BASE.BSP (Bit 8).

Failure to conform to the above conditions results in the processor signaling a general protection exception.

Prior to execution of the ENTERACCS leaf, other logical processors, i.e. RLPs, in the platform must be:
• idle in a wait-for-SIPI state (as initiated by an INIT assertion or through reset for non-BSP designated

processors), or
• in the SENTER sleep state as initiated by a GETSEC[SENTER] from the initiating logical processor (ILP).

If other logical processor(s) in the same package are not idle in one of these states, execution of ENTERACCS
signals a general protection exception. The same requirement and action applies if the other logical processor(s)
of the same package do not have CR0.CD = 0.

A successful execution of ENTERACCS results in the ILP entering an authenticated code execution mode. Prior to
reaching this point, the processor performs several checks. These include:
• Establish and check the location and size of the specified authenticated code module to be executed by the

processor.
• Inhibit the ILP’s response to the external events: INIT, A20M, NMI and SMI.
• Broadcast a message to enable protection of memory and I/O from other processor agents.
• Load the designated code module into an authenticated code execution area.
• Isolate the contents of the authenticated code execution area from further state modification by external

agents.
• Authenticate the authenticated code module.
• Initialize the initiating logical processor state based on information contained in the authenticated code

module header.
• Unlock the Intel® TXT-capable chipset private configuration space and TPM locality 3 space.
• Begin execution in the authenticated code module at the defined entry point.

The GETSEC[ENTERACCS] function requires two additional input parameters in the general purpose registers EBX
and ECX. EBX holds the authenticated code (AC) module physical base address (the AC module must reside below
4 GBytes in physical address space) and ECX holds the AC module size (in bytes). The physical base address and
size are used to retrieve the code module from system memory and load it into the internal authenticated code
execution area. The base physical address is checked to verify it is on a modulo-4096 byte boundary. The size is
verified to be a multiple of 64, that it does not exceed the internal authenticated code execution area capacity (as
reported by GETSEC[CAPABILITIES]), and that the top address of the AC module does not exceed 32 bits. An
error condition results in an abort of the authenticated code execution launch and the signaling of a general
protection exception.

As an integrity check for proper processor hardware operation, execution of GETSEC[ENTERACCS] will also check
the contents of all the machine check status registers (as reported by the MSRs IA32_MCi_STATUS) for any valid
uncorrectable error condition. In addition, the global machine check status register IA32_MCG_STATUS MCIP bit
must be cleared and the IERR processor package pin (or its equivalent) must not be asserted, indicating that no
machine check exception processing is currently in progress. These checks are performed prior to initiating the
load of the authenticated code module. Any outstanding valid uncorrectable machine check error condition
present in these status registers at this point will result in the processor signaling a general protection violation.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 90

The ILP masks the response to the assertion of the external signals INIT#, A20M, NMI#, and SMI#. This masking
remains active until optionally unmasked by GETSEC[EXITAC] (this defined unmasking behavior assumes
GETSEC[ENTERACCS] was not executed by a prior GETSEC[SENTER]). The purpose of this masking control is to
prevent exposure to existing external event handlers that may not be under the control of the authenticated code
module.

The ILP sets an internal flag to indicate it has entered authenticated code execution mode. The state of the A20M
pin is likewise masked and forced internally to a de-asserted state so that any external assertion is not recognized
during authenticated code execution mode.

To prevent other (logical) processors from interfering with the ILP operating in authenticated code execution
mode, memory (excluding implicit write-back transactions) access and I/O originating from other processor
agents are blocked. This protection starts when the ILP enters into authenticated code execution mode. Only
memory and I/O transactions initiated from the ILP are allowed to proceed. Exiting authenticated code execution
mode is done by executing GETSEC[EXITAC]. The protection of memory and I/O activities remains in effect until
the ILP executes GETSEC[EXITAC].

Prior to launching the authenticated execution module using GETSEC[ENTERACCS] or GETSEC[SENTER], the
processor’s MTRRs (Memory Type Range Registers) must first be initialized to map out the authenticated RAM
addresses as WB (writeback). Failure to do so may affect the ability for the processor to maintain isolation of the
loaded authenticated code module. If the processor detected this requirement is not met, it will signal an Intel®
TXT reset condition with an error code during the loading of the authenticated code module.

While physical addresses within the load module must be mapped as WB, the memory type for locations outside
of the module boundaries must be mapped to one of the supported memory types as returned by
GETSEC[PARAMETERS] (or UC as default).

To conform to the minimum granularity of MTRR MSRs for specifying the memory type, authenticated code RAM
(ACRAM) is allocated to the processor in 4096 byte granular blocks. If an AC module size as specified in ECX is not
a multiple of 4096 then the processor will allocate up to the next 4096 byte boundary for mapping as ACRAM with
indeterminate data. This pad area will not be visible to the authenticated code module as external memory nor
can it depend on the value of the data used to fill the pad area.

At the successful completion of GETSEC[ENTERACCS], the architectural state of the processor is partially initial-
ized from contents held in the header of the authenticated code module. The processor GDTR, CS, and DS selec-
tors are initialized from fields within the authenticated code module. Since the authenticated code module must
be relocatable, all address references must be relative to the authenticated code module base address in EBX. The
processor GDTR base value is initialized to the AC module header field GDTBasePtr + module base address held
in EBX and the GDTR limit is set to the value in the GDTLimit field. The CS selector is initialized to the AC module
header SegSel field, while the DS selector is initialized to CS + 8. The segment descriptor fields are implicitly
initialized to BASE=0, LIMIT=FFFFFh, G=1, D=1, P=1, S=1, read/write access for DS, and execute/read access
for CS. The processor begins the authenticated code module execution with the EIP set to the AC module header
EntryPoint field + module base address (EBX). The AC module based fields used for initializing the processor state
are checked for consistency and any failure results in a shutdown condition.

A summary of the register state initialization after successful completion of GETSEC[ENTERACCS] is given for the
processor in Table 5-4. The paging is disabled upon entry into authenticated code execution mode. The authenti-
cated code module is loaded and initially executed using physical addresses. It is up to the system software after
execution of GETSEC[ENTERACCS] to establish a new (or restore its previous) paging environment with an appro-
priate mapping to meet new protection requirements. EBP is initialized to the authenticated code module base
physical address for initial execution in the authenticated environment. As a result, the authenticated code can
reference EBP for relative address based references, given that the authenticated code module must be position
independent.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 91

The segmentation related processor state that has not been initialized by GETSEC[ENTERACCS] requires appro-
priate initialization before use. Since a new GDT context has been established, the previous state of the segment
selector values held in ES, SS, FS, GS, TR, and LDTR might not be valid.

The MSR IA32_EFER is also unconditionally cleared as part of the processor state initialized by ENTERACCS. Since
paging is disabled upon entering authenticated code execution mode, a new paging environment will have to be
reestablished in order to establish IA-32e mode while operating in authenticated code execution mode.

Debug exception and trap related signaling is also disabled as part of GETSEC[ENTERACCS]. This is achieved by
resetting DR7, TF in EFLAGs, and the MSR IA32_DEBUGCTL. These debug functions are free to be re-enabled
once supporting exception handler(s), descriptor tables, and debug registers have been properly initialized
following entry into authenticated code execution mode. Also, any pending single-step trap condition will have
been cleared upon entry into this mode.

The IA32_MISC_ENABLE MSR is initialized upon entry into authenticated execution mode. Certain bits of this MSR
are preserved because preserving these bits may be important to maintain previously established platform
settings (See the footnote for Table 5-5.). The remaining bits are cleared for the purpose of establishing a more
consistent environment for the execution of authenticated code modules. One of the impacts of initializing this
MSR is any previous condition established by the MONITOR instruction will be cleared.

Table 5-4 Register State Initialization after GETSEC[ENTERACCS]

Register State Initialization Status Comment

CR0 PG←0, AM←0, WP←0: Others unchanged Paging, Alignment Check, Write-protection are
disabled

CR4 MCE←0: Others unchanged Machine Check Exceptions Disabled

EFLAGS 00000002H

IA32_EFER 0H IA-32e mode disabled

EIP AC.base + EntryPoint AC.base is in EBX as input to GETSEC[ENTERACCS]

[E|R]BX Pre-ENTERACCS state: Next [E|R]IP prior to
GETSEC[ENTERACCS]

Carry forward 64-bit processor state across
GETSEC[ENTERACCS]

ECX Pre-ENTERACCS state: [31:16]=GDTR.limit;
[15:0]=CS.sel

Carry forward processor state across
GETSEC[ENTERACCS]

[E|R]DX Pre-ENTERACCS state:
GDTR base

Carry forward 64-bit processor state across
GETSEC[ENTERACCS]

EBP AC.base

CS Sel=[SegSel], base=0, limit=FFFFFh, G=1, D=1, AR=9BH

DS Sel=[SegSel] +8, base=0, limit=FFFFFh, G=1, D=1,
AR=93H

GDTR Base= AC.base (EBX) + [GDTBasePtr], Limit=[GDTLimit]

DR7 00000400H

IA32_DEBUGCTL 0H

IA32_MISC_ENA
BLE

see Table 5-5 for example The number of initialized fields may change due.to
processor implementation

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 92

To support the possible return to the processor architectural state prior to execution of GETSEC[ENTERACCS],
certain critical processor state is captured and stored in the general- purpose registers at instruction completion.
[E|R]BX holds effective address ([E|R]IP) of the instruction that would execute next after GETSEC[ENTERACCS],
ECX[15:0] holds the CS selector value, ECX[31:16] holds the GDTR limit field, and [E|R]DX holds the GDTR base
field. The subsequent authenticated code can preserve the contents of these registers so that this state can be
manually restored if needed, prior to exiting authenticated code execution mode with GETSEC[EXITAC]. For the
processor state after exiting authenticated code execution mode, see the description of GETSEC[SEXIT].

The IDTR will also require reloading with a new IDT context after entering authenticated code execution mode,
before any exceptions or the external interrupts INTR and NMI can be handled. Since external interrupts are re-
enabled at the completion of authenticated code execution mode (as terminated with EXITAC), it is recommended
that a new IDT context be established before this point. Until such a new IDT context is established, the
programmer must take care in not executing an INT n instruction or any other operation that would result in an
exception or trap signaling.

Prior to completion of the GETSEC[ENTERACCS] instruction and after successful authentication of the AC module,
the private configuration space of the Intel TXT chipset is unlocked. The authenticated code module alone can
gain access to this normally restricted chipset state for the purpose of securing the platform.

Once the authenticated code module is launched at the completion of GETSEC[ENTERACCS], it is free to enable
interrupts by setting EFLAGS.IF and enable NMI by execution of IRET. This presumes that it has re-established
interrupt handling support through initialization of the IDT, GDT, and corresponding interrupt handling code.

Operation in a Uni-Processor Platform
(* The state of the internal flag ACMODEFLAG persists across instruction boundary *)
IF (CR4.SMXE=0)

THEN #UD;
ELSIF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);

Table 5-5 IA32_MISC_ENABLE MSR Initialization1 by ENTERACCS and SENTER

Field Bit position Description

Fast strings enable 0 Clear to 0

FOPCODE compatibility mode enable 2 Clear to 0

Thermal monitor enable 3 Set to 1 if other thermal monitor capability is not enabled.2

Split-lock disable 4 Clear to 0

Bus lock on cache line splits disable 8 Clear to 0

Hardware prefetch disable 9 Clear to 0

GV1/2 legacy enable 15 Clear to 0

MONITOR/MWAIT s/m enable 18 Clear to 0

Adjacent sector prefetch disable 19 Clear to 0

NOTES:
1. The number of IA32_MISC_ENABLE fields that are initialized may vary due to processor implementations.
2. ENTERACCS (and SENTER) initialize the state of processor thermal throttling such that at least a minimum level is enabled. If thermal

throttling is already enabled when executing one of these GETSEC leaves, then no change in the thermal throttling control settings
will occur. If thermal throttling is disabled, then it will be enabled via setting of the thermal throttle control bit 3 as a result of execut-
ing these GETSEC leaves.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 93

ELSIF (GETSEC leaf unsupported)
THEN #UD;

ELSIF ((in VMX operation) or
(CR0.PE=0) or (CR0.CD=1) or (CR0.NW=1) or (CR0.NE=0) or
(CPL>0) or (EFLAGS.VM=1) or
(IA32_APIC_BASE.BSP=0) or
(TXT chipset not present) or
(ACMODEFLAG=1) or (IN_SMM=1))

THEN #GP(0);
IF (GETSEC[PARAMETERS].Parameter_Type = 5, MCA_Handling (bit 6) = 0)

FOR I = 0 to IA32_MCG_CAP.COUNT-1 DO
IF (IA32_MC[I]_STATUS = uncorrectable error)

THEN #GP(0);
OD;

FI;
IF (IA32_MCG_STATUS.MCIP=1) or (IERR pin is asserted)

THEN #GP(0);
ACBASE← EBX;
ACSIZE← ECX;
IF (((ACBASE MOD 4096) != 0) or ((ACSIZE MOD 64)!= 0) or (ACSIZE < minimum module size) OR (ACSIZE > authenticated RAM
capacity)) or ((ACBASE+ACSIZE) > (2^32 -1)))

THEN #GP(0);
IF (secondary thread(s) CR0.CD = 1) or ((secondary thread(s) NOT(wait-for-SIPI)) and

(secondary thread(s) not in SENTER sleep state)
THEN #GP(0);

Mask SMI, INIT, A20M, and NMI external pin events;
IA32_MISC_ENABLE← (IA32_MISC_ENABLE & MASK_CONST*)
(* The hexadecimal value of MASK_CONST may vary due to processor implementations *)
A20M← 0;
IA32_DEBUGCTL← 0;
Invalidate processor TLB(s);
Drain Outgoing Transactions;
ACMODEFLAG← 1;
SignalTXTMessage(ProcessorHold);
Load the internal ACRAM based on the AC module size;
(* Ensure that all ACRAM loads hit Write Back memory space *)
IF (ACRAM memory type != WB)

THEN TXT-SHUTDOWN(#BadACMMType);
IF (AC module header version isnot supported) OR (ACRAM[ModuleType] <> 2)

THEN TXT-SHUTDOWN(#UnsupportedACM);
 (* Authenticate the AC Module and shutdown with an error if it fails *)
KEY← GETKEY(ACRAM, ACBASE);
KEYHASH← HASH(KEY);
CSKEYHASH← READ(TXT.PUBLIC.KEY);
IF (KEYHASH <> CSKEYHASH)

THEN TXT-SHUTDOWN(#AuthenticateFail);
SIGNATURE← DECRYPT(ACRAM, ACBASE, KEY);
(* The value of SIGNATURE_LEN_CONST is implementation-specific*)
FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

ACRAM[SCRATCH.I]← SIGNATURE[I];

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 94

COMPUTEDSIGNATURE← HASH(ACRAM, ACBASE, ACSIZE);
FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

ACRAM[SCRATCH.SIGNATURE_LEN_CONST+I]← COMPUTEDSIGNATURE[I];
IF (SIGNATURE<>COMPUTEDSIGNATURE)

THEN TXT-SHUTDOWN(#AuthenticateFail);
ACMCONTROL← ACRAM[CodeControl];
IF ((ACMCONTROL.0 = 0) and (ACMCONTROL.1 = 1) and (snoop hit to modified line detected on ACRAM load))

THEN TXT-SHUTDOWN(#UnexpectedHITM);
IF (ACMCONTROL reserved bits are set)

THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[GDTBasePtr] < (ACRAM[HeaderLen] * 4 + Scratch_size)) OR

((ACRAM[GDTBasePtr] + ACRAM[GDTLimit]) >= ACSIZE))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACMCONTROL.0 = 1) and (ACMCONTROL.1 = 1) and (snoop hit to modified line detected on ACRAM load))
THEN ACEntryPoint← ACBASE+ACRAM[ErrorEntryPoint];

ELSE
ACEntryPoint← ACBASE+ACRAM[EntryPoint];

IF ((ACEntryPoint >= ACSIZE) OR (ACEntryPoint < (ACRAM[HeaderLen] * 4 + Scratch_size)))THEN TXT-SHUTDOWN(#BadACMFormat);
IF (ACRAM[GDTLimit] & FFFF0000h)

THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[SegSel] > (ACRAM[GDTLimit] - 15)) OR (ACRAM[SegSel] < 8))

THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[SegSel].TI=1) OR (ACRAM[SegSel].RPL!=0))

THEN TXT-SHUTDOWN(#BadACMFormat);
CR0.[PG.AM.WP]← 0;
CR4.MCE← 0;
EFLAGS← 00000002h;
IA32_EFER← 0h;
[E|R]BX← [E|R]IP of the instruction after GETSEC[ENTERACCS];
ECX← Pre-GETSEC[ENTERACCS] GDT.limit:CS.sel;
[E|R]DX← Pre-GETSEC[ENTERACCS] GDT.base;
EBP← ACBASE;
GDTR.BASE← ACBASE+ACRAM[GDTBasePtr];
GDTR.LIMIT← ACRAM[GDTLimit];
CS.SEL← ACRAM[SegSel];
CS.BASE← 0;
CS.LIMIT← FFFFFh;
CS.G← 1;
CS.D← 1;
CS.AR← 9Bh;
DS.SEL← ACRAM[SegSel]+8;
DS.BASE← 0;
DS.LIMIT← FFFFFh;
DS.G← 1;
DS.D← 1;
DS.AR← 93h;
DR7← 00000400h;
IA32_DEBUGCTL← 0;
SignalTXTMsg(OpenPrivate);
SignalTXTMsg(OpenLocality3);

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 95

EIP← ACEntryPoint;
END;

Flags Affected
All flags are cleared.

Use of Prefixes
LOCK Causes #UD
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Operand size Causes #UD
Segment overrides Ignored
Address size Ignored
REX Ignored

Protected Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[ENTERACCS] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) If CR0.CD = 1 or CR0.NW = 1 or CR0.NE = 0 or CR0.PE = 0 or CPL > 0 or EFLAGS.VM = 1.

If a Intel® TXT-capable chipset is not present.
If in VMX root operation.
If the initiating processor is not designated as the bootstrap processor via the MSR bit
IA32_APIC_BASE.BSP.
If the processor is already in authenticated code execution mode.
If the processor is in SMM.
If a valid uncorrectable machine check error is logged in IA32_MC[I]_STATUS.
If the authenticated code base is not on a 4096 byte boundary.
If the authenticated code size > processor internal authenticated code area capacity.
If the authenticated code size is not modulo 64.
If other enabled logical processor(s) of the same package CR0.CD = 1.
If other enabled logical processor(s) of the same package are not in the wait-for-SIPI or
SENTER sleep state.

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[ENTERACCS] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[ENTERACCS] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[ENTERACCS] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[ENTERACCS] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 96

#GP IF AC code module does not reside in physical address below 2^32 -1.

64-Bit Mode Exceptions
All protected mode exceptions apply.
#GP IF AC code module does not reside in physical address below 2^32 -1.

VM-exit Condition
Reason (GETSEC) IF in VMX non-root operation.

...

9. Updates to Appendix A, Volume 2C
Change bars show changes to Appendix A of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2C: Instruction Set Reference.

--

Table A-3 Two-byte Opcode Map: 00H — 77H (First Byte is 0FH) *

pfx 0 1 2 3 4 5 6 7

0
Grp 61A Grp 71A LAR

Gv, Ew
LSL

Gv, Ew
 SYSCALLo64 CLTS SYSRETo64

1

vmovups
Vps, Wps

vmovups
Wps, Vps

vmovlps
Vq, Hq, Mq
vmovhlps

Vq, Hq, Uq

vmovlps
Mq, Vq

vunpcklps
Vx, Hx, Wx

vunpckhps
Vx, Hx, Wx

vmovhpsv1

Vdq, Hq, Mq
vmovlhps

Vdq, Hq, Uq

vmovhpsv1

Mq, Vq

66
vmovupd
Vpd, Wpd

vmovupd
Wpd,Vpd

vmovlpd
Vq, Hq, Mq

vmovlpd
Mq, Vq

vunpcklpd
Vx,Hx,Wx

vunpckhpd
Vx,Hx,Wx

vmovhpdv1

Vdq, Hq, Mq
vmovhpdv1

Mq, Vq

F3
vmovss

Vx, Hx, Wss
vmovss

Wss, Hx, Vss
vmovsldup

Vx, Wx
vmovshdup

Vx, Wx

F2
vmovsd

Vx, Hx, Wsd
vmovsd

Wsd, Hx, Vsd
vmovddup

Vx, Wx

2

MOV
Rd, Cd

MOV
Rd, Dd

MOV
Cd, Rd

MOV
Dd, Rd

3
WRMSR RDTSC RDMSR RDPMC SYSENTER SYSEXIT GETSEC

4

CMOVcc, (Gv, Ev) - Conditional Move

O NO B/C/NAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 97

...

Table A-3. Two-byte Opcode Map: 08H — 7FH (First Byte is 0FH) *

5

vmovmskps
Gy, Ups

vsqrtps
Vps, Wps

vrsqrtps
Vps, Wps

vrcpps
Vps, Wps

vandps
Vps, Hps, Wps

vandnps
Vps, Hps, Wps

vorps
Vps, Hps, Wps

vxorps
Vps, Hps, Wps

66
vmovmskpd

Gy,Upd
vsqrtpd

Vpd, Wpd
vandpd

Vpd, Hpd, Wpd
vandnpd

Vpd, Hpd, Wpd
vorpd

Vpd, Hpd, Wpd
vxorpd

Vpd, Hpd, Wpd

F3
vsqrtss

Vss, Hss, Wss
vrsqrtss

Vss, Hss, Wss
vrcpss

Vss, Hss, Wss

F2
vsqrtsd

Vsd, Hsd, Wsd

6

punpcklbw
Pq, Qd

punpcklwd
Pq, Qd

punpckldq
Pq, Qd

packsswb
Pq, Qq

pcmpgtb
Pq, Qq

pcmpgtw
Pq, Qq

pcmpgtd
Pq, Qq

packuswb
Pq, Qq

66
vpunpcklbw
Vx, Hx, Wx

vpunpcklwd
Vx, Hx, Wx

vpunpckldq
Vx, Hx, Wx

vpacksswb
Vx, Hx, Wx

vpcmpgtb
Vx, Hx, Wx

vpcmpgtw
Vx, Hx, Wx

vpcmpgtd
Vx, Hx, Wx

vpackuswb
Vx, Hx, Wx

F3

7

pshufw
Pq, Qq, Ib

(Grp 121A) (Grp 131A) (Grp 141A) pcmpeqb
Pq, Qq

pcmpeqw
Pq, Qq

pcmpeqd
Pq, Qq

emms
vzeroupperv

vzeroallv

66
vpshufd

Vx, Wx, Ib
vpcmpeqb
Vx, Hx, Wx

vpcmpeqw
Vx, Hx, Wx

vpcmpeqd
Vx, Hx, Wx

F3
vpshufhw
Vx, Wx, Ib

F2
vpshuflw

Vx, Wx, Ib

pfx 0 1 2 3 4 5 6 7

pfx 8 9 A B C D E F

0
INVD WBINVD 2-byte Illegal

Opcodes
UD21B

 prefetchw(/1)
Ev

1

Prefetch1C

(Grp 161A)
NOP /0 Ev

2

vmovaps
Vps, Wps

vmovaps
Wps, Vps

cvtpi2ps
Vps, Qpi

vmovntps
Mps, Vps

cvttps2pi
Ppi, Wps

cvtps2pi
Ppi, Wps

vucomiss
Vss, Wss

vcomiss
Vss, Wss

66
vmovapd
Vpd, Wpd

vmovapd
Wpd,Vpd

cvtpi2pd
Vpd, Qpi

vmovntpd
Mpd, Vpd

cvttpd2pi
Ppi, Wpd

cvtpd2pi
Qpi, Wpd

vucomisd
Vsd, Wsd

vcomisd
Vsd, Wsd

F3
vcvtsi2ss

Vss, Hss, Ey
vcvttss2si
Gy, Wss

vcvtss2si
Gy, Wss

F2
vcvtsi2sd

Vsd, Hsd, Ey
vcvttsd2si
Gy, Wsd

vcvtsd2si
Gy, Wsd

3
3-byte escape

(Table A-4)
3-byte escape

(Table A-5)

4

CMOVcc(Gv, Ev) - Conditional Move

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 98

...

Table A-3. Two-byte Opcode Map: 80H — F7H (First Byte is 0FH) *

5

vaddps
Vps, Hps, Wps

vmulps
Vps, Hps, Wps

vcvtps2pd
Vpd, Wps

vcvtdq2ps
Vps, Wdq

vsubps
Vps, Hps, Wps

vminps
Vps, Hps, Wps

vdivps
Vps, Hps, Wps

vmaxps
Vps, Hps, Wps

66
vaddpd

Vpd, Hpd, Wpd
vmulpd

Vpd, Hpd, Wpd
vcvtpd2ps
Vps, Wpd

vcvtps2dq
Vdq, Wps

vsubpd
Vpd, Hpd, Wpd

vminpd
Vpd, Hpd, Wpd

vdivpd
Vpd, Hpd, Wpd

vmaxpd
Vpd, Hpd, Wpd

F3
vaddss

Vss, Hss, Wss
vmulss

Vss, Hss, Wss
vcvtss2sd

Vsd, Hx, Wss
vcvttps2dq
Vdq, Wps

vsubss
Vss, Hss, Wss

vminss
Vss, Hss, Wss

vdivss
Vss, Hss, Wss

vmaxss
Vss, Hss, Wss

F2
vaddsd

Vsd, Hsd, Wsd
vmulsd

Vsd, Hsd, Wsd
vcvtsd2ss

Vss, Hx, Wsd
vsubsd

Vsd, Hsd, Wsd
vminsd

Vsd, Hsd, Wsd
vdivsd

Vsd, Hsd, Wsd
vmaxsd

Vsd, Hsd, Wsd

6

punpckhbw
Pq, Qd

punpckhwd
Pq, Qd

punpckhdq
Pq, Qd

packssdw
Pq, Qd

movd/q
Pd, Ey

movq
Pq, Qq

66
vpunpckhbw
Vx, Hx, Wx

vpunpckhwd
Vx, Hx, Wx

vpunpckhdq
Vx, Hx, Wx

vpackssdw
Vx, Hx, Wx

vpunpcklqdq
Vx, Hx, Wx

vpunpckhqdq
Vx, Hx, Wx

vmovd/q
Vy, Ey

vmovdqa

Vx, Wx

F3
vmovdqu
Vx, Wx

7

VMREAD
Ey, Gy

VMWRITE
Gy, Ey

movd/q
Ey, Pd

movq
Qq, Pq

66
vhaddpd

Vpd, Hpd, Wpd
vhsubpd

Vpd, Hpd, Wpd
vmovd/q
Ey, Vy

vmovdqa
Wx,Vx

F3
vmovq
Vq, Wq

vmovdqu
Wx,Vx

F2

vhaddps
Vps, Hps, Wps

vhsubps
Vps, Hps, Wps

pfx 8 9 A B C D E F

pfx 0 1 2 3 4 5 6 7

8

Jccf64, Jz - Long-displacement jump on condition

O NO B/CNAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

9

SETcc, Eb - Byte Set on condition

O NO B/C/NAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

A
PUSHd64

FS
POPd64

FS
CPUID BT

Ev, Gv
SHLD

Ev, Gv, Ib
SHLD

Ev, Gv, CL

B

CMPXCHG LSS
Gv, Mp

BTR
Ev, Gv

LFS
Gv, Mp

LGS
Gv, Mp

MOVZX

Eb, Gb Ev, Gv Gv, Eb Gv, Ew

C

XADD
Eb, Gb

XADD
Ev, Gv

vcmpps
Vps,Hps,Wps,Ib

movnti
My, Gy

pinsrw
Pq,Ry/Mw,Ib

pextrw
Gd, Nq, Ib

vshufps
Vps,Hps,Wps,Ib

Grp 91A

66
vcmppd

Vpd,Hpd,Wpd,Ib
vpinsrw

Vdq,Hdq,Ry/Mw,Ib
vpextrw

Gd, Udq, Ib
vshufpd

Vpd,Hpd,Wpd,Ib

F3
vcmpss

Vss,Hss,Wss,Ib

F2
vcmpsd

Vsd,Hsd,Wsd,Ib

D

psrlw
Pq, Qq

psrld
Pq, Qq

psrlq
Pq, Qq

paddq
Pq, Qq

pmullw
Pq, Qq

pmovmskb
Gd, Nq

66
vaddsubpd

Vpd, Hpd, Wpd
vpsrlw

Vx, Hx, Wx
vpsrld

Vx, Hx, Wx
vpsrlq

Vx, Hx, Wx
vpaddq

Vx, Hx, Wx
vpmullw

Vx, Hx, Wx
vmovq
Wq, Vq

vpmovmskb
Gd, Ux

F3
movq2dq
Vdq, Nq

F2
vaddsubps

Vps, Hps, Wps
movdq2q
Pq, Uq

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 99

...

Table A-4 Three-byte Opcode Map: 00H — F7H (First Two Bytes are 0F 38H) *

...

E

pavgb
Pq, Qq

psraw
Pq, Qq

psrad
Pq, Qq

pavgw
Pq, Qq

pmulhuw
Pq, Qq

pmulhw
Pq, Qq

movntq
Mq, Pq

66
vpavgb

Vx, Hx, Wx
vpsraw

Vx, Hx, Wx
vpsrad

Vx, Hx, Wx
vpavgw

Vx, Hx, Wx
vpmulhuw
Vx, Hx, Wx

vpmulhw
Vx, Hx, Wx

vcvttpd2dq
Vx, Wpd

vmovntdq
Mx, Vx

F3
vcvtdq2pd
Vx, Wpd

F2
vcvtpd2dq
Vx, Wpd

F

psllw
Pq, Qq

pslld
Pq, Qq

psllq
Pq, Qq

pmuludq
Pq, Qq

pmaddwd
Pq, Qq

psadbw
Pq, Qq

maskmovq
Pq, Nq

66
vpsllw

Vx, Hx, Wx
vpslld

Vx, Hx, Wx
vpsllq

Vx, Hx, Wx
vpmuludq

Vx, Hx, Wx
vpmaddwd
Vx, Hx, Wx

vpsadbw
Vx, Hx, Wx

vmaskmovdqu
Vdq, Udq

F2
vlddqu
Vx, Mx

pfx 0 1 2 3 4 5 6 7

pfx 0 1 2 3 4 5 6 7

0

pshufb
Pq, Qq

phaddw
Pq, Qq

phaddd
Pq, Qq

phaddsw
Pq, Qq

pmaddubsw
Pq, Qq

phsubw
Pq, Qq

phsubd
Pq, Qq

phsubsw
Pq, Qq

66
vpshufb

Vx, Hx, Wx
vphaddw

Vx, Hx, Wx
vphaddd

Vx, Hx, Wx
vphaddsw
Vx, Hx, Wx

vpmaddubsw
Vx, Hx, Wx

vphsubw
Vx, Hx, Wx

vphsubd
Vx, Hx, Wx

vphsubsw
Vx, Hx, Wx

1 66

pblendvb
Vdq, Wdq

vcvtph2psv

Vx, Wx, Ib
blendvps
Vdq, Wdq

blendvpd
Vdq, Wdq

vpermpsv

Vqq, Hqq, Wqq
vptest
Vx, Wx

2 66
vpmovsxbw
Vx, Ux/Mq

vpmovsxbd
Vx, Ux/Md

vpmovsxbq
Vx, Ux/Mw

vpmovsxwd
Vx, Ux/Mq

vpmovsxwq
Vx, Ux/Md

vpmovsxdq
Vx, Ux/Mq

3 66
vpmovzxbw
Vx, Ux/Mq

vpmovzxbd
Vx, Ux/Md

vpmovzxbq
Vx, Ux/Mw

vpmovzxwd
Vx, Ux/Mq

vpmovzxwq
Vx, Ux/Md

vpmovzxdq
Vx, Ux/Mq

vpermdv

Vqq, Hqq, Wqq
vpcmpgtq

Vx, Hx, Wx

4 66
vpmulld

Vx, Hx, Wx
vphminposuw

Vdq, Wdq
vpsrlvd/qv

Vx, Hx, Wx
vpsravdv

Vx, Hx, Wx
vpsllvd/qv

Vx, Hx, Wx

5

6

7

8 66

INVEPT
Gy, Mdq

INVVPID
Gy, Mdq

INVPCID
Gy, Mdq

9 66
vgatherdd/qv

Vx,Hx,Wx
vgatherqd/qv

Vx,Hx,Wx
vgatherdps/dv

Vx,Hx,Wx
vgatherqps/dv

Vx,Hx,Wx
vfmaddsub132ps/dv

Vx,Hx,Wx
vfmsubadd132ps/dv

Vx,Hx,Wx

A 66
vfmaddsub213ps/dv

Vx,Hx,Wx
vfmsubadd213ps/dv

Vx,Hx,Wx

B 66
vfmaddsub231ps/dv

Vx,Hx,Wx
vfmsubadd231ps/dv

Vx,Hx,Wx

C

D

E

F

MOVBE
Gy, My

MOVBE
My, Gy

ANDNv

Gy, By, Ey

Grp 171A

BZHIv

Gy, Ey, By
BEXTRv

Gy, Ey, By

66
MOVBE
Gw, Mw

MOVBE
Mw, Gw

ADCX
Gy, Ey

SHLXv

Gy, Ey, By

F3
PEXTv

Gy, By, Ey
ADOX
Gy, Ey

SARXv

Gy, Ey, By

F2
CRC32
Gd, Eb

CRC32
Gd, Ey

PDEPv

Gy, By, Ey
MULXv

By,Gy,rDX,Ey
SHRXv

Gy, Ey, By

66 &
F2

CRC32
Gd, Eb

CRC32
Gd, Ew

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 100

Table A-4. Three-byte Opcode Map: 08H — FFH (First Two Bytes are 0F 38H) *

...

pfx 8 9 A B C D E F

0

psignb
Pq, Qq

psignw
Pq, Qq

psignd
Pq, Qq

pmulhrsw
Pq, Qq

66
vpsignb

Vx, Hx, Wx
vpsignw

Vx, Hx, Wx
vpsignd

Vx, Hx, Wx
vpmulhrsw
Vx, Hx, Wx

vpermilpsv
Vx,Hx,Wx

vpermilpdv
Vx,Hx,Wx

vtestpsv
Vx, Wx

vtestpdv
Vx, Wx

1

pabsb
Pq, Qq

pabsw
Pq, Qq

pabsd
Pq, Qq

66
vbroadcastssv

Vx, Wd
vbroadcastsdv Vqq,

Wq
vbroadcastf128v Vqq,

Mdq
vpabsb
Vx, Wx

vpabsw
Vx, Wx

vpabsd
Vx, Wx

2 66
vpmuldq

Vx, Hx, Wx
vpcmpeqq
Vx, Hx, Wx

vmovntdqa
Vx, Mx

vpackusdw
Vx, Hx, Wx

vmaskmovpsv
Vx,Hx,Mx

vmaskmovpdv
Vx,Hx,Mx

vmaskmovpsv
Mx,Hx,Vx

vmaskmovpdv
Mx,Hx,Vx

3 66
vpminsb

Vx, Hx, Wx
vpminsd

Vx, Hx, Wx
vpminuw

Vx, Hx, Wx
vpminud

Vx, Hx, Wx
vpmaxsb

Vx, Hx, Wx
vpmaxsd

Vx, Hx, Wx
vpmaxuw

Vx, Hx, Wx
vpmaxud

Vx, Hx, Wx

4

5 66
vpbroadcastdv

Vx, Wx
vpbroadcastqv

Vx, Wx
vbroadcasti128v

Vqq, Mdq

6

7 66
vpbroadcastbv

Vx, Wx
vpbroadcastwv

Vx, Wx

8 66
vpmaskmovd/qv

Vx,Hx,Mx
vpmaskmovd/qv

Mx,Vx,Hx

9 66
vfmadd132ps/dv

Vx, Hx, Wx
vfmadd132ss/dv

Vx, Hx, Wx
vfmsub132ps/dv

Vx, Hx, Wx
vfmsub132ss/dv

Vx, Hx, Wx
vfnmadd132ps/dv

Vx, Hx, Wx
vfnmadd132ss/dv

Vx, Hx, Wx
vfnmsub132ps/dv

Vx, Hx, Wx
vfnmsub132ss/dv

Vx, Hx, Wx

A 66 vfmadd213ps/dv
Vx, Hx, Wx

vfmadd213ss/dv
Vx, Hx, Wx

vfmsub213ps/dv
Vx, Hx, Wx

vfmsub213ss/dv
Vx, Hx, Wx

vfnmadd213ps/dv
Vx, Hx, Wx

vfnmadd213ss/dv
Vx, Hx, Wx

vfnmsub213ps/dv
Vx, Hx, Wx

vfnmsub213ss/dv
Vx, Hx, Wx

B 66
vfmadd231ps/dv

Vx, Hx, Wx
vfmadd231ss/dv

Vx, Hx, Wx
vfmsub231ps/dv

Vx, Hx, Wx
vfmsub231ss/dv

Vx, Hx, Wx
vfnmadd231ps/dv

Vx, Hx, Wx
vfnmadd231ss/dv

Vx, Hx, Wx
vfnmsub231ps/dv

Vx, Hx, Wx
vfnmsub231ss/dv

Vx, Hx, Wx

C

D 66
VAESIMC
Vdq, Wdq

VAESENC
Vdq,Hdq,Wdq

VAESENCLAST
Vdq,Hdq,Wdq

VAESDEC
Vdq,Hdq,Wdq

VAESDECLAST
Vdq,Hdq,Wdq

E

F

66

F3

F2

66 & F2

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 101

Table A-5 Three-byte Opcode Map: 00H — F7H (First two bytes are 0F 3AH) *

...

pfx 0 1 2 3 4 5 6 7

0 66

vpermqv

Vqq, Wqq, Ib
vpermpdv

Vqq, Wqq, Ib
vpblenddv

Vx,Hx,Wx,Ib
vpermilpsv
Vx, Wx, Ib

vpermilpdv
Vx, Wx, Ib

vperm2f128v
Vqq,Hqq,Wqq,Ib

1 66
vpextrb

Rd/Mb, Vdq, Ib
vpextrw

Rd/Mw, Vdq, Ib
vpextrd/q

Ey, Vdq, Ib
vextractps
Ed, Vdq, Ib

2 66
vpinsrb

Vdq,Hdq,Ry/Mb,Ib
vinsertps

Vdq,Hdq,Udq/Md,Ib
vpinsrd/q

Vdq,Hdq,Ey,Ib

3

4 66
vdpps

Vx,Hx,Wx,Ib
vdppd

Vdq,Hdq,Wdq,Ib
vmpsadbw

Vx,Hx,Wx,Ib
vpclmulqdq

Vdq,Hdq,Wdq,Ib
vperm2i128v

Vqq,Hqq,Wqq,Ib

5

6 66
vpcmpestrm
Vdq, Wdq, Ib

vpcmpestri
Vdq, Wdq, Ib

vpcmpistrm
Vdq, Wdq, Ib

vpcmpistri
Vdq, Wdq, Ib

7

8

9

A

B

C

D

E

F
F2

RORXv

Gy, Ey, Ib

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 102

Table A-5. Three-byte Opcode Map: 08H — FFH (First Two Bytes are 0F 3AH) *

...

pfx 8 9 A B C D E F

0
palignr

Pq, Qq, Ib

66
vroundps
Vx,Wx,Ib

vroundpd
Vx,Wx,Ib

vroundss
Vss,Wss,Ib

vroundsd
Vsd,Wsd,Ib

vblendps
Vx,Hx,Wx,Ib

vblendpd
Vx,Hx,Wx,Ib

vpblendw
Vx,Hx,Wx,Ib

vpalignr
Vx,Hx,Wx,Ib

1 66
vinsertf128v

Vqq,Hqq,Wqq,Ib
vextractf128v
Wdq,Vqq,Ib

vcvtps2phv

Wx, Vx, Ib

2

3 66
vinserti128v

Vqq,Hqq,Wqq,Ib
vextracti128v
Wdq,Vqq,Ib

4 66
vblendvpsv

 Vx,Hx,Wx,Lx
vblendvpdv

Vx,Hx,Wx,Lx
vpblendvbv

Vx,Hx,Wx,Lx

5

6

7

8

9

A

B

C

D 66
VAESKEYGEN
Vdq, Wdq, Ib

E

F

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 103

Table A-6 Opcode Extensions for One- and Two-byte Opcodes by Group Number *

Opcode Group Mod 7,6 pfx

Encoding of Bits 5,4,3 of the ModR/M Byte (bits 2,1,0 in parenthesis)
000 001 010 011 100 101 110 111

80-83 1 mem, 11B ADD OR ADC SBB AND SUB XOR CMP

8F 1A mem, 11B POP

C0,C1 reg, imm
D0, D1 reg, 1

D2, D3 reg, CL
2

mem, 11B ROL ROR RCL RCR SHL/SAL SHR SAR

F6, F7 3
mem, 11B TEST

Ib/Iz
NOT NEG MUL

AL/rAX
IMUL

AL/rAX
DIV

AL/rAX
IDIV

AL/rAX

FE 4
mem, 11B INC

Eb
DEC
Eb

FF 5
mem, 11B INC

Ev
DEC
Ev

CALLNf64

Ev
CALLF

Ep
JMPNf64

Ev
JMPF

Mp
PUSHd64

Ev

0F 00 6
mem, 11B SLDT

Rv/Mw
STR

Rv/Mw
LLDT
Ew

LTR
Ew

VERR
Ew

VERW
Ew

0F 01 7

mem SGDT
Ms

SIDT
Ms

LGDT
Ms

LIDT
Ms

SMSW
Mw/Rv

LMSW
Ew

INVLPG
Mb

11B VMCALL (001)
VMLAUNCH

(010)
VMRESUME

(011) VMXOFF
(100)

MONITOR
(000)

MWAIT (001)
CLAC (010)
STAC (011)

XGETBV (000)
XSETBV (001)

VMFUNC
(100)

XEND (101)
XTEST (110)

SWAPGS
o64(000)

RDTSCP (001)

0F BA 8 mem, 11B BT BTS BTR BTC

0F C7 9

mem

CMPXCH8B Mq
CMPXCHG16B

 Mdq

VMPTRLD
Mq

VMPTRST
Mq

66 VMCLEAR
Mq

F3 VMXON
Mq

VMPTRST
Mq

11B
RDRAND

Rv
RDSEED

Rv

0F B9 10
mem

11B

C6

11

mem MOV
Eb, Ib

11B XABORT (000) Ib

C7
mem MOV

Ev, Iz
11B XBEGIN (000) Jz

0F 71 12

mem

11B

psrlw
Nq, Ib

psraw
Nq, Ib

psllw
Nq, Ib

66 vpsrlw
Hx,Ux,Ib

vpsraw
Hx,Ux,Ib

vpsllw
Hx,Ux,Ib

0F 72 13

mem

11B

psrld
Nq, Ib

psrad
Nq, Ib

pslld
Nq, Ib

66 vpsrld
Hx,Ux,Ib

vpsrad
Hx,Ux,Ib

vpslld
Hx,Ux,Ib

0F 73 14

mem

11B

psrlq
Nq, Ib

psllq
Nq, Ib

66 vpsrlq
Hx,Ux,Ib

vpsrldq
Hx,Ux,Ib

vpsllq
Hx,Ux,Ib

vpslldq
Hx,Ux,Ib

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 104

10.Updates to Chapter 1, Volume 3A
Change bars show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

...

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL
This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which
include:
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
• Intel® Core™ Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor
• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® Core™2 Extreme processor X7000 and X6800 series
• Intel® Core™2 Extreme QX6000 series

Opcode Group Mod 7,6 pfx

Encoding of Bits 5,4,3 of the ModR/M Byte (bits 2,1,0 in parenthesis)
000 001 010 011 100 101 110 111

0F AE 15

mem fxsave fxrstor ldmxcsr stmxcsr XSAVE XRSTOR XSAVEOPT clflush

11B

lfence mfence sfence

F3 RDFSBASE
Ry

RDGSBASE
Ry

WRFSBASE
Ry

WRGSBASE
Ry

0F 18 16
mem

prefetch
NTA

prefetch
T0

prefetch
T1

prefetch
T2

11B

VEX.0F38 F3 17
mem BLSRv

By, Ey
BLSMSKv

By, Ey
BLSIv

By, Ey
11B

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 105

• Intel® Xeon® processor 7100 series
• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Core™2 Extreme QX9000 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® CoreTM2 Extreme processor QX9000 and X9000 series
• Intel® CoreTM2 Quad processor Q9000 series
• Intel® CoreTM2 Duo processor E8000, T9000 series
• Intel® AtomTM processor family
• Intel® CoreTM i7 processor
• Intel® CoreTM i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families
• Intel® Xeon® processor E5 family
• Intel® Xeon® processor E3-1200 family
• Intel® CoreTM i7-3930K processor
• 2nd generation Intel® CoreTM i7-2xxx, Intel® CoreTM i5-2xxx, Intel® CoreTM i3-2xxx processor series
• Intel® Xeon® processor E3-1200 v2 product family
• 3rd generation Intel® CoreTM processors
• Next generation Intel® CoreTM processors

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium®
Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst®

microarchitecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel
Xeon processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved
Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel® Pentium® dual-core, Intel®
Core™2 Duo, Intel® Core™2 Quad and Intel® Core™2 Extreme processors are based on Intel® Core™ microar-
chitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® CoreTM2 Quad processor Q9000 series, and Intel®
CoreTM2 Extreme processors QX9000, X9000 series, Intel® CoreTM2 processor E8000 series are based on
Enhanced Intel® CoreTM microarchitecture.

The Intel® AtomTM processor family is based on the Intel® AtomTM microarchitecture and supports Intel 64 archi-
tecture.

The Intel® CoreTM i7 processor and the Intel® CoreTM i5 processor are based on the Intel® microarchitecture code
name Nehalem and support Intel 64 architecture.

Processors based on Intel® microarchitecture code name Westmere support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-8800/
4800/2800 product families, Intel® CoreTM i7-3930K processor, 2nd generation Intel® CoreTM i7-2xxx, Intel®
CoreTM i5-2xxx, Intel® CoreTM i3-2xxx processor series are based on the Intel® microarchitecture code name
Sandy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E3-1200 v2 product family and 3rd generation Intel® CoreTM processors are based on
the Intel® microarchitecture code name Ivy Bridge and support Intel 64 architecture.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 106

The Next Generation Intel® CoreTM processors are based on the Intel® microarchitecture code name Haswell and
support Intel 64 architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV,
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® Atom™
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel®
Core™2 Duo, Intel® Core™2 Extreme processors, Intel Core 2 Quad processors, Pentium® D processors,
Pentium® Dual-Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel®
64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit micropro-
cessors. Intel® 64 architecture is the instruction set architecture and programming environment which is a
superset of and compatible with IA-32 architecture.

1.2 OVERVIEW OF THE SYSTEM PROGRAMMING GUIDE
A description of this manual’s content follows:

Chapter 1 — About This Manual. Gives an overview of all seven volumes of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual. It also describes the notational conventions in these manuals and lists related
Intel manuals and documentation of interest to programmers and hardware designers.

Chapter 2 — System Architecture Overview. Describes the modes of operation used by Intel 64 and IA-32
processors and the mechanisms provided by the architectures to support operating systems and executives,
including the system-oriented registers and data structures and the system-oriented instructions. The steps
necessary for switching between real-address and protected modes are also identified.

Chapter 3 — Protected-Mode Memory Management. Describes the data structures, registers, and instruc-
tions that support segmentation and paging. The chapter explains how they can be used to implement a “flat”
(unsegmented) memory model or a segmented memory model.

Chapter 4 — Paging. Describes the paging modes supported by Intel 64 and IA-32 processors.

Chapter 5 — Protection. Describes the support for page and segment protection provided in the Intel 64 and IA-
32 architectures. This chapter also explains the implementation of privilege rules, stack switching, pointer valida-
tion, user and supervisor modes.

Chapter 6 — Interrupt and Exception Handling. Describes the basic interrupt mechanisms defined in the
Intel 64 and IA-32 architectures, shows how interrupts and exceptions relate to protection, and describes how the
architecture handles each exception type. Reference information for each exception is given in this chapter.
Includes programming the LINT0 and LINT1 inputs and gives an example of how to program the LINT0 and LINT1
pins for specific interrupt vectors.

Chapter 7 — Task Management. Describes mechanisms the Intel 64 and IA-32 architectures provide to
support multitasking and inter-task protection.

Chapter 8 — Multiple-Processor Management. Describes the instructions and flags that support multiple
processors with shared memory, memory ordering, and Intel® Hyper-Threading Technology. Includes MP initial-
ization for P6 family processors and gives an example of how to use of the MP protocol to boot P6 family proces-
sors in an MP system.

Chapter 9 — Processor Management and Initialization. Defines the state of an Intel 64 or IA-32 processor
after reset initialization. This chapter also explains how to set up an Intel 64 or IA-32 processor for real-address
mode operation and protected- mode operation, and how to switch between modes.

Chapter 10 — Advanced Programmable Interrupt Controller (APIC). Describes the programming interface
to the local APIC and gives an overview of the interface between the local APIC and the I/O APIC. Includes APIC

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 107

bus message formats and describes the message formats for messages transmitted on the APIC bus for P6 family
and Pentium processors.

Chapter 11 — Memory Cache Control. Describes the general concept of caching and the caching mechanisms
supported by the Intel 64 or IA-32 architectures. This chapter also describes the memory type range registers
(MTRRs) and how they can be used to map memory types of physical memory. Information on using the new
cache control and memory streaming instructions introduced with the Pentium III, Pentium 4, and Intel Xeon
processors is also given.

Chapter 12 — Intel® MMX™ Technology System Programming. Describes those aspects of the Intel®
MMX™ technology that must be handled and considered at the system programming level, including: task
switching, exception handling, and compatibility with existing system environments.

Chapter 13 — System Programming For Instruction Set Extensions And Processor Extended States.
Describes the operating system requirements to support SSE/SSE2/SSE3/SSSE3/SSE4 extensions, including task
switching, exception handling, and compatibility with existing system environments. The latter part of this
chapter describes the extensible framework of operating system requirements to support processor extended
states. Processor extended state may be required by instruction set extensions beyond those of SSE/SSE2/SSE3/
SSSE3/SSE4 extensions.

Chapter 14 — Power and Thermal Management. Describes facilities of Intel 64 and IA-32 architecture used
for power management and thermal monitoring.

Chapter 15 — Machine-Check Architecture. Describes the machine-check architecture and machine-
check exception mechanism found in the Pentium 4, Intel Xeon, and P6 family processors. Addition-
ally, a signaling mechanism for software to respond to hardware corrected machine check error is
covered.
Chapter 16 — Interpreting Machine-Check Error Codes. Gives an example of how to interpret the error
codes for a machine-check error that occurred on a P6 family processor.

Chapter 17 — Debugging, Branch Profiles and Time-Stamp Counter. Describes the debugging registers
and other debug mechanism provided in Intel 64 or IA-32 processors. This chapter also describes the time-stamp
counter.

Chapter 18 — Performance Monitoring. Describes the Intel 64 and IA-32 architectures’ facilities for moni-
toring performance.

Chapter 19 — Performance-Monitoring Events. Lists architectural performance events. Non-architectural
performance events (i.e. model-specific events) are listed for each generation of microarchitecture.

Chapter 20 — 8086 Emulation. Describes the real-address and virtual-8086 modes of the IA-32 architecture.

Chapter 21 — Mixing 16-Bit and 32-Bit Code. Describes how to mix 16-bit and 32-bit code modules within the
same program or task.

Chapter 22 — IA-32 Architecture Compatibility. Describes architectural compatibility among IA-32 proces-
sors.

Chapter 23 — Introduction to Virtual-Machine Extensions. Describes the basic elements of virtual machine
architecture and the virtual-machine extensions for Intel 64 and IA-32 Architectures.

Chapter 24 — Virtual-Machine Control Structures. Describes components that manage VMX operation.
These include the working-VMCS pointer and the controlling-VMCS pointer.

Chapter 25 — VMX Non-Root Operation. Describes the operation of a VMX non-root operation. Processor
operation in VMX non-root mode can be restricted programmatically such that certain operations, events or
conditions can cause the processor to transfer control from the guest (running in VMX non-root mode) to the
monitor software (running in VMX root mode).

Chapter 26 — VM Entries. Describes VM entries. VM entry transitions the processor from the VMM running in
VMX root-mode to a VM running in VMX non-root mode. VM-Entry is performed by the execution of VMLAUNCH or
VMRESUME instructions.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 108

Chapter 27 — VM Exits. Describes VM exits. Certain events, operations or situations while the processor is in
VMX non-root operation may cause VM-exit transitions. In addition, VM exits can also occur on failed VM entries.

Chapter 28 — VMX Support for Address Translation. Describes virtual-machine extensions that support
address translation and the virtualization of physical memory.

Chapter 29 — APIC Virtualization and Virtual Interrupts. Describes the VMCS including controls that enable
the virtualization of interrupts and the Advanced Programmable Interrupt Controller (APIC).

Chapter 30 — VMX Instruction Reference. Describes the virtual-machine extensions (VMX). VMX is intended
for a system executive to support virtualization of processor hardware and a system software layer acting as a
host to multiple guest software environments.

Chapter 31 — Virtual-Machine Monitoring Programming Considerations. Describes programming consid-
erations for VMMs. VMMs manage virtual machines (VMs).

Chapter 32 — Virtualization of System Resources. Describes the virtualization of the system resources.
These include: debugging facilities, address translation, physical memory, and microcode update facilities.

Chapter 33 — Handling Boundary Conditions in a Virtual Machine Monitor. Describes what a VMM must
consider when handling exceptions, interrupts, error conditions, and transitions between activity states.

Chapter 34 — System Management Mode. Describes Intel 64 and IA-32 architectures’ system management
mode (SMM) facilities.

Chapter 35 — Model-Specific Registers (MSRs). Lists the MSRs available in the Pentium processors, the P6
family processors, the Pentium 4, Intel Xeon, Intel Core Solo, Intel Core Duo processors, and Intel Core 2
processor family and describes their functions.

Appendix A — VMX Capability Reporting Facility. Describes the VMX capability MSRs. Support for specific
VMX features is determined by reading capability MSRs.

Appendix B — Field Encoding in VMCS. Enumerates all fields in the VMCS and their encodings. Fields are
grouped by width (16-bit, 32-bit, etc.) and type (guest-state, host-state, etc.).

Appendix C — VM Basic Exit Reasons. Describes the 32-bit fields that encode reasons for a VM exit. Examples
of exit reasons include, but are not limited to: software interrupts, processor exceptions, software traps, NMIs,
external interrupts, and triple faults.

...

11.Updates to Chapter 2, Volume 3A
Change bars show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

...

2.2.1 Extended Feature Enable Register
The IA32_EFER MSR provides several fields related to IA-32e mode enabling and operation. It also provides one
field that relates to page-access right modification (see Section 4.6, “Access Rights”). The layout of the
IA32_EFER MSR is shown in Figure 2-4.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 109

...

12.Updates to Chapter 4, Volume 3A
Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

...

Figure 2-4 IA32_EFER MSR Layout

Reserved

IA-32e Mode Active

0178910111263

IA32_EFER

IA-32e Mode Enable

Execute Disable Bit Enable

SYSCALL Enable

Table 2-1 IA32_EFER MSR Information
Bit Description

0 SYSCALL Enable (R/W)

Enables SYSCALL/SYSRET instructions in 64-bit mode.

7:1 Reserved.

8 IA-32e Mode Enable (R/W)

Enables IA-32e mode operation.

9 Reserved.

10 IA-32e Mode Active (R)

Indicates IA-32e mode is active when set.

11 Execute Disable Bit Enable (R/W)

Enables page access restriction by preventing instruction fetches from PAE pages with the XD bit set (See Section 4.6).

63:12 Reserved.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 110

4.1.1 Three Paging Modes
If CR0.PG = 0, paging is not used. The logical processor treats all linear addresses as if they were physical
addresses. CR4.PAE and IA32_EFER.LME are ignored by the processor, as are CR0.WP, CR4.PSE, CR4.PGE,
CR4.SMEP, and IA32_EFER.NXE.

Paging is enabled if CR0.PG = 1. Paging can be enabled only if protection is enabled (CR0.PE = 1). If paging is
enabled, one of three paging modes is used. The values of CR4.PAE and IA32_EFER.LME determine which paging
mode is used:
• If CR0.PG = 1 and CR4.PAE = 0, 32-bit paging is used. 32-bit paging is detailed in Section 4.3. 32-bit paging

uses CR0.WP, CR4.PSE, CR4.PGE, and CR4.SMEP as described in Section 4.1.3.
• If CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 0, PAE paging is used. PAE paging is detailed in Section

20. PAE paging uses CR0.WP, CR4.PGE, CR4.SMEP, and IA32_EFER.NXE as described in Section 4.1.3.
• If CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 1, IA-32e paging is used.1 IA-32e paging is detailed in

Section 4.5. IA-32e paging uses CR0.WP, CR4.PGE, CR4.PCIDE, CR4.SMEP, and IA32_EFER.NXE as described
in Section 4.1.3. IA-32e paging is available only on processors that support the Intel 64 architecture.

The three paging modes differ with regard to the following details:
• Linear-address width. The size of the linear addresses that can be translated.
• Physical-address width. The size of the physical addresses produced by paging.
• Page size. The granularity at which linear addresses are translated. Linear addresses on the same page are

translated to corresponding physical addresses on the same page.
• Support for execute-disable access rights. In some paging modes, software can be prevented from fetching

instructions from pages that are otherwise readable.
• Support for PCIDs. In some paging modes, software can enable a facility by which a logical processor caches

information for multiple linear-address spaces. The processor may retain cached information when software
switches between different linear-address spaces.

Table 4-1 illustrates the key differences between the three paging modes.

1. The LMA flag in the IA32_EFER MSR (bit 10) is a status bit that indicates whether the logical processor is in IA-32e mode (and thus
using IA-32e paging). The processor always sets IA32_EFER.LMA to CR0.PG & IA32_EFER.LME. Software cannot directly modify
IA32_EFER.LMA; an execution of WRMSR to the IA32_EFER MSR ignores bit 10 of its source operand.

Table 4-1 Properties of Different Paging Modes

Paging
Mode

PG in
CR0

PAE in
CR4

LME in
IA32_EFER

Lin.-
Addr.
Width

Phys.-
Addr.
Width1

Page
Sizes

Supports
Execute-
Disable?

Supports
PCIDs?

None 0 N/A N/A 32 32 N/A No No

32-bit 1 0 02 32
Up to
403

4 KB
4 MB4 No No

PAE 1 1 0 32
Up to
52

4 KB
2 MB

Yes5 No

IA-32e 1 1 1 48
Up to
52

4 KB
2 MB
1 GB6

Yes5 Yes7

NOTES:
1. The physical-address width is always bounded by MAXPHYADDR; see Section 4.1.4.
2. The processor ensures that IA32_EFER.LME must be 0 if CR0.PG = 1 and CR4.PAE = 0.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 111

Because they are used only if IA32_EFER.LME = 0, 32-bit paging and PAE paging is used only in legacy protected
mode. Because legacy protected mode cannot produce linear addresses larger than 32 bits, 32-bit paging and
PAE paging translate 32-bit linear addresses.

Because it is used only if IA32_EFER.LME = 1, IA-32e paging is used only in IA-32e mode. (In fact, it is the use of
IA-32e paging that defines IA-32e mode.) IA-32e mode has two sub-modes:
• Compatibility mode. This mode uses only 32-bit linear addresses. IA-32e paging treats bits 47:32 of such an

address as all 0.
• 64-bit mode. While this mode produces 64-bit linear addresses, the processor ensures that bits 63:47 of such

an address are identical.1 IA-32e paging does not use bits 63:48 of such addresses.

...

13.Updates to Chapter 5, Volume 3A
Change bars show changes to Chapter 5 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

...

5.8 PRIVILEGE LEVEL CHECKING WHEN TRANSFERRING PROGRAM CONTROL
BETWEEN CODE SEGMENTS

To transfer program control from one code segment to another, the segment selector for the destination code
segment must be loaded into the code-segment register (CS). As part of this loading process, the processor
examines the segment descriptor for the destination code segment and performs various limit, type, and privilege
checks. If these checks are successful, the CS register is loaded, program control is transferred to the new code
segment, and program execution begins at the instruction pointed to by the EIP register.

Program control transfers are carried out with the JMP, CALL, RET, SYSENTER, SYSEXIT, SYSCALL, SYSRET, INT n,
and IRET instructions, as well as by the exception and interrupt mechanisms. Exceptions, interrupts, and the IRET
instruction are special cases discussed in Chapter 6, “Interrupt and Exception Handling.” This chapter discusses
only the JMP, CALL, RET, SYSENTER, SYSEXIT, SYSCALL, and SYSRET instructions.

A JMP or CALL instruction can reference another code segment in any of four ways:
• The target operand contains the segment selector for the target code segment.
• The target operand points to a call-gate descriptor, which contains the segment selector for the target code

segment.
• The target operand points to a TSS, which contains the segment selector for the target code segment.

3. 32-bit paging supports physical-address widths of more than 32 bits only for 4-MByte pages and only if the PSE-36 mechanism is
supported; see Section 4.1.4 and Section 4.3.

4. 4-MByte pages are used with 32-bit paging only if CR4.PSE = 1; see Section 4.3.
5. Execute-disable access rights are applied only if IA32_EFER.NXE = 1; see Section 4.6.
6. Not all processors that support IA-32e paging support 1-GByte pages; see Section 4.1.4.
7. PCIDs are used only if CR4.PCIDE = 1; see Section 4.10.1.

1. Such an address is called canonical. Use of a non-canonical linear address in 64-bit mode produces a general-protection exception
(#GP(0)); the processor does not attempt to translate non-canonical linear addresses using IA-32e paging.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 112

• The target operand points to a task gate, which points to a TSS, which in turn contains the segment selector
for the target code segment.

The following sections describe first two types of references. See Section 7.3, “Task Switching,” for information on
transferring program control through a task gate and/or TSS.

The SYSENTER and SYSEXIT instructions are special instructions for making fast calls to and returns from oper-
ating system or executive procedures. These instructions are discussed in Section 5.8.7, “Performing Fast Calls to
System Procedures with the SYSENTER and SYSEXIT Instructions.”

The SYCALL and SYSRET instructions are special instructions for making fast calls to and returns from operating
system or executive procedures in 64-bit mode. These instructions are discussed in Section 5.8.8, “Fast System
Calls in 64-Bit Mode.”

...

5.8.7.1 SYSENTER and SYSEXIT Instructions in IA-32e Mode
For Intel 64 processors, the SYSENTER and SYSEXIT instructions are enhanced to allow fast system calls from
user code running at privilege level 3 (in compatibility mode or 64-bit mode) to 64-bit executive procedures
running at privilege level 0. IA32_SYSENTER_EIP MSR and IA32_SYSENTER_ESP MSR are expanded to hold
64-bit addresses. If IA-32e mode is inactive, only the lower 32-bit addresses stored in these MSRs are used. The
WRMSR instruction ensures that the addresses stored in these MSRs are canonical. Note that, in 64-bit mode,
IA32_SYSENTER_CS must not contain a NULL selector.

