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Preface

This document is an update to the specifications contained in the Affected Documents table below. This 
document is a compilation of device and documentation errata, specification clarifications and changes. It is 
intended for hardware system manufacturers and software developers of applications, operating systems, or 
tools.

Affected Documents

Nomenclature
Documentation Changes include typos, errors, or omissions from the current published specifications. These 
will be incorporated in any new release of the specification.

Document Title Document Number/
Location

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture 253665

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A: Instruction Set 
Reference, A-M 253666

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B: Instruction Set 
Reference, N-Z 253667

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2C: Instruction Set 
Reference 326018

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A: System 
Programming Guide, Part 1 253668

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B: System 
Programming Guide, Part 2 253669

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C: System 
Programming Guide, Part 3 326019
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Summary Tables of Changes

The following table indicates documentation changes which apply to the Intel® 64 and IA-32 architectures. This 
table uses the following notations:

Codes Used in Summary Tables
Change bar to left of table row indicates this erratum is either new or modified from the previous version of the 
document.

Documentation Changes
No. DOCUMENTATION CHANGES

1 Updates to Chapter 8, Volume 1

2 Updates to Chapter 13, Volume 1

3 Updates to Chapter 3, Volume 2A

4 Updates to Chapter 4, Volume 2B

5 Updates to Chapter 5, Volume 2C

6 Updates to Chapter 6, Volume 3A

7 Updates to Chapter 9, Volume 3A

8 Updates to Chapter 14, Volume 3B

9 Updates to Chapter 16, Volume 3B

10 Updates to Chapter 17, Volume 3B

11 Updates to Chapter 18, Volume 3B

12 Updates to Chapter 19, Volume 3B

13 Updates to Chapter 24, Volume 3C

14 Updates to Chapter 25, Volume 3C

15 Updates to Chapter 26, Volume 3C

16 Updates to Chapter 27, Volume 3C

17 Updates to Chapter 28, Volume 3C

18 Updates to Chapter 30, Volume 3C

19 Updates to Chapter 31, Volume 3C

20 Updates to Chapter 34, Volume 3C

21 Updates to Chapter 35, Volume 3C

22 Updates to Appendix A, Volume 3C

23 Updates to Appendix B, Volume 3C
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Documentation Changes

1. Updates to Chapter 8, Volume 1
Change bars show changes to Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1: Basic Architecture.

------------------------------------------------------------------------------------------

...

8.1.8 x87 FPU Instruction and Data (Operand) Pointers
The x87 FPU stores pointers to the instruction and data (operand) for the last non-control instruction executed. 
These are the x87 FPU instruction pointer and x87 FPU data (operand) pointers; software can save these pointers 
to provide state information for exception handlers. The pointers are illustrated in Figure 8-1 (the figure illus-
trates the pointers as used outside 64-bit mode; see below).

Note that the value in the x87 FPU data pointer register is always a pointer to a memory operand, If the last non-
control instruction that was executed did not have a memory operand, the value in the data pointer register is 
undefined (reserved).

The contents of the x87 FPU instruction and data pointer registers remain unchanged when any of the control 
instructions (FCLEX/FNCLEX, FLDCW, FSTCW/FNSTCW, FSTSW/FNSTSW, FSTENV/FNSTENV, FLDENV, and WAIT/
FWAIT) are executed.

For all the x87 FPUs and NPXs except the 8087, the x87 FPU instruction pointer points to any prefixes that 
preceded the instruction. For the 8087, the x87 FPU instruction pointer points only to the actual opcode.

The x87 FPU instruction and data pointers each consists of an offset and a segment selector. On processors that 
support IA-32e mode, each offset comprises 64 bits; on other processors, each offset comprises 32 bits. Each 
segment selector comprises 16 bits.

The pointers are accessed by the FINIT/FNINIT, FLDENV, FRSTOR, FSAVE/FNSAVE, FSTENV/FNSTENV, FXRSTOR, 
FXSAVE, XRSTOR, XSAVE, and XSAVEOPT instructions as follows:
• FINIT/FNINIT. Each instruction clears each 64-bit offset and 16-bit segment selector.
• FLDENV, FRSTOR. These instructions use the memory formats given in Figures 8-9 through 8-12:

— For each 64-bit offset, each instruction loads the lower 32 bits from memory and clears the upper 32 bits.

— If CR0.PE = 1, each instruction loads each 16-bit segment selector from memory; otherwise, it clears 
each 16-bit segment selector.

• FSAVE/FNSAVE, FSTENV/FNSTENV. These instructions use the memory formats given in Figures 8-9 through 
8-12.

— Each instruction saves the lower 32 bits of each 64-bit offset into memory. the upper 32 bits are not 
saved.

— If CR0.PE = 1, each instruction saves each 16-bit segment selector into memory. If 
CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 1, the processor deprecates the segment selectors of the x87 
FPU instruction and data pointers; it saves each segment selector as 0000H.

— After saving these data into memory, FSAVE/FNSAVE clears each 64-bit offset and 16-bit segment 
selector.

• FXRSTOR, XRSTOR. These instructions load data from a memory image whose format depend on operating 
mode and the REX prefix. The memory formats are given in Tables 3-53, 3-56, and 3-57 in Chapter 3, 
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“Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A.

— Outside of 64-bit mode or if REX.W = 0, the instructions operate as follows:

• For each 64-bit offset, each instruction loads the lower 32 bits from memory and clears the upper 32 
bits.

• Each instruction loads each 16-bit segment selector from memory.

— In 64-bit mode with REX.W = 1, the instructions operate as follows:

• Each instruction loads each 64-bit offset from memory.

• Each instruction clears each 16-bit segment selector.
• FXSAVE, XSAVE, and XSAVEOPT. These instructions store data into a memory image whose format depend on 

operating mode and the REX prefix. The memory formats are given in Tables 3-53, 3-56, and 3-57 in Chapter 
3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A.

— Outside of 64-bit mode or if REX.W = 0, the instructions operate as follows:

• Each instruction saves the lower 32 bits of each 64-bit offset into memory. The upper 32 bits are not 
saved.

• Each instruction saves each 16-bit segment selector into memory. If 
CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 1, the processor deprecates the segment selectors of the 
x87 FPU instruction and data pointers; it saves each segment selector as 0000H.

— In 64-bit mode with REX.W = 1, each instruction saves each 64-bit offset into memory. The 16-bit 
segment selectors are not saved.

... 

8.1.10 Saving the x87 FPU’s State with FSTENV/FNSTENV and FSAVE/FNSAVE
The FSTENV/FNSTENV and FSAVE/FNSAVE instructions store x87 FPU state information in memory for use by 
exception handlers and other system and application software. The FSTENV/FNSTENV instruction saves the 
contents of the status, control, tag, x87 FPU instruction pointer, x87 FPU data pointer, and opcode registers. The 
FSAVE/FNSAVE instruction stores that information plus the contents of the x87 FPU data registers. Note that the 
FSAVE/FNSAVE instruction also initializes the x87 FPU to default values (just as the FINIT/FNINIT instruction 
does) after it has saved the original state of the x87 FPU.

The manner in which this information is stored in memory depends on the operating mode of the processor 
(protected mode or real-address mode) and on the operand-size attribute in effect (32-bit or 16-bit). See Figures 
8-9 through 8-12. In virtual-8086 mode or SMM, the real-address mode formats shown in Figure 8-12 is used. 
See Chapter 34, “System Management Mode,” of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3C, for information on using the x87 FPU while in SMM.

The FLDENV and FRSTOR instructions allow x87 FPU state information to be loaded from memory into the x87 
FPU. Here, the FLDENV instruction loads only the status, control, tag, x87 FPU instruction pointer, x87 FPU data 
pointer, and opcode registers, and the FRSTOR instruction loads all the x87 FPU registers, including the x87 FPU 
stack registers. 

...

8.3.6 Comparison and Classification Instructions
The following instructions compare or classify floating-point values:
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FCOM/FCOMP/FCOMPPCompare floating point and set x87 FPU
condition code flags.

FUCOM/FUCOMP/FUCOMPPUnordered compare floating point and set 
x87 FPU condition code flags.

FICOM/FICOMPCompare integer and set x87 FPU 
condition code flags.

FCOMI/FCOMIPCompare floating point and set EFLAGS 
status flags.

FUCOMI/FUCOMIPUnordered compare floating point and 
set EFLAGS status flags.

FTST Test (compare floating point with 0.0).
FXAMExamine.

Comparison of floating-point values differ from comparison of integers because floating-point values have four 
(rather than three) mutually exclusive relationships: less than, equal, greater than, and unordered.

The unordered relationship is true when at least one of the two values being compared is a NaN or in an unsup-
ported format. This additional relationship is required because, by definition, NaNs are not numbers, so they 
cannot have less than, equal, or greater than relationships with other floating-point values.

The FCOM, FCOMP, and FCOMPP instructions compare the value in register ST(0) with a floating-point source 
operand and set the condition code flags (C0, C2, and C3) in the x87 FPU status word according to the results (see 
Table 8-6). 

If an unordered condition is detected (one or both of the values are NaNs or in an undefined format), a floating-
point invalid-operation exception is generated.

The pop versions of the instruction pop the x87 FPU register stack once or twice after the comparison operation is 
complete.

The FUCOM, FUCOMP, and FUCOMPP instructions operate the same as the FCOM, FCOMP, and FCOMPP instruc-
tions. The only difference is that with the FUCOM, FUCOMP, and FUCOMPP instructions, if an unordered condition 
is detected because one or both of the operands are QNaNs, the floating-point invalid-operation exception is not 
generated.

The FICOM and FICOMP instructions also operate the same as the FCOM and FCOMP instructions, except that the 
source operand is an integer value in memory. The integer value is automatically converted into an double 
extended-precision floating-point value prior to making the comparison. The FICOMP instruction pops the x87 
FPU register stack following the comparison operation.

The FTST instruction performs the same operation as the FCOM instruction, except that the value in register ST(0) 
is always compared with the value 0.0.

The FCOMI and FCOMIP instructions were introduced into the IA-32 architecture in the P6 family processors. They 
perform the same comparison as the FCOM and FCOMP instructions, except that they set the status flags (ZF, PF, 
and CF) in the EFLAGS register to indicate the results of the comparison (see Table 8-7) instead of the x87 FPU 

Table 8-6.  Setting of x87 FPU Condition Code Flags for Floating-Point Number Comparisons
Condition C3 C2 C0

ST(0) > Source Operand 0 0 0

ST(0) < Source Operand 0 0 1

ST(0) = Source Operand 1 0 0

Unordered 1 1 1
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condition code flags. The FCOMI and FCOMIP instructions allow condition branch instructions (Jcc) to be executed 
directly from the results of their comparison.

Software can check if the FCOMI and FCOMIP instructions are supported by checking the processor’s feature 
information with the CPUID instruction.

The FUCOMI and FUCOMIP instructions operate the same as the FCOMI and FCOMIP instructions, except that they 
do not generate a floating-point invalid-operation exception if the unordered condition is the result of one or both 
of the operands being a QNaN. The FCOMIP and FUCOMIP instructions pop the x87 FPU register stack following 
the comparison operation.

The FXAM instruction determines the classification of the floating-point value in the ST(0) register (that is, 
whether the value is zero, a denormal number, a normal finite number, ∞, a NaN, or an unsupported format) or 
that the register is empty. It sets the x87 FPU condition code flags to indicate the classification (see “FXAM—
Examine” in Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A). It also sets the C1 flag to indicate the sign of the value.

---

2. Updates to Chapter 13, Volume 1
Change bars show changes to Chapter 13 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1: Basic Architecture.

------------------------------------------------------------------------------------------

...

13.8 HALF-PRECISION FLOATING-POINT CONVERSION
VCVTPH2PS and VCVTPS2PH are two instructions supporting half-precision floating-point data type conversion to 
and from single-precision floating-point data types. 
Half-precision floating-point values are not used by the processor directly for arithmetic operations. But the 
conversion operation are subject to SIMD floating-point exceptions. 

Additionally, The conversion operations of VCVTPS2PH allow programmer to specify rounding control using control 
fields in an immediate byte. The effects of the immediate byte are listed in Table 13-11.
Rounding control can use Imm[2] to select an override RC field specified in Imm[1:0] or use MXCSR setting. 

Table 8-7.  Setting of EFLAGS Status Flags for Floating-Point Number Comparisons
Comparison Results ZF PF CF

ST0 > ST(i) 0 0 0

ST0 < ST(i) 0 0 1

ST0 = ST(i) 1 0 0

Unordered 1 1 1

Table 13-11.  Immediate Byte Encoding for 16-bit Floating-Point Conversion Instructions

Bits Field Name/value Description Comment
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Specific SIMD floating-point exceptions that can occur in conversion operations are shown in Table 13-12 and 
Table 13-13.

VCVTPS2PH can cause denormal exceptions if the value of the source operand is denormal relative to the nu-
merical range represented by the source format (see Table 13-14).

Imm[1:0] RC=00B Round to nearest even If Imm[2] = 0

RC=01B Round down

RC=10B Round up

RC=11B Truncate

Imm[2] MS1=0 Use imm[1:0] for rounding Ignore MXCSR.RC 

MS1=1 Use MXCSR.RC for rounding

Imm[7:3] Ignored Ignored by processor

Table 13-11.  Immediate Byte Encoding for 16-bit Floating-Point Conversion Instructions

Table 13-12.  Non-Numerical Behavior for VCVTPH2PS, VCVTPS2PH

Source Operands Masked Result Unmasked Result

QNaN QNaN11 QNaN11 (not an exception)

SNaN QNaN12 None
NOTES:

1. The half precision output QNaN1 is created from the single precision input QNaN as follows: the sign bit is preserved, the 8-bit expo-
nent FFH is replaced by the 5-bit exponent 1FH, and the 24-bit significand is truncated to an 11-bit significand by removing its 14
least significant bits.

2. The half precision output QNaN1 is created from the single precision input SNaN as follows: the sign bit is preserved, the 8-bit expo-
nent FFH is replaced by the 5-bit exponent 1FH, and the 24-bit significand is truncated to an 11-bit significand by removing its 14
least significant bits. The second most significant bit of the significand is changed from 0 to 1 to convert the signaling NaN into a quiet
NaN.

Table 13-13.  Invalid Operation for VCVTPH2PS, VCVTPS2PH 

Instruction  Condition Masked Result Unmasked Result

VCVTPH2PS SRC = NaN See Table 13-12 #I=1

VCVTPS2PH SRC = NaN See Table 13-12 #I=1

Table 13-14.  Denormal Condition Summary

Instruction  Condition Masked Result1 Unmasked Result

VCVTPH2PS SRC is denormal relative to 
input format1

res = Result rounded to the destination precision and 
using the bounded exponent, but only if no unmasked 
post-computation exception occurs.
#DE unchanged

Same as masked result. 

VCVTPS2PH SRC is denormal relative to 
input format1

res = Result rounded to the destination precision and 
using the bounded exponent, but only if no unmasked 
post-computation exception occurs.
#DE=1

#DE=1
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VCVTPS2PH can cause an underflow exception if the result of the conversion is less than the underflow threshold
for half-precision floating-point data type , i.e. | x | < 1.0 ∗ 2−14. 

VCVTPS2PH can cause an overflow exception if the result of the conversion is greater than the maximum rep-
resentable value for half-precision floating-point data type, i.e. | x | ≥ 1.0 ∗ 216. 

VCVTPS2PH can cause an inexact exception if the result of the conversion is not exactly representable in the
destination format. 

NOTES:
1. Masked and unmasked result is shown in Table 13-12.

Table 13-15.  Underflow Condition for VCVTPS2PH 

Instruction  Condition Masked Result1 Unmasked Result

VCVTPS2PH Result < smallest destination 
precision final normal value2

Result = +0 or -0, denormal, normal.
#UE =1. 
#PE = 1 if the result is inexact.

#UE=1,
#PE = 1 if the result is 
inexact.

NOTES:
1. Masked and unmasked result is shown in Table 13-12.
2.  MXCSR.FTZ is ignored, the processor behaves as if MXCSR.FTZ = 0.

Table 13-16.  Overflow Condition for VCVTPS2PH 

Instruction  Condition Masked Result Unmasked Result

VCVTPS2PH Result ≥ largest destination 
precision finial normal value1

Result = +Inf or -Inf.
#OE=1.

#OE=1.

Table 13-17.  Inexact Condition for VCVTPS2PH 

Instruction  Condition Masked Result1 Unmasked Result

VCVTPS2PH The result is not 
representable in 
the destination 
format

res = Result rounded to the destination 
precision and using the bounded 
exponent, but only if no unmasked 
underflow or overflow conditions occur 
(this exception can occur in the presence 
of a masked underflow or overflow).
#PE=1.

Only if no underflow/overflow condition occurred, 
or if the corresponding exceptions are masked:
• Set #OE if masked overflow and set result as 

described above for masked overflow.

• Set #UE if masked underflow and set result as 
described above for masked underflow.

If neither underflow nor overflow, result equals 
the result rounded to the destination precision and 
using the bounded exponent set #PE = 1.

NOTES:
1. If a source is denormal relative to input format with DM masked and at least one of PM or UM unmasked, then an exception will be

raised with DE, UE and PE set.
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...

3. Updates to Chapter 3, Volume 2A
Change bars show changes to Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A: Instruction Set Reference, A-L, Part 1.

------------------------------------------------------------------------------------------

...

AND—Logical AND

Instruction Operand Encoding

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

24 ib AND AL, imm8 I Valid Valid AL AND imm8.

25 iw AND AX, imm16 I Valid Valid AX AND imm16.

25 id AND EAX, imm32 I Valid Valid EAX AND imm32.

REX.W + 25 id AND RAX, imm32 I Valid N.E. RAX AND imm32 sign-extended to 64-bits.

80 /4 ib AND r/m8, imm8 MI Valid Valid r/m8 AND imm8.

REX + 80 /4 ib AND r/m8*, imm8 MI Valid N.E. r/m8 AND imm8.

81 /4 iw AND r/m16, imm16 MI Valid Valid r/m16 AND imm16.

81 /4 id AND r/m32, imm32 MI Valid Valid r/m32 AND imm32.

REX.W + 81 /4 id AND r/m64, imm32 MI Valid N.E. r/m64 AND imm32 sign extended to 64-bits.

83 /4 ib AND r/m16, imm8 MI Valid Valid r/m16 AND imm8 (sign-extended).

83 /4 ib AND r/m32, imm8 MI Valid Valid r/m32 AND imm8 (sign-extended).

REX.W + 83 /4 ib AND r/m64, imm8 MI Valid N.E. r/m64 AND imm8 (sign-extended).

20 /r AND r/m8, r8 MR Valid Valid r/m8 AND r8.

REX + 20 /r AND r/m8*, r8* MR Valid N.E. r/m64 AND r8 (sign-extended).

21 /r AND r/m16, r16 MR Valid Valid r/m16 AND r16.

21 /r AND r/m32, r32 MR Valid Valid r/m32 AND r32.

REX.W + 21 /r AND r/m64, r64 MR Valid N.E. r/m64 AND r32.

22 /r AND r8, r/m8 RM Valid Valid r8 AND r/m8.

REX + 22 /r AND r8*, r/m8* RM Valid N.E. r/m64 AND r8 (sign-extended).

23 /r AND r16, r/m16 RM Valid Valid r16 AND r/m16.

23 /r AND r32, r/m32 RM Valid Valid r32 AND r/m32.

REX.W + 23 /r AND r64, r/m64 RM Valid N.E. r64 AND r/m64.

NOTES:

*In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA
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Description

Performs a bitwise AND operation on the destination (first) and source (second) operands and stores the result in 
the destination operand location. The source operand can be an immediate, a register, or a memory location; the 
destination operand can be a register or a memory location. (However, two memory operands cannot be used in 
one instruction.) Each bit of the result is set to 1 if both corresponding bits of the first and second operands are 1; 
otherwise, it is set to 0.

This instruction can be used with a LOCK prefix to allow the it to be executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. 
See the summary chart at the beginning of this section for encoding data and limits.

Operation

DEST ← DEST AND SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The state of the AF flag 
is undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

MI ModRM:r/m (r, w) imm8 NA NA

I AL/AX/EAX/RAX imm8 NA NA

Op/En Operand 1 Operand 2 Operand 3 Operand 4
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Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

...

BSF—Bit Scan Forward

Instruction Operand Encoding

Description

Searches the source operand (second operand) for the least significant set bit (1 bit). If a least significant 1 bit is 
found, its bit index is stored in the destination operand (first operand). The source operand can be a register or a 
memory location; the destination operand is a register. The bit index is an unsigned offset from bit 0 of the source 
operand. If the content of the source operand is 0, the content of the destination operand is undefined.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. 
See the summary chart at the beginning of this section for encoding data and limits.

Operation

IF SRC = 0
THEN

ZF ← 1;
DEST is undefined;

ELSE
ZF ← 0;
temp ← 0;
WHILE Bit(SRC, temp) = 0
DO

temp ← temp + 1;
OD;

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

0F BC /r BSF r16, r/m16 RM Valid Valid Bit scan forward on r/m16.

0F BC /r BSF r32, r/m32 RM Valid Valid Bit scan forward on r/m32.

REX.W + 0F BC /r BSF r64, r/m64 RM Valid N.E. Bit scan forward on r/m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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DEST ← temp;
FI;

Flags Affected

The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared. The CF, OF, SF, AF, and PF, 
flags are undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

...
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BSR—Bit Scan Reverse

Instruction Operand Encoding

Description

Searches the source operand (second operand) for the most significant set bit (1 bit). If a most significant 1 bit is 
found, its bit index is stored in the destination operand (first operand). The source operand can be a register or a 
memory location; the destination operand is a register. The bit index is an unsigned offset from bit 0 of the source 
operand. If the content source operand is 0, the content of the destination operand is undefined.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. 
See the summary chart at the beginning of this section for encoding data and limits.

Operation

IF SRC = 0
THEN

ZF ← 1;
DEST is undefined;

ELSE
ZF ← 0;
temp ← OperandSize – 1;
WHILE Bit(SRC, temp) = 0
DO

temp ← temp - 1;
OD;
DEST ← temp;

FI;

Flags Affected

The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared. The CF, OF, SF, AF, and PF, 
flags are undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

0F BD /r BSR r16, r/m16 RM Valid Valid Bit scan reverse on r/m16.

0F BD /r BSR r32, r/m32 RM Valid Valid Bit scan reverse on r/m32.

REX.W + 0F BD /r BSR r64, r/m64 RM Valid N.E. Bit scan reverse on r/m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 
current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

...
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BT—Bit Test

Instruction Operand Encoding

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-position designated by 
the bit offset (specified by the second operand) and stores the value of the bit in the CF flag. The bit base operand 
can be a register or a memory location; the bit offset operand can be a register or an immediate value:
• If the bit base operand specifies a register, the instruction takes the modulo 16, 32, or 64 of the bit offset 

operand (modulo size depends on the mode and register size; 64-bit operands are available only in 64-bit 
mode). 

• If the bit base operand specifies a memory location, the operand represents the address of the byte in 
memory that contains the bit base (bit 0 of the specified byte) of the bit string. The range of the bit position 
that can be referenced by the offset operand depends on the operand size.

See also: Bit(BitBase, BitOffset) on page 3-10. 

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset field in combina-
tion with the displacement field of the memory operand. In this case, the low-order 3 or 5 bits (3 for 16-bit oper-
ands, 5 for 32-bit operands) of the immediate bit offset are stored in the immediate bit offset field, and the high-
order bits are shifted and combined with the byte displacement in the addressing mode by the assembler. The 
processor will ignore the high order bits if they are not zero.

When accessing a bit in memory, the processor may access 4 bytes starting from the memory address for a 32-
bit operand size, using by the following relationship:

Effective Address + (4 ∗ (BitOffset DIV 32))

Or, it may access 2 bytes starting from the memory address for a 16-bit operand, using this relationship:

Effective Address + (2 ∗ (BitOffset DIV 16))

It may do so even when only a single byte needs to be accessed to reach the given bit. When using this bit 
addressing mechanism, software should avoid referencing areas of memory close to address space holes. In 
particular, it should avoid references to memory-mapped I/O registers. Instead, software should use the MOV 
instructions to load from or store to these addresses, and use the register form of these instructions to manipulate 
the data.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

0F A3 /r BT r/m16, r16 MR Valid Valid Store selected bit in CF flag.

0F A3 /r BT r/m32, r32 MR Valid Valid Store selected bit in CF flag.

REX.W + 0F A3 /r BT r/m64, r64 MR Valid N.E. Store selected bit in CF flag.

0F BA /4 ib BT r/m16, imm8 MI Valid Valid Store selected bit in CF flag.

0F BA /4 ib BT r/m32, imm8 MI Valid Valid Store selected bit in CF flag.

REX.W + 0F BA /4 ib BT r/m64, imm8 MI Valid N.E. Store selected bit in CF flag.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (r) ModRM:reg (r) NA NA

MI ModRM:r/m (r) imm8 NA NA
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In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bit 
operands. See the summary chart at the beginning of this section for encoding data and limits.

Operation

CF ← Bit(BitBase, BitOffset);

Flags Affected

The CF flag contains the value of the selected bit. The ZF flag is unaffected. The OF, SF, AF, and PF flags are 
undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

...
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BTC—Bit Test and Complement

Instruction Operand Encoding

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-position designated by 
the bit offset operand (second operand), stores the value of the bit in the CF flag, and complements the selected 
bit in the bit string. The bit base operand can be a register or a memory location; the bit offset operand can be a 
register or an immediate value:
• If the bit base operand specifies a register, the instruction takes the modulo 16, 32, or 64 of the bit offset 

operand (modulo size depends on the mode and register size; 64-bit operands are available only in 64-bit 
mode). This allows any bit position to be selected. 

• If the bit base operand specifies a memory location, the operand represents the address of the byte in 
memory that contains the bit base (bit 0 of the specified byte) of the bit string. The range of the bit position 
that can be referenced by the offset operand depends on the operand size.

See also: Bit(BitBase, BitOffset) on page 3-10. 

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset field in combina-
tion with the displacement field of the memory operand. See “BT—Bit Test” in this chapter for more information 
on this addressing mechanism.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. 
See the summary chart at the beginning of this section for encoding data and limits.

Operation

CF ← Bit(BitBase, BitOffset);
Bit(BitBase, BitOffset) ← NOT Bit(BitBase, BitOffset);

Flags Affected

The CF flag contains the value of the selected bit before it is complemented. The ZF flag is unaffected. The OF, SF, 
AF, and PF flags are undefined.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

0F BB /r BTC r/m16, r16 MR Valid Valid Store selected bit in CF flag and complement.

0F BB /r BTC r/m32, r32 MR Valid Valid Store selected bit in CF flag and complement.

REX.W + 0F BB /r BTC r/m64, r64 MR Valid N.E. Store selected bit in CF flag and complement.

0F BA /7 ib BTC r/m16, imm8 MI Valid Valid Store selected bit in CF flag and complement.

0F BA /7 ib BTC r/m32, imm8 MI Valid Valid Store selected bit in CF flag and complement.

REX.W + 0F BA /7 ib BTC r/m64, imm8 MI Valid N.E. Store selected bit in CF flag and complement.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

MI ModRM:r/m (r, w) imm8 NA NA
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Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

...
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BTR—Bit Test and Reset

Instruction Operand Encoding

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-position designated by 
the bit offset operand (second operand), stores the value of the bit in the CF flag, and clears the selected bit in the 
bit string to 0. The bit base operand can be a register or a memory location; the bit offset operand can be a 
register or an immediate value:
• If the bit base operand specifies a register, the instruction takes the modulo 16, 32, or 64 of the bit offset 

operand (modulo size depends on the mode and register size; 64-bit operands are available only in 64-bit 
mode). This allows any bit position to be selected. 

• If the bit base operand specifies a memory location, the operand represents the address of the byte in 
memory that contains the bit base (bit 0 of the specified byte) of the bit string. The range of the bit position 
that can be referenced by the offset operand depends on the operand size.

See also: Bit(BitBase, BitOffset) on page 3-10. 

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset field in combina-
tion with the displacement field of the memory operand. See “BT—Bit Test” in this chapter for more information 
on this addressing mechanism.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. 
See the summary chart at the beginning of this section for encoding data and limits.

Operation

CF ← Bit(BitBase, BitOffset);
Bit(BitBase, BitOffset) ← 0;

Flags Affected

The CF flag contains the value of the selected bit before it is cleared. The ZF flag is unaffected. The OF, SF, AF, and 
PF flags are undefined.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

0F B3 /r BTR r/m16, r16 MR Valid Valid Store selected bit in CF flag and clear.

0F B3 /r BTR r/m32, r32 MR Valid Valid Store selected bit in CF flag and clear.

REX.W + 0F B3 /r BTR r/m64, r64 MR Valid N.E. Store selected bit in CF flag and clear.

0F BA /6 ib BTR r/m16, imm8 MI Valid Valid Store selected bit in CF flag and clear.

0F BA /6 ib BTR r/m32, imm8 MI Valid Valid Store selected bit in CF flag and clear.

REX.W + 0F BA /6 ib BTR r/m64, imm8 MI Valid N.E. Store selected bit in CF flag and clear.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

MI ModRM:r/m (r, w) imm8 NA NA
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Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

...
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BTS—Bit Test and Set

Instruction Operand Encoding

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-position designated by 
the bit offset operand (second operand), stores the value of the bit in the CF flag, and sets the selected bit in the 
bit string to 1. The bit base operand can be a register or a memory location; the bit offset operand can be a 
register or an immediate value: 
• If the bit base operand specifies a register, the instruction takes the modulo 16, 32, or 64 of the bit offset 

operand (modulo size depends on the mode and register size; 64-bit operands are available only in 64-bit 
mode). This allows any bit position to be selected.

• If the bit base operand specifies a memory location, the operand represents the address of the byte in 
memory that contains the bit base (bit 0 of the specified byte) of the bit string. The range of the bit position 
that can be referenced by the offset operand depends on the operand size.

See also: Bit(BitBase, BitOffset) on page 3-10. 

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset field in combina-
tion with the displacement field of the memory operand. See “BT—Bit Test” in this chapter for more information 
on this addressing mechanism.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. 
See the summary chart at the beginning of this section for encoding data and limits.

Operation

CF ← Bit(BitBase, BitOffset);
Bit(BitBase, BitOffset) ← 1;

Flags Affected

The CF flag contains the value of the selected bit before it is set. The ZF flag is unaffected. The OF, SF, AF, and PF 
flags are undefined.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

0F AB /r BTS r/m16, r16 MR Valid Valid Store selected bit in CF flag and set.

0F AB /r BTS r/m32, r32 MR Valid Valid Store selected bit in CF flag and set.

REX.W + 0F AB /r BTS r/m64, r64 MR Valid N.E. Store selected bit in CF flag and set.

0F BA /5 ib BTS r/m16, imm8 MI Valid Valid Store selected bit in CF flag and set.

0F BA /5 ib BTS r/m32, imm8 MI Valid Valid Store selected bit in CF flag and set.

REX.W + 0F BA /5 ib BTS r/m64, imm8 MI Valid N.E. Store selected bit in CF flag and set.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

MI ModRM:r/m (r, w) imm8 NA NA
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Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

...
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CMPPD—Compare Packed Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD compare of the packed double-precision floating-point values in the source operand (second 
operand) and the destination operand (first operand) and returns the results of the comparison to the destination 
operand. The comparison predicate operand (third operand) specifies the type of comparison performed on each 
of the pairs of packed values. The result of each comparison is a quadword mask of all 1s (comparison true) or all 
0s (comparison false). The sign of zero is ignored for comparisons, so that –0.0 is equal to +0.0.
128-bit Legacy SSE version: The first source and destination operand (first operand) is an XMM register. The 
second source operand (second operand) can be an XMM register or 128-bit memory location. The comparison 
predicate operand is an 8-bit immediate, bits 2:0 of the immediate define the type of comparison to be performed 
(see Table 3-7). Bits 7:3 of the immediate is reserved. Bits (VLMAX-1:128) of the corresponding YMM destination 
register remain unchanged. Two comparisons are performed with results written to bits 127:0 of the destination 
operand.

...

Opcode/
Instruction

Op/ 
En

64/32-
bit Mode

CPUID 
Feature 
Flag

Description

66 0F C2 /r ib

CMPPD xmm1, xmm2/m128, imm8

RMI V/V SSE2 Compare packed double-precision floating-
point values in xmm2/m128 and xmm1 using 
imm8 as comparison predicate.

VEX.NDS.128.66.0F.WIG C2 /r ib

VCMPPD xmm1, xmm2, xmm3/m128, imm8

RVMI V/V AVX Compare packed double-precision floating-
point values in xmm3/m128 and xmm2 using 
bits 4:0 of imm8 as a comparison predicate.

VEX.NDS.256.66.0F.WIG C2 /r ib

VCMPPD ymm1, ymm2, ymm3/m256, imm8

RVMI V/V AVX Compare packed double-precision floating-
point values in ymm3/m256 and ymm2 using 
bits 4:0 of imm8 as a comparison predicate.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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CMPPS—Compare Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD compare of the packed single-precision floating-point values in the source operand (second 
operand) and the destination operand (first operand) and returns the results of the comparison to the destination 
operand. The comparison predicate operand (third operand) specifies the type of comparison performed on each 
of the pairs of packed values. The result of each comparison is a doubleword mask of all 1s (comparison true) or 
all 0s (comparison false). The sign of zero is ignored for comparisons, so that –0.0 is equal to +0.0.
128-bit Legacy SSE version: The first source and destination operand (first operand) is an XMM register. The 
second source operand (second operand) can be an XMM register or 128-bit memory location. The comparison 
predicate operand is an 8-bit immediate, bits 2:0 of the immediate define the type of comparison to be performed 
(see Table 3-7). Bits 7:3 of the immediate is reserved. Bits (VLMAX-1:128) of the corresponding YMM destination 
register remain unchanged. Four comparisons are performed with results written to bits 127:0 of the destination 
operand.

The unordered relationship is true when at least one of the two source operands being compared is a NaN; the 
ordered relationship is true when neither source operand is a NaN.

A subsequent computational instruction that uses the mask result in the destination operand as an input operand 
will not generate a fault, because a mask of all 0s corresponds to a floating-point value of +0.0 and a mask of all 
1s corresponds to a QNaN.

Note that processors with “CPUID.1H:ECX.AVX =0” do not implement the “greater-than”, “greater-than-or-
equal”, “not-greater than”, and “not-greater-than-or-equal relations” predicates. These comparisons can be made 
either by using the inverse relationship (that is, use the “not-less-than-or-equal” to make a “greater-than” 
comparison) or by using software emulation. When using software emulation, the program must swap the oper-
ands (copying registers when necessary to protect the data that will now be in the destination), and then perform 
the compare using a different predicate. The predicate to be used for these emulations is listed in Table 3-7 under 
the heading Emulation. 

Compilers and assemblers may implement the following two-operand pseudo-ops in addition to the three-
operand CMPPS instruction, for processors with “CPUID.1H:ECX.AVX =0”. See Table 3-11. Compiler should treat 
reserved Imm8 values as illegal syntax.

Opcode/
Instruction

Op/ 
En

64/32-
bit Mode

CPUID 
Feature 
Flag

Description

0F C2 /r ib

CMPPS xmm1, xmm2/m128, imm8

RMI V/V SSE Compare packed single-precision floating-
point values in xmm2/mem and xmm1 using 
imm8 as comparison predicate.

VEX.NDS.128.0F.WIG C2 /r ib

VCMPPS xmm1, xmm2, xmm3/m128, imm8

RVMI V/V AVX Compare packed single-precision floating-
point values in xmm3/m128 and xmm2 using 
bits 4:0 of imm8 as a comparison predicate.

VEX.NDS.256.0F.WIG C2 /r ib

VCMPPS ymm1, ymm2, ymm3/m256, imm8

RVMI V/V AVX Compare packed single-precision floating-
point values in ymm3/m256 and ymm2 using 
bits 4:0 of imm8 as a comparison predicate.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).

...

CMPSD—Compare Scalar Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Compares the low double-precision floating-point values in the source operand (second operand) and the desti-
nation operand (first operand) and returns the results of the comparison to the destination operand. The compar-
ison predicate operand (third operand) specifies the type of comparison performed. The comparison result is a 
quadword mask of all 1s (comparison true) or all 0s (comparison false). The sign of zero is ignored for compari-
sons, so that –0.0 is equal to +0.0.
128-bit Legacy SSE version: The first source and destination operand (first operand) is an XMM register. The 
second source operand (second operand) can be an XMM register or 64-bit memory location. The comparison 
predicate operand is an 8-bit immediate, bits 2:0 of the immediate define the type of comparison to be performed 
(see Table 3-7). Bits 7:3 of the immediate is reserved. Bits (VLMAX-1:64) of the corresponding YMM destination 
register remain unchanged. 

The unordered relationship is true when at least one of the two source operands being compared is a NaN; the 
ordered relationship is true when neither source operand is a NaN.

A subsequent computational instruction that uses the mask result in the destination operand as an input operand 
will not generate a fault, because a mask of all 0s corresponds to a floating-point value of +0.0 and a mask of all 
1s corresponds to a QNaN.

Note that processors with “CPUID.1H:ECX.AVX =0” do not implement the “greater-than”, “greater-than-or-
equal”, “not-greater than”, and “not-greater-than-or-equal relations” predicates. These comparisons can be made 
either by using the inverse relationship (that is, use the “not-less-than-or-equal” to make a “greater-than” 
comparison) or by using software emulation. When using software emulation, the program must swap the oper-
ands (copying registers when necessary to protect the data that will now be in the destination operand), and then 
perform the compare using a different predicate. The predicate to be used for these emulations is listed in Table 
3-7 under the heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in addition to the three-
operand CMPSD instruction, for processors with “CPUID.1H:ECX.AVX =0”. See Table 3-13. Compiler should treat 
reserved Imm8 values as illegal syntax.

...

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F C2 /r ib

CMPSD xmm1, xmm2/m64, imm8

RMI V/V SSE2 Compare low double-precision floating-point 
value in xmm2/m64 and xmm1 using imm8 as 
comparison predicate.

VEX.NDS.LIG.F2.0F.WIG C2 /r ib

VCMPSD xmm1, xmm2, xmm3/m64, imm8

RVMI V/V AVX Compare low double precision floating-point 
value in xmm3/m64 and xmm2 using bits 4:0 
of imm8 as comparison predicate.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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CMPSS—Compare Scalar Single-Precision Floating-Point Values 

Instruction Operand Encoding

Description

Compares the low single-precision floating-point values in the source operand (second operand) and the destina-
tion operand (first operand) and returns the results of the comparison to the destination operand. The comparison 
predicate operand (third operand) specifies the type of comparison performed. The comparison result is a double-
word mask of all 1s (comparison true) or all 0s (comparison false). The sign of zero is ignored for comparisons, so 
that –0.0 is equal to +0.0.
128-bit Legacy SSE version: The first source and destination operand (first operand) is an XMM register. The 
second source operand (second operand) can be an XMM register or 64-bit memory location. The comparison 
predicate operand is an 8-bit immediate, bits 2:0 of the immediate define the type of comparison to be performed 
(see Table 3-7). Bits 7:3 of the immediate is reserved. Bits (VLMAX-1:32) of the corresponding YMM destination 
register remain unchanged. 

The unordered relationship is true when at least one of the two source operands being compared is a NaN; the 
ordered relationship is true when neither source operand is a NaN

A subsequent computational instruction that uses the mask result in the destination operand as an input operand 
will not generate a fault, since a mask of all 0s corresponds to a floating-point value of +0.0 and a mask of all 1s 
corresponds to a QNaN.

Note that processors with “CPUID.1H:ECX.AVX =0” do not implement the “greater-than”, “greater-than-or-
equal”, “not-greater than”, and “not-greater-than-or-equal relations” predicates. These comparisons can be made 
either by using the inverse relationship (that is, use the “not-less-than-or-equal” to make a “greater-than” 
comparison) or by using software emulation. When using software emulation, the program must swap the oper-
ands (copying registers when necessary to protect the data that will now be in the destination operand), and then 
perform the compare using a different predicate. The predicate to be used for these emulations is listed in Table 
3-7 under the heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in addition to the three-
operand CMPSS instruction, for processors with “CPUID.1H:ECX.AVX =0”. See Table 3-15. Compiler should treat 
reserved Imm8 values as illegal syntax.

...

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F C2 /r ib

CMPSS xmm1, xmm2/m32, imm8

RMI V/V SSE Compare low single-precision floating-point 
value in xmm2/m32 and xmm1 using imm8 as 
comparison predicate.

VEX.NDS.LIG.F3.0F.WIG C2 /r ib

VCMPSS xmm1, xmm2, xmm3/m32, imm8

RVMI V/V AVX Compare low single precision floating-point 
value in xmm3/m32 and xmm2 using bits 4:0 
of imm8 as comparison predicate.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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COMISD—Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS

Instruction Operand Encoding

Description

Compares the double-precision floating-point values in the low quadwords of operand 1 (first operand) and 
operand 2 (second operand), and sets the ZF, PF, and CF flags in the EFLAGS register according to the result 
(unordered, greater than, less than, or equal). The OF, SF and AF flags in the EFLAGS register are set to 0. The 
unordered result is returned if either source operand is a NaN (QNaN or SNaN).The sign of zero is ignored for 
comparisons, so that –0.0 is equal to +0.0.

Operand 1 is an XMM register; operand 2 can be an XMM register or a 64 bit memory location. 

The COMISD instruction differs from the UCOMISD instruction in that it signals a SIMD floating-point invalid oper-
ation exception (#I) when a source operand is either a QNaN or SNaN. The UCOMISD instruction signals an invalid 
numeric exception only if a source operand is an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is generated.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

RESULT ← OrderedCompare(DEST[63:0] <> SRC[63:0]) {
(* Set EFLAGS *) CASE (RESULT) OF

UNORDERED: ZF,PF,CF ← 111;
GREATER_THAN: ZF,PF,CF ← 000;
LESS_THAN: ZF,PF,CF ← 001;
EQUAL: ZF,PF,CF ← 100;

ESAC;
OF, AF, SF ← 0; }

Intel C/C++ Compiler Intrinsic Equivalents

int _mm_comieq_sd (__m128d a, __m128d b)

int _mm_comilt_sd (__m128d a, __m128d b)

int _mm_comile_sd (__m128d a, __m128d b)

int _mm_comigt_sd (__m128d a, __m128d b)

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 2F /r

COMISD xmm1, xmm2/m64

RM V/V SSE2 Compare low double-precision floating-point 
values in xmm1 and xmm2/mem64 and set 
the EFLAGS flags accordingly.

VEX.LIG.66.0F.WIG 2F /r

VCOMISD xmm1, xmm2/m64

RM V/V AVX Compare low double precision floating-point 
values in xmm1 and xmm2/mem64 and set 
the EFLAGS flags accordingly.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA
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int _mm_comige_sd (__m128d a, __m128d b)

int _mm_comineq_sd (__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Invalid (if SNaN or QNaN operands), Denormal.

Other Exceptions
See Exceptions Type 3; additionally
#UD If VEX.vvvv != 1111B.

...

COMISS—Compare Scalar Ordered Single-Precision Floating-Point Values and Set EFLAGS

Instruction Operand Encoding

Description

Compares the single-precision floating-point values in the low doublewords of operand 1 (first operand) and 
operand 2 (second operand), and sets the ZF, PF, and CF flags in the EFLAGS register according to the result 
(unordered, greater than, less than, or equal). The OF, SF, and AF flags in the EFLAGS register are set to 0. The 
unordered result is returned if either source operand is a NaN (QNaN or SNaN). The sign of zero is ignored for 
comparisons, so that –0.0 is equal to +0.0.

Operand 1 is an XMM register; Operand 2 can be an XMM register or a 32 bit memory location.

The COMISS instruction differs from the UCOMISS instruction in that it signals a SIMD floating-point invalid oper-
ation exception (#I) when a source operand is either a QNaN or SNaN. The UCOMISS instruction signals an invalid 
numeric exception only if a source operand is an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is generated.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

RESULT ← OrderedCompare(SRC1[31:0] <> SRC2[31:0]) {
(* Set EFLAGS *) CASE (RESULT) OF

UNORDERED: ZF,PF,CF ← 111;

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 2F /r

COMISS xmm1, xmm2/m32

RM V/V SSE Compare low single-precision floating-point 
values in xmm1 and xmm2/mem32 and set 
the EFLAGS flags accordingly.

VEX.LIG.0F.WIG 2F /r

VCOMISS xmm1, xmm2/m32

RM V/V AVX Compare low single precision floating-point 
values in xmm1 and xmm2/mem32 and set 
the EFLAGS flags accordingly.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA
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GREATER_THAN: ZF,PF,CF ← 000;
LESS_THAN: ZF,PF,CF ← 001;
EQUAL: ZF,PF,CF ← 100;

ESAC;
OF,AF,SF ← 0; }

Intel C/C++ Compiler Intrinsic Equivalents

int _mm_comieq_ss (__m128 a, __m128 b)

int _mm_comilt_ss (__m128 a, __m128 b)

int _mm_comile_ss (__m128 a, __m128 b)

int _mm_comigt_ss (__m128 a, __m128 b)

int _mm_comige_ss (__m128 a, __m128 b)

int _mm_comineq_ss (__m128 a, __m128 b)

SIMD Floating-Point Exceptions

Invalid (if SNaN or QNaN operands), Denormal.

Other Exceptions
See Exceptions Type 3; additionally
#UD If VEX.vvvv != 1111B.

...

Table 3-17.  Information Returned by CPUID Instruction

Initial EAX 
Value Information Provided about the Processor

Basic CPUID Information

0H EAX
EBX
ECX
EDX

Maximum Input Value for Basic CPUID Information (see Table 3-18)
“Genu”
“ntel”
“ineI”

01H EAX

EBX

ECX
EDX

Version Information: Type, Family, Model, and Stepping ID (see Figure 3-5)

Bits 07-00: Brand Index
Bits 15-08: CLFLUSH line size (Value ∗ 8 = cache line size in bytes)
Bits 23-16: Maximum number of addressable IDs for logical processors in this physical package*. 
Bits 31-24: Initial APIC ID

Feature Information (see Figure 3-6 and Table 3-20)
Feature Information (see Figure 3-7 and Table 3-21)

NOTES: 
* The nearest power-of-2 integer that is not smaller than EBX[23:16] is the number of unique initial APIC

IDs reserved for addressing different logical processors in a physical package. This field is only valid if
CPUID.1.EDX.HTT[bit 28]= 1.
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02H EAX
EBX
ECX
EDX

Cache and TLB Information (see Table 3-22)
Cache and TLB Information
Cache and TLB Information
Cache and TLB Information

03H EAX
EBX
ECX

EDX

Reserved.
Reserved.
Bits 00-31 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the value 
in this register is reserved.)
Bits 32-63 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the value 
in this register is reserved.)

NOTES: 
Processor serial number (PSN) is not supported in the Pentium 4 processor or later. On all models, use
the PSN flag (returned using CPUID) to check for PSN support before accessing the feature. 

See AP-485, Intel Processor Identification and the CPUID Instruction (Order Number 241618) for more 
information on PSN.

CPUID leaves > 3 < 80000000 are visible only when IA32_MISC_ENABLE.BOOT_NT4[bit 22] = 0 (default).

Deterministic Cache Parameters Leaf 

04H NOTES:
Leaf 04H output depends on the initial value in ECX.* 
See also: “INPUT EAX = 4: Returns Deterministic Cache Parameters for each level on page 3-167.

EAX Bits 04-00: Cache Type Field
0 = Null - No more caches
1 = Data Cache 
2 = Instruction Cache
3 = Unified Cache
4-31 = Reserved

Bits 07-05: Cache Level (starts at 1) 
Bit 08: Self Initializing cache level (does not need SW initialization)
Bit 09: Fully Associative cache

Bits 13-10: Reserved
Bits 25-14: Maximum number of addressable IDs for logical processors sharing this cache**, *** 
Bits 31-26: Maximum number of addressable IDs for processor cores in the physical 
package**, ****, *****

EBX Bits 11-00: L = System Coherency Line Size**
Bits 21-12: P = Physical Line partitions**
Bits 31-22: W = Ways of associativity**

ECX Bits 31-00: S = Number of Sets**

Table 3-17.  Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
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EDX Bit 0: Write-Back Invalidate/Invalidate
0 = WBINVD/INVD from threads sharing this cache acts upon lower level caches for threads sharing this 
cache.
1 = WBINVD/INVD is not guaranteed to act upon lower level caches of non-originating threads sharing 
this cache.

Bit 1: Cache Inclusiveness
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.

Bit 2: Complex Cache Indexing
0 = Direct mapped cache.
1 = A complex function is used to index the cache, potentially using all address bits.

Bits 31-03: Reserved = 0

NOTES:
* If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0. Invalid sub-leaves of EAX = 04H: 

ECX = n, n > 3.
** Add one to the return value to get the result. 
***The nearest power-of-2 integer that is not smaller than (1 + EAX[25:14]) is the number of unique ini-

tial APIC IDs reserved for addressing different logical processors sharing this cache
**** The nearest power-of-2 integer that is not smaller than (1 + EAX[31:26]) is the number of unique 

Core_IDs reserved for addressing different processor cores in a physical package. Core ID is a subset of 
bits of the initial APIC ID. 

***** The returned value is constant for valid initial values in ECX. Valid ECX values start from 0. 

MONITOR/MWAIT Leaf 

05H EAX Bits 15-00: Smallest monitor-line size in bytes (default is processor's monitor granularity) 
Bits 31-16: Reserved = 0

EBX Bits 15-00: Largest monitor-line size in bytes (default is processor's monitor granularity) 
Bits 31-16: Reserved = 0

ECX Bit 00: Enumeration of Monitor-Mwait extensions (beyond EAX and EBX registers) supported

Bit 01: Supports treating interrupts as break-event for MWAIT, even when interrupts disabled

Bits 31 - 02: Reserved 

EDX Bits 03 - 00: Number of C0* sub C-states supported using MWAIT
Bits 07 - 04: Number of C1* sub C-states supported using MWAIT
Bits 11 - 08: Number of C2* sub C-states supported using MWAIT
Bits 15 - 12: Number of C3* sub C-states supported using MWAIT
Bits 19 - 16: Number of C4* sub C-states supported using MWAIT
Bits 31 - 20: Reserved = 0
NOTE:
* The definition of C0 through C4 states for MWAIT extension are processor-specific C-states, not ACPI C-

states.

Thermal and Power Management Leaf 

Table 3-17.  Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
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06H EAX

EBX

Bit 00: Digital temperature sensor is supported if set
Bit 01: Intel Turbo Boost Technology Available (see description of IA32_MISC_ENABLE[38]).
Bit 02: ARAT. APIC-Timer-always-running feature is supported if set.
Bit 03: Reserved 
Bit 04: PLN. Power limit notification controls are supported if set.
Bit 05: ECMD. Clock modulation duty cycle extension is supported if set.
Bit 06: PTM. Package thermal management is supported if set.
Bits 31 - 07: Reserved 
Bits 03 - 00: Number of Interrupt Thresholds in Digital Thermal Sensor
Bits 31 - 04: Reserved 

ECX Bit 00: Hardware Coordination Feedback Capability (Presence of IA32_MPERF and IA32_APERF). The 
capability to provide a measure of delivered processor performance (since last reset of the counters), as 
a percentage of expected processor performance at frequency specified in CPUID Brand String
Bits 02 - 01: Reserved = 0
Bit 03: The processor supports performance-energy bias preference if CPUID.06H:ECX.SETBH[bit 3] is set 
and it also implies the presence of a new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H)
Bits 31 - 04: Reserved = 0

EDX Reserved = 0

Structured Extended Feature Flags Enumeration Leaf (Output depends on ECX input value)

07H Sub-leaf 0 (Input ECX = 0). *

EAX Bits 31-00: Reports the maximum input value for supported leaf 7 sub-leaves.

EBX Bit 00: FSGSBASE. Supports RDFSBASE/RDGSBASE/WRFSBASE/WRGSBASE if 1.
Bit 01: IA32_TSC_ADJUST MSR is supported if 1.
Bit 06: Reserved
Bit 07: SMEP. Supports Supervisor Mode Execution Protection if 1.
Bit 08: Reserved
Bit 09: Supports Enhanced REP MOVSB/STOSB if 1.
Bit 10: INVPCID. If 1, supports INVPCID instruction for system software that manages process-context 
identifiers.
Bits 11: Reserved
Bit 12: Supports Quality of Service Monitoring (QM) capability if 1.
Bit 13: Deprecates FPU CS and FPU DS values if 1.
Bits 31:14: Reserved

ECX Reserved 

EDX Reserved

NOTE:
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Invalid sub-leaves of EAX = 07H: 

ECX = n, n > 0.

Table 3-17.  Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
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Direct Cache Access Information Leaf 

09H EAX

EBX

ECX

EDX

Value of bits [31:0] of IA32_PLATFORM_DCA_CAP MSR (address 1F8H)

Reserved 

Reserved 

Reserved 

Architectural Performance Monitoring Leaf 

0AH EAX Bits 07 - 00: Version ID of architectural performance monitoring
Bits 15- 08: Number of general-purpose performance monitoring counter per logical processor
Bits 23 - 16: Bit width of general-purpose, performance monitoring counter 
Bits 31 - 24: Length of EBX bit vector to enumerate architectural performance monitoring events

EBX Bit 00: Core cycle event not available if 1
Bit 01: Instruction retired event not available if 1
Bit 02: Reference cycles event not available if 1
Bit 03: Last-level cache reference event not available if 1
Bit 04: Last-level cache misses event not available if 1
Bit 05: Branch instruction retired event not available if 1
Bit 06: Branch mispredict retired event not available if 1
Bits 31- 07: Reserved = 0

ECX Reserved = 0

EDX Bits 04 - 00: Number of fixed-function performance counters (if Version ID > 1)
Bits 12- 05: Bit width of fixed-function performance counters (if Version ID > 1)
Reserved = 0

Extended Topology Enumeration Leaf 

0BH NOTES:
Most of Leaf 0BH output depends on the initial value in ECX. 
EDX output do not vary with initial value in ECX.
ECX[7:0] output always reflect initial value in ECX.
If ECX contains an invalid sub-leaf index, EAX/EBX/EDX return 0; ECX returns same ECX input. Invalid 
sub-leaves of EAX = 0BH: ECX = n, n > 1.
Leaf 0BH exists if EBX[15:0] is not zero.

EAX Bits 04-00: Number of bits to shift right on x2APIC ID to get a unique topology ID of the next level type*. 
All logical processors with the same next level ID share current level.
Bits 31-05: Reserved.

EBX Bits 15 - 00: Number of logical processors at this level type. The number reflects configuration as shipped 
by Intel**.
Bits 31- 16: Reserved.

ECX Bits 07 - 00: Level number. Same value in ECX input
Bits 15 - 08: Level type***.
Bits 31 - 16:: Reserved.

EDX Bits 31- 00: x2APIC ID the current logical processor.

Table 3-17.  Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 40

NOTES:
* Software should use this field (EAX[4:0]) to enumerate processor topology of the system.

** Software must not use EBX[15:0] to enumerate processor topology of the system. This value in this 
field (EBX[15:0]) is only intended for display/diagnostic purposes. The actual number of logical processors 
available to BIOS/OS/Applications may be different from the value of EBX[15:0], depending on software 
and platform hardware configurations. 

*** The value of the “level type” field is not related to level numbers in any way, higher “level type” val-
ues do not mean higher levels. Level type field has the following encoding:
0 : invalid
1 : SMT
2 : Core
3-255 : Reserved

Processor Extended State Enumeration Main Leaf (EAX = 0DH, ECX = 0)

0DH NOTES:
Leaf 0DH main leaf (ECX = 0). 

EAX Bits 31-00: Reports the valid bit fields of the lower 32 bits of XCR0. If a bit is 0, the corresponding bit 
field in XCR0 is reserved.
Bit 00: legacy x87 
Bit 01: 128-bit SSE
Bit 02: 256-bit AVX
Bits 31- 03: Reserved

EBX Bits 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) required by 
enabled features in XCR0. May be different than ECX if some features at the end of the XSAVE save area 
are not enabled.

ECX Bit 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) of the XSAVE/
XRSTOR save area required by all supported features in the processor, i.e all the valid bit fields in XCR0. 

EDX Bit 31-00: Reports the valid bit fields of the upper 32 bits of XCR0. If a bit is 0, the corresponding bit field 
in XCR0 is reserved.

Processor Extended State Enumeration Sub-leaf (EAX = 0DH, ECX = 1)

0DH EAX

EBX

ECX

EDX

Bits 31-01: Reserved

Bit 00: XSAVEOPT is available;

Reserved

Reserved

Reserved

Processor Extended State Enumeration Sub-leaves (EAX = 0DH, ECX = n, n > 1)

0DH NOTES:
Leaf 0DH output depends on the initial value in ECX. 
Each valid sub-leaf index maps to a valid bit in the XCR0 register starting at bit position 2
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Invalid sub-leaves of EAX = 0DH: 

ECX = n, n > 2.

Table 3-17.  Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
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EAX Bits 31-0: The size in bytes (from the offset specified in EBX) of the save area for an extended state fea-
ture associated with a valid sub-leaf index, n. This field reports 0 if the sub-leaf index, n, is invalid*.

EBX Bits 31-0: The offset in bytes of this extended state component’s save area from the beginning of the 
XSAVE/XRSTOR area.
This field reports 0 if the sub-leaf index, n, is invalid*.

ECX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.

EDX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.

Quality of Service Resource Type Enumeration Sub-leaf (EAX = 0FH, ECX = 0)

0FH NOTES:
Leaf 0FH output depends on the initial value in ECX. 
Sub-leaf index 0 reports valid resource type starting at bit position 1 of EDX

EAX Reserved.

EBX Bits 31-0: Maximum range (zero-based) of RMID within this physical processor of all types.

ECX Reserved.

EDX Bit 00: Reserved.
Bit 01: Supports L3 Cache QoS if 1.
Bits 31:02: Reserved

L3 Cache QoS Capability Enumeration Sub-leaf (EAX = 0FH, ECX = 1)

0FH NOTES:
Leaf 0FH output depends on the initial value in ECX. 

EAX Reserved.

EBX Bits 31-0: Conversion factor from reported IA32_QM_CTR value to occupancy metric (bytes).

ECX Maximum range (zero-based) of RMID of this resource type.

EDX Bit 00: Supports L3 occupancy monitoring if 1.
Bits 31:01: Reserved

Unimplemented CPUID Leaf Functions

40000000H 
-

4FFFFFFFH

Invalid. No existing or future CPU will return processor identification or feature information if the initial 
EAX value is in the range 40000000H to 4FFFFFFFH.

Extended Function CPUID Information

80000000H EAX Maximum Input Value for Extended Function CPUID Information (see 
Table 3-18).

EBX
ECX
EDX

Reserved
Reserved
Reserved

Table 3-17.  Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
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80000001H EAX

EBX

ECX

Extended Processor Signature and Feature Bits.

Reserved

Bit 00: LAHF/SAHF available in 64-bit mode
Bits 31-01 Reserved

EDX Bits 10-00: Reserved
Bit 11: SYSCALL/SYSRET available in 64-bit mode
Bits 19-12: Reserved = 0
Bit 20: Execute Disable Bit available
Bits 25-21: Reserved = 0
Bit 26: 1-GByte pages are available if 1
Bit 27: RDTSCP and IA32_TSC_AUX are available if 1
Bits 28: Reserved = 0
Bit 29: Intel® 64 Architecture available if 1
Bits 31-30: Reserved = 0

80000002H EAX
EBX
ECX
EDX

Processor Brand String
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000003H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000004H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000005H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Reserved = 0

80000006H EAX
EBX

Reserved = 0
Reserved = 0

ECX

EDX

Bits 07-00: Cache Line size in bytes
Bits 11-08: Reserved
Bits 15-12: L2 Associativity field *
Bits 31-16: Cache size in 1K units
Reserved = 0

Table 3-17.  Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
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... 

INPUT EAX = 0DH: Returns Processor Extended States Enumeration Information

When CPUID executes with EAX set to 0DH and ECX = 0, the processor returns information about the bit-vector 
representation of all processor state extensions that are supported in the processor and storage size require-
ments of the XSAVE/XRSTOR area. See Table 3-17. 

When CPUID executes with EAX set to 0DH and ECX = n (n > 1, and is a valid sub-leaf index), the processor 
returns information about the size and offset of each processor extended state save area within the XSAVE/
XRSTOR area. See Table 3-17. Software can use the forward-extendable technique depicted below to query the 
valid sub-leaves and obtain size and offset information for each processor extended state save area:

For i = 2 to 62 // sub-leaf 1 is reserved
IF (CPUID.(EAX=0DH, ECX=0):VECTOR[i] = 1 ) // VECTOR is the 64-bit value of EDX:EAX

Execute CPUID.(EAX=0DH, ECX = i) to examine size and offset for sub-leaf i; 
FI;

INPUT EAX = 0FH: Returns Quality of Service (QoS) Enumeration Information

When CPUID executes with EAX set to 0FH and ECX = 0, the processor returns information about the bit-vector 
representation of QoS resource type that are supported in the processor and maximum range of RMID values the 
processor can use to monitor of any supported resource types. Each bit, starting from bit 1, corresponds to a 

NOTES:
* L2 associativity field encodings:

00H - Disabled
01H - Direct mapped
02H - 2-way
04H - 4-way
06H - 8-way
08H - 16-way
0FH - Fully associative

80000007H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Bits 07-00: Reserved = 0
Bit 08: Invariant TSC available if 1
Bits 31-09: Reserved = 0

80000008H EAX Linear/Physical Address size 
Bits 07-00: #Physical Address Bits*
Bits 15-8: #Linear Address Bits
Bits 31-16: Reserved = 0

EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0

NOTES:
* If CPUID.80000008H:EAX[7:0] is supported, the maximum physical address number supported should 

come from this field.

Table 3-17.  Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
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specific resource type if the bit is set. The bit position corresponds to the sub-leaf index that software must use to 
query monitoring capability available for that type. See Table 3-17.

When CPUID executes with EAX set to 0FH and ECX = n (n >= 1, and is a valid sub-leaf index), the processor 
returns information software can use to program IA32_PQR_ASSOC, IA32_QM_EVTSEL MSRs before reading QoS 
data from the IA32_QM_CTR MSR.

METHODS FOR RETURNING BRANDING INFORMATION

Use the following techniques to access branding information:

1. Processor brand string method; this method also returns the processor’s maximum operating frequency

2. Processor brand index; this method uses a software supplied brand string table.

These two methods are discussed in the following sections. For methods that are available in early processors, see 
Section: “Identification of Earlier IA-32 Processors” in Chapter 15 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

...
Table 3-24 shows brand indices that have identification strings associated with them.

Table 3-24.  Mapping of Brand Indices; and Intel 64 and IA-32 Processor Brand Strings

Brand Index Brand String

00H This processor does not support the brand identification feature

01H Intel(R) Celeron(R) processor1

02H Intel(R) Pentium(R) III processor1

03H Intel(R) Pentium(R) III Xeon(R) processor; If processor signature = 000006B1h, then Intel(R) Celeron(R) 
processor

04H Intel(R) Pentium(R) III processor

06H Mobile Intel(R) Pentium(R) III processor-M

07H Mobile Intel(R) Celeron(R) processor1

08H Intel(R) Pentium(R) 4 processor

09H Intel(R) Pentium(R) 4 processor

0AH Intel(R) Celeron(R) processor1

0BH Intel(R) Xeon(R) processor; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor MP

0CH Intel(R) Xeon(R) processor MP

0EH Mobile Intel(R) Pentium(R) 4 processor-M; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor

0FH Mobile Intel(R) Celeron(R) processor1

11H Mobile Genuine Intel(R) processor

12H Intel(R) Celeron(R) M processor

13H Mobile Intel(R) Celeron(R) processor1

14H Intel(R) Celeron(R) processor

15H Mobile Genuine Intel(R) processor

16H Intel(R) Pentium(R) M processor

17H Mobile Intel(R) Celeron(R) processor1

18H – 0FFH RESERVED
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IA-32 Architecture Compatibility

CPUID is not supported in early models of the Intel486 processor or in any IA-32 processor earlier than the 
Intel486 processor.

Operation

IA32_BIOS_SIGN_ID MSR ← Update with installed microcode revision number;

CASE (EAX) OF
EAX = 0:

EAX ← Highest basic function input value understood by CPUID;
EBX ← Vendor identification string;
EDX ← Vendor identification string;
ECX ← Vendor identification string;

BREAK;
EAX = 1H:

EAX[3:0] ← Stepping ID; 
EAX[7:4] ← Model; 
EAX[11:8] ← Family; 
EAX[13:12] ← Processor type; 
EAX[15:14] ← Reserved;
EAX[19:16] ← Extended Model;
EAX[27:20] ← Extended Family;
EAX[31:28] ← Reserved;
EBX[7:0] ← Brand Index; (* Reserved if the value is zero. *)
EBX[15:8] ← CLFLUSH Line Size;
EBX[16:23] ← Reserved; (* Number of threads enabled = 2 if MT enable fuse set. *)
EBX[24:31] ← Initial APIC ID;
ECX ← Feature flags; (* See Figure 3-6. *)
EDX ← Feature flags; (* See Figure 3-7. *)

BREAK;
EAX = 2H:

EAX ← Cache and TLB information; 
 EBX ← Cache and TLB information; 
 ECX ← Cache and TLB information; 

EDX ← Cache and TLB information; 
BREAK;
EAX = 3H:

EAX ← Reserved; 
EBX ← Reserved; 
 ECX ← ProcessorSerialNumber[31:0]; 

(* Pentium III processors only, otherwise reserved. *)
EDX ← ProcessorSerialNumber[63:32]; 
(* Pentium III processors only, otherwise reserved. *

BREAK
EAX = 4H:

NOTES:
1. Indicates versions of these processors that were introduced after the Pentium III 

Table 3-24.  Mapping of Brand Indices; and Intel 64 and IA-32 Processor Brand Strings
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EAX ← Deterministic Cache Parameters Leaf; (* See Table 3-17. *)
EBX ← Deterministic Cache Parameters Leaf; 

 ECX ← Deterministic Cache Parameters Leaf; 
EDX ← Deterministic Cache Parameters Leaf; 

BREAK;
EAX = 5H:

EAX ← MONITOR/MWAIT Leaf; (* See Table 3-17. *)
 EBX ← MONITOR/MWAIT Leaf; 
 ECX ← MONITOR/MWAIT Leaf; 

EDX ← MONITOR/MWAIT Leaf; 
BREAK;
EAX = 6H:

EAX ← Thermal and Power Management Leaf; (* See Table 3-17. *)
 EBX ← Thermal and Power Management Leaf; 
 ECX ← Thermal and Power Management Leaf; 

EDX ← Thermal and Power Management Leaf; 
BREAK;
EAX = 7H:

EAX ← Structured Extended Feature Flags Enumeration Leaf; (* See Table 3-17. *)
EBX ← Structured Extended Feature Flags Enumeration Leaf; 

 ECX ← Structured Extended Feature Flags Enumeration Leaf; 
EDX ← Structured Extended Feature Flags Enumeration Leaf; 

BREAK;
EAX = 8H:

EAX ← Reserved = 0;
 EBX ← Reserved = 0; 
 ECX ← Reserved = 0; 

EDX ← Reserved = 0; 
BREAK;
EAX = 9H:

EAX ← Direct Cache Access Information Leaf; (* See Table 3-17. *)
 EBX ← Direct Cache Access Information Leaf; 
 ECX ← Direct Cache Access Information Leaf; 

EDX ← Direct Cache Access Information Leaf; 
BREAK;
EAX = AH:

EAX ← Architectural Performance Monitoring Leaf; (* See Table 3-17. *)
 EBX ← Architectural Performance Monitoring Leaf; 
 ECX ← Architectural Performance Monitoring Leaf; 

EDX ← Architectural Performance Monitoring Leaf; 
BREAK

EAX = BH:
EAX ← Extended Topology Enumeration Leaf; (* See Table 3-17. *)
EBX ← Extended Topology Enumeration Leaf; 

 ECX ← Extended Topology Enumeration Leaf; 
EDX ← Extended Topology Enumeration Leaf; 

BREAK;
EAX = CH:

EAX ← Reserved = 0;
 EBX ← Reserved = 0; 
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 ECX ← Reserved = 0; 
EDX ← Reserved = 0; 

BREAK;
EAX = DH:

EAX ← Processor Extended State Enumeration Leaf; (* See Table 3-17. *)
 EBX ← Processor Extended State Enumeration Leaf; 
 ECX ← Processor Extended State Enumeration Leaf; 

EDX ← Processor Extended State Enumeration Leaf; 
BREAK;
EAX = EH:

EAX ← Reserved = 0;
 EBX ← Reserved = 0; 
 ECX ← Reserved = 0; 

EDX ← Reserved = 0; 
BREAK;
EAX = FH:

EAX ← Quality of Service Enumeration Leaf; (* See Table 3-17. *)
 EBX ← Quality of Service Enumeration Leaf; 
 ECX ← Quality of Service Enumeration Leaf; 

EDX ← Quality of Service Enumeration Leaf; 
BREAK;

BREAK;
EAX = 80000000H:

EAX ← Highest extended function input value understood by CPUID;
EBX ← Reserved; 
ECX ← Reserved; 
EDX ← Reserved; 

BREAK;
EAX = 80000001H:

EAX ← Reserved; 
EBX ← Reserved; 
ECX ← Extended Feature Bits (* See Table 3-17.*); 
EDX ← Extended Feature Bits (* See Table 3-17. *); 

BREAK;
EAX = 80000002H:

EAX ← Processor Brand String; 
EBX ← Processor Brand String, continued;
ECX ← Processor Brand String, continued; 
EDX ← Processor Brand String, continued; 

BREAK;
EAX = 80000003H:

EAX ← Processor Brand String, continued; 
EBX ← Processor Brand String, continued; 
ECX ← Processor Brand String, continued; 
EDX ← Processor Brand String, continued; 

BREAK;
EAX = 80000004H:

EAX ← Processor Brand String, continued; 
EBX ← Processor Brand String, continued; 
ECX ← Processor Brand String, continued; 
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EDX ← Processor Brand String, continued;
BREAK;
EAX = 80000005H:

EAX ← Reserved = 0; 
EBX ← Reserved = 0; 
ECX ← Reserved = 0; 
EDX ← Reserved = 0; 

BREAK;
EAX = 80000006H:

EAX ← Reserved = 0; 
EBX ← Reserved = 0; 
ECX ← Cache information; 
EDX ← Reserved = 0; 

BREAK;
EAX = 80000007H:

EAX ← Reserved = 0; 
EBX ← Reserved = 0; 
ECX ← Reserved = 0; 
EDX ← Reserved = Misc Feature Flags; 

BREAK;
EAX = 80000008H:

EAX ← Reserved = Physical Address Size Information; 
EBX ← Reserved = Virtual Address Size Information; 
ECX ← Reserved = 0; 
EDX ← Reserved = 0; 

BREAK;
EAX >= 40000000H and EAX <= 4FFFFFFFH:
DEFAULT: (* EAX = Value outside of recognized range for CPUID. *)

(* If the highest basic information leaf data depend on ECX input value, ECX is honored.*)
EAX ← Reserved; (* Information returned for highest basic information leaf. *)
EBX ← Reserved; (* Information returned for highest basic information leaf. *)
ECX ← Reserved; (* Information returned for highest basic information leaf. *)
EDX ← Reserved; (* Information returned for highest basic information leaf. *)

BREAK;
ESAC;

...
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CVTDQ2PD—Convert Packed Dword Integers to Packed Double-Precision FP Values

Instruction Operand Encoding

Description

Converts two packed signed doubleword integers in the source operand (second operand) to two packed double-
precision floating-point values in the destination operand (first operand). 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The source operand is an XMM register or 64- bit memory location. The destination 
operation is an XMM register. The upper bits (VLMAX-1:128) of the corresponding XMM register destination are 
unmodified.
VEX.128 encoded version: The source operand is an XMM register or 64- bit memory location. The destination 
operation is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The source operand is a YMM register or 128- bit memory location. The destination 
operation is a YMM register. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F E6

CVTDQ2PD xmm1, xmm2/m64

RM V/V SSE2 Convert two packed signed doubleword 
integers from xmm2/m128 to two packed 
double-precision floating-point values in 
xmm1.

VEX.128.F3.0F.WIG E6 /r

VCVTDQ2PD xmm1, xmm2/m64

RM V/V AVX Convert two packed signed doubleword 
integers from xmm2/mem to two packed 
double-precision floating-point values in 
xmm1.

VEX.256.F3.0F.WIG E6 /r

VCVTDQ2PD ymm1, xmm2/m128

RM V/V AVX Convert four packed signed doubleword 
integers from xmm2/mem to four packed 
double-precision floating-point values in 
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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Figure 3-10.  CVTDQ2PD (VEX.256 encoded version)

Operation

CVTDQ2PD (128-bit Legacy SSE version)
DEST[63:0]  Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64]  Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[VLMAX-1:128] (unmodified)

VCVTDQ2PD (VEX.128 encoded version)
DEST[63:0]  Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64]  Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[VLMAX-1:128]  0

VCVTDQ2PD (VEX.256 encoded version)
DEST[63:0]  Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64]  Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[191:128]  Convert_Integer_To_Double_Precision_Floating_Point(SRC[95:64])
DEST[255:192]  Convert_Integer_To_Double_Precision_Floating_Point(SRC[127:96)

Intel C/C++ Compiler Intrinsic Equivalent

CVTDQ2PD: __m128d _mm_cvtepi32_pd(__m128i a)

VCVTDQ2PD: __m256d _mm256_cvtepi32_pd (__m128i src)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.vvvv != 1111B.

...

DEST

SRC X0X1X2X3

X3 X2 X1 X0
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CVTPD2DQ—Convert Packed Double-Precision FP Values to Packed Dword Integers

Instruction Operand Encoding

Description

Converts two packed double-precision floating-point values in the source operand (second operand) to two 
packed signed doubleword integers in the destination operand (first operand).

The source operand can be an XMM register or a 128-bit memory location. The destination operand is an XMM 
register. The result is stored in the low quadword of the destination operand and the high quadword is cleared to 
all 0s. 

When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR 
register. If a converted result is larger than the maximum signed doubleword integer, the floating-point invalid 
exception is raised, and if this exception is masked, the indefinite integer value (80000000H) is returned.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination 
operation is an XMM register. Bits[127:64] of the destination XMM register are zeroed. However, the upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are unmodified. 
VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination 
operation is a YMM register. The upper bits (VLMAX-1:64) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination 
operation is an XMM register. The upper bits (255:128) of the corresponding YMM register destination are zeroed.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

...

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F E6 /r

CVTPD2DQ xmm1, xmm2/m128

RM V/V SSE2 Convert two packed double-precision floating-
point values from xmm2/m128 to two packed 
signed doubleword integers in xmm1.

VEX.128.F2.0F.WIG E6 /r

VCVTPD2DQ xmm1, xmm2/m128

RM V/V AVX Convert two packed double-precision floating-
point values in xmm2/mem to two signed 
doubleword integers in xmm1.

VEX.256.F2.0F.WIG E6 /r

VCVTPD2DQ xmm1, ymm2/m256

RM V/V AVX Convert four packed double-precision floating-
point values in ymm2/mem to four signed 
doubleword integers in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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CVTTPD2DQ—Convert with Truncation Packed Double-Precision FP Values to Packed Dword 
Integers

Instruction Operand Encoding

Description

Converts two or four packed double-precision floating-point values in the source operand (second operand) to two 
or four packed signed doubleword integers in the destination operand (first operand). 
When a conversion is inexact, a truncated (round toward zero) value is returned.If a converted result is larger 
than the maximum signed doubleword integer, the floating-point invalid exception is raised, and if this exception 
is masked, the indefinite integer value (80000000H) is returned.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination 
operation is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.
VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination 
operation is a YMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination 
operation is an XMM register. The upper bits (255:128) of the corresponding YMM register destination are zeroed.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

...

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F E6 /r

CVTTPD2DQ xmm1, xmm2/m128

RM V/V SSE2 Convert two packed double-precision floating-
point values from xmm2/m128 to two packed 
signed doubleword integers in xmm1 using 
truncation.

VEX.128.66.0F.WIG E6 /r

VCVTTPD2DQ xmm1, xmm2/m128

RM V/V AVX Convert two packed double-precision floating-
point values in xmm2/mem to two signed 
doubleword integers in xmm1 using 
truncation.

VEX.256.66.0F.WIG E6 /r

VCVTTPD2DQ xmm1, ymm2/m256

RM V/V AVX Convert four packed double-precision floating-
point values in ymm2/mem to four signed 
doubleword integers in xmm1 using 
truncation.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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DPPD — Dot Product of Packed Double Precision Floating-Point Values

Instruction Operand Encoding

Description

Conditionally multiplies the packed double-precision floating-point values in the destination operand (first 
operand) with the packed double-precision floating-point values in the source (second operand) depending on a 
mask extracted from bits [5:4] of the immediate operand (third operand). If a condition mask bit is zero, the 
corresponding multiplication is replaced by a value of 0.0 in the manner described by Section 12.8.4 of Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 1.

The two resulting double-precision values are summed into an intermediate result. The intermediate result is 
conditionally broadcasted to the destination using a broadcast mask specified by bits [1:0] of the immediate byte. 

If a broadcast mask bit is "1", the intermediate result is copied to the corresponding qword element in the desti-
nation operand. If a broadcast mask bit is zero, the corresponding element in the destination is set to zero.
DPPD follows the NaN forwarding rules stated in the Software Developer’s Manual, vol. 1, table 4.7. These rules 
do not cover horizontal prioritization of NaNs. Horizontal propagation of NaNs to the destination and the posi-
tioning of those NaNs in the destination is implementation dependent. NaNs on the input sources or computation-
ally generated NaNs will have at least one NaN propagated to the destination.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destina-
tion operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.
If VDPPD is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will cause an 
#UD exception.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 3A 41 /r ib

DPPD xmm1, xmm2/m128, imm8

RMI V/V SSE4_1 Selectively multiply packed DP floating-point 
values from xmm1 with packed DP floating-
point values from xmm2, add and selectively 
store the packed DP floating-point values to 
xmm1.

VEX.NDS.128.66.0F3A.WIG 41 /r ib

VDPPD xmm1,xmm2, xmm3/m128, imm8

RVMI V/V AVX Selectively multiply packed DP floating-point 
values from xmm2 with packed DP floating-
point values from xmm3, add and selectively 
store the packed DP floating-point values to 
xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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Operation

DP_primitive (SRC1, SRC2)
IF (imm8[4] = 1) 

THEN Temp1[63:0]  DEST[63:0] * SRC[63:0]; // update SIMD exception flags
ELSE Temp1[63:0]  +0.0; FI;

IF (imm8[5] = 1) 
THEN Temp1[127:64]  DEST[127:64] * SRC[127:64]; // update SIMD exception flags
ELSE Temp1[127:64]  +0.0; FI;

/* if unmasked expection reported, execute exception handler*/

Temp2[63:0]  Temp1[63:0] + Temp1[127:64]; // update SIMD exception flags
/* if unmasked expection reported, execute exception handler*/

IF (imm8[0] = 1) 
THEN DEST[63:0]  Temp2[63:0];
ELSE DEST[63:0]  +0.0; FI;

IF (imm8[1] = 1) 
THEN DEST[127:64]  Temp2[63:0];
ELSE DEST[127:64]  +0.0; FI;

DPPD (128-bit Legacy SSE version)
DEST[127:0]DP_Primitive(SRC1[127:0], SRC2[127:0]);
DEST[VLMAX-1:128] (Unmodified)

VDPPD (VEX.128 encoded version)
DEST[127:0]DP_Primitive(SRC1[127:0], SRC2[127:0]);
DEST[VLMAX-1:128]  0

Flags Affected

None

Intel C/C++ Compiler Intrinsic Equivalent

DPPD: __m128d _mm_dp_pd ( __m128d a, __m128d b, const int mask);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal
Exceptions are determined separately for each add and multiply operation. Unmasked exceptions will leave the 
destination untouched.

Other Exceptions
See Exceptions Type 2; additionally
#UD If VEX.L= 1.

...
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DPPS — Dot Product of Packed Single Precision Floating-Point Values

Instruction Operand Encoding

Description

Conditionally multiplies the packed single precision floating-point values in the destination operand (first 
operand) with the packed single-precision floats in the source (second operand) depending on a mask extracted 
from the high 4 bits of the immediate byte (third operand). If a condition mask bit in Imm8[7:4] is zero, the corre-
sponding multiplication is replaced by a value of 0.0 in the manner described by Section 12.8.4 of Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1.

The four resulting single-precision values are summed into an intermediate result. The intermediate result is 
conditionally broadcasted to the destination using a broadcast mask specified by bits [3:0] of the immediate byte.

If a broadcast mask bit is "1", the intermediate result is copied to the corresponding dword element in the desti-
nation operand. If a broadcast mask bit is zero, the corresponding element in the destination is set to zero.
DPPS follows the NaN forwarding rules stated in the Software Developer’s Manual, vol. 1, table 4.7. These rules 
do not cover horizontal prioritization of NaNs. Horizontal propagation of NaNs to the destination and the posi-
tioning of those NaNs in the destination is implementation dependent. NaNs on the input sources or computation-
ally generated NaNs will have at least one NaN propagated to the destination.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destina-
tion operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 3A 40 /r ib

DPPS xmm1, xmm2/m128, imm8

RMI V/V SSE4_1 Selectively multiply packed SP floating-point 
values from xmm1 with packed SP floating-
point values from xmm2, add and selectively 
store the packed SP floating-point values or 
zero values to xmm1.

VEX.NDS.128.66.0F3A.WIG 40 /r ib

VDPPS xmm1,xmm2, xmm3/m128, imm8

RVMI V/V AVX Multiply packed SP floating point values from 
xmm1 with packed SP floating point values 
from xmm2/mem selectively add and store to 
xmm1.

VEX.NDS.256.66.0F3A.WIG 40 /r ib

VDPPS ymm1, ymm2, ymm3/m256, imm8

RVMI V/V AVX Multiply packed single-precision floating-point 
values from ymm2 with packed SP floating 
point values from ymm3/mem, selectively add 
pairs of elements and store to ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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Operation

DP_primitive (SRC1, SRC2)
IF (imm8[4] = 1) 

THEN Temp1[31:0]  DEST[31:0] * SRC[31:0]; // update SIMD exception flags
ELSE Temp1[31:0]  +0.0; FI;

IF (imm8[5] = 1) 
THEN Temp1[63:32]  DEST[63:32] * SRC[63:32]; // update SIMD exception flags
ELSE Temp1[63:32]  +0.0; FI;

IF (imm8[6] = 1) 
THEN Temp1[95:64]  DEST[95:64] * SRC[95:64]; // update SIMD exception flags
ELSE Temp1[95:64]  +0.0; FI;

IF (imm8[7] = 1) 
THEN Temp1[127:96]  DEST[127:96] * SRC[127:96]; // update SIMD exception flags
ELSE Temp1[127:96]  +0.0; FI;

Temp2[31:0]  Temp1[31:0] + Temp1[63:32]; // update SIMD exception flags
/* if unmasked expection reported, execute exception handler*/
Temp3[31:0]  Temp1[95:64] + Temp1[127:96]; // update SIMD exception flags
/* if unmasked expection reported, execute exception handler*/
Temp4[31:0]  Temp2[31:0] + Temp3[31:0]; // update SIMD exception flags
/* if unmasked expection reported, execute exception handler*/

IF (imm8[0] = 1) 
THEN DEST[31:0]  Temp4[31:0];
ELSE DEST[31:0]  +0.0; FI;

IF (imm8[1] = 1) 
THEN DEST[63:32]  Temp4[31:0];
ELSE DEST[63:32]  +0.0; FI;

IF (imm8[2] = 1) 
THEN DEST[95:64]  Temp4[31:0];
ELSE DEST[95:64]  +0.0; FI;

IF (imm8[3] = 1) 
THEN DEST[127:96]  Temp4[31:0];
ELSE DEST[127:96]  +0.0; FI;

DPPS (128-bit Legacy SSE version)
DEST[127:0]DP_Primitive(SRC1[127:0], SRC2[127:0]);
DEST[VLMAX-1:128] (Unmodified)

VDPPS (VEX.128 encoded version)
DEST[127:0]DP_Primitive(SRC1[127:0], SRC2[127:0]);
DEST[VLMAX-1:128]  0

VDPPS (VEX.256 encoded version)
DEST[127:0]DP_Primitive(SRC1[127:0], SRC2[127:0]);
DEST[255:128]DP_Primitive(SRC1[255:128], SRC2[255:128]);

Flags Affected

None
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Intel C/C++ Compiler Intrinsic Equivalent

(V)DPPS: __m128 _mm_dp_ps ( __m128 a, __m128 b, const int mask);

VDPPS: __m256 _mm256_dp_ps ( __m256 a, __m256 b, const int mask);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Exceptions are determined separately for each add and multiply operation, in the order of their execution. 
Unmasked exceptions will leave the destination operands unchanged.

Other Exceptions
See Exceptions Type 2.

...

FST/FSTP—Store Floating Point Value

Description

The FST instruction copies the value in the ST(0) register to the destination operand, which can be a memory 
location or another register in the FPU register stack. When storing the value in memory, the value is converted 
to single-precision or double-precision floating-point format. 

The FSTP instruction performs the same operation as the FST instruction and then pops the register stack. To pop 
the register stack, the processor marks the ST(0) register as empty and increments the stack pointer (TOP) by 1. 
The FSTP instruction can also store values in memory in double extended-precision floating-point format.

If the destination operand is a memory location, the operand specifies the address where the first byte of the 
destination value is to be stored. If the destination operand is a register, the operand specifies a register in the 
register stack relative to the top of the stack.

If the destination size is single-precision or double-precision, the significand of the value being stored is rounded 
to the width of the destination (according to the rounding mode specified by the RC field of the FPU control word), 
and the exponent is converted to the width and bias of the destination format. If the value being stored is too 
large for the destination format, a numeric overflow exception (#O) is generated and, if the exception is 
unmasked, no value is stored in the destination operand. If the value being stored is a denormal value, the 
denormal exception (#D) is not generated. This condition is simply signaled as a numeric underflow exception 
(#U) condition.

If the value being stored is ±0, ±∞, or a NaN, the least-significant bits of the significand and the exponent are 
truncated to fit the destination format. This operation preserves the value’s identity as a 0, ∞, or NaN.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 /2 FST m32fp Valid Valid Copy ST(0) to m32fp.

DD /2 FST m64fp Valid Valid Copy ST(0) to m64fp.

DD D0+i FST ST(i) Valid Valid Copy ST(0) to ST(i).

D9 /3 FSTP m32fp Valid Valid Copy ST(0) to m32fp and pop register stack.

DD /3 FSTP m64fp Valid Valid Copy ST(0) to m64fp and pop register stack.

DB /7 FSTP m80fp Valid Valid Copy ST(0) to m80fp and pop register stack.

DD D8+i FSTP ST(i) Valid Valid Copy ST(0) to ST(i) and pop register stack.
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If the destination operand is a non-empty register, the invalid-operation exception is not generated.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

DEST ← ST(0);

IF Instruction = FSTP 
THEN 

PopRegisterStack; 
FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction of if the floating-point inexact exception (#P) is generated: 0 ← 
not roundup; 1 ← roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA If destination result is an SNaN value or unsupported format, except when the destination 

format is in double extended-precision floating-point format.
#U Result is too small for the destination format.
#O Result is too large for the destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

...
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FXSAVE—Save x87 FPU, MMX Technology, and SSE State

Instruction Operand Encoding

Description

Saves the current state of the x87 FPU, MMX technology, XMM, and MXCSR registers to a 512-byte memory loca-
tion specified in the destination operand. The content layout of the 512 byte region depends on whether the 
processor is operating in non-64-bit operating modes or 64-bit sub-mode of IA-32e mode. 

Bytes 464:511 are available to software use. The processor does not write to bytes 464:511 of an FXSAVE area. 

The operation of FXSAVE in non-64-bit modes is described first.

Non-64-Bit Mode Operation

Table 3-53 shows the layout of the state information in memory when the processor is operating in legacy modes.

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F AE /0

FXSAVE m512byte

M Valid Valid Save the x87 FPU, MMX, XMM, and MXCSR 
register state to m512byte.

REX.W+ 0F AE /0

FXSAVE64 m512byte

M Valid N.E. Save the x87 FPU, MMX, XMM, and MXCSR 
register state to m512byte.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA

Table 3-53.  Non-64-bit-Mode Layout of FXSAVE and FXRSTOR 
Memory Region

15 14 13  12 11 10 9  8 7 6 5 4 3 2 1 0

Rsvd FPU CS FPU IP FOP Rsvd FTW FSW FCW 0

MXCSR_MASK MXCSR Rsrvd FPU DS FPU DP 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 60

The destination operand contains the first byte of the memory image, and it must be aligned on a 16-byte 
boundary. A misaligned destination operand will result in a general-protection (#GP) exception being generated 
(or in some cases, an alignment check exception [#AC]).

The FXSAVE instruction is used when an operating system needs to perform a context switch or when an excep-
tion handler needs to save and examine the current state of the x87 FPU, MMX technology, and/or XMM and 
MXCSR registers.

The fields in Table 3-53 are defined in Table 3-54.

XMM5 240

XMM6 256

XMM7 272

Reserved 288

Reserved 304

Reserved 320

Reserved 336

Reserved 352

Reserved 368

Reserved 384

Reserved 400

Reserved 416

Reserved 432

Reserved 448

Available 464

Available 480

Available 496

Table 3-53.  Non-64-bit-Mode Layout of FXSAVE and FXRSTOR 
Memory Region (Contd.)

15 14 13  12 11 10 9  8 7 6 5 4 3 2 1 0

Table 3-54.  Field Definitions 

Field Definition

FCW x87 FPU Control Word (16 bits). See Figure 8-6 in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1, for the layout of the x87 FPU control word.

FSW x87 FPU Status Word (16 bits). See Figure 8-4 in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1, for the layout of the x87 FPU status word.

Abridged FTW x87 FPU Tag Word (8 bits). The tag information saved here is abridged, as described in the following 
paragraphs.

FOP x87 FPU Opcode (16 bits). The lower 11 bits of this field contain the opcode, upper 5 bits are reserved. 
See Figure 8-8 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for 
the layout of the x87 FPU opcode field.
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The FXSAVE instruction saves an abridged version of the x87 FPU tag word in the FTW field (unlike the FSAVE 
instruction, which saves the complete tag word). The tag information is saved in physical register order (R0 
through R7), rather than in top-of-stack (TOS) order. With the FXSAVE instruction, however, only a single bit (1 
for valid or 0 for empty) is saved for each tag. For example, assume that the tag word is currently set as follows:

R7 R6 R5 R4 R3 R2 R1 R0
11 xx xx xx 11 11 11 11

Here, 11B indicates empty stack elements and “xx” indicates valid (00B), zero (01B), or special (10B). 

For this example, the FXSAVE instruction saves only the following 8 bits of information:

FPU IP x87 FPU Instruction Pointer Offset (32 bits). The contents of this field differ depending on the current 
addressing mode (32-bit or 16-bit) of the processor when the FXSAVE instruction was executed:

32-bit mode — 32-bit IP offset.

16-bit mode — low 16 bits are IP offset; high 16 bits are reserved.

See “x87 FPU Instruction and Operand (Data) Pointers” in Chapter 8 of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1, for a description of the x87 FPU instruction 
pointer.

FPU CS x87 FPU Instruction Pointer Selector (16 bits). If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 1, the 
processor deprecates the FPU CS and FPU DS values, and this field is saved as 0000H.

FPU DP x87 FPU Instruction Operand (Data) Pointer Offset (32 bits). The contents of this field differ 
depending on the current addressing mode (32-bit or 16-bit) of the processor when the FXSAVE 
instruction was executed:

32-bit mode — 32-bit DP offset.

16-bit mode — low 16 bits are DP offset; high 16 bits are reserved.

See “x87 FPU Instruction and Operand (Data) Pointers” in Chapter 8 of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1, for a description of the x87 FPU operand 
pointer.

FPU DS x87 FPU Instruction Operand (Data) Pointer Selector (16 bits). If CPUID.(EAX=07H,ECX=0H):EBX[bit 
13] = 1, the processor deprecates the FPU CS and FPU DS values, and this field is saved as 0000H.

MXCSR MXCSR Register State (32 bits). See Figure 10-3 in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1, for the layout of the MXCSR register. If the OSFXSR bit in control 
register CR4 is not set, the FXSAVE instruction may not save this register. This behavior is 
implementation dependent.

MXCSR_
MASK

MXCSR_MASK (32 bits). This mask can be used to adjust values written to the MXCSR register, 
ensuring that reserved bits are set to 0. Set the mask bits and flags in MXCSR to the mode of 
operation desired for SSE and SSE2 SIMD floating-point instructions. See “Guidelines for Writing to the 
MXCSR Register” in Chapter 11 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1, for instructions for how to determine and use the MXCSR_MASK value.

ST0/MM0 through ST7/
MM7

x87 FPU or MMX technology registers. These 80-bit fields contain the x87 FPU data registers or the 
MMX technology registers, depending on the state of the processor prior to the execution of the 
FXSAVE instruction. If the processor had been executing x87 FPU instruction prior to the FXSAVE 
instruction, the x87 FPU data registers are saved; if it had been executing MMX instructions (or SSE or 
SSE2 instructions that operated on the MMX technology registers), the MMX technology registers are 
saved. When the MMX technology registers are saved, the high 16 bits of the field are reserved.

XMM0 through XMM7 XMM registers (128 bits per field). If the OSFXSR bit in control register CR4 is not set, the FXSAVE 
instruction may not save these registers. This behavior is implementation dependent.

Table 3-54.  Field Definitions  (Contd.)

Field Definition
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R7 R6 R5 R4 R3 R2 R1 R0
0 1 1 1 0 0 0 0

Here, a 1 is saved for any valid, zero, or special tag, and a 0 is saved for any empty tag.

The operation of the FXSAVE instruction differs from that of the FSAVE instruction, the as follows:
• FXSAVE instruction does not check for pending unmasked floating-point exceptions. (The FXSAVE operation in 

this regard is similar to the operation of the FNSAVE instruction). 
• After the FXSAVE instruction has saved the state of the x87 FPU, MMX technology, XMM, and MXCSR registers, 

the processor retains the contents of the registers. Because of this behavior, the FXSAVE instruction cannot be 
used by an application program to pass a “clean” x87 FPU state to a procedure, since it retains the current 
state. To clean the x87 FPU state, an application must explicitly execute an FINIT instruction after an FXSAVE 
instruction to reinitialize the x87 FPU state.

• The format of the memory image saved with the FXSAVE instruction is the same regardless of the current 
addressing mode (32-bit or 16-bit) and operating mode (protected, real address, or system management). 
This behavior differs from the FSAVE instructions, where the memory image format is different depending on 
the addressing mode and operating mode. Because of the different image formats, the memory image saved 
with the FXSAVE instruction cannot be restored correctly with the FRSTOR instruction, and likewise the state 
saved with the FSAVE instruction cannot be restored correctly with the FXRSTOR instruction.

The FSAVE format for FTW can be recreated from the FTW valid bits and the stored 80-bit FP data (assuming the 
stored data was not the contents of MMX technology registers) using Table 3-55.