When SYSENTER transfers control, the following fields are generated and bits set:
• Target code segment — Reads non-NULL selector from IA32_SYSENTER_CS.
• New CS attributes — CS base = 0, CS limit = FFFFFFFFH.
• Target instruction — Reads 64-bit canonical address from IA32_SYSENTER_EIP.
• Stack segment — Computed by adding 8 to the value from IA32_SYSENTER_CS.
• Stack pointer — Reads 64-bit canonical address from IA32_SYSENTER_ESP.
• New SS attributes — SS base = 0, SS limit = FFFFFFFFH.

When the SYSEXIT instruction transfers control to 64-bit mode user code using REX.W, the following fields are
generated and bits set:
• Target code segment — Computed by adding 32 to the value in IA32_SYSENTER_CS.
• New CS attributes — L-bit = 1 (go to 64-bit mode).
• Target instruction — Reads 64-bit canonical address in RDX.
• Stack segment — Computed by adding 40 to the value of IA32_SYSENTER_CS.
• Stack pointer — Update RSP using 64-bit canonical address in RCX.

When SYSEXIT transfers control to compatibility mode user code when the operand size attribute is 32 bits, the
following fields are generated and bits set:
• Target code segment — Computed by adding 16 to the value in IA32_SYSENTER_CS.
• New CS attributes — L-bit = 0 (go to compatibility mode).
• Target instruction — Fetch the target instruction from 32-bit address in EDX.
• Stack segment — Computed by adding 24 to the value in IA32_SYSENTER_CS.
• Stack pointer — Update ESP from 32-bit address in ECX.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 113

5.8.8 Fast System Calls in 64-Bit Mode
The SYSCALL and SYSRET instructions are designed for operating systems that use a flat memory model
(segmentation is not used). The instructions, along with SYSENTER and SYSEXIT, are suited for IA-32e mode
operation. SYSCALL and SYSRET, however, are not supported in compatibility mode (or in protected mode). Use
CPUID to check if SYSCALL and SYSRET are available (CPUID.80000001H.EDX[bit 11] = 1).

SYSCALL is intended for use by user code running at privilege level 3 to access operating system or executive
procedures running at privilege level 0. SYSRET is intended for use by privilege level 0 operating system or exec-
utive procedures for fast returns to privilege level 3 user code.

Stack pointers for SYSCALL/SYSRET are not specified through model specific registers. The clearing of bits in
RFLAGS is programmable rather than fixed. SYSCALL/SYSRET save and restore the RFLAGS register.

For SYSCALL, the processor saves RFLAGS into R11 and the RIP of the next instruction into RCX; it then gets the
privilege-level 0 target code segment, instruction pointer, stack segment, and flags as follows:
• Target code segment — Reads a non-NULL selector from IA32_STAR[47:32].
• Target instruction pointer — Reads a 64-bit address from IA32_LSTAR. (The WRMSR instruction ensures

that the value of the IA32_LSTAR MSR is canonical.)
• Stack segment — Computed by adding 8 to the value in IA32_STAR[47:32].
• Flags — The processor sets RFLAGS to the logical-AND of its current value with the complement of the value

in the IA32_FMASK MSR.

When SYSRET transfers control to 64-bit mode user code using REX.W, the processor gets the privilege level 3
target code segment, instruction pointer, stack segment, and flags as follows:
• Target code segment — Reads a non-NULL selector from IA32_STAR[63:48] + 16.
• Target instruction pointer — Copies the value in RCX into RIP.
• Stack segment — IA32_STAR[63:48] + 8.
• EFLAGS — Loaded from R11.

When SYSRET transfers control to 32-bit mode user code using a 32-bit operand size, the processor gets the priv-
ilege level 3 target code segment, instruction pointer, stack segment, and flags as follows:
• Target code segment — Reads a non-NULL selector from IA32_STAR[63:48].
• Target instruction pointer — Copies the value in ECX into EIP.
• Stack segment — IA32_STAR[63:48] + 8.
• EFLAGS — Loaded from R11.

It is the responsibility of the OS to ensure the descriptors in the GDT/LDT correspond to the selectors loaded by
SYSCALL/SYSRET (consistent with the base, limit, and attribute values forced by the instructions).

See Figure 5-14 for the layout of IA32_STAR, IA32_LSTAR and IA32_FMASK.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 114

The SYSCALL instruction does not save the stack pointer, and the SYSRET instruction does not restore it. It is
likely that the OS system-call handler will change the stack pointer from the user stack to the OS stack. If so, it is
the responsibility of software first to save the user stack pointer. This might be done by user code, prior to
executing SYSCALL, or by the OS system-call handler after SYSCALL.

Because the SYSRET instruction does not modify the stack pointer, it is necessary for software to switch back to
the user stack. The OS may load the user stack pointer (if it was saved after SYSCALL) before executing SYSRET;
alternatively, user code may load the stack pointer (if it was saved before SYSCALL) after receiving control from
SYSRET.

If the OS loads the stack pointer before executing SYSRET, it must ensure that the handler of any interrupt or
exception delivered between restoring the stack pointer and successful execution of SYSRET is not invoked with
the user stack. It can do so using approaches such as the following:
• External interrupts. The OS can prevent an external interrupt from being delivered by clearing EFLAGS.IF

before loading the user stack pointer.
• Nonmaskable interrupts (NMIs). The OS can ensure that the NMI handler is invoked with the correct stack by

using the interrupt stack table (IST) mechanism for gate 2 (NMI) in the IDT (see Section 6.14.5, “Interrupt
Stack Table”).

• General-protection exceptions (#GP). The SYSRET instruction generates #GP(0) if the value of RCX is not
canonical. The OS can address this possibility using one or more of the following approaches:

— Confirming that the value of RCX is canonical before executing SYSRET.

— Using paging to ensure that the SYSCALL instruction will never save a non-canonical value into RCX.

— Using the IST mechanism for gate 13 (#GP) in the IDT.

...

Figure 5-14 MSRs Used by SYSCALL and SYSRET

63 32 31 0

63 0

63 0

Target RIP for 64-bit Mode Calling Program

SYSRET CS and SS SYSCALL CS and SS

48 47

IA32_STAR

IA32_LSTAR

IA32_FMASK

32 31

SYSCALL EFLAGS MaskReserved

Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 115

14. Updates to Chapter 11, Volume 3A
Change bars show changes to Chapter 11 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

...

11.11.2.4 System-Management Range Register Interface
If IA32_MTRRCAP[bit 11] is set, the processor supports the SMRR interface to restrict access to a specified
memory address range used by system-management mode (SMM) software (see Section 34.4.2.1). If the SMRR
interface is supported, SMM software is strongly encouraged to use it to protect the SMI code and data stored by
SMI handler in the SMRAM region.

The system-management range registers consist of a pair of MSRs (see Figure 11-8). The IA32_SMRR_PHYSBASE
MSR defines the base address for the SMRAM memory range and the memory type used to access it in SMM. The
IA32_SMRR_PHYSMASK MSR contains a valid bit and a mask that determines the SMRAM address range
protected by the SMRR interface. These MSRs may be written only in SMM; an attempt to write them outside of
SMM causes a general-protection exception.1

Figure 11-8 shows flags and fields in these registers. The functions of these flags and fields are the following:
• Type field, bits 0 through 7 — Specifies the memory type for the range (see Table 11-8 for the encoding of

this field).
• PhysBase field, bits 12 through 31 — Specifies the base address of the address range. The address must

be less than 4 GBytes and is automatically aligned on a 4-KByte boundary.
• PhysMask field, bits 12 through 31 — Specifies a mask that determines the range of the region being

mapped, according to the following relationships:

— Address_Within_Range AND PhysMask = PhysBase AND PhysMask

— This value is extended by 12 bits at the low end to form the mask value. For more information: see Section
11.11.3, “Example Base and Mask Calculations.”

• V (valid) flag, bit 11 — Enables the register pair when set; disables register pair when clear.

Before attempting to access these SMRR registers, software must test bit 11 in the IA32_MTRRCAP register. If
SMRR is not supported, reads from or writes to registers cause general-protection exceptions.

When the valid flag in the IA32_SMRR_PHYSMASK MSR is 1, accesses to the specified address range are treated
as follows:
• If the logical processor is in SMM, accesses uses the memory type in the IA32_SMRR_PHYSBASE MSR.
• If the logical processor is not in SMM, write accesses are ignored and read accesses return a fixed value for

each byte. The uncacheable memory type (UC) is used in this case.

The above items apply even if the address range specified overlaps with a range specified by the MTRRs.

1. For some processor models, these MSRs can be accessed by RDMSR and WRMSR only if the SMRR interface has been enabled
using a model-specific bit in the IA32_FEATURE_CONTROL MSR.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 116

...

15.Updates to Chapter 16, Volume 3B
Change bars show changes to Chapter 16 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

...

Figure 11-8 IA32_SMRR_PHYSBASE and IA32_SMRR_PHYSMASK SMRR Pair

V — Valid
PhysMask — Sets range mask

IA32_SMRR_PHYSMASK Register

63 0

Reserved

101112

V Reserved

31

PhysMask

Type — Memory type for range
PhysBase — Base address of range

IA32_SMRR_PHYSBASE Register

63 0

Reserved

1112

Type

31

PhysBase

78

Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 117

16.4.1 Internal Machine Check Errors

Table 16-13 Machine Check Error Codes for IA32_MC4_STATUS

...

Type Bit No. Bit Function Bit Description

MCA error
codes1

0-15 MCACOD

Model specific
errors

19:16 Reserved except for
the following

0000b - No Error

0001b - Non_IMem_Sel

0010b - I_Parity_Error

0011b - Bad_OpCode

0100b - I_Stack_Underflow

0101b - I_Stack_Overflow

0110b - D_Stack_Underflow

0111b - D_Stack_Overflow

1000b - Non-DMem_Sel

1001b - D_Parity_Error

23-20 Reserved Reserved

31-24 Reserved except for
the following

00h - No Error

0Dh - MC_IMC_FORCE_SR_S3_TIMEOUT

0Eh - MC_CPD_UNCPD_ST_TIMOUT

0Fh - MC_PKGS_SAFE_WP_TIMEOUT

43h - MC_PECI_MAILBOX_QUIESCE_TIMEOUT

5Ch - MC_MORE_THAN_ONE_LT_AGENT

60h - MC_INVALID_PKGS_REQ_PCH

61h - MC_INVALID_PKGS_REQ_QPI

62h - MC_INVALID_PKGS_RES_QPI

63h - MC_INVALID_PKGC_RES_PCH

64h - MC_INVALID_PKG_STATE_CONFIG

70h - MC_WATCHDG_TIMEOUT_PKGC_SLAVE

71h - MC_WATCHDG_TIMEOUT_PKGC_MASTER

72h - MC_WATCHDG_TIMEOUT_PKGS_MASTER

7ah - MC_HA_FAILSTS_CHANGE_DETECTED

81h - MC_RECOVERABLE_DIE_THERMAL_TOO_HOT

56-32 Reserved Reserved

Status register
validity
indicators1

57-63

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,”

for more information.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 118

16.4.3 Integrated Memory Controller Machine Check Errors
MC error codes associated with integrated memory controllers are reported in the MSRs IA32_MC8_STATUS-
IA32_MC11_STATUS. The supported error codes are follows the architectural MCACOD definition type
1MMMCCCC (see Chapter 15, “Machine-Check Architecture,”). MSR_ERROR_CONTROL.[bit 1] can enable addi-
tional information logging of the IMC. The additional error information logged by the IMC is stored in
IA32_MCi_STATUS and IA32_MCi_MISC; (i = 8, 11).

Table 16-15 Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 8, 11)

Table 16-16 Intel IMC MC Error Codes for IA32_MCi_MISC (i= 8, 11)

Type Bit No. Bit Function Bit Description

MCA error
codes1

0-15 MCACOD Bus error format: 1PPTRRRRIILL

Model specific
errors

31:16 Reserved except for
the following

0x001 - Address parity error
0x002 - HA Wrt buffer Data parity error
0x004 - HA Wrt byte enable parity error
0x008 - Corrected patrol scrub error
0x010 - Uncorrected patrol scrub error
0x020 - Corrected spare error
0x040 - Uncorrected spare error

Model specific
errors

36-32 Other info When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first device error
when corrected error is detected during normal read.

37 Reserved Reserved

56-38 See Chapter 15, “Machine-Check Architecture,”

Status register
validity
indicators1

57-63

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,”

for more information.

Type Bit No. Bit Function Bit Description

MCA addr info1 0-8 See Chapter 15, “Machine-Check Architecture,”

Model specific
errors

13:9 • When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second device
error when corrected error is detected during normal read.

• Otherwise contain parity error if MCi_Status indicates HA_WB_Data or
HA_W_BE parity error.

Model specific
errors

29-14 When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device error bit
mask.

Model specific
errors

45-30 When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-device error
bit mask.

50:46 When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device error
failing rank.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 119

16. Updates to Chapter 17, Volume 3B
Change bars show changes to Chapter 17 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

...

17.4 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING OVERVIEW
P6 family processors introduced the ability to set breakpoints on taken branches, interrupts, and exceptions, and
to single-step from one branch to the next. This capability has been modified and extended in the Pentium 4, Intel
Xeon, Pentium M, Intel® Core™ Solo, Intel® Core™ Duo, Intel® Core™2 Duo, Intel® Core™ i7 and Intel® Atom™
processors to allow logging of branch trace messages in a branch trace store (BTS) buffer in memory.

See the following sections for processor specific implementation of last branch, interrupt and exception recording:

— Section 17.5, “Last Branch, Interrupt, and Exception Recording (Intel® Core™2 Duo and Intel® Atom™
Processor Family)”

— Section 17.6, “Last Branch, Interrupt, and Exception Recording for Processors based on Intel® Microarchi-
tecture code name Nehalem”

— Section 17.7, “Last Branch, Interrupt, and Exception Recording for Processors based on Intel® Microar-
chitecture code name Sandy Bridge”

— Section 17.8, “Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based on Intel®
Microarchitecture code name Haswell”

— Section 17.9, “Last Branch, Interrupt, and Exception Recording (Processors based on Intel NetBurst®
Microarchitecture)”

— Section 17.10, “Last Branch, Interrupt, and Exception Recording (Intel® Core™ Solo and Intel® Core™ Duo
Processors)”

— Section 17.11, “Last Branch, Interrupt, and Exception Recording (Pentium M Processors)”

— Section 17.12, “Last Branch, Interrupt, and Exception Recording (P6 Family Processors)”

The following subsections of Section 17.4 describe common features of profiling branches. These features are
generally enabled using the IA32_DEBUGCTL MSR (older processor may have implemented a subset or model-
specific features, see definitions of MSR_DEBUGCTLA, MSR_DEBUGCTLB, MSR_DEBUGCTL).

55:51 When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-device error
failing rank.

58:56 When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device error
failing DIMM slot.

61-59 When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-device error
failing DIMM slot.

 62-63 Reserved

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,”

for more information.

...

Type Bit No. Bit Function Bit Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 120

...

17.4.8.1 LBR Stack and Intel® 64 Processors
LBR MSRs are 64-bits. If IA-32e mode is disabled, only the lower 32-bits of the address is recorded. If IA-32e
mode is enabled, the processor writes 64-bit values into the MSR.

In 64-bit mode, last branch records store 64-bit addresses; in compatibility mode, the upper 32-bits of last
branch records are cleared.

Software should query an architectural MSR IA32_PERF_CAPABILITIES[5:0] about the format of the address that
is stored in the LBR stack. Four formats are defined by the following encoding:

— 000000B (32-bit record format) — Stores 32-bit offset in current CS of respective source/destination,

— 000001B (64-bit LIP record format) — Stores 64-bit linear address of respective source/destination,

— 000010B (64-bit EIP record format) — Stores 64-bit offset (effective address) of respective source/
destination.

— 000011B (64-bit EIP record format) and Flags — Stores 64-bit offset (effective address) of
respective source/destination. LBR flags are supported in the upper bits of ‘FROM’ register in the LBR
stack. See LBR stack details below for flag support and definition.

— 000011B (64-bit EIP record format), Flags and TSX — Stores 64-bit offset (effective address) of
respective source/destination. LBR flags are supported in the upper bits of ‘FROM’ register in the LBR
stack. TSX fields are also supported.

Processor’s support for the architectural MSR IA32_PERF_CAPABILITIES is provided by
CPUID.01H:ECX[PERF_CAPAB_MSR] (bit 15).

...

17.7 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING FOR
PROCESSORS BASED ON INTEL® MICROARCHITECTURE CODE NAME
SANDY BRIDGE

Generally, all of the last branch record, interrupt and exception recording facility described in Section 17.6, “Last
Branch, Interrupt, and Exception Recording for Processors based on Intel® Microarchitecture code name
Nehalem”, apply to processors based on Intel® microarchitecture code name Sandy Bridge. For processors based
on Intel® microarchitecture code name Ivy Bridge, the same holds true.

Figure 0-1. 64-bit Address Layout of LBR MSR

63

Source Address

0

063

Destination Address

MSR_LASTBRANCH_0_FROM_IP through MSR_LASTBRANCH_(N-1)_FROM_IP

MSR_LASTBRANCH_0_TO_IP through MSR_LASTBRANCH_(N-1)_TO_IP

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 121

One difference of note is that MSR_LBR_SELECT is shared between two logical processors in the same core. In
Intel microarchitecture code name Sandy Bridge, each logical processor has its own MSR_LBR_SELECT. The
filtering semantics for “Near_ind_jmp“ and “Near_rel_jmp“ has been enhanced, see Table 17-10.

17.8 LAST BRANCH, CALL STACK, INTERRUPT, AND EXCEPTION RECORDING
FOR PROCESSORS BASED ON INTEL® MICROARCHITECTURE CODE NAME
HASWELL

Generally, all of the last branch record, interrupt and exception recording facility described in Section 17.7, “Last
Branch, Interrupt, and Exception Recording for Processors based on Intel® Microarchitecture code name Sandy
Bridge”, apply to next generation processors based on Intel® Microarchitecture code name Haswell.

The LBR facility also supports an alternate capability to profile call stack profiles. Configuring the LBR facility to
conduct call stack profiling is by writing 1 to the MSR_LBR_SELECT.EN_CALLSTACK[bit 9]; see Table 17-11. If
MSR_LBR_SELECT.EN_CALLSTACK is clear, the LBR facility will capture branches normally as described in Section
17.7.

Table 17-10 MSR_LBR_SELECT for Intel microarchitecture code name Sandy Bridge
Bit Field Bit Offset Access Description

CPL_EQ_0 0 R/W When set, do not capture branches occurring in ring 0

CPL_NEQ_0 1 R/W When set, do not capture branches occurring in ring >0

JCC 2 R/W When set, do not capture conditional branches

NEAR_REL_CALL 3 R/W When set, do not capture near relative calls

NEAR_IND_CALL 4 R/W When set, do not capture near indirect calls

NEAR_RET 5 R/W When set, do not capture near returns

NEAR_IND_JMP 6 R/W When set, do not capture near indirect jumps except near indirect calls and near returns

NEAR_REL_JMP 7 R/W When set, do not capture near relative jumps except near relative calls.

FAR_BRANCH 8 R/W When set, do not capture far branches

Reserved 63:9 Must be zero

Table 17-11 MSR_LBR_SELECT for Intel microarchitecture code name Haswell
Bit Field Bit Offset Access Description

CPL_EQ_0 0 R/W When set, do not capture branches occurring in ring 0

CPL_NEQ_0 1 R/W When set, do not capture branches occurring in ring >0

JCC 2 R/W When set, do not capture conditional branches

NEAR_REL_CALL 3 R/W When set, do not capture near relative calls

NEAR_IND_CALL 4 R/W When set, do not capture near indirect calls

NEAR_RET 5 R/W When set, do not capture near returns

NEAR_IND_JMP 6 R/W When set, do not capture near indirect jumps except near indirect calls and near returns

NEAR_REL_JMP 7 R/W When set, do not capture near relative jumps except near relative calls.

FAR_BRANCH 8 R/W When set, do not capture far branches

EN_CALLSTACK 9 Enable LBR stack to use LIFO filtering to capture Call stack profile

Reserved 63:10 Must be zero

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 122

The call stack profiling capability is an enhancement of the LBR facility. The LBR stack is a ring buffer typically
used to profile control flow transitions resulting from branches. However, the finite depth of the LBR stack often
become less effective when profiling certain high-level languages (e.g. C++), where a transition of the execution
flow is accompanied by a large number of leaf function calls, each of which returns an individual parameter to
form the list of parameters for the main execution function call. A long list of such parameters returned by the leaf
functions would serve to flush the data captured in the LBR stack, often losing the main execution context.

When the call stack feature is enabled, the LBR stack will capture unfiltered call data normally, but as return
instructions are executed the last captured branch record is flushed from the on-chip registers in a last-in first-out
(LIFO) manner. Thus, branch information relative to leaf functions will not be captured, while preserving the call
stack information of the main line execution path.

The configuration of the call stack facility is summarized below:
• Set IA32_DEBUGCTL.LBR (bit 0) to enable the LBR stack to capture branch records. The source and target

addresses of the call branches will be captured in the 16 pairs of From/To LBR MSRs that form the LBR stack.
• Program the Top of Stack (TOS) MSR that points to the last valid from/to pair. This register is incremented by

1, modulo 16, before recording the next pair of addresses.
• Program the branch filtering bits of MSR_LBR_SELECT (bits 0:8) as desired.
• Program the MSR_LBR_SELECT to enable LIFO filtering of return instructions with:

— The following bits in MSR_LBR_SELECT must be set to ‘1’: JCC, NEAR_IND_JMP, NEAR_REL_JMP,
FAR_BRANCH, EN_CALLSTACK;

— The following bits in MSR_LBR_SELECT must be cleared: NEAR_REL_CALL, NEAR-IND_CALL, NEAR_RET;

— At most one of CPL_EQ_0, CPL_NEQ_0 is set.

17.8.1 LBR Stack Enhancement
Processors based on Intel microarchitecture code name Haswell provide 16 pairs of MSR to record last branch
record information. The layout of each MSR pair is enumerated by IA32_PERF_CAPABILITIES[5:0] = 04H, and is
shown in Table 17-12 and Table 17-7.

Table 17-12 IA32_LASTBRANCH_x_FROM_IP with TSX Information
Bit Field Bit Offset Access Description

Data 47:0 R/O The linear address of the branch instruction itself, this is the “branch from“ address.

SIGN_EXT 60:48 R/0 Signed extension of bit 47 of this register.

TSX_ABORT 61 R/0 When set, indicates a TSX Abort entry
LBR_FROM: EIP at the time of the TSX Abort
LBR_TO: EIP of the start of HLE region, or EIP of the RTM Abort Handler

IN_TSX 62 R/0 When set, indicates the entry occurred in a TSX region

MISPRED 63 R/O When set, indicates either the target of the branch was mispredicted and/or the
direction (taken/non-taken) was mispredicted; otherwise, the target branch was
predicted.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 123

17.9 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (PROCESSORS
BASED ON INTEL NETBURST® MICROARCHITECTURE)

Pentium 4 and Intel Xeon processors based on Intel NetBurst microarchitecture provide the following methods for
recording taken branches, interrupts and exceptions:
• Store branch records in the last branch record (LBR) stack MSRs for the most recent taken branches,

interrupts, and/or exceptions in MSRs. A branch record consist of a branch-from and a branch-to instruction
address.

• Send the branch records out on the system bus as branch trace messages (BTMs).
• Log BTMs in a memory-resident branch trace store (BTS) buffer.

To support these functions, the processor provides the following MSRs and related facilities:
• MSR_DEBUGCTLA MSR — Enables last branch, interrupt, and exception recording; single-stepping on taken

branches; branch trace messages (BTMs); and branch trace store (BTS). This register is named DebugCtlMSR
in the P6 family processors.

• Debug store (DS) feature flag (CPUID.1:EDX.DS[bit 21]) — Indicates that the processor provides the
debug store (DS) mechanism, which allows BTMs to be stored in a memory-resident BTS buffer.

• CPL-qualified debug store (DS) feature flag (CPUID.1:ECX.DS-CPL[bit 4]) — Indicates that the
processor provides a CPL-qualified debug store (DS) mechanism, which allows software to selectively skip
sending and storing BTMs, according to specified current privilege level settings, into a memory-resident BTS
buffer.

• IA32_MISC_ENABLE MSR — Indicates that the processor provides the BTS facilities.
• Last branch record (LBR) stack — The LBR stack is a circular stack that consists of four MSRs

(MSR_LASTBRANCH_0 through MSR_LASTBRANCH_3) for the Pentium 4 and Intel Xeon processor family
[CPUID family 0FH, models 0H-02H]. The LBR stack consists of 16 MSR pairs
(MSR_LASTBRANCH_0_FROM_IP through MSR_LASTBRANCH_15_FROM_IP and
MSR_LASTBRANCH_0_TO_IP through MSR_LASTBRANCH_15_TO_IP) for the Pentium 4 and Intel Xeon
processor family [CPUID family 0FH, model 03H].

• Last branch record top-of-stack (TOS) pointer — The TOS Pointer MSR contains a 2-bit pointer (0-3) to
the MSR in the LBR stack that contains the most recent branch, interrupt, or exception recorded for the
Pentium 4 and Intel Xeon processor family [CPUID family 0FH, models 0H-02H]. This pointer becomes a 4-bit
pointer (0-15) for the Pentium 4 and Intel Xeon processor family [CPUID family 0FH, model 03H]. See also:
Table 17-12, Figure 17-12, and Section 17.9.2, “LBR Stack for Processors Based on Intel NetBurst® Microar-
chitecture.”

• Last exception record — See Section 17.9.3, “Last Exception Records.”

...

17.13.3 Time-Stamp Counter Adjustment
Software can modify the value of the time-stamp counter (TSC) of a logical processor by using the WRMSR
instruction to write to the IA32_TIME_STAMP_COUNTER MSR (address 10H). Because such a write applies only to
that logical processor, software seeking to synchronize the TSC values of multiple logical processors must perform
these writes on each logical processor. It may be difficult for software to do this in a way than ensures that all
logical processors will have the same value for the TSC at a given point in time.

The synchronization of TSC adjustment can be simplified by using the 64-bit IA32_TSC_ADJUST MSR (address
3BH). Like the IA32_TIME_STAMP_COUNTER MSR, the IA32_TSC_ADJUST MSR is maintained separately for each
logical processor. A logical processor maintains and uses the IA32_TSC_ADJUST MSR as follows:
• On RESET, the value of the IA32_TSC_ADJUST MSR is 0.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 124

• If an execution of WRMSR to the IA32_TIME_STAMP_COUNTER MSR adds (or subtracts) value X from the
TSC, the logical processor also adds (or subtracts) value X from the IA32_TSC_ADJUST MSR.

• If an execution of WRMSR to the IA32_TSC_ADJUST MSR adds (or subtracts) value X from that MSR, the
logical processor also adds (or subtracts) value X from the TSC.

Unlike the TSC, the value of the IA32_TSC_ADJUST MSR changes only in response to WRMSR (either to the MSR
itself, or to the IA32_TIME_STAMP_COUNTER MSR). Its value does not otherwise change as time elapses. Soft-
ware seeking to adjust the TSC can do so by using WRMSR to write the same value to the IA32_TSC_ADJUST MSR
on each logical processor.

Processor support for the IA32_TSC_ADJUST MSR is indicated by CPUID.(EAX=07H, ECX=0H):EBX.TSC_ADJUST
(bit 1).

...

17.Updates to Chapter 18, Volume 3B
Change bars show changes to Chapter 18 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

...

18.1 PERFORMANCE MONITORING OVERVIEW
Performance monitoring was introduced in the Pentium processor with a set of model-specific performance-moni-
toring counter MSRs. These counters permit selection of processor performance parameters to be monitored and
measured. The information obtained from these counters can be used for tuning system and compiler perfor-
mance.

In Intel P6 family of processors, the performance monitoring mechanism was enhanced to permit a wider selec-
tion of events to be monitored and to allow greater control events to be monitored. Next, Pentium 4 and Intel
Xeon processors introduced a new performance monitoring mechanism and new set of performance events.

The performance monitoring mechanisms and performance events defined for the Pentium, P6 family, Pentium 4,
and Intel Xeon processors are not architectural. They are all model specific (not compatible among processor
families). Intel Core Solo and Intel Core Duo processors support a set of architectural performance events and a
set of non-architectural performance events. Processors based on Intel Core microarchitecture and Intel® Atom™
microarchitecture support enhanced architectural performance events and non-architectural performance events.

Starting with Intel Core Solo and Intel Core Duo processors, there are two classes of performance monitoring
capabilities. The first class supports events for monitoring performance using counting or sampling usage. These
events are non-architectural and vary from one processor model to another. They are similar to those available in
Pentium M processors. These non-architectural performance monitoring events are specific to the microarchitec-
ture and may change with enhancements. They are discussed in Section 18.3, “Performance Monitoring (Intel®
Core™ Solo and Intel® Core™ Duo Processors).” Non-architectural events for a given microarchitecture can not be
enumerated using CPUID; and they are listed in Chapter 19, “Performance-Monitoring Events.”

The second class of performance monitoring capabilities is referred to as architectural performance monitoring.
This class supports the same counting and sampling usages, with a smaller set of available events. The visible
behavior of architectural performance events is consistent across processor implementations. Availability of
architectural performance monitoring capabilities is enumerated using the CPUID.0AH. These events are
discussed in Section 18.2.

See also:

— Section 18.2, “Architectural Performance Monitoring”

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 125

— Section 18.3, “Performance Monitoring (Intel® Core™ Solo and Intel® Core™ Duo Processors)”

— Section 18.4, “Performance Monitoring (Processors Based on Intel® Core™ Microarchitecture)”

— Section 18.5, “Performance Monitoring (Processors Based on Intel® Atom™ Microarchitecture)”

— Section 18.6, “Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name
Nehalem”

— Section 18.7, “Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name
Westmere”

— Section 18.8, “Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name
Sandy Bridge”

— Section 18.8.8, “Intel® Xeon® Processor E5 Family Uncore Performance Monitoring Facility”

— Section 18.9, “3rd Generation Intel® Core™ Processor Performance Monitoring Facility”

— Section 18.10, “Next Generation Intel® Core™ Processor Performance Monitoring Facility”

— Section 18.11, “Performance Monitoring (Processors Based on Intel NetBurst® Microarchitecture)”

— Section 18.12, “Performance Monitoring and Intel Hyper-Threading Technology in Processors Based on
Intel NetBurst® Microarchitecture”

— Section 18.15, “Performance Monitoring and Dual-Core Technology”

— Section 18.16, “Performance Monitoring on 64-bit Intel Xeon Processor MP with Up to 8-MByte L3 Cache”

— Section 18.18, “Performance Monitoring (P6 Family Processor)”

— Section 18.19, “Performance Monitoring (Pentium Processors)”

...

18.2.2.2 Architectural Performance Monitoring Version 3 Facilities
The facilities provided by architectural performance monitoring version 1 and 2 are also supported by architec-
tural performance monitoring version 3. Additionally version 3 provides enhancements to support a processor
core comprising of more than one logical processor, i.e. a processor core supporting Intel Hyper-Threading Tech-
nology or simultaneous multi-threading capability. Specifically,
• CPUID leaf 0AH provides enumeration mechanisms to query:

— The number of general-purpose performance counters (IA32_PMCx) is reported in
CPUID.0AH:EAX[15:8], the bit width of general-purpose performance counters (see also Section
18.2.1.1) is reported in CPUID.0AH:EAX[23:16].

— The bit vector representing the set of architectural performance monitoring events supported (see Section
18.2.3)

— The number of fixed-function performance counters, the bit width of fixed-function performance counters
(see also Section 18.2.2.1).

• Each general-purpose performance counter IA32_PMCx (starting at MSR address 0C1H) is associated with a
corresponding IA32_PERFEVTSELx MSR (starting at MSR address 186H). The Bit field layout of
IA32_PERFEVTSELx MSRs is defined architecturally in Figure 18-6.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 126

Bit 21 (AnyThread) of IA32_PERFEVTSELx is supported in architectural performance monitoring version 3.
When set to 1, it enables counting the associated event conditions (including matching the thread’s CPL with
the OS/USR setting of IA32_PERFEVTSELx) occurring across all logical processors sharing a processor core.
When bit 21 is 0, the counter only increments the associated event conditions (including matching the
thread’s CPL with the OS/USR setting of IA32_PERFEVTSELx) occurring in the logical processor which
programmed the IA32_PERFEVTSELx MSR.

• Each fixed-function performance counter IA32_FIXED_CTRx (starting at MSR address 309H) is configured by
a 4-bit control block in the IA32_PERF_FIXED_CTR_CTRL MSR. The control block also allow thread-specificity
configuration using an AnyThread bit. The layout of IA32_PERF_FIXED_CTR_CTRL MSR is shown.

Each control block for a fixed-function performance counter provides a AnyThread (bit position 2 + 4*N, N=
0, 1, etc.) bit. When set to 1, it enables counting the associated event conditions (including matching the
thread’s CPL with the ENABLE setting of the corresponding control block of IA32_PERF_FIXED_CTR_CTRL)
occurring across all logical processors sharing a processor core. When an AnyThread bit is 0 in
IA32_PERF_FIXED_CTR_CTRL, the corresponding fixed counter only increments the associated event
conditions occurring in the logical processor which programmed the IA32_PERF_FIXED_CTR_CTRL MSR.

• The IA32_PERF_GLOBAL_CTRL, IA32_PERF_GLOBAL_STATUS, IA32_PERF_GLOBAL_OVF_CTRL MSRs
provide single-bit controls/status for each general-purpose and fixed-function performance counter. Figure
18-8 and Figure 18-9 show the layout of these MSRs for N general-purpose performance counters (where N is
reported by CPUID.0AH:EAX[15:8]) and three fixed-function counters.

Figure 18-6 Layout of IA32_PERFEVTSELx MSRs Supporting Architectural Performance Monitoring Version 3

Figure 18-7 Layout of IA32_FIXED_CTR_CTRL MSR Supporting Architectural Performance Monitoring Version 3

31

INV—Invert counter mask
EN—Enable counters

INT—APIC interrupt enable
PC—Pin control

8 7 0

Event Select

E—Edge detect
OS—Operating system mode
USR—User Mode

Counter Mask
EE

N

I
N
T

19 1618 15172021222324

Reserved

I
N
V

P
C

U
S
R

O
S

Unit Mask (UMASK)(CMASK)

63

ANY—Any Thread

A
N
Y

Cntr2 — Controls for IA32_FIXED_CTR2
Cntr1 — Controls for IA32_FIXED_CTR1
PMI — Enable PMI on overflow on IA32_FIXED_CTR0
AnyThread — AnyThread for IA32_FIXED_CTR0

8 7 0

ENABLE — IA32_FIXED_CTR0. 0: disable; 1: OS; 2: User; 3: All ring levels

E
N

P
M
I

11 312 1

Reserved

63 2

E
N

E
N

49 5

PP
MM
II

A
N
Y

A
N
Y

A
N
Y

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 127

Note: The Intel Atom processor family supports two general-purpose performance monitoring counters (i.e.
N =2 in Figure 18-9), other processor families in Intel 64 architecture may support a different value of N in
Figure 18-9. The number N is reported by CPUID.0AH:EAX[15:8]. The Intel Core i7 processor supports four
general-purpose performance monitoring counters (i.e. N =4 in Figure 18-9).

...

Figure 18-8 Layout of Global Performance Monitoring Control MSR

Figure 18-9 Global Performance Monitoring Overflow Status and Control MSRs

IA32_FIXED_CTR2 enable
IA32_FIXED_CTR1 enable
IA32_FIXED_CTR0 enable
IA32_PMC(N-1) enable

.. 1 0

.................... enable

3132333435

Reserved

63 ..N

IA32_PMC1 enable
IA32_PMC0 enable

Global Enable Controls IA32_PERF_GLOBAL_CTRL

62

IA32_FIXED_CTR2 Overflow
IA32_FIXED_CTR1 Overflow
IA32_FIXED_CTR0 Overflow
IA32_PMC1 Overflow

.. 1 0

IA32_PMC0 Overflow

313233343563

CondChgd
OvfBuffer

..N

...................... Overflow
IA32_PMC(N-1) Overflow

Global Overflow Status IA32_PERF_GLOBAL_STATUS

62

IA32_FIXED_CTR2 ClrOverflow
IA32_FIXED_CTR1 ClrOverflow
IA32_FIXED_CTR0 ClrOverflow
IA32_PMC1 ClrOverflow

.. 1 0

IA32_PMC0 ClrOverflow

313233343563

ClrCondChgd
ClrOvfBuffer

Global Overflow Status IA32_PERF_GLOBAL_OVF_CTRL

........................ ClrOverflow
IA32_PMC(N-1) ClrOverflow

N ..

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 128

18.6.1.1 Precise Event Based Sampling (PEBS)
All four general-purpose performance counters, IA32_PMCx, can be used for PEBS if the performance event
supports PEBS. Software uses IA32_MISC_ENABLE[7] and IA32_MISC_ENABLE[12] to detect whether the perfor-
mance monitoring facility and PEBS functionality are supported in the processor. The MSR IA32_PEBS_ENABLE
provides 4 bits that software must use to enable which IA32_PMCx overflow condition will cause the PEBS record
to be captured.

Additionally, the PEBS record is expanded to allow latency information to be captured. The MSR
IA32_PEBS_ENABLE provides 4 additional bits that software must use to enable latency data recording in the
PEBS record upon the respective IA32_PMCx overflow condition. The layout of IA32_PEBS_ENABLE for processors
based on Intel microarchitecture code name Nehalem is shown in Figure 18-15.

When a counter is enabled to capture machine state (PEBS_EN_PMCx = 1), the processor will write machine state
information to a memory buffer specified by software as detailed below. When the counter IA32_PMCx overflows
from maximum count to zero, the PEBS hardware is armed.

Upon occurrence of the next PEBS event, the PEBS hardware triggers an assist and causes a PEBS record to be
written. The format of the PEBS record is indicated by the bit field IA32_PERF_CAPABILITIES[11:8] (see
Figure 18-40).

The behavior of PEBS assists is reported by IA32_PERF_CAPABILITIES[6] (see Figure 18-40). The return instruc-
tion pointer (RIP) reported in the PEBS record will point to the instruction after (+1) the instruction that causes
the PEBS assist. The machine state reported in the PEBS record is the machine state after the instruction that
causes the PEBS assist is retired. For instance, if the instructions:

mov eax, [eax] ; causes PEBS assist

nop

are executed, the PEBS record will report the address of the nop, and the value of EAX in the PEBS record will
show the value read from memory, not the target address of the read operation.

The PEBS record format is shown in Table 18-12, and each field in the PEBS record is 64 bits long. The PEBS
record format, along with debug/store area storage format, does not change regardless of IA-32e mode is active
or not. CPUID.01H:ECX.DTES64[bit 2] reports whether the processor's DS storage format support is mode-inde-
pendent. When set, it uses 64-bit DS storage format.

...

Figure 18-15 Layout of IA32_PEBS_ENABLE MSR

LL_EN_PMC3 (R/W)
LL_EN_PMC2 (R/W)

8 7 0

LL_EN_PMC1 (R/W)

32 333 1

Reserved

63 2431 56343536

PEBS_EN_PMC3 (R/W)
PEBS_EN_PMC2 (R/W)
PEBS_EN_PMC1 (R/W)
PEBS_EN_PMC0 (R/W)

LL_EN_PMC0 (R/W)

RESET Value — 0x00000000_00000000

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 129

18.6.1.3 Off-core Response Performance Monitoring in the Processor Core
Programming a performance event using the off-core response facility can choose any of the four
IA32_PERFEVTSELx MSR with specific event codes and predefine mask bit value. Each event code for off-core
response monitoring requires programming an associated configuration MSR, MSR_OFFCORE_RSP_0. There is
only one off-core response configuration MSR. Table 18-14 lists the event code, mask value and additional off-
core configuration MSR that must be programmed to count off-core response events using IA32_PMCx.

The layout of MSR_OFFCORE_RSP_0 is shown in Figure 18-18. Bits 7:0 specifies the request type of a transaction
request to the uncore. Bits 15:8 specifies the response of the uncore subsystem.

...

18.8 PERFORMANCE MONITORING FOR PROCESSORS BASED ON INTEL®

MICROARCHITECTURE CODE NAME SANDY BRIDGE
Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series, and Intel® Xeon® processor
E3-1200 family are based on Intel microarchitecture code name Sandy Bridge; this section describes the perfor-
mance monitoring facilities provided in the processor core. The core PMU supports architectural performance

Table 18-14 Off-Core Response Event Encoding

Event code in
IA32_PERFEVTSELx

Mask Value in
IA32_PERFEVTSELx Required Off-core Response MSR

0xB7 0x01 MSR_OFFCORE_RSP_0 (address 0x1A6)

Figure 18-18 Layout of MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 to Configure Off-core Response
Events

RESPONSE TYPE — NON_DRAM (R/W)
RESPONSE TYPE — LOCAL_DRAM (R/W)
RESPONSE TYPE — REMOTE_DRAM (R/W)
RESPONSE TYPE — REMOTE_CACHE_FWD (R/W)

8 7 0

RESPONSE TYPE — RESERVED

11 312 1

Reserved

63 249 5610131415

RESPONSE TYPE — OTHER_CORE_HITM (R/W)
RESPONSE TYPE — OTHER_CORE_HIT_SNP (R/W)
RESPONSE TYPE — UNCORE_HIT (R/W)
REQUEST TYPE — OTHER (R/W)
REQUEST TYPE — PF_IFETCH (R/W)
REQUEST TYPE — PF_RFO (R/W)
REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — WB (R/W)
REQUEST TYPE — DMND_IFETCH (R/W)
REQUEST TYPE — DMND_RFO (R/W)
REQUEST TYPE — DMND_DATA_RD (R/W)

RESET Value — 0x00000000_00000000

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 130

monitoring capability with version ID 3 (see Section 18.2.2.2) and a host of non-architectural monitoring capabil-
ities.

Architectural performance monitoring events and non-architectural monitoring events are programmed using
fixed counters and programmable counters/event select MSRS described in Section 18.2.2.2.

The core PMU’s capability is similar to those described in Section 18.6.1 and Section 18.7, with some differences
and enhancements relative to Intel microarchitecture code name Westmere summarized in Table 18-19.

...

18.8.5 Off-core Response Performance Monitoring
The core PMU in processors based on Intel microarchitecture code name Sandy Bridge provides off-core response
facility similar to prior generation. Off-core response can be programmed only with a specific pair of event select
and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify
attributes of the off-core transaction. Two event codes are dedicated for off-core response event programming.
Each event code for off-core response monitoring requires programming an associated configuration MSR,
MSR_OFFCORE_RSP_x. Table 18-24 lists the event code, mask value and additional off-core configuration MSR
that must be programmed to count off-core response events using IA32_PMCx.

Table 18-19 Core PMU Comparison

Box Sandy Bridge Westmere Comment

of Fixed counters per
thread

3 3 Use CPUID to enumerate # of
counters.

of general-purpose
counters per core

8 8

Counter width (R,W) R:48 , W: 32/48 R:48, W:32 See Section 18.2.2.3.

of programmable counters
per thread

4 or (8 if a core not shared by two
threads)

4 Use CPUID to enumerate # of
counters.

Precise Event Based
Sampling (PEBS) Events

See Table 18-21 See Table 18-10 IA32_PMC4-IA32_PMC7 do not
support PEBS.

PEBS-Load Latency See Section 18.8.4.2;

Data source encoding,

STLB miss encoding,

Lock transaction encoding

Data source encoding

PEBS-Precise Store Section 18.8.4.3 No

PEBS-PDIR yes (using precise
INST_RETIRED.ALL)

No

Off-core Response Event MSR 1A6H and 1A7H; Extended
request and response types

MSR 1A6H and 1A7H,
limited response types

Nehalem supports 1A6H only.

Table 18-24 Off-Core Response Event Encoding

Counter Event code UMask Required Off-core Response MSR

PMC0-3 0xB7 0x01 MSR_OFFCORE_RSP_0 (address 0x1A6)

PMC0-3 0xBB 0x01 MSR_OFFCORE_RSP_1 (address 0x1A7)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 131

The layout of MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 are shown in Figure 18-30 and Figure 18-31.
Bits 15:0 specifies the request type of a transaction request to the uncore. Bits 30:16 specifies supplier informa-
tion, bits 37:31 specifies snoop response information.

...

18.8.7 Intel® Xeon® Processor E5 Family Performance Monitoring Facility
The Intel® Xeon® Processor E5 Family (and Intel® Core™ i7-3930K Processor) are based on Intel microarchitec-
ture code name Sandy Bridge. While the processor cores share the same microarchitecture as those of the Intel®
Xeon® Processor E3 Family and second generation Intel Core i7-2xxx, Intel Core i5-2xxx, Intel Core i3-2xxx
processor series, the uncore subsystems are different. An overview of the uncore performance monitoring facili-
ties of the Intel Xeon processor E5 family (and Intel Core i7-3930K processor) is described in Section 18.8.8.

Thus, the performance monitoring facilities in the processor core generally are the same as those described in
Section 18.8 through Section 18.8.5. However, the MSR_OFFCORE_RSP_0/MSR_OFFCORE_RSP_1 Response
Supplier Info field shown in Table 18-26 applies to Intel Core Processors with CPUID signature of
DisplayFamily_DisplayModel encoding of 06_2AH; Intel Xeon processor with CPUID signature of
DisplayFamily_DisplayModel encoding of 06_2DH supports an additional field for remote DRAM controller shown
in Table 18-29. Additionally, the are some small differences in the non-architectural performance monitoring
events (see Table 19-7).

...

18.9 3RD GENERATION INTEL® CORE™ PROCESSOR PERFORMANCE
MONITORING FACILITY

The 3rd Generation Intel® Core™ Processor Family and Intel® Xeon® Processor E3-1200v2 Product Family are
based on Intel® microarchitecture code name Ivy Bridge. The performance monitoring facilities in the processor
core generally are the same as those described in Section 18.8 through Section 18.8.5. The non-architectural
performance monitoring events supported by the processor core are listed in Table 19-7.

Table 18-29 MSR_OFFCORE_RSP_x Supplier Info Field Definitions

Subtype Bit Name Offset Description

Common Any 16 (R/W). Catch all value for any response types.

Supplier Info NO_SUPP 17 (R/W). No Supplier Information available

LLC_HITM 18 (R/W). M-state initial lookup stat in L3.

LLC_HITE 19 (R/W). E-state

LLC_HITS 20 (R/W). S-state

LLC_HITF 21 (R/W). F-state

LOCAL 22 (R/W). Local DRAM Controller

Remote 30:23 (R/W): Remote DRAM Controller (either all 0s or all 1s)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 132

18.10 NEXT GENERATION INTEL® CORE™ PROCESSOR PERFORMANCE
MONITORING FACILITY

The Next Generation Intel® Core™ processor is based on Intel® microarchitecture code name Haswell. The core
PMU supports architectural performance monitoring capability with version ID 3 (see Section 18.2.2.2) and a host
of non-architectural monitoring capabilities.

Architectural performance monitoring events and non-architectural monitoring events are programmed using
fixed counters and programmable counters/event select MSRS as described in Section 18.2.2.2.

The core PMU’s capability is similar to those described in Section 18.8, with some differences and enhancements
summarized in Table 18-31.

18.10.1 Precise Event Based Sampling (PEBS) Facility
The PEBS facility in the Next Generation Intel Core processor is similar to those in processors based on Intel
microarchitecture code name Sandy Bridge, with several enhanced features. The key components and differences
of PEBS facility relative to Intel microarchitecture code name Sandy Bridge is summarized in Table 18-32.

Table 18-31 Core PMU Comparison

Box Haswell Sandy Bridge Comment

of Fixed counters per
thread

3 3

of general-purpose
counters per core

8 8

Counter width (R,W) R:48 , W: 32/48 R:48 , W: 32/48 See Section 18.2.2.3.

of programmable counters
per thread

4 or (8 if a core not shared by two
threads)

4 or (8 if a core not shared by
two threads)

Use CPUID to enumerate # of
counters.

Precise Event Based
Sampling (PEBS) Events

See Table 18-21 See Table 18-21 IA32_PMC4-IA32_PMC7 do
not support PEBS.

PEBS-Load Latency See Section 18.8.4.2; See Section 18.8.4.2;

PEBS-Precise Store No, replaced by Data Address
profiling

Section 18.8.4.3

PEBS-PDIR yes (using precise
INST_RETIRED.ALL)

yes (using precise
INST_RETIRED.ALL)

PEBS-EventingIP yes no

Data Address Profiling yes no

LBR Profiling yes yes

Call Stack Profiling yes, see Section 17.8 no Use LBR facility

Off-core Response Event MSR 1A6H and 1A7H; Extended
request and response types

MSR 1A6H and 1A7H; Extended
request and response types

Intel TSX support for
Perfmon

See Section 18.10.5; no

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 133

Only IA32_PMC0 through IA32_PMC3 support PEBS.

NOTE
PEBS events are only valid when the following fields of IA32_PERFEVTSELx are all zero:
AnyThread, Edge, Invert, CMask.

18.10.2 PEBS Data Format
The PEBS record format for the Next Generation Intel Core processor is shown in Table 18-33. The PEBS record
format, along with debug/store area storage format, does not change regardless of whether IA-32e mode is
active or not. CPUID.01H:ECX.DTES64[bit 2] reports whether the processor's DS storage format support is mode-
independent. When set, it uses 64-bit DS storage format.

Table 18-32 PEBS Facility Comparison

Box Haswell Sandy Bridge Comment

Valid IA32_PMCx PMC0-PMC3 PMC0-PMC3 No PEBS on PMC4-PMC7

PEBS Buffer Programming Section 18.6.1.1 Section 18.6.1.1 Unchanged

IA32_PEBS_ENABLE Layout Figure 18-29 Figure 18-15

PEBS record layout Table 18-33, Enhanced fields at
offsets 98H, A0H, A8H, B0H

Table 18-12, Enhanced fields
at offsets 98H, A0H, A8H

PEBS Events See Table 18-21 See Table 18-21 IA32_PMC4-IA32_PMC7 do not
support PEBS.

PEBS-Load Latency See Table 18-22 Table 18-22

PEBS-Precise Store no, replaced by data address
profiling

yes; see Section 18.8.4.3

PEBS-PDIR yes yes IA32_PMC1 only

SAMPLING Restriction Small SAV(CountDown) value incur higher overhead than prior
generation.

Table 18-33 PEBS Record Format for Next Generation Intel Core Processor Family

Byte Offset Field Byte Offset Field

0x0 R/EFLAGS 0x60 R10

0x8 R/EIP 0x68 R11

0x10 R/EAX 0x70 R12

0x18 R/EBX 0x78 R13

0x20 R/ECX 0x80 R14

0x28 R/EDX 0x88 R15

0x30 R/ESI 0x90 IA32_PERF_GLOBAL_STATUS

0x38 R/EDI 0x98 Data Linear Address

0x40 R/EBP 0xA0 Data Source Encoding

0x48 R/ESP 0xA8 Latency value (core cycles)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 134

The layout of PEBS records are almost identical to those shown in Table 18-12. Offset 0xB0 is a new field that
records the eventing IP address of the retired instruction that triggered the PEBS assist.

The PEBS records at offsets 0x98, 0xA0, and 0xAB record data gathered from three of the PEBS capabilities in
prior processor generations: load latency facility (Section 18.8.4.2), PDIR (Section 18.8.4.4), and precise store
(Section 18.8.4.3).

In the core PMU of the next generation processor, load latency facility and PDIR capabilities are unchanged.
However, precise store is replaced by an enhanced capability, data address profiling, that is not restricted to store
address. Data address profiling also records information in PEBS records at offsets 0x98, 0xA0, and 0xAB.

18.10.3 PEBS Data Address Profiling
The Data Linear Address facility is also abbreviated as DataLA. The facility is a replacement or extension of the
precise store facility in previous processor generations. The DataLA facility complements the load latency facility
by providing a means to profile load and store memory references in the system, leverages the PEBS facility, and
provides additional information about sampled loads and stores. Having precise memory reference events with
linear address information for both loads and stores provides information to improve data structure layout, elim-
inate remote node references, and identify cache-line conflicts in NUMA systems.

The DataLA facility in the next generation processor supports the following events configured to use PEBS:

0x50 R8 0xB0 EventingIP

0x58 R9

Table 18-33 PEBS Record Format for Next Generation Intel Core Processor Family

Byte Offset Field Byte Offset Field

Table 18-34 Precise Events That Supports Data Linear Address Profiling
Event Name Event Name

MEM_UOPS_RETIRED.STLB_MISS_LOADS MEM_UOPS_RETIRED.STLB_MISS_STORES

MEM_UOPS_RETIRED.LOCK_LOADS MEM_UOPS_RETIRED.LOCK_STORES

MEM_UOPS_RETIRED.SPLIT_LOADS MEM_UOPS_RETIRED.SPLIT_STORES

MEM_UOPS_RETIRED.ALL_LOADS MEM_UOPS_RETIRED.ALL_STORES

MEM_LOAD_UOPS_RETIRED.L1_HIT MEM_LOAD_UOPS_RETIRED.L2_HIT

MEM_LOAD_UOPS_RETIRED.LLC_HIT MEM_LOAD_UOPS_RETIRED.L1_MISS

MEM_LOAD_UOPS_RETIRED.L2_MISS MEM_LOAD_UOPS_RETIRED.LLC_MISS

MEM_LOAD_UOPS_RETIRED.HIT_LFB MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_MISS

MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HIT MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HITM

UOPS_RETIRED.ALL (if load or store is tagged) MEM_LOAD_UOPS_MISC_RETIRED.UC

MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_NONE MEM_LOAD_UOPS_LLC_MISS_RETIRED.LOCAL_DRAM

MEM_LOAD_UOPS_LLC_MISS_RETIRED.LOCAL_DRAM_SNP_HIT MEM_LOAD_UOPS_LLC_MISS_RETIRED.REMOTE_DRAM

MEM_LOAD_UOPS_LLC_MISS_RETIRED.REMOTE_DRAM_SNP_HIT MEM_LOAD_UOPS_LLC_MISS_RETIRED.REMOTE_HITM

MEM_LOAD_UOPS_LLC_MISS_RETIRED.REMOTE_FWD MEM_LOAD_UOPS_MISC_RETIRED.NON_DRAM

MEM_LOAD_UOPS_MISC_RETIRED.LLC_MISS

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 135

DataLA can use any one of the IA32_PMC0-IA32_PMC3 counters. Counter overflows will initiate the generation of
PEBS records. Upon counter overflow, hardware captures the linear address and possible other status information
of the retiring memory uop. This information is then written to the PEBS record that is subsequently generated.

To enable the DataLA facility, software must complete the following steps. Please note that the DataLA facility
relies on the PEBS facility, so the PEBS configuration requirements must be completed before attempting to
capture DataLA information.
• Complete the PEBS configuration steps.
• Program the an event listed in Table 18-34 using any one of IA32_PERFEVTSEL0-IA32_PERFEVTSEL3.
• Set the corresponding IA32_PEBS_ENABLE.PEBS_EN_CTRx bit and IA32_PEBS_ENABLE[63]. This enables

the corresponding IA32_PMCx as a PEBS counter and enables the DataLA facility, respectively.

When the DataLA facility is enabled, the relevant information written into a PEBS record affects entries at offsets
98H, A0H and A8H, as shown in Table 18-35.

18.10.3.1 EventingIP Record
The PEBS record layout for processors based on Intel microarchitecture code name Haswell adds a new field at
offset 0B0H. This is the eventingIP field that records the IP address of the retired instruction that triggered the
PEBS assist. The EIP/RIP field at offset 08H records the IP address of the next instruction to be executed following
the PEBS assist.

18.10.4 Off-core Response Performance Monitoring
The core PMU facility to collect off-core response events are similar to those described in Section 18.8.5. The
event codes are listed in Table 18-24. Each event code for off-core response monitoring requires programming an
associated configuration MSR, MSR_OFFCORE_RSP_x. Software must program MSR_OFFCORE_RSP_x according
to:
• Transaction request type encoding (bits 15:0): see Table 18-36.
• Supplier information (bits 30:16): see Table 18-26.
• Snoop response information (bits 37:31): see Table 18-27.

Table 18-35 Layout of Data Linear Address Information In PEBS Record

Field Offset Description

Data Linear
Address

98H The linear address of the load or the destination of the store.

Store Status A0H • DCU Hit (Bit 0): The store hit the data cache closest to the core (L1 cache) if this bit is set, otherwise
the store missed the data cache. This information is valid only for the following store events:
UOPS_RETIRED.ALL (if store is tagged),
MEM_UOPS_RETIRED.STLB_MISS_STORES,
MEM_UOPS_RETIRED.LOCK_STORES,
MEM_UOPS_RETIRED.SPLIT_STORES, MEM_UOPS_RETIRED.ALL_STORES

• Other bits are zero, The STLB_MISS, LOCK bit information can be obtained by programming the
corresponding store event in Table 18-34.

Reserved A8H Always zero

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 136

18.10.5 Performance Monitoring and Intel® TSX
Intel TSX allows multi-threaded program to make forward progress with less synchronization overhead. If a
target workload for performance monitoring contains instruction streams using Intel TSX, the transaction code
regions in the workload may encounter the following scenarios: (a) The transactional code on some logical
processors may execute speculatively and commit results with synchronization overhead elided, or (b) the spec-
ulatively executed transaction code aborts and the transactional code will restart normal execution experiencing
the cost of the synchronization primitive. For details of transactional code behavior of Intel TSX, see Chapter 8 of
Intel® Architecture Instruction Set Extensions Programming Reference.

If a processor supports Intel TSX, the core PMU enhances it’s IA32_PERFEVTSELx MSR with two additional bit
fields for event filtering. Support for Intel TSX is indicated by either (a) CPUID.(EAX=7, ECX=0):RTM[bit 11]=1,
or (b) if CPUID.07H.EBX.HLE [bit 4] = 1. The TSX-enhanced layout of IA32_PERFEVTSELx is shown in Figure 18-
34. The two additional bit fields are:
• IN_TX (bit 32): When set, the counter will only include counts that occurred inside a transactional region,

regardless of whether that region was aborted or committed. This bit may only be set if the processor
supports HLE or RTM.

• IN_TXCP (bit 33): When set, the counter will not include counts that occurred inside of an aborted transac-
tional region. This bit may only be set if the processor supports HLE or RTM. This bit may only be set for
IA32_PERFEVTSEL2.

When the IA32_PERFEVTSELx MSR is programmed with both IN_TX=0 and IN_TXCP=0 on a processor that
supports Intel TSX, the result in a counter may include detectable conditions associated with a transaction code
region for its aborted execution (if any) and completed execution.

Table 18-36 MSR_OFFCORE_RSP_x Request_Type Definition (Haswell)

Bit Name Offset Description

DMND_DATA_RD 0 (R/W). Counts the number of demand and DCU prefetch data reads of full and partial cachelines as well
as demand data page table entry cacheline reads. Does not count L2 data read prefetches or instruction
fetches.

DMND_RFO 1 (R/W). Counts the number of demand and DCU prefetch reads for ownership (RFO) requests generated
by a write to data cacheline. Does not count L2 RFO prefetches.

DMND_IFETCH 2 (R/W). Counts the number of demand and DCU prefetch instruction cacheline reads. Does not count L2
code read prefetches.

Reserved 3 Reserved

PF_DATA_RD 4 (R/W). Counts the number of data cacheline reads generated by L2 prefetchers.

PF_RFO 5 (R/W). Counts the number of RFO requests generated by L2 prefetchers.

PF_IFETCH 6 (R/W). Counts the number of code reads generated by L2 prefetchers.

Reserved 7-14 Reserved

OTHER 15 (R/W). Any other request that crosses IDI, including I/O.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 137

A common usage of setting IN_TXCP=1 is to capture the number of events that were discarded due to a transac-
tional abort. With IA32_PMC2 configured to count in such a manner, then when a TX region aborts, the value for
that counter is restored to the value it had prior to the aborted transactional region. As a result, any updates
performed to the counter during the aborted transactional region are discarded.

On the other hand, setting IN_TX=1 can be used to drill down on the performance characteristics of transactional
code regions. When a PMCx is configured with the corresponding IA32_PERFEVTSELx.IN_TX=1, only eventing
conditions that occur inside transactional code regions are propagated to the event logic and reflected in the
counter result. Eventing conditions specified by IA32_PERFEVTSELx but occurring outside a transactional code
region are discarded. The following example illustrates using three counters to drill down cycles spent inside and
outside of transactional regions:
• Program IA32_PERFEVTSEL2 to count Unhalted_Core_Cycles with (IN_TXCP=1, IN_TX=0), such that

IA32_PMC2 will count cycles spent due to aborted TSX transactions;
• Program IA32_PERFEVTSEL0 to count Unhalted_Core_Cycles with (IN_TXCP=0, IN_TX=1), such that

IA32_PMC0 will count cycles spent by the transactional code regions;
• Program IA32_PERFEVTSEL1 to count Unhalted_Core_Cycles with (IN_TXCP=0, IN_TX=0), such that

IA32_PMC1 will count total cycles spent by the non-transactional code and transactional code regions.

Additionally, a number of performance events are solely focused on characterizing the execution of Intel TSX
transactional code, they are listed in Table 19-3.

18.10.5.1 Intel TSX and PEBS Support
If a PEBS event would have occurred inside a transactional region, then the transactional region first aborts, and
then the PEBS event is processed.

Two of the TSX performance monitoring events in Table 19-3 also support using PEBS facility to capture additional
information. They are:
• HLE_RETIRED.ABORT ED (encoding 0xc8 mask 0x4),
• RTM_RETIRED.ABORTED (encoding 0xc9 mask 0x4).

A transactional abort (HLE_RETIRED.ABORTED,RTM_RETIRED.ABORTED) can also be programmed to cause PEBS
events. In this scenario, a PEBS event is processed following the abort.

Pending a PEBS record inside of a transactional region will cause a transactional abort. If a PEBS record was
pended at the time of the abort or on an overflow of the TSX PEBS events listed above, only the following PEBS

Figure 18-34 Layout of IA32_PERFEVTSELx MSRs Supporting Intel TSX

31

INV—Invert counter mask
EN—Enable counters

INT—APIC interrupt enable
PC—Pin control

8 7 0

Event Select

E—Edge detect
OS—Operating system mode
USR—User Mode

Counter Mask
EE

N

I
N
T

19 1618 15172021222324

Reserved

I
N
V

P
C

U
S
R

O
S

Unit Mask (UMASK)(CMASK)

63

ANY—Any Thread

A
N
Y

34

IN_TX—In Trans. Rgn
IN_TXCP—In Tx exclude abort

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 138

entries will be valid (enumerated by PEBS entry offset 0xB8 bits[33:32] to indicate an HLE abort or an RTM
abort):
• Offset 0x98 Data Linear Address (if the uop that triggered PEBS was a load or a store),
• Offset 0xB0 EventingIP,
• Offset 0xB8 TX Abort Information

In the case of HLE, an aborted transaction will restart execution deterministically at the start of the HLE region. In
the case of RTM, an aborted transaction will transfer execution to the RTM fallback handler.