The J-bit is defined to be the 1-bit binary integer to the left of the decimal place in the significand. The M-bit is 
defined to be the most significant bit of the fractional portion of the significand (i.e., the bit immediately to the 
right of the decimal place).

When the M-bit is the most significant bit of the fractional portion of the significand, it must be 0 if the fraction is 
all 0’s.

IA-32e Mode Operation

In compatibility sub-mode of IA-32e mode, legacy SSE registers, XMM0 through XMM7, are saved according to 
the legacy FXSAVE map. In 64-bit mode, all of the SSE registers, XMM0 through XMM15, are saved. Additionally, 

Table 3-55.  Recreating FSAVE Format 

Exponent
all 1’s

Exponent
all 0’s

Fraction
all 0’s

J and M
bits

FTW valid bit
x87 FTW

0 0 0 0x 1 Special 10

0 0 0 1x 1 Valid 00

0 0 1 00 1 Special 10

0 0 1 10 1 Valid 00

0 1 0 0x 1 Special 10

0 1 0 1x 1 Special 10

0 1 1 00 1 Zero 01

0 1 1 10 1 Special 10

1 0 0 1x 1 Special 10

1 0 0 1x 1 Special 10

1 0 1 00 1 Special 10

1 0 1 10 1 Special 10

For all legal combinations above. 0 Empty 11
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there are two different layouts of the FXSAVE map in 64-bit mode, corresponding to FXSAVE64 (which requires 
REX.W=1) and FXSAVE (REX.W=0). In the FXSAVE64 map (Table 3-56), the FPU IP and FPU DP pointers are 64-
bit wide. In the FXSAVE map for 64-bit mode (Table 3-57), the FPU IP and FPU DP pointers are 32-bits.

Table 3-56.  Layout of the 64-bit-mode FXSAVE64 Map 
(requires REX.W = 1)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FPU IP FOP Reserved FTW FSW FCW 0

MXCSR_MASK MXCSR FPU DP 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

XMM8 288

XMM9 304

XMM10 320

XMM11 336

XMM12 352

XMM13 368

XMM14 384

XMM15 400

Reserved 416

Reserved 432

Reserved 448

Available 464

Available 480

Available 496
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...

Table 3-57.  Layout of the 64-bit-mode FXSAVE Map (REX.W = 0)
15 14 13  12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved FPU CS FPU IP FOP Reserved FTW FSW FCW 0

MXCSR_MASK MXCSR Reserved FPU DS FPU DP 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

XMM8 288

XMM9 304

XMM10 320

XMM11 336

XMM12 352

XMM13 368

XMM14 384

XMM15 400

Reserved 416

Reserved 432

Reserved 448

Available 464

Available 480

Available 496
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4. Updates to Chapter 4, Volume 2B
Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2B: Instruction Set Reference, M-Z, Part 2.

------------------------------------------------------------------------------------------

...

MOV—Move
Opcode Instruction Op/ 

En
64-Bit 
Mode

Compat/
Leg Mode

Description

88 /r MOV r/m8,r8 MR Valid Valid Move r8 to r/m8.

REX + 88 /r MOV r/m8***,r8*** MR Valid N.E. Move r8 to r/m8.

89 /r MOV r/m16,r16 MR Valid Valid Move r16 to r/m16.

89 /r MOV r/m32,r32 MR Valid Valid Move r32 to r/m32.

REX.W + 89 /r MOV r/m64,r64 MR Valid N.E. Move r64 to r/m64.

8A /r MOV r8,r/m8 RM Valid Valid Move r/m8 to r8.

REX + 8A /r MOV r8***,r/m8*** RM Valid N.E. Move r/m8 to r8.

8B /r MOV r16,r/m16 RM Valid Valid Move r/m16 to r16.

8B /r MOV r32,r/m32 RM Valid Valid Move r/m32 to r32.

REX.W + 8B /r MOV r64,r/m64 RM Valid N.E. Move r/m64 to r64.

8C /r MOV r/m16,Sreg** MR Valid Valid Move segment register to r/m16.

REX.W + 8C /r MOV r/m64,Sreg** MR Valid Valid Move zero extended 16-bit segment register 
to r/m64.

8E /r MOV Sreg,r/m16** RM Valid Valid Move r/m16 to segment register.

REX.W + 8E /r MOV Sreg,r/m64** RM Valid Valid Move lower 16 bits of r/m64 to segment 
register.

A0 MOV AL,moffs8* FD Valid Valid Move byte at (seg:offset) to AL.

REX.W + A0 MOV AL,moffs8* FD  Valid N.E. Move byte at (offset) to AL.

A1 MOV AX,moffs16* FD Valid Valid Move word at (seg:offset) to AX.

A1 MOV EAX,moffs32* FD Valid Valid Move doubleword at (seg:offset) to EAX.

REX.W + A1 MOV RAX,moffs64* FD Valid N.E. Move quadword at (offset) to RAX.

A2 MOV moffs8,AL TD  Valid Valid Move AL to (seg:offset).

REX.W + A2 MOV moffs8***,AL TD Valid N.E. Move AL to (offset).

A3 MOV moffs16*,AX TD Valid Valid Move AX to (seg:offset).

A3 MOV moffs32*,EAX TD Valid Valid Move EAX to (seg:offset).

REX.W + A3 MOV moffs64*,RAX TD Valid N.E. Move RAX to (offset).

B0+ rb ib MOV r8, imm8 OI Valid Valid Move imm8 to r8.

REX + B0+ rb ib MOV r8***, imm8 OI Valid N.E. Move imm8 to r8.

B8+ rw iw MOV r16, imm16 OI Valid Valid Move imm16 to r16.

B8+ rd id MOV r32, imm32 OI Valid Valid Move imm32 to r32.

REX.W + B8+ rd io MOV r64, imm64 OI Valid N.E. Move imm64 to r64.

C6 /0 ib MOV r/m8, imm8 MI Valid Valid Move imm8 to r/m8.
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Instruction Operand Encoding

Description

Copies the second operand (source operand) to the first operand (destination operand). The source operand can 
be an immediate value, general-purpose register, segment register, or memory location; the destination register 
can be a general-purpose register, segment register, or memory location. Both operands must be the same size, 
which can be a byte, a word, a doubleword, or a quadword.

The MOV instruction cannot be used to load the CS register. Attempting to do so results in an invalid opcode 
exception (#UD). To load the CS register, use the far JMP, CALL, or RET instruction.

If the destination operand is a segment register (DS, ES, FS, GS, or SS), the source operand must be a valid 
segment selector. In protected mode, moving a segment selector into a segment register automatically causes 
the segment descriptor information associated with that segment selector to be loaded into the hidden (shadow) 
part of the segment register. While loading this information, the segment selector and segment descriptor infor-
mation is validated (see the “Operation” algorithm below). The segment descriptor data is obtained from the GDT 
or LDT entry for the specified segment selector. 

A NULL segment selector (values 0000-0003) can be loaded into the DS, ES, FS, and GS registers without causing 
a protection exception. However, any subsequent attempt to reference a segment whose corresponding segment 
register is loaded with a NULL value causes a general protection exception (#GP) and no memory reference 
occurs.

...

REX + C6 /0 ib MOV r/m8***, imm8 MI Valid N.E. Move imm8 to r/m8.

C7 /0 iw MOV r/m16, imm16 MI Valid Valid Move imm16 to r/m16.

C7 /0 id MOV r/m32, imm32 MI Valid Valid Move imm32 to r/m32.

REX.W + C7 /0 io MOV r/m64, imm32 MI Valid N.E. Move imm32 sign extended to 64-bits to r/
m64.

NOTES:
* The moffs8, moffs16, moffs32 and moffs64 operands specify a simple offset relative to the segment base, where 8, 16, 32 and 64 

refer to the size of the data. The address-size attribute of the instruction determines the size of the offset, either 16, 32 or 64 
bits.

** In 32-bit mode, the assembler may insert the 16-bit operand-size prefix with this instruction (see the following “Description” sec-
tion for further information).

***In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA

RM ModRM:reg (w) ModRM:r/m (r) NA NA

FD AL/AX/EAX/RAX Moffs NA NA

TD Moffs (w) AL/AX/EAX/RAX NA NA

OI opcode + rd (w) imm8/16/32/64 NA NA

MI ModRM:r/m (w) imm8/16/32/64 NA NA
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MOVDQ2Q—Move Quadword from XMM to MMX Technology Register

Instruction Operand Encoding

Description

Moves the low quadword from the source operand (second operand) to the destination operand (first operand). 
The source operand is an XMM register and the destination operand is an MMX technology register.

This instruction causes a transition from x87 FPU to MMX technology operation (that is, the x87 FPU top-of-stack 
pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this instruction is executed while an x87 FPU 
floating-point exception is pending, the exception is handled before the MOVDQ2Q instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).

Operation

DEST ← SRC[63:0];

Intel C/C++ Compiler Intrinsic Equivalent

MOVDQ2Q: __m64 _mm_movepi64_pi64 ( __m128i a)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM If CR0.TS[bit 3] = 1. 
#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F2 0F D6 /r MOVDQ2Q mm, xmm RM Valid Valid Move low quadword from xmm to mmx 
register.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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64-Bit Mode Exceptions
Same exceptions as in protected mode.

...

MOVQ—Move Quadword

Instruction Operand Encoding

Description

Copies a quadword from the source operand (second operand) to the destination operand (first operand). The 
source and destination operands can be MMX technology registers, XMM registers, or 64-bit memory locations. 
This instruction can be used to move a quadword between two MMX technology registers or between an MMX 
technology register and a 64-bit memory location, or to move data between two XMM registers or between an 
XMM register and a 64-bit memory location. The instruction cannot be used to transfer data between memory 
locations. 

When the source operand is an XMM register, the low quadword is moved; when the destination operand is an 
XMM register, the quadword is stored to the low quadword of the register, and the high quadword is cleared to all 
0s.

In 64-bit mode, use of the REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
Note: In VEX.128.66.0F D6 instruction version, VEX.vvvv and VEX.L=1 are reserved and the former must be 
1111b otherwise instructions will #UD.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 6F /r

MOVQ mm, mm/m64

RM V/V MMX Move quadword from mm/m64 to mm.

0F 7F /r

MOVQ mm/m64, mm

MR V/V MMX Move quadword from mm to mm/m64.

F3 0F 7E /r

MOVQ xmm1, xmm2/m64

RM V/V SSE2 Move quadword from xmm2/mem64 to 
xmm1.

VEX.128.F3.0F.WIG 7E /r

VMOVQ xmm1, xmm2

RM V/V AVX Move quadword from xmm2 to xmm1.

VEX.128.F3.0F.WIG 7E /r

VMOVQ xmm1, m64

RM V/V AVX Load quadword from m64 to xmm1.

66 0F D6 /r

MOVQ xmm2/m64, xmm1

MR V/V SSE2 Move quadword from xmm1 to xmm2/
mem64.

VEX.128.66.0F.WIG D6 /r

VMOVQ xmm1/m64, xmm2

MR V/V AVX Move quadword from xmm2 register to 
xmm1/m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA
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Note: In VEX.128.F3.0F 7E version, VEX.vvvv and VEX.L=1 are reserved and the former must be 1111b, other-
wise instructions will #UD.

Operation

MOVQ instruction when operating on MMX technology registers and memory locations:
DEST ← SRC;

MOVQ instruction when source and destination operands are XMM registers:
DEST[63:0] ← SRC[63:0];
DEST[127:64] ← 0000000000000000H;

MOVQ instruction when source operand is XMM register and destination
operand is memory location:

DEST ← SRC[63:0];

MOVQ instruction when source operand is memory location and destination
operand is XMM register:

DEST[63:0] ← SRC;
DEST[127:64] ← 0000000000000000H;

VMOVQ (VEX.NDS.128.F3.0F 7E) with XMM register source and destination:
DEST[63:0] ← SRC[63:0]
DEST[VLMAX-1:64] ← 0

VMOVQ (VEX.128.66.0F D6) with XMM register source and destination:
DEST[63:0] ← SRC[63:0]
DEST[VLMAX-1:64] ← 0

VMOVQ (7E) with memory source:
DEST[63:0] ← SRC[63:0]
DEST[VLMAX-1:64] ← 0

VMOVQ (D6) with memory dest:
DEST[63:0] ← SRC2[63:0]

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

MOVQ: m128i _mm_mov_epi64(__m128i a)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Table 22-8, “Exception Conditions for Legacy SIMD/MMX Instructions without FP Exception,” in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 3B.

...
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MOVQ2DQ—Move Quadword from MMX Technology to XMM Register

Instruction Operand Encoding

Description

Moves the quadword from the source operand (second operand) to the low quadword of the destination operand 
(first operand). The source operand is an MMX technology register and the destination operand is an XMM 
register. 

This instruction causes a transition from x87 FPU to MMX technology operation (that is, the x87 FPU top-of-stack 
pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this instruction is executed while an x87 FPU 
floating-point exception is pending, the exception is handled before the MOVQ2DQ instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).

Operation

DEST[63:0] ← SRC[63:0];
DEST[127:64] ← 00000000000000000H;

Intel C/C++ Compiler Intrinsic Equivalent

MOVQ2DQ: __128i _mm_movpi64_pi64 ( __m64 a)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM If CR0.TS[bit 3] = 1. 
#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F3 0F D6 /r MOVQ2DQ xmm, mm RM Valid Valid Move quadword from mmx to low quadword 
of xmm.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

...

PALIGNR — Packed Align Right 

Instruction Operand Encoding

Description 

PALIGNR concatenates the destination operand (the first operand) and the source operand (the second operand) 
into an intermediate composite, shifts the composite at byte granularity to the right by a constant immediate, and 
extracts the right-aligned result into the destination. The first and the second operands can be an MMX or an XMM 
register. The immediate value is considered unsigned. Immediate shift counts larger than the 2L (i.e. 32 for 128-
bit operands, or 16 for 64-bit operands) produce a zero result. Both operands can be MMX register or XMM regis-
ters. When the source operand is a 128-bit memory operand, the operand must be aligned on a 16-byte boundary 
or a general-protection exception (#GP) will be generated. 

In 64-bit mode, use the REX prefix to access additional registers.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination register remain 
unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed. VEX.L must be 0, 
otherwise the instruction will #UD.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 3A 0F /r ib1

PALIGNR mm1, mm2/m64, imm8

RMI V/V SSSE3 Concatenate destination and source 
operands, extract byte-aligned result shifted 
to the right by constant value in imm8 into 
mm1. 

66 0F 3A 0F /r ib

PALIGNR xmm1, xmm2/m128, imm8

RMI V/V SSSE3 Concatenate destination and source 
operands, extract byte-aligned result shifted 
to the right by constant value in imm8 into 
xmm1

VEX.NDS.128.66.0F3A.WIG 0F /r ib

VPALIGNR xmm1, xmm2, xmm3/m128, imm8

RVMI V/V AVX Concatenate xmm2 and xmm3/m128, extract 
byte aligned result shifted to the right by 
constant value in imm8 and result is stored in 
xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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Operation

PALIGNR (with 64-bit operands)
temp1[127:0] = CONCATENATE(DEST,SRC)>>(imm8*8) 
DEST[63:0] = temp1[63:0] 

PALIGNR (with 128-bit operands)
temp1[255:0] = CONCATENATE(DEST,SRC)>>(imm8*8) 
DEST[127:0] = temp1[127:0] 

VPALIGNR
temp1[255:0]  CONCATENATE(SRC1,SRC2)>>(imm8*8)
DEST[127:0]  temp1[127:0]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PALIGNR:  __m64 _mm_alignr_pi8 (__m64 a, __m64 b, int n)

PALIGNR:  __m128i _mm_alignr_epi8 (__m128i a, __m128i b, int n)

SIMD Floating-Point Exceptions 
None. 

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

...

PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal
Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 74 /r1

PCMPEQB mm, mm/m64

RM V/V MMX Compare packed bytes in mm/m64 and mm 
for equality.

66 0F 74 /r

PCMPEQB xmm1, xmm2/m128

RM V/V SSE2 Compare packed bytes in xmm2/m128 and 
xmm1 for equality.

0F 75 /r1

PCMPEQW mm, mm/m64

RM V/V MMX Compare packed words in mm/m64 and mm 
for equality.

66 0F 75 /r

PCMPEQW xmm1, xmm2/m128

RM V/V SSE2 Compare packed words in xmm2/m128 and 
xmm1 for equality.

0F 76 /r1

PCMPEQD mm, mm/m64

RM V/V MMX Compare packed doublewords in mm/m64 and 
mm for equality.

66 0F 76 /r

PCMPEQD xmm1, xmm2/m128

RM V/V SSE2 Compare packed doublewords in xmm2/m128 
and xmm1 for equality.

VEX.NDS.128.66.0F.WIG 74 /r

VPCMPEQB xmm1, xmm2, xmm3/m128

RVM V/V AVX Compare packed bytes in xmm3/m128 and 
xmm2 for equality.
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Instruction Operand Encoding

Description

Performs a SIMD compare for equality of the packed bytes, words, or doublewords in the destination operand 
(first operand) and the source operand (second operand). If a pair of data elements is equal, the corresponding 
data element in the destination operand is set to all 1s; otherwise, it is set to all 0s. The source operand can be an 
MMX technology register or a 64-bit memory location, or it can be an XMM register or a 128-bit memory location. 
The destination operand can be an MMX technology register or an XMM register. 

The PCMPEQB instruction compares the corresponding bytes in the destination and source operands; the 
PCMPEQW instruction compares the corresponding words in the destination and source operands; and the 
PCMPEQD instruction compares the corresponding doublewords in the destination and source operands.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination register remain 
unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed. VEX.L must be 0, 
otherwise the instruction will #UD.

...

VEX.NDS.128.66.0F.WIG 75 /r

VPCMPEQW xmm1, xmm2, xmm3/m128

RVM V/V AVX Compare packed words in xmm3/m128 and 
xmm2 for equality.

VEX.NDS.128.66.0F.WIG 76 /r

VPCMPEQD xmm1, xmm2, xmm3/m128

RVM V/V AVX Compare packed doublewords in xmm3/m128 
and xmm2 for equality.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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PINSRB/PINSRD/PINSRQ — Insert Byte/Dword/Qword

Instruction Operand Encoding

Description

Copies a byte/dword/qword from the source operand (second operand) and inserts it in the destination operand 
(first operand) at the location specified with the count operand (third operand). (The other elements in the desti-
nation register are left untouched.) The source operand can be a general-purpose register or a memory location. 
(When the source operand is a general-purpose register, PINSRB copies the low byte of the register.) The destina-
tion operand is an XMM register. The count operand is an 8-bit immediate. When specifying a qword[dword, byte] 
location in an an XMM register, the [2, 4] least-significant bit(s) of the count operand specify the location.
In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15, R8-15). Use of REX.W permits the use of 64 bit general purpose registers.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination register remain 
unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed. VEX.L must be 0, 
otherwise the instruction will #UD. Attempt to execute VPINSRQ in non-64-bit mode will cause #UD.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 3A 20 /r ib
PINSRB xmm1, r32/m8, imm8

RMI V/V SSE4_1 Insert a byte integer value from r32/m8 into 
xmm1 at the destination element in xmm1 
specified by imm8.

66 0F 3A 22 /r ib
PINSRD xmm1, r/m32, imm8

RMI V/V SSE4_1 Insert a dword integer value from r/m32 into 
the xmm1 at the destination element 
specified by imm8.

66 REX.W 0F 3A 22 /r ib
PINSRQ xmm1, r/m64, imm8

RMI V/N. E. SSE4_1 Insert a qword integer value from r/m64 into 
the xmm1 at the destination element 
specified by imm8.

VEX.NDS.128.66.0F3A.W0 20 /r ib
VPINSRB xmm1, xmm2, r32/m8, imm8

RVMI V1/V AVX Merge a byte integer value from r32/m8 and 
rest from xmm2 into xmm1 at the byte offset 
in imm8.

VEX.NDS.128.66.0F3A.W0 22 /r ib
VPINSRD xmm1, xmm2, r/m32, imm8

RVMI V/V AVX Insert a dword integer value from r32/m32 
and rest from xmm2 into xmm1 at the dword 
offset in imm8.

VEX.NDS.128.66.0F3A.W1 22 /r ib
VPINSRQ xmm1, xmm2, r/m64, imm8

RVMI V/I AVX Insert a qword integer value from r64/m64 
and rest from xmm2 into xmm1 at the qword 
offset in imm8.

NOTES:

1. In 64-bit mode, VEX.W1 is ignored for VPINSRB (similar to legacy REX.W=1 prefix with PINSRB).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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Operation
CASE OF

PINSRB: SEL  COUNT[3:0];
MASK  (0FFH << (SEL * 8)); 
TEMP  (((SRC[7:0] << (SEL *8)) AND MASK);

PINSRD: SEL  COUNT[1:0];
MASK  (0FFFFFFFFH << (SEL * 32)); 
TEMP  (((SRC << (SEL *32)) AND MASK) ;

PINSRQ: SEL  COUNT[0]
MASK  (0FFFFFFFFFFFFFFFFH << (SEL * 64)); 
TEMP  (((SRC << (SEL *32)) AND MASK) ;

ESAC;
DEST  ((DEST AND NOT MASK) OR TEMP); 

VPINSRB (VEX.128 encoded version)
SEL  imm8[3:0]
DEST[127:0]  write_b_element(SEL, SRC2, SRC1)
DEST[VLMAX-1:128]  0

VPINSRD (VEX.128 encoded version)
SEL  imm8[1:0]
DEST[127:0]  write_d_element(SEL, SRC2, SRC1)
DEST[VLMAX-1:128]  0

VPINSRQ (VEX.128 encoded version)
SEL  imm8[0]
DEST[127:0]  write_q_element(SEL, SRC2, SRC1)
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PINSRB: __m128i _mm_insert_epi8 (__m128i s1, int s2, const int ndx);

PINSRD:  __m128i _mm_insert_epi32 (__m128i s2, int s, const int ndx);

PINSRQ:  __m128i _mm_insert_epi64(__m128i s2, __int64 s, const int ndx);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L = 1.

If VPINSRQ in non-64-bit mode with VEX.W=1.

...
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PMADDUBSW — Multiply and Add Packed Signed and Unsigned Bytes

Instruction Operand Encoding

Description 

PMADDUBSW multiplies vertically each unsigned byte of the destination operand (first operand) with the corre-
sponding signed byte of the source operand (second operand), producing intermediate signed 16-bit integers. 
Each adjacent pair of signed words is added and the saturated result is packed to the destination operand. For 
example, the lowest-order bytes (bits 7-0) in the source and destination operands are multiplied and the interme-
diate signed word result is added with the corresponding intermediate result from the 2nd lowest-order bytes 
(bits 15-8) of the operands; the sign-saturated result is stored in the lowest word of the destination register (15-
0). The same operation is performed on the other pairs of adjacent bytes. Both operands can be MMX register or 
XMM registers. When the source operand is a 128-bit memory operand, the operand must be aligned on a 16-byte 
boundary or a general-protection exception (#GP) will be generated. 

In 64-bit mode, use the REX prefix to access additional registers. 
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination register remain 
unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed. VEX.L must be 0, 
otherwise the instruction will #UD.

Operation

PMADDUBSW (with 64 bit operands)
DEST[15-0] = SaturateToSignedWord(SRC[15-8]*DEST[15-8]+SRC[7-0]*DEST[7-0]);
DEST[31-16] = SaturateToSignedWord(SRC[31-24]*DEST[31-24]+SRC[23-16]*DEST[23-16]);
DEST[47-32] = SaturateToSignedWord(SRC[47-40]*DEST[47-40]+SRC[39-32]*DEST[39-32]);
DEST[63-48] = SaturateToSignedWord(SRC[63-56]*DEST[63-56]+SRC[55-48]*DEST[55-48]);

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 38 04 /r1 

PMADDUBSW mm1, mm2/m64

RM V/V SSSE3 Multiply signed and unsigned bytes, add 
horizontal pair of signed words, pack 
saturated signed-words to MM1. 

66 0F 38 04 /r 

PMADDUBSW xmm1, xmm2/m128 

RM V/V SSSE3 Multiply signed and unsigned bytes, add 
horizontal pair of signed words, pack 
saturated signed-words to XMM1.

VEX.NDS.128.66.0F38.WIG 04 /r

VPMADDUBSW xmm1, xmm2, xmm3/m128

RVM V/V AVX Multiply signed and unsigned bytes, add 
horizontal pair of signed words, pack 
saturated signed-words to xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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PMADDUBSW (with 128 bit operands)
DEST[15-0] = SaturateToSignedWord(SRC[15-8]* DEST[15-8]+SRC[7-0]*DEST[7-0]);
// Repeat operation for 2nd through 7th word 
SRC1/DEST[127-112] = SaturateToSignedWord(SRC[127-120]*DEST[127-120]+ SRC[119-112]* DEST[119-112]);

VPMADDUBSW (VEX.128 encoded version)
DEST[15:0]  SaturateToSignedWord(SRC2[15:8]* SRC1[15:8]+SRC2[7:0]*SRC1[7:0])
// Repeat operation for 2nd through 7th word 
DEST[127:112]  SaturateToSignedWord(SRC2[127:120]*SRC1[127:120]+ SRC2[119:112]* SRC1[119:112])
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PMADDUBSW:  __m64 _mm_maddubs_pi16 (__m64 a, __m64 b)

PMADDUBSW:  __m128i _mm_maddubs_epi16 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions 
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

...
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PSHUFHW—Shuffle Packed High Words

Instruction Operand Encoding

Description

Copies words from the high quadword of the source operand (second operand) and inserts them in the high quad-
word of the destination operand (first operand) at word locations selected with the order operand (third operand). 
This operation is similar to the operation used by the PSHUFD instruction, which is illustrated in Figure 4-11. For 
the PSHUFHW instruction, each 2-bit field in the order operand selects the contents of one word location in the 
high quadword of the destination operand. The binary encodings of the order operand fields select words (0, 1, 2 
or 3, 4) from the high quadword of the source operand to be copied to the destination operand. The low quadword 
of the source operand is copied to the low quadword of the destination operand.

The source operand can be an XMM register or a 128-bit memory location. The destination operand is an XMM 
register. The order operand is an 8-bit immediate. Note that this instruction permits a word in the high quadword 
of the source operand to be copied to more than one word location in the high quadword of the destination 
operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination register remain 
unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed. VEX.vvvv is reserved 
and must be 1111b, VEX.L must be 0, otherwise the instruction will #UD.

Operation

PSHUFHW (128-bit Legacy SSE version)
DEST[63:0]  SRC[63:0]
DEST[79:64]  (SRC >> (imm[1:0] *16))[79:64]
DEST[95:80]  (SRC >> (imm[3:2] * 16))[79:64]
DEST[111:96]  (SRC >> (imm[5:4] * 16))[79:64]
DEST[127:112]  (SRC >> (imm[7:6] * 16))[79:64]
DEST[VLMAX-1:128] (Unmodified)

VPSHUFHW (VEX.128 encoded version)
DEST[63:0]  SRC1[63:0]
DEST[79:64]  (SRC1 >> (imm[1:0] *16))[79:64]

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F3 0F 70 /r ib

PSHUFHW xmm1, xmm2/m128, imm8

RMI V/V SSE2 Shuffle the high words in xmm2/m128 based 
on the encoding in imm8 and store the result 
in xmm1.

VEX.128.F3.0F.WIG 70 /r ib

VPSHUFHW xmm1, xmm2/m128, imm8

RMI V/V AVX Shuffle the high words in xmm2/m128 based 
on the encoding in imm8 and store the result 
in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA
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DEST[95:80]  (SRC1 >> (imm[3:2] * 16))[79:64]
DEST[111:96]  (SRC1 >> (imm[5:4] * 16))[79:64]
DEST[127:112]  (SRC1 >> (imm[7:6] * 16))[79:64]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PSHUFHW: __m128i _mm_shufflehi_epi16(__m128i a, int n)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.

...
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PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F F1 /r1

PSLLW mm, mm/m64

RM V/V MMX Shift words in mm left mm/m64 while shifting 
in 0s.

66 0F F1 /r

PSLLW xmm1, xmm2/m128

RM V/V SSE2 Shift words in xmm1 left by xmm2/m128 
while shifting in 0s.

0F 71 /6 ib

PSLLW mm1, imm8

MI V/V MMX Shift words in mm left by imm8 while shifting 
in 0s.

66 0F 71 /6 ib

PSLLW xmm1, imm8

MI V/V SSE2 Shift words in xmm1 left by imm8 while 
shifting in 0s.

0F F2 /r1

PSLLD mm, mm/m64

RM V/V MMX Shift doublewords in mm left by mm/m64 
while shifting in 0s.

66 0F F2 /r

PSLLD xmm1, xmm2/m128

RM V/V SSE2 Shift doublewords in xmm1 left by xmm2/
m128 while shifting in 0s.

0F 72 /6 ib1

PSLLD mm, imm8

MI V/V MMX Shift doublewords in mm left by imm8 while 
shifting in 0s.

66 0F 72 /6 ib

PSLLD xmm1, imm8

MI V/V SSE2 Shift doublewords in xmm1 left by imm8 while 
shifting in 0s.

0F F3 /r1

PSLLQ mm, mm/m64

RM V/V MMX Shift quadword in mm left by mm/m64 while 
shifting in 0s.

66 0F F3 /r

PSLLQ xmm1, xmm2/m128

RM V/V SSE2 Shift quadwords in xmm1 left by xmm2/m128 
while shifting in 0s.

0F 73 /6 ib1

PSLLQ mm, imm8

MI V/V MMX Shift quadword in mm left by imm8 while 
shifting in 0s.

66 0F 73 /6 ib

PSLLQ xmm1, imm8

MI V/V SSE2 Shift quadwords in xmm1 left by imm8 while 
shifting in 0s.

VEX.NDS.128.66.0F.WIG F1 /r

VPSLLW xmm1, xmm2, xmm3/m128

RVM V/V AVX Shift words in xmm2 left by amount specified 
in xmm3/m128 while shifting in 0s.

VEX.NDD.128.66.0F.WIG 71 /6 ib

VPSLLW xmm1, xmm2, imm8

VMI V/V AVX Shift words in xmm2 left by imm8 while 
shifting in 0s.

VEX.NDS.128.66.0F.WIG F2 /r

VPSLLD xmm1, xmm2, xmm3/m128

RVM V/V AVX Shift doublewords in xmm2 left by amount 
specified in xmm3/m128 while shifting in 0s.

VEX.NDD.128.66.0F.WIG 72 /6 ib

VPSLLD xmm1, xmm2, imm8

VMI V/V AVX Shift doublewords in xmm2 left by imm8 while 
shifting in 0s.

VEX.NDS.128.66.0F.WIG F3 /r

VPSLLQ xmm1, xmm2, xmm3/m128

RVM V/V AVX Shift quadwords in xmm2 left by amount 
specified in xmm3/m128 while shifting in 0s.
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Instruction Operand Encoding

Description

Shifts the bits in the individual data elements (words, doublewords, or quadword) in the destination operand (first 
operand) to the left by the number of bits specified in the count operand (second operand). As the bits in the data 
elements are shifted left, the empty low-order bits are cleared (set to 0). If the value specified by the count 
operand is greater than 15 (for words), 31 (for doublewords), or 63 (for a quadword), then the destination 
operand is set to all 0s. Figure 4-12 gives an example of shifting words in a 64-bit operand. 

The destination operand may be an MMX technology register or an XMM register; the count operand can be either 
an MMX technology register or an 64-bit memory location, an XMM register or a 128-bit memory location, or an 
8-bit immediate. Note that only the first 64-bits of a 128-bit count operand are checked to compute the count.

...

VEX.NDD.128.66.0F.WIG 73 /6 ib

VPSLLQ xmm1, xmm2, imm8

VMI V/V AVX Shift quadwords in xmm2 left by imm8 while 
shifting in 0s.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MI ModRM:r/m (r, w) imm8 NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

VMI VEX.vvvv (w) ModRM:r/m (r) imm8 NA



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 82

PUSH—Push Word, Doubleword or Quadword Onto the Stack

Instruction Operand Encoding

Description

Decrements the stack pointer and then stores the source operand on the top of the stack. Address and operand 
sizes are determined and used as follows:
• Address size. The D flag in the current code-segment descriptor determines the default address size; it may 

be overridden by an instruction prefix (67H).
The address size is used only when referencing a source operand in memory.

• Operand size. The D flag in the current code-segment descriptor determines the default operand size; it may 
be overridden by instruction prefixes (66H or REX.W).
The operand size (16, 32, or 64 bits) determines the amount by which the stack pointer is decremented (2,
4 or 8).
If the source operand is an immediate and its size is less than the operand size, a sign-extended value is
pushed on the stack. If the source operand is a segment register (16 bits) and the operand size is greater
than 16 bits, a zero-extended value is pushed on the stack.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

FF /6 PUSH r/m16 M Valid Valid Push r/m16.

FF /6 PUSH r/m32 M N.E. Valid Push r/m32.

FF /6 PUSH r/m64 M Valid N.E. Push r/m64. 

50+rw PUSH r16 O Valid Valid Push r16.

50+rd PUSH r32 O N.E. Valid Push r32.

50+rd PUSH r64 O Valid N.E. Push r64.

6A ib PUSH imm8 I Valid Valid Push imm8.

68 iw PUSH imm16 I Valid Valid Push imm16.

68 id PUSH imm32 I Valid Valid Push imm32.

0E PUSH CS NP Invalid Valid Push CS.

16 PUSH SS NP Invalid Valid Push SS.

1E PUSH DS NP Invalid Valid Push DS.

06 PUSH ES NP Invalid Valid Push ES.

0F A0 PUSH FS NP Valid Valid Push FS.

0F A8 PUSH GS NP Valid Valid Push GS.

NOTES:
* See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA

O opcode + rd (w) NA NA NA

I imm8/16/32 NA NA NA

NP NA NA NA NA
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• Stack-address size. Outside of 64-bit mode, the B flag in the current stack-segment descriptor determines the 
size of the stack pointer (16 or 32 bits); in 64-bit mode, the size of the stack pointer is always 64 bits.
The stack-address size determines the width of the stack pointer when writing to the stack in memory and
when decrementing the stack pointer. (As stated above, the amount by which the stack pointer is
decremented is determined by the operand size.)
If the operand size is less than the stack-address size, the PUSH instruction may result in a misaligned stack
pointer (a stack pointer that is not aligned on a doubleword or quadword boundary).

The PUSH ESP instruction pushes the value of the ESP register as it existed before the instruction was executed. 
If a PUSH instruction uses a memory operand in which the ESP register is used for computing the operand 
address, the address of the operand is computed before the ESP register is decremented. 

If the ESP or SP register is 1 when the PUSH instruction is executed in real-address mode, a stack-fault exception 
(#SS) is generated (because the limit of the stack segment is violated). Its delivery encounters a second stack-
fault exception (for the same reason), causing generation of a double-fault exception (#DF). Delivery of the 
double-fault exception encounters a third stack-fault exception, and the logical processor enters shutdown mode. 
See the discussion of the double-fault exception in Chapter 6 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A.

...

RCL/RCR/ROL/ROR-—Rotate

Opcode** Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

D0 /2 RCL r/m8, 1 M1 Valid Valid Rotate 9 bits (CF, r/m8) left once.

REX + D0 /2 RCL r/m8*, 1 M1 Valid N.E. Rotate 9 bits (CF, r/m8) left once. 

D2 /2 RCL r/m8, CL MC Valid Valid Rotate 9 bits (CF, r/m8) left CL times. 

REX + D2 /2 RCL r/m8*, CL MC Valid N.E. Rotate 9 bits (CF, r/m8) left CL times. 

C0 /2 ib RCL r/m8, imm8 MI Valid Valid Rotate 9 bits (CF, r/m8) left imm8 times.

REX + C0 /2 ib RCL r/m8*, imm8 MI Valid N.E. Rotate 9 bits (CF, r/m8) left imm8 times.

D1 /2 RCL r/m16, 1 M1 Valid Valid Rotate 17 bits (CF, r/m16) left once.

D3 /2 RCL r/m16, CL MC Valid Valid Rotate 17 bits (CF, r/m16) left CL times.

C1 /2 ib RCL r/m16, imm8 MI Valid Valid Rotate 17 bits (CF, r/m16) left imm8 times.

D1 /2 RCL r/m32, 1 M1 Valid Valid Rotate 33 bits (CF, r/m32) left once.

REX.W + D1 /2 RCL r/m64, 1 M1 Valid N.E. Rotate 65 bits (CF, r/m64) left once. Uses a 6 
bit count.

D3 /2 RCL r/m32, CL MC Valid Valid Rotate 33 bits (CF, r/m32) left CL times.

REX.W + D3 /2 RCL r/m64, CL MC Valid N.E. Rotate 65 bits (CF, r/m64) left CL times. Uses a 
6 bit count.

C1 /2 ib RCL r/m32, imm8 MI Valid Valid Rotate 33 bits (CF, r/m32) left imm8 times.

REX.W + C1 /2 ib RCL r/m64, imm8 MI Valid N.E. Rotate 65 bits (CF, r/m64) left imm8 times. 
Uses a 6 bit count.

D0 /3 RCR r/m8, 1 M1 Valid Valid Rotate 9 bits (CF, r/m8) right once. 

REX + D0 /3 RCR r/m8*, 1 M1 Valid N.E. Rotate 9 bits (CF, r/m8) right once. 

D2 /3 RCR r/m8, CL MC Valid Valid Rotate 9 bits (CF, r/m8) right CL times. 

REX + D2 /3 RCR r/m8*, CL MC Valid N.E. Rotate 9 bits (CF, r/m8) right CL times. 

C0 /3 ib RCR r/m8, imm8 MI Valid Valid Rotate 9 bits (CF, r/m8) right imm8 times. 
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REX + C0 /3 ib RCR r/m8*, imm8 MI Valid N.E. Rotate 9 bits (CF, r/m8) right imm8 times. 

D1 /3 RCR r/m16, 1 M1 Valid Valid Rotate 17 bits (CF, r/m16) right once.

D3 /3 RCR r/m16, CL MC Valid Valid Rotate 17 bits (CF, r/m16) right CL times.

C1 /3 ib RCR r/m16, imm8 MI Valid Valid Rotate 17 bits (CF, r/m16) right imm8 times.

D1 /3 RCR r/m32, 1 M1 Valid Valid Rotate 33 bits (CF, r/m32) right once. Uses a 6 
bit count.

REX.W + D1 /3 RCR r/m64, 1 M1 Valid N.E. Rotate 65 bits (CF, r/m64) right once. Uses a 6 
bit count.

D3 /3 RCR r/m32, CL MC Valid Valid Rotate 33 bits (CF, r/m32) right CL times.

REX.W + D3 /3 RCR r/m64, CL MC Valid N.E. Rotate 65 bits (CF, r/m64) right CL times. Uses 
a 6 bit count.

C1 /3 ib RCR r/m32, imm8 MI Valid Valid Rotate 33 bits (CF, r/m32) right imm8 times.

REX.W + C1 /3 ib RCR r/m64, imm8 MI Valid N.E. Rotate 65 bits (CF, r/m64) right imm8 times. 
Uses a 6 bit count.

D0 /0 ROL r/m8, 1 M1 Valid Valid Rotate 8 bits r/m8 left once.

REX + D0 /0 ROL r/m8*, 1 M1 Valid N.E. Rotate 8 bits r/m8 left once

D2 /0 ROL r/m8, CL MC Valid Valid Rotate 8 bits r/m8 left CL times.

REX + D2 /0 ROL r/m8*, CL MC Valid N.E. Rotate 8 bits r/m8 left CL times.

C0 /0 ib ROL r/m8, imm8 MI Valid Valid Rotate 8 bits r/m8 left imm8 times.
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Instruction Operand Encoding

Opcode** Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

REX + C0 /0 ib ROL r/m8*, imm8 MI Valid N.E. Rotate 8 bits r/m8 left imm8 times.

D1 /0 ROL r/m16, 1 M1 Valid Valid Rotate 16 bits r/m16 left once.

D3 /0 ROL r/m16, CL MC Valid Valid Rotate 16 bits r/m16 left CL times.

C1 /0 ib ROL r/m16, imm8 MI Valid Valid Rotate 16 bits r/m16 left imm8 times.

D1 /0 ROL r/m32, 1 M1 Valid Valid Rotate 32 bits r/m32 left once.

REX.W + D1 /0 ROL r/m64, 1 M1 Valid N.E. Rotate 64 bits r/m64 left once. Uses a 6 bit 
count.

D3 /0 ROL r/m32, CL MC Valid Valid Rotate 32 bits r/m32 left CL times.

REX.W + D3 /0 ROL r/m64, CL MC Valid N.E. Rotate 64 bits r/m64 left CL times. Uses a 6 
bit count.

C1 /0 ib ROL r/m32, imm8 MI Valid Valid Rotate 32 bits r/m32 left imm8 times.

REX.W + C1 /0 ib ROL r/m64, imm8 MI Valid N.E. Rotate 64 bits r/m64 left imm8 times. Uses a 
6 bit count.

D0 /1 ROR r/m8, 1 M1 Valid Valid Rotate 8 bits r/m8 right once.

REX + D0 /1 ROR r/m8*, 1 M1 Valid N.E. Rotate 8 bits r/m8 right once.

D2 /1 ROR r/m8, CL MC Valid Valid Rotate 8 bits r/m8 right CL times.

REX + D2 /1 ROR r/m8*, CL MC Valid N.E. Rotate 8 bits r/m8 right CL times.

C0 /1 ib ROR r/m8, imm8 MI Valid Valid Rotate 8 bits r/m16 right imm8 times.

REX + C0 /1 ib ROR r/m8*, imm8 MI Valid N.E. Rotate 8 bits r/m16 right imm8 times.

D1 /1 ROR r/m16, 1 M1 Valid Valid Rotate 16 bits r/m16 right once.

D3 /1 ROR r/m16, CL MC Valid Valid Rotate 16 bits r/m16 right CL times.

C1 /1 ib ROR r/m16, imm8 MI Valid Valid Rotate 16 bits r/m16 right imm8 times.

D1 /1 ROR r/m32, 1 M1 Valid Valid Rotate 32 bits r/m32 right once.

REX.W + D1 /1 ROR r/m64, 1 M1 Valid N.E. Rotate 64 bits r/m64 right once. Uses a 6 bit 
count.

D3 /1 ROR r/m32, CL MC Valid Valid Rotate 32 bits r/m32 right CL times.

REX.W + D3 /1 ROR r/m64, CL MC Valid N.E. Rotate 64 bits r/m64 right CL times. Uses a 6 
bit count.

C1 /1 ib ROR r/m32, imm8 MI Valid Valid Rotate 32 bits r/m32 right imm8 times.

REX.W + C1 /1 ib ROR r/m64, imm8 MI Valid N.E. Rotate 64 bits r/m64 right imm8 times. Uses a 
6 bit count.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.
** See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M1 ModRM:r/m (w) 1 NA NA
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Description

Shifts (rotates) the bits of the first operand (destination operand) the number of bit positions specified in the 
second operand (count operand) and stores the result in the destination operand. The destination operand can be 
a register or a memory location; the count operand is an unsigned integer that can be an immediate or a value in 
the CL register. In legacy and compatibility mode, the processor restricts the count to a number between 0 and 31 
by masking all the bits in the count operand except the 5 least-significant bits.

The rotate left (ROL) and rotate through carry left (RCL) instructions shift all the bits toward more-significant bit 
positions, except for the most-significant bit, which is rotated to the least-significant bit location. The rotate right 
(ROR) and rotate through carry right (RCR) instructions shift all the bits toward less significant bit positions, 
except for the least-significant bit, which is rotated to the most-significant bit location.

The RCL and RCR instructions include the CF flag in the rotation. The RCL instruction shifts the CF flag into the 
least-significant bit and shifts the most-significant bit into the CF flag. The RCR instruction shifts the CF flag into 
the most-significant bit and shifts the least-significant bit into the CF flag. For the ROL and ROR instructions, the 
original value of the CF flag is not a part of the result, but the CF flag receives a copy of the bit that was shifted 
from one end to the other.

The OF flag is defined only for the 1-bit rotates; it is undefined in all other cases (except RCL and RCR instructions 
only: a zero-bit rotate does nothing, that is affects no flags). For left rotates, the OF flag is set to the exclusive OR 
of the CF bit (after the rotate) and the most-significant bit of the result. For right rotates, the OF flag is set to the 
exclusive OR of the two most-significant bits of the result.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional registers (R8-R15). Use of 
REX.W promotes the first operand to 64 bits and causes the count operand to become a 6-bit counter.

...

MC ModRM:r/m (w) CL NA NA

MI ModRM:r/m (w) imm8 NA NA

Op/En Operand 1 Operand 2 Operand 3 Operand 4
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ROUNDSS — Round Scalar Single Precision Floating-Point Values

Instruction Operand Encoding

Description

Round the single-precision floating-point value in the lowest dword of the source operand (second operand) using 
the rounding mode specified in the immediate operand (third operand) and place the result in the destination 
operand (first operand). The rounding process rounds a single-precision floating-point input to an integer value 
and returns the result as a single-precision floating-point value in the lowest position. The upper three single-
precision floating-point values in the destination are retained. 

The immediate operand specifies control fields for the rounding operation, three bit fields are defined and shown 
in Figure 4-17. Bit 3 of the immediate byte controls processor behavior for a precision exception, bit 2 selects the 
source of rounding mode control. Bits 1:0 specify a non-sticky rounding-mode value (Table 4-17 lists the encoded 
values for rounding-mode field). 

The Precision Floating-Point Exception is signaled according to the immediate operand. If any source operand is 
an SNaN then it will be converted to a QNaN. If DAZ is set to ‘1 then denormals will be converted to zero before 
rounding.
128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (VLMAX-
1:32) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Operation

IF (imm[2] = ‘1) 
THEN // rounding mode is determined by MXCSR.RC 

DEST[31:0]  ConvertSPFPToInteger_M(SRC[31:0]);
ELSE // rounding mode is determined by IMM8.RC

DEST[31:0]  ConvertSPFPToInteger_Imm(SRC[31:0]);
FI;
DEST[127:32] remains unchanged ;

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 3A 0A /r ib
ROUNDSS xmm1, xmm2/m32, imm8

RMI V/V SSE4_1 Round the low packed single precision 
floating-point value in xmm2/m32 and place 
the result in xmm1.  The rounding mode is 
determined by imm8.

VEX.NDS.LIG.66.0F3A.WIG 0A /r ib
VROUNDSS xmm1, xmm2, xmm3/m32, imm8

RVMI V/V AVX Round the low packed single precision 
floating-point value in xmm3/m32 and place 
the result in xmm1. The rounding mode is 
determined by imm8. Also, upper packed 
single precision floating-point values 
(bits[127:32]) from xmm2 are copied to 
xmm1[127:32].

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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ROUNDSS (128-bit Legacy SSE version)
DEST[31:0]  RoundToInteger(SRC[31:0], ROUND_CONTROL)
DEST[VLMAX-1:32] (Unmodified)
VROUNDSS (VEX.128 encoded version)
DEST[31:0]  RoundToInteger(SRC2[31:0], ROUND_CONTROL)
DEST[127:32]  SRC1[127:32]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

ROUNDSS: __m128 mm_round_ss(__m128 dst, __m128 s1, int iRoundMode);
__m128 mm_floor_ss(__m128 dst, __m128 s1);
__m128 mm_ceil_ss(__m128 dst, __m128 s1);

SIMD Floating-Point Exceptions

Invalid (signaled only if SRC = SNaN) 
Precision (signaled only if imm[3] = ‘0; if imm[3] = ‘1, then the Precision Mask in the MXSCSR is ignored and 
precision exception is not signaled.)
Note that Denormal is not signaled by ROUNDSS.

Other Exceptions
See Exceptions Type 3.

...
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SHLD—Double Precision Shift Left

Instruction Operand Encoding

Description

The SHLD instruction is used for multi-precision shifts of 64 bits or more.

The instruction shifts the first operand (destination operand) to the left the number of bits specified by the third 
operand (count operand). The second operand (source operand) provides bits to shift in from the right (starting 
with bit 0 of the destination operand). 

The destination operand can be a register or a memory location; the source operand is a register. The count 
operand is an unsigned integer that can be stored in an immediate byte or in the CL register. If the count operand 
is CL, the shift count is the logical AND of CL and a count mask. In non-64-bit modes and default 64-bit mode; 
only bits 0 through 4 of the count are used. This masks the count to a value between 0 and 31. If a count is 
greater than the operand size, the result is undefined.

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the destination operand. For a 1-bit 
shift, the OF flag is set if a sign change occurred; otherwise, it is cleared. If the count operand is 0, flags are not 
affected.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits 
(upgrading the count mask to 6 bits). See the summary chart at the beginning of this section for encoding data 
and limits.

Operation

IF (In 64-Bit Mode and REX.W = 1) 
THEN COUNT ← COUNT MOD 64;
ELSE COUNT ← COUNT MOD 32;

FI
SIZE ← OperandSize;

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F A4 /r ib SHLD r/m16, r16, imm8 MRI Valid Valid Shift r/m16 to left imm8 places while shifting 
bits from r16 in from the right.

0F A5 /r SHLD r/m16, r16, CL MRC Valid Valid Shift r/m16 to left CL places while shifting bits 
from r16 in from the right.

0F A4 /r ib SHLD r/m32, r32, imm8 MRI Valid Valid Shift r/m32 to left imm8 places while shifting 
bits from r32 in from the right.

REX.W + 0F A4 /r ib SHLD r/m64, r64, imm8 MRI Valid N.E. Shift r/m64 to left imm8 places while shifting 
bits from r64 in from the right.

0F A5 /r SHLD r/m32, r32, CL MRC Valid Valid Shift r/m32 to left CL places while shifting bits 
from r32 in from the right.

REX.W + 0F A5 /r SHLD r/m64, r64, CL MRC Valid N.E. Shift r/m64 to left CL places while shifting 
bits from r64 in from the right.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MRI ModRM:r/m (w) ModRM:reg (r) imm8 NA

MRC ModRM:r/m (w) ModRM:reg (r) CL NA
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IF COUNT = 0
THEN 

No operation;
ELSE

IF COUNT > SIZE
THEN (* Bad parameters *)

DEST is undefined;
CF, OF, SF, ZF, AF, PF are undefined;

ELSE (* Perform the shift *)
CF ← BIT[DEST, SIZE – COUNT];
(* Last bit shifted out on exit *)
FOR i ← SIZE – 1 DOWN TO COUNT

DO
Bit(DEST, i) ← Bit(DEST, i – COUNT);

OD;
FOR i ← COUNT – 1 DOWN TO 0

DO
BIT[DEST, i] ← BIT[SRC, i – COUNT + SIZE];

OD;
FI;

FI;

...
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SHRD—Double Precision Shift Right

Instruction Operand Encoding

Description

The SHRD instruction is useful for multi-precision shifts of 64 bits or more.

The instruction shifts the first operand (destination operand) to the right the number of bits specified by the third 
operand (count operand). The second operand (source operand) provides bits to shift in from the left (starting 
with the most significant bit of the destination operand). 

The destination operand can be a register or a memory location; the source operand is a register. The count 
operand is an unsigned integer that can be stored in an immediate byte or the CL register. If the count operand is 
CL, the shift count is the logical AND of CL and a count mask. In non-64-bit modes and default 64-bit mode, the 
width of the count mask is 5 bits. Only bits 0 through 4 of the count register are used (masking the count to a 
value between 0 and 31). If the count is greater than the operand size, the result is undefined.

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the destination operand. For a 1-bit 
shift, the OF flag is set if a sign change occurred; otherwise, it is cleared. If the count operand is 0, flags are not 
affected.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits 
(upgrading the count mask to 6 bits). See the summary chart at the beginning of this section for encoding data 
and limits.

...

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F AC /r ib SHRD r/m16, r16, imm8 MRI Valid Valid Shift r/m16 to right imm8 places while 
shifting bits from r16 in from the left.

0F AD /r SHRD r/m16, r16, CL MRC Valid Valid Shift r/m16 to right CL places while shifting 
bits from r16 in from the left.

0F AC /r ib SHRD r/m32, r32, imm8 MRI Valid Valid Shift r/m32 to right imm8 places while 
shifting bits from r32 in from the left.

REX.W + 0F AC /r ib SHRD r/m64, r64, imm8 MRI Valid N.E. Shift r/m64 to right imm8 places while 
shifting bits from r64 in from the left.

0F AD /r SHRD r/m32, r32, CL MRC Valid Valid Shift r/m32 to right CL places while shifting 
bits from r32 in from the left.

REX.W + 0F AD /r SHRD r/m64, r64, CL MRC Valid N.E. Shift r/m64 to right CL places while shifting 
bits from r64 in from the left.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MRI ModRM:r/m (w) ModRM:reg (r) imm8 NA

MRC ModRM:r/m (w) ModRM:reg (r) CL NA
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SLDT—Store Local Descriptor Table Register

Instruction Operand Encoding

Description

Stores the segment selector from the local descriptor table register (LDTR) in the destination operand. The desti-
nation operand can be a general-purpose register or a memory location. The segment selector stored with this 
instruction points to the segment descriptor (located in the GDT) for the current LDT. This instruction can only be 
executed in protected mode.

Outside IA-32e mode, when the destination operand is a 32-bit register, the 16-bit segment selector is copied into 
the low-order 16 bits of the register. The high-order 16 bits of the register are cleared for the Pentium 4, Intel 
Xeon, and P6 family processors. They are undefined for Pentium, Intel486, and Intel386 processors. When the 
destination operand is a memory location, the segment selector is written to memory as a 16-bit quantity, regard-
less of the operand size.

In compatibility mode, when the destination operand is a 32-bit register, the 16-bit segment selector is copied 
into the low-order 16 bits of the register. The high-order 16 bits of the register are cleared. When the destination 
operand is a memory location, the segment selector is written to memory as a 16-bit quantity, regardless of the 
operand size.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional registers (R8-R15). The 
behavior of SLDT with a 64-bit register is to zero-extend the 16-bit selector and store it in the register. If the 
destination is memory and operand size is 64, SLDT will write the 16-bit selector to memory as a 16-bit quantity, 
regardless of the operand size

...

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 00 /0 SLDT r/m16 M Valid Valid Stores segment selector from LDTR in r/m16.

REX.W + 0F 00 /0 SLDT r64/m16 M Valid Valid Stores segment selector from LDTR in r64/
m16.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
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SQRTSD—Compute Square Root of Scalar Double-Precision Floating-Point Value

Instruction Operand Encoding

Description

Computes the square root of the low double-precision floating-point value in the source operand (second 
operand) and stores the double-precision floating-point result in the destination operand. The source operand can 
be an XMM register or a 64-bit memory location. The destination operand is an XMM register. The high quadword 
of the destination operand remains unchanged. See Figure 11-4 in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1, for an illustration of a scalar double-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (VLMAX-
1:64) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F2 0F 51 /r

SQRTSD xmm1, xmm2/m64

RM V/V SSE2 Computes square root of the low double-
precision floating-point value in xmm2/m64 
and stores the results in xmm1.

VEX.NDS.LIG.F2.0F.WIG 51/r

VSQRTSD xmm1,xmm2, xmm3/m64

RVM V/V AVX Computes square root of the low double-
precision floating point value in xmm3/m64 
and stores the results in xmm2. Also, upper 
double precision floating-point value 
(bits[127:64]) from xmm2 is copied to 
xmm1[127:64].

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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SQRTSS—Compute Square Root of Scalar Single-Precision Floating-Point Value

Instruction Operand Encoding

Description

Computes the square root of the low single-precision floating-point value in the source operand (second operand) 
and stores the single-precision floating-point result in the destination operand. The source operand can be an 
XMM register or a 32-bit memory location. The destination operand is an XMM register. The three high-order 
doublewords of the destination operand remain unchanged. See Figure 10-6 in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1, for an illustration of a scalar single-precision floating-point opera-
tion.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (VLMAX-
1:32) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed.

...

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F3 0F 51 /r

SQRTSS xmm1, xmm2/m32

RM V/V SSE Computes square root of the low single-
precision floating-point value in xmm2/m32 
and stores the results in xmm1.

VEX.NDS.LIG.F3.0F.WIG 51/r

VSQRTSS xmm1, xmm2, xmm3/m32

RVM V/V AVX Computes square root of the low single-
precision floating-point value in xmm3/m32 
and stores the results in xmm1. Also, upper 
single precision floating-point values 
(bits[127:32]) from xmm2 are copied to 
xmm1[127:32].

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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SUB—Subtract

Instruction Operand Encoding

Description

Subtracts the second operand (source operand) from the first operand (destination operand) and stores the result 
in the destination operand. The destination operand can be a register or a memory location; the source operand 
can be an immediate, register, or memory location. (However, two memory operands cannot be used in one 

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

2C ib SUB AL, imm8 I Valid Valid Subtract imm8 from AL.

2D iw SUB AX, imm16 I Valid Valid Subtract imm16 from AX.

2D id SUB EAX, imm32 I Valid Valid Subtract imm32 from EAX.

REX.W + 2D id SUB RAX, imm32 I Valid N.E. Subtract imm32 sign-extended to 64-bits 
from RAX.

80 /5 ib SUB r/m8, imm8 MI Valid Valid Subtract imm8 from r/m8.

REX + 80 /5 ib SUB r/m8*, imm8 MI Valid N.E. Subtract imm8 from r/m8.

81 /5 iw SUB r/m16, imm16 MI Valid Valid Subtract imm16 from r/m16.

81 /5 id SUB r/m32, imm32 MI Valid Valid Subtract imm32 from r/m32.

REX.W + 81 /5 id SUB r/m64, imm32 MI Valid N.E. Subtract imm32 sign-extended to 64-bits 
from r/m64.

83 /5 ib SUB r/m16, imm8 MI Valid Valid Subtract sign-extended imm8 from r/m16.

83 /5 ib SUB r/m32, imm8 MI Valid Valid Subtract sign-extended imm8 from r/m32.

REX.W + 83 /5 ib SUB r/m64, imm8 MI Valid N.E. Subtract sign-extended imm8 from r/m64.

28 /r SUB r/m8, r8 MR Valid Valid Subtract r8 from r/m8.

REX + 28 /r SUB r/m8*, r8* MR Valid N.E. Subtract r8 from r/m8.

29 /r SUB r/m16, r16 MR Valid Valid Subtract r16 from r/m16.

29 /r SUB r/m32, r32 MR Valid Valid Subtract r32 from r/m32.

REX.W + 29 /r SUB r/m64, r64 MR Valid N.E. Subtract r64 from r/m64.

2A /r SUB r8, r/m8 RM Valid Valid Subtract r/m8 from r8.

REX + 2A /r SUB r8*, r/m8* RM Valid N.E. Subtract r/m8 from r8.

2B /r SUB r16, r/m16 RM Valid Valid Subtract r/m16 from r16.

2B /r SUB r32, r/m32 RM Valid Valid Subtract r/m32 from r32.

REX.W + 2B /r SUB r64, r/m64 RM Valid N.E. Subtract r/m64 from r64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

I AL/AX/EAX/RAX imm8/26/32 NA NA

MI ModRM:r/m (r, w) imm8/26/32 NA NA

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
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instruction.) When an immediate value is used as an operand, it is sign-extended to the length of the destination 
operand format.

...

UCOMISD—Unordered Compare Scalar Double-Precision Floating-Point Values and Set EFLAGS

Instruction Operand Encoding

Description

Performs an unordered compare of the double-precision floating-point values in the low quadwords of source 
operand 1 (first operand) and source operand 2 (second operand), and sets the ZF, PF, and CF flags in the EFLAGS 
register according to the result (unordered, greater than, less than, or equal). The OF, SF and AF flags in the 
EFLAGS register are set to 0. The unordered result is returned if either source operand is a NaN (QNaN or SNaN). 
The sign of zero is ignored for comparisons, so that –0.0 is equal to +0.0.

Source operand 1 is an XMM register; source operand 2 can be an XMM register or a 64 bit memory location.

The UCOMISD instruction differs from the COMISD instruction in that it signals a SIMD floating-point invalid oper-
ation exception (#I) only when a source operand is an SNaN. The COMISD instruction signals an invalid operation 
exception if a source operand is either a QNaN or an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is generated.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

RESULT ← UnorderedCompare(SRC1[63:0] < > SRC2[63:0]) {
(* Set EFLAGS *) 
CASE (RESULT) OF

UNORDERED: ZF, PF, CF ← 111;
GREATER_THAN: ZF, PF, CF ← 000;
LESS_THAN: ZF, PF, CF ← 001;
EQUAL: ZF, PF, CF ← 100;

ESAC;
OF, AF, SF ← 0;

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 2E /r

UCOMISD xmm1, xmm2/m64

RM V/V SSE2 Compares (unordered) the low double-
precision floating-point values in xmm1 and 
xmm2/m64 and set the EFLAGS accordingly.

VEX.LIG.66.0F.WIG 2E /r

VUCOMISD xmm1, xmm2/m64

RM V/V AVX Compare low double precision floating-point 
values in xmm1 and xmm2/mem64 and set 
the EFLAGS flags accordingly.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA
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...

UCOMISS—Unordered Compare Scalar Single-Precision Floating-Point Values and Set EFLAGS

Instruction Operand Encoding

Description

Performs an unordered compare of the single-precision floating-point values in the low doublewords of the source 
operand 1 (first operand) and the source operand 2 (second operand), and sets the ZF, PF, and CF flags in the 
EFLAGS register according to the result (unordered, greater than, less than, or equal). The OF, SF and AF flags in 
the EFLAGS register are set to 0. The unordered result is returned if either source operand is a NaN (QNaN or 
SNaN). The sign of zero is ignored for comparisons, so that –0.0 is equal to +0.0.

Source operand 1 is an XMM register; source operand 2 can be an XMM register or a 32 bit memory location.

The UCOMISS instruction differs from the COMISS instruction in that it signals a SIMD floating-point invalid oper-
ation exception (#I) only when a source operand is an SNaN. The COMISS instruction signals an invalid operation 
exception if a source operand is either a QNaN or an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is generated.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

RESULT ← UnorderedCompare(SRC1[31:0] <> SRC2[31:0]) {
(* Set EFLAGS *) 
CASE (RESULT) OF

UNORDERED: ZF,PF,CF ← 111;
GREATER_THAN: ZF,PF,CF ← 000;
LESS_THAN: ZF,PF,CF ← 001;
EQUAL: ZF,PF,CF ← 100;

ESAC;
OF,AF,SF ← 0;

...

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 2E /r

UCOMISS xmm1, xmm2/m32

RM V/V SSE Compare lower single-precision floating-point 
value in xmm1 register with lower single-
precision floating-point value in xmm2/mem 
and set the status flags accordingly.

VEX.LIG.0F.WIG 2E /r

VUCOMISS xmm1, xmm2/m32

RM V/V AVX Compare low single precision floating-point 
values in xmm1 and xmm2/mem32 and set 
the EFLAGS flags accordingly.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA
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VBROADCAST—Load with Broadcast

Instruction Operand Encoding

Description

Load floating point values from the source operand (second operand) and broadcast to all elements of the desti-
nation operand (first operand).
The destination operand is a YMM register. The source operand is either a 32-bit, 64-bit, or 128-bit memory loca-
tion. Register source encodings are reserved and will #UD.
VBROADCASTSD and VBROADCASTF128 are only supported as 256-bit wide versions. VBROADCASTSS is 
supported in both 128-bit and 256-bit wide versions. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
If VBROADCASTSD or VBROADCASTF128 is encoded with VEX.L= 0, an attempt to execute the instruction 
encoded with VEX.L= 0 will cause an #UD exception.

...

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.128.66.0F38.W0 18 /r

VBROADCASTSS xmm1, m32

RM V/V AVX Broadcast single-precision floating-point 
element in mem to four locations in xmm1.

VEX.256.66.0F38.W0 18 /r

VBROADCASTSS ymm1, m32

RM V/V AVX Broadcast single-precision floating-point 
element in mem to eight locations in ymm1.

VEX.256.66.0F38.W0 19 /r

VBROADCASTSD ymm1, m64

RM V/V AVX Broadcast double-precision floating-point 
element in mem to four locations in ymm1.

VEX.256.66.0F38.W0 1A /r

VBROADCASTF128 ymm1, m128

RM V/V AVX Broadcast 128 bits of floating-point data in 
mem to low and high 128-bits in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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VCVTPS2PH—Convert Single-Precision FP value to 16-bit FP value

Instruction Operand Encoding

Description

Convert four or eight packed single-precision floating values in first source operand to four or eight packed half-
precision (16-bit) floating-point values. The rounding mode is specified using the immediate field (imm8).
Underflow results (i.e. tiny results) are converted to denormals. MXCSR.FTZ is ignored. If a source element is 
denormal relative to input format with MXCSR.DAZ not set, DM masked and at least one of PM or UM unmasked; 
a SIMD exception will be raised with DE, UE and PE set.
128-bit version: The source operand is a XMM register. The destination operand is a XMM register or 64-bit 
memory location. The upper-bits vector register zeroing behavior of VEX prefix encoding still applies if the desti-
nation operand is a xmm register. So the upper bits (255:64) of corresponding YMM register are zeroed. 
256-bit version: The source operand is a YMM register. The destination operand is a XMM register or 128-bit 
memory location. The upper-bits vector register zeroing behavior of VEX prefix encoding still applies if the desti-
nation operand is a xmm register. So the upper bits (255:128) of the corresponding YMM register are zeroed.
Note: VEX.vvvv is reserved (must be 1111b).
The diagram below illustrates how data is converted from four packed single precision (in 128 bits) to four half 
precision (in 64 bits) FP values.

Opcode/
Instruction

Op/ 
En

64/32-
bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.256.66.0F3A.W0 1D /r ib MR V/V F16C Convert eight packed single-precision 
floating-point value in ymm2 to packed 
half-precision (16-bit) floating-point value 
in xmm1/mem. Imm8 provides rounding 
controls.

VCVTPS2PH xmm1/m128, ymm2,  imm8

VEX.128.66.0F3A.W0.1D /r ib MR V/V F16C Convert four packed single-precision float-
ing-point value in xmm2 to packed half-
precision (16-bit) floating-point value in 
xmm1/mem. Imm8 provides rounding con-
trols.

VCVTPS2PH xmm1/m64, xmm2,  imm8

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA
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The immediate byte defines several bit fields that controls rounding operation. The effect and encoding of RC
field are listed in Table 4-19.

Operation
vCvt_s2h(SRC1[31:0])
{
IF Imm[2] = 0
THEN // using Imm[1:0] for rounding control, see Table 4-19

RETURN Cvt_Single_Precision_To_Half_Precision_FP_Imm(SRC1[31:0]);
ELSE // using MXCSR.RC for rounding control

RETURN Cvt_Single_Precision_To_Half_Precision_FP_Mxcsr(SRC1[31:0]);
FI;
}

VCVTPS2PH (VEX.256 encoded version)
DEST[15:0]  vCvt_s2h(SRC1[31:0]);
DEST[31:16]  vCvt_s2h(SRC1[63:32]);
DEST[47:32]  vCvt_s2h(SRC1[95:64]);
DEST[63:48]  vCvt_s2h(SRC1[127:96]);

Figure 4-29 .  VCVTPS2PH (128-bit Version)

VH0VH1VH2VH3

15             031           1647           3263           4895                                64127                              96

VS0VS1VS2VS3

31                                  063                                3295                                64127                              96

xmm1/mem64

xmm2

VCVTPS2PH xmm1/mem64, xmm2,  imm8

convertconvert convertconvert

Table 4-191.  Immediate Byte Encoding for 16-bit Floating-Point Conversion Instructions

Bits Field Name/value Description Comment

Imm[1:0] RC=00B Round to nearest even If Imm[2] = 0

RC=01B Round down

RC=10B Round up

RC=11B Truncate

Imm[2] MS1=0 Use imm[1:0] for rounding Ignore MXCSR.RC 

MS1=1 Use MXCSR.RC for rounding

Imm[7:3] Ignored Ignored by processor
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DEST[79:64]  vCvt_s2h(SRC1[159:128]);
DEST[95:80]  vCvt_s2h(SRC1[191:160]);
DEST[111:96]  vCvt_s2h(SRC1[223:192]);
DEST[127:112]  vCvt_s2h(SRC1[255:224]);
DEST[255:128]  0; // if DEST is a register

VCVTPS2PH (VEX.128 encoded version) 
DEST[15:0]  vCvt_s2h(SRC1[31:0]);
DEST[31:16]  vCvt_s2h(SRC1[63:32]);
DEST[47:32]  vCvt_s2h(SRC1[95:64]);
DEST[63:48]  vCvt_s2h(SRC1[127:96]);
DEST[VLMAX-1:64] 0; // if DEST is a register

Flags Affected

None
...

5. Updates to Chapter 5, Volume 2C
Change bars show changes to Chapter 5 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2C: Instruction Set Reference, Part 3.

------------------------------------------------------------------------------------------

...

GETSEC[ENTERACCS] - Execute Authenticated Chipset Code

Description

The GETSEC[ENTERACCS] function loads, authenticates and executes an authenticated code module using an 
Intel® TXT platform chipset's public key. The ENTERACCS leaf of GETSEC is selected with EAX set to 2 at entry.

There are certain restrictions enforced by the processor for the execution of the GETSEC[ENTERACCS] instruc-
tion: 
• Execution is not allowed unless the processor is in protected mode or IA-32e mode with CPL = 0 and 

EFLAGS.VM = 0. 
• Processor cache must be available and not disabled, that is, CR0.CD and CR0.NW bits must be 0. 
• For processor packages containing more than one logical processor, CR0.CD is checked to ensure consistency 

between enabled logical processors. 
• For enforcing consistency of operation with numeric exception reporting using Interrupt 16, CR0.NE must be 

set. 
• An Intel TXT-capable chipset must be present as communicated to the processor by sampling of the power-on 

configuration capability field after reset. 

Opcode Instruction Description

0F 37 

(EAX = 2)

GETSEC[ENTERACCS] Enter authenticated code execution mode.

EBX holds the authenticated code module physical base address. ECX holds the authenticated 
code module size (bytes).
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• The processor can not already be in authenticated code execution mode as launched by a previous 
GETSEC[ENTERACCS] or GETSEC[SENTER] instruction without a subsequent exiting using GETSEC[EXITAC]). 

• To avoid potential operability conflicts between modes, the processor is not allowed to execute this instruction 
if it currently is in SMM or VMX operation. 

• To insure consistent handling of SIPI messages, the processor executing the GETSEC[ENTERACCS] instruction 
must also be designated the BSP (boot-strap processor) as defined by IA32_APIC_BASE.BSP (Bit 8). 

Failure to conform to the above conditions results in the processor signaling a general protection exception.

Prior to execution of the ENTERACCS leaf, other logical processors, i.e. RLPs, in the platform must be:
• idle in a wait-for-SIPI state (as initiated by an INIT assertion or through reset for non-BSP designated 

processors), or 
• in the SENTER sleep state as initiated by a GETSEC[SENTER] from the initiating logical processor (ILP). 

If other logical processor(s) in the same package are not idle in one of these states, execution of ENTERACCS 
signals a general protection exception. The same requirement and action applies if the other logical processor(s) 
of the same package do not have CR0.CD = 0. 

A successful execution of ENTERACCS results in the ILP entering an authenticated code execution mode. Prior to 
reaching this point, the processor performs several checks. These include: 
• Establish and check the location and size of the specified authenticated code module to be executed by the 

processor.
• Inhibit the ILP’s response to the external events: INIT, A20M, NMI and SMI.
• Broadcast a message to enable protection of memory and I/O from other processor agents.
• Load the designated code module into an authenticated code execution area.
• Isolate the contents of the authenticated code execution area from further state modification by external 

agents.
• Authenticate the authenticated code module.
• Initialize the initiating logical processor state based on information contained in the authenticated code 

module header.
• Unlock the Intel® TXT-capable chipset private configuration space and TPM locality 3 space.
• Begin execution in the authenticated code module at the defined entry point.

...

6. Updates to Chapter 6, Volume 3A
Change bars show changes to Chapter 6 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A: System Programming Guide, Part 1.

------------------------------------------------------------------------------------------

...

6.3.1 External Interrupts
External interrupts are received through pins on the processor or through the local APIC. The primary interrupt 
pins on Pentium 4, Intel Xeon, P6 family, and Pentium processors are the LINT[1:0] pins, which are connected to 
the local APIC (see Chapter 10, “Advanced Programmable Interrupt Controller (APIC)”). When the local APIC is 
enabled, the LINT[1:0] pins can be programmed through the APIC’s local vector table (LVT) to be associated with 
any of the processor’s exception or interrupt vectors.
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When the local APIC is global/hardware disabled, these pins are configured as INTR and NMI pins, respectively. 
Asserting the INTR pin signals the processor that an external interrupt has occurred. The processor reads from 
the system bus the interrupt vector number provided by an external interrupt controller, such as an 8259A (see 
Section 6.2, “Exception and Interrupt Vectors”). Asserting the NMI pin signals a non-maskable interrupt (NMI), 
which is assigned to interrupt vector 2.

Table 6-1.  Protected-Mode Exceptions and Interrupts 

Vector 
No.

Mne-
monic

Description Type Error 
Code

Source

 0 #DE Divide Error Fault No DIV and IDIV instructions.

 1 #DB RESERVED Fault/ Trap No For Intel use only.

 2 — NMI Interrupt Interrupt No Nonmaskable external interrupt.

 3 #BP Breakpoint Trap No INT 3 instruction.

 4 #OF Overflow Trap No INTO instruction.

 5 #BR BOUND Range Exceeded Fault No BOUND instruction.

 6 #UD Invalid Opcode (Undefined Opcode) Fault No UD2 instruction or reserved opcode.1

 7 #NM Device Not Available (No Math 
Coprocessor)

Fault No Floating-point or WAIT/FWAIT instruction.

 8 #DF Double Fault Abort Yes 
(zero)

Any instruction that can generate an 
exception, an NMI, or an INTR.

 9 Coprocessor Segment Overrun 
(reserved)

Fault No Floating-point instruction.2

10 #TS Invalid TSS Fault Yes Task switch or TSS access.

11 #NP Segment Not Present Fault Yes Loading segment registers or accessing 
system segments.

12 #SS Stack-Segment Fault Fault Yes Stack operations and SS register loads.

13 #GP General Protection Fault Yes Any memory reference and other 
protection checks.

14 #PF Page Fault Fault Yes Any memory reference.

15 — (Intel reserved. Do not use.) No

16 #MF x87 FPU Floating-Point Error (Math 
Fault)

Fault No x87 FPU floating-point or WAIT/FWAIT 
instruction.

17 #AC Alignment Check Fault Yes 
(Zero)

Any data reference in memory.3

18 #MC Machine Check Abort No Error codes (if any) and source are model 
dependent.4

19 #XM SIMD Floating-Point Exception Fault No SSE/SSE2/SSE3 floating-point 
instructions5

20 #VE Virtualization Exception Fault No EPT violations6

21-31 — Intel reserved. Do not use.

32-255 — User Defined (Non-reserved) 
Interrupts

Interrupt External interrupt or INT n instruction.
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The processor’s local APIC is normally connected to a system-based I/O APIC. Here, external interrupts received 
at the I/O APIC’s pins can be directed to the local APIC through the system bus (Pentium 4, Intel Core Duo, Intel 
Core 2, Intel® Atom™, and Intel Xeon processors) or the APIC serial bus (P6 family and Pentium processors). The 
I/O APIC determines the vector number of the interrupt and sends this number to the local APIC. When a system 
contains multiple processors, processors can also send interrupts to one another by means of the system bus 
(Pentium 4, Intel Core Duo, Intel Core 2, Intel Atom, and Intel Xeon processors) or the APIC serial bus (P6 family 
and Pentium processors). 

The LINT[1:0] pins are not available on the Intel486 processor and earlier Pentium processors that do not contain 
an on-chip local APIC. These processors have dedicated NMI and INTR pins. With these processors, external inter-
rupts are typically generated by a system-based interrupt controller (8259A), with the interrupts being signaled 
through the INTR pin.

Note that several other pins on the processor can cause a processor interrupt to occur. However, these interrupts 
are not handled by the interrupt and exception mechanism described in this chapter. These pins include the 
RESET#, FLUSH#, STPCLK#, SMI#, R/S#, and INIT# pins. Whether they are included on a particular processor 
is implementation dependent. Pin functions are described in the data books for the individual processors. The 
SMI# pin is described in Chapter 34, “System Management Mode.”

...

6.7.1 Handling Multiple NMIs
While an NMI interrupt handler is executing, the processor blocks delivery of subsequent NMIs until the next 
execution of the IRET instruction. This blocking of NMIs prevents nested execution of the NMI handler. It is recom-
mended that the NMI interrupt handler be accessed through an interrupt gate to disable maskable hardware 
interrupts (see Section 6.8.1, “Masking Maskable Hardware Interrupts”). 

An execution of the IRET instruction unblocks NMIs even if the instruction causes a fault. For example, if the IRET 
instruction executes with EFLAGS.VM = 1 and IOPL of less than 3, a general-protection exception is generated 
(see Section 20.2.7, “Sensitive Instructions”). In such a case, NMIs are unmasked before the exception handler 
is invoked.

...

6.9 PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND INTERRUPTS 
If more than one exception or interrupt is pending at an instruction boundary, the processor services them in a 
predictable order. Table 6-2 shows the priority among classes of exception and interrupt sources. 

NOTES:
1. The UD2 instruction was introduced in the Pentium Pro processor.
2. Processors after the Intel386 processor do not generate this exception.
3. This exception was introduced in the Intel486 processor.
4. This exception was introduced in the Pentium processor and enhanced in the P6 family processors.
5. This exception was introduced in the Pentium III processor.
6. This exception can occur only on processors that support the 1-setting of the “EPT-violation #VE” VM-execution control.

Table 6-1.  Protected-Mode Exceptions and Interrupts  (Contd.)

Table 6-2.  Priority Among Simultaneous Exceptions and Interrupts

Priority Description
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While priority among these classes listed in Table 6-2 is consistent throughout the architecture, exceptions within 
each class are implementation-dependent and may vary from processor to processor. The processor first services 
a pending exception or interrupt from the class which has the highest priority, transferring execution to the first 

1 (Highest) Hardware Reset and Machine Checks

- RESET

- Machine Check

2 Trap on Task Switch

- T flag in TSS is set

3 External Hardware Interventions

- FLUSH

- STOPCLK

- SMI

- INIT

4 Traps on the Previous Instruction

- Breakpoints

- Debug Trap Exceptions (TF flag set or data/I-O breakpoint)

5 Nonmaskable Interrupts (NMI) 1

6 Maskable Hardware Interrupts 1

7 Code Breakpoint Fault

8 Faults from Fetching Next Instruction 

- Code-Segment Limit Violation

- Code Page Fault

9 Faults from Decoding the Next Instruction

- Instruction length > 15 bytes 

- Invalid Opcode 

- Coprocessor Not Available

10 (Lowest) Faults on Executing an Instruction

- Overflow

- Bound error

- Invalid TSS

- Segment Not Present

- Stack fault

- General Protection

- Data Page Fault

- Alignment Check

- x87 FPU Floating-point exception

- SIMD floating-point exception

- Virtualization exception

NOTE

1. The Intel® 486 processor and earlier processors group nonmaskable and maskable interrupts in the same priority class.

Table 6-2.  Priority Among Simultaneous Exceptions and Interrupts (Contd.)
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instruction of the handler. Lower priority exceptions are discarded; lower priority interrupts are held pending. 
Discarded exceptions are re-generated when the interrupt handler returns execution to the point in the program 
or task where the exceptions and/or interrupts occurred. 

...

Interrupt 8—Double Fault Exception (#DF)

Exception Class Abort.

Description

Indicates that the processor detected a second exception while calling an exception handler for a prior exception. 
Normally, when the processor detects another exception while trying to call an exception handler, the two excep-
tions can be handled serially. If, however, the processor cannot handle them serially, it signals the double-fault 
exception. To determine when two faults need to be signalled as a double fault, the processor divides the excep-
tions into three classes: benign exceptions, contributory exceptions, and page faults (see Table 6-4).

Table 6-5 shows the various combinations of exception classes that cause a double fault to be generated. A 
double-fault exception falls in the abort class of exceptions. The program or task cannot be restarted or resumed. 
The double-fault handler can be used to collect diagnostic information about the state of the machine and/or, 
when possible, to shut the application and/or system down gracefully or restart the system.

A segment or page fault may be encountered while prefetching instructions; however, this behavior is outside the 
domain of Table 6-5. Any further faults generated while the processor is attempting to transfer control to the 
appropriate fault handler could still lead to a double-fault sequence.

...

Table 6-4.  Interrupt and Exception Classes 

Class Vector Number Description

Benign Exceptions and Interrupts  1
 2
 3
 4
 5
 6
 7
9
16
17
18

19
All
All

Debug
NMI Interrupt
Breakpoint
Overflow
BOUND Range Exceeded
Invalid Opcode
Device Not Available
Coprocessor Segment Overrun
Floating-Point Error
Alignment Check
Machine Check

SIMD floating-point
INT n
INTR

Contributory Exceptions  0
10
11
12
13

Divide Error
Invalid TSS
Segment Not Present
Stack Fault
General Protection

Page Faults 14
20

Page Fault
Virtualization Exception
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Interrupt 20—Virtualization Exception (#VE)

Exception Class Fault.

Description

Indicates that the processor detected an EPT violation in VMX non-root operation. Not all EPT violations cause 
virtualization exceptions. See Section 25.5.6.2 for details.

The exception handler can recover from EPT violations and restart the program or task without any loss of 
program continuity. In some cases, however, the problem that caused the EPT violation may be uncorrectable.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that generated the exception.

Program State Change

A program-state change does not normally accompany a virtualization exception, because the instruction that 
causes the exception to be generated is not executed. After the virtualization exception handler has corrected the 
violation (for example, by executing the EPTP-switching VM function), execution of the program or task can be 
resumed.

Additional Exception-Handling Information

The processor saves information about virtualization exceptions in the virtualization-exception information area. 
See Section 25.5.6.2 for details.

...

7. Updates to Chapter 9, Volume 3A
Change bars show changes to Chapter 9 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A: System Programming Guide, Part 1.

------------------------------------------------------------------------------------------

...

9.1.1 Processor State After Reset
Table 9-1 shows the state of the flags and other registers following power-up for the Pentium 4, Intel Xeon, P6 
family (including Intel processors with CPUID DisplayFamily signature of 06H), and Pentium processors. The state 
of control register CR0 is 60000010H (see Figure 9-1). This places the processor is in real-address mode with 
paging disabled. 
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9.1.2 Processor Built-In Self-Test (BIST)
Hardware may request that the BIST be performed at power-up. The EAX register is cleared (0H) if the processor 
passes the BIST. A nonzero value in the EAX register after the BIST indicates that a processor fault was detected. 
If the BIST is not requested, the contents of the EAX register after a hardware reset is 0H. 

The overhead for performing a BIST varies between processor families. For example, the BIST takes approximately 
30 million processor clock periods to execute on the Pentium 4 processor. This clock count is model-specific; Intel 
reserves the right to change the number of periods for any Intel 64 or IA-32 processor, without notification.

Table 9-1.  IA-32 Processor States Following Power-up, Reset, or INIT 

Register Pentium 4 and Intel Xeon 
Processor

P6 Family Processor (Including 
DisplayFamily = 06H)

Pentium Processor

EFLAGS1 00000002H 00000002H 00000002H

EIP 0000FFF0H 0000FFF0H 0000FFF0H

CR0 60000010H2 60000010H2 60000010H2

CR2, CR3, CR4 00000000H 00000000H 00000000H

CS Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W, Accessed

Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W, Accessed

Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W, Accessed

SS, DS, ES, FS, GS Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W, Accessed

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W, Accessed

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W, Accessed

EDX 00000FxxH  000n06xxH3 000005xxH 

EAX 04 04 04

EBX, ECX, ESI, EDI, EBP, 
ESP

00000000H 00000000H 00000000H

ST0 through ST75 Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

x87 FPU Control 
Word5

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

x87 FPU Status Word5 Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

x87 FPU Tag Word5 Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

x87 FPU Data 
Operand and CS Seg. 
Selectors5

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

x87 FPU Data 
Operand and Inst. 
Pointers5

Pwr up or Reset: 
   00000000H
FINIT/FNINIT: 00000000H

Pwr up or Reset: 
   00000000H
FINIT/FNINIT: 00000000H

Pwr up or Reset: 
   00000000H
FINIT/FNINIT: 00000000H
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MM0 through MM75 Pwr up or Reset:
   0000000000000000H
INIT or FINIT/FNINIT:
   Unchanged

Pentium II and Pentium III 
Processors Only—

Pwr up or Reset:
   0000000000000000H
INIT or FINIT/FNINIT:
   Unchanged

Pentium with MMX Technology 
Only—

Pwr up or Reset:
   0000000000000000H
INIT or FINIT/FNINIT:
   Unchanged

XMM0 through XMM7 Pwr up or Reset: 0H
INIT: Unchanged

If CPUID.01H:SSE is 1 —

Pwr up or Reset: 0H
INIT: Unchanged

NA

MXCSR Pwr up or Reset: 1F80H
INIT: Unchanged

Pentium III processor only-

Pwr up or Reset: 1F80H
INIT: Unchanged

NA

GDTR, IDTR Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Base = 00000000H
Limit = FFFFH
AR = Present, R/W

LDTR, Task Register Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

DR0, DR1, DR2, DR3 00000000H 00000000H 00000000H

DR6 FFFF0FF0H FFFF0FF0H FFFF0FF0H

DR7 00000400H 00000400H 00000400H

Time-Stamp Counter Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Perf. Counters and 
Event Select

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

All Other MSRs Pwr up or Reset:
   Undefined
INIT: Unchanged

Pwr up or Reset:
   Undefined
INIT: Unchanged

Pwr up or Reset:
   Undefined
INIT: Unchanged

Data and Code Cache, 
TLBs

Invalid6 Invalid6 Invalid6

Fixed MTRRs Pwr up or Reset: Disabled
INIT: Unchanged

Pwr up or Reset: Disabled
INIT: Unchanged

Not Implemented

Variable MTRRs Pwr up or Reset: Disabled
INIT: Unchanged

Pwr up or Reset: Disabled
INIT: Unchanged

Not Implemented

Machine-Check 
Architecture

Pwr up or Reset:
    Undefined
INIT: Unchanged

Pwr up or Reset:
    Undefined
INIT: Unchanged

Not Implemented

APIC Pwr up or Reset: Enabled
INIT: Unchanged

Pwr up or Reset: Enabled
INIT: Unchanged

Pwr up or Reset: Enabled
INIT: Unchanged

R8-R157 0000000000000000H 0000000000000000H N.A.

Table 9-1.  IA-32 Processor States Following Power-up, Reset, or INIT  (Contd.)

Register Pentium 4 and Intel Xeon 
Processor

P6 Family Processor (Including 
DisplayFamily = 06H)

Pentium Processor
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...

8. Updates to Chapter 14, Volume 3B
Change bars show changes to Chapter 14 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3B: System Programming Guide, Part 2.

------------------------------------------------------------------------------------------

...

14.5.3 Software Controlled Clock Modulation
Pentium 4, Intel Xeon and Pentium M processors also support software-controlled clock modulation. This provides 
a means for operating systems to implement a power management policy to reduce the power consumption of the 
processor. Here, the stop-clock duty cycle is controlled by software through the IA32_CLOCK_MODULATION MSR 
(see Figure 14-10). 

The IA32_CLOCK_MODULATION MSR contains the following flag and field used to enable software-controlled 
clock modulation and to select the clock modulation duty cycle:
• On-Demand Clock Modulation Enable, bit 4 — Enables on-demand software controlled clock modulation 

when set; disables software-controlled clock modulation when clear.

XMM8-XMM157 Pwr up or Reset: 0H
INIT: Unchanged

Pwr up or Reset: 0H
INIT: Unchanged

N.A.

YMMn[128:VLMAX]8 N.A. Pwr up or Reset: 0H
INIT: Unchanged

N.A.

NOTES: 
1. The 10 most-significant bits of the EFLAGS register are undefined following a reset. Software should not depend on the states of 

any of these bits.
2. The CD and NW flags are unchanged, bit 4 is set to 1, all other bits are cleared.
3. Where “n” is the Extended Model Value for the respective processor.
4. If Built-In Self-Test (BIST) is invoked on power up or reset, EAX is 0 only if all tests passed. (BIST cannot be invoked during an INIT.)
5. The state of the x87 FPU and MMX registers is not changed by the execution of an INIT.
6. Internal caches are invalid after power-up and RESET, but left unchanged with an INIT.
7. If the processor supports IA-32e mode.
8. If the processor supports AVX.

Table 9-1.  IA-32 Processor States Following Power-up, Reset, or INIT  (Contd.)

Register Pentium 4 and Intel Xeon 
Processor

P6 Family Processor (Including 
DisplayFamily = 06H)

Pentium Processor

Figure 14-10.  IA32_CLOCK_MODULATION MSR
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• On-Demand Clock Modulation Duty Cycle, bits 1 through 3 — Selects the on-demand clock modulation 
duty cycle (see Table 14-1). This field is only active when the on-demand clock modulation enable flag is set.

Note that the on-demand clock modulation mechanism (like the thermal monitor) controls the processor’s stop-
clock circuitry internally to modulate the clock signal. The STPCLK# pin is not used in this mechanism.

The on-demand clock modulation mechanism can be used to control processor power consumption. Power 
management software can write to the IA32_CLOCK_MODULATION MSR to enable clock modulation and to select 
a modulation duty cycle. If on-demand clock modulation and TM1 are both enabled and the thermal status of the 
processor is hot (bit 0 of the IA32_THERM_STATUS MSR is set), clock modulation at the duty cycle specified by 
TM1 takes precedence, regardless of the setting of the on-demand clock modulation duty cycle.

For Hyper-Threading Technology enabled processors, the IA32_CLOCK_MODULATION register is duplicated for 
each logical processor. In order for the On-demand clock modulation feature to work properly, the feature must 
be enabled on all the logical processors within a physical processor. If the programmed duty cycle is not identical 
for all the logical processors, the processor core clock will modulate to the highest duty cycle programmed for 
processors with any of the following CPUID DisplayFamily_DisplayModel signatures (see CPUID instruction in 
Chapter3, “Instruction Set Reference, A-L” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2A): 06_1A, 06_1C, 06_1E, 06_1F, 06_25, 06_26, 06_27, 06_2C, 06_2E, 06_2F, 06_35, 06_36, 
and 0F_xx. For all other processors, if the programmed duty cycle is not identical for all logical processors in the 
same core, the processor core will modulate at the lowest programmed duty cycle. 

For multiple processor cores in a physical package, each processor core can modulate to a programmed duty cycle 
independently.

For the P6 family processors, on-demand clock modulation was implemented through the chipset, which 
controlled clock modulation through the processor’s STPCLK# pin.

...

14.7.2 RAPL Domains and Platform Specificity
The specific RAPL domains available in a platform varies across product segments. Platforms targeting client 
segment support the following RAPL domain hierarchy:
• Package
• Two power planes: PP0 and PP1 (PP1 may reflect to uncore devices)

Platforms targeting server segment support the following RAPL domain hierarchy:
• Package

Table 14-1.  On-Demand Clock Modulation Duty Cycle Field Encoding

Duty Cycle Field Encoding Duty Cycle

000B Reserved

001B 12.5% (Default)

010B 25.0%

011B 37.5%

100B 50.0%

101B 63.5%

110B 75%

111B 87.5%
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• Power plane: PP0
• DRAM

Each level of the RAPL hierarchy provides respective set of RAPL interface MSRs. Table 14-2 lists the RAPL MSR 
interfaces available for each RAPL domain. The power limit MSR of each RAPL domain is located at offset 0 relative 
to an MSR base address which is non-architectural (see Chapter 35). The energy status MSR of each domain is 
located at offset 1 relative to the MSR base address of respective domain.

The presence of the optional MSR interfaces (the three right-most columns of Table 14-2) may be model-specific. 
See Chapter 35 for detail.

14.7.3 Package RAPL Domain
The MSR interfaces defined for the package RAPL domain are:
• MSR_PKG_POWER_LIMIT allows software to set power limits for the package and measurement attributes 

associated with each limit,
• MSR_PKG_ENERGY_STATUS reports measured actual energy usage,
• MSR_PKG_POWER_INFO reports the package power range information for RAPL usage.

MSR_PKG_PERF_STATUS can report the performance impact of power limiting, but its availability may be model-
specific.

Table 14-2.  RAPL MSR Interfaces and RAPL Domains

 Domain  Power Limit
(Offset 0)

 Energy Status (Offset 
1)

 Policy
(Offset 2)

 Perf Status
(Offset 3)

 Power Info
(Offset 4)

PKG MSR_PKG_POWER_
LIMIT

MSR_PKG_ENERGY_STA
TUS

RESERVED MSR_PKG_PERF_STATUS MSR_PKG_POWER_I
NFO

DRAM MSR_DRAM_POWER
_LIMIT

MSR_DRAM_ENERGY_S
TATUS

RESERVED MSR_DRAM_PERF_STATUS MSR_DRAM_POWER
_INFO

PP0 MSR_PP0_POWER_
LIMIT

MSR_PP0_ENERGY_STA
TUS

MSR_PP0_POLICY MSR_PP0_PERF_STATUS RESERVED

PP1 MSR_PP1_POWER_
LIMIT

MSR_PP1_ENERGY_STA
TUS

MSR_PP1_POLICY RESERVED RESERVED

Figure 14-17.  MSR_PKG_POWER_LIMIT Register
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MSR_PKG_POWER_LIMIT allows a software agent to define power limitation for the package domain. Power limi-
tation is defined in terms of average power usage (Watts) over a time window specified in 
MSR_PKG_POWER_LIMIT. Two power limits can be specified, corresponding to time windows of different sizes. 
Each power limit provides independent clamping control that would permit the processor cores to go below OS-
requested state to meet the power limits. A lock mechanism allow the software agent to enforce power limit 
settings. Once the lock bit is set, the power limit settings are static and un-modifiable until next RESET. 

The bit fields of MSR_PKG_POWER_LIMIT (Figure 14-17) are:
• Package Power Limit #1(bits 14:0): Sets the average power usage limit of the package domain corre-

sponding to time window # 1. The unit of this field is specified by the “Power Units” field of 
MSR_RAPL_POWER_UNIT.

• Enable Power Limit #1(bit 15): 0 = disabled; 1 = enabled.
• Package Clamping Limitation #1 (bit 16): Allow going below OS-requested P/T state setting during time 

window specified by bits 23:17.
• Time Window for Power Limit #1 (bits 23:17): Indicates the time window for power limit #1 

Time limit = 2^Y * (1.0 + Z/4.0) * Time_Unit 
Here “Y” is the unsigned integer value represented. by bits 21:17, “Z” is an unsigned integer represented by 
bits 23:22. “Time_Unit” is specified by the “Time Units” field of MSR_RAPL_POWER_UNIT.

• Package Power Limit #2(bits 46:32): Sets the average power usage limit of the package domain corre-
sponding to time window # 2. The unit of this field is specified by the “Power Units” field of 
MSR_RAPL_POWER_UNIT.