The layout of the TX Abort Information field is given in Table 18-37.

18.10.6 Uncore Performance Monitoring Facilities in Next Generation Intel® Core™
Processors

The uncore sub-system in the Next Generation Intel® Core™ processors provides its own performance monitoring
facility. The uncore PMU facility provides dedicated MSRs to select uncore performance monitoring events in a
similar manner as those described in Section 18.8.6.

The ARB unit and each C-Box provide local pairs of event select MSR and counter register. The layout of the event
select MSRs in the C-Boxes are identical as shown in Figure 18-32.

At the uncore domain level, there is a master set of control MSRs that centrally manages all the performance
monitoring facility of uncore units. Figure 18-33 shows the layout of the uncore domain global control.

Additionally, there is also a fixed counter, counting uncore clockticks, for the uncore domain. Table 18-28 summa-
rizes the number MSRs for uncore PMU for each box.

Table 18-37 TX Abort Information Field Definition

Bit Name Offset Description

Cycles_Last_Block 31:0 the number of cycles in the last TSX region, regardless of whether that region had aborted or
committed.

HLE_Abort 32 If set, the abort information corresponds to an aborted HLE execution

RTM_Abort 33 If set, the abort information corresponds to an aborted RTM execution

Instruction_Abort 34 If set, the transactional abort was associated with the instruction corresponding to the
eventing IP

Non_Instruction_Abort 35 If set, the instruction corresponding to the eventing IP may not necessarily be related to the
transactional abort.

Retry 36 If set, retrying the transactional execution may have succeeded. This value matches the RTM
Abort Status Information in EAX bit[1]

Memory_Data_Conflict 37 If set, another logical processor conflicted with a memory address that was part of the
transactional region that aborted. Matches RTM Abort Encoding EAX bit[2]

Capacity 38 Matches RTM Abort Encoding EAX bit[3]

Reserved 63:39 Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 139

The uncore performance events for the C-Box and ARB units are listed in Table 19-4.

...

18.Updates to Chapter 19, Volume 3B
Change bars show changes to Chapter 19 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

...
This chapter lists the performance-monitoring events that can be monitored with the Intel 64 or IA-32 processors.
The ability to monitor performance events and the events that can be monitored in these processors are mostly
model-specific, except for architectural performance events, described in Section 19.1.

Non-architectural performance events (i.e. model-specific events) are listed for each generation of microarchitec-
ture:
• Section 19.2 - Next Generation Intel® Core™ Processors
• Section 19.3 - Processors based on Intel® microarchitecture code name Ivy Bridge
• Section 19.4 - Processors based on Intel® microarchitecture code name Sandy Bridge
• Section 19.5 - Processors based on Intel® microarchitecture code name Nehalem
• Section 19.6 - Processors based on Intel® microarchitecture code name Westmere
• Section 19.7 - Processors based on Enhanced Intel® Core™ microarchitecture
• Section 19.8 - Processors based on Intel® Core™ microarchitecture
• Section 19.9 - Processors based on Intel® Atom™ microarchitecture
• Section 19.10 - Intel® Core™ Solo and Intel® Core™ Duo processors
• Section 19.11 - Processors based on Intel NetBurst® microarchitecture
• Section 19.12 - Pentium® M family processors
• Section 19.13 - P6 family processors
• Section 19.14 - Pentium® processors

NOTE
These performance-monitoring events are intended to be used as guides for performance tuning.
The counter values reported by the performance-monitoring events are approximate and believed
to be useful as relative guides for tuning software. Known discrepancies are documented where
applicable.

...

Table 18-37 Uncore PMU MSR Summary

Box # of Boxes
Counters per
Box

Counter
Width

General
Purpose

Global
Enable Comment

C-Box SKU specific 2 44 Yes Per-box Up to 4, seeTable 35-12
MSR_UNC_CBO_CONFIG

ARB 1 2 44 Yes Uncore

Fixed
Counter

N.A. N.A. 48 No Uncore

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 140

19.2 PERFORMANCE MONITORING EVENTS FOR NEXT GENERATION
INTEL® CORE™ PROCESSORS

The Next Generation Intel® Core™ Processors are based on the Intel microarchitecture code name Haswell. They
support the architectural performance-monitoring events listed in Table 19-1. Non-architectural performance-
monitoring events in the processor core are listed in Table 19-5. The events in Table 19-5 apply to processors with
CPUID signature of DisplayFamily_DisplayModel encoding with the following values: 06_3CH and 06_45H.

Table 19-2 Non-Architectural Performance Events In the Processor Core of
Next Generation Intel® Core™ Processors

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 02H LD_BLOCKS.STORE_FORWARD loads blocked by overlapping with store buffer that
cannot be forwarded .

05H 01H MISALIGN_MEM_REF.LOADS Speculative cache-line split load uops dispatched to
L1D.

05H 02H MISALIGN_MEM_REF.STORES Speculative cache-line split Store-address uops
dispatched to L1D.

07H 01H LD_BLOCKS_PARTIAL.ADDRES
S_ALIAS

False dependencies in MOB due to partial compare
on address.

08H 01H DTLB_LOAD_MISSES.MISS_CA
USES_A_WALK

Misses in all TLB levels that cause a page walk of
any page size.

08H 02H DTLB_LOAD_MISSES.WALK_CO
MPLETED_4K

Completed page walks due to demand load misses
that caused 4K page walks in any TLB levels.

08H 04H DTLB_LOAD_MISSES.WALK_CO
MPLETED_2M_4M

Completed page walks due to demand load misses
that caused 2M/4M page walks in any TLB levels.

08H 0EH DTLB_LOAD_MISSES.WALK_CO
MPLETED

Completed page walks in any TLB of any page size
due to demand load misses

08H 10H DTLB_LOAD_MISSES.WALK_DU
RATION

Cycle PMH is busy with a walk.

08H 20H DTLB_LOAD_MISSES.STLB_HIT
_4K

Load misses that missed DTLB but hit STLB (4K).

08H 40H DTLB_LOAD_MISSES.STLB_HIT
_2M

Load misses that missed DTLB but hit STLB (2M).

08H 60H DTLB_LOAD_MISSES.STLB_HIT Number of cache load STLB hits. No page walk.

08H 80H DTLB_LOAD_MISSES.PDE_CAC
HE_MISS

DTLB demand load misses with low part of linear-
to-physical address translation missed

0DH 03H INT_MISC.RECOVERY_CYCLES Cycles waiting to recover after Machine Clears
except JEClear. Set Cmask= 1.

Set Edge to count
occurrences

0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of Uops issued by the
RAT to RS.

Set Cmask = 1, Inv = 1, Any= 1to count stalled
cycles of this core.

Set Cmask = 1, Inv = 1to
count stalled cycles

0EH 10H UOPS_ISSUED.FLAGS_MERGE Number of flags-merge uops allocated. Such uops
adds delay.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 141

0EH 20H UOPS_ISSUED.SLOW_LEA Number of slow LEA or similar uops allocated. Such
uop has 3 sources (e.g. 2 sources + immediate)
regardless if as a result of LEA instruction or not.

0EH 40H UOPS_ISSUED.SiNGLE_MUL Number of multiply packed/scalar single precision
uops allocated.

24H 21H L2_RQSTS.DEMAND_DATA_RD
_MISS

Demand Data Read requests that missed L2, no
rejects.

24H 41H L2_RQSTS.DEMAND_DATA_RD
_HIT

Demand Data Read requests that hit L2 cache.

24H E1H L2_RQSTS.ALL_DEMAND_DAT
A_RD

Counts any demand and L1 HW prefetch data load
requests to L2.

24H 42H L2_RQSTS.RFO_HIT Counts the number of store RFO requests that hit
the L2 cache.

24H 22H L2_RQSTS.RFO_MISS Counts the number of store RFO requests that miss
the L2 cache.

24H E2H L2_RQSTS.ALL_RFO Counts all L2 store RFO requests.

24H 44H L2_RQSTS.CODE_RD_HIT Number of instruction fetches that hit the L2 cache.

24H 24H L2_RQSTS.CODE_RD_MISS Number of instruction fetches that missed the L2
cache.

24H 27H L2_RQSTS.ALL_DEMAND_MISS Demand requests that miss L2 cache.

24H E7H L2_RQSTS.ALL_DEMAND_REF
ERENCES

Demand requests to L2 cache.

24H E4H L2_RQSTS.ALL_CODE_RD Counts all L2 code requests.

24H 50H L2_RQSTS.L2_PF_HIT Counts all L2 HW prefetcher requests that hit L2.

24H 30H L2_RQSTS.L2_PF_MISS Counts all L2 HW prefetcher requests that missed
L2.

24H F8H L2_RQSTS.ALL_PF Counts all L2 HW prefetcher requests.

24H 3FH L2_RQSTS.MISS All requests that missed L2.

24H FFH L2_RQSTS.REFERENCES All requests to L2 cache.

27H 50H L2_DEMAND_RQSTS.WB_HIT Not rejected writebacks that hit L2 cache

2EH 4FH LONGEST_LAT_CACHE.REFERE
NCE

This event counts requests originating from the
core that reference a cache line in the last level
cache.

see Table 19-1

2EH 41H LONGEST_LAT_CACHE.MISS This event counts each cache miss condition for
references to the last level cache.

see Table 19-1

3CH 00H CPU_CLK_UNHALTED.THREAD
_P

Counts the number of thread cycles while the
thread is not in a halt state. The thread enters the
halt state when it is running the HLT instruction.
The core frequency may change from time to time
due to power or thermal throttling.

see Table 19-1

3CH 01H CPU_CLK_THREAD_UNHALTE
D.REF_XCLK

Increments at the frequency of XCLK (100 MHz)
when not halted.

see Table 19-1

Table 19-2 Non-Architectural Performance Events In the Processor Core of
Next Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 142

48H 01H L1D_PEND_MISS.PENDING Increments the number of outstanding L1D misses
every cycle. Set Cmaks = 1 and Edge =1 to count
occurrences.

Counter 2 only;

Set Cmask = 1 to count
cycles.

49H 01H DTLB_STORE_MISSES.MISS_CA
USES_A_WALK

Miss in all TLB levels causes an page walk of any
page size (4K/2M/4M/1G).

49H 02H DTLB_STORE_MISSES.WALK_C
OMPLETED_4K

Completed page walks due to store misses in one or
more TLB levels of 4K page structure.

49H 04H DTLB_STORE_MISSES.WALK_C
OMPLETED_2M_4M

Completed page walks due to store misses in one or
more TLB levels of 2M/4M page structure.

49H 0EH DTLB_STORE_MISSES.WALK_C
OMPLETED

Completed page walks due to store miss in any TLB
levels of any page size (4K/2M/4M/1G).

49H 10H DTLB_STORE_MISSES.WALK_D
URATION

Cycles PMH is busy with this walk.

49H 20H DTLB_STORE_MISSES.STLB_HI
T_4K

Store misses that missed DTLB but hit STLB (4K).

49H 40H DTLB_STORE_MISSES.STLB_HI
T_2M

Store misses that missed DTLB but hit STLB (2M).

49H 60H DTLB_STORE_MISSES.STLB_HI
T

Store operations that miss the first TLB level but hit
the second and do not cause page walks.

49H 80H DTLB_STORE_MISSES.PDE_CA
CHE_MISS

DTLB store misses with low part of linear-to-
physical address translation missed.

4CH 01H LOAD_HIT_PRE.SW_PF Non-SW-prefetch load dispatches that hit fill buffer
allocated for S/W prefetch.

4CH 02H LOAD_HIT_PRE.HW_PF Non-SW-prefetch load dispatches that hit fill buffer
allocated for H/W prefetch.

51H 01H L1D.REPLACEMENT Counts the number of lines brought into the L1 data
cache.

58H 04H MOVE_ELIMINATION.INT_NOT_
ELIMINATED

Number of integer Move Elimination candidate uops
that were not eliminated.

58H 08H MOVE_ELIMINATION.SIMD_NO
T_ELIMINATED

Number of SIMD Move Elimination candidate uops
that were not eliminated.

58H 01H MOVE_ELIMINATION.INT_ELIMI
NATED

Number of integer Move Elimination candidate uops
that were eliminated.

58H 02H MOVE_ELIMINATION.SIMD_ELI
MINATED

Number of SIMD Move Elimination candidate uops
that were eliminated.

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the thread is in ring 0. Use Edge to count
transition

5CH 02H CPL_CYCLES.RING123 Unhalted core cycles when the thread is not in ring
0.

5EH 01H RS_EVENTS.EMPTY_CYCLES Cycles the RS is empty for the thread.

63H 01H LOCK_CYCLES.SPLIT_LOCK_UC
_LOCK_DURATION

Cycles in which the L1D and L2 are locked, due to a
UC lock or split lock.

Table 19-2 Non-Architectural Performance Events In the Processor Core of
Next Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 143

63H 02H LOCK_CYCLES.CACHE_LOCK_D
URATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops delivered to IDQ
from MITE path.

Set Cmask = 1 to count cycles.

Can combine Umask 04H
and 20H

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops delivered to IDQ
from DSB path.

Set Cmask = 1 to count cycles.

Can combine Umask 08H
and 10H

79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops delivered to IDQ
when MS_busy by DSB. Set Cmask = 1 to count
cycles. Add Edge=1 to count # of delivery.

Can combine Umask 04H,
08H

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops delivered to IDQ
when MS_busy by MITE. Set Cmask = 1 to count
cycles.

Can combine Umask 04H,
08H

79H 30H IDQ.MS_UOPS Increment each cycle # of uops delivered to IDQ
from MS by either DSB or MITE. Set Cmask = 1 to
count cycles.

Can combine Umask 04H,
08H

79H 18H IDQ.ALL_DSB_CYCLES_ANY_U
OPS

Counts cycles DSB is delivered at least one uops. Set
Cmask = 1.

79H 18H IDQ.ALL_DSB_CYCLES_4_UOP
S

Counts cycles DSB is delivered four uops. Set Cmask
= 4.

79H 24H IDQ.ALL_MITE_CYCLES_ANY_U
OPS

Counts cycles MITE is delivered at least one uops.
Set Cmask = 1.

79H 24H IDQ.ALL_MITE_CYCLES_4_UOP
S

Counts cycles MITE is delivered four uops. Set
Cmask = 4.

79H 3CH IDQ.MITE_ALL_UOPS # of uops delivered to IDQ from any path.

80H 02H ICACHE.MISSES Number of Instruction Cache, Streaming Buffer and
Victim Cache Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_CAUSES_A
_WALK

Misses in ITLB that causes a page walk of any page
size.

85H 02H ITLB_MISSES.WALK_COMPLET
ED_4K

Completed page walks due to misses in ITLB 4K
page entries.

85H 04H ITLB_MISSES.WALK_COMPLET
ED_2M_4M

Completed page walks due to misses in ITLB 2M/4M
page entries.

85H 0EH ITLB_MISSES.WALK_COMPLET
ED

Completed page walks in ITLB of any page size.

85H 10H ITLB_MISSES.WALK_DURATIO
N

Cycle PMH is busy with a walk.

85H 20H ITLB_MISSES.STLB_HIT_4K ITLB misses that hit STLB (4K).

85H 40H ITLB_MISSES.STLB_HIT_2M ITLB misses that hit STLB (2M).

85H 60H ITLB_MISSES.STLB_HIT ITLB misses that hit STLB. No page walk.

Table 19-2 Non-Architectural Performance Events In the Processor Core of
Next Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 144

87H 01H ILD_STALL.LCP Stalls caused by changing prefix length of the
instruction.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to IQ is full.

88H 01H BR_INST_EXEC.COND Qualify conditional near branch instructions
executed, but not necessarily retired.

Must combine with
umask 40H, 80H

88H 02H BR_INST_EXEC.DIRECT_JMP Qualify all unconditional near branch instructions
excluding calls and indirect branches.

Must combine with
umask 80H

88H 04H BR_INST_EXEC.INDIRECT_JMP
_NON_CALL_RET

Qualify executed indirect near branch instructions
that are not calls nor returns.

Must combine with
umask 80H

88H 08H BR_INST_EXEC.RETURN_NEA
R

Qualify indirect near branches that have a return
mnemonic.

Must combine with
umask 80H

88H 10H BR_INST_EXEC.DIRECT_NEAR
_CALL

Qualify unconditional near call branch instructions,
excluding non call branch, executed.

Must combine with
umask 80H

88H 20H BR_INST_EXEC.INDIRECT_NEA
R_CALL

Qualify indirect near calls, including both register
and memory indirect, executed.

Must combine with
umask 80H

88H 40H BR_INST_EXEC.NONTAKEN Qualify non-taken near branches executed. Applicable to umask 01H
only

88H 80H BR_INST_EXEC.TAKEN Qualify taken near branches executed. Must
combine with 01H,02H, 04H, 08H, 10H, 20H.

88H FFH BR_INST_EXEC.ALL_BRANCHE
S

Counts all near executed branches (not necessarily
retired).

89H 01H BR_MISP_EXEC.COND Qualify conditional near branch instructions
mispredicted.

Must combine with
umask 40H, 80H

89H 04H BR_MISP_EXEC.INDIRECT_JMP
_NON_CALL_RET

Qualify mispredicted indirect near branch
instructions that are not calls nor returns.

Must combine with
umask 80H

89H 08H BR_MISP_EXEC.RETURN_NEA
R

Qualify mispredicted indirect near branches that
have a return mnemonic.

Must combine with
umask 80H

89H 10H BR_MISP_EXEC.DIRECT_NEAR
_CALL

Qualify mispredicted unconditional near call branch
instructions, excluding non call branch, executed.

Must combine with
umask 80H

89H 20H BR_MISP_EXEC.INDIRECT_NEA
R_CALL

Qualify mispredicted indirect near calls, including
both register and memory indirect, executed.

Must combine with
umask 80H

89H 40H BR_MISP_EXEC.NONTAKEN Qualify mispredicted non-taken near branches
executed.

Applicable to umask 01H
only

89H 80H BR_MISP_EXEC.TAKEN Qualify mispredicted taken near branches executed.
Must combine with 01H,02H, 04H, 08H, 10H, 20H.

89H FFH BR_MISP_EXEC.ALL_BRANCHE
S

Counts all near executed branches (not necessarily
retired).

9CH 01H IDQ_UOPS_NOT_DELIVERED.C
ORE

Count number of non-delivered uops to RAT per
thread.

Use Cmask to qualify uop
b/w

A1H 01H UOPS_EXECUTED_PORT.PORT
_0

Cycles which a Uop is dispatched on port 0 in this
thread.

Set AnyThread to count
per core

Table 19-2 Non-Architectural Performance Events In the Processor Core of
Next Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 145

A1H 02H UOPS_EXECUTED_PORT.PORT
_1

Cycles which a Uop is dispatched on port 1 in this
thread.

Set AnyThread to count
per core

A1H 04H UOPS_EXECUTED_PORT.PORT
_2

Cycles which a uop is dispatched on port 2 in this
thread.

Set AnyThread to count
per core

A1H 08H UOPS_EXECUTED_PORT.PORT
_3

Cycles which a uop is dispatched on port 3 in this
thread.

Set AnyThread to count
per core

A1H 10H UOPS_EXECUTED_PORT.PORT
_4

Cycles which a uop is dispatched on port 4 in this
thread.

Set AnyThread to count
per core

A1H 20H UOPS_EXECUTED_PORT.PORT
_5

Cycles which a uop is dispatched on port 5 in this
thread.

Set AnyThread to count
per core

A1H 40H UOPS_EXECUTED_PORT.PORT
_6

Cycles which a Uop is dispatched on port 6 in this
thread.

Set AnyThread to count
per core

A1H 80H UOPS_EXECUTED_PORT.PORT
_7

Cycles which a Uop is dispatched on port 7 in this
thread

Set AnyThread to count
per core

A2H 01H RESOURCE_STALLS.ANY Cycles Allocation is stalled due to Resource Related
reason.

A2H 04H RESOURCE_STALLS.RS Cycles stalled due to no eligible RS entry available.

A2H 08H RESOURCE_STALLS.SB Cycles stalled due to no store buffers available (not
including draining form sync).

A2H 10H RESOURCE_STALLS.ROB Cycles stalled due to re-order buffer full.

A3H 02H CYCLE_ACTIVITY.CYCLES_LDM
_PENDING

Cycles with pending memory loads. Set Cmask=2 to
count cycle.

A3H 08H CYCLE_ACTIVITY.CYCLES_L1D_
PENDING

Cycles with pending L1 cache miss loads. Set
Cmask=8 to count cycle.

PMC2 only

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes, includes
4k/2M/4M pages.

B0H 02H OFFCORE_REQUESTS.DEMAND
_CODE_RD

Demand code read requests sent to uncore.

B0H 04H OFFCORE_REQUESTS.DEMAND
_RFO

Demand RFO read requests sent to uncore,
including regular RFOs, locks, ItoM.

B0H 08H OFFCORE_REQUESTS.ALL_DAT
A_RD

Data read requests sent to uncore (demand and
prefetch).

B1H 02H UOPS_EXECUTED.CORE Counts total number of uops to be executed per-
core each cycle.

Do not need to set ANY

B7H 01H OFF_CORE_RESPONSE_0 see Section 18.8.5, “Off-core Response
Performance Monitoring”.

Requires MSR 01A6H

BBH 01H OFF_CORE_RESPONSE_1 See Section 18.8.5, “Off-core Response
Performance Monitoring”.

Requires MSR 01A7H

BCH 11H PAGE_WALKER_LOADS.DTLB_
L1

Number of DTLB page walker loads that hit in the
L1+FB.

BCH 21H PAGE_WALKER_LOADS.ITLB_L
1

Number of ITLB page walker loads that hit in the
L1+FB.

Table 19-2 Non-Architectural Performance Events In the Processor Core of
Next Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 146

BCH 12H PAGE_WALKER_LOADS.DTLB_
L2

Number of DTLB page walker loads that hit in the
L2.

BCH 22H PAGE_WALKER_LOADS.ITLB_L
2

Number of ITLB page walker loads that hit in the L2.

BCH 14H PAGE_WALKER_LOADS.DTLB_
L3

Number of DTLB page walker loads that hit in the
L3.

BCH 24H PAGE_WALKER_LOADS.ITLB_L
3

Number of ITLB page walker loads that hit in the L3.

BCH 18H PAGE_WALKER_LOADS.DTLB_
MEMORY

Number of DTLB page walker loads from memory.

BCH 28H PAGE_WALKER_LOADS.ITLB_M
EMORY

Number of ITLB page walker loads from memory.

BDH 01H TLB_FLUSH.DTLB_THREAD DTLB flush attempts of the thread-specific entries.

BDH 20H TLB_FLUSH.STLB_ANY Count number of STLB flush attempts.

C0H 00H INST_RETIRED.ANY_P Number of instructions at retirement. See Table 19-1

C0H 01H INST_RETIRED.ALL Precise instruction retired event with HW to reduce
effect of PEBS shadow in IP distribution.

PMC1 only; Must quiesce
other PMCs.

C1H 08H OTHER_ASSISTS.AVX_TO_SSE Number of transitions from AVX-256 to legacy SSE
when penalty applicable.

C1H 10H OTHER_ASSISTS.SSE_TO_AVX Number of transitions from SSE to AVX-256 when
penalty applicable.

C1H 40H OTHER_ASSISTS.ANY_WB_AS
SIST

Number of microcode assists invoked by HW upon
uop writeback.

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops retired, Use
cmask=1 and invert to count active cycles or stalled
cycles.

Supports PEBS, use
Any=1 for core granular.

C2H 02H UOPS_RETIRED.RETIRE_SLOTS Counts the number of retirement slots used each
cycle.

C3H 02H MACHINE_CLEARS.MEMORY_O
RDERING

Counts the number of machine clears due to
memory order conflicts.

C3H 04H MACHINE_CLEARS.SMC Number of self-modifying-code machine clears
detected.

C3H 20H MACHINE_CLEARS.MASKMOV Counts the number of executed AVX masked load
operations that refer to an illegal address range
with the mask bits set to 0.

C4H 00H BR_INST_RETIRED.ALL_BRAN
CHES

Branch instructions at retirement. See Table 19-1

C4H 01H BR_INST_RETIRED.CONDITION
AL

Counts the number of conditional branch
instructions retired.

Supports PEBS

C4H 02H BR_INST_RETIRED.NEAR_CAL
L

Direct and indirect near call instructions retired.

Table 19-2 Non-Architectural Performance Events In the Processor Core of
Next Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 147

C4H 04H BR_INST_RETIRED.ALL_BRAN
CHES

Counts the number of branch instructions retired.

C4H 08H BR_INST_RETIRED.NEAR_RET
URN

Counts the number of near return instructions
retired.

C4H 10H BR_INST_RETIRED.NOT_TAKE
N

Counts the number of not taken branch instructions
retired.

C4H 20H BR_INST_RETIRED.NEAR_TAK
EN

Number of near taken branches retired.

C4H 40H BR_INST_RETIRED.FAR_BRAN
CH

Number of far branches retired.

C5H 00H BR_MISP_RETIRED.ALL_BRAN
CHES

Mispredicted branch instructions at retirement See Table 19-1

C5H 01H BR_MISP_RETIRED.CONDITION
AL

Mispredicted conditional branch instructions retired. Supports PEBS

C5H 04H BR_MISP_RETIRED.ALL_BRAN
CHES

Mispredicted macro branch instructions retired.

CAH 02H FP_ASSIST.X87_OUTPUT Number of X87 FP assists due to Output values.

CAH 04H FP_ASSIST.X87_INPUT Number of X87 FP assists due to input values.

CAH 08H FP_ASSIST.SIMD_OUTPUT Number of SIMD FP assists due to Output values.

CAH 10H FP_ASSIST.SIMD_INPUT Number of SIMD FP assists due to input values.

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE* or FP assists.

CCH 20H ROB_MISC_EVENTS.LBR_INSE
RTS

Count cases of saving new LBR records by
hardware.

CDH 01H MEM_TRANS_RETIRED.LOAD_
LATENCY

Sample loads with specified latency threshold.
PMC3 only.

Specify threshold in MSR
0x3F6

D0H 01H MEM_UOP_RETIRED.LOADS Qualify retired memory uops that are loads.
Combine with umask 10H, 20H, 40H, 80H.

Supports PEBS and
DataLA

D0H 02H MEM_UOP_RETIRED.STORES Qualify retired memory uops that are stores.
Combine with umask 10H, 20H, 40H, 80H.

Supports PEBS and
DataLA

D0H 10H MEM_UOP_RETIRED.STLB_MIS
S

Qualify retired memory uops with STLB miss. Must
combine with umask 01H, 02H, to produce counts.

Supports PEBS and
DataLA

D0H 20H MEM_UOP_RETIRED.LOCK Qualify retired memory uops with lock. Must
combine with umask 01H, 02H, to produce counts.

Supports PEBS and
DataLA

D0H 40H MEM_UOP_RETIRED.SPLIT Qualify retired memory uops with line split. Must
combine with umask 01H, 02H, to produce counts.

Supports PEBS and
DataLA

D0H 80H MEM_UOP_RETIRED.ALL Qualify any retired memory uops. Must combine
with umask 01H, 02H, to produce counts.

Supports PEBS and
DataLA

D1H 01H MEM_LOAD_UOPS_RETIRED.L
1_HIT

Retired load uops with L1 cache hits as data
sources.

Supports PEBS and
DataLA

D1H 02H MEM_LOAD_UOPS_RETIRED.L
2_HIT

Retired load uops with L2 cache hits as data
sources.

Supports PEBS and
DataLA

Table 19-2 Non-Architectural Performance Events In the Processor Core of
Next Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 148

D1H 04H MEM_LOAD_UOPS_RETIRED.LL
C_HIT

Retired load uops with LLC cache hits as data
sources.

Supports PEBS and
DataLA

D1H 10H MEM_LOAD_UOPS_RETIRED.L
2_MISS

Retired load uops missed L2. Unknown data source
excluded.

Supports PEBS and
DataLA

D1H 40H MEM_LOAD_UOPS_RETIRED.HI
T_LFB

Retired load uops which data sources were load
uops missed L1 but hit FB due to preceding miss to
the same cache line with data not ready.

D2H 01H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_MISS

Retired load uops which data sources were LLC hit
and cross-core snoop missed in on-pkg core cache.

Supports PEBS and
DataLA

D2H 02H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HIT

Retired load uops which data sources were LLC and
cross-core snoop hits in on-pkg core cache.

Supports PEBS and
DataLA

D2H 04H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HITM

Retired load uops which data sources were HitM
responses from shared LLC.

Supports PEBS and
DataLA

D2H 08H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_NONE

Retired load uops which data sources were hits in
LLC without snoops required.

Supports PEBS and
DataLA

D3H 01H MEM_LOAD_UOPS_LLC_MISS_
RETIRED.LOCAL_DRAM

Retired load uops which data sources missed LLC
but serviced from local dram.

Supports PEBS and
DataLA.

E6H 1FH BACLEARS.ANY Number of front end re-steers due to BPU
misprediction.

F0H 01H L2_TRANS.DEMAND_DATA_RD Demand Data Read requests that access L2 cache.

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache.

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching instructions.

F0H 08H L2_TRANS.ALL_PF Any MLC or LLC HW prefetch accessing L2, including
rejects.

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2 cache.

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache.

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache.

F0H 80H L2_TRANS.ALL_REQUESTS Transactions accessing L2 pipe.

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2. Counting does not cover
rejects.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2. Counting does not cover
rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2. Counting does not cover
rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2. Counting does not cover
rejects.

F2H 05H L2_LINES_OUT.DEMAND_CLEA
N

Clean L2 cache lines evicted by demand.

F2H 06H L2_LINES_OUT.DEMAND_DIRT
Y

Dirty L2 cache lines evicted by demand.

Table 19-2 Non-Architectural Performance Events In the Processor Core of
Next Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 149

Table 19-3 Intel TSX Performance Events
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

54H 01H TX_MEM.ABORT_CONFLICT Number of times a transactional abort was signaled
due to a data conflict on a transactionally accessed
address

02H TX_MEM.ABORT_CAPACITY Number of times a transactional abort was signaled
due to a data capacity limitation

04H TX_MEM.ABORT_HLE_STORE_
TO_ELIDED_LOCK

Number of times a HLE transactional region aborted
due to a non XRELEASE prefixed instruction writing to
an elided lock in the elision buffer

08H TX_MEM.ABORT_HLE_ELISION
_BUFFER_NOT_EMPTY

Number of times an HLE transactional execution
aborted due to NoAllocatedElisionBuffer being non-
zero.

10H TX_MEM.ABORT_HLE_ELISION
_BUFFER_MISMATCH

Number of times an HLE transactional execution
aborted due to XRELEASE lock not satisfying the
address and value requirements in the elision buffer.

20H TX_MEM.ABORT_HLE_ELISION
_BUFFER_UNSUPPORTED_ALI
GNMENT

Number of times an HLE transactional execution
aborted due to an unsupported read alignment from
the elision buffer.

40H TX_MEM.ABORT_HLE_ELISION
_BUFFER_FULL

Number of times HLE lock could not be elided due to
ElisionBufferAvailable being zero.

5DH 01H TX_EXEC.MISC1 Counts the number of times a class of instructions that
may cause a transactional abort was executed. Since
this is the count of execution, it may not always cause
a transactional abort.

02H TX_EXEC.MISC2 Counts the number of times a class of instructions that
may cause a transactional abort was executed inside a
transactional region

04H TX_EXEC.MISC3 Counts the number of times an instruction execution
caused the nest count supported to be exceeded

08H TX_EXEC.MISC4 Counts the number of times an HLE XACQUIRE
instruction was executed inside an RTM transactional
region

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 150

Non-architectural performance monitoring events that are located in the uncore sub-system are implementation
specific between different platforms using processors based on Intel microarchitecture Sandy Bridge. Processors
with CPUID signature of DisplayFamily_DisplayModel 06_3CH and 06_45H support performance events listed in
Table 19-4.

C8H 01H HLE_RETIRED.START Number of times an HLE execution started. IF HLE is supported

02H HLE_RETIRED.COMMIT Number of times an HLE execution successfully
committed

04H HLE_RETIRED.ABORTED Number of times an HLE execution aborted due to any
reasons (multiple categories may count as one)

08H HLE_RETIRED.ABORTED_MISC
1

Number of times an HLE execution aborted due to
various memory events

10H HLE_RETIRED.ABORTED_MISC
2

Number of times an HLE execution aborted due to
uncommon conditions

20H HLE_RETIRED.ABORTED_MISC
3

Number of times an HLE execution aborted due to
HLE-unfriendly instructions

40H HLE_RETIRED.ABORTED_MISC
4

Number of times an HLE execution aborted due to
incompatible memory type

80H HLE_RETIRED.ABORTED_MISC
5

Number of times an HLE execution aborted due to
none of the previous 4 categories (e.g. interrupt)

C9H 01H RTM_RETIRED.START Number of times an RTM execution started. IF RTM is supported

02H RTM_RETIRED.COMMIT Number of times an RTM execution successfully
committed

04H RTM_RETIRED.ABORTED Number of times an RTM execution aborted due to any
reasons (multiple categories may count as one)

08H RTM_RETIRED.ABORTED_MISC
1

Number of times an RTM execution aborted due to
various memory events

IF RTM is supported

10H RTM_RETIRED.ABORTED_MISC
2

Number of times an RTM execution aborted due to
uncommon conditions

20H RTM_RETIRED.ABORTED_MISC
3

Number of times an RTM execution aborted due to
HLE-unfriendly instructions

40H RTM_RETIRED.ABORTED_MISC
4

Number of times an RTM execution aborted due to
incompatible memory type

80H RTM_RETIRED.ABORTED_MISC
5

Number of times an RTM execution aborted due to
none of the previous 4 categories (e.g. interrupt)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 151

Table 19-4 Non-Architectural Uncore Performance Events In the Next Generation Intel® Core™ Processors
Event
Num.1

Umask
Value Event Mask Mnemonic Description Comment

22H 01H UNC_CBO_XSNP_RESPONSE.M
ISS

A snoop misses in some processor core. Must combine with
one of the umask
values of 20H, 40H,
80H

22H 02H UNC_CBO_XSNP_RESPONSE.I
NVAL

A snoop invalidates a non-modified line in some
processor core.

22H 04H UNC_CBO_XSNP_RESPONSE.H
IT

A snoop hits a non-modified line in some processor
core.

22H 08H UNC_CBO_XSNP_RESPONSE.H
ITM

A snoop hits a modified line in some processor core.

22H 10H UNC_CBO_XSNP_RESPONSE.I
NVAL_M

A snoop invalidates a modified line in some processor
core.

22H 20H UNC_CBO_XSNP_RESPONSE.E
XTERNAL_FILTER

Filter on cross-core snoops initiated by this Cbox due
to external snoop request.

Must combine with at
least one of 01H, 02H,
04H, 08H, 10H22H 40H UNC_CBO_XSNP_RESPONSE.X

CORE_FILTER
Filter on cross-core snoops initiated by this Cbox due
to processor core memory request.

22H 80H UNC_CBO_XSNP_RESPONSE.E
VICTION_FILTER

Filter on cross-core snoops initiated by this Cbox due
to LLC eviction.

34H 01H UNC_CBO_CACHE_LOOKUP.M LLC lookup request that access cache and found line in
M-state.

Must combine with
one of the umask
values of 10H, 20H,
40H, 80H

34H 02H UNC_CBO_CACHE_LOOKUP.E LLC lookup request that access cache and found line in
E-state.

34H 04H UNC_CBO_CACHE_LOOKUP.S LLC lookup request that access cache and found line in
S-state.

34H 08H UNC_CBO_CACHE_LOOKUP.I LLC lookup request that access cache and found line in
I-state.

34H 10H UNC_CBO_CACHE_LOOKUP.RE
AD_FILTER

Filter on processor core initiated cacheable read
requests. Must combine with at least one of 01H, 02H,
04H, 08H.

34H 20H UNC_CBO_CACHE_LOOKUP.WR
ITE_FILTER

Filter on processor core initiated cacheable write
requests. Must combine with at least one of 01H, 02H,
04H, 08H.

34H 40H UNC_CBO_CACHE_LOOKUP.EX
TSNP_FILTER

Filter on external snoop requests. Must combine with
at least one of 01H, 02H, 04H, 08H.

34H 80H UNC_CBO_CACHE_LOOKUP.AN
Y_REQUEST_FILTER

Filter on any IRQ or IPQ initiated requests including
uncacheable, non-coherent requests. Must combine
with at least one of 01H, 02H, 04H, 08H.

80H 01H UNC_ARB_TRK_OCCUPANCY.A
LL

Counts cycles weighted by the number of requests
waiting for data returning from the memory controller.
Accounts for coherent and non-coherent requests
initiated by IA cores, processor graphic units, or LLC.

Counter 0 only

81H 01H UNC_ARB_TRK_REQUEST.ALL Counts the number of coherent and in-coherent
requests initiated by IA cores, processor graphic units,
or LLC.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 152

19.3 PERFORMANCE MONITORING EVENTS FOR 3RD GENERATION
INTEL® CORE™ PROCESSORS

3rd Generation Intel® Core™ Processors are based on the Intel microarchitecture code name Ivy Bridge. They
support architectural performance-monitoring events listed in Table 19-1. Non-architectural performance-moni-
toring events in the processor core are listed in Table 19-5. The events in Table 19-5 apply to processors with
CPUID signature of DisplayFamily_DisplayModel encoding with the following values: 06_3AH.

81H 20H UNC_ARB_TRK_REQUEST.WRI
TES

Counts the number of allocated write entries, include
full, partial, and LLC evictions.

81H 80H UNC_ARB_TRK_REQUEST.EVIC
TIONS

Counts the number of LLC evictions allocated.

83H 01H UNC_ARB_COH_TRK_OCCUPA
NCY.ALL

Cycles weighted by number of requests pending in
Coherency Tracker.

Counter 0 only

84H 01H UNC_ARB_COH_TRK_REQUES
T.ALL

Number of requests allocated in Coherency Tracker.

NOTES:
1. The uncore events must be programmed using MSRs located in specific performance monitoring units in the uncore. UNC_CBO*

events are supported using MSR_UNC_CBO* MSRs; UNC_ARB* events are supported using MSR_UNC_ARB*MSRs.

Table 19-4 Non-Architectural Uncore Performance Events In the Next Generation Intel® Core™ Processors
Event
Num.1

Umask
Value Event Mask Mnemonic Description Comment

Table 19-5 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 02H LD_BLOCKS.STORE_FORWARD loads blocked by overlapping with store buffer that
cannot be forwarded .

05H 01H MISALIGN_MEM_REF.LOADS Speculative cache-line split load uops dispatched to
L1D.

05H 02H MISALIGN_MEM_REF.STORES Speculative cache-line split Store-address uops
dispatched to L1D.

07H 01H LD_BLOCKS_PARTIAL.ADDRES
S_ALIAS

False dependencies in MOB due to partial compare
on address.

08H 81H DTLB_LOAD_MISSES.MISS_CA
USES_A_WALK

Misses in all TLB levels that cause a page walk of
any page size from demand loads.

08H 82H DTLB_LOAD_MISSES.WALK_CO
MPLETED

Misses in all TLB levels that caused page walk
completed of any size by demand loads.

08H 84H DTLB_LOAD_MISSES.WALK_D
URATION

Cycle PMH is busy with a walk due to demand loads.

0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of Uops issued by the
RAT to RS.

Set Cmask = 1, Inv = 1, Any= 1to count stalled
cycles of this core.

Set Cmask = 1, Inv = 1to
count stalled cycles

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 153

0EH 10H UOPS_ISSUED.FLAGS_MERGE Number of flags-merge uops allocated. Such uops
adds delay.

0EH 20H UOPS_ISSUED.SLOW_LEA Number of slow LEA or similar uops allocated. Such
uop has 3 sources (e.g. 2 sources + immediate)
regardless if as a result of LEA instruction or not.

0EH 40H UOPS_ISSUED.SiNGLE_MUL Number of multiply packed/scalar single precision
uops allocated.

14H 01H ARITH.FPU_DIV_ACTIVE Cycles that the divider is active, includes INT and FP.
Set 'edge =1, cmask=1' to count the number of
divides.

24H 01H L2_RQSTS.DEMAND_DATA_RD
_HIT

Demand Data Read requests that hit L2 cache

24H 03H L2_RQSTS.ALL_DEMAND_DAT
A_RD

Counts any demand and L1 HW prefetch data load
requests to L2.

24H 04H L2_RQSTS.RFO_HITS Counts the number of store RFO requests that hit
the L2 cache.

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO requests that miss
the L2 cache.

24H 0CH L2_RQSTS.ALL_RFO Counts all L2 store RFO requests.

24H 10H L2_RQSTS.CODE_RD_HIT Number of instruction fetches that hit the L2 cache.

24H 20H L2_RQSTS.CODE_RD_MISS Number of instruction fetches that missed the L2
cache.

24H 30H L2_RQSTS.ALL_CODE_RD Counts all L2 code requests.

24H 40H L2_RQSTS.PF_HIT Counts all L2 HW prefetcher requests that hit L2.

24H 80H L2_RQSTS.PF_MISS Counts all L2 HW prefetcher requests that missed
L2.

24H C0H L2_RQSTS.ALL_PF Counts all L2 HW prefetcher requests.

27H 01H L2_STORE_LOCK_RQSTS.MISS RFOs that miss cache lines

27H 08H L2_STORE_LOCK_RQSTS.HIT_
M

RFOs that hit cache lines in M state

27H 0FH L2_STORE_LOCK_RQSTS.ALL RFOs that access cache lines in any state

28H 01H L2_L1D_WB_RQSTS.MISS Not rejected writebacks that missed LLC.

28H 04H L2_L1D_WB_RQSTS.HIT_E Not rejected writebacks from L1D to L2 cache lines
in E state.

28H 08H L2_L1D_WB_RQSTS.HIT_M Not rejected writebacks from L1D to L2 cache lines
in M state.

28H 0FH L2_L1D_WB_RQSTS.ALL Not rejected writebacks from L1D to L2 cache lines
in any state.

2EH 4FH LONGEST_LAT_CACHE.REFERE
NCE

This event counts requests originating from the
core that reference a cache line in the last level
cache.

see Table 19-1

Table 19-5 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 154

2EH 41H LONGEST_LAT_CACHE.MISS This event counts each cache miss condition for
references to the last level cache.

see Table 19-1

3CH 00H CPU_CLK_UNHALTED.THREAD
_P

Counts the number of thread cycles while the
thread is not in a halt state. The thread enters the
halt state when it is running the HLT instruction.
The core frequency may change from time to time
due to power or thermal throttling.

see Table 19-1

3CH 01H CPU_CLK_THREAD_UNHALTE
D.REF_XCLK

Increments at the frequency of XCLK (100 MHz)
when not halted.

see Table 19-1

48H 01H L1D_PEND_MISS.PENDING Increments the number of outstanding L1D misses
every cycle. Set Cmaks = 1 and Edge =1 to count
occurrences.

PMC2 only;

Set Cmask = 1 to count
cycles.

49H 01H DTLB_STORE_MISSES.MISS_C
AUSES_A_WALK

Miss in all TLB levels causes an page walk of any
page size (4K/2M/4M/1G).

49H 02H DTLB_STORE_MISSES.WALK_C
OMPLETED

Miss in all TLB levels causes a page walk that
completes of any page size (4K/2M/4M/1G).

49H 04H DTLB_STORE_MISSES.WALK_D
URATION

Cycles PMH is busy with this walk.

49H 10H DTLB_STORE_MISSES.STLB_HI
T

Store operations that miss the first TLB level but hit
the second and do not cause page walks

4CH 01H LOAD_HIT_PRE.SW_PF Non-SW-prefetch load dispatches that hit fill buffer
allocated for S/W prefetch.

4CH 02H LOAD_HIT_PRE.HW_PF Non-SW-prefetch load dispatches that hit fill buffer
allocated for H/W prefetch.

51H 01H L1D.REPLACEMENT Counts the number of lines brought into the L1 data
cache.

58H 04H MOVE_ELIMINATION.INT_NOT_
ELIMINATED

Number of integer Move Elimination candidate uops
that were not eliminated.

58H 08H MOVE_ELIMINATION.SIMD_NO
T_ELIMINATED

Number of SIMD Move Elimination candidate uops
that were not eliminated.

58H 01H MOVE_ELIMINATION.INT_ELIMI
NATED

Number of integer Move Elimination candidate uops
that were eliminated.

58H 02H MOVE_ELIMINATION.SIMD_ELI
MINATED

Number of SIMD Move Elimination candidate uops
that were eliminated.

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the thread is in ring 0. Use Edge to count
transition

5CH 02H CPL_CYCLES.RING123 Unhalted core cycles when the thread is not in ring
0.

5EH 01H RS_EVENTS.EMPTY_CYCLES Cycles the RS is empty for the thread.

5FH 01H DTLB_LOAD_MISSES.STLB_HIT Counts load operations that missed 1st level DTLB
but hit the 2nd level.

Table 19-5 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 155

60H 01H OFFCORE_REQUESTS_OUTST
ANDING.DEMAND_DATA_RD

Offcore outstanding Demand Data Read
transactions in SQ to uncore. Set Cmask=1 to count
cycles.

60H 02H OFFCORE_REQUESTS_OUTST
ANDING.DEMAND_CODE_RD

Offcore outstanding Demand Code Read
transactions in SQ to uncore. Set Cmask=1 to count
cycles.

60H 04H OFFCORE_REQUESTS_OUTST
ANDING.DEMAND_RFO

Offcore outstanding RFO store transactions in SQ to
uncore. Set Cmask=1 to count cycles.

60H 08H OFFCORE_REQUESTS_OUTST
ANDING.ALL_DATA_RD

Offcore outstanding cacheable data read
transactions in SQ to uncore. Set Cmask=1 to count
cycles.

63H 01H LOCK_CYCLES.SPLIT_LOCK_UC
_LOCK_DURATION

Cycles in which the L1D and L2 are locked, due to a
UC lock or split lock.

63H 02H LOCK_CYCLES.CACHE_LOCK_D
URATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops delivered to IDQ
from MITE path.

Set Cmask = 1 to count cycles.

Can combine Umask 04H
and 20H

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops delivered to IDQ
from DSB path.

Set Cmask = 1 to count cycles.

Can combine Umask 08H
and 10H

79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops delivered to IDQ
when MS_busy by DSB. Set Cmask = 1 to count
cycles. Add Edge=1 to count # of delivery.

Can combine Umask 04H,
08H

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops delivered to IDQ
when MS_busy by MITE. Set Cmask = 1 to count
cycles.

Can combine Umask 04H,
08H

79H 30H IDQ.MS_UOPS Increment each cycle # of uops delivered to IDQ
from MS by either DSB or MITE. Set Cmask = 1 to
count cycles.

Can combine Umask 04H,
08H

79H 18H IDQ.ALL_DSB_CYCLES_ANY_U
OPS

Counts cycles DSB is delivered at least one uops.
Set Cmask = 1.

79H 18H IDQ.ALL_DSB_CYCLES_4_UOP
S

Counts cycles DSB is delivered four uops. Set Cmask
= 4.

79H 24H IDQ.ALL_MITE_CYCLES_ANY_U
OPS

Counts cycles MITE is delivered at least one uops.
Set Cmask = 1.

79H 24H IDQ.ALL_MITE_CYCLES_4_UOP
S

Counts cycles MITE is delivered four uops. Set
Cmask = 4.

79H 3CH IDQ.MITE_ALL_UOPS # of uops delivered to IDQ from any path.

80H 02H ICACHE.MISSES Number of Instruction Cache, Streaming Buffer and
Victim Cache Misses. Includes UC accesses.

Table 19-5 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 156

85H 01H ITLB_MISSES.MISS_CAUSES_A
_WALK

Misses in all ITLB levels that cause page walks

85H 02H ITLB_MISSES.WALK_COMPLET
ED

Misses in all ITLB levels that cause completed page
walks

85H 04H ITLB_MISSES.WALK_DURATIO
N

Cycle PMH is busy with a walk.

85H 10H ITLB_MISSES.STLB_HIT Number of cache load STLB hits. No page walk.

87H 01H ILD_STALL.LCP Stalls caused by changing prefix length of the
instruction.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to IQ is full.

88H 01H BR_INST_EXEC.COND Qualify conditional near branch instructions
executed, but not necessarily retired.

Must combine with
umask 40H, 80H

88H 02H BR_INST_EXEC.DIRECT_JMP Qualify all unconditional near branch instructions
excluding calls and indirect branches.

Must combine with
umask 80H

88H 04H BR_INST_EXEC.INDIRECT_JMP
_NON_CALL_RET

Qualify executed indirect near branch instructions
that are not calls nor returns.

Must combine with
umask 80H

88H 08H BR_INST_EXEC.RETURN_NEA
R

Qualify indirect near branches that have a return
mnemonic.

Must combine with
umask 80H

88H 10H BR_INST_EXEC.DIRECT_NEAR
_CALL

Qualify unconditional near call branch instructions,
excluding non call branch, executed.

Must combine with
umask 80H

88H 20H BR_INST_EXEC.INDIRECT_NEA
R_CALL

Qualify indirect near calls, including both register
and memory indirect, executed.

Must combine with
umask 80H

88H 40H BR_INST_EXEC.NONTAKEN Qualify non-taken near branches executed. Applicable to umask 01H
only

88H 80H BR_INST_EXEC.TAKEN Qualify taken near branches executed. Must
combine with 01H,02H, 04H, 08H, 10H, 20H.

88H FFH BR_INST_EXEC.ALL_BRANCHE
S

Counts all near executed branches (not necessarily
retired).

89H 01H BR_MISP_EXEC.COND Qualify conditional near branch instructions
mispredicted.

Must combine with
umask 40H, 80H

89H 04H BR_MISP_EXEC.INDIRECT_JMP
_NON_CALL_RET

Qualify mispredicted indirect near branch
instructions that are not calls nor returns.

Must combine with
umask 80H

89H 08H BR_MISP_EXEC.RETURN_NEA
R

Qualify mispredicted indirect near branches that
have a return mnemonic.

Must combine with
umask 80H

89H 10H BR_MISP_EXEC.DIRECT_NEAR
_CALL

Qualify mispredicted unconditional near call branch
instructions, excluding non call branch, executed.

Must combine with
umask 80H

89H 20H BR_MISP_EXEC.INDIRECT_NEA
R_CALL

Qualify mispredicted indirect near calls, including
both register and memory indirect, executed.

Must combine with
umask 80H

89H 40H BR_MISP_EXEC.NONTAKEN Qualify mispredicted non-taken near branches
executed.

Applicable to umask 01H
only

89H 80H BR_MISP_EXEC.TAKEN Qualify mispredicted taken near branches executed.
Must combine with 01H,02H, 04H, 08H, 10H, 20H.

Table 19-5 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 157

89H FFH BR_MISP_EXEC.ALL_BRANCHE
S

Counts all near executed branches (not necessarily
retired).

9CH 01H IDQ_UOPS_NOT_DELIVERED.C
ORE

Count number of non-delivered uops to RAT per
thread.

Use Cmask to qualify uop
b/w

A1H 01H UOPS_DISPATCHED_PORT.POR
T_0

Cycles which a Uop is dispatched on port 0.

A1H 02H UOPS_DISPATCHED_PORT.POR
T_1

Cycles which a Uop is dispatched on port 1.

A1H 04H UOPS_DISPATCHED_PORT.POR
T_2_LD

Cycles which a load uop is dispatched on port 2.

A1H 08H UOPS_DISPATCHED_PORT.POR
T_2_STA

Cycles which a store address uop is dispatched on
port 2.

A1H 0CH UOPS_DISPATCHED_PORT.POR
T_2

Cycles which a Uop is dispatched on port 2.

A1H 10H UOPS_DISPATCHED_PORT.POR
T_3_LD

Cycles which a load uop is dispatched on port 3.

A1H 20H UOPS_DISPATCHED_PORT.POR
T_3_STA

Cycles which a store address uop is dispatched on
port 3.

A1H 30H UOPS_DISPATCHED_PORT.POR
T_3

Cycles which a Uop is dispatched on port 3.

A1H 40H UOPS_DISPATCHED_PORT.POR
T_4

Cycles which a Uop is dispatched on port 4.

A1H 80H UOPS_DISPATCHED_PORT.POR
T_5

Cycles which a Uop is dispatched on port 5.

A2H 01H RESOURCE_STALLS.ANY Cycles Allocation is stalled due to Resource Related
reason.

A2H 04H RESOURCE_STALLS.RS Cycles stalled due to no eligible RS entry available.

A2H 08H RESOURCE_STALLS.SB Cycles stalled due to no store buffers available (not
including draining form sync).

A2H 10H RESOURCE_STALLS.ROB Cycles stalled due to re-order buffer full.

A3H 01H CYCLE_ACTIVITY.CYCLES_L2_P
ENDING

Cycles with pending L2 miss loads. Set AnyThread
to count per core.

A3H 02H CYCLE_ACTIVITY.CYCLES_LDM
_PENDING

Cycles with pending memory loads. Set AnyThread
to count per core.

PMC0-3 only.

A3H 08H CYCLE_ACTIVITY.CYCLES_L1D_
PENDING

Cycles with pending L1 cache miss loads. Set
AnyThread to count per core.

PMC2 only

A3H 04H CYCLE_ACTIVITY.CYCLES_NO_
EXECUTE

Cycles of dispatch stalls. Set AnyThread to count
per core.

ABH 01H DSB2MITE_SWITCHES.COUNT Number of DSB to MITE switches.

ABH 02H DSB2MITE_SWITCHES.PENALT
Y_CYCLES

Cycles DSB to MITE switches caused delay.

ACH 08H DSB_FILL.EXCEED_DSB_LINES DSB Fill encountered > 3 DSB lines.

Table 19-5 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 158

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes, includes
4k/2M/4M pages.

B0H 01H OFFCORE_REQUESTS.DEMAND
_DATA_RD

Demand data read requests sent to uncore.

B0H 02H OFFCORE_REQUESTS.DEMAND
_CODE_RD

Demand code read requests sent to uncore.

B0H 04H OFFCORE_REQUESTS.DEMAND
_RFO

Demand RFO read requests sent to uncore,
including regular RFOs, locks, ItoM

B0H 08H OFFCORE_REQUESTS.ALL_DA
TA_RD

Data read requests sent to uncore (demand and
prefetch).

B1H 01H UOPS_EXECUTED.THREAD Counts total number of uops to be executed per-
thread each cycle. Set Cmask = 1, INV =1 to count
stall cycles.

B1H 02H UOPS_EXECUTED.CORE Counts total number of uops to be executed per-
core each cycle.

Do not need to set ANY

B7H 01H OFFCORE_RESPONSE_0 see Section 18.8.5, “Off-core Response
Performance Monitoring”.

Requires MSR 01A6H

BBH 01H OFFCORE_RESPONSE_1 See Section 18.8.5, “Off-core Response
Performance Monitoring”.

Requires MSR 01A7H

BDH 01H TLB_FLUSH.DTLB_THREAD DTLB flush attempts of the thread-specific entries.

BDH 20H TLB_FLUSH.STLB_ANY Count number of STLB flush attempts.

C0H 00H INST_RETIRED.ANY_P Number of instructions at retirement. See Table 19-1

C0H 01H INST_RETIRED.ALL Precise instruction retired event with HW to reduce
effect of PEBS shadow in IP distribution.

PMC1 only

C1H 08H OTHER_ASSISTS.AVX_STORE Number of assists associated with 256-bit AVX
store operations.

C1H 10H OTHER_ASSISTS.AVX_TO_SSE Number of transitions from AVX-256 to legacy SSE
when penalty applicable.

C1H 20H OTHER_ASSISTS.SSE_TO_AVX Number of transitions from SSE to AVX-256 when
penalty applicable.

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops retired, Use
cmask=1 and invert to count active cycles or stalled
cycles.

Supports PEBS, use
Any=1 for core granular.

C2H 02H UOPS_RETIRED.RETIRE_SLOTS Counts the number of retirement slots used each
cycle.

C3H 02H MACHINE_CLEARS.MEMORY_O
RDERING

Counts the number of machine clears due to
memory order conflicts.

C3H 04H MACHINE_CLEARS.SMC Number of self-modifying-code machine clears
detected.

C3H 20H MACHINE_CLEARS.MASKMOV Counts the number of executed AVX masked load
operations that refer to an illegal address range
with the mask bits set to 0.

Table 19-5 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 159

C4H 00H BR_INST_RETIRED.ALL_BRAN
CHES

Branch instructions at retirement. See Table 19-1

C4H 01H BR_INST_RETIRED.CONDITION
AL

Counts the number of conditional branch
instructions retired.

Supports PEBS

C4H 02H BR_INST_RETIRED.NEAR_CAL
L

Direct and indirect near call instructions retired.

C4H 04H BR_INST_RETIRED.ALL_BRAN
CHES

Counts the number of branch instructions retired.

C4H 08H BR_INST_RETIRED.NEAR_RET
URN

Counts the number of near return instructions
retired.

C4H 10H BR_INST_RETIRED.NOT_TAKE
N

Counts the number of not taken branch instructions
retired.

C4H 20H BR_INST_RETIRED.NEAR_TAK
EN

Number of near taken branches retired.

C4H 40H BR_INST_RETIRED.FAR_BRAN
CH

Number of far branches retired.

C5H 00H BR_MISP_RETIRED.ALL_BRAN
CHES

Mispredicted branch instructions at retirement. See Table 19-1

C5H 01H BR_MISP_RETIRED.CONDITION
AL

Mispredicted conditional branch instructions retired. Supports PEBS

C5H 02H BR_MISP_RETIRED.NEAR_CAL
L

Direct and indirect mispredicted near call
instructions retired.

C5H 04H BR_MISP_RETIRED.ALL_BRAN
CHES

Mispredicted macro branch instructions retired.

C5H 10H BR_MISP_RETIRED.NOT_TAKE
N

Mispredicted not taken branch instructions retired.

C5H 20H BR_MISP_RETIRED.TAKEN Mispredicted taken branch instructions retired.

CAH 02H FP_ASSIST.X87_OUTPUT Number of X87 FP assists due to Output values.

CAH 04H FP_ASSIST.X87_INPUT Number of X87 FP assists due to input values.

CAH 08H FP_ASSIST.SIMD_OUTPUT Number of SIMD FP assists due to Output values.

CAH 10H FP_ASSIST.SIMD_INPUT Number of SIMD FP assists due to input values.

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE* or FP assists.

CCH 20H ROB_MISC_EVENTS.LBR_INSE
RTS

Count cases of saving new LBR records by
hardware.

CDH 01H MEM_TRANS_RETIRED.LOAD_
LATENCY

Sample loads with specified latency threshold.
PMC3 only.

Specify threshold in MSR
0x3F6

CDH 02H MEM_TRANS_RETIRED.PRECIS
E_STORE

Sample stores and collect precise store operation
via PEBS record. PMC3 only.

See Section 18.8.4.3

D0H 01H MEM_UOPS_RETIRED.LOADS Qualify retired memory uops that are loads.
Combine with umask 10H, 20H, 40H, 80H.

Supports PEBS

Table 19-5 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 160

D0H 02H MEM_UOPS_RETIRED.STORES Qualify retired memory uops that are stores.
Combine with umask 10H, 20H, 40H, 80H.

D0H 10H MEM_UOPS_RETIRED.STLB_MI
SS

Qualify retired memory uops with STLB miss. Must
combine with umask 01H, 02H, to produce counts.

D0H 20H MEM_UOPS_RETIRED.LOCK Qualify retired memory uops with lock. Must
combine with umask 01H, 02H, to produce counts.

D0H 40H MEM_UOPS_RETIRED.SPLIT Qualify retired memory uops with line split. Must
combine with umask 01H, 02H, to produce counts.

D0H 80H MEM_UOPS_RETIRED.ALL Qualify any retired memory uops. Must combine
with umask 01H, 02H, to produce counts.

D1H 01H MEM_LOAD_UOPS_RETIRED.L
1_HIT

Retired load uops with L1 cache hits as data
sources.

Supports PEBS

D1H 02H MEM_LOAD_UOPS_RETIRED.L
2_HIT

Retired load uops with L2 cache hits as data
sources.

D1H 04H MEM_LOAD_UOPS_RETIRED.L
LC_HIT

Retired load uops with LLC cache hits as data
sources.

D1H 20H MEM_LOAD_UOPS_RETIRED.L
LC_MISS

Retired load uops which data sources were data
missed LLC (excluding unknown data source).

D1H 40H MEM_LOAD_UOPS_RETIRED.HI
T_LFB

Retired load uops which data sources were load
uops missed L1 but hit FB due to preceding miss to
the same cache line with data not ready.

D2H 01H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_MISS

Retired load uops which data sources were LLC hit
and cross-core snoop missed in on-pkg core cache.

Supports PEBS

D2H 02H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HIT

Retired load uops which data sources were LLC and
cross-core snoop hits in on-pkg core cache.

Supports PEBS

D2H 04H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HITM

Retired load uops which data sources were HitM
responses from shared LLC.

D2H 08H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_NONE

Retired load uops which data sources were hits in
LLC without snoops required.

D3H 01H MEM_LOAD_UOPS_LLC_MISS_
RETIRED.LOCAL_DRAM

Retired load uops which data sources missed LLC
but serviced from local dram.

Supports PEBS.

E6H 1FH BACLEARS.ANY Number of front end re-steers due to BPU
misprediction.

F0H 01H L2_TRANS.DEMAND_DATA_R
D

Demand Data Read requests that access L2 cache.

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache.

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching instructions.

F0H 08H L2_TRANS.ALL_PF Any MLC or LLC HW prefetch accessing L2, including
rejects.

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2 cache.

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache.

Table 19-5 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 161

...

Table 19-6 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™
i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E5 Family (Contd.)

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache.

F0H 80H L2_TRANS.ALL_REQUESTS Transactions accessing L2 pipe.

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2. Counting does not cover
rejects.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2. Counting does not cover
rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2. Counting does not cover
rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2. Counting does not cover
rejects.

F2H 01H L2_LINES_OUT.DEMAND_CLEA
N

Clean L2 cache lines evicted by demand.

F2H 02H L2_LINES_OUT.DEMAND_DIRT
Y

Dirty L2 cache lines evicted by demand.

F2H 04H L2_LINES_OUT.PF_CLEAN Clean L2 cache lines evicted by the MLC prefetcher.

F2H 08H L2_LINES_OUT.PF_DIRTY Dirty L2 cache lines evicted by the MLC prefetcher.

F2H 0AH L2_LINES_OUT.DIRTY_ALL Dirty L2 cache lines filling the L2. Counting does not cover
rejects.

Table 19-5 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

...

48H 01H L1D_PEND_MISS.PENDING Increments the number of outstanding L1D misses
every cycle. Set Cmaks = 1 and Edge =1 to count
occurrences.