• Enable Power Limit #2(bit 47): 0 = disabled; 1 = enabled.
• Package Clamping Limitation #2 (bit 48): Allow going below OS-requested P/T state setting during time 

window specified by bits 23:17.
• Time Window for Power Limit #2 (bits 55:49): Indicates the time window for power limit #2 

Time limit = 2^Y * (1.0 + Z/4.0) * Time_Unit 
Here “Y” is the unsigned integer value represented. by bits 53:49, “Z” is an unsigned integer represented by 
bits 55:54. “Time_Unit” is specified by the “Time Units” field of MSR_RAPL_POWER_UNIT. This field may have 
a hard-coded value in hardware and ignores values written by software.

• Lock (bit 63): If set, all write attempts to this MSR are ignored until next RESET.

MSR_PKG_ENERGY_STATUS is a read-only MSR. It reports the actual energy use for the package domain. This 
MSR is updated every ~1msec. It has a wraparound time of around 60 secs when power consumption is high, and 
may be longer otherwise.

...

14.7.2 DRAM RAPL Domain
The MSR interfaces defined for the DRAM domain is supported only in the server platform. The MSR interfaces 
are:
• MSR_DRAM_POWER_LIMIT allows software to set power limits for the DRAM domain and measurement 

attributes associated with each limit,
• MSR_DRAM_ENERGY_STATUS reports measured actual energy usage,
• MSR_DRAM_POWER_INFO reports the DRAM domain power range information for RAPL usage.
• MSR_DRAM_PERF_STATUS can report the performance impact of power limiting.

...
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9. Updates to Chapter 16, Volume 3B
Change bars show changes to Chapter 16 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3B: System Programming Guide, Part 2.

------------------------------------------------------------------------------------------

...

16.4.3  Integrated Memory Controller Machine Check Errors
MC error codes associated with integrated memory controllers are reported in the MSRs IA32_MC8_STATUS-
IA32_MC11_STATUS. The supported error codes are follows the architectural MCACOD definition type 
1MMMCCCC (see Chapter 15, “Machine-Check Architecture,”). MSR_ERROR_CONTROL.[ bit 1] can enable addi-
tional information logging of the IMC. The additional error information logged by the IMC is stored in 
IA32_MCi_STATUS and IA32_MCi_MISC; (i = 8, 11).

Table 16-15.  Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 8, 11)

Table 16-16.  Intel IMC MC Error Codes for IA32_MCi_MISC (i= 8, 11)

Type Bit No. Bit Function Bit Description

MCA error codes1 0-15 MCACOD Bus error format: 1PPTRRRRIILL

Model specific 
errors

31:16 Reserved except for 
the following

0x001 - Address parity error
0x002 - HA Wrt buffer Data parity error
0x004 - HA Wrt byte enable parity error
0x008 - Corrected patrol scrub error
0x010 - Uncorrected patrol scrub error
0x020 - Corrected spare error
0x040 - Uncorrected spare error

Model specific 
errors

36-32 Other info When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first device 
error when corrected error is detected during normal read.

37 Reserved Reserved

56-38 See Chapter 15, “Machine-Check Architecture,”

Status register 
validity  indicators1 

57-63

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

Type Bit No. Bit Function Bit Description

MCA addr info1 0-8 See Chapter 15, “Machine-Check Architecture,”

Model specific 
errors

13:9 • When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second device 
error when corrected error is detected during normal read.

• Otherwise contain parity error if MCi_Status indicates HA_WB_Data or 
HA_W_BE parity error.

Model specific 
errors

29-14 ErrMask_1stErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device error bit 
mask.
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16.5 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY WITH 
CPUID DISPLAYFAMILY_DISPLAYMODEL SIGNATURE 06_3EH, MACHINE 
ERROR CODES FOR MACHINE CHECK

Next generation Intel Xeon processor based on Intel microarchitecture codenamed Ivy Bridge can be identified 
with CPUID DisplayFamily_DisplaySignature 06_3EH. Incremental error codes for internal machine check error 
from PCU controller is reported in the register bank IA32_MC4, Table 16-17 lists model-specific fields to interpret 
error codes applicable to IA32_MC4_STATUS. Incremental MC error codes related to the Intel QPI links are 
reported in the register banks IA32_MC5. Information listed in Table 16-14 for QPI MC error code apply to 
IA32_MC5_STATUS. Incremental error codes for the memory controller unit is reported in the register banks 
IA32_MC9-IA32_MC16. Table 16-18 lists model-specific error codes apply to IA32_MCi_STATUS, i = 9-16.

Model specific 
errors

45-30 ErrMask_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-device error 
bit mask.

50:46 FailRank_1stErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device error 
failing rank.

55:51 FailRank_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-device error 
failing rank.

58:56 FailSlot_1stErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device error 
failing DIMM slot.

61-59 FailSlot_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-device error 
failing DIMM slot.

62 Valid_1stErrDev When MSR_ERROR_CONTROL.[1] is set, indicates the iMC hs logged valid data from 
the first correctable error in a memory device.

63 Valid_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, indicates the iMC hs logged valid data due 
to a second correctable error in a memory device. Use this information only after 
there is valid first error info indicated by bit 62.

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

Type Bit No. Bit Function Bit Description
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16.5.1  Internal Machine Check Errors

Table 16-17.  Machine Check Error Codes for IA32_MC4_STATUS

Type Bit No. Bit Function Bit Description

MCA error codes1 0-15 MCACOD

Model specific errors 19:16 Reserved except for 
the following

0000b - No Error

0001b - Non_IMem_Sel

0010b - I_Parity_Error

0011b - Bad_OpCode

0100b - I_Stack_Underflow

0101b - I_Stack_Overflow

0110b - D_Stack_Underflow

0111b - D_Stack_Overflow

1000b - Non-DMem_Sel

1001b - D_Parity_Error

23-20 Reserved Reserved

31-24 Reserved except for 
the following

00h - No Error

0Dh - MC_IMC_FORCE_SR_S3_TIMEOUT

0Eh - MC_CPD_UNCPD_ST_TIMOUT

0Fh - MC_PKGS_SAFE_WP_TIMEOUT

43h - MC_PECI_MAILBOX_QUIESCE_TIMEOUT

44h - MC_CRITICAL_VR_FAILED

45h - MC_ICC_MAX-NOTSUPPORTED

5Ch - MC_MORE_THAN_ONE_LT_AGENT

60h - MC_INVALID_PKGS_REQ_PCH

61h - MC_INVALID_PKGS_REQ_QPI

62h - MC_INVALID_PKGS_RES_QPI

63h - MC_INVALID_PKGC_RES_PCH

64h - MC_INVALID_PKG_STATE_CONFIG

70h - MC_WATCHDG_TIMEOUT_PKGC_SLAVE

71h - MC_WATCHDG_TIMEOUT_PKGC_MASTER

72h - MC_WATCHDG_TIMEOUT_PKGS_MASTER

7Ah - MC_HA_FAILSTS_CHANGE_DETECTED

7Bh - MC_PCIE_R2PCIE-RW_BLOCK_ACK_TIMEOUT

81h - MC_RECOVERABLE_DIE_THERMAL_TOO_HOT

56-32 Reserved Reserved

Status register 
validity  indicators1 

57-63

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.
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16.5.2  Integrated Memory Controller Machine Check Errors
MC error codes associated with integrated memory controllers are reported in the MSRs IA32_MC9_STATUS-
IA32_MC16_STATUS. The supported error codes are follows the architectural MCACOD definition type 
1MMMCCCC (see Chapter 15, “Machine-Check Architecture,”). 

MSR_ERROR_CONTROL.[ bit 1] can enable additional information logging of the IMC. The additional error infor-
mation logged by the IMC is stored in IA32_MCi_STATUS and IA32_MCi_MISC; (i = 9, 16).

Table 16-18.  Intel IMC MC Error Codes for IA32-MCi_STATUS (i= 9, 16)

Table16-19.  Intel IMC MC Error Codes for IA32_MCi_MISC (i= 9, 16)

Type Bit No. Bit Function Bit Description

MCA error codes1 0-15 MCACOD Bus error format: 1PPTRRRRIILL

Model specific 
errors

31:16 Reserved except for 
the following

0x001 - Address parity error

0x002 - HA Wrt buffer Data parity error

0x004 - HA Wrt byte enable parity error

0x008 - Corrected patrol scrub error

0x010 - Uncorrected patrol scrub error

0x020 - Corrected spare error

0x040 - Uncorrected spare error

0x100 - iMC, WDB, parity errors

36-32 Other info When MSR_ERROR_CONTROL.[1] is set, logs an encoded value from the first error 
device.

37 Reserved Reserved

56-38 See Chapter 15, “Machine-Check Architecture,”

Status register 
validity  indicators1 

57-63

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

Type Bit No. Bit Function Bit Description

MCA addr info1 0-8 See Chapter 15, “Machine-Check Architecture,”

Model specific 
errors

13:9 If the error logged is MCWrDataPar error or MCWrBEPar error, this field is the WDB 
ID that has the parity error. OR if the second error logged is a correctable read 
error, MC logs the second error device in this field.

Model specific 
errors

29-14 ErrMask_1stErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device error bit 
mask.

Model specific 
errors

45-30 ErrMask_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-device error 
bit mask.

50:46 FailRank_1stErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device error 
failing rank.

55:51 FailRank_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-device error 
failing rank.
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...

16.6.3.2  Processor Model Specific Error Code Field Type B:  Bus and Interconnect Error

Note: The Model Specific Error Code field in MC4_STATUS (bits 31:16)

Exactly one of the bits defined in the preceding table will be set for a Bus and Interconnect Error.  The Data ECC 
can be correctable or uncorrectable (the MC4_STATUS.UC bit, of course, distinguishes between correctable and 
uncorrectable cases with the Other_Info field possibly providing the ECC Syndrome for correctable errors).  All 
other errors for this processor MCA Error Type are uncorrectable.

61:56 Reserved

62 Valid_1stErrDev When MSR_ERROR_CONTROL.[1] is set, indicates the iMC has logged valid data 
from a correctable error from memory read associated with first error device.

63 Valid_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, indicates the iMC hs logged valid data due 
to a second correctable error in a memory device. Use this information only after 
there is valid first error info indicated by bit 62.

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

Type Bit No. Bit Function Bit Description

Table 16-25.  Type B Bus and Interconnect Error Codes

Bit Num Sub-Field Name Description

16 FSB Request Parity Parity error detected during FSB request phase

17 Core0 Addr Parity Parity error detected on Core 0 request’s address field

18 Core1 Addr Parity Parity error detected on Core 1 request’s address field

19 Reserved

20 FSB Response Parity Parity error on FSB response field detected

21 FSB Data Parity FSB data parity error on inbound data detected

22 Core0 Data Parity Data parity error on data received from Core 0 detected

23 Core1 Data Parity Data parity error on data received from Core 1 detected

24 IDS Parity Detected an Enhanced Defer parity error (phase A or phase B)

25 FSB Inbound Data ECC Data ECC event to error on inbound data (correctable or uncorrectable)

26 FSB Data Glitch Pad logic detected a data strobe ‘glitch’ (or sequencing error)

27 FSB Address Glitch Pad logic detected a request strobe ‘glitch’ (or sequencing error)

31:28 --- Reserved
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16.6.3.3  Processor Model Specific Error Code Field Type C:  Cache Bus Controller Error

Table 16-26.  Type C Cache Bus Controller Error Codes 

MC4_STATUS[31:16] (MSCE) Value Error Description

0000_0000_0000_0001   0x0001 Inclusion Error from Core 0

0000_0000_0000_0010   0x0002 Inclusion Error from Core 1

0000_0000_0000_0011   0x0003 Write Exclusive Error from Core 0

0000_0000_0000_0100   0x0004 Write Exclusive Error from Core 1

0000_0000_0000_0101   0x0005 Inclusion Error from FSB

0000_0000_0000_0110   0x0006 SNP Stall Error from FSB

0000_0000_0000_0111   0x0007 Write Stall Error from FSB

0000_0000_0000_1000   0x0008 FSB Arb Timeout Error

0000_0000_0000_1001   0x0009 CBC OOD Queue Underflow/overflow

0000_0001_0000_0000   0x0100 Enhanced Intel SpeedStep Technology TM1-TM2 Error

0000_0010_0000_0000   0x0200 Internal Timeout error

0000_0011_0000_0000   0x0300 Internal Timeout Error

0000_0100_0000_0000   0x0400 Intel® Cache Safe Technology Queue Full Error or Disabled-ways-in-a-set overflow

1100_0000_0000_0001   0xC001 Correctable ECC event on outgoing FSB data

1100_0000_0000_0010   0xC002 Correctable ECC event on outgoing Core 0 data

1100_0000_0000_0100   0xC004 Correctable ECC event on outgoing Core 1 data

1110_0000_0000_0001   0xE001 Uncorrectable ECC error on outgoing FSB data

1110_0000_0000_0010   0xE002 Uncorrectable ECC error on outgoing Core 0 data

1110_0000_0000_0100   0xE004 Uncorrectable ECC error on outgoing Core 1 data

 — all other encodings — Reserved
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All errors - except for the correctable ECC types - in this table are uncorrectable.  The correctable ECC events may 
supply the ECC syndrome in the Other_Info field of the MC4_STATUS MSR..

...

10.Updates to Chapter 17, Volume 3B
Change bars show changes to Chapter 17 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3B: System Programming Guide, Part 2.

------------------------------------------------------------------------------------------

...

Table 16-27.  Decoding Family 0FH Machine Check Codes for Cache Hierarchy Errors

Type Bit No. Bit Function Bit Description

MCA error 
codes1

0-15

Model 
specific error 
codes

16-17 Tag Error Code Contains the tag error code for this machine check error:

00 = No error detected

01 = Parity error on tag miss with a clean line

10 = Parity error/multiple tag match on tag hit

11 = Parity error/multiple tag match on tag miss

18-19 Data Error Code Contains the data error code for this machine check error:

00 = No error detected

01 = Single bit error

10 = Double bit error on a clean line

11 = Double bit error on a modified line

20 L3 Error This bit is set if the machine check error originated in the L3 it can be ignored for 
invalid PIC request errors):

1 = L3 error

0 = L2 error

21 Invalid PIC Request Indicates error due to invalid PIC request access was made to PIC space with WB 
memory):

1 = Invalid PIC request error

0 = No invalid PIC request error

22-31 Reserved Reserved

Other 
Information

32-39 8-bit Error Count Holds a count of the number of errors since reset. The counter begins at 0 for the 
first error and saturates at a count of 255.

40-56 Reserved Reserved

Status 
register 
validity 
indicators1

57-63

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.
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17.2 DEBUG REGISTERS
Eight debug registers (see Figure 17-1 for 32-bit operation and Figure 17-2 for 64-bit operation) control the 
debug operation of the processor. These registers can be written to and read using the move to/from debug 
register form of the MOV instruction. A debug register may be the source or destination operand for one of these 
instructions. 

Debug registers are privileged resources; a MOV instruction that accesses these registers can only be executed in 
real-address mode, in SMM or in protected mode at a CPL of 0. An attempt to read or write the debug registers 
from any other privilege level generates a general-protection exception (#GP).

The primary function of the debug registers is to set up and monitor from 1 to 4 breakpoints, numbered 0 though 
3. For each breakpoint, the following information can be specified:
• The linear address where the breakpoint is to occur.

Figure 17-1.  Debug Registers
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• The length of the breakpoint location: 1, 2, 4, or 8 bytes (refer to the notes in Section 17.2.4).
• The operation that must be performed at the address for a debug exception to be generated.
• Whether the breakpoint is enabled.
• Whether the breakpoint condition was present when the debug exception was generated.

...

17.8 LAST BRANCH, CALL STACK, INTERRUPT, AND EXCEPTION RECORDING 
FOR PROCESSORS BASED ON INTEL® MICROARCHITECTURE CODE NAME 
HASWELL

Generally, all of the last branch record, interrupt and exception recording facility described in Section 17.7, “Last 
Branch, Interrupt, and Exception Recording for Processors based on Intel® Microarchitecture code name Sandy 
Bridge”, apply to next generation processors based on Intel® Microarchitecture code name Haswell.

The LBR facility also supports an alternate capability to profile call stack profiles. Configuring the LBR facility to 
conduct call stack profiling is by writing 1 to the MSR_LBR_SELECT.EN_CALLSTACK[bit 9]; see Table 17-11. If 
MSR_LBR_SELECT.EN_CALLSTACK is clear, the LBR facility will capture branches normally as described in Section 
17.7.

The call stack profiling capability is an enhancement of the LBR facility. The LBR stack is a ring buffer typically 
used to profile control flow transitions resulting from branches. However, the finite depth of the LBR stack often 
become less effective when profiling certain high-level languages (e.g. C++), where a transition of the execution 
flow is accompanied by a large number of leaf function calls, each of which returns an individual parameter to 
form the list of parameters for the main execution function call. A long list of such parameters returned by the leaf 
functions would serve to flush the data captured in the LBR stack, often losing the main execution context. 

When the call stack feature is enabled, the LBR stack will capture unfiltered call data normally, but as return 
instructions are executed the last captured branch record is flushed from the on-chip registers in a last-in first-out 
(LIFO) manner. Thus, branch information relative to leaf functions will not be captured, while preserving the call 
stack information of the main line execution path.

Table 17-11.   MSR_LBR_SELECT for Intel microarchitecture code name Haswell
Bit Field Bit Offset Access Description

CPL_EQ_0 0 R/W When set, do not capture branches occurring in ring 0

CPL_NEQ_0 1 R/W When set, do not capture branches occurring in ring >0

JCC 2 R/W When set, do not capture conditional branches

NEAR_REL_CALL 3 R/W When set, do not capture near relative calls

NEAR_IND_CALL 4 R/W When set, do not capture near indirect calls

NEAR_RET 5 R/W When set, do not capture near returns

NEAR_IND_JMP 6 R/W When set, do not capture near indirect jumps except near indirect calls and near returns

NEAR_REL_JMP 7 R/W When set, do not capture near relative jumps except near relative calls.

FAR_BRANCH 8 R/W When set, do not capture far branches

EN_CALLSTACK1 9 Enable LBR stack to use LIFO filtering to capture Call stack profile

Reserved 63:10 Must be zero
NOTES:

1. Must set valid combination of bits 0-8 in conjunction with bit 9, otherwise the counter result is undefined.
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The configuration of the call stack facility is summarized below:
• Set IA32_DEBUGCTL.LBR (bit 0) to enable the LBR stack to capture branch records. The source and target 

addresses of the call branches will be captured in the 16 pairs of From/To LBR MSRs that form the LBR stack.
• Program the Top of Stack (TOS) MSR that points to the last valid from/to pair. This register is incremented by 

1, modulo 16, before recording the next pair of addresses.
• Program the branch filtering bits of MSR_LBR_SELECT (bits 0:8) as desired.
• Program the MSR_LBR_SELECT to enable LIFO filtering of return instructions with:

— The following bits in MSR_LBR_SELECT must be set to ‘1’: JCC, NEAR_IND_JMP, NEAR_REL_JMP, 
FAR_BRANCH, EN_CALLSTACK;

— The following bits in MSR_LBR_SELECT must be cleared: NEAR_REL_CALL, NEAR-IND_CALL, NEAR_RET;

— At most one of CPL_EQ_0, CPL_NEQ_0 is set.

...

17.14 CACHE QUALITY-OF-SERVICE (QOS) MONITORING 
Future generations of Intel Xeon processor may offer monitoring capability in each logical processor to measure 
specific quality-of-service metric, for example, L3 cache occupancy. The programming interface for this capability 
is described in the rest of this chapter. 

17.14.1 Overview of Cache QoS Monitoring
Cache QoS Monitoring provides a layer of abstraction between applications and logical processors through the 
use of Resource Monitoring IDs (RMIDs). Each logical processor in the system can be assigned an RMID inde-
pendently, or multiple logical processors can be assigned to the same RMID value (e.g., to track an application 
with multiple threads). For each logical processor, only one RMID value is active at a time. This is enforced by the 
IA32_PQR_ASSOC MSR, which specifies the active RMID of a logical processor. Writing to this MSR by software 
changes the active RMID of the logical processor from an old value to a new value.

The Cache QoS Hardware tracks cache utilization of memory accesses according to the RMIDs and reports moni-
tored data via a counter register (IA32_QM_CTR). Software must also configure an event selection MSR 
(IA32_QM_EVTSEL) to specify which QOS metric is to be reported. 

Processor support of the QoS Monitoring framework is reported via CPUID instruction. The resource type available 
to the QoS Monitoring framework is enumerated via a new leaf unction in CPUID. Reading and writing to the QoS 
MSRs require RDMSR and WRMSR instructions.

17.14.2 Enumeration and Detection Support of Cache QoS Monitoring
Software can query processor support of QoS capabilities by executing CPUID instruction with EAX = 07H, ECX = 
0H as input. If CPUID.(EAX=07H, ECX=0):EBX.QOS[bit 12] reports 1, the processor provides the following 
programming interfaces for QoS monitoring:
• One or more sub-leaves in CPUID leaf function 0FH (QoS Enumeration leaf):

— QoS leaf sub-function 0 enumerates available resources that support QoS monitoring, i.e. executing 
CPUID with EAX=0FH and ECX=0H. In the initial implementation, L3 cache QoS is the only resource type 
available. Each supported resource type is represented by a bit field in CPUID.(EAX=0FH, 
ECX=0):EDX[31:1]. The bit position corresponds the sub-leaf index that software must use to query 
details of the QoS monitoring capability of that resource type. Reserved bit fields of CPUID.(EAX=0FH, 
ECX=0):EDX[31:1] corresponds to unsupported sub-leaves of the CPUID.0FH leaf (see Figure 17-19 and 
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Figure 17-20). Additionally, CPUID.(EAX=0FH, ECX=0H):EBX reports the highest RMID value of any 
resource type that supports QoS monitoring in the processor.

— Additional sub-leaves of CPUID.EAX=0FH enumerate the specific details for software to program QoS 
monitoring MSRs. Software must query the capability of each available resource type that supports QoS 
monitoring from a sub-leaf of leaf 0FH using the sub-leaf index reported by the corresponding non-zero bit 
in CPUID.(EAX=0FH, ECX=0):EDX[31:1]. Cache QoS monitoring capability for L3 is enumerated by 
CPUID.(EAX=0FH, ECX=1H), see Figure 17-19. For each supported QoS monitoring resource type, 
hardware supports only a finite number of RMIDs. CPUID.(EAX=0FH, ECX=1H).ECX enumerates the 
highest RMID value that can be monitored with this resource type. CPUID.(EAX=0FH, ECX=1H).ECX 
specifies a bit vector that is used to look up the eventID (See Table 17-14) that software must program 
with IA32_QM_EVTSEL. After software configures IA32_QMEVTSEL with the desired RMID and eventID, it 
can read QoS data from IA32_QM_CTR. The raw numerical value reported from IA32_QM_CTR can be 
converted to occupancy metric by multiplying from CPUID.(EAX=0FH, ECX=1H).EBX, see Figure 17-20. 

Figure 17-19.  CPUID.(EAX=0FH, ECX=0H) QoS Resource Type Enumeration

Figure 17-20.  L3 Cache QoS Monitoring Capability Enumeration (CPUID.(EAX=0FH, ECX=1H) )
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Table 17-14.  Cache QoS Supported Event IDs

• IA32_PQR_ASSOC: This MSR specifies the active RMID that QoS monitoring hardware will use to tag internal 
operations, such as L3 cache request. The layout of the MSR is shown in Figure 17-21. Software specifies the 
active RMID to monitor in the IA32_PQR_ASSOC.RMID field. The width of the RMID field can vary from one 
implementation to another, and is derived from LOG2 ( 1 + CPUID.(EAX=0FH, ECX=0):EBX[31:0]). In the 
initial implementation, the width of the RMID field is 10 bits. The value of this MSR after power-on is 0.

• IA32_QM_EVTSEL: This MSR provides a role similar to the event select MSRs for programmable performance 
monitoring described in Chapter 18. The simplified layout of the MSR is shown in Figure 17-21. Bits 
IA32_QM_EVTSEL.EvtID (bits 7:0) specifies an event code of a supported resource type for hardware to 
report QoS monitored data associated with IA32_QM_EVTSEL.RMID (bits 41:32). Software can configure 
IA32_QM_EVTSEL.RMID with any RMID that are active within the physical processor. The width of 
IA32_QM_EVTSEL.RMID matches that of IA32_PQR_ASSOC.RMID.

• IA32_QM_CTR: This MSR reports monitored QoS data when available. It contains three bit fields. If software 
configures an unsupported RMID or event type in IA32_QM_EVTSEL, then IA32_QM_CTR.Error (bit 63) will be 
set, indicating there is no valid data to report. If IA32_QM_CTR.Unavailable (bit 62) is set, it indicates QoS 
monitored data for the RMID is not available, and IA32_QM_CTR.data (bits 61:0) should be ignored. 
Therefore, IA32_QM_CTR.data (bits 61:0) is valid only if bit 63 and 32 are both clear. For Cache QoS 
monitoring, software can convert IA32_QM_CTR.data into cache occupancy metric by multiplying with 
CPUID.(EAX=0FH, ECX=1H).EBX.

Software must follow the following sequence of enumeration to discover Cache QoS Monitoring capabilities:

1. Execute CPUID with EAX=0 to discover the “cpuid_maxLeaf” supported in the processor;

2. If cpuid_maxLeaf >= 7, then execute CPUID with EAX=7, ECX= 0 to verify CPUID.(EAX=07H, 
ECX=0):EBX.QOS[bit 12] is set;

Event Type Event ID

L3 Cache Occupancy 1

Reserved All other event codes

Figure 17-21.  IA32_PQR_ASSOC, IA32_QM_EVTSEL and IA32_QM_CTR MSRs
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3. If CPUID.(EAX=07H, ECX=0):EBX.QOS[bit 12] = 1, then execute CPUID with EAX=0FH, ECX= 0 to query 
available resource types that support QoS monitoring;

4. If CPUID.(EAX=0FH, ECX=0):EBX.L3[bit 1] = 1, then execute CPUID with EAX=0FH, ECX= 1 to query the 
capability of L3 Cache QoS monitoring.

5. If CPUID.(EAX=0FH, ECX=0):EBX reports additional resource types supporting QoS monitoring, then execute 
CPUID with EAX=0FH, ECX set to a corresponding resource type ID as enumerated by the bit position of 
CPUID.(EAX=0FH, ECX=0):EBX.

...

11.Updates to Chapter 18, Volume 3B
Change bars show changes to Chapter 18 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3B System Programming Guide, Part 2.

------------------------------------------------------------------------------------------

...

...

Table 18-13.  Data Source Encoding for Load Latency Record

Encoding Description

0x0 Unknown L3 cache miss

0x1 Minimal latency core cache hit. This request was satisfied by the L1 data cache.

0x2 Pending core cache HIT. Outstanding core cache miss to same cache-line address was already underway.

0x3 This data request was satisfied by the L2.

0x4 L3 HIT. Local or Remote home requests that hit L3 cache in the uncore with no coherency actions required (snooping).

0x5 L3 HIT. Local or Remote home requests that hit the L3 cache and was serviced by another processor core with a cross 
core snoop where no modified copies were found. (clean).

0x6 L3 HIT. Local or Remote home requests that hit the L3 cache and was serviced by another processor core with a cross 
core snoop where modified copies were found. (HITM).

0x71 Reserved/LLC Snoop HitM. Local or Remote home requests that hit the last level cache and was serviced by another 
core with a cross core snoop where modified copies found

0x8 L3 MISS. Local homed requests that missed the L3 cache and was serviced by forwarded data following a cross 
package snoop where no modified copies found. (Remote home requests are not counted).

0x9 Reserved

0xA L3 MISS. Local home requests that missed the L3 cache and was serviced by local DRAM (go to shared state).

0xB L3 MISS. Remote home requests that missed the L3 cache and was serviced by remote DRAM (go to shared state).

0xC L3 MISS. Local home requests that missed the L3 cache and was serviced by local DRAM (go to exclusive state).

0xD L3 MISS. Remote home requests that missed the L3 cache and was serviced by remote DRAM (go to exclusive state).

0xE I/O, Request of input/output operation

0xF The request was to un-cacheable memory.
NOTES:

1. Bit 7 is supported only for processor with CPUID DisplayFamily_DisplayModel signature of 06_2A, and 06_2E; otherwise it is 
reserved.
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...

18.8.4.3  Precise Store Facility
Processors based on Intel microarchitecture code name Sandy Bridge offer a precise store capability that comple-
ments the load latency facility. It provides a means to profile store memory references in the system.

Precise stores leverage the PEBS facility and provide additional information about sampled stores. Having precise 
memory reference events with linear address information for both loads and stores can help programmers 
improve data structure layout, eliminate remote node references, and identify cache-line conflicts in NUMA 
systems.

Only IA32_PMC3 can be used to capture precise store information. After enabling this facility, counter overflows 
will initiate the generation of PEBS records as previously described in PEBS. Upon counter overflow hardware 
captures the linear address and other status information of the next store that retires. This information is then 
written to the PEBS record.

To enable the precise store facility, software must complete the following steps. Please note that the precise store 
facility relies on the PEBS facility, so the PEBS configuration requirements must be completed before attempting 
to capture precise store information.
• Complete the PEBS configuration steps.
• Program the MEM_TRANS_RETIRED.PRECISE_STORE event in IA32_PERFEVTSEL3. Only counter 3 

(IA32_PMC3) supports collection of precise store information. 
• Set IA32_PEBS_ENABLE[3] and IA32_PEBS_ENABLE[63]. This enables IA32_PMC3 as a PEBS counter and 

enables the precise store facility, respectively.

The precise store information written into a PEBS record affects entries at offset 98H, A0H and A8H of 
Table 18-12. The specificity of Data Source entry at offset A0H has been enhanced to report three piece of infor-
mation. 

Table 18-22.  Layout of Data Source Field of Load Latency Record

Field Position Description

Source 3:0 See Table 18-13

STLB_MISS 4 0: The load did not miss the STLB (hit the DTLB or STLB).

1: The load missed the STLB.

Lock 5 0: The load was not part of a locked transaction.

1: The load was part of a locked transaction.

Reserved 63:6 Reserved

Table 18-23.  Layout of Precise Store Information In PEBS Record

Field Offset Description

Store Data 
Linear Address

98H The linear address of the destination of the store.

Store Status A0H L1D Hit (Bit 0): The store hit the data cache closest to the core (lowest latency cache) if this bit is set, 
otherwise the store missed the data cache.

STLB Miss (bit 4): The store missed the STLB if set, otherwise the store hit the STLB

Locked Access (bit 5): The store was part of a locked access if set, otherwise the store was not part of a 
locked access.
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18.8.4.4  Precise Distribution of Instructions Retired (PDIR) 
Upon triggering a PEBS assist, there will be a finite delay between the time the counter overflows and when the 
microcode starts to carry out its data collection obligations. INST_RETIRED is a very common event that is used 
to sample where performance bottleneck happened and to help identify its location in instruction address space. 
Even if the delay is constant in core clock space, it invariably manifest as variable “skids” in instruction address 
space. This creates a challenge for programmers to profile a workload and pinpoint the location of bottlenecks.

The core PMU in processors based on Intel microarchitecture code name Sandy Bridge include a facility referred 
to as precise distribution of Instruction Retired (PDIR). 

The PDIR facility mitigates the “skid“ problem by providing an early indication of when the INST_RETIRED counter 
is about to overflow, allowing the machine to more precisely trap on the instruction that actually caused the 
counter overflow thus eliminating skid.

PDIR applies only to the INST_RETIRED.ALL precise event, and must use IA32_PMC1 with PerfEvtSel1 property 
configured and bit 1 in the IA32_PEBS_ENABLE set to 1. INST_RETIRED.ALL is a non-architectural performance 
event, it is not supported in prior generation microarchitectures. Additionally, on processors with CPUID 
DisplayFamily_DisplayModel signatures of 06_2A and 06_2D, the tool that programs PDIR should quiesce the rest 
of the programmable counters in the core when PDIR is active. 

...

18.10.3 PEBS Data Address Profiling
The Data Linear Address facility is also abbreviated as DataLA. The facility is a replacement or extension of the 
precise store facility in previous processor generations. The DataLA facility complements the load latency facility 
by providing a means to profile load and store memory references in the system, leverages the PEBS facility, and 
provides additional information about sampled loads and stores.  Having precise memory reference events with 
linear address information for both loads and stores provides information to improve data structure layout, elim-
inate remote node references, and identify cache-line conflicts in NUMA systems.

The DataLA facility in the next generation processor supports the following events configured to use PEBS:

Reserved A8H Reserved

Table 18-23.  Layout of Precise Store Information In PEBS Record (Contd.)

Field Offset Description

Table 18-34.  Precise Events That Supports Data Linear Address Profiling
Event Name Event Name

MEM_UOPS_RETIRED.STLB_MISS_LOADS MEM_UOPS_RETIRED.STLB_MISS_STORES

MEM_UOPS_RETIRED.LOCK_LOADS MEM_UOPS_RETIRED.LOCK_STORES

MEM_UOPS_RETIRED.SPLIT_LOADS MEM_UOPS_RETIRED.SPLIT_STORES

MEM_UOPS_RETIRED.ALL_LOADS MEM_UOPS_RETIRED.ALL_STORES

MEM_LOAD_UOPS_RETIRED.L1_HIT MEM_LOAD_UOPS_RETIRED.L2_HIT

MEM_LOAD_UOPS_RETIRED.LLC_HIT MEM_LOAD_UOPS_RETIRED.L1_MISS

MEM_LOAD_UOPS_RETIRED.L2_MISS MEM_LOAD_UOPS_RETIRED.LLC_MISS

MEM_LOAD_UOPS_RETIRED.HIT_LFB MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_MISS

MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HIT MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HITM

UOPS_RETIRED.ALL (if load or store is tagged) MEM_LOAD_UOPS_MISC_RETIRED.UC
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DataLA can use any one of the IA32_PMC0-IA32_PMC3 counters. Counter overflows will initiate the generation of 
PEBS records. Upon counter overflow, hardware captures the linear address and possible other status information 
of the retiring memory uop. This information is then written to the PEBS record that is subsequently generated.

To enable the DataLA facility, software must complete the following steps. Please note that the DataLA facility 
relies on the PEBS facility, so the PEBS configuration requirements must be completed before attempting to 
capture DataLA information.
• Complete the PEBS configuration steps.
• Program the an event listed in Table 18-34 using any one of IA32_PERFEVTSEL0-IA32_PERFEVTSEL3. 
• Set the corresponding IA32_PEBS_ENABLE.PEBS_EN_CTRx bit. This enables the corresponding IA32_PMCx 

as a PEBS counter and enables the DataLA facility.

When the DataLA facility is enabled, the relevant information written into a PEBS record affects entries at offsets 
98H, A0H and A8H, as shown in Table 18-35. 

...

18.10.5 Performance Monitoring and Intel® TSX
Intel TSX allows multi-threaded program to make forward progress with less synchronization overhead. If a 
target workload for performance monitoring contains instruction streams using Intel TSX, the transaction code 
regions in the workload may encounter the following scenarios: (a) The transactional code on some logical 
processors may execute speculatively and commit results with synchronization overhead elided, or (b) the spec-
ulatively executed transaction code aborts and the transactional code will restart normal execution experiencing 
the cost of the synchronization primitive. For details of transactional code behavior of Intel TSX, see Chapter 8 of 
Intel® Architecture Instruction Set Extensions Programming Reference.

If a processor supports Intel TSX, the core PMU enhances it’s IA32_PERFEVTSELx MSR with two additional bit 
fields for event filtering. Support for Intel TSX is indicated by either (a) CPUID.(EAX=7, ECX=0):RTM[bit 11]=1, 
or (b) if CPUID.07H.EBX.HLE [bit 4] = 1. The TSX-enhanced layout of IA32_PERFEVTSELx is shown in Figure 
18-34. The two additional bit fields are:
• IN_TX (bit 32): When set, the counter will only include counts that occurred inside a transactional region, 

regardless of whether that region was aborted or committed. This bit may only be set if the processor 
supports HLE or RTM.

• IN_TXCP (bit 33): When set, the counter will not include counts that occurred inside of an aborted transac-
tional region. This bit may only be set if the processor supports HLE or RTM. This bit may only be set for 
IA32_PERFEVTSEL2. 

When the IA32_PERFEVTSELx MSR is programmed with both IN_TX=0 and IN_TXCP=0 on a processor that 
supports Intel TSX, the result in a counter may include detectable conditions associated with a transaction code 
region for its aborted execution (if any) and completed execution. 

In the initial implementation, when IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to prevent incor-
rect results.

MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_NONE MEM_LOAD_UOPS_LLC_MISS_RETIRED.LOCAL_DRAM

MEM_LOAD_UOPS_LLC_MISS_RETIRED.LOCAL_DRAM_SNP_HIT MEM_LOAD_UOPS_LLC_MISS_RETIRED.REMOTE_DRAM

MEM_LOAD_UOPS_LLC_MISS_RETIRED.REMOTE_DRAM_SNP_HIT MEM_LOAD_UOPS_LLC_MISS_RETIRED.REMOTE_HITM

MEM_LOAD_UOPS_LLC_MISS_RETIRED.REMOTE_FWD MEM_LOAD_UOPS_MISC_RETIRED.NON_DRAM

MEM_LOAD_UOPS_MISC_RETIRED.LLC_MISS

Table 18-34.  Precise Events That Supports Data Linear Address Profiling (Contd.)
Event Name Event Name
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A common usage of setting IN_TXCP=1 is to capture the number of events that were discarded due to a transac-
tional abort. With IA32_PMC2 configured to count in such a manner, then when a TX region aborts, the value for 
that counter is restored to the value it had prior to the aborted transactional region. As a result, any updates 
performed to the counter during the aborted transactional region are discarded.

On the other hand, setting IN_TX=1 can be used to drill down on the performance characteristics of transactional 
code regions. When a PMCx is configured with the corresponding IA32_PERFEVTSELx.IN_TX=1, only eventing 
conditions that occur inside transactional code regions are propagated to the event logic and reflected in the 
counter result. Eventing conditions specified by IA32_PERFEVTSELx but occurring outside a transactional code 
region are discarded. The following example illustrates using three counters to drill down cycles spent inside and 
outside of transactional regions:
• Program IA32_PERFEVTSEL2 to count Unhalted_Core_Cycles with (IN_TXCP=1, IN_TX=0), such that 

IA32_PMC2 will count cycles spent due to aborted TSX transactions;
• Program IA32_PERFEVTSEL0 to count Unhalted_Core_Cycles with (IN_TXCP=0, IN_TX=1), such that 

IA32_PMC0 will count cycles spent by the transactional code regions;
• Program IA32_PERFEVTSEL1 to count Unhalted_Core_Cycles with (IN_TXCP=0, IN_TX=0), such that 

IA32_PMC1 will count total cycles spent by the non-transactional code and transactional code regions.

Additionally, a number of performance events are solely focused on characterizing the execution of Intel TSX 
transactional code, they are listed in Table 19-3.

...

12.Updates to Chapter 19, Volume 3B
Change bars show changes to Chapter 19 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3B: System Programming Guide, Part 2.

------------------------------------------------------------------------------------------

...

Figure 18-34.  Layout of IA32_PERFEVTSELx MSRs Supporting Intel TSX
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Table 19-2.  Non-Architectural Performance Events In the Processor Core of 
Next Generation Intel® Core™ Processors

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 02H LD_BLOCKS.STORE_FORWARD loads blocked by overlapping with store buffer that 
cannot be forwarded .

05H 01H MISALIGN_MEM_REF.LOADS Speculative cache-line split load uops dispatched to 
L1D.

05H 02H MISALIGN_MEM_REF.STORES Speculative cache-line split Store-address uops 
dispatched to L1D.

07H 01H LD_BLOCKS_PARTIAL.ADDRESS
_ALIAS

False dependencies in MOB due to partial compare 
on address.

08H 01H DTLB_LOAD_MISSES.MISS_CAUS
ES_A_WALK

Misses in all TLB levels that cause a page walk of any 
page size.

08H 02H DTLB_LOAD_MISSES.WALK_COM
PLETED_4K

Completed page walks due to demand load misses 
that caused 4K page walks in any TLB levels.

08H 04H DTLB_LOAD_MISSES.WALK_COM
PLETED_2M_4M

Completed page walks due to demand load misses 
that caused 2M/4M page walks in any TLB levels.

08H 0EH DTLB_LOAD_MISSES.WALK_COM
PLETED

Completed page walks in any TLB of any page size 
due to demand load misses 

08H 10H DTLB_LOAD_MISSES.WALK_DUR
ATION

Cycle PMH is busy with a walk.

08H 20H DTLB_LOAD_MISSES.STLB_HIT_
4K

Load misses that missed DTLB but hit STLB (4K).

08H 40H DTLB_LOAD_MISSES.STLB_HIT_
2M

Load misses that missed DTLB but hit STLB (2M).

08H 60H DTLB_LOAD_MISSES.STLB_HIT Number of cache load STLB hits. No page walk.

08H 80H DTLB_LOAD_MISSES.PDE_CACH
E_MISS

DTLB demand load misses with low part of linear-to-
physical address translation missed

0DH 03H INT_MISC.RECOVERY_CYCLES Cycles waiting to recover after Machine Clears 
except JEClear. Set Cmask= 1.

Set Edge to count 
occurrences

0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of Uops issued by the 
RAT to RS. 

Set Cmask = 1, Inv = 1, Any= 1to count stalled cycles 
of this core.

Set Cmask = 1, Inv = 1to 
count stalled cycles

0EH 10H UOPS_ISSUED.FLAGS_MERGE Number of flags-merge uops allocated. Such uops 
adds delay.

0EH 20H UOPS_ISSUED.SLOW_LEA Number of slow LEA or similar uops allocated. Such 
uop has 3 sources (e.g. 2 sources + immediate) 
regardless if as a result of LEA instruction or not.

0EH 40H UOPS_ISSUED.SiNGLE_MUL Number of multiply packed/scalar single precision 
uops allocated.

24H 21H L2_RQSTS.DEMAND_DATA_RD_
MISS

Demand Data Read requests that missed L2, no 
rejects.

24H 41H L2_RQSTS.DEMAND_DATA_RD_
HIT

Demand Data Read requests that hit L2 cache.
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24H E1H L2_RQSTS.ALL_DEMAND_DATA
_RD

Counts any demand and L1 HW prefetch data load 
requests to L2. 

24H 42H L2_RQSTS.RFO_HIT Counts the number of store RFO requests that hit 
the L2 cache. 

24H 22H L2_RQSTS.RFO_MISS Counts the number of store RFO requests that miss 
the L2 cache. 

24H E2H L2_RQSTS.ALL_RFO Counts all L2 store RFO requests. 

24H 44H L2_RQSTS.CODE_RD_HIT Number of instruction fetches that hit the L2 cache. 

24H 24H L2_RQSTS.CODE_RD_MISS Number of instruction fetches that missed the L2 
cache. 

24H 27H L2_RQSTS.ALL_DEMAND_MISS Demand requests that miss L2 cache. 

24H E7H L2_RQSTS.ALL_DEMAND_REFE
RENCES

Demand requests to L2 cache. 

24H E4H L2_RQSTS.ALL_CODE_RD Counts all L2 code requests.

24H 50H L2_RQSTS.L2_PF_HIT Counts all L2 HW prefetcher requests that hit L2.

24H 30H L2_RQSTS.L2_PF_MISS Counts all L2 HW prefetcher requests that missed 
L2.

24H F8H L2_RQSTS.ALL_PF Counts all L2 HW prefetcher requests.

24H 3FH L2_RQSTS.MISS All requests that missed L2.

24H FFH L2_RQSTS.REFERENCES All requests to L2 cache. 

27H 50H L2_DEMAND_RQSTS.WB_HIT Not rejected writebacks that hit L2 cache

2EH 4FH LONGEST_LAT_CACHE.REFEREN
CE

This event counts requests originating from the core 
that reference a cache line in the last level cache. 

see Table 19-1

2EH 41H LONGEST_LAT_CACHE.MISS This event counts each cache miss condition for 
references to the last level cache. 

see Table 19-1

3CH 00H CPU_CLK_UNHALTED.THREAD_
P

Counts the number of thread cycles while the thread 
is not in a halt state. The thread enters the halt state 
when it is running the HLT instruction. The core 
frequency may change from time to time due to 
power or thermal throttling. 

see Table 19-1

3CH 01H CPU_CLK_THREAD_UNHALTED.
REF_XCLK

Increments at the frequency of XCLK (100 MHz) 
when not halted.

see Table 19-1

48H 01H L1D_PEND_MISS.PENDING Increments the number of outstanding L1D misses 
every cycle. Set Cmaks = 1 and Edge =1 to count 
occurrences.

Counter 2 only;

Set Cmask = 1 to count 
cycles. 

49H 01H DTLB_STORE_MISSES.MISS_CAU
SES_A_WALK

Miss in all TLB levels causes an page walk of any 
page size (4K/2M/4M/1G).

49H 02H DTLB_STORE_MISSES.WALK_CO
MPLETED_4K

Completed page walks due to store misses in one or 
more TLB levels of 4K page structure.

49H 04H DTLB_STORE_MISSES.WALK_CO
MPLETED_2M_4M

Completed page walks due to store misses in one or 
more TLB levels of 2M/4M page structure.

Table 19-2.  Non-Architectural Performance Events In the Processor Core of 
Next Generation Intel® Core™ Processors (Contd.)
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Value Event Mask Mnemonic Description Comment
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49H 0EH DTLB_STORE_MISSES.WALK_CO
MPLETED

Completed page walks due to store miss in any TLB 
levels of any page size (4K/2M/4M/1G).

49H 10H DTLB_STORE_MISSES.WALK_DU
RATION

Cycles PMH is busy with this walk.

49H 20H DTLB_STORE_MISSES.STLB_HIT
_4K

Store misses that missed DTLB but hit STLB (4K).

49H 40H DTLB_STORE_MISSES.STLB_HIT
_2M

Store misses that missed DTLB but hit STLB (2M).

49H 60H DTLB_STORE_MISSES.STLB_HIT Store operations that miss the first TLB level but hit 
the second and do not cause page walks.

49H 80H DTLB_STORE_MISSES.PDE_CAC
HE_MISS

DTLB store misses with low part of linear-to-physical 
address translation missed.

4CH 01H LOAD_HIT_PRE.SW_PF Non-SW-prefetch load dispatches that hit fill buffer 
allocated for S/W prefetch.

4CH 02H LOAD_HIT_PRE.HW_PF Non-SW-prefetch load dispatches that hit fill buffer 
allocated for H/W prefetch.

51H 01H L1D.REPLACEMENT Counts the number of lines brought into the L1 data 
cache.

58H 04H MOVE_ELIMINATION.INT_NOT_E
LIMINATED

Number of integer Move Elimination candidate uops 
that were not eliminated.

58H 08H MOVE_ELIMINATION.SIMD_NOT_
ELIMINATED

Number of SIMD Move Elimination candidate uops 
that were not eliminated.

58H 01H MOVE_ELIMINATION.INT_ELIMIN
ATED

Number of integer Move Elimination candidate uops 
that were eliminated.

58H 02H MOVE_ELIMINATION.SIMD_ELIMI
NATED

Number of SIMD Move Elimination candidate uops 
that were eliminated.

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the thread is in ring 0. Use Edge to count 
transition

5CH 02H CPL_CYCLES.RING123 Unhalted core cycles when the thread is not in ring 0.

5EH 01H RS_EVENTS.EMPTY_CYCLES Cycles the RS is empty for the thread.

60H 01H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_DATA_RD

Offcore outstanding Demand Data Read transactions 
in SQ to uncore. Set Cmask=1 to count cycles.

Use only when HTT is off

60H 02H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_CODE_RD

Offcore outstanding Demand code Read transactions 
in SQ to uncore. Set Cmask=1 to count cycles.

Use only when HTT is off

60H 04H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_RFO

Offcore outstanding RFO store transactions in SQ to 
uncore. Set Cmask=1 to count cycles.

Use only when HTT is off

60H 08H OFFCORE_REQUESTS_OUTSTAN
DING.ALL_DATA_RD

Offcore outstanding cacheable data read 
transactions in SQ to uncore. Set Cmask=1 to count 
cycles.

Use only when HTT is off

63H 01H LOCK_CYCLES.SPLIT_LOCK_UC_
LOCK_DURATION

Cycles in which the L1D and L2  are locked, due to a 
UC lock or split lock.

Table 19-2.  Non-Architectural Performance Events In the Processor Core of 
Next Generation Intel® Core™ Processors (Contd.)
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63H 02H LOCK_CYCLES.CACHE_LOCK_DU
RATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops delivered to IDQ from 
MITE path. 

Set Cmask = 1 to count cycles.

Can combine Umask 04H 
and 20H 

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops delivered to IDQ 
from DSB path. 

Set Cmask = 1 to count cycles.

Can combine Umask 08H 
and 10H 

79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops delivered to IDQ 
when MS_busy by DSB. Set Cmask = 1 to count 
cycles. Add Edge=1 to count # of delivery.

Can combine Umask 04H, 
08H 

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops delivered to IDQ 
when MS_busy by MITE. Set Cmask = 1 to count 
cycles.

Can combine Umask 04H, 
08H 

79H 30H IDQ.MS_UOPS Increment each cycle # of uops delivered to IDQ from 
MS by either DSB or MITE. Set Cmask = 1 to count 
cycles.

Can combine Umask 04H, 
08H 

79H 18H IDQ.ALL_DSB_CYCLES_ANY_UO
PS

Counts cycles DSB is delivered at least one uops. Set 
Cmask = 1.

79H 18H IDQ.ALL_DSB_CYCLES_4_UOPS Counts cycles DSB is delivered four uops. Set Cmask 
= 4.

79H 24H IDQ.ALL_MITE_CYCLES_ANY_UO
PS

Counts cycles MITE is delivered at least one uops. Set 
Cmask = 1.

79H 24H IDQ.ALL_MITE_CYCLES_4_UOPS Counts cycles MITE is delivered four uops. Set Cmask 
= 4.

79H 3CH IDQ.MITE_ALL_UOPS # of uops delivered to IDQ from any path. 

80H 02H ICACHE.MISSES Number of Instruction Cache, Streaming Buffer and 
Victim Cache Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_CAUSES_A_
WALK

Misses in ITLB that causes a page walk of any page 
size.

85H 02H ITLB_MISSES.WALK_COMPLETE
D_4K

Completed page walks due to misses in ITLB 4K page 
entries.

85H 04H ITLB_MISSES.WALK_COMPLETE
D_2M_4M

Completed page walks due to misses in ITLB 2M/4M 
page entries.

85H 0EH ITLB_MISSES.WALK_COMPLETE
D

Completed page walks in ITLB of any page size.

85H 10H ITLB_MISSES.WALK_DURATION Cycle PMH is busy with a walk.

85H 20H ITLB_MISSES.STLB_HIT_4K ITLB misses that hit STLB (4K).

85H 40H ITLB_MISSES.STLB_HIT_2M ITLB misses that hit STLB (2M).

85H 60H ITLB_MISSES.STLB_HIT ITLB misses that hit STLB. No page walk.

Table 19-2.  Non-Architectural Performance Events In the Processor Core of 
Next Generation Intel® Core™ Processors (Contd.)
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87H 01H ILD_STALL.LCP Stalls caused by changing prefix length of the 
instruction.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to IQ is full.

88H 01H BR_INST_EXEC.COND Qualify conditional near branch instructions 
executed, but not necessarily retired.

Must combine with 
umask 40H, 80H

88H 02H BR_INST_EXEC.DIRECT_JMP Qualify all unconditional near branch instructions 
excluding calls and indirect branches.

Must combine with 
umask 80H

88H 04H BR_INST_EXEC.INDIRECT_JMP_
NON_CALL_RET

Qualify executed indirect near branch instructions 
that are not calls nor returns.

Must combine with 
umask 80H

88H 08H BR_INST_EXEC.RETURN_NEAR Qualify indirect near branches that have a return 
mnemonic.

Must combine with 
umask 80H

88H 10H BR_INST_EXEC.DIRECT_NEAR_C
ALL

Qualify unconditional near call branch instructions, 
excluding non call branch, executed. 

Must combine with 
umask 80H

88H 20H BR_INST_EXEC.INDIRECT_NEAR
_CALL

Qualify indirect near calls, including both register and 
memory indirect, executed.

Must combine with 
umask 80H

88H 40H BR_INST_EXEC.NONTAKEN Qualify non-taken near branches executed. Applicable to umask 01H 
only

88H 80H BR_INST_EXEC.TAKEN Qualify taken near branches executed. Must combine 
with 01H,02H, 04H, 08H, 10H, 20H.

88H FFH BR_INST_EXEC.ALL_BRANCHES Counts all near executed branches (not necessarily 
retired). 

89H 01H BR_MISP_EXEC.COND Qualify conditional near branch instructions 
mispredicted.

Must combine with 
umask 40H, 80H

89H 04H BR_MISP_EXEC.INDIRECT_JMP_
NON_CALL_RET

Qualify mispredicted indirect near branch 
instructions that are not calls nor returns.

Must combine with 
umask 80H

89H 08H BR_MISP_EXEC.RETURN_NEAR Qualify mispredicted indirect near branches that 
have a return mnemonic.

Must combine with 
umask 80H

89H 10H BR_MISP_EXEC.DIRECT_NEAR_C
ALL

Qualify mispredicted unconditional near call branch 
instructions, excluding non call branch, executed. 

Must combine with 
umask 80H

89H 20H BR_MISP_EXEC.INDIRECT_NEAR
_CALL

Qualify mispredicted indirect near calls, including 
both register and memory indirect, executed.

Must combine with 
umask 80H

89H 40H BR_MISP_EXEC.NONTAKEN Qualify mispredicted non-taken near branches 
executed. 

Applicable to umask 01H 
only

89H 80H BR_MISP_EXEC.TAKEN Qualify mispredicted taken near branches executed. 
Must combine with 01H,02H, 04H, 08H, 10H, 20H.

89H FFH BR_MISP_EXEC.ALL_BRANCHES Counts all near executed branches (not necessarily 
retired). 

9CH 01H IDQ_UOPS_NOT_DELIVERED.CO
RE

Count number of non-delivered uops to RAT per 
thread. 

Use Cmask to qualify uop 
b/w

A1H 01H UOPS_EXECUTED_PORT.PORT_
0

Cycles which a Uop is dispatched on port 0 in this 
thread.

Set AnyThread to count 
per core

Table 19-2.  Non-Architectural Performance Events In the Processor Core of 
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A1H 02H UOPS_EXECUTED_PORT.PORT_
1

Cycles which a Uop is dispatched on port 1 in this 
thread.

Set AnyThread to count 
per core

A1H 04H UOPS_EXECUTED_PORT.PORT_
2

Cycles which a uop is dispatched on port 2 in this 
thread.

Set AnyThread to count 
per core

A1H 08H UOPS_EXECUTED_PORT.PORT_
3

Cycles which a uop is dispatched on port 3 in this 
thread.

Set AnyThread to count 
per core

A1H 10H UOPS_EXECUTED_PORT.PORT_
4

Cycles which a uop is dispatched on port 4 in this 
thread.

Set AnyThread to count 
per core

A1H 20H UOPS_EXECUTED_PORT.PORT_
5

Cycles which a uop is dispatched on port 5 in this 
thread.

Set AnyThread to count 
per core

A1H 40H UOPS_EXECUTED_PORT.PORT_
6

Cycles which a Uop is dispatched on port 6 in this 
thread.

Set AnyThread to count 
per core

A1H 80H UOPS_EXECUTED_PORT.PORT_
7

Cycles which a Uop is dispatched on port 7 in this 
thread

Set AnyThread to count 
per core

A2H 01H RESOURCE_STALLS.ANY Cycles Allocation is stalled due to Resource Related 
reason. 

A2H 04H RESOURCE_STALLS.RS Cycles stalled due to no eligible RS entry available. 

A2H 08H RESOURCE_STALLS.SB Cycles stalled due to no store buffers available (not 
including draining form sync).

A2H 10H RESOURCE_STALLS.ROB Cycles stalled due to re-order buffer full.

A3H 01H CYCLE_ACTIVITY.CYCLES_L2_PE
NDING

Cycles with pending L2 miss loads. Set Cmask=2 to 
count cycle.

Use only when HTT is off

A3H 02H CYCLE_ACTIVITY.CYCLES_LDM_
PENDING

Cycles with pending memory loads. Set Cmask=2 to 
count cycle.

A3H 05H CYCLE_ACTIVITY.STALLS_L2_PE
NDING

Number of loads missed L2. Use only when HTT is off

A3H 08H CYCLE_ACTIVITY.CYCLES_L1D_P
ENDING

Cycles with pending L1 cache miss loads. Set 
Cmask=8 to count cycle.

PMC2 only

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes, includes 4k/2M/
4M pages.

B0H 01H OFFCORE_REQUESTS.DEMAND_
DATA_RD

Demand data read requests sent to uncore. Use only when HTT is off

B0H 02H OFFCORE_REQUESTS.DEMAND_
CODE_RD

Demand code read requests sent to uncore. Use only when HTT is off

B0H 04H OFFCORE_REQUESTS.DEMAND_
RFO

Demand RFO read requests sent to uncore, including 
regular RFOs, locks, ItoM.

Use only when HTT is off

B0H 08H OFFCORE_REQUESTS.ALL_DATA
_RD

Data read requests sent to uncore (demand and 
prefetch).

Use only when HTT is off

B1H 02H UOPS_EXECUTED.CORE Counts total number of uops to be executed per-core 
each cycle.

Do not need to set ANY

B7H 01H OFF_CORE_RESPONSE_0 see Section 18.8.5, “Off-core Response Performance 
Monitoring”.

Requires MSR 01A6H

Table 19-2.  Non-Architectural Performance Events In the Processor Core of 
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BBH 01H OFF_CORE_RESPONSE_1 See Section 18.8.5, “Off-core Response Performance 
Monitoring”.

Requires MSR 01A7H

BCH 11H PAGE_WALKER_LOADS.DTLB_L1 Number of DTLB page walker loads that hit in the 
L1+FB.

BCH 21H PAGE_WALKER_LOADS.ITLB_L1 Number of ITLB page walker loads that hit in the 
L1+FB.

BCH 12H PAGE_WALKER_LOADS.DTLB_L2 Number of DTLB page walker loads that hit in the L2.

BCH 22H PAGE_WALKER_LOADS.ITLB_L2 Number of ITLB page walker loads that hit in the L2.

BCH 14H PAGE_WALKER_LOADS.DTLB_L3 Number of DTLB page walker loads that hit in the L3.

BCH 24H PAGE_WALKER_LOADS.ITLB_L3 Number of ITLB page walker loads that hit in the L3.

BCH 18H PAGE_WALKER_LOADS.DTLB_M
EMORY

Number of DTLB page walker loads from memory.

BCH 28H PAGE_WALKER_LOADS.ITLB_ME
MORY

Number of ITLB page walker loads from memory.

BDH 01H TLB_FLUSH.DTLB_THREAD DTLB flush attempts of the thread-specific entries.

BDH 20H TLB_FLUSH.STLB_ANY Count number of STLB flush attempts.

C0H 00H INST_RETIRED.ANY_P Number of instructions at retirement. See Table 19-1

C0H 01H INST_RETIRED.ALL Precise instruction retired event with HW to reduce 
effect of PEBS shadow in IP distribution.

PMC1 only; 

C1H 08H OTHER_ASSISTS.AVX_TO_SSE Number of transitions from AVX-256 to legacy SSE 
when penalty applicable.

C1H 10H OTHER_ASSISTS.SSE_TO_AVX Number of transitions from SSE to AVX-256 when 
penalty applicable.

C1H 40H OTHER_ASSISTS.ANY_WB_ASSI
ST

Number of microcode assists invoked by HW upon 
uop writeback.

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops retired, Use 
cmask=1 and invert to count active cycles or stalled 
cycles.

Supports PEBS, use 
Any=1 for core granular.

C2H 02H UOPS_RETIRED.RETIRE_SLOTS Counts the number of retirement slots used each 
cycle.

C3H 02H MACHINE_CLEARS.MEMORY_OR
DERING

Counts the number of machine clears due to memory 
order conflicts.

C3H 04H MACHINE_CLEARS.SMC Number of self-modifying-code machine clears 
detected.

C3H 20H MACHINE_CLEARS.MASKMOV Counts the number of executed AVX masked load 
operations that refer to an illegal address range with 
the mask bits set to 0. 

C4H 00H BR_INST_RETIRED.ALL_BRANC
HES

Branch instructions at retirement. See Table 19-1 

C4H 01H BR_INST_RETIRED.CONDITIONA
L

Counts the number of conditional branch instructions 
retired. 

Supports PEBS
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C4H 02H BR_INST_RETIRED.NEAR_CALL Direct and indirect near call instructions retired.

C4H 04H BR_INST_RETIRED.ALL_BRANC
HES

Counts the number of branch instructions retired.

C4H 08H BR_INST_RETIRED.NEAR_RETU
RN

Counts the number of near return instructions 
retired.

C4H 10H BR_INST_RETIRED.NOT_TAKEN Counts the number of not taken branch instructions 
retired. 

C4H 20H BR_INST_RETIRED.NEAR_TAKE
N

Number of near taken branches retired.

C4H 40H BR_INST_RETIRED.FAR_BRANC
H

Number of far branches retired.

C5H 00H BR_MISP_RETIRED.ALL_BRANC
HES

Mispredicted branch instructions at retirement See Table 19-1 

C5H 01H BR_MISP_RETIRED.CONDITIONA
L

Mispredicted conditional branch instructions retired. Supports PEBS

C5H 04H BR_MISP_RETIRED.ALL_BRANC
HES

Mispredicted macro branch instructions retired.

CAH 02H FP_ASSIST.X87_OUTPUT Number of X87 FP assists due to Output values.

CAH 04H FP_ASSIST.X87_INPUT Number of X87 FP assists due to input values.

CAH 08H FP_ASSIST.SIMD_OUTPUT Number of SIMD FP assists due to Output values.

CAH 10H FP_ASSIST.SIMD_INPUT Number of SIMD FP assists due to input values.

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE* or FP assists.

CCH 20H ROB_MISC_EVENTS.LBR_INSER
TS

Count cases of saving new LBR records by hardware. 

CDH 01H MEM_TRANS_RETIRED.LOAD_L
ATENCY

Randomly sampled loads whose latency is above a 
user defined threshold. A small fraction of the overall 
loads are sampled due to randomization.

Specify threshold in MSR 
0x3F6

D0H 01H MEM_UOP_RETIRED.LOADS Qualify retired memory uops that are loads. Combine 
with umask 10H, 20H, 40H, 80H.

Supports PEBS and 
DataLA

D0H 02H MEM_UOP_RETIRED.STORES Qualify retired memory uops that are stores. 
Combine with umask 10H, 20H, 40H, 80H.

Supports PEBS and 
DataLA

D0H 10H MEM_UOP_RETIRED.STLB_MISS Qualify retired memory uops with STLB miss. Must 
combine with umask 01H, 02H, to produce counts.

Supports PEBS and 
DataLA

D0H 20H MEM_UOP_RETIRED.LOCK Qualify retired memory uops with lock. Must combine 
with umask 01H, 02H, to produce counts.

Supports PEBS and 
DataLA

D0H 40H MEM_UOP_RETIRED.SPLIT Qualify retired memory uops with line split. Must 
combine with umask 01H, 02H, to produce counts.

Supports PEBS and 
DataLA

D0H 80H MEM_UOP_RETIRED.ALL Qualify any retired memory uops. Must combine with 
umask 01H, 02H, to produce counts.

Supports PEBS and 
DataLA

D1H 01H MEM_LOAD_UOPS_RETIRED.L1_
HIT

Retired load uops with L1 cache hits as data sources. Supports PEBS and 
DataLA
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D1H 02H MEM_LOAD_UOPS_RETIRED.L2_
HIT

Retired load uops with L2 cache hits as data sources. Supports PEBS and 
DataLA

D1H 04H MEM_LOAD_UOPS_RETIRED.LLC
_HIT

Retired load uops with LLC cache hits as data 
sources.

Supports PEBS and 
DataLA

D1H 10H MEM_LOAD_UOPS_RETIRED.L2_
MISS

Retired load uops missed L2. Unknown data source 
excluded.

Supports PEBS and 
DataLA

D1H 40H MEM_LOAD_UOPS_RETIRED.HIT
_LFB

Retired load uops which data sources were load uops 
missed L1 but hit FB due to preceding miss to the 
same cache line with data not ready.

D2H 01H MEM_LOAD_UOPS_LLC_HIT_RE
TIRED.XSNP_MISS

Retired load uops which data sources were LLC hit 
and cross-core snoop missed in on-pkg core cache.

Supports PEBS and 
DataLA

D2H 02H MEM_LOAD_UOPS_LLC_HIT_RE
TIRED.XSNP_HIT

Retired load uops which data sources were LLC and 
cross-core snoop hits in on-pkg core cache.

Supports PEBS and 
DataLA

D2H 04H MEM_LOAD_UOPS_LLC_HIT_RE
TIRED.XSNP_HITM

Retired load uops which data sources were HitM 
responses from shared LLC.

Supports PEBS and 
DataLA

D2H 08H MEM_LOAD_UOPS_LLC_HIT_RE
TIRED.XSNP_NONE

Retired load uops which data sources were hits in 
LLC without snoops required.

Supports PEBS and 
DataLA

D3H 01H MEM_LOAD_UOPS_LLC_MISS_R
ETIRED.LOCAL_DRAM

Retired load uops which data sources missed LLC but 
serviced from local dram. 

Supports PEBS and 
DataLA.

E6H 1FH BACLEARS.ANY Number of front end re-steers due to BPU 
misprediction.

F0H 01H L2_TRANS.DEMAND_DATA_RD Demand Data Read requests that access L2 cache.

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache.

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching instructions.

F0H 08H L2_TRANS.ALL_PF Any MLC or LLC HW prefetch accessing L2, including 
rejects. 

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2 cache.

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache.

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache.

F0H 80H L2_TRANS.ALL_REQUESTS Transactions accessing L2 pipe.

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2. Counting does not cover 
rejects.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2. Counting does not cover 
rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2. Counting does not cover 
rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2. Counting does not cover 
rejects.

F2H 05H L2_LINES_OUT.DEMAND_CLEAN Clean L2 cache lines evicted by demand.

F2H 06H L2_LINES_OUT.DEMAND_DIRTY Dirty L2 cache lines evicted by demand.

Table 19-2.  Non-Architectural Performance Events In the Processor Core of 
Next Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment
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....

Table 19-5.  Non-Architectural Performance Events In the Processor Core of 
3rd Generation Intel® Core™ i7, i5, i3 Processors

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 02H LD_BLOCKS.STORE_FORWARD loads blocked by overlapping with store buffer that 
cannot be forwarded .

05H 01H MISALIGN_MEM_REF.LOADS Speculative cache-line split load uops dispatched to 
L1D.

05H 02H MISALIGN_MEM_REF.STORES Speculative cache-line split Store-address uops 
dispatched to L1D.

07H 01H LD_BLOCKS_PARTIAL.ADDRESS_
ALIAS

False dependencies in MOB due to partial compare 
on address.

08H 81H DTLB_LOAD_MISSES.MISS_CAUSE
S_A_WALK

Misses in all TLB levels that cause a page walk of 
any page size from demand loads.

08H 82H DTLB_LOAD_MISSES.WALK_COM
PLETED

Misses in all TLB levels that caused page walk 
completed of any size by demand loads.

08H 84H DTLB_LOAD_MISSES.WALK_DUR
ATION

Cycle PMH is busy with a walk due to demand loads.

0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of Uops issued by the 
RAT to RS. 

Set Cmask = 1, Inv = 1, Any= 1to count stalled 
cycles of this core.

Set Cmask = 1, Inv = 1to 
count stalled cycles

0EH 10H UOPS_ISSUED.FLAGS_MERGE Number of flags-merge uops allocated. Such uops 
adds delay.

0EH 20H UOPS_ISSUED.SLOW_LEA Number of slow LEA or similar uops allocated. Such 
uop has 3 sources (e.g. 2 sources + immediate) 
regardless if as a result of LEA instruction or not.

0EH 40H UOPS_ISSUED.SiNGLE_MUL Number of multiply packed/scalar single precision 
uops allocated.

14H 01H ARITH.FPU_DIV_ACTIVE Cycles that the divider is active, includes INT and FP. 
Set 'edge =1, cmask=1' to count the number of 
divides.

24H 01H L2_RQSTS.DEMAND_DATA_RD_H
IT

Demand Data Read requests that hit L2 cache

24H 03H L2_RQSTS.ALL_DEMAND_DATA_
RD

Counts any demand and L1 HW prefetch data load 
requests to L2. 

24H 04H L2_RQSTS.RFO_HITS Counts the number of store RFO requests that hit 
the L2 cache. 

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO requests that miss 
the L2 cache. 

24H 0CH L2_RQSTS.ALL_RFO Counts all L2 store RFO requests. 

24H 10H L2_RQSTS.CODE_RD_HIT Number of instruction fetches that hit the L2 cache. 

24H 20H L2_RQSTS.CODE_RD_MISS Number of instruction fetches that missed the L2 
cache. 
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24H 30H L2_RQSTS.ALL_CODE_RD Counts all L2 code requests.

24H 40H L2_RQSTS.PF_HIT Counts all L2 HW prefetcher requests that hit L2.

24H 80H L2_RQSTS.PF_MISS Counts all L2 HW prefetcher requests that missed 
L2.

24H C0H L2_RQSTS.ALL_PF Counts all L2 HW prefetcher requests.

27H 01H L2_STORE_LOCK_RQSTS.MISS RFOs that miss cache lines 

27H 08H L2_STORE_LOCK_RQSTS.HIT_M RFOs that hit cache lines in M state

27H 0FH L2_STORE_LOCK_RQSTS.ALL RFOs that access cache lines in any state

28H 01H L2_L1D_WB_RQSTS.MISS Not rejected writebacks that missed LLC.

28H 04H L2_L1D_WB_RQSTS.HIT_E Not rejected writebacks from L1D to L2 cache lines 
in E state.

28H 08H L2_L1D_WB_RQSTS.HIT_M Not rejected writebacks from L1D to L2 cache lines 
in M state.

28H 0FH L2_L1D_WB_RQSTS.ALL Not rejected writebacks from L1D to L2 cache lines 
in any state.

2EH 4FH LONGEST_LAT_CACHE.REFERENC
E

This event counts requests originating from the 
core that reference a cache line in the last level 
cache. 

see Table 19-1

2EH 41H LONGEST_LAT_CACHE.MISS This event counts each cache miss condition for 
references to the last level cache. 

see Table 19-1

3CH 00H CPU_CLK_UNHALTED.THREAD_P Counts the number of thread cycles while the 
thread is not in a halt state. The thread enters the 
halt state when it is running the HLT instruction. 
The core frequency may change from time to time 
due to power or thermal throttling. 

see Table 19-1

3CH 01H CPU_CLK_THREAD_UNHALTED.R
EF_XCLK

Increments at the frequency of XCLK (100 MHz) 
when not halted.

see Table 19-1

48H 01H L1D_PEND_MISS.PENDING Increments the number of outstanding L1D misses 
every cycle. Set Cmaks = 1 and Edge =1 to count 
occurrences.

PMC2 only;

Set Cmask = 1 to count 
cycles. 

49H 01H DTLB_STORE_MISSES.MISS_CAUS
ES_A_WALK

Miss in all TLB levels causes an page walk of any 
page size (4K/2M/4M/1G).

49H 02H DTLB_STORE_MISSES.WALK_CO
MPLETED

Miss in all TLB levels causes a page walk that 
completes of any page size (4K/2M/4M/1G).

49H 04H DTLB_STORE_MISSES.WALK_DUR
ATION

Cycles PMH is busy with this walk.

49H 10H DTLB_STORE_MISSES.STLB_HIT Store operations that miss the first TLB level but hit 
the second and do not cause page walks

4CH 01H LOAD_HIT_PRE.SW_PF Non-SW-prefetch load dispatches that hit fill buffer 
allocated for S/W prefetch.

4CH 02H LOAD_HIT_PRE.HW_PF Non-SW-prefetch load dispatches that hit fill buffer 
allocated for H/W prefetch.

Table 19-5.  Non-Architectural Performance Events In the Processor Core of 
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)
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51H 01H L1D.REPLACEMENT Counts the number of lines brought into the L1 data 
cache.

58H 04H MOVE_ELIMINATION.INT_NOT_EL
IMINATED

Number of integer Move Elimination candidate uops 
that were not eliminated.

58H 08H MOVE_ELIMINATION.SIMD_NOT_E
LIMINATED

Number of SIMD Move Elimination candidate uops 
that were not eliminated.

58H 01H MOVE_ELIMINATION.INT_ELIMINA
TED

Number of integer Move Elimination candidate uops 
that were eliminated.

58H 02H MOVE_ELIMINATION.SIMD_ELIMIN
ATED

Number of SIMD Move Elimination candidate uops 
that were eliminated.

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the thread is in ring 0. Use Edge to count 
transition

5CH 02H CPL_CYCLES.RING123 Unhalted core cycles when the thread is not in ring 
0.

5EH 01H RS_EVENTS.EMPTY_CYCLES Cycles the RS is empty for the thread.

5FH 04H DTLB_LOAD_MISSES.STLB_HIT Counts load operations that missed 1st level DTLB 
but hit the 2nd level.

60H 01H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_DATA_RD

Offcore outstanding Demand Data Read 
transactions in SQ to uncore. Set Cmask=1 to count 
cycles.

60H 02H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_CODE_RD

Offcore outstanding Demand Code Read 
transactions in SQ to uncore. Set Cmask=1 to count 
cycles.

60H 04H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_RFO

Offcore outstanding RFO store transactions in SQ to 
uncore. Set Cmask=1 to count cycles.

60H 08H OFFCORE_REQUESTS_OUTSTAN
DING.ALL_DATA_RD

Offcore outstanding cacheable data read 
transactions in SQ to uncore. Set Cmask=1 to count 
cycles.

63H 01H LOCK_CYCLES.SPLIT_LOCK_UC_L
OCK_DURATION

Cycles in which the L1D and L2  are locked, due to a 
UC lock or split lock.

63H 02H LOCK_CYCLES.CACHE_LOCK_DUR
ATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops delivered to IDQ 
from MITE path. 

Set Cmask = 1 to count cycles.

Can combine Umask 04H 
and 20H 

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops delivered to IDQ 
from DSB path. 

Set Cmask = 1 to count cycles.

Can combine Umask 08H 
and 10H 

79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops delivered to IDQ 
when MS_busy by DSB. Set Cmask = 1 to count 
cycles. Add Edge=1 to count # of delivery.

Can combine Umask 04H, 
08H 

Table 19-5.  Non-Architectural Performance Events In the Processor Core of 
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79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops delivered to IDQ 
when MS_busy by MITE. Set Cmask = 1 to count 
cycles.

Can combine Umask 04H, 
08H 

79H 30H IDQ.MS_UOPS Increment each cycle # of uops delivered to IDQ 
from MS by either DSB or MITE. Set Cmask = 1 to 
count cycles.

Can combine Umask 04H, 
08H 

79H 18H IDQ.ALL_DSB_CYCLES_ANY_UOP
S

Counts cycles DSB is delivered at least one uops. 
Set Cmask = 1.

79H 18H IDQ.ALL_DSB_CYCLES_4_UOPS Counts cycles DSB is delivered four uops. Set Cmask 
= 4.

79H 24H IDQ.ALL_MITE_CYCLES_ANY_UOP
S

Counts cycles MITE is delivered at least one uops. 
Set Cmask = 1.

79H 24H IDQ.ALL_MITE_CYCLES_4_UOPS Counts cycles MITE is delivered four uops. Set 
Cmask = 4.

79H 3CH IDQ.MITE_ALL_UOPS # of uops delivered to IDQ from any path. 

80H 02H ICACHE.MISSES Number of Instruction Cache, Streaming Buffer and 
Victim Cache Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_CAUSES_A_W
ALK

Misses in all ITLB levels that cause page walks

85H 02H ITLB_MISSES.WALK_COMPLETED Misses in all ITLB levels that cause completed page 
walks

85H 04H ITLB_MISSES.WALK_DURATION Cycle PMH is busy with a walk.

85H 10H ITLB_MISSES.STLB_HIT Number of cache load STLB hits. No page walk.

87H 01H ILD_STALL.LCP Stalls caused by changing prefix length of the 
instruction.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to IQ is full.

88H 01H BR_INST_EXEC.COND Qualify conditional near branch instructions 
executed, but not necessarily retired.

Must combine with 
umask 40H, 80H

88H 02H BR_INST_EXEC.DIRECT_JMP Qualify all unconditional near branch instructions 
excluding calls and indirect branches.

Must combine with 
umask 80H

88H 04H BR_INST_EXEC.INDIRECT_JMP_N
ON_CALL_RET

Qualify executed indirect near branch instructions 
that are not calls nor returns.

Must combine with 
umask 80H

88H 08H BR_INST_EXEC.RETURN_NEAR Qualify indirect near branches that have a return 
mnemonic.

Must combine with 
umask 80H

88H 10H BR_INST_EXEC.DIRECT_NEAR_C
ALL

Qualify unconditional near call branch instructions, 
excluding non call branch, executed. 

Must combine with 
umask 80H

88H 20H BR_INST_EXEC.INDIRECT_NEAR_
CALL

Qualify indirect near calls, including both register 
and memory indirect, executed.

Must combine with 
umask 80H

88H 40H BR_INST_EXEC.NONTAKEN Qualify non-taken near branches executed. Applicable to umask 01H 
only

88H 80H BR_INST_EXEC.TAKEN Qualify taken near branches executed. Must 
combine with 01H,02H, 04H, 08H, 10H, 20H.

Table 19-5.  Non-Architectural Performance Events In the Processor Core of 
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88H FFH BR_INST_EXEC.ALL_BRANCHES Counts all near executed branches (not necessarily 
retired). 

89H 01H BR_MISP_EXEC.COND Qualify conditional near branch instructions 
mispredicted.

Must combine with 
umask 40H, 80H

89H 04H BR_MISP_EXEC.INDIRECT_JMP_N
ON_CALL_RET

Qualify mispredicted indirect near branch 
instructions that are not calls nor returns.

Must combine with 
umask 80H

89H 08H BR_MISP_EXEC.RETURN_NEAR Qualify mispredicted indirect near branches that 
have a return mnemonic.

Must combine with 
umask 80H

89H 10H BR_MISP_EXEC.DIRECT_NEAR_C
ALL

Qualify mispredicted unconditional near call branch 
instructions, excluding non call branch, executed. 

Must combine with 
umask 80H

89H 20H BR_MISP_EXEC.INDIRECT_NEAR_
CALL

Qualify mispredicted indirect near calls, including 
both register and memory indirect, executed.

Must combine with 
umask 80H

89H 40H BR_MISP_EXEC.NONTAKEN Qualify mispredicted non-taken near branches 
executed. 

Applicable to umask 01H 
only

89H 80H BR_MISP_EXEC.TAKEN Qualify mispredicted taken near branches executed. 
Must combine with 01H,02H, 04H, 08H, 10H, 20H.

89H FFH BR_MISP_EXEC.ALL_BRANCHES Counts all near executed branches (not necessarily 
retired). 

9CH 01H IDQ_UOPS_NOT_DELIVERED.COR
E

Count number of non-delivered uops to RAT per 
thread. 

Use Cmask to qualify uop 
b/w

A1H 01H UOPS_DISPATCHED_PORT.PORT_
0

Cycles which a Uop is dispatched on port 0.

A1H 02H UOPS_DISPATCHED_PORT.PORT_
1

Cycles which a Uop is dispatched on port 1.

A1H 04H UOPS_DISPATCHED_PORT.PORT_
2_LD

Cycles which a load uop is dispatched on port 2.

A1H 08H UOPS_DISPATCHED_PORT.PORT_
2_STA

Cycles which a store address uop is dispatched on 
port 2.

A1H 0CH UOPS_DISPATCHED_PORT.PORT_
2

Cycles which a Uop is dispatched on port 2.

A1H 10H UOPS_DISPATCHED_PORT.PORT_
3_LD

Cycles which a load uop is dispatched on port 3.

A1H 20H UOPS_DISPATCHED_PORT.PORT_
3_STA

Cycles which a store address uop is dispatched on 
port 3.

A1H 30H UOPS_DISPATCHED_PORT.PORT_
3

Cycles which a Uop is dispatched on port 3.

A1H 40H UOPS_DISPATCHED_PORT.PORT_
4

Cycles which a Uop is dispatched on port 4.

A1H 80H UOPS_DISPATCHED_PORT.PORT_
5

Cycles which a Uop is dispatched on port 5.

A2H 01H RESOURCE_STALLS.ANY Cycles Allocation is stalled due to Resource Related 
reason. 

Table 19-5.  Non-Architectural Performance Events In the Processor Core of 
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A2H 04H RESOURCE_STALLS.RS Cycles stalled due to no eligible RS entry available. 

A2H 08H RESOURCE_STALLS.SB Cycles stalled due to no store buffers available (not 
including draining form sync).

A2H 10H RESOURCE_STALLS.ROB Cycles stalled due to re-order buffer full.

A3H 01H CYCLE_ACTIVITY.CYCLES_L2_PEN
DING

Cycles with pending L2 miss loads. Set AnyThread 
to count per core.

A3H 02H CYCLE_ACTIVITY.CYCLES_LDM_P
ENDING

Cycles with pending memory loads. Set AnyThread 
to count per core.

PMC0-3 only.

A3H 08H CYCLE_ACTIVITY.CYCLES_L1D_PE
NDING

Cycles with pending L1 cache miss loads. Set 
AnyThread to count per core.

PMC2 only

A3H 04H CYCLE_ACTIVITY.CYCLES_NO_EX
ECUTE

Cycles of dispatch stalls. Set AnyThread to count 
per core.

ABH 01H DSB2MITE_SWITCHES.COUNT Number of DSB to MITE switches.

ABH 02H DSB2MITE_SWITCHES.PENALTY_
CYCLES

Cycles DSB to MITE switches caused delay.

ACH 08H DSB_FILL.EXCEED_DSB_LINES DSB Fill encountered > 3 DSB lines.

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes, includes 4k/2M/
4M pages.

B0H 01H OFFCORE_REQUESTS.DEMAND_D
ATA_RD

Demand data read requests sent to uncore. 

B0H 02H OFFCORE_REQUESTS.DEMAND_C
ODE_RD

Demand code read requests sent to uncore. 

B0H 04H OFFCORE_REQUESTS.DEMAND_R
FO

Demand RFO read requests sent to uncore, 
including regular RFOs, locks, ItoM

B0H 08H OFFCORE_REQUESTS.ALL_DATA_
RD

Data read requests sent to uncore (demand and 
prefetch).

B1H 01H UOPS_EXECUTED.THREAD Counts total number of uops to be executed per-
thread each cycle. Set Cmask = 1, INV =1 to count 
stall cycles.

B1H 02H UOPS_EXECUTED.CORE Counts total number of uops to be executed per-
core each cycle.

Do not need to set ANY

B7H 01H OFFCORE_RESPONSE_0 see Section 18.8.5, “Off-core Response 
Performance Monitoring”.

Requires MSR 01A6H

BBH 01H OFFCORE_RESPONSE_1 See Section 18.8.5, “Off-core Response 
Performance Monitoring”.

Requires MSR 01A7H

BDH 01H TLB_FLUSH.DTLB_THREAD DTLB flush attempts of the thread-specific entries.

BDH 20H TLB_FLUSH.STLB_ANY Count number of STLB flush attempts.

C0H 00H INST_RETIRED.ANY_P Number of instructions at retirement. See Table 19-1

C0H 01H INST_RETIRED.ALL Precise instruction retired event with HW to reduce 
effect of PEBS shadow in IP distribution.

PMC1 only

Table 19-5.  Non-Architectural Performance Events In the Processor Core of 
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C1H 08H OTHER_ASSISTS.AVX_STORE Number of assists associated with 256-bit AVX 
store operations.

C1H 10H OTHER_ASSISTS.AVX_TO_SSE Number of transitions from AVX-256 to legacy SSE 
when penalty applicable.

C1H 20H OTHER_ASSISTS.SSE_TO_AVX Number of transitions from SSE to AVX-256 when 
penalty applicable.

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops retired, Use 
cmask=1 and invert to count active cycles or stalled 
cycles.

Supports PEBS, use 
Any=1 for core granular.

C2H 02H UOPS_RETIRED.RETIRE_SLOTS Counts the number of retirement slots used each 
cycle.

C3H 02H MACHINE_CLEARS.MEMORY_ORD
ERING

Counts the number of machine clears due to 
memory order conflicts.

C3H 04H MACHINE_CLEARS.SMC Number of self-modifying-code machine clears 
detected.

C3H 20H MACHINE_CLEARS.MASKMOV Counts the number of executed AVX masked load 
operations that refer to an illegal address range 
with the mask bits set to 0. 

C4H 00H BR_INST_RETIRED.ALL_BRANCH
ES

Branch instructions at retirement. See Table 19-1 

C4H 01H BR_INST_RETIRED.CONDITIONAL Counts the number of conditional branch 
instructions retired. 

Supports PEBS

C4H 02H BR_INST_RETIRED.NEAR_CALL Direct and indirect near call instructions retired.

C4H 04H BR_INST_RETIRED.ALL_BRANCH
ES

Counts the number of branch instructions retired.

C4H 08H BR_INST_RETIRED.NEAR_RETUR
N

Counts the number of near return instructions 
retired.

C4H 10H BR_INST_RETIRED.NOT_TAKEN Counts the number of not taken branch instructions 
retired. 

C4H 20H BR_INST_RETIRED.NEAR_TAKEN Number of near taken branches retired.

C4H 40H BR_INST_RETIRED.FAR_BRANCH Number of far branches retired.

C5H 00H BR_MISP_RETIRED.ALL_BRANCH
ES

Mispredicted branch instructions at retirement. See Table 19-1 

C5H 01H BR_MISP_RETIRED.CONDITIONAL Mispredicted conditional branch instructions retired. Supports PEBS

C5H 02H BR_MISP_RETIRED.NEAR_CALL Direct and indirect mispredicted near call 
instructions retired. 

C5H 04H BR_MISP_RETIRED.ALL_BRANCH
ES

Mispredicted macro branch instructions retired.

C5H 10H BR_MISP_RETIRED.NOT_TAKEN Mispredicted not taken branch instructions retired.

C5H 20H BR_MISP_RETIRED.TAKEN Mispredicted taken branch instructions retired.

CAH 02H FP_ASSIST.X87_OUTPUT Number of X87 FP assists due to Output values.

Table 19-5.  Non-Architectural Performance Events In the Processor Core of 
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CAH 04H FP_ASSIST.X87_INPUT Number of X87 FP assists due to input values.

CAH 08H FP_ASSIST.SIMD_OUTPUT Number of SIMD FP assists due to Output values.

CAH 10H FP_ASSIST.SIMD_INPUT Number of SIMD FP assists due to input values.

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE* or FP assists.

CCH 20H ROB_MISC_EVENTS.LBR_INSERT
S

Count cases of saving new LBR records by 
hardware. 

CDH 01H MEM_TRANS_RETIRED.LOAD_LA
TENCY

Randomly sampled loads whose latency is above a 
user defined threshold. A small fraction of the 
overall loads are sampled due to randomization.

Specify threshold in MSR 
0x3F6

CDH 02H MEM_TRANS_RETIRED.PRECISE_
STORE

Sample stores and collect precise store operation 
via PEBS record. PMC3 only.

See Section 18.8.4.3

D0H 01H MEM_UOPS_RETIRED.LOADS Qualify retired memory uops that are loads. 
Combine with umask 10H, 20H, 40H, 80H.

Supports PEBS

D0H 02H MEM_UOPS_RETIRED.STORES Qualify retired memory uops that are stores. 
Combine with umask 10H, 20H, 40H, 80H.

D0H 10H MEM_UOPS_RETIRED.STLB_MISS Qualify retired memory uops with STLB miss. Must 
combine with umask 01H, 02H, to produce counts.

D0H 20H MEM_UOPS_RETIRED.LOCK Qualify retired memory uops with lock. Must 
combine with umask 01H, 02H, to produce counts.

D0H 40H MEM_UOPS_RETIRED.SPLIT Qualify retired memory uops with line split. Must 
combine with umask 01H, 02H, to produce counts.

D0H 80H MEM_UOPS_RETIRED.ALL Qualify any retired memory uops. Must combine 
with umask 01H, 02H, to produce counts.

D1H 01H MEM_LOAD_UOPS_RETIRED.L1_
HIT

Retired load uops with L1 cache hits as data 
sources.

Supports PEBS

D1H 02H MEM_LOAD_UOPS_RETIRED.L2_
HIT

Retired load uops with L2 cache hits as data 
sources.

D1H 04H MEM_LOAD_UOPS_RETIRED.LLC_
HIT

Retired load uops whose data source was LLC hit 
with no snoop required.

D1H 20H MEM_LOAD_UOPS_RETIRED.LLC_
MISS

Retired load uops whose data source is LLC miss

D1H 40H MEM_LOAD_UOPS_RETIRED.HIT_
LFB

Retired load uops which data sources were load 
uops missed L1 but hit FB due to preceding miss to 
the same cache line with data not ready.

D2H 01H MEM_LOAD_UOPS_LLC_HIT_RETI
RED.XSNP_MISS

Retired load uops whose data source was an on-
package core cache LLC hit and cross-core snoop 
missed.

Supports PEBS

D2H 02H MEM_LOAD_UOPS_LLC_HIT_RETI
RED.XSNP_HIT

Retired load uops whose data source was an on-
package LLC hit and cross-core snoop hits.

Supports PEBS

D2H 04H MEM_LOAD_UOPS_LLC_HIT_RETI
RED.XSNP_HITM

Retired load uops whose data source was an on-
package core cache with HitM responses.
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Non-architecture performance monitoring events in the processor core that are applicable only to next generation 
Intel Xeon processor family based on Intel microarchitecture Ivy Bridge, with CPUID signature of 
DisplayFamily_DisplayModel 06_3EH, are listed in Table 19-6.

D2H 08H MEM_LOAD_UOPS_LLC_HIT_RETI
RED.XSNP_NONE

Retired load uops whose data source was LLC hit 
with no snoop required.

D3H 01H MEM_LOAD_UOPS_LLC_MISS_RE
TIRED.LOCAL_DRAM

Retired load uops whose data source was local 
memory (cross-socket snoop not needed or missed). 

Supports PEBS.

E6H 1FH BACLEARS.ANY Number of front end re-steers due to BPU 
misprediction.

F0H 01H L2_TRANS.DEMAND_DATA_RD Demand Data Read requests that access L2 cache.

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache.

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching instructions.

F0H 08H L2_TRANS.ALL_PF Any MLC or LLC HW prefetch accessing L2, including 
rejects. 

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2 cache.

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache.

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache.

F0H 80H L2_TRANS.ALL_REQUESTS Transactions accessing L2 pipe.

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2. Counting does not cover 
rejects.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2. Counting does not cover 
rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2. Counting does not cover 
rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2. Counting does not cover 
rejects.

F2H 01H L2_LINES_OUT.DEMAND_CLEAN Clean L2 cache lines evicted by demand.

F2H 02H L2_LINES_OUT.DEMAND_DIRTY Dirty L2 cache lines evicted by demand.

F2H 04H L2_LINES_OUT.PF_CLEAN Clean L2 cache lines evicted by the MLC prefetcher.

F2H 08H L2_LINES_OUT.PF_DIRTY Dirty L2 cache lines evicted by the MLC prefetcher.

F2H 0AH L2_LINES_OUT.DIRTY_ALL Dirty L2 cache lines filling the L2. Counting does not cover 
rejects.
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...

Table 19-6.  Non-Architectural Performance Events Applicable only to the Processor Core of 
Next Generation Intel® Xeon® Processor E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

D3H 01H MEM_LOAD_UOPS_LLC_MISS_R
ETIRED.LOCAL_DRAM

Retired load uops whose data sources was local DRAM 
(cross-socket snoop not needed or missed).

Supports PEBS

D3H 04H MEM_LOAD_UOPS_LLC_MISS_R
ETIRED.REMOTE_DRAM

Retired load uops whose data source was remote 
DRAM.

Supports PEBS

D3H 10H MEM_LOAD_UOPS_LLC_MISS_R
ETIRED.REMOTE_HITM

Retired load uops whose data sources was remote 
HITM.

Supports PEBS

D3H 20H MEM_LOAD_UOPS_LLC_MISS_R
ETIRED.REMOTE_FWD

Retired load uops whose data sources was forwards 
from a remote cache.

Supports PEBS

Table 19-7.  Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-
2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 01H LD_BLOCKS.DATA_UNKNOWN blocked loads due to store buffer blocks with 
unknown data. 

03H 02H LD_BLOCKS.STORE_FORWARD loads blocked by overlapping with store buffer that 
cannot be forwarded .

03H 08H LD_BLOCKS.NO_SR # of Split loads blocked due to resource not 
available. 

03H 10H LD_BLOCKS.ALL_BLOCK Number of cases where any load is blocked but has 
no DCU miss.

05H 01H MISALIGN_MEM_REF.LOADS Speculative cache-line split load uops dispatched to 
L1D.

05H 02H MISALIGN_MEM_REF.STORES Speculative cache-line split Store-address uops 
dispatched to L1D.

07H 01H LD_BLOCKS_PARTIAL.ADDRES
S_ALIAS

False dependencies in MOB due to partial compare 
on address.

07H 08H LD_BLOCKS_PARTIAL.ALL_STA
_BLOCK

The number of times that load operations are 
temporarily blocked because of older stores, with 
addresses that are not yet known. A load operation 
may incur more than one block of this type. 

08H 01H DTLB_LOAD_MISSES.MISS_CA
USES_A_WALK

Misses in all TLB levels that cause a page walk of 
any page size.

08H 02H DTLB_LOAD_MISSES.WALK_CO
MPLETED

Misses in all TLB levels that caused page walk 
completed of any size.

08H 04H DTLB_LOAD_MISSES.WALK_DU
RATION

Cycle PMH is busy with a walk.

08H 10H DTLB_LOAD_MISSES.STLB_HIT Number of cache load STLB hits. No page walk.
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0DH 03H INT_MISC.RECOVERY_CYCLES Cycles waiting to recover after Machine Clears or 
JEClear. Set Cmask= 1.

Set Edge to count 
occurrences

0DH 40H INT_MISC.RAT_STALL_CYCLES Cycles RAT external stall is sent to IDQ for this 
thread. 

0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of Uops issued by the 
RAT to RS. 

Set Cmask = 1, Inv = 1, Any= 1to count stalled cycles 
of this core.

Set Cmask = 1, Inv = 1to 
count stalled cycles

10H 01H FP_COMP_OPS_EXE.X87 Counts number of X87 uops executed.

10H 10H FP_COMP_OPS_EXE.SSE_FP_P
ACKED_DOUBLE

Counts number of SSE* double precision FP packed 
uops executed.

10H 20H FP_COMP_OPS_EXE.SSE_FP_S
CALAR_SINGLE

Counts number of SSE* single precision FP scalar 
uops executed.

10H 40H FP_COMP_OPS_EXE.SSE_PACK
ED SINGLE

Counts number of SSE* single precision FP packed 
uops executed.