PMC2 only;

Set Cmask = 1 to count
cycles.

...

5BH 0CH RESOURCE_STALLS2.ALL_FL_
EMPTY

Cycles stalled due to free list empty. PMC0-3 only regardless
HTT

...

A2H 01H RESOURCE_STALLS.ANY Cycles Allocation is stalled due to Resource Related
reason.

...

A3H 02H CYCLE_ACTIVITY.CYCLES_L1D_
PENDING

Cycles with pending L1 cache miss loads.Set
AnyThread to count per core.

PMC2 only

A3H 01H CYCLE_ACTIVITY.CYCLES_L2_P
ENDING

Cycles with pending L2 miss loads. Set AnyThread
to count per core.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 162

...

Table 19-7 Non-Architectural Performance Events applicable only to the Processor core for 2nd Generation Intel®
Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series

...

19.Updates to Chapter 24, Volume 3C
Change bars show changes to Chapter 24 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

A3H 04H CYCLE_ACTIVITY.CYCLES_NO_
DISPATCH

Cycles of dispatch stalls. Set AnyThread to count per
core.

PMC0-3 only

...

B1H 01H UOPS_DISPATCHED.THREAD Counts total number of uops to be dispatched per-
thread each cycle. Set Cmask = 1, INV =1 to count
stall cycles.

PMC0-3 only regardless
HTT

...

B7H 01H OFF_CORE_RESPONSE_0 see Section 18.8.5, “Off-core Response
Performance Monitoring”.

Requires MSR 01A6H

BBH 01H OFF_CORE_RESPONSE_1 See Section 18.8.5, “Off-core Response
Performance Monitoring”.

Requires MSR 01A7H

...

D0H 01H MEM_UOP_RETIRED.LOADS Qualify retired memory uops that are loads.
Combine with umask 10H, 20H, 40H, 80H.

Supports PEBS. PMC0-3
only regardless HTT.

...

D1H 01H MEM_LOAD_UOPS_RETIRED.L
1_HIT

Retired load uops with L1 cache hits as data
sources.

Supports PEBS. PMC0-3
only regardless HTT

...

D4H 02H MEM_LOAD_UOPS_MISC_RETI
RED.LLC_MISS

Retired load uops with unknown information as data
source in cache serviced the load.

Supports PEBS. PMC0-3
only regardless HTT

...

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

D2H 01H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_MISS

Retired load uops which data sources were LLC hit and
cross-core snoop missed in on-pkg core cache.

Supports PEBS. PMC0-
3 only regardless HTT

D2H 02H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HIT

Retired load uops which data sources were LLC and
cross-core snoop hits in on-pkg core cache.

D2H 04H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HITM

Retired load uops which data sources were HitM
responses from shared LLC.

D2H 08H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_NONE

Retired load uops which data sources were hits in LLC
without snoops required.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 163

...

24.4.1 Guest Register State
The following fields in the guest-state area correspond to processor registers:
• Control registers CR0, CR3, and CR4 (64 bits each; 32 bits on processors that do not support Intel 64 archi-

tecture).
• Debug register DR7 (64 bits; 32 bits on processors that do not support Intel 64 architecture).
• RSP, RIP, and RFLAGS (64 bits each; 32 bits on processors that do not support Intel 64 architecture).1

• The following fields for each of the registers CS, SS, DS, ES, FS, GS, LDTR, and TR:

— Selector (16 bits).

— Base address (64 bits; 32 bits on processors that do not support Intel 64 architecture). The base-address
fields for CS, SS, DS, and ES have only 32 architecturally-defined bits; nevertheless, the corresponding
VMCS fields have 64 bits on processors that support Intel 64 architecture.

— Segment limit (32 bits). The limit field is always a measure in bytes.

— Access rights (32 bits). The format of this field is given in Table 24-2 and detailed as follows:

• The low 16 bits correspond to bits 23:8 of the upper 32 bits of a 64-bit segment descriptor. While bits
19:16 of code-segment and data-segment descriptors correspond to the upper 4 bits of the segment
limit, the corresponding bits (bits 11:8) are reserved in this VMCS field.

• Bit 16 indicates an unusable segment. Attempts to use such a segment fault except in 64-bit mode.
In general, a segment register is unusable if it has been loaded with a null selector.2

• Bits 31:17 are reserved.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that support VMX
operation also support Intel 64 architecture. For processors that do not support Intel 64 architecture, this notation refers to the
32-bit forms of those registers (EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to
lower 32 bits of the indicated register.

2. There are a few exceptions to this statement. For example, a segment with a non-null selector may be unusable following a task
switch that fails after its commit point; see “Interrupt 10—Invalid TSS Exception (#TS)” in Section 6.14, “Exception and Interrupt
Handling in 64-bit Mode,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. In contrast, the TR
register is usable after processor reset despite having a null selector; see Table 10-1 in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A.

Table 24-2 Format of Access Rights

Bit Position(s) Field

3:0 Segment type

4 S — Descriptor type (0 = system; 1 = code or data)

6:5 DPL — Descriptor privilege level

7 P — Segment present

11:8 Reserved

12 AVL — Available for use by system software

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 164

The base address, segment limit, and access rights compose the “hidden” part (or “descriptor cache”) of each
segment register. These data are included in the VMCS because it is possible for a segment register’s
descriptor cache to be inconsistent with the segment descriptor in memory (in the GDT or the LDT) referenced
by the segment register’s selector.
The value of the DPL field for SS is always equal to the logical processor’s current privilege level (CPL).1

• The following fields for each of the registers GDTR and IDTR:

— Base address (64 bits; 32 bits on processors that do not support Intel 64 architecture).

— Limit (32 bits). The limit fields contain 32 bits even though these fields are specified as only 16 bits in the
architecture.

• The following MSRs:

— IA32_DEBUGCTL (64 bits)

— IA32_SYSENTER_CS (32 bits)

— IA32_SYSENTER_ESP and IA32_SYSENTER_EIP (64 bits; 32 bits on processors that do not support Intel
64 architecture)

— IA32_PERF_GLOBAL_CTRL (64 bits). This field is supported only on processors that support the 1-setting
of the “load IA32_PERF_GLOBAL_CTRL” VM-entry control.

— IA32_PAT (64 bits). This field is supported only on processors that support either the 1-setting of the “load
IA32_PAT” VM-entry control or that of the “save IA32_PAT” VM-exit control.

— IA32_EFER (64 bits). This field is supported only on processors that support either the 1-setting of the
“load IA32_EFER” VM-entry control or that of the “save IA32_EFER” VM-exit control.

• The register SMBASE (32 bits). This register contains the base address of the logical processor’s SMRAM
image.

24.4.2 Guest Non-Register State
In addition to the register state described in Section 24.4.1, the guest-state area includes the following fields that
characterize guest state but which do not correspond to processor registers:
• Activity state (32 bits). This field identifies the logical processor’s activity state. When a logical processor is

executing instructions normally, it is in the active state. Execution of certain instructions and the occurrence
of certain events may cause a logical processor to transition to an inactive state in which it ceases to execute
instructions.

13 Reserved (except for CS)
L — 64-bit mode active (for CS only)

14 D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)

15 G — Granularity

16 Segment unusable (0 = usable; 1 = unusable)

31:17 Reserved

Table 24-2 Format of Access Rights (Contd.)

Bit Position(s) Field

1. In protected mode, CPL is also associated with the RPL field in the CS selector. However, the RPL fields are not meaningful in real-
address mode or in virtual-8086 mode.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 165

The following activity states are defined:1

— 0: Active. The logical processor is executing instructions normally.

— 1: HLT. The logical processor is inactive because it executed the HLT instruction.

— 2: Shutdown. The logical processor is inactive because it incurred a triple fault2 or some other serious
error.

— 3: Wait-for-SIPI. The logical processor is inactive because it is waiting for a startup-IPI (SIPI).
Future processors may include support for other activity states. Software should read the VMX capability MSR
IA32_VMX_MISC (see Appendix A.6) to determine what activity states are supported.

• Interruptibility state (32 bits). The IA-32 architecture includes features that permit certain events to be
blocked for a period of time. This field contains information about such blocking. Details and the format of this
field are given in Table 24-3.

1. Execution of the MWAIT instruction may put a logical processor into an inactive state. However, this VMCS field never reflects this
state. See Section 27.1.

2. A triple fault occurs when a logical processor encounters an exception while attempting to deliver a double fault.

Table 24-3 Format of Interruptibility State

Bit
Position(s)

Bit Name Notes

0 Blocking by STI See the “STI—Set Interrupt Flag” section in Chapter 4 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2B.

Execution of STI with RFLAGS.IF = 0 blocks interrupts (and, optionally, other events) for one
instruction after its execution. Setting this bit indicates that this blocking is in effect.

1 Blocking by
MOV SS

See the “MOV—Move a Value from the Stack” and “POP—Pop a Value from the Stack” sections
in Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2B, and Section 6.8.3 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A.

Execution of a MOV to SS or a POP to SS blocks interrupts for one instruction after its
execution. In addition, certain debug exceptions are inhibited between a MOV to SS or a POP to
SS and a subsequent instruction. Setting this bit indicates that the blocking of all these events
is in effect. This document uses the term “blocking by MOV SS,” but it applies equally to POP SS.

2 Blocking by SMI See Section 34.2. System-management interrupts (SMIs) are disabled while the processor is in
system-management mode (SMM). Setting this bit indicates that blocking of SMIs is in effect.

3 Blocking by NMI See Section 6.7.1 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A and Section 34.8.

Delivery of a non-maskable interrupt (NMI) or a system-management interrupt (SMI) blocks
subsequent NMIs until the next execution of IRET. See Section 25.3 for how this behavior of
IRET may change in VMX non-root operation. Setting this bit indicates that blocking of NMIs is
in effect. Clearing this bit does not imply that NMIs are not (temporarily) blocked for other
reasons.

If the “virtual NMIs” VM-execution control (see Section 24.6.1) is 1, this bit does not control the
blocking of NMIs. Instead, it refers to “virtual-NMI blocking” (the fact that guest software is not
ready for an NMI).

31:4 Reserved VM entry will fail if these bits are not 0. See Section 26.3.1.5.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 166

• Pending debug exceptions (64 bits; 32 bits on processors that do not support Intel 64 architecture). IA-32
processors may recognize one or more debug exceptions without immediately delivering them.1 This field
contains information about such exceptions. This field is described in Table 24-4.

• VMCS link pointer (64 bits). This field is included for future expansion. Software should set this field to
FFFFFFFF_FFFFFFFFH to avoid VM-entry failures (see Section 26.3.1.5).

• VMX-preemption timer value (32 bits). This field is supported only on processors that support the 1-
setting of the “activate VMX-preemption timer” VM-execution control. This field contains the value that the
VMX-preemption timer will use following the next VM entry with that setting. See Section 25.5.1 and Section
26.6.4.

• Page-directory-pointer-table entries (PDPTEs; 64 bits each). These four (4) fields (PDPTE0, PDPTE1,
PDPTE2, and PDPTE3) are supported only on processors that support the 1-setting of the “enable EPT” VM-
execution control. They correspond to the PDPTEs referenced by CR3 when PAE paging is in use (see Section
4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). They are used only if
the “enable EPT” VM-execution control is 1.

• Guest interrupt status (16 bits). This field is supported only on processors that support the 1-setting of the
“virtual-interrupt delivery” VM-execution control. It characterizes part of the guest’s virtual-APIC state and
does not correspond to any processor or APIC registers. It comprises two 8-bit subfields:

— Requesting virtual interrupt (RVI). This is the low byte of the guest interrupt status. The processor
treats this value as the vector of the highest priority virtual interrupt that is requesting service. (The value
0 implies that there is no such interrupt.)

— Servicing virtual interrupt (SVI). This is the high byte of the guest interrupt status. The processor
treats this value as the vector of the highest priority virtual interrupt that is in service. (The value 0 implies
that there is no such interrupt.)

See Chapter 29 for more information on the use of this field.

1. For example, execution of a MOV to SS or a POP to SS may inhibit some debug exceptions for one instruction. See Section 6.8.3 of
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. In addition, certain events incident to an instruction
(for example, an INIT signal) may take priority over debug traps generated by that instruction. See Table 6-2 in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A.

Table 24-4 Format of Pending-Debug-Exceptions

Bit
Position(s)

Bit Name Notes

3:0 B3 – B0 When set, each of these bits indicates that the corresponding breakpoint condition was met.
Any of these bits may be set even if the corresponding enabling bit in DR7 is not set.

11:4 Reserved VM entry fails if these bits are not 0. See Section 26.3.1.5.

12 Enabled
breakpoint

When set, this bit indicates that at least one data or I/O breakpoint was met and was enabled in
DR7.

13 Reserved VM entry fails if this bit is not 0. See Section 26.3.1.5.

14 BS When set, this bit indicates that a debug exception would have been triggered by single-step
execution mode.

63:15 Reserved VM entry fails if these bits are not 0. See Section 26.3.1.5. Bits 63:32 exist only on processors
that support Intel 64 architecture.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 167

24.5 HOST-STATE AREA
This section describes fields contained in the host-state area of the VMCS. As noted earlier, processor state is
loaded from these fields on every VM exit (see Section 27.5).

All fields in the host-state area correspond to processor registers:
• CR0, CR3, and CR4 (64 bits each; 32 bits on processors that do not support Intel 64 architecture).
• RSP and RIP (64 bits each; 32 bits on processors that do not support Intel 64 architecture).
• Selector fields (16 bits each) for the segment registers CS, SS, DS, ES, FS, GS, and TR. There is no field in the

host-state area for the LDTR selector.
• Base-address fields for FS, GS, TR, GDTR, and IDTR (64 bits each; 32 bits on processors that do not support

Intel 64 architecture).
• The following MSRs:

— IA32_SYSENTER_CS (32 bits)

— IA32_SYSENTER_ESP and IA32_SYSENTER_EIP (64 bits; 32 bits on processors that do not support Intel
64 architecture).

— IA32_PERF_GLOBAL_CTRL (64 bits). This field is supported only on processors that support the 1-setting
of the “load IA32_PERF_GLOBAL_CTRL” VM-exit control.

— IA32_PAT (64 bits). This field is supported only on processors that support either the 1-setting of the “load
IA32_PAT” VM-exit control.

— IA32_EFER (64 bits). This field is supported only on processors that support either the 1-setting of the
“load IA32_EFER” VM-exit control.

In addition to the state identified here, some processor state components are loaded with fixed values on every
VM exit; there are no fields corresponding to these components in the host-state area. See Section 27.5 for
details of how state is loaded on VM exits.

...

24.6.1 Pin-Based VM-Execution Controls
The pin-based VM-execution controls constitute a 32-bit vector that governs the handling of asynchronous events
(for example: interrupts).1 Table 24-5 lists the controls. See Chapter 25 for how these controls affect processor
behavior in VMX non-root operation.

1. Some asynchronous events cause VM exits regardless of the settings of the pin-based VM-execution controls (see Section 25.2).

Table 24-5 Definitions of Pin-Based VM-Execution Controls
Bit Position(s) Name Description

0 External-interrupt
exiting

If this control is 1, external interrupts cause VM exits. Otherwise, they are delivered normally
through the guest interrupt-descriptor table (IDT). If this control is 1, the value of RFLAGS.IF
does not affect interrupt blocking.

3 NMI exiting If this control is 1, non-maskable interrupts (NMIs) cause VM exits. Otherwise, they are
delivered normally using descriptor 2 of the IDT. This control also determines interactions
between IRET and blocking by NMI (see Section 25.3).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 168

All other bits in this field are reserved, some to 0 and some to 1. Software should consult the VMX capability MSRs
IA32_VMX_PINBASED_CTLS and IA32_VMX_TRUE_PINBASED_CTLS (see Appendix A.3.1) to determine how to
set reserved bits. Failure to set reserved bits properly causes subsequent VM entries to fail (see Section
26.2.1.1).

The first processors to support the virtual-machine extensions supported only the 1-settings of bits 1, 2, and 4.
The VMX capability MSR IA32_VMX_PINBASED_CTLS will always report that these bits must be 1. Logical proces-
sors that support the 0-settings of any of these bits will support the VMX capability MSR
IA32_VMX_TRUE_PINBASED_CTLS MSR, and software should consult this MSR to discover support for the 0-
settings of these bits. Software that is not aware of the functionality of any one of these bits should set that bit to
1.

24.6.2 Processor-Based VM-Execution Controls
The processor-based VM-execution controls constitute two 32-bit vectors that govern the handling of synchro-
nous events, mainly those caused by the execution of specific instructions.1 These are the primary processor-
based VM-execution controls and the secondary processor-based VM-execution controls.

Table 24-6 lists the primary processor-based VM-execution controls. See Chapter 25 for more details of how these
controls affect processor behavior in VMX non-root operation.

5 Virtual NMIs If this control is 1, NMIs are never blocked and the “blocking by NMI” bit (bit 3) in the
interruptibility-state field indicates “virtual-NMI blocking” (see Table 24-3). This control also
interacts with the “NMI-window exiting” VM-execution control (see Section 24.6.2).

6 Activate VMX-
preemption timer

If this control is 1, the VMX-preemption timer counts down in VMX non-root operation; see
Section 25.5.1. A VM exit occurs when the timer counts down to zero; see Section 25.2.

7 Process posted
interrupts

If this control is 1, the processor treats interrupts with the posted-interrupt notification vector
(see Section 24.6.8) specially, updating the virtual-APIC page with posted-interrupt requests
(see Section 29.6).

Table 24-5 Definitions of Pin-Based VM-Execution Controls (Contd.)
Bit Position(s) Name Description

1. Some instructions cause VM exits regardless of the settings of the processor-based VM-execution controls (see Section 25.1.2), as
do task switches (see Section 25.2).

Table 24-6 Definitions of Primary Processor-Based VM-Execution Controls
Bit Position(s) Name Description

2 Interrupt-window
exiting

If this control is 1, a VM exit occurs at the beginning of any instruction if RFLAGS.IF = 1 and
there are no other blocking of interrupts (see Section 24.4.2).

3 Use TSC offsetting This control determines whether executions of RDTSC, executions of RDTSCP, and executions
of RDMSR that read from the IA32_TIME_STAMP_COUNTER MSR return a value modified by
the TSC offset field (see Section 24.6.5 and Section 25.3).

7 HLT exiting This control determines whether executions of HLT cause VM exits.

9 INVLPG exiting This determines whether executions of INVLPG cause VM exits.

10 MWAIT exiting This control determines whether executions of MWAIT cause VM exits.

11 RDPMC exiting This control determines whether executions of RDPMC cause VM exits.

12 RDTSC exiting This control determines whether executions of RDTSC and RDTSCP cause VM exits.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 169

All other bits in this field are reserved, some to 0 and some to 1. Software should consult the VMX capability
MSRs IA32_VMX_PROCBASED_CTLS and IA32_VMX_TRUE_PROCBASED_CTLS (see Appendix A.3.2) to
determine how
to set reserved bits. Failure to set reserved bits properly causes subsequent VM entries to fail (see Section
26.2.1.1).

The first processors to support the virtual-machine extensions supported only the 1-settings of bits 1, 4–6, 8, 13–
16, and 26. The VMX capability MSR IA32_VMX_PROCBASED_CTLS will always report that these bits must be 1.
Logical processors that support the 0-settings of any of these bits will support the VMX capability MSR
IA32_VMX_TRUE_PROCBASED_CTLS MSR, and software should consult this MSR to discover support for the 0-
settings of these bits. Software that is not aware of the functionality of any one of these bits should set that bit to
1.

Bit 31 of the primary processor-based VM-execution controls determines whether the secondary processor-based
VM-execution controls are used. If that bit is 0, VM entry and VMX non-root operation function as if all the

15 CR3-load exiting In conjunction with the CR3-target controls (see Section 24.6.7), this control determines
whether executions of MOV to CR3 cause VM exits. See Section 25.1.3.

The first processors to support the virtual-machine extensions supported only the 1-setting
of this control.

16 CR3-store exiting This control determines whether executions of MOV from CR3 cause VM exits.

The first processors to support the virtual-machine extensions supported only the 1-setting
of this control.

19 CR8-load exiting This control determines whether executions of MOV to CR8 cause VM exits.

20 CR8-store exiting This control determines whether executions of MOV from CR8 cause VM exits.

21 Use TPR shadow Setting this control to 1 enables TPR virtualization and other APIC-virtualization features. See
Chapter 29.

22 NMI-window
exiting

If this control is 1, a VM exit occurs at the beginning of any instruction if there is no virtual-
NMI blocking (see Section 24.4.2).

23 MOV-DR exiting This control determines whether executions of MOV DR cause VM exits.

24 Unconditional I/O
exiting

This control determines whether executions of I/O instructions (IN, INS/INSB/INSW/INSD, OUT,
and OUTS/OUTSB/OUTSW/OUTSD) cause VM exits.

25 Use I/O bitmaps This control determines whether I/O bitmaps are used to restrict executions of I/O instructions
(see Section 24.6.4 and Section 25.1.3).

For this control, “0” means “do not use I/O bitmaps” and “1” means “use I/O bitmaps.” If the I/O
bitmaps are used, the setting of the “unconditional I/O exiting” control is ignored.

27 Monitor trap flag If this control is 1, the monitor trap flag debugging feature is enabled. See Section 25.5.2.

28 Use MSR bitmaps This control determines whether MSR bitmaps are used to control execution of the RDMSR
and WRMSR instructions (see Section 24.6.9 and Section 25.1.3).

For this control, “0” means “do not use MSR bitmaps” and “1” means “use MSR bitmaps.” If the
MSR bitmaps are not used, all executions of the RDMSR and WRMSR instructions cause
VM exits.

29 MONITOR exiting This control determines whether executions of MONITOR cause VM exits.

30 PAUSE exiting This control determines whether executions of PAUSE cause VM exits.

31 Activate secondary
controls

This control determines whether the secondary processor-based VM-execution controls are
used. If this control is 0, the logical processor operates as if all the secondary processor-based
VM-execution controls were also 0.

Table 24-6 Definitions of Primary Processor-Based VM-Execution Controls (Contd.)
Bit Position(s) Name Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 170

secondary processor-based VM-execution controls were 0. Processors that support only the 0-setting of bit 31 of
the primary processor-based VM-execution controls do not support the secondary processor-based VM-execution
controls.

Table 24-7 lists the secondary processor-based VM-execution controls. See Chapter 25 for more details of how
these controls affect processor behavior in VMX non-root operation.

All other bits in this field are reserved to 0. Software should consult the VMX capability MSR
IA32_VMX_PROCBASED_CTLS2 (see Appendix A.3.3) to determine which bits may be set to 1. Failure to clear
reserved bits causes subsequent VM entries to fail (see Section 26.2.1.1).

...

24.6.8 Controls for APIC Virtualization
There are three mechanisms by which software accesses registers of the logical processor’s local APIC:
• If the local APIC is in xAPIC mode, it can perform memory-mapped accesses to addresses in the 4-KByte page

referenced by the physical address in the IA32_APIC_BASE MSR (see Section 10.4.4, “Local APIC Status and
Location” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A and Intel® 64
Architecture Processor Topology Enumeration).1

Table 24-7 Definitions of Secondary Processor-Based VM-Execution Controls
Bit Position(s) Name Description

0 Virtualize APIC
accesses

If this control is 1, the logical processor treats specially accesses to the page with the APIC-
access address. See Section 29.4.

1 Enable EPT If this control is 1, extended page tables (EPT) are enabled. See Section 28.2.

2 Descriptor-table
exiting

This control determines whether executions of LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, and
STR cause VM exits.

3 Enable RDTSCP If this control is 0, any execution of RDTSCP causes an invalid-opcode exception (#UD).

4 Virtualize x2APIC
mode

If this control is 1, the logical processor treats specially RDMSR and WRMSR to APIC MSRs (in
the range 800H–8FFH). See Section 29.5.

5 Enable VPID If this control is 1, cached translations of linear addresses are associated with a virtual-
processor identifier (VPID). See Section 28.1.

6 WBINVD exiting This control determines whether executions of WBINVD cause VM exits.

7 Unrestricted guest This control determines whether guest software may run in unpaged protected mode or in real-
address mode.

8 APIC-register
virtualization

If this control is 1, the logical processor virtualizes certain APIC accesses. See Section 29.4 and
Section 29.5.

9 Virtual-interrupt
delivery

This controls enables the evaluation and delivery of pending virtual interrupts as well as the
emulation of writes to the APIC registers that control interrupt prioritization.

10 PAUSE-loop exiting This control determines whether a series of executions of PAUSE can cause a VM exit (see
Section 24.6.13 and Section 25.1.3).

11 RDRAND exiting This control determines whether executions of RDRAND cause VM exits.

12 Enable INVPCID If this control is 0, any execution of INVPCID causes an invalid-opcode exception (#UD).

13 Enable
VM functions

Setting this control to 1 enables use of the VMFUNC instruction in VMX non-root operation. See
Section 25.5.5.

1. If the local APIC does not support x2APIC mode, it is always in xAPIC mode.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 171

• If the local APIC is in x2APIC mode, it can accesses the local APIC’s registers using the RDMSR and WRMSR
instructions (see Intel® 64 Architecture Processor Topology Enumeration).

• In 64-bit mode, it can access the local APIC’s task-priority register (TPR) using the MOV CR8 instruction.

There are five processor-based VM-execution controls (see Section 24.6.2) that control such accesses. There are
“use TPR shadow”, “virtualize APIC accesses”, “virtualize x2APIC mode”, “virtual-interrupt delivery”, and “APIC-
register virtualization”. These controls interact with the following fields:
• APIC-access address (64 bits). This field contains the physical address of the 4-KByte APIC-access page.

If the “virtualize APIC accesses” VM-execution control is 1, access to this page may cause VM exits or be
virtualized by the processor. See Section 29.4.
The APIC-access address exists only on processors that support the 1-setting of the “virtualize APIC accesses”
VM-execution control.

• Virtual-APIC address (64 bits). This field contains the physical address of the 4-KByte virtual-APIC page.
The processor uses the virtual-APIC page to virtualize certain accesses to APIC registers and to manage
virtual interrupts; see Chapter 29.
Depending on the setting of the controls indicated earlier, the virtual-APIC page may be accessed by the
following operations:

— The MOV CR8 instructions (see Section 29.3).

— Accesses to the APIC-access page if, in addition, the “virtualize APIC accesses” VM-execution control is 1
(see Section 29.4).

— The RDMSR and WRMSR instructions if, in addition, the value of ECX is in the range 800H–8FFH (indicating
an APIC MSR) and the “virtualize x2APIC mode” VM-execution control is 1 (see Section 29.5).

If the “use TPR shadow” VM-execution control is 1, VM entry ensures that the virtual-APIC address is 4-KByte
aligned. The virtual-APIC address exists only on processors that support the 1-setting of the “use TPR
shadow” VM-execution control.

• TPR threshold (32 bits). Bits 3:0 of this field determine the threshold below which bits 7:4 of VTPR (see
Section 29.1.1) cannot fall. If the “virtual-interrupt delivery” VM-execution control is 0, a VM exit occurs after
an operation (e.g., an execution of MOV to CR8) that reduces the value of those bits below the TPR threshold.
See Section 29.1.2.
The TPR threshold exists only on processors that support the 1-setting of the “use TPR shadow” VM-execution
control.

• EOI-exit bitmap (4 fields; 64 bits each). These fields are supported only on processors that support the 1-
setting of the “virtual-interrupt delivery” VM-execution control. They are used to determine which virtualized
writes to the APIC’s EOI register cause VM exits:

— EOI_EXIT0 contains bits for vectors from 0 (bit 0) to 63 (bit 63).

— EOI_EXIT1 contains bits for vectors from 64 (bit 0) to 127 (bit 63).

— EOI_EXIT2 contains bits for vectors from 128 (bit 0) to 191 (bit 63).

— EOI_EXIT3 contains bits for vectors from 192 (bit 0) to 255 (bit 63).
See Section 29.1.4 for more information on the use of this field.

• Posted-interrupt notification vector (16 bits). This field is supported only on processors that support the
1-setting of the “process posted interrupts” VM-execution control. Its low 8 bits contain the interrupt vector
that is used to notify a logical processor that virtual interrupts have been posted. See Section 29.6 for more
information on the use of this field.

• Posted-interrupt descriptor address (64 bits). This field is supported only on processors that support the
1-setting of the “process posted interrupts” VM-execution control. It is the physical address of a 64-byte
aligned posted interrupt descriptor. See Section 29.6 for more information on the use of this field.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 172

20.Updates to Chapter 25, Volume 3C
Change bars show changes to Chapter 25 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

...
In a virtualized environment using VMX, the guest software stack typically runs on a logical processor in VMX non-
root operation. This mode of operation is similar to that of ordinary processor operation outside of the virtualized
environment. This chapter describes the differences between VMX non-root operation and ordinary processor
operation with special attention to causes of VM exits (which bring a logical processor from VMX non-root opera-
tion to root operation). The differences between VMX non-root operation and ordinary processor operation are
described in the following sections:
• Section 25.1, “Instructions That Cause VM Exits”
• Section 25.2, “Other Causes of VM Exits”
• Section 25.3, “Changes to Instruction Behavior in VMX Non-Root Operation”
• Section 25.4, “Other Changes in VMX Non-Root Operation”
• Section 25.5, “Features Specific to VMX Non-Root Operation”

Chapter 24, “Virtual-Machine Control Structures,” describes the data control structures that govern VMX non-root
operation. Chapter 26, “VM Entries,” describes the operation of VM entries by which the processor transitions
from VMX root operation to VMX non-root operation. Chapter 27, “VM Exits,” describes the operation of VM exits
by which the processor transitions from VMX non-root operation to VMX root operation.

Chapter 28, “VMX Support for Address Translation,” describes two features that support address translation in
VMX non-root operation. Chapter 29, “APIC Virtualization and Virtual Interrupts,” describes features that
support virtualization of interrupts and the Advanced Programmable Interrupt Controller (APIC) in VMX non-root
operation.

...

25.1.2 Instructions That Cause VM Exits Unconditionally
The following instructions cause VM exits when they are executed in VMX non-root operation: CPUID, GETSEC,1
INVD, and XSETBV. This is also true of instructions introduced with VMX, which include: INVEPT, INVVPID,
VMCALL,2 VMCLEAR, VMLAUNCH, VMPTRLD, VMPTRST, VMREAD, VMRESUME, VMWRITE, VMXOFF, and VMXON.

25.1.3 Instructions That Cause VM Exits Conditionally
Certain instructions cause VM exits in VMX non-root operation depending on the setting of the VM-execution
controls. The following instructions can cause “fault-like” VM exits based on the conditions described:
• CLTS. The CLTS instruction causes a VM exit if the bits in position 3 (corresponding to CR0.TS) are set in both

the CR0 guest/host mask and the CR0 read shadow.
• HLT. The HLT instruction causes a VM exit if the “HLT exiting” VM-execution control is 1.

1. An execution of GETSEC in VMX non-root operation causes a VM exit if CR4.SMXE[Bit 14] = 1 regardless of the value of CPL or
RAX. An execution of GETSEC causes an invalid-opcode exception (#UD) if CR4.SMXE[Bit 14] = 0.

2. Under the dual-monitor treatment of SMIs and SMM, executions of VMCALL cause SMM VM exits in VMX root operation outside
SMM. See Section 34.15.2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 173

• IN, INS/INSB/INSW/INSD, OUT, OUTS/OUTSB/OUTSW/OUTSD. The behavior of each of these
instructions is determined by the settings of the “unconditional I/O exiting” and “use I/O bitmaps”
VM-execution controls:

— If both controls are 0, the instruction executes normally.

— If the “unconditional I/O exiting” VM-execution control is 1 and the “use I/O bitmaps” VM-execution
control is 0, the instruction causes a VM exit.

— If the “use I/O bitmaps” VM-execution control is 1, the instruction causes a VM exit if it attempts to access
an I/O port corresponding to a bit set to 1 in the appropriate I/O bitmap (see Section 24.6.4). If an I/O
operation “wraps around” the 16-bit I/O-port space (accesses ports FFFFH and 0000H), the I/O instruction
causes a VM exit (the “unconditional I/O exiting” VM-execution control is ignored if the “use I/O bitmaps”
VM-execution control is 1).

See Section 25.1.1 for information regarding the priority of VM exits relative to faults that may be caused by
the INS and OUTS instructions.

• INVLPG. The INVLPG instruction causes a VM exit if the “INVLPG exiting” VM-execution control is 1.
• INVPCID. The INVPCID instruction causes a VM exit if the “INVLPG exiting” and “enable INVPCID”

VM-execution controls are both 1.1

• LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, STR. These instructions cause VM exits if the “descriptor-
table exiting” VM-execution control is 1.2

• LMSW. In general, the LMSW instruction causes a VM exit if it would write, for any bit set in the low 4 bits of
the CR0 guest/host mask, a value different than the corresponding bit in the CR0 read shadow. LMSW never
clears bit 0 of CR0 (CR0.PE); thus, LMSW causes a VM exit if either of the following are true:

— The bits in position 0 (corresponding to CR0.PE) are set in both the CR0 guest/mask and the source
operand, and the bit in position 0 is clear in the CR0 read shadow.

— For any bit position in the range 3:1, the bit in that position is set in the CR0 guest/mask and the values
of the corresponding bits in the source operand and the CR0 read shadow differ.

• MONITOR. The MONITOR instruction causes a VM exit if the “MONITOR exiting” VM-execution control is 1.
• MOV from CR3. The MOV from CR3 instruction causes a VM exit if the “CR3-store exiting” VM-execution

control is 1. The first processors to support the virtual-machine extensions supported only the 1-setting of this
control.

• MOV from CR8. The MOV from CR8 instruction causes a VM exit if the “CR8-store exiting” VM-execution
control is 1.

• MOV to CR0. The MOV to CR0 instruction causes a VM exit unless the value of its source operand matches,
for the position of each bit set in the CR0 guest/host mask, the corresponding bit in the CR0 read shadow. (If
every bit is clear in the CR0 guest/host mask, MOV to CR0 cannot cause a VM exit.)

• MOV to CR3. The MOV to CR3 instruction causes a VM exit unless the “CR3-load exiting” VM-execution
control is 0 or the value of its source operand is equal to one of the CR3-target values specified in the VMCS.
If the CR3-target count in n, only the first n CR3-target values are considered; if the CR3-target count is 0,
MOV to CR3 always causes a VM exit.
The first processors to support the virtual-machine extensions supported only the 1-setting of the “CR3-load
exiting” VM-execution control. These processors always consult the CR3-target controls to determine
whether an execution of MOV to CR3 causes a VM exit.

1. “Enable INVPCID” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is 0, VMX non-root operation functions as if the “enable INVPCID” VM-execution control were 0. See Section 24.6.2.

2. “Descriptor-table exiting” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-exe-
cution controls is 0, VMX non-root operation functions as if the “descriptor-table exiting” VM-execution control were 0. See Section
24.6.2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 174

• MOV to CR4. The MOV to CR4 instruction causes a VM exit unless the value of its source operand matches,
for the position of each bit set in the CR4 guest/host mask, the corresponding bit in the CR4 read shadow.

• MOV to CR8. The MOV to CR8 instruction causes a VM exit if the “CR8-load exiting” VM-execution control is 1.
• MOV DR. The MOV DR instruction causes a VM exit if the “MOV-DR exiting” VM-execution control is 1. Such

VM exits represent an exception to the principles identified in Section 25.1.1 in that they take priority over the
following: general-protection exceptions based on privilege level; and invalid-opcode exceptions that occur
because CR4.DE=1 and the instruction specified access to DR4 or DR5.

• MWAIT. The MWAIT instruction causes a VM exit if the “MWAIT exiting” VM-execution control is 1. If this
control is 0, the behavior of the MWAIT instruction may be modified (see Section 25.3).

• PAUSE.The behavior of each of this instruction depends on CPL and the settings of the “PAUSE exiting” and
“PAUSE-loop exiting” VM-execution controls:1

— CPL = 0.

• If the “PAUSE exiting” and “PAUSE-loop exiting” VM-execution controls are both 0, the PAUSE
instruction executes normally.

• If the “PAUSE exiting” VM-execution control is 1, the PAUSE instruction causes a VM exit (the “PAUSE-
loop exiting” VM-execution control is ignored if CPL = 0 and the “PAUSE exiting” VM-execution control
is 1).

• If the “PAUSE exiting” VM-execution control is 0 and the “PAUSE-loop exiting” VM-execution control is
1, the following treatment applies.

The processor determines the amount of time between this execution of PAUSE and the previous
execution of PAUSE at CPL 0. If this amount of time exceeds the value of the VM-execution control field
PLE_Gap, the processor considers this execution to be the first execution of PAUSE in a loop. (It also
does so for the first execution of PAUSE at CPL 0 after VM entry.)

Otherwise, the processor determines the amount of time since the most recent execution of PAUSE
that was considered to be the first in a loop. If this amount of time exceeds the value of the VM-
execution control field PLE_Window, a VM exit occurs.

For purposes of these computations, time is measured based on a counter that runs at the same rate
as the timestamp counter (TSC).

— CPL > 0.

• If the “PAUSE exiting” VM-execution control is 0, the PAUSE instruction executes normally.

• If the “PAUSE exiting” VM-execution control is 1, the PAUSE instruction causes a VM exit.

The “PAUSE-loop exiting” VM-execution control is ignored if CPL > 0.
• RDMSR. The RDMSR instruction causes a VM exit if any of the following are true:

— The “use MSR bitmaps” VM-execution control is 0.

— The value of ECX is not in the range 00000000H – 00001FFFH or C0000000H – C0001FFFH.

— The value of ECX is in the range 00000000H – 00001FFFH and bit n in read bitmap for low MSRs is 1,
where n is the value of ECX.

— The value of ECX is in the range C0000000H – C0001FFFH and bit n in read bitmap for high MSRs is 1,
where n is the value of ECX & 00001FFFH.

See Section 24.6.9 for details regarding how these bitmaps are identified.
• RDPMC. The RDPMC instruction causes a VM exit if the “RDPMC exiting” VM-execution control is 1.
• RDRAND. The RDRAND instruction causes a VM exit if the “RDRAND exiting” VM-execution control is 1.2

1. “PAUSE-loop exiting” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is 0, VMX non-root operation functions as if the “PAUSE-loop exiting” VM-execution control were 0. See Section 24.6.2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 175

• RDTSC. The RDTSC instruction causes a VM exit if the “RDTSC exiting” VM-execution control is 1.
• RDTSCP. The RDTSCP instruction causes a VM exit if the “RDTSC exiting” and “enable RDTSCP” VM-execution

controls are both 1.1

• RSM. The RSM instruction causes a VM exit if executed in system-management mode (SMM).2

• WBINVD. The WBINVD instruction causes a VM exit if the “WBINVD exiting” VM-execution control is 1.3

• WRMSR. The WRMSR instruction causes a VM exit if any of the following are true:

— The “use MSR bitmaps” VM-execution control is 0.

— The value of ECX is not in the range 00000000H – 00001FFFH or C0000000H – C0001FFFH.

— The value of ECX is in the range 00000000H – 00001FFFH and bit n in write bitmap for low MSRs is 1,
where n is the value of ECX.

— The value of ECX is in the range C0000000H – C0001FFFH and bit n in write bitmap for high MSRs is 1,
where n is the value of ECX & 00001FFFH.

See Section 24.6.9 for details regarding how these bitmaps are identified.

25.2 OTHER CAUSES OF VM EXITS
In addition to VM exits caused by instruction execution, the following events can cause VM exits:
• Exceptions. Exceptions (faults, traps, and aborts) cause VM exits based on the exception bitmap (see

Section 24.6.3). If an exception occurs, its vector (in the range 0–31) is used to select a bit in the exception
bitmap. If the bit is 1, a VM exit occurs; if the bit is 0, the exception is delivered normally through the guest
IDT. This use of the exception bitmap applies also to exceptions generated by the instructions INT3, INTO,
BOUND, and UD2.
Page faults (exceptions with vector 14) are specially treated. When a page fault occurs, a processor consults
(1) bit 14 of the exception bitmap; (2) the error code produced with the page fault [PFEC]; (3) the page-fault
error-code mask field [PFEC_MASK]; and (4) the page-fault error-code match field [PFEC_MATCH]. It checks
if PFEC & PFEC_MASK = PFEC_MATCH. If there is equality, the specification of bit 14 in the exception bitmap
is followed (for example, a VM exit occurs if that bit is set). If there is inequality, the meaning of that bit is
reversed (for example, a VM exit occurs if that bit is clear).
Thus, if software desires VM exits on all page faults, it can set bit 14 in the exception bitmap to 1 and set the
page-fault error-code mask and match fields each to 00000000H. If software desires VM exits on no page
faults, it can set bit 14 in the exception bitmap to 1, the page-fault error-code mask field to 00000000H, and
the page-fault error-code match field to FFFFFFFFH.

• Triple fault. A VM exit occurs if the logical processor encounters an exception while attempting to call the
double-fault handler and that exception itself does not cause a VM exit due to the exception bitmap. This
applies to the case in which the double-fault exception was generated within VMX non-root operation, the
case in which the double-fault exception was generated during event injection by VM entry, and to the case in
which VM entry is injecting a double-fault exception.

2. “RDRAND exiting” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is 0, VMX non-root operation functions as if the “RDRAND exiting” VM-execution control were 0. See Section 24.6.2.

1. “Enable RDTSCP” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is 0, VMX non-root operation functions as if the “enable RDTSCP” VM-execution control were 0. See Section 24.6.2.

2. Execution of the RSM instruction outside SMM causes an invalid-opcode exception regardless of whether the processor is in VMX
operation. It also does so in VMX root operation in SMM; see Section 34.15.3.

3. “WBINVD exiting” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is 0, VMX non-root operation functions as if the “WBINVD exiting” VM-execution control were 0. See Section 24.6.2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 176

• External interrupts. An external interrupt causes a VM exit if the “external-interrupt exiting” VM-execution
control is 1. Otherwise, the interrupt is delivered normally through the IDT. (If a logical processor is in the
shutdown state or the wait-for-SIPI state, external interrupts are blocked. The interrupt is not delivered
through the IDT and no VM exit occurs.)

• Non-maskable interrupts (NMIs). An NMI causes a VM exit if the “NMI exiting” VM-execution control is 1.
Otherwise, it is delivered using descriptor 2 of the IDT. (If a logical processor is in the wait-for-SIPI state, NMIs
are blocked. The NMI is not delivered through the IDT and no VM exit occurs.)

• INIT signals. INIT signals cause VM exits. A logical processor performs none of the operations normally
associated with these events. Such exits do not modify register state or clear pending events as they would
outside of VMX operation. (If a logical processor is in the wait-for-SIPI state, INIT signals are blocked. They
do not cause VM exits in this case.)

• Start-up IPIs (SIPIs). SIPIs cause VM exits. If a logical processor is not in the wait-for-SIPI activity state
when a SIPI arrives, no VM exit occurs and the SIPI is discarded. VM exits due to SIPIs do not perform any of
the normal operations associated with those events: they do not modify register state as they would outside
of VMX operation. (If a logical processor is not in the wait-for-SIPI state, SIPIs are blocked. They do not cause
VM exits in this case.)

• Task switches. Task switches are not allowed in VMX non-root operation. Any attempt to effect a task switch
in VMX non-root operation causes a VM exit. See Section 25.4.2.

• System-management interrupts (SMIs). If the logical processor is using the dual-monitor treatment of
SMIs and system-management mode (SMM), SMIs cause SMM VM exits. See Section 34.15.2.1

• VMX-preemption timer. A VM exit occurs when the timer counts down to zero. See Section 25.5.1 for
details of operation of the VMX-preemption timer.
Debug-trap exceptions and higher priority events take priority over VM exits caused by the VMX-preemption
timer. VM exits caused by the VMX-preemption timer take priority over VM exits caused by the “NMI-window
exiting” VM-execution control and lower priority events.
These VM exits wake a logical processor from the same inactive states as would a non-maskable interrupt.
Specifically, they wake a logical processor from the shutdown state and from the states entered using the HLT
and MWAIT instructions. These VM exits do not occur if the logical processor is in the wait-for-SIPI state.

In addition, there are controls that cause VM exits based on the readiness of guest software to receive interrupts:
• If the “interrupt-window exiting” VM-execution control is 1, a VM exit occurs before execution of any

instruction if RFLAGS.IF = 1 and there is no blocking of events by STI or by MOV SS (see Table 24-3). Such a
VM exit occurs immediately after VM entry if the above conditions are true (see Section 26.6.5).
Non-maskable interrupts (NMIs) and higher priority events take priority over VM exits caused by this control.
VM exits caused by this control take priority over external interrupts and lower priority events.
These VM exits wake a logical processor from the same inactive states as would an external interrupt. Specif-
ically, they wake a logical processor from the states entered using the HLT and MWAIT instructions. These
VM exits do not occur if the logical processor is in the shutdown state or the wait-for-SIPI state.

• If the “NMI-window exiting” VM-execution control is 1, a VM exit occurs before execution of any instruction if
there is no virtual-NMI blocking and there is no blocking of events by MOV SS (see Table 24-3). (A logical
processor may also prevent such a VM exit if there is blocking of events by STI.) Such a VM exit occurs
immediately after VM entry if the above conditions are true (see Section 26.6.6).
VM exits caused by the VMX-preemption timer and higher priority events take priority over VM exits caused
by this control. VM exits caused by this control take priority over non-maskable interrupts (NMIs) and lower
priority events.

1. Under the dual-monitor treatment of SMIs and SMM, SMIs also cause SMM VM exits if they occur in VMX root operation outside
SMM. If the processor is using the default treatment of SMIs and SMM, SMIs are delivered as described in Section 34.14.1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 177

These VM exits wake a logical processor from the same inactive states as would an NMI. Specifically, they
wake a logical processor from the shutdown state and from the states entered using the HLT and MWAIT
instructions. These VM exits do not occur if the logical processor is in the wait-for-SIPI state.

25.3 CHANGES TO INSTRUCTION BEHAVIOR IN VMX NON-ROOT OPERATION
The behavior of some instructions is changed in VMX non-root operation. Some of these changes are determined
by the settings of certain VM-execution control fields. The following items detail such changes:
• CLTS. Behavior of the CLTS instruction is determined by the bits in position 3 (corresponding to CR0.TS) in

the CR0 guest/host mask and the CR0 read shadow:

— If bit 3 in the CR0 guest/host mask is 0, CLTS clears CR0.TS normally (the value of bit 3 in the CR0 read
shadow is irrelevant in this case), unless CR0.TS is fixed to 1 in VMX operation (see Section 23.8), in which
case CLTS causes a general-protection exception.

— If bit 3 in the CR0 guest/host mask is 1 and bit 3 in the CR0 read shadow is 0, CLTS completes but does
not change the contents of CR0.TS.

— If the bits in position 3 in the CR0 guest/host mask and the CR0 read shadow are both 1, CLTS causes a
VM exit.

• INVPCID. Behavior of the INVPCID instruction is determined first by the setting of the “enable INVPCID”
VM-execution control:1

— If the “enable INVPCID” VM-execution control is 0, INVPCID causes an invalid-opcode exception (#UD).

— If the “enable INVPCID” VM-execution control is 1, treatment is based on the setting of the “INVLPG
exiting” VM-execution control:

• If the “INVLPG exiting” VM-execution control is 0, INVPCID operates normally.

• If the “INVLPG exiting” VM-execution control is 1, INVPCID causes a VM exit.
• IRET. Behavior of IRET with regard to NMI blocking (see Table 24-3) is determined by the settings of the “NMI

exiting” and “virtual NMIs” VM-execution controls:

— If the “NMI exiting” VM-execution control is 0, IRET operates normally and unblocks NMIs. (If the “NMI
exiting” VM-execution control is 0, the “virtual NMIs” control must be 0; see Section 26.2.1.1.)

— If the “NMI exiting” VM-execution control is 1, IRET does not affect blocking of NMIs. If, in addition, the
“virtual NMIs” VM-execution control is 1, the logical processor tracks virtual-NMI blocking. In this case,
IRET removes any virtual-NMI blocking.

The unblocking of NMIs or virtual NMIs specified above occurs even if IRET causes a fault.
• LMSW. Outside of VMX non-root operation, LMSW loads its source operand into CR0[3:0], but it does not

clear CR0.PE if that bit is set. In VMX non-root operation, an execution of LMSW that does not cause a VM exit
(see Section 25.1.3) leaves unmodified any bit in CR0[3:0] corresponding to a bit set in the CR0 guest/host
mask. An attempt to set any other bit in CR0[3:0] to a value not supported in VMX operation (see Section
23.8) causes a general-protection exception. Attempts to clear CR0.PE are ignored without fault.

• MOV from CR0. The behavior of MOV from CR0 is determined by the CR0 guest/host mask and the CR0 read
shadow. For each position corresponding to a bit clear in the CR0 guest/host mask, the destination operand is
loaded with the value of the corresponding bit in CR0. For each position corresponding to a bit set in the CR0
guest/host mask, the destination operand is loaded with the value of the corresponding bit in the CR0 read
shadow. Thus, if every bit is cleared in the CR0 guest/host mask, MOV from CR0 reads normally from CR0; if
every bit is set in the CR0 guest/host mask, MOV from CR0 returns the value of the CR0 read shadow.

1. “Enable INVPCID” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is 0, VMX non-root operation functions as if the “enable INVPCID” VM-execution control were 0. See Section 24.6.2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 178

Depending on the contents of the CR0 guest/host mask and the CR0 read shadow, bits may be set in the
destination that would never be set when reading directly from CR0.

• MOV from CR3. If the “enable EPT” VM-execution control is 1 and an execution of MOV from CR3 does not
cause a VM exit (see Section 25.1.3), the value loaded from CR3 is a guest-physical address; see Section
28.2.1.

• MOV from CR4. The behavior of MOV from CR4 is determined by the CR4 guest/host mask and the CR4 read
shadow. For each position corresponding to a bit clear in the CR4 guest/host mask, the destination operand is
loaded with the value of the corresponding bit in CR4. For each position corresponding to a bit set in the CR4
guest/host mask, the destination operand is loaded with the value of the corresponding bit in the CR4 read
shadow. Thus, if every bit is cleared in the CR4 guest/host mask, MOV from CR4 reads normally from CR4; if
every bit is set in the CR4 guest/host mask, MOV from CR4 returns the value of the CR4 read shadow.
Depending on the contents of the CR4 guest/host mask and the CR4 read shadow, bits may be set in the
destination that would never be set when reading directly from CR4.

• MOV from CR8. If the MOV from CR8 instruction does not cause a VM exit (see Section 25.1.3), its behavior
is modified if the “use TPR shadow” VM-execution control is 1; see Section 29.3.

• MOV to CR0. An execution of MOV to CR0 that does not cause a VM exit (see Section 25.1.3) leaves
unmodified any bit in CR0 corresponding to a bit set in the CR0 guest/host mask. Treatment of attempts to
modify other bits in CR0 depends on the setting of the “unrestricted guest” VM-execution control:1

— If the control is 0, MOV to CR0 causes a general-protection exception if it attempts to set any bit in CR0 to
a value not supported in VMX operation (see Section 23.8).

— If the control is 1, MOV to CR0 causes a general-protection exception if it attempts to set any bit in CR0
other than bit 0 (PE) or bit 31 (PG) to a value not supported in VMX operation. It remains the case,
however, that MOV to CR0 causes a general-protection exception if it would result in CR0.PE = 0 and
CR0.PG = 1 or if it would result in CR0.PG = 1, CR4.PAE = 0, and IA32_EFER.LME = 1.

• MOV to CR3. If the “enable EPT” VM-execution control is 1 and an execution of MOV to CR3 does not cause a
VM exit (see Section 25.1.3), the value loaded into CR3 is treated as a guest-physical address; see Section
28.2.1.

— If PAE paging is not being used, the instruction does not use the guest-physical address to access memory
and it does not cause it to be translated through EPT.2

— If PAE paging is being used, the instruction translates the guest-physical address through EPT and uses
the result to load the four (4) page-directory-pointer-table entries (PDPTEs). The instruction does not use
the guest-physical addresses the PDPTEs to access memory and it does not cause them to be translated
through EPT.

• MOV to CR4. An execution of MOV to CR4 that does not cause a VM exit (see Section 25.1.3) leaves
unmodified any bit in CR4 corresponding to a bit set in the CR4 guest/host mask. Such an execution causes a
general-protection exception if it attempts to set any bit in CR4 (not corresponding to a bit set in the CR4
guest/host mask) to a value not supported in VMX operation (see Section 23.8).

• MOV to CR8. If the MOV to CR8 instruction does not cause a VM exit (see Section 25.1.3), its behavior is
modified if the “use TPR shadow” VM-execution control is 1; see Section 29.3.

• MWAIT. Behavior of the MWAIT instruction (which always causes an invalid-opcode exception—#UD—if CPL
> 0) is determined by the setting of the “MWAIT exiting” VM-execution control:

— If the “MWAIT exiting” VM-execution control is 1, MWAIT causes a VM exit.

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is 0, VMX non-root operation functions as if the “unrestricted guest” VM-execution control were 0. See Section 24.6.2.

2. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See Section 4.4 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 179

— If the “MWAIT exiting” VM-execution control is 0, MWAIT does not cause the processor to enter an imple-
mentation-dependent optimized state if (1) ECX[0] = 1; and (2) either (a) the “interrupt-window exiting”
VM-execution control is 0; or (b) the logical processor has recognized a pending virtual interrupt (see
Section 29.2.1). Instead, control passes to the instruction following the MWAIT instruction.

• RDMSR. Section 25.1.3 identifies when executions of the RDMSR instruction cause VM exits. If such an
execution causes neither a fault due to CPL > 0 nor a VM exit, the instruction’s behavior may be modified for
certain values of ECX:

— If ECX contains 10H (indicating the IA32_TIME_STAMP_COUNTER MSR), the value returned by the
instruction is determined by the setting of the “use TSC offsetting” VM-execution control as well as the
TSC offset:

• If the control is 0, the instruction operates normally, loading EAX:EDX with the value of the
IA32_TIME_STAMP_COUNTER MSR.

• If the control is 1, the instruction loads EAX:EDX with the sum (using signed addition) of the value of
the IA32_TIME_STAMP_COUNTER MSR and the value of the TSC offset (interpreted as a signed value).

The 1-setting of the “use TSC-offsetting” VM-execution control does not effect executions of RDMSR if ECX
contains 6E0H (indicating the IA32_TSC_DEADLINE MSR). Such executions return the APIC-timer
deadline relative to the actual timestamp counter without regard to the TSC offset.

— If ECX is in the range 800H–8FFH (indicating an APIC MSR), instruction behavior may be modified if the
“virtualize x2APIC mode” VM-execution control is 1; see Section 29.5.1

• RDTSC. Behavior of the RDTSC instruction is determined by the settings of the “RDTSC exiting” and “use TSC
offsetting” VM-execution controls as well as the TSC offset:

— If both controls are 0, RDTSC operates normally.

— If the “RDTSC exiting” VM-execution control is 0 and the “use TSC offsetting” VM-execution control is 1,
RDTSC loads EAX:EDX with the sum (using signed addition) of the value of the
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC offset (interpreted as a signed value).

— If the “RDTSC exiting” VM-execution control is 1, RDTSC causes a VM exit.
• RDTSCP. Behavior of the RDTSCP instruction is determined first by the setting of the “enable RDTSCP”

VM-execution control:2

— If the “enable RDTSCP” VM-execution control is 0, RDTSCP causes an invalid-opcode exception (#UD).

— If the “enable RDTSCP” VM-execution control is 1, treatment is based on the settings of the “RDTSC
exiting” and “use TSC offsetting” VM-execution controls as well as the TSC offset:

• If both controls are 0, RDTSCP operates normally.

• If the “RDTSC exiting” VM-execution control is 0 and the “use TSC offsetting” VM-execution control is
1, RDTSCP loads EAX:EDX with the sum (using signed addition) of the value of the
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC offset (interpreted as a signed value); it
also loads ECX with the value of bits 31:0 of the IA32_TSC_AUX MSR.

• If the “RDTSC exiting” VM-execution control is 1, RDTSCP causes a VM exit.
• SMSW. The behavior of SMSW is determined by the CR0 guest/host mask and the CR0 read shadow. For each

position corresponding to a bit clear in the CR0 guest/host mask, the destination operand is loaded with the
value of the corresponding bit in CR0. For each position corresponding to a bit set in the CR0 guest/host mask,
the destination operand is loaded with the value of the corresponding bit in the CR0 read shadow. Thus, if

1. “Virtualize x2APIC mode” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-exe-
cution controls is 0, VMX non-root operation functions as if the “virtualize x2APIC mode” VM-execution control were 0. See Section
24.6.2.

2. “Enable RDTSCP” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is 0, VMX non-root operation functions as if the “enable RDTSCP” VM-execution control were 0. See Section 24.6.2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 180

every bit is cleared in the CR0 guest/host mask, MOV from CR0 reads normally from CR0; if every bit is set in
the CR0 guest/host mask, MOV from CR0 returns the value of the CR0 read shadow.
Note the following: (1) for any memory destination or for a 16-bit register destination, only the low 16 bits of
the CR0 guest/host mask and the CR0 read shadow are used (bits 63:16 of a register destination are left
unchanged); (2) for a 32-bit register destination, only the low 32 bits of the CR0 guest/host mask and the
CR0 read shadow are used (bits 63:32 of the destination are cleared); and (3) depending on the contents of
the CR0 guest/host mask and the CR0 read shadow, bits may be set in the destination that would never be set
when reading directly from CR0.

• WRMSR. Section 25.1.3 identifies when executions of the WRMSR instruction cause VM exits. If such an
execution neither a fault due to CPL > 0 nor a VM exit, the instruction’s behavior may be modified for certain
values of ECX:

— If ECX contains 79H (indicating IA32_BIOS_UPDT_TRIG MSR), no microcode update is loaded, and control
passes to the next instruction. This implies that microcode updates cannot be loaded in VMX non-root
operation.

— If ECX contains 808H (indicating the TPR MSR), 80BH (the EOI MSR), or 83FH (self-IPI MSR), instruction
behavior may modified if the “virtualize x2APIC mode” VM-execution control is 1; see Section 29.5.1

25.4 OTHER CHANGES IN VMX NON-ROOT OPERATION
Treatments of event blocking and of task switches differ in VMX non-root operation as described in the following
sections.

...

25.4.2 Treatment of Task Switches
Task switches are not allowed in VMX non-root operation. Any attempt to effect a task switch in VMX non-root
operation causes a VM exit. However, the following checks are performed (in the order indicated), possibly
resulting in a fault, before there is any possibility of a VM exit due to task switch:

1. If a task gate is being used, appropriate checks are made on its P bit and on the proper values of the relevant
privilege fields. The following cases detail the privilege checks performed:

a. If CALL, INT n, or JMP accesses a task gate in IA-32e mode, a general-protection exception occurs.

b. If CALL, INT n, INT3, INTO, or JMP accesses a task gate outside IA-32e mode, privilege-levels checks are
performed on the task gate but, if they pass, privilege levels are not checked on the referenced task-state
segment (TSS) descriptor.

c. If CALL or JMP accesses a TSS descriptor directly in IA-32e mode, a general-protection exception occurs.

d. If CALL or JMP accesses a TSS descriptor directly outside IA-32e mode, privilege levels are checked on the
TSS descriptor.

e. If a non-maskable interrupt (NMI), an exception, or an external interrupt accesses a task gate in the IDT
in IA-32e mode, a general-protection exception occurs.

f. If a non-maskable interrupt (NMI), an exception other than breakpoint exceptions (#BP) and overflow
exceptions (#OF), or an external interrupt accesses a task gate in the IDT outside IA-32e mode, no
privilege checks are performed.

1. “Virtualize x2APIC mode” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-exe-
cution controls is 0, VMX non-root operation functions as if the “virtualize x2APIC mode” VM-execution control were 0. See Section
24.6.2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 181

g. If IRET is executed with RFLAGS.NT = 1 in IA-32e mode, a general-protection exception occurs.

h. If IRET is executed with RFLAGS.NT = 1 outside IA-32e mode, a TSS descriptor is accessed directly and
no privilege checks are made.

2. Checks are made on the new TSS selector (for example, that is within GDT limits).

3. The new TSS descriptor is read. (A page fault results if a relevant GDT page is not present).

4. The TSS descriptor is checked for proper values of type (depends on type of task switch), P bit, S bit, and
limit.

Only if checks 1–4 all pass (do not generate faults) might a VM exit occur. However, the ordering between a
VM exit due to a task switch and a page fault resulting from accessing the old TSS or the new TSS is implementa-
tion-specific. Some processors may generate a page fault (instead of a VM exit due to a task switch) if accessing
either TSS would cause a page fault. Other processors may generate a VM exit due to a task switch even if
accessing either TSS would cause a page fault.

If an attempt at a task switch through a task gate in the IDT causes an exception (before generating a VM exit due
to the task switch) and that exception causes a VM exit, information about the event whose delivery that accessed
the task gate is recorded in the IDT-vectoring information fields and information about the exception that caused
the VM exit is recorded in the VM-exit interruption-information fields. See Section 27.2. The fact that a task gate
was being accessed is not recorded in the VMCS.

If an attempt at a task switch through a task gate in the IDT causes VM exit due to the task switch, information
about the event whose delivery accessed the task gate is recorded in the IDT-vectoring fields of the VMCS. Since
the cause of such a VM exit is a task switch and not an interruption, the valid bit for the VM-exit interruption infor-
mation field is 0. See Section 27.2.

...

25.5.4 APIC Virtualization
APIC virtualization is a collection of features that can be used to support the virtualization of interrupts and the
Advanced Programmable Interrupt Controller (APIC). When APIC virtualization is enabled , the processor
emulates many accesses to the APIC, tracks the state of the virtual APIC, and delivers virtual interrupts — all in
VMX non-root operation without a VM exit.

Details of the APIC virtualization are given in Chapter 29.

...

25.5.5.3 EPTP Switching
EPTP switching is VM function 0. This VM function allows software in VMX non-root operation to load a new value
for the EPT pointer (EPTP), thereby establishing a different EPT paging-structure hierarchy (see Section 28.2 for
details of the operation of EPT). Software is limited to selecting from a list of potential EPTP values configured in
advance by software in VMX root operation.

Specifically, the value of ECX is used to select an entry from the EPTP list, the 4-KByte structure referenced by the
EPTP-list address (see Section 24.6.14; because this structure contains 512 8-Byte entries, VMFUNC causes a
VM exit if ECX ≥ 512). If the selected entry is a valid EPTP value (it would not cause VM entry to fail; see Section
26.2.1.1), it is stored in the EPTP field of the current VMCS and is used for subsequent accesses using guest-phys-
ical addresses. The following pseudocode provides details:

IF ECX ≥ 512
THEN VM exit;
ELSE

tent_EPTP ← 8 bytes from EPTP-list address + 8 * ECX;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 182

IF tent_EPTP is not a valid EPTP value (would cause VM entry to fail if in EPTP)
THEN VMexit;
ELSE

write tent_EPTP to the EPTP field in the current VMCS;
start using tent_EPTP as the new EPTP value for address translation;

FI;
FI;

Execution of the EPTP-switching VM function does not modify the state of any registers; no flags are modified.