10H 80H FP_COMP_OPS_EXE.SSE_SCAL
AR_DOUBLE

Counts number of SSE* double precision FP scalar 
uops executed.

11H 01H SIMD_FP_256.PACKED_SINGLE Counts 256-bit packed single-precision floating-
point instructions.

11H 02H SIMD_FP_256.PACKED_DOUBL
E

Counts 256-bit packed double-precision floating-
point instructions.

14H 01H ARITH.FPU_DIV_ACTIVE Cycles that the divider is active, includes INT and FP. 
Set 'edge =1, cmask=1' to count the number of 
divides.

17H 01H INSTS_WRITTEN_TO_IQ.INSTS Counts the number of instructions written into the 
IQ every cycle. 

24H 01H L2_RQSTS.DEMAND_DATA_RD
_HIT

Demand Data Read requests that hit L2 cache.

24H 03H L2_RQSTS.ALL_DEMAND_DAT
A_RD

Counts any demand and L1 HW prefetch data load 
requests to L2. 

24H 04H L2_RQSTS.RFO_HITS Counts the number of store RFO requests that hit 
the L2 cache. 

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO requests that miss 
the L2 cache. 

24H 0CH L2_RQSTS.ALL_RFO Counts all L2 store RFO requests. 

24H 10H L2_RQSTS.CODE_RD_HIT Number of instruction fetches that hit the L2 cache. 

24H 20H L2_RQSTS.CODE_RD_MISS Number of instruction fetches that missed the L2 
cache. 

24H 30H L2_RQSTS.ALL_CODE_RD Counts all L2 code requests.

24H 40H L2_RQSTS.PF_HIT Requests from L2 Hardware prefetcher that hit L2.

24H 80H L2_RQSTS.PF_MISS Requests from L2 Hardware prefetcher that missed 
L2.

Table 19-7.  Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-
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24H C0H L2_RQSTS.ALL_PF Any requests from L2 Hardware prefetchers.

27H 01H L2_STORE_LOCK_RQSTS.MISS RFOs that miss cache lines.

27H 04H L2_STORE_LOCK_RQSTS.HIT_
E

RFOs that hit cache lines in E state.

27H 08H L2_STORE_LOCK_RQSTS.HIT_
M

RFOs that hit cache lines in M state.

27H 0FH L2_STORE_LOCK_RQSTS.ALL RFOs that access cache lines in any state.

28H 01H L2_L1D_WB_RQSTS.MISS Not rejected writebacks from L1D to L2 cache lines 
that missed L2.

28H 02H L2_L1D_WB_RQSTS.HIT_S Not rejected writebacks from L1D to L2 cache lines 
in S state.

28H 04H L2_L1D_WB_RQSTS.HIT_E Not rejected writebacks from L1D to L2 cache lines 
in E state.

28H 08H L2_L1D_WB_RQSTS.HIT_M Not rejected writebacks from L1D to L2 cache lines 
in M state.

28H 0FH L2_L1D_WB_RQSTS.ALL Not rejected writebacks from L1D to L2 cache.

2EH 4FH LONGEST_LAT_CACHE.REFERE
NCE

This event counts requests originating from the 
core that reference a cache line in the last level 
cache. 

see Table 19-1

2EH 41H LONGEST_LAT_CACHE.MISS This event counts each cache miss condition for 
references to the last level cache. 

see Table 19-1

3CH 00H CPU_CLK_UNHALTED.THREAD
_P

Counts the number of thread cycles while the 
thread is not in a halt state. The thread enters the 
halt state when it is running the HLT instruction. 
The core frequency may change from time to time 
due to power or thermal throttling. 

see Table 19-1

3CH 01H CPU_CLK_THREAD_UNHALTED
.REF_XCLK

Increments at the frequency of XCLK (100 MHz) 
when not halted.

see Table 19-1

48H 01H L1D_PEND_MISS.PENDING Increments the number of outstanding L1D misses 
every cycle. Set Cmaks = 1 and Edge =1 to count 
occurrences.

PMC2 only;

Set Cmask = 1 to count 
cycles. 

49H 01H DTLB_STORE_MISSES.MISS_CA
USES_A_WALK

Miss in all TLB levels causes an page walk of any 
page size (4K/2M/4M/1G).

49H 02H DTLB_STORE_MISSES.WALK_C
OMPLETED

Miss in all TLB levels causes a page walk that 
completes of any page size (4K/2M/4M/1G).

49H 04H DTLB_STORE_MISSES.WALK_D
URATION

Cycles PMH is busy with this walk.

49H 10H DTLB_STORE_MISSES.STLB_HI
T

Store operations that miss the first TLB level but hit 
the second and do not cause page walks.

4CH 01H LOAD_HIT_PRE.SW_PF Not SW-prefetch load dispatches that hit fill buffer 
allocated for S/W prefetch.
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4CH 02H LOAD_HIT_PRE.HW_PF Not SW-prefetch load  dispatches that hit fill buffer 
allocated for H/W prefetch.

4EH 02H HW_PRE_REQ.DL1_MISS Hardware Prefetch requests that miss the L1D 
cache. A request is being counted each time it 
access the cache & miss it, including if a block is 
applicable or if hit the Fill Buffer for example.

This accounts for both L1 
streamer and IP-based 
(IPP) HW prefetchers. 

51H 01H L1D.REPLACEMENT Counts the number of lines brought into the L1 data 
cache.

51H 02H L1D.ALLOCATED_IN_M Counts the number of allocations of modified L1D 
cache lines. 

51H 04H L1D.EVICTION Counts the number of modified lines evicted from 
the L1 data cache  due to replacement. 

51H 08H L1D.ALL_M_REPLACEMENT Cache lines in M state evicted out of L1D due to 
Snoop HitM or dirty line replacement.

59H 20H PARTIAL_RAT_STALLS.FLAGS_
MERGE_UOP

Increments the number of flags-merge uops in flight 
each cycle.

Set Cmask = 1 to count cycles.

59H 40H PARTIAL_RAT_STALLS.SLOW_
LEA_WINDOW

Cycles with at least one slow LEA uop allocated.

59H 80H PARTIAL_RAT_STALLS.MUL_SI
NGLE_UOP

Number of Multiply packed/scalar single precision 
uops allocated.

5BH 0CH RESOURCE_STALLS2.ALL_FL_
EMPTY

Cycles stalled due to free list empty. PMC0-3 only regardless 
HTT

5BH 0FH RESOURCE_STALLS2.ALL_PRF
_CONTROL

Cycles stalled due to control structures full for 
physical registers.

5BH 40H RESOURCE_STALLS2.BOB_FUL
L

Cycles Allocator is stalled due Branch Order Buffer. 

5BH 4FH RESOURCE_STALLS2.OOO_RS
RC

Cycles stalled due to out of order resources full.

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the thread is in ring 0. Use Edge to count 
transition

5CH 02H CPL_CYCLES.RING123 Unhalted core cycles when the thread is not in ring 
0.

5EH 01H RS_EVENTS.EMPTY_CYCLES Cycles the RS is empty for the thread.

60H 01H OFFCORE_REQUESTS_OUTSTA
NDING.DEMAND_DATA_RD

Offcore outstanding Demand Data Read 
transactions in SQ to uncore. Set Cmask=1 to count 
cycles.

60H 04H OFFCORE_REQUESTS_OUTSTA
NDING.DEMAND_RFO

Offcore outstanding RFO store transactions in SQ to 
uncore. Set Cmask=1 to count cycles.

60H 08H OFFCORE_REQUESTS_OUTSTA
NDING.ALL_DATA_RD

Offcore outstanding cacheable data read 
transactions in SQ to uncore. Set Cmask=1 to count 
cycles.
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63H 01H LOCK_CYCLES.SPLIT_LOCK_UC
_LOCK_DURATION

Cycles in which the L1D and L2  are locked, due to a 
UC lock or split lock.

63H 02H LOCK_CYCLES.CACHE_LOCK_D
URATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops delivered to IDQ 
from MITE path. 

Set Cmask = 1 to count cycles.

Can combine Umask 04H 
and 20H 

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops delivered to IDQ 
from DSB path. 

Set Cmask = 1 to count cycles.

Can combine Umask 08H 
and 10H 

79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops delivered to IDQ 
when MS busy by DSB. Set Cmask = 1 to count 
cycles MS is busy. Set Cmask=1 and Edge =1 to 
count MS activations.

Can combine Umask 08H 
and 10H 

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops delivered to IDQ 
when MS is busy by MITE. Set Cmask = 1 to count 
cycles.

Can combine Umask 04H 
and 20H 

79H 30H IDQ.MS_UOPS Increment each cycle # of uops delivered to IDQ 
from MS by either DSB or MITE. Set Cmask = 1 to 
count cycles.

Can combine Umask 04H, 
08H and 30H 

80H 02H ICACHE.MISSES Number of Instruction Cache, Streaming Buffer and 
Victim Cache Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_CAUSES_A
_WALK

Misses in all ITLB levels that cause page walks.

85H 02H ITLB_MISSES.WALK_COMPLET
ED

Misses in all ITLB levels that cause completed page 
walks.

85H 04H ITLB_MISSES.WALK_DURATIO
N

Cycle PMH is busy with a walk.

85H 10H ITLB_MISSES.STLB_HIT Number of cache load STLB hits. No page walk.

87H 01H ILD_STALL.LCP Stalls caused by changing prefix length of the 
instruction.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to IQ is full.

88H 01H BR_INST_EXEC.COND Qualify conditional near branch instructions 
executed, but not necessarily retired.

Must combine with 
umask 40H, 80H

88H 02H BR_INST_EXEC.DIRECT_JMP Qualify all unconditional near branch instructions 
excluding calls and indirect branches.

Must combine with 
umask 80H

88H 04H BR_INST_EXEC.INDIRECT_JMP_
NON_CALL_RET

Qualify executed indirect near branch instructions 
that are not calls nor returns.

Must combine with 
umask 80H

88H 08H BR_INST_EXEC.RETURN_NEAR Qualify indirect near branches that have a return 
mnemonic.

Must combine with 
umask 80H
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88H 10H BR_INST_EXEC.DIRECT_NEAR_
CALL

Qualify unconditional near call branch instructions, 
excluding non call branch, executed. 

Must combine with 
umask 80H

88H 20H BR_INST_EXEC.INDIRECT_NEA
R_CALL

Qualify indirect near calls, including both register 
and memory indirect, executed.

Must combine with 
umask 80H

88H 40H BR_INST_EXEC.NONTAKEN Qualify non-taken near branches executed. Applicable to umask 01H 
only

88H 80H BR_INST_EXEC.TAKEN Qualify taken near branches executed. Must 
combine with 01H,02H, 04H, 08H, 10H, 20H.

88H FFH BR_INST_EXEC.ALL_BRANCHE
S

Counts all near executed branches (not necessarily 
retired). 

89H 01H BR_MISP_EXEC.COND Qualify conditional near branch instructions 
mispredicted.

Must combine with 
umask 40H, 80H

89H 04H BR_MISP_EXEC.INDIRECT_JMP
_NON_CALL_RET

Qualify mispredicted indirect near branch 
instructions that are not calls nor returns.

Must combine with 
umask 80H

89H 08H BR_MISP_EXEC.RETURN_NEA
R

Qualify mispredicted indirect near branches that 
have a return mnemonic.

Must combine with 
umask 80H

89H 10H BR_MISP_EXEC.DIRECT_NEAR
_CALL

Qualify mispredicted unconditional near call branch 
instructions, excluding non call branch, executed. 

Must combine with 
umask 80H

89H 20H BR_MISP_EXEC.INDIRECT_NEA
R_CALL

Qualify mispredicted indirect near calls, including 
both register and memory indirect, executed.

Must combine with 
umask 80H

89H 40H BR_MISP_EXEC.NONTAKEN Qualify mispredicted non-taken near branches 
executed,. 

Applicable to umask 01H 
only

89H 80H BR_MISP_EXEC.TAKEN Qualify mispredicted taken near branches executed. 
Must combine with 01H,02H, 04H, 08H, 10H, 20H

89H FFH BR_MISP_EXEC.ALL_BRANCHE
S

Counts all near executed branches (not necessarily 
retired). 

9CH 01H IDQ_UOPS_NOT_DELIVERED.C
ORE

Count number of non-delivered uops to RAT per 
thread. 

Use Cmask to qualify uop 
b/w

A1H 01H UOPS_DISPATCHED_PORT.POR
T_0

Cycles which a Uop is dispatched on port 0.

A1H 02H UOPS_DISPATCHED_PORT.POR
T_1

Cycles which a Uop is dispatched on port 1.

A1H 04H UOPS_DISPATCHED_PORT.POR
T_2_LD

Cycles which a load uop is dispatched on port 2.

A1H 08H UOPS_DISPATCHED_PORT.POR
T_2_STA

Cycles which a store address uop is dispatched on 
port 2.

A1H 0CH UOPS_DISPATCHED_PORT.POR
T_2

Cycles which a Uop is dispatched on port 2.

A1H 10H UOPS_DISPATCHED_PORT.POR
T_3_LD

Cycles which a load uop is dispatched on port 3.

A1H 20H UOPS_DISPATCHED_PORT.POR
T_3_STA

Cycles which a store address uop is dispatched on 
port 3.
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A1H 30H UOPS_DISPATCHED_PORT.POR
T_3

Cycles which a Uop is dispatched on port 3.

A1H 40H UOPS_DISPATCHED_PORT.POR
T_4

Cycles which a Uop is dispatched on port 4.

A1H 80H UOPS_DISPATCHED_PORT.POR
T_5

Cycles which a Uop is dispatched on port 5.

A2H 01H RESOURCE_STALLS.ANY Cycles Allocation is stalled due to Resource Related 
reason. 

A2H 02H RESOURCE_STALLS.LB Counts the cycles of stall due to lack of load buffers.

A2H 04H RESOURCE_STALLS.RS Cycles stalled due to no eligible RS entry available. 

A2H 08H RESOURCE_STALLS.SB Cycles stalled due to no store buffers available. (not 
including draining form sync).

A2H 10H RESOURCE_STALLS.ROB Cycles stalled due to re-order buffer full.

A2H 20H RESOURCE_STALLS.FCSW Cycles stalled due to writing the FPU control word.

A2H 40H RESOURCE_STALLS.MXCSR Cycles stalled due to the MXCSR register rename 
occurring to close to a previous MXCSR rename. 

A2H 80H RESOURCE_STALLS.OTHER Cycles stalled while execution was stalled due to 
other resource issues.

A3H 02H CYCLE_ACTIVITY.CYCLES_L1D_
PENDING

Cycles with pending L1 cache miss loads.Set 
AnyThread to count per core.

PMC2 only

A3H 01H CYCLE_ACTIVITY.CYCLES_L2_P
ENDING

Cycles with pending L2 miss loads. Set AnyThread 
to count per core.

A3H 04H CYCLE_ACTIVITY.CYCLES_NO_
DISPATCH

Cycles of dispatch stalls. Set AnyThread to count per 
core.

PMC0-3 only

ABH 01H DSB2MITE_SWITCHES.COUNT Number of DSB to MITE switches.

ABH 02H DSB2MITE_SWITCHES.PENALT
Y_CYCLES

Cycles DSB to MITE switches caused delay.

ACH 02H DSB_FILL.OTHER_CANCEL Cases of cancelling valid DSB fill not because of 
exceeding way limit.

ACH 08H DSB_FILL.EXCEED_DSB_LINES DSB Fill encountered > 3 DSB lines.

ACH 0AH DSB_FILL.ALL_CANCEL Cases of cancelling valid Decode Stream Buffer 
(DSB) fill not because of exceeding way limit.

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes, includes 4k/2M/
4M pages.

B0H 01H OFFCORE_REQUESTS.DEMAND
_DATA_RD

Demand data read requests sent to uncore. 

B0H 04H OFFCORE_REQUESTS.DEMAND
_RFO

Demand RFO read requests sent to uncore, including 
regular RFOs, locks, ItoM.

B0H 08H OFFCORE_REQUESTS.ALL_DAT
A_RD

Data read requests sent to uncore (demand and 
prefetch).

Table 19-7.  Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-
2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E5 Family (Contd.)
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B1H 01H UOPS_DISPATCHED.THREAD Counts total number of uops to be dispatched per-
thread each cycle. Set Cmask = 1, INV =1 to count 
stall cycles.

PMC0-3 only regardless 
HTT

B1H 02H UOPS_DISPATCHED.CORE Counts total number of uops to be dispatched per-
core each cycle.

Do not need to set ANY

B2H 01H OFFCORE_REQUESTS_BUFFER
.SQ_FULL

Offcore requests buffer cannot take more entries 
for this thread core.

B6H 01H AGU_BYPASS_CANCEL.COUNT Counts executed load operations with all the 
following traits: 1. addressing of the format [base + 
offset], 2. the offset is between 1 and 2047, 3. the 
address specified in the base register is in one page 
and the address [base+offset] is in another page.

B7H 01H OFF_CORE_RESPONSE_0 see Section 18.8.5, “Off-core Response 
Performance Monitoring”.

Requires MSR 01A6H

BBH 01H OFF_CORE_RESPONSE_1 See Section 18.8.5, “Off-core Response 
Performance Monitoring”.

Requires MSR 01A7H

BDH 01H TLB_FLUSH.DTLB_THREAD DTLB flush attempts of the thread-specific entries.

BDH 20H TLB_FLUSH.STLB_ANY Count number of STLB flush attempts.

BFH 05H L1D_BLOCKS.BANK_CONFLICT
_CYCLES

Cycles when dispatched loads are cancelled due to 
L1D bank conflicts with other load ports.

cmask=1 

C0H 00H INST_RETIRED.ANY_P Number of instructions at retirement. See Table 19-1

C0H 01H INST_RETIRED.ALL Precise instruction retired event with HW to reduce 
effect of PEBS shadow in IP distribution.

PMC1 only; Must quiesce 
other PMCs.

C1H 02H OTHER_ASSISTS.ITLB_MISS_R
ETIRED

Instructions that experienced an ITLB miss.

C1H 08H OTHER_ASSISTS.AVX_STORE Number of assists associated with 256-bit AVX 
store operations.

C1H 10H OTHER_ASSISTS.AVX_TO_SSE Number of transitions from AVX-256 to legacy SSE 
when penalty applicable.

C1H 20H OTHER_ASSISTS.SSE_TO_AVX Number of transitions from SSE to AVX-256 when 
penalty applicable.

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops retired, Use 
cmask=1 and invert to count active cycles or stalled 
cycles.

Supports PEBS

C2H 02H UOPS_RETIRED.RETIRE_SLOTS Counts the number of retirement slots used each 
cycle.

C3H 02H MACHINE_CLEARS.MEMORY_O
RDERING

Counts the number of machine clears due to 
memory order conflicts.

C3H 04H MACHINE_CLEARS.SMC Counts the number of times that a program writes 
to a code section. 

C3H 20H MACHINE_CLEARS.MASKMOV Counts the number of executed AVX masked load 
operations that refer to an illegal address range 
with the mask bits set to 0. 

Table 19-7.  Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-
2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E5 Family (Contd.)
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C4H 00H BR_INST_RETIRED.ALL_BRAN
CHES

Branch instructions at retirement. See Table 19-1 

C4H 01H BR_INST_RETIRED.CONDITION
AL

Counts the number of conditional branch 
instructions retired. 

Supports PEBS

C4H 02H BR_INST_RETIRED.NEAR_CALL Direct and indirect near call instructions retired.

C4H 04H BR_INST_RETIRED.ALL_BRAN
CHES

Counts the number of branch instructions retired.

C4H 08H BR_INST_RETIRED.NEAR_RET
URN

Counts the number of near return instructions 
retired.

C4H 10H BR_INST_RETIRED.NOT_TAKE
N

Counts the number of not taken branch instructions 
retired. 

C4H 20H BR_INST_RETIRED.NEAR_TAK
EN

Number of near taken branches retired.

C4H 40H BR_INST_RETIRED.FAR_BRAN
CH

Number of far branches retired.

C5H 00H BR_MISP_RETIRED.ALL_BRAN
CHES

Mispredicted branch instructions at retirement. See Table 19-1 

C5H 01H BR_MISP_RETIRED.CONDITION
AL

Mispredicted conditional branch instructions retired. Supports PEBS

C5H 02H BR_MISP_RETIRED.NEAR_CAL
L

Direct and indirect mispredicted near call 
instructions retired. 

C5H 04H BR_MISP_RETIRED.ALL_BRAN
CHES

Mispredicted macro branch instructions retired.

C5H 10H BR_MISP_RETIRED.NOT_TAKE
N

Mispredicted not taken branch instructions retired.

C5H 20H BR_MISP_RETIRED.TAKEN Mispredicted taken branch instructions retired.

CAH 02H FP_ASSIST.X87_OUTPUT Number of X87 assists due to output value.

CAH 04H FP_ASSIST.X87_INPUT Number of X87 assists due to input value.

CAH 08H FP_ASSIST.SIMD_OUTPUT Number of SIMD FP assists due to output values.

CAH 10H FP_ASSIST.SIMD_INPUT Number of SIMD FP assists due to input values.

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE* or FP assists.

CCH 20H ROB_MISC_EVENTS.LBR_INSE
RTS

Count cases of saving new LBR records by 
hardware. 

CDH 01H MEM_TRANS_RETIRED.LOAD_
LATENCY

Randomly sampled loads whose latency is above a 
user defined threshold. A small fraction of the 
overall loads are sampled due to randomization. 
PMC3 only.

Specify threshold in MSR 
0x3F6

CDH 02H MEM_TRANS_RETIRED.PRECIS
E_STORE

Sample stores and collect precise store operation 
via PEBS record. PMC3 only.

See Section 18.8.4.3

D0H 01H MEM_UOP_RETIRED.LOADS Qualify retired memory uops that are loads. 
Combine with umask 10H, 20H, 40H, 80H.

Supports PEBS. PMC0-3 
only regardless HTT.

Table 19-7.  Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-
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D0H 02H MEM_UOP_RETIRED.STORES Qualify retired memory uops that are stores. 
Combine with umask 10H, 20H, 40H, 80H.

D0H 10H MEM_UOP_RETIRED.STLB_MIS
S

Qualify retired memory uops with STLB miss. Must 
combine with umask 01H, 02H, to produce counts.

D0H 20H MEM_UOP_RETIRED.LOCK Qualify retired memory uops with lock. Must 
combine with umask 01H, 02H, to produce counts.

D0H 40H MEM_UOP_RETIRED.SPLIT Qualify retired memory uops with line split. Must 
combine with umask 01H, 02H, to produce counts.

D0H 80H MEM_UOP_RETIRED.ALL Qualify any retired memory uops. Must combine 
with umask 01H, 02H, to produce counts.

D1H 01H MEM_LOAD_UOPS_RETIRED.L
1_HIT

Retired load uops with L1 cache hits as data 
sources.

Supports PEBS. PMC0-3 
only regardless HTT

D1H 02H MEM_LOAD_UOPS_RETIRED.L
2_HIT

Retired load uops with L2 cache hits as data 
sources.

D1H 04H MEM_LOAD_UOPS_RETIRED.LL
C_HIT

Retired load uops which data sources were data hits 
in LLC without snoops required.

Supports PEBS

D1H 20H MEM_LOAD_UOPS_RETIRED.LL
C_MISS

Retired load uops which data sources were data 
missed LLC (excluding unknown data source).

Supports PEBS

D1H 40H MEM_LOAD_UOPS_RETIRED.HI
T_LFB

Retired load uops which data sources were load 
uops missed L1 but hit FB due to preceding miss to 
the same cache line with data not ready.

E6H 01H BACLEARS.ANY Counts the number of times the front end is re-
steered, mainly when the BPU cannot provide a 
correct prediction and this is corrected by other 
branch handling mechanisms at the front end.

F0H 01H L2_TRANS.DEMAND_DATA_RD Demand Data Read requests that access L2 cache.

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache.

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching instructions.

F0H 08H L2_TRANS.ALL_PF L2 or LLC HW prefetches that access L2 cache. including rejects

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2 cache.

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache.

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache.

F0H 80H L2_TRANS.ALL_REQUESTS Transactions accessing L2 pipe.

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2. Counting does not cover 
rejects.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2. Counting does not cover 
rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2. Counting does not cover 
rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2. Counting does not cover 
rejects.

Table 19-7.  Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-
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...

F2H 01H L2_LINES_OUT.DEMAND_CLEA
N

Clean L2 cache lines evicted by demand.

F2H 02H L2_LINES_OUT.DEMAND_DIRT
Y

Dirty L2 cache lines evicted by demand.

F2H 04H L2_LINES_OUT.PF_CLEAN Clean L2 cache lines evicted by L2 prefetch.

F2H 08H L2_LINES_OUT.PF_DIRTY Dirty L2 cache lines evicted by L2 prefetch.

F2H 0AH L2_LINES_OUT.DIRTY_ALL Dirty L2 cache lines filling the L2. Counting does not cover 
rejects.

F4H 10H SQ_MISC.SPLIT_LOCK Split locks in SQ.

Table 19-7.  Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-
2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E5 Family (Contd.)
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Table 19-9.  Non-Architectural Performance Events Applicable only to the Processor Core of 
Intel® Xeon® Processor E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

CDH 01H MEM_TRANS_RETIRED.LOAD_
LATENCY

Additional Configuration: Disable BL bypass and direct2core, and if the memory 
is remotely homed. The count is not reliable If the memory is locally homed. 

D1H 04H MEM_LOAD_UOPS_RETIRED.LL
C_HIT

Additional Configuration: Disable BL bypass

D1H 20H MEM_LOAD_UOPS_RETIRED.LL
C_MISS

Additional Configuration: Disable BL bypass and direct2core

D2H 01H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_MISS

Additional Configuration: Disable bypass

D2H 02H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HIT

Additional Configuration: Disable bypass

D2H 04H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HITM

Additional Configuration: Disable bypass

D2H 08H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_NONE

Additional Configuration: Disable bypass

D3H 01H MEM_LOAD_UOPS_LLC_MISS_
RETIRED.LOCAL_DRAM

Retired load uops which data sources were data 
missed LLC but serviced by local DRAM.

Disable BL bypass and 
direct2core (see MSR 
0x3C9)

D3H 04H MEM_LOAD_UOPS_LLC_MISS_
RETIRED.REMOTE_DRAM

Retired load uops which data sources were data 
missed LLC but serviced by remote DRAM.

Disable BL bypass and 
direct2core (see MSR 
0x3C9)

B7H/
BBH

01H OFF_CORE_RESPONSE_N Sub-events of OFF_CORE_RESPONSE_N (suffix N = 0, 
1) programmed using MSR 01A6H/01A7H with values 
shown in the comment column.

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.ANY_RESPONSE_N 0x3FFFC00004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.LOCAL_DRAM_N 0x600400004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.REMOTE_DRAM_N 0x67F800004
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...

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.REMOTE_HIT_FWD_N 0x87F800004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.REMOTE_HITM_N 0x107FC00004

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.ANY_DRAM_N 0x67FC00001

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.ANY_RESPONSE_N 0x3F803C0001

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.LOCAL_DRAM_N 0x600400001

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.REMOTE_DRAM_N 0x67F800001

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.REMOTE_HIT_FWD_N 0x87F800001

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.REMOTE_HITM_N 0x107FC00001

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_MISS.ANY_RESPONSE_N 0x3F803C0040

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.ANY_DRAM_N 0x67FC00010

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.ANY_RESPONSE_N 0x3F803C0010

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.LOCAL_DRAM_N 0x600400010

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.REMOTE_DRAM_N 0x67F800010

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.REMOTE_HIT_FWD_N 0x87F800010

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.REMOTE_HITM_N 0x107FC00010

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_MISS.ANY_RESPONSE_N 0x3FFFC00200

OFFCORE_RESPONSE.PF_LLC_DATA_RD.LLC_MISS.ANY_RESPONSE_N 0x3FFFC00080

Table 19-9.  Non-Architectural Performance Events Applicable only to the Processor Core of 
Intel® Xeon® Processor E5 Family
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Table 19-13.  Non-Architectural Performance Events In the Processor Core for 
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 02H LOAD_BLOCK.OVERLAP_STOR
E

Loads that partially overlap an earlier store.

04H 07H SB_DRAIN.ANY All Store buffer stall cycles.

05H 02H MISALIGN_MEMORY.STORE All store referenced with misaligned address.

06H 04H STORE_BLOCKS.AT_RET Counts number of loads delayed with at-Retirement 
block code. The following loads need to be executed 
at retirement and wait for all senior stores on the 
same thread to be drained: load splitting across 4K 
boundary (page split), load accessing uncacheable 
(UC or USWC) memory, load lock, and load with page 
table in UC or USWC memory region.

06H 08H STORE_BLOCKS.L1D_BLOCK Cacheable  loads delayed with L1D block code.

07H 01H PARTIAL_ADDRESS_ALIAS Counts false dependency due to partial address 
aliasing.

08H 01H DTLB_LOAD_MISSES.ANY Counts all load misses that cause a page walk.
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08H 02H DTLB_LOAD_MISSES.WALK_C
OMPLETED

Counts number of completed page walks due to load 
miss in the STLB.

08H 04H DTLB_LOAD_MISSES.WALK_CY
CLES

Cycles PMH is busy with a page walk due to a load 
miss in the STLB. 

08H 10H DTLB_LOAD_MISSES.STLB_HI
T

Number of cache load STLB hits.

08H 20H DTLB_LOAD_MISSES.PDE_MIS
S

Number of DTLB cache load misses where the low 
part of the linear to physical address translation 
was missed.

0BH 01H MEM_INST_RETIRED.LOADS Counts the number of instructions with an 
architecturally-visible load retired on the 
architected path.

0BH 02H MEM_INST_RETIRED.STORES Counts the number of instructions with an 
architecturally-visible store retired on the 
architected path.

0BH 10H MEM_INST_RETIRED.LATENCY
_ABOVE_THRESHOLD

Counts the number of instructions exceeding the 
latency specified with ld_lat facility.

In conjunction with ld_lat 
facility

0CH 01H MEM_STORE_RETIRED.DTLB_
MISS

The event counts the number of retired stores that 
missed the DTLB. The DTLB miss is not counted if 
the store operation causes a fault. Does not counter 
prefetches. Counts both primary and secondary 
misses to the TLB.

0EH 01H UOPS_ISSUED.ANY Counts the number of Uops issued by the Register 
Allocation Table to the Reservation Station, i.e. the 
UOPs issued from the front end to the back end. 

0EH 01H UOPS_ISSUED.STALLED_CYCL
ES

Counts the number of cycles no Uops issued by the 
Register Allocation Table to the Reservation 
Station, i.e. the UOPs issued from the front end to 
the back end. 

set “invert=1, cmask = 1“

0EH 02H UOPS_ISSUED.FUSED Counts the number of fused Uops that were issued 
from the Register Allocation Table to the 
Reservation Station.

0FH 01H MEM_UNCORE_RETIRED.UNK
NOWN_SOURCE

Load instructions retired with unknown LLC miss 
(Precise Event).

Applicable to one and 
two sockets

0FH 02H MEM_UNCORE_RETIRED.OHTE
R_CORE_L2_HIT

Load instructions retired that HIT modified data in 
sibling core (Precise Event).

Applicable to one and 
two sockets

0FH 04H MEM_UNCORE_RETIRED.REMO
TE_HITM

Load instructions retired that HIT modified data in 
remote socket (Precise Event).

Applicable to two 
sockets only

0FH 08H MEM_UNCORE_RETIRED.LOCA
L_DRAM_AND_REMOTE_CACH
E_HIT

Load instructions retired local dram and remote 
cache HIT data sources (Precise Event).

Applicable to one and 
two sockets

0FH 10H MEM_UNCORE_RETIRED.REMO
TE_DRAM

Load instructions retired remote DRAM and remote 
home-remote cache HITM (Precise Event).

Applicable to two 
sockets only

Table 19-13.  Non-Architectural Performance Events In the Processor Core for 
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0FH 20H MEM_UNCORE_RETIRED.OTHE
R_LLC_MISS

Load instructions retired other LLC miss (Precise 
Event).

Applicable to two 
sockets only

0FH 80H MEM_UNCORE_RETIRED.UNCA
CHEABLE

Load instructions retired I/O (Precise Event). Applicable to one and 
two sockets

10H 01H FP_COMP_OPS_EXE.X87 Counts the number of FP Computational Uops 
Executed. The number of FADD, FSUB, FCOM, 
FMULs, integer MULsand IMULs, FDIVs, FPREMs, 
FSQRTS, integer DIVs, and IDIVs. This event does 
not distinguish an FADD used in the middle of a 
transcendental flow from a separate FADD 
instruction.

10H 02H FP_COMP_OPS_EXE.MMX Counts number of MMX Uops executed.

10H 04H FP_COMP_OPS_EXE.SSE_FP Counts number of SSE and SSE2 FP uops executed.

10H 08H FP_COMP_OPS_EXE.SSE2_INT
EGER

Counts number of SSE2 integer uops executed.

10H 10H FP_COMP_OPS_EXE.SSE_FP_P
ACKED

Counts number of SSE FP packed uops executed.

10H 20H FP_COMP_OPS_EXE.SSE_FP_S
CALAR

Counts number of SSE FP scalar uops executed.

10H 40H FP_COMP_OPS_EXE.SSE_SING
LE_PRECISION

Counts number of SSE* FP single precision uops 
executed.

10H 80H FP_COMP_OPS_EXE.SSE_DOU
BLE_PRECISION

Counts number of SSE* FP double precision uops 
executed.

12H 01H SIMD_INT_128.PACKED_MPY Counts number of 128 bit SIMD integer multiply 
operations.

12H 02H SIMD_INT_128.PACKED_SHIFT Counts number of 128 bit SIMD integer shift 
operations.

12H 04H SIMD_INT_128.PACK Counts number of 128 bit SIMD integer pack 
operations.

12H 08H SIMD_INT_128.UNPACK Counts number of 128 bit SIMD integer unpack 
operations.

12H 10H SIMD_INT_128.PACKED_LOGIC
AL

Counts number of 128 bit SIMD integer logical  
operations.

12H 20H SIMD_INT_128.PACKED_ARIT
H

Counts number of 128 bit SIMD integer arithmetic 
operations.

12H 40H SIMD_INT_128.SHUFFLE_MOV
E

Counts number of 128 bit SIMD integer shuffle and 
move operations.

13H 01H LOAD_DISPATCH.RS Counts number of loads dispatched from the 
Reservation Station that bypass the Memory Order 
Buffer.

Table 19-13.  Non-Architectural Performance Events In the Processor Core for 
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13H 02H LOAD_DISPATCH.RS_DELAYED Counts the number of delayed RS dispatches at the 
stage latch. If an RS dispatch can not bypass to LB, 
it has another chance to dispatch from the one-
cycle delayed staging latch before it is written into 
the LB.

13H 04H LOAD_DISPATCH.MOB Counts the number of loads dispatched from the 
Reservation Station to the Memory Order Buffer.

13H 07H LOAD_DISPATCH.ANY Counts all loads dispatched from the Reservation 
Station.

14H 01H ARITH.CYCLES_DIV_BUSY Counts the number of cycles the divider is busy 
executing divide or square root operations. The 
divide can be integer, X87 or Streaming SIMD 
Extensions (SSE). The square root operation can be 
either X87 or SSE. 

Set 'edge =1, invert=1, cmask=1' to count the 
number of divides.

Count may be incorrect 
When SMT is on

14H 02H ARITH.MUL Counts the number of multiply operations executed. 
This includes integer as well as floating point 
multiply operations but excludes DPPS mul and 
MPSAD.

Count may be incorrect 
When SMT is on

17H 01H INST_QUEUE_WRITES Counts the number of instructions written into the 
instruction queue every cycle. 

18H 01H INST_DECODED.DEC0 Counts number of instructions that require  decoder 
0 to be decoded.  Usually, this means that the 
instruction maps to more than 1 uop.

19H 01H TWO_UOP_INSTS_DECODED An instruction that generates two uops was 
decoded.

1EH 01H INST_QUEUE_WRITE_CYCLES This event counts the number of cycles during 
which instructions are written to the instruction 
queue.  Dividing this counter by the number of 
instructions written to the instruction queue 
(INST_QUEUE_WRITES) yields the average number 
of instructions decoded each cycle. If this number is  
less than four and the pipe stalls, this indicates that 
the decoder is failing to decode enough instructions 
per cycle to sustain the 4-wide pipeline. 

If SSE* instructions that 
are 6 bytes or longer 
arrive one after another, 
then front end 
throughput may limit 
execution speed. 

20H 01H LSD_OVERFLOW Number of loops that can not stream from the 
instruction queue.

24H 01H L2_RQSTS.LD_HIT Counts number of loads that hit the L2 cache. L2 
loads include both L1D demand misses as well as 
L1D prefetches.  L2 loads can be rejected for 
various reasons.  Only non rejected loads are 
counted.

Table 19-13.  Non-Architectural Performance Events In the Processor Core for 
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24H 02H L2_RQSTS.LD_MISS Counts the number of loads that miss the L2 cache. 
L2 loads include both L1D demand misses as well as 
L1D prefetches. 

24H 03H L2_RQSTS.LOADS Counts all L2 load requests. L2 loads include both 
L1D demand misses as well as L1D prefetches. 

24H 04H L2_RQSTS.RFO_HIT Counts the number of store RFO requests that hit 
the L2 cache. L2 RFO requests include both L1D 
demand RFO misses as well as L1D RFO prefetches. 
Count includes WC memory requests, where the 
data is not fetched but the permission to write the 
line is required.

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO requests that miss 
the L2 cache. L2 RFO requests include both L1D 
demand RFO misses as well as L1D RFO prefetches.

24H 0CH L2_RQSTS.RFOS Counts all L2 store RFO requests. L2 RFO requests 
include both L1D demand RFO misses as well as L1D 
RFO prefetches..

24H 10H L2_RQSTS.IFETCH_HIT Counts number of instruction fetches that hit the 
L2 cache. L2 instruction fetches include both L1I 
demand misses as well as L1I instruction 
prefetches.

24H 20H L2_RQSTS.IFETCH_MISS Counts number of instruction fetches that miss the 
L2 cache. L2 instruction fetches include both L1I 
demand misses as well as L1I instruction 
prefetches.

24H 30H L2_RQSTS.IFETCHES Counts all instruction fetches. L2 instruction fetches 
include both L1I demand misses as well as L1I 
instruction prefetches.

24H 40H L2_RQSTS.PREFETCH_HIT Counts L2 prefetch hits for both code and data.

24H 80H L2_RQSTS.PREFETCH_MISS Counts L2 prefetch misses for both code and data.

24H C0H L2_RQSTS.PREFETCHES Counts all L2 prefetches for both code and data.

24H AAH L2_RQSTS.MISS Counts all L2 misses for both code and data.

24H FFH L2_RQSTS.REFERENCES Counts all L2 requests for both code and data.

26H 01H L2_DATA_RQSTS.DEMAND.I_S
TATE

Counts number of L2 data demand loads where the 
cache line to be loaded is in the I (invalid) state, i.e. a 
cache miss. L2 demand loads are both L1D demand 
misses and L1D prefetches.

26H 02H L2_DATA_RQSTS.DEMAND.S_
STATE

Counts number of L2 data demand loads where the 
cache line to be loaded is in the S (shared) state. L2 
demand loads are both L1D demand misses and L1D 
prefetches.
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26H 04H L2_DATA_RQSTS.DEMAND.E_
STATE

Counts number of L2 data demand loads where the 
cache line to be loaded is in the E (exclusive) state. 
L2 demand loads are both L1D demand misses and 
L1D prefetches.

26H 08H L2_DATA_RQSTS.DEMAND.M_
STATE

Counts number of L2 data demand loads where the 
cache line to be loaded is in the M (modified) state. 
L2 demand loads are both L1D demand misses and 
L1D prefetches.

26H 0FH L2_DATA_RQSTS.DEMAND.ME
SI

Counts all L2 data demand requests. L2 demand 
loads are both L1D demand misses and L1D 
prefetches.

26H 10H L2_DATA_RQSTS.PREFETCH.I_
STATE

Counts number of L2 prefetch data loads where the 
cache line to be loaded is in the I (invalid) state, i.e. a 
cache miss.

26H 20H L2_DATA_RQSTS.PREFETCH.S
_STATE

Counts number of L2 prefetch data loads where the 
cache line to be loaded is in the S (shared) state. A 
prefetch RFO will miss on an S state line, while a 
prefetch read will hit on an S state line.

26H 40H L2_DATA_RQSTS.PREFETCH.E
_STATE

Counts number of L2 prefetch data loads where the 
cache line to be loaded is in the E (exclusive) state.

26H 80H L2_DATA_RQSTS.PREFETCH.M
_STATE

Counts number of L2 prefetch data loads where the 
cache line to be loaded is in the M (modified) state.

26H F0H L2_DATA_RQSTS.PREFETCH.M
ESI

Counts all L2 prefetch requests.

26H FFH L2_DATA_RQSTS.ANY Counts all L2 data requests.

27H 01H L2_WRITE.RFO.I_STATE Counts number of L2 demand store RFO requests 
where the cache line to be loaded is in the I (invalid) 
state, i.e, a cache miss. The L1D prefetcher does not 
issue a RFO prefetch.

This is a demand RFO 
request

27H 02H L2_WRITE.RFO.S_STATE Counts number of L2 store RFO requests where the 
cache line to be loaded is in the S (shared) state. 
The L1D prefetcher does not issue a RFO prefetch,.

This is a demand RFO 
request

27H 08H L2_WRITE.RFO.M_STATE Counts number of L2 store RFO requests where the 
cache line to be loaded is in the M (modified) state. 
The L1D prefetcher does not issue a RFO prefetch.

This is a demand RFO 
request

27H 0EH L2_WRITE.RFO.HIT Counts number of L2 store RFO requests where the 
cache line to be loaded is in either the S, E or M 
states. The L1D prefetcher does not issue a RFO 
prefetch.

This is a demand RFO 
request

27H 0FH L2_WRITE.RFO.MESI Counts all L2 store RFO requests.The L1D 
prefetcher does not issue a RFO prefetch.

This is a demand RFO 
request

27H 10H L2_WRITE.LOCK.I_STATE Counts number of L2 demand lock RFO requests 
where the cache line to be loaded is in the I (invalid) 
state, i.e. a cache miss. 
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27H 20H L2_WRITE.LOCK.S_STATE Counts number of L2 lock RFO requests where the 
cache line to be loaded is in the S (shared) state.

27H 40H L2_WRITE.LOCK.E_STATE Counts number of L2 demand lock RFO requests 
where the cache line to be loaded is in the E 
(exclusive) state.

27H 80H L2_WRITE.LOCK.M_STATE Counts number of L2 demand lock RFO requests 
where the cache line to be loaded is in the M 
(modified) state.

27H E0H L2_WRITE.LOCK.HIT Counts number of L2 demand lock RFO requests 
where the cache line to be loaded is in either the S, 
E, or M state.

27H F0H L2_WRITE.LOCK.MESI Counts all L2 demand lock RFO requests.

28H 01H L1D_WB_L2.I_STATE Counts number of L1 writebacks to the L2 where 
the cache line to be written is in the I (invalid) state, 
i.e. a cache miss.

28H 02H L1D_WB_L2.S_STATE Counts number of L1 writebacks to the L2 where 
the cache line to be written is in the S state.

28H 04H L1D_WB_L2.E_STATE Counts number of L1 writebacks to the L2 where 
the cache line to be written is in the E (exclusive) 
state.

28H 08H L1D_WB_L2.M_STATE Counts number of L1 writebacks to the L2 where 
the cache line to be written is in the M (modified) 
state.

28H 0FH L1D_WB_L2.MESI Counts all L1 writebacks to the L2 .

2EH 41H L3_LAT_CACHE.MISS Counts uncore Last Level Cache misses. Because 
cache hierarchy, cache sizes and other 
implementation-specific characteristics; value 
comparison to estimate performance differences is 
not recommended. 

see Table 19-1

2EH 4FH L3_LAT_CACHE.REFERENCE Counts uncore Last Level Cache references. 
Because cache hierarchy, cache sizes and other 
implementation-specific characteristics; value 
comparison to estimate performance differences is 
not recommended. 

see Table 19-1

3CH 00H CPU_CLK_UNHALTED.THREAD
_P

Counts the number of thread cycles while the 
thread is not in a halt state. The thread enters the 
halt state when it is running the HLT instruction. 
The core frequency may change from time to time 
due to power or thermal throttling. 

see Table 19-1

3CH 01H CPU_CLK_UNHALTED.REF_P Increments at the frequency of TSC when not 
halted.

see Table 19-1

49H 01H DTLB_MISSES.ANY Counts the number of misses in the STLB which 
causes a page walk.
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49H 02H DTLB_MISSES.WALK_COMPLE
TED

Counts number of misses in the STLB which 
resulted in a completed page walk.

49H 04H DTLB_MISSES.WALK_CYCLES Counts cycles of page walk due to misses in the 
STLB.

49H 10H DTLB_MISSES.STLB_HIT Counts the number of DTLB first level misses that 
hit in the second level TLB.  This event is only 
relevant if the core contains multiple DTLB levels.

49H 20H DTLB_MISSES.PDE_MISS Number of DTLB misses caused by low part of 
address, includes references to 2M pages because 
2M pages do not use the PDE. 

49H 80H DTLB_MISSES.LARGE_WALK_C
OMPLETED

Counts number of completed large page walks due 
to misses in the STLB.

4CH 01H LOAD_HIT_PRE Counts load operations sent to the L1 data cache 
while a previous SSE prefetch instruction to the 
same cache line has started prefetching but has not 
yet finished.

Counter 0, 1 only

4EH 01H L1D_PREFETCH.REQUESTS Counts number of hardware prefetch requests 
dispatched out of the prefetch FIFO.

Counter 0, 1 only

4EH 02H L1D_PREFETCH.MISS Counts number of hardware prefetch requests that 
miss the L1D.  There are two prefetchers in the 
L1D.  A streamer, which predicts lines sequentially 
after this one should be fetched, and the IP 
prefetcher that remembers access patterns for the 
current instruction.  The streamer prefetcher stops 
on an L1D hit,  while the IP prefetcher does not.

Counter 0, 1 only

4EH 04H L1D_PREFETCH.TRIGGERS Counts number of prefetch requests triggered by 
the Finite State Machine and pushed into the 
prefetch FIFO. Some of the prefetch requests are 
dropped due to overwrites or competition between 
the IP index prefetcher and streamer prefetcher.  
The prefetch FIFO contains 4 entries.

Counter 0, 1 only

4FH 10H EPT.WALK_CYCLES Counts Extended Page walk cycles.

51H 01H L1D.REPL Counts the number of lines brought into the L1 data 
cache.

Counter 0, 1 only

51H 02H L1D.M_REPL Counts the number of modified lines brought into 
the L1 data cache. 

Counter 0, 1 only

51H 04H L1D.M_EVICT Counts the number of modified lines evicted from 
the L1 data cache  due to replacement. 

Counter 0, 1 only

51H 08H L1D.M_SNOOP_EVICT Counts the number of modified lines evicted from 
the L1 data cache due to snoop HITM intervention.

Counter 0, 1 only

52H 01H L1D_CACHE_PREFETCH_LOCK
_FB_HIT

Counts the number of cacheable load lock 
speculated instructions accepted into the fill buffer.
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60H 01H OFFCORE_REQUESTS_OUTST
ANDING.DEMAND.READ_DATA

Counts weighted cycles of offcore demand data 
read requests. Does not include L2 prefetch 
requests.

counter 0

60H 02H OFFCORE_REQUESTS_OUTST
ANDING.DEMAND.READ_CODE

Counts weighted cycles of offcore demand code 
read requests. Does not include L2 prefetch 
requests.

counter 0

60H 04H OFFCORE_REQUESTS_OUTST
ANDING.DEMAND.RFO

Counts weighted cycles of offcore demand RFO 
requests. Does not include L2 prefetch requests.

counter 0

60H 08H OFFCORE_REQUESTS_OUTST
ANDING.ANY.READ

Counts weighted cycles of offcore read requests of 
any kind. Include L2 prefetch requests.

counter 0

63H 01H CACHE_LOCK_CYCLES.L1D_L2 Cycle count during which the L1D and L2 are locked.  
A lock is asserted when there is a locked memory 
access, due to uncacheable memory, a locked 
operation that spans two cache lines, or a page walk 
from an uncacheable page table. This event does 
not cause locks, it merely detects them.

Counter 0, 1 only. L1D 
and L2 locks have a very 
high performance 
penalty and it is highly 
recommended to avoid 
such accesses.

63H 02H CACHE_LOCK_CYCLES.L1D Counts the number of cycles that cacheline in the 
L1 data cache unit is locked.

Counter 0, 1 only.

6CH 01H IO_TRANSACTIONS Counts the number of completed I/O transactions.

80H 01H L1I.HITS Counts all instruction fetches that hit the L1 
instruction cache.

80H 02H L1I.MISSES Counts all instruction fetches that miss the L1I 
cache. This includes instruction cache misses,  
streaming buffer misses, victim cache misses and 
uncacheable fetches.  An instruction fetch miss is 
counted only once and not once for every cycle it is 
outstanding.

80H 03H L1I.READS Counts all instruction fetches, including uncacheable 
fetches that bypass the L1I.

80H 04H L1I.CYCLES_STALLED Cycle counts for which an instruction fetch stalls 
due to a L1I cache miss, ITLB miss or ITLB fault.

82H 01H LARGE_ITLB.HIT Counts number of large ITLB hits.

85H 01H ITLB_MISSES.ANY Counts the number of misses in all levels of the ITLB 
which causes a page walk.

85H 02H ITLB_MISSES.WALK_COMPLET
ED

Counts number of misses in all levels of the ITLB 
which resulted in a completed page walk.

85H 04H ITLB_MISSES.WALK_CYCLES Counts ITLB miss page walk cycles.

85H 10H ITLB_MISSES.STLB_HIT Counts number of ITLB first level miss but second 
level hits

85H 80H ITLB_MISSES.LARGE_WALK_C
OMPLETED

Counts number of completed large page walks due 
to misses in the STLB.
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87H 01H ILD_STALL.LCP Cycles Instruction Length Decoder stalls due to 
length changing prefixes: 66, 67 or REX.W (for 
EM64T) instructions which change the length of the 
decoded instruction.

87H 02H ILD_STALL.MRU Instruction Length Decoder stall cycles due to Brand 
Prediction Unit (PBU) Most Recently Used (MRU) 
bypass.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to a full instruction queue.

87H 08H ILD_STALL.REGEN Counts the number of regen stalls.

87H 0FH ILD_STALL.ANY Counts any cycles the Instruction Length Decoder is 
stalled.

88H 01H BR_INST_EXEC.COND Counts the number of conditional near branch 
instructions executed, but not necessarily retired.

88H 02H BR_INST_EXEC.DIRECT Counts all unconditional near branch instructions 
excluding calls and indirect branches.

88H 04H BR_INST_EXEC.INDIRECT_NO
N_CALL

Counts the number of executed indirect near branch 
instructions that are not calls.

88H 07H BR_INST_EXEC.NON_CALLS Counts all non call near branch instructions 
executed, but not necessarily retired.

88H 08H BR_INST_EXEC.RETURN_NEA
R

Counts indirect near branches that have a return 
mnemonic.

88H 10H BR_INST_EXEC.DIRECT_NEAR
_CALL

Counts unconditional near call branch instructions, 
excluding non call branch, executed. 

88H 20H BR_INST_EXEC.INDIRECT_NEA
R_CALL

Counts indirect near calls, including both register 
and memory indirect, executed.

88H 30H BR_INST_EXEC.NEAR_CALLS Counts all near call branches executed,  but not 
necessarily retired.

88H 40H BR_INST_EXEC.TAKEN Counts taken near branches executed, but not 
necessarily retired.

88H 7FH BR_INST_EXEC.ANY Counts all near executed branches (not necessarily 
retired). This includes only instructions and not 
micro-op branches. Frequent branching is not 
necessarily a major performance issue. However 
frequent branch mispredictions may be a problem.

89H 01H BR_MISP_EXEC.COND Counts the number of mispredicted conditional near 
branch instructions executed, but not necessarily 
retired.

89H 02H BR_MISP_EXEC.DIRECT Counts mispredicted macro unconditional near 
branch instructions, excluding calls and indirect 
branches (should always be 0).

89H 04H BR_MISP_EXEC.INDIRECT_NO
N_CALL

Counts the number of executed mispredicted 
indirect near branch instructions that are not calls.
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89H 07H BR_MISP_EXEC.NON_CALLS Counts mispredicted non call near branches 
executed,  but not necessarily retired.

89H 08H BR_MISP_EXEC.RETURN_NEA
R

Counts mispredicted indirect branches that have a 
rear return mnemonic.

89H 10H BR_MISP_EXEC.DIRECT_NEAR
_CALL

Counts mispredicted non-indirect near calls 
executed, (should always be 0).

89H 20H BR_MISP_EXEC.INDIRECT_NE
AR_CALL

Counts mispredicted indirect near calls exeucted, 
including both register and memory indirect.

89H 30H BR_MISP_EXEC.NEAR_CALLS Counts all mispredicted near call branches executed, 
but not necessarily retired.

89H 40H BR_MISP_EXEC.TAKEN Counts executed mispredicted near branches that 
are taken, but not necessarily retired.

89H 7FH BR_MISP_EXEC.ANY Counts the number of mispredicted near branch 
instructions that were executed, but not 
necessarily retired.

A2H 01H RESOURCE_STALLS.ANY Counts the number of Allocator resource related 
stalls. Includes register renaming buffer entries, 
memory buffer entries. In addition to resource 
related stalls, this event counts some other events. 
Includes stalls arising during branch misprediction 
recovery, such as if retirement of the mispredicted 
branch is delayed and stalls arising while store 
buffer is draining from synchronizing operations.

Does not include stalls 
due to SuperQ (off core) 
queue full, too many 
cache misses, etc.

A2H 02H RESOURCE_STALLS.LOAD Counts the cycles of stall due to lack of load buffer 
for load operation.

A2H 04H RESOURCE_STALLS.RS_FULL This event counts the number of cycles when the 
number of instructions in the pipeline waiting for 
execution reaches the limit the processor can 
handle. A high count of this event indicates that 
there are long latency operations in the pipe 
(possibly load and store operations that miss the L2 
cache, or instructions dependent upon instructions 
further down the pipeline that have yet to retire. 

When RS is full, new 
instructions can not 
enter the reservation 
station and start 
execution.

A2H 08H RESOURCE_STALLS.STORE This event counts the number of cycles that a 
resource related stall will occur due to the number 
of store instructions reaching the limit of the 
pipeline, (i.e. all store buffers are used). The stall 
ends when a store instruction commits its data to 
the cache or memory.

A2H 10H RESOURCE_STALLS.ROB_FULL Counts the cycles of stall due to re-order buffer full.

A2H 20H RESOURCE_STALLS.FPCW Counts the number of cycles while execution was 
stalled due to writing the floating-point unit (FPU) 
control word.
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A2H 40H RESOURCE_STALLS.MXCSR Stalls due to the MXCSR register rename occurring 
to close to a previous MXCSR rename.  The MXCSR 
provides control and status for the MMX registers.

A2H 80H RESOURCE_STALLS.OTHER Counts the number of cycles while execution was 
stalled due to other resource issues.

A6H 01H MACRO_INSTS.FUSIONS_DECO
DED

Counts the number of instructions decoded that are 
macro-fused but not necessarily executed or 
retired.

A7H 01H BACLEAR_FORCE_IQ Counts number of times a BACLEAR was forced by 
the Instruction Queue.  The IQ is also responsible for 
providing conditional branch prediciton direction 
based on a static scheme and dynamic data 
provided by the L2 Branch Prediction Unit. If the 
conditional branch target is not found in the Target 
Array and the IQ predicts that the branch is taken, 
then the IQ will force the Branch Address Calculator 
to issue a BACLEAR. Each BACLEAR asserted by the 
BAC generates approximately an 8 cycle bubble in 
the instruction fetch pipeline.

A8H 01H LSD.UOPS Counts the number of micro-ops delivered by loop 
stream detector.

Use cmask=1 and invert 
to count cycles

AEH 01H ITLB_FLUSH Counts the number of ITLB flushes.

B0H 01H OFFCORE_REQUESTS.DEMAN
D.READ_DATA

Counts number of offcore demand data read 
requests.  Does not count L2 prefetch requests.

B0H 02H OFFCORE_REQUESTS.DEMAN
D.READ_CODE

Counts number of offcore demand code read 
requests.  Does not count L2 prefetch requests.

B0H 04H OFFCORE_REQUESTS.DEMAN
D.RFO

Counts number of offcore demand RFO requests. 
Does not count L2 prefetch requests.

B0H 08H OFFCORE_REQUESTS.ANY.REA
D

Counts number of offcore read requests. Includes 
L2 prefetch requests.

B0H 10H OFFCORE_REQUESTS.ANY.RFO Counts number of offcore RFO requests. Includes L2 
prefetch requests.

B0H 40H OFFCORE_REQUESTS.L1D_WR
ITEBACK

Counts number of L1D writebacks to the uncore. 

B0H 80H OFFCORE_REQUESTS.ANY Counts all offcore requests.

B1H 01H UOPS_EXECUTED.PORT0 Counts number of Uops executed that were issued 
on port 0.  Port 0 handles integer arithmetic, SIMD 
and FP add Uops.

B1H 02H UOPS_EXECUTED.PORT1 Counts number of Uops executed that were issued 
on port 1. Port 1 handles integer arithmetic, SIMD, 
integer shift, FP multiply and FP divide Uops.

B1H 04H UOPS_EXECUTED.PORT2_COR
E

Counts number of Uops executed that were issued 
on port 2.  Port 2 handles the load Uops. This is a 
core count only and can not be collected per thread.
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B1H 08H UOPS_EXECUTED.PORT3_COR
E

Counts number of Uops executed that were issued 
on port 3. Port 3 handles store Uops.  This is a core 
count only and can not be collected per thread.

B1H 10H UOPS_EXECUTED.PORT4_COR
E

Counts number of Uops executed that where issued 
on port  4.  Port 4 handles the value to be stored for 
the store Uops issued on port 3. This is a core count 
only and can not be collected per thread.

B1H 1FH UOPS_EXECUTED.CORE_ACTI
VE_CYCLES_NO_PORT5

Counts number of cycles there are one or more 
uops being executed and were issued on ports 0-4. 
This is a core count only and can not be collected 
per thread.

B1H 20H UOPS_EXECUTED.PORT5 Counts number of Uops executed that where issued 
on port 5. 

B1H 3FH UOPS_EXECUTED.CORE_ACTI
VE_CYCLES

Counts number of cycles there are one or more 
uops being executed on any ports. This is a core 
count only and can not be collected per thread.

B1H 40H UOPS_EXECUTED.PORT015 Counts number of Uops executed that where issued 
on port  0, 1, or 5.

use cmask=1, invert=1 
to count stall cycles

B1H 80H UOPS_EXECUTED.PORT234 Counts number of Uops executed that where issued 
on port 2, 3, or 4.

B2H 01H OFFCORE_REQUESTS_SQ_FUL
L

Counts number of cycles the SQ is full to handle off-
core requests. 

B3H 01H SNOOPQ_REQUESTS_OUTSTA
NDING.DATA

Counts weighted cycles of snoopq requests for 
data. Counter 0 only.

Use cmask=1 to count 
cycles not empty. 

B3H 02H SNOOPQ_REQUESTS_OUTSTA
NDING.INVALIDATE

Counts weighted cycles of snoopq invalidate 
requests. Counter 0 only.

Use cmask=1 to count 
cycles not empty. 

B3H 04H SNOOPQ_REQUESTS_OUTSTA
NDING.CODE

Counts weighted cycles of snoopq requests for 
code. Counter 0 only.

Use cmask=1 to count 
cycles not empty. 

B4H 01H SNOOPQ_REQUESTS.CODE Counts the number of snoop code requests.

B4H 02H SNOOPQ_REQUESTS.DATA Counts the number of snoop data requests.

B4H 04H SNOOPQ_REQUESTS.INVALID
ATE

Counts the number of snoop invalidate requests.

B7H 01H OFF_CORE_RESPONSE_0 see Section 18.6.1.3, “Off-core Response 
Performance Monitoring in the Processor Core”

Requires programming 
MSR 01A6H

B8H 01H SNOOP_RESPONSE.HIT Counts HIT snoop response sent by this thread in 
response to a snoop request.

B8H 02H SNOOP_RESPONSE.HITE Counts HIT E snoop response sent by this thread in 
response to a snoop request.

B8H 04H SNOOP_RESPONSE.HITM Counts HIT M snoop response sent by this thread in 
response to a snoop request.
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BBH 01H OFF_CORE_RESPONSE_1 see Section 18.6.1.3, “Off-core Response 
Performance Monitoring in the Processor Core”

Use MSR 01A7H

C0H 00H INST_RETIRED.ANY_P See Table 19-1
Notes: INST_RETIRED.ANY is counted by a 
designated fixed counter. INST_RETIRED.ANY_P is 
counted by a programmable counter and is an 
architectural performance event.  Event is 
supported if CPUID.A.EBX[1] = 0.

Counting: Faulting 
executions of GETSEC/
VM entry/VM Exit/MWait 
will not count as retired 
instructions. 

C0H 02H INST_RETIRED.X87 Counts the number of floating point computational 
operations retired: floating point computational 
operations executed by the assist handler and sub-
operations of complex floating point instructions 
like transcendental instructions.

C0H 04H INST_RETIRED.MMX Counts the number of retired: MMX instructions.

C2H 01H UOPS_RETIRED.ANY Counts the number of micro-ops retired, (macro-
fused=1, micro-fused=2, others=1; maximum count 
of 8 per cycle). Most instructions are composed of 
one or two micro-ops. Some instructions are 
decoded into longer sequences such as repeat 
instructions, floating point transcendental 
instructions, and assists.

Use cmask=1 and invert 
to count active cycles or 
stalled cycles

C2H 02H UOPS_RETIRED.RETIRE_SLOT
S

Counts the number of retirement slots used each 
cycle

C2H 04H UOPS_RETIRED.MACRO_FUSE
D

Counts number of macro-fused uops retired.

C3H 01H MACHINE_CLEARS.CYCLES Counts the cycles machine clear is asserted.

C3H 02H MACHINE_CLEARS.MEM_ORDE
R

Counts the number of machine clears due to 
memory order conflicts.

C3H 04H MACHINE_CLEARS.SMC Counts the number of times that a program writes 
to a code section. Self-modifying code causes a 
sever penalty in all Intel 64 and IA-32 processors.  
The modified cache line is written back to the L2 
and L3caches.

C4H 00H BR_INST_RETIRED.ALL_BRAN
CHES

Branch instructions at retirement See Table 19-1 

C4H 01H BR_INST_RETIRED.CONDITION
AL

Counts the number of conditional branch 
instructions retired. 

C4H 02H BR_INST_RETIRED.NEAR_CAL
L

Counts the number of direct & indirect near 
unconditional calls retired.

C5H 00H BR_MISP_RETIRED.ALL_BRAN
CHES

Mispredicted branch instructions at retirement See Table 19-1 

C5H 01H BR_MISP_RETIRED.CONDITION
AL

Counts mispredicted conditional retired calls. 

Table 19-13.  Non-Architectural Performance Events In the Processor Core for 
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C5H 02H BR_MISP_RETIRED.NEAR_CAL
L

Counts mispredicted direct & indirect near 
unconditional retired calls. 

C5H 04H BR_MISP_RETIRED.ALL_BRAN
CHES

Counts all mispredicted retired calls. 

C7H 01H SSEX_UOPS_RETIRED.PACKED
_SINGLE

Counts SIMD packed single-precision floating point 
Uops retired.

C7H 02H SSEX_UOPS_RETIRED.SCALAR
_SINGLE

Counts SIMD calar single-precision floating point 
Uops retired.

C7H 04H SSEX_UOPS_RETIRED.PACKED
_DOUBLE

Counts SIMD packed double-precision floating point 
Uops retired.

C7H 08H SSEX_UOPS_RETIRED.SCALAR
_DOUBLE

Counts SIMD scalar double-precision floating point 
Uops retired.

C7H 10H SSEX_UOPS_RETIRED.VECTOR
_INTEGER

Counts 128-bit SIMD vector integer Uops retired.

C8H 20H ITLB_MISS_RETIRED Counts the number of retired instructions that 
missed the ITLB when the instruction was fetched.

CBH 01H MEM_LOAD_RETIRED.L1D_HIT Counts number of retired loads that hit the L1 data 
cache. 

CBH 02H MEM_LOAD_RETIRED.L2_HIT Counts number of retired loads that hit the L2 data 
cache.

CBH 04H MEM_LOAD_RETIRED.L3_UNS
HARED_HIT

Counts number of retired loads that hit their own, 
unshared lines in the L3 cache.

CBH 08H MEM_LOAD_RETIRED.OTHER_
CORE_L2_HIT_HITM

Counts number of retired loads that hit in a sibling 
core's L2 (on die core).  Since the L3 is inclusive of 
all cores on the package, this is an L3 hit. This 
counts both clean or modified hits.

CBH 10H MEM_LOAD_RETIRED.L3_MISS Counts number of retired loads that miss the L3 
cache.  The load was satisfied by a remote socket, 
local memory or an IOH.

CBH 40H MEM_LOAD_RETIRED.HIT_LFB Counts number of retired loads that miss the L1D 
and the address is located in an allocated line fill 
buffer and will soon be committed to cache.  This is 
counting secondary L1D misses.

CBH 80H MEM_LOAD_RETIRED.DTLB_MI
SS

Counts the number of retired loads that missed the 
DTLB. The DTLB miss is not counted if the load 
operation causes a fault.  This event counts loads 
from cacheable memory only. The event does not 
count loads by software prefetches. Counts both 
primary and secondary misses to the TLB.

CCH 01H FP_MMX_TRANS.TO_FP Counts the first floating-point instruction following 
any MMX instruction. You can use this event to 
estimate the penalties for the transitions between 
floating-point and MMX technology states.
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CCH 02H FP_MMX_TRANS.TO_MMX Counts the first MMX instruction following a 
floating-point instruction. You can use this event to 
estimate the penalties for the transitions between 
floating-point and MMX technology states.

CCH 03H FP_MMX_TRANS.ANY Counts all transitions from floating point to MMX 
instructions and from MMX instructions to floating 
point instructions.  You can use this event to 
estimate the penalties for the transitions between 
floating-point and MMX technology states.

D0H 01H MACRO_INSTS.DECODED Counts the number of instructions decoded, (but not 
necessarily executed or retired).

D1H 01H UOPS_DECODED.STALL_CYCLE
S

Counts the cycles of decoder stalls. INV=1, Cmask= 
1

D1H 02H UOPS_DECODED.MS Counts the number of Uops decoded by the 
Microcode Sequencer, MS.  The MS delivers uops 
when the instruction is more than 4 uops long or a 
microcode assist is occurring. 

D1H 04H UOPS_DECODED.ESP_FOLDIN
G

Counts number of stack pointer (ESP) instructions 
decoded: push , pop , call , ret, etc.  ESP instructions 
do not generate a Uop to increment or decrement 
ESP.  Instead, they update an ESP_Offset register 
that keeps track of the delta to the current value of 
the ESP register.

D1H 08H UOPS_DECODED.ESP_SYNC Counts number of stack pointer (ESP) sync 
operations where an ESP instruction is corrected  by 
adding the ESP offset register to the current value 
of the ESP register.

D2H 01H RAT_STALLS.FLAGS Counts the number of cycles during which 
execution stalled due to several reasons, one of 
which is a partial flag register stall. A partial register 
stall may occur when two conditions are met: 1) an 
instruction modifies some, but not all, of the flags in 
the flag register and 2) the next instruction, which 
depends on flags, depends on flags that were not 
modified by this instruction.

D2H 02H RAT_STALLS.REGISTERS This event counts the number of cycles instruction 
execution latency became longer than the defined 
latency because the instruction used a register that 
was partially written by previous instruction.
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D2H 04H RAT_STALLS.ROB_READ_POR
T

Counts the number of cycles when ROB read port 
stalls occurred, which did not allow new micro-ops 
to enter the out-of-order pipeline. Note that, at this 
stage in the pipeline, additional stalls may occur at 
the same cycle and prevent the stalled micro-ops 
from entering the pipe. In such a case, micro-ops 
retry entering the execution pipe in the next cycle 
and the ROB-read port stall is counted again.

D2H 08H RAT_STALLS.SCOREBOARD Counts the cycles where we stall due to 
microarchitecturally required serialization. 
Microcode scoreboarding stalls.

D2H 0FH RAT_STALLS.ANY Counts all Register Allocation Table stall cycles due 
to:  Cycles when ROB read port stalls occurred, 
which did not allow new micro-ops to enter the 
execution pipe.  Cycles when partial register stalls 
occurred  Cycles when flag stalls occurred  Cycles 
floating-point unit (FPU) status word stalls occurred. 
To count each of these conditions separately use 
the events: RAT_STALLS.ROB_READ_PORT, 
RAT_STALLS.PARTIAL, RAT_STALLS.FLAGS, and 
RAT_STALLS.FPSW.

D4H 01H SEG_RENAME_STALLS Counts the number of stall cycles due to the lack of 
renaming resources for the ES, DS, FS, and GS 
segment registers. If a segment is renamed but not 
retired and a second update to the same segment 
occurs, a stall occurs in the front-end of the pipeline 
until the renamed segment retires.

D5H 01H ES_REG_RENAMES Counts the number of times the ES segment 
register is renamed.

DBH 01H UOP_UNFUSION Counts unfusion events due to floating point 
exception to a fused uop.

E0H 01H BR_INST_DECODED Counts the number of branch instructions decoded. 

E5H 01H BPU_MISSED_CALL_RET Counts number of times the Branch Prediciton Unit 
missed predicting a call or return branch.

E6H 01H BACLEAR.CLEAR Counts the number of times the front end is 
resteered, mainly when the Branch Prediction Unit 
cannot provide a correct prediction and this is 
corrected by the Branch Address Calculator at the 
front end. This can occur if the code has many 
branches such that they cannot be consumed by 
the BPU. Each BACLEAR asserted by the BAC 
generates approximately an 8 cycle bubble in the 
instruction fetch pipeline. The effect on total 
execution time depends on the surrounding code.
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E6H 02H BACLEAR.BAD_TARGET Counts number of Branch Address Calculator clears 
(BACLEAR) asserted due to conditional branch 
instructions in which there was a target hit but the 
direction was wrong.  Each BACLEAR asserted by 
the BAC generates approximately an 8 cycle bubble 
in the instruction fetch pipeline.

E8H 01H BPU_CLEARS.EARLY Counts early (normal) Branch Prediction Unit clears: 
BPU predicted a taken branch after incorrectly 
assuming that it was not taken. 

The BPU clear leads to 2 
cycle bubble in the Front 
End.

E8H 02H BPU_CLEARS.LATE Counts late Branch Prediction Unit clears due to 
Most Recently Used conflicts.  The PBU clear leads 
to a 3 cycle bubble in the Front End.

ECH 01H THREAD_ACTIVE Counts cycles threads are active.

F0H 01H L2_TRANSACTIONS.LOAD Counts L2 load operations due to HW prefetch or 
demand loads.

F0H 02H L2_TRANSACTIONS.RFO Counts L2 RFO operations due to HW prefetch or 
demand RFOs.

F0H 04H L2_TRANSACTIONS.IFETCH Counts L2 instruction fetch operations due to HW 
prefetch or demand ifetch.

F0H 08H L2_TRANSACTIONS.PREFETC
H

Counts L2 prefetch operations.

F0H 10H L2_TRANSACTIONS.L1D_WB Counts L1D writeback operations to the L2.

F0H 20H L2_TRANSACTIONS.FILL Counts L2 cache line fill operations due to load, RFO, 
L1D writeback or prefetch.

F0H 40H L2_TRANSACTIONS.WB Counts L2 writeback operations to the L3.

F0H 80H L2_TRANSACTIONS.ANY Counts all L2 cache operations.

F1H 02H L2_LINES_IN.S_STATE Counts the number of cache lines allocated in the L2 
cache in the S (shared) state. 

F1H 04H L2_LINES_IN.E_STATE Counts the number of cache lines allocated in the L2 
cache in the E (exclusive) state. 

F1H 07H L2_LINES_IN.ANY Counts the number of cache lines allocated in the L2 
cache. 

F2H 01H L2_LINES_OUT.DEMAND_CLEA
N

Counts L2 clean cache lines evicted by a demand 
request.

F2H 02H L2_LINES_OUT.DEMAND_DIRT
Y

Counts L2 dirty (modified) cache lines evicted by a 
demand request.

F2H 04H L2_LINES_OUT.PREFETCH_CL
EAN

Counts L2 clean cache line evicted by a prefetch 
request.

F2H 08H L2_LINES_OUT.PREFETCH_DIR
TY

Counts L2 modified cache line evicted by a prefetch 
request.

F2H 0FH L2_LINES_OUT.ANY Counts all L2 cache lines evicted for any reason.
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...

F4H 04H SQ_MISC.LRU_HINTS Counts number of Super Queue LRU hints sent to 
L3.

F4H 10H SQ_MISC.SPLIT_LOCK Counts the number of SQ lock splits across a cache 
line.

F6H 01H SQ_FULL_STALL_CYCLES Counts cycles the Super Queue is full.  Neither of 
the threads on this core will be able to access the 
uncore.

F7H 01H FP_ASSIST.ALL Counts the number of floating point operations 
executed that required micro-code assist 
intervention. Assists are required in the following 
cases: SSE instructions, (Denormal input when the 
DAZ flag is off or Underflow result when the FTZ 
flag is off): x87 instructions, (NaN or denormal are 
loaded to a register or used as input from memory, 
Division by 0 or Underflow output).

F7H 02H FP_ASSIST.OUTPUT Counts number of floating point micro-code assist 
when the output value (destination register) is 
invalid.

F7H 04H FP_ASSIST.INPUT Counts number of floating point micro-code assist 
when the input value (one of the source operands 
to an FP instruction) is invalid.

FDH 01H SIMD_INT_64.PACKED_MPY Counts number of SID integer 64 bit packed multiply 
operations.

FDH 02H SIMD_INT_64.PACKED_SHIFT Counts number of SID integer 64 bit packed shift 
operations.

FDH 04H SIMD_INT_64.PACK Counts number of SID integer 64 bit pack 
operations.

FDH 08H SIMD_INT_64.UNPACK Counts number of SID integer 64 bit unpack 
operations.

FDH 10H SIMD_INT_64.PACKED_LOGICA
L

Counts number of SID integer 64 bit logical 
operations.

FDH 20H SIMD_INT_64.PACKED_ARITH Counts number of SID integer 64 bit arithmetic 
operations.

FDH 40H SIMD_INT_64.SHUFFLE_MOVE Counts number of SID integer 64 bit shift or move 
operations.
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Table 19-17.  Non-Architectural Performance Events in Processors Based on Intel® Core™ Microarchitecture
Event 
Num

Umask
Value Event Name Definition

Description and
Comment

03H 02H LOAD_BLOCK.STA Loads blocked by a 
preceding store with 
unknown address 

This event indicates that loads are blocked by preceding 
stores. A load is blocked when there is a preceding store to 
an address that is not yet calculated. The number of events 
is greater or equal to the number of load operations that 
were blocked. 

If the load and the store are always to different addresses, 
check why the memory disambiguation mechanism is not 
working. To avoid such blocks, increase the distance 
between the store and the following load so that the store 
address is known at the time the load is dispatched.

03H 04H LOAD_BLOCK.STD Loads blocked by a 
preceding store with 
unknown data

This event indicates that loads are blocked by preceding 
stores. A load is blocked when there is a preceding store to 
the same address and the stored data value is not yet 
known. The number of events is greater or equal to the 
number of load operations that were blocked. 

To avoid such blocks, increase the distance between the 
store and the dependant load, so that the store data is 
known at the time the load is dispatched.

03H 08H LOAD_BLOCK.
OVERLAP_STORE

Loads that partially 
overlap an earlier 
store, or 4-Kbyte 
aliased with a previous 
store

This event indicates that loads are blocked due to a variety 
of reasons. Some of the triggers for this event are when a 
load is blocked by a preceding store, in one of the following:  

• Some of the loaded byte locations are written by the 
preceding store and some are not.  

• The load is from bytes written by the preceding store, 
the store is aligned to its size and either:

• The load’s data size is one or two bytes and it is not 
aligned to the store.  

• The load’s data size is of four or eight bytes and the load 
is misaligned. 

• The load is from bytes written by the preceding store, 
the store is misaligned and the load is not aligned on the 
beginning of the store.  

• The load is split over an eight byte boundary (excluding 
16-byte loads). 

• The load and store have the same offset relative to the 
beginning of different 4-KByte pages. This case is also 
called 4-KByte aliasing. 

• In all these cases the load is blocked until after the 
blocking store retires and the stored data is committed to 
the cache hierarchy.

03H 10H LOAD_BLOCK.
UNTIL_RETIRE

Loads blocked until 
retirement

This event indicates that load operations were blocked until 
retirement. The number of events is greater or equal to the 
number of load operations that were blocked. 
This includes mainly uncacheable loads and split loads (loads 
that cross the cache line boundary) but may include other 
cases where loads are blocked until retirement.
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03H 20H LOAD_BLOCK.L1D Loads blocked by the 
L1 data cache

This event indicates that loads are blocked due to one or 
more reasons.  Some triggers for this event are:  

• The number of L1 data cache misses exceeds the 
maximum number of outstanding misses supported by 
the processor. This includes misses generated as result of 
demand fetches, software prefetches or hardware 
prefetches.  

• Cache line split loads. 
• Partial reads, such as reads to un-cacheable memory, I/O 

instructions and more. 
• A locked load operation is in progress. The number of 

events is greater or equal to the number of load 
operations that were blocked.

04H 01H SB_DRAIN_
CYCLES

Cycles while stores are 
blocked due to store 
buffer drain

This event counts every cycle during which the store buffer 
is draining. This includes: 

• Serializing operations such as CPUID 
• Synchronizing operations such as XCHG 
• Interrupt acknowledgment 
• Other conditions, such as cache flushing

04H 02H STORE_BLOCK.
ORDER

Cycles while store is 
waiting for a 
preceding store to be 
globally observed

This event counts the total duration, in number of cycles, 
which stores are waiting for a preceding stored cache line to 
be observed by other cores. 
This situation happens as a result of the strong store 
ordering behavior, as defined in “Memory Ordering,” Chapter 
8, Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A. 

The stall may occur and be noticeable if there are many 
cases when a store either misses the L1 data cache or hits a 
cache line in the Shared state. If the store requires a bus 
transaction to read the cache line then the stall ends when 
snoop response for the bus transaction arrives.

04H 08H STORE_BLOCK.
SNOOP

A store is blocked due 
to a conflict with an 
external or internal 
snoop.

This event counts the number of cycles the store port was 
used for snooping the L1 data cache and a store was stalled 
by the snoop. The store is typically resubmitted one cycle 
later.

06H 00H SEGMENT_REG_
LOADS

Number of segment 
register loads

This event counts the number of segment register load 
operations. Instructions that load new values into segment 
registers cause a penalty. 

This event indicates performance issues in 16-bit code. If 
this event occurs frequently, it may be useful to calculate 
the number of instructions retired per segment register 
load. If the resulting calculation is low (on average a small 
number of instructions are executed between segment 
register loads), then the code’s segment register usage 
should be optimized. 
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As a result of branch misprediction, this event is speculative 
and may include segment register loads that do not actually 
occur. However, most segment register loads are internally 
serialized and such speculative effects are minimized.

07H 00H SSE_PRE_EXEC.
NTA

Streaming SIMD 
Extensions (SSE) 
Prefetch NTA 
instructions executed

This event counts the number of times the SSE instruction 
prefetchNTA is executed. 

This instruction prefetches the data to the L1 data cache.

07H 01H SSE_PRE_EXEC.L1 Streaming SIMD 
Extensions (SSE) 
PrefetchT0 
instructions executed

This event counts the number of times the SSE instruction 
prefetchT0 is executed. This instruction prefetches the data 
to the L1 data cache and L2 cache.

07H 02H SSE_PRE_EXEC.L2  Streaming SIMD 
Extensions (SSE) 
PrefetchT1 and 
PrefetchT2 
instructions executed

This event counts the number of times the SSE instructions 
prefetchT1 and prefetchT2 are executed. These 
instructions prefetch the data to the L2 cache.

07H 03H SSE_PRE_
EXEC.STORES

Streaming SIMD 
Extensions (SSE) 
Weakly-ordered store 
instructions executed

This event counts the number of times SSE non-temporal 
store instructions are executed.

08H 01H DTLB_MISSES.
ANY

Memory accesses that 
missed the DTLB

This event counts the number of Data Table Lookaside 
Buffer (DTLB) misses. The count includes misses detected 
as a result of speculative accesses. 

Typically a high count for this event indicates that the code 
accesses a large number of data pages.

08H 02H DTLB_MISSES
.MISS_LD

DTLB misses due to 
load operations

This event counts the number of Data Table Lookaside 
Buffer (DTLB) misses due to load operations. 

This count includes misses detected as a result of 
speculative accesses.

08H 04H DTLB_MISSES.L0_MISS_LD L0 DTLB misses due to 
load operations

This event counts the number of level 0 Data Table 
Lookaside Buffer (DTLB0) misses due to load operations. 

This count includes misses detected as a result of 
speculative accesses. Loads that miss that DTLB0 and hit 
the DTLB1 can incur two-cycle penalty.

08H 08H DTLB_MISSES.
MISS_ST

TLB misses due to 
store operations

This event counts the number of Data Table Lookaside 
Buffer (DTLB) misses due to store operations. 

This count includes misses detected as a result of 
speculative accesses. Address translation for store 
operations is performed in the DTLB1.

09H 01H MEMORY_
DISAMBIGUATION.RESET

Memory 
disambiguation reset 
cycles

This event counts the number of cycles during which 
memory disambiguation misprediction occurs. As a result 
the execution pipeline is cleaned and execution of the 
mispredicted load instruction and all succeeding instructions 
restarts. 
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This event occurs when the data address accessed by a load 
instruction, collides infrequently with preceding stores, but 
usually there is no collision. It happens rarely, and may have 
a penalty of about 20 cycles.

09H 02H MEMORY_DISAMBIGUATIO
N.SUCCESS

Number of loads 
successfully 
disambiguated.

This event counts the number of load operations that were 
successfully disambiguated. Loads are preceded by a store 
with an unknown address, but they are not blocked.

0CH 01H PAGE_WALKS
.COUNT

Number of page-walks 
executed

This event counts the number of page-walks executed due 
to either a DTLB or ITLB miss. 

The page walk duration, PAGE_WALKS.CYCLES, divided by 
number of page walks is the average duration of a page 
walk. The average can hint whether most of the page-walks 
are satisfied by the caches or cause an L2 cache miss.

0CH 02H PAGE_WALKS.
CYCLES

Duration of page-
walks in core cycles 

This event counts the duration of page-walks in core cycles. 
The paging mode in use typically affects the duration of 
page walks. 

Page walk duration divided by number of page walks is the 
average duration of page-walks. The average can hint at 
whether most of the page-walks are satisfied by the caches 
or cause an L2 cache miss.

10H 00H FP_COMP_OPS
_EXE

Floating point 
computational micro-
ops executed

This event counts the number of floating point 
computational micro-ops executed.

Use IA32_PMC0 only.

11H 00H FP_ASSIST Floating point assists This event counts the number of floating point operations 
executed that required micro-code assist intervention. 
Assists are required in the following cases:  

• Streaming SIMD Extensions (SSE) instructions: 

• Denormal input when the DAZ (Denormals Are Zeros) flag 
is off 

• Underflow result when the FTZ (Flush To Zero) flag is off 
• X87 instructions: 
• NaN or denormal are loaded to a register or used as input 

from memory 
• Division by 0  
• Underflow output
Use IA32_PMC1 only.

12H 00H MUL Multiply operations 
executed

This event counts the number of multiply operations 
executed. This includes integer as well as floating point 
multiply operations.

Use IA32_PMC1 only.

13H 00H DIV Divide operations 
executed

This event counts the number of divide operations 
executed. This includes integer divides, floating point 
divides and square-root operations executed.

Use IA32_PMC1 only.
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14H 00H CYCLES_DIV
_BUSY

Cycles the divider 
busy

This event counts the number of cycles the divider is busy 
executing divide or square root operations. The divide can 
be integer, X87 or Streaming SIMD Extensions (SSE). The 
square root operation can be either X87 or SSE.

Use IA32_PMC0 only.

18H 00H IDLE_DURING
_DIV

Cycles the divider is 
busy and all other 
execution units are 
idle.

This event counts the number of cycles the divider is busy 
(with a divide or a square root operation) and no other 
execution unit or load operation is in progress. 

Load operations are assumed to hit the L1 data cache. This 
event considers only micro-ops dispatched after the divider 
started operating.

Use IA32_PMC0 only.

19H 00H DELAYED_
BYPASS.FP

Delayed bypass to FP 
operation

This event counts the number of times floating point 
operations use data immediately after the data was 
generated by a non-floating point execution unit. Such cases 
result in one penalty cycle due to data bypass between the 
units.

Use IA32_PMC1 only.

19H 01H DELAYED_
BYPASS.SIMD

Delayed bypass to 
SIMD operation

This event counts the number of times SIMD operations use 
data immediately after the data was generated by a non-
SIMD execution unit. Such cases result in one penalty cycle 
due to data bypass between the units.

Use IA32_PMC1 only.

19H 02H DELAYED_
BYPASS.LOAD

Delayed bypass to 
load operation

This event counts the number of delayed bypass penalty 
cycles that a load operation incurred. 

When load operations use data immediately after the data 
was generated by an integer execution unit, they may 
(pending on certain dynamic internal conditions) incur one 
penalty cycle due to delayed data bypass between the units.

Use IA32_PMC1 only.

21H See 
Table 
18-2

L2_ADS.(Core) Cycles L2 address bus 
is in use

This event counts the number of cycles the L2 address bus 
is being used for accesses to the L2 cache or bus queue. It 
can count occurrences for this core or both cores.

23H See 
Table 
18-2

L2_DBUS_BUSY
_RD.(Core)

Cycles the L2 
transfers data to the 
core

This event counts the number of cycles during which the L2 
data bus is busy transferring data from the L2 cache to the 
core. It counts for all L1 cache misses (data and instruction) 
that hit the L2 cache. 

This event can count occurrences for this core or both cores.
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24H Com-
bined 
mask 
from 
Table 
18-2 
and 
Table 
18-4

L2_LINES_IN.
(Core, Prefetch)

L2 cache misses This event counts the number of cache lines allocated in the 
L2 cache. Cache lines are allocated in the L2 cache as a 
result of requests from the L1 data and instruction caches 
and the L2 hardware prefetchers to cache lines that are 
missing in the L2 cache. 

This event can count occurrences for this core or both cores. 
It can also count demand requests and L2 hardware 
prefetch requests together or separately.

25H See 
Table 
18-2

L2_M_LINES_IN.
(Core)

L2 cache line 
modifications

This event counts whenever a modified cache line is written 
back from the L1 data cache to the L2 cache. 

This event can count occurrences for this core or both cores.

26H See 
Table 
18-2 
and 
Table 
18-4

L2_LINES_OUT.
(Core, Prefetch)

L2 cache lines evicted This event counts the number of L2 cache lines evicted. 

This event can count occurrences for this core or both cores. 
It can also count evictions due to demand requests and L2 
hardware prefetch requests together or separately.

27H See 
Table 
18-2 
and 
Table 
18-4

L2_M_LINES_OUT.(Core, 
Prefetch)

Modified lines evicted 
from the L2 cache

This event counts the number of L2 modified cache lines 
evicted. These lines are written back to memory unless they 
also exist in a modified-state in one of the L1 data caches. 

This event can count occurrences for this core or both cores. 
It can also count evictions due to demand requests and L2 
hardware prefetch requests together or separately.

28H Com-
bined 
mask 
from 
Table 
18-2 
and 
Table 
18-5

L2_IFETCH.(Core, Cache 
Line State)

L2 cacheable 
instruction fetch 
requests

This event counts the number of instruction cache line 
requests from the IFU. It does not include fetch requests 
from uncacheable memory. It does not include ITLB miss 
accesses.  

This event can count occurrences for this core or both cores. 
It can also count accesses to cache lines at different MESI 
states.

29H Combin
ed mask 
from 
Table 
18-2, 
Table 
18-4, 
and 
Table 
18-5

L2_LD.(Core, Prefetch, 
Cache Line State)

L2 cache reads This event counts L2 cache read requests coming from the 
L1 data cache and L2 prefetchers.  

The event can count occurrences:

• for this core or both cores
• due to demand requests and L2 hardware prefetch 

requests together or separately
• of accesses to cache lines at different MESI states
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2AH See 
Table 
18-2 
and 
Table 
18-5

L2_ST.(Core, Cache Line 
State)

L2 store requests This event counts all store operations that miss the L1 data 
cache and request the data from the L2 cache.  

The event can count occurrences for this core or both cores. 
It can also count accesses to cache lines at different MESI 
states.

2BH See 
Table 
18-2 
and 
Table 
18-5

L2_LOCK.(Core, Cache Line 
State)

L2 locked accesses This event counts all locked accesses to cache lines that 
miss the L1 data cache. 

The event can count occurrences for this core or both cores. 
It can also count accesses to cache lines at different MESI 
states.

2EH See 
Table 
18-2, 
Table 
18-4, 
and 
Table 
18-5

L2_RQSTS.(Core, Prefetch, 
Cache Line State)

L2 cache requests This event counts all completed L2 cache requests. This 
includes L1 data cache reads, writes, and locked accesses, 
L1 data prefetch requests, instruction fetches, and all L2 
hardware prefetch requests.  

This event can count occurrences:

• for this core or both cores.
• due to demand requests and L2 hardware prefetch 

requests together, or separately
• of accesses to cache lines at different MESI states

2EH 41H L2_RQSTS.SELF.
DEMAND.I_STATE

L2 cache demand 
requests from this 
core that missed the 
L2

This event counts all completed L2 cache demand requests 
from this core that miss the L2 cache. This includes L1 data 
cache reads, writes, and locked accesses, L1 data prefetch 
requests, and instruction fetches. 

This is an architectural performance event.

2EH 4FH L2_RQSTS.SELF.
DEMAND.MESI

L2 cache demand 
requests from this 
core

This event counts all completed L2 cache demand requests 
from this core. This includes L1 data cache reads, writes, 
and locked accesses, L1 data prefetch requests, and 
instruction fetches. 

This is an architectural performance event.

30H See 
Table 
18-2, 
Table 
18-4, 
and 
Table 
18-5

L2_REJECT_BUSQ.(Core, 
Prefetch, Cache Line State)

Rejected L2 cache 
requests

This event indicates that a pending L2 cache request that 
requires a bus transaction is delayed from moving to the bus 
queue. Some of the reasons for this event are: 

• The bus queue is full. 
• The bus queue already holds an entry for a cache line in 

the same set. 
The number of events is greater or equal to the number of 
requests that were rejected. 

• for this core or both cores. 
• due to demand requests and L2 hardware prefetch 

requests together, or separately. 
• of accesses to cache lines at different MESI states.
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32H See 
Table 
18-2

L2_NO_REQ.(Core) Cycles no L2 cache 
requests are pending

This event counts the number of cycles that no L2 cache 
requests were pending from a core. When using the 
BOTH_CORE modifier, the event counts only if none of the 
cores have a pending request. The event counts also when 
one core is halted and the other is not halted. 

The event can count occurrences for this core or both cores.

3AH 00H EIST_TRANS Number of Enhanced 
Intel SpeedStep 
Technology (EIST) 
transitions

This event counts the number of transitions that include a 
frequency change, either with or without voltage change. 
This includes Enhanced Intel SpeedStep Technology (EIST) 
and TM2 transitions.

The event is incremented only while the counting core is in 
C0 state. Since transitions to higher-numbered CxE states 
and TM2 transitions include a frequency change or voltage 
transition, the event is incremented accordingly. 

3BH C0H THERMAL_TRIP Number of thermal 
trips

This event counts the number of thermal trips. A thermal 
trip occurs whenever the processor temperature exceeds 
the thermal trip threshold temperature.

Following a thermal trip, the processor automatically 
reduces frequency and voltage. The processor checks the 
temperature every millisecond and returns to normal when 
the temperature falls below the thermal trip threshold 
temperature. 

3CH 00H CPU_CLK_
UNHALTED.
CORE_P

Core cycles when core 
is not halted

This event counts the number of core cycles while the core 
is not in a halt state. The core enters the halt state when it 
is running the HLT instruction. This event is a component in 
many key event ratios.  

The core frequency may change due to transitions 
associated with Enhanced Intel SpeedStep Technology or 
TM2. For this reason, this event may have a changing ratio in 
regard to time. 

When the core frequency is constant, this event can give 
approximate elapsed time while the core not in halt state.

This is an architectural performance event. 

3CH 01H CPU_CLK_
UNHALTED.BUS

Bus cycles when core 
is not halted

This event counts the number of bus cycles while the core is 
not in the halt state. This event can give a measurement of 
the elapsed time while the core was not in the halt state. 
The core enters the halt state when it is running the HLT 
instruction. 

The event also has a constant ratio with 
CPU_CLK_UNHALTED.REF event, which is the maximum bus 
to processor frequency ratio.  

Non-halted bus cycles are a component in many key event 
ratios.
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3CH 02H CPU_CLK_
UNHALTED.NO
_OTHER

Bus cycles when core 
is active and the other 
is halted

This event counts the number of bus cycles during which 
the core remains non-halted and the other core on the 
processor is halted. 

This event can be used to determine the amount of 
parallelism exploited by an application or a system. Divide 
this event count by the bus frequency to determine the 
amount of time that only one core was in use.

40H See 
Table 
18-5 

L1D_CACHE_LD.
(Cache Line State)

L1 cacheable data 
reads

This event counts the number of data reads from cacheable 
memory. Locked reads are not counted.

41H See 
Table 
18-5

L1D_CACHE_ST.
(Cache Line State)

L1 cacheable data 
writes

This event counts the number of data writes to cacheable 
memory. Locked writes are not counted.

42H See 
Table 
18-5

L1D_CACHE_
LOCK.(Cache Line State)

L1 data cacheable 
locked reads

This event counts the number of locked data reads from 
cacheable memory.

42H 10H L1D_CACHE_
LOCK_DURATION

Duration of L1 data 
cacheable locked 
operation

This event counts the number of cycles during which any 
cache line is locked by any locking instruction. 

Locking happens at retirement and therefore the event does 
not occur for instructions that are speculatively executed. 
Locking duration is shorter than locked instruction execution 
duration.

43H 01H L1D_ALL_REF All references to the 
L1 data cache

This event counts all references to the L1 data cache, 
including all loads and stores with any memory types. 

The event counts memory accesses only when they are 
actually performed. For example, a load blocked by unknown 
store address and later performed is only counted once. 

The event includes non-cacheable accesses, such as I/O 
accesses.

43H 02H L1D_ALL_
CACHE_REF

L1 Data cacheable 
reads and writes

This event counts the number of data reads and writes from 
cacheable memory, including locked operations. 

This event is a sum of:

• L1D_CACHE_LD.MESI
• L1D_CACHE_ST.MESI
• L1D_CACHE_LOCK.MESI

45H 0FH L1D_REPL Cache lines allocated 
in the L1 data cache

This event counts the number of lines brought into the L1 
data cache.

46H 00H L1D_M_REPL Modified cache lines 
allocated in the L1 
data cache

This event counts the number of modified lines brought into 
the L1 data cache. 

47H 00H L1D_M_EVICT Modified cache lines 
evicted from the L1 
data cache

This event counts the number of modified lines evicted from 
the L1 data cache, whether due to replacement or by snoop 
HITM intervention.
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48H 00H L1D_PEND_
MISS

Total number of 
outstanding L1 data 
cache misses at any 
cycle

This event counts the number of outstanding L1 data cache 
misses at any cycle. An L1 data cache miss is outstanding 
from the cycle on which the miss is determined until the 
first chunk of data is available. This event counts: 

• all cacheable demand requests
• L1 data cache hardware prefetch requests
• requests to write through memory
• requests to write combine memory 
Uncacheable requests are not counted. The count of this 
event divided by the number of L1 data cache misses, 
L1D_REPL, is the average duration in core cycles of an L1 
data cache miss.

49H 01H L1D_SPLIT.LOADS Cache line split loads 
from the L1 data 
cache

This event counts the number of load operations that span 
two cache lines. Such load operations are also called split 
loads. Split load operations are executed at retirement. 

49H 02H L1D_SPLIT.
STORES

Cache line split stores 
to the L1 data cache

This event counts the number of store operations that span 
two cache lines.

4BH 00H SSE_PRE_
MISS.NTA

Streaming SIMD 
Extensions (SSE) 
Prefetch NTA 
instructions missing all 
cache levels

This event counts the number of times the SSE instructions 
prefetchNTA were executed and missed all cache levels. 

Due to speculation an executed instruction might not retire. 
This instruction prefetches the data to the L1 data cache.

4BH 01H SSE_PRE_
MISS.L1

Streaming SIMD 
Extensions (SSE) 
PrefetchT0 
instructions missing all 
cache levels

This event counts the number of times the SSE instructions 
prefetchT0 were executed and missed all cache levels. 

Due to speculation executed instruction might not retire. 
The prefetchT0 instruction prefetches data to the L2 cache 
and L1 data cache.

4BH 02H SSE_PRE_
MISS.L2

Streaming SIMD 
Extensions (SSE) 
PrefetchT1 and 
PrefetchT2 
instructions missing all 
cache levels

This event counts the number of times the SSE instructions 
prefetchT1 and prefetchT2 were executed and missed all 
cache levels. 

Due to speculation, an executed instruction might not retire. 
The prefetchT1 and PrefetchNT2 instructions prefetch data 
to the L2 cache.

4CH 00H LOAD_HIT_PRE Load operations 
conflicting with a 
software prefetch to 
the same address

This event counts load operations sent to the L1 data cache 
while a previous Streaming SIMD Extensions (SSE) prefetch 
instruction to the same cache line has started prefetching 
but has not yet finished.

4EH 10H L1D_PREFETCH.
REQUESTS

L1 data cache prefetch 
requests

This event counts the number of times the L1 data cache 
requested to prefetch a data cache line. Requests can be 
rejected when the L2 cache is busy and resubmitted later or 
lost. 

All requests are counted, including those that are rejected.
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60H See 
Table 
18-2 
and 
Table 
18-3

BUS_REQUEST_
OUTSTANDING.
(Core and Bus Agents)

Outstanding cacheable 
data read bus 
requests duration

This event counts the number of pending full cache line read 
transactions on the bus occurring in each cycle. A read 
transaction is pending from the cycle it is sent on the bus 
until the full cache line is received by the processor.

The event counts only full-line cacheable read requests from 
either the L1 data cache or the L2 prefetchers. It does not 
count Read for Ownership transactions, instruction byte 
fetch transactions, or any other bus transaction. 

61H See 
Table 
18-3.

BUS_BNR_DRV.
(Bus Agents)

Number of Bus Not 
Ready signals 
asserted

This event counts the number of Bus Not Ready (BNR) 
signals that the processor asserts on the bus to suspend 
additional bus requests by other bus agents. 

A bus agent asserts the BNR signal when the number of 
data and snoop transactions is close to the maximum that 
the bus can handle. To obtain the number of bus cycles 
during which the BNR signal is asserted, multiply the event 
count by two. 

While this signal is asserted, new transactions cannot be 
submitted on the bus. As a result, transaction latency may 
have higher impact on program performance.

62H See 
Table 
18-3

BUS_DRDY_
CLOCKS.(Bus Agents)

Bus cycles when data 
is sent on the bus

This event counts the number of bus cycles during which 
the DRDY (Data Ready) signal is asserted on the bus. The 
DRDY signal is asserted when data is sent on the bus. With 
the 'THIS_AGENT' mask this event counts the number of bus 
cycles during which this agent (the processor) writes data 
on the bus back to memory or to other bus agents. This 
includes all explicit and implicit data writebacks, as well as 
partial writes. 

With the 'ALL_AGENTS' mask, this event counts the number 
of bus cycles during which any bus agent sends data on the 
bus. This includes all data reads and writes on the bus.

63H See 
Table 
18-2 
and 
Table 
18-3

BUS_LOCK_
CLOCKS.(Core and Bus 
Agents)

Bus cycles when a 
LOCK signal asserted

This event counts the number of bus cycles, during which 
the LOCK signal is asserted on the bus. A LOCK signal is 
asserted when there is a locked memory access, due to: 

• uncacheable memory 
• locked operation that spans two cache lines 
• page-walk from an uncacheable page table
Bus locks have a very high performance penalty and it is 
highly recommended to avoid such accesses.

64H See 
Table 
18-2

BUS_DATA_
RCV.(Core)

Bus cycles while 
processor receives 
data

This event counts the number of bus cycles during which 
the processor is busy receiving data. 
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65H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_BRD.(Core 
and Bus Agents)

Burst read bus 
transactions

This event counts the number of burst read transactions 
including: 

• L1 data cache read misses (and L1 data cache hardware 
prefetches) 

• L2 hardware prefetches by the DPL and L2 streamer 
• IFU read misses of cacheable lines. 
It does not include RFO transactions.

66H See 
Table 
18-2 
and 
Table 
18-3.

BUS_TRANS_RFO.(Core 
and Bus Agents)

RFO bus transactions This event counts the number of Read For Ownership (RFO) 
bus transactions, due to store operations that miss the L1 
data cache and the L2 cache. It also counts RFO bus 
transactions due to locked operations.

67H See 
Table 
18-2 
and 
Table 
18-3.

BUS_TRANS_WB.
(Core and Bus Agents)

Explicit writeback bus 
transactions

This event counts all explicit writeback bus transactions due 
to dirty line evictions. It does not count implicit writebacks 
due to invalidation by a snoop request.

68H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_
IFETCH.(Core and Bus 
Agents)

Instruction-fetch bus 
transactions

This event counts all instruction fetch full cache line bus 
transactions.

69H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_
INVAL.(Core and Bus 
Agents)

Invalidate bus 
transactions

This event counts all invalidate transactions. Invalidate 
transactions are generated when: 

• A store operation hits a shared line in the L2 cache. 
• A full cache line write misses the L2 cache or hits a 

shared line in the L2 cache.

6AH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_
PWR.(Core and Bus Agents)

Partial write bus 
transaction

This event counts partial write bus transactions.

6BH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS
_P.(Core and Bus Agents)

Partial bus 
transactions

This event counts all (read and write) partial bus 
transactions.
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6CH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_IO.(Core and 
Bus Agents)

IO bus transactions This event counts the number of completed I/O bus 
transactions as a result of IN and OUT instructions. The 
count does not include memory mapped IO.

6DH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_
DEF.(Core and Bus Agents)

Deferred bus 
transactions

This event counts the number of deferred transactions. 

6EH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_
BURST.(Core and Bus 
Agents)

Burst (full cache-line) 
bus transactions

This event counts burst (full cache line) transactions 
including: 

• Burst reads 
• RFOs 
• Explicit writebacks 
• Write combine lines

6FH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_
MEM.(Core and Bus Agents)

Memory bus 
transactions

This event counts all memory bus transactions including: 

• Burst transactions
• Partial reads and writes - invalidate transactions 
The BUS_TRANS_MEM count is the sum of 
BUS_TRANS_BURST, BUS_TRANS_P and BUS_TRANS_IVAL.

70H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_
ANY.(Core and Bus Agents)

All bus transactions This event counts all bus transactions. This includes: 

• Memory transactions 
• IO transactions (non memory-mapped) 
• Deferred transaction completion 
• Other less frequent transactions, such as interrupts

77H See 
Table 
18-2 
and 
Table 
18-6

EXT_SNOOP.
(Bus Agents, Snoop 
Response)

External snoops This event counts the snoop responses to bus transactions. 
Responses can be counted separately by type and by bus 
agent. 

With the 'THIS_AGENT' mask, the event counts snoop 
responses from this processor to bus transactions sent by 
this processor. With the 'ALL_AGENTS' mask the event 
counts all snoop responses seen on the bus.

78H See 
Table 
18-2 
and 
Table 
18-7

CMP_SNOOP.(Core, Snoop 
Type)

L1 data cache 
snooped by other core

This event counts the number of times the L1 data cache is 
snooped for a cache line that is needed by the other core in 
the same processor. The cache line is either missing in the 
L1 instruction or data caches of the other core, or is 
available for reading only and the other core wishes to write 
the cache line. 
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The snoop operation may change the cache line state. If the 
other core issued a read request that hit this core in E state, 
typically the state changes to S state in this core. If the 
other core issued a read for ownership request (due a write 
miss or hit to S state) that hits this core's cache line in E or S 
state, this typically results in invalidation of the cache line in 
this core.  If the snoop hits a line in M state, the state is 
changed at a later opportunity. 

These snoops are performed through the L1 data cache 
store port. Therefore, frequent snoops may conflict with 
extensive stores to the L1 data cache, which may increase 
store latency and impact performance.

7AH See 
Table 
18-3 

BUS_HIT_DRV.

(Bus Agents)

HIT signal asserted This event counts the number of bus cycles during which 
the processor drives the HIT# pin to signal HIT snoop 
response. 

7BH See 
Table 
18-3

BUS_HITM_DRV.

(Bus Agents)

HITM signal asserted This event counts the number of bus cycles during which 
the processor drives the HITM# pin to signal HITM snoop 
response.

7DH See 
Table 
18-2

BUSQ_EMPTY.

(Core)

Bus queue empty This event counts the number of cycles during which the 
core did not have any pending transactions in the bus queue. 
It also counts when the core is halted and the other core is 
not halted. 

This event can count occurrences for this core or both cores.

7EH See 
Table 
18-2 
and 
Table 
18-3

SNOOP_STALL_
DRV.(Core and Bus Agents)

Bus stalled for snoops This event counts the number of times that the bus snoop 
stall signal is asserted. To obtain the number of bus cycles 
during which snoops on the bus are prohibited, multiply the 
event count by two. 

During the snoop stall cycles, no new bus transactions 
requiring a snoop response can be initiated on the bus. A 
bus agent asserts a snoop stall signal if it cannot response 
to a snoop request within three bus cycles.

7FH See 
Table 
18-2 

BUS_IO_WAIT.
(Core)

IO requests waiting in 
the bus queue

This event counts the number of core cycles during which IO 
requests wait in the bus queue. With the SELF modifier this 
event counts IO requests per core.

With the BOTH_CORE modifier, this event increments by one 
for any cycle for which there is a request from either core.

80H 00H L1I_READS Instruction fetches This event counts all instruction fetches, including 
uncacheable fetches that bypass the Instruction Fetch Unit 
(IFU).

81H 00H L1I_MISSES Instruction Fetch Unit 
misses

This event counts all instruction fetches that miss the 
Instruction Fetch Unit (IFU) or produce memory requests. 
This includes uncacheable fetches. 

An instruction fetch miss is counted only once and not once 
for every cycle it is outstanding.

82H 02H ITLB.SMALL_MISS ITLB small page 
misses

This event counts the number of instruction fetches from 
small pages that miss the ITLB.
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82H 10H ITLB.LARGE_MISS ITLB large page misses This event counts the number of instruction fetches from 
large pages that miss the ITLB.

82H 40H ITLB.FLUSH ITLB flushes This event counts the number of ITLB flushes. This usually 
happens upon CR3 or CR0 writes, which are executed by 
the operating system during process switches.

82H 12H ITLB.MISSES ITLB misses This event counts the number of instruction fetches from 
either small or large pages that miss the ITLB.

83H 02H INST_QUEUE.FULL Cycles during which 
the instruction queue 
is full

This event counts the number of cycles during which the 
instruction queue is full. In this situation, the core front-end 
stops fetching more instructions. This is an indication of 
very long stalls in the back-end pipeline stages.

86H 00H CYCLES_L1I_
MEM_STALLED

Cycles during which 
instruction fetches 
stalled

This event counts the number of cycles for which an 
instruction fetch stalls, including stalls due to any of the 
following reasons: 

• instruction Fetch Unit cache misses 
• instruction TLB misses 
• instruction TLB faults

87H 00H ILD_STALL Instruction Length 
Decoder stall cycles 
due to a length 
changing prefix

This event counts the number of cycles during which the 
instruction length decoder uses the slow length decoder. 
Usually, instruction length decoding is done in one cycle. 
When the slow decoder is used, instruction decoding 
requires 6 cycles. 

The slow decoder is used in the following cases: 

• operand override prefix (66H) preceding an instruction 
with immediate data 

• address override prefix (67H) preceding an instruction 
with a modr/m in real, big real, 16-bit protected or 32-bit 
protected modes

To avoid instruction length decoding stalls, generate code 
using imm8 or imm32 values instead of imm16 values. If 
you must use an imm16 value, store the value in a register 
using “mov reg, imm32” and use the register format of the 
instruction.

88H 00H BR_INST_EXEC Branch instructions 
executed

This event counts all executed branches (not necessarily 
retired). This includes only instructions and not micro-op 
branches. 

Frequent branching is not necessarily a major performance 
issue. However frequent branch mispredictions may be a 
problem.

89H 00H BR_MISSP_EXEC Mispredicted branch 
instructions executed

This event counts the number of mispredicted branch 
instructions that were executed.

8AH 00H BR_BAC_
MISSP_EXEC

Branch instructions 
mispredicted at 
decoding

This event counts the number of branch instructions that 
were mispredicted at decoding.

8BH 00H BR_CND_EXEC Conditional branch 
instructions executed.

This event counts the number of conditional branch 
instructions executed, but not necessarily retired. 
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8CH 00H BR_CND_
MISSP_EXEC

Mispredicted 
conditional branch 
instructions executed

This event counts the number of mispredicted conditional 
branch instructions that were executed.

8DH 00H BR_IND_EXEC Indirect branch 
instructions executed

This event counts the number of indirect branch instructions 
that were executed.

8EH 00H BR_IND_MISSP
_EXEC

Mispredicted indirect 
branch instructions 
executed

This event counts the number of mispredicted indirect 
branch instructions that were executed.

8FH 00H BR_RET_EXEC RET instructions 
executed

This event counts the number of RET instructions that were 
executed.

90H 00H BR_RET_
MISSP_EXEC

Mispredicted RET 
instructions executed

This event counts the number of mispredicted RET 
instructions that were executed.

91H 00H BR_RET_BAC_
MISSP_EXEC

RET instructions 
executed mispredicted 
at decoding

This event counts the number of RET instructions that were 
executed and were mispredicted at decoding.

92H 00H BR_CALL_EXEC CALL instructions 
executed

This event counts the number of CALL instructions 
executed.

93H 00H BR_CALL_
MISSP_EXEC

Mispredicted CALL 
instructions executed

This event counts the number of mispredicted CALL 
instructions that were executed.

94H 00H BR_IND_CALL_
EXEC

Indirect CALL 
instructions executed

This event counts the number of indirect CALL instructions 
that were executed.

97H 00H BR_TKN_
BUBBLE_1

Branch predicted 
taken with bubble 1

The events BR_TKN_BUBBLE_1 and BR_TKN_BUBBLE_2 
together count the number of times a taken branch 
prediction incurred a one-cycle penalty. The penalty incurs 
when: 

• Too many taken branches are placed together. To avoid 
this, unroll loops and add a non-taken branch in the 
middle of the taken sequence. 

• The branch target is unaligned. To avoid this, align the 
branch target.

98H 00H BR_TKN_
BUBBLE_2

Branch predicted 
taken with bubble 2

The events BR_TKN_BUBBLE_1 and BR_TKN_BUBBLE_2 
together count the number of times a taken branch 
prediction incurred a one-cycle penalty. The penalty incurs 
when: 

• Too many taken branches are placed together. To avoid 
this, unroll loops and add a non-taken branch in the 
middle of the taken sequence. 

• The branch target is unaligned. To avoid this, align the 
branch target.

A0H 00H RS_UOPS_
DISPATCHED

Micro-ops dispatched 
for execution

This event counts the number of micro-ops dispatched for 
execution. Up to six micro-ops can be dispatched in each 
cycle. 

A1H 01H RS_UOPS_
DISPATCHED.PORT0

Cycles micro-ops 
dispatched for 
execution on port 0

This event counts the number of cycles for which micro-ops 
dispatched for execution. Each cycle, at most one micro-op 
can be dispatched on the port. Issue Ports are described in 
Intel® 64 and IA-32 Architectures Optimization Reference 
Manual. Use IA32_PMC0 only.
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A1H 02H RS_UOPS_
DISPATCHED.PORT1

Cycles micro-ops 
dispatched for 
execution on port 1

This event counts the number of cycles for which micro-ops 
dispatched for execution. Each cycle, at most one micro-op 
can be dispatched on the port. Use IA32_PMC0 only.

A1H 04H RS_UOPS_
DISPATCHED.PORT2

Cycles micro-ops 
dispatched for 
execution on port 2

This event counts the number of cycles for which micro-ops 
dispatched for execution. Each cycle, at most one micro-op 
can be dispatched on the port. Use IA32_PMC0 only.

A1H 08H RS_UOPS_
DISPATCHED.PORT3

Cycles micro-ops 
dispatched for 
execution on port 3

This event counts the number of cycles for which micro-ops 
dispatched for execution. Each cycle, at most one micro-op 
can be dispatched on the port. Use IA32_PMC0 only.

A1H 10H RS_UOPS_
DISPATCHED.PORT4

Cycles micro-ops 
dispatched for 
execution on port 4

This event counts the number of cycles for which micro-ops 
dispatched for execution. Each cycle, at most one micro-op 
can be dispatched on the port. Use IA32_PMC0 only.

A1H 20H RS_UOPS_
DISPATCHED.PORT5

Cycles micro-ops 
dispatched for 
execution on port 5

This event counts the number of cycles for which micro-ops 
dispatched for execution. Each cycle, at most one micro-op 
can be dispatched on the port. Use IA32_PMC0 only.

AAH 01H MACRO_INSTS.
DECODED

Instructions decoded This event counts the number of instructions decoded (but 
not necessarily executed or retired). 

AAH 08H MACRO_INSTS.
CISC_DECODED

CISC Instructions 
decoded

This event counts the number of complex instructions 
decoded. Complex instructions usually have more than four 
micro-ops. Only one complex instruction can be decoded at a 
time. 

ABH 01H ESP.SYNCH ESP register content 
synchron-ization

This event counts the number of times that the ESP register 
is explicitly used in the address expression of a load or store 
operation, after it is implicitly used, for example by a push or 
a pop instruction.

ESP synch micro-op uses resources from the rename pipe-
stage and up to retirement.  The expected ratio of this 
event divided by the number of ESP implicit changes is 0,2. 
If the ratio is higher, consider rearranging your code to avoid 
ESP synchronization events.

ABH 02H ESP.ADDITIONS ESP register automatic 
additions

This event counts the number of ESP additions performed 
automatically by the decoder. A high count of this event is 
good, since each automatic addition performed by the 
decoder saves a micro-op from the execution units. 

To maximize the number of ESP additions performed 
automatically by the decoder, choose instructions that 
implicitly use the ESP, such as PUSH, POP, CALL, and RET 
instructions whenever possible.

B0H 00H SIMD_UOPS_EXEC SIMD micro-ops 
executed (excluding 
stores)

This event counts all the SIMD micro-ops executed. It does 
not count MOVQ and MOVD stores from register to memory.

B1H 00H SIMD_SAT_UOP_
EXEC

SIMD saturated 
arithmetic micro-ops 
executed

This event counts the number of SIMD saturated arithmetic 
micro-ops executed.

B3H 01H SIMD_UOP_
TYPE_EXEC.MUL

SIMD packed multiply 
micro-ops executed

This event counts the number of SIMD packed multiply 
micro-ops executed.
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B3H 02H SIMD_UOP_TYPE_EXEC.SHI
FT

SIMD packed shift 
micro-ops executed

This event counts the number of SIMD packed shift micro-
ops executed.

B3H 04H SIMD_UOP_TYPE_EXEC.PA
CK

SIMD pack micro-ops 
executed

This event counts the number of SIMD pack micro-ops 
executed.

B3H 08H SIMD_UOP_TYPE_EXEC.UN
PACK

SIMD unpack micro-
ops executed

This event counts the number of SIMD unpack micro-ops 
executed.

B3H 10H SIMD_UOP_TYPE_EXEC.LO
GICAL

SIMD packed logical 
micro-ops executed

This event counts the number of SIMD packed logical micro-
ops executed.

B3H 20H SIMD_UOP_TYPE_EXEC.ARI
THMETIC

SIMD packed 
arithmetic micro-ops 
executed

This event counts the number of SIMD packed arithmetic 
micro-ops executed.

C0H 00H INST_RETIRED.
ANY_P

Instructions retired This event counts the number of instructions that retire 
execution. For instructions that consist of multiple micro-
ops, this event counts the retirement of the last micro-op of 
the instruction. The counter continue counting during 
hardware interrupts, traps, and inside interrupt handlers. 

INST_RETIRED.ANY_P is an architectural performance 
event. 

C0H 01H INST_RETIRED.
LOADS

Instructions retired, 
which contain a load

This event counts the number of instructions retired that 
contain a load operation.

C0H 02H INST_RETIRED.
STORES

Instructions retired, 
which contain a store

This event counts the number of instructions retired that 
contain a store operation.

C0H 04H INST_RETIRED.
OTHER

Instructions retired, 
with no load or store 
operation

This event counts the number of instructions retired that do 
not contain a load or a store operation.

C1H 01H X87_OPS_
RETIRED.FXCH

FXCH instructions 
retired

This event counts the number of FXCH instructions retired. 
Modern compilers generate more efficient code and are less 
likely to use this instruction. If you obtain a high count for 
this event consider recompiling the code.

C1H FEH X87_OPS_
RETIRED.ANY

Retired floating-point 
computational 
operations (precise 
event)

This event counts the number of floating-point 
computational operations retired. It counts: 

• floating point computational operations executed by the 
assist handler 

• sub-operations of complex floating-point instructions like 
transcendental instructions 

This event does not count: 

• floating-point computational operations that cause traps 
or assists. 

• floating-point loads and stores. 
When this event is captured with the precise event 
mechanism, the collected samples contain the address of 
the instruction that was executed immediately after the 
instruction that caused the event.
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C2H 01H UOPS_RETIRED.
LD_IND_BR

Fused load+op or 
load+indirect branch 
retired

This event counts the number of retired micro-ops that 
fused a load with another operation. This includes: 

• Fusion of a load and an arithmetic operation, such as with 
the following instruction: ADD EAX, [EBX] where the 
content of the memory location specified by EBX register 
is loaded, added to EXA register, and the result is stored 
in EAX.

• Fusion of a load and a branch in an indirect branch 
operation, such as with the following instructions:

• JMP [RDI+200] 
• RET 
• Fusion decreases the number of micro-ops in the 

processor pipeline. A high value for this event count 
indicates that the code is using the processor resources 
effectively.

C2H 02H UOPS_RETIRED.
STD_STA

Fused store address + 
data retired

This event counts the number of store address calculations 
that are fused with store data emission into one micro-op. 
Traditionally, each store operation required two micro-ops. 

This event counts fusion of retired micro-ops only. Fusion 
decreases the number of micro-ops in the processor 
pipeline. A high value for this event count indicates that the 
code is using the processor resources effectively.

C2H 04H UOPS_RETIRED.
MACRO_FUSION

Retired instruction 
pairs fused into one 
micro-op

This event counts the number of times CMP or TEST 
instructions were fused with a conditional branch 
instruction into one micro-op. It counts fusion by retired 
micro-ops only. 

Fusion decreases the number of micro-ops in the processor 
pipeline. A high value for this event count indicates that the 
code uses the processor resources more effectively.

C2H 07H UOPS_RETIRED.
FUSED

Fused micro-ops 
retired

This event counts the total number of retired fused micro-
ops. The counts include the following fusion types: 

• Fusion of load operation with an arithmetic operation or 
with an indirect branch (counted by event 
UOPS_RETIRED.LD_IND_BR) 

• Fusion of store address and data (counted by event 
UOPS_RETIRED.STD_STA) 

• Fusion of CMP or TEST instruction with a conditional 
branch instruction (counted by event 
UOPS_RETIRED.MACRO_FUSION) 

Fusion decreases the number of micro-ops in the processor 
pipeline. A high value for this event count indicates that the 
code is using the processor resources effectively.

C2H 08H UOPS_RETIRED.
NON_FUSED

Non-fused micro-ops 
retired

This event counts the number of micro-ops retired that 
were not fused.

C2H 0FH UOPS_RETIRED.
ANY

Micro-ops retired This event counts the number of micro-ops retired. The 
processor decodes complex macro instructions into a 
sequence of simpler micro-ops. Most instructions are 
composed of one or two micro-ops. 
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Some instructions are decoded into longer sequences such 
as repeat instructions, floating point transcendental 
instructions, and assists. In some cases micro-op sequences 
are fused or whole instructions are fused into one micro-op.

See other UOPS_RETIRED events for differentiating retired 
fused and non-fused micro-ops. 

C3H 01H MACHINE_
NUKES.SMC

Self-Modifying Code 
detected

This event counts the number of times that a program 
writes to a code section. Self-modifying code causes a sever 
penalty in all Intel 64 and IA-32 processors.

C3H 04H MACHINE_NUKES.MEM_OR
DER

Execution pipeline 
restart due to memory 
ordering conflict or 
memory 
disambiguation 
misprediction

This event counts the number of times the pipeline is 
restarted due to either multi-threaded memory ordering 
conflicts or memory disambiguation misprediction.

A multi-threaded memory ordering conflict occurs when a 
store, which is executed in another core, hits a load that is 
executed out of order in this core but not yet retired. As a 
result, the load needs to be restarted to satisfy the memory 
ordering model. 

See Chapter 8, “Multiple-Processor Management” in the 
Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A.

To count memory disambiguation mispredictions, use the 
event MEMORY_DISAMBIGUATION.RESET.

C4H 00H BR_INST_RETIRED.ANY Retired branch 
instructions

This event counts the number of branch instructions retired. 
This is an architectural performance event.

C4H 01H BR_INST_RETIRED.PRED_N
OT_
TAKEN

Retired branch 
instructions that were 
predicted not-taken

This event counts the number of branch instructions retired 
that were correctly predicted to be not-taken.

C4H 02H BR_INST_RETIRED.MISPRE
D_NOT_
TAKEN

Retired branch 
instructions that were 
mispredicted not-
taken

This event counts the number of branch instructions retired 
that were mispredicted and not-taken.

C4H 04H BR_INST_RETIRED.PRED_T
AKEN

Retired branch 
instructions that were 
predicted taken

This event counts the number of branch instructions retired 
that were correctly predicted to be taken.

C4H 08H BR_INST_RETIRED.MISPRE
D_TAKEN

Retired branch 
instructions that were 
mispredicted taken

This event counts the number of branch instructions retired 
that were mispredicted and taken.

C4H 0CH BR_INST_RETIRED.TAKEN Retired taken branch 
instructions

This event counts the number of branches retired that were 
taken.

C5H 00H BR_INST_RETIRED.MISPRE
D

Retired mispredicted 
branch instructions. 
(precise event)

This event counts the number of retired branch instructions 
that were mispredicted by the processor. A branch 
misprediction occurs when the processor predicts that the 
branch would be taken, but it is not, or vice-versa. 

This is an architectural performance event.

C6H 01H CYCLES_INT_
MASKED

Cycles during which 
interrupts are disabled

This event counts the number of cycles during which 
interrupts are disabled.
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C6H 02H CYCLES_INT_
PENDING_AND
_MASKED

Cycles during which 
interrupts are pending 
and disabled

This event counts the number of cycles during which there 
are pending interrupts but interrupts are disabled.

C7H 01H SIMD_INST_
RETIRED.PACKED_SINGLE

Retired SSE packed-
single instructions

This event counts the number of SSE packed-single 
instructions retired.

C7H 02H SIMD_INST_
RETIRED.SCALAR_SINGLE

Retired SSE scalar-
single instructions

This event counts the number of SSE scalar-single 
instructions retired.

C7H 04H SIMD_INST_
RETIRED.PACKED_DOUBLE

Retired SSE2 packed-
double instructions

This event counts the number of SSE2 packed-double 
instructions retired. 

C7H 08H SIMD_INST_
RETIRED.SCALAR_DOUBLE

Retired SSE2 scalar-
double instructions

This event counts the number of SSE2 scalar-double 
instructions retired.

C7H 10H SIMD_INST_
RETIRED.VECTOR

Retired SSE2 vector 
integer instructions

This event counts the number of SSE2 vector integer 
instructions retired.

C7H 1FH SIMD_INST_
RETIRED.ANY

Retired Streaming 
SIMD instructions  
(precise event)

This event counts the overall number of retired SIMD 
instructions that use XMM registers. To count each type of 
SIMD instruction separately, use the following events:

• SIMD_INST_RETIRED.PACKED_SINGLE
• SIMD_INST_RETIRED.SCALAR_SINGLE
• SIMD_INST_RETIRED.PACKED_DOUBLE
• SIMD_INST_RETIRED.SCALAR_DOUBLE
• and SIMD_INST_RETIRED.VECTOR
When this event is captured with the precise event 
mechanism, the collected samples contain the address of 
the instruction that was executed immediately after the 
instruction that caused the event.

C8H 00H HW_INT_RCV Hardware interrupts 
received

This event counts the number of hardware interrupts 
received by the processor.

C9H 00H ITLB_MISS_
RETIRED

Retired instructions 
that missed the ITLB

This event counts the number of retired instructions that 
missed the ITLB when they were fetched.

CAH 01H SIMD_COMP_
INST_RETIRED.
PACKED_SINGLE

Retired computational 
SSE packed-single 
instructions

This event counts the number of computational SSE packed-
single instructions retired. Computational instructions 
perform arithmetic computations (for example: add, multiply 
and divide).

Instructions that perform load and store operations or 
logical operations, like XOR, OR, and AND are not counted by 
this event.

CAH 02H SIMD_COMP_
INST_RETIRED.
SCALAR_SINGLE

Retired computational 
SSE scalar-single 
instructions

This event counts the number of computational SSE scalar-
single instructions retired. Computational instructions 
perform arithmetic computations (for example: add, multiply 
and divide). 

Instructions that perform load and store operations or 
logical operations, like XOR, OR, and AND are not counted by 
this event.
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CAH 04H SIMD_COMP_
INST_RETIRED.
PACKED_DOUBLE

Retired computational 
SSE2 packed-double 
instructions

This event counts the number of computational SSE2 
packed-double instructions retired. Computational 
instructions perform arithmetic computations (for example: 
add, multiply and divide). 

Instructions that perform load and store operations or 
logical operations, like XOR, OR, and AND are not counted by 
this event.

CAH 08H SIMD_COMP_INST_RETIRE
D.SCALAR_DOUBLE

Retired computational 
SSE2 scalar-double 
instructions

This event counts the number of computational SSE2 scalar-
double instructions retired. Computational instructions 
perform arithmetic computations (for example: add, multiply 
and divide). 

Instructions that perform load and store operations or 
logical operations, like XOR, OR, and AND are not counted by 
this event.

CBH 01H MEM_LOAD_
RETIRED.L1D
_MISS

Retired loads that miss 
the L1 data cache 
(precise event)

This event counts the number of retired load operations 
that missed the L1 data cache. This includes loads from 
cache lines that are currently being fetched, due to a 
previous L1 data cache miss to the same cache line.  

This event counts loads from cacheable memory only. The 
event does not count loads by software prefetches. 

When this event is captured with the precise event 
mechanism, the collected samples contain the address of 
the instruction that was executed immediately after the 
instruction that caused the event.

Use IA32_PMC0 only.

CBH 02H MEM_LOAD_
RETIRED.L1D_
LINE_MISS

L1 data cache line 
missed by retired 
loads (precise event)

This event counts the number of load operations that miss 
the L1 data cache and send a request to the L2 cache to 
fetch the missing cache line. That is the missing cache line 
fetching has not yet started. 

The event count is equal to the number of cache lines 
fetched from the L2 cache by retired loads. 

This event counts loads from cacheable memory only. The 
event does not count loads by software prefetches. 

The event might not be counted if the load is blocked (see 
LOAD_BLOCK events).

When this event is captured with the precise event 
mechanism, the collected samples contain the address of 
the instruction that was executed immediately after the 
instruction that caused the event.

Use IA32_PMC0 only.
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CBH 04H MEM_LOAD_
RETIRED.L2_MISS

Retired loads that miss 
the L2 cache (precise 
event)

This event counts the number of retired load operations 
that missed the L2 cache.   

This event counts loads from cacheable memory only. It 
does not count loads by software prefetches.

When this event is captured with the precise event 
mechanism, the collected samples contain the address of 
the instruction that was executed immediately after the 
instruction that caused the event.

Use IA32_PMC0 only.

CBH 08H MEM_LOAD_
RETIRED.L2_LINE_MISS

L2 cache line missed 
by retired loads 
(precise event)

This event counts the number of load operations that miss 
the L2 cache and result in a bus request to fetch the missing 
cache line. That is the missing cache line fetching has not 
yet started.

This event count is equal to the number of cache lines 
fetched from memory by retired loads. 

This event counts loads from cacheable memory only. The 
event does not count loads by software prefetches. 

The event might not be counted if the load is blocked (see 
LOAD_BLOCK events).

When this event is captured with the precise event 
mechanism, the collected samples contain the address of 
the instruction that was executed immediately after the 
instruction that caused the event.

Use IA32_PMC0 only.

CBH 10H MEM_LOAD_
RETIRED.DTLB_
MISS

Retired loads that miss 
the DTLB (precise 
event)

This event counts the number of retired loads that missed 
the DTLB. The DTLB miss is not counted if the load 
operation causes a fault.

This event counts loads from cacheable memory only. The 
event does not count loads by software prefetches. 

When this event is captured with the precise event 
mechanism, the collected samples contain the address of 
the instruction that was executed immediately after the 
instruction that caused the event. 

Use IA32_PMC0 only.

CCH 01H FP_MMX_TRANS_TO_MMX Transitions from 
Floating Point to MMX 
Instructions

This event counts the first MMX instructions following a 
floating-point instruction. Use this event to estimate the 
penalties for the transitions between floating-point and 
MMX states.

CCH 02H FP_MMX_TRANS_TO_FP Transitions from MMX 
Instructions to 
Floating Point 
Instructions

This event counts the first floating-point instructions 
following any MMX instruction. Use this event to estimate 
the penalties for the transitions between floating-point and 
MMX states.

CDH 00H SIMD_ASSIST SIMD assists invoked This event counts the number of SIMD assists invoked. SIMD 
assists are invoked when an EMMS instruction is executed, 
changing the MMX state in the floating point stack.

Table 19-17.  Non-Architectural Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event 
Num

Umask
Value Event Name Definition

Description and
Comment



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 202

CEH 00H SIMD_INSTR_
RETIRED

SIMD Instructions 
retired

This event counts the number of retired SIMD instructions 
that use MMX registers.

CFH 00H SIMD_SAT_INSTR_RETIRED Saturated arithmetic 
instructions retired

This event counts the number of saturated arithmetic SIMD 
instructions that retired.

D2H 01H RAT_STALLS.
ROB_READ_PORT

ROB read port stalls 
cycles

This event counts the number of cycles when ROB read port 
stalls occurred, which did not allow new micro-ops to enter 
the out-of-order pipeline. 

Note that, at this stage in the pipeline, additional stalls may 
occur at the same cycle and prevent the stalled micro-ops 
from entering the pipe. In such a case, micro-ops retry 
entering the execution pipe in the next cycle and the ROB-
read-port stall is counted again.

D2H 02H RAT_STALLS.
PARTIAL_CYCLES

Partial register stall 
cycles

This event counts the number of cycles instruction 
execution latency became longer than the defined latency 
because the instruction uses a register that was partially 
written by previous instructions. 

D2H 04H RAT_STALLS.
FLAGS

Flag stall cycles This event counts the number of cycles during which 
execution stalled due to several reasons, one of which is a 
partial flag register stall. 

A partial register stall may occur when two conditions are 
met: 

• an instruction modifies some, but not all, of the flags in 
the flag register

• the next instruction, which depends on flags, depends on 
flags that were not modified by this instruction

D2H 08H RAT_STALLS.
FPSW

FPU status word stall This event indicates that the FPU status word (FPSW) is 
written. To obtain the number of times the FPSW is written 
divide the event count by 2.

The FPSW is written by instructions with long latency; a 
small count may indicate a high penalty.

D2H 0FH RAT_STALLS.
ANY

All RAT stall cycles This event counts the number of stall cycles due to 
conditions described by: 

• RAT_STALLS.ROB_READ_PORT
• RAT_STALLS.PARTIAL
• RAT_STALLS.FLAGS
• RAT_STALLS.FPSW.

D4H 01H SEG_RENAME_
STALLS.ES

Segment rename stalls 
- ES

This event counts the number of stalls due to the lack of 
renaming resources for the ES segment register. If a 
segment is renamed, but not retired and a second update to 
the same segment occurs, a stall occurs in the front-end of 
the pipeline until the renamed segment retires. 

D4H 02H SEG_RENAME_
STALLS.DS

Segment rename stalls 
- DS

This event counts the number of stalls due to the lack of 
renaming resources for the DS segment register. If a 
segment is renamed, but not retired and a second update to 
the same segment occurs, a stall occurs in the front-end of 
the pipeline until the renamed segment retires. 
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D4H 04H SEG_RENAME_
STALLS.FS

Segment rename stalls 
- FS

This event counts the number of stalls due to the lack of 
renaming resources for the FS segment register. 

If a segment is renamed, but not retired and a second 
update to the same segment occurs, a stall occurs in the 
front-end of the pipeline until the renamed segment retires. 

D4H 08H SEG_RENAME_
STALLS.GS

Segment rename stalls 
- GS

This event counts the number of stalls due to the lack of 
renaming resources for the GS segment register. 

If a segment is renamed, but not retired and a second 
update to the same segment occurs, a stall occurs in the 
front-end of the pipeline until the renamed segment retires. 

D4H 0FH SEG_RENAME_
STALLS.ANY

Any (ES/DS/FS/GS) 
segment rename stall

This event counts the number of stalls due to the lack of 
renaming resources for the ES, DS, FS, and GS segment 
registers.

If a segment is renamed but not retired and a second update 
to the same segment occurs, a stall occurs in the front-end 
of the pipeline until the renamed segment retires. 

D5H 01H SEG_REG_
RENAMES.ES

Segment renames - ES This event counts the number of times the ES segment 
register is renamed.

D5H 02H SEG_REG_
RENAMES.DS

Segment renames - DS This event counts the number of times the DS segment 
register is renamed.

D5H 04H SEG_REG_
RENAMES.FS

Segment renames - FS This event counts the number of times the FS segment 
register is renamed.

D5H 08H SEG_REG_
RENAMES.GS

Segment renames - GS This event counts the number of times the GS segment 
register is renamed.

D5H 0FH SEG_REG_
RENAMES.ANY

Any (ES/DS/FS/GS) 
segment rename

This event counts the number of times any of the four 
segment registers (ES/DS/FS/GS) is renamed.

DCH 01H RESOURCE_
STALLS.ROB_FULL

Cycles during which 
the ROB full

This event counts the number of cycles when the number of 
instructions in the pipeline waiting for retirement reaches 
the limit the processor can handle. 

A high count for this event indicates that there are long 
latency operations in the pipe (possibly load and store 
operations that miss the L2 cache, and other instructions 
that depend on these cannot execute until the former 
instructions complete execution). In this situation new 
instructions can not enter the pipe and start execution.

DCH 02H RESOURCE_
STALLS.RS_FULL

Cycles during which 
the RS full

This event counts the number of cycles when the number of 
instructions in the pipeline waiting for execution reaches 
the limit the processor can handle. 

A high count of this event indicates that there are long 
latency operations in the pipe (possibly load and store 
operations that miss the L2 cache, and other instructions 
that depend on these cannot execute until the former 
instructions complete execution). In this situation new 
instructions can not enter the pipe and start execution.
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DCH 04 RESOURCE_
STALLS.LD_ST

Cycles during which 
the pipeline has 
exceeded load or store 
limit or waiting to 
commit all stores

This event counts the number of cycles while resource-
related stalls occur due to:  

• The number of load instructions in the pipeline reached 
the limit the processor can handle. The stall ends when a 
loading instruction retires. 

• The number of store instructions in the pipeline reached 
the limit the processor can handle. The stall ends when a 
storing instruction commits its data to the cache or 
memory. 

• There is an instruction in the pipe that can be executed 
only when all previous stores complete and their data is 
committed in the caches or memory. For example, the 
SFENCE and MFENCE instructions require this behavior.

DCH 08H RESOURCE_
STALLS.FPCW

Cycles stalled due to 
FPU control word 
write

This event counts the number of cycles while execution was 
stalled due to writing the floating-point unit (FPU) control 
word.

DCH 10H RESOURCE_
STALLS.BR_MISS_CLEAR

Cycles stalled due to 
branch misprediction

This event counts the number of cycles after a branch 
misprediction is detected at execution until the branch and 
all older micro-ops retire. During this time new micro-ops 
cannot enter the out-of-order pipeline.

DCH 1FH RESOURCE_
STALLS.ANY

Resource related stalls This event counts the number of cycles while resource-
related stalls occurs for any conditions described by the 
following events:

• RESOURCE_STALLS.ROB_FULL
• RESOURCE_STALLS.RS_FULL
• RESOURCE_STALLS.LD_ST
• RESOURCE_STALLS.FPCW
• RESOURCE_STALLS.BR_MISS_CLEAR

E0H 00H BR_INST_
DECODED

Branch instructions 
decoded

This event counts the number of branch instructions 
decoded.

E4H 00H BOGUS_BR Bogus branches This event counts the number of byte sequences that were 
mistakenly detected as taken branch instructions.

This results in a BACLEAR event. This occurs mainly after 
task switches.

E6H 00H BACLEARS BACLEARS asserted This event counts the number of times the front end is 
resteered, mainly when the BPU cannot provide a correct 
prediction and this is corrected by other branch handling 
mechanisms at the front and. This can occur if the code has 
many branches such that they cannot be consumed by the 
BPU. 

Each BACLEAR asserted costs approximately 7 cycles of 
instruction fetch. The effect on total execution time 
depends on the surrounding code.
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...

F0 00H PREF_RQSTS_UP Upward prefetches 
issued from DPL

This event counts the number of upward prefetches issued 
from the Data Prefetch Logic (DPL) to the L2 cache. A 
prefetch request issued to the L2 cache cannot be cancelled 
and the requested cache line is fetched to the L2 cache. 

F8 00H PREF_RQSTS_DN Downward prefetches 
issued from DPL.

This event counts the number of downward prefetches 
issued from the Data Prefetch Logic (DPL) to the L2 cache. A 
prefetch request issued to the L2 cache cannot be cancelled 
and the requested cache line is fetched to the L2 cache.
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02H 81H STORe_FORWARDS.GO
OD

Good store forwards This event counts the number of times store data was 
forwarded directly to a load.

06H 00H SEGMENT_REG_
LOADS.ANY

Number of segment 
register loads

This event counts the number of segment register load 
operations. Instructions that load new values into segment 
registers cause a penalty. This event indicates performance 
issues in 16-bit code. If this event occurs frequently, it may be 
useful to calculate the number of instructions retired per 
segment register load. If the resulting calculation is low (on 
average a small number of instructions are executed between 
segment register loads), then the code’s segment register 
usage should be optimized. 

As a result of branch misprediction, this event is speculative and 
may include segment register loads that do not actually occur. 
However, most segment register loads are internally serialized 
and such speculative effects are minimized. 

07H 01H PREFETCH.PREFETCHT
0

Streaming SIMD 
Extensions (SSE) 
PrefetchT0 
instructions executed.

This event counts the number of times the SSE instruction 
prefetchT0 is executed. This instruction prefetches the data to 
the L1 data cache and L2 cache.

07H 06H PREFETCH.SW_L2 Streaming SIMD 
Extensions (SSE) 
PrefetchT1 and 
PrefetchT2 
instructions executed

This event counts the number of times the SSE instructions 
prefetchT1 and prefetchT2 are executed. These instructions 
prefetch the data to the L2 cache.

07H 08H PREFETCH.PREFETCHN
TA

Streaming SIMD 
Extensions (SSE) 
Prefetch NTA 
instructions executed

This event counts the number of times the SSE instruction 
prefetchNTA is executed. This instruction prefetches the data 
to the L1 data cache. 

08H 07H DATA_TLB_MISSES.DT
LB_MISS

Memory accesses that 
missed the DTLB

This event counts the number of Data Table Lookaside Buffer 
(DTLB) misses. The count includes misses detected as a result 
of speculative accesses. Typically a high count for this event 
indicates that the code accesses a large number of data pages.
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08H 05H DATA_TLB_MISSES.DT
LB_MISS_LD

DTLB misses due to 
load operations

This event counts the number of Data Table Lookaside Buffer 
(DTLB) misses due to load operations. This count includes 
misses detected as a result of speculative accesses.

08H 09H DATA_TLB_MISSES.L0
_DTLB_MISS_LD

L0_DTLB misses due to 
load operations

This event counts the number of L0_DTLB misses due to load 
operations. This count includes misses detected as a result of 
speculative accesses.

08H 06H DATA_TLB_MISSES.DT
LB_MISS_ST

DTLB misses due to 
store operations

This event counts the number of Data Table Lookaside Buffer 
(DTLB) misses due to store operations. This count includes 
misses detected as a result of speculative accesses. 

0CH 03H PAGE_WALKS.WALKS Number of page-walks 
executed

This event counts the number of page-walks executed due to 
either a DTLB or ITLB miss. The page walk duration, 
PAGE_WALKS.CYCLES, divided by number of page walks is the 
average duration of a page walk. This can hint to whether most 
of the page-walks are satisfied by the caches or cause an L2 
cache miss.

Edge trigger bit must be set.

0CH 03H PAGE_WALKS.CYCLES Duration of page-walks 
in core cycles

This event counts the duration of page-walks in core cycles. The 
paging mode in use typically affects the duration of page walks. 
Page walk duration divided by number of page walks is the 
average duration of page-walks. This can hint at whether most 
of the page-walks are satisfied by the caches or cause an L2 
cache miss. 

Edge trigger bit must be cleared.

10H 01H X87_COMP_OPS_EXE.
ANY.S

Floating point 
computational micro-
ops executed

This event counts the number of x87 floating point 
computational micro-ops executed.

10H 81H X87_COMP_OPS_EXE.
ANY.AR

Floating point 
computational micro-
ops retired

This event counts the number of x87 floating point 
computational micro-ops retired.

11H 01H FP_ASSIST Floating point assists This event counts the number of floating point operations 
executed that required micro-code assist intervention. These 
assists are required in the following cases: 

X87 instructions:

1. NaN or denormal are loaded to a register or used as input 
from memory

2. Division by 0 

3. Underflow output

11H 81H FP_ASSIST.AR Floating point assists This event counts the number of floating point operations 
executed that required micro-code assist intervention. These 
assists are required in the following cases: 

X87 instructions:

1. NaN or denormal are loaded to a register or used as input 
from memory

2. Division by 0 

3. Underflow output

Table 19-18.  Non-Architectural Performance Events for Intel® Atom™ Processors (Contd.)
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12H 01H MUL.S Multiply operations 
executed

This event counts the number of multiply operations executed. 
This includes integer as well as floating point multiply 
operations.

12H 81H MUL.AR Multiply operations 
retired

This event counts the number of multiply operations retired. 
This includes integer as well as floating point multiply 
operations.

13H 01H DIV.S Divide operations 
executed

This event counts the number of divide operations executed. 
This includes integer divides, floating point divides and square-
root operations executed.

13H 81H DIV.AR Divide operations 
retired

This event counts the number of divide operations retired. This 
includes integer divides, floating point divides and square-root 
operations executed.

14H 01H CYCLES_DIV_BUSY Cycles the driver is 
busy

This event counts the number of cycles the divider is busy 
executing divide or square root operations. The divide can be 
integer, X87 or Streaming SIMD Extensions (SSE). The square 
root operation can be either X87 or SSE. 

21H See 
Table 
18-2

L2_ADS Cycles L2 address bus 
is in use

This event counts the number of cycles the L2 address bus is 
being used for accesses to the L2 cache or bus queue. 

This event can count occurrences for this core or both cores. 

22H See 
Table 
18-2

L2_DBUS_BUSY Cycles the L2 cache 
data bus is busy

This event counts core cycles during which the L2 cache data 
bus is busy transferring data from the L2 cache to the core.   It 
counts for all L1 cache misses (data and instruction) that hit the 
L2 cache.   The count will increment by two for a full cache-line 
request. 

24H See 
Table 
18-2 
and 
Table 
18-4

L2_LINES_IN L2 cache misses This event counts the number of cache lines allocated in the L2 
cache. Cache lines are allocated in the L2 cache as a result of 
requests from the L1 data and instruction caches and the L2 
hardware prefetchers to cache lines that are missing in the L2 
cache.

This event can count occurrences for this core or both cores. 
This event can also count demand requests and L2 hardware 
prefetch requests together or separately.

25H See 
Table 
18-2

L2_M_LINES_IN L2 cache line 
modifications

This event counts whenever a modified cache line is written 
back from the L1 data cache to the L2 cache.

This event can count occurrences for this core or both cores.

26H See 
Table 
18-2 
and 
Table 
18-4

L2_LINES_OUT L2 cache lines evicted This event counts the number of L2 cache lines evicted.

This event can count occurrences for this core or both cores. 
This event can also count evictions due to demand requests and 
L2 hardware prefetch requests together or separately.

Table 19-18.  Non-Architectural Performance Events for Intel® Atom™ Processors (Contd.)
Event
Num.

Umask
Value Event Name Definition Description and Comment



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 208

27H See 
Table 
18-2 
and 
Table 
18-4

L2_M_LINES_OUT Modified lines evicted 
from the L2 cache

This event counts the number of L2 modified cache lines 
evicted. These lines are written back to memory unless they 
also exist in a shared-state in one of the L1 data caches.

This event can count occurrences for this core or both cores. 
This event can also count evictions due to demand requests and 
L2 hardware prefetch requests together or separately.

28H See 
Table 
18-2 
and 
Table 
18-5

L2_IFETCH L2 cacheable 
instruction fetch 
requests

This event counts the number of instruction cache line requests 
from the ICache. It does not include fetch requests from 
uncacheable memory. It does not include ITLB miss accesses. 

This event can count occurrences for this core or both cores. 
This event can also count accesses to cache lines at different 
MESI states.

29H See 
Table 
18-2, 
Table 
18-4 
and 
Table 
18-5

L2_LD L2 cache reads This event counts L2 cache read requests coming from the L1 
data cache and L2 prefetchers. 

This event can count occurrences for this core or both cores. 
This event can count occurrences

- for this core or both cores.

- due to demand requests and L2 hardware prefetch requests 
together or separately.

- of accesses to cache lines at different MESI states.

2AH See 
Table 
18-2 
and 
Table 
18-5

L2_ST L2 store requests This event counts all store operations that miss the L1 data 
cache and request the data 

from the L2 cache. 

This event can count occurrences for this core or both cores. 
This event can also count accesses to cache lines at different 
MESI states.

2BH See 
Table 
18-2 
and 
Table 
18-5

L2_LOCK L2 locked accesses This event counts all locked accesses to cache lines that miss 
the L1 data cache.

This event can count occurrences for this core or both cores. 
This event can also count accesses to cache lines at different 
MESI states.

2EH See 
Table 
18-2, 
Table 
18-4 
and 
Table 
18-5

L2_RQSTS L2 cache requests This event counts all completed L2 cache requests. This 
includes L1 data cache reads, writes, and locked accesses, L1 
data prefetch requests, instruction fetches, and all L2 hardware 
prefetch requests. 

This event can count occurrences

- for this core or both cores.

- due to demand requests and L2 hardware prefetch requests 
together, or separately.

- of accesses to cache lines at different MESI states.
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2EH 41H L2_RQSTS.SELF.DEMA
ND.I_STATE

L2 cache demand 
requests from this core 
that missed the L2

This event counts all completed L2 cache demand requests 
from this core that miss the L2 cache. This includes L1 data 
cache reads, writes, and locked accesses, L1 data prefetch 
requests, and instruction fetches. 

This is an architectural performance event.

2EH 4FH L2_RQSTS.SELF.DEMA
ND.MESI

L2 cache demand 
requests from this core

This event counts all completed L2 cache demand requests 
from this core. This includes L1 data cache reads, writes, and 
locked accesses, L1 data prefetch requests, and instruction 
fetches. 

This is an architectural performance event.

30H See 
Table 
18-2, 
Table 
18-4 
and 
Table 
18-5

L2_REJECT_BUSQ Rejected L2 cache 
requests

This event indicates that a pending L2 cache request that 
requires a bus transaction is delayed from moving to the bus 
queue. Some of the reasons for this event are:

- The bus queue is full.

- The bus queue already holds an entry for a cache line in the 
same set.

The number of events is greater or equal to the number of 
requests that were rejected.

- for this core or both cores.

- due to demand requests and L2 hardware prefetch requests 
together, or separately.

- of accesses to cache lines at different MESI states.

32H See 
Table 
18-2

L2_NO_REQ Cycles no L2 cache 
requests are pending

This event counts the number of cycles that no L2 cache 
requests are pending.

3AH 00H EIST_TRANS Number of Enhanced 
Intel SpeedStep(R) 
Technology (EIST) 
transitions

This event counts the number of Enhanced Intel SpeedStep(R) 
Technology (EIST) transitions that include a frequency change, 
either with or without VID change. This event is incremented 
only while the counting core is in C0 state. In situations where 
an EIST transition was caused by hardware as a result of CxE 
state transitions, those EIST transitions will also be registered 
in this event.

Enhanced Intel Speedstep Technology transitions are commonly 
initiated by OS, but can be initiated by HW internally. For 
example: CxE states are C-states (C1,C2,C3…) which not only 
place the CPU into a sleep state by turning off the clock and 
other components, but also lower the voltage (which reduces 
the leakage power consumption). The same is true for thermal 
throttling transition which uses Enhanced Intel Speedstep 
Technology internally.
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3BH C0H THERMAL_TRIP Number of thermal 
trips

This event counts the number of thermal trips. A thermal trip 
occurs whenever the processor temperature exceeds the 
thermal trip threshold temperature. Following a thermal trip, 
the processor automatically reduces frequency and voltage. 
The processor checks the temperature every millisecond, and 
returns to normal when the temperature falls below the 
thermal trip threshold temperature.

3CH 00H CPU_CLK_UNHALTED.C
ORE_P

Core cycles when core 
is not halted

This event counts the number of core cycles while the core is 
not in a halt state. The core enters the halt state when it is 
running the HLT instruction. This event is a component in many 
key event ratios. 

In mobile systems the core frequency may change from time to 
time. For this reason this event may have a changing ratio with 
regards to time. In systems with a constant core frequency, this 
event can give you a measurement of the elapsed time while 
the core was not in halt state by dividing the event count by the 
core frequency.

-This is an architectural performance event.

- The event CPU_CLK_UNHALTED.CORE_P is counted by a 
programmable counter.

- The event CPU_CLK_UNHALTED.CORE is counted by a 
designated fixed counter, leaving the two programmable 
counters available for other events.

3CH 01H CPU_CLK_UNHALTED.B
US

Bus cycles when core is 
not halted

This event counts the number of bus cycles while the core is not 
in the halt state. This event can give you a measurement of the 
elapsed time while the core was not in the halt state, by 
dividing the event count by the bus frequency. The core enters 
the halt state when it is running the HLT instruction.

The event also has a constant ratio with 
CPU_CLK_UNHALTED.REF event, which is the maximum bus to 
processor frequency ratio. 

Non-halted bus cycles are a component in many key event 
ratios. 

3CH 02H CPU_CLK_UNHALTED.
NO_OTHER

Bus cycles when core is 
active and the other is 
halted

This event counts the number of bus cycles during which the 
core remains non-halted, and the other core on the processor is 
halted. 

This event can be used to determine the amount of parallelism 
exploited by an application or a system. Divide this event count 
by the bus frequency to determine the amount of time that 
only one core was in use.

40H 21H L1D_CACHE.LD L1 Cacheable Data 
Reads

This event counts the number of data reads from cacheable 
memory.

40H 22H L1D_CACHE.ST L1 Cacheable Data 
Writes

This event counts the number of data writes to cacheable 
memory.
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60H See 
Table 
18-2 
and 
Table 
18-3

BUS_REQUEST_OUTST
ANDING

Outstanding cacheable 
data read bus requests 
duration

This event counts the number of pending full cache line read 
transactions on the bus occurring in each cycle. A read 
transaction is pending from the cycle it is sent on the bus until 
the full cache line is received by the processor. NOTE: This 
event is thread-independent and will not provide a count per 
logical processor when AnyThr is disabled.

61H See 
Table 
18-3

BUS_BNR_DRV Number of Bus Not 
Ready signals asserted

This event counts the number of Bus Not Ready (BNR) signals 
that the processor asserts on the bus to suspend additional bus 
requests by other bus agents. A bus agent asserts the BNR 
signal when the number of data and snoop transactions is close 
to the maximum that the bus can handle. 

While this signal is asserted, new transactions cannot be 
submitted on the bus. As a result, transaction latency may have 
higher impact on program performance. NOTE: This event is 
thread-independent and will not provide a count per logical 
processor when AnyThr is disabled.

62H See 
Table 
18-3

BUS_DRDY_CLOCKS Bus cycles when data 
is sent on the bus

This event counts the number of bus cycles during which the 
DRDY (Data Ready) signal is asserted on the bus. The DRDY 
signal is asserted when data is sent on the bus.

This event counts the number of bus cycles during which this 
agent (the processor) writes data on the bus back to memory or 
to other bus agents. This includes all explicit and implicit data 
writebacks, as well as partial writes.
NOTE: This event is thread-independent and will not provide a 
count per logical processor when AnyThr is disabled.

63H See 
Table 
18-2 
and 
Table 
18-3

BUS_LOCK_CLOCKS Bus cycles when a 
LOCK signal is asserted.

This event counts the number of bus cycles, during which the 
LOCK signal is asserted on the bus. A LOCK signal is asserted 
when there is a locked memory access, due to:

- Uncacheable memory

- Locked operation that spans two cache lines

- Page-walk from an uncacheable page table.

Bus locks have a very high performance penalty and it is highly 
recommended to avoid such accesses. NOTE: This event is 
thread-independent and will not provide a count per logical 
processor when AnyThr is disabled.

64H See 
Table 
18-2

BUS_DATA_RCV Bus cycles while 
processor receives 
data

This event counts the number of cycles during which the 
processor is busy receiving data. NOTE: This event is thread-
independent and will not provide a count per logical processor 
when AnyThr is disabled.

65H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_BRD Burst read bus 
transactions

This event counts the number of burst read transactions 
including:

- L1 data cache read misses (and L1 data cache hardware 
prefetches)

- L2 hardware prefetches by the DPL and L2 streamer

- IFU read misses of cacheable lines.

It does not include RFO transactions.
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66H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_RFO RFO bus transactions This event counts the number of Read For Ownership (RFO) bus 
transactions, due to store operations that miss the L1 data 
cache and the L2 cache. This event also counts RFO bus 
transactions due to locked operations.

67H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_WB Explicit writeback bus 
transactions

This event counts all explicit writeback bus transactions due to 
dirty line evictions. It does not count implicit writebacks due to 
invalidation by a snoop request.

68H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_IFETCH Instruction-fetch bus 
transactions.

This event counts all instruction fetch full cache line bus 
transactions.

69H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_INVAL Invalidate bus 
transactions

This event counts all invalidate transactions. Invalidate 
transactions are generated when:

- A store operation hits a shared line in the L2 cache.

- A full cache line write misses the L2 cache or hits a shared line 
in the L2 cache.

6AH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_PWR Partial write bus 
transaction.

This event counts partial write bus transactions.

6BH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_P Partial bus 
transactions

This event counts all (read and write) partial bus transactions.

6CH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_IO IO bus transactions This event counts the number of completed I/O bus 
transactions as a result of IN and OUT instructions. The count 
does not include memory mapped IO.

6DH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_DEF Deferred bus 
transactions

This event counts the number of deferred transactions. 
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6EH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_BURST Burst (full cache-line) 
bus transactions.

This event counts burst (full cache line) transactions including:

- Burst reads

- RFOs

- Explicit writebacks

- Write combine lines

6FH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_MEM Memory bus 
transactions

This event counts all memory bus transactions including:

- burst transactions

- partial reads and writes

- invalidate transactions

The BUS_TRANS_MEM count is the sum of 
BUS_TRANS_BURST, BUS_TRANS_P and BUS_TRANS_INVAL.

70H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_ANY All bus transactions This event counts all bus transactions. This includes:

- Memory transactions

- IO transactions (non memory-mapped)

- Deferred transaction completion

- Other less frequent transactions, such as interrupts

77H See 
Table 
18-2 
and 
Table 
18-5

EXT_SNOOP External snoops This event counts the snoop responses to bus transactions. 
Responses can be counted separately by type and by bus agent. 
NOTE: This event is thread-independent and will not provide a 
count per logical processor when AnyThr is disabled.

7AH See 
Table 
18-3

BUS_HIT_DRV HIT signal asserted This event counts the number of bus cycles during which the 
processor drives the HIT# pin to signal HIT snoop response. 
NOTE: This event is thread-independent and will not provide a 
count per logical processor when AnyThr is disabled.

7BH See 
Table 
18-3

BUS_HITM_DRV HITM signal asserted This event counts the number of bus cycles during which the 
processor drives the HITM# pin to signal HITM snoop response. 
NOTE: This event is thread-independent and will not provide a 
count per logical processor when AnyThr is disabled.

7DH See 
Table 
18-2

BUSQ_EMPTY Bus queue is empty This event counts the number of cycles during which the core 
did not have any pending transactions in the bus queue. 

NOTE: This event is thread-independent and will not provide a 
count per logical processor when AnyThr is disabled.

7EH See 
Table 
18-2 
and 
Table 
18-3

SNOOP_STALL_DRV Bus stalled for snoops This event counts the number of times that the bus snoop stall 
signal is asserted. During the snoop stall cycles no new bus 
transactions requiring a snoop response can be initiated on the 
bus. NOTE: This event is thread-independent and will not 
provide a count per logical processor when AnyThr is disabled.

7FH See 
Table 
18-2

BUS_IO_WAIT IO requests waiting in 
the bus queue

This event counts the number of core cycles during which IO 
requests wait in the bus queue. This event counts IO requests 
from the core.
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80H 03H ICACHE.ACCESSES Instruction fetches This event counts all instruction fetches, including uncacheable 
fetches.

80H 02H ICACHE.MISSES Icache miss This event counts all instruction fetches that miss the 
Instruction cache or produce memory requests. This includes 
uncacheable fetches. An instruction fetch miss is counted only 
once and not once for every cycle it is outstanding.

82H 04H ITLB.FLUSH ITLB flushes This event counts the number of ITLB flushes.

82H 02H ITLB.MISSES ITLB misses This event counts the number of instruction fetches that miss 
the ITLB. 

AAH 02H MACRO_INSTS.CISC_DE
CODED

CISC macro instructions 
decoded

This event counts the number of complex instructions decoded, 
but not necessarily executed or retired. Only one complex 
instruction can be decoded at a time.

AAH 03H MACRO_INSTS.ALL_DE
CODED

All Instructions 
decoded

This event counts the number of instructions decoded.

B0H 00H SIMD_UOPS_EXEC.S SIMD micro-ops 
executed (excluding 
stores)

This event counts all the SIMD micro-ops executed. This event 
does not count MOVQ and MOVD stores from register to 
memory.

B0H 80H SIMD_UOPS_EXEC.AR SIMD micro-ops retired 
(excluding stores)

This event counts the number of SIMD saturated arithmetic 
micro-ops executed.

B1H 00H SIMD_SAT_UOP_EXEC.
S

SIMD saturated 
arithmetic micro-ops 
executed

This event counts the number of SIMD saturated arithmetic 
micro-ops executed.

B1H 80H SIMD_SAT_UOP_EXEC.
AR

SIMD saturated 
arithmetic micro-ops 
retired

This event counts the number of SIMD saturated arithmetic 
micro-ops retired.

B3H 01H SIMD_UOP_TYPE_EXE
C.MUL.S

SIMD packed multiply 
micro-ops executed

This event counts the number of SIMD packed multiply micro-
ops executed.

B3H 81H SIMD_UOP_TYPE_EXE
C.MUL.AR

SIMD packed multiply 
micro-ops retired

This event counts the number of SIMD packed multiply micro-
ops retired.

B3H 02H SIMD_UOP_TYPE_EXE
C.SHIFT.S

SIMD packed shift 
micro-ops executed

This event counts the number of SIMD packed shift micro-ops 
executed.

B3H 82H SIMD_UOP_TYPE_EXE
C.SHIFT.AR

SIMD packed shift 
micro-ops retired

This event counts the number of SIMD packed shift micro-ops 
retired.

B3H 04H SIMD_UOP_TYPE_EXE
C.PACK.S

SIMD pack micro-ops 
executed

This event counts the number of SIMD pack micro-ops executed.

B3H 84H SIMD_UOP_TYPE_EXE
C.PACK.AR

SIMD pack micro-ops 
retired

This event counts the number of SIMD pack micro-ops retired.

B3H 08H SIMD_UOP_TYPE_EXE
C.UNPACK.S

SIMD unpack micro-ops 
executed

This event counts the number of SIMD unpack micro-ops 
executed.

B3H 88H SIMD_UOP_TYPE_EXE
C.UNPACK.AR

SIMD unpack micro-ops 
retired

This event counts the number of SIMD unpack micro-ops retired.

B3H 10H SIMD_UOP_TYPE_EXE
C.LOGICAL.S

SIMD packed logical 
micro-ops executed

This event counts the number of SIMD packed logical micro-ops 
executed.
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B3H 90H SIMD_UOP_TYPE_EXE
C.LOGICAL.AR

SIMD packed logical 
micro-ops retired

This event counts the number of SIMD packed logical micro-ops 
retired.

B3H 20H SIMD_UOP_TYPE_EXE
C.ARITHMETIC.S

SIMD packed arithmetic 
micro-ops executed

This event counts the number of SIMD packed arithmetic micro-
ops executed.

B3H A0H SIMD_UOP_TYPE_EXE
C.ARITHMETIC.AR

SIMD packed arithmetic 
micro-ops retired

This event counts the number of SIMD packed arithmetic micro-
ops retired.

C0H 00H INST_RETIRED.ANY_P Instructions retired 
(precise event).

This event counts the number of instructions that retire 
execution. For instructions that consist of multiple micro-ops, 
this event counts the retirement of the last micro-op of the 
instruction. The counter continues counting during hardware 
interrupts, traps, and inside interrupt handlers.

N/A 00H INST_RETIRED.ANY Instructions retired This event counts the number of instructions that retire 
execution. For instructions that consist of multiple micro-ops, 
this event counts the retirement of the last micro-op of the 
instruction. The counter continues counting during hardware 
interrupts, traps, and inside interrupt handlers.

C2H 10H UOPS_RETIRED.ANY Micro-ops retired This event counts the number of micro-ops retired. The 
processor decodes complex macro instructions into a sequence 
of simpler micro-ops. Most instructions are composed of one or 
two micro-ops. Some instructions are decoded into longer 
sequences such as repeat instructions, floating point 
transcendental instructions, and assists. In some cases micro-op 
sequences are fused or whole instructions are fused into one 
micro-op. See other UOPS_RETIRED events for differentiating 
retired fused and non-fused micro-ops.

C3H 01H MACHINE_CLEARS.SMC Self-Modifying Code 
detected

This event counts the number of times that a program writes to 
a code section. Self-modifying code causes a severe penalty in 
all Intel® architecture processors.

C4H 00H BR_INST_RETIRED.AN
Y

Retired branch 
instructions

This event counts the number of branch instructions retired. 

This is an architectural performance event. 

C4H 01H BR_INST_RETIRED.PRE
D_NOT_TAKEN

Retired branch 
instructions that were 
predicted not-taken

This event counts the number of branch instructions retired 
that were correctly predicted to be not-taken.

C4H 02H BR_INST_RETIRED.MIS
PRED_NOT_TAKEN

Retired branch 
instructions that were 
mispredicted not-taken

This event counts the number of branch instructions retired 
that were mispredicted and not-taken.

C4H 04H BR_INST_RETIRED.PRE
D_TAKEN

Retired branch 
instructions that were 
predicted taken

This event counts the number of branch instructions retired 
that were correctly predicted to be taken.

C4H 08H BR_INST_RETIRED.MIS
PRED_TAKEN

Retired branch 
instructions that were 
mispredicted taken

This event counts the number of branch instructions retired 
that were mispredicted and taken.
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C4H 0AH BR_INST_RETIRED.MIS
PRED

Retired mispredicted 
branch instructions 
(precise event)

This event counts the number of retired branch instructions 
that were mispredicted by the processor. A branch 
misprediction occurs when the processor predicts that the 
branch would be taken, but it is not, or vice-versa. Mispredicted 
branches degrade the performance because the processor 
starts executing instructions along a wrong path it predicts. 
When the misprediction is discovered, all the instructions 
executed in the wrong path must be discarded, and the 
processor must start again on the correct path. 

Using the Profile-Guided Optimization (PGO) features of the 
Intel® C++ compiler may help reduce branch mispredictions. See 
the compiler documentation for more information on this 
feature. 

To determine the branch misprediction ratio, divide the 
BR_INST_RETIRED.MISPRED event count by the number of 
BR_INST_RETIRED.ANY event count. To determine the number 
of mispredicted branches per instruction, divide the number of 
mispredicted branches by the INST_RETIRED.ANY event count. 
To measure the impact of the branch mispredictions use the 
event RESOURCE_STALLS.BR_MISS_CLEAR. 

Tips:

- See the optimization guide for tips on reducing branch 
mispredictions.

- PGO's purpose is to have straight line code for the most 
frequent execution paths, reducing branches taken and 
increasing the "basic block" size, possibly also reducing the code 
footprint or working-set.

C4H 0CH BR_INST_RETIRED.TAK
EN

Retired taken branch 
instructions

This event counts the number of branches retired that were 
taken.

C4H 0FH BR_INST_RETIRED.AN
Y1

Retired branch 
instructions

This event counts the number of branch instructions retired 
that were mispredicted. This event is a duplicate of 
BR_INST_RETIRED.MISPRED.

C5H 00H BR_INST_RETIRED.MIS
PRED

Retired mispredicted 
branch instructions 
(precise event).

This event counts the number of retired branch instructions 
that were mispredicted by the processor. A branch 
misprediction occurs when the processor predicts that the 
branch would be taken, but it is not, or vice-versa. Mispredicted 
branches degrade the performance because the processor 
starts executing instructions along a wrong path it predicts. 
When the misprediction is discovered, all the instructions 
executed in the wrong path must be discarded, and the 
processor must start again on the correct path. 
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Using the Profile-Guided Optimization (PGO) features of the 
Intel® C++ compiler may help reduce branch mispredictions. See 
the compiler documentation for more information on this 
feature. 

To determine the branch misprediction ratio, divide the 
BR_INST_RETIRED.MISPRED event count by the number of 
BR_INST_RETIRED.ANY event count. To determine the number 
of mispredicted branches per instruction, divide the number of 
mispredicted branches by the INST_RETIRED.ANY event count. 
To measure the impact of the branch mispredictions use the 
event RESOURCE_STALLS.BR_MISS_CLEAR. 

Tips:

- See the optimization guide for tips on reducing branch 
mispredictions.

- PGO's purpose is to have straight line code for the most 
frequent execution paths, reducing branches taken and 
increasing the "basic block" size, possibly also reducing the code 
footprint or working-set.

C6H 01H CYCLES_INT_MASKED.
CYCLES_INT_MASKED

Cycles during which 
interrupts are disabled

This event counts the number of cycles during which interrupts 
are disabled.

C6H 02H CYCLES_INT_MASKED.
CYCLES_INT_PENDING
_AND_MASKED

Cycles during which 
interrupts are pending 
and disabled

This event counts the number of cycles during which there are 
pending interrupts but interrupts are disabled.

C7H 01H SIMD_INST_RETIRED.P
ACKED_SINGLE

Retired Streaming 
SIMD Extensions (SSE) 
packed-single 
instructions

This event counts the number of SSE packed-single instructions 
retired.

C7H 02H SIMD_INST_RETIRED.S
CALAR_SINGLE

Retired Streaming 
SIMD Extensions (SSE) 
scalar-single 
instructions

This event counts the number of SSE scalar-single instructions 
retired.

C7H 04H SIMD_INST_RETIRED.P
ACKED_DOUBLE

Retired Streaming 
SIMD Extensions 2 
(SSE2) packed-double 
instructions

This event counts the number of SSE2 packed-double 
instructions retired.

C7H 08H SIMD_INST_RETIRED.S
CALAR_DOUBLE

Retired Streaming 
SIMD Extensions 2 
(SSE2) scalar-double 
instructions.

This event counts the number of SSE2 scalar-double 
instructions retired.

C7H 10H SIMD_INST_RETIRED.V
ECTOR

Retired Streaming 
SIMD Extensions 2 
(SSE2) vector 
instructions.

This event counts the number of SSE2 vector instructions 
retired.
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C7H 1FH SIMD_INST_RETIRED.A
NY

Retired Streaming 
SIMD instructions

This event counts the overall number of SIMD instructions 
retired. To count each type of SIMD instruction separately, use 
the following events:

SIMD_INST_RETIRED.PACKED_SINGLE, 
SIMD_INST_RETIRED.SCALAR_SINGLE, 
SIMD_INST_RETIRED.PACKED_DOUBLE, 
SIMD_INST_RETIRED.SCALAR_DOUBLE, and 
SIMD_INST_RETIRED.VECTOR.

C8H 00H HW_INT_RCV Hardware interrupts 
received

This event counts the number of hardware interrupts received 
by the processor. This event will count twice for dual-pipe 
micro-ops.

CAH 01H SIMD_COMP_INST_RET
IRED.PACKED_SINGLE

Retired computational 
Streaming SIMD 
Extensions (SSE) 
packed-single 
instructions.

This event counts the number of computational SSE packed-
single instructions retired. Computational instructions perform 
arithmetic computations, like add, multiply and divide. 
Instructions that perform load and store operations or logical 
operations, like XOR, OR, and AND are not counted by this 
event.

CAH 02H SIMD_COMP_INST_RET
IRED.SCALAR_SINGLE

Retired computational 
Streaming SIMD 
Extensions (SSE) 
scalar-single 
instructions.

This event counts the number of computational SSE scalar-
single instructions retired. Computational instructions perform 
arithmetic computations, like add, multiply and divide. 
Instructions that perform load and store operations or logical 
operations, like XOR, OR, and AND are not counted by this 
event.

CAH 04H SIMD_COMP_INST_RET
IRED.PACKED_DOUBLE

Retired computational 
Streaming SIMD 
Extensions 2 (SSE2) 
packed-double 
instructions.

This event counts the number of computational SSE2 packed-
double instructions retired. Computational instructions perform 
arithmetic computations, like add, multiply and divide. 
Instructions that perform load and store operations or logical 
operations, like XOR, OR, and AND are not counted by this 
event.

CAH 08H SIMD_COMP_INST_RET
IRED.SCALAR_DOUBLE

Retired computational 
Streaming SIMD 
Extensions 2 (SSE2) 
scalar-double 
instructions

This event counts the number of computational SSE2 scalar-
double instructions retired. Computational instructions perform 
arithmetic computations, like add, multiply and divide. 
Instructions that perform load and store operations or logical 
operations, like XOR, OR, and AND are not counted by this 
event.

CBH 01H MEM_LOAD_RETIRED.L
2_HIT

Retired loads that hit 
the L2 cache (precise 
event)

This event counts the number of retired load operations that 
missed the L1 data cache and hit the L2 cache.

CBH 02H MEM_LOAD_RETIRED.L
2_MISS

Retired loads that miss 
the L2 cache (precise 
event)

This event counts the number of retired load operations that 
missed the L2 cache.

CBH 04H MEM_LOAD_RETIRED.D
TLB_MISS

Retired loads that miss 
the DTLB (precise 
event)

This event counts the number of retired loads that missed the 
DTLB. The DTLB miss is not counted if the load operation causes 
a fault. 

Table 19-18.  Non-Architectural Performance Events for Intel® Atom™ Processors (Contd.)
Event
Num.

Umask
Value Event Name Definition Description and Comment



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 219

...

13.Updates to Chapter 24, Volume 3C
Change bars show changes to Chapter 24 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3C: System Programming Guide, Part 3.

...

24.1 OVERVIEW
A logical processor uses virtual-machine control data structures (VMCSs) while it is in VMX operation. These 
manage transitions into and out of VMX non-root operation (VM entries and VM exits) as well as processor 
behavior in VMX non-root operation. This structure is manipulated by the new instructions VMCLEAR, VMPTRLD, 
VMREAD, and VMWRITE.

A VMM can use a different VMCS for each virtual machine that it supports. For a virtual machine with multiple 
logical processors (virtual processors), the VMM can use a different VMCS for each virtual processor.

A logical processor associates a region in memory with each VMCS. This region is called the VMCS region.1 Soft-
ware references a specific VMCS using the 64-bit physical address of the region (a VMCS pointer). VMCS 

CDH 00H SIMD_ASSIST SIMD assists invoked This event counts the number of SIMD assists invoked. SIMD 
assists are invoked when an EMMS instruction is executed after 
MMX™ technology code has changed the MMX state in the 
floating point stack. For example, these assists are required in 
the following cases: 

Streaming SIMD Extensions (SSE) instructions: 

1. Denormal input when the DAZ (Denormals Are Zeros) flag is 
off 

2. Underflow result when the FTZ (Flush To Zero) flag is off 

CEH 00H SIMD_INSTR_RETIRED SIMD Instructions 
retired

This event counts the number of SIMD instructions that retired.

CFH 00H SIMD_SAT_INSTR_RETI
RED

Saturated arithmetic 
instructions retired

This event counts the number of saturated arithmetic SIMD 
instructions that retired.

E0H 01H BR_INST_DECODED Branch instructions 
decoded

This event counts the number of branch instructions decoded.

E4H 01H BOGUS_BR Bogus branches This event counts the number of byte sequences that were 
mistakenly detected as taken branch instructions. This results 
in a BACLEAR event and the BTB is flushed. This occurs mainly 
after task switches.

E6H 01H BACLEARS.ANY BACLEARS asserted This event counts the number of times the front end is 
redirected for a branch prediction, mainly when an early branch 
prediction is corrected by other branch handling mechanisms in 
the front-end. This can occur if the code has many branches 
such that they cannot be consumed by the branch predictor.   
Each Baclear asserted costs approximately 7 cycles. The effect 
on total execution time depends on the surrounding code.
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pointers must be aligned on a 4-KByte boundary (bits 11:0 must be zero). These pointers must not set bits 
beyond the processor’s physical-address width.1,2

A logical processor may maintain a number of VMCSs that are active. The processor may optimize VMX operation 
by maintaining the state of an active VMCS in memory, on the processor, or both. At any given time, at most one 
of the active VMCSs is the current VMCS. (This document frequently uses the term “the VMCS” to refer to the 
current VMCS.) The VMLAUNCH, VMREAD, VMRESUME, and VMWRITE instructions operate only on the current 
VMCS.

The following items describe how a logical processor determines which VMCSs are active and which is current:
• The memory operand of the VMPTRLD instruction is the address of a VMCS. After execution of the instruction, 

that VMCS is both active and current on the logical processor. Any other VMCS that had been active remains 
so, but no other VMCS is current.

• The VMCS link pointer field in the current VMCS (see Section 24.4.2) is itself the address of a VMCS. If 
VM entry is performed successfully with the 1-setting of the “VMCS shadowing” VM-execution control, the 
VMCS referenced by the VMCS link pointer field becomes active on the logical processor. The identity of the 
current VMCS does not change.

• The memory operand of the VMCLEAR instruction is also the address of a VMCS. After execution of the 
instruction, that VMCS is neither active nor current on the logical processor. If the VMCS had been current on 
the logical processor, the logical processor no longer has a current VMCS.

The VMPTRST instruction stores the address of the logical processor’s current VMCS into a specified memory loca-
tion (it stores the value FFFFFFFF_FFFFFFFFH if there is no current VMCS).

The launch state of a VMCS determines which VM-entry instruction should be used with that VMCS: the 
VMLAUNCH instruction requires a VMCS whose launch state is “clear”; the VMRESUME instruction requires a 
VMCS whose launch state is “launched”. A logical processor maintains a VMCS’s launch state in the corresponding 
VMCS region. The following items describe how a logical processor manages the launch state of a VMCS:
• If the launch state of the current VMCS is “clear”, successful execution of the VMLAUNCH instruction changes 

the launch state to “launched”.
• The memory operand of the VMCLEAR instruction is the address of a VMCS. After execution of the instruction, 

the launch state of that VMCS is “clear”.
• There are no other ways to modify the launch state of a VMCS (it cannot be modified using VMWRITE) and 

there is no direct way to discover it (it cannot be read using VMREAD).

Figure 24-1 illustrates the different states of a VMCS. It uses “X” to refer to the VMCS and “Y” to refer to any other 
VMCS. Thus: “VMPTRLD X” always makes X current and active; “VMPTRLD Y” always makes X not current 
(because it makes Y current); VMLAUNCH makes the launch state of X “launched” if X was current and its launch 
state was “clear”; and VMCLEAR X always makes X inactive and not current and makes its launch state “clear”.

The figure does not illustrate operations that do not modify the VMCS state relative to these parameters (e.g., 
execution of VMPTRLD X when X is already current). Note that VMCLEAR X makes X “inactive, not current, and 
clear,” even if X’s current state is not defined (e.g., even if X has not yet been initialized). See Section 24.11.3.

Because a shadow VMCS (see Section 24.10) cannot be used for VM entry, the launch state of a shadow VMCS is 
not meaningful. Figure 24-1 does not illustrate all the ways in which a shadow VMCS may be made active.

1. The amount of memory required for a VMCS region is at most 4 KBytes. The exact size is implementation specific and can be deter-
mined by consulting the VMX capability MSR IA32_VMX_BASIC to determine the size of the VMCS region (see Appendix A.1).

1. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.

2. If IA32_VMX_BASIC[48] is read as 1, these pointers must not set any bits in the range 63:32; see Appendix A.1.
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24.2 FORMAT OF THE VMCS REGION
A VMCS region comprises up to 4-KBytes.1 The format of a VMCS region is given in Table 24-1.

The first 4 bytes of the VMCS region contain the VMCS revision identifier at bits 30:0.2 Processors that main-
tain VMCS data in different formats (see below) use different VMCS revision identifiers. These identifiers enable 
software to avoid using a VMCS region formatted for one processor on a processor that uses a different format.3 
Bit 31 of this 4-byte region indicates whether the VMCS is a shadow VMCS (see Section 24.10).

Software should write the VMCS revision identifier to the VMCS region before using that region for a VMCS. The 
VMCS revision identifier is never written by the processor; VMPTRLD fails if its operand references a VMCS region 
whose VMCS revision identifier differs from that used by the processor. (VMPTRLD also fails if the shadow-VMCS 

Figure 24-1.  States of VMCS X

1. The exact size is implementation specific and can be determined by consulting the VMX capability MSR IA32_VMX_BASIC to deter-
mine the size of the VMCS region (see Appendix A.1).
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Table 24-1.  Format of the VMCS Region

Byte Offset Contents

0 Bits 30:0: VMCS revision identifier

Bit 31: shadow-VMCS indicator (see Section 24.10)

4 VMX-abort indicator

8 VMCS data (implementation-specific format)

2. Earlier versions of this manual specified that the VMCS revision identifier was a 32-bit field. For all processors produced prior to 
this change, bit 31 of the VMCS revision identifier was 0.

3. Logical processors that use the same VMCS revision identifier use the same size for VMCS regions.
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indicator is 1 and the processor does not support the 1-setting of the “VMCS shadowing” VM-execution control; 
see Section 24.6.2) Software can discover the VMCS revision identifier that a processor uses by reading the VMX 
capability MSR IA32_VMX_BASIC (see Appendix A.1).

Software should clear or set the shadow-VMCS indicator depending on whether the VMCS is to be an ordinary 
VMCS or a shadow VMCS (see Section 24.10). VMPTRLD fails if the shadow-VMCS indicator is set and the 
processor does not support the 1-setting of the “VMCS shadowing” VM-execution control. Software can support 
for this setting by reading the VMX capability MSR IA32_VMX_PROCBASED_CTLS2 (see Appendix A.3.3).

The next 4 bytes of the VMCS region are used for the VMX-abort indicator. The contents of these bits do not 
control processor operation in any way. A logical processor writes a non-zero value into these bits if a VMX abort 
occurs (see Section 27.7). Software may also write into this field.

The remainder of the VMCS region is used for VMCS data (those parts of the VMCS that control VMX non-root 
operation and the VMX transitions). The format of these data is implementation-specific. VMCS data are discussed 
in Section 24.3 through Section 24.9. To ensure proper behavior in VMX operation, software should maintain the 
VMCS region and related structures (enumerated in Section 24.11.4) in writeback cacheable memory. Future 
implementations may allow or require a different memory type1. Software should consult the VMX capability MSR 
IA32_VMX_BASIC (see Appendix A.1).

24.3 ORGANIZATION OF VMCS DATA
The VMCS data are organized into six logical groups:
• Guest-state area. Processor state is saved into the guest-state area on VM exits and loaded from there on 

VM entries.
• Host-state area. Processor state is loaded from the host-state area on VM exits.
• VM-execution control fields. These fields control processor behavior in VMX non-root operation. They 

determine in part the causes of VM exits.
• VM-exit control fields. These fields control VM exits.
• VM-entry control fields. These fields control VM entries.
• VM-exit information fields. These fields receive information on VM exits and describe the cause and the 

nature of VM exits. On some processors, these fields are read-only.2

The VM-execution control fields, the VM-exit control fields, and the VM-entry control fields are sometimes 
referred to collectively as VMX controls.

...

1. Alternatively, software may map any of these regions or structures with the UC memory type. Doing so is strongly discouraged 
unless necessary as it will cause the performance of transitions using those structures to suffer significantly. In addition, the pro-
cessor will continue to use the memory type reported in the VMX capability MSR IA32_VMX_BASIC with exceptions noted in 
Appendix A.1.

2.  Software can discover whether these fields can be written by reading the VMX capability MSR IA32_VMX_MISC (see Appendix 
A.6).
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Table 24-7 lists the secondary processor-based VM-execution controls. See Chapter 25 for more details of how 
these controls affect processor behavior in VMX non-root operation.

...

24.6.15 VMCS Shadowing Bitmap Addresses
On processors that support the 1-setting of the “VMCS shadowing” VM-execution control, the VM-execution 
control fields include the 64-bit physical addresses of the VMREAD bitmap and the VMWRITE bitmap. Each 
bitmap is 4 KBytes in size and thus contains 32 KBits. The addresses are the VMREAD-bitmap address and the 
VMWRITE-bitmap address.

If the “VMCS shadowing” VM-execution control is 1, executions of VMREAD and VMWRITE may consult these 
bitmaps (see Section 24.10 and Section 30.3).

Table 24-7.  Definitions of Secondary Processor-Based VM-Execution Controls
Bit Position(s) Name Description

0 Virtualize APIC 
accesses

If this control is 1, the logical processor treats specially accesses to the page with the APIC-
access address. See Section 29.4.

1 Enable EPT If this control is 1, extended page tables (EPT) are enabled. See Section 28.2.

2 Descriptor-table 
exiting

This control determines whether executions of LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, and 
STR cause VM exits.

3 Enable RDTSCP If this control is 0, any execution of RDTSCP causes an invalid-opcode exception (#UD).

4 Virtualize x2APIC 
mode

If this control is 1, the logical processor treats specially RDMSR and WRMSR to APIC MSRs (in 
the range 800H–8FFH). See Section 29.5.

5 Enable VPID If this control is 1, cached translations of linear addresses are associated with a virtual-
processor identifier (VPID). See Section 28.1.

6 WBINVD exiting This control determines whether executions of WBINVD cause VM exits.

7 Unrestricted guest This control determines whether guest software may run in unpaged protected mode or in real-
address mode.

8 APIC-register 
virtualization

If this control is 1, the logical processor virtualizes certain APIC accesses. See Section 29.4 and 
Section 29.5.

9 Virtual-interrupt 
delivery

This controls enables the evaluation and delivery of pending virtual interrupts as well as the 
emulation of writes to the APIC registers that control interrupt prioritization.

10 PAUSE-loop exiting This control determines whether a series of executions of PAUSE can cause a VM exit (see 
Section 24.6.13 and Section 25.1.3).

11 RDRAND exiting This control determines whether executions of RDRAND cause VM exits.

12 Enable INVPCID If this control is 0, any execution of INVPCID causes an invalid-opcode exception (#UD).

13 Enable 
VM functions

Setting this control to 1 enables use of the VMFUNC instruction in VMX non-root operation. See 
Section 25.5.5.

14 VMCS shadowing If this control is 1, executions of VMREAD and VMWRITE in VMX non-root operation may access 
a shadow VMCS (instead of causing VM exits). See Section 24.10 and Section 30.3.

18 EPT-violation #VE If this control is 1, EPT violations may cause virtualization exceptions (#VE) instead of VM exits. 
See Section 25.5.6.
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24.6.16 Controls for Virtualization Exceptions
On processors that support the 1-setting of the “EPT-violation #VE” VM-execution control, the VM-execution 
control fields include the following:
• Virtualization-exception information address (64 bits). This field contains the physical address of the 

virtualization-exception information area. When a logical processor encounters a virtualization 
exception, it saves virtualization-exception information at the virtualization-exception information address; 
see Section 25.5.6.2.

• EPTP index (16 bits). When an EPT violation causes a virtualization exception, the processor writes the value 
of this field to the virtualization-exception information area. The EPTP-switching VM function updates this field 
(see Section 25.5.5.3).

...

24.9 VM-EXIT INFORMATION FIELDS
The VMCS contains a section of fields that contain information about the most recent VM exit.

On some processors, attempts to write to these fields with VMWRITE fail (see “VMWRITE—Write Field to Virtual-
Machine Control Structure” in Chapter 30 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3C).1

...

24.10 VMCS TYPES: ORDINARY AND SHADOW
Every VMCS is either an ordinary VMCS or a shadow VMCS. A VMCS’s type is determined by the shadow-VMCS 
indicator in the VMCS region (this is the value of bit 31 of the first 4 bytes of the VMCS region; see Table 24-1): 0 
indicates an ordinary VMCS, while 1 indicates a shadow VMCS. Shadow VMCSs are supported only on processors 
that support the 1-setting of the “VMCS shadowing” VM-execution control (see Section 24.6.2).

A shadow VMCS differs from an ordinary VMCS in two ways:
• An ordinary VMCS can be used for VM entry but a shadow VMCS cannot. Attempts to perform VM entry when 

the current VMCS is a shadow VMCS fail (see Section 26.1).
• The VMREAD and VMWRITE instructions can be used in VMX non-root operation to access a shadow VMCS but 

not an ordinary VMCS. This fact results from the following:

— If the “VMCS shadowing” VM-execution control is 0, execution of the VMREAD and VMWRITE instructions 
in VMX non-root operation always cause VM exits (see Section 25.1.3).

— If the “VMCS shadowing” VM-execution control is 1, execution of the VMREAD and VMWRITE instructions 
in VMX non-root operation can access the VMCS referenced by the VMCS link pointer (see Section 30.3).

— If the “VMCS shadowing” VM-execution control is 1, VM entry ensures that any VMCS referenced by the 
VMCS link pointer is a shadow VMCS (see Section 26.3.1.5).

In VMX root operation, both types of VMCSs can be accessed with the VMREAD and VMWRITE instructions.

Software should not modify the shadow-VMCS indicator in the VMCS region of a VMCS that is active. Doing so may 
cause the VMCS to become corrupted (see Section 24.11.1). Before modifying the shadow-VMCS indicator, soft-
ware should execute VMCLEAR for the VMCS to ensure that it is not active.

1.  Software can discover whether these fields can be written by reading the VMX capability MSR IA32_VMX_MISC (see Appendix 
A.6).
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...

24.11.1 Software Use of Virtual-Machine Control Structures
To ensure proper processor behavior, software should observe certain guidelines when using an active VMCS.

No VMCS should ever be active on more than one logical processor. If a VMCS is to be “migrated” from one logical 
processor to another, the first logical processor should execute VMCLEAR for the VMCS (to make it inactive on that 
logical processor and to ensure that all VMCS data are in memory) before the other logical processor executes 
VMPTRLD for the VMCS (to make it active on the second logical processor).1 A VMCS that is made active on more 
than one logical processor may become corrupted (see below).

Software should not modify the shadow-VMCS indicator (see Table 24-1) in the VMCS region of a VMCS that is 
active. Doing so may cause the VMCS to become corrupted. Before modifying the shadow-VMCS indicator, soft-
ware should execute VMCLEAR for the VMCS to ensure that it is not active.

Software should use the VMREAD and VMWRITE instructions to access the different fields in the current VMCS 
(see Section 24.11.2). Software should never access or modify the VMCS data of an active VMCS using ordinary 
memory operations, in part because the format used to store the VMCS data is implementation-specific and not 
architecturally defined, and also because a logical processor may maintain some VMCS data of an active VMCS on 
the processor and not in the VMCS region. The following items detail some of the hazards of accessing VMCS data 
using ordinary memory operations:
• Any data read from a VMCS with an ordinary memory read does not reliably reflect the state of the VMCS. 

Results may vary from time to time or from logical processor to logical processor.
• Writing to a VMCS with an ordinary memory write is not guaranteed to have a deterministic effect on the 

VMCS. Doing so may cause the VMCS to become corrupted (see below).

(Software can avoid these hazards by removing any linear-address mappings to a VMCS region before executing 
a VMPTRLD for that region and by not remapping it until after executing VMCLEAR for that region.)

If a logical processor leaves VMX operation, any VMCSs active on that logical processor may be corrupted (see 
below). To prevent such corruption of a VMCS that may be used either after a return to VMX operation or on 
another logical processor, software should execute VMCLEAR for that VMCS before executing the VMXOFF instruc-
tion or removing power from the processor (e.g., as part of a transition to the S3 and S4 power states).