As noted in Section 25.5.5.2, an execution of the EPTP-switching VM function that causes a VM exit (as specified
above), uses the basic exit reason 59, indicating “VMFUNC”. The length of the VMFUNC instruction is saved into
the VM-exit instruction-length field. No additional VM-exit information is provided.

An execution of VMFUNC loads EPTP from the EPTP list (and thus does not cause a fault or VM exit) is called an
EPTP-switching VMFUNC. After an EPTP-switching VMFUNC, control passes to the next instruction. The logical
processor starts creating and using guest-physical and combined mappings associated with the new value of bits
51:12 of EPTP; the combined mappings created and used are associated with the current VPID and PCID (these
are not changed by VMFUNC).1 If the “enable VPID” VM-execution control is 0, an EPTP-switching VMFUNC inval-
idates combined mappings associated with VPID 0000H (for all PCIDs and for all EP4TA values, where EP4TA is the
value of bits 51:12 of EPTP).

Because an EPTP-switching VMFUNC may change the translation of guest-physical addresses, it may affect use of
the guest-physical address in CR3. The EPTP-switching VMFUNC cannot itself cause a VM exit due to an EPT viola-
tion or an EPT misconfiguration due to the translation of that guest-physical address through the new EPT paging
structures. The following items provide details that apply if CR0.PG = 1:
• If 32-bit paging or IA-32e paging is in use (either CR4.PAE = 0 or IA32_EFER.LMA = 1), the next memory

access with a linear address uses the translation of the guest-physical address in CR3 through the new EPT
paging structures. As a result, this access may cause a VM exit due to an EPT violation or an EPT misconfigu-
ration encountered during that translation.

• If PAE paging is in use (CR4.PAE = 1 and IA32_EFER.LMA = 0), an EPTP-switching VMFUNC does not load the
four page-directory-pointer-table entries (PDPTEs) from the guest-physical address in CR3. The logical
processor continues to use the four guest-physical addresses already present in the PDPTEs. The guest-
physical address in CR3 is not translated through the new EPT paging structures (until some operation that
would load the PDPTEs).
The EPTP-switching VMFUNC cannot itself cause a VM exit due to an EPT violation or an EPT misconfiguration
encountered during the translation of a guest-physical address in any of the PDPTEs. A subsequent memory
access with a linear address uses the translation of the guest-physical address in the appropriate PDPTE
through the new EPT paging structures. As a result, such an access may cause a VM exit due to an EPT
violation or an EPT misconfiguration encountered during that translation.

If an EPTP-switching VMFUNC establishes an EPTP value that enables accessed and dirty flags for EPT (by setting
bit 6), subsequent memory accesses may fail to set those flags as specified if there has been no appropriate
execution of INVEPT since the last use of an EPTP value that does not enable accessed and dirty flags for EPT
(because bit 6 is clear) and that is identical to the new value on bits 51:12.

...

21.Updates to Chapter 26, Volume 3C
Change bars show changes to Chapter 26 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

1. If the “enable VPID” VM-execution control is 0, the current VPID is 0000H; if CR4.PCIDE = 0, the current PCID is 000H.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 183

...

26.2.1.1 VM-Execution Control Fields
VM entries perform the following checks on the VM-execution control fields:1

• Reserved bits in the pin-based VM-execution controls must be set properly. Software may consult the VMX
capability MSRs to determine the proper settings (see Appendix A.3.1).

• Reserved bits in the primary processor-based VM-execution controls must be set properly. Software may
consult the VMX capability MSRs to determine the proper settings (see Appendix A.3.2).

• If the “activate secondary controls” primary processor-based VM-execution control is 1, reserved bits in the
secondary processor-based VM-execution controls must be cleared. Software may consult the VMX capability
MSRs to determine which bits are reserved (see Appendix A.3.3).
If the “activate secondary controls” primary processor-based VM-execution control is 0 (or if the processor
does not support the 1-setting of that control), no checks are performed on the secondary processor-based
VM-execution controls. The logical processor operates as if all the secondary processor-based VM-execution
controls were 0.

• The CR3-target count must not be greater than 4. Future processors may support a different number of CR3-
target values. Software should read the VMX capability MSR IA32_VMX_MISC to determine the number of
values supported (see Appendix A.6).

• If the “use I/O bitmaps” VM-execution control is 1, bits 11:0 of each I/O-bitmap address must be 0. Neither
address should set any bits beyond the processor’s physical-address width.2,3

• If the “use MSR bitmaps” VM-execution control is 1, bits 11:0 of the MSR-bitmap address must be 0. The
address should not set any bits beyond the processor’s physical-address width.4

• If the “use TPR shadow” VM-execution control is 1, the virtual-APIC address must satisfy the following checks:

— Bits 11:0 of the address must be 0.

— The address should not set any bits beyond the processor’s physical-address width.5

If all of the above checks are satisfied and the “use TPR shadow” VM-execution control is 1, bytes 3:1 of
VTPR (see Section 29.1.1) may be cleared (behavior may be implementation-specific).
The clearing of these bytes may occur even if the VM entry fails. This is true either if the failure causes
control to pass to the instruction following the VM-entry instruction or if it causes processor state to be
loaded from the host-state area of the VMCS.

• If the “use TPR shadow” VM-execution control is 1 and the “virtual-interrupt delivery” VM-execution control is
0, bits 31:4 of the TPR threshold VM-execution control field must be 0.6

• The following check is performed if the “use TPR shadow” VM-execution control is 1 and the “virtualize APIC
accesses” and “virtual-interrupt delivery” VM-execution controls are both 0: the value of bits 3:0 of the TPR
threshold VM-execution control field should not be greater than the value of bits 7:4 of VTPR (see Section
29.1.1).

1. If the “activate secondary controls” primary processor-based VM-execution control is 0, VM entry operates as if each secondary
processor-based VM-execution control were 0.

2. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address
width is returned in bits 7:0 of EAX.

3. If IA32_VMX_BASIC[48] is read as 1, these addresses must not set any bits in the range 63:32; see Appendix A.1.

4. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

5. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

6. “Virtual-interrupt delivery” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-exe-
cution controls is 0, VM entry functions as if the “virtual-interrupt delivery” VM-execution control were 0. See Section 24.6.2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 184

• If the “NMI exiting” VM-execution control is 0, the “virtual NMIs” VM-execution control must be 0.
• If the “virtual NMIs” VM-execution control is 0, the “NMI-window exiting” VM-execution control must be 0.
• If the “virtualize APIC-accesses” VM-execution control is 1, the APIC-access address must satisfy the following

checks:

— Bits 11:0 of the address must be 0.

— The address should not set any bits beyond the processor’s physical-address width.1

• If the “use TPR shadow” VM-execution control is 0, the following VM-execution controls must also be 0:
“virtualize x2APIC mode”, “APIC-register virtualization”, and “virtual-interrupt delivery”.2

• If the “virtualize x2APIC mode” VM-execution control is 1, the “virtualize APIC accesses” VM-execution control
must be 0.

• If the “virtual-interrupt delivery” VM-execution control is 1, the “external-interrupt exiting” VM-execution
control must be 1.

• If the “process posted interrupts” VM-execution control is 1, the following must be true:3

— The “virtual-interrupt delivery” VM-execution control is 1.

— The “acknowledge interrupt on exit” VM-exit control is 1.

— The posted-interrupt notification vector has a value in the range 0–255 (bits 15:8 are all 0).

— Bits 5:0 of the posted-interrupt descriptor address are all 0.

— The posted-interrupt descriptor address does not set any bits beyond the processor's physical-address
width.4

• If the “enable VPID” VM-execution control is 1, the value of the VPID VM-execution control field must not be
0000H.5

• If the “enable EPT” VM-execution control is 1, the EPTP VM-execution control field (see Table 24-8 in Section
24.6.11) must satisfy the following checks:6

— The EPT memory type (bits 2:0) must be a value supported by the processor as indicated in the
IA32_VMX_EPT_VPID_CAP MSR (see Appendix A.10).

— Bits 5:3 (1 less than the EPT page-walk length) must be 3, indicating an EPT page-walk length of 4; see
Section 28.2.2.

— Bit 6 (enable bit for accessed and dirty flags for EPT) must be 0 if bit 21 of the IA32_VMX_EPT_VPID_CAP
MSR (see Appendix A.10) is read as 0, indicating that the processor does not support accessed and dirty
flags for EPT.

— Reserved bits 11:7 and 63:N (where N is the processor’s physical-address width) must all be 0.

— If the “unrestricted guest” VM-execution control is 1, the “enable EPT” VM-execution control must also be
1.7

1. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

2. “Virtualize x2APIC mode” and “APIC-register virtualization” are secondary processor-based VM-execution controls. If bit 31 of the
primary processor-based VM-execution controls is 0, VM entry functions as if these controls were 0. See Section 24.6.2.

3. “Process posted interrupts” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-
execution controls is 0, VM entry functions as if the “process posted interrupts” VM-execution control were 0. See Section 24.6.2.

4. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

5. “Enable VPID” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution con-
trols is 0, VM entry functions as if the “enable VPID” VM-execution control were 0. See Section 24.6.2.

6. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls
is 0, VM entry functions as if the “enable EPT” VM-execution control were 0. See Section 24.6.2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 185

• If the “enable VM functions” processor-based VM-execution control is 1, reserved bits in the VM-function
controls must be clear.1 Software may consult the VMX capability MSRs to determine which bits are reserved
(see Appendix A.11). In addition, the following check is performed based on the setting of bits in the VM-
function controls (see Section 24.6.14):

— If “EPTP switching” VM-function control is 1, the “enable EPT” VM-execution control must also 1. In
addition, the EPTP-list address must satisfy the following checks:

• Bits 11:0 of the address must be 0.

• The address must not set any bits beyond the processor’s physical-address width.
If the “enable VM functions” processor-based VM-execution control is 0, no checks are performed on the VM-
function controls.

...

26.3.2.5 Updating Non-Register State
Section 28.3 describes how the VMX architecture controls how a logical processor manages information in the
TLBs and paging-structure caches. The following items detail how VM entries invalidate cached mappings:
• If the “enable VPID” VM-execution control is 0, the logical processor invalidates linear mappings and

combined mappings associated with VPID 0000H (for all PCIDs); combined mappings for VPID 0000H are
invalidated for all EP4TA values (EP4TA is the value of bits 51:12 of EPTP).

• VM entries are not required to invalidate any guest-physical mappings, nor are they required to invalidate any
linear mappings or combined mappings if the “enable VPID” VM-execution control is 1.

If the “virtual-interrupt delivery” VM-execution control is 1, VM entry loads the values of RVI and SVI from the
guest interrupt-status field in the VMCS (see Section 24.4.2). After doing so, the logical processor first causes PPR
virtualization (Section 29.1.3) and then evaluates pending virtual interrupts (Section 29.2.1).

If a virtual interrupt is recognized, it may be delivered in VMX non-root operation immediately after VM entry
(including any specified event injection) completes; see Section 26.6.5. See Section 29.2.2 for details regarding
the delivery of virtual interrupts.

...

26.5.1.2 VM Exits During Event Injection
An event being injected never causes a VM exit directly regardless of the settings of the VM-execution controls.
For example, setting the “NMI exiting” VM-execution control to 1 does not cause a VM exit due to injection of an
NMI.

However, the event-delivery process may lead to a VM exit:
• If the vector in the VM-entry interruption-information field identifies a task gate in the IDT, the attempted task

switch may cause a VM exit just as it would had the injected event occurred during normal execution in VMX
non-root operation (see Section 25.4.2).

• If event delivery encounters a nested exception, a VM exit may occur depending on the contents of the
exception bitmap (see Section 25.2).

• If event delivery generates a double-fault exception (due to a nested exception); the logical processor
encounters another nested exception while attempting to call the double-fault handler; and that exception

7. “Unrestricted guest” and “enable EPT” are both secondary processor-based VM-execution controls. If bit 31 of the primary proces-
sor-based VM-execution controls is 0, VM entry functions as if both these controls were 0. See Section 24.6.2.

1. “Enable VM functions” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execu-
tion controls is 0, VM entry functions as if the “enable VM functions” VM-execution control were 0. See Section 24.6.2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 186

does not cause a VM exit due to the exception bitmap; then a VM exit occurs due to triple fault (see Section
25.2).

• If event delivery injects a double-fault exception and encounters a nested exception that does not cause a
VM exit due to the exception bitmap, then a VM exit occurs due to triple fault (see Section 25.2).

• If the “virtualize APIC accesses” VM-execution control is 1 and event delivery generates an access to the
APIC-access page, that access is treated as described in Section 29.4 and may cause a VM exit.1

If the event-delivery process does cause a VM exit, the processor state before the VM exit is determined just as it
would be had the injected event occurred during normal execution in VMX non-root operation. If the injected
event directly accesses a task gate that cause a VM exit or if the first nested exception encountered causes a
VM exit, information about the injected event is saved in the IDT-vectoring information field (see Section 27.2.3).

...

26.6.3 Delivery of Pending Debug Exceptions after VM Entry
The pending debug exceptions field in the guest-state area indicates whether there are debug exceptions that
have not yet been delivered (see Section 24.4.2). This section describes how these are treated on VM entry.

There are no pending debug exceptions after VM entry if any of the following are true:
• The VM entry is vectoring with one of the following interruption types: external interrupt, non-maskable

interrupt (NMI), hardware exception, or privileged software exception.
• The interruptibility-state field does not indicate blocking by MOV SS and the VM entry is vectoring with either

of the following interruption type: software interrupt or software exception.
• The VM entry is not vectoring and the activity-state field indicates either shutdown or wait-for-SIPI.

If none of the above hold, the pending debug exceptions field specifies the debug exceptions that are pending for
the guest. There are valid pending debug exceptions if either the BS bit (bit 14) or the enable-breakpoint bit
(bit 12) is 1. If there are valid pending debug exceptions, they are handled as follows:
• If the VM entry is not vectoring, the pending debug exceptions are treated as they would had they been

encountered normally in guest execution:

— If the logical processor is not blocking such exceptions (the interruptibility-state field indicates no blocking
by MOV SS), a debug exception is delivered after VM entry (see below).

— If the logical processor is blocking such exceptions (due to blocking by MOV SS), the pending debug
exceptions are held pending or lost as would normally be the case.

• If the VM entry is vectoring (with interruption type software interrupt or software exception and with blocking
by MOV SS), the following items apply:

— For injection of a software interrupt or of a software exception with vector 3 (#BP) or vector 4 (#OF), the
pending debug exceptions are treated as they would had they been encountered normally in guest
execution if the corresponding instruction (INT3 or INTO) were executed after a MOV SS that encountered
a debug trap.

— For injection of a software exception with a vector other than 3 and 4, the pending debug exceptions may
be lost or they may be delivered after injection (see below).

If there are no valid pending debug exceptions (as defined above), no pending debug exceptions are delivered
after VM entry.

If a pending debug exception is delivered after VM entry, it has the priority of “traps on the previous instruction”
(see Section 6.9 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). Thus, INIT

1. “Virtualize APIC accesses” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-exe-
cution controls is 0, VM entry functions as if the “virtualize APIC accesses” VM-execution control were 0. See Section 24.6.2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 187

signals and system-management interrupts (SMIs) take priority of such an exception, as do VM exits induced by
the TPR threshold (see Section 26.6.7) and pending MTF VM exits (see Section 26.6.8. The exception takes
priority over any pending non-maskable interrupt (NMI) or external interrupt and also over VM exits due to the 1-
settings of the “interrupt-window exiting” and “NMI-window exiting” VM-execution controls.

A pending debug exception delivered after VM entry causes a VM exit if the bit 1 (#DB) is 1 in the exception
bitmap. If it does not cause a VM exit, it updates DR6 normally.

...

26.6.5 Interrupt-Window Exiting and Virtual-Interrupt Delivery
If “interrupt-window exiting” VM-execution control is 1, an open interrupt window may cause a VM exit immedi-
ately after VM entry (see Section 25.2 for details). If the “interrupt-window exiting” VM-execution control is 0 but
the “virtual-interrupt delivery” VM-execution control is 1, a virtual interrupt may be delivered immediately after
VM entry (see Section 26.3.2.5 and Section 29.2.1).

The following items detail the treatment of these events:
• These events occur after any event injection specified for VM entry.
• Non-maskable interrupts (NMIs) and higher priority events take priority over these events. These events take

priority over external interrupts and lower priority events.
• These events wake the logical processor if it just entered the HLT state because of a VM entry (see Section

26.6.2). They do not occur if the logical processor just entered the shutdown state or the wait-for-SIPI state.

...

26.6.7 VM Exits Induced by the TPR Threshold
If the “use TPR shadow” and “virtualize APIC accesses” VM-execution controls are both 1 and the “virtual-inter-
rupt delivery” VM-execution control is 0, a VM exit occurs immediately after VM entry if the value of bits 3:0 of the
TPR threshold VM-execution control field is greater than the value of bits 7:4 of VTPR (see Section 29.1.1).1

The following items detail the treatment of these VM exits:
• The VM exits are not blocked if RFLAGS.IF = 0 or by the setting of bits in the interruptibility-state field in

guest-state area.
• The VM exits follow event injection if such injection is specified for VM entry.
• VM exits caused by this control take priority over system-management interrupts (SMIs), INIT signals, and

lower priority events. They thus have priority over the VM exits described in Section 26.6.5, Section 26.6.6,
and Section 26.6.8, as well as any interrupts or debug exceptions that may be pending at the time of
VM entry.

• These VM exits wake the logical processor if it just entered the HLT state as part of a VM entry (see Section
26.6.2). They do not occur if the logical processor just entered the shutdown state or the wait-for-SIPI state.
If such a VM exit is suppressed because the processor just entered the shutdown state, it occurs after the
delivery of any event that cause the logical processor to leave the shutdown state while remaining in VMX
non-root operation (e.g., due to an NMI that occurs while the “NMI-exiting” VM-execution control is 0).

• The basic exit reason is “TPR below threshold.”

...

1. “Virtualize APIC accesses” and “virtual-interrupt delivery” are secondary processor-based VM-execution controls. If bit 31 of the
primary processor-based VM-execution controls is 0, VM entry functions as if these controls were 0. See Section 24.6.2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 188

22.Updates to Chapter 27, Volume 3C
Change bars show changes to Chapter 27 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

...
VM exits occur in response to certain instructions and events in VMX non-root operation as detailed in Section
25.1 through Section 25.2. VM exits perform the following operations:

1. Information about the cause of the VM exit is recorded in the VM-exit information fields and VM-entry control
fields are modified as described in Section 27.2.

2. Processor state is saved in the guest-state area (Section 27.3).

3. MSRs may be saved in the VM-exit MSR-store area (Section 27.4). This step is not performed for SMM VM
exits that activate the dual-monitor treatment of SMIs and SMM.

4. The following may be performed in parallel and in any order (Section 27.5):

— Processor state is loaded based in part on the host-state area and some VM-exit controls. This step is not
performed for SMM VM exits that activate the dual-monitor treatment of SMIs and SMM. See Section
34.15.6 for information on how processor state is loaded by such VM exits.

— Address-range monitoring is cleared.

5. MSRs may be loaded from the VM-exit MSR-load area (Section 27.6). This step is not performed for SMM
VM exits that activate the dual-monitor treatment of SMIs and SMM.

VM exits are not logged with last-branch records, do not produce branch-trace messages, and do not update the
branch-trace store.

Section 27.1 clarifies the nature of the architectural state before a VM exit begins. The steps described above are
detailed in Section 27.2 through Section 27.6.

Section 34.15 describes the dual-monitor treatment of system-management interrupts (SMIs) and system-
management mode (SMM). Under this treatment, ordinary transitions to SMM are replaced by VM exits to a sepa-
rate SMM monitor. Called SMM VM exits, these are caused by the arrival of an SMI or the execution of VMCALL
in VMX root operation. SMM VM exits differ from other VM exits in ways that are detailed in Section 34.15.2.

27.1 ARCHITECTURAL STATE BEFORE A VM EXIT
This section describes the architectural state that exists before a VM exit, especially for VM exits caused by events
that would normally be delivered through the IDT. Note the following:
• An exception causes a VM exit directly if the bit corresponding to that exception is set in the exception

bitmap. A non-maskable interrupt (NMI) causes a VM exit directly if the “NMI exiting” VM-execution control is
1. An external interrupt causes a VM exit directly if the “external-interrupt exiting” VM-execution control is 1.
A start-up IPI (SIPI) that arrives while a logical processor is in the wait-for-SIPI activity state causes a VM exit
directly. INIT signals that arrive while the processor is not in the wait-for-SIPI activity state cause VM exits
directly.

• An exception, NMI, external interrupt, or software interrupt causes a VM exit indirectly if it does not do so
directly but delivery of the event causes a nested exception, double fault, task switch, APIC access (see
Section 29.4), EPT violation, or EPT misconfiguration that causes a VM exit.

• An event results in a VM exit if it causes a VM exit (directly or indirectly).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 189

The following bullets detail when architectural state is and is not updated in response to VM exits:
• If an event causes a VM exit directly, it does not update architectural state as it would have if it had it not

caused the VM exit:

— A debug exception does not update DR6, DR7.GD, or IA32_DEBUGCTL.LBR. (Information about the
nature of the debug exception is saved in the exit qualification field.)

— A page fault does not update CR2. (The linear address causing the page fault is saved in the exit-qualifi-
cation field.)

— An NMI causes subsequent NMIs to be blocked, but only after the VM exit completes.

— An external interrupt does not acknowledge the interrupt controller and the interrupt remains pending,
unless the “acknowledge interrupt on exit” VM-exit control is 1. In such a case, the interrupt controller is
acknowledged and the interrupt is no longer pending.

— The flags L0 – L3 in DR7 (bit 0, bit 2, bit 4, and bit 6) are not cleared when a task switch causes a VM exit.

— If a task switch causes a VM exit, none of the following are modified by the task switch: old task-state
segment (TSS); new TSS; old TSS descriptor; new TSS descriptor; RFLAGS.NT1; or the TR register.

— No last-exception record is made if the event that would do so directly causes a VM exit.

— If a machine-check exception causes a VM exit directly, this does not prevent machine-check MSRs from
being updated. These are updated by the machine-check event itself and not the resulting machine-check
exception.

— If the logical processor is in an inactive state (see Section 24.4.2) and not executing instructions, some
events may be blocked but others may return the logical processor to the active state. Unblocked events
may cause VM exits.2 If an unblocked event causes a VM exit directly, a return to the active state occurs
only after the VM exit completes.3 The VM exit generates any special bus cycle that is normally generated
when the active state is entered from that activity state.

MTF VM exits (see Section 25.5.2 and Section 26.6.8) are not blocked in the HLT activity state. If an MTF
VM exit occurs in the HLT activity state, the logical processor returns to the active state only after the
VM exit completes. MTF VM exits are blocked the shutdown state and the wait-for-SIPI state.

• If an event causes a VM exit indirectly, the event does update architectural state:

— A debug exception updates DR6, DR7, and the IA32_DEBUGCTL MSR. No debug exceptions are
considered pending.

— A page fault updates CR2.

— An NMI causes subsequent NMIs to be blocked before the VM exit commences.

— An external interrupt acknowledges the interrupt controller and the interrupt is no longer pending.

— If the logical processor had been in an inactive state, it enters the active state and, before the VM exit
commences, generates any special bus cycle that is normally generated when the active state is entered
from that activity state.

— There is no blocking by STI or by MOV SS when the VM exit commences.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that support VMX
operation also support Intel 64 architecture. For processors that do not support Intel 64 architecture, this notation refers to the
32-bit forms of those registers (EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to
lower 32 bits of the indicated register.

2. If a VM exit takes the processor from an inactive state resulting from execution of a specific instruction (HLT or MWAIT), the value
saved for RIP by that VM exit will reference the following instruction.

3. An exception is made if the logical processor had been inactive due to execution of MWAIT; in this case, it is considered to have
become active before the VM exit.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 190

— Processor state that is normally updated as part of delivery through the IDT (CS, RIP, SS, RSP, RFLAGS) is
not modified. However, the incomplete delivery of the event may write to the stack.

— The treatment of last-exception records is implementation dependent:

• Some processors make a last-exception record when beginning the delivery of an event through the
IDT (before it can encounter a nested exception). Such processors perform this update even if the
event encounters a nested exception that causes a VM exit (including the case where nested
exceptions lead to a triple fault).

• Other processors delay making a last-exception record until event delivery has reached some event
handler successfully (perhaps after one or more nested exceptions). Such processors do not update
the last-exception record if a VM exit or triple fault occurs before an event handler is reached.

• If the “virtual NMIs” VM-execution control is 1, VM entry injects an NMI, and delivery of the NMI causes a
nested exception, double fault, task switch, or APIC access that causes a VM exit, virtual-NMI blocking is in
effect before the VM exit commences.

• If a VM exit results from a fault, EPT violation, or EPT misconfiguration encountered during execution of IRET
and the “NMI exiting” VM-execution control is 0, any blocking by NMI is cleared before the VM exit
commences. However, the previous state of blocking by NMI may be recorded in the VM-exit interruption-
information field; see Section 27.2.2.

• If a VM exit results from a fault, EPT violation, or EPT misconfiguration encountered during execution of IRET
and the “virtual NMIs” VM-execution control is 1, virtual-NMI blocking is cleared before the VM exit
commences. However, the previous state of virtual-NMI blocking may be recorded in the VM-exit interruption-
information field; see Section 27.2.2.

• Suppose that a VM exit is caused directly by an x87 FPU Floating-Point Error (#MF) or by any of the following
events if the event was unblocked due to (and given priority over) an x87 FPU Floating-Point Error: an INIT
signal, an external interrupt, an NMI, an SMI; or a machine-check exception. In these cases, there is no
blocking by STI or by MOV SS when the VM exit commences.

• Normally, a last-branch record may be made when an event is delivered through the IDT. However, if such an
event results in a VM exit before delivery is complete, no last-branch record is made.

• If machine-check exception results in a VM exit, processor state is suspect and may result in suspect state
being saved to the guest-state area. A VM monitor should consult the RIPV and EIPV bits in the
IA32_MCG_STATUS MSR before resuming a guest that caused a VM exit resulting from a machine-check
exception.

• If a VM exit results from a fault, APIC access (see Section 29.4), EPT violation, or EPT misconfiguration
encountered while executing an instruction, data breakpoints due to that instruction may have been
recognized and information about them may be saved in the pending debug exceptions field (see Section
27.3.4).

• The following VM exits are considered to happen after an instruction is executed:

— VM exits resulting from debug traps (single-step, I/O breakpoints, and data breakpoints).

— VM exits resulting from debug exceptions whose recognition was delayed by blocking by MOV SS.

— VM exits resulting from some machine-check exceptions.

— Trap-like VM exits due to execution of MOV to CR8 when the “CR8-load exiting” VM-execution control is 0
and the “use TPR shadow” VM-execution control is 1 (see Section 29.3). (Such VM exits can occur only
from 64-bit mode and thus only on processors that support Intel 64 architecture.)

— Trap-like VM exits due to execution of WRMSR when the “use MSR bitmaps” VM-execution control is 1; the
value of ECX is in the range 800H–8FFH; and the bit corresponding to the ECX value in write bitmap for
low MSRs is 0; and the “virtualize x2APIC mode” VM-execution control is 1. See Section 29.5.

— VM exits caused by APIC-write emulation (see Section 29.4.3.2) that result from APIC accesses as part of
instruction execution.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 191

For these VM exits, the instruction’s modifications to architectural state complete before the VM exit occurs.
Such modifications include those to the logical processor’s interruptibility state (see Table 24-3). If there had
been blocking by MOV SS, POP SS, or STI before the instruction executed, such blocking is no longer in effect.

27.2.1 Basic VM-Exit Information
Section 24.9.1 defines the basic VM-exit information fields. The following items detail their use.
• Exit reason.

— Bits 15:0 of this field contain the basic exit reason. It is loaded with a number indicating the general cause
of the VM exit. Appendix C lists the numbers used and their meaning.

— The remainder of the field (bits 31:16) is cleared to 0 (certain SMM VM exits may set some of these bits;
see Section 34.15.2.3).1

• Exit qualification. This field is saved for VM exits due to the following causes: debug exceptions; page-fault
exceptions; start-up IPIs (SIPIs); system-management interrupts (SMIs) that arrive immediately after the
retirement of I/O instructions; task switches; INVEPT; INVLPG; INVPCID; INVVPID; LGDT; LIDT; LLDT; LTR;
SGDT; SIDT; SLDT; STR; VMCLEAR; VMPTRLD; VMPTRST; VMREAD; VMWRITE; VMXON; control-register
accesses; MOV DR; I/O instructions; MWAIT; accesses to the APIC-access page (see Section 29.4); EPT
violations; EOI virtualization (Section 29.1.4); and APIC-write emulation (see Section 29.4.3.3). For all other
VM exits, this field is cleared. The following items provide details:

For a debug exception, the exit qualification contains information about the debug exception. The information
has the format given in Table 24-4.

...
— For an APIC-access VM exit resulting from a linear access or a guest-physical access to the APIC-access

page (see Section 29.4), the exit qualification contains information about the access and has the format
given in Table 27-6.2

1. Bit 13 of this field is set on certain VM-entry failures; see Section 26.7.

2. The exit qualification is undefined if the access was part of the logging of a branch record or a precise-event-based-sampling
(PEBS) record to the DS save area. It is recommended that software configure the paging structures so that no address in the DS
save area translates to an address on the APIC-access page.

Table 27-6 Exit Qualification for APIC-Access VM Exits from Linear Accesses and Guest-Physical Accesses

Bit Position(s) Contents

11:0 • If the APIC-access VM exit is due to a linear access, the offset of access within the APIC page.
• Undefined if the APIC-access VM exit is due a guest-physical access

15:12 Access type:

0 = linear access for a data read during instruction execution
1 = linear access for a data write during instruction execution
2 = linear access for an instruction fetch
3 = linear access (read or write) during event delivery
10 = guest-physical access during event delivery
15 = guest-physical access for an instruction fetch or during instruction execution

Other values not used

63:16 Reserved (cleared to 0). Bits 63:32 exist only on processors that support Intel 64 architecture.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 192

Such a VM exit that set bits 15:12 of the exit qualification to 0000b (data read during instruction
execution) or 0001b (data write during instruction execution) set bit 12—which distinguishes data read
from data write—to that which would have been stored in bit 1—W/R—of the page-fault error code had the
access caused a page fault instead of an APIC-access VM exit. This implies the following:

• For an APIC-access VM exit caused by the CLFLUSH instruction, the access type is “data read during
instruction execution.”

• For an APIC-access VM exit caused by the ENTER instruction, the access type is “data write during
instruction execution.”

• For an APIC-access VM exit caused by the MASKMOVQ instruction or the MASKMOVDQU instruction,
the access type is “data write during instruction execution.”

• For an APIC-access VM exit caused by the MONITOR instruction, the access type is “data read during
instruction execution.”

Such a VM exit stores 1 for bit 31 for IDT-vectoring information field (see Section 27.2.3) if and only if it
sets bits 15:12 of the exit qualification to 0011b (linear access during event delivery) or 1010b (guest-
physical access during event delivery).

See Section 29.4.4 for further discussion of these instructions and APIC-access VM exits.

For APIC-access VM exits resulting from physical accesses, the APIC-access page (see Section 29.4.6),
the exit qualification is undefined.

...
An EPT violation that occurs during as a result of execution of a read-modify-write operation sets bit 1
(data write). Whether it also sets bit 0 (data read) is implementation-specific and, for a given implemen-
tation, may differ for different kinds of read-modify-write operations.

Bit 12 is undefined in any of the following cases:

• If the “NMI exiting” VM-execution control is 1 and the “virtual NMIs” VM-execution control is 0.

• If the VM exit sets the valid bit in the IDT-vectoring information field (see Section 27.2.3).

Otherwise, bit 12 is defined as follows:

• If the “virtual NMIs” VM-execution control is 0, the EPT violation was caused by a memory access as
part of execution of the IRET instruction, and blocking by NMI (see Table 24-3) was in effect before
execution of IRET, bit 12 is set to 1.

• If the “virtual NMIs” VM-execution control is 1,the EPT violation was caused by a memory access as
part of execution of the IRET instruction, and virtual-NMI blocking was in effect before execution of
IRET, bit 12 is set to 1.

• For all other relevant VM exits, bit 12 is cleared to 0.

— For VM exits caused as part of EOI virtualization (Section 29.1.4), bits 7:0 of the exit qualification are set
to vector of the virtual interrupt that was dismissed by the EOI virtualization. Bits above bit 7 are cleared.

— For APIC-write VM exits (Section 29.4.3.3), bits 11:0 of the exit qualification are set to the page offset of
the write access that caused the VM exit.1 Bits above bit 11 are cleared.

...

1. Execution of WRMSR with ECX = 83FH (self-IPI MSR) can lead to an APIC-write VM exit; the exit qualification for such an APIC-
write VM exit is 3F0H.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 193

27.2.3 Information for VM Exits During Event Delivery
Section 24.9.3 defined fields containing information for VM exits that occur while delivering an event through the
IDT and as a result of any of the following cases:1

• A fault occurs during event delivery and causes a VM exit (because the bit associated with the fault is set to 1
in the exception bitmap).

• A task switch is invoked through a task gate in the IDT. The VM exit occurs due to the task switch only after
the initial checks of the task switch pass (see Section 25.4.2).

• Event delivery causes an APIC-access VM exit (see Section 29.4).
• An EPT violation or EPT misconfiguration that occurs during event delivery.

These fields are used for VM exits that occur during delivery of events injected as part of VM entry (see Section
26.5.1.2).

...

27.2.4 Information for VM Exits Due to Instruction Execution
Section 24.9.4 defined fields containing information for VM exits that occur due to instruction execution. (The VM-
exit instruction length is also used for VM exits that occur during the delivery of a software interrupt or software
exception.) The following items detail their use.
• VM-exit instruction length. This field is used in the following cases:

— For fault-like VM exits due to attempts to execute one of the following instructions that cause VM exits
unconditionally (see Section 25.1.2) or based on the settings of VM-execution controls (see Section
25.1.3): CLTS, CPUID, GETSEC, HLT, IN, INS, INVD, INVEPT, INVLPG, INVPCID, INVVPID, LGDT, LIDT,
LLDT, LMSW, LTR, MONITOR, MOV CR, MOV DR, MWAIT, OUT, OUTS, PAUSE, RDMSR, RDPMC, RDRAND,
RDTSC, RDTSCP, RSM, SGDT, SIDT, SLDT, STR, VMCALL, VMCLEAR, VMLAUNCH, VMPTRLD, VMPTRST,
VMREAD, VMRESUME, VMWRITE, VMXOFF, VMXON, WBINVD, WRMSR, and XSETBV.2

— For VM exits due to software exceptions (those generated by executions of INT3 or INTO).

— For VM exits due to faults encountered during delivery of a software interrupt, privileged software
exception, or software exception.

— For VM exits due to attempts to effect a task switch via instruction execution. These are VM exits that
produce an exit reason indicating task switch and either of the following:

• An exit qualification indicating execution of CALL, IRET, or JMP instruction.

• An exit qualification indicating a task gate in the IDT and an IDT-vectoring information field indicating
that the task gate was encountered during delivery of a software interrupt, privileged software
exception, or software exception.

— For APIC-access VM exits resulting from accesses (see Section 29.4) during delivery of a software
interrupt, privileged software exception, or software exception.3

...

1. This includes the case in which a VM exit occurs while delivering a software interrupt (INT n) through the 16-bit IVT (interrupt vec-
tor table) that is used in virtual-8086 mode with virtual-machine extensions (if RFLAGS.VM = CR4.VME = 1).

2. This item applies only to fault-like VM exits. It does not apply to trap-like VM exits following executions of the MOV to CR8 instruc-
tion when the “use TPR shadow” VM-execution control is 1 or to those following executions of the WRMSR instruction when the
“virtualize x2APIC mode” VM-execution control is 1.

3. The VM-exit instruction-length field is not defined following APIC-access VM exits resulting from physical accesses (see Section
29.4.6) even if encountered during delivery of a software interrupt, privileged software exception, or software exception.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 194

27.3.3 Saving RIP, RSP, and RFLAGS
The contents of the RIP, RSP, and RFLAGS registers are saved as follows:
• The value saved in the RIP field is determined by the nature and cause of the VM exit:

— If the VM exit occurs due to by an attempt to execute an instruction that causes VM exits unconditionally
or that has been configured to cause a VM exit via the VM-execution controls, the value saved references
that instruction.

— If the VM exit is caused by an occurrence of an INIT signal, a start-up IPI (SIPI), or system-management
interrupt (SMI), the value saved is that which was in RIP before the event occurred.

— If the VM exit occurs due to the 1-setting of either the “interrupt-window exiting” VM-execution control or
the “NMI-window exiting” VM-execution control, the value saved is that which would be in the register had
the VM exit not occurred.

— If the VM exit is due to an external interrupt, non-maskable interrupt (NMI), or hardware exception (as
defined in Section 27.2.2), the value saved is the return pointer that would have been saved (either on the
stack had the event been delivered through a trap or interrupt gate,1 or into the old task-state segment
had the event been delivered through a task gate).

— If the VM exit is due to a triple fault, the value saved is the return pointer that would have been saved
(either on the stack had the event been delivered through a trap or interrupt gate, or into the old task-
state segment had the event been delivered through a task gate) had delivery of the double fault not
encountered the nested exception that caused the triple fault.

— If the VM exit is due to a software exception (due to an execution of INT3 or INTO), the value saved
references the INT3 or INTO instruction that caused that exception.

— Suppose that the VM exit is due to a task switch that was caused by execution of CALL, IRET, or JMP or by
execution of a software interrupt (INT n) or software exception (due to execution of INT3 or INTO) that
encountered a task gate in the IDT. The value saved references the instruction that caused the task switch
(CALL, IRET, JMP, INT n, INT3, or INTO).

— Suppose that the VM exit is due to a task switch that was caused by a task gate in the IDT that was
encountered for any reason except the direct access by a software interrupt or software exception. The
value saved is that which would have been saved in the old task-state segment had the task switch
completed normally.

— If the VM exit is due to an execution of MOV to CR8 or WRMSR that reduced the value of bits 7:4 of VTPR
(see Section 29.1.1) below that of TPR threshold VM-execution control field (see Section 29.1.2), the
value saved references the instruction following the MOV to CR8 or WRMSR.

— If the VM exit was caused by APIC-write emulation (see Section 29.4.3.2) that results from an APIC
access as part of instruction execution, the value saved references the instruction following the one whose
execution caused the APIC-write emulation.

• The contents of the RSP register are saved into the RSP field.
• With the exception of the resume flag (RF; bit 16), the contents of the RFLAGS register is saved into the

RFLAGS field. RFLAGS.RF is saved as follows:

— If the VM exit is caused directly by an event that would normally be delivered through the IDT, the value
saved is that which would appear in the saved RFLAGS image (either that which would be saved on the
stack had the event been delivered through a trap or interrupt gate2 or into the old task-state segment

1. The reference here is to the full value of RIP before any truncation that would occur had the stack width been only 32 bits or 16
bits.

2. The reference here is to the full value of RFLAGS before any truncation that would occur had the stack width been only 32 bits or
16 bits.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 195

had the event been delivered through a task gate) had the event been delivered through the IDT. See
below for VM exits due to task switches caused by task gates in the IDT.

— If the VM exit is caused by a triple fault, the value saved is that which the logical processor would have in
RF in the RFLAGS register had the triple fault taken the logical processor to the shutdown state.

— If the VM exit is caused by a task switch (including one caused by a task gate in the IDT), the value saved
is that which would have been saved in the RFLAGS image in the old task-state segment (TSS) had the
task switch completed normally without exception.

— If the VM exit is caused by an attempt to execute an instruction that unconditionally causes VM exits or
one that was configured to do with a VM-execution control, the value saved is 0.1

— For APIC-access VM exits and for VM exits caused by EPT violations and EPT misconfigurations, the value
saved depends on whether the VM exit occurred during delivery of an event through the IDT:

• If the VM exit stored 0 for bit 31 for IDT-vectoring information field (because the VM exit did not occur
during delivery of an event through the IDT; see Section 27.2.3), the value saved is 1.

• If the VM exit stored 1 for bit 31 for IDT-vectoring information field (because the VM exit did occur
during delivery of an event through the IDT), the value saved is the value that would have appeared in
the saved RFLAGS image had the event been delivered through the IDT (see above).

— For all other VM exits, the value saved is the value RFLAGS.RF had before the VM exit occurred.

...

27.3.4 Saving Non-Register State
Information corresponding to guest non-register state is saved as follows:
• The activity-state field is saved with the logical processor’s activity state before the VM exit.2 See Section 27.1

for details of how events leading to a VM exit may affect the activity state.
• The interruptibility-state field is saved to reflect the logical processor’s interruptibility before the VM exit. See

Section 27.1 for details of how events leading to a VM exit may affect this state. VM exits that end outside
system-management mode (SMM) save bit 2 (blocking by SMI) as 0 regardless of the state of such blocking
before the VM exit.
Bit 3 (blocking by NMI) is treated specially if the “virtual NMIs” VM-execution control is 1. In this case, the
value saved for this field does not indicate the blocking of NMIs but rather the state of virtual-NMI blocking.

• The pending debug exceptions field is saved as clear for all VM exits except the following:

— A VM exit caused by an INIT signal, a machine-check exception, or a system-management interrupt
(SMI).

— A VM exit with basic exit reason “TPR below threshold”,3 “virtualized EOI”, “APIC write”, or “monitor trap
flag.”

— VM exits that are not caused by debug exceptions and that occur while there is MOV-SS blocking of debug
exceptions.

For VM exits that do not clear the field, the value saved is determined as follows:

1. This is true even if RFLAGS.RF was 1 before the instruction was executed. If, in response to such a VM exit, a VM monitor re-enters
the guest to re-execute the instruction that caused the VM exit (for example, after clearing the VM-execution control that caused
the VM exit), the instruction may encounter a code breakpoint that has already been processed. A VM monitor can avoid this by
setting the guest value of RFLAGS.RF to 1 before resuming guest software.

2. If this activity state was an inactive state resulting from execution of a specific instruction (HLT or MWAIT), the value saved for RIP
by that VM exit will reference the following instruction.

3. This item includes VM exits that occur as a result of certain VM entries (Section 26.6.7).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 196

— Each of bits 3:0 may be set if it corresponds to a matched breakpoint. This may be true even if the corre-
sponding breakpoint is not enabled in DR7.

— Suppose that a VM exit is due to an INIT signal, a machine-check exception, or an SMI; or that a VM exit
has basic exit reason “TPR below threshold” or “monitor trap flag.” In this case, the value saved sets bits
corresponding to the causes of any debug exceptions that were pending at the time of the VM exit.

If the VM exit occurs immediately after VM entry, the value saved may match that which was loaded on
VM entry (see Section 26.6.3). Otherwise, the following items apply:

• Bit 12 (enabled breakpoint) is set to 1 if there was at least one matched data or I/O breakpoint that
was enabled in DR7. Bit 12 is also set if it had been set on VM entry, causing there to be valid pending
debug exceptions (see Section 26.6.3) and the VM exit occurred before those exceptions were either
delivered or lost. In other cases, bit 12 is cleared to 0.

• Bit 14 (BS) is set if RFLAGS.TF = 1 in either of the following cases:

• IA32_DEBUGCTL.BTF = 0 and the cause of a pending debug exception was the execution of a
single instruction.

• IA32_DEBUGCTL.BTF = 1 and the cause of a pending debug exception was a taken branch.

— Suppose that a VM exit is due to another reason (but not a debug exception) and occurs while there is
MOV-SS blocking of debug exceptions. In this case, the value saved sets bits corresponding to the causes
of any debug exceptions that were pending at the time of the VM exit. If the VM exit occurs immediately
after VM entry (no instructions were executed in VMX non-root operation), the value saved may match
that which was loaded on VM entry (see Section 26.6.3). Otherwise, the following items apply:

• Bit 12 (enabled breakpoint) is set to 1 if there was at least one matched data or I/O breakpoint that
was enabled in DR7. Bit 12 is also set if it had been set on VM entry, causing there to be valid pending
debug exceptions (see Section 26.6.3) and the VM exit occurred before those exceptions were either
delivered or lost. In other cases, bit 12 is cleared to 0.

• The setting of bit 14 (BS) is implementation-specific. However, it is not set if RFLAGS.TF = 0 or
IA32_DEBUGCTL.BTF = 1.

— The reserved bits in the field are cleared.
• If the “save VMX-preemption timer value” VM-exit control is 1, the value of timer is saved into the VMX-

preemption timer-value field. This is the value loaded from this field on VM entry as subsequently
decremented (see Section 25.5.1). VM exits due to timer expiration save the value 0. Other VM exits may also
save the value 0 if the timer expired during VM exit. (If the “save VMX-preemption timer value” VM-exit
control is 0, VM exit does not modify the value of the VMX-preemption timer-value field.)

• If the logical processor supports the 1-setting of the “enable EPT” VM-execution control, values are saved into
the four (4) PDPTE fields as follows:

— If the “enable EPT” VM-execution control is 1 and the logical processor was using PAE paging at the time
of the VM exit, the PDPTE values currently in use are saved:1

• The values saved into bits 11:9 of each of the fields is undefined.

• If the value saved into one of the fields has bit 0 (present) clear, the value saved into bits 63:1 of that
field is undefined. That value need not correspond to the value that was loaded by VM entry or to any
value that might have been loaded in VMX non-root operation.

• If the value saved into one of the fields has bit 0 (present) set, the value saved into bits 63:12 of the
field is a guest-physical address.

1. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See Section 4.4 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A. “Enable EPT” is a secondary processor-based VM-execution control. If
bit 31 of the primary processor-based VM-execution controls is 0, VM exit functions as if the “enable EPT” VM-execution control
were 0. See Section 24.6.2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 197

— If the “enable EPT” VM-execution control is 0 or the logical processor was not using PAE paging at the time
of the VM exit, the values saved are undefined.

...

23.Updates to Chapter 28, Volume 3C
Change bars show changes to Chapter 28 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

...

28.3.3.3 Guidelines for Use of the INVVPID Instruction
The need for VMM software to use the INVVPID instruction depends on how that software is virtualizing memory
(e.g., see Section 32.3, “Memory Virtualization”).

If EPT is not in use, it is likely that the VMM is virtualizing the guest paging structures. Such a VMM may configure
the VMCS so that all or some of the operations that invalidate entries the TLBs and the paging-structure caches
(e.g., the INVLPG instruction) cause VM exits. If VMM software is emulating these operations, it may be necessary
to use the INVVPID instruction to ensure that the logical processor’s TLBs and the paging-structure caches are
appropriately invalidated.

Requirements of when software should use the INVVPID instruction depend on the specific algorithm being used
for page-table virtualization. The following items provide guidelines for software developers:
• Emulation of the INVLPG instruction may require execution of the INVVPID instruction as follows:

— The INVVPID type is individual-address (0).

— The VPID in the INVVPID descriptor is the one assigned to the virtual processor whose execution is being
emulated.

— The linear address in the INVVPID descriptor is that of the operand of the INVLPG instruction being
emulated.

• Some instructions invalidate all entries in the TLBs and paging-structure caches—except for global transla-
tions. An example is the MOV to CR3 instruction. (See Section 4.10, “Caching Translation Information” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A for details regarding global
translations.) Emulation of such an instruction may require execution of the INVVPID instruction as follows:

— The INVVPID type is single-context-retaining-globals (3).

— The VPID in the INVVPID descriptor is the one assigned to the virtual processor whose execution is being
emulated.

• Some instructions invalidate all entries in the TLBs and paging-structure caches—including for global transla-
tions. An example is the MOV to CR4 instruction if the value of value of bit 4 (page global enable—PGE) is
changing. Emulation of such an instruction may require execution of the INVVPID instruction as follows:

— The INVVPID type is single-context (1).

— The VPID in the INVVPID descriptor is the one assigned to the virtual processor whose execution is being
emulated.

If EPT is not in use, the logical processor associates all mappings it creates with the current VPID, and it will use
such mappings to translate linear addresses. For that reason, a VMM should not use the same VPID for different
non-EPT guests that use different page tables. Doing so may result in one guest using translations that pertain to
the other.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 198

If EPT is in use, the instructions enumerated above might not be configured to cause VM exits and the VMM might
not be emulating them. In that case, executions of the instructions by guest software properly invalidate the
required entries in the TLBs and paging-structure caches (see Section 28.3.3.1); execution of the INVVPID
instruction is not required.

If EPT is in use, the logical processor associates all mappings it creates with the value of bits 51:12 of current
EPTP. If a VMM uses different EPTP values for different guests, it may use the same VPID for those guests. Doing
so cannot result in one guest using translations that pertain to the other.

The following guidelines apply more generally and are appropriate even if EPT is in use:
• As detailed in Section 29.4.5, an access to the APIC-access page might not cause an APIC-access VM exit if

software does not properly invalidate information that may be cached from the paging structures. If, at one
time, the current VPID on a logical processor was a non-zero value X, it is recommended that software use the
INVVPID instruction with the “single-context” INVVPID type and with VPID X in the INVVPID descriptor before
a VM entry on the same logical processor that establishes VPID X and either (a) the “virtualize APIC accesses”
VM-execution control was changed from 0 to 1; or (b) the value of the APIC-access address was changed.

• Software can use the INVVPID instruction with the “all-context” INVVPID type immediately after execution of
the VMXON instruction or immediately prior to execution of the VMXOFF instruction. Either prevents
potentially undesired retention of information cached from paging structures between separate uses of VMX
operation.

28.3.3.4 Guidelines for Use of the INVEPT Instruction
The following items provide guidelines for use of the INVEPT instruction to invalidate information cached from the
EPT paging structures.
• Software should use the INVEPT instruction with the “single-context” INVEPT type after making any of the

following changes to an EPT paging-structure entry (the INVEPT descriptor should contain an EPTP value that
references — directly or indirectly — the modified EPT paging structure):

— Changing any of the privilege bits 2:0 from 1 to 0.

— Changing the physical address in bits 51:12.

— Clearing bit 8 (the accessed flag) if accessed and dirty flags for EPT will be enabled.

— For an EPT PDPTE or an EPT PDE, changing bit 7 (which determines whether the entry maps a page).

— For the last EPT paging-structure entry used to translate a guest-physical address (an EPT PDPTE with
bit 7 set to 1, an EPT PDE with bit 7 set to 1, or an EPT PTE), changing either bits 5:3 or bit 6. (These bits
determine the effective memory type of accesses using that EPT paging-structure entry; see Section
28.2.5.)

— For the last EPT paging-structure entry used to translate a guest-physical address (an EPT PDPTE with
bit 7 set to 1, an EPT PDE with bit 7 set to 1, or an EPT PTE), clearing bit 9 (the dirty flag) if accessed and
dirty flags for EPT will be enabled.

• Software should use the INVEPT instruction with the “single-context” INVEPT type before a VM entry with an
EPTP value X such that X[6] = 1 (accessed and dirty flags for EPT are enabled) if the logical processor had
earlier been in VMX non-root operation with an EPTP value Y such that Y[6] = 0 (accessed and dirty flags for
EPT are not enabled) and Y[51:12] = X[51:12].

• Software may use the INVEPT instruction after modifying a present EPT paging-structure entry to change any
of the privilege bits 2:0 from 0 to 1. Failure to do so may cause an EPT violation that would not otherwise
occur. Because an EPT violation invalidates any mappings that would be used by the access that caused the
EPT violation (see Section 28.3.3.1), an EPT violation will not recur if the original access is performed again,
even if the INVEPT instruction is not executed.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 199

• Because a logical processor does not cache any information derived from EPT paging-structure entries that
are not present or misconfigured (see Section 28.2.3.1), it is not necessary to execute INVEPT following
modification of an EPT paging-structure entry that had been not present or misconfigured.

• As detailed in Section 29.4.5, an access to the APIC-access page might not cause an APIC-access VM exit if
software does not properly invalidate information that may be cached from the EPT paging structures. If EPT
was in use on a logical processor at one time with EPTP X, it is recommended that software use the INVEPT
instruction with the “single-context” INVEPT type and with EPTP X in the INVEPT descriptor before a VM entry
on the same logical processor that enables EPT with EPTP X and either (a) the “virtualize APIC accesses” VM-
execution control was changed from 0 to 1; or (b) the value of the APIC-access address was changed.

• Software can use the INVEPT instruction with the “all-context” INVEPT type immediately after execution of the
VMXON instruction or immediately prior to execution of the VMXOFF instruction. Either prevents potentially
undesired retention of information cached from EPT paging structures between separate uses of VMX
operation.

In a system containing more than one logical processor, software must account for the fact that information from
an EPT paging-structure entry may be cached on logical processors other than the one that modifies that entry.
The process of propagating the changes to a paging-structure entry is commonly referred to as “TLB shootdown.”
A discussion of TLB shootdown appears in Section 4.10.5, “Propagation of Paging-Structure Changes to Multiple
Processors,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

...

24.Updates to Chapter 29, Volume 3C
Chapter 29 is a new chapter of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C:
System Programming Guide, Part 3.

--

...
CHAPTER 29

APIC VIRTUALIZATION AND VIRTUAL INTERRUPTS

The VMCS includes controls that enable the virtualization of interrupts and the Advanced Programmable Interrupt
Controller (APIC).

When these controls are used, the processor will emulate many accesses to the APIC, track the state of the virtual
APIC, and deliver virtual interrupts — all in VMX non-root operation with out a VM exit.1

The processor tracks the state of the virtual APIC using a virtual-APIC page identified by the virtual-machine
monitor (VMM). Section 29.1 discusses the virtual-APIC page and how the processor uses it to track the state of
the virtual APIC.

The following are the VM-execution controls relevant to APIC virtualization and virtual interrupts (see Section
24.6 for information about the locations of these controls):
• Virtual-interrupt delivery. This controls enables the evaluation and delivery of pending virtual interrupts

(Section 29.2). It also enables the emulation of writes (memory-mapped or MSR-based, as enabled) to the
APIC registers that control interrupt prioritization.

• Use TPR shadow. This control enables emulation of accesses to the APIC’s task-priority register (TPR) via
CR8 (Section 29.3) and, if enabled, via the memory-mapped or MSR-based interfaces.

1. In most cases, it is not necessary for a virtual-machine monitor (VMM) to inject virtual interrupts as part of VM entry.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 200

• Virtualize APIC accesses. This control enables virtualization of memory-mapped accesses to the APIC
(Section 29.4) by causing VM exits on accesses to a VMM-specified APIC-access page. Some of the other
controls, if set, may cause some of these accesses to be emulated rather than causing VM exits.

• Virtualize x2APIC mode. This control enables virtualization of MSR-based accesses to the APIC (Section
29.5).

• APIC-register virtualization. This control allows memory-mapped and MSR-based reads of most APIC
registers (as enabled) by satisfying them from the virtual-APIC page. It directs memory-mapped writes to the
APIC-access page to the virtual-APIC page, following them by VM exits for VMM emulation.

• Process posted interrupts. This control allows software to post virtual interrupts in a data structure and
send a notification to another logical processor; upon receipt of the notification, the target processor will
process the posted interrupts by copying them into the virtual-APIC page (Section 29.6).

“Virtualize APIC accesses”, “virtualize x2APIC mode”, “virtual-interrupt delivery”, and “APIC-register virtualiza-
tion” are all secondary processor-based VM-execution controls. If bit 31 of the primary processor-based VM-
execution controls is 0, the processor operates as if these controls were all 0. See Section 24.6.2.

29.1 VIRTUAL APIC STATE
The virtual-APIC page is a 4-KByte region of memory that the processor uses the virtual-APIC page to virtualize
certain accesses to APIC registers and to manage virtual interrupts. The physical address of the virtual-APIC page
is the virtual-APIC address, a 64-bit VM-execution control field in the VMCS (see Section 24.6.8).

Depending on the settings of certain VM-execution controls, the processor may virtualize certain fields on the
virtual-APIC page with functionality analogous to that performed by the local APIC. Section 29.1.1 identifies and
defines these fields. Section 29.1.2, Section 29.1.3, Section 29.1.4, and Section 29.1.5 detail the actions taken
to virtualize updates to some of these fields.

29.1.1 Virtualized APIC Registers
Depending on the setting of certain VM-execution controls, a logical processor may virtualize certain accesses to
APIC registers using the following fields on the virtual-APIC page:
• Virtual task-priority register (VTPR): the 32-bit field located at offset 080H on the virtual-APIC page.
• Virtual processor-priority register (VPPR): the 32-bit field located at offset 0A0H on the virtual-APIC

page.
• Virtual end-of-interrupt register (VEOI): the 32-bit field located at offset 0B0H on the virtual-APIC page.
• Virtual interrupt-service register (VISR): the 256-bit value comprising eight non-contiguous 32-bit fields

at offsets 100H, 110H, 120H, 130H, 140H, 150H, 160H, and 170H on the virtual-APIC page. Bit x of the VISR
is at bit position (x & 1FH) at offset (100H | ((x & E0H) » 1)). The processor uses only the low 4 bytes of each
of the 16-byte fields at offsets 100H, 110H, 120H, 130H, 140H, 150H, 160H, and 170H.

• Virtual interrupt-request register (VIRR): the 256-bit value comprising eight non-contiguous 32-bit
fields at offsets 200H, 210H, 220H, 230H, 240H, 250H, 260H, and 270H on the virtual-APIC page. Bit x of the
VIRR is at bit position (x & 1FH) at offset (200H | ((x & E0H) » 1)). The processor uses only the low 4 bytes
of each of the 16-Byte fields at offsets 200H, 210H, 220H, 230H, 240H, 250H, 260H, and 270H.

• Virtual interrupt-command register (VICR_LO): the 32-bit field located at offset 300H on the virtual-
APIC page

• Virtual interrupt-command register (VICR_HI): the 32-bit field located at offset 310H on the virtual-
APIC page.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 201

29.1.2 TPR Virtualization
The processor performs TPR virtualization in response to the following operations: (1) virtualization of the MOV
to CR8 instruction; (2) virtualization of a write to offset 080H on the APIC-access page; and (3) virtualization of
the WRMSR instruction with ECX = 808H. See Section 29.3, Section 29.4.3, and Section 29.5 for details of when
TPR virtualization is performed.

The following pseudocode details the behavior of TPR virtualization:
IF “virtual-interrupt delivery” is 0

THEN
IF VTPR[7:4] < TPR threshold (see Section 24.6.8)

THEN cause VM exit due to TPR below threshold;
FI;

ELSE
perform PPR virtualization (see Section 29.1.3);
evaluate pending virtual interrupts (see Section 29.2.1);

FI;

Any VM exit caused by TPR virtualization is trap-like: the instruction causing TPR virtualization completes before
the VM exit occurs (for example, the value of CS:RIP saved in the guest-state area of the VMCS references the
next instruction).

29.1.3 PPR Virtualization
The processor performs PPR virtualization in response to the following operations: (1) VM entry; (2) TPR virtu-
alization; and (3) EOI virtualization. See Section 26.3.2.5, Section 29.1.2, and Section 29.1.4 for details of when
PPR virtualization is performed.

PPR virtualization uses the guest interrupt status (specifically, SVI; see Section 24.4.2) and VTPR.The following
pseudocode details the behavior of PPR virtualization:

IF VTPR[7:4] ≥ SVI[7:4]
THEN VPPR ← VTPR & FFH;
ELSE VPPR ← SVI & F0H;

FI;

PPR virtualization always clears bytes 3:1 of VPPR.

PPR virtualization is caused only by TPR virtualization, EOI virtualization, and VM entry. Delivery of a virtual inter-
rupt also modifies VPPR, but in a different way (see Section 29.2.2). No other operations modify VPPR, even if
they modify SVI, VISR, or VTPR.

29.1.4 EOI Virtualization
The processor performs EOI virtualization in response to the following operations: (1) virtualization of a write
to offset 0B0H on the APIC-access page; and (2) virtualization of the WRMSR instruction with ECX = 80BH. See
Section 29.4.3 and Section 29.5 for details of when EOI virtualization is performed. EOI virtualization occurs only
if the “virtual-interrupt delivery” VM-execution control is 1.

EOI virtualization uses and updates the guest interrupt status (specifically, SVI; see Section 24.4.2). The
following pseudocode details the behavior of EOI virtualization:

Vector ← SVI;
VISR[Vector] ← 0; (see Section 29.1.1 for definition of VISR)
IF any bits set in VISR

THEN SVI ← highest index of bit set in VISR

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 202

ELSE SVI ← 0;
FI;
perform PPR virtualiation (see Section 29.1.3);
IF EOI_exit_bitmap[Vector] = 1 (see Section 24.6.8 for definition of EOI_exit_bitmap)

THEN cause EOI-induced VM exit with Vector as exit qualification;
ELSE evaluate pending virtual interrupts; (see Section 29.2.1)

FI;

Any VM exit caused by EOI virtualization is trap-like: the instruction causing EOI virtualization completes before
the VM exit occurs (for example, the value of CS:RIP saved in the guest-state area of the VMCS references the
next instruction).

29.1.5 Self-IPI Virtualization
The processor performs self-IPI virtualization in response to the following operations: (1) virtualization of a
write to offset 300H on the APIC-access page; and (2) virtualization of the WRMSR instruction with ECX = 83FH.
See Section 29.4.3 and Section 29.5 for details of when self-IPI virtualization is performed. Self-IPI virtualization
occurs only if the “virtual-interrupt delivery” VM-execution control is 1.

Each operation that leads to self-IPI virtualization provides an 8-bit vector (see Section 29.4.3 and Section 29.5).
Self-IPI virtualization updates the guest interrupt status (specifically, RVI; see Section 24.4.2). The following
pseudocode details the behavior of self-IPI virtualization:

VIRR[Vector] ← 1; (see Section 29.1.1 for definition of VIRR)
RVI ← max{RVI,Vector};
evaluate pending virtual interrupts; (see Section 29.2.1)

29.2 EVALUATION AND DELIVERY OF VIRTUAL INTERRUPTS
If the “virtual-interrupt delivery” VM-execution control is 1, certain actions in VMX non-root operation or during
VM entry cause the processor to evaluate and deliver virtual interrupts.

Evaluation of virtual interrupts is triggered by certain actions change the state of the virtual-APIC page and is
described in Section 29.2.1. This evaluation may result in recognition of a virtual interrupt. Once a virtual inter-
rupt is recognized, the processor may deliver it within VMX non-root operation without a VM exit. Virtual-interrupt
delivery is described in Section 29.2.2.

29.2.1 Evaluation of Pending Virtual Interrupts
If the “virtual-interrupt delivery” VM-execution control is 1, certain actions cause a logical processor to evaluate
pending virtual interrupts.

The following actions cause the evaluation of pending virtual interrupts: VM entry; TPR virtualization; EOI virtu-
alization; self-IPI virtualization; and posted-interrupt processing. See Section 26.3.2.5, Section 29.1.2, Section
29.1.4, Section 29.1.5, and Section 29.6 for details of when evaluation of pending virtual interrupts is performed.
No other operations cause the evaluation of pending virtual interrupts, even if they modify RVI or VPPR.