This section has identified operations that may cause a VMCS to become corrupted. These operations may cause 
the VMCS’s data to become undefined. Behavior may be unpredictable if that VMCS used subsequently on any 
logical processor. The following items detail some hazards of VMCS corruption:
• VM entries may fail for unexplained reasons or may load undesired processor state.
• The processor may not correctly support VMX non-root operation as documented in Chapter 25 and may 

generate unexpected VM exits.
• VM exits may load undesired processor state, save incorrect state into the VMCS, or cause the logical 

processor to transition to a shutdown state.

...

24.11.2 VMREAD, VMWRITE, and Encodings of VMCS Fields
Every field of the VMCS is associated with a 32-bit value that is its encoding. The encoding is provided in an 
operand to VMREAD and VMWRITE when software wishes to read or write that field. These instructions fail if 

1. As noted in Section 24.1, execution of the VMPTRLD instruction makes a VMCS is active. In addition, VM entry makes active any 
shadow VMCS referenced by the VMCS link pointer in the current VMCS. If a shadow VMCS is made active by VM entry, it is neces-
sary to execute VMCLEAR for that VMCS before allowing that VMCS to become active on another logical processor.
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given, in 64-bit mode, an operand that sets an encoding bit beyond bit 32. See Chapter 30 of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3C, for a description of these instructions.

The structure of the 32-bit encodings of the VMCS components is determined principally by the width of the fields 
and their function in the VMCS. See Table 24-17.

The following items detail the meaning of the bits in each encoding:
• Field width. Bits 14:13 encode the width of the field.

— A value of 0 indicates a 16-bit field.

— A value of 1 indicates a 64-bit field.

— A value of 2 indicates a 32-bit field.

— A value of 3 indicates a natural-width field. Such fields have 64 bits on processors that support Intel 64 
architecture and 32 bits on processors that do not.

Fields whose encodings use value 1 are specially treated to allow 32-bit software access to all 64 bits of the 
field. Such access is allowed by defining, for each such field, an encoding that allows direct access to the high 
32 bits of the field. See below.

• Field type. Bits 11:10 encode the type of VMCS field: control, guest-state, host-state, or VM-exit infor-
mation. (The last category also includes the VM-instruction error field.)

• Index. Bits 9:1 distinguish components with the same field width and type.
• Access type. Bit 0 must be 0 for all fields except for 64-bit fields (those with field-width 1; see above). A 

VMREAD or VMWRITE using an encoding with this bit cleared to 0 accesses the entire field. For a 64-bit field 
with field-width 1, a VMREAD or VMWRITE using an encoding with this bit set to 1 accesses only the high 32 
bits of the field.

Appendix B gives the encodings of all fields in the VMCS.

The following describes the operation of VMREAD and VMWRITE based on processor mode, VMCS-field width, and 
access type:
• 16-bit fields:

Table 24-17.  Structure of VMCS Component Encoding

Bit Position(s) Contents

0 Access type (0 = full; 1 = high); must be full for 16-bit, 32-bit, and natural-width fields

9:1 Index

11:10 Type:

0: control
1: VM-exit information
2: guest state
3: host state

12 Reserved (must be 0)

14:13 Width:

0: 16-bit
1: 64-bit
2: 32-bit
3: natural-width

31:15 Reserved (must be 0)
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— A VMREAD returns the value of the field in bits 15:0 of the destination operand; other bits of the 
destination operand are cleared to 0.

— A VMWRITE writes the value of bits 15:0 of the source operand into the VMCS field; other bits of the 
source operand are not used.

• 32-bit fields:

— A VMREAD returns the value of the field in bits 31:0 of the destination operand; in 64-bit mode, bits 63:32 
of the destination operand are cleared to 0.

— A VMWRITE writes the value of bits 31:0 of the source operand into the VMCS field; in 64-bit mode, 
bits 63:32 of the source operand are not used.

• 64-bit fields and natural-width fields using the full access type outside IA-32e mode.

— A VMREAD returns the value of bits 31:0 of the field in its destination operand; bits 63:32 of the field are 
ignored.

— A VMWRITE writes the value of its source operand to bits 31:0 of the field and clears bits 63:32 of the 
field.

• 64-bit fields and natural-width fields using the full access type in 64-bit mode (only on processors that support 
Intel 64 architecture).

— A VMREAD returns the value of the field in bits 63:0 of the destination operand

— A VMWRITE writes the value of bits 63:0 of the source operand into the VMCS field.
• 64-bit fields using the high access type.

— A VMREAD returns the value of bits 63:32 of the field in bits 31:0 of the destination operand; in 64-bit 
mode, bits 63:32 of the destination operand are cleared to 0.

— A VMWRITE writes the value of bits 31:0 of the source operand to bits 63:32 of the field; in 64-bit mode, 
bits 63:32 of the source operand are not used.

Software seeking to read a 64-bit field outside IA-32e mode can use VMREAD with the full access type (reading 
bits 31:0 of the field) and VMREAD with the high access type (reading bits 63:32 of the field); the order of the two 
VMREAD executions is not important. Software seeking to modify a 64-bit field outside IA-32e mode should first 
use VMWRITE with the full access type (establishing bits 31:0 of the field while clearing bits 63:32) and then use 
VMWRITE with the high access type (establishing bits 63:32 of the field).

...

24.11.5 VMXON Region
Before executing VMXON, software allocates a region of memory (called the VMXON region)1 that the logical 
processor uses to support VMX operation. The physical address of this region (the VMXON pointer) is provided in 
an operand to VMXON. The VMXON pointer is subject to the limitations that apply to VMCS pointers:
• The VMXON pointer must be 4-KByte aligned (bits 11:0 must be zero).
• The VMXON pointer must not set any bits beyond the processor’s physical-address width.2,3

Before executing VMXON, software should write the VMCS revision identifier (see Section 24.2) to the VMXON 
region. (Specifically, it should write the 31-bit VMCS revision identifier to bits 30:0 of the first 4 bytes of the 

1. The amount of memory required for the VMXON region is the same as that required for a VMCS region. This size is implementation 
specific and can be determined by consulting the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1).

2. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.

3. If IA32_VMX_BASIC[48] is read as 1, the VMXON pointer must not set any bits in the range 63:32; see Appendix A.1.
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VMXON region; bit 31 should be cleared to 0.) It need not initialize the VMXON region in any other way. Software 
should use a separate region for each logical processor and should not access or modify the VMXON region of a 
logical processor between execution of VMXON and VMXOFF on that logical processor. Doing otherwise may lead 
to unpredictable behavior (including behaviors identified in Section 24.11.1).

...

14.Updates to Chapter 25, Volume 3C
Change bars show changes to Chapter 25 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3C: System Programming Guide, Part 3.

------------------------------------------------------------------------------------------

...
CHAPTER 25

VMX NON-ROOT OPERATION

In a virtualized environment using VMX, the guest software stack typically runs on a logical processor in VMX non-
root operation. This mode of operation is similar to that of ordinary processor operation outside of the virtualized 
environment. This chapter describes the differences between VMX non-root operation and ordinary processor 
operation with special attention to causes of VM exits (which bring a logical processor from VMX non-root opera-
tion to root operation). The differences between VMX non-root operation and ordinary processor operation are 
described in the following sections:
• Section 25.1, “Instructions That Cause VM Exits”
• Section 25.2, “Other Causes of VM Exits”
• Section 25.3, “Changes to Instruction Behavior in VMX Non-Root Operation”
• Section 25.4, “Other Changes in VMX Non-Root Operation” 
• Section 25.5, “Features Specific to VMX Non-Root Operation”
• Section 25.6, “Unrestricted Guests”

Chapter 24, “Virtual-Machine Control Structures,” describes the data control structures that govern VMX non-root 
operation. Chapter 26, “VM Entries,” describes the operation of VM entries by which the processor transitions 
from VMX root operation to VMX non-root operation. Chapter 27, “VM Exits,” describes the operation of VM exits 
by which the processor transitions from VMX non-root operation to VMX root operation.

Chapter 28, “VMX Support for Address Translation,” describes two features that support address translation in 
VMX non-root operation. Chapter 29, “APIC Virtualization and Virtual Interrupts,” describes features that support 
virtualization of interrupts and the Advanced Programmable Interrupt Controller (APIC) in VMX non-root opera-
tion.

...

25.1.2 Instructions That Cause VM Exits Unconditionally
The following instructions cause VM exits when they are executed in VMX non-root operation: CPUID, GETSEC,1 
INVD, and XSETBV. This is also true of instructions introduced with VMX, which include: INVEPT, INVVPID, 
VMCALL,2 VMCLEAR, VMLAUNCH, VMPTRLD, VMPTRST, VMRESUME, VMXOFF, and VMXON.

1. An execution of GETSEC in VMX non-root operation causes a VM exit if CR4.SMXE[Bit 14] = 1 regardless of the value of CPL or 
RAX. An execution of GETSEC causes an invalid-opcode exception (#UD) if CR4.SMXE[Bit 14] = 0.
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25.1.3 Instructions That Cause VM Exits Conditionally
Certain instructions cause VM exits in VMX non-root operation depending on the setting of the VM-execution 
controls. The following instructions can cause “fault-like” VM exits based on the conditions described:
• CLTS. The CLTS instruction causes a VM exit if the bits in position 3 (corresponding to CR0.TS) are set in both 

the CR0 guest/host mask and the CR0 read shadow.
• HLT. The HLT instruction causes a VM exit if the “HLT exiting” VM-execution control is 1.
• IN, INS/INSB/INSW/INSD, OUT, OUTS/OUTSB/OUTSW/OUTSD. The behavior of each of these 

instructions is determined by the settings of the “unconditional I/O exiting” and “use I/O bitmaps” 
VM-execution controls:

— If both controls are 0, the instruction executes normally.

— If the “unconditional I/O exiting” VM-execution control is 1 and the “use I/O bitmaps” VM-execution 
control is 0, the instruction causes a VM exit.

— If the “use I/O bitmaps” VM-execution control is 1, the instruction causes a VM exit if it attempts to access 
an I/O port corresponding to a bit set to 1 in the appropriate I/O bitmap (see Section 24.6.4). If an I/O 
operation “wraps around” the 16-bit I/O-port space (accesses ports FFFFH and 0000H), the I/O instruction 
causes a VM exit (the “unconditional I/O exiting” VM-execution control is ignored if the “use I/O bitmaps” 
VM-execution control is 1).

See Section 25.1.1 for information regarding the priority of VM exits relative to faults that may be caused by 
the INS and OUTS instructions.

• INVLPG. The INVLPG instruction causes a VM exit if the “INVLPG exiting” VM-execution control is 1.
• INVPCID. The INVPCID instruction causes a VM exit if the “INVLPG exiting” and “enable INVPCID” 

VM-execution controls are both 1.1

• LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, STR. These instructions cause VM exits if the “descriptor-
table exiting” VM-execution control is 1.2

• LMSW. In general, the LMSW instruction causes a VM exit if it would write, for any bit set in the low 4 bits of 
the CR0 guest/host mask, a value different than the corresponding bit in the CR0 read shadow. LMSW never 
clears bit 0 of CR0 (CR0.PE); thus, LMSW causes a VM exit if either of the following are true:

— The bits in position 0 (corresponding to CR0.PE) are set in both the CR0 guest/mask and the source 
operand, and the bit in position 0 is clear in the CR0 read shadow.

— For any bit position in the range 3:1, the bit in that position is set in the CR0 guest/mask and the values 
of the corresponding bits in the source operand and the CR0 read shadow differ.

• MONITOR. The MONITOR instruction causes a VM exit if the “MONITOR exiting” VM-execution control is 1.
• MOV from CR3. The MOV from CR3 instruction causes a VM exit if the “CR3-store exiting” VM-execution 

control is 1. The first processors to support the virtual-machine extensions supported only the 1-setting of this 
control.

• MOV from CR8. The MOV from CR8 instruction causes a VM exit if the “CR8-store exiting” VM-execution 
control is 1.

2. Under the dual-monitor treatment of SMIs and SMM, executions of VMCALL cause SMM VM exits in VMX root operation outside 
SMM. See Section 34.15.2.

1. “Enable INVPCID” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VMX non-root operation functions as if the “enable INVPCID” VM-execution control were 0. See Section 24.6.2.

2. “Descriptor-table exiting” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-exe-
cution controls is 0, VMX non-root operation functions as if the “descriptor-table exiting” VM-execution control were 0. See Section 
24.6.2.
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• MOV to CR0. The MOV to CR0 instruction causes a VM exit unless the value of its source operand matches, 
for the position of each bit set in the CR0 guest/host mask, the corresponding bit in the CR0 read shadow. (If 
every bit is clear in the CR0 guest/host mask, MOV to CR0 cannot cause a VM exit.)

• MOV to CR3. The MOV to CR3 instruction causes a VM exit unless the “CR3-load exiting” VM-execution 
control is 0 or the value of its source operand is equal to one of the CR3-target values specified in the VMCS. 
If the CR3-target count in n, only the first n CR3-target values are considered; if the CR3-target count is 0, 
MOV to CR3 always causes a VM exit.
The first processors to support the virtual-machine extensions supported only the 1-setting of the “CR3-load
exiting” VM-execution control. These processors always consult the CR3-target controls to determine
whether an execution of MOV to CR3 causes a VM exit.

• MOV to CR4. The MOV to CR4 instruction causes a VM exit unless the value of its source operand matches, 
for the position of each bit set in the CR4 guest/host mask, the corresponding bit in the CR4 read shadow.

• MOV to CR8. The MOV to CR8 instruction causes a VM exit if the “CR8-load exiting” VM-execution control is 1.
• MOV DR. The MOV DR instruction causes a VM exit if the “MOV-DR exiting” VM-execution control is 1. Such 

VM exits represent an exception to the principles identified in Section 25.1.1 in that they take priority over the 
following: general-protection exceptions based on privilege level; and invalid-opcode exceptions that occur 
because CR4.DE=1 and the instruction specified access to DR4 or DR5.

• MWAIT. The MWAIT instruction causes a VM exit if the “MWAIT exiting” VM-execution control is 1. If this 
control is 0, the behavior of the MWAIT instruction may be modified (see Section 25.3).

• PAUSE.The behavior of each of this instruction depends on CPL and the settings of the “PAUSE exiting” and 
“PAUSE-loop exiting” VM-execution controls:1

— CPL = 0.

• If the “PAUSE exiting” and “PAUSE-loop exiting” VM-execution controls are both 0, the PAUSE 
instruction executes normally.

• If the “PAUSE exiting” VM-execution control is 1, the PAUSE instruction causes a VM exit (the “PAUSE-
loop exiting” VM-execution control is ignored if CPL = 0 and the “PAUSE exiting” VM-execution control 
is 1).

• If the “PAUSE exiting” VM-execution control is 0 and the “PAUSE-loop exiting” VM-execution control is 
1, the following treatment applies.

The processor determines the amount of time between this execution of PAUSE and the previous 
execution of PAUSE at CPL 0. If this amount of time exceeds the value of the VM-execution control field 
PLE_Gap, the processor considers this execution to be the first execution of PAUSE in a loop. (It also 
does so for the first execution of PAUSE at CPL 0 after VM entry.)

Otherwise, the processor determines the amount of time since the most recent execution of PAUSE 
that was considered to be the first in a loop. If this amount of time exceeds the value of the VM-
execution control field PLE_Window, a VM exit occurs.

For purposes of these computations, time is measured based on a counter that runs at the same rate 
as the timestamp counter (TSC).

— CPL > 0.

• If the “PAUSE exiting” VM-execution control is 0, the PAUSE instruction executes normally.

• If the “PAUSE exiting” VM-execution control is 1, the PAUSE instruction causes a VM exit.

The “PAUSE-loop exiting” VM-execution control is ignored if CPL > 0.
• RDMSR. The RDMSR instruction causes a VM exit if any of the following are true:

1. “PAUSE-loop exiting” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VMX non-root operation functions as if the “PAUSE-loop exiting” VM-execution control were 0. See Section 24.6.2.



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 231

— The “use MSR bitmaps” VM-execution control is 0.

— The value of ECX is not in the ranges 00000000H – 00001FFFH and C0000000H – C0001FFFH.

— The value of ECX is in the range 00000000H – 00001FFFH and bit n in read bitmap for low MSRs is 1, 
where n is the value of ECX.

— The value of ECX is in the range C0000000H – C0001FFFH and bit n in read bitmap for high MSRs is 1, 
where n is the value of ECX & 00001FFFH.

See Section 24.6.9 for details regarding how these bitmaps are identified.
• RDPMC. The RDPMC instruction causes a VM exit if the “RDPMC exiting” VM-execution control is 1.
• RDRAND. The RDRAND instruction causes a VM exit if the “RDRAND exiting” VM-execution control is 1.1

• RDTSC. The RDTSC instruction causes a VM exit if the “RDTSC exiting” VM-execution control is 1.
• RDTSCP. The RDTSCP instruction causes a VM exit if the “RDTSC exiting” and “enable RDTSCP” VM-execution 

controls are both 1.2

• RSM. The RSM instruction causes a VM exit if executed in system-management mode (SMM).3

• VMREAD. The VMREAD instruction causes a VM exit if any of the following are true:

— The “VMCS shadowing” VM-execution control is 0.4

— Bits 63:15 (bits 31:15 outside 64-bit mode) of the register source operand are not all 0.

— Bit n in VMREAD bitmap is 1, where n is the value of bits 14:0 of the register source operand. See Section 
24.6.15 for details regarding how the VMREAD bitmap is identified.

If the VMREAD instruction does not cause a VM exit, it reads from the VMCS referenced by the VMCS link
pointer. See Chapter 30, “VMREAD—Read Field from Virtual-Machine Control Structure” for details of the
operation of the VMREAD instruction.

• VMWRITE. The VMWRITE instruction causes a VM exit if any of the following are true:

— The “VMCS shadowing” VM-execution control is 0.

— Bits 63:15 (bits 31:15 outside 64-bit mode) of the register source operand are not all 0.

— Bit n in VMWRITE bitmap is 1, where n is the value of bits 14:0 of the register source operand. See Section 
24.6.15 for details regarding how the VMWRITE bitmap is identified.

If the VMWRITE instruction does not cause a VM exit, it writes to the VMCS referenced by the VMCS link
pointer. See Chapter 30, “VMWRITE—Write Field to Virtual-Machine Control Structure” for details of the
operation of the VMWRITE instruction.

• WBINVD. The WBINVD instruction causes a VM exit if the “WBINVD exiting” VM-execution control is 1.5

• WRMSR. The WRMSR instruction causes a VM exit if any of the following are true:

— The “use MSR bitmaps” VM-execution control is 0.

— The value of ECX is not in the ranges 00000000H – 00001FFFH and C0000000H – C0001FFFH.

1. “RDRAND exiting” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VMX non-root operation functions as if the “RDRAND exiting” VM-execution control were 0. See Section 24.6.2.

2. “Enable RDTSCP” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VMX non-root operation functions as if the “enable RDTSCP” VM-execution control were 0. See Section 24.6.2.

3. Execution of the RSM instruction outside SMM causes an invalid-opcode exception regardless of whether the processor is in VMX 
operation. It also does so in VMX root operation in SMM; see Section 34.15.3.

4. “VMCS shadowing” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VMX non-root operation functions as if the “VMCS shadowing” VM-execution control were 0. See Section 24.6.2.

5. “WBINVD exiting” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VMX non-root operation functions as if the “WBINVD exiting” VM-execution control were 0. See Section 24.6.2.
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— The value of ECX is in the range 00000000H – 00001FFFH and bit n in write bitmap for low MSRs is 1, 
where n is the value of ECX.

— The value of ECX is in the range C0000000H – C0001FFFH and bit n in write bitmap for high MSRs is 1, 
where n is the value of ECX & 00001FFFH.

See Section 24.6.9 for details regarding how these bitmaps are identified.

...

25.5 FEATURES SPECIFIC TO VMX NON-ROOT OPERATION
Some VM-execution controls support features that are specific to VMX non-root operation. These are the VMX-
preemption timer (Section 25.5.1) and the monitor trap flag (Section 25.5.2), translation of guest-physical 
addresses (Section 25.5.3), VM functions (Section 25.5.5), and virtualization exceptions (Section 25.5.6).

...

25.5.4 APIC Virtualization
APIC virtualization is a collection of features that can be used to support the virtualization of interrupts and the 
Advanced Programmable Interrupt Controller (APIC). When APIC virtualization is enabled, the processor 
emulates many accesses to the APIC, tracks the state of the virtual APIC, and delivers virtual interrupts — all in 
VMX non-root operation without a VM exit.

Details of the APIC virtualization are given in Chapter 29.

...

25.5.5.3  EPTP Switching
EPTP switching is VM function 0. This VM function allows software in VMX non-root operation to load a new value 
for the EPT pointer (EPTP), thereby establishing a different EPT paging-structure hierarchy (see Section 28.2 for 
details of the operation of EPT). Software is limited to selecting from a list of potential EPTP values configured in 
advance by software in VMX root operation.

Specifically, the value of ECX is used to select an entry from the EPTP list, the 4-KByte structure referenced by the 
EPTP-list address (see Section 24.6.14; because this structure contains 512 8-Byte entries, VMFUNC causes a 
VM exit if ECX ≥ 512). If the selected entry is a valid EPTP value (it would not cause VM entry to fail; see Section 
26.2.1.1), it is stored in the EPTP field of the current VMCS and is used for subsequent accesses using guest-phys-
ical addresses. The following pseudocode provides details:

IF ECX ≥ 512
THEN VM exit;
ELSE

tent_EPTP ← 8 bytes from EPTP-list address + 8 * ECX;
IF tent_EPTP is not a valid EPTP value (would cause VM entry to fail if in EPTP)

THEN VMexit;
ELSE

write tent_EPTP to the EPTP field in the current VMCS;
use tent_EPTP as the new EPTP value for address translation;
IF processor supports the 1-setting of the “EPT-violation #VE” VM-execution control

THEN
write ECX[15:0] to EPTP-index field in current VMCS;
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use ECX[15:0] as EPTP index for subsequent EPT-violation virtualization exceptions (see Section 
25.5.6.2);

FI;
FI;

FI;

Execution of the EPTP-switching VM function does not modify the state of any registers; no flags are modified.

As noted in Section 25.5.5.2, an execution of the EPTP-switching VM function that causes a VM exit (as specified 
above), uses the basic exit reason 59, indicating “VMFUNC”. The length of the VMFUNC instruction is saved into 
the VM-exit instruction-length field. No additional VM-exit information is provided.

An execution of VMFUNC loads EPTP from the EPTP list (and thus does not cause a fault or VM exit) is called an 
EPTP-switching VMFUNC. After an EPTP-switching VMFUNC, control passes to the next instruction. The logical 
processor starts creating and using guest-physical and combined mappings associated with the new value of bits 
51:12 of EPTP; the combined mappings created and used are associated with the current VPID and PCID (these 
are not changed by VMFUNC).1 If the “enable VPID” VM-execution control is 0, an EPTP-switching VMFUNC inval-
idates combined mappings associated with VPID 0000H (for all PCIDs and for all EP4TA values, where EP4TA is the 
value of bits 51:12 of EPTP).

Because an EPTP-switching VMFUNC may change the translation of guest-physical addresses, it may affect use of 
the guest-physical address in CR3. The EPTP-switching VMFUNC cannot itself cause a VM exit due to an EPT viola-
tion or an EPT misconfiguration due to the translation of that guest-physical address through the new EPT paging 
structures. The following items provide details that apply if CR0.PG = 1:
• If 32-bit paging or IA-32e paging is in use (either CR4.PAE = 0 or IA32_EFER.LMA = 1), the next memory 

access with a linear address uses the translation of the guest-physical address in CR3 through the new EPT 
paging structures. As a result, this access may cause a VM exit due to an EPT violation or an EPT misconfigu-
ration encountered during that translation.

• If PAE paging is in use (CR4.PAE = 1 and IA32_EFER.LMA = 0), an EPTP-switching VMFUNC does not load the 
four page-directory-pointer-table entries (PDPTEs) from the guest-physical address in CR3. The logical 
processor continues to use the four guest-physical addresses already present in the PDPTEs. The guest-
physical address in CR3 is not translated through the new EPT paging structures (until some operation that 
would load the PDPTEs).
The EPTP-switching VMFUNC cannot itself cause a VM exit due to an EPT violation or an EPT misconfiguration
encountered during the translation of a guest-physical address in any of the PDPTEs. A subsequent memory
access with a linear address uses the translation of the guest-physical address in the appropriate PDPTE
through the new EPT paging structures. As a result, such an access may cause a VM exit due to an EPT
violation or an EPT misconfiguration encountered during that translation.

If an EPTP-switching VMFUNC establishes an EPTP value that enables accessed and dirty flags for EPT (by setting 
bit 6), subsequent memory accesses may fail to set those flags as specified if there has been no appropriate 
execution of INVEPT since the last use of an EPTP value that does not enable accessed and dirty flags for EPT 
(because bit 6 is clear) and that is identical to the new value on bits 51:12.

IF the processor supports the 1-setting of the “EPT-violation #VE” VM-execution control, an EPTP-switching 
VMFUNC loads the value in ECX[15:0] into to EPTP-index field in current VMCS. Subsequent EPT-violation virtual-
ization exceptions will save this value into the virtualization-exception information area (see Section 25.5.6.2);

25.5.6 Virtualization Exceptions
A virtualization exception is a new processor exception. It uses vector 20 and is abbreviated #VE.

1. If the “enable VPID” VM-execution control is 0, the current VPID is 0000H; if CR4.PCIDE = 0, the current PCID is 000H.
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A virtualization exception can occur only in VMX non-root operation. Virtualization exceptions occur only with 
certain settings of certain VM-execution controls. Generally, these settings imply that certain conditions that 
would normally cause VM exits instead cause virtualization exceptions

In particular, the 1-setting of the “EPT-violation #VE” VM-execution control causes some EPT violations to 
generate virtualization exceptions instead of VM exits. Section 25.5.6.1 provides the details of how the processor 
determines whether an EPT violation causes a virtualization exception or a VM exit.

When the processor encounters a virtualization exception, it saves information about the exception to the virtual-
ization-exception information area; see Section 25.5.6.2.

After saving virtualization-exception information, the processor delivers a virtualization exception as it would any 
other exception; see Section 25.5.6.3 for details.

25.5.6.1  Convertible EPT Violations
If the “EPT-violation #VE” VM-execution control is 0 (e.g., on processors that do not support this feature), EPT 
violations always cause VM exits.1 If instead the control is 1, certain EPT violations may be converted to cause 
virtualization exceptions instead; such EPT violations are convertible. 

The values of certain EPT paging-structure entries determine which EPT violations are convertible. Specifically, 
bit 63 of certain EPT paging-structure entries may be defined to mean suppress #VE:
• If bits 2:0 of an EPT paging-structure entry are all 0, the entry is not present. If the processor encounters 

such an entry while translating a guest-physical address, it causes an EPT violation. The EPT violation is 
convertible if and only if bit 63 of the entry is 0.

• If bits 2:0 of an EPT paging-structure entry are not all 0, the following cases apply:

— If the value of the EPT paging-structure entry is not supported, the entry is misconfigured. If the 
processor encounters such an entry while translating a guest-physical address, it causes an EPT miscon-
figuration (not an EPT violation). EPT misconfigurations always cause VM exits.

— If the value of the EPT paging-structure entry is supported, the following cases apply:

• If bit 7 of the entry is 1, or if the entry is an EPT PTE, the entry maps a page. If the processor uses such 
an entry to translate a guest-physical address, and if an access to that address causes an EPT 
violation, the EPT violation is convertible if and only if bit 63 of the entry is 0.

• If bit 7 of the entry is 0 and the entry is not an EPT PTE, the entry references another EPT paging 
structure. The processor does not use the value of bit 63 of the entry to determine whether any 
subsequent EPT violation is convertible.

If an access to a guest-physical address causes an EPT violation, bit 63 of exactly one of the EPT paging-structure 
entries used to translate that address is used to determine whether the EPT violation is convertible: either a entry 
that is not present (if the guest-physical address does not translate to a physical address) or an entry that maps 
a page (if it does).

A convertible EPT violation instead causes a virtualization exception if the following all hold:
• CR0.PE = 1;
• the logical processor is not in the process of delivering an event through the IDT; and
• the 32 bits at offset 4 in the virtualization-exception information area are all 0.

Delivery of virtualization exceptions writes the value FFFFFFFFH to offset 4 in the virtualization-exception infor-
mation area (see Section 25.5.6.2). Thus, once a virtualization exception occurs, another can occur only if soft-
ware clears this field.
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25.5.6.2  Virtualization-Exception Information
Virtualization exceptions save data into the virtualization-exception information area (see Section 24.6.16). 
Table 25-1 enumerates the data saved and the format of the area.

25.5.6.3  Delivery of Virtualization Exceptions
After saving virtualization-exception information, the processor treats a virtualization exception as it does other 
exceptions:
• If bit 20 (#VE) is 1 in the exception bitmap in the VMCS, a virtualization exception causes a VM exit (see 

below). If the bit is 0, the virtualization exception is delivered using gate descriptor 20 in the IDT.
• Virtualization exceptions produce no error code. Delivery of a virtualization exception pushes no error code on 

the stack.
• With respect to double faults, virtualization exceptions have the same severity as page faults. If delivery of a 

virtualization exception encounters a nested fault that is either contributory or a page fault, a double fault 
(#DF) is generated. See Chapter 6, “Interrupt 8—Double Fault Exception (#DF)” in Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.
It is not possible for a virtualization exception to be encountered while delivering another exception (see
Section 25.5.6.1).

If a virtualization exception causes a VM exit directly (because bit 20 is 1 in the exception bitmap), information 
about the exception is saved normally in the VM-exit interruption information field in the VMCS (see Section 
27.2.2). Specifically, the event is reported as a hardware exception with vector 20 and no error code. Bit 12 of the 
field (NMI unblocking due to IRET) is set normally.

If a virtualization exception causes a VM exit indirectly (because bit 20 is 0 in the exception bitmap and delivery 
of the exception generates an event that causes a VM exit), information about the exception is saved normally in 
the IDT-vectoring information field in the VMCS (see Section 27.2.3). Specifically, the event is reported as a hard-
ware exception with vector 20 and no error code.

...

15.Updates to Chapter 26, Volume 3C

Table 25-1.  Format of the Virtualization-Exception Information Area

Byte Offset Contents

0 The 32-bit value that would have been saved into the VMCS as an exit reason had a VM exit occurred 
instead of the virtualization exception. For EPT violations, this value is 48 (00000030H)

4 FFFFFFFFH

8 The 64-bit value that would have been saved into the VMCS as an exit qualification had a VM exit 
occurred instead of the virtualization exception

16 The 64-bit value that would have been saved into the VMCS as a guest-linear address had a VM exit 
occurred instead of the virtualization exception

24 The 64-bit value that would have been saved into the VMCS as a guest-physical address had a VM 
exit occurred instead of the virtualization exception

32 The current 16-bit value of the EPTP index VM-execution control (see Section 24.6.16 and Section 
25.5.5.3)
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Change bars show changes to Chapter 26 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3C: System Programming Guide, Part 3.

------------------------------------------------------------------------------------------

...

26.1 BASIC VM-ENTRY CHECKS
Before a VM entry commences, the current state of the logical processor is checked in the following order:

1. If the logical processor is in virtual-8086 mode or compatibility mode, an invalid-opcode exception is
generated.

2. If the current privilege level (CPL) is not zero, a general-protection exception is generated.

3. If there is no current VMCS, RFLAGS.CF is set to 1 and control passes to the next instruction.

4. If there is a current VMCS but the current VMCS is a shadow VMCS (see Section 24.10), RFLAGS.CF is set to 
1 and control passes to the next instruction.

5. If there is a current VMCS that is not a shadow VMCS, the following conditions are evaluated in order; any of 
these cause VM entry to fail:

a. if there is MOV-SS blocking (see Table 24-3)

b. if the VM entry is invoked by VMLAUNCH and the VMCS launch state is not clear

c. if the VM entry is invoked by VMRESUME and the VMCS launch state is not launched
If any of these checks fail, RFLAGS.ZF is set to 1 and control passes to the next instruction. An error number 
indicating the cause of the failure is stored in the VM-instruction error field. See Chapter 30 of the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 3C for the error numbers.

...

26.2.1.1  VM-Execution Control Fields
VM entries perform the following checks on the VM-execution control fields:1

• Reserved bits in the pin-based VM-execution controls must be set properly. Software may consult the VMX 
capability MSRs to determine the proper settings (see Appendix A.3.1).

• Reserved bits in the primary processor-based VM-execution controls must be set properly. Software may 
consult the VMX capability MSRs to determine the proper settings (see Appendix A.3.2).

• If the “activate secondary controls” primary processor-based VM-execution control is 1, reserved bits in the 
secondary processor-based VM-execution controls must be cleared. Software may consult the VMX capability 
MSRs to determine which bits are reserved (see Appendix A.3.3).
If the “activate secondary controls” primary processor-based VM-execution control is 0 (or if the processor
does not support the 1-setting of that control), no checks are performed on the secondary processor-based
VM-execution controls. The logical processor operates as if all the secondary processor-based VM-execution
controls were 0.

• The CR3-target count must not be greater than 4. Future processors may support a different number of CR3-
target values. Software should read the VMX capability MSR IA32_VMX_MISC to determine the number of 
values supported (see Appendix A.6).

1. If the “activate secondary controls” primary processor-based VM-execution control is 0, VM entry operates as if each secondary 
processor-based VM-execution control were 0.
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• If the “use I/O bitmaps” VM-execution control is 1, bits 11:0 of each I/O-bitmap address must be 0. Neither 
address should set any bits beyond the processor’s physical-address width.1,2

• If the “use MSR bitmaps” VM-execution control is 1, bits 11:0 of the MSR-bitmap address must be 0. The 
address should not set any bits beyond the processor’s physical-address width.3

• If the “use TPR shadow” VM-execution control is 1, the virtual-APIC address must satisfy the following checks:

— Bits 11:0 of the address must be 0.

— The address should not set any bits beyond the processor’s physical-address width.4

If all of the above checks are satisfied and the “use TPR shadow” VM-execution control is 1, bytes 3:1 of
VTPR (see Section 29.1.1) may be cleared (behavior may be implementation-specific).
The clearing of these bytes may occur even if the VM entry fails. This is true either if the failure causes
control to pass to the instruction following the VM-entry instruction or if it causes processor state to be
loaded from the host-state area of the VMCS.

• If the “use TPR shadow” VM-execution control is 1 and the “virtual-interrupt delivery” VM-execution control is 
0, bits 31:4 of the TPR threshold VM-execution control field must be 0.5

• The following check is performed if the “use TPR shadow” VM-execution control is 1 and the “virtualize APIC 
accesses” and “virtual-interrupt delivery” VM-execution controls are both 0: the value of bits 3:0 of the TPR 
threshold VM-execution control field should not be greater than the value of bits 7:4 of VTPR (see Section 
29.1.1).

• If the “NMI exiting” VM-execution control is 0, the “virtual NMIs” VM-execution control must be 0.
• If the “virtual NMIs” VM-execution control is 0, the “NMI-window exiting” VM-execution control must be 0.
• If the “virtualize APIC-accesses” VM-execution control is 1, the APIC-access address must satisfy the following 

checks:

— Bits 11:0 of the address must be 0.

— The address should not set any bits beyond the processor’s physical-address width.6

• If the “use TPR shadow” VM-execution control is 0, the following VM-execution controls must also be 0: 
“virtualize x2APIC mode”, “APIC-register virtualization”, and “virtual-interrupt delivery”.7

• If the “virtualize x2APIC mode” VM-execution control is 1, the “virtualize APIC accesses” VM-execution control 
must be 0.

• If the “virtual-interrupt delivery” VM-execution control is 1, the “external-interrupt exiting” VM-execution 
control must be 1.

• If the “process posted interrupts” VM-execution control is 1, the following must be true:8

— The “virtual-interrupt delivery” VM-execution control is 1.

1. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.

2. If IA32_VMX_BASIC[48] is read as 1, these addresses must not set any bits in the range 63:32; see Appendix A.1.

3. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

4. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

5. “Virtual-interrupt delivery” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-exe-
cution controls is 0, VM entry functions as if the “virtual-interrupt delivery” VM-execution control were 0. See Section 24.6.2.

6. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

7. “Virtualize x2APIC mode” and “APIC-register virtualization” are secondary processor-based VM-execution controls. If bit 31 of the 
primary processor-based VM-execution controls is 0, VM entry functions as if these controls were 0. See Section 24.6.2.

8. “Process posted interrupts” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-
execution controls is 0, VM entry functions as if the “process posted interrupts” VM-execution control were 0. See Section 24.6.2.
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— The “acknowledge interrupt on exit” VM-exit control is 1.

— The posted-interrupt notification vector has a value in the range 0–255 (bits 15:8 are all 0).

— Bits 5:0 of the posted-interrupt descriptor address are all 0.

— The posted-interrupt descriptor address does not set any bits beyond the processor's physical-address 
width.1

• If the “enable VPID” VM-execution control is 1, the value of the VPID VM-execution control field must not be 
0000H.2

• If the “enable EPT” VM-execution control is 1, the EPTP VM-execution control field (see Table 24-8 in Section 
24.6.11) must satisfy the following checks:3

— The EPT memory type (bits 2:0) must be a value supported by the processor as indicated in the 
IA32_VMX_EPT_VPID_CAP MSR (see Appendix A.10).

— Bits 5:3 (1 less than the EPT page-walk length) must be 3, indicating an EPT page-walk length of 4; see 
Section 28.2.2.

— Bit 6 (enable bit for accessed and dirty flags for EPT) must be 0 if bit 21 of the IA32_VMX_EPT_VPID_CAP 
MSR (see Appendix A.10) is read as 0, indicating that the processor does not support accessed and dirty 
flags for EPT.

— Reserved bits 11:7 and 63:N (where N is the processor’s physical-address width) must all be 0.

— If the “unrestricted guest” VM-execution control is 1, the “enable EPT” VM-execution control must also be 
1.4

• If the “enable VM functions” processor-based VM-execution control is 1, reserved bits in the VM-function 
controls must be clear.5 Software may consult the VMX capability MSRs to determine which bits are reserved 
(see Appendix A.11). In addition, the following check is performed based on the setting of bits in the VM-
function controls (see Section 24.6.14):

— If “EPTP switching” VM-function control is 1, the “enable EPT” VM-execution control must also 1. In 
addition, the EPTP-list address must satisfy the following checks:

• Bits 11:0 of the address must be 0.

• The address must not set any bits beyond the processor’s physical-address width.
If the “enable VM functions” processor-based VM-execution control is 0, no checks are performed on the VM-
function controls.

• If the “VMCS shadowing” VM-execution control is 1, the VMREAD-bitmap and VMWRITE-bitmap addresses 
must each satisfy the following checks:6

— Bits 11:0 of the address must be 0.

— The address must not set any bits beyond the processor’s physical-address width.

1. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

2. “Enable VPID” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution con-
trols is 0, VM entry functions as if the “enable VPID” VM-execution control were 0. See Section 24.6.2.

3. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls 
is 0, VM entry functions as if the “enable EPT” VM-execution control were 0. See Section 24.6.2.

4. “Unrestricted guest” and “enable EPT” are both secondary processor-based VM-execution controls. If bit 31 of the primary proces-
sor-based VM-execution controls is 0, VM entry functions as if both these controls were 0. See Section 24.6.2.

5. “Enable VM functions” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execu-
tion controls is 0, VM entry functions as if the “enable VM functions” VM-execution control were 0. See Section 24.6.2.

6. “VMCS shadowing” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VM entry functions as if the “VMCS shadowing” VM-execution control were 0. See Section 24.6.2.
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• If the “EPT-violation #VE” VM-execution control is 1, the virtualization-exception information address must 
satisfy the following checks:1

— Bits 11:0 of the address must be 0.

— The address must not set any bits beyond the processor’s physical-address width.

...

26.3.1.5  Checks on Guest Non-Register State
The following checks are performed on fields in the guest-state area corresponding to non-register state:
• Activity state.

— The activity-state field must contain a value in the range 0 – 3, indicating an activity state supported by 
the implementation (see Section 24.4.2). Future processors may include support for other activity states. 
Software should read the VMX capability MSR IA32_VMX_MISC (see Appendix A.6) to determine what 
activity states are supported.

— The activity-state field must not indicate the HLT state if the DPL (bits 6:5) in the access-rights field for SS 
is not 0.2

— The activity-state field must indicate the active state if the interruptibility-state field indicates blocking by 
either MOV-SS or by STI (if either bit 0 or bit 1 in that field is 1).

— If the valid bit (bit 31) in the VM-entry interruption-information field is 1, the interruption to be delivered 
(as defined by interruption type and vector) must not be one that would normally be blocked while a 
logical processor is in the activity state corresponding to the contents of the activity-state field. The 
following items enumerate the interruptions (as specified in the VM-entry interruption-information field) 
whose injection is allowed for the different activity states:

• Active. Any interruption is allowed.

• HLT. The only events allowed are the following:

— Those with interruption type external interrupt or non-maskable interrupt (NMI).

— Those with interruption type hardware exception and vector 1 (debug exception) or vector 18
(machine-check exception).

— Those with interruption type other event and vector 0 (pending MTF VM exit).

See Table 24-13 in Section 24.8.3 for details regarding the format of the VM-entry interruption-
information field.

• Shutdown. Only NMIs and machine-check exceptions are allowed.

• Wait-for-SIPI. No interruptions are allowed.

— The activity-state field must not indicate the wait-for-SIPI state if the “entry to SMM” VM-entry control is 
1.

• Interruptibility state.

— The reserved bits (bits 31:4) must be 0.

— The field cannot indicate blocking by both STI and MOV SS (bits 0 and 1 cannot both be 1).

— Bit 0 (blocking by STI) must be 0 if the IF flag (bit 9) is 0 in the RFLAGS field.

1. “EPT-violation #VE” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VM entry functions as if the “EPT-violation #VE” VM-execution control were 0. See Section 24.6.2.

2. As noted in Section 24.4.1, SS.DPL corresponds to the logical processor’s current privilege level (CPL).
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— Bit 0 (blocking by STI) and bit 1 (blocking by MOV-SS) must both be 0 if the valid bit (bit 31) in the 
VM-entry interruption-information field is 1 and the interruption type (bits 10:8) in that field has value 0, 
indicating external interrupt.

— Bit 1 (blocking by MOV-SS) must be 0 if the valid bit (bit 31) in the VM-entry interruption-information field 
is 1 and the interruption type (bits 10:8) in that field has value 2, indicating non-maskable interrupt 
(NMI).

— Bit 2 (blocking by SMI) must be 0 if the processor is not in SMM.

— Bit 2 (blocking by SMI) must be 1 if the “entry to SMM” VM-entry control is 1.

— A processor may require bit 0 (blocking by STI) to be 0 if the valid bit (bit 31) in the VM-entry inter-
ruption-information field is 1 and the interruption type (bits 10:8) in that field has value 2, indicating NMI. 
Other processors may not make this requirement.

— Bit 3 (blocking by NMI) must be 0 if the “virtual NMIs” VM-execution control is 1, the valid bit (bit 31) in 
the VM-entry interruption-information field is 1, and the interruption type (bits 10:8) in that field has 
value 2 (indicating NMI).

NOTE
If the “virtual NMIs” VM-execution control is 0, there is no requirement that bit 3 be 0 if the valid 
bit in the VM-entry interruption-information field is 1 and the interruption type in that field has 
value 2.

• Pending debug exceptions.

— Bits 11:4, bit 13, and bits 63:15 (bits 31:15 on processors that do not support Intel 64 architecture) must 
be 0.

— The following checks are performed if any of the following holds: (1) the interruptibility-state field 
indicates blocking by STI (bit 0 in that field is 1); (2) the interruptibility-state field indicates blocking by 
MOV SS (bit 1 in that field is 1); or (3) the activity-state field indicates HLT:

• Bit 14 (BS) must be 1 if the TF flag (bit 8) in the RFLAGS field is 1 and the BTF flag (bit 1) in the 
IA32_DEBUGCTL field is 0.

• Bit 14 (BS) must be 0 if the TF flag (bit 8) in the RFLAGS field is 0 or the BTF flag (bit 1) in the 
IA32_DEBUGCTL field is 1.

• VMCS link pointer. The following checks apply if the field contains a value other than FFFFFFFF_FFFFFFFFH:

— Bits 11:0 must be 0.

— Bits beyond the processor’s physical-address width must be 0.1,2

— The 4 bytes located in memory referenced by the value of the field (as a physical address) must satisfy the 
following:

• Bits 30:0 must contain the processor’s VMCS revision identifier (see Section 24.2).3

• Bit 31 must contain the setting of the “VMCS shadowing” VM-execution control.4 This implies that the 
referenced VMCS is a shadow VMCS (see Section 24.10) if and only if the “VMCS shadowing” VM-
execution control is 1.

1. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.

2. If IA32_VMX_BASIC[48] is read as 1, this field must not set any bits in the range 63:32; see Appendix A.1.

3. Earlier versions of this manual specified that the VMCS revision identifier was a 32-bit field. For all processors produced prior to 
this change, bit 31 of the VMCS revision identifier was 0.
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— If the processor is not in SMM or the “entry to SMM” VM-entry control is 1, the field must not contain the 
current VMCS pointer.

— If the processor is in SMM and the “entry to SMM” VM-entry control is 0, the field must differ from the 
executive-VMCS pointer.

...

26.5.1 Vectored-Event Injection
VM entry delivers an injected vectored event within the guest context established by VM entry. This means that 
delivery occurs after all components of guest state have been loaded (including MSRs) and after the VM-execution 
control fields have been established.1 The event is delivered using the vector in that field to select a descriptor in 
the IDT. Since event injection occurs after loading IDTR from the guest-state area, this is the guest IDT.

Section 26.5.1.1 provides details of vectored-event injection. In general, the event is delivered exactly as if it had 
been generated normally.

If event delivery encounters a nested exception (for example, a general-protection exception because the vector 
indicates a descriptor beyond the IDT limit), the exception bitmap is consulted using the vector of that exception:
• If the bit for the nested exception is 0, the nested exception is delivered normally. If the nested exception is 

benign, it is delivered through the IDT. If it is contributory or a page fault, a double fault may be generated, 
depending on the nature of the event whose delivery encountered the nested exception. See Chapter 6, 
“Interrupt 8—Double Fault Exception (#DF)” in Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A.2

• If the bit for the nested exception is 1, a VM exit occurs. Section 26.5.1.2 details cases in which event 
injection causes a VM exit.

...

16.Updates to Chapter 27, Volume 3C
Change bars show changes to Chapter 27 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3C: System Programming Guide, Part 3.

------------------------------------------------------------------------------------------

...

27.4 SAVING MSRS
After processor state is saved to the guest-state area, values of MSRs may be stored into the VM-exit MSR-store 
area (see Section 24.7.2). Specifically each entry in that area (up to the number specified in the VM-exit MSR-

4. “VMCS shadowing” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VM entry functions as if the “VMCS shadowing” VM-execution control were 0. See Section 24.6.2.

1. This does not imply that injection of an exception or interrupt will cause a VM exit due to the settings of VM-execution control 
fields (such as the exception bitmap) that would cause a VM exit if the event had occurred in VMX non-root operation. In contrast, 
a nested exception encountered during event delivery may cause a VM exit; see Section 26.5.1.1.

2. Hardware exceptions with the following unused vectors are considered benign: 15 and 21–31. A hardware exception with vector 
20 is considered benign unless the processor supports the 1-setting of the “EPT-violation #VE” VM-execution control; in that case, 
it has the same severity as page faults.
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store count) is processed in order by storing the value of the MSR indexed by bits 31:0 (as they would be read by 
RDMSR) into bits 127:64. Processing of an entry fails in either of the following cases:
• The value of bits 31:8 is 000008H, meaning that the indexed MSR is one that allows access to an APIC register 

when the local APIC is in x2APIC mode. 
• The value of bits 31:0 indicates an MSR that can be read only in system-management mode (SMM) and the 

VM exit will not end in SMM. (IA32_SMBASE is an MSR that can be read only in SMM.)
• The value of bits 31:0 indicates an MSR that cannot be saved on VM exits for model-specific reasons. A 

processor may prevent certain MSRs (based on the value of bits 31:0) from being stored on VM exits, even if 
they can normally be read by RDMSR. Such model-specific behavior is documented in Chapter 35.

• Bits 63:32 of the entry are not all 0.
• An attempt to read the MSR indexed by bits 31:0 would cause a general-protection exception if executed via 

RDMSR with CPL = 0.

A VMX abort occurs if processing fails for any entry. See Section 27.7.

...

17.Updates to Chapter 28, Volume 3C
Change bars show changes to Chapter 28 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3C: System Programming Guide, Part 3.

------------------------------------------------------------------------------------------

...

28.2.1 EPT Overview
EPT is used when the “enable EPT” VM-execution control is 1.1 It translates the guest-physical addresses used in 
VMX non-root operation and those used by VM entry for event injection.

The translation from guest-physical addresses to physical addresses is determined by a set of EPT paging struc-
tures. The EPT paging structures are similar to those used to translate linear addresses while the processor is in 
IA-32e mode. Section 28.2.2 gives the details of the EPT paging structures.

If CR0.PG = 1, linear addresses are translated through paging structures referenced through control register CR3. 
While the “enable EPT” VM-execution control is 1, these are called guest paging structures. There are no guest 
paging structures if CR0.PG = 0.2

When the “enable EPT” VM-execution control is 1, the identity of guest-physical addresses depends on the 
value of CR0.PG:
• If CR0.PG = 0, each linear address is treated as a guest-physical address.
• If CR0.PG = 1, guest-physical addresses are those derived from the contents of control register CR3 and the 

guest paging structures. (This includes the values of the PDPTEs, which logical processors store in internal, 
non-architectural registers.) The latter includes (in page-table entries and in other paging-structure entries 
for which bit 7—PS—is 1) the addresses to which linear addresses are translated by the guest paging 
structures.

1. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls 
is 0, the logical processor operates as if the “enable EPT” VM-execution control were 0. See Section 24.6.2.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, CR0.PG can be 0 in VMX non-root 
operation only if the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls 
are both 1.



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 243

If CR0.PG = 1, the translation of a linear address to a physical address requires multiple translations of guest-
physical addresses using EPT. Assume, for example, that CR4.PAE = CR4.PSE = 0. The translation of a 32-bit 
linear address then operates as follows:
• Bits 31:22 of the linear address select an entry in the guest page directory located at the guest-physical 

address in CR3. The guest-physical address of the guest page-directory entry (PDE) is translated through EPT 
to determine the guest PDE’s physical address.

• Bits 21:12 of the linear address select an entry in the guest page table located at the guest-physical address 
in the guest PDE. The guest-physical address of the guest page-table entry (PTE) is translated through EPT to 
determine the guest PTE’s physical address.

• Bits 11:0 of the linear address is the offset in the page frame located at the guest-physical address in the 
guest PTE. The guest-physical address determined by this offset is translated through EPT to determine the 
physical address to which the original linear address translates.

In addition to translating a guest-physical address to a physical address, EPT specifies the privileges that software 
is allowed when accessing the address. Attempts at disallowed accesses are called EPT violations and cause 
VM exits. See Section 28.2.3.

A logical processor uses EPT to translate guest-physical addresses only when those addresses are used to access 
memory. This principle implies the following:
• The MOV to CR3 instruction loads CR3 with a guest-physical address. Whether that address is translated 

through EPT depends on whether PAE paging is being used.1

— If PAE paging is not being used, the instruction does not use that address to access memory and does not 
cause it to be translated through EPT. (If CR0.PG = 1, the address will be translated through EPT on the 
next memory accessing using a linear address.)

— If PAE paging is being used, the instruction loads the four (4) page-directory-pointer-table entries 
(PDPTEs) from that address and it does cause the address to be translated through EPT.

• Section 4.4.1 identifies executions of MOV to CR0 and MOV to CR4 that load the PDPTEs from the guest-
physical address in CR3. Such executions cause that address to be translated through EPT.

• The PDPTEs contain guest-physical addresses. The instructions that load the PDPTEs (see above) do not use 
those addresses to access memory and do not cause them to be translated through EPT. The address in a 
PDPTE will be translated through EPT on the next memory accessing using a linear address that uses that 
PDPTE.

28.2.2 EPT Translation Mechanism
The EPT translation mechanism uses only bits 47:0 of each guest-physical address.2 It uses a page-walk length 
of 4, meaning that at most 4 EPT paging-structure entries are accessed to translate a guest-physical address.3

These 48 bits are partitioned by the logical processor to traverse the EPT paging structures:
• A 4-KByte naturally aligned EPT PML4 table is located at the physical address specified in bits 51:12 of the 

extended-page-table pointer (EPTP), a VM-execution control field (see Table 24-8 in Section 24.6.11). An EPT 

1. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See Section 4.4 in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

2. No processors supporting the Intel 64 architecture support more than 48 physical-address bits. Thus, no such processor can pro-
duce a guest-physical address with more than 48 bits. An attempt to use such an address causes a page fault. An attempt to load 
CR3 with such an address causes a general-protection fault. If PAE paging is being used, an attempt to load CR3 that would load a 
PDPTE with such an address causes a general-protection fault.

3. Future processors may include support for other EPT page-walk lengths. Software should read the VMX capability MSR 
IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine what EPT page-walk lengths are supported.
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PML4 table comprises 512 64-bit entries (EPT PML4Es). An EPT PML4E is selected using the physical address 
defined as follows:

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPTP.

— Bits 11:3 are bits 47:39 of the guest-physical address.

— Bits 2:0 are all 0.
Because an EPT PML4E is identified using bits 47:39 of the guest-physical address, it controls access to a 512-
GByte region of the guest-physical-address space. The format of an EPT PML4E is given in Table 28-1.

• A 4-KByte naturally aligned EPT page-directory-pointer table is located at the physical address specified in 
bits 51:12 of the EPT PML4E. An EPT page-directory-pointer table comprises 512 64-bit entries (EPT PDPTEs). 
An EPT PDPTE is selected using the physical address defined as follows:

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPT PML4E.

— Bits 11:3 are bits 38:30 of the guest-physical address.

— Bits 2:0 are all 0.

Because an EPT PDPTE is identified using bits 47:30 of the guest-physical address, it controls access to a 1-GByte 
region of the guest-physical-address space. Use of the EPT PDPTE depends on the value of bit 7 in that entry:1

• If bit 7 of the EPT PDPTE is 1, the EPT PDPTE maps a 1-GByte page. The final physical address is computed as 
follows:

Table 28-1.  Format of an EPT PML4 Entry (PML4E)

Bit 
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 512-GByte region controlled by this entry

1 Write access; indicates whether writes are allowed to the 512-GByte region controlled by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 512-GByte region controlled by this 
entry

7:3 Reserved (must be 0)

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has accessed the 512-GByte region 
controlled by this entry (see Section 28.2.4). Ignored if bit 6 of EPTP is 0

11:9 Ignored

(N–1):12 Physical address of 4-KByte aligned EPT page-directory-pointer table referenced by this entry1

51:N Reserved (must be 0)

63:52 Ignored

NOTES:
1. N is the physical-address width supported by the processor. Software can determine a processor’s physical-address width by execut-

ing CPUID with 80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

1. Not all processors allow bit 7 of an EPT PDPTE to be set to 1. Software should read the VMX capability MSR 
IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine whether this is allowed.
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— Bits 63:52 are all 0.

— Bits 51:30 are from the EPT PDPTE.

— Bits 29:0 are from the original guest-physical address.
The format of an EPT PDPTE that maps a 1-GByte page is given in Table 28-2.

Table 28-2.  Format of an EPT Page-Directory-Pointer-Table Entry (PDPTE) that Maps a 1-GByte Page

Bit 
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 1-GByte page referenced by this entry

1 Write access; indicates whether writes are allowed to the 1-GByte page referenced by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 1-GByte page referenced by this entry

5:3 EPT memory type for this 1-GByte page (see Section 28.2.5)

6 Ignore PAT memory type for this 1-GByte page (see Section 28.2.5)

7 Must be 1 (otherwise, this entry references an EPT page directory)

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has accessed the 1-GByte page referenced 
by this entry (see Section 28.2.4). Ignored if bit 6 of EPTP is 0

9 If bit 6 of EPTP is 1, dirty flag for EPT; indicates whether software has written to the 1-GByte page referenced by 
this entry (see Section 28.2.4). Ignored if bit 6 of EPTP is 0

11:10 Ignored

29:12 Reserved (must be 0)

(N–1):30 Physical address of the 1-GByte page referenced by this entry1

51:N Reserved (must be 0)

62:52 Ignored

63 Suppress #VE. If the “EPT-violation #VE” VM-execution control is 1, EPT violations caused by accesses to this page 
are convertible to virtualization exceptions only if this bit is 0 (see Section 25.5.6.1). If “EPT-violation #VE” VM-
execution control is 0, this bit is ignored.

NOTES:
1. N is the physical-address width supported by the logical processor.
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• If bit 7 of the EPT PDPTE is 0, a 4-KByte naturally aligned EPT page directory is located at the physical address 
specified in bits 51:12 of the EPT PDPTE. The format of an EPT PDPTE that references an EPT page directory 
is given in Table 28-3.

An EPT page-directory comprises 512 64-bit entries (PDEs). An EPT PDE is selected using the physical address 
defined as follows:

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPT PDPTE.

— Bits 11:3 are bits 29:21 of the guest-physical address.

— Bits 2:0 are all 0.

Because an EPT PDE is identified using bits 47:21 of the guest-physical address, it controls access to a 2-MByte 
region of the guest-physical-address space. Use of the EPT PDE depends on the value of bit 7 in that entry:
• If bit 7 of the EPT PDE is 1, the EPT PDE maps a 2-MByte page. The final physical address is computed as 

follows:

— Bits 63:52 are all 0.

— Bits 51:21 are from the EPT PDE.

— Bits 20:0 are from the original guest-physical address.
The format of an EPT PDE that maps a 2-MByte page is given in Table 28-4.

• If bit 7 of the EPT PDE is 0, a 4-KByte naturally aligned EPT page table is located at the physical address 
specified in bits 51:12 of the EPT PDE. The format of an EPT PDE that references an EPT page table is given in 
Table 28-5.
An EPT page table comprises 512 64-bit entries (PTEs). An EPT PTE is selected using a physical address 
defined as follows:

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPT PDE.

Table 28-3.  Format of an EPT Page-Directory-Pointer-Table Entry (PDPTE) that References an EPT Page Directory

Bit 
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 1-GByte region controlled by this entry

1 Write access; indicates whether writes are allowed to the 1-GByte region controlled by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 1-GByte region controlled by this entry

7:3 Reserved (must be 0)

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has accessed the 1-GByte region controlled 
by this entry (see Section 28.2.4). Ignored if bit 6 of EPTP is 0

11:9 Ignored

(N–1):12 Physical address of 4-KByte aligned EPT page directory referenced by this entry1

51:N Reserved (must be 0)

63:52 Ignored

NOTES:
1. N is the physical-address width supported by the logical processor.
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— Bits 11:3 are bits 20:12 of the guest-physical address.

— Bits 2:0 are all 0.
• Because an EPT PTE is identified using bits 47:12 of the guest-physical address, every EPT PTE maps a 4-

KByte page. The final physical address is computed as follows:

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPT PTE.

— Bits 11:0 are from the original guest-physical address.
The format of an EPT PTE is given in Table 28-6.

If bits 2:0 of an EPT paging-structure entry are all 0, the entry is not present. The processor ignores bits 62:3 
and uses the entry neither to reference another EPT paging-structure entry nor to produce a physical address. A 
reference using a guest-physical address whose translation encounters an EPT paging-structure that is not 
present causes an EPT violation (see Section 28.2.3.2). (If the “EPT-violation #VE” VM-execution control is 1, the 
EPT violation is convertible to a virtualization exception only if bit 63 is 0; see Section 25.5.6.1. If the “EPT-viola-
tion #VE” VM-execution control is 0, this bit is ignored.)

Table 28-4.  Format of an EPT Page-Directory Entry (PDE) that Maps a 2-MByte Page

Bit 
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 2-MByte page referenced by this entry

1 Write access; indicates whether writes are allowed to the 2-MByte page referenced by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 2-MByte page referenced by this entry

5:3 EPT memory type for this 2-MByte page (see Section 28.2.5)

6 Ignore PAT memory type for this 2-MByte page (see Section 28.2.5)

7 Must be 1 (otherwise, this entry references an EPT page table)

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has accessed the 2-MByte page referenced 
by this entry (see Section 28.2.4). Ignored if bit 6 of EPTP is 0

9 If bit 6 of EPTP is 1, dirty flag for EPT; indicates whether software has written to the 2-MByte page referenced by 
this entry (see Section 28.2.4). Ignored if bit 6 of EPTP is 0

11:10 Ignored

20:12 Reserved (must be 0)

(N–1):21 Physical address of the 2-MByte page referenced by this entry1

51:N Reserved (must be 0)

62:52 Ignored

63 Suppress #VE. If the “EPT-violation #VE” VM-execution control is 1, EPT violations caused by accesses to this page 
are convertible to virtualization exceptions only if this bit is 0 (see Section 25.5.6.1). If “EPT-violation #VE” VM-
execution control is 0, this bit is ignored.

NOTES:
1. N is the physical-address width supported by the logical processor.
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The discussion above describes how the EPT paging structures reference each other and how the logical processor 
traverses those structures when translating a guest-physical address. It does not cover all details of the transla-
tion process. Additional details are provided as follows:
• Situations in which the translation process may lead to VM exits (sometimes before the process completes) 

are described in Section 28.2.3.
• Interactions between the EPT translation mechanism and memory typing are described in Section 28.2.5.

Figure 28-1 gives a summary of the formats of the EPTP and the EPT paging-structure entries. For the EPT paging 
structure entries, it identifies separately the format of entries that map pages, those that reference other EPT 
paging structures, and those that do neither because they are “not present”; bits 2:0 and bit 7 are highlighted 
because they determine how a paging-structure entry is used.

28.2.3 EPT-Induced VM Exits
Accesses using guest-physical addresses may cause VM exits due to EPT misconfigurations and EPT viola-
tions. An EPT misconfiguration occurs when, in the course of translation a guest-physical address, the logical 
processor encounters an EPT paging-structure entry that contains an unsupported value. An EPT violation occurs 
when there is no EPT misconfiguration but the EPT paging-structure entries disallow an access using the guest-
physical address.

EPT misconfigurations and EPT violations occur only due to an attempt to access memory with a guest-physical 
address. Loading CR3 with a guest-physical address with the MOV to CR3 instruction can cause neither an EPT 
configuration nor an EPT violation until that address is used to access a paging structure.1

Table 28-5.  Format of an EPT Page-Directory Entry (PDE) that References an EPT Page Table

Bit 
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 2-MByte region controlled by this entry

1 Write access; indicates whether writes are allowed to the 2-MByte region controlled by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 2-MByte region controlled by this entry

6:3 Reserved (must be 0)

7 Must be 0 (otherwise, this entry maps a 2-MByte page)

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has accessed the 2-MByte region controlled 
by this entry (see Section 28.2.4). Ignored if bit 6 of EPTP is 0

11:9 Ignored

(N–1):12 Physical address of 4-KByte aligned EPT page table referenced by this entry1

51:N Reserved (must be 0)

63:52 Ignored

NOTES:
1. N is the physical-address width supported by the logical processor.

1. If the logical processor is using PAE paging—because CR0.PG = CR4.PAE = 1 and IA32_EFER.LMA = 0—the MOV to CR3 instruction 
loads the PDPTEs from memory using the guest-physical address being loaded into CR3. In this case, therefore, the MOV to CR3 
instruction may cause an EPT misconfiguration or an EPT violation.
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If the “EPT-violation #VE” VM-execution control is 1, certain EPT violations may cause virtualization exceptions 
instead of VM exits. See Section 25.5.6.1.

28.2.3.1  EPT Misconfigurations
AN EPT misconfiguration occurs if any of the following is identified while translating a guest-physical address:
• The value of bits 2:0 of an EPT paging-structure entry is either 010b (write-only) or 110b (write/execute).
• The value of bits 2:0 of an EPT paging-structure entry is 100b (execute-only) and this value is not supported 

by the logical processor. Software should read the VMX capability MSR IA32_VMX_EPT_VPID_CAP to 
determine whether this value is supported (see Appendix A.10).

• The value of bits 2:0 of an EPT paging-structure entry is not 000b (the entry is present) and one of the 
following holds:

— A reserved bit is set. This includes the setting of a bit in the range 51:12 that is beyond the logical 
processor’s physical-address width.1 See Section 28.2.2 for details of which bits are reserved in which EPT 
paging-structure entries.

Table 28-6.  Format of an EPT Page-Table Entry

Bit 
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 4-KByte page referenced by this entry

1 Write access; indicates whether writes are allowed to the 4-KByte page referenced by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 4-KByte page referenced by this entry

5:3 EPT memory type for this 4-KByte page (see Section 28.2.5)

6 Ignore PAT memory type for this 4-KByte page (see Section 28.2.5)

7 Ignored

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has accessed the 4-KByte page referenced 
by this entry (see Section 28.2.4). Ignored if bit 6 of EPTP is 0

9 If bit 6 of EPTP is 1, dirty flag for EPT; indicates whether software has written to the 4-KByte page referenced by 
this entry (see Section 28.2.4). Ignored if bit 6 of EPTP is 0

11:10 Ignored

(N–1):12 Physical address of the 4-KByte page referenced by this entry1

51:N Reserved (must be 0)

62:52 Ignored

63 Suppress #VE. If the “EPT-violation #VE” VM-execution control is 1, EPT violations caused by accesses to this page 
are convertible to virtualization exceptions only if this bit is 0 (see Section 25.5.6.1). If “EPT-violation #VE” VM-
execution control is 0, this bit is ignored.

NOTES:
1. N is the physical-address width supported by the logical processor.

1. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.
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— The entry is the last one used to translate a guest physical address (either an EPT PDE with bit 7 set to 1 
or an EPT PTE) and the value of bits 5:3 (EPT memory type) is 2, 3, or 7 (these values are reserved).

EPT misconfigurations result when an EPT paging-structure entry is configured with settings reserved for future 
functionality. Software developers should be aware that such settings may be used in the future and that an EPT 
paging-structure entry that causes an EPT misconfiguration on one processor might not do so in the future.

28.2.3.2  EPT Violations
An EPT violation may occur during an access using a guest-physical address whose translation does not cause an 
EPT misconfiguration. An EPT violation occurs in any of the following situations:
• Translation of the guest-physical address encounters an EPT paging-structure entry that is not present (see 

Section 28.2.2).
• The access is a data read and bit 0 was clear in any of the EPT paging-structure entries used to translate the 

guest-physical address. Reads by the logical processor of guest paging structures to translate a linear address 
are considered to be data reads.
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• The access is a data write and bit 1 was clear in any of the EPT paging-structure entries used to translate the 
guest-physical address. Writes by the logical processor to guest paging structures to update accessed and 
dirty flags are considered to be data writes.
If bit 6 of the EPT pointer (EPTP) is 1 (enabling accessed and dirty flags for EPT), processor accesses to guest 
paging-structure entries are treated as writes with regard to EPT violations. Thus, if bit 1 is clear in any of the 
EPT paging-structure entries used to translate the guest-physical address of a guest paging-structure entry, 
an attempt to use that entry to translate a linear address causes an EPT violation.
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Figure 28-1.  Formats of EPTP and EPT Paging-Structure Entries
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(This does not apply to loads of the PDPTE registers by the MOV to CR instruction for PAE paging; see Section 
4.4.1. Those loads of guest PDPTEs are treated as reads and do not cause EPT violations due to a guest-
physical address not being writable.)

• The access is an instruction fetch and bit 2 was clear in any of the EPT paging-structure entries used to 
translate the guest-physical address.

...

18.Updates to Chapter 30, Volume 3C
Change bars show changes to Chapter 30 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3C: System Programming Guide, Part 3.

------------------------------------------------------------------------------------------

...

30.1 OVERVIEW
This chapter describes the virtual-machine extensions (VMX) for the Intel 64 and IA-32 architectures. VMX is 
intended to support virtualization of processor hardware and a system software layer acting as a host to multiple 
guest software environments. The virtual-machine extensions (VMX) includes five instructions that manage the 
virtual-machine control structure (VMCS), four instructions that manage VMX operation, two TLB-management 
instructions, and two instructions for use by guest software. Additional details of VMX are described in Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 3C. 

The behavior of the VMCS-maintenance instructions is summarized below:
• VMPTRLD — This instruction takes a single 64-bit source operand that is in memory. It makes the referenced 

VMCS active and current, loading the current-VMCS pointer with this operand and establishes the current 
VMCS based on the contents of VMCS-data area in the referenced VMCS region. Because this makes the 
referenced VMCS active, a logical processor may start maintaining on the processor some of the VMCS data 
for the VMCS.

• VMPTRST — This instruction takes a single 64-bit destination operand that is in memory. The current-VMCS 
pointer is stored into the destination operand.

• VMCLEAR — This instruction takes a single 64-bit operand that is in memory. The instruction sets the launch 
state of the VMCS referenced by the operand to “clear”, renders that VMCS inactive, and ensures that data for 
the VMCS have been written to the VMCS-data area in the referenced VMCS region. If the operand is the same 
as the current-VMCS pointer, that pointer is made invalid.

• VMREAD — This instruction reads a component from a VMCS (the encoding of that field is given in a register 
operand) and stores it into a destination operand that may be a register or in memory.

• VMWRITE — This instruction writes a component to a VMCS (the encoding of that field is given in a register 
operand) from a source operand that may be a register or in memory.

The behavior of the VMX management instructions is summarized below:
• VMLAUNCH — This instruction launches a virtual machine managed by the VMCS. A VM entry occurs, trans-

ferring control to the VM.
• VMRESUME — This instruction resumes a virtual machine managed by the VMCS. A VM entry occurs, trans-

ferring control to the VM.
• VMXOFF — This instruction causes the processor to leave VMX operation.
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• VMXON — This instruction takes a single 64-bit source operand that is in memory. It causes a logical 
processor to enter VMX root operation and to use the memory referenced by the operand to support VMX 
operation.

The behavior of the VMX-specific TLB-management instructions is summarized below:
• INVEPT — This instruction invalidates entries in the TLBs and paging-structure caches that were derived from 

extended page tables (EPT).
• INVVPID — This instruction invalidates entries in the TLBs and paging-structure caches based on a Virtual-

Processor Identifier (VPID).

None of the instructions above can be executed in compatibility mode; they generate invalid-opcode exceptions if 
executed in compatibility mode.

The behavior of the guest-available instructions is summarized below:
• VMCALL — This instruction allows software in VMX non-root operation to call the VMM for service. A VM exit 

occurs, transferring control to the VMM.
• VMFUNC — This instruction allows software in VMX non-root operation to invoke a VM function (processor 

functionality enabled and configured by software in VMX root operation) without a VM exit.

...

VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine

Description

Effects a VM entry managed by the current VMCS.
• VMLAUNCH fails if the launch state of current VMCS is not “clear”. If the instruction is successful, it sets the 

launch state to “launched.” 
• VMRESUME fails if the launch state of the current VMCS is not “launched.”

If VM entry is attempted, the logical processor performs a series of consistency checks as detailed in Chapter 26, 
“VM Entries,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C. Failure to pass 
checks on the VMX controls or on the host-state area passes control to the instruction following the VMLAUNCH or 
VMRESUME instruction. If these pass but checks on the guest-state area fail, the logical processor loads state 
from the host-state area of the VMCS, passing control to the instruction referenced by the RIP field in the host-
state area.

VM entry is not allowed when events are blocked by MOV SS or POP SS. Neither VMLAUNCH nor VMRESUME 
should be used immediately after either MOV to SS or POP to SS.

Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VMexit;

ELSIF CPL > 0
THEN #GP(0);

ELSIF current-VMCS pointer is not valid

Opcode Instruction Description

0F 01 C2 VMLAUNCH Launch virtual machine managed by current VMCS.

0F 01 C3 VMRESUME Resume virtual machine managed by current VMCS.
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THEN VMfailInvalid;
ELSIF events are being blocked by MOV SS

THEN VMfailValid(VM entry with events blocked by MOV SS);
ELSIF (VMLAUNCH and launch state of current VMCS is not “clear”)

THEN VMfailValid(VMLAUNCH with non-clear VMCS);
ELSIF (VMRESUME and launch state of current VMCS is not “launched”)

THEN VMfailValid(VMRESUME with non-launched VMCS);
ELSE

Check settings of VMX controls and host-state area;
IF invalid settings

THEN VMfailValid(VM entry with invalid VMX-control field(s)) or
VMfailValid(VM entry with invalid host-state field(s)) or 
VMfailValid(VM entry with invalid executive-VMCS pointer)) or 
VMfailValid(VM entry with non-launched executive VMCS) or
VMfailValid(VM entry with executive-VMCS pointer not VMXON pointer) or
VMfailValid(VM entry with invalid VM-execution control fields in executive
VMCS)
as appropriate;

ELSE
Attempt to load guest state and PDPTRs as appropriate;
clear address-range monitoring;
IF failure in checking guest state or PDPTRs
THEN VM entry fails (see Section 26.7, in the

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C);
ELSE

Attempt to load MSRs from VM-entry MSR-load area;
IF failure

THEN VM entry fails
(see Section 26.7, in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 

3C);
ELSE

IF VMLAUNCH
THEN launch state of VMCS ← “launched”;

FI;
IF in SMM and “entry to SMM” VM-entry control is 0

THEN
IF “deactivate dual-monitor treatment” VM-entry
control is 0

THEN SMM-transfer VMCS pointer ←
current-VMCS pointer;

FI;
IF executive-VMCS pointer is VMX pointer

THEN current-VMCS pointer ←
VMCS-link pointer;
ELSE current-VMCS pointer ←
executive-VMCS pointer;

FI;
leave SMM;

FI;
VM entry succeeds;
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FI;
FI;

FI;
FI;

Further details of the operation of the VM-entry appear in Chapter 26 of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3C.

Flags Affected

See the operation section and Section 30.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If executed outside VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX operation and the 

VMLAUNCH and VMRESUME instructions are not recognized outside VMX operation.

Virtual-8086 Mode Exceptions
#UD The VMLAUNCH and VMRESUME instructions are not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMLAUNCH and VMRESUME instructions are not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If executed outside VMX operation.

...
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VMPTRLD—Load Pointer to Virtual-Machine Control Structure

Description

Marks the current-VMCS pointer valid and loads it with the physical address in the instruction operand. The 
instruction fails if its operand is not properly aligned, sets unsupported physical-address bits, or is equal to the 
VMXON pointer. In addition, the instruction fails if the 32 bits in memory referenced by the operand do not match 
the VMCS revision identifier supported by this processor.1

The operand of this instruction is always 64 bits and is always in memory.

Operation

IF (register operand) or (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VMexit;

ELSIF CPL > 0
THEN #GP(0);
ELSE

addr ← contents of 64-bit in-memory source operand;
IF addr is not 4KB-aligned OR
addr sets any bits beyond the physical-address width2

THEN VMfail(VMPTRLD with invalid physical address);
ELSIF addr = VMXON pointer

THEN VMfail(VMPTRLD with VMXON pointer);
ELSE

rev ← 32 bits located at physical address addr;
IF rev[30:0] ≠ VMCS revision identifier supported by processor OR
rev[31] = 1 AND processor does not support 1-setting of “VMCS shadowing”

THEN VMfail(VMPTRLD with incorrect VMCS revision identifier);
ELSE

current-VMCS pointer ← addr;
VMsucceed;

FI;
FI;

FI;

Flags Affected

See the operation section and Section 30.2.

Opcode Instruction Description

0F C7 /6 VMPTRLD m64 Loads the current VMCS pointer from memory.

1. Software should consult the VMX capability MSR VMX_BASIC to discover the VMCS revision identifier supported by this processor 
(see Appendix A, “VMX Capability Reporting Facility,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Vol-
ume 3C).

2. If IA32_VMX_BASIC[48] is read as 1, VMfail occurs if addr sets any bits in the range 63:32; see Appendix A.1.
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Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory source operand effective address is outside the CS, DS, ES, FS, or GS segment 
limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code segment.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.
#SS(0) If the memory source operand effective address is outside the SS segment limit.

If the SS register contains an unusable segment.
#UD If operand is a register.

If not in VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX operation and the VMPTRLD 

instruction is not recognized outside VMX operation.

Virtual-8086 Mode Exceptions
#UD The VMPTRLD instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMPTRLD instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the source operand is in the CS, DS, ES, FS, or GS segments and the memory address is in 
a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.
#SS(0) If the source operand is in the SS segment and the memory address is in a non-canonical 

form.
#UD If operand is a register.

If not in VMX operation.

...
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VMREAD—Read Field from Virtual-Machine Control Structure

Description

Reads a specified field from a VMCS and stores it into a specified destination operand (register or memory). In 
VMX root operation, the instruction reads from the current VMCS. If executed in VMX non-root operation, the 
instruction reads from the VMCS referenced by the VMCS link pointer field in the current VMCS.

The VMCS field is specified by the VMCS-field encoding contained in the register source operand. Outside IA-32e 
mode, the source operand has 32 bits, regardless of the value of CS.D. In 64-bit mode, the source operand has 
64 bits; however, if bits 63:32 of the source operand are not zero, VMREAD will fail due to an attempt to access 
an unsupported VMCS component (see operation section). 

The effective size of the destination operand, which may be a register or in memory, is always 32 bits outside IA-
32e mode (the setting of CS.D is ignored with respect to operand size) and 64 bits in 64-bit mode. If the VMCS 
field specified by the source operand is shorter than this effective operand size, the high bits of the destination 
operand are cleared to 0. If the VMCS field is longer, then the high bits of the field are not read.

Note that any faults resulting from accessing a memory destination operand can occur only after determining, in 
the operation section below, that the relevant VMCS pointer is valid and that the specified VMCS field is 
supported.

Operation

IF (not in VMX operation) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation AND (“VMCS shadowing” is 0 OR source operand sets bits in range 63:15 OR
VMREAD bit corresponding to bits 14:0 of source operand is 1)1

THEN VMexit;
ELSIF CPL > 0

THEN #GP(0);
ELSIF (in VMX root operation AND current-VMCS pointer is not valid) OR 
(in VMX non-root operation AND VMCS link pointer is not valid)

THEN VMfailInvalid;
ELSIF source operand does not correspond to any VMCS field

THEN VMfailValid(VMREAD/VMWRITE from/to unsupported VMCS component);
ELSE

IF in VMX root operation
THEN destination operand ← contents of field indexed by source operand in current VMCS;
ELSE destination operand ← contents of field indexed by source operand in VMCS referenced by VMCS link pointer;

FI;
VMsucceed;

FI;

Opcode Instruction Description

0F 78 VMREAD r/m64, r64 Reads a specified VMCS field (in 64-bit mode).

0F 78 VMREAD r/m32, r32 Reads a specified VMCS field (outside 64-bit mode).

1. The VMREAD bit for a source operand is defined as follows. Let x be the value of bits 14:0 of the source operand and let addr be 
the VMREAD-bitmap address. The corresponding VMREAD bit is in bit position x & 7 of the byte at physical address addr | (x » 3).
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Flags Affected

See the operation section and Section 30.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory destination operand effective address is outside the CS, DS, ES, FS, or GS 
segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the destination operand is located in a read-only data segment or any code segment.

#PF(fault-code) If a page fault occurs in accessing a memory destination operand.
#SS(0) If a memory destination operand effective address is outside the SS segment limit.

If the SS register contains an unusable segment.
#UD If not in VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX operation and the VMREAD 

instruction is not recognized outside VMX operation.

Virtual-8086 Mode Exceptions
#UD The VMREAD instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMREAD instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory destination operand is in the CS, DS, ES, FS, or GS segments and the memory 
address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing a memory destination operand.
#SS(0) If the memory destination operand is in the SS segment and the memory address is in a non-

canonical form.
#UD If not in VMX operation.

...
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VMWRITE—Write Field to Virtual-Machine Control Structure

Description

Writes the contents of a primary source operand (register or memory) to a specified field in a VMCS. In VMX root 
operation, the instruction writes to the current VMCS. If executed in VMX non-root operation, the instruction 
writes to the VMCS referenced by the VMCS link pointer field in the current VMCS.

The VMCS field is specified by the VMCS-field encoding contained in the register secondary source operand. 
Outside IA-32e mode, the secondary source operand is always 32 bits, regardless of the value of CS.D. In 64-bit 
mode, the secondary source operand has 64 bits; however, if bits 63:32 of the secondary source operand are not 
zero, VMWRITE will fail due to an attempt to access an unsupported VMCS component (see operation section). 

The effective size of the primary source operand, which may be a register or in memory, is always 32 bits outside 
IA-32e mode (the setting of CS.D is ignored with respect to operand size) and 64 bits in 64-bit mode. If the VMCS 
field specified by the secondary source operand is shorter than this effective operand size, the high bits of the 
primary source operand are ignored. If the VMCS field is longer, then the high bits of the field are cleared to 0.

Note that any faults resulting from accessing a memory source operand occur after determining, in the operation 
section below, that the relevant VMCS pointer is valid but before determining if the destination VMCS field is 
supported.

Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation AND (“VMCS shadowing” is 0 OR secondary source operand sets bits in range 63:15 OR
VMWRITE bit corresponding to bits 14:0 of secondary source operand is 1)1

THEN VMexit;
ELSIF CPL > 0

THEN #GP(0);
ELSIF (in VMX root operation AND current-VMCS pointer is not valid) OR
(in VMX non-root operation AND VMCS-link pointer is not valid)

THEN VMfailInvalid;
ELSIF secondary source operand does not correspond to any VMCS field

THEN VMfailValid(VMREAD/VMWRITE from/to unsupported VMCS component);
ELSIF VMCS field indexed by secondary source operand is a VM-exit information field AND
processor does not support writing to such fields2

THEN VMfailValid(VMWRITE to read-only VMCS component);
ELSE

IF in VMX root operation

THEN field indexed by secondary source operand in current VMCS ← primary source operand;

Opcode Instruction Description

0F 79 VMWRITE r64, r/m64 Writes a specified VMCS field (in 64-bit mode)

0F 79 VMWRITE r32, r/m32 Writes a specified VMCS field (outside 64-bit mode)

1. The VMWRITE bit for a secondary source operand is defined as follows. Let x be the value of bits 14:0 of the secondary source 
operand and let addr be the VMWRITE-bitmap address. The corresponding VMWRITE bit is in bit position x & 7 of the byte at phys-
ical address addr | (x » 3).

2. Software can discover whether these fields can be written by reading the VMX capability MSR IA32_VMX_MISC (see Appendix 
A.6).
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THEN field indexed by secondary source operand in VMCS referenced by VMCS link pointer ← primary source operand;
FI;
VMsucceed;

FI;

Flags Affected
See the operation section and Section 30.2.

...

VMXON—Enter VMX Operation

Description

Puts the logical processor in VMX operation with no current VMCS, blocks INIT signals, disables A20M, and clears 
any address-range monitoring established by the MONITOR instruction.1 

The operand of this instruction is a 4KB-aligned physical address (the VMXON pointer) that references the VMXON 
region, which the logical processor may use to support VMX operation. This operand is always 64 bits and is 
always in memory. 

Operation

IF (register operand) or (CR0.PE = 0) or (CR4.VMXE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF not in VMX operation
THEN

IF (CPL > 0) or (in A20M mode) or
(the values of CR0 and CR4 are not supported in VMX operation2) or
(bit 0 (lock bit) of IA32_FEATURE_CONTROL MSR is clear) or
(in SMX operation3 and bit 1 of IA32_FEATURE_CONTROL MSR is clear) or
(outside SMX operation and bit 2 of IA32_FEATURE_CONTROL MSR is clear)

THEN #GP(0);
ELSE

addr ← contents of 64-bit in-memory source operand;
IF addr is not 4KB-aligned or 
addr sets any bits beyond the physical-address width4

THEN VMfailInvalid;
ELSE

Opcode Instruction Description

F3 0F C7 /6 VMXON m64 Enter VMX root operation.

1. See the information on MONITOR/MWAIT in Chapter 8, “Multiple-Processor Management,” of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3A.

2. See Section 19.8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

3. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. A log-
ical processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GETSEC[SEXIT] was executed after the last 
execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference.”

4. If IA32_VMX_BASIC[48] is read as 1, VMfailInvalid occurs if addr sets any bits in the range 63:32; see Appendix A.1.
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rev ← 32 bits located at physical address addr;
IF rev[30:0] ≠ VMCS revision identifier supported by processor OR rev[31] = 1

THEN VMfailInvalid;
ELSE

current-VMCS pointer ← FFFFFFFF_FFFFFFFFH;
enter VMX operation;
block INIT signals;
block and disable A20M;
clear address-range monitoring;
VMsucceed;

FI;
FI;

FI;
ELSIF in VMX non-root operation

THEN VMexit;
ELSIF CPL > 0

THEN #GP(0);
ELSE VMfail(“VMXON executed in VMX root operation”);

FI;

Flags Affected
See the operation section and Section 30.2.

Protected Mode Exceptions
#GP(0) If executed outside VMX operation with CPL>0 or with invalid CR0 or CR4 fixed bits.

If executed in A20M mode.
If the memory source operand effective address is outside the CS, DS, ES, FS, or GS segment 
limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code segment.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.
#SS(0) If the memory source operand effective address is outside the SS segment limit.

If the SS register contains an unusable segment.
#UD If operand is a register.

If executed with CR4.VMXE = 0.

Real-Address Mode Exceptions
#UD The VMXON instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The VMXON instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMXON instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If executed outside VMX operation with CPL > 0 or with invalid CR0 or CR4 fixed bits.



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 263

If executed in A20M mode.
If the source operand is in the CS, DS, ES, FS, or GS segments and the memory address is in 
a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.
#SS(0) If the source operand is in the SS segment and the memory address is in a non-canonical 

form.
#UD If operand is a register.

If executed with CR4.VMXE = 0.

...

19.Updates to Chapter 31, Volume 3C
Change bars show changes to Chapter 31 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3C: System Programming Guide, Part 3.

------------------------------------------------------------------------------------------

...

31.5 VMM SETUP & TEAR DOWN
VMMs need to ensure that the processor is running in protected mode with paging before entering VMX operation. 
The following list describes the minimal steps required to enter VMX root operation with a VMM running at 
CPL = 0.
• Check VMX support in processor using CPUID. 
• Determine the VMX capabilities supported by the processor through the VMX capability MSRs. See Section 

31.5.1 and Appendix A. 
• Create a VMXON region in non-pageable memory of a size specified by IA32_VMX_BASIC MSR and aligned to 

a 4-KByte boundary. Software should read the capability MSRs to determine width of the physical addresses 
that may be used for the VMXON region and ensure the entire VMXON region can be addressed by addresses 
with that width. Also, software must ensure that the VMXON region is hosted in cache-coherent memory.

• Initialize the version identifier in the VMXON region (the first 31 bits) with the VMCS revision identifier 
reported by capability MSRs. Clear bit 31 of the first 4 bytes of the VMXON region.

• Ensure the current processor operating mode meets the required CR0 fixed bits (CR0.PE = 1, CR0.PG = 1). 
Other required CR0 fixed bits can be detected through the IA32_VMX_CR0_FIXED0 and 
IA32_VMX_CR0_FIXED1 MSRs.

• Enable VMX operation by setting CR4.VMXE = 1. Ensure the resultant CR4 value supports all the CR4 fixed 
bits reported in the IA32_VMX_CR4_FIXED0 and IA32_VMX_CR4_FIXED1 MSRs.

• Ensure that the IA32_FEATURE_CONTROL MSR (MSR index 3AH) has been properly programmed and that its 
lock bit is set (Bit 0 = 1). This MSR is generally configured by the BIOS using WRMSR.

• Execute VMXON with the physical address of the VMXON region as the operand. Check successful execution of 
VMXON by checking if RFLAGS.CF = 0.

Upon successful execution of the steps above, the processor is in VMX root operation. 

A VMM executing in VMX root operation and CPL = 0 leaves VMX operation by executing VMXOFF and verifies 
successful execution by checking if RFLAGS.CF = 0 and RFLAGS.ZF = 0. 

If an SMM monitor has been configured to service SMIs while in VMX operation (see Section 34.15), the SMM 
monitor needs to be torn down before the executive monitor can leave VMX operation (see Section 34.15.7). 
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VMXOFF fails for the executive monitor (a VMM that entered VMX operation by way of issuing VMXON) if SMM 
monitor is configured.

...

31.6 PREPARATION AND LAUNCHING A VIRTUAL MACHINE
The following list describes the minimal steps required by the VMM to set up and launch a guest VM.
• Create a VMCS region in non-pageable memory of size specified by the VMX capability MSR IA32_VMX_BASIC 

and aligned to 4-KBytes. Software should read the capability MSRs to determine width of the physical 
addresses that may be used for a VMCS region and ensure the entire VMCS region can be addressed by 
addresses with that width. The term “guest-VMCS address” refers to the physical address of the new VMCS 
region for the following steps.

• Initialize the version identifier in the VMCS (first 31 bits) with the VMCS revision identifier reported by the 
VMX capability MSR IA32_VMX_BASIC. Clear bit 31 of the first 4 bytes of the VMCS region.

• Execute the VMCLEAR instruction by supplying the guest-VMCS address. This will initialize the new VMCS 
region in memory and set the launch state of the VMCS to “clear”. This action also invalidates the working-
VMCS pointer register to FFFFFFFF_FFFFFFFFH. Software should verify successful execution of VMCLEAR by 
checking if RFLAGS.CF = 0 and RFLAGS.ZF = 0.

• Execute the VMPTRLD instruction by supplying the guest-VMCS address. This initializes the working-VMCS 
pointer with the new VMCS region’s physical address.

• Issue a sequence of VMWRITEs to initialize various host-state area fields in the working VMCS. The initial-
ization sets up the context and entry-points to the VMM upon subsequent VM exits from the guest. Host-state 
fields include control registers (CR0, CR3 and CR4), selector fields for the segment registers (CS, SS, DS, ES, 
FS, GS and TR), and base-address fields (for FS, GS, TR, GDTR and IDTR; RSP, RIP and the MSRs that control 
fast system calls). 
Chapter 25 describes the host-state consistency checking done by the processor for VM entries. The VMM is 
required to set up host-state that comply with these consistency checks. For example, VMX requires the host-
area to have a task register (TR) selector with TI and RPL fields set to 0 and pointing to a valid TSS.

• Use VMWRITEs to set up the various VM-exit control fields, VM-entry control fields, and VM-execution control 
fields in the VMCS. Care should be taken to make sure the settings of individual fields match the allowed 0 and 
1 settings for the respective controls as reported by the VMX capability MSRs (see Appendix A). Any settings 
inconsistent with the settings reported by the capability MSRs will cause VM entries to fail.

• Use VMWRITE to initialize various guest-state area fields in the working VMCS. This sets up the context and 
entry-point for guest execution upon VM entry. Chapter 25 describes the guest-state loading and checking 
done by the processor for VM entries to protected and virtual-8086 guest execution. 

• The VMM is required to set up guest-state that complies with these consistency checks:

— If the VMM design requires the initial VM launch to cause guest software (typically the guest virtual BIOS) 
execution from the guest’s reset vector, it may need to initialize the guest execution state to reflect the 
state of a physical processor at power-on reset (described in Chapter 9, Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3A). 

— The VMM may need to initialize additional guest execution state that is not captured in the VMCS guest-
state area by loading them directly on the respective processor registers. Examples include general 
purpose registers, the CR2 control register, debug registers, floating point registers and so forth. VMM 
may support lazy loading of FPU, MMX, SSE, and SSE2 states with CR0.TS = 1 (described in Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A).

• Execute VMLAUNCH to launch the guest VM. If VMLAUNCH fails due to any consistency checks before guest-
state loading, RFLAGS.CF or RFLAGS.ZF will be set and the VM-instruction error field (see Section 24.9.5) will 
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contain the error-code. If guest-state consistency checks fail upon guest-state loading, the processor loads 
state from the host-state area as if a VM exit had occurred (see Section 31.6).

VMLAUNCH updates the controlling-VMCS pointer with the working-VMCS pointer and saves the old value of 
controlling-VMCS as the parent pointer. In addition, the launch state of the guest VMCS is changed to “launched” 
from “clear”. Any programmed exit conditions will cause the guest to VM exit to the VMM. The VMM should execute 
VMRESUME instruction for subsequent VM entries to guests in a “launched” state.

...

31.9.4 IA-32e Mode Guests
A 32-bit guest can be launched by either IA-32e-mode hosts or non-IA-32e-mode hosts. A 64-bit guests can only 
be launched by a IA-32e-mode host.

In addition to the steps outlined in Section 31.6, VMM writers need to: 
• Set the “IA-32e-mode guest” VM-entry control to 1 in the VMCS to assure VM-entry (VMLAUNCH or 

VMRESUME) will establish a 64-bit (or 32-bit compatible) guest operating environment. 
• Enable paging (CR0.PG) and PAE mode (CR4.PAE) to assure VM-entry to a 64-bit guest will succeed. 
• Ensure that the host to be in IA-32e mode (the IA32_EFER.LMA must be set to 1) and the setting of the VM-

exit “host address-space size” control bit in the VMCS must also be set to 1. 

If each of the above conditions holds true, then VM-entry will copy the value of the VM-entry “IA-32e-mode 
guest” control bit into the guests IA32_EFER.LME bit, which will result in subsequent activation of IA-32e mode. 
If any of the above conditions is false, the VM-entry will fail and load state from the host-state area of the working 
VMCS as if a VM exit had occurred (see Section 26.7).

The following VMCS controls determine the value of IA32_EFER on a VM entry: the “IA-32e-mode guest” VM-
entry control (described above), the “load IA32_EFER” VM-entry control, the “VM-entry MSR-load count,” and the 
“VM-entry MSR-load address” (see Section 26.4).

If the “load IA32_EFER” VM-entry control is 1, the value of the LME and LMA bits in the IA32_EFER field in the 
guest-state area must be the value of the “IA-32e-mode guest” VM-entry control. Otherwise, the VM entry fails.

The loading of IA32_EFER.LME bit (described above) precedes any loading of the IA32_EFER MSR from the VM-
entry MSR-load area of the VMCS. If loading of IA32_EFER is specified in the VM-entry MSR-load area, the value 
of the LME bit in the load image should be match the setting of the “IA-32e-mode guest” VM-entry control. Other-
wise, the attempt to modify the LME bit (while paging is enabled) results in a failed VM entry. However, 
IA32_EFER.LMA is always set by the processor to equal IA32_EFER.LME & CR0.PG; the value specified for LMA in 
the load image of the IA32_EFER MSR is ignored. For these and performance reasons, VMM writers may choose 
to not use the VM-exit/entry MSR-load/save areas for IA32_EFER MSR.

Note that the VMM can control the processor’s architectural state when transferring control to a VM. VMM writers 
may choose to launch guests in protected mode and subsequently allow the guest to activate IA-32e mode or they 
may allow guests to toggle in and out of IA-32e mode. In this case, the VMM should require VM exit on accesses 
to the IA32_EFER MSR to detect changes in the operating mode and modify the VM-entry “IA-32e-mode guest” 
control accordingly.