Evaluation of pending virtual interrupts uses the guest interrupt status (specifically, RVI; see Section 24.4.2). The
following pseudocode details the evaluation of pending virtual interrupts:

IF “interrupt-window exiting” is 0 AND
RVI[7:4] > VPPR[7:4] (see Section 29.1.1 for definition of VPPR)

THEN recognize a pending virtual interrupt;
ELSE

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 203

do not recognize a pending virtual interrupt;
FI;

Once recognized, a virtual interrupt may be delivered in VMX non-root operation; see Section 29.2.2.

Evaluation of pending virtual interrupts is caused only by VM entry, TPR virtualization, EOI virtualization, self-IPI
virtualization, and posted-interrupt processing. No other operations do so, even if they modify RVI or VPPR. The
logical processor ceases recognition of a pending virtual interrupt following the delivery of a virtual interrupt.

29.2.2 Virtual-Interrupt Delivery
If a virtual interrupt has been recognized (see Section 29.2.1), it will be delivered at an instruction boundary
when the following conditions all hold: (1) RFLAGS.IF = 1; (2) there is no blocking by STI; (3) there is no blocking
by MOV SS or by POP SS; and (4) the “interrupt-window exiting” VM-execution control is 0.

Virtual-interrupt delivery has the same priority as that of VM exits due to the 1-setting of the “interrupt-window
exiting” VM-execution control.1 Thus, non-maskable interrupts (NMIs) and higher priority events take priority
over delivery of a virtual interrupt; delivery of a virtual interrupt takes priority over external interrupts and lower
priority events.

Virtual-interrupt delivery wakes a logical processor from the same inactive activity states as would an external
interrupt. Specifically, it wakes a logical processor from the states entered using the HLT and MWAIT instructions.
It does not wake a logical processor in the shutdown state or in the wait-for-SIPI state.

Virtual-interrupt delivery updates the guest interrupt status (both RVI and SVI; see Section 24.4.2) and delivers
an event within VMX non-root operation without a VM exit. The following pseudocode details the behavior of
virtual-interrupt delivery (see Section 29.1.1 for definition of VISR, VIRR, and VPPR):

Vector ← RVI;
VISR[Vector] ← 1;
SVI ← Vector;
VPPR ← Vector & F0H;
VIRR[Vector] ← 0;
IF any bits set in VIRR

THEN RVI ← highest index of bit set in VIRR
ELSE RVI ← 0;

FI;
deliver interrupt with Vector through IDT;
cease recognition of any pending virtual interrupt;

29.3 VIRTUALIZING CR8-BASED TPR ACCESSES
In 64-bit mode, software can access the local APIC’s task-priority register (TPR) through CR8. Specifically, soft-
ware uses the MOV from CR8 and MOV to CR8 instructions (see Section 10.8.6, “Task Priority in IA-32e Mode”).
This section describes how these accesses can be virtualized.

A virtual-machine monitor can virtualize these CR8-based APIC accesses by setting the “CR8-load exiting” and
“CR8-store exiting” VM-execution controls, ensuring that the accesses cause VM exits (see Section 25.1.3). Alter-
natively, there are methods for virtualizing some CR8-based APIC accesses without VM exits.

1. A logical processor never recognizes or delivers a virtual interrupt if the “interrupt-window exiting” VM-execution control is 1.
Because of this, the relative priority of virtual-interrupt delivery and VM exits due to the 1-setting of that control is not defined.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 204

Normally, an execution of MOV from CR8 or MOV to CR8 that does not fault or cause a VM exit accesses the APIC’s
TPR. However, such an execution are treated specially if the “use TPR shadow” VM-execution control is 1. The
following items provide details:
• MOV from CR8. The instruction loads bits 3:0 of its destination operand with bits 7:4 of VTPR (see Section

29.1.1). Bits 63:4 of the destination operand are cleared.
• MOV to CR8. The instruction stores bits 3:0 of its source operand into bits 7:4 of VTPR; the remainder of

VTPR (bits 3:0 and bits 31:8) are cleared. Following this, the processor performs TPR virtualization (see
Section 29.1.2).

29.4 VIRTUALIZING MEMORY-MAPPED APIC ACCESSES
When the local APIC is in xAPIC mode, software accesses the local APIC’s control registers using a memory-
mapped interface. Specifically, software uses linear addresses that translate to physical addresses on page frame
indicated by the base address in the IA32_APIC_BASE MSR (see Section 10.4.4, “Local APIC Status and Loca-
tion”). This section describes how these accesses can be virtualized.

A virtual-machine monitor (VMM) can virtualize these memory-mapped APIC accesses by ensuring that any
access to a linear address that would access the local APIC instead causes a VM exit. This could be done using
paging or the extended page-table mechanism (EPT). Another way is by using the 1-setting of the “virtualize APIC
accesses” VM-execution control.

If the “virtualize APIC accesses” VM-execution control is 1, the logical processor treats specially memory accesses
using linear addresses that translate to physical addresses in the 4-KByte APIC-access page.1 (The APIC-access
page is identified by the APIC-access address, a field in the VMCS; see Section 24.6.8.)

In general, an access to the APIC-access page causes an APIC-access VM exit. APIC-access VM exits provide a
VMM with information about the access causing the VM exit. Section 29.4.1 discusses the priority of APIC-access
VM exits.

Certain VM-execution controls enable the processor to virtualize certain accesses to the APIC-access page without
a VM exit. In general, this virtualization causes these accesses to be made to the virtual-APIC page instead of the
APIC-access page.

NOTES
Unless stated otherwise, this section characterizes only linear accesses to the APIC-access page;
an access to the APIC-access page is a linear access if (1) it results from a memory access using
a linear address; and (2) the access’s physical address is the translation of that linear address.
Section 29.4.6 discusses accesses to the APIC-access page that are not linear accesses.
The distinction between the APIC-access page and the virtual-APIC page allows a VMM to share
paging structures or EPT paging structures among the virtual processors of a virtual machine (the
shared paging structures referencing the same APIC-access address, which appears in the VMCS
of all the virtual processors) while giving each virtual processor its own virtual APIC (the VMCS of
each virtual processor will have a unique virtual-APIC address).

Section 29.4.2 discusses when and how the processor may virtualize read accesses from the APIC-access page.
Section 29.4.3 does the same for write accesses. When virtualizing a write to the APIC-access page, the processor
typically takes actions in addition to passing the write through to the virtual-APIC page.

1. Even when addresses are translated using EPT (see Section 28.2), the determination of whether an APIC-access VM exit occurs
depends on an access’s physical address, not its guest-physical address. Even when CR0.PG = 0, ordinary memory accesses by
software use linear addresses; the fact that CR0.PG = 0 means only that the identity translation is used to convert linear
addresses to physical (or guest-physical) addresses.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 205

The discussion in those sections uses the concept of an operation within which these memory accesses may
occur. For those discussions, an “operation” can be an iteration of a REP-prefixed string instruction, an execution
of any other instruction, or delivery of an event through the IDT.

The 1-setting of the “virtualize APIC accesses” VM-execution control may also affect accesses to the APIC-access
page that do not result directly from linear addresses. This is discussed in Section 29.4.6.

29.4.1 Priority of APIC-Access VM Exits
The following items specify the priority of APIC-access VM exits relative to other events.
• The priority of an APIC-access VM exit due to a memory access is below that of any page fault or EPT violation

that that access may incur. That is, an access does not cause an APIC-access VM exit if it would cause a page
fault or an EPT violation.

• A memory access does not cause an APIC-access VM exit until after the accessed flags are set in the paging
structures (including EPT paging structures, if enabled).

• A write access does not cause an APIC-access VM exit until after the dirty flags are set in the appropriate
paging structure and EPT paging structure (if enabled).

• With respect to all other events, any APIC-access VM exit due to a memory access has the same priority as
any page fault or EPT violation that the access could cause. (This item applies to other events that the access
may generate as well as events that may be generated by other accesses by the same operation.)

These principles imply, among other things, that an APIC-access VM exit may occur during the execution of a
repeated string instruction (including INS and OUTS). Suppose, for example, that the first n iterations (n may be
0) of such an instruction do not access the APIC-access page and that the next iteration does access that page. As
a result, the first n iterations may complete and be followed by an APIC-access VM exit. The instruction pointer
saved in the VMCS references the repeated string instruction and the values of the general-purpose registers
reflect the completion of n iterations.

29.4.2 Virtualizing Reads from the APIC-Access Page
A read access from the APIC-access page causes an APIC-access VM exit if any of the following are true:
• The “use TPR shadow” VM-execution control is 0.
• The access is for an instruction fetch.
• The access is more than 32 bits in size.
• The access is part of an operation for which the processor has already virtualized a write to the APIC-access

page.
• The access is not entirely contained within the low 4 bytes of a naturally aligned 16-byte region. That is, bits

3:2 of the access’s address are 0, and the same is true of the address of the highest byte accessed.

If none of the above are true, whether a read access is virtualized depends on the setting of the “APIC-register
virtualization” VM-execution control:
• If “APIC-register virtualization” is 0, a read access is virtualized if its page offset is 080H (task priority);

otherwise, the access causes an APIC-access VM exit.
• If “APIC-register virtualization is 1, a read access is virtualized if it is entirely within one the following ranges

of offsets:

— 020H–023H (local APIC ID);

— 030H–033H (local APIC version);

— 080H–083H (task priority);

— 0B0H–0B3H (end of interrupt);

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 206

— 0D0H–0D3H (logical destination);

— 0E0H–0E3H (destination format);

— 0F0H–0F3H (spurious-interrupt vector);

— 100H–103H, 110H–113H, 120H–123H, 130H–133H, 140H–143H, 150H–153H, 160H–163H, or 170H–
173H (in-service);

— 180H–183H, 190H–193H, 1A0H–1A3H, 1B0H–1B3H, 1C0H–1C3H, 1D0H–1D3H, 1E0H–1E3H, or 1F0H–
1F3H (trigger mode);

— 200H–203H, 210H–213H, 220H–223H, 230H–233H, 240H–243H, 250H–253H, 260H–263H, or 270H–
273H (interrupt request);

— 280H–283H (error status);

— 300H–303H or 310H–313H (interrupt command);

— 320H–323H, 330H–333H, 340H–343H, 350H–353H, 360H–363H, or 370H–373H (LVT entries);

— 380H–383H (initial count); or

— 3E0H–3E3H (divide configuration).
In all other cases, the access causes an APIC-access VM exit.

A read access from the APIC-access page that is virtualized returns data from the corresponding page offset on
the virtual-APIC page.1

29.4.3 Virtualizing Writes to the APIC-Access Page
Whether a write access to the APIC-access page is virtualized depends on the settings of the VM-execution
controls and the page offset of the access. Section 29.4.3.1 details when APIC-write virtualization occurs.

Unlike reads, writes to the local APIC have side effects; because of this, virtualization of writes to the APIC-access
page may require emulation specific to the access’s page offset (which identifies the APIC register being
accessed). Section 29.4.3.2 describes this APIC-write emulation.

For some page offsets, it is necessary for software to complete the virtualization after a write completes. In these
cases, the processor causes an APIC-write VM exit to invoke VMM software. Section 29.4.3.3 discusses APIC-
write VM exits.

29.4.3.1 Determining Whether a Write Access is Virtualized
A write access to the APIC-access page causes an APIC-access VM exit if any of the following are true:
• The “use TPR shadow” VM-execution control is 0.
• The access is more than 32 bits in size.
• The access is part of an operation for which the processor has already virtualized a write (with a different page

offset or a different size) to the APIC-access page.
• The access is not entirely contained within the low 4 bytes of a naturally aligned 16-byte region. That is, bits

3:2 of the access’s address are 0, and the same is true of the address of the highest byte accessed.

If none of the above are true, whether a write access is virtualized depends on the settings of the “APIC-register
virtualization” and “virtual-interrupt delivery” VM-execution controls:

1. The memory type used for accesses that read from the virtual-APIC page is reported in bits 53:50 of the IA32_VMX_BASIC MSR
(see Appendix A.1).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 207

• If the “APIC-register virtualization” and “virtual-interrupt delivery” VM-execution controls are both 0, a write
access is virtualized if its page offset is 080H; otherwise, the access causes an APIC-access VM exit.

• If the “APIC-register virtualization” VM-execution control is 0 and the “virtual-interrupt delivery” VM-
execution control is 1, a write access is virtualized if its page offset is 080H (task priority), 0B0H (end of
interrupt), and 300H (interrupt command — low); otherwise, the access causes an APIC-access VM exit.

• If “APIC-register virtualization is 1, a write access is virtualized if it is entirely within one the following ranges
of offsets:

— 020H–023H (local APIC ID);

— 080H–083H (task priority);

— 0B0H–0B3H (end of interrupt);

— 0D0H–0D3H (logical destination);

— 0E0H–0E3H (destination format);

— 0F0H–0F3H (spurious-interrupt vector);

— 280H–283H (error status);

— 300H–303H or 310H–313H (interrupt command);

— 320H–323H, 330H–333H, 340H–343H, 350H–353H, 360H–363H, or 370H–373H (LVT entries);

— 380H–383H (initial count); or

— 3E0H–3E3H (divide configuration).
In all other cases, the access causes an APIC-access VM exit.

The processor virtualizes a write access to the APIC-access page by writing data to the corresponding page offset
on the virtual-APIC page.1 Following this, the processor performs certain actions after completion of the operation
of which the access was a part.2 APIC-write emulation is described in Section 29.4.3.2.

29.4.3.2 APIC-Write Emulation
If the processor virtualizes a write access to the APIC-access page, it performs additional actions after completion
of an operation of which the access was a part. These actions are called APIC-write emulation.

The details of APIC-write emulation depend upon the page offset of the virtualized write access:3

• 080H (task priority). The processor clears bytes 3:1 of VTPR and then causes TPR virtualization (Section
29.1.2).

• 0B0H (end of interrupt). If the “virtual-interrupt delivery” VM-execution control is 1, the processor clears
VEOI and then causes EOI virtualization (Section 29.1.4); otherwise, the processor causes an APIC-write
VM exit (Section 29.4.3.3).

• 300H (interrupt command — low). If the “virtual-interrupt delivery” VM-execution control is 1, the processor
checks the value of VICR_LO to determine whether the following are all true:

— Reserved bits (31:20, 17:16, 13) and bit 12 (delivery status) are all 0.

— Bits 19:18 (destination shorthand) are 01B (self).

1. The memory type used for accesses that write to the virtual-APIC page is reported in bits 53:50 of the IA32_VMX_BASIC MSR
(see Appendix A.1).

2. Recall that, for the purposes of this discussion, an operation is an iteration of a REP-prefixed string instruction, an execution of any
other instruction, or delivery of an event through the IDT.

3. For any operation, there can be only one page offset for which a write access was virtualized. This is because a write access is not
virtualized if the processor has already virtualized a write access for the same operation with a different page offset.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 208

— Bit 15 (trigger mode) is 0 (edge).

— Bits 10:8 (delivery mode) are 000B (fixed).

— Bits 7:4 (the upper half of the vector) are not 0000B.
If all of the items above are true, the processor performs self-IPI virtualization using the 8-bit vector in
byte 0 of VICR_LO (Section 29.1.5).
If the “virtual-interrupt delivery” VM-execution control is 0, or if any of the items above are false, the
processor causes an APIC-write VM exit (Section 29.4.3.3).

• 310H–313H (interrupt command — high). The processor clears bytes 2:0 of VICR_HI. No other virtualization
or VM exit occurs.

• Any other page offset. The processor causes an APIC-write VM exit (Section 29.4.3.3).

APIC-write emulation takes priority over system-management interrupts (SMIs), INIT signals, and lower priority
events. APIC-write emulation is not blocked if RFLAGS.IF = 0 or by the MOV SS, POP SS, or STI instructions.

If an operation causes a fault after a write access to the APIC-access page and before APIC-write emulation. In
this case, APIC-write emulation occurs after the fault is delivered and before the fault handler can execute.
However, if the operation causes a VM exit (perhaps due to a fault), the APIC-write emulation does not occur.

29.4.3.3 APIC-Write VM Exits
In certain cases, VMM software must be invoked to complete the virtualization of a write access to the APIC-
access page. In this case, APIC-write emulation causes an APIC-write VM exit. (Section 29.4.3.2 details the
cases that causes APIC-write VM exits.)

APIC-write VM exits are invoked by APIC-write emulation, and APIC-write emulation occurs after an operation
that performs a write access to the APIC-access page. Because of this, every APIC-write VM exit is trap-like: it
occurs after completion of the operation containing the write access that caused the VM exit (for example, the
value of CS:RIP saved in the guest-state area of the VMCS references the next instruction).

The basic exit reason for an APIC-write VM exit is “APIC write.” The exit qualification is the page offset of the write
access that led to the VM exit.

As noted in Section 29.5, execution of WRMSR with ECX = 83FH (self-IPI MSR) can lead to an APIC-write VM exit
if the “virtual-interrupt delivery” VM-execution control is 1. The exit qualification for such an APIC-write VM exit is
3F0H.

29.4.4 Instruction-Specific Considerations
Certain instructions that use linear address may cause page faults even though they do not use those addresses
to access memory. The APIC-virtualization features may affect these instructions as well:
• CLFLUSH. With regard to faulting, the processor operates as if CLFLUSH reads from the linear address in its

source operand. If that address translates to one on the APIC-access page, the instruction may cause an
APIC-access VM exit. If it does not, it will flush the corresponding cache line on the virtual-APIC page instead
of the APIC-access page.

• ENTER. With regard to faulting, the processor operates if ENTER writes to the byte referenced by the final
value of the stack pointer (even though it does not if its size operand is non-zero). If that value translates to
an address on the APIC-access page, the instruction may cause an APIC-access VM exit. If it does not, it will
cause the APIC-write emulation appropriate to the address’s page offset.

• MASKMOVQ and MAKSMOVDQU. Even if the instruction’s mask is zero, the processor may operate with
regard to faulting as if MASKMOVQ or MASKMOVDQU writes to memory (the behavior is implementation-
specific). In such a situation, an APIC-access VM exit may occur.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 209

• MONITOR. With regard to faulting, the processor operates as if MONITOR reads from the effective address in
RAX. If the resulting linear address translates to one on the APIC-access page, the instruction may cause an
APIC-access VM exit.1 If it does not, it will monitor the corresponding address on the virtual-APIC page
instead of the APIC-access page.

• PREFETCH. An execution of the PREFETCH instruction that would result in an access to the APIC-access page
does not cause an APIC-access VM exit. Such an access may prefetch data; if so, it is from the corresponding
address on the virtual-APIC page.

Virtualization of accesses to the APIC-access page is principally intended for basic instructions such as AND, MOV,
OR, TEST, XCHG, and XOR. Use of instructions that normally operate on floating-point, SSE, or AVX registers may
cause APIC-access VM exit unconditionally regardless of the page offset they access on the APIC-access page.

29.4.5 Issues Pertaining to Page Size and TLB Management
The 1-setting of the “virtualize APIC accesses” VM-execution is guaranteed to apply only if translations to the
APIC-access address use a 4-KByte page. The following items provide details:
• If EPT is not in use, any linear address that translates to an address on the APIC-access page should use a 4-

KByte page. Any access to a linear address that translates to the APIC-access page using a larger page may
operate as if the “virtualize APIC accesses” VM-execution control were 0.

• If EPT is in use, any guest-physical address that translates to an address on the APIC-access page should use
a 4-KByte page. Any access to a linear address that translates to a guest-physical address that in turn
translates to the APIC-access page using a larger page may operate as if the “virtualize APIC accesses” VM-
execution control were 0. (This is true also for guest-physical accesses to the APIC-access page; see Section
29.4.6.1.)

In addition, software should perform appropriate TLB invalidation when making changes that may affect APIC-
virtualization. The specifics depend on whether VPIDs or EPT is being used:
• VPIDs being used but EPT not being used. Suppose that there is a VPID that has been used before and

that software has since made either of the following changes: (1) set the “virtualize APIC accesses” VM-
execution control when it had previously been 0; or (2) changed the paging structures so that some linear
address translates to the APIC-access address when it previously did not. In that case, software should
execute INVVPID (see “INVVPID— Invalidate Translations Based on VPID” in Section 30.3) before performing
on the same logical processor and with the same VPID.2

• EPT being used. Suppose that there is an EPTP value that has been used before and that software has since
made either of the following changes: (1) set the “virtualize APIC accesses” VM-execution control when it had
previously been 0; or (2) changed the EPT paging structures so that some guest-physical address translates
to the APIC-access address when it previously did not. In that case, software should execute INVEPT (see
“INVEPT— Invalidate Translations Derived from EPT” in Section 30.3) before performing on the same logical
processor and with the same EPTP value.3

• Neither VPIDs nor EPT being used. No invalidation is required.

Failure to perform the appropriate TLB invalidation may result in the logical processor operating as if the “virtu-
alize APIC accesses” VM-execution control were 0 in responses to accesses to the affected address. (No invalida-
tion is necessary if neither VPIDs nor EPT is being used.)

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that support VMX
operation also support Intel 64 architecture. For IA-32 processors, this notation refers to the 32-bit forms of those registers (EAX,
EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to lower 32 bits of the indicated register.

2. INVVPID should use either (1) the all-contexts INVVPID type; (2) the single-context INVVPID type with the VPID in the INVVPID
descriptor; or (3) the individual-address INVVPID type with the linear address and the VPID in the INVVPID descriptor.

3. INVEPT should use either (1) the global INVEPT type; or (2) the single-context INVEPT type with the EPTP value in the INVEPT
descriptor.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 210

29.4.6 APIC Accesses Not Directly Resulting From Linear Addresses
Section 29.4 has described the treatment of accesses that use linear addresses that translate to addresses on the
APIC-access page. This section considers memory accesses that do not result directly from linear addresses.
• An access is called a guest-physical access if (1) CR0.PG = 1;1 (2) the “enable EPT” VM-execution control

is 1;2 (3) the access’s physical address is the result of an EPT translation; and (4) either (a) the access was
not generated by a linear address; or (b) the access’s guest-physical address is not the translation of the
access’s linear address. Section 29.4.6.1 discusses the treatment of guest-physical accesses to the APIC-
access page.

• An access is called a physical access if (1) either (a) the “enable EPT” VM-execution control is 0; or (b) the
access’s physical address is not the result of a translation through the EPT paging structures; and (2) either
(a) the access is not generated by a linear address; or (b) the access’s physical address is not the translation
of its linear address. Section 29.4.6.2 discusses the treatment of physical accesses to the APIC-access page.

29.4.6.1 Guest-Physical Accesses to the APIC-Access Page
Guest-physical accesses include the following when guest-physical addresses are being translated using EPT:
• Reads from the guest paging structures when translating a linear address (such an access uses a guest-

physical address that is not the translation of that linear address).
• Loads of the page-directory-pointer-table entries by MOV to CR when the logical processor is using (or that

causes the logical processor to use) PAE paging (see Section 4.4).
• Updates to the accessed and dirty flags in the guest paging structures when using a linear address (such an

access uses a guest-physical address that is not the translation of that linear address).

Every guest-physical access to an address on the APIC-access page causes an APIC-access VM exit. Such
accesses are never virtualized regardless of the page offset.

The following items specify the priority relative to other events of APIC-access VM exits caused by guest-physical
accesses to the APIC-access page.
• The priority of an APIC-access VM exit caused by a guest-physical access to memory is below that of any EPT

violation that that access may incur. That is, a guest-physical access does not cause an APIC-access VM exit if
it would cause an EPT violation.

• With respect to all other events, any APIC-access VM exit caused by a guest-physical access has the same
priority as any EPT violation that the guest-physical access could cause.

29.4.6.2 Physical Accesses to the APIC-Access Page
Physical accesses include the following:
• If the “enable EPT” VM-execution control is 0:

— Reads from the paging structures when translating a linear address.

— Loads of the page-directory-pointer-table entries by MOV to CR when the logical processor is using (or
that causes the logical processor to use) PAE paging (see Section 4.4).

— Updates to the accessed and dirty flags in the paging structures.
• If the “enable EPT” VM-execution control is 1, accesses to the EPT paging structures (including updates to the

accessed and dirty flags for EPT).

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, CR0.PG must be 1 unless the
“unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are both 1.

2. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls
is 0, VMX non-root operation functions as if the “enable EPT” VM-execution control were 0. See Section 24.6.2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 211

• Any of the following accesses made by the processor to support VMX non-root operation:

— Accesses to the VMCS region.

— Accesses to data structures referenced (directly or indirectly) by physical addresses in VM-execution
control fields in the VMCS. These include the I/O bitmaps, the MSR bitmaps, and the virtual-APIC page.

• Accesses that effect transitions into and out of SMM.1 These include the following:

— Accesses to SMRAM during SMI delivery and during execution of RSM.

— Accesses during SMM VM exits (including accesses to MSEG) and during VM entries that return from SMM.

A physical access to the APIC-access page may or may not cause an APIC-access VM exit. If it does not cause an
APIC-access VM exit, it may access the APIC-access page or the virtual-APIC page. Physical write accesses to the
APIC-access page may or may not cause APIC-write emulation or APIC-write VM exits.

The priority of an APIC-access VM exit caused by physical access is not defined relative to other events that the
access may cause.

It is recommended that software not set the APIC-access address to any of the addresses used by physical
memory accesses (identified above). For example, it should not set the APIC-access address to the physical
address of any of the active paging structures if the “enable EPT” VM-execution control is 0.

29.5 VIRTUALIZING MSR-BASED APIC ACCESSES
When the local APIC is in x2APIC mode, software accesses the local APIC’s control registers using the MSR inter-
face. Specifically, software uses the RDMSR and WRMSR instructions, setting ECX (identifying the MSR being
accessed) to values in the range 800H–8FFH (see Section 10.12, “Extended XAPIC (x2APIC)”). This section
describes how these accesses can be virtualized.

A virtual-machine monitor can virtualize these MSR-based APIC accesses by configuring the MSR bitmaps (see
Section 24.6.9) to ensure that the accesses cause VM exits (see Section 25.1.3). Alternatively, there are methods
for virtualizing some MSR-based APIC accesses without VM exits.

Normally, an execution of RDMSR or WRMSR that does not fault or cause a VM exit accesses the MSR indicated in
ECX. However, such an execution treats some values of ECX in the range 800H–8FFH specially if the “virtualize
x2APIC mode” VM-execution control is 1. The following items provide details:
• RDMSR. The instruction’s behavior depends on the setting of the “APIC-register virtualization” VM-execution

control.

— If the “APIC-register virtualization” VM-execution control is 0, behavior depends upon the value of ECX.

• If ECX contains 808H (indicating the TPR MSR), the instruction reads the 8 bytes from offset 080H on
the virtual-APIC page (VTPR and the 4 bytes above it) into EDX:EAX. This occurs even if the local APIC
is not in x2APIC mode (no general-protection fault occurs because the local APIC is not x2APIC mode).

• If ECX contains any other value in the range 800H–8FFH, the instruction operates normally. If the local
APIC is in x2APIC mode and ECX indicates a readable APIC register, EDX and EAX are loaded with the
value of that register. If the local APIC is not in x2APIC mode or ECX does not indicate a readable APIC
register, a general-protection fault occurs.

— If “APIC-register virtualization” is 1 and ECX contains a value in the range 800H–8FFH, the instruction
reads the 8 bytes from offset X on the virtual-APIC page into EDX:EAX, where X = (ECX & FFH) « 4. This
occurs even if the local APIC is not in x2APIC mode (no general-protection fault occurs because the local
APIC is not in x2APIC mode).

• WRMSR. The instruction’s behavior depends on the value of ECX and the setting of the “virtual-interrupt
delivery” VM-execution control.

1. Technically, these accesses do not occur in VMX non-root operation. They are included here for clarity.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 212

Special processing applies in the following cases: (1) ECX contains 808H (indicating the TPR MSR); (2) ECX
contains 80BH (indicating the EOI MSR) and the “virtual-interrupt delivery” VM-execution control is 1; and
(3) ECX contains 83FH (indicating the self-IPI MSR) and the “virtual-interrupt delivery” VM-execution control
is 1.
If special processing applies, no general-protection exception is produced due to the fact that the local APIC
is in xAPIC mode. However, WRMSR does perform the normal reserved-bit checking:

— If ECX contains 808H or 83FH, a general-protection fault occurs if either EDX or EAX[31:8] is non-zero.

— If ECX contains 80BH, a general-protection fault occurs if either EDX or EAX is non-zero.
If there is no fault, WRMSR stores EDX:EAX at offset X on the virtual-APIC page, where X = (ECX & FFH) «
4. Following this, the processor performs an operation depending on the value of ECX:

— If ECX contains 808H, the processor performs TPR virtualization (see Section 29.1.2).

— If ECX contains 80BH, the processor performs EOI virtualization (see Section 29.1.4).

— If ECX contains 83FH, the processor It then checks the value of EAX[7:4] and proceeds as follows:

• If the value is non-zero, the logical processor performs self-IPI virtualization with the 8-bit vector in
EAX[7:0] (see Section 29.1.5).

• If the value is zero, the logical processor causes an APIC-write VM exit as if there had been a write
access to page offset 3F0H on the APIC-access page (see Section 29.4.3.3).

If special processing does not apply, the instruction operates normally. If the local APIC is in x2APIC mode
and ECX indicates a writeable APIC register, the value in EDX:EAX is written to that register. If the local APIC
is not in x2APIC mode or ECX does not indicate a writeable APIC register, a general-protection fault occurs.

29.6 POSTED-INTERRUPT PROCESSING
Posted-interrupt processing is a feature by which a processor processes the virtual interrupts by recording them
as pending on the virtual-APIC page.

Posted-interrupt processing is enabled by setting the “process posted interrupts” VM-execution control. The
processing is performed in response to the arrival of an interrupt with the posted-interrupt notification
vector. In response to such an interrupt, the processor processes virtual interrupts recorded in a data structure
called a posted-interrupt descriptor. The posted-interrupt notification vector and the address of the posted-
interrupt descriptor are fields in the VMCS; see Section 24.6.8.

If the “process posted interrupts” VM-execution control is 1, a logical processor uses a 64-byte posted-interrupt
descriptor located at the posted-interrupt descriptor address. The posted-interrupt descriptor has the following
format:

The notation PIR (posted-interrupt requests) refers to the 256 posted-interrupt bits in the posted-interrupt
descriptor.

Table 0-1. Format of Posted-Interrupt Descriptor

Bit
Position(s)

Name Description

255:0 Posted-interrupt requests One bit for each interrupt vector. There is a posted-interrupt request for a vector if
the corresponding bit is 1

256 Outstanding notification If this bit is set, there is a notification outstanding for one or more posted interrupts
in bits 255:0

511:257 Reserved for software and
other agents

These bits may be used by software and by other agents in the system (e.g.,
chipset). The processor does not modify these bits.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 213

Use of the posted-interrupt descriptor differs from that of other data structures that are referenced by pointers in
a VMCS. There is a general requirement that software ensure that each such data structure is modified only when
no logical processor with a current VMCS that references it is in VMX non-root operation. That requirement does
not apply to the posted-interrupt descriptor. There is a requirement, however, that such modifications be done
using locked read-modify-write instructions.

If the “external-interrupt exiting” VM-execution control is 1, any unmasked external interrupt causes a VM exit
(see Section 25.2). If the “process posted interrupts” VM-execution control is also 1, this behavior is changed and
the processor handles an external interrupt as follows:1

1. The local APIC is acknowledged; this provides the processor core with an interrupt vector, called here the
physical vector.

2. If the physical vector equals the posted-interrupt notification vector, the logical processor continues to the
next step. Otherwise, a VM exit occurs as it would normally due to an external interrupt; the vector is saved
in the VM-exit interruption-information field.

3. The processor clears the outstanding-notification bit in the posted-interrupt descriptor. This is done atomically
so as to leave the remainder of the descriptor unmodified (e.g., with a locked AND operation).

4. The processor writes zero to the EOI register in the local APIC; this dismisses the interrupt with the posted-
interrupt notification vector from the local APIC.

5. The logical processor performs a logical-OR of PIR into VIRR and clears PIR. No other agent can read or write
a PIR bit (or group of bits) between the time it is read (to determine what to OR into VIRR) and when it is
cleared.

6. The logical processor sets RVI to be the maximum of the old value of RVI and the highest index of all bits that
were set in PIR; if no bit was set in PIR, RVI is left unmodified.

7. The logical processor evaluates pending virtual interrupts as described in Section 29.2.1.

The logical processor performs the steps above in an uninterruptible manner. If step #7 leads to recognition of a
virtual interrupt, the processor may deliver that interrupt immediately.

Steps #1 to #7 above occur when the interrupt controller delivers an unmasked external interrupt to the CPU
core. This delivery can occur when the logical processor is in the active, HLT, or MWAIT states. If the logical
processor had been in the active or MWAIT state before the arrival of the interrupt, it is in the active state
following completion of step #7; if it had been in the HLT state, it returns to the HLT state after step #7 (if a
pending virtual interrupt was recognized, the logical processor may immediately wake from the HLT state).

...

25.Updates to Chapter 34, Volume 3C
Change bars show changes to Chapter 34 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

...

1. VM entry ensures that the “process posted interrupts” VM-execution control is 1 only if the “external-interrupt exiting” VM-execu-
tion control is also 1. SeeSection 26.2.1.1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 214

Table 34-3 SMRAM State Save Map for Intel 64 Architecture

Offset
(Added to SMBASE + 8000H)

Register Writable?

7FF8H CR0 No

7FF0H CR3 No

7FE8H RFLAGS Yes

7FE0H IA32_EFER Yes

7FD8H RIP Yes

7FD0H DR6 No

7FC8H DR7 No

7FC4H TR SEL1 No

7FC0H LDTR SEL1 No

7FBCH GS SEL1 No

7FB8H FS SEL1 No

7FB4H DS SEL1 No

7FB0H SS SEL1 No

7FACH CS SEL1 No

7FA8H ES SEL1 No

7FA4H IO_MISC No

7F9CH IO_MEM_ADDR No

7F94H RDI Yes

7F8CH RSI Yes

7F84H RBP Yes

7F7CH RSP Yes

7F74H RBX Yes

7F6CH RDX Yes

7F64H RCX Yes

7F5CH RAX Yes

7F54H R8 Yes

7F4CH R9 Yes

7F44H R10 Yes

7F3CH R11 Yes

7F34H R12 Yes

7F2CH R13 Yes

7F24H R14 Yes

7F1CH R15 Yes

7F1BH-7F04H Reserved No

7F02H Auto HALT Restart Field (Word) Yes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 215

...

34.15.6.4 Saving MSRs
The VM-exit MSR-store area is not used by SMM VM exits that activate the dual-monitor treatment. No MSRs are
saved into that area.

...

26.Updates to Chapter 35, Volume 3C
Change bars show changes to Chapter 35 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

...

7F00H I/O Instruction Restart Field (Word) Yes

7EFCH SMM Revision Identifier Field (Doubleword) No

7EF8H SMBASE Field (Doubleword) Yes

7EF7H - 7EE4H Reserved No

7EE0H Setting of “enable EPT” VM-execution control No

7ED8H Value of EPTP VM-execution control field No

7ED7H - 7EA0H Reserved No

7E9CH LDT Base (lower 32 bits) No

7E98H Reserved No

7E94H IDT Base (lower 32 bits) No

7E90H Reserved No

7E8CH GDT Base (lower 32 bits) No

7E8BH - 7E44H Reserved No

7E40H CR4 No

7E3FH - 7DF0H Reserved No

7DE8H IO_RIP Yes

7DE7H - 7DDCH Reserved No

7DD8H IDT Base (Upper 32 bits) No

7DD4H LDT Base (Upper 32 bits) No

7DD0H GDT Base (Upper 32 bits) No

7DCFH - 7C00H Reserved No

NOTE:
1. The two most significant bytes are reserved.

Table 34-3 SMRAM State Save Map for Intel 64 Architecture (Contd.)

Offset
(Added to SMBASE + 8000H)

Register Writable?

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 216

...

Table 35-1 CPUID Signature Values of DisplayFamily_DisplayModel
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_3CH, 06_45H Next Generation Intel Core Processor

06_3EH Next Generation Intel Xeon Processor E5 Family based on Intel microarchitecture Ivy Bridge

06_3AH 3rd Generation Intel Core Processor and Intel Xeon Processor E3-1200v2 Product Family based on
Intel microarchitecture Ivy Bridge

06_2DH Intel Xeon Processor E5 Family based on Intel microarchitecture Sandy Bridge

06_2FH Intel Xeon Processor E7 Family

06_2AH Intel Xeon Processor E3-1200 Family; 2nd Generation Intel Core i7, i5, i3 Processors 2xxx Series

06_2EH Intel Xeon processor 7500, 6500 series

06_25H, 06_2CH Intel Xeon processors 3600, 5600 series, Intel Core i7, i5 and i3 Processors

06_1EH, 06_1FH Intel Core i7 and i5 Processors

06_1AH Intel Core i7 Processor, Intel Xeon Processor 3400, 3500, 5500 series

06_1DH Intel Xeon Processor MP 7400 series

06_17H Intel Xeon Processor 3100, 3300, 5200, 5400 series, Intel Core 2 Quad processors 8000, 9000
series

06_0FH Intel Xeon Processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series,
Intel Core 2 Extreme 6000 series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors, Intel
Pentium dual-core processors

06_0EH Intel Core Duo, Intel Core Solo processors

06_0DH Intel Pentium M processor

06_1CH, 06_26H, 06_27H Intel Atom Processor Family

0F_06H Intel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP, Intel Pentium 4, Pentium D
processors

0F_03H, 0F_04H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors

06_09H Intel Pentium M processor

0F_02H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors

0F_0H, 0F_01H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors

06_7H, 06_08H, 06_0AH,
06_0BH

Intel Pentium III Xeon Processor, Intel Pentium III Processor

06_03H, 06_05H Intel Pentium II Xeon Processor, Intel Pentium II Processor

06_01H Intel Pentium Pro Processor

05_01H, 05_02H, 05_04H Intel Pentium Processor, Intel Pentium Processor with MMX Technology

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 217

Table 35-2 IA-32 Architectural MSRs

...

35.2 MSRS IN THE INTEL® CORE™ 2 PROCESSOR FAMILY
Table 35-3 lists model-specific registers (MSRs) for Intel Core 2 processor family and for Intel Xeon processors
based on Intel Core microarchitecture, architectural MSR addresses are also included in Table 35-3. These proces-
sors have a CPUID signature with DisplayFamily_DisplayModel of 06_0FH, see Table 35-1.

MSRs listed in Table 35-2 and Table 35-3 are also supported by processors based on the Enhanced Intel Core
microarchitecture. Processors based on the Enhanced Intel Core microarchitecture have the CPUID signature
DisplayFamily_DisplayModel of 06_17H.

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

...

3BH 59 IA32_TSC_ADJUST Per Logical Processor TSC Adjust (R/Write
to clear)

If CPUID.(EAX=07H,
ECX=0H): EBX[1] = 1

63:0 THREAD_ADJUST:

Local offset value of the IA32_TSC for a
logical processor. Reset value is Zero. A
write to IA32_TSC will modify the local
offset in IA32_TSC_ADJUST and the
content of IA32_TSC, but does not affect
the internal invariant TSC hardware.

...

C000_
0080H

IA32_EFER Extended Feature Enables If (
CPUID.80000001.EDX.[bit
20] or
CPUID.80000001.EDX.[bit
29])

0 SYSCALL Enable (R/W)

Enables SYSCALL/SYSRET instructions in
64-bit mode.

7:1 Reserved.

8 IA-32e Mode Enable (R/W)

Enables IA-32e mode operation.

9 Reserved.

10 IA-32e Mode Active (R)

Indicates IA-32e mode is active when set.

11 Execute Disable Bit Enable (R/W)

63:12 Reserved.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 218

The column “Shared/Unique” applies to multi-core processors based on Intel Core microarchitecture. “Unique”
means each processor core has a separate MSR, or a bit field in an MSR governs only a core independently.
“Shared” means the MSR or the bit field in an MSR address governs the operation of both processor cores.

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Unique See Section 35.14, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Unique See Section 35.14, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_SIZ
E

Unique See Section 8.10.5, “Monitor/Mwait Address Range Determination.”
and Table 35-2.

10H 16 IA32_TIME_STAMP_COUNT
ER

Unique See Section 17.13, “Time-Stamp Counter,” and see Table 35-2.

17H 23 IA32_PLATFORM_ID Shared Platform ID (R)
See Table 35-2.

17H 23 MSR_PLATFORM_ID Shared Model Specific Platform ID (R)

7:0 Reserved.

12:8 Maximum Qualified Ratio (R)

The maximum allowed bus ratio.

49:13 Reserved.

52:50 See Table 35-2.

63:53 Reserved.

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and Location.” and Table 35-
2.

2AH 42 MSR_EBL_CR_POWERON Shared Processor Hard Power-On Configuration (R/W)

Enables and disables processor features; (R) indicates current
processor configuration.

0 Reserved.

1 Data Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

2 Response Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

3 MCERR# Drive Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

4 Address Parity Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 219

5 Reserved.

6 Reserved.

7 BINIT# Driver Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

8 Output Tri-state Enabled (R/O)

1 = Enabled; 0 = Disabled

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled

10 MCERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled

11 Intel TXT Capable Chipset. (R/O)

1 = Present; 0 = Not Present

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled

13 Reserved.

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved.

17:16 APIC Cluster ID (R/O)

18 N/2 Non-Integer Bus Ratio (R/O)

0 = Integer ratio; 1 = Non-integer ratio

19 Reserved.

21: 20 Symmetric Arbitration ID (R/O)

26:22 Integer Bus Frequency Ratio (R/O)

3AH 58 IA32_FEATURE_CONTROL Unique Control Features in Intel 64Processor (R/W)

See Table 35-2.

3 Unique SMRR Enable (R/WL)

When this bit is set and the lock bit is set makes the
SMRR_PHYS_BASE and SMRR_PHYS_MASK registers read visible
and writeable while in SMM.

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 220

40H 64 MSR_
LASTBRANCH_0_FROM_IP

Unique Last Branch Record 0 From IP (R/W)

One of four pairs of last branch record registers on the last branch
record stack. This part of the stack contains pointers to the source
instruction for one of the last four branches, exceptions, or
interrupts taken by the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.11, “Last Branch, Interrupt, and Exception Recording

(Pentium M Processors).”

41H 65 MSR_
LASTBRANCH_1_FROM_IP

Unique Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_
LASTBRANCH_2_FROM_IP

Unique Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

43H 67 MSR_
LASTBRANCH_3_FROM_IP

Unique Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

60H 96 MSR_
LASTBRANCH_0_TO_IP

Unique Last Branch Record 0 To IP (R/W)

One of four pairs of last branch record registers on the last branch
record stack. This part of the stack contains pointers to the
destination instruction for one of the last four branches,
exceptions, or interrupts taken by the processor.

61H 97 MSR_
LASTBRANCH_1_TO_IP

Unique Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

62H 98 MSR_
LASTBRANCH_2_TO_IP

Unique Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

63H 99 MSR_
LASTBRANCH_3_TO_IP

Unique Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

79H 121 IA32_BIOS_UPDT_TRIG Unique BIOS Update Trigger Register (W)

See Table 35-2.

8BH 139 IA32_BIOS_SIGN_ID Unique BIOS Update Signature ID (RO)

See Table 35-2.

A0H 160 MSR_SMRR_PHYSBASE Unique System Management Mode Base Address register (WO in SMM)

Model-specific implementation of SMRR-like interface, read visible
and write only in SMM.

11:0 Reserved.

31:12 PhysBase. SMRR physical Base Address.

63:32 Reserved.

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 221

A1H 161 MSR_SMRR_PHYSMASK Unique System Management Mode Physical Address Mask register
(WO in SMM)

Model-specific implementation of SMRR-like interface, read visible
and write only in SMM..

10:0 Reserved.

11 Valid. Physical address base and range mask are valid.

31:12 PhysMask. SMRR physical address range mask.

63:32 Reserved.

C1H 193 IA32_PMC0 Unique Performance Counter Register

See Table 35-2.

C2H 194 IA32_PMC1 Unique Performance Counter Register

See Table 35-2.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for
processors based on Intel Core microarchitecture:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)
• 010B: 200 MHz (FSB 800)
• 000B: 267 MHz (FSB 1067)
• 100B: 333 MHz (FSB 1333)

133.33 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 001B.

166.67 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 011B.

266.67 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 000B.

333.33 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 100B.

63:3 Reserved.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for
processors based on Enhanced Intel Core microarchitecture:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)
• 010B: 200 MHz (FSB 800)
• 000B: 267 MHz (FSB 1067)
• 100B: 333 MHz (FSB 1333)
• 110B: 400 MHz (FSB 1600)

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 222

133.33 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 001B.

166.67 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 011B.

266.67 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 110B.

333.33 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 111B.

63:3 Reserved.

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock Count (RW)

See Table 35-2.

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count (RW)

See Table 35-2.

FEH 254 IA32_MTRRCAP Unique See Table 35-2.

11 Unique SMRR Capability Using MSR 0A0H and 0A1H (R)

11EH 281 MSR_BBL_CR_CTL3 Shared

0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled (R/W)

1 = L2 cache has been initialized
0 = Disabled (default)
Until this bit is set the processor will not respond to the WBINVD
instruction or the assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present (RO)

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

174H 372 IA32_SYSENTER_CS Unique See Table 35-2.

175H 373 IA32_SYSENTER_ESP Unique See Table 35-2.

176H 374 IA32_SYSENTER_EIP Unique See Table 35-2.

179H 377 IA32_MCG_CAP Unique See Table 35-2.

17AH 378 IA32_MCG_STATUS Unique

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 223

0 RIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) can be used to restart the program. If cleared, the
program cannot be reliably restarted.

1 EIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If
a second machine check is detected while this bit is still set, the
processor enters a shutdown state. Software should write this bit
to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_PERFEVTSEL0 Unique See Table 35-2.

187H 391 IA32_PERFEVTSEL1 Unique See Table 35-2.

198H 408 IA32_PERF_STATUS Shared See Table 35-2.

198H 408 MSR_PERF_STATUS Shared

15:0 Current Performance State Value.

30:16 Reserved.

31 XE Operation (R/O).

If set, XE operation is enabled. Default is cleared.

39:32 Reserved.

44:40 Maximum Bus Ratio (R/O)

Indicates maximum bus ratio configured for the processor.

45 Reserved.

46 Non-Integer Bus Ratio (R/O)

Indicates non-integer bus ratio is enabled. Applies processors
based on Enhanced Intel Core microarchitecture.

63:47 Reserved.

199H 409 IA32_PERF_CTL Unique See Table 35-2.

19AH 410 IA32_CLOCK_MODULATION Unique Clock Modulation (R/W)

See Table 35-2.

IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 224

19BH 411 IA32_THERM_INTERRUPT Unique Thermal Interrupt Control (R/W)

See Table 35-2.

19CH 412 IA32_THERM_STATUS Unique Thermal Monitor Status (R/W)

See Table 35-2.

19DH 413 MSR_THERM2_CTL Unique

15:0 Reserved.

16 TM_SELECT (R/W)

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die modulation of
the stop-clock duty cycle)

1 = Thermal Monitor 2 (thermally-initiated frequency transitions)
If bit 3 of the IA32_MISC_ENABLE register is cleared, TM_SELECT
has no effect. Neither TM1 nor TM2 are enabled.

63:16 Reserved.

1A0 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

0 Fast-Strings Enable

See Table 35-2.

2:1 Reserved.

3 Unique Automatic Thermal Control Circuit Enable (R/W)

See Table 35-2.

6:4 Reserved.

7 Shared Performance Monitoring Available (R)

See Table 35-2.

8 Reserved.

9 Hardware Prefetcher Disable (R/W)

When set, disables the hardware prefetcher operation on streams
of data. When clear (default), enables the prefetch queue.

Disabling of the hardware prefetcher may impact processor
performance.

10 Shared FERR# Multiplexing Enable (R/W)

1 = FERR# asserted by the processor to indicate a pending break
event within the processor

0 = Indicates compatible FERR# signaling behavior
This bit must be set to 1 to support XAPIC interrupt model usage.

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 225

11 Shared Branch Trace Storage Unavailable (RO)

See Table 35-2.

12 Shared Precise Event Based Sampling Unavailable (RO)

See Table 35-2.

13 Shared TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor indicates that the
die temperature is at the pre-determined threshold, the Thermal
Monitor 2 mechanism is engaged. TM2 will reduce the bus to core
ratio and voltage according to the value last written to
MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the processor does not change
the VID signals or the bus to core ratio when the processor enters
a thermally managed state.

The BIOS must enable this feature if the TM2 feature flag
(CPUID.1:ECX[8]) is set; if the TM2 feature flag is not set, this
feature is not supported and BIOS must not alter the contents of
the TM2 bit location.

The processor is operating out of specification if both this bit and
the TM1 bit are set to 0.

15:14 Reserved.

16 Shared Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 35-2.

18 Shared ENABLE MONITOR FSM (R/W)

See Table 35-2.

19 Shared Adjacent Cache Line Prefetch Disable (R/W)

When set to 1, the processor fetches the cache line that contains
data currently required by the processor. When set to 0, the
processor fetches cache lines that comprise a cache line pair (128
bytes).

Single processor platforms should not set this bit. Server platforms
should set or clear this bit based on platform performance
observed in validation and testing.

BIOS may contain a setup option that controls the setting of this
bit.

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 226

20 Shared Enhanced Intel SpeedStep Technology Select Lock (R/WO)

When set, this bit causes the following bits to become read-only:

• Enhanced Intel SpeedStep Technology Select Lock (this bit),
• Enhanced Intel SpeedStep Technology Enable bit.

The bit must be set before an Enhanced Intel SpeedStep
Technology transition is requested. This bit is cleared on reset.

21 Reserved.

22 Shared Limit CPUID Maxval (R/W)

See Table 35-2.

23 Shared xTPR Message Disable (R/W)

See Table 35-2.

33:24 Reserved.

34 Unique XD Bit Disable (R/W)

See Table 35-2.

36:35 Reserved.

37 Unique DCU Prefetcher Disable (R/W)

When set to 1, The DCU L1 data cache prefetcher is disabled. The
default value after reset is 0. BIOS may write ‘1’ to disable this
feature.

The DCU prefetcher is an L1 data cache prefetcher. When the DCU
prefetcher detects multiple loads from the same line done within a
time limit, the DCU prefetcher assumes the next line will be
required. The next line is prefetched in to the L1 data cache from
memory or L2.

38 Shared IDA Disable (R/W)

When set to 1 on processors that support IDA, the Intel Dynamic
Acceleration feature (IDA) is disabled and the IDA_Enable feature
flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H:
EAX[1] reports the processor’s support of IDA is enabled.

Note: the power-on default value is used by BIOS to detect
hardware support of IDA. If power-on default value is 1, IDA is
available in the processor. If power-on default value is 0, IDA is not
available.

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 227

39 Unique IP Prefetcher Disable (R/W)

When set to 1, The IP prefetcher is disabled. The default value
after reset is 0. BIOS may write ‘1’ to disable this feature.

The IP prefetcher is an L1 data cache prefetcher. The IP prefetcher
looks for sequential load history to determine whether to prefetch
the next expected data into the L1 cache from memory or L2.

63:40 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Unique Last Branch Record Stack TOS (R)

Contains an index (bits 0-3) that points to the MSR containing the
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Unique Debug Control (R/W)

See Table 35-2

1DDH 477 MSR_LER_FROM_LIP Unique Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Unique Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last exception
that was generated or the last interrupt that was handled.

200H 512 IA32_MTRR_PHYSBASE0 Unique See Table 35-2.

201H 513 IA32_MTRR_PHYSMASK0 Unique See Table 35-2.

202H 514 IA32_MTRR_PHYSBASE1 Unique See Table 35-2.

203H 515 IA32_MTRR_PHYSMASK1 Unique See Table 35-2.

204H 516 IA32_MTRR_PHYSBASE2 Unique See Table 35-2.

205H 517 IA32_MTRR_PHYSMASK2 Unique See Table 35-2.

206H 518 IA32_MTRR_PHYSBASE3 Unique See Table 35-2.

207H 519 IA32_MTRR_PHYSMASK3 Unique See Table 35-2.

208H 520 IA32_MTRR_PHYSBASE4 Unique See Table 35-2.

209H 521 IA32_MTRR_PHYSMASK4 Unique See Table 35-2.

20AH 522 IA32_MTRR_PHYSBASE5 Unique See Table 35-2.

20BH 523 IA32_MTRR_PHYSMASK5 Unique See Table 35-2.

20CH 524 IA32_MTRR_PHYSBASE6 Unique See Table 35-2.

20DH 525 IA32_MTRR_PHYSMASK6 Unique See Table 35-2.

20EH 526 IA32_MTRR_PHYSBASE7 Unique See Table 35-2.

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 228

20FH 527 IA32_MTRR_PHYSMASK7 Unique See Table 35-2.

250H 592 IA32_MTRR_FIX64K_
00000

Unique See Table 35-2.

258H 600 IA32_MTRR_FIX16K_
80000

Unique See Table 35-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Unique See Table 35-2.

268H 616 IA32_MTRR_FIX4K_C0000 Unique See Table 35-2.

269H 617 IA32_MTRR_FIX4K_C8000 Unique See Table 35-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Unique See Table 35-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Unique See Table 35-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Unique See Table 35-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Unique See Table 35-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Unique See Table 35-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Unique See Table 35-2.

277H 631 IA32_PAT Unique See Table 35-2.

2FFH 767 IA32_MTRR_DEF_TYPE Unique Default Memory Types (R/W)

See Table 35-2.

309H 777 IA32_FIXED_CTR0 Unique Fixed-Function Performance Counter Register 0 (R/W)

See Table 35-2.

309H 777 MSR_PERF_FIXED_CTR0 Unique Fixed-Function Performance Counter Register 0 (R/W)

30AH 778 IA32_FIXED_CTR1 Unique Fixed-Function Performance Counter Register 1 (R/W)

See Table 35-2.

30AH 778 MSR_PERF_FIXED_CTR1 Unique Fixed-Function Performance Counter Register 1 (R/W)

30BH 779 IA32_FIXED_CTR2 Unique Fixed-Function Performance Counter Register 2 (R/W)

See Table 35-2.

30BH 779 MSR_PERF_FIXED_CTR2 Unique Fixed-Function Performance Counter Register 2 (R/W)

345H 837 IA32_PERF_CAPABILITIES Unique See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

345H 837 MSR_PERF_CAPABILITIES Unique RO. This applies to processors that do not support architectural
perfmon version 2.

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 229

5:0 LBR Format. See Table 35-2.

6 PEBS Record Format.

7 PEBSSaveArchRegs. See Table 35-2.

63:8 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL Unique Fixed-Function-Counter Control Register (R/W)

See Table 35-2.

38DH 909 MSR_PERF_FIXED_CTR_
CTRL

Unique Fixed-Function-Counter Control Register (R/W)

38EH 910 IA32_PERF_GLOBAL_
STAUS

Unique See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

38EH 910 MSR_PERF_GLOBAL_STAUS Unique See Section 18.4.2, “Global Counter Control Facilities.”

38FH 911 IA32_PERF_GLOBAL_CTRL Unique See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

38FH 911 MSR_PERF_GLOBAL_CTRL Unique See Section 18.4.2, “Global Counter Control Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Unique See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

390H 912 MSR_PERF_GLOBAL_OVF_
CTRL

Unique See Section 18.4.2, “Global Counter Control Facilities.”

3F1H 1009 MSR_PEBS_ENABLE Unique See Table 35-2. See Section 18.4.4, “Precise Event Based Sampling
(PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

400H 1024 IA32_MC0_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC0_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

404H 1028 IA32_MC1_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC1_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 230

408H 1032 IA32_MC2_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC2_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

40CH 1036 MSR_MC4_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC4_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 MSR_MC4_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC4_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

410H 1040 MSR_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC3_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 MSR_MC3_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC3_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

413H 1043 MSR_MC3_MISC Unique

414H 1044 MSR_MC5_CTL Unique

415H 1045 MSR_MC5_STATUS Unique

416H 1046 MSR_MC5_ADDR Unique

417H 1047 MSR_MC5_MISC Unique

419H 1045 MSR_MC6_STATUS Unique Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.” and
Chapter 23.

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX Capabilities (R/O)

See Table 35-2.

See Appendix A.1, “Basic VMX Information.”

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 231

481H 1153 IA32_VMX_PINBASED_
CTLS

Unique Capability Reporting Register of Pin-based VM-execution
Controls (R/O)

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_
CTLS

Unique Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Unique Capability Reporting Register of VM-exit Controls (R/O)

See Table 35-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Unique Capability Reporting Register of VM-entry Controls (R/O)

See Table 35-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Table 35-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Unique Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Unique Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Unique Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Unique Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Unique Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 35-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Unique Capability Reporting Register of Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 232

600H 1536 IA32_DS_AREA Unique DS Save Area (R/W)

See Table 35-2.

See Section 18.11.4, “Debug Store (DS) Mechanism.”

107CC
H

MSR_EMON_L3_CTR_CTL0 Unique GBUSQ Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2

107CD
H

MSR_EMON_L3_CTR_CTL1 Unique GBUSQ Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2

107CE
H

MSR_EMON_L3_CTR_CTL2 Unique GSNPQ Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2

107CF
H

MSR_EMON_L3_CTR_CTL3 Unique GSNPQ Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2

107D0
H

MSR_EMON_L3_CTR_CTL4 Unique FSB Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2

107D1
H

MSR_EMON_L3_CTR_CTL5 Unique FSB Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2

107D2
H

MSR_EMON_L3_CTR_CTL6 Unique FSB Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2

107D3
H

MSR_EMON_L3_CTR_CTL7 Unique FSB Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2

107D8
H

MSR_EMON_L3_GL_CTL Unique L3/FSB Common Control Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2

C000_
0080H

IA32_EFER Unique Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR Unique System Call Target Address (R/W)

See Table 35-2.

C000_
0082H

IA32_LSTAR Unique IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 233

...

35.3 MSRS IN THE INTEL® ATOM™ PROCESSOR FAMILY
Table 35-4 lists model-specific registers (MSRs) for Intel Atom processor family, architectural MSR addresses are
also included in Table 35-4. These processors have a CPUID signature with DisplayFamily_DisplayModel of
06_1CH, see Table 35-1.

The column “Shared/Unique” applies to logical processors sharing the same core in processors based on the Intel
Atom microarchitecture. “Unique” means each logical processor has a separate MSR, or a bit field in an MSR
governs only a logical processor. “Shared” means the MSR or the bit field in an MSR address governs the operation
of both logical processors in the same core.

C000_
0084H

IA32_FMASK Unique System Call Flag Mask (R/W)

See Table 35-2.

C000_
0100H

IA32_FS_BASE Unique Map of BASE Address of FS (R/W)

See Table 35-2.

C000_
0101H

IA32_GS_BASE Unique Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE Unique Swap Target of BASE Address of GS (R/W) See Table 35-2.

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Table 35-4 MSRs in Intel® Atom™ Processor Family

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Shared See Section 35.14, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Shared See Section 35.14, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Unique See Section 8.10.5, “Monitor/Mwait Address Range Determination.”
andTable 35-2

10H 16 IA32_TIME_STAMP_
COUNTER

Shared See Section 17.13, “Time-Stamp Counter,” and see Table 35-2.

17H 23 IA32_PLATFORM_ID Shared Platform ID (R)
See Table 35-2.

17H 23 MSR_PLATFORM_ID Shared Model Specific Platform ID (R)

7:0 Reserved.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 234

12:8 Maximum Qualified Ratio (R)

The maximum allowed bus ratio.

63:13 Reserved.

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and Location,” and Table 35-
2.

2AH 42 MSR_EBL_CR_POWERON Shared Processor Hard Power-On Configuration (R/W) Enables and
disables processor features;

(R) indicates current processor configuration.

0 Reserved.

1 Data Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Always 0.

2 Response Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Always 0.

3 AERR# Drive Enable (R/W)

1 = Enabled; 0 = Disabled
Always 0.

4 BERR# Enable for initiator bus requests (R/W)

1 = Enabled; 0 = Disabled
Always 0.

5 Reserved.

6 Reserved.

7 BINIT# Driver Enable (R/W)

1 = Enabled; 0 = Disabled
Always 0.

8 Reserved.

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled

10 AERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled
Always 0.

11 Reserved.

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled
Always 0.

13 Reserved.

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 235

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved

17:16 APIC Cluster ID (R/O)

Always 00B.

19: 18 Reserved.

21: 20 Symmetric Arbitration ID (R/O)

Always 00B.

26:22 Integer Bus Frequency Ratio (R/O)

3AH 58 IA32_FEATURE_CONTROL Unique Control Features in Intel 64Processor (R/W)

See Table 35-2.

40H 64 MSR_
LASTBRANCH_0_FROM_IP

Unique Last Branch Record 0 From IP (R/W)

One of eight pairs of last branch record registers on the last branch
record stack. This part of the stack contains pointers to the source
instruction for one of the last eight branches, exceptions, or
interrupts taken by the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.11, “Last Branch, Interrupt, and Exception Recording

(Pentium M Processors).”

41H 65 MSR_
LASTBRANCH_1_FROM_IP

Unique Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_
LASTBRANCH_2_FROM_IP

Unique Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

43H 67 MSR_
LASTBRANCH_3_FROM_IP

Unique Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

44H 68 MSR_
LASTBRANCH_4_FROM_IP

Unique Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

45H 69 MSR_
LASTBRANCH_5_FROM_IP

Unique Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

46H 70 MSR_
LASTBRANCH_6_FROM_IP

Unique Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

47H 71 MSR_
LASTBRANCH_7_FROM_IP

Unique Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

60H 96 MSR_
LASTBRANCH_0_TO_IP

Unique Last Branch Record 0 To IP (R/W)

One of eight pairs of last branch record registers on the last branch
record stack. This part of the stack contains pointers to the
destination instruction for one of the last eight branches,
exceptions, or interrupts taken by the processor.

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 236

61H 97 MSR_
LASTBRANCH_1_TO_IP

Unique Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

62H 98 MSR_
LASTBRANCH_2_TO_IP

Unique Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

63H 99 MSR_
LASTBRANCH_3_TO_IP

Unique Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

64H 100 MSR_
LASTBRANCH_4_TO_IP

Unique Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

65H 101 MSR_
LASTBRANCH_5_TO_IP

Unique Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

66H 102 MSR_
LASTBRANCH_6_TO_IP

Unique Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

67H 103 MSR_
LASTBRANCH_7_TO_IP

Unique Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

79H 121 IA32_BIOS_UPDT_TRIG Unique BIOS Update Trigger Register (W)

See Table 35-2.

8BH 139 IA32_BIOS_SIGN_ID Unique BIOS Update Signature ID (RO)

See Table 35-2.

C1H 193 IA32_PMC0 Unique Performance counter register

See Table 35-2.

C2H 194 IA32_PMC1 Unique Performance Counter Register

See Table 35-2.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for
processors based on Intel Atom microarchitecture:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)

133.33 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 001B.

166.67 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 011B.