A VMM should save/restore the extended (full 64-bit) contents of the guest general-purpose registers, the new 
general-purpose registers (R8-R15) and the SIMD registers introduced in 64-bit mode should it need to modify 
these upon VM exit. 

...

20.Updates to Chapter 34, Volume 3C
Change bars show changes to Chapter 34 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3C: System Programming Guide, Part 3.
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------------------------------------------------------------------------------------------

...

34.1 SYSTEM MANAGEMENT MODE OVERVIEW
SMM is a special-purpose operating mode provided for handling system-wide functions like power management, 
system hardware control, or proprietary OEM-designed code. It is intended for use only by system firmware, not 
by applications software or general-purpose systems software. The main benefit of SMM is that it offers a distinct 
and easily isolated processor environment that operates transparently to the operating system or executive and 
software applications. 

When SMM is invoked through a system management interrupt (SMI), the processor saves the current state of 
the processor (the processor’s context), then switches to a separate operating environment defined by a new 
address space. The system management software executive (SMI handler) starts execution in that environment, 
and the critical code and data of the SMI handler reside in a physical memory region (SMRAM) within that address 
space. While in SMM, the processor executes SMI handler code to perform operations such as powering down 
unused disk drives or monitors, executing proprietary code, or placing the whole system in a suspended state. 
When the SMI handler has completed its operations, it executes a resume (RSM) instruction. This instruction 
causes the processor to reload the saved context of the processor, switch back to protected or real mode, and 
resume executing the interrupted application or operating-system program or task.

The following SMM mechanisms make it transparent to applications programs and operating systems:
• The only way to enter SMM is by means of an SMI.
• The processor executes SMM code in a separate address space that can be made inaccessible from the other 

operating modes.
• Upon entering SMM, the processor saves the context of the interrupted program or task.
• All interrupts normally handled by the operating system are disabled upon entry into SMM.
• The RSM instruction can be executed only in SMM.

Section 34.3 describes transitions into and out of SMM. The execution environment after entering SMM is in real-
address mode with paging disabled (CR0.PE = CR0.PG = 0). In this initial execution environment, the SMI 
handler can address up to 4 GBytes of memory and can execute all I/O and system instructions. Section 34.5 
describes in detail the initial SMM execution environment for an SMI handler and operation within that environ-
ment. The SMI handler may subsequently switch to other operating modes while remaining in SMM.

NOTES
Software developers should be aware that, even if a logical processor was using the physical-
address extension (PAE) mechanism (introduced in the P6 family processors) or was in IA-32e 
mode before an SMI, this will not be the case after the SMI is delivered. This is because delivery 
of an SMI disables paging (see Table 34-4). (This does not apply if the dual-monitor treatment of 
SMIs and SMM is active; see Section 34.15.)

...

34.3.1 Entering SMM
The processor always handles an SMI on an architecturally defined “interruptible” point in program execution 
(which is commonly at an IA-32 architecture instruction boundary). When the processor receives an SMI, it waits 
for all instructions to retire and for all stores to complete. The processor then saves its current context in SMRAM 
(see Section 34.4), enters SMM, and begins to execute the SMI handler.
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Upon entering SMM, the processor signals external hardware that SMI handling has begun. The signaling mecha-
nism used is implementation dependent. For the P6 family processors, an SMI acknowledge transaction is gener-
ated on the system bus and the multiplexed status signal EXF4 is asserted each time a bus transaction is 
generated while the processor is in SMM. For the Pentium and Intel486 processors, the SMIACT# pin is asserted.

An SMI has a greater priority than debug exceptions and external interrupts. Thus, if an NMI, maskable hardware 
interrupt, or a debug exception occurs at an instruction boundary along with an SMI, only the SMI is handled. 
Subsequent SMI requests are not acknowledged while the processor is in SMM. The first SMI interrupt request 
that occurs while the processor is in SMM (that is, after SMM has been acknowledged to external hardware) is 
latched and serviced when the processor exits SMM with the RSM instruction. The processor will latch only one 
SMI while in SMM.

See Section 34.5 for a detailed description of the execution environment when in SMM.

34.3.2 Exiting From SMM
The only way to exit SMM is to execute the RSM instruction. The RSM instruction is only available to the SMI 
handler; if the processor is not in SMM, attempts to execute the RSM instruction result in an invalid-opcode 
exception (#UD) being generated.

The RSM instruction restores the processor’s context by loading the state save image from SMRAM back into the 
processor’s registers. The processor then returns an SMIACK transaction on the system bus and returns program 
control back to the interrupted program.

Upon successful completion of the RSM instruction, the processor signals external hardware that SMM has been 
exited. For the P6 family processors, an SMI acknowledge transaction is generated on the system bus and the 
multiplexed status signal EXF4 is no longer generated on bus cycles. For the Pentium and Intel486 processors, the 
SMIACT# pin is deserted.

If the processor detects invalid state information saved in the SMRAM, it enters the shutdown state and generates 
a special bus cycle to indicate it has entered shutdown state. Shutdown happens only in the following situations:
• A reserved bit in control register CR4 is set to 1 on a write to CR4. This error should not happen unless SMI 

handler code modifies reserved areas of the SMRAM saved state map (see Section 34.4.1). CR4 is saved in the 
state map in a reserved location and cannot be read or modified in its saved state.

• An illegal combination of bits is written to control register CR0, in particular PG set to 1 and PE set to 0, or NW 
set to 1 and CD set to 0.

• CR4.PCIDE would be set to 1 and IA32_EFER.LMA to 0.
• (For the Pentium and Intel486 processors only.) If the address stored in the SMBASE register when an RSM 

instruction is executed is not aligned on a 32-KByte boundary. This restriction does not apply to the P6 family 
processors.

In the shutdown state, Intel processors stop executing instructions until a RESET#, INIT# or NMI# is asserted. 
While Pentium family processors recognize the SMI# signal in shutdown state, P6 family and Intel486 processors 
do not. Intel does not support using SMI# to recover from shutdown states for any processor family; the response 
of processors in this circumstance is not well defined. On Pentium 4 and later processors, shutdown will inhibit 
INTR and A20M but will not change any of the other inhibits. On these processors, NMIs will be inhibited if no 
action is taken in the SMI handler to uninhibit them (see Section 34.8).

If the processor is in the HALT state when the SMI is received, the processor handles the return from SMM slightly 
differently (see Section 34.10). Also, the SMBASE address can be changed on a return from SMM (see Section 
34.11).
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34.4 SMRAM
Upon entering SMM, the processor switches to a new address space. Because paging is disabled upon entering 
SMM, this initial address space maps all memory accesses to the low 4 GBytes of the processor's physical address 
space. The SMI handler's critical code and data reside in a memory region referred to as system-management 
RAM (SMRAM). The processor uses a pre-defined region within SMRAM to save the processor's pre-SMI context. 
SMRAM can also be used to store system management information (such as the system configuration and specific 
information about powered-down devices) and OEM-specific information. 

The default SMRAM size is 64 KBytes beginning at a base physical address in physical memory called the SMBASE 
(see Figure 34-1). The SMBASE default value following a hardware reset is 30000H. The processor looks for the 
first instruction of the SMI handler at the address [SMBASE + 8000H]. It stores the processor’s state in the area 
from [SMBASE + FE00H] to [SMBASE + FFFFH]. See Section 34.4.1 for a description of the mapping of the state 
save area.

The system logic is minimally required to decode the physical address range for the SMRAM from [SMBASE + 
8000H] to [SMBASE + FFFFH]. A larger area can be decoded if needed. The size of this SMRAM can be between 
32 KBytes and 4 GBytes.

The location of the SMRAM can be changed by changing the SMBASE value (see Section 34.11). It should be noted 
that all processors in a multiple-processor system are initialized with the same SMBASE value (30000H). Initial-
ization software must sequentially place each processor in SMM and change its SMBASE so that it does not overlap 
those of other processors.

The actual physical location of the SMRAM can be in system memory or in a separate RAM memory. The processor 
generates an SMI acknowledge transaction (P6 family processors) or asserts the SMIACT# pin (Pentium and 
Intel486 processors) when the processor receives an SMI (see Section 34.3.1). 

System logic can use the SMI acknowledge transaction or the assertion of the SMIACT# pin to decode accesses to 
the SMRAM and redirect them (if desired) to specific SMRAM memory. If a separate RAM memory is used for 
SMRAM, system logic should provide a programmable method of mapping the SMRAM into system memory space 
when the processor is not in SMM. This mechanism will enable start-up procedures to initialize the SMRAM space 
(that is, load the SMI handler) before executing the SMI handler during SMM.

...

34.5 SMI HANDLER EXECUTION ENVIRONMENT
Section 34.5.1 describes the initial execution environment for an SMI handler. An SMI handler may re-configure 
its execution environment to other supported operating modes. Section 34.5.2 discusses modifications an SMI 
handler can make to its execution environment.

34.5.1 Initial SMM Execution Environment
After saving the current context of the processor, the processor initializes its core registers to the values shown in 
Table 34-4. Upon entering SMM, the PE and PG flags in control register CR0 are cleared, which places the 
processor in an environment similar to real-address mode. The differences between the SMM execution environ-
ment and the real-address mode execution environment are as follows:
• The addressable address space ranges from 0 to FFFFFFFFH (4 GBytes). 
• The normal 64-KByte segment limit for real-address mode is increased to 4 GBytes.
• The default operand and address sizes are set to 16 bits, which restricts the addressable SMRAM address 

space to the 1-MByte real-address mode limit for native real-address-mode code. However, operand-size and 
address-size override prefixes can be used to access the address space beyond the 1-MByte.
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• Near jumps and calls can be made to anywhere in the 4-GByte address space if a 32-bit operand-size override 
prefix is used. Due to the real-address-mode style of base-address formation, a far call or jump cannot 
transfer control to a segment with a base address of more than 20 bits (1 MByte). However, since the segment 
limit in SMM is 4 GBytes, offsets into a segment that go beyond the 1-MByte limit are allowed when using 32-
bit operand-size override prefixes. Any program control transfer that does not have a 32-bit operand-size 
override prefix truncates the EIP value to the 16 low-order bits.

• Data and the stack can be located anywhere in the 4-GByte address space, but can be accessed only with a 
32-bit address-size override if they are located above 1 MByte. As with the code segment, the base address 
for a data or stack segment cannot be more than 20 bits.

The value in segment register CS is automatically set to the default of 30000H for the SMBASE shifted 4 bits to 
the right; that is, 3000H. The EIP register is set to 8000H. When the EIP value is added to shifted CS value (the 
SMBASE), the resulting linear address points to the first instruction of the SMI handler.

The other segment registers (DS, SS, ES, FS, and GS) are cleared to 0 and their segment limits are set to 4 
GBytes. In this state, the SMRAM address space may be treated as a single flat 4-GByte linear address space. If 
a segment register is loaded with a 16-bit value, that value is then shifted left by 4 bits and loaded into the 
segment base (hidden part of the segment register). The limits and attributes are not modified.

Maskable hardware interrupts, exceptions, NMI interrupts, SMI interrupts, A20M interrupts, single-step traps, 
breakpoint traps, and INIT operations are inhibited when the processor enters SMM. Maskable hardware inter-
rupts, exceptions, single-step traps, and breakpoint traps can be enabled in SMM if the SMM execution environ-
ment provides and initializes an interrupt table and the necessary interrupt and exception handlers (see Section 
34.6).

34.5.2 SMI Handler Operating Mode Switching
Within SMM, an SMI handler may change the processor's operating mode (e.g., to enable PAE paging, enter 64-
bit mode, etc.) after it has made proper preparation and initialization to do so. For example, if switching to 32-bit 
protected mode, the SMI handler should follow the guidelines provided in Chapter 9, “Processor Management and 
Initialization”. If the SMI handler does wish to change operating mode, it is responsible for executing the appro-
priate mode-transition code after each SMI.

Table 34-4.  Processor Register Initialization in SMM

Register Contents

General-purpose registers Undefined

EFLAGS 00000002H

EIP 00008000H

CS selector SMM Base shifted right 4 bits (default 3000H)

CS base SMM Base (default 30000H)

DS, ES, FS, GS, SS Selectors 0000H

DS, ES, FS, GS, SS Bases 000000000H

DS, ES, FS, GS, SS Limits 0FFFFFFFFH

CR0 PE, EM, TS, and PG flags set to 0; others unmodified

CR4 Cleared to zero

DR6 Undefined

DR7 00000400H
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It is recommended that the SMI handler make use of all means available to protect the integrity of its critical code 
and data. In particular, it should use the system-management range register (SMRR) interface if it is available 
(see Section 11.11.2.4). The SMRR interface can protect only the first 4 GBytes of the physical address space. The 
SMI handler should take that fact into account if it uses operating modes that allow access to physical addresses 
beyond that 4-GByte limit (e.g. PAE paging or 64-bit mode).

Execution of the RSM instruction restores the pre-SMI processor state from the SMRAM state-state map (see 
Section 34.4.1) into which it was stored when the processor entered SMM. (The SMBASE field in the SMRAM 
state-save map does not determine the state following RSM but rather the initial environment following the next 
entry to SMM.) Any required change to operating mode is performed by the RSM instruction; there is no need for 
the SMI handler to change modes explicitly prior to executing RSM.

34.6 EXCEPTIONS AND INTERRUPTS WITHIN SMM
When the processor enters SMM, all hardware interrupts are disabled in the following manner:
• The IF flag in the EFLAGS register is cleared, which inhibits maskable hardware interrupts from being 

generated.
• The TF flag in the EFLAGS register is cleared, which disables single-step traps.
• Debug register DR7 is cleared, which disables breakpoint traps. (This action prevents a debugger from 

accidentally breaking into an SMI handler if a debug breakpoint is set in normal address space that overlays 
code or data in SMRAM.)

• NMI, SMI, and A20M interrupts are blocked by internal SMM logic. (See Section 34.8 for more information 
about how NMIs are handled in SMM.)

Software-invoked interrupts and exceptions can still occur, and maskable hardware interrupts can be enabled by 
setting the IF flag. Intel recommends that SMM code be written in so that it does not invoke software interrupts 
(with the INT n, INTO, INT 3, or BOUND instructions) or generate exceptions. 

If the SMI handler requires interrupt and exception handling, an SMM interrupt table and the necessary exception 
and interrupt handlers must be created and initialized from within SMM. Until the interrupt table is correctly 
initialized (using the LIDT instruction), exceptions and software interrupts will result in unpredictable processor 
behavior. 

The following restrictions apply when designing SMM interrupt and exception-handling facilities:
• The interrupt table should be located at linear address 0 and must contain real-address mode style interrupt 

vectors (4 bytes containing CS and IP).
• Due to the real-address mode style of base address formation, an interrupt or exception cannot transfer 

control to a segment with a base address of more that 20 bits.
• An interrupt or exception cannot transfer control to a segment offset of more than 16 bits (64 KBytes).
• When an exception or interrupt occurs, only the 16 least-significant bits of the return address (EIP) are 

pushed onto the stack. If the offset of the interrupted procedure is greater than 64 KBytes, it is not possible 
for the interrupt/exception handler to return control to that procedure. (One solution to this problem is for a 
handler to adjust the return address on the stack.)

• The SMBASE relocation feature affects the way the processor will return from an interrupt or exception 
generated while the SMI handler is executing. For example, if the SMBASE is relocated to above 1 MByte, but 
the exception handlers are below 1 MByte, a normal return to the SMI handler is not possible. One solution is 
to provide the exception handler with a mechanism for calculating a return address above 1 MByte from the 
16-bit return address on the stack, then use a 32-bit far call to return to the interrupted procedure.

• If an SMI handler needs access to the debug trap facilities, it must insure that an SMM accessible debug 
handler is available and save the current contents of debug registers DR0 through DR3 (for later restoration). 
Debug registers DR0 through DR3 and DR7 must then be initialized with the appropriate values.
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• If an SMI handler needs access to the single-step mechanism, it must insure that an SMM accessible single-
step handler is available, and then set the TF flag in the EFLAGS register.

• If the SMI design requires the processor to respond to maskable hardware interrupts or software-generated 
interrupts while in SMM, it must ensure that SMM accessible interrupt handlers are available and then set the 
IF flag in the EFLAGS register (using the STI instruction). Software interrupts are not blocked upon entry to 
SMM, so they do not need to be enabled.

...

34.8 NMI HANDLING WHILE IN SMM
NMI interrupts are blocked upon entry to the SMI handler. If an NMI request occurs during the SMI handler, it is 
latched and serviced after the processor exits SMM. Only one NMI request will be latched during the SMI handler. 
If an NMI request is pending when the processor executes the RSM instruction, the NMI is serviced before the next 
instruction of the interrupted code sequence. This assumes that NMIs were not blocked before the SMI occurred. 
If NMIs were blocked before the SMI occurred, they are blocked after execution of RSM.

Although NMI requests are blocked when the processor enters SMM, they may be enabled through software by 
executing an IRET instruction. If the SMI handler requires the use of NMI interrupts, it should invoke a dummy 
interrupt service routine for the purpose of executing an IRET instruction. Once an IRET instruction is executed, 
NMI interrupt requests are serviced in the same “real mode” manner in which they are handled outside of SMM.

A special case can occur if an SMI handler nests inside an NMI handler and then another NMI occurs. During NMI 
interrupt handling, NMI interrupts are disabled, so normally NMI interrupts are serviced and completed with an 
IRET instruction one at a time. When the processor enters SMM while executing an NMI handler, the processor 
saves the SMRAM state save map but does not save the attribute to keep NMI interrupts disabled. Potentially, an 
NMI could be latched (while in SMM or upon exit) and serviced upon exit of SMM even though the previous NMI 
handler has still not completed. One or more NMIs could thus be nested inside the first NMI handler. The NMI 
interrupt handler should take this possibility into consideration.

Also, for the Pentium processor, exceptions that invoke a trap or fault handler will enable NMI interrupts from 
inside of SMM. This behavior is implementation specific for the Pentium processor and is not part of the IA-32 
architecture.

...

34.11 SMBASE RELOCATION
The default base address for the SMRAM is 30000H. This value is contained in an internal processor register called 
the SMBASE register. The operating system or executive can relocate the SMRAM by setting the SMBASE field in 
the saved state map (at offset 7EF8H) to a new value (see Figure 34-4). The RSM instruction reloads the internal 
SMBASE register with the value in the SMBASE field each time it exits SMM. All subsequent SMI requests will use 
the new SMBASE value to find the starting address for the SMI handler (at SMBASE + 8000H) and the SMRAM 
state save area (from SMBASE + FE00H to SMBASE + FFFFH). (The processor resets the value in its internal 
SMBASE register to 30000H on a RESET, but does not change it on an INIT.) 

 

Figure 34-4.  SMBASE Relocation Field

031

SMM Base
Register Offset
7EF8H
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In multiple-processor systems, initialization software must adjust the SMBASE value for each processor so that 
the SMRAM state save areas for each processor do not overlap. (For Pentium and Intel486 processors, the 
SMBASE values must be aligned on a 32-KByte boundary or the processor will enter shutdown state during the 
execution of a RSM instruction.)

If the SMBASE relocation flag in the SMM revision identifier field is set, it indicates the ability to relocate the 
SMBASE (see Section 34.9).

34.12 I/O INSTRUCTION RESTART
If the I/O instruction restart flag in the SMM revision identifier field is set (see Section 34.9), the I/O instruction 
restart mechanism is present on the processor. This mechanism allows an interrupted I/O instruction to be re-
executed upon returning from SMM mode. For example, if an I/O instruction is used to access a powered-down I/
O device, a chip set supporting this device can intercept the access and respond by asserting SMI#. This action 
invokes the SMI handler to power-up the device. Upon returning from the SMI handler, the I/O instruction restart 
mechanism can be used to re-execute the I/O instruction that caused the SMI.

The I/O instruction restart field (at offset 7F00H in the SMM state-save area, see Figure 34-5) controls I/O 
instruction restart. When an RSM instruction is executed, if this field contains the value FFH, then the EIP register 
is modified to point to the I/O instruction that received the SMI request. The processor will then automatically re-
execute the I/O instruction that the SMI trapped. (The processor saves the necessary machine state to insure that 
re-execution of the instruction is handled coherently.)

...

34.15.4.1  Checks on the Executive-VMCS Pointer Field
VM entries that return from SMM perform the following checks on the executive-VMCS pointer field in the current 
VMCS:
• Bits 11:0 must be 0.
• The pointer must not set any bits beyond the processor’s physical-address width.1,2

• The 32 bits located in memory referenced by the physical address in the pointer must contain the processor’s 
VMCS revision identifier (see Section 24.2).

The checks above are performed before the checks described in Section 34.15.4.2 and before any of the following 
checks:
• 'If the “deactivate dual-monitor treatment” VM-entry control is 0 and the executive-VMCS pointer field does 

not contain the VMXON pointer, the launch state of the executive VMCS (the VMCS referenced by the 
executive-VMCS pointer field) must be launched (see Section 24.11.3).

• If the “deactivate dual-monitor treatment” VM-entry control is 1, the executive-VMCS pointer field must 
contain the VMXON pointer (see Section 34.15.7).3

...

1. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.

2. If IA32_VMX_BASIC[48] is read as 1, this pointer must not set any bits in the range 63:32; see Appendix A.1.

3. The STM can determine the VMXON pointer by reading the executive-VMCS pointer field in the current VMCS after the SMM 
VM exit that activates the dual-monitor treatment.
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34.15.5 Enabling the Dual-Monitor Treatment
Code and data for the SMM-transfer monitor (STM) reside in a region of SMRAM called the monitor segment 
(MSEG). Code running in SMM determines the location of MSEG and establishes its content. This code is also 
responsible for enabling the dual-monitor treatment. 

SMM code enables the dual-monitor treatment and specifies the location of MSEG by writing to the 
IA32_SMM_MONITOR_CTL MSR (index 9BH). The MSR has the following format:
• Bit 0 is the register’s valid bit. The STM may be invoked using VMCALL only if this bit is 1. Because VMCALL is 

used to activate the dual-monitor treatment (see Section 34.15.6), the dual-monitor treatment cannot be 
activated if the bit is 0. This bit is cleared when the logical processor is reset.

• Bit 1 is reserved.
• Bit 2 determines whether executions of VMXOFF unblock SMIs under the default treatment of SMIs and SMM. 

Executions of VMXOFF unblock SMIs unless bit 2 is 1 (the value of bit 0 is irrelevant). See Section 34.14.4.
Certain leaf functions of the GETSEC instruction clear this bit (see Chapter 5, “Safer Mode Extensions 
Reference,” in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2C)

• Bits 11:3 are reserved.
• Bits 31:12 contain a value that, when shifted right 12 bits, is the physical address of MSEG (the MSEG base 

address).
• Bits 63:32 are reserved.

The following items detail use of this MSR:
• The IA32_SMM_MONITOR_CTL MSR is supported only on processors that support the dual-monitor 

treatment.1 On other processors, accesses to the MSR using RDMSR or WRMSR generate a general-protection 
fault (#GP(0)).

• A write to the IA32_SMM_MONITOR_CTL MSR using WRMSR generates a general-protection fault (#GP(0)) if 
executed outside of SMM or if an attempt is made to set any reserved bit. An attempt to write to the 
IA32_SMM_MONITOR_CTL MSR fails if made as part of a VM exit that does not end in SMM or part of a 
VM entry that does not begin in SMM.

• Reads from the IA32_SMM_MONITOR_CTL MSR using RDMSR are allowed any time RDMSR is allowed. The 
MSR may be read as part of any VM exit.

• The dual-monitor treatment can be activated only if the valid bit in the MSR is set to 1.

The 32 bytes located at the MSEG base address are called the MSEG header. The format of the MSEG header is 
given in Table 34-10 (each field is 32 bits).

1. Software should consult the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1) to determine whether the dual-monitor 
treatment is supported.

Table 34-10.  Format of MSEG Header

Byte Offset Field

0 MSEG-header revision identifier

4 SMM-transfer monitor features

8 GDTR limit

12 GDTR base offset

16 CS selector

20 EIP offset
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To ensure proper behavior in VMX operation, software should maintain the MSEG header in writeback cacheable 
memory. Future implementations may allow or require a different memory type.1 Software should consult the 
VMX capability MSR IA32_VMX_BASIC (see Appendix A.1).

SMM code should enable the dual-monitor treatment (by setting the valid bit in IA32_SMM_MONITOR_CTL MSR) 
only after establishing the content of the MSEG header as follows:
• Bytes 3:0 contain the MSEG revision identifier. Different processors may use different MSEG revision 

identifiers. These identifiers enable software to avoid using an MSEG header formatted for one processor on a 
processor that uses a different format. Software can discover the MSEG revision identifier that a processor 
uses by reading the VMX capability MSR IA32_VMX_MISC (see Appendix A.6).

• Bytes 7:4 contain the SMM-transfer monitor features field. Bits 31:1 of this field are reserved and must be 
zero. Bit 0 of the field is the IA-32e mode SMM feature bit. It indicates whether the logical processor will 
be in IA-32e mode after the STM is activated (see Section 34.15.6).

• Bytes 31:8 contain fields that determine how processor state is loaded when the STM is activated (see Section 
34.15.6.6). SMM code should establish these fields so that activating of the STM invokes the STM’s initial-
ization code. 

...

34.15.6.1  Initial Checks
An execution of VMCALL attempts to activate the dual-monitor treatment if (1) the processor supports the dual-
monitor treatment;2 (2) the logical processor is in VMX root operation; (3) the logical processor is outside SMM 
and the valid bit is set in the IA32_SMM_MONITOR_CTL MSR; (4) the logical processor is not in virtual-8086 
mode and not in compatibility mode; (5) CPL = 0; and (6) the dual-monitor treatment is not active.

The VMCS that manages SMM VM exit caused by this VMCALL is the current VMCS established by the executive 
monitor. The VMCALL performs the following checks on the current VMCS in the order indicated:

1. There must be a current VMCS pointer.

2. The launch state of the current VMCS must be clear.

3. Reserved bits in the VM-exit controls in the current VMCS must be set properly. Software may consult the VMX 
capability MSR IA32_VMX_EXIT_CTLS to determine the proper settings (see Appendix A.4).

If any of these checks fail, subsequent checks are skipped and VMCALL fails. If all these checks succeed, the 
logical processor uses the IA32_SMM_MONITOR_CTL MSR to determine the base address of MSEG. The following 
checks are performed in the order indicated:

1. The logical processor reads the 32 bits at the base of MSEG and compares them to the processor’s MSEG 
revision identifier.

24 ESP offset

28 CR3 offset

Table 34-10.  Format of MSEG Header (Contd.)

Byte Offset Field

1. Alternatively, software may map the MSEG header with the UC memory type; this may be necessary, depending on how memory is 
organized. Doing so is strongly discouraged unless necessary as it will cause the performance of transitions using those structures 
to suffer significantly. In addition, the processor will continue to use the memory type reported in the VMX capability MSR 
IA32_VMX_BASIC with exceptions noted in Appendix A.1.

2. Software should consult the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1) to determine whether the dual-monitor 
treatment is supported.



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 275

2. The logical processor reads the SMM-transfer monitor features field:

— Bit 0 of the field is the IA-32e mode SMM feature bit, and it indicates whether the logical processor will be 
in IA-32e mode after the SMM-transfer monitor (STM) is activated.

• If the VMCALL is executed on a processor that does not support Intel 64 architecture, the IA-32e mode 
SMM feature bit must be 0.

• If the VMCALL is executed in 64-bit mode, the IA-32e mode SMM feature bit must be 1.

— Bits 31:1 of this field are currently reserved and must be zero.

If any of these checks fail, subsequent checks are skipped and the VMCALL fails.

...

34.15.6.4  Saving Guest State
As noted in Section 34.15.2.4, SMM VM exits save the contents of the SMBASE register into the corresponding 
field in the guest-state area. While this is true also for SMM VM exits that activate the dual-monitor treatment, the 
VMCS used for those VM exits exists outside SMRAM.

The SMM-transfer monitor (STM) can also discover the current value of the SMBASE register by using the RDMSR 
instruction to read the IA32_SMBASE MSR (MSR address 9EH). The following items detail use of this MSR:
• The MSR is supported only if IA32_VMX_MISC[15] = 1 (see Appendix A.6).
• A write to the IA32_SMBASE MSR using WRMSR generates a general-protection fault (#GP(0)). An attempt to 

write to the IA32_SMBASE MSR fails if made as part of a VM exit or part of a VM entry.
• A read from the IA32_SMBASE MSR using RDMSR generates a general-protection fault (#GP(0)) if executed 

outside of SMM. An attempt to read from the IA32_SMBASE MSR fails if made as part of a VM exit that does 
not end in SMM.

...

34.16 SMI AND PROCESSOR EXTENDED STATE MANAGEMENT
On processors that support processor extended states using XSAVE/XRSTOR (see Chapter 13, “System Program-
ming for Instruction Set Extensions and Processor Extended States”), the processor does not save any XSAVE/
XRSTOR related state on an SMI. It is the responsibility of the SMI handler code to properly preserve the state 
information (including CR4.OSXSAVE, XCR0, and possibly processor extended states using XSAVE/XRSTOR). 
Therefore, the SMI handler must follow the rules described in Chapter 13.

...

21.Updates to Chapter 35, Volume 3C
Change bars show changes to Chapter 35 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3C: System Programming Guide, Part 3.

------------------------------------------------------------------------------------------

...
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...

Table 35-1.  CPUID Signature Values of DisplayFamily_DisplayModel 
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_3FH Future Generation Intel Xeon Processor

06_3CH, 06_45H Next Generation Intel Core Processor 

06_3EH Next Generation Intel Xeon Processor E5 Family based on Intel microarchitecture Ivy Bridge

06_3AH 3rd Generation Intel Core Processor and Intel Xeon Processor E3-1200v2 Product Family based on 
Intel microarchitecture Ivy Bridge

06_2DH Intel Xeon Processor E5 Family based on Intel microarchitecture Sandy Bridge

06_2FH Intel Xeon Processor E7 Family

06_2AH Intel Xeon Processor E3-1200 Family; 2nd Generation Intel Core i7, i5, i3 Processors 2xxx Series

06_2EH Intel Xeon processor 7500, 6500 series

06_25H, 06_2CH Intel Xeon processors 3600, 5600 series, Intel Core i7, i5 and i3 Processors

06_1EH, 06_1FH Intel Core i7 and i5 Processors

06_1AH Intel Core i7 Processor, Intel Xeon Processor 3400, 3500, 5500 series

06_1DH Intel Xeon Processor MP 7400 series

06_17H Intel Xeon Processor 3100, 3300, 5200, 5400 series, Intel Core 2 Quad processors 8000, 9000 
series

06_0FH Intel Xeon Processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series, 
Intel Core 2 Extreme 6000 series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors, Intel 
Pentium dual-core processors

06_0EH Intel Core Duo, Intel Core Solo processors

06_0DH Intel Pentium M processor

06_36H Intel Atom S Processor Family

06_1CH, 06_26H, 06_27H, 
06_35, 06_36

Intel Atom Processor Family

0F_06H Intel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP, Intel Pentium 4, Pentium D 
processors

0F_03H, 0F_04H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors

06_09H Intel Pentium M processor

0F_02H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors

0F_0H, 0F_01H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors

06_7H, 06_08H, 06_0AH, 
06_0BH

Intel Pentium III Xeon Processor, Intel Pentium III Processor

06_03H, 06_05H Intel Pentium II Xeon Processor, Intel Pentium II Processor 

06_01H Intel Pentium Pro Processor 

05_01H, 05_02H, 05_04H Intel Pentium Processor, Intel Pentium Processor with MMX Technology
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35.1 ARCHITECTURAL MSRS
Many MSRs have carried over from one generation of IA-32 processors to the next and to Intel 64 processors. A 
subset of MSRs and associated bit fields, which do not change on future processor generations, are now consid-
ered architectural MSRs. For historical reasons (beginning with the Pentium 4 processor), these “architectural 
MSRs” were given the prefix “IA32_”. Table 35-2 lists the architectural MSRs, their addresses, their current 
names, their names in previous IA-32 processors, and bit fields that are considered architectural. MSR addresses 
outside Table 35-2 and certain bitfields in an MSR address that may overlap with architectural MSR addresses are 
model-specific. Code that accesses a machine specified MSR and that is executed on a processor that does not 
support that MSR will generate an exception.

Architectural MSR or individual bit fields in an architectural MSR may be introduced or transitioned at the granu-
larity of certain processor family/model or the presence of certain CPUID feature flags. The right-most column of 
Table 35-2 provides information on the introduction of each architectural MSR or its individual fields. This informa-
tion is expressed either as signature values of “DF_DM” (see Table 35-1) or via CPUID flags.

Certain bit field position may be related to the maximum physical address width, the value of which is expressed 
as “MAXPHYWID” in Table 35-2. “MAXPHYWID” is reported by CPUID.8000_0008H leaf.

MSR address range between 40000000H - 400000FFH is marked as a specially reserved range. All existing and 
future processors will not implement any features using any MSR in this range.

Table 35-2.  IA-32 Architectural MSRs

Register 
Address

Architectural MSR Name and bit 
fields 

(Former MSR Name) MSR/Bit Description

Introduced as 
Architectural MSR

Hex Decimal

0H 0 IA32_P5_MC_ADDR (P5_MC_ADDR) See Section 35.15, “MSRs in Pentium 
Processors.”

Pentium Processor 
(05_01H)

1H 1 IA32_P5_MC_TYPE (P5_MC_TYPE) See Section 35.15, “MSRs in Pentium 
Processors.”

DF_DM = 05_01H

6H 6 IA32_MONITOR_FILTER_SIZE See Section 8.10.5, “Monitor/Mwait 
Address Range Determination.”

0F_03H

10H 16 IA32_TIME_STAMP_
COUNTER (TSC)

See Section 17.13, “Time-Stamp Counter.” 05_01H

17H 23 IA32_PLATFORM_ID 
(MSR_PLATFORM_ID )

Platform ID (RO) 
The operating system can use this MSR to 
determine “slot” information for the 
processor and the proper microcode update 
to load.

06_01H

49:0 Reserved.
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52:50 Platform Id (RO) 

Contains information concerning the 
intended platform for the processor. 

52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4 
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

63:53 Reserved.

1BH 27 IA32_APIC_BASE (APIC_BASE) 06_01H

7:0 Reserved

8 BSP flag (R/W)

9 Reserved

10 Enable x2APIC mode 06_1AH

11 APIC Global Enable (R/W)

(MAXPHYWID - 1):12 APIC Base (R/W)

63: MAXPHYWID Reserved

3AH 58 IA32_FEATURE_CONTROL Control Features in Intel 64 Processor 
(R/W)

If CPUID.01H: ECX[bit 5 or 
bit 6] = 1

0 Lock bit (R/WO): (1 = locked). When set, 
locks this MSR from being written, writes 
to this bit will result in GP(0).

Note: Once the Lock bit is set, the contents 
of this register cannot be modified. 
Therefore the lock bit must be set after 
configuring support

If CPUID.01H:ECX[bit 5 or 
bit 6] = 1

for Intel Virtualization Technology and prior 
to transferring control to an option ROM or 
the OS. Hence, once the Lock bit is set, the 
entire

IA32_FEATURE_CONTROL_MSR contents 
are preserved across RESET when 
PWRGOOD is not deasserted.

Table 35-2.  IA-32 Architectural MSRs (Contd.)

Register 
Address

Architectural MSR Name and bit 
fields 

(Former MSR Name) MSR/Bit Description

Introduced as 
Architectural MSR

Hex Decimal
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1 Enable VMX inside SMX operation (R/WL): 
This bit enables a system executive to use 
VMX in conjunction with SMX to support 
Intel® Trusted Execution Technology.

BIOS must set this bit only when the CPUID 
function 1 returns VMX feature flag and 
SMX feature flag set (ECX bits 5 and 6 
respectively).

If CPUID.01H:ECX[bit 5 and 
bit 6] are set to 1

2 Enable VMX outside SMX operation (R/WL): 
This bit enables VMX for system executive 
that do not require SMX.

BIOS must set this bit only when the CPUID 
function 1 returns VMX feature flag set 
(ECX bit 5).

If CPUID.01H:ECX[bit 5 or 
bit 6] = 1

7:3 Reserved

14:8 SENTER Local Function Enables (R/WL): 
When set, each bit in the field represents 
an enable control for a corresponding 
SENTER function. This bit is supported only 
if CPUID.1:ECX.[bit 6] is set

If CPUID.01H:ECX[bit 6] = 1

15 SENTER Global Enable (R/WL): This bit must 
be set to enable SENTER leaf functions. 
This bit is supported only if 
CPUID.1:ECX.[bit 6] is set

If CPUID.01H:ECX[bit 6] = 1

63:16 Reserved

3BH 59 IA32_TSC_ADJUST Per Logical Processor TSC Adjust (R/Write 
to clear)

If CPUID.(EAX=07H, 
ECX=0H): EBX[1] = 1

63:0 THREAD_ADJUST: 

Local offset value of the IA32_TSC for a 
logical processor. Reset value is Zero. A 
write to IA32_TSC will modify the local 
offset in IA32_TSC_ADJUST and the 
content of IA32_TSC, but does not affect 
the internal invariant TSC hardware. 

79H 121 IA32_BIOS_UPDT_TRIG 
(BIOS_UPDT_TRIG)

BIOS Update Trigger (W)

Executing a WRMSR instruction to this MSR 
causes a microcode update to be loaded 
into the processor. See Section 9.11.6, 
“Microcode Update Loader.”

A processor may prevent writing to this 
MSR when loading guest states on VM 
entries or saving guest states on VM exits.

06_01H

Table 35-2.  IA-32 Architectural MSRs (Contd.)

Register 
Address

Architectural MSR Name and bit 
fields 

(Former MSR Name) MSR/Bit Description

Introduced as 
Architectural MSR

Hex Decimal
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8BH 139 IA32_BIOS_SIGN_ID (BIOS_SIGN/
BBL_CR_D3)

BIOS Update Signature (RO)

Returns the microcode update signature 
following the execution of CPUID.01H.

A processor may prevent writing to this 
MSR when loading guest states on VM 
entries or saving guest states on VM exits.

06_01H

31:0 Reserved

63:32 It is recommended that this field be pre-
loaded with 0 prior to executing CPUID. 

If the field remains 0 following the 
execution of CPUID; this indicates that no 
microcode update is loaded. Any non-zero 
value is the microcode update signature.

9BH 155 IA32_SMM_MONITOR_CTL SMM Monitor Configuration (R/W) If CPUID.01H: ECX[bit 5 or 
bit 6] = 1

0 Valid (R/W)

1 Reserved

2 Controls SMI unblocking by VMXOFF (see 
Section 34.14.4)

If IA32_VMX_MISC[bit 28])

11:3 Reserved

31:12 MSEG Base (R/W)

63:32 Reserved

9EH 158 IA32_SMBASE Base address of the logical processor’s 
SMRAM image (RO, SMM only)

If IA32_VMX_MISC[bit 15])

C1H 193 IA32_PMC0 (PERFCTR0) General Performance Counter 0 (R/W) If CPUID.0AH: EAX[15:8] > 
0

C2H 194 IA32_PMC1 (PERFCTR1) General Performance Counter 1 (R/W) If CPUID.0AH: EAX[15:8] > 
1

C3H 195 IA32_PMC2 General Performance Counter 2 (R/W) If CPUID.0AH: EAX[15:8] > 
2

C4H 196 IA32_PMC3 General Performance Counter 3 (R/W) If CPUID.0AH: EAX[15:8] > 
3

C5H 197 IA32_PMC4 General Performance Counter 4 (R/W) If CPUID.0AH: EAX[15:8] > 
4

C6H 198 IA32_PMC5 General Performance Counter 5 (R/W) If CPUID.0AH: EAX[15:8] > 
5

C7H 199 IA32_PMC6 General Performance Counter 6 (R/W) If CPUID.0AH: EAX[15:8] > 
6

C8H 200 IA32_PMC7 General Performance Counter 7 (R/W) If CPUID.0AH: EAX[15:8] > 
7

Table 35-2.  IA-32 Architectural MSRs (Contd.)

Register 
Address

Architectural MSR Name and bit 
fields 

(Former MSR Name) MSR/Bit Description

Introduced as 
Architectural MSR

Hex Decimal
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E7H 231 IA32_MPERF Maximum Qualified Performance Clock 
Counter (R/Write to clear)

If CPUID.06H: ECX[0] = 1

63:0 C0_MCNT: C0 Maximum Frequency Clock 
Count

Increments at fixed interval (relative to TSC 
freq.) when the logical processor is in C0. 

Cleared upon overflow / wrap-around of 
IA32_APERF. 

E8H 232 IA32_APERF Actual Performance Clock Counter (R/Write 
to clear)

If CPUID.06H: ECX[0] = 1

63:0 C0_ACNT: C0 Actual Frequency Clock 
Count

Accumulates core clock counts at the 
coordinated clock frequency, when the 
logical processor is in C0. 

Cleared upon overflow / wrap-around of 
IA32_MPERF.

FEH 254 IA32_MTRRCAP (MTRRcap) MTRR Capability (RO) Section 11.11.2.1, 
“IA32_MTRR_DEF_TYPE MSR.”

06_01H

7:0 VCNT: The number of variable memory 
type ranges in the processor.

8 Fixed range MTRRs are supported when 
set.

9 Reserved.

10 WC Supported when set.

11 SMRR Supported when set.

63:12 Reserved.

174H 372 IA32_SYSENTER_CS SYSENTER_CS_MSR (R/W) 06_01H

15:0 CS Selector

63:16 Reserved.

175H 373 IA32_SYSENTER_ESP SYSENTER_ESP_MSR (R/W) 06_01H

176H 374 IA32_SYSENTER_EIP SYSENTER_EIP_MSR (R/W) 06_01H

179H 377 IA32_MCG_CAP (MCG_CAP) Global Machine Check Capability (RO) 06_01H

7:0 Count: Number of reporting banks.

8 MCG_CTL_P: IA32_MCG_CTL is present if 
this bit is set

9 MCG_EXT_P: Extended machine check 
state registers are present if this bit is set
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10 MCP_CMCI_P: Support for corrected MC 
error event is present.

06_1AH

11 MCG_TES_P: Threshold-based error status 
register are present if this bit is set.

15:12 Reserved

23:16 MCG_EXT_CNT: Number of extended 
machine check state registers present.

24 MCG_SER_P: The processor supports 
software error recovery if this bit is set.

63:25 Reserved.

17AH 378 IA32_MCG_STATUS (MCG_STATUS) Global Machine Check Status (RO) 06_01H

17BH 379 IA32_MCG_CTL (MCG_CTL) Global Machine Check Control (R/W) 06_01H

180H-
185H

384-
389

Reserved 06_0EH1

186H 390 IA32_PERFEVTSEL0 (PERFEVTSEL0) Performance Event Select Register 0 (R/W) If CPUID.0AH: EAX[15:8] > 
0

7:0 Event Select: Selects a performance event 
logic unit.

15:8 UMask: Qualifies the microarchitectural 
condition to detect on the selected event 
logic.

16 USR: Counts while in privilege level is not 
ring 0.

17 OS: Counts while in privilege level is ring 0.

18 Edge: Enables edge detection if set.

19 PC: enables pin control.

20 INT: enables interrupt on counter overflow.

21 AnyThread: When set to 1, it enables 
counting the associated event conditions 
occurring across all logical processors 
sharing a processor core. When set to 0, the 
counter only increments the associated 
event conditions occurring in the logical 
processor which programmed the MSR.

22 EN: enables the corresponding performance 
counter to commence counting when this 
bit is set.

23 INV: invert the CMASK.
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31:24 CMASK: When CMASK is not zero, the 
corresponding performance counter 
increments each cycle if the event count is 
greater than or equal to the CMASK.

63:32 Reserved.

187H 391 IA32_PERFEVTSEL1 (PERFEVTSEL1) Performance Event Select Register 1 (R/W) If CPUID.0AH: EAX[15:8] > 
1

188H 392 IA32_PERFEVTSEL2 Performance Event Select Register 2 (R/W) If CPUID.0AH: EAX[15:8] > 
2

189H 393 IA32_PERFEVTSEL3 Performance Event Select Register 3 (R/W) If CPUID.0AH: EAX[15:8] > 
3

18AH-
197H

394-
407

Reserved 06_0EH2

198H 408 IA32_PERF_STATUS (RO) 0F_03H 

15:0 Current performance State Value

63:16 Reserved.

199H 409 IA32_PERF_CTL (R/W) 0F_03H 

15:0 Target performance State Value

31:16 Reserved.

32 IDA Engage. (R/W)

When set to 1: disengages IDA

06_0FH (Mobile)

63:33 Reserved.

19AH 410 IA32_CLOCK_MODULATION Clock Modulation Control (R/W)

See Section 14.5.3, “Software Controlled 
Clock Modulation.”

0F_0H

0 Extended On-Demand Clock Modulation 
Duty Cycle:

If CPUID.06H:EAX[5] = 1

3:1 On-Demand Clock Modulation Duty Cycle: 
Specific encoded values for target duty 
cycle modulation.

4 On-Demand Clock Modulation Enable: Set 1 
to enable modulation.

63:5 Reserved.

19BH 411 IA32_THERM_INTERRUPT Thermal Interrupt Control (R/W)

Enables and disables the generation of an 
interrupt on temperature transitions 
detected with the processor’s thermal 
sensors and thermal monitor. 

See Section 14.5.2, “Thermal Monitor.”

0F_0H
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0 High-Temperature Interrupt Enable

1 Low-Temperature Interrupt Enable

2 PROCHOT# Interrupt Enable

3 FORCEPR# Interrupt Enable

4 Critical Temperature Interrupt Enable

7:5 Reserved.

14:8 Threshold #1 Value

15 Threshold #1 Interrupt Enable

22:16 Threshold #2 Value

23 Threshold #2 Interrupt Enable

24 Power Limit Notification Enable If CPUID.06H:EAX[4] = 1

63:25 Reserved.

19CH 412 IA32_THERM_STATUS Thermal Status Information (RO)

Contains status information about the 
processor’s thermal sensor and automatic 
thermal monitoring facilities. 

See Section 14.5.2, “Thermal Monitor”

0F_0H

0 Thermal Status (RO):

1 Thermal Status Log (R/W): 

2 PROCHOT # or FORCEPR# event (RO)

3 PROCHOT # or FORCEPR# log (R/WC0)

4 Critical Temperature Status (RO)

5 Critical Temperature Status log (R/WC0)

6 Thermal Threshold #1 Status (RO) If CPUID.01H:ECX[8] = 1

7 Thermal Threshold #1 log (R/WC0) If CPUID.01H:ECX[8] = 1

8 Thermal Threshold #2 Status (RO) If CPUID.01H:ECX[8] = 1

9 Thermal Threshold #1 log (R/WC0) If CPUID.01H:ECX[8] = 1

10 Power Limitation Status (RO) If CPUID.06H:EAX[4] = 1

11 Power Limitation log (R/WC0) If CPUID.06H:EAX[4] = 1

15:12 Reserved.

22:16 Digital Readout (RO) If CPUID.06H:EAX[0] = 1

26:23 Reserved.

30:27 Resolution in Degrees Celsius (RO) If CPUID.06H:EAX[0] = 1

31 Reading Valid (RO) If CPUID.06H:EAX[0] = 1
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63:32 Reserved.

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W) 

Allows a variety of processor functions to 
be enabled and disabled.

0 Fast-Strings Enable

When set, the fast-strings feature (for REP 
MOVS and REP STORS) is enabled (default); 
when clear, fast-strings are disabled.

0F_0H

2:1 Reserved.

3 Automatic Thermal Control Circuit Enable 
(R/W) 

1 = Setting this bit enables the thermal 
control circuit (TCC) portion of the 
Intel Thermal Monitor feature. This 
allows the processor to automatically 
reduce power consumption in 
response to TCC activation.

0 = Disabled (default).
Note: In some products clearing this bit 
might be ignored in critical thermal 
conditions, and TM1, TM2 and adaptive 
thermal throttling will still be activated.

0F_0H

6:4 Reserved

7 Performance Monitoring Available (R) 

1 = Performance monitoring enabled
0 = Performance monitoring disabled

0F_0H

10:8 Reserved.

11 Branch Trace Storage Unavailable (RO)

1 = Processor doesn’t support branch 
trace storage (BTS)

0 = BTS is supported

0F_0H

12 Precise Event Based Sampling (PEBS) 
Unavailable (RO) 

1 = PEBS is not supported; 
0 = PEBS is supported. 

06_0FH

15:13 Reserved.
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16 Enhanced Intel SpeedStep Technology 
Enable (R/W)

0= Enhanced Intel SpeedStep 
Technology disabled

1 = Enhanced Intel SpeedStep 
Technology enabled

06_0DH

17 Reserved.

18 ENABLE MONITOR FSM (R/W)

When this bit is set to 0, the MONITOR 
feature flag is not set (CPUID.01H:ECX[bit 
3] = 0). This indicates that MONITOR/
MWAIT are not supported. 

Software attempts to execute MONITOR/
MWAIT will cause #UD when this bit is 0.

When this bit is set to 1 (default), 
MONITOR/MWAIT are supported 
(CPUID.01H:ECX[bit 3] = 1).

If the SSE3 feature flag ECX[0] is not set 
(CPUID.01H:ECX[bit 0] = 0), the OS must 
not attempt to alter this bit. BIOS must 
leave it in the default state. Writing this bit 
when the SSE3 feature flag is set to 0 may 
generate a #GP exception.

0F_03H

21:19 Reserved.

22 Limit CPUID Maxval (R/W)

When this bit is set to 1, CPUID.00H returns 
a maximum value in EAX[7:0] of 3.

BIOS should contain a setup question that 
allows users to specify when the installed 
OS does not support CPUID functions 
greater than 3.

Before setting this bit, BIOS must execute 
the CPUID.0H and examine the maximum 
value returned in EAX[7:0]. If the maximum 
value is greater than 3, the bit is supported.

Otherwise, the bit is not supported.  Writing 
to this bit when the maximum value is 
greater than 3 may generate a #GP 
exception.

Setting this bit may cause unexpected 
behavior in software that depends on the 
availability of CPUID leaves greater than 3.

0F_03H
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23 xTPR Message Disable (R/W)

When set to 1, xTPR messages are 
disabled. xTPR messages are optional 
messages that allow the processor to 
inform the chipset of its priority.

if CPUID.01H:ECX[14] = 1

33:24 Reserved.

34 XD Bit Disable (R/W)

When set to 1, the Execute Disable Bit 
feature (XD Bit) is disabled and the XD Bit 
extended feature flag will be clear 
(CPUID.80000001H: EDX[20]=0).

When set to a 0 (default), the Execute 
Disable Bit feature (if available) allows the 
OS to enable PAE paging and take 
advantage of data only pages.

BIOS must not alter the contents of this bit 
location, if XD bit is not supported.. Writing 
this bit to 1 when the XD Bit extended 
feature flag is set to 0 may generate a #GP 
exception.

if 
CPUID.80000001H:EDX[2
0] = 1

63:35 Reserved.

1B0H 432 IA32_ENERGY_PERF_BIAS Performance Energy Bias Hint (R/W) if CPUID.6H:ECX[3] = 1

3:0 Power Policy Preference: 

0 indicates preference to highest 
performance.

15 indicates preference to maximize 
energy saving.

63:4 Reserved.

1B1H 433 IA32_PACKAGE_THERM_STATUS Package Thermal Status Information (RO)

Contains status information about the 
package’s thermal sensor. 

See Section 14.6, “Package Level Thermal 
Management.”

06_2AH

0 Pkg Thermal Status (RO):

1 Pkg Thermal Status Log (R/W): 

2 Pkg PROCHOT # event (RO)

3 Pkg PROCHOT # log (R/WC0)

4 Pkg Critical Temperature Status (RO)

5 Pkg Critical Temperature Status log (R/
WC0)
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6 Pkg Thermal Threshold #1 Status (RO)

7 Pkg Thermal Threshold #1 log (R/WC0)

8 Pkg Thermal Threshold #2 Status (RO)

9 Pkg Thermal Threshold #1 log (R/WC0)

10 Pkg Power Limitation Status (RO)

11 Pkg Power Limitation log (R/WC0)

15:12 Reserved.

22:16 Pkg Digital Readout (RO)

63:23 Reserved.

1B2H 434 IA32_PACKAGE_THERM_INTERRUPT Pkg Thermal Interrupt Control (R/W)

Enables and disables the generation of an 
interrupt on temperature transitions 
detected with the package’s thermal 
sensor. 

See Section 14.6, “Package Level Thermal 
Management.”

06_2AH

0 Pkg High-Temperature Interrupt Enable

1 Pkg Low-Temperature Interrupt Enable

2 Pkg PROCHOT# Interrupt Enable

3 Reserved.

4 Pkr Overheat Interrupt Enable

7:5 Reserved.

14:8 Pkg Threshold #1 Value

15 Pkg Threshold #1 Interrupt Enable

22:16 Pkg Threshold #2 Value

23 Pkg Threshold #2 Interrupt Enable

24 Pkg Power Limit Notification Enable

63:25 Reserved.

1D9H 473 IA32_DEBUGCTL (MSR_DEBUGCTLA, 
MSR_DEBUGCTLB)

Trace/Profile Resource Control (R/W) 06_0EH

0 LBR: Setting this bit to 1 enables the 
processor to record a running trace of the 
most recent branches taken by the 
processor in the LBR stack.

06_01H

1 BTF: Setting this bit to 1 enables the 
processor to treat EFLAGS.TF as single-step 
on branches instead of single-step on 
instructions.

06_01H
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5:2 Reserved.

6 TR: Setting this bit to 1 enables branch 
trace messages to be sent.

06_0EH

7 BTS: Setting this bit enables branch trace 
messages (BTMs) to be logged in a BTS 
buffer.

06_0EH

8 BTINT: When clear, BTMs are logged in a 
BTS buffer in circular fashion. When this bit 
is set, an interrupt is generated by the BTS 
facility when the BTS buffer is full.

06_0EH

9 1: BTS_OFF_OS: When set, BTS or BTM is 
skipped if CPL = 0.

06_0FH

10 BTS_OFF_USR: When set, BTS or BTM is 
skipped if CPL > 0.

06_0FH

11 FREEZE_LBRS_ON_PMI: When set, the LBR 
stack is frozen on a PMI request.

If CPUID.01H: ECX[15] = 1 
and CPUID.0AH: EAX[7:0] > 
1

12 FREEZE_PERFMON_ON_PMI: When set, 
each ENABLE bit of the global counter 
control MSR are frozen (address 3BFH) on a 
PMI request

If CPUID.01H: ECX[15] = 1 
and CPUID.0AH: EAX[7:0] > 
1

13 ENABLE_UNCORE_PMI: When set, enables 
the logical processor to receive and 
generate PMI on behalf of the uncore.

06_1AH

14 FREEZE_WHILE_SMM: When set, freezes 
perfmon and trace messages while in SMM.

if  
IA32_PERF_CAPABILITIES[
12] = '1

63:15 Reserved.

1F2H 498 IA32_SMRR_PHYSBASE SMRR Base Address (Writeable only in 
SMM) 

Base address of SMM memory range.

06_1AH

7:0 Type. Specifies memory type of the range.

11:8 Reserved.

31:12 PhysBase. 

SMRR physical Base Address.

63:32 Reserved.

1F3H 499 IA32_SMRR_PHYSMASK SMRR Range Mask. (Writeable only in 
SMM) 

Range Mask of SMM memory range.

06_1AH

10:0  Reserved.
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11 Valid

Enable range mask.

31:12 PhysMask

SMRR address range mask.

63:32 Reserved.

1F8H 504 IA32_PLATFORM_DCA_CAP DCA Capability (R) 06_0FH

1F9H 505 IA32_CPU_DCA_CAP If set, CPU supports Prefetch-Hint type. 

1FAH 506 IA32_DCA_0_CAP DCA type 0 Status and Control register. 06_2EH

0 DCA_ACTIVE: Set by HW when DCA is fuse-
enabled and no defeatures are set.

06_2EH

2:1 TRANSACTION 06_2EH

6:3 DCA_TYPE 06_2EH

10:7 DCA_QUEUE_SIZE 06_2EH

12:11 Reserved. 06_2EH

16:13 DCA_DELAY: Writes will update the register 
but have no HW side-effect.

06_2EH

23:17 Reserved. 06_2EH

24 SW_BLOCK: SW can request DCA block by 
setting this bit.

06_2EH

25 Reserved. 06_2EH

26 HW_BLOCK: Set when DCA is blocked by 
HW (e.g. CR0.CD = 1).

06_2EH

31:27 Reserved. 06_2EH

200H 512 IA32_MTRR_PHYSBASE0 
(MTRRphysBase0)

See Section 11.11.2.3, “Variable Range 
MTRRs.”

06_01H

201H 513 IA32_MTRR_PHYSMASK0 MTRRphysMask0 06_01H

202H 514 IA32_MTRR_PHYSBASE1  MTRRphysBase1 06_01H

203H 515 IA32_MTRR_PHYSMASK1  MTRRphysMask1 06_01H

204H 516 IA32_MTRR_PHYSBASE2  MTRRphysBase2 06_01H

205H 517 IA32_MTRR_PHYSMASK2  MTRRphysMask2 06_01H

206H 518 IA32_MTRR_PHYSBASE3 MTRRphysBase3 06_01H

207H 519 IA32_MTRR_PHYSMASK3 MTRRphysMask3 06_01H

208H 520 IA32_MTRR_PHYSBASE4 MTRRphysBase4 06_01H

209H 521 IA32_MTRR_PHYSMASK4 MTRRphysMask4 06_01H

20AH 522 IA32_MTRR_PHYSBASE5 MTRRphysBase5 06_01H

20BH 523 IA32_MTRR_PHYSMASK5 MTRRphysMask5 06_01H
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20CH 524 IA32_MTRR_PHYSBASE6 MTRRphysBase6 06_01H

20DH 525 IA32_MTRR_PHYSMASK6 MTRRphysMask6 06_01H

20EH 526 IA32_MTRR_PHYSBASE7 MTRRphysBase7 06_01H

20FH 527 IA32_MTRR_PHYSMASK7 MTRRphysMask7 06_01H

210H 528 IA32_MTRR_PHYSBASE8 MTRRphysBase8 if IA32_MTRR_CAP[7:0] > 
8

211H 529 IA32_MTRR_PHYSMASK8 MTRRphysMask8 if IA32_MTRR_CAP[7:0] > 
8

212H 530 IA32_MTRR_PHYSBASE9 MTRRphysBase9 if IA32_MTRR_CAP[7:0] > 
9

213H 531 IA32_MTRR_PHYSMASK9 MTRRphysMask9 if IA32_MTRR_CAP[7:0] > 
9

250H 592 IA32_MTRR_FIX64K_00000 MTRRfix64K_00000 06_01H

258H 600 IA32_MTRR_FIX16K_80000 MTRRfix16K_80000 06_01H

259H 601 IA32_MTRR_FIX16K_A0000 MTRRfix16K_A0000 06_01H

268H 616 IA32_MTRR_FIX4K_C0000 
(MTRRfix4K_C0000 )

See Section 11.11.2.2, “Fixed Range 
MTRRs.”

06_01H

269H 617 IA32_MTRR_FIX4K_C8000 MTRRfix4K_C8000 06_01H

26AH 618 IA32_MTRR_FIX4K_D0000 MTRRfix4K_D0000 06_01H

26BH 619 IA32_MTRR_FIX4K_D8000 MTRRfix4K_D8000 06_01H

26CH 620 IA32_MTRR_FIX4K_E0000 MTRRfix4K_E0000 06_01H

26DH 621 IA32_MTRR_FIX4K_E8000 MTRRfix4K_E8000 06_01H

26EH 622 IA32_MTRR_FIX4K_F0000 MTRRfix4K_F0000 06_01H

26FH 623 IA32_MTRR_FIX4K_F8000 MTRRfix4K_F8000 06_01H

277H 631 IA32_PAT IA32_PAT (R/W) 06_05H

2:0 PA0

7:3 Reserved.

10:8 PA1

15:11 Reserved.

18:16 PA2

23:19 Reserved.

26:24 PA3

31:27 Reserved.

34:32 PA4

39:35 Reserved.
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42:40 PA5

47:43 Reserved.

50:48 PA6

55:51 Reserved.

58:56 PA7

63:59 Reserved.

280H 640 IA32_MC0_CTL2 (R/W) 06_1AH

14:0 Corrected error count threshold.

29:15 Reserved.

30 CMCI_EN

63:31 Reserved.

281H 641 IA32_MC1_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

282H 642 IA32_MC2_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

283H 643 IA32_MC3_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

284H 644 IA32_MC4_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

285H 645 IA32_MC5_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

286H 646 IA32_MC6_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

287H 647 IA32_MC7_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

288H 648 IA32_MC8_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

289H 649 IA32_MC9_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28AH 650 IA32_MC10_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28BH 651 IA32_MC11_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28CH 652 IA32_MC12_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28DH 653 IA32_MC13_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28EH 654 IA32_MC14_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28FH 655 IA32_MC15_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

290H 656 IA32_MC16_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

291H 657 IA32_MC17_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

292H 658 IA32_MC18_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

293H 659 IA32_MC19_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

294H 660 IA32_MC20_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

295H 661 IA32_MC21_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

2FFH 767 IA32_MTRR_DEF_TYPE MTRRdefType (R/W) 06_01H

2:0 Default Memory Type
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9:3 Reserved.

10 Fixed Range MTRR Enable 

11 MTRR Enable 

63:12 Reserved.

309H 777 IA32_FIXED_CTR0 
(MSR_PERF_FIXED_CTR0)

Fixed-Function Performance Counter 0 (R/
W): Counts Instr_Retired.Any.

If CPUID.0AH: EDX[4:0] > 0

30AH 778 IA32_FIXED_CTR1 
(MSR_PERF_FIXED_CTR1)

Fixed-Function Performance Counter 1 0 
(R/W): Counts CPU_CLK_Unhalted.Core

If CPUID.0AH: EDX[4:0] > 1

30BH 779 IA32_FIXED_CTR2 
(MSR_PERF_FIXED_CTR2)

Fixed-Function Performance Counter 0 0 
(R/W): Counts CPU_CLK_Unhalted.Ref

If CPUID.0AH: EDX[4:0] > 2

345H 837 IA32_PERF_CAPABILITIES RO If CPUID.01H: ECX[15] = 1

5:0 LBR format

6 PEBS Trap

7 PEBSSaveArchRegs

11:8 PEBS Record Format

12 1: Freeze while SMM is supported.

13 1: Full width of counter writable via 
IA32_A_PMCx.

63:14 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL 
(MSR_PERF_FIXED_CTR_CTRL)

Fixed-Function Performance Counter 
Control (R/W)

Counter increments while the results of 
ANDing respective enable bit in 
IA32_PERF_GLOBAL_CTRL with the 
corresponding OS or USR bits in this MSR is 
true.

If CPUID.0AH: EAX[7:0] > 1

0 EN0_OS: Enable Fixed Counter 0 to count 
while CPL = 0.

1 EN0_Usr: Enable Fixed Counter 0 to count 
while CPL > 0.

2 AnyThread: When set to 1, it enables 
counting the associated event conditions 
occurring across all logical processors 
sharing a processor core. When set to 0, the 
counter only increments the associated 
event conditions occurring in the logical 
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

3 EN0_PMI: Enable PMI when fixed counter 0 
overflows.
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4 EN1_OS: Enable Fixed Counter 1to count 
while CPL = 0.

5 EN1_Usr: Enable Fixed Counter 1to count 
while CPL > 0.

6 AnyThread: When set to 1, it enables 
counting the associated event conditions 
occurring across all logical processors 
sharing a processor core. When set to 0, the 
counter only increments the associated 
event conditions occurring in the logical 
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

7 EN1_PMI: Enable PMI when fixed counter 1 
overflows.

8 EN2_OS: Enable Fixed Counter 2 to count 
while CPL = 0.

9 EN2_Usr: Enable Fixed Counter 2 to count 
while CPL > 0.

10 AnyThread: When set to 1, it enables 
counting the associated event conditions 
occurring across all logical processors 
sharing a processor core. When set to 0, the 
counter only increments the associated 
event conditions occurring in the logical 
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

11 EN2_PMI: Enable PMI when fixed counter 2 
overflows.

63:12 Reserved.

38EH 910 IA32_PERF_GLOBAL_STATUS 
(MSR_PERF_GLOBAL_STATUS)

Global Performance Counter Status (RO) If CPUID.0AH: EAX[7:0] > 0

0 Ovf_PMC0: Overflow status of IA32_PMC0. If CPUID.0AH: EAX[7:0] > 0

1 Ovf_PMC1: Overflow status of IA32_PMC1. If CPUID.0AH: EAX[7:0] > 0

2 Ovf_PMC2: Overflow status of IA32_PMC2. 06_2EH

3 Ovf_PMC3: Overflow status of IA32_PMC3. 06_2EH

31:4 Reserved.

32 Ovf_FixedCtr0: Overflow status of 
IA32_FIXED_CTR0.

If CPUID.0AH: EAX[7:0] > 1

33 Ovf_FixedCtr1: Overflow status of 
IA32_FIXED_CTR1.

If CPUID.0AH: EAX[7:0] > 1

34 Ovf_FixedCtr2: Overflow status of 
IA32_FIXED_CTR2.

If CPUID.0AH: EAX[7:0] > 1

60:35 Reserved.
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61 Ovf_Uncore: Uncore counter overflow 
status.

If CPUID.0AH: EAX[7:0] > 2

62 OvfBuf: DS SAVE area Buffer overflow 
status.

If CPUID.0AH: EAX[7:0] > 0

63 CondChg: status bits of this register has 
changed.

If CPUID.0AH: EAX[7:0] > 0

38FH 911 IA32_PERF_GLOBAL_CTRL 
(MSR_PERF_GLOBAL_CTRL)

Global Performance Counter Control (R/W)

Counter increments while the result of 
ANDing respective enable bit in this MSR 
with the corresponding OS or USR bits in 
the general-purpose or fixed counter 
control MSR is true.

If CPUID.0AH: EAX[7:0] > 0

0 EN_PMC0 If CPUID.0AH: EAX[7:0] > 0

1 EN_PMC1 If CPUID.0AH: EAX[7:0] > 0

31:2 Reserved.

32 EN_FIXED_CTR0 If CPUID.0AH: EAX[7:0] > 1

33 EN_FIXED_CTR1 If CPUID.0AH: EAX[7:0] > 1

34 EN_FIXED_CTR2 If CPUID.0AH: EAX[7:0] > 1

63:35 Reserved.

390H 912 IA32_PERF_GLOBAL_OVF_CTRL 
(MSR_PERF_GLOBAL_OVF_CTRL)

Global Performance Counter Overflow 
Control (R/W)

If CPUID.0AH: EAX[7:0] > 0

0 Set 1 to Clear Ovf_PMC0 bit. If CPUID.0AH: EAX[7:0] > 0

1 Set 1 to Clear Ovf_PMC1 bit. If CPUID.0AH: EAX[7:0] > 0

31:2 Reserved.

32 Set 1 to Clear Ovf_FIXED_CTR0 bit. If CPUID.0AH: EAX[7:0] > 1

33 Set 1 to Clear Ovf_FIXED_CTR1 bit. If CPUID.0AH: EAX[7:0] > 1

34 Set 1 to Clear Ovf_FIXED_CTR2 bit. If CPUID.0AH: EAX[7:0] > 1

60:35 Reserved.

61 Set 1 to Clear Ovf_Uncore: bit. 06_2EH

62 Set 1 to Clear OvfBuf: bit. If CPUID.0AH: EAX[7:0] > 0

63 Set to 1to clear CondChg: bit. If CPUID.0AH: EAX[7:0] > 0

3F1H 1009 IA32_PEBS_ENABLE PEBS Control (R/W)

0 Enable PEBS on IA32_PMC0. 06_0FH

1-3 Reserved or Model specific .

31:4 Reserved.

35-32 Reserved or Model specific .

63:36 Reserved.
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400H 1024 IA32_MC0_CTL MC0_CTL P6 Family Processors

401H 1025 IA32_MC0_STATUS MC0_STATUS P6 Family Processors

402H 1026 IA32_MC0_ADDR1 MC0_ADDR P6 Family Processors

403H 1027 IA32_MC0_MISC MC0_MISC P6 Family Processors

404H 1028 IA32_MC1_CTL MC1_CTL P6 Family Processors

405H 1029 IA32_MC1_STATUS MC1_STATUS P6 Family Processors

406H 1030 IA32_MC1_ADDR2 MC1_ADDR P6 Family Processors

407H 1031 IA32_MC1_MISC MC1_MISC P6 Family Processors

408H 1032 IA32_MC2_CTL MC2_CTL P6 Family Processors

409H 1033 IA32_MC2_STATUS MC2_STATUS P6 Family Processors

40AH 1034 IA32_MC2_ADDR1 MC2_ADDR P6 Family Processors

40BH 1035 IA32_MC2_MISC MC2_MISC P6 Family Processors

40CH 1036 IA32_MC3_CTL MC3_CTL P6 Family Processors

40DH 1037 IA32_MC3_STATUS MC3_STATUS P6 Family Processors

40EH 1038 IA32_MC3_ADDR1 MC3_ADDR P6 Family Processors

40FH 1039 IA32_MC3_MISC MC3_MISC P6 Family Processors

410H 1040 IA32_MC4_CTL MC4_CTL P6 Family Processors

411H 1041 IA32_MC4_STATUS MC4_STATUS P6 Family Processors

412H 1042 IA32_MC4_ADDR1 MC4_ADDR P6 Family Processors

413H 1043 IA32_MC4_MISC MC4_MISC P6 Family Processors

414H 1044 IA32_MC5_CTL MC5_CTL 06_0FH

415H 1045 IA32_MC5_STATUS MC5_STATUS 06_0FH

416H 1046 IA32_MC5_ADDR1 MC5_ADDR 06_0FH

417H 1047 IA32_MC5_MISC MC5_MISC 06_0FH

418H 1048 IA32_MC6_CTL MC6_CTL 06_1DH

419H 1049 IA32_MC6_STATUS MC6_STATUS 06_1DH

41AH 1050 IA32_MC6_ADDR1 MC6_ADDR 06_1DH

41BH 1051 IA32_MC6_MISC MC6_MISC 06_1DH

41CH 1052 IA32_MC7_CTL MC7_CTL 06_1AH

41DH 1053 IA32_MC7_STATUS MC7_STATUS 06_1AH

41EH 1054 IA32_MC7_ADDR1 MC7_ADDR 06_1AH

41FH 1055 IA32_MC7_MISC MC7_MISC 06_1AH

420H 1056 IA32_MC8_CTL MC8_CTL 06_1AH

421H 1057 IA32_MC8_STATUS MC8_STATUS 06_1AH
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422H 1058 IA32_MC8_ADDR1 MC8_ADDR 06_1AH

423H 1059 IA32_MC8_MISC MC8_MISC 06_1AH

424H 1060 IA32_MC9_CTL MC9_CTL 06_2EH

425H 1061 IA32_MC9_STATUS MC9_STATUS 06_2EH

426H 1062 IA32_MC9_ADDR1 MC9_ADDR 06_2EH

427H 1063 IA32_MC9_MISC MC9_MISC 06_2EH

428H 1064 IA32_MC10_CTL MC10_CTL 06_2EH

429H 1065 IA32_MC10_STATUS MC10_STATUS 06_2EH

42AH 1066 IA32_MC10_ADDR1 MC10_ADDR 06_2EH

42BH 1067 IA32_MC10_MISC MC10_MISC 06_2EH

42CH 1068 IA32_MC11_CTL MC11_CTL 06_2EH

42DH 1069 IA32_MC11_STATUS MC11_STATUS 06_2EH

42EH 1070 IA32_MC11_ADDR1 MC11_ADDR 06_2EH

42FH 1071 IA32_MC11_MISC MC11_MISC 06_2EH

430H 1072 IA32_MC12_CTL MC12_CTL 06_2EH

431H 1073 IA32_MC12_STATUS MC12_STATUS 06_2EH

432H 1074 IA32_MC12_ADDR1 MC12_ADDR 06_2EH

433H 1075 IA32_MC12_MISC MC12_MISC 06_2EH

434H 1076 IA32_MC13_CTL MC13_CTL 06_2EH

435H 1077 IA32_MC13_STATUS MC13_STATUS 06_2EH

436H 1078 IA32_MC13_ADDR1 MC13_ADDR 06_2EH

437H 1079 IA32_MC13_MISC MC13_MISC 06_2EH

438H 1080 IA32_MC14_CTL MC14_CTL 06_2EH

439H 1081 IA32_MC14_STATUS MC14_STATUS 06_2EH

43AH 1082 IA32_MC14_ADDR1 MC14_ADDR 06_2EH

43BH 1083 IA32_MC14_MISC MC14_MISC 06_2EH

43CH 1084 IA32_MC15_CTL MC15_CTL 06_2EH

43DH 1085 IA32_MC15_STATUS MC15_STATUS 06_2EH

43EH 1086 IA32_MC15_ADDR1 MC15_ADDR 06_2EH

43FH 1087 IA32_MC15_MISC MC15_MISC 06_2EH

440H 1088 IA32_MC16_CTL MC16_CTL 06_2EH

441H 1089 IA32_MC16_STATUS MC16_STATUS 06_2EH

442H 1090 IA32_MC16_ADDR1 MC16_ADDR 06_2EH

443H 1091 IA32_MC16_MISC MC16_MISC 06_2EH
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444H 1092 IA32_MC17_CTL MC17_CTL 06_2EH

445H 1093 IA32_MC17_STATUS MC17_STATUS 06_2EH

446H 1094 IA32_MC17_ADDR1 MC17_ADDR 06_2EH

447H 1095 IA32_MC17_MISC MC17_MISC 06_2EH

448H 1096 IA32_MC18_CTL MC18_CTL 06_2EH

449H 1097 IA32_MC18_STATUS MC18_STATUS 06_2EH

44AH 1098 IA32_MC18_ADDR1 MC18_ADDR 06_2EH

44BH 1099 IA32_MC18_MISC MC18_MISC 06_2EH

44CH 1100 IA32_MC19_CTL MC19_CTL 06_2EH

44DH 1101 IA32_MC19_STATUS MC19_STATUS 06_2EH

44EH 1102 IA32_MC19_ADDR1 MC19_ADDR 06_2EH

44FH 1103 IA32_MC19_MISC MC19_MISC 06_2EH

450H 1104 IA32_MC20_CTL MC20_CTL 06_2EH

451H 1105 IA32_MC20_STATUS MC20_STATUS 06_2EH

452H 1106 IA32_MC20_ADDR1 MC20_ADDR 06_2EH

453H 1107 IA32_MC20_MISC MC20_MISC 06_2EH

454H 1108 IA32_MC21_CTL MC21_CTL 06_2EH

455H 1109 IA32_MC21_STATUS MC21_STATUS 06_2EH

456H 1110 IA32_MC21_ADDR1 MC21_ADDR 06_2EH

457H 1111 IA32_MC21_MISC MC21_MISC 06_2EH

480H 1152 IA32_VMX_BASIC Reporting Register of Basic VMX 
Capabilities (R/O)

See Appendix A.1, “Basic VMX Information.”

If CPUID.01H:ECX.[bit 5] = 
1

481H 1153 IA32_VMX_PINBASED_CTLS Capability Reporting Register of Pin-
based VM-execution Controls (R/O)

See Appendix A.3.1, “Pin-Based VM-
Execution Controls.”

If CPUID.01H:ECX.[bit 5] = 
1

482H 1154 IA32_VMX_PROCBASED_CTLS Capability Reporting Register of Primary 
Processor-based VM-execution Controls 
(R/O)

See Appendix A.3.2, “Primary Processor-
Based VM-Execution Controls.”

If CPUID.01H:ECX.[bit 5] = 
1

483H 1155 IA32_VMX_EXIT_CTLS Capability Reporting Register of VM-exit 
Controls (R/O)

See Appendix A.4, “VM-Exit Controls.”

If CPUID.01H:ECX.[bit 5] = 
1
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484H 1156 IA32_VMX_ENTRY_CTLS Capability Reporting Register of VM-
entry Controls (R/O)

See Appendix A.5, “VM-Entry Controls.”

If CPUID.01H:ECX.[bit 5] = 
1

485H 1157 IA32_VMX_MISC Reporting Register of Miscellaneous 
VMX Capabilities (R/O)

See Appendix A.6, “Miscellaneous Data.”

If CPUID.01H:ECX.[bit 5] = 
1

486H 1158 IA32_VMX_CRO_FIXED0 Capability Reporting Register of CR0 Bits 
Fixed to 0 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0.”

If CPUID.01H:ECX.[bit 5] = 
1

487H 1159 IA32_VMX_CRO_FIXED1 Capability Reporting Register of CR0 Bits 
Fixed to 1 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0.”

If CPUID.01H:ECX.[bit 5] = 
1

488H 1160 IA32_VMX_CR4_FIXED0 Capability Reporting Register of CR4 Bits 
Fixed to 0 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4.”

If CPUID.01H:ECX.[bit 5] = 
1

489H 1161 IA32_VMX_CR4_FIXED1 Capability Reporting Register of CR4 Bits 
Fixed to 1 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4.”

If CPUID.01H:ECX.[bit 5] = 
1

48AH 1162 IA32_VMX_VMCS_ENUM Capability Reporting Register of VMCS 
Field Enumeration (R/O)

See Appendix A.9, “VMCS Enumeration.”

If CPUID.01H:ECX.[bit 5] = 
1

48BH 1163 IA32_VMX_PROCBASED_CTLS2 Capability Reporting Register of 
Secondary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3.3, “Secondary Processor-
Based VM-Execution Controls.”

If ( CPUID.01H:ECX.[bit 5] 
and 
IA32_VMX_PROCBASED_C
TLS[bit 63])

48CH 1164 IA32_VMX_EPT_VPID_CAP Capability Reporting Register of EPT and 
VPID (R/O)

See Appendix A.10, “VPID and EPT 
Capabilities.”

If ( CPUID.01H:ECX.[bit 5], 
IA32_VMX_PROCBASED_C
TLS[bit 63], and either 
IA32_VMX_PROCBASED_C
TLS2[bit 33] or 
IA32_VMX_PROCBASED_C
TLS2[bit 37])

48DH 1165 IA32_VMX_TRUE_PINBASED_CTLS Capability Reporting Register of Pin-
based VM-execution Flex Controls (R/O)

See Appendix A.3.1, “Pin-Based VM-
Execution Controls.”

If ( CPUID.01H:ECX.[bit 5] = 
1 and 
IA32_VMX_BASIC[bit 55] )

48EH 1166 IA32_VMX_TRUE_PROCBASED_CTLS Capability Reporting Register of Primary 
Processor-based VM-execution Flex 
Controls (R/O)

See Appendix A.3.2, “Primary Processor-
Based VM-Execution Controls.”

If( CPUID.01H:ECX.[bit 5] = 
1 and 
IA32_VMX_BASIC[bit 55] )
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48FH 1167 IA32_VMX_TRUE_EXIT_CTLS Capability Reporting Register of VM-exit 
Flex Controls (R/O)

See Appendix A.4, “VM-Exit Controls.”

If( CPUID.01H:ECX.[bit 5] = 
1 and 
IA32_VMX_BASIC[bit 55] )

490H 1168 IA32_VMX_TRUE_ENTRY_CTLS Capability Reporting Register of VM-
entry Flex Controls (R/O)

See Appendix A.5, “VM-Entry Controls.”

If( CPUID.01H:ECX.[bit 5] = 
1 and 
IA32_VMX_BASIC[bit 55] )

4C1H 1217 IA32_A_PMC0 Full Width Writable IA32_PMC0 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
0) &

IA32_PERF_CAPABILITIES[
13] = 1

4C2H 1218 IA32_A_PMC1 Full Width Writable IA32_PMC1 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
1) &

IA32_PERF_CAPABILITIES[
13] = 1

4C3H 1219 IA32_A_PMC2 Full Width Writable IA32_PMC2 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
2) &

IA32_PERF_CAPABILITIES[
13] = 1

4C4H 1220 IA32_A_PMC3 Full Width Writable IA32_PMC3 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
3) &

IA32_PERF_CAPABILITIES[
13] = 1

4C5H 1221 IA32_A_PMC4 Full Width Writable IA32_PMC4 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
4) &

IA32_PERF_CAPABILITIES[
13] = 1

4C6H 1222 IA32_A_PMC5 Full Width Writable IA32_PMC5 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
5) &

IA32_PERF_CAPABILITIES[
13] = 1

4C7H 1223 IA32_A_PMC6 Full Width Writable IA32_PMC6 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
6) &

IA32_PERF_CAPABILITIES[
13] = 1

4C8H 1224 IA32_A_PMC7 Full Width Writable IA32_PMC7 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
7) &

IA32_PERF_CAPABILITIES[
13] = 1
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600H 1536 IA32_DS_AREA DS Save Area (R/W) 

Points to the linear address of the first 
byte of the DS buffer management area, 
which is used to manage the BTS and PEBS 
buffers.

See Section 18.11.4, “Debug Store (DS) 
Mechanism.”

0F_0H

63:0 The linear address of the first byte of the 
DS buffer management area, if IA-32e 
mode is active.

31:0 The linear address of the first byte of the 
DS buffer management area, if not in IA-
32e mode.

63:32 Reserved iff not in IA-32e mode.

6E0H 1760 IA32_TSC_DEADLINE TSC Target of Local APIC’s TSC Deadline 
Mode (R/W)

If( CPUID.01H:ECX.[bit 25] 
= 1 

802H 2050 IA32_X2APIC_APICID x2APIC ID Register (R/O)

See x2APIC Specification

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

803H 2051 IA32_X2APIC_VERSION x2APIC Version Register (R/O) If ( CPUID.01H:ECX.[bit 21] 
= 1 )

808H 2056 IA32_X2APIC_TPR x2APIC Task Priority Register (R/W) If ( CPUID.01H:ECX.[bit 21] 
= 1 )

80AH 2058 IA32_X2APIC_PPR x2APIC Processor Priority Register (R/O) If ( CPUID.01H:ECX.[bit 21] 
= 1 )

80BH 2059 IA32_X2APIC_EOI x2APIC EOI Register (W/O) If ( CPUID.01H:ECX.[bit 21] 
= 1 )

80DH 2061 IA32_X2APIC_LDR x2APIC Logical Destination Register (R/
O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

80FH 2063 IA32_X2APIC_SIVR x2APIC Spurious Interrupt Vector 
Register (R/W)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

810H 2064 IA32_X2APIC_ISR0 x2APIC In-Service Register Bits 31:0 (R/
O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

811H 2065 IA32_X2APIC_ISR1 x2APIC In-Service Register Bits 63:32 
(R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

812H 2066 IA32_X2APIC_ISR2 x2APIC In-Service Register Bits 95:64 
(R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

813H 2067 IA32_X2APIC_ISR3 x2APIC In-Service Register Bits 127:96 
(R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

814H 2068 IA32_X2APIC_ISR4 x2APIC In-Service Register Bits 159:128 
(R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )
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815H 2069 IA32_X2APIC_ISR5 x2APIC In-Service Register Bits 191:160 
(R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

816H 2070 IA32_X2APIC_ISR6 x2APIC In-Service Register Bits 223:192 
(R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

817H 2071 IA32_X2APIC_ISR7 x2APIC In-Service Register Bits 255:224 
(R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

818H 2072 IA32_X2APIC_TMR0 x2APIC Trigger Mode Register Bits 31:0 
(R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

819H 2073 IA32_X2APIC_TMR1 x2APIC Trigger Mode Register Bits 63:32 
(R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

81AH 2074 IA32_X2APIC_TMR2 x2APIC Trigger Mode Register Bits 95:64 
(R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

81BH 2075 IA32_X2APIC_TMR3 x2APIC Trigger Mode Register Bits 
127:96 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

81CH 2076 IA32_X2APIC_TMR4 x2APIC Trigger Mode Register Bits 
159:128 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

81DH 2077 IA32_X2APIC_TMR5 x2APIC Trigger Mode Register Bits 
191:160 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

81EH 2078 IA32_X2APIC_TMR6 x2APIC Trigger Mode Register Bits 
223:192 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

81FH 2079 IA32_X2APIC_TMR7 x2APIC Trigger Mode Register Bits 
255:224 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

820H 2080 IA32_X2APIC_IRR0 x2APIC Interrupt Request Register Bits 
31:0 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

821H 2081 IA32_X2APIC_IRR1 x2APIC Interrupt Request Register Bits 
63:32 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

822H 2082 IA32_X2APIC_IRR2 x2APIC Interrupt Request Register Bits 
95:64 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

823H 2083 IA32_X2APIC_IRR3 x2APIC Interrupt Request Register Bits 
127:96 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

824H 2084 IA32_X2APIC_IRR4 x2APIC Interrupt Request Register Bits 
159:128 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

825H 2085 IA32_X2APIC_IRR5 x2APIC Interrupt Request Register Bits 
191:160 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

826H 2086 IA32_X2APIC_IRR6 x2APIC Interrupt Request Register Bits 
223:192 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

827H 2087 IA32_X2APIC_IRR7 x2APIC Interrupt Request Register Bits 
255:224 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

828H 2088 IA32_X2APIC_ESR x2APIC Error Status Register (R/W) If ( CPUID.01H:ECX.[bit 21] 
= 1 )
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82FH 2095 IA32_X2APIC_LVT_CMCI x2APIC LVT Corrected Machine Check 
Interrupt Register (R/W)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

830H 2096 IA32_X2APIC_ICR x2APIC Interrupt Command Register (R/
W)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

832H 2098 IA32_X2APIC_LVT_TIMER x2APIC LVT Timer Interrupt Register (R/
W)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

833H 2099 IA32_X2APIC_LVT_THERMAL x2APIC LVT Thermal Sensor Interrupt 
Register (R/W)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

834H 2100 IA32_X2APIC_LVT_PMI x2APIC LVT Performance Monitor 
Interrupt Register (R/W)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

835H 2101 IA32_X2APIC_LVT_LINT0 x2APIC LVT LINT0 Register (R/W) If ( CPUID.01H:ECX.[bit 21] 
= 1 )

836H 2102 IA32_X2APIC_LVT_LINT1 x2APIC LVT LINT1 Register (R/W) If ( CPUID.01H:ECX.[bit 21] 
= 1 )

837H 2103 IA32_X2APIC_LVT_ERROR x2APIC LVT Error Register (R/W) If ( CPUID.01H:ECX.[bit 21] 
= 1 )

838H 2104 IA32_X2APIC_INIT_COUNT x2APIC Initial Count Register (R/W) If ( CPUID.01H:ECX.[bit 21] 
= 1 )

839H 2105 IA32_X2APIC_CUR_COUNT x2APIC Current Count Register (R/O) If ( CPUID.01H:ECX.[bit 21] 
= 1 )

83EH 2110 IA32_X2APIC_DIV_CONF x2APIC Divide Configuration Register (R/
W)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

83FH 2111 IA32_X2APIC_SELF_IPI x2APIC Self IPI Register (W/O) If ( CPUID.01H:ECX.[bit 21] 
= 1 )

C8DH 3213 IA32_QM_EVTSEL QoS Monitoring Event Select Register (R/
W)

If ( CPUID.(EAX=07H, 
ECX=0):EBX.[bit 12] = 1 )

7:0 Event ID: ID of a supported QoS monitoring 
event to report via IA32_QM_CTR.

31: 8 Reserved. 

N+31:32 Resource Monitoring ID: ID for QoS 
monitoring hardware to report monitored 
data via IA32_QM_CTR.

N = Log2 ( CPUID.(EAX= 
0FH, ECX=0H).EBX[31:0] 
+1)

63:N+32 Reserved.

C8EH 3214 IA32_QM_CTR QoS Monitoring Counter Register (R/O) If ( CPUID.(EAX=07H, 
ECX=0):EBX.[bit 12] = 1 )

61:0 Resource Monitored Data 

62 Unavailable: If 1, indicates data for this 
RMID is not available or not monitored for 
this resource or RMID.
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63 Error: If 1, indicates and unsupported RMID 
or event type was written to 
IA32_PQR_QM_EVTSEL.

C8FH 3215 IA32_PQR_ASSOC QoS Resource Association Register (R/W) If ( CPUID.(EAX=07H, 
ECX=0):EBX.[bit 12] = 1 )

N-1:0 Resource Monitoring ID: ID for QoS 
monitoring hardware to track internal 
operation, e.g. memory access.

N = Log2 ( CPUID.(EAX= 
0FH, ECX=0H).EBX[31:0] 
+1)

63:N Reserved.

4000_
0000H 
- 
4000_
00FFH

Reserved MSR Address Space All existing and future processors will 
not implement MSR in this range.

C000_
0080H

IA32_EFER Extended Feature Enables If ( 
CPUID.80000001.EDX.[bit 
20] or 
CPUID.80000001.EDX.[bit
29])

0 SYSCALL Enable (R/W)

Enables SYSCALL/SYSRET instructions in 
64-bit mode.

7:1 Reserved.

8 IA-32e Mode Enable (R/W)

Enables IA-32e mode operation.

9 Reserved.

10 IA-32e Mode Active (R) 

Indicates IA-32e mode is active when set.

11 Execute Disable Bit Enable (R/W)

63:12 Reserved.

C000_
0081H

IA32_STAR System Call Target Address (R/W) If 
CPUID.80000001.EDX.[bit 
29] = 1

C000_
0082H

IA32_LSTAR IA-32e Mode System Call Target Address 
(R/W)

If 
CPUID.80000001.EDX.[bit 
29] = 1

C000_
0084H

IA32_FMASK System Call Flag Mask (R/W) If 
CPUID.80000001.EDX.[bit 
29] = 1
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...

C000_
0100H

IA32_FS_BASE Map of BASE Address of FS (R/W) If 
CPUID.80000001.EDX.[bit 
29] = 1

C000_
0101H

IA32_GS_BASE Map of BASE Address of GS (R/W) If 
CPUID.80000001.EDX.[bit 
29] = 1

C000_
0102H

IA32_KERNEL_GS_BASE Swap Target of BASE Address of GS (R/
W)

If 
CPUID.80000001.EDX.[bit 
29] = 1

C000_
0103H

IA32_TSC_AUX Auxiliary TSC (RW) If CPUID.80000001H: 
EDX[27] = 1

31:0 AUX: Auxiliary signature of TSC

63:32 Reserved.
NOTES:

1. In processors based on Intel NetBurst® microarchitecture, MSR addresses 180H-197H are supported, software must treat them as 
model-specific. Starting with Intel Core Duo processors, MSR addresses 180H-185H, 188H-197H are reserved.

2. The *_ADDR MSRs may or may not be present; this depends on flag settings in IA32_MCi_STATUS. See Section 15.3.2.3 and Section 
15.3.2.4 for more information.
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0H 0 IA32_P5_MC_ADDR Unique See Section 35.15, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Unique See Section 35.15, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_SIZ
E

Unique See Section 8.10.5, “Monitor/Mwait Address Range Determination.” 
andTable 35-2.

10H 16 IA32_TIME_STAMP_COUNT
ER

Unique See Section 17.13, “Time-Stamp Counter,” and see Table 35-2.

17H 23 IA32_PLATFORM_ID Shared Platform ID (R) 
See Table 35-2.

17H 23 MSR_PLATFORM_ID Shared Model Specific Platform ID (R) 

7:0 Reserved.
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12:8 Maximum Qualified Ratio (R) 

The maximum allowed bus ratio.

49:13 Reserved.

52:50 See Table 35-2.

63:53 Reserved.

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and Location.” and 
Table 35-2.

2AH 42 MSR_EBL_CR_POWERON Shared Processor Hard Power-On Configuration (R/W)

Enables and disables processor features; (R) indicates current 
processor configuration.

0 Reserved.

1 Data Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W. 

2 Response Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W. 

3 MCERR# Drive Enable (R/W) 

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W. 

4 Address Parity Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W. 

5 Reserved.

6 Reserved.

7 BINIT# Driver Enable (R/W)

1 = Enabled; 0 = Disabled 
Note: Not all processor implements R/W. 

8 Output Tri-state Enabled (R/O)

1 = Enabled; 0 = Disabled 

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled 

10 MCERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled

11 Intel TXT Capable Chipset. (R/O)

1 = Present; 0 = Not Present
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12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled 

13 Reserved.

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved.

17:16 APIC Cluster ID (R/O)

18 N/2 Non-Integer Bus Ratio (R/O)

0 = Integer ratio; 1 = Non-integer ratio

19 Reserved.

21: 20 Symmetric Arbitration ID (R/O)

26:22 Integer Bus Frequency Ratio (R/O)

3AH 58 IA32_FEATURE_CONTROL Unique Control Features in Intel 64Processor (R/W)

See Table 35-2.

3 Unique SMRR Enable (R/WL)

When this bit is set and the lock bit is set makes the 
SMRR_PHYS_BASE and SMRR_PHYS_MASK registers read visible 
and writeable while in SMM.

40H 64 MSR_
LASTBRANCH_0_FROM_IP

Unique Last Branch Record 0 From IP (R/W)

One of four pairs of last branch record registers on the last branch 
record stack. This part of the stack contains pointers to the source 
instruction for one of the last four branches, exceptions, or 
interrupts taken by the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.11, “Last Branch, Interrupt, and Exception Recording 

(Pentium M Processors).”

41H 65 MSR_
LASTBRANCH_1_FROM_IP

Unique Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_
LASTBRANCH_2_FROM_IP

Unique Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP. 

43H 67 MSR_
LASTBRANCH_3_FROM_IP

Unique Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

60H 96 MSR_
LASTBRANCH_0_TO_IP

Unique Last Branch Record 0 To IP (R/W)

One of four pairs of last branch record registers on the last branch 
record stack. This part of the stack contains pointers to the 
destination instruction for one of the last four branches, 
exceptions, or interrupts taken by the processor.
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61H 97 MSR_
LASTBRANCH_1_TO_IP

Unique Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

62H 98 MSR_
LASTBRANCH_2_TO_IP

Unique Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

63H 99 MSR_
LASTBRANCH_3_TO_IP

Unique Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

79H 121 IA32_BIOS_UPDT_TRIG Unique BIOS Update Trigger Register (W) 

See Table 35-2.

8BH 139 IA32_BIOS_SIGN_ID Unique BIOS Update Signature ID (RO)

See Table 35-2.

A0H 160 MSR_SMRR_PHYSBASE Unique System Management Mode Base Address register (WO in SMM)

Model-specific implementation of SMRR-like interface, read visible 
and write only in SMM.

11:0 Reserved.

31:12 PhysBase. SMRR physical Base Address.

63:32 Reserved.

A1H 161 MSR_SMRR_PHYSMASK Unique System Management Mode Physical Address Mask register 
(WO in SMM)

Model-specific implementation of SMRR-like interface, read visible 
and write only in SMM..

10:0 Reserved.

11 Valid. Physical address base and range mask are valid.

31:12 PhysMask. SMRR physical address range mask.

63:32 Reserved.

C1H 193 IA32_PMC0 Unique Performance Counter Register

See Table 35-2.

C2H 194 IA32_PMC1 Unique Performance Counter Register

See Table 35-2.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for 
processors based on Intel Core microarchitecture:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)
• 010B: 200 MHz (FSB 800)
• 000B: 267 MHz (FSB 1067)
• 100B: 333 MHz (FSB 1333)

Table 35-3.  MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 309

133.33 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 001B. 