63:3 Reserved.

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock Count (RW)

See Table 35-2.

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count (RW)

See Table 35-2.

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 237

FEH 254 IA32_MTRRCAP Shared Memory Type Range Register (R)

See Table 35-2.

11EH 281 MSR_BBL_CR_CTL3 Shared

0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled. (R/W)

1 = L2 cache has been initialized
0 = Disabled (default)
Until this bit is set the processor will not respond to the WBINVD
instruction or the assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present (RO)

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

174H 372 IA32_SYSENTER_CS Unique See Table 35-2.

175H 373 IA32_SYSENTER_ESP Unique See Table 35-2.

176H 374 IA32_SYSENTER_EIP Unique See Table 35-2.

17AH 378 IA32_MCG_STATUS Unique

0 RIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) can be used to restart the program. If cleared, the
program cannot be reliably restarted

1 EIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If
a second machine check is detected while this bit is still set, the
processor enters a shutdown state. Software should write this bit
to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_PERFEVTSEL0 Unique See Table 35-2.

187H 391 IA32_PERFEVTSEL1 Unique See Table 35-2.

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 238

198H 408 IA32_PERF_STATUS Shared See Table 35-2.

198H 408 MSR_PERF_STATUS Shared

15:0 Current Performance State Value.

39:16 Reserved.

44:40 Maximum Bus Ratio (R/O)

Indicates maximum bus ratio configured for the processor.

63:45 Reserved.

199H 409 IA32_PERF_CTL Unique See Table 35-2.

19AH 410 IA32_CLOCK_MODULATION Unique Clock Modulation (R/W)

See Table 35-2.

IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.

19BH 411 IA32_THERM_INTERRUPT Unique Thermal Interrupt Control (R/W)

See Table 35-2.

19CH 412 IA32_THERM_STATUS Unique Thermal Monitor Status (R/W)

See Table 35-2.

19DH 413 MSR_THERM2_CTL Shared

15:0 Reserved.

16 TM_SELECT (R/W)

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die modulation of
the stop-clock duty cycle)

1 = Thermal Monitor 2 (thermally-initiated frequency transitions)
If bit 3 of the IA32_MISC_ENABLE register is cleared, TM_SELECT
has no effect. Neither TM1 nor TM2 are enabled.

63:17 Reserved.

1A0 416 IA32_MISC_ENABLE Unique Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

0 Fast-Strings Enable

See Table 35-2.

2:1 Reserved.

3 Unique Automatic Thermal Control Circuit Enable (R/W)

See Table 35-2.

6:4 Reserved.

7 Shared Performance Monitoring Available (R)

See Table 35-2.

8 Reserved.

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 239

9 Reserved.

10 Shared FERR# Multiplexing Enable (R/W)

1 = FERR# asserted by the processor to indicate a pending break
event within the processor

0 = Indicates compatible FERR# signaling behavior
This bit must be set to 1 to support XAPIC interrupt model usage.

11 Shared Branch Trace Storage Unavailable (RO)

See Table 35-2.

12 Shared Precise Event Based Sampling Unavailable (RO)

See Table 35-2.

13 Shared TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor indicates that the
die temperature is at the pre-determined threshold, the Thermal
Monitor 2 mechanism is engaged. TM2 will reduce the bus to core
ratio and voltage according to the value last written to
MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the processor does not change
the VID signals or the bus to core ratio when the processor enters
a thermally managed state.

The BIOS must enable this feature if the TM2 feature flag
(CPUID.1:ECX[8]) is set; if the TM2 feature flag is not set, this
feature is not supported and BIOS must not alter the contents of
the TM2 bit location.

The processor is operating out of specification if both this bit and
the TM1 bit are set to 0.

15:14 Reserved.

16 Shared Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 35-2.

18 Shared ENABLE MONITOR FSM (R/W)

See Table 35-2.

19 Reserved.

20 Shared Enhanced Intel SpeedStep Technology Select Lock (R/WO)

When set, this bit causes the following bits to become read-only:

• Enhanced Intel SpeedStep Technology Select Lock (this bit),
• Enhanced Intel SpeedStep Technology Enable bit.

The bit must be set before an Enhanced Intel SpeedStep
Technology transition is requested. This bit is cleared on reset.

21 Reserved.

22 Unique Limit CPUID Maxval (R/W)

See Table 35-2.

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 240

23 Shared xTPR Message Disable (R/W)

See Table 35-2.

33:24 Reserved.

34 Unique XD Bit Disable (R/W)

See Table 35-2.

63:35 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Unique Last Branch Record Stack TOS (R)

Contains an index (bits 0-2) that points to the MSR containing the
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Unique Debug Control (R/W)

See Table 35-2.

1DDH 477 MSR_LER_FROM_LIP Unique Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Unique Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last exception
that was generated or the last interrupt that was handled.

200H 512 IA32_MTRR_PHYSBASE0 Shared See Table 35-2.

201H 513 IA32_MTRR_PHYSMASK0 Shared See Table 35-2.

202H 514 IA32_MTRR_PHYSBASE1 Shared See Table 35-2.

203H 515 IA32_MTRR_PHYSMASK1 Shared See Table 35-2.

204H 516 IA32_MTRR_PHYSBASE2 Shared See Table 35-2.

205H 517 IA32_MTRR_PHYSMASK2 Shared See Table 35-2.

206H 518 IA32_MTRR_PHYSBASE3 Shared See Table 35-2.

207H 519 IA32_MTRR_PHYSMASK3 Shared See Table 35-2.

208H 520 IA32_MTRR_PHYSBASE4 Shared See Table 35-2.

209H 521 IA32_MTRR_PHYSMASK4 Shared See Table 35-2.

20AH 522 IA32_MTRR_PHYSBASE5 Shared See Table 35-2.

20BH 523 IA32_MTRR_PHYSMASK5 Shared See Table 35-2.

20CH 524 IA32_MTRR_PHYSBASE6 Shared See Table 35-2.

20DH 525 IA32_MTRR_PHYSMASK6 Shared See Table 35-2.

20EH 526 IA32_MTRR_PHYSBASE7 Shared See Table 35-2.

20FH 527 IA32_MTRR_PHYSMASK7 Shared See Table 35-2.

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 241

250H 592 IA32_MTRR_FIX64K_
00000

Shared See Table 35-2.

258H 600 IA32_MTRR_FIX16K_
80000

Shared See Table 35-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Shared See Table 35-2.

268H 616 IA32_MTRR_FIX4K_C0000 Shared See Table 35-2.

269H 617 IA32_MTRR_FIX4K_C8000 Shared See Table 35-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Shared See Table 35-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Shared See Table 35-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Shared See Table 35-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Shared See Table 35-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Shared See Table 35-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Shared See Table 35-2.

277H 631 IA32_PAT Unique See Table 35-2.

309H 777 IA32_FIXED_CTR0 Unique Fixed-Function Performance Counter Register 0 (R/W)

See Table 35-2.

30AH 778 IA32_FIXED_CTR1 Unique Fixed-Function Performance Counter Register 1 (R/W)

See Table 35-2.

30BH 779 IA32_FIXED_CTR2 Unique Fixed-Function Performance Counter Register 2 (R/W)

See Table 35-2.

345H 837 IA32_PERF_CAPABILITIES Shared See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

38DH 909 IA32_FIXED_CTR_CTRL Unique Fixed-Function-Counter Control Register (R/W)

See Table 35-2.

38EH 910 IA32_PERF_GLOBAL_
STAUS

Unique See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

38FH 911 IA32_PERF_GLOBAL_CTRL Unique See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Unique See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

3F1H 1009 MSR_PEBS_ENABLE Unique See Table 35-2. See Section 18.4.4, “Precise Event Based Sampling
(PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

400H 1024 IA32_MC0_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 242

402H 1026 IA32_MC0_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC0_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

404H 1028 IA32_MC1_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

408H 1032 IA32_MC2_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC2_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

40CH 1036 MSR_MC3_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC3_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

4OEH 1038 MSR_MC3_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC3_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

410H 1040 MSR_MC4_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC4_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 MSR_MC4_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC4_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX Capabilities (R/O)

See Table 35-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Unique Capability Reporting Register of Pin-based VM-execution
Controls (R/O)

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 243

482H 1154 IA32_VMX_PROCBASED_
CTLS

Unique Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Unique Capability Reporting Register of VM-exit Controls (R/O)

See Table 35-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Unique Capability Reporting Register of VM-entry Controls (R/O)

See Table 35-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Table 35-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Unique Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Unique Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Unique Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Unique Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Unique Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 35-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Unique Capability Reporting Register of Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

600H 1536 IA32_DS_AREA Unique DS Save Area (R/W)

See Table 35-2.

See Section 18.11.4, “Debug Store (DS) Mechanism.”

C000_
0080H

IA32_EFER Unique Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR Unique System Call Target Address (R/W)

See Table 35-2.

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 244

Table 35-5 lists model-specific registers (MSRs) that are specific to Intel® Atom™ processor with the CPUID
signature with DisplayFamily_DisplayModel of 06_27H.

...

C000_
0082H

IA32_LSTAR Unique IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

C000_
0084H

IA32_FMASK Unique System Call Flag Mask (R/W)

See Table 35-2.

C000_
0100H

IA32_FS_BASE Unique Map of BASE Address of FS (R/W)

See Table 35-2.

C000_
0101H

IA32_GS_BASE Unique Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE Unique Swap Target of BASE Address of GS (R/W) See Table 35-2.

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Table 35-5 MSRs Supported by Intel® Atom™ Processors with CPUID Signature 06_27H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

3F8H 1016 MSR_PKG_C2_RESIDENCY Package Package C2 Residency

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States

63:0 Package Package C2 Residency Counter. (R/O)

Time that this package is in processor-specific C2 states since last
reset. Counts at 1 Mhz frequency.

3F9H 1017 MSR_PKG_C4_RESIDENCY Package Package C4 Residency

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States

63:0 Package Package C4 Residency Counter. (R/O)

Time that this package is in processor-specific C4 states since last
reset. Counts at 1 Mhz frequency.

3FAH 1018 MSR_PKG_C4_RESIDENCY Package Package C6 Residency

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States

63:0 Package Package C6 Residency Counter. (R/O)

Time that this package is in processor-specific C6 states since last
reset. Counts at 1 Mhz frequency.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 245

35.4 MSRS IN THE INTEL® MICROARCHITECTURE CODE NAME NEHALEM
Table 35-6 lists model-specific registers (MSRs) that are common for Intel® microarchitecture code name
Nehalem. These include Intel Core i7 and i5 processor family. Architectural MSR addresses are also included in
Table 35-6. These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_1AH, 06_1EH,
06_1FH, 06_2EH, see Table 35-1. Additional MSRs specific to 06_1AH, 06_1EH, 06_1FH are listed in Table 35-7.
Some MSRs listed in these tables are used by BIOS. More information about these MSR can be found at http://
biosbits.org.

The column “Scope” represents the package/core/thread scope of individual bit field of an MSR. “Thread” means
this bit field must be programmed on each logical processor independently. “Core” means the bit field must be
programmed on each processor core independently, logical processors in the same core will be affected by change
of this bit on the other logical processor in the same core. “Package“ means the bit field must be programmed
once for each physical package. Change of a bit filed with a package scope will affect all logical processors in that
physical package.

Table 35-6 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem

Register
Address Register Name

Scope
Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Thread See Section 35.14, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Thread See Section 35.14, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address Range Determination,”
and Table 35-2.

10H 16 IA32_TIME_
STAMP_COUNTER

Thread See Section 17.13, “Time-Stamp Counter,” and see Table 35-2.

17H 23 IA32_PLATFORM_ID Package Platform ID (R)
See Table 35-2.

17H 23 MSR_PLATFORM_ID Package Model Specific Platform ID (R)

49:0 Reserved.

52:50 See Table 35-2.

63:53 Reserved.

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and Location,” and Table 35-
2.

34H 52 MSR_SMI_COUNT Thread SMI Counter (R/O)

31:0 SMI Count (R/O)

Running count of SMI events since last RESET.

63:32 Reserved.

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64Processor (R/W)

See Table 35-2.

79H 121 IA32_BIOS_
UPDT_TRIG

Core BIOS Update Trigger Register (W)

See Table 35-2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 246

8BH 139 IA32_BIOS_
SIGN_ID

Thread BIOS Update Signature ID (RO)

See Table 35-2.

C1H 193 IA32_PMC0 Thread Performance Counter Register

See Table 35-2.

C2H 194 IA32_PMC1 Thread Performance Counter Register

See Table 35-2.

C3H 195 IA32_PMC2 Thread Performance Counter Register

See Table 35-2.

C4H 196 IA32_PMC3 Thread Performance Counter Register

See Table 35-2.

CEH 206 MSR_PLATFORM_INFO Package see http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O)

The is the ratio of the frequency that invariant TSC runs at. The
invariant TSC frequency can be computed by multiplying this ratio
by 133.33 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limits for Turbo
mode is enabled, and when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDC-TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDC/TDP Limits for Turbo mode are
programmable, and when set to 0, indicates TDC and TDP Limits for
Turbo mode are not programmable.

39:30 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O)

The is the minimum ratio (maximum efficiency) that the processor
can operates, in units of 133.33MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States. See http://biosbits.org.

Table 35-6 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 247

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0 (no package C-sate support)

001b: C1 (Behavior is the same as 000b)

010b: C3

011b: C6

100b: C7

101b and 110b: Reserved

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions.

14:11 Reserved.

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

23:16 Reserved.

24 Interrupt filtering enable (R/W)

When set, processor cores in a deep C-State will wake only when
the event message is destined for that core. When 0, all processor
cores in a deep C-State will wake for an event message.

25 C3 state auto demotion enable (R/W)

When set, the processor will conditionally demote C6/C7 requests
to C3 based on uncore auto-demote information.

26 C1 state auto demotion enable (R/W)

When set, the processor will conditionally demote C3/C6/C7
requests to C1 based on uncore auto-demote information.

63:27 Reserved.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Core Power Management IO Redirection in C-state (R/W)

See http://biosbits.org.

Table 35-6 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 248

15:0 LVL_2 Base Address (R/W)

Specifies the base address visible to software for IO redirection. If
IO MWAIT Redirection is enabled, reads to this address will be
consumed by the power management logic and decoded to MWAIT
instructions. When IO port address redirection is enabled, this is the
IO port address reported to the OS/software.

18:16 C-state Range (R/W)

Specifies the encoding value of the maximum C-State code name to
be included when IO read to MWAIT redirection is enabled by
MSR_PMG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - C6 is the max C-State to include

010b - C7 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock Count (RW)

See Table 35-2.

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count (RW)

See Table 35-2.

FEH 254 IA32_MTRRCAP Thread See Table 35-2.

174H 372 IA32_SYSENTER_CS Thread See Table 35-2.

175H 373 IA32_SYSENTER_ESP Thread See Table 35-2.

176H 374 IA32_SYSENTER_EIP Thread See Table 35-2.

179H 377 IA32_MCG_CAP Thread See Table 35-2.

17AH 378 IA32_MCG_STATUS Thread

0 RIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) can be used to restart the program. If cleared, the
program cannot be reliably restarted.

1 EIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If
a second machine check is detected while this bit is still set, the
processor enters a shutdown state. Software should write this bit
to 0 after processing a machine check exception.

63:3 Reserved.

Table 35-6 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 249

186H 390 IA32_PERFEVTSEL0 Thread See Table 35-2.

187H 391 IA32_PERFEVTSEL1 Thread See Table 35-2.

188H 392 IA32_PERFEVTSEL2 Thread See Table 35-2.

189H 393 IA32_PERFEVTSEL3 Thread See Table 35-2.

198H 408 IA32_PERF_STATUS Core See Table 35-2.

15:0 Current Performance State Value.

63:16 Reserved.

199H 409 IA32_PERF_CTL Thread See Table 35-2.

19AH 410 IA32_CLOCK_MODULATION Thread Clock Modulation (R/W)

See Table 35-2.

IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.

0 Reserved.

3:1 On demand Clock Modulation Duty Cycle (R/W)

4 On demand Clock Modulation Enable (R/W)

63:5 Reserved.

19BH 411 IA32_THERM_INTERRUPT Core Thermal Interrupt Control (R/W)

See Table 35-2.

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 35-2.

1A0 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

0 Thread Fast-Strings Enable

See Table 35-2.

2:1 Reserved.

3 Thread Automatic Thermal Control Circuit Enable (R/W)

See Table 35-2.

6:4 Reserved.

7 Thread Performance Monitoring Available (R)

See Table 35-2.

10:8 Reserved.

11 Thread Branch Trace Storage Unavailable (RO)

See Table 35-2.

Table 35-6 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 250

12 Thread Precise Event Based Sampling Unavailable (RO)

See Table 35-2.

15:13 Reserved.

16 Package Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 35-2.

18 Thread ENABLE MONITOR FSM. (R/W) See Table 35-2.

21:19 Reserved.

22 Thread Limit CPUID Maxval (R/W)

See Table 35-2.

23 Thread xTPR Message Disable (R/W)

See Table 35-2.

33:24 Reserved.

34 Thread XD Bit Disable (R/W)

See Table 35-2.

37:35 Reserved.

38 Package Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost
Technology, the turbo mode feature is disabled and the IDA_Enable
feature flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H:
EAX[1] reports the processor’s support of turbo mode is enabled.

Note: the power-on default value is used by BIOS to detect
hardware support of turbo mode. If power-on default value is 1,
turbo mode is available in the processor. If power-on default value
is 0, turbo mode is not available.

63:39 Reserved.

1A2H 418 MSR_
TEMPERATURE_TARGET

Thread

15:0 Reserved.

23:16 Temperature Target (R)

The minimum temperature at which PROCHOT# will be asserted.
The value is degree C.

63:24 Reserved.

1A6H 422 MSR_OFFCORE_RSP_0 Thread Offcore Response Event Select Register (R/W)

1AAH 426 MSR_MISC_PWR_MGMT See http://biosbits.org.

Table 35-6 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 251

0 Package EIST Hardware Coordination Disable (R/W)

When 0, enables hardware coordination of EIST request from
processor cores; When 1, disables hardware coordination of EIST
requests.

1 Thread Energy/Performance Bias Enable (R/W)

This bit makes the IA32_ENERGY_PERF_BIAS register (MSR 1B0h)
visible to software with Ring 0 privileges. This bit’s status (1 or 0)
is also reflected by CPUID.(EAX=06h):ECX[3].

63:2 Reserved.

1ADH 428 MSR_TURBO_POWER_
CURRENT_LIMIT

See http://biosbits.org.

14:0 Package TDP Limit (R/W)

TDP limit in 1/8 Watt granularity.

15 Package TDP Limit Override Enable (R/W)

A value = 0 indicates override is not active, and a value = 1
indicates active.

30:16 Package TDC Limit (R/W)

TDC limit in 1/8 Amp granularity.

31 Package TDC Limit Override Enable (R/W)

A value = 0 indicates override is not active, and a value = 1
indicates active.

63:32 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

1C8H 456 MSR_LBR_SELECT Core Last Branch Record Filtering Select Register (R/W)

See Section 17.6.2, “Filtering of Last Branch Records.”

Table 35-6 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 252

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R)

Contains an index (bits 0-3) that points to the MSR containing the
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 680H).

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W)

See Table 35-2.

1DDH 477 MSR_LER_FROM_LIP Thread Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Thread Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last exception
that was generated or the last interrupt that was handled.

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 35-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 35-2.

1FCH 508 MSR_POWER_CTL Core Power Control Register. See http://biosbits.org.

0 Reserved.

1 Package C1E Enable (R/W)

When set to ‘1’, will enable the CPU to switch to the Minimum
Enhanced Intel SpeedStep Technology operating point when all
execution cores enter MWAIT (C1).

63:2 Reserved.

200H 512 IA32_MTRR_PHYSBASE0 Thread See Table 35-2.

201H 513 IA32_MTRR_PHYSMASK0 Thread See Table 35-2.

202H 514 IA32_MTRR_PHYSBASE1 Thread See Table 35-2.

203H 515 IA32_MTRR_PHYSMASK1 Thread See Table 35-2.

204H 516 IA32_MTRR_PHYSBASE2 Thread See Table 35-2.

205H 517 IA32_MTRR_PHYSMASK2 Thread See Table 35-2.

206H 518 IA32_MTRR_PHYSBASE3 Thread See Table 35-2.

207H 519 IA32_MTRR_PHYSMASK3 Thread See Table 35-2.

208H 520 IA32_MTRR_PHYSBASE4 Thread See Table 35-2.

209H 521 IA32_MTRR_PHYSMASK4 Thread See Table 35-2.

20AH 522 IA32_MTRR_PHYSBASE5 Thread See Table 35-2.

Table 35-6 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 253

20BH 523 IA32_MTRR_PHYSMASK5 Thread See Table 35-2.

20CH 524 IA32_MTRR_PHYSBASE6 Thread See Table 35-2.

20DH 525 IA32_MTRR_PHYSMASK6 Thread See Table 35-2.

20EH 526 IA32_MTRR_PHYSBASE7 Thread See Table 35-2.

20FH 527 IA32_MTRR_PHYSMASK7 Thread See Table 35-2.

210H 528 IA32_MTRR_PHYSBASE8 Thread See Table 35-2.

211H 529 IA32_MTRR_PHYSMASK8 Thread See Table 35-2.

212H 530 IA32_MTRR_PHYSBASE9 Thread See Table 35-2.

213H 531 IA32_MTRR_PHYSMASK9 Thread See Table 35-2.

250H 592 IA32_MTRR_FIX64K_
00000

Thread See Table 35-2.

258H 600 IA32_MTRR_FIX16K_
80000

Thread See Table 35-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Thread See Table 35-2.

268H 616 IA32_MTRR_FIX4K_C0000 Thread See Table 35-2.

269H 617 IA32_MTRR_FIX4K_C8000 Thread See Table 35-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Thread See Table 35-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Thread See Table 35-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Thread See Table 35-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Thread See Table 35-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Thread See Table 35-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Thread See Table 35-2.

277H 631 IA32_PAT Thread See Table 35-2.

280H 640 IA32_MC0_CTL2 Package See Table 35-2.

281H 641 IA32_MC1_CTL2 Package See Table 35-2.

282H 642 IA32_MC2_CTL2 Core See Table 35-2.

283H 643 IA32_MC3_CTL2 Core See Table 35-2.

284H 644 IA32_MC4_CTL2 Core See Table 35-2.

285H 645 IA32_MC5_CTL2 Core See Table 35-2.

286H 646 IA32_MC6_CTL2 Package See Table 35-2.

287H 647 IA32_MC7_CTL2 Package See Table 35-2.

288H 648 IA32_MC8_CTL2 Package See Table 35-2.

Table 35-6 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 254

2FFH 767 IA32_MTRR_DEF_TYPE Thread Default Memory Types (R/W)

See Table 35-2.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter Register 0 (R/W)

See Table 35-2.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter Register 1 (R/W)

See Table 35-2.

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter Register 2 (R/W)

See Table 35-2.

345H 837 IA32_PERF_CAPABILITIES Thread See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

5:0 LBR Format. See Table 35-2.

6 PEBS Record Format.

7 PEBSSaveArchRegs. See Table 35-2.

11:8 PEBS_REC_FORMAT. See Table 35-2.

12 SMM_FREEZE. See Table 35-2.

63:13 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL Thread Fixed-Function-Counter Control Register (R/W)

See Table 35-2.

38EH 910 IA32_PERF_GLOBAL_
STAUS

Thread See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

38EH 910 MSR_PERF_GLOBAL_STAUS Thread (RO)

61 UNC_Ovf

Uncore overflowed if 1.

38FH 911 IA32_PERF_GLOBAL_CTRL Thread See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Thread See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

390H 912 MSR_PERF_GLOBAL_OVF_
CTRL

Thread (R/W)

61 CLR_UNC_Ovf

Set 1 to clear UNC_Ovf.

3F1H 1009 MSR_PEBS_ENABLE Thread See Section 18.6.1.1, “Precise Event Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

2 Enable PEBS on IA32_PMC2. (R/W)

3 Enable PEBS on IA32_PMC3. (R/W)

Table 35-6 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 255

31:4 Reserved.

32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

35 Enable Load Latency on IA32_PMC3. (R/W)

63:36 Reserved.

3F6H 1014 MSR_PEBS_LD_LAT Thread See Section 18.6.1.2, “Load Latency Performance Monitoring
Facility.”

15:0 Minimum threshold latency value of tagged load operation that will
be counted. (R/W)

63:36 Reserved.

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C3 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C3
states. Count at the same frequency as the TSC.

3F9H 1017 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C6
states. Count at the same frequency as the TSC.

3FAH 1018 MSR_PKG_C7_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C7 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C7
states. Count at the same frequency as the TSC.

3FCH 1020 MSR_CORE_C3_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C3 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C3
states. Count at the same frequency as the TSC.

3FDH 1021 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

Table 35-6 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 256

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C6
states. Count at the same frequency as the TSC.

400H 1024 IA32_MC0_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC0_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

403H 1027 MSR_MC0_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

404H 1028 IA32_MC1_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC1_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

407H 1031 MSR_MC1_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC2_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

40BH 1035 MSR_MC2_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

40CH 1036 MSR_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 MSR_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC4_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

Table 35-6 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 257

40FH 1039 MSR_MC3_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

410H 1040 MSR_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 MSR_MC4_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC3_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

413H 1043 MSR_MC4_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

414H 1044 MSR_MC5_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 MSR_MC5_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

416H 1046 MSR_MC5_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

417H 1047 MSR_MC5_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

418H 1048 MSR_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 MSR_MC6_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41AH 1050 MSR_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41BH 1051 MSR_MC6_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

41CH 1052 MSR_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

41DH 1053 MSR_MC7_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41EH 1054 MSR_MC7_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41FH 1055 MSR_MC7_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

420H 1056 MSR_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

421H 1057 MSR_MC8_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

422H 1058 MSR_MC8_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

423H 1059 MSR_MC8_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

480H 1152 IA32_VMX_BASIC Thread Reporting Register of Basic VMX Capabilities (R/O)

See Table 35-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Thread Capability Reporting Register of Pin-based VM-execution
Controls (R/O)

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”

Table 35-6 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 258

482H 1154 IA32_VMX_PROCBASED_
CTLS

Thread Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Thread Capability Reporting Register of VM-exit Controls (R/O)

See Table 35-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Thread Capability Reporting Register of VM-entry Controls (R/O)

See Table 35-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Thread Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Table 35-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Thread Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Thread Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Thread Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Thread Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Thread Capability Reporting Register of VMCS Field Enumeration
(R/O).

See Table 35-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Thread Capability Reporting Register of Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

600H 1536 IA32_DS_AREA Thread DS Save Area (R/W)

See Table 35-2.

See Section 18.11.4, “Debug Store (DS) Mechanism.”

Table 35-6 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 259

680H 1664 MSR_
LASTBRANCH_0_FROM_IP

Thread Last Branch Record 0 From IP (R/W)

One of sixteen pairs of last branch record registers on the last
branch record stack. This part of the stack contains pointers to the
source instruction for one of the last sixteen branches,
exceptions, or interrupts taken by the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.6.1, “LBR Stack.”

681H 1665 MSR_
LASTBRANCH_1_FROM_IP

Thread Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

682H 1666 MSR_
LASTBRANCH_2_FROM_IP

Thread Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

683H 1667 MSR_
LASTBRANCH_3_FROM_IP

Thread Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_
LASTBRANCH_4_FROM_IP

Thread Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_
LASTBRANCH_5_FROM_IP

Thread Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_
LASTBRANCH_6_FROM_IP

Thread Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_
LASTBRANCH_7_FROM_IP

Thread Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

688H 1672 MSR_
LASTBRANCH_8_FROM_IP

Thread Last Branch Record 8 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

689H 1673 MSR_
LASTBRANCH_9_FROM_IP

Thread Last Branch Record 9 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_
LASTBRANCH_10_FROM_IP

Thread Last Branch Record 10 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68BH 1675 MSR_
LASTBRANCH_11_FROM_IP

Thread Last Branch Record 11 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_
LASTBRANCH_12_FROM_IP

Thread Last Branch Record 12 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68DH 1677 MSR_
LASTBRANCH_13_FROM_IP

Thread Last Branch Record 13 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68EH 1678 MSR_
LASTBRANCH_14_FROM_IP

Thread Last Branch Record 14 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Table 35-6 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 260

68FH 1679 MSR_
LASTBRANCH_15_FROM_IP

Thread Last Branch Record 15 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

6C0H 1728 MSR_
LASTBRANCH_0_TO_IP

Thread Last Branch Record 0 To IP (R/W)

One of sixteen pairs of last branch record registers on the last
branch record stack. This part of the stack contains pointers to the
destination instruction for one of the last sixteen branches,
exceptions, or interrupts taken by the processor.

6C1H 1729 MSR_
LASTBRANCH_1_TO_IP

Thread Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C2H 1730 MSR_
LASTBRANCH_2_TO_IP

Thread Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C3H 1731 MSR_
LASTBRANCH_3_TO_IP

Thread Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C4H 1732 MSR_
LASTBRANCH_4_TO_IP

Thread Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C5H 1733 MSR_
LASTBRANCH_5_TO_IP

Thread Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C6H 1734 MSR_
LASTBRANCH_6_TO_IP

Thread Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C7H 1735 MSR_
LASTBRANCH_7_TO_IP

Thread Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C8H 1736 MSR_
LASTBRANCH_8_TO_IP

Thread Last Branch Record 8 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C9H 1737 MSR_
LASTBRANCH_9_TO_IP

Thread Last Branch Record 9 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CAH 1738 MSR_
LASTBRANCH_10_TO_IP

Thread Last Branch Record 10 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CBH 1739 MSR_
LASTBRANCH_11_TO_IP

Thread Last Branch Record 11 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CCH 1740 MSR_
LASTBRANCH_12_TO_IP

Thread Last Branch Record 12 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CDH 1741 MSR_
LASTBRANCH_13_TO_IP

Thread Last Branch Record 13 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CEH 1742 MSR_
LASTBRANCH_14_TO_IP

Thread Last Branch Record 14 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Table 35-6 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 261

6CFH 1743 MSR_
LASTBRANCH_15_TO_IP

Thread Last Branch Record 15 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

802H 2050 IA32_X2APIC_APICID Thread x2APIC ID register (R/O) See x2APIC Specification.

803H 2051 IA32_X2APIC_VERSION Thread x2APIC Version register (R/O)

808H 2056 IA32_X2APIC_TPR Thread x2APIC Task Priority register (R/W)

80AH 2058 IA32_X2APIC_PPR Thread x2APIC Processor Priority register (R/O)

80BH 2059 IA32_X2APIC_EOI Thread x2APIC EOI register (W/O)

80DH 2061 IA32_X2APIC_LDR Thread x2APIC Logical Destination register (R/O)

80FH 2063 IA32_X2APIC_SIVR Thread x2APIC Spurious Interrupt Vector register (R/W)

810H 2064 IA32_X2APIC_ISR0 Thread x2APIC In-Service register bits [31:0] (R/O)

811H 2065 IA32_X2APIC_ISR1 Thread x2APIC In-Service register bits [63:32] (R/O)

812H 2066 IA32_X2APIC_ISR2 Thread x2APIC In-Service register bits [95:64] (R/O)

813H 2067 IA32_X2APIC_ISR3 Thread x2APIC In-Service register bits [127:96] (R/O)

814H 2068 IA32_X2APIC_ISR4 Thread x2APIC In-Service register bits [159:128] (R/O)

815H 2069 IA32_X2APIC_ISR5 Thread x2APIC In-Service register bits [191:160] (R/O)

816H 2070 IA32_X2APIC_ISR6 Thread x2APIC In-Service register bits [223:192] (R/O)

817H 2071 IA32_X2APIC_ISR7 Thread x2APIC In-Service register bits [255:224] (R/O)

818H 2072 IA32_X2APIC_TMR0 Thread x2APIC Trigger Mode register bits [31:0] (R/O)

819H 2073 IA32_X2APIC_TMR1 Thread x2APIC Trigger Mode register bits [63:32] (R/O)

81AH 2074 IA32_X2APIC_TMR2 Thread x2APIC Trigger Mode register bits [95:64] (R/O)

81BH 2075 IA32_X2APIC_TMR3 Thread x2APIC Trigger Mode register bits [127:96] (R/O)

81CH 2076 IA32_X2APIC_TMR4 Thread x2APIC Trigger Mode register bits [159:128] (R/O)

81DH 2077 IA32_X2APIC_TMR5 Thread x2APIC Trigger Mode register bits [191:160] (R/O)

81EH 2078 IA32_X2APIC_TMR6 Thread x2APIC Trigger Mode register bits [223:192] (R/O)

81FH 2079 IA32_X2APIC_TMR7 Thread x2APIC Trigger Mode register bits [255:224] (R/O)

820H 2080 IA32_X2APIC_IRR0 Thread x2APIC Interrupt Request register bits [31:0] (R/O)

821H 2081 IA32_X2APIC_IRR1 Thread x2APIC Interrupt Request register bits [63:32] (R/O)

822H 2082 IA32_X2APIC_IRR2 Thread x2APIC Interrupt Request register bits [95:64] (R/O)

823H 2083 IA32_X2APIC_IRR3 Thread x2APIC Interrupt Request register bits [127:96] (R/O)

824H 2084 IA32_X2APIC_IRR4 Thread x2APIC Interrupt Request register bits [159:128] (R/O)

825H 2085 IA32_X2APIC_IRR5 Thread x2APIC Interrupt Request register bits [191:160] (R/O)

826H 2086 IA32_X2APIC_IRR6 Thread x2APIC Interrupt Request register bits [223:192] (R/O)

827H 2087 IA32_X2APIC_IRR7 Thread x2APIC Interrupt Request register bits [255:224] (R/O)

Table 35-6 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 262

...

828H 2088 IA32_X2APIC_ESR Thread x2APIC Error Status register (R/W)

82FH 2095 IA32_X2APIC_LVT_CMCI Thread x2APIC LVT Corrected Machine Check Interrupt register (R/W)

830H 2096 IA32_X2APIC_ICR Thread x2APIC Interrupt Command register (R/W)

832H 2098 IA32_X2APIC_LVT_TIMER Thread x2APIC LVT Timer Interrupt register (R/W)

833H 2099 IA32_X2APIC_LVT_THERM
AL

Thread x2APIC LVT Thermal Sensor Interrupt register (R/W)

834H 2100 IA32_X2APIC_LVT_PMI Thread x2APIC LVT Performance Monitor register (R/W)

835H 2101 IA32_X2APIC_LVT_LINT0 Thread x2APIC LVT LINT0 register (R/W)

836H 2102 IA32_X2APIC_LVT_LINT1 Thread x2APIC LVT LINT1 register (R/W)

837H 2103 IA32_X2APIC_LVT_ERROR Thread x2APIC LVT Error register (R/W)

838H 2104 IA32_X2APIC_INIT_COUNT Thread x2APIC Initial Count register (R/W)

839H 2105 IA32_X2APIC_CUR_COUNT Thread x2APIC Current Count register (R/O)

83EH 2110 IA32_X2APIC_DIV_CONF Thread x2APIC Divide Configuration register (R/W)

83FH 2111 IA32_X2APIC_SELF_IPI Thread x2APIC Self IPI register (W/O)

C000_
0080H

IA32_EFER Thread Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR Thread System Call Target Address (R/W)

See Table 35-2.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask (R/W)

See Table 35-2.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS (R/W)

See Table 35-2.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE Thread Swap Target of BASE Address of GS (R/W) See Table 35-2.

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature. (R/W) See Table 35-2 and Section
17.13.2, “IA32_TSC_AUX Register and RDTSCP Support.”

Table 35-6 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 263

35.7 MSRS IN INTEL® PROCESSOR FAMILY (BASED ON INTEL®
MICROARCHITECTURE CODE NAME SANDY BRIDGE)

Table 35-11 lists model-specific registers (MSRs) that are common to Intel® processor family based on Intel®
microarchitecture (Sandy Bridge). All architectural MSRs listed in Table 35-2 are supported. These processors
have a CPUID signature with DisplayFamily_DisplayModel of 06_2AH, 06_2DH, see Table 35-1. Additional MSRs
specific to 06_2AH are listed in Table 35-12.

Table 35-11 MSRs Supported by Intel® Processors
Based on Intel® Microarchitecture Code Name Sandy Bridge

Register
Address Register Name

Scope
Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Thread See Section 35.14, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Thread See Section 35.14, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address Range Determination,”
and Table 35-2.

10H 16 IA32_TIME_STAMP_
COUNTER

Thread See Section 17.13, “Time-Stamp Counter,” and see Table 35-2.

17H 23 IA32_PLATFORM_ID Package Platform ID (R)
See Table 35-2.

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and Location,” and Table 35-
2.

34H 52 MSR_SMI_COUNT Thread SMI Counter (R/O)

31:0 SMI Count (R/O)

Count SMIs.

63:32 Reserved.

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64Processor (R/W)

See Table 35-2.

79H 121 IA32_BIOS_UPDT_TRIG Core BIOS Update Trigger Register (W)

See Table 35-2.

8BH 139 IA32_BIOS_SIGN_ID Thread BIOS Update Signature ID (RO)

See Table 35-2.

C1H 193 IA32_PMC0 Thread Performance Counter Register

See Table 35-2.

C2H 194 IA32_PMC1 Thread Performance Counter Register

See Table 35-2.

C3H 195 IA32_PMC2 Thread Performance Counter Register

See Table 35-2.

C4H 196 IA32_PMC3 Thread Performance Counter Register

See Table 35-2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 264

C5H 197 IA32_PMC4 Core Performance Counter Register

See Table 35-2.

C6H 198 IA32_PMC5 Core Performance Counter Register

See Table 35-2.

C7H 199 IA32_PMC6 Core Performance Counter Register

See Table 35-2.

C8H 200 IA32_PMC7 Core Performance Counter Register

See Table 35-2.

CEH 206 MSR_PLATFORM_INFO Package See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O)

The is the ratio of the frequency that invariant TSC runs at.
Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limits for Turbo
mode is enabled, and when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDP Limits for Turbo mode are
programmable, and when set to 0, indicates TDP Limit for Turbo
mode is not programmable.

39:30 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O)

The is the minimum ratio (maximum efficiency) that the processor
can operates, in units of 100MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

Table 35-11 MSRs Supported by Intel® Processors
Based on Intel® Microarchitecture Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 265

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

24:16 Reserved.

25 C3 state auto demotion enable (R/W)

When set, the processor will conditionally demote C6/C7 requests
to C3 based on uncore auto-demote information.

26 C1 state auto demotion enable (R/W)

When set, the processor will conditionally demote C3/C6/C7
requests to C1 based on uncore auto-demote information.

27 Enable C3 undemotion (R/W)

When set, enables undemotion from demoted C3.

28 Enable C1 undemotion (R/W)

When set, enables undemotion from demoted C1.

63:29 Reserved.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Core Power Management IO Redirection in C-state (R/W)

See http://biosbits.org.

Table 35-11 MSRs Supported by Intel® Processors
Based on Intel® Microarchitecture Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 266

15:0 LVL_2 Base Address (R/W)

Specifies the base address visible to software for IO redirection. If
IO MWAIT Redirection is enabled, reads to this address will be
consumed by the power management logic and decoded to MWAIT
instructions. When IO port address redirection is enabled, this is
the IO port address reported to the OS/software.

18:16 C-state Range (R/W)

Specifies the encoding value of the maximum C-State code name
to be included when IO read to MWAIT redirection is enabled by
MSR_PMG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - C6 is the max C-State to include

010b - C7 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock Count (RW)

See Table 35-2.

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count (RW)

See Table 35-2.

FEH 254 IA32_MTRRCAP Thread See Table 35-2.

174H 372 IA32_SYSENTER_CS Thread See Table 35-2.

175H 373 IA32_SYSENTER_ESP Thread See Table 35-2.

176H 374 IA32_SYSENTER_EIP Thread See Table 35-2.

179H 377 IA32_MCG_CAP Thread See Table 35-2.

17AH 378 IA32_MCG_STATUS Thread

0 RIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) can be used to restart the program. If cleared, the
program cannot be reliably restarted.

1 EIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If
a second machine check is detected while this bit is still set, the
processor enters a shutdown state. Software should write this bit
to 0 after processing a machine check exception.

63:3 Reserved.

Table 35-11 MSRs Supported by Intel® Processors
Based on Intel® Microarchitecture Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 267

186H 390 IA32_
PERFEVTSEL0

Thread See Table 35-2.

187H 391 IA32_
PERFEVTSEL1

Thread See Table 35-2.

188H 392 IA32_
PERFEVTSEL2

Thread See Table 35-2.

189H 393 IA32_
PERFEVTSEL3

Thread See Table 35-2.

18AH 394 IA32_
PERFEVTSEL4

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

18BH 395 IA32_
PERFEVTSEL5

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

18CH 396 IA32_
PERFEVTSEL6

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

18DH 397 IA32_
PERFEVTSEL7

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

198H 408 IA32_PERF_STATUS Package See Table 35-2.

15:0 Current Performance State Value.

63:16 Reserved.

198H 408 MSR_PERF_STATUS Package

47:32 Core Voltage (R/O)

P-state core voltage can be computed by

MSR_PERF_STATUS[37:32] * (float) 1/(2^13).

199H 409 IA32_PERF_CTL Thread See Table 35-2.

19AH 410 IA32_CLOCK_
MODULATION

Thread Clock Modulation (R/W)

See Table 35-2

IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.

3:0 On demand Clock Modulation Duty Cycle (R/W)

In 6.25% increment

4 On demand Clock Modulation Enable (R/W)

63:5 Reserved.

19BH 411 IA32_THERM_INTERRUPT Core Thermal Interrupt Control (R/W)

See Table 35-2.

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 35-2.

Table 35-11 MSRs Supported by Intel® Processors
Based on Intel® Microarchitecture Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 268

1A0 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

0 Thread Fast-Strings Enable

See Table 35-2

6:1 Reserved.

7 Thread Performance Monitoring Available (R)

See Table 35-2.

10:8 Reserved.

11 Thread Branch Trace Storage Unavailable (RO)

See Table 35-2.

12 Thread Precise Event Based Sampling Unavailable (RO)

See Table 35-2.

15:13 Reserved.

16 Package Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 35-2.

18 Thread ENABLE MONITOR FSM. (R/W) See Table 35-2.

21:19 Reserved.

22 Thread Limit CPUID Maxval (R/W)

See Table 35-2.

23 Thread xTPR Message Disable (R/W)

See Table 35-2.

33:24 Reserved.

34 Thread XD Bit Disable (R/W)

See Table 35-2.

37:35 Reserved.

38 Package Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost
Technology, the turbo mode feature is disabled and the IDA_Enable
feature flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H:
EAX[1] reports the processor’s support of turbo mode is enabled.

Note: the power-on default value is used by BIOS to detect
hardware support of turbo mode. If power-on default value is 1,
turbo mode is available in the processor. If power-on default value
is 0, turbo mode is not available.

63:39 Reserved.

Table 35-11 MSRs Supported by Intel® Processors
Based on Intel® Microarchitecture Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 269

1A2H 418 MSR_
TEMPERATURE_TARGET

Unique

15:0 Reserved.

23:16 Temperature Target (R)

The minimum temperature at which PROCHOT# will be asserted.
The value is degree C.

63:24 Reserved.

1A6H 422 MSR_OFFCORE_RSP_0 Thread Offcore Response Event Select Register (R/W)

1A7H 422 MSR_OFFCORE_RSP_1 Thread Offcore Response Event Select Register (R/W)

1AAH 426 MSR_MISC_PWR_MGMT See http://biosbits.org.

1ADH 428 MSR_TURBO_PWR_
CURRENT_LIMIT

See http://biosbits.org.

1B0H 432 IA32_ENERGY_PERF_BIAS Package See Table 35-2.

1B1H 433 IA32_PACKAGE_THERM_
STATUS

Package See Table 35-2.

1B2H 434 IA32_PACKAGE_THERM_
INTERRUPT

Package See Table 35-2.

1C8H 456 MSR_LBR_SELECT Thread Last Branch Record Filtering Select Register (R/W)

See Section 17.6.2, “Filtering of Last Branch Records.”

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R)

Contains an index (bits 0-3) that points to the MSR containing the
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 680H).

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W)

See Table 35-2.

1DDH 477 MSR_LER_FROM_LIP Thread Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Thread Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last exception
that was generated or the last interrupt that was handled.

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 35-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 35-2.

Table 35-11 MSRs Supported by Intel® Processors
Based on Intel® Microarchitecture Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 270

1FCH 508 MSR_POWER_CTL Core See http://biosbits.org.

200H 512 IA32_MTRR_PHYSBASE0 Thread See Table 35-2.

201H 513 IA32_MTRR_PHYSMASK0 Thread See Table 35-2.

202H 514 IA32_MTRR_PHYSBASE1 Thread See Table 35-2.

203H 515 IA32_MTRR_PHYSMASK1 Thread See Table 35-2.

204H 516 IA32_MTRR_PHYSBASE2 Thread See Table 35-2.

205H 517 IA32_MTRR_PHYSMASK2 Thread See Table 35-2.

206H 518 IA32_MTRR_PHYSBASE3 Thread See Table 35-2.

207H 519 IA32_MTRR_PHYSMASK3 Thread See Table 35-2.

208H 520 IA32_MTRR_PHYSBASE4 Thread See Table 35-2.

209H 521 IA32_MTRR_PHYSMASK4 Thread See Table 35-2.

20AH 522 IA32_MTRR_PHYSBASE5 Thread See Table 35-2.

20BH 523 IA32_MTRR_PHYSMASK5 Thread See Table 35-2.

20CH 524 IA32_MTRR_PHYSBASE6 Thread See Table 35-2.

20DH 525 IA32_MTRR_PHYSMASK6 Thread See Table 35-2.

20EH 526 IA32_MTRR_PHYSBASE7 Thread See Table 35-2.

20FH 527 IA32_MTRR_PHYSMASK7 Thread See Table 35-2.

210H 528 IA32_MTRR_PHYSBASE8 Thread See Table 35-2.

211H 529 IA32_MTRR_PHYSMASK8 Thread See Table 35-2.

212H 530 IA32_MTRR_PHYSBASE9 Thread See Table 35-2.

213H 531 IA32_MTRR_PHYSMASK9 Thread See Table 35-2.

250H 592 IA32_MTRR_FIX64K_
00000

Thread See Table 35-2.

258H 600 IA32_MTRR_FIX16K_
80000

Thread See Table 35-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Thread See Table 35-2.

268H 616 IA32_MTRR_FIX4K_C0000 Thread See Table 35-2.

269H 617 IA32_MTRR_FIX4K_C8000 Thread See Table 35-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Thread See Table 35-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Thread See Table 35-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Thread See Table 35-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Thread See Table 35-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Thread See Table 35-2.

Table 35-11 MSRs Supported by Intel® Processors
Based on Intel® Microarchitecture Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 271

26FH 623 IA32_MTRR_FIX4K_F8000 Thread See Table 35-2.

277H 631 IA32_PAT Thread See Table 35-2.

280H 640 IA32_MC0_CTL2 Core See Table 35-2.

281H 641 IA32_MC1_CTL2 Core See Table 35-2.

282H 642 IA32_MC2_CTL2 Core See Table 35-2.

283H 643 IA32_MC3_CTL2 Core See Table 35-2.

284H 644 MSR_MC4_CTL2 Package Always 0 (CMCI not supported).

2FFH 767 IA32_MTRR_DEF_TYPE Thread Default Memory Types (R/W)

See Table 35-2.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter Register 0 (R/W)

See Table 35-2.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter Register 1 (R/W)

See Table 35-2.

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter Register 2 (R/W)

See Table 35-2.

345H 837 IA32_PERF_CAPABILITIES Thread See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

5:0 LBR Format. See Table 35-2.

6 PEBS Record Format.

7 PEBSSaveArchRegs. See Table 35-2.

11:8 PEBS_REC_FORMAT. See Table 35-2.

12 SMM_FREEZE. See Table 35-2.

63:13 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL Thread Fixed-Function-Counter Control Register (R/W)

See Table 35-2.

38EH 910 IA32_PERF_GLOBAL_
STAUS

Thread See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

38FH 911 IA32_PERF_GLOBAL_CTRL Thread See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Thread See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

3F1H 1009 MSR_PEBS_ENABLE Thread See Section 18.6.1.1, “Precise Event Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

2 Enable PEBS on IA32_PMC2. (R/W)

Table 35-11 MSRs Supported by Intel® Processors
Based on Intel® Microarchitecture Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 272

3 Enable PEBS on IA32_PMC3. (R/W)

31:4 Reserved.

32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

35 Enable Load Latency on IA32_PMC3. (R/W)

63:36 Reserved.

3F6H 1014 MSR_PEBS_LD_LAT Thread see See Section 18.6.1.2, “Load Latency Performance Monitoring
Facility.”

15:0 Minimum threshold latency value of tagged load operation that will
be counted. (R/W)

63:36 Reserved.

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C3 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C3
states. Count at the same frequency as the TSC.

3F9H 1017 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C6
states. Count at the same frequency as the TSC.

3FAH 1018 MSR_PKG_C7_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C7 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C7
states. Count at the same frequency as the TSC.

3FCH 1020 MSR_CORE_C3_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C3 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C3
states. Count at the same frequency as the TSC.

3FDH 1021 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

Table 35-11 MSRs Supported by Intel® Processors
Based on Intel® Microarchitecture Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 273

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C6
states. Count at the same frequency as the TSC.

3FEH 1022 MSR_CORE_C7_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C7 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C7
states. Count at the same frequency as the TSC.

400H 1024 IA32_MC0_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

402H 1026 IA32_MC0_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

403H 1027 IA32_MC0_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

404H 1028 IA32_MC1_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

406H 1030 IA32_MC1_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

407H 1031 IA32_MC1_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40BH 1035 IA32_MC2_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

40EH 1038 IA32_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40FH 1039 IA32_MC3_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

410H 1040 MSR_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

0 PCU Hardware Error (R/W)

When set, enables signaling of PCU hardware detected errors.

1 PCU Controller Error (R/W)

When set, enables signaling of PCU controller detected errors

2 PCU Firmware Error (R/W)

When set, enables signaling of PCU firmware detected errors

63:2 Reserved.

411H 1041 IA32_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

Table 35-11 MSRs Supported by Intel® Processors
Based on Intel® Microarchitecture Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 274

480H 1152 IA32_VMX_BASIC Thread Reporting Register of Basic VMX Capabilities (R/O)

See Table 35-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Thread Capability Reporting Register of Pin-based VM-execution
Controls (R/O)

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_
CTLS

Thread Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Thread Capability Reporting Register of VM-exit Controls (R/O)

See Table 35-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Thread Capability Reporting Register of VM-entry Controls (R/O)

See Table 35-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Thread Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Table 35-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Thread Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Thread Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Thread Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Thread Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Thread Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 35-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Thread Capability Reporting Register of Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

Table 35-11 MSRs Supported by Intel® Processors
Based on Intel® Microarchitecture Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 275

4C1H 1217 IA32_A_PMC0 Thread See Table 35-2.

4C2H 1218 IA32_A_PMC1 Thread See Table 35-2.

4C3H 1219 IA32_A_PMC2 Thread See Table 35-2.

4C4H 1220 IA32_A_PMC3 Thread See Table 35-2.

4C5H 1221 IA32_A_PMC4 Core See Table 35-2.

4C6H 1222 IA32_A_PMC5 Core See Table 35-2.

4C7H 1223 IA32_A_PMC6 Core See Table 35-2.

C8H 200 IA32_A_PMC7 Core See Table 35-2.

600H 1536 IA32_DS_AREA Thread DS Save Area (R/W)

See Table 35-2.

See Section 18.11.4, “Debug Store (DS) Mechanism.”

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

See Section 14.7.1, “RAPL Interfaces.”

60AH 1546 MSR_PKGC3_IRTL Package Package C3 Interrupt Response Limit (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit (R/W)

Specifies the limit that should be used to decide if the package
should be put into a package C3 state.

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the interrupt response
time limit. The following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and can be used
by the processor for package C-sate management.

63:16 Reserved.

Table 35-11 MSRs Supported by Intel® Processors
Based on Intel® Microarchitecture Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 276

60BH 1547 MSR_PKGC6_IRTL Package Package C6 Interrupt Response Limit (R/W)

This MSR defines the budget allocated for the package to exit from
C6 to a C0 state, where interrupt request can be delivered to the
core and serviced. Additional core-exit latency amy be applicable
depending on the actual C-state the core is in.

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit (R/W)

Specifies the limit that should be used to decide if the package
should be put into a package C6 state.

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the interrupt response
time limit. The following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and can be used
by the processor for package C-sate management.

63:16 Reserved.

60CH 1548 MSR_PKGC7_IRTL Package Package C7 Interrupt Response Limit (R/W)

This MSR defines the budget allocated for the package to exit from
C7 to a C0 state, where interrupt request can be delivered to the
core and serviced. Additional core-exit latency amy be applicable
depending on the actual C-state the core is in.

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit (R/W)

Specifies the limit that should be used to decide if the package
should be put into a package C7 state.

Table 35-11 MSRs Supported by Intel® Processors
Based on Intel® Microarchitecture Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 277

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the interrupt response
time limit. The following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and can be used
by the processor for package C-sate management.

63:16 Reserved.

60DH 1549 MSR_PKG_C2_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C2 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C2
states. Count at the same frequency as the TSC.

610H 1552 MSR_PKG_RAPL_POWER_
LIMIT

Package PKG RAPL Power Limit Control (R/W)

See Section 14.7.3, “Package RAPL Domain.”

611H 1553 MSR_PKG_ENERY_STATUS Package PKG Energy Status (R/O)

See Section 14.7.3, “Package RAPL Domain.”

614H 1556 MSR_PKG_POWER_INFO Package PKG RAPL Parameters (R/W) See Section 14.7.3, “Package RAPL
Domain.”

638H 1592 MSR_PP0_POWER_LIMIT Package PP0 RAPL Power Limit Control (R/W)

See Section 14.7.4, “PP0/PP1 RAPL Domains.”

639H 1593 MSR_PP0_ENERY_STATUS Package PP0 Energy Status (R/O)

See Section 14.7.4, “PP0/PP1 RAPL Domains.”

63AH 1594 MSR_PP0_POLICY Package PP0 Balance Policy (R/W)

See Section 14.7.4, “PP0/PP1 RAPL Domains.”

63BH 1595 MSR_PP0_PERF_STATUS Package PP0 Performance Throttling Status (R/O) See Section 14.7.4,
“PP0/PP1 RAPL Domains.”

Table 35-11 MSRs Supported by Intel® Processors
Based on Intel® Microarchitecture Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 278

680H 1664 MSR_
LASTBRANCH_0_FROM_IP

Thread Last Branch Record 0 From IP (R/W)

One of sixteen pairs of last branch record registers on the last
branch record stack. This part of the stack contains pointers to the
source instruction for one of the last sixteen branches,
exceptions, or interrupts taken by the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.6.1, “LBR Stack.”

681H 1665 MSR_
LASTBRANCH_1_FROM_IP

Thread Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

682H 1666 MSR_
LASTBRANCH_2_FROM_IP

Thread Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

683H 1667 MSR_
LASTBRANCH_3_FROM_IP

Thread Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_
LASTBRANCH_4_FROM_IP

Thread Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_
LASTBRANCH_5_FROM_IP

Thread Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_
LASTBRANCH_6_FROM_IP

Thread Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_
LASTBRANCH_7_FROM_IP

Thread Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

688H 1672 MSR_
LASTBRANCH_8_FROM_IP

Thread Last Branch Record 8 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

689H 1673 MSR_
LASTBRANCH_9_FROM_IP

Thread Last Branch Record 9 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_
LASTBRANCH_10_FROM_
IP

Thread Last Branch Record 10 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68BH 1675 MSR_
LASTBRANCH_11_FROM_
IP

Thread Last Branch Record 11 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_
LASTBRANCH_12_FROM_
IP

Thread Last Branch Record 12 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68DH 1677 MSR_
LASTBRANCH_13_FROM_
IP

Thread Last Branch Record 13 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Table 35-11 MSRs Supported by Intel® Processors
Based on Intel® Microarchitecture Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 279

68EH 1678 MSR_
LASTBRANCH_14_FROM_
IP

Thread Last Branch Record 14 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68FH 1679 MSR_
LASTBRANCH_15_FROM_
IP

Thread Last Branch Record 15 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

6C0H 1728 MSR_
LASTBRANCH_0_TO_IP

Thread Last Branch Record 0 To IP (R/W)

One of sixteen pairs of last branch record registers on the last
branch record stack. This part of the stack contains pointers to the
destination instruction for one of the last sixteen branches,
exceptions, or interrupts taken by the processor.

6C1H 1729 MSR_
LASTBRANCH_1_TO_IP

Thread Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C2H 1730 MSR_
LASTBRANCH_2_TO_IP

Thread Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C3H 1731 MSR_
LASTBRANCH_3_TO_IP

Thread Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C4H 1732 MSR_
LASTBRANCH_4_TO_IP

Thread Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C5H 1733 MSR_
LASTBRANCH_5_TO_IP

Thread Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C6H 1734 MSR_
LASTBRANCH_6_TO_IP

Thread Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C7H 1735 MSR_
LASTBRANCH_7_TO_IP

Thread Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C8H 1736 MSR_
LASTBRANCH_8_TO_IP

Thread Last Branch Record 8 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C9H 1737 MSR_
LASTBRANCH_9_TO_IP

Thread Last Branch Record 9 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CAH 1738 MSR_
LASTBRANCH_10_TO_IP

Thread Last Branch Record 10 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CBH 1739 MSR_
LASTBRANCH_11_TO_IP

Thread Last Branch Record 11 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CCH 1740 MSR_
LASTBRANCH_12_TO_IP

Thread Last Branch Record 12 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CDH 1741 MSR_
LASTBRANCH_13_TO_IP

Thread Last Branch Record 13 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Table 35-11 MSRs Supported by Intel® Processors
Based on Intel® Microarchitecture Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 280

...

35.7.2 MSRs In Intel® Xeon® Processor E5 Family (Based on Intel® Microarchitecture Code
Name Sandy Bridge)

Table 35-13 lists selected model-specific registers (MSRs) that are specific to the Intel® Xeon® Processor E5
Family (based on Intel® microarchitecture code name Sandy Bridge). These processors have a CPUID signature
with DisplayFamily_DisplayModel of 06_2DH, see Table 35-1.

6CEH 1742 MSR_
LASTBRANCH_14_TO_IP

Thread Last Branch Record 14 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CFH 1743 MSR_
LASTBRANCH_15_TO_IP

Thread Last Branch Record 15 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6E0H 1760 IA32_TSC_DEADLINE Thread See Table 35-2.

C000_
0080H

IA32_EFER Thread Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR Thread System Call Target Address (R/W)

See Table 35-2.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask (R/W)

See Table 35-2.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS (R/W)

See Table 35-2.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE Thread Swap Target of BASE Address of GS (R/W)

See Table 35-2.

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature (R/W)

See Table 35-2 and Section 17.13.2, “IA32_TSC_AUX Register and
RDTSCP Support.”

Table 35-11 MSRs Supported by Intel® Processors
Based on Intel® Microarchitecture Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 281

Table 35-13 Selected MSRs Supported by Intel® Xeon® Processors E5 Family (Based on Intel® Microarchitecture
Code Name Sandy Bridge)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

17FH 383 MSR_ERROR_CONTROL Package MC Bank Error Configuration (R/W)

0 Reserved

1 MemError Log Enable (R/W)

When set, enables IMC status bank to log additional info in bits
36:32.

63:2 Reserved.

285H 645 IA32_MC5_CTL2 Package See Table 35-2.

286H 646 IA32_MC6_CTL2 Package See Table 35-2.

287H 647 IA32_MC7_CTL2 Package See Table 35-2.

288H 648 IA32_MC8_CTL2 Package See Table 35-2.

289H 649 IA32_MC9_CTL2 Package See Table 35-2.

28AH 650 IA32_MC10_CTL2 Package See Table 35-2.

28BH 651 IA32_MC11_CTL2 Package See Table 35-2.

28CH 652 IA32_MC12_CTL2 Package See Table 35-2.

28DH 653 IA32_MC13_CTL2 Package See Table 35-2.

28EH 654 IA32_MC14_CTL2 Package See Table 35-2.

28FH 655 IA32_MC15_CTL2 Package See Table 35-2.

290H 656 IA32_MC16_CTL2 Package See Table 35-2.

291H 657 IA32_MC17_CTL2 Package See Table 35-2.

292H 658 IA32_MC18_CTL2 Package See Table 35-2.

293H 659 IA32_MC19_CTL2 Package See Table 35-2.

414H 1044 MSR_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 MSR_MC5_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

416H 1046 MSR_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

417H 1047 MSR_MC5_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

418H 1048 MSR_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 MSR_MC6_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41AH 1050 MSR_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41BH 1051 MSR_MC6_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

41CH 1052 MSR_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

41DH 1053 MSR_MC7_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41EH 1054 MSR_MC7_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41FH 1055 MSR_MC7_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 282

420H 1056 MSR_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

421H 1057 MSR_MC8_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

422H 1058 MSR_MC8_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

423H 1059 MSR_MC8_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

424H 1060 MSR_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

425H 1061 MSR_MC9_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

426H 1062 MSR_MC9_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

427H 1063 MSR_MC9_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

428H 1064 MSR_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

429H 1065 MSR_MC10_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

42AH 1066 MSR_MC10_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42BH 1067 MSR_MC10_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

42CH 1068 MSR_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

42DH 1069 MSR_MC11_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

42EH 1070 MSR_MC11_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42FH 1071 MSR_MC11_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

430H 1072 MSR_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

431H 1073 MSR_MC12_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

432H 1074 MSR_MC12_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

433H 1075 MSR_MC12_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

434H 1076 MSR_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

435H 1077 MSR_MC13_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

436H 1078 MSR_MC13_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

437H 1079 MSR_MC13_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

438H 1080 MSR_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

439H 1081 MSR_MC14_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

43AH 1082 MSR_MC14_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43BH 1083 MSR_MC14_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

43CH 1084 MSR_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

43DH 1085 MSR_MC15_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

43EH 1086 MSR_MC15_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43FH 1087 MSR_MC15_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

440H 1088 MSR_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Table 35-13 Selected MSRs Supported by Intel® Xeon® Processors E5 Family (Based on Intel® Microarchitecture
Code Name Sandy Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 283

...

35.9 MSRS IN THE NEXT GENERATION INTEL® CORE™ PROCESSORS (BASED
ON INTEL® MICROARCHITECTURE CODE NAME HASWELL)

The Next Generation Intel® Core™ Processor Family (based on Intel® microarchitecture code name Haswell)
supports the MSR interfaces listed in Table 35-11, Table 35-12, Table 35-14, and Table 35-15.

441H 1089 MSR_MC16_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

442H 1090 MSR_MC16_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

443H 1091 MSR_MC16_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

444H 1092 MSR_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

445H 1093 MSR_MC17_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

446H 1094 MSR_MC17_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

447H 1095 MSR_MC17_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

448H 1096 MSR_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

449H 1097 MSR_MC18_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

44AH 1098 MSR_MC18_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44BH 1099 MSR_MC18_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

44CH 1100 MSR_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

44DH 1101 MSR_MC19_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

44EH 1102 MSR_MC19_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44FH 1103 MSR_MC19_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

613H 1555 MSR_RAPL_PERF_STATUS Package RAPL Perf Status (R/O)

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W)

See Section 14.7.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERY_
STATUS

Package DRAM Energy Status (R/O)

See Section 14.7.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) See Section 14.7.5,
“DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W)

See Section 14.7.5, “DRAM RAPL Domain.”

Table 35-13 Selected MSRs Supported by Intel® Xeon® Processors E5 Family (Based on Intel® Microarchitecture
Code Name Sandy Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 284

35.10 MSRS IN THE PENTIUM® 4 AND INTEL® XEON® PROCESSORS
Table 35-15 lists MSRs (architectural and model-specific) that are defined across processor generations based on
Intel NetBurst microarchitecture. The processor can be identified by its CPUID signatures of DisplayFamily
encoding of 0FH, see Table 35-1.
• MSRs with an “IA32_” prefix are designated as “architectural.” This means that the functions of these MSRs

and their addresses remain the same for succeeding families of IA-32 processors.
• MSRs with an “MSR_” prefix are model specific with respect to address functionalities. The column “Model

Availability” lists the model encoding value(s) within the Pentium 4 and Intel Xeon processor family at the
specified register address. The model encoding value of a processor can be queried using CPUID. See
“CPUID—CPU Identification” in Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2A.

Table 35-15 Additional MSRs Supported by Next Generation Intel® Core™ Processors (Based on Intel®
Microarchitecture Code Name Haswell)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

3BH 59 IA32_TSC_ADJUST THREAD Per-Logical-Processor TSC ADJUST (R/W)

See Table 35-2.

Table 35-15 MSRs in the Pentium® 4 and Intel® Xeon® Processors

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR 0, 1, 2, 3,
4, 6

Shared See Section 35.14, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE 0, 1, 2, 3,
4, 6

Shared See Section 35.14, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_LINE_
SIZE

3, 4, 6 Shared See Section 8.10.5, “Monitor/Mwait Address
Range Determination.”

10H 16 IA32_TIME_STAMP_COUNTER 0, 1, 2, 3,
4, 6

Unique Time Stamp Counter

See Table 35-2.

On earlier processors, only the lower 32 bits are
writable. On any write to the lower 32 bits, the
upper 32 bits are cleared. For processor family
0FH, models 3 and 4: all 64 bits are writable.

17H 23 IA32_PLATFORM_ID 0, 1, 2, 3,
4, 6

Shared Platform ID (R)

See Table 35-2.

The operating system can use this MSR to
determine “slot” information for the processor and
the proper microcode update to load.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 285

1BH 27 IA32_APIC_BASE 0, 1, 2, 3,
4, 6

Unique APIC Location and Status (R/W)

See Table 35-2. See Section 10.4.4, “Local APIC
Status and Location.”

2AH 42 MSR_EBC_HARD_POWERON 0, 1, 2, 3,
4, 6

Shared Processor Hard Power-On Configuration

(R/W) Enables and disables processor features;

(R) indicates current processor configuration.

0 Output Tri-state Enabled (R)

Indicates whether tri-state output is enabled (1)
or disabled (0) as set by the strapping of SMI#.
The value in this bit is written on the deassertion
of RESET#; the bit is set to 1 when the address
bus signal is asserted.

1 Execute BIST (R)

Indicates whether the execution of the BIST is
enabled (1) or disabled (0) as set by the strapping
of INIT#. The value in this bit is written on the
deassertion of RESET#; the bit is set to 1 when
the address bus signal is asserted.

2 In Order Queue Depth (R)

Indicates whether the in order queue depth for
the system bus is 1 (1) or up to 12 (0) as set by
the strapping of A7#. The value in this bit is
written on the deassertion of RESET#; the bit is
set to 1 when the address bus signal is asserted.

3 MCERR# Observation Disabled (R)

Indicates whether MCERR# observation is enabled
(0) or disabled (1) as determined by the strapping
of A9#. The value in this bit is written on the
deassertion of RESET#; the bit is set to 1 when
the address bus signal is asserted.

4 BINIT# Observation Enabled (R)

Indicates whether BINIT# observation is enabled
(0) or disabled (1) as determined by the strapping
of A10#. The value in this bit is written on the
deassertion of RESET#; the bit is set to 1 when
the address bus signal is asserted.

6:5 APIC Cluster ID (R)

Contains the logical APIC cluster ID value as set by
the strapping of A12# and A11#. The logical
cluster ID value is written into the field on the
deassertion of RESET#; the field is set to 1 when
the address bus signal is asserted.

Table 35-15 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 286

7 Bus Park Disable (R)

Indicates whether bus park is enabled (0) or
disabled (1) as set by the strapping of A15#. The
value in this bit is written on the deassertion of
RESET#; the bit is set to 1 when the address bus
signal is asserted.

11:8 Reserved.

13:12 Agent ID (R)

Contains the logical agent ID value as set by the
strapping of BR[3:0]. The logical ID value is
written into the field on the deassertion of
RESET#; the field is set to 1 when the address bus
signal is asserted.

63:14 Reserved.

2BH 43 MSR_EBC_SOFT_POWERON 0, 1, 2, 3,
4, 6

Shared Processor Soft Power-On Configuration (R/W)

Enables and disables processor features.

0 RCNT/SCNT On Request Encoding Enable (R/W)

Controls the driving of RCNT/SCNT on the request
encoding. Set to enable (1); clear to disabled (0,
default).

1 Data Error Checking Disable (R/W)

Set to disable system data bus parity checking;
clear to enable parity checking.

2 Response Error Checking Disable (R/W)

Set to disable (default); clear to enable.

3 Address/Request Error Checking Disable (R/W)

Set to disable (default); clear to enable.

4 Initiator MCERR# Disable (R/W)

Set to disable MCERR# driving for initiator bus
requests (default); clear to enable.

5 Internal MCERR# Disable (R/W)

Set to disable MCERR# driving for initiator internal
errors (default); clear to enable.

6 BINIT# Driver Disable (R/W)

Set to disable BINIT# driver (default); clear to
enable driver.

63:7 Reserved.

Table 35-15 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 287

2CH 44 MSR_EBC_FREQUENCY_ID 2,3, 4, 6 Shared Processor Frequency Configuration

The bit field layout of this MSR varies according to
the MODEL value in the CPUID version
information. The following bit field layout applies
to Pentium 4 and Xeon Processors with MODEL
encoding equal or greater than 2.

(R) The field Indicates the current processor
frequency configuration.

15:0 Reserved.

18:16 Scalable Bus Speed (R/W)

Indicates the intended scalable bus speed:

EncodingScalable Bus Speed
000B 100 MHz (Model 2)
000B 266 MHz (Model 3 or 4)
001B 133 MHz
010B 200 MHz
011B 166 MHz
100B 333 MHz (Model 6)

133.33 MHz should be utilized if performing
calculation with System Bus Speed when encoding
is 001B.

166.67 MHz should be utilized if performing
calculation with System Bus Speed when encoding
is 011B.

266.67 MHz should be utilized if performing
calculation with System Bus Speed when encoding
is 000B and model encoding = 3 or 4.

333.33 MHz should be utilized if performing
calculation with System Bus Speed when encoding
is 100B and model encoding = 6.

All other values are reserved.

23:19 Reserved.

31:24 Core Clock Frequency to System Bus
Frequency Ratio (R)

The processor core clock frequency to system bus
frequency ratio observed at the de-assertion of
the reset pin.

63:25 Reserved.

Table 35-15 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 288

2CH 44 MSR_EBC_FREQUENCY_ID 0, 1 Shared Processor Frequency Configuration (R)

The bit field layout of this MSR varies according to
the MODEL value of the CPUID version
information. This bit field layout applies to
Pentium 4 and Xeon Processors with MODEL
encoding less than 2.

Indicates current processor frequency
configuration.

20:0 Reserved.

23:21 Scalable Bus Speed (R/W)

Indicates the intended scalable bus speed:

Encoding Scalable Bus Speed
000B 100 MHz

All others values reserved.

63:24 Reserved.

3AH 58 IA32_FEATURE_CONTROL 3, 4, 6 Unique Control Features in IA-32 Processor (R/W)

See Table 35-2

(If CPUID.01H:ECX.[bit 5])

79H 121 IA32_BIOS_UPDT_TRIG 0, 1, 2, 3,
4, 6

Shared BIOS Update Trigger Register (W)

See Table 35-2.

8BH 139 IA32_BIOS_SIGN_ID 0, 1, 2, 3,
4, 6

Unique BIOS Update Signature ID (R/W)

See Table 35-2.

9BH 155 IA32_SMM_MONITOR_CTL 3, 4, 6 Unique SMM Monitor Configuration (R/W)

See Table 35-2.

FEH 254 IA32_MTRRCAP 0, 1, 2, 3,
4, 6

Unique MTRR Information

See Section 11.11.1, “MTRR Feature
Identification.”.

174H 372 IA32_SYSENTER_CS 0, 1, 2, 3,
4, 6

Unique CS register target for CPL 0 code (R/W)

See Table 35-2.

See Section 5.8.7, “Performing Fast Calls to
System Procedures with the SYSENTER and
SYSEXIT Instructions.”

175H 373 IA32_SYSENTER_ESP 0, 1, 2, 3,
4, 6

Unique Stack pointer for CPL 0 stack (R/W)

See Table 35-2.

See Section 5.8.7, “Performing Fast Calls to
System Procedures with the SYSENTER and
SYSEXIT Instructions.”

Table 35-15 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 289

176H 374 IA32_SYSENTER_EIP 0, 1, 2, 3,
4, 6

Unique CPL 0 code entry point (R/W)

See Table 35-2. See Section 5.8.7, “Performing
Fast Calls to System Procedures with the
SYSENTER and SYSEXIT Instructions.”

179H 377 IA32_MCG_CAP 0, 1, 2, 3,
4, 6

Unique Machine Check Capabilities (R)

See Table 35-2. See Section 15.3.1.1,
“IA32_MCG_CAP MSR.”

17AH 378 IA32_MCG_STATUS 0, 1, 2, 3,
4, 6

Unique Machine Check Status. (R)

See Table 35-2. See Section 15.3.1.2,
“IA32_MCG_STATUS MSR.”

17BH 379 IA32_MCG_CTL Machine Check Feature Enable (R/W)

See Table 35-2.

See Section 15.3.1.3, “IA32_MCG_CTL MSR.”

180H 384 MSR_MCG_RAX 0, 1, 2, 3,
4, 6

Unique Machine Check EAX/RAX Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

181H 385 MSR_MCG_RBX 0, 1, 2, 3,
4, 6

Unique Machine Check EBX/RBX Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

182H 386 MSR_MCG_RCX 0, 1, 2, 3,
4, 6

Unique Machine Check ECX/RCX Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

183H 387 MSR_MCG_RDX 0, 1, 2, 3,
4, 6

Unique Machine Check EDX/RDX Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

184H 388 MSR_MCG_RSI 0, 1, 2, 3,
4, 6

Unique Machine Check ESI/RSI Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

Table 35-15 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 290

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

185H 389 MSR_MCG_RDI 0, 1, 2, 3,
4, 6

Unique Machine Check EDI/RDI Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

186H 390 MSR_MCG_RBP 0, 1, 2, 3,
4, 6

Unique Machine Check EBP/RBP Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

187H 391 MSR_MCG_RSP 0, 1, 2, 3,
4, 6

Unique Machine Check ESP/RSP Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

188H 392 MSR_MCG_RFLAGS 0, 1, 2, 3,
4, 6

Unique Machine Check EFLAGS/RFLAG Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

189H 393 MSR_MCG_RIP 0, 1, 2, 3,
4, 6

Unique Machine Check EIP/RIP Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

18AH 394 MSR_MCG_MISC 0, 1, 2, 3,
4, 6

Unique Machine Check Miscellaneous

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

Table 35-15 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 291

0 DS

When set, the bit indicates that a page assist or
page fault occurred during DS normal operation.
The processors response is to shut down.

The bit is used as an aid for debugging DS
handling code. It is the responsibility of the user
(BIOS or operating system) to clear this bit for
normal operation.

63:1 Reserved.

18BH -
18FH

395 MSR_MCG_RESERVED1 -
MSR_MCG_RESERVED5

Reserved.

190H 400 MSR_MCG_R8 0, 1, 2, 3,
4, 6

Unique Machine Check R8

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63-0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when the
processor is operating in 64-bit mode at the time
of the error.

191H 401 MSR_MCG_R9 0, 1, 2, 3,
4, 6

Unique Machine Check R9D/R9

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63-0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when the
processor is operating in 64-bit mode at the time
of the error.

192H 402 MSR_MCG_R10 0, 1, 2, 3,
4, 6

Unique Machine Check R10

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63-0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when the
processor is operating in 64-bit mode at the time
of the error.

193H 403 MSR_MCG_R11 0, 1, 2, 3,
4, 6

Unique Machine Check R11

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63-0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when the
processor is operating in 64-bit mode at the time
of the error.

Table 35-15 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 292

194H 404 MSR_MCG_R12 0, 1, 2, 3,
4, 6

Unique Machine Check R12

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63-0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when the
processor is operating in 64-bit mode at the time
of the error.

195H 405 MSR_MCG_R13 0, 1, 2, 3,
4, 6

Unique Machine Check R13

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63-0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when the
processor is operating in 64-bit mode at the time
of the error.

196H 406 MSR_MCG_R14 0, 1, 2, 3,
4, 6

Unique Machine Check R14

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63-0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when the
processor is operating in 64-bit mode at the time
of the error.

197H 407 MSR_MCG_R15 0, 1, 2, 3,
4, 6

Unique Machine Check R15

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63-0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when the
processor is operating in 64-bit mode at the time
of the error.

198H 408 IA32_PERF_STATUS 3, 4, 6 Unique See Table 35-2. See Section 14.1, “Enhanced Intel
Speedstep® Technology.”

199H 409 IA32_PERF_CTL 3, 4, 6 Unique See Table 35-2. See Section 14.1, “Enhanced Intel
Speedstep® Technology.”

19AH 410 IA32_CLOCK_MODULATION 0, 1, 2, 3,
4, 6

Unique Thermal Monitor Control (R/W)

See Table 35-2.

See Section 14.5.3, “Software Controlled Clock
Modulation.”

Table 35-15 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 293

19BH 411 IA32_THERM_INTERRUPT 0, 1, 2, 3,
4, 6

Unique Thermal Interrupt Control (R/W)

See Section 14.5.2, “Thermal Monitor,” and see
Table 35-2.

19CH 412 IA32_THERM_STATUS 0, 1, 2, 3,
4, 6

Shared Thermal Monitor Status (R/W)

See Section 14.5.2, “Thermal Monitor,” and see
Table 35-2.

19DH 413 MSR_THERM2_CTL Thermal Monitor 2 Control.

3, Shared For Family F, Model 3 processors: When read,
specifies the value of the target TM2 transition
last written. When set, it sets the next target
value for TM2 transition.

4, 6 Shared For Family F, Model 4 and Model 6 processors:
When read, specifies the value of the target TM2
transition last written. Writes may cause #GP
exceptions.

1A0H 416 IA32_MISC_ENABLE 0, 1, 2, 3,
4, 6

Shared Enable Miscellaneous Processor Features (R/W)

0 Fast-Strings Enable. See Table 35-2.

1 Reserved.

2 x87 FPU Fopcode Compatibility Mode Enable

3 Thermal Monitor 1 Enable

See Section 14.5.2, “Thermal Monitor,” and see
Table 35-2.

4 Split-Lock Disable

When set, the bit causes an #AC exception to be
issued instead of a split-lock cycle. Operating
systems that set this bit must align system
structures to avoid split-lock scenarios.

When the bit is clear (default), normal split-locks
are issued to the bus.

This debug feature is specific to the Pentium 4
processor.

5 Reserved.

6 Third-Level Cache Disable (R/W)

When set, the third-level cache is disabled; when
clear (default) the third-level cache is enabled.
This flag is reserved for processors that do not
have a third-level cache.

Table 35-15 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 294

Note that the bit controls only the third-level
cache; and only if overall caching is enabled
through the CD flag of control register CR0, the
page-level cache controls, and/or the MTRRs.

See Section 11.5.4, “Disabling and Enabling the L3
Cache.”

7 Performance Monitoring Available (R)

See Table 35-2.

8 Suppress Lock Enable

When set, assertion of LOCK on the bus is
suppressed during a Split Lock access. When clear
(default), LOCK is not suppressed.

9 Prefetch Queue Disable

When set, disables the prefetch queue. When clear
(default), enables the prefetch queue.

10 FERR# Interrupt Reporting Enable (R/W)

When set, interrupt reporting through the FERR#
pin is enabled; when clear, this interrupt reporting
function is disabled.

When this flag is set and the processor is in the
stop-clock state (STPCLK# is asserted), asserting
the FERR# pin signals to the processor that an
interrupt (such as, INIT#, BINIT#, INTR, NMI, SMI#,
or RESET#) is pending and that the processor
should return to normal operation to handle the
interrupt.

This flag does not affect the normal operation of
the FERR# pin (to indicate an unmasked floating-
point error) when the STPCLK# pin is not
asserted.

11 Branch Trace Storage Unavailable
(BTS_UNAVILABLE) (R)

See Table 35-2.

When set, the processor does not support branch
trace storage (BTS); when clear, BTS is supported.

12 PEBS_UNAVILABLE: Precise Event Based
Sampling Unavailable (R)

See Table 35-2.

When set, the processor does not support precise
event-based sampling (PEBS); when clear, PEBS is
supported.

Table 35-15 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 295

13 3 TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor
indicates that the die temperature is at the pre-
determined threshold, the Thermal Monitor 2
mechanism is engaged. TM2 will reduce the bus to
core ratio and voltage according to the value last
written to MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the processor
does not change the VID signals or the bus to core
ratio when the processor enters a thermal
managed state.

If the TM2 feature flag (ECX[8]) is not set to 1
after executing CPUID with EAX = 1, then this
feature is not supported and BIOS must not alter
the contents of this bit location. The processor is
operating out of spec if both this bit and the TM1
bit are set to disabled states.

17:14 Reserved.

18 3, 4, 6 ENABLE MONITOR FSM (R/W)

See Table 35-2.

19 Adjacent Cache Line Prefetch Disable (R/W)

When set to 1, the processor fetches the cache
line of the 128-byte sector containing currently
required data. When set to 0, the processor
fetches both cache lines in the sector.

Single processor platforms should not set this bit.
Server platforms should set or clear this bit based
on platform performance observed in validation
and testing.

BIOS may contain a setup option that controls the
setting of this bit.

21:20 Reserved.

22 3, 4, 6 Limit CPUID MAXVAL (R/W)

See Table 35-2.

Setting this can cause unexpected behavior to
software that depends on the availability of CPUID
leaves greater than 3.

23 Shared xTPR Message Disable (R/W)

See Table 35-2.

Table 35-15 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 296

24 L1 Data Cache Context Mode (R/W)

When set, the L1 data cache is placed in shared
mode; when clear (default), the cache is placed in
adaptive mode. This bit is only enabled for IA-32
processors that support Intel Hyper-Threading
Technology. See Section 11.5.6, “L1 Data Cache
Context Mode.”

When L1 is running in adaptive mode and CR3s
are identical, data in L1 is shared across logical
processors. Otherwise, L1 is not shared and cache
use is competitive.

If the Context ID feature flag (ECX[10]) is set to 0
after executing CPUID with EAX = 1, the ability to
switch modes is not supported. BIOS must not
alter the contents of IA32_MISC_ENABLE[24].

33:25 Reserved.

34 Unique XD Bit Disable (R/W)

See Table 35-2.

63:35 Reserved.

1A1H 417 MSR_PLATFORM_BRV 3, 4, 6 Shared Platform Feature Requirements (R)

17:0 Reserved.

18 PLATFORM Requirements

When set to 1, indicates the processor has specific
platform requirements. The details of the platform
requirements are listed in the respective data
sheets of the processor.

63:19 Reserved.

1D7H 471 MSR_LER_FROM_LIP 0, 1, 2, 3,
4, 6

Unique Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction
that the processor executed prior to the last
exception that was generated or the last interrupt
that was handled.

See Section 17.9.3, “Last Exception Records.”

31:0 From Linear IP

Linear address of the last branch instruction.

63:32 Reserved.

1D7H 471 63:0 Unique From Linear IP

Linear address of the last branch instruction (If IA-
32e mode is active).

Table 35-15 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 297

1D8H 472 MSR_LER_TO_LIP 0, 1, 2, 3,
4, 6

Unique Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the
last branch instruction that the processor
executed prior to the last exception that was
generated or the last interrupt that was handled.

See Section 17.9.3, “Last Exception Records.”

31:0 From Linear IP

Linear address of the target of the last branch
instruction.

63:32 Reserved.

1D8H 472 63:0 Unique From Linear IP

Linear address of the target of the last branch
instruction (If IA-32e mode is active).

1D9H 473 MSR_DEBUGCTLA 0, 1, 2, 3,
4, 6

Unique Debug Control (R/W)

Controls how several debug features are used. Bit
definitions are discussed in the referenced
section.

See Section 17.9.1, “MSR_DEBUGCTLA MSR.”

1DAH 474 MSR_LASTBRANCH
_TOS

0, 1, 2, 3,
4, 6

Unique Last Branch Record Stack TOS (R)

Contains an index (0-3 or 0-15) that points to the
top of the last branch record stack (that is, that
points the index of the MSR containing the most
recent branch record).

See Section 17.9.2, “LBR Stack for Processors
Based on Intel NetBurst® Microarchitecture”; and
addresses 1DBH-1DEH and 680H-68FH.

1DBH 475 MSR_LASTBRANCH_0 0, 1, 2 Unique Last Branch Record 0 (R/W)

One of four last branch record registers on the last
branch record stack. It contains pointers to the
source and destination instruction for one of the
last four branches, exceptions, or interrupts that
the processor took.

MSR_LASTBRANCH_0 through
MSR_LASTBRANCH_3 at 1DBH-1DEH are
available only on family 0FH, models 0H-02H.
They have been replaced by the MSRs at 680H-
68FH and 6C0H-6CFH.

See Section 17.9, “Last Branch, Interrupt, and
Exception Recording (Processors based on Intel
NetBurst® Microarchitecture).”

Table 35-15 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 298

1DDH 477 MSR_LASTBRANCH_2 0, 1, 2 Unique Last Branch Record 2

See description of the MSR_LASTBRANCH_0 MSR
at 1DBH.

1DEH 478 MSR_LASTBRANCH_3 0, 1, 2 Unique Last Branch Record 3

See description of the MSR_LASTBRANCH_0 MSR
at 1DBH.

200H 512 IA32_MTRR_PHYSBASE0 0, 1, 2, 3,
4, 6

Shared Variable Range Base MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

201H 513 IA32_MTRR_PHYSMASK0 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

202H 514 IA32_MTRR_PHYSBASE1 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

203H 515 IA32_MTRR_PHYSMASK1 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

204H 516 IA32_MTRR_PHYSBASE2 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

205H 517 IA32_MTRR_PHYSMASK2 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs”.

206H 518 IA32_MTRR_PHYSBASE3 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

207H 519 IA32_MTRR_PHYSMASK3 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

208H 520 IA32_MTRR_PHYSBASE4 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

209H 521 IA32_MTRR_PHYSMASK4 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20AH 522 IA32_MTRR_PHYSBASE5 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20BH 523 IA32_MTRR_PHYSMASK5 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20CH 524 IA32_MTRR_PHYSBASE6 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20DH 525 IA32_MTRR_PHYSMASK6 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20EH 526 IA32_MTRR_PHYSBASE7 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

Table 35-15 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 299

20FH 527 IA32_MTRR_PHYSMASK7 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

250H 592 IA32_MTRR_FIX64K_00000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

258H 600 IA32_MTRR_FIX16K_80000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

259H 601 IA32_MTRR_FIX16K_A0000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

268H 616 IA32_MTRR_FIX4K_C0000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

269H 617 IA32_MTRR_FIX4K_C8000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs”.

26AH 618 IA32_MTRR_FIX4K_D0000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs”.

26BH 619 IA32_MTRR_FIX4K_D8000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

26CH 620 IA32_MTRR_FIX4K_E0000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

26DH 621 IA32_MTRR_FIX4K_E8000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

26EH 622 IA32_MTRR_FIX4K_F0000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

26FH 623 IA32_MTRR_FIX4K_F8000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

277H 631 IA32_PAT 0, 1, 2, 3,
4, 6

Unique Page Attribute Table

See Section 11.11.2.2, “Fixed Range MTRRs.”

2FFH 767 IA32_MTRR_DEF_TYPE 0, 1, 2, 3,
4, 6

Shared Default Memory Types (R/W)

See Table 35-2.

See Section 11.11.2.1, “IA32_MTRR_DEF_TYPE
MSR.”

300H 768 MSR_BPU_COUNTER0 0, 1, 2, 3,
4, 6

Shared See Section 18.11.2, “Performance Counters.”

301H 769 MSR_BPU_COUNTER1 0, 1, 2, 3,
4, 6

Shared See Section 18.11.2, “Performance Counters.”

302H 770 MSR_BPU_COUNTER2 0, 1, 2, 3,
4, 6

Shared See Section 18.11.2, “Performance Counters.”

Table 35-15 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 300

303H 771 MSR_BPU_COUNTER3 0, 1, 2, 3,
4, 6

Shared See Section 18.11.2, “Performance Counters.”

304H 772 MSR_MS_COUNTER0 0, 1, 2, 3,
4, 6

Shared See Section 18.11.2, “Performance Counters.”

305H 773 MSR_MS_COUNTER1 0, 1, 2, 3,
4, 6

Shared See Section 18.11.2, “Performance Counters.”

306H 774 MSR_MS_COUNTER2 0, 1, 2, 3,
4, 6

Shared See Section 18.11.2, “Performance Counters.”

307H 775 MSR_MS_COUNTER3 0, 1, 2, 3,
4, 6

Shared See Section 18.11.2, “Performance Counters.”

308H 776 MSR_FLAME_COUNTER0 0, 1, 2, 3,
4, 6

Shared See Section 18.11.2, “Performance Counters.”

309H 777 MSR_FLAME_COUNTER1 0, 1, 2, 3,
4, 6

Shared See Section 18.11.2, “Performance Counters.”

30AH 778 MSR_FLAME_COUNTER2 0, 1, 2, 3,
4, 6

Shared See Section 18.11.2, “Performance Counters.”

30BH 779 MSR_FLAME_COUNTER3 0, 1, 2, 3,
4, 6

Shared See Section 18.11.2, “Performance Counters.”

3OCH 780 MSR_IQ_COUNTER0 0, 1, 2, 3,
4, 6

Shared See Section 18.11.2, “Performance Counters.”

3ODH 781 MSR_IQ_COUNTER1 0, 1, 2, 3,
4, 6

Shared See Section 18.11.2, “Performance Counters.”

3OEH 782 MSR_IQ_COUNTER2 0, 1, 2, 3,
4, 6

Shared See Section 18.11.2, “Performance Counters.”

3OFH 783 MSR_IQ_COUNTER3 0, 1, 2, 3,
4, 6

Shared See Section 18.11.2, “Performance Counters.”

310H 784 MSR_IQ_COUNTER4 0, 1, 2, 3,
4, 6

Shared See Section 18.11.2, “Performance Counters.”

311H 785 MSR_IQ_COUNTER5 0, 1, 2, 3,
4, 6

Shared See Section 18.11.2, “Performance Counters.”

360H 864 MSR_BPU_CCCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.11.3, “CCCR MSRs.”

361H 865 MSR_BPU_CCCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.11.3, “CCCR MSRs.”

362H 866 MSR_BPU_CCCR2 0, 1, 2, 3,
4, 6

Shared See Section 18.11.3, “CCCR MSRs.”

363H 867 MSR_BPU_CCCR3 0, 1, 2, 3,
4, 6

Shared See Section 18.11.3, “CCCR MSRs.”

364H 868 MSR_MS_CCCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.11.3, “CCCR MSRs.”

Table 35-15 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 301

365H 869 MSR_MS_CCCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.11.3, “CCCR MSRs.”

366H 870 MSR_MS_CCCR2 0, 1, 2, 3,
4, 6

Shared See Section 18.11.3, “CCCR MSRs.”

367H 871 MSR_MS_CCCR3 0, 1, 2, 3,
4, 6

Shared See Section 18.11.3, “CCCR MSRs.”

368H 872 MSR_FLAME_CCCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.11.3, “CCCR MSRs.”

369H 873 MSR_FLAME_CCCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.11.3, “CCCR MSRs.”

36AH 874 MSR_FLAME_CCCR2 0, 1, 2, 3,
4, 6

Shared See Section 18.11.3, “CCCR MSRs.”

36BH 875 MSR_FLAME_CCCR3 0, 1, 2, 3,
4, 6

Shared See Section 18.11.3, “CCCR MSRs.”

36CH 876 MSR_IQ_CCCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.11.3, “CCCR MSRs.”

36DH 877 MSR_IQ_CCCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.11.3, “CCCR MSRs.”

36EH 878 MSR_IQ_CCCR2 0, 1, 2, 3,
4, 6

Shared See Section 18.11.3, “CCCR MSRs.”

36FH 879 MSR_IQ_CCCR3 0, 1, 2, 3,
4, 6

Shared See Section 18.11.3, “CCCR MSRs.”

370H 880 MSR_IQ_CCCR4 0, 1, 2, 3,
4, 6

Shared See Section 18.11.3, “CCCR MSRs.”

371H 881 MSR_IQ_CCCR5 0, 1, 2, 3,
4, 6

Shared See Section 18.11.3, “CCCR MSRs.”

3A0H 928 MSR_BSU_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3A1H 929 MSR_BSU_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3A2H 930 MSR_FSB_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3A3H 931 MSR_FSB_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3A4H 932 MSR_FIRM_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3A5H 933 MSR_FIRM_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3A6H 934 MSR_FLAME_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

Table 35-15 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 302

3A7H 935 MSR_FLAME_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3A8H 936 MSR_DAC_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3A9H 937 MSR_DAC_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3AAH 938 MSR_MOB_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3ABH 939 MSR_MOB_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3ACH 940 MSR_PMH_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3ADH 941 MSR_PMH_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3AEH 942 MSR_SAAT_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3AFH 943 MSR_SAAT_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3B0H 944 MSR_U2L_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3B1H 945 MSR_U2L_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3B2H 946 MSR_BPU_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3B3H 947 MSR_BPU_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3B4H 948 MSR_IS_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3B5H 949 MSR_IS_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3B6H 950 MSR_ITLB_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3B7H 951 MSR_ITLB_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3B8H 952 MSR_CRU_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3B9H 953 MSR_CRU_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

Table 35-15 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 303

3BAH 954 MSR_IQ_ESCR0 0, 1, 2 Shared See Section 18.11.1, “ESCR MSRs.”

This MSR is not available on later processors. It is
only available on processor family 0FH, models
01H-02H.

3BBH 955 MSR_IQ_ESCR1 0, 1, 2 Shared See Section 18.11.1, “ESCR MSRs.”

This MSR is not available on later processors. It is
only available on processor family 0FH, models
01H-02H.

3BCH 956 MSR_RAT_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3BDH 957 MSR_RAT_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3BEH 958 MSR_SSU_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3C0H 960 MSR_MS_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3C1H 961 MSR_MS_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3C2H 962 MSR_TBPU_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3C3H 963 MSR_TBPU_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3C4H 964 MSR_TC_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3C5H 965 MSR_TC_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3C8H 968 MSR_IX_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3C9H 969 MSR_IX_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3CAH 970 MSR_ALF_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3CBH 971 MSR_ALF_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3CCH 972 MSR_CRU_ESCR2 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3CDH 973 MSR_CRU_ESCR3 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3E0H 992 MSR_CRU_ESCR4 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

Table 35-15 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 304

3E1H 993 MSR_CRU_ESCR5 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3FOH 1008 MSR_TC_PRECISE_EVENT 0, 1, 2, 3,
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3F1H 1009 MSR_PEBS_ENABLE 0, 1, 2, 3,
4, 6

Shared Precise Event-Based Sampling (PEBS) (R/W)

Controls the enabling of precise event sampling
and replay tagging.

12:0 See Table 19-24.

23:13 Reserved.

24 UOP Tag

Enables replay tagging when set.

25 ENABLE_PEBS_MY_THR (R/W)

Enables PEBS for the target logical processor
when set; disables PEBS when clear (default).

See Section 18.12.3, “IA32_PEBS_ENABLE MSR,”
for an explanation of the target logical processor.

This bit is called ENABLE_PEBS in IA-32
processors that do not support Intel Hyper-
Threading Technology.

26 ENABLE_PEBS_OTH_THR (R/W)

Enables PEBS for the target logical processor
when set; disables PEBS when clear (default).

See Section 18.12.3, “IA32_PEBS_ENABLE MSR,”
for an explanation of the target logical processor.

This bit is reserved for IA-32 processors that do
not support Intel Hyper-Threading Technology.

63:27 Reserved.

3F2H 1010 MSR_PEBS_MATRIX_VERT 0, 1, 2, 3,
4, 6

Shared See Table 19-24.

400H 1024 IA32_MC0_CTL 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the IA32_MC0_STATUS register is clear.

When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

Table 35-15 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 305

403H 1027 IA32_MC0_MISC 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC0_MISC MSR is either not
implemented or does not contain additional
information if the MISCV flag in the
IA32_MC0_STATUS register is clear.

When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

404H 1028 IA32_MC1_CTL 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the IA32_MC1_STATUS register is clear.

When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

407H 1031 IA32_MC1_MISC Shared See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC1_MISC MSR is either not
implemented or does not contain additional
information if the MISCV flag in the
IA32_MC1_STATUS register is clear.

When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

408H 1032 IA32_MC2_CTL 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the IA32_MC2_STATUS register is clear.
When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

Table 35-15 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 306

40BH 1035 IA32_MC2_MISC See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC2_MISC MSR is either not
implemented or does not contain additional
information if the MISCV flag in the
IA32_MC2_STATUS register is clear.

When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

40CH 1036 IA32_MC3_CTL 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 IA32_MC3_ADDR 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC3_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the IA32_MC3_STATUS register is clear.

When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

40FH 1039 IA32_MC3_MISC 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC3_MISC MSR is either not
implemented or does not contain additional
information if the MISCV flag in the
IA32_MC3_STATUS register is clear.

When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

410H 1040 IA32_MC4_CTL 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC4_STATUS 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 IA32_MC4_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the IA32_MC4_STATUS register is clear.

When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

413H 1043 IA32_MC4_MISC See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC2_MISC MSR is either not
implemented or does not contain additional
information if the MISCV flag in the
IA32_MC4_STATUS register is clear.

Table 35-15 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 307

When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

480H 1152 IA32_VMX_BASIC 3, 4, 6 Unique Reporting Register of Basic VMX Capabilities
(R/O)

See Table 35-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_CTLS 3, 4, 6 Unique Capability Reporting Register of Pin-based
VM-execution Controls (R/O)

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_CTLS 3, 4, 6 Unique Capability Reporting Register of Primary
Processor-based VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls,” and
see Table 35-2.

483H 1155 IA32_VMX_EXIT_CTLS 3, 4, 6 Unique Capability Reporting Register of VM-exit
Controls (R/O)

See Appendix A.4, “VM-Exit Controls,” and see
Table 35-2.

484H 1156 IA32_VMX_ENTRY_CTLS 3, 4, 6 Unique Capability Reporting Register of VM-entry
Controls (R/O)

See Appendix A.5, “VM-Entry Controls,” and see
Table 35-2.

485H 1157 IA32_VMX_MISC 3, 4, 6 Unique Reporting Register of Miscellaneous VMX
Capabilities (R/O)

See Appendix A.6, “Miscellaneous Data,” and see
Table 35-2.

486H 1158 IA32_VMX_CR0_FIXED0 3, 4, 6 Unique Capability Reporting Register of CR0 Bits Fixed
to 0 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0,” and
see Table 35-2.

487H 1159 IA32_VMX_CR0_FIXED1 3, 4, 6 Unique Capability Reporting Register of CR0 Bits Fixed
to 1 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0,” and
see Table 35-2.

488H 1160 IA32_VMX_CR4_FIXED0 3, 4, 6 Unique Capability Reporting Register of CR4 Bits Fixed
to 0 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4,” and
see Table 35-2.

Table 35-15 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 308

489H 1161 IA32_VMX_CR4_FIXED1 3, 4, 6 Unique Capability Reporting Register of CR4 Bits Fixed
to 1 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4,” and
see Table 35-2.

48AH 1162 IA32_VMX_VMCS_ENUM 3, 4, 6 Unique Capability Reporting Register of VMCS Field
Enumeration (R/O)

See Appendix A.9, “VMCS Enumeration,” and see
Table 35-2.

48BH 1163 IA32_VMX_PROCBASED_CTLS2 3, 4, 6 Unique Capability Reporting Register of Secondary
Processor-based VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls,” and
see Table 35-2.

600H 1536 IA32_DS_AREA 0, 1, 2, 3,
4, 6

Unique DS Save Area (R/W)

See Table 35-2.

See Section 18.11.4, “Debug Store (DS)
Mechanism.”

680H 1664 MSR_LASTBRANCH_0_FROM_IP 3, 4, 6 Unique Last Branch Record 0 (R/W)

One of 16 pairs of last branch record registers on
the last branch record stack (680H-68FH). This
part of the stack contains pointers to the source
instruction for one of the last 16 branches,
exceptions, or interrupts taken by the processor.

The MSRs at 680H-68FH, 6C0H-6CfH are not
available in processor releases before family 0FH,
model 03H. These MSRs replace MSRs previously
located at 1DBH-1DEH.which performed the same
function for early releases.

See Section 17.9, “Last Branch, Interrupt, and
Exception Recording (Processors based on Intel
NetBurst® Microarchitecture).”

681H 1665 MSR_LASTBRANCH_1_FROM_IP 3, 4, 6 Unique Last Branch Record 1

See description of MSR_LASTBRANCH_0 at 680H.

682H 1666 MSR_LASTBRANCH_2_FROM_IP 3, 4, 6 Unique Last Branch Record 2

See description of MSR_LASTBRANCH_0 at 680H.

683H 1667 MSR_LASTBRANCH_3_FROM_IP 3, 4, 6 Unique Last Branch Record 3

See description of MSR_LASTBRANCH_0 at 680H.

684H 1668 MSR_LASTBRANCH_4_FROM_IP 3, 4, 6 Unique Last Branch Record 4

See description of MSR_LASTBRANCH_0 at 680H.

685H 1669 MSR_LASTBRANCH_5_FROM_IP 3, 4, 6 Unique Last Branch Record 5

See description of MSR_LASTBRANCH_0 at 680H.

Table 35-15 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 309

686H 1670 MSR_LASTBRANCH_6_FROM_IP 3, 4, 6 Unique Last Branch Record 6

See description of MSR_LASTBRANCH_0 at 680H.

687H 1671 MSR_LASTBRANCH_7_FROM_IP 3, 4, 6 Unique Last Branch Record 7

See description of MSR_LASTBRANCH_0 at 680H.

688H 1672 MSR_LASTBRANCH_8_FROM_IP 3, 4, 6 Unique Last Branch Record 8

See description of MSR_LASTBRANCH_0 at 680H.

689H 1673 MSR_LASTBRANCH_9_FROM_IP 3, 4, 6 Unique Last Branch Record 9

See description of MSR_LASTBRANCH_0 at 680H.

68AH 1674 MSR_LASTBRANCH_10_FROM_IP 3, 4, 6 Unique Last Branch Record 10

See description of MSR_LASTBRANCH_0 at 680H.

68BH 1675 MSR_LASTBRANCH_11_FROM_IP 3, 4, 6 Unique Last Branch Record 11

See description of MSR_LASTBRANCH_0 at 680H.

68CH 1676 MSR_LASTBRANCH_12_FROM_IP 3, 4, 6 Unique Last Branch Record 12

See description of MSR_LASTBRANCH_0 at 680H.

68DH 1677 MSR_LASTBRANCH_13_FROM_IP 3, 4, 6 Unique Last Branch Record 13

See description of MSR_LASTBRANCH_0 at 680H.

68EH 1678 MSR_LASTBRANCH_14_FROM_IP 3, 4, 6 Unique Last Branch Record 14

See description of MSR_LASTBRANCH_0 at 680H.

68FH 1679 MSR_LASTBRANCH_15_FROM_IP 3, 4, 6 Unique Last Branch Record 15

See description of MSR_LASTBRANCH_0 at 680H.

6C0H 1728 MSR_LASTBRANCH_0_TO_IP 3, 4, 6 Unique Last Branch Record 0 (R/W)

One of 16 pairs of last branch record registers on
the last branch record stack (6C0H-6CFH). This
part of the stack contains pointers to the
destination instruction for one of the last 16
branches, exceptions, or interrupts that the
processor took.

See Section 17.9, “Last Branch, Interrupt, and
Exception Recording (Processors based on Intel
NetBurst® Microarchitecture).”

6C1H 1729 MSR_LASTBRANCH_1_TO_IP 3, 4, 6 Unique Last Branch Record 1

See description of MSR_LASTBRANCH_0 at 6C0H.

6C2H 1730 MSR_LASTBRANCH_2_TO_IP 3, 4, 6 Unique Last Branch Record 2

See description of MSR_LASTBRANCH_0 at 6C0H.

6C3H 1731 MSR_LASTBRANCH_3_TO_IP 3, 4, 6 Unique Last Branch Record 3

See description of MSR_LASTBRANCH_0 at 6C0H.

6C4H 1732 MSR_LASTBRANCH_4_TO_IP 3, 4, 6 Unique Last Branch Record 4

See description of MSR_LASTBRANCH_0 at 6C0H.

Table 35-15 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 310

6C5H 1733 MSR_LASTBRANCH_5_TO_IP 3, 4, 6 Unique Last Branch Record 5

See description of MSR_LASTBRANCH_0 at 6C0H.

6C6H 1734 MSR_LASTBRANCH_6_TO_IP 3, 4, 6 Unique Last Branch Record 6

See description of MSR_LASTBRANCH_0 at 6C0H.

6C7H 1735 MSR_LASTBRANCH_7_TO_IP 3, 4, 6 Unique Last Branch Record 7

See description of MSR_LASTBRANCH_0 at 6C0H.

6C8H 1736 MSR_LASTBRANCH_8_TO_IP 3, 4, 6 Unique Last Branch Record 8

See description of MSR_LASTBRANCH_0 at 6C0H.

6C9H 1737 MSR_LASTBRANCH_9_TO_IP 3, 4, 6 Unique Last Branch Record 9

See description of MSR_LASTBRANCH_0 at 6C0H.

6CAH 1738 MSR_LASTBRANCH_10_TO_IP 3, 4, 6 Unique Last Branch Record 10

See description of MSR_LASTBRANCH_0 at 6C0H.

6CBH 1739 MSR_LASTBRANCH_11_TO_IP 3, 4, 6 Unique Last Branch Record 11

See description of MSR_LASTBRANCH_0 at 6C0H.

6CCH 1740 MSR_LASTBRANCH_12_TO_IP 3, 4, 6 Unique Last Branch Record 12

See description of MSR_LASTBRANCH_0 at 6C0H.

6CDH 1741 MSR_LASTBRANCH_13_TO_IP 3, 4, 6 Unique Last Branch Record 13

See description of MSR_LASTBRANCH_0 at 6C0H.

6CEH 1742 MSR_LASTBRANCH_14_TO_IP 3, 4, 6 Unique Last Branch Record 14

See description of MSR_LASTBRANCH_0 at 6C0H.

6CFH 1743 MSR_LASTBRANCH_15_TO_IP 3, 4, 6 Unique Last Branch Record 15

See description of MSR_LASTBRANCH_0 at 6C0H.

C000_
0080H

IA32_EFER 3, 4, 6 Unique Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR 3, 4, 6 Unique System Call Target Address (R/W)

See Table 35-2.

C000_
0082H

IA32_LSTAR 3, 4, 6 Unique IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

C000_
0084H

IA32_FMASK 3, 4, 6 Unique System Call Flag Mask (R/W)

See Table 35-2.

C000_
0100H

IA32_FS_BASE 3, 4, 6 Unique Map of BASE Address of FS (R/W)

See Table 35-2.

C000_
0101H

IA32_GS_BASE 3, 4, 6 Unique Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE 3, 4, 6 Unique Swap Target of BASE Address of GS (R/W)

See Table 35-2.

Table 35-15 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 311

...

27.Updates to Appendix B, Volume 3C
Change bars show changes to Appendix B of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

...

B.1.1 16-Bit Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are distinguished by their index
value in bits 9:1. Table B-1 enumerates the 16-bit control fields.

B.1.2 16-Bit Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area. These fields are distinguished by
their index value in bits 9:1. Table B-2 enumerates 16-bit guest-state fields.

NOTES
1. For HT-enabled processors, there may be more than one logical processors per physical unit. If an MSR is Shared, this means that

one MSR is shared between logical processors. If an MSR is unique, this means that each logical processor has its own MSR.

Table 35-15 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Table B-1 Encoding for 16-Bit Control Fields (0000_00xx_xxxx_xxx0B)
Field Name Index Encoding

Virtual-processor identifier (VPID)1 000000000B 00000000H

Posted-interrupt notification vector2 000000001B 00000002H
NOTES:

1. This field exists only on processors that support the 1-setting of the “enable VPID” VM-execution control.
2. This field exists only on processors that support the 1-setting of the “process posted interrupts” VM-execution control.

Table B-2 Encodings for 16-Bit Guest-State Fields (0000_10xx_xxxx_xxx0B)
Field Name Index Encoding

Guest ES selector 000000000B 00000800H

Guest CS selector 000000001B 00000802H

Guest SS selector 000000010B 00000804H

Guest DS selector 000000011B 00000806H

Guest FS selector 000000100B 00000808H

Guest GS selector 000000101B 0000080AH

Guest LDTR selector 000000110B 0000080CH

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 312

...

B.2.1 64-Bit Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are distinguished by their index
value in bits 9:1. Table B-4 enumerates the 64-bit control fields.

Guest TR selector 000000111B 0000080EH

Guest interrupt status1 000001000B 00000810H
NOTES:

1. This field exists only on processors that support the 1-setting of the “virtual-interrupt delivery” VM-execution control.

Table B-2 Encodings for 16-Bit Guest-State Fields (0000_10xx_xxxx_xxx0B) (Contd.)
Field Name Index Encoding

Table B-4 Encodings for 64-Bit Control Fields (0010_00xx_xxxx_xxxAb)
Field Name Index Encoding

Address of I/O bitmap A (full)
000000000B

00002000H

Address of I/O bitmap A (high) 00002001H

Address of I/O bitmap B (full)
000000001B

00002002H

Address of I/O bitmap B (high) 00002003H

Address of MSR bitmaps (full)1
000000010B

00002004H

Address of MSR bitmaps (high)1 00002005H

VM-exit MSR-store address (full)
000000011B

00002006H

VM-exit MSR-store address (high) 00002007H

VM-exit MSR-load address (full)
000000100B

00002008H

VM-exit MSR-load address (high) 00002009H

VM-entry MSR-load address (full)
000000101B

0000200AH

VM-entry MSR-load address (high) 0000200BH

Executive-VMCS pointer (full)
000000110B

0000200CH

Executive-VMCS pointer (high) 0000200DH

TSC offset (full)
000001000B

00002010H

TSC offset (high) 00002011H

Virtual-APIC address (full)2
000001001B

00002012H

Virtual-APIC address (high)2 00002013H

APIC-access address (full)3
000001010B

00002014H

APIC-access address (high)3 00002015H

Posted-interrupt descriptor address (full)4
000001011B

00002016H

Posted-interrupt descriptor address (high)4 00002017H

VM-function controls (full)5
000001100B

00002018H

VM-function controls (high)5 00002019H

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 313

B.2.2 64-Bit Read-Only Data Field
A value of 1 in bits 11:10 of an encoding indicates a read-only data field. These fields are distinguished by their
index value in bits 9:1. There is only one such 64-bit field as given in Table B-5.(As with other 64-bit fields, this
one has two encodings.)

EPT pointer (EPTP; full)6
000001101B

0000201AH

EPT pointer (EPTP; high)6 0000201BH

EOI-exit bitmap 0 (EOI_EXIT0; full)7
000001110B

0000201CH

EOI-exit bitmap 0 (EOI_EXIT0; high)7 0000201DH

EOI-exit bitmap 1 (EOI_EXIT1; full)7
000001111B

0000201EH

EOI-exit bitmap 1 (EOI_EXIT1; high)7 0000201FH

EOI-exit bitmap 2 (EOI_EXIT2; full)7
000010000B

00002020H

EOI-exit bitmap 2 (EOI_EXIT2; high)7 00002021H

EOI-exit bitmap 3 (EOI_EXIT3; full)7
000010001B

00002022H

EOI-exit bitmap 3 (EOI_EXIT3; high)7 00002023H

EPTP-list address (full)8
000010010B

00002024H

EPTP-list address (high)8 00002025H
NOTES:

1. This field exists only on processors that support the 1-setting of the “use MSR bitmaps”
VM-execution control.

2. This field exists only on processors that support either the 1-setting of the “use TPR shadow” VM-execution control.
3. This field exists only on processors that support the 1-setting of the “virtualize APIC accesses” VM-execution control.
4. This field exists only on processors that support the 1-setting of the “process posted interrupts” VM-execution control.
5. This field exists only on processors that support the 1-setting of the “enable VM functions” VM-execution control.
6. This field exists only on processors that support the 1-setting of the “enable EPT” VM-execution control.
7. This field exists only on processors that support the 1-setting of the “virtual-interrupt delivery” VM-execution control.
8. This field exists only on processors that support the 1-setting of the “EPTP switching” VM-function control.

Table B-4 Encodings for 64-Bit Control Fields (0010_00xx_xxxx_xxxAb) (Contd.)
Field Name Index Encoding

Table B-5 Encodings for 64-Bit Read-Only Data Field (0010_01xx_xxxx_xxxAb)
Field Name Index Encoding

Guest-physical address (full)1
000000000B

00002400H

Guest-physical address (high)1 00002401H
NOTES:

1. This field exists only on processors that support the 1-setting of the "enable EPT” VM-execution control.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 314

B.2.3 64-Bit Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area. These fields are distinguished by
their index value in bits 9:1. Table B-6 enumerates the 64-bit guest-state fields.

B.2.4 64-Bit Host-State Fields
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area. These fields are distinguished by
their index value in bits 9:1. Table B-7 enumerates the 64-bit control fields.

Table B-6 Encodings for 64-Bit Guest-State Fields (0010_10xx_xxxx_xxxAb)
Field Name Index Encoding

VMCS link pointer (full)
000000000B

00002800H

VMCS link pointer (high) 00002801H

Guest IA32_DEBUGCTL (full)
000000001B

00002802H

Guest IA32_DEBUGCTL (high) 00002803H

Guest IA32_PAT (full)1
000000010B

00002804H

Guest IA32_PAT (high)1 00002805H

Guest IA32_EFER (full)2
000000011B

00002806H

Guest IA32_EFER (high)2 00002807H

Guest IA32_PERF_GLOBAL_CTRL (full)3
000000100B

00002808H

Guest IA32_PERF_GLOBAL_CTRL (high)3 00002809H

Guest PDPTE0 (full)4
000000101B

0000280AH

Guest PDPTE0 (high)4 0000280BH

Guest PDPTE1 (full)4
000000110B

0000280CH

Guest PDPTE1 (high)4 0000280DH

Guest PDPTE2 (full)4
000000111B

0000280EH

Guest PDPTE2 (high)4 0000280FH

Guest PDPTE3 (full)4
000001000B

00002810H

Guest PDPTE3 (high)4 00002811H
NOTES:

1. This field exists only on processors that support either the 1-setting of the "load IA32_PAT" VM-entry control or that of the "save
IA32_PAT" VM-exit control.

2. This field exists only on processors that support either the 1-setting of the "load IA32_EFER" VM-entry control or that of the "save
IA32_EFER" VM-exit control.

3. This field exists only on processors that support the 1-setting of the "load IA32_PERF_GLOBAL_CTRL" VM-entry control.
4. This field exists only on processors that support the 1-setting of the "enable EPT" VM-execution control.

Table B-7 Encodings for 64-Bit Host-State Fields (0010_11xx_xxxx_xxxAb)
Field Name Index Encoding

Host IA32_PAT (full)1
000000000B

00002C00H

Host IA32_PAT (high)1 00002C01H

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 315

...

28.Updates to Appendix C, Volume 3C
Change bars show changes to Appendix C of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

...

Host IA32_EFER (full)2
000000001B

00002C02H

Host IA32_EFER (high)2 00002C03H

Host IA32_PERF_GLOBAL_CTRL (full)3
000000010B

00002C04H

Host IA32_PERF_GLOBAL_CTRL (high)3 00002C05H
NOTES:

1. This field exists only on processors that support the 1-setting of the "load IA32_PAT" VM-exit control.
2. This field exists only on processors that support the 1-setting of the "load IA32_EFER" VM-exit control.
3. This field exists only on processors that support the 1-setting of the "load IA32_PERF_GLOBAL_CTRL" VM-exit control.

Table B-7 Encodings for 64-Bit Host-State Fields (0010_11xx_xxxx_xxxAb) (Contd.)
Field Name Index Encoding

Table C-1 Basic Exit Reasons
Basic Exit
Reason Description

0 Exception or non-maskable interrupt (NMI). Either:

1: Guest software caused an exception and the bit in the exception bitmap associated with exception’s vector was 1.
2: An NMI was delivered to the logical processor and the “NMI exiting” VM-execution control was 1. This case includes

executions of BOUND that cause #BR, executions of INT3 (they cause #BP), executions of INTO that cause #OF,
and executions of UD2 (they cause #UD).

1 External interrupt. An external interrupt arrived and the “external-interrupt exiting” VM-execution control was 1.

2 Triple fault. The logical processor encountered an exception while attempting to call the double-fault handler and
that exception did not itself cause a VM exit due to the exception bitmap.

3 INIT signal. An INIT signal arrived

4 Start-up IPI (SIPI). A SIPI arrived while the logical processor was in the “wait-for-SIPI” state.

5 I/O system-management interrupt (SMI). An SMI arrived immediately after retirement of an I/O instruction and
caused an SMM VM exit (see Section 34.15.2).

6 Other SMI. An SMI arrived and caused an SMM VM exit (see Section 34.15.2) but not immediately after retirement of
an I/O instruction.

7 Interrupt window. At the beginning of an instruction, RFLAGS.IF was 1; events were not blocked by STI or by MOV
SS; and the “interrupt-window exiting” VM-execution control was 1.

8 NMI window. At the beginning of an instruction, there was no virtual-NMI blocking; events were not blocked by MOV
SS; and the “NMI-window exiting” VM-execution control was 1.

9 Task switch. Guest software attempted a task switch.

10 CPUID. Guest software attempted to execute CPUID.

11 GETSEC. Guest software attempted to execute GETSEC.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 316

12 HLT. Guest software attempted to execute HLT and the “HLT exiting” VM-execution control was 1.

13 INVD. Guest software attempted to execute INVD.

14 INVLPG. Guest software attempted to execute INVLPG and the “INVLPG exiting” VM-execution control was 1.

15 RDPMC. Guest software attempted to execute RDPMC and the “RDPMC exiting” VM-execution control was 1.

16 RDTSC. Guest software attempted to execute RDTSC and the “RDTSC exiting” VM-execution control was 1.

17 RSM. Guest software attempted to execute RSM in SMM.

18 VMCALL. VMCALL was executed either by guest software (causing an ordinary VM exit) or by the executive monitor
(causing an SMM VM exit; see Section 34.15.2).

19 VMCLEAR. Guest software attempted to execute VMCLEAR.

20 VMLAUNCH. Guest software attempted to execute VMLAUNCH.

21 VMPTRLD. Guest software attempted to execute VMPTRLD.

22 VMPTRST. Guest software attempted to execute VMPTRST.

23 VMREAD. Guest software attempted to execute VMREAD.

24 VMRESUME. Guest software attempted to execute VMRESUME.

25 VMWRITE. Guest software attempted to execute VMWRITE.

26 VMXOFF. Guest software attempted to execute VMXOFF.

27 VMXON. Guest software attempted to execute VMXON.

28 Control-register accesses. Guest software attempted to access CR0, CR3, CR4, or CR8 using CLTS, LMSW, or MOV CR
and the VM-execution control fields indicate that a VM exit should occur (see Section 25.1 for details). This basic exit
reason is not used for trap-like VM exits following executions of the MOV to CR8 instruction when the “use TPR
shadow” VM-execution control is 1.

29 MOV DR. Guest software attempted a MOV to or from a debug register and the “MOV-DR exiting” VM-execution
control was 1.

30 I/O instruction. Guest software attempted to execute an I/O instruction and either:

1: The “use I/O bitmaps” VM-execution control was 0 and the “unconditional I/O exiting” VM-execution control was 1.
2: The “use I/O bitmaps” VM-execution control was 1 and a bit in the I/O bitmap associated with one of the ports

accessed by the I/O instruction was 1.

31 RDMSR. Guest software attempted to execute RDMSR and either:

1: The “use MSR bitmaps” VM-execution control was 0.
2: The value of RCX is neither in the range 00000000H – 00001FFFH nor in the range C0000000H – C0001FFFH.
3: The value of RCX was in the range 00000000H – 00001FFFH and the nth bit in read bitmap for low MSRs is 1,

where n was the value of RCX.
4: The value of RCX is in the range C0000000H – C0001FFFH and the nth bit in read bitmap for high MSRs is 1, where

n is the value of RCX & 00001FFFH.

32 WRMSR. Guest software attempted to execute WRMSR and either:

1: The “use MSR bitmaps” VM-execution control was 0.
2: The value of RCX is neither in the range 00000000H – 00001FFFH nor in the range C0000000H – C0001FFFH.
3: The value of RCX was in the range 00000000H – 00001FFFH and the nth bit in write bitmap for low MSRs is 1,

where n was the value of RCX.
4: The value of RCX is in the range C0000000H – C0001FFFH and the nth bit in write bitmap for high MSRs is 1,

where n is the value of RCX & 00001FFFH.

33 VM-entry failure due to invalid guest state. A VM entry failed one of the checks identified in Section 26.3.1.

Table C-1 Basic Exit Reasons (Contd.)
Basic Exit
Reason Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 317

...

34 VM-entry failure due to MSR loading. A VM entry failed in an attempt to load MSRs. See Section 26.4.

36 MWAIT. Guest software attempted to execute MWAIT and the “MWAIT exiting” VM-execution control was 1.

37 Monitor trap flag. A VM entry occurred due to the 1-setting of the “monitor trap flag” VM-execution control and
injection of an MTF VM exit as part of VM entry. See Section 25.5.2.

39 MONITOR. Guest software attempted to execute MONITOR and the “MONITOR exiting” VM-execution control was 1.

40 PAUSE. Either guest software attempted to execute PAUSE and the “PAUSE exiting” VM-execution control was 1 or
the “PAUSE-loop exiting” VM-execution control was 1 and guest software executed a PAUSE loop with execution
time exceeding PLE_Window (see Section 25.1.3).

41 VM-entry failure due to machine-check event. A machine-check event occurred during VM entry (see Section 26.8).

43 TPR below threshold. The logical processor determined that the value of bits 7:4 of the byte at offset 080H on the
virtual-APIC page was below that of the TPR threshold VM-execution control field while the “use TPR shadow” VM-
execution control was 1 either as part of TPR virtualization (Section 29.1.2) or VM entry (Section 26.6.7).

44 APIC access. Guest software attempted to access memory at a physical address on the APIC-access page and the
“virtualize APIC accesses” VM-execution control was 1 (see Section 29.4).

45 Virtualized EOI. EOI virtualization was performed for a virtual interrupt whose vector indexed a bit set in the EOI-exit
bitmap.

46 Access to GDTR or IDTR. Guest software attempted to execute LGDT, LIDT, SGDT, or SIDT and the “descriptor-table
exiting” VM-execution control was 1.

47 Access to LDTR or TR. Guest software attempted to execute LLDT, LTR, SLDT, or STR and the “descriptor-table
exiting” VM-execution control was 1.

48 EPT violation. An attempt to access memory with a guest-physical address was disallowed by the configuration of
the EPT paging structures.

49 EPT misconfiguration. An attempt to access memory with a guest-physical address encountered a misconfigured EPT
paging-structure entry.

50 INVEPT. Guest software attempted to execute INVEPT.

51 RDTSCP. Guest software attempted to execute RDTSCP and the “enable RDTSCP” and “RDTSC exiting” VM-execution
controls were both 1.

52 VMX-preemption timer expired. The preemption timer counted down to zero.

53 INVVPID. Guest software attempted to execute INVVPID.

54 WBINVD. Guest software attempted to execute WBINVD and the “WBINVD exiting” VM-execution control was 1.

55 XSETBV. Guest software attempted to execute XSETBV.

56 APIC write. Guest software completed a write to the virtual-APIC page that must be virtualized by VMM software
(see Section 29.4.3.3).

57 RDRAND. Guest software attempted to execute RDRAND and the “RDRAND exiting” VM-execution control was 1.

58 INVPCID. Guest software attempted to execute INVPCID and the “enable INVPCID” and “INVLPG exiting”
VM-execution controls were both 1.

59 VMFUNC. Guest software invoked a VM function with the VMFUNC instruction and the VM function either was not
enabled or generated a function-specific condition causing a VM exit.

Table C-1 Basic Exit Reasons (Contd.)
Basic Exit
Reason Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 318

	Revision History
	Preface
	Summary Tables of Changes
	Documentation Changes
	1. Updates to Chapter 1, Volume 1
	2. Updates to Chapter 6, Volume 1
	3. Updates to Chapter 12, Volume 1
	4. Updates to Chapter 1, Volume 2A
	5. Updates to Chapter 2, Volume 2A
	6. Updates to Chapter 3, Volume 2A
	7. Updates to Chapter 4, Volume 2B
	8. Updates to Chapter 5, Volume 2C
	9. Updates to Appendix A, Volume 2C
	10. Updates to Chapter 1, Volume 3A
	11. Updates to Chapter 2, Volume 3A
	12. Updates to Chapter 4, Volume 3A
	13. Updates to Chapter 5, Volume 3A
	14. Updates to Chapter 11, Volume 3A
	15. Updates to Chapter 16, Volume 3B
	16. Updates to Chapter 17, Volume 3B
	17. Updates to Chapter 18, Volume 3B
	18. Updates to Chapter 19, Volume 3B
	19. Updates to Chapter 24, Volume 3C
	20. Updates to Chapter 25, Volume 3C
	21. Updates to Chapter 26, Volume 3C
	22. Updates to Chapter 27, Volume 3C
	23. Updates to Chapter 28, Volume 3C
	24. Updates to Chapter 29, Volume 3C
	Chapter 29 APIC Virtualization and Virtual Interrupts
	25. Updates to Chapter 34, Volume 3C
	26. Updates to Chapter 35, Volume 3C
	27. Updates to Appendix B, Volume 3C
	28. Updates to Appendix C, Volume 3C