166.67 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 011B.

266.67 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 000B.

333.33 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 100B.

63:3 Reserved.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for 
processors based on Enhanced Intel Core microarchitecture:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)
• 010B: 200 MHz (FSB 800)
• 000B: 267 MHz (FSB 1067)
• 100B: 333 MHz (FSB 1333)
• 110B: 400 MHz (FSB 1600)

133.33 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 001B. 

166.67 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 011B.

266.67 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 110B.

333.33 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 111B.

63:3 Reserved.

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock Count (RW) 

See Table 35-2.

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count (RW) 

See Table 35-2.

FEH 254 IA32_MTRRCAP Unique See Table 35-2.

11 Unique SMRR Capability Using MSR 0A0H and 0A1H (R) 

11EH 281 MSR_BBL_CR_CTL3 Shared

0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.
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8 L2 Enabled (R/W) 

1 = L2 cache has been initialized 
0 = Disabled (default)
Until this bit is set the processor will not respond to the WBINVD 
instruction or the assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present (RO) 

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

174H 372 IA32_SYSENTER_CS Unique See Table 35-2.

175H 373 IA32_SYSENTER_ESP Unique See Table 35-2.

176H 374 IA32_SYSENTER_EIP Unique See Table 35-2.

179H 377 IA32_MCG_CAP Unique See Table 35-2.

17AH 378 IA32_MCG_STATUS Unique

0 RIPV

When set, bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check 
was generated) can be used to restart the program. If cleared, the 
program cannot be reliably restarted.

1 EIPV

When set, bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check 
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If 
a second machine check is detected while this bit is still set, the 
processor enters a shutdown state. Software should write this bit 
to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_PERFEVTSEL0 Unique See Table 35-2.

187H 391 IA32_PERFEVTSEL1 Unique See Table 35-2.

198H 408 IA32_PERF_STATUS Shared See Table 35-2.

198H 408 MSR_PERF_STATUS Shared

15:0 Current Performance State Value.

30:16 Reserved.
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31 XE Operation (R/O).

If set, XE operation is enabled. Default is cleared.

39:32 Reserved.

44:40 Maximum Bus Ratio (R/O)

Indicates maximum bus ratio configured for the processor.

45 Reserved.

46 Non-Integer Bus Ratio (R/O)

Indicates non-integer bus ratio is enabled. Applies processors 
based on Enhanced Intel Core microarchitecture.

63:47 Reserved.

199H 409 IA32_PERF_CTL Unique See Table 35-2.

19AH 410 IA32_CLOCK_MODULATION Unique Clock Modulation (R/W) 

See Table 35-2.

IA32_CLOCK_MODULATION MSR was originally named 
IA32_THERM_CONTROL MSR.

19BH 411 IA32_THERM_INTERRUPT Unique Thermal Interrupt Control (R/W) 

See Table 35-2.

19CH 412 IA32_THERM_STATUS Unique Thermal Monitor Status (R/W) 

See Table 35-2.

19DH 413 MSR_THERM2_CTL Unique

15:0 Reserved.

16 TM_SELECT (R/W) 

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die modulation of 
the stop-clock duty cycle)

1 = Thermal Monitor 2 (thermally-initiated frequency transitions)
If bit 3 of the IA32_MISC_ENABLE register is cleared, TM_SELECT 
has no effect. Neither TM1 nor TM2 are enabled.

63:16 Reserved.

1A0 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W) 

Allows a variety of processor functions to be enabled and disabled.

0 Fast-Strings Enable

See Table 35-2.

2:1 Reserved.
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3 Unique Automatic Thermal Control Circuit Enable (R/W) 

See Table 35-2.

6:4 Reserved.

7 Shared Performance Monitoring Available (R) 

See Table 35-2.

8 Reserved.

9 Hardware Prefetcher Disable (R/W)

When set, disables the hardware prefetcher operation on streams 
of data. When clear (default), enables the prefetch queue.

Disabling of the hardware prefetcher may impact processor 
performance.

10 Shared FERR# Multiplexing Enable (R/W)

1 = FERR# asserted by the processor to indicate a pending break 
event within the processor 

0 =  Indicates compatible FERR# signaling behavior
This bit must be set to 1 to support XAPIC interrupt model usage.

11 Shared Branch Trace Storage Unavailable (RO) 

See Table 35-2.

12 Shared Precise Event Based Sampling Unavailable (RO) 

See Table 35-2.

13 Shared TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor indicates that the 
die temperature is at the pre-determined threshold, the Thermal 
Monitor 2 mechanism is engaged. TM2 will reduce the bus to core 
ratio and voltage according to the value last written to 
MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the processor does not change 
the VID signals or the bus to core ratio when the processor enters 
a thermally managed state. 

The BIOS must enable this feature if the TM2 feature flag 
(CPUID.1:ECX[8]) is set; if the TM2 feature flag is not set, this 
feature is not supported and BIOS must not alter the contents of 
the TM2 bit location. 

The processor is operating out of specification if both this bit and 
the TM1 bit are set to 0.

15:14 Reserved.

16 Shared Enhanced Intel SpeedStep Technology Enable (R/W) 

See Table 35-2.
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18 Shared ENABLE MONITOR FSM (R/W) 

See Table 35-2.

19 Shared Adjacent Cache Line Prefetch Disable (R/W) 

When set to 1, the processor fetches the cache line that contains 
data currently required by the processor. When set to 0, the 
processor fetches cache lines that comprise a cache line pair (128 
bytes).

Single processor platforms should not set this bit. Server platforms 
should set or clear this bit based on platform performance 
observed in validation and testing. 

BIOS may contain a setup option that controls the setting of this 
bit.

20 Shared Enhanced Intel SpeedStep Technology Select Lock (R/WO)

When set, this bit causes the following bits to become read-only:

• Enhanced Intel SpeedStep Technology Select Lock (this bit), 
• Enhanced Intel SpeedStep Technology Enable bit.

The bit must be set before an Enhanced Intel SpeedStep 
Technology transition is requested. This bit is cleared on reset.

21 Reserved.

22 Shared Limit CPUID Maxval (R/W) 

See Table 35-2.

23 Shared xTPR Message Disable (R/W) 

See Table 35-2.

33:24 Reserved.

34 Unique XD Bit Disable (R/W) 

See Table 35-2.

36:35 Reserved.

37 Unique DCU Prefetcher Disable (R/W)

When set to 1, The DCU L1 data cache prefetcher is disabled. The 
default value after reset is 0. BIOS may write ‘1’ to disable this 
feature. 

The DCU prefetcher is an L1 data cache prefetcher.  When the DCU 
prefetcher detects multiple loads from the same line done within a 
time limit, the DCU prefetcher assumes the next line will be 
required. The next line is prefetched in to the L1 data cache from 
memory or L2.
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38 Shared IDA Disable (R/W)

When set to 1 on processors that support IDA, the Intel Dynamic 
Acceleration feature (IDA) is disabled and the IDA_Enable feature 
flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H: 
EAX[1] reports the processor’s support of IDA is enabled.

Note: the power-on default value is used by BIOS to detect 
hardware support of IDA. If power-on default value is 1, IDA is 
available in the processor. If power-on default value is 0, IDA is not 
available.

39 Unique IP Prefetcher Disable (R/W)

When set to 1, The IP prefetcher is disabled. The default value 
after reset is 0. BIOS may write ‘1’ to disable this feature. 

The IP prefetcher is an L1 data cache prefetcher. The IP prefetcher 
looks for sequential load history to determine whether to prefetch 
the next expected data into the L1 cache from memory or L2.

63:40 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Unique Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-3) that points to the MSR containing the 
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Unique Debug Control (R/W) 

See Table 35-2

1DDH 477 MSR_LER_FROM_LIP Unique Last Exception Record From Linear IP (R) 

Contains a pointer to the last branch instruction that the processor 
executed prior to the last exception that was generated or the last 
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Unique Last Exception Record To Linear IP (R) 

This area contains a pointer to the target of the last branch 
instruction that the processor executed prior to the last exception 
that was generated or the last interrupt that was handled. 

200H 512 IA32_MTRR_PHYSBASE0 Unique See Table 35-2.

201H 513 IA32_MTRR_PHYSMASK0 Unique See Table 35-2.

202H 514 IA32_MTRR_PHYSBASE1 Unique See Table 35-2.

203H 515 IA32_MTRR_PHYSMASK1 Unique See Table 35-2.

204H 516 IA32_MTRR_PHYSBASE2 Unique See Table 35-2.

205H 517 IA32_MTRR_PHYSMASK2 Unique See Table 35-2.

206H 518 IA32_MTRR_PHYSBASE3 Unique See Table 35-2.

Table 35-3.  MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 315

207H 519 IA32_MTRR_PHYSMASK3 Unique See Table 35-2.

208H 520 IA32_MTRR_PHYSBASE4 Unique See Table 35-2.

209H 521 IA32_MTRR_PHYSMASK4 Unique See Table 35-2.

20AH 522 IA32_MTRR_PHYSBASE5 Unique See Table 35-2.

20BH 523 IA32_MTRR_PHYSMASK5 Unique See Table 35-2.

20CH 524 IA32_MTRR_PHYSBASE6 Unique See Table 35-2.

20DH 525 IA32_MTRR_PHYSMASK6 Unique See Table 35-2.

20EH 526 IA32_MTRR_PHYSBASE7 Unique See Table 35-2.

20FH 527 IA32_MTRR_PHYSMASK7 Unique See Table 35-2.

250H 592 IA32_MTRR_FIX64K_
00000

Unique See Table 35-2.

258H 600 IA32_MTRR_FIX16K_
80000

Unique See Table 35-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Unique See Table 35-2.

268H 616 IA32_MTRR_FIX4K_C0000 Unique See Table 35-2.

269H 617 IA32_MTRR_FIX4K_C8000 Unique See Table 35-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Unique See Table 35-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Unique See Table 35-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Unique See Table 35-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Unique See Table 35-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Unique See Table 35-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Unique See Table 35-2.

277H 631 IA32_PAT Unique See Table 35-2.

2FFH 767 IA32_MTRR_DEF_TYPE Unique Default Memory Types (R/W) 

See Table 35-2.

309H 777 IA32_FIXED_CTR0 Unique Fixed-Function Performance Counter Register 0 (R/W) 

See Table 35-2.

309H 777 MSR_PERF_FIXED_CTR0 Unique Fixed-Function Performance Counter Register 0 (R/W) 

30AH 778 IA32_FIXED_CTR1 Unique Fixed-Function Performance Counter Register 1 (R/W) 

See Table 35-2.

30AH 778 MSR_PERF_FIXED_CTR1 Unique Fixed-Function Performance Counter Register 1 (R/W) 
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30BH 779 IA32_FIXED_CTR2 Unique Fixed-Function Performance Counter Register 2 (R/W) 

See Table 35-2.

30BH 779 MSR_PERF_FIXED_CTR2 Unique Fixed-Function Performance Counter Register 2 (R/W) 

345H 837 IA32_PERF_CAPABILITIES Unique See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

345H 837 MSR_PERF_CAPABILITIES Unique RO. This applies to processors that do not support architectural 
perfmon version 2.

5:0 LBR Format. See Table 35-2.

6 PEBS Record Format. 

7 PEBSSaveArchRegs. See Table 35-2.

63:8 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL Unique Fixed-Function-Counter Control Register (R/W) 

See Table 35-2.

38DH 909 MSR_PERF_FIXED_CTR_
CTRL

Unique Fixed-Function-Counter Control Register (R/W) 

38EH 910 IA32_PERF_GLOBAL_
STAUS

Unique See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.” 

38EH 910 MSR_PERF_GLOBAL_STAUS Unique See Section 18.4.2, “Global Counter Control Facilities.”

38FH 911 IA32_PERF_GLOBAL_CTRL Unique See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.”

38FH 911 MSR_PERF_GLOBAL_CTRL Unique See Section 18.4.2, “Global Counter Control Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Unique See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.”

390H 912 MSR_PERF_GLOBAL_OVF_
CTRL

Unique See Section 18.4.2, “Global Counter Control Facilities.”

3F1H 1009 MSR_PEBS_ENABLE Unique See Table 35-2. See Section 18.4.4, “Precise Event Based Sampling 
(PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

400H 1024 IA32_MC0_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC0_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

404H 1028 IA32_MC1_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”
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405H 1029 IA32_MC1_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC1_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

408H 1032 IA32_MC2_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC2_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC2_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

40CH 1036 MSR_MC4_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC4_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 MSR_MC4_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the MSR_MC4_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

410H 1040 MSR_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC3_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 MSR_MC3_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the MSR_MC3_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

413H 1043 MSR_MC3_MISC Unique

414H 1044 MSR_MC5_CTL Unique

415H 1045 MSR_MC5_STATUS Unique

416H 1046 MSR_MC5_ADDR Unique

417H 1047 MSR_MC5_MISC Unique
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419H 1045 MSR_MC6_STATUS Unique Apply to Intel Xeon processor 7400 series (processor signature 
06_1D) only. See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.” and 
Chapter 23.

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX Capabilities (R/O) 

See Table 35-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Unique Capability Reporting Register of Pin-based VM-execution 
Controls (R/O) 

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_
CTLS

Unique Capability Reporting Register of Primary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Unique Capability Reporting Register of VM-exit Controls (R/O) 

See Table 35-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Unique Capability Reporting Register of VM-entry Controls (R/O) 

See Table 35-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX Capabilities (R/O) 

See Table 35-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Unique Capability Reporting Register of CR0 Bits Fixed to 0 (R/O) 

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Unique Capability Reporting Register of CR0 Bits Fixed to 1 (R/O) 

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Unique Capability Reporting Register of CR4 Bits Fixed to 0 (R/O) 

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Unique Capability Reporting Register of CR4 Bits Fixed to 1 (R/O) 

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”
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48AH 1162 IA32_VMX_VMCS_ENUM Unique Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 35-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Unique Capability Reporting Register of Secondary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

600H 1536 IA32_DS_AREA Unique DS Save Area (R/W)

See Table 35-2.

See Section 18.11.4, “Debug Store (DS) Mechanism.”

107CC
H

MSR_EMON_L3_CTR_CTL0 Unique GBUSQ Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature 
06_1D) only. See Section 17.2.2

107CD
H

MSR_EMON_L3_CTR_CTL1 Unique GBUSQ Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature 
06_1D) only. See Section 17.2.2

107CE
H

MSR_EMON_L3_CTR_CTL2 Unique GSNPQ Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature 
06_1D) only. See Section 17.2.2

107CF
H

MSR_EMON_L3_CTR_CTL3 Unique GSNPQ Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature 
06_1D) only. See Section 17.2.2

107D0
H

MSR_EMON_L3_CTR_CTL4 Unique FSB Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature 
06_1D) only. See Section 17.2.2

107D1
H

MSR_EMON_L3_CTR_CTL5 Unique FSB Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature 
06_1D) only. See Section 17.2.2

107D2
H

MSR_EMON_L3_CTR_CTL6 Unique FSB Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature 
06_1D) only. See Section 17.2.2

107D3
H

MSR_EMON_L3_CTR_CTL7 Unique FSB Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature 
06_1D) only. See Section 17.2.2

107D8
H

MSR_EMON_L3_GL_CTL Unique L3/FSB Common Control Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature 
06_1D) only. See Section 17.2.2
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...

C000_
0080H

IA32_EFER Unique Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR Unique System Call Target Address (R/W)

See Table 35-2.

C000_
0082H

IA32_LSTAR Unique IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

C000_
0084H

IA32_FMASK Unique System Call Flag Mask (R/W)

See Table 35-2.

C000_
0100H

IA32_FS_BASE Unique Map of BASE Address of FS (R/W)

See Table 35-2.

C000_
0101H

IA32_GS_BASE Unique Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE Unique Swap Target of BASE Address of GS (R/W) See Table 35-2.
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0H 0 IA32_P5_MC_ADDR Shared See Section 35.15, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Shared See Section 35.15, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Unique See Section 8.10.5, “Monitor/Mwait Address Range Determination.” 
andTable 35-2

10H 16 IA32_TIME_STAMP_
COUNTER

Shared See Section 17.13, “Time-Stamp Counter,” and see Table 35-2.

17H 23 IA32_PLATFORM_ID Shared Platform ID (R) 
See Table 35-2.

17H 23 MSR_PLATFORM_ID Shared Model Specific Platform ID (R) 

7:0 Reserved.

12:8 Maximum Qualified Ratio (R) 

The maximum allowed bus ratio.

63:13 Reserved.
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1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and Location,” and 
Table 35-2.

2AH 42 MSR_EBL_CR_POWERON Shared Processor Hard Power-On Configuration (R/W) Enables and 
disables processor features; 

(R) indicates current processor configuration.

0 Reserved.

1 Data Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Always 0. 

2 Response Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Always 0.

3 AERR# Drive Enable (R/W) 

1 = Enabled; 0 = Disabled
Always 0.

4 BERR# Enable for initiator bus requests (R/W)

1 = Enabled; 0 = Disabled
Always 0. 

5 Reserved.

6 Reserved.

7 BINIT# Driver Enable (R/W)

1 = Enabled; 0 = Disabled 
Always 0.

8 Reserved.

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled 

10 AERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled
Always 0.

11 Reserved.

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled 
Always 0.

13 Reserved.

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved
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17:16 APIC Cluster ID (R/O)

Always 00B.

19: 18 Reserved.

21: 20 Symmetric Arbitration ID (R/O)

Always 00B.

26:22 Integer Bus Frequency Ratio (R/O)

3AH 58 IA32_FEATURE_CONTROL Unique Control Features in Intel 64Processor (R/W)

See Table 35-2.

40H 64 MSR_
LASTBRANCH_0_FROM_IP

Unique Last Branch Record 0 From IP (R/W)

One of eight pairs of last branch record registers on the last branch 
record stack. This part of the stack contains pointers to the source 
instruction for one of the last eight branches, exceptions, or 
interrupts taken by the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.11, “Last Branch, Interrupt, and Exception Recording 

(Pentium M Processors).”

41H 65 MSR_
LASTBRANCH_1_FROM_IP

Unique Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_
LASTBRANCH_2_FROM_IP

Unique Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP. 

43H 67 MSR_
LASTBRANCH_3_FROM_IP

Unique Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

44H 68 MSR_
LASTBRANCH_4_FROM_IP

Unique Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

45H 69 MSR_
LASTBRANCH_5_FROM_IP

Unique Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

46H 70 MSR_
LASTBRANCH_6_FROM_IP

Unique Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

47H 71 MSR_
LASTBRANCH_7_FROM_IP

Unique Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

60H 96 MSR_
LASTBRANCH_0_TO_IP

Unique Last Branch Record 0 To IP (R/W)

One of eight pairs of last branch record registers on the last branch 
record stack. This part of the stack contains pointers to the 
destination instruction for one of the last eight branches, 
exceptions, or interrupts taken by the processor.

61H 97 MSR_
LASTBRANCH_1_TO_IP

Unique Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 
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62H 98 MSR_
LASTBRANCH_2_TO_IP

Unique Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

63H 99 MSR_
LASTBRANCH_3_TO_IP

Unique Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

64H 100 MSR_
LASTBRANCH_4_TO_IP

Unique Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

65H 101 MSR_
LASTBRANCH_5_TO_IP

Unique Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

66H 102 MSR_
LASTBRANCH_6_TO_IP

Unique Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

67H 103 MSR_
LASTBRANCH_7_TO_IP

Unique Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

79H 121 IA32_BIOS_UPDT_TRIG Unique BIOS Update Trigger Register (W) 

See Table 35-2.

8BH 139 IA32_BIOS_SIGN_ID Unique BIOS Update Signature ID (RO)

See Table 35-2.

C1H 193 IA32_PMC0 Unique Performance counter register

See Table 35-2.

C2H 194 IA32_PMC1 Unique Performance Counter Register

See Table 35-2.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for 
processors based on Intel Atom microarchitecture:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)

133.33 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 001B. 

166.67 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 011B.

63:3 Reserved.

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock Count (RW) 

See Table 35-2.

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count (RW) 

See Table 35-2.

FEH 254 IA32_MTRRCAP Shared Memory Type Range Register (R) 

See Table 35-2.
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11EH 281 MSR_BBL_CR_CTL3 Shared

0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled. (R/W) 

1 = L2 cache has been initialized 
0 = Disabled (default)
Until this bit is set the processor will not respond to the WBINVD 
instruction or the assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present (RO) 

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

174H 372 IA32_SYSENTER_CS Unique See Table 35-2.

175H 373 IA32_SYSENTER_ESP Unique See Table 35-2.

176H 374 IA32_SYSENTER_EIP Unique See Table 35-2.

17AH 378 IA32_MCG_STATUS Unique

0 RIPV

When set, bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check 
was generated) can be used to restart the program. If cleared, the 
program cannot be reliably restarted

1 EIPV

When set, bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check 
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If 
a second machine check is detected while this bit is still set, the 
processor enters a shutdown state. Software should write this bit 
to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_PERFEVTSEL0 Unique See Table 35-2.

187H 391 IA32_PERFEVTSEL1 Unique See Table 35-2.

198H 408 IA32_PERF_STATUS Shared See Table 35-2.

198H 408 MSR_PERF_STATUS Shared
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15:0 Current Performance State Value.

39:16 Reserved.

44:40 Maximum Bus Ratio (R/O)

Indicates maximum bus ratio configured for the processor.

63:45 Reserved.

199H 409 IA32_PERF_CTL Unique See Table 35-2.

19AH 410 IA32_CLOCK_MODULATION Unique Clock Modulation (R/W) 

See Table 35-2.

IA32_CLOCK_MODULATION MSR was originally named 
IA32_THERM_CONTROL MSR.

19BH 411 IA32_THERM_INTERRUPT Unique Thermal Interrupt Control (R/W) 

See Table 35-2.

19CH 412 IA32_THERM_STATUS Unique Thermal Monitor Status (R/W) 

See Table 35-2.

19DH 413 MSR_THERM2_CTL Shared

15:0 Reserved.

16 TM_SELECT (R/W) 

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die modulation of 
the stop-clock duty cycle)

1 = Thermal Monitor 2 (thermally-initiated frequency transitions)
If bit 3 of the IA32_MISC_ENABLE register is cleared, TM_SELECT 
has no effect. Neither TM1 nor TM2 are enabled.

63:17 Reserved.

1A0 416 IA32_MISC_ENABLE Unique Enable Misc. Processor Features (R/W) 

Allows a variety of processor functions to be enabled and disabled.

0 Fast-Strings Enable

See Table 35-2.

2:1 Reserved.

3 Unique Automatic Thermal Control Circuit Enable (R/W) 

See Table 35-2.

6:4 Reserved.

7 Shared Performance Monitoring Available (R) 

See Table 35-2.

8 Reserved.

9 Reserved.
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10 Shared FERR# Multiplexing Enable (R/W)

1 = FERR# asserted by the processor to indicate a pending break 
event within the processor 

0 =  Indicates compatible FERR# signaling behavior
This bit must be set to 1 to support XAPIC interrupt model usage.

11 Shared Branch Trace Storage Unavailable (RO) 

See Table 35-2.

12 Shared Precise Event Based Sampling Unavailable (RO) 

See Table 35-2.

13 Shared TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor indicates that the 
die temperature is at the pre-determined threshold, the Thermal 
Monitor 2 mechanism is engaged. TM2 will reduce the bus to core 
ratio and voltage according to the value last written to 
MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the processor does not change 
the VID signals or the bus to core ratio when the processor enters 
a thermally managed state. 

The BIOS must enable this feature if the TM2 feature flag 
(CPUID.1:ECX[8]) is set; if the TM2 feature flag is not set, this 
feature is not supported and BIOS must not alter the contents of 
the TM2 bit location. 

The processor is operating out of specification if both this bit and 
the TM1 bit are set to 0.

15:14 Reserved.

16 Shared Enhanced Intel SpeedStep Technology Enable (R/W) 

See Table 35-2.

18 Shared ENABLE MONITOR FSM (R/W) 

See Table 35-2.

19 Reserved.

20 Shared Enhanced Intel SpeedStep Technology Select Lock (R/WO)

When set, this bit causes the following bits to become read-only:

• Enhanced Intel SpeedStep Technology Select Lock (this bit), 
• Enhanced Intel SpeedStep Technology Enable bit.

The bit must be set before an Enhanced Intel SpeedStep 
Technology transition is requested. This bit is cleared on reset.

21 Reserved.

22 Unique Limit CPUID Maxval (R/W) 

See Table 35-2.
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23 Shared xTPR Message Disable (R/W) 

See Table 35-2.

33:24 Reserved.

34 Unique XD Bit Disable (R/W) 

See Table 35-2.

63:35 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Unique Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-2) that points to the MSR containing the 
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Unique Debug Control (R/W) 

See Table 35-2.

1DDH 477 MSR_LER_FROM_LIP Unique Last Exception Record From Linear IP (R) 

Contains a pointer to the last branch instruction that the processor 
executed prior to the last exception that was generated or the last 
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Unique Last Exception Record To Linear IP (R) 

This area contains a pointer to the target of the last branch 
instruction that the processor executed prior to the last exception 
that was generated or the last interrupt that was handled. 

200H 512 IA32_MTRR_PHYSBASE0 Shared See Table 35-2.

201H 513 IA32_MTRR_PHYSMASK0 Shared See Table 35-2.

202H 514 IA32_MTRR_PHYSBASE1 Shared See Table 35-2.

203H 515 IA32_MTRR_PHYSMASK1 Shared See Table 35-2.

204H 516 IA32_MTRR_PHYSBASE2 Shared See Table 35-2.

205H 517 IA32_MTRR_PHYSMASK2 Shared See Table 35-2.

206H 518 IA32_MTRR_PHYSBASE3 Shared See Table 35-2.

207H 519 IA32_MTRR_PHYSMASK3 Shared See Table 35-2.

208H 520 IA32_MTRR_PHYSBASE4 Shared See Table 35-2.

209H 521 IA32_MTRR_PHYSMASK4 Shared See Table 35-2.

20AH 522 IA32_MTRR_PHYSBASE5 Shared See Table 35-2.

20BH 523 IA32_MTRR_PHYSMASK5 Shared See Table 35-2.

20CH 524 IA32_MTRR_PHYSBASE6 Shared See Table 35-2.

20DH 525 IA32_MTRR_PHYSMASK6 Shared See Table 35-2.

20EH 526 IA32_MTRR_PHYSBASE7 Shared See Table 35-2.

20FH 527 IA32_MTRR_PHYSMASK7 Shared See Table 35-2.
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250H 592 IA32_MTRR_FIX64K_
00000

Shared See Table 35-2.

258H 600 IA32_MTRR_FIX16K_
80000

Shared See Table 35-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Shared See Table 35-2.

268H 616 IA32_MTRR_FIX4K_C0000 Shared See Table 35-2.

269H 617 IA32_MTRR_FIX4K_C8000 Shared See Table 35-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Shared See Table 35-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Shared See Table 35-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Shared See Table 35-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Shared See Table 35-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Shared See Table 35-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Shared See Table 35-2.

277H 631 IA32_PAT Unique See Table 35-2.

309H 777 IA32_FIXED_CTR0 Unique Fixed-Function Performance Counter Register 0 (R/W) 

See Table 35-2.

30AH 778 IA32_FIXED_CTR1 Unique Fixed-Function Performance Counter Register 1 (R/W) 

See Table 35-2.

30BH 779 IA32_FIXED_CTR2 Unique Fixed-Function Performance Counter Register 2 (R/W) 

See Table 35-2.

345H 837 IA32_PERF_CAPABILITIES Shared See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

38DH 909 IA32_FIXED_CTR_CTRL Unique Fixed-Function-Counter Control Register (R/W) 

See Table 35-2.

38EH 910 IA32_PERF_GLOBAL_
STAUS

Unique See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.” 

38FH 911 IA32_PERF_GLOBAL_CTRL Unique See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Unique See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.”

3F1H 1009 MSR_PEBS_ENABLE Unique See Table 35-2. See Section 18.4.4, “Precise Event Based Sampling 
(PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

400H 1024 IA32_MC0_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”
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402H 1026 IA32_MC0_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC0_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

404H 1028 IA32_MC1_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

408H 1032 IA32_MC2_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC2_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC2_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

40CH 1036 MSR_MC3_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC3_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

4OEH 1038 MSR_MC3_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the MSR_MC3_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

410H 1040 MSR_MC4_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC4_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 MSR_MC4_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the MSR_MC4_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX Capabilities (R/O) 

See Table 35-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Unique Capability Reporting Register of Pin-based VM-execution 
Controls (R/O) 

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”
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482H 1154 IA32_VMX_PROCBASED_
CTLS

Unique Capability Reporting Register of Primary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Unique Capability Reporting Register of VM-exit Controls (R/O) 

See Table 35-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Unique Capability Reporting Register of VM-entry Controls (R/O) 

See Table 35-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX Capabilities (R/O) 

See Table 35-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Unique Capability Reporting Register of CR0 Bits Fixed to 0 (R/O) 

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Unique Capability Reporting Register of CR0 Bits Fixed to 1 (R/O) 

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Unique Capability Reporting Register of CR4 Bits Fixed to 0 (R/O) 

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Unique Capability Reporting Register of CR4 Bits Fixed to 1 (R/O) 

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Unique Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 35-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Unique Capability Reporting Register of Secondary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

600H 1536 IA32_DS_AREA Unique DS Save Area (R/W)

See Table 35-2.

See Section 18.11.4, “Debug Store (DS) Mechanism.”

C000_
0080H

IA32_EFER Unique Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR Unique System Call Target Address (R/W)

See Table 35-2.
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...

C000_
0082H

IA32_LSTAR Unique IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

C000_
0084H

IA32_FMASK Unique System Call Flag Mask (R/W)

See Table 35-2.

C000_
0100H

IA32_FS_BASE Unique Map of BASE Address of FS (R/W)

See Table 35-2.

C000_
0101H

IA32_GS_BASE Unique Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE Unique Swap Target of BASE Address of GS (R/W) See Table 35-2.
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0H 0 IA32_P5_MC_ADDR Thread See Section 35.15, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Thread See Section 35.15, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address Range Determination,” 
and Table 35-2.

10H 16 IA32_TIME_
STAMP_COUNTER

Thread See Section 17.13, “Time-Stamp Counter,” and see Table 35-2.

17H 23 IA32_PLATFORM_ID Package Platform ID (R) 
See Table 35-2.

17H 23 MSR_PLATFORM_ID Package Model Specific Platform ID (R) 

49:0 Reserved.

52:50 See Table 35-2.

63:53 Reserved.

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and Location,” and 
Table 35-2.

34H 52 MSR_SMI_COUNT Thread SMI Counter (R/O)

31:0 SMI Count (R/O) 

Running count of SMI events since last RESET.
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63:32 Reserved.

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64Processor (R/W)

See Table 35-2.

79H 121 IA32_BIOS_
UPDT_TRIG

Core BIOS Update Trigger Register (W) 

See Table 35-2.

8BH 139 IA32_BIOS_
SIGN_ID

Thread BIOS Update Signature ID (RO)

See Table 35-2.

C1H 193 IA32_PMC0 Thread Performance Counter Register

See Table 35-2.

C2H 194 IA32_PMC1 Thread Performance Counter Register

See Table 35-2.

C3H 195 IA32_PMC2 Thread Performance Counter Register

See Table 35-2.

C4H 196 IA32_PMC3 Thread Performance Counter Register

See Table 35-2.

CEH 206 MSR_PLATFORM_INFO Package see http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O) 

The is the ratio of the frequency that invariant TSC runs at. The 
invariant TSC frequency can be computed by multiplying this ratio 
by 133.33 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O) 

When set to 1, indicates that Programmable Ratio Limits for Turbo 
mode is enabled, and when set to 0, indicates Programmable Ratio 
Limits for Turbo mode is disabled.

29 Package Programmable TDC-TDP Limit for Turbo Mode (R/O) 

When set to 1, indicates that TDC/TDP Limits for Turbo mode are 
programmable, and when set to 0, indicates TDC and TDP Limits for 
Turbo mode are not programmable.

39:30 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O) 

The is the minimum ratio (maximum efficiency) that the processor 
can operates, in units of 133.33MHz.

63:48 Reserved.
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E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W) 

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States. See http://biosbits.org.

2:0 Package C-State Limit (R/W) 

Specifies the lowest processor-specific C-state code name 
(consuming the least power). for the package. The default is set as 
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0 (no package C-sate support)

001b: C1 (Behavior is the same as 000b)

010b: C3

011b: C6

100b: C7

101b and 110b: Reserved

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved. 

10 I/O MWAIT Redirection Enable (R/W) 

When set, will map IO_read instructions sent to IO register 
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions.

14:11 Reserved. 

15 CFG Lock (R/WO) 

When set, lock bits 15:0 of this register until next reset.

23:16 Reserved. 

24 Interrupt filtering enable (R/W) 

When set, processor cores in a deep C-State will wake only when 
the event message is destined for that core. When 0, all processor 
cores in a deep C-State will wake for an event message.

25 C3 state auto demotion enable (R/W) 

When set, the processor will conditionally demote C6/C7 requests 
to C3 based on uncore auto-demote information.

26 C1 state auto demotion enable (R/W) 

When set, the processor will conditionally demote C3/C6/C7 
requests to C1 based on uncore auto-demote information.

63:27 Reserved.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Core Power Management IO Redirection in C-state (R/W) 

See http://biosbits.org.
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15:0 LVL_2 Base Address (R/W) 

Specifies the base address visible to software for IO redirection. If 
IO MWAIT Redirection is enabled, reads to this address will be 
consumed by the power management logic and decoded to MWAIT 
instructions. When IO port address redirection is enabled, this is the 
IO port address reported to the OS/software.

18:16 C-state Range (R/W) 

Specifies the encoding value of the maximum C-State code name to 
be included when IO read to MWAIT redirection is enabled by 
MSR_PMG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - C6 is the max C-State to include

010b - C7 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock Count (RW) 

See Table 35-2.

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count (RW) 

See Table 35-2.

FEH 254 IA32_MTRRCAP Thread See Table 35-2.

174H 372 IA32_SYSENTER_CS Thread See Table 35-2.

175H 373 IA32_SYSENTER_ESP Thread See Table 35-2.

176H 374 IA32_SYSENTER_EIP Thread See Table 35-2.

179H 377 IA32_MCG_CAP Thread See Table 35-2.

17AH 378 IA32_MCG_STATUS Thread

0 RIPV

When set, bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check 
was generated) can be used to restart the program. If cleared, the 
program cannot be reliably restarted.

1 EIPV

When set, bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check 
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If 
a second machine check is detected while this bit is still set, the 
processor enters a shutdown state. Software should write this bit 
to 0 after processing a machine check exception.

63:3 Reserved.
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186H 390 IA32_PERFEVTSEL0 Thread See Table 35-2.

187H 391 IA32_PERFEVTSEL1 Thread See Table 35-2.

188H 392 IA32_PERFEVTSEL2 Thread See Table 35-2.

189H 393 IA32_PERFEVTSEL3 Thread See Table 35-2.

198H 408 IA32_PERF_STATUS Core See Table 35-2.

15:0 Current Performance State Value.

63:16 Reserved.

199H 409 IA32_PERF_CTL Thread See Table 35-2.

19AH 410 IA32_CLOCK_MODULATION Thread Clock Modulation (R/W) 

See Table 35-2.

IA32_CLOCK_MODULATION MSR was originally named 
IA32_THERM_CONTROL MSR.

0 Reserved.

3:1 On demand Clock Modulation Duty Cycle (R/W)

4 On demand Clock Modulation Enable (R/W)

63:5 Reserved.

19BH 411 IA32_THERM_INTERRUPT Core Thermal Interrupt Control (R/W) 

See Table 35-2.

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W) 

See Table 35-2.

1A0 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W) 

Allows a variety of processor functions to be enabled and disabled.

0 Thread Fast-Strings Enable

See Table 35-2.

2:1 Reserved.

3 Thread Automatic Thermal Control Circuit Enable (R/W)

See Table 35-2.

6:4 Reserved.

7 Thread Performance Monitoring Available (R) 

See Table 35-2.

10:8 Reserved.

11 Thread Branch Trace Storage Unavailable (RO) 

See Table 35-2.
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12 Thread Precise Event Based Sampling Unavailable (RO) 

See Table 35-2.

15:13 Reserved.

16 Package Enhanced Intel SpeedStep Technology Enable (R/W) 

See Table 35-2.

18 Thread ENABLE MONITOR FSM. (R/W) See Table 35-2.

21:19 Reserved.

22 Thread Limit CPUID Maxval (R/W) 

See Table 35-2.

23 Thread xTPR Message Disable (R/W) 

See Table 35-2.

33:24 Reserved.

34 Thread XD Bit Disable (R/W)

See Table 35-2.

37:35 Reserved.

38 Package Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost 
Technology, the turbo mode feature is disabled and the IDA_Enable 
feature flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H: 
EAX[1] reports the processor’s support of turbo mode is enabled.

Note: the power-on default value is used by BIOS to detect 
hardware support of turbo mode. If power-on default value is 1, 
turbo mode is available in the processor. If power-on default value 
is 0, turbo mode is not available.

63:39 Reserved.

1A2H 418 MSR_
TEMPERATURE_TARGET

Thread

15:0 Reserved.

23:16 Temperature Target (R) 

The minimum temperature at which PROCHOT# will be asserted. 
The value is degree C.

63:24 Reserved.

1A6H 422 MSR_OFFCORE_RSP_0 Thread Offcore Response Event Select Register (R/W)

1AAH 426 MSR_MISC_PWR_MGMT See http://biosbits.org.
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0 Package EIST Hardware Coordination Disable (R/W)

When 0, enables hardware coordination of Enhanced Intel 
Speedstep Technology request from processor cores; When 1, 
disables hardware coordination of Enhanced Intel Speedstep 
Technology requests.

1 Thread Energy/Performance Bias Enable (R/W) 

This bit makes the IA32_ENERGY_PERF_BIAS register (MSR 1B0h) 
visible to software with Ring 0 privileges. This bit’s status (1 or 0) 
is also reflected by CPUID.(EAX=06h):ECX[3].

63:2 Reserved.

1ADH 428 MSR_TURBO_POWER_
CURRENT_LIMIT

See http://biosbits.org.

14:0 Package TDP Limit (R/W) 

TDP limit in 1/8 Watt granularity.

15 Package TDP Limit Override Enable (R/W) 

A value = 0 indicates override is not active, and a value = 1 
indicates active.

30:16 Package TDC Limit (R/W) 

TDC limit in 1/8 Amp granularity.

31 Package TDC Limit Override Enable (R/W) 

A value = 0 indicates override is not active, and a value = 1 
indicates active.

63:32 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active. 

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active. 

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

1C8H 456 MSR_LBR_SELECT Core Last Branch Record Filtering Select Register (R/W) 

See Section 17.6.2, “Filtering of Last Branch Records.”
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1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-3) that points to the MSR containing the 
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 680H).

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W) 

See Table 35-2.

1DDH 477 MSR_LER_FROM_LIP Thread Last Exception Record From Linear IP (R) 

Contains a pointer to the last branch instruction that the processor 
executed prior to the last exception that was generated or the last 
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Thread Last Exception Record To Linear IP (R) 

This area contains a pointer to the target of the last branch 
instruction that the processor executed prior to the last exception 
that was generated or the last interrupt that was handled. 

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 35-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 35-2.

1FCH 508 MSR_POWER_CTL Core Power Control Register. See http://biosbits.org.

0 Reserved.

1 Package C1E Enable (R/W) 

When set to ‘1’, will enable the CPU to switch to the Minimum 
Enhanced Intel SpeedStep Technology operating point when all 
execution cores enter MWAIT (C1).

63:2 Reserved.

200H 512 IA32_MTRR_PHYSBASE0 Thread See Table 35-2.

201H 513 IA32_MTRR_PHYSMASK0 Thread See Table 35-2.

202H 514 IA32_MTRR_PHYSBASE1 Thread See Table 35-2.

203H 515 IA32_MTRR_PHYSMASK1 Thread See Table 35-2.

204H 516 IA32_MTRR_PHYSBASE2 Thread See Table 35-2.

205H 517 IA32_MTRR_PHYSMASK2 Thread See Table 35-2.

206H 518 IA32_MTRR_PHYSBASE3 Thread See Table 35-2.

207H 519 IA32_MTRR_PHYSMASK3 Thread See Table 35-2.

208H 520 IA32_MTRR_PHYSBASE4 Thread See Table 35-2.

209H 521 IA32_MTRR_PHYSMASK4 Thread See Table 35-2.

20AH 522 IA32_MTRR_PHYSBASE5 Thread See Table 35-2.
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20BH 523 IA32_MTRR_PHYSMASK5 Thread See Table 35-2.

20CH 524 IA32_MTRR_PHYSBASE6 Thread See Table 35-2.

20DH 525 IA32_MTRR_PHYSMASK6 Thread See Table 35-2.

20EH 526 IA32_MTRR_PHYSBASE7 Thread See Table 35-2.

20FH 527 IA32_MTRR_PHYSMASK7 Thread See Table 35-2.

210H 528 IA32_MTRR_PHYSBASE8 Thread See Table 35-2.

211H 529 IA32_MTRR_PHYSMASK8 Thread See Table 35-2.

212H 530 IA32_MTRR_PHYSBASE9 Thread See Table 35-2.

213H 531 IA32_MTRR_PHYSMASK9 Thread See Table 35-2.

250H 592 IA32_MTRR_FIX64K_
00000

Thread See Table 35-2.

258H 600 IA32_MTRR_FIX16K_
80000

Thread See Table 35-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Thread See Table 35-2.

268H 616 IA32_MTRR_FIX4K_C0000 Thread See Table 35-2.

269H 617 IA32_MTRR_FIX4K_C8000 Thread See Table 35-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Thread See Table 35-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Thread See Table 35-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Thread See Table 35-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Thread See Table 35-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Thread See Table 35-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Thread See Table 35-2.

277H 631 IA32_PAT Thread See Table 35-2.

280H 640 IA32_MC0_CTL2 Package See Table 35-2.

281H 641 IA32_MC1_CTL2 Package See Table 35-2.

282H 642 IA32_MC2_CTL2 Core See Table 35-2.

283H 643 IA32_MC3_CTL2 Core See Table 35-2.

284H 644 IA32_MC4_CTL2 Core See Table 35-2.

285H 645 IA32_MC5_CTL2 Core See Table 35-2.

286H 646 IA32_MC6_CTL2 Package See Table 35-2.

287H 647 IA32_MC7_CTL2 Package See Table 35-2.

288H 648 IA32_MC8_CTL2 Package See Table 35-2.
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2FFH 767 IA32_MTRR_DEF_TYPE Thread Default Memory Types (R/W) 

See Table 35-2.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter Register 0 (R/W) 

See Table 35-2.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter Register 1 (R/W) 

See Table 35-2.

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter Register 2 (R/W) 

See Table 35-2.

345H 837 IA32_PERF_CAPABILITIES Thread See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

5:0 LBR Format. See Table 35-2.

6 PEBS Record Format. 

7 PEBSSaveArchRegs. See Table 35-2.

11:8 PEBS_REC_FORMAT. See Table 35-2.

12 SMM_FREEZE. See Table 35-2.

63:13 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL Thread Fixed-Function-Counter Control Register (R/W) 

See Table 35-2.

38EH 910 IA32_PERF_GLOBAL_
STAUS

Thread See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.” 

38EH 910 MSR_PERF_GLOBAL_STAUS Thread  (RO)

61 UNC_Ovf

Uncore overflowed if 1.

38FH 911 IA32_PERF_GLOBAL_CTRL Thread See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Thread See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.”

390H 912 MSR_PERF_GLOBAL_OVF_
CTRL

Thread  (R/W)

61 CLR_UNC_Ovf

Set 1 to clear UNC_Ovf.

3F1H 1009 MSR_PEBS_ENABLE Thread See Section 18.6.1.1, “Precise Event Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

2 Enable PEBS on IA32_PMC2. (R/W)

3 Enable PEBS on IA32_PMC3. (R/W)
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31:4 Reserved.

32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

35 Enable Load Latency on IA32_PMC3. (R/W)

63:36 Reserved.

3F6H 1014 MSR_PEBS_LD_LAT Thread See Section 18.6.1.2, “Load Latency Performance Monitoring 
Facility.”

15:0 Minimum threshold latency value of tagged load operation that will 
be counted. (R/W)

63:36 Reserved.

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C3 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C3 
states. Count at the same frequency as the TSC.

3F9H 1017 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C6 
states. Count at the same frequency as the TSC.

3FAH 1018 MSR_PKG_C7_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C7 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C7 
states. Count at the same frequency as the TSC.

3FCH 1020 MSR_CORE_C3_RESIDENCY Core Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C3 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C3 
states. Count at the same frequency as the TSC.

3FDH 1021 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.
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63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C6 
states. Count at the same frequency as the TSC.

400H 1024 IA32_MC0_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC0_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

403H 1027 MSR_MC0_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

404H 1028 IA32_MC1_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC1_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

407H 1031 MSR_MC1_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC2_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC2_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

40BH 1035 MSR_MC2_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

40CH 1036 MSR_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 MSR_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the MSR_MC4_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.
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40FH 1039 MSR_MC3_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

410H 1040 MSR_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 MSR_MC4_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the MSR_MC3_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

413H 1043 MSR_MC4_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

414H 1044 MSR_MC5_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 MSR_MC5_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

416H 1046 MSR_MC5_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

417H 1047 MSR_MC5_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

418H 1048 MSR_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 MSR_MC6_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41AH 1050 MSR_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41BH 1051 MSR_MC6_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

41CH 1052 MSR_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

41DH 1053 MSR_MC7_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41EH 1054 MSR_MC7_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41FH 1055 MSR_MC7_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

420H 1056 MSR_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

421H 1057 MSR_MC8_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

422H 1058 MSR_MC8_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

423H 1059 MSR_MC8_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

480H 1152 IA32_VMX_BASIC Thread Reporting Register of Basic VMX Capabilities (R/O) 

See Table 35-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Thread Capability Reporting Register of Pin-based VM-execution 
Controls (R/O) 

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”
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482H 1154 IA32_VMX_PROCBASED_
CTLS

Thread Capability Reporting Register of Primary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Thread Capability Reporting Register of VM-exit Controls (R/O) 

See Table 35-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Thread Capability Reporting Register of VM-entry Controls (R/O) 

See Table 35-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Thread Reporting Register of Miscellaneous VMX Capabilities (R/O) 

See Table 35-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Thread Capability Reporting Register of CR0 Bits Fixed to 0 (R/O) 

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Thread Capability Reporting Register of CR0 Bits Fixed to 1 (R/O) 

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Thread Capability Reporting Register of CR4 Bits Fixed to 0 (R/O) 

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Thread Capability Reporting Register of CR4 Bits Fixed to 1 (R/O) 

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Thread Capability Reporting Register of VMCS Field Enumeration (R/
O). 

See Table 35-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Thread Capability Reporting Register of Secondary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

600H 1536 IA32_DS_AREA Thread DS Save Area (R/W)

See Table 35-2.

See Section 18.11.4, “Debug Store (DS) Mechanism.”
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680H 1664 MSR_
LASTBRANCH_0_FROM_IP

Thread Last Branch Record 0 From IP (R/W)

One of sixteen pairs of last branch record registers on the last 
branch record stack. This part of the stack contains pointers to the 
source instruction for one of the last sixteen branches, 
exceptions, or interrupts taken by the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.6.1, “LBR Stack.”

681H 1665 MSR_
LASTBRANCH_1_FROM_IP

Thread Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

682H 1666 MSR_
LASTBRANCH_2_FROM_IP

Thread Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP. 

683H 1667 MSR_
LASTBRANCH_3_FROM_IP

Thread Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_
LASTBRANCH_4_FROM_IP

Thread Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_
LASTBRANCH_5_FROM_IP

Thread Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_
LASTBRANCH_6_FROM_IP

Thread Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_
LASTBRANCH_7_FROM_IP

Thread Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

688H 1672 MSR_
LASTBRANCH_8_FROM_IP

Thread Last Branch Record 8 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

689H 1673 MSR_
LASTBRANCH_9_FROM_IP

Thread Last Branch Record 9 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_
LASTBRANCH_10_FROM_IP

Thread Last Branch Record 10 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68BH 1675 MSR_
LASTBRANCH_11_FROM_IP

Thread Last Branch Record 11 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_
LASTBRANCH_12_FROM_IP

Thread Last Branch Record 12 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68DH 1677 MSR_
LASTBRANCH_13_FROM_IP

Thread Last Branch Record 13 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68EH 1678 MSR_
LASTBRANCH_14_FROM_IP

Thread Last Branch Record 14 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.
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68FH 1679 MSR_
LASTBRANCH_15_FROM_IP

Thread Last Branch Record 15 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

6C0H 1728 MSR_
LASTBRANCH_0_TO_IP

Thread Last Branch Record 0 To IP (R/W)

One of sixteen pairs of last branch record registers on the last 
branch record stack. This part of the stack contains pointers to the 
destination instruction for one of the last sixteen branches, 
exceptions, or interrupts taken by the processor.

6C1H 1729 MSR_
LASTBRANCH_1_TO_IP

Thread Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C2H 1730 MSR_
LASTBRANCH_2_TO_IP

Thread Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C3H 1731 MSR_
LASTBRANCH_3_TO_IP

Thread Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C4H 1732 MSR_
LASTBRANCH_4_TO_IP

Thread Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C5H 1733 MSR_
LASTBRANCH_5_TO_IP

Thread Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C6H 1734 MSR_
LASTBRANCH_6_TO_IP

Thread Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C7H 1735 MSR_
LASTBRANCH_7_TO_IP

Thread Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C8H 1736 MSR_
LASTBRANCH_8_TO_IP

Thread Last Branch Record 8 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C9H 1737 MSR_
LASTBRANCH_9_TO_IP

Thread Last Branch Record 9 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CAH 1738 MSR_
LASTBRANCH_10_TO_IP

Thread Last Branch Record 10 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CBH 1739 MSR_
LASTBRANCH_11_TO_IP

Thread Last Branch Record 11 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CCH 1740 MSR_
LASTBRANCH_12_TO_IP

Thread Last Branch Record 12 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CDH 1741 MSR_
LASTBRANCH_13_TO_IP

Thread Last Branch Record 13 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CEH 1742 MSR_
LASTBRANCH_14_TO_IP

Thread Last Branch Record 14 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 
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6CFH 1743 MSR_
LASTBRANCH_15_TO_IP

Thread Last Branch Record 15 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

802H 2050 IA32_X2APIC_APICID Thread x2APIC ID register (R/O) See x2APIC Specification.

803H 2051 IA32_X2APIC_VERSION Thread x2APIC Version register (R/O) 

808H 2056 IA32_X2APIC_TPR Thread x2APIC Task Priority register (R/W) 

80AH 2058 IA32_X2APIC_PPR Thread x2APIC Processor Priority register (R/O) 

80BH 2059 IA32_X2APIC_EOI Thread x2APIC EOI register (W/O) 

80DH 2061 IA32_X2APIC_LDR Thread x2APIC Logical Destination register (R/O) 

80FH 2063 IA32_X2APIC_SIVR Thread x2APIC Spurious Interrupt Vector register (R/W) 

810H 2064 IA32_X2APIC_ISR0 Thread x2APIC In-Service register bits [31:0] (R/O) 

811H 2065 IA32_X2APIC_ISR1 Thread x2APIC In-Service register bits [63:32] (R/O) 

812H 2066 IA32_X2APIC_ISR2 Thread x2APIC In-Service register bits [95:64] (R/O) 

813H 2067 IA32_X2APIC_ISR3 Thread x2APIC In-Service register bits [127:96] (R/O) 

814H 2068 IA32_X2APIC_ISR4 Thread x2APIC In-Service register bits [159:128] (R/O) 

815H 2069 IA32_X2APIC_ISR5 Thread x2APIC In-Service register bits [191:160] (R/O) 

816H 2070 IA32_X2APIC_ISR6 Thread x2APIC In-Service register bits [223:192] (R/O) 

817H 2071 IA32_X2APIC_ISR7 Thread x2APIC In-Service register bits [255:224] (R/O) 

818H 2072 IA32_X2APIC_TMR0 Thread x2APIC Trigger Mode register bits [31:0] (R/O) 

819H 2073 IA32_X2APIC_TMR1 Thread x2APIC Trigger Mode register bits [63:32] (R/O) 

81AH 2074 IA32_X2APIC_TMR2 Thread x2APIC Trigger Mode register bits [95:64] (R/O) 

81BH 2075 IA32_X2APIC_TMR3 Thread x2APIC Trigger Mode register bits [127:96] (R/O) 

81CH 2076 IA32_X2APIC_TMR4 Thread x2APIC Trigger Mode register bits [159:128] (R/O) 

81DH 2077 IA32_X2APIC_TMR5 Thread x2APIC Trigger Mode register bits [191:160] (R/O) 

81EH 2078 IA32_X2APIC_TMR6 Thread x2APIC Trigger Mode register bits [223:192] (R/O) 

81FH 2079 IA32_X2APIC_TMR7 Thread x2APIC Trigger Mode register bits [255:224] (R/O) 

820H 2080 IA32_X2APIC_IRR0 Thread x2APIC Interrupt Request register bits [31:0] (R/O) 

821H 2081 IA32_X2APIC_IRR1 Thread x2APIC Interrupt Request register bits [63:32] (R/O) 

822H 2082 IA32_X2APIC_IRR2 Thread x2APIC Interrupt Request register bits [95:64] (R/O) 

823H 2083 IA32_X2APIC_IRR3 Thread x2APIC Interrupt Request register bits [127:96] (R/O) 

824H 2084 IA32_X2APIC_IRR4 Thread x2APIC Interrupt Request register bits [159:128] (R/O) 

825H 2085 IA32_X2APIC_IRR5 Thread x2APIC Interrupt Request register bits [191:160] (R/O) 

826H 2086 IA32_X2APIC_IRR6 Thread x2APIC Interrupt Request register bits [223:192] (R/O) 

827H 2087 IA32_X2APIC_IRR7 Thread x2APIC Interrupt Request register bits [255:224] (R/O) 
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...

828H 2088 IA32_X2APIC_ESR Thread x2APIC Error Status register (R/W) 

82FH 2095 IA32_X2APIC_LVT_CMCI Thread x2APIC LVT Corrected Machine Check Interrupt register (R/W) 

830H 2096 IA32_X2APIC_ICR Thread x2APIC Interrupt Command register (R/W) 

832H 2098 IA32_X2APIC_LVT_TIMER Thread x2APIC LVT Timer Interrupt register (R/W) 

833H 2099 IA32_X2APIC_LVT_THERM
AL

Thread x2APIC LVT Thermal Sensor Interrupt register (R/W) 

834H 2100 IA32_X2APIC_LVT_PMI Thread x2APIC LVT Performance Monitor register (R/W) 

835H 2101 IA32_X2APIC_LVT_LINT0 Thread x2APIC LVT LINT0 register (R/W) 

836H 2102 IA32_X2APIC_LVT_LINT1 Thread x2APIC LVT LINT1 register (R/W) 

837H 2103 IA32_X2APIC_LVT_ERROR Thread x2APIC LVT Error register (R/W) 

838H 2104 IA32_X2APIC_INIT_COUNT Thread x2APIC Initial Count register (R/W) 

839H 2105 IA32_X2APIC_CUR_COUNT Thread x2APIC Current Count register (R/O) 

83EH 2110 IA32_X2APIC_DIV_CONF Thread x2APIC Divide Configuration register (R/W) 

83FH 2111 IA32_X2APIC_SELF_IPI Thread x2APIC Self IPI register (W/O) 

C000_
0080H

IA32_EFER Thread Extended Feature Enables 

See Table 35-2.

C000_
0081H

IA32_STAR Thread System Call Target Address (R/W) 

See Table 35-2.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address (R/W) 

See Table 35-2.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask (R/W) 

See Table 35-2.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS (R/W) 

See Table 35-2.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS (R/W) 

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE Thread Swap Target of BASE Address of GS (R/W) See Table 35-2.

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature. (R/W) See Table 35-2 and Section 
17.13.2, “IA32_TSC_AUX Register and RDTSCP Support.” 
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Table 35-11.  MSRs Supported by Intel® Processors 
Based on Intel® Microarchitecture Code Name Sandy Bridge

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Thread See Section 35.15, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Thread See Section 35.15, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address Range Determination,” 
and Table 35-2.

10H 16 IA32_TIME_STAMP_
COUNTER

Thread See Section 17.13, “Time-Stamp Counter,” and see Table 35-2.

17H 23 IA32_PLATFORM_ID Package Platform ID (R) 
See Table 35-2.

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and Location,” and 
Table 35-2.

34H 52 MSR_SMI_COUNT Thread SMI Counter (R/O)

31:0 SMI Count (R/O) 

Count SMIs.

63:32 Reserved.

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64Processor (R/W)

See Table 35-2.

79H 121 IA32_BIOS_UPDT_TRIG Core BIOS Update Trigger Register (W) 

See Table 35-2.

8BH 139 IA32_BIOS_SIGN_ID Thread BIOS Update Signature ID (RO)

See Table 35-2.

C1H 193 IA32_PMC0 Thread Performance Counter Register 

See Table 35-2.

C2H 194 IA32_PMC1 Thread Performance Counter Register 

See Table 35-2.

C3H 195 IA32_PMC2 Thread Performance Counter Register 

See Table 35-2.

C4H 196 IA32_PMC3 Thread Performance Counter Register 

See Table 35-2.

C5H 197 IA32_PMC4 Core Performance Counter Register 

See Table 35-2.

C6H 198 IA32_PMC5 Core Performance Counter Register 

See Table 35-2.

C7H 199 IA32_PMC6 Core Performance Counter Register 

See Table 35-2.
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C8H 200 IA32_PMC7 Core Performance Counter Register 

See Table 35-2.

CEH 206 MSR_PLATFORM_INFO Package See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O) 

The is the ratio of the frequency that invariant TSC runs at. 
Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O) 

When set to 1, indicates that Programmable Ratio Limits for Turbo 
mode is enabled, and when set to 0, indicates Programmable Ratio 
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O) 

When set to 1, indicates that TDP Limits for Turbo mode are 
programmable, and when set to 0, indicates TDP Limit for Turbo 
mode is not programmable.

39:30 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O) 

The is the minimum ratio (maximum efficiency) that the processor 
can operates, in units of 100MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W) 

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.
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2:0 Package C-State Limit (R/W) 

Specifies the lowest processor-specific C-state code name 
(consuming the least power). for the package. The default is set as 
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W) 

When set, will map IO_read instructions sent to IO register 
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO) 

When set, lock bits 15:0 of this register until next reset.

24:16 Reserved.

25 C3 state auto demotion enable (R/W) 

When set, the processor will conditionally demote C6/C7 requests 
to C3 based on uncore auto-demote information.

26 C1 state auto demotion enable (R/W) 

When set, the processor will conditionally demote C3/C6/C7 
requests to C1 based on uncore auto-demote information.

27 Enable C3 undemotion (R/W) 

When set, enables undemotion from demoted C3.

28 Enable C1 undemotion (R/W) 

When set, enables undemotion from demoted C1.

63:29 Reserved.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Core Power Management IO Redirection in C-state (R/W) 

See http://biosbits.org.
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15:0 LVL_2 Base Address (R/W) 

Specifies the base address visible to software for IO redirection. If 
IO MWAIT Redirection is enabled, reads to this address will be 
consumed by the power management logic and decoded to MWAIT 
instructions. When IO port address redirection is enabled, this is 
the IO port address reported to the OS/software.

18:16 C-state Range (R/W) 

Specifies the encoding value of the maximum C-State code name 
to be included when IO read to MWAIT redirection is enabled by 
MSR_PMG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - C6 is the max C-State to include

010b - C7 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock Count (RW) 

See Table 35-2.

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count (RW)

See Table 35-2.

FEH 254 IA32_MTRRCAP Thread See Table 35-2.

174H 372 IA32_SYSENTER_CS Thread See Table 35-2.

175H 373 IA32_SYSENTER_ESP Thread See Table 35-2.

176H 374 IA32_SYSENTER_EIP Thread See Table 35-2.

179H 377 IA32_MCG_CAP Thread See Table 35-2.

17AH 378 IA32_MCG_STATUS Thread

0 RIPV

When set, bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check 
was generated) can be used to restart the program. If cleared, the 
program cannot be reliably restarted.

1 EIPV

When set, bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check 
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If 
a second machine check is detected while this bit is still set, the 
processor enters a shutdown state. Software should write this bit 
to 0 after processing a machine check exception.

63:3 Reserved.
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186H 390 IA32_
PERFEVTSEL0

Thread See Table 35-2.

187H 391 IA32_
PERFEVTSEL1

Thread See Table 35-2.

188H 392 IA32_
PERFEVTSEL2

Thread See Table 35-2.

189H 393 IA32_
PERFEVTSEL3

Thread See Table 35-2.

18AH 394 IA32_
PERFEVTSEL4

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

18BH 395 IA32_
PERFEVTSEL5

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

18CH 396 IA32_
PERFEVTSEL6

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

18DH 397 IA32_
PERFEVTSEL7

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

198H 408 IA32_PERF_STATUS Package See Table 35-2.

15:0 Current Performance State Value.

63:16 Reserved.

198H 408 MSR_PERF_STATUS Package

47:32 Core Voltage (R/O)

P-state core voltage can be computed by

MSR_PERF_STATUS[37:32] * (float) 1/(2^13).

199H 409 IA32_PERF_CTL Thread See Table 35-2.

19AH 410 IA32_CLOCK_
MODULATION

Thread Clock Modulation (R/W) 

See Table 35-2

IA32_CLOCK_MODULATION MSR was originally named 
IA32_THERM_CONTROL MSR.

3:0 On demand Clock Modulation Duty Cycle (R/W)

In 6.25% increment

4 On demand Clock Modulation Enable (R/W)

63:5 Reserved.

19BH 411 IA32_THERM_INTERRUPT Core Thermal Interrupt Control (R/W) 

See Table 35-2.

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W) 

See Table 35-2.
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1A0 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W) 

Allows a variety of processor functions to be enabled and disabled.

0 Thread Fast-Strings Enable 

See Table 35-2

6:1 Reserved.

7 Thread Performance Monitoring Available (R) 

See Table 35-2.

10:8 Reserved.

11 Thread Branch Trace Storage Unavailable (RO) 

See Table 35-2.

12 Thread Precise Event Based Sampling Unavailable (RO) 

See Table 35-2.

15:13 Reserved.

16 Package Enhanced Intel SpeedStep Technology Enable (R/W) 

See Table 35-2.

18 Thread ENABLE MONITOR FSM. (R/W) See Table 35-2.

21:19 Reserved.

22 Thread Limit CPUID Maxval (R/W) 

See Table 35-2.

23 Thread xTPR Message Disable (R/W) 

See Table 35-2.

33:24 Reserved.

34 Thread XD Bit Disable (R/W) 

See Table 35-2.

37:35 Reserved.

38 Package Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost 
Technology, the turbo mode feature is disabled and the IDA_Enable 
feature flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H: 
EAX[1] reports the processor’s support of turbo mode is enabled.

Note: the power-on default value is used by BIOS to detect 
hardware support of turbo mode. If power-on default value is 1, 
turbo mode is available in the processor. If power-on default value 
is 0, turbo mode is not available.

63:39 Reserved.
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1A2H 418 MSR_
TEMPERATURE_TARGET

Unique

15:0 Reserved.

23:16 Temperature Target (R) 

The minimum temperature at which PROCHOT# will be asserted. 
The value is degree C.

63:24 Reserved.

1A6H 422 MSR_OFFCORE_RSP_0 Thread Offcore Response Event Select Register (R/W)

1A7H 422 MSR_OFFCORE_RSP_1 Thread Offcore Response Event Select Register (R/W)

1AAH 426 MSR_MISC_PWR_MGMT See http://biosbits.org.

1ADH 428 MSR_TURBO_PWR_
CURRENT_LIMIT

See http://biosbits.org.

1B0H 432 IA32_ENERGY_PERF_BIAS Package See Table 35-2.

1B1H 433 IA32_PACKAGE_THERM_
STATUS

Package See Table 35-2.

1B2H 434 IA32_PACKAGE_THERM_
INTERRUPT

Package See Table 35-2.

1C8H 456 MSR_LBR_SELECT Thread Last Branch Record Filtering Select Register (R/W) 

See Section 17.6.2, “Filtering of Last Branch Records.”

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-3) that points to the MSR containing the 
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 680H).

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W) 

See Table 35-2.

1DDH 477 MSR_LER_FROM_LIP Thread Last Exception Record From Linear IP (R) 

Contains a pointer to the last branch instruction that the processor 
executed prior to the last exception that was generated or the last 
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Thread Last Exception Record To Linear IP (R) 

This area contains a pointer to the target of the last branch 
instruction that the processor executed prior to the last exception 
that was generated or the last interrupt that was handled. 

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 35-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 35-2.
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1FCH 508 MSR_POWER_CTL Core See http://biosbits.org.

200H 512 IA32_MTRR_PHYSBASE0 Thread See Table 35-2.

201H 513 IA32_MTRR_PHYSMASK0 Thread See Table 35-2.

202H 514 IA32_MTRR_PHYSBASE1 Thread See Table 35-2.

203H 515 IA32_MTRR_PHYSMASK1 Thread See Table 35-2.

204H 516 IA32_MTRR_PHYSBASE2 Thread See Table 35-2.

205H 517 IA32_MTRR_PHYSMASK2 Thread See Table 35-2.

206H 518 IA32_MTRR_PHYSBASE3 Thread See Table 35-2.

207H 519 IA32_MTRR_PHYSMASK3 Thread See Table 35-2.

208H 520 IA32_MTRR_PHYSBASE4 Thread See Table 35-2.

209H 521 IA32_MTRR_PHYSMASK4 Thread See Table 35-2.

20AH 522 IA32_MTRR_PHYSBASE5 Thread See Table 35-2.

20BH 523 IA32_MTRR_PHYSMASK5 Thread See Table 35-2.

20CH 524 IA32_MTRR_PHYSBASE6 Thread See Table 35-2.

20DH 525 IA32_MTRR_PHYSMASK6 Thread See Table 35-2.

20EH 526 IA32_MTRR_PHYSBASE7 Thread See Table 35-2.

20FH 527 IA32_MTRR_PHYSMASK7 Thread See Table 35-2.

210H 528 IA32_MTRR_PHYSBASE8 Thread See Table 35-2.

211H 529 IA32_MTRR_PHYSMASK8 Thread See Table 35-2.

212H 530 IA32_MTRR_PHYSBASE9 Thread See Table 35-2.

213H 531 IA32_MTRR_PHYSMASK9 Thread See Table 35-2.

250H 592 IA32_MTRR_FIX64K_
00000

Thread See Table 35-2.

258H 600 IA32_MTRR_FIX16K_
80000

Thread See Table 35-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Thread See Table 35-2.

268H 616 IA32_MTRR_FIX4K_C0000 Thread See Table 35-2.

269H 617 IA32_MTRR_FIX4K_C8000 Thread See Table 35-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Thread See Table 35-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Thread See Table 35-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Thread See Table 35-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Thread See Table 35-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Thread See Table 35-2.
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26FH 623 IA32_MTRR_FIX4K_F8000 Thread See Table 35-2.

277H 631 IA32_PAT Thread See Table 35-2.

280H 640 IA32_MC0_CTL2 Core See Table 35-2.

281H 641 IA32_MC1_CTL2 Core See Table 35-2.

282H 642 IA32_MC2_CTL2 Core See Table 35-2.

283H 643 IA32_MC3_CTL2 Core See Table 35-2.

284H 644 MSR_MC4_CTL2 Package Always 0 (CMCI not supported).

2FFH 767 IA32_MTRR_DEF_TYPE Thread Default Memory Types (R/W) 

See Table 35-2.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter Register 0 (R/W)

See Table 35-2.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter Register 1 (R/W) 

See Table 35-2.

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter Register 2 (R/W) 

See Table 35-2.

345H 837 IA32_PERF_CAPABILITIES Thread See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

5:0 LBR Format. See Table 35-2.

6 PEBS Record Format. 

7 PEBSSaveArchRegs. See Table 35-2.

11:8 PEBS_REC_FORMAT. See Table 35-2.

12 SMM_FREEZE. See Table 35-2.

63:13 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL Thread Fixed-Function-Counter Control Register (R/W) 

See Table 35-2.

38EH 910 IA32_PERF_GLOBAL_
STAUS

Thread See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.” 

38FH 911 IA32_PERF_GLOBAL_CTRL Thread See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Thread See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.”

3F1H 1009 MSR_PEBS_ENABLE Thread See Section 18.6.1.1, “Precise Event Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

2 Enable PEBS on IA32_PMC2. (R/W)
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3 Enable PEBS on IA32_PMC3. (R/W)

31:4 Reserved.

32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

35 Enable Load Latency on IA32_PMC3. (R/W)

63:36 Reserved.

3F6H 1014 MSR_PEBS_LD_LAT Thread see See Section 18.6.1.2, “Load Latency Performance Monitoring 
Facility.”

15:0 Minimum threshold latency value of tagged load operation that will 
be counted. (R/W)

63:36 Reserved.

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C3 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C3 
states. Count at the same frequency as the TSC.

3F9H 1017 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C6 
states. Count at the same frequency as the TSC.

3FAH 1018 MSR_PKG_C7_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C7 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C7 
states. Count at the same frequency as the TSC.

3FCH 1020 MSR_CORE_C3_RESIDENCY Core Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C3 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C3 
states. Count at the same frequency as the TSC.

3FDH 1021 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.
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63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C6 
states. Count at the same frequency as the TSC.

3FEH 1022 MSR_CORE_C7_RESIDENCY Core Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C7 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C7 
states. Count at the same frequency as the TSC.

400H 1024 IA32_MC0_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

402H 1026 IA32_MC0_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

403H 1027 IA32_MC0_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

404H 1028 IA32_MC1_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

406H 1030 IA32_MC1_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

407H 1031 IA32_MC1_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40BH 1035 IA32_MC2_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

40EH 1038 IA32_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40FH 1039 IA32_MC3_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

410H 1040 MSR_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

0 PCU Hardware Error (R/W) 

When set, enables signaling of PCU hardware detected errors. 

1 PCU Controller Error (R/W) 

When set, enables signaling of PCU controller detected errors

2 PCU Firmware Error (R/W) 

When set, enables signaling of PCU firmware detected errors

63:2 Reserved.

411H 1041 IA32_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.
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480H 1152 IA32_VMX_BASIC Thread Reporting Register of Basic VMX Capabilities (R/O) 

See Table 35-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Thread Capability Reporting Register of Pin-based VM-execution 
Controls (R/O) 

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_
CTLS

Thread Capability Reporting Register of Primary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Thread Capability Reporting Register of VM-exit Controls (R/O) 

See Table 35-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Thread Capability Reporting Register of VM-entry Controls (R/O) 

See Table 35-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Thread Reporting Register of Miscellaneous VMX Capabilities (R/O) 

See Table 35-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Thread Capability Reporting Register of CR0 Bits Fixed to 0 (R/O) 

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Thread Capability Reporting Register of CR0 Bits Fixed to 1 (R/O) 

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Thread Capability Reporting Register of CR4 Bits Fixed to 0 (R/O) 

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Thread Capability Reporting Register of CR4 Bits Fixed to 1 (R/O) 

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Thread Capability Reporting Register of VMCS Field Enumeration (R/O) 

See Table 35-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Thread Capability Reporting Register of Secondary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”
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4C1H 1217 IA32_A_PMC0 Thread See Table 35-2.

4C2H 1218 IA32_A_PMC1 Thread See Table 35-2.

4C3H 1219 IA32_A_PMC2 Thread See Table 35-2.

4C4H 1220 IA32_A_PMC3 Thread See Table 35-2.

4C5H 1221 IA32_A_PMC4 Core See Table 35-2.

4C6H 1222 IA32_A_PMC5 Core See Table 35-2.

4C7H 1223 IA32_A_PMC6 Core See Table 35-2.

C8H 200 IA32_A_PMC7 Core See Table 35-2.

600H 1536 IA32_DS_AREA Thread DS Save Area (R/W)

See Table 35-2.

See Section 18.11.4, “Debug Store (DS) Mechanism.”

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O) 

See Section 14.7.1, “RAPL Interfaces.”

60AH 1546 MSR_PKGC3_IRTL Package Package C3 Interrupt Response Limit (R/W) 

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit (R/W) 

Specifies the limit that should be used to decide if the package 
should be put into a package C3 state. 

12:10 Time Unit (R/W) 

Specifies the encoding value of time unit of the interrupt response 
time limit. The following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid (R/W) 

Indicates whether the values in bits 12:0 are valid and can be used 
by the processor for package C-sate management. 

63:16 Reserved.
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60BH 1547 MSR_PKGC6_IRTL Package Package C6 Interrupt Response Limit (R/W) 

This MSR defines the budget allocated for the package to exit from 
C6 to a C0 state, where interrupt request can be delivered to the 
core and serviced. Additional core-exit latency amy be applicable 
depending on the actual C-state the core is in. 

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit (R/W) 

Specifies the limit that should be used to decide if the package 
should be put into a package C6 state. 

12:10 Time Unit (R/W) 

Specifies the encoding value of time unit of the interrupt response 
time limit. The following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid (R/W) 

Indicates whether the values in bits 12:0 are valid and can be used 
by the processor for package C-sate management. 

63:16 Reserved.

60CH 1548 MSR_PKGC7_IRTL Package Package C7 Interrupt Response Limit (R/W) 

This MSR defines the budget allocated for the package to exit from 
C7 to a C0 state, where interrupt request can be delivered to the 
core and serviced. Additional core-exit latency amy be applicable 
depending on the actual C-state the core is in. 

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit (R/W) 

Specifies the limit that should be used to decide if the package 
should be put into a package C7 state. 
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12:10 Time Unit (R/W) 

Specifies the encoding value of time unit of the interrupt response 
time limit. The following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid (R/W) 

Indicates whether the values in bits 12:0 are valid and can be used 
by the processor for package C-sate management. 

63:16 Reserved.

60DH 1549 MSR_PKG_C2_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C2 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C2 
states. Count at the same frequency as the TSC.

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W) 

See Section 14.7.3, “Package RAPL Domain.”

611H 1553 MSR_PKG_ENERY_STATUS Package PKG Energy Status (R/O) 

See Section 14.7.3, “Package RAPL Domain.”

614H 1556 MSR_PKG_POWER_INFO Package PKG RAPL Parameters (R/W) See Section 14.7.3, “Package RAPL 
Domain.”

638H 1592 MSR_PP0_POWER_LIMIT Package PP0 RAPL Power Limit Control (R/W) 

See Section 14.7.4, “PP0/PP1 RAPL Domains.”

639H 1593 MSR_PP0_ENERY_STATUS Package PP0 Energy Status (R/O) 

See Section 14.7.4, “PP0/PP1 RAPL Domains.”

63AH 1594 MSR_PP0_POLICY Package PP0 Balance Policy (R/W) 

See Section 14.7.4, “PP0/PP1 RAPL Domains.”

63BH 1595 MSR_PP0_PERF_STATUS Package PP0 Performance Throttling Status (R/O) See Section 14.7.4, 
“PP0/PP1 RAPL Domains.”
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680H 1664 MSR_
LASTBRANCH_0_FROM_IP

Thread Last Branch Record 0 From IP (R/W)

One of sixteen pairs of last branch record registers on the last 
branch record stack. This part of the stack contains pointers to the 
source instruction for one of the last sixteen branches, 
exceptions, or interrupts taken by the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.6.1, “LBR Stack.”

681H 1665 MSR_
LASTBRANCH_1_FROM_IP

Thread Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

682H 1666 MSR_
LASTBRANCH_2_FROM_IP

Thread Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP. 

683H 1667 MSR_
LASTBRANCH_3_FROM_IP

Thread Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_
LASTBRANCH_4_FROM_IP

Thread Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_
LASTBRANCH_5_FROM_IP

Thread Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_
LASTBRANCH_6_FROM_IP

Thread Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_
LASTBRANCH_7_FROM_IP

Thread Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

688H 1672 MSR_
LASTBRANCH_8_FROM_IP

Thread Last Branch Record 8 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

689H 1673 MSR_
LASTBRANCH_9_FROM_IP

Thread Last Branch Record 9 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_
LASTBRANCH_10_FROM_
IP

Thread Last Branch Record 10 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68BH 1675 MSR_
LASTBRANCH_11_FROM_
IP

Thread Last Branch Record 11 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_
LASTBRANCH_12_FROM_
IP

Thread Last Branch Record 12 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68DH 1677 MSR_
LASTBRANCH_13_FROM_
IP

Thread Last Branch Record 13 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.
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68EH 1678 MSR_
LASTBRANCH_14_FROM_
IP

Thread Last Branch Record 14 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68FH 1679 MSR_
LASTBRANCH_15_FROM_
IP

Thread Last Branch Record 15 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

6C0H 1728 MSR_
LASTBRANCH_0_TO_IP

Thread Last Branch Record 0 To IP (R/W)

One of sixteen pairs of last branch record registers on the last 
branch record stack. This part of the stack contains pointers to the 
destination instruction for one of the last sixteen branches, 
exceptions, or interrupts taken by the processor.

6C1H 1729 MSR_
LASTBRANCH_1_TO_IP

Thread Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C2H 1730 MSR_
LASTBRANCH_2_TO_IP

Thread Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C3H 1731 MSR_
LASTBRANCH_3_TO_IP

Thread Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C4H 1732 MSR_
LASTBRANCH_4_TO_IP

Thread Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C5H 1733 MSR_
LASTBRANCH_5_TO_IP

Thread Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C6H 1734 MSR_
LASTBRANCH_6_TO_IP

Thread Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C7H 1735 MSR_
LASTBRANCH_7_TO_IP

Thread Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C8H 1736 MSR_
LASTBRANCH_8_TO_IP

Thread Last Branch Record 8 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C9H 1737 MSR_
LASTBRANCH_9_TO_IP

Thread Last Branch Record 9 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CAH 1738 MSR_
LASTBRANCH_10_TO_IP

Thread Last Branch Record 10 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CBH 1739 MSR_
LASTBRANCH_11_TO_IP

Thread Last Branch Record 11 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CCH 1740 MSR_
LASTBRANCH_12_TO_IP

Thread Last Branch Record 12 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CDH 1741 MSR_
LASTBRANCH_13_TO_IP

Thread Last Branch Record 13 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 
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6CEH 1742 MSR_
LASTBRANCH_14_TO_IP

Thread Last Branch Record 14 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CFH 1743 MSR_
LASTBRANCH_15_TO_IP

Thread Last Branch Record 15 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6E0H 1760 IA32_TSC_DEADLINE Thread See Table 35-2.

C000_
0080H

IA32_EFER Thread Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR Thread System Call Target Address (R/W)

See Table 35-2.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask (R/W) 

See Table 35-2.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS (R/W)

See Table 35-2.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE Thread Swap Target of BASE Address of GS (R/W)

See Table 35-2.

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature (R/W)

See Table 35-2 and Section 17.13.2, “IA32_TSC_AUX Register and 
RDTSCP Support.” 
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17FH 383 MSR_ERROR_CONTROL Package MC Bank Error Configuration (R/W)

0 Reserved

1 MemError Log Enable (R/W) 

When set, enables IMC status bank to log additional info in bits 
36:32.

63:2 Reserved.
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285H 645 IA32_MC5_CTL2 Package See Table 35-2.

286H 646 IA32_MC6_CTL2 Package See Table 35-2.

287H 647 IA32_MC7_CTL2 Package See Table 35-2.

288H 648 IA32_MC8_CTL2 Package See Table 35-2.

289H 649 IA32_MC9_CTL2 Package See Table 35-2.

28AH 650 IA32_MC10_CTL2 Package See Table 35-2.

28BH 651 IA32_MC11_CTL2 Package See Table 35-2.

28CH 652 IA32_MC12_CTL2 Package See Table 35-2.

28DH 653 IA32_MC13_CTL2 Package See Table 35-2.

28EH 654 IA32_MC14_CTL2 Package See Table 35-2.

28FH 655 IA32_MC15_CTL2 Package See Table 35-2.

290H 656 IA32_MC16_CTL2 Package See Table 35-2.

291H 657 IA32_MC17_CTL2 Package See Table 35-2.

292H 658 IA32_MC18_CTL2 Package See Table 35-2.

293H 659 IA32_MC19_CTL2 Package See Table 35-2.

39CH 924 MSR_PEBS_NUM_ALT Package

0 ENABLE_PEBS_NUM_ALT (RW)

Write 1 to enable alternate PEBS counting logic for specific events 
requiring additional configuration, see Table 19-9

63:1 Reserved (must be zero).

414H 1044 MSR_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 MSR_MC5_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

416H 1046 MSR_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

417H 1047 MSR_MC5_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

418H 1048 MSR_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 MSR_MC6_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41AH 1050 MSR_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41BH 1051 MSR_MC6_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

41CH 1052 MSR_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

41DH 1053 MSR_MC7_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41EH 1054 MSR_MC7_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41FH 1055 MSR_MC7_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

420H 1056 MSR_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

421H 1057 MSR_MC8_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.
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422H 1058 MSR_MC8_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

423H 1059 MSR_MC8_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

424H 1060 MSR_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

425H 1061 MSR_MC9_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

426H 1062 MSR_MC9_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

427H 1063 MSR_MC9_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

428H 1064 MSR_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

429H 1065 MSR_MC10_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

42AH 1066 MSR_MC10_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42BH 1067 MSR_MC10_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

42CH 1068 MSR_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

42DH 1069 MSR_MC11_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

42EH 1070 MSR_MC11_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42FH 1071 MSR_MC11_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

430H 1072 MSR_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

431H 1073 MSR_MC12_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

432H 1074 MSR_MC12_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

433H 1075 MSR_MC12_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

434H 1076 MSR_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

435H 1077 MSR_MC13_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

436H 1078 MSR_MC13_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

437H 1079 MSR_MC13_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

438H 1080 MSR_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

439H 1081 MSR_MC14_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

43AH 1082 MSR_MC14_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43BH 1083 MSR_MC14_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

43CH 1084 MSR_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

43DH 1085 MSR_MC15_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

43EH 1086 MSR_MC15_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43FH 1087 MSR_MC15_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

440H 1088 MSR_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

441H 1089 MSR_MC16_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

442H 1090 MSR_MC16_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”
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443H 1091 MSR_MC16_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

444H 1092 MSR_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

445H 1093 MSR_MC17_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

446H 1094 MSR_MC17_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

447H 1095 MSR_MC17_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

448H 1096 MSR_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

449H 1097 MSR_MC18_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

44AH 1098 MSR_MC18_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44BH 1099 MSR_MC18_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

44CH 1100 MSR_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

44DH 1101 MSR_MC19_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

44EH 1102 MSR_MC19_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44FH 1103 MSR_MC19_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

613H 1555 MSR_PKG_PERF_STATUS Package Package RAPL Perf Status (R/O) 

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W) 

See Section 14.7.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERY_
STATUS

Package DRAM Energy Status (R/O) 

See Section 14.7.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) See Section 14.7.5, 
“DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W) 

See Section 14.7.5, “DRAM RAPL Domain.”

Table 35-13.  Selected MSRs Supported by Intel® Xeon® Processors E5 Family (Based on Intel® Microarchitecture 
Code Name Sandy Bridge) (Contd.)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-15.  Selected MSRs Supported by Intel® Xeon® Processors E5 Family v2 (Based on Intel® Microarchitecture 
Code Name Ivy Bridge)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

17FH 383 MSR_ERROR_CONTROL Package MC Bank Error Configuration (R/W)

0 Reserved

1 MemError Log Enable (R/W) 

When set, enables IMC status bank to log additional info in bits 
36:32.

63:2 Reserved.
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285H 645 IA32_MC5_CTL2 Package See Table 35-2.

286H 646 IA32_MC6_CTL2 Package See Table 35-2.

287H 647 IA32_MC7_CTL2 Package See Table 35-2.

288H 648 IA32_MC8_CTL2 Package See Table 35-2.

289H 649 IA32_MC9_CTL2 Package See Table 35-2.

28AH 650 IA32_MC10_CTL2 Package See Table 35-2.

28BH 651 IA32_MC11_CTL2 Package See Table 35-2.

28CH 652 IA32_MC12_CTL2 Package See Table 35-2.

28DH 653 IA32_MC13_CTL2 Package See Table 35-2.

28EH 654 IA32_MC14_CTL2 Package See Table 35-2.

28FH 655 IA32_MC15_CTL2 Package See Table 35-2.

290H 656 IA32_MC16_CTL2 Package See Table 35-2.

291H 657 IA32_MC17_CTL2 Package See Table 35-2.

292H 658 IA32_MC18_CTL2 Package See Table 35-2.

293H 659 IA32_MC19_CTL2 Package See Table 35-2.

414H 1044 MSR_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 MSR_MC5_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

416H 1046 MSR_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

417H 1047 MSR_MC5_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

418H 1048 MSR_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 MSR_MC6_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41AH 1050 MSR_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41BH 1051 MSR_MC6_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

41CH 1052 MSR_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

41DH 1053 MSR_MC7_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41EH 1054 MSR_MC7_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41FH 1055 MSR_MC7_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

420H 1056 MSR_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

421H 1057 MSR_MC8_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

422H 1058 MSR_MC8_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

423H 1059 MSR_MC8_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

424H 1060 MSR_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

425H 1061 MSR_MC9_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

Table 35-15.  Selected MSRs Supported by Intel® Xeon® Processors E5 Family v2 (Based on Intel® Microarchitecture 
Code Name Ivy Bridge) (Contd.)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec
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426H 1062 MSR_MC9_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

427H 1063 MSR_MC9_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

428H 1064 MSR_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

429H 1065 MSR_MC10_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

42AH 1066 MSR_MC10_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42BH 1067 MSR_MC10_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

42CH 1068 MSR_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

42DH 1069 MSR_MC11_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

42EH 1070 MSR_MC11_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42FH 1071 MSR_MC11_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

430H 1072 MSR_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

431H 1073 MSR_MC12_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

432H 1074 MSR_MC12_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

433H 1075 MSR_MC12_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

434H 1076 MSR_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

435H 1077 MSR_MC13_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

436H 1078 MSR_MC13_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

437H 1079 MSR_MC13_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

438H 1080 MSR_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

439H 1081 MSR_MC14_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

43AH 1082 MSR_MC14_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43BH 1083 MSR_MC14_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

43CH 1084 MSR_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

43DH 1085 MSR_MC15_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

43EH 1086 MSR_MC15_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43FH 1087 MSR_MC15_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

440H 1088 MSR_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

441H 1089 MSR_MC16_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

442H 1090 MSR_MC16_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

443H 1091 MSR_MC16_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

444H 1092 MSR_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

445H 1093 MSR_MC17_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

446H 1094 MSR_MC17_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

Table 35-15.  Selected MSRs Supported by Intel® Xeon® Processors E5 Family v2 (Based on Intel® Microarchitecture 
Code Name Ivy Bridge) (Contd.)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec
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447H 1095 MSR_MC17_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

448H 1096 MSR_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

449H 1097 MSR_MC18_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

44AH 1098 MSR_MC18_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44BH 1099 MSR_MC18_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

44CH 1100 MSR_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

44DH 1101 MSR_MC19_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

44EH 1102 MSR_MC19_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44FH 1103 MSR_MC19_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

450H 1104 MSR_MC20_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

451H 1105 MSR_MC20_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

452H 1106 MSR_MC20_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

453H 1107 MSR_MC20_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

454H 1108 MSR_MC21_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

455H 1109 MSR_MC21_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

456H 1110 MSR_MC21_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

457H 1111 MSR_MC21_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

458H 1112 MSR_MC22_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

459H 1113 MSR_MC22_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

45AH 1114 MSR_MC22_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

45BH 1115 MSR_MC22_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

45CH 1116 MSR_MC23_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

45DH 1117 MSR_MC23_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

45EH 1118 MSR_MC23_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

45FH 1119 MSR_MC23_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

460H 1120 MSR_MC24_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

461H 1121 MSR_MC24_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

462H 1122 MSR_MC24_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

463H 1123 MSR_MC24_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

613H 1555 MSR_PKG_PERF_STATUS Package Package RAPL Perf Status (R/O) 

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W) 

See Section 14.7.5, “DRAM RAPL Domain.”

Table 35-15.  Selected MSRs Supported by Intel® Xeon® Processors E5 Family v2 (Based on Intel® Microarchitecture 
Code Name Ivy Bridge) (Contd.)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec
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...

35.10 MSRS IN FUTURE GENERATION INTEL® XEON® PROCESSORS 
The following MSRs are available in future generation of Intel® Xeon® Processor Family (CPUID 
DisplayFamily_DisplayModel = 06_3F) if CPUID.(EAX=07H, ECX=0):EBX.QoS[bit 12] = 1. 

...

619H 1561 MSR_DRAM_ENERY_
STATUS

Package DRAM Energy Status (R/O) 

See Section 14.7.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) See Section 14.7.5, 
“DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W) 

See Section 14.7.5, “DRAM RAPL Domain.”

Table 35-15.  Selected MSRs Supported by Intel® Xeon® Processors E5 Family v2 (Based on Intel® Microarchitecture 
Code Name Ivy Bridge) (Contd.)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-17.  Additional MSRs Supported by Future Generation Intel® Xeon® Processors 

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

C8DH 3113 IA32_QM_EVTSEL THREAD QoS Monitoring Event Select Register(R/W).

7:0 EventID (RW)

31:8 Reserved.

41:32 RMID (RW)

63:42 Reserved.

C8EH 3114 IA32_QM_CTR THREAD QoS Monitoring Counter Register (R/O).

61:0 Resource Monitored Data 

62 Unavailable: If 1, indicates data for this RMID is not available or not 
monitored for this resource or RMID.

63 Error: If 1, indicates and unsupported RMID or event type was 
written to IA32_PQR_QM_EVTSEL.

C8FH 3115 IA32_PQR_ASSOC THREAD QoS Resource Association Register (R/W).

9:0 RMID 

63: 10 Reserved
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Table 35-18.  MSRs in the Pentium® 4 and Intel® Xeon® Processors 

Register 
Address

Register Name
Fields and Flags

Model 
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR 0, 1, 2, 3, 
4, 6

Shared See Section 35.15, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE 0, 1, 2, 3, 
4, 6

Shared See Section 35.15, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_LINE_
SIZE

3, 4, 6 Shared See Section 8.10.5, “Monitor/Mwait Address 
Range Determination.”

10H 16 IA32_TIME_STAMP_COUNTER 0, 1, 2, 3, 
4, 6

Unique Time Stamp Counter

See Table 35-2.

On earlier processors, only the lower 32 bits are 
writable. On any write to the lower 32 bits, the 
upper 32 bits are cleared. For processor family 
0FH, models 3 and 4: all 64 bits are writable.

17H 23 IA32_PLATFORM_ID 0, 1, 2, 3, 
4, 6

Shared Platform ID (R) 

See Table 35-2.

The operating system can use this MSR to 
determine “slot” information for the processor and 
the proper microcode update to load.

1BH 27 IA32_APIC_BASE 0, 1, 2, 3, 
4, 6

Unique APIC Location and Status (R/W)

See Table 35-2. See Section 10.4.4, “Local APIC 
Status and Location.”

2AH 42 MSR_EBC_HARD_POWERON 0, 1, 2, 3, 
4, 6

Shared Processor Hard Power-On Configuration

(R/W) Enables and disables processor features; 

(R) indicates current processor configuration.

0 Output Tri-state Enabled (R)

Indicates whether tri-state output is enabled (1) 
or disabled (0) as set by the strapping of SMI#. 
The value in this bit is written on the deassertion 
of RESET#; the bit is set to 1 when the address 
bus signal is asserted.

1 Execute BIST (R) 

Indicates whether the execution of the BIST is 
enabled (1) or disabled (0) as set by the strapping 
of INIT#. The value in this bit is written on the 
deassertion of RESET#; the bit is set to 1 when 
the address bus signal is asserted.

2 In Order Queue Depth (R)

Indicates whether the in order queue depth for 
the system bus is 1 (1) or up to 12 (0) as set by 
the strapping of A7#. The value in this bit is 
written on the deassertion of RESET#; the bit is 
set to 1 when the address bus signal is asserted.
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3 MCERR# Observation Disabled (R)

Indicates whether MCERR# observation is enabled 
(0) or disabled (1) as determined by the strapping 
of A9#. The value in this bit is written on the 
deassertion of RESET#; the bit is set to 1 when 
the address bus signal is asserted.

4 BINIT# Observation Enabled (R)

Indicates whether BINIT# observation is enabled 
(0) or disabled (1) as determined by the strapping 
of A10#. The value in this bit is written on the 
deassertion of RESET#; the bit is set to 1 when 
the address bus signal is asserted.

6:5 APIC Cluster ID (R) 

Contains the logical APIC cluster ID value as set by 
the strapping of A12# and A11#. The logical 
cluster ID value is written into the field on the 
deassertion of RESET#; the field is set to 1 when 
the address bus signal is asserted.

7 Bus Park Disable (R) 

Indicates whether bus park is enabled (0) or 
disabled (1) as set by the strapping of A15#. The 
value in this bit is written on the deassertion of 
RESET#; the bit is set to 1 when the address bus 
signal is asserted.

11:8 Reserved.

13:12 Agent ID (R) 

Contains the logical agent ID value as set by the 
strapping of BR[3:0]. The logical ID value is 
written into the field on the deassertion of 
RESET#; the field is set to 1 when the address bus 
signal is asserted.

63:14 Reserved.

2BH 43 MSR_EBC_SOFT_POWERON 0, 1, 2, 3, 
4, 6

Shared Processor Soft Power-On Configuration (R/W) 

Enables and disables processor features.

0 RCNT/SCNT On Request Encoding Enable (R/W) 

Controls the driving of RCNT/SCNT on the request 
encoding. Set to enable (1); clear to disabled (0, 
default).

1 Data Error Checking Disable (R/W) 

Set to disable system data bus parity checking; 
clear to enable parity checking.

Table 35-18.  MSRs in the Pentium® 4 and Intel® Xeon® Processors  (Contd.)

Register 
Address

Register Name
Fields and Flags

Model 
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
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2 Response Error Checking Disable (R/W) 

Set to disable (default); clear to enable. 

3 Address/Request Error Checking Disable (R/W) 

Set to disable (default); clear to enable.

4 Initiator MCERR# Disable (R/W)

Set to disable MCERR# driving for initiator bus 
requests (default); clear to enable. 

5 Internal MCERR# Disable (R/W)

Set to disable MCERR# driving for initiator internal 
errors (default); clear to enable. 

6 BINIT# Driver Disable (R/W) 

Set to disable BINIT# driver (default); clear to 
enable driver.

63:7 Reserved.

2CH 44 MSR_EBC_FREQUENCY_ID 2,3, 4, 6 Shared Processor Frequency Configuration

The bit field layout of this MSR varies according to 
the MODEL value in the CPUID version 
information. The following bit field layout applies 
to Pentium 4 and Xeon Processors with MODEL 
encoding equal or greater than 2. 

(R) The field Indicates the current processor 
frequency configuration.

15:0 Reserved.

18:16 Scalable Bus Speed (R/W)

Indicates the intended scalable bus speed:

EncodingScalable Bus Speed
000B 100 MHz (Model 2)
000B 266 MHz (Model 3 or 4)
001B 133 MHz
010B 200 MHz
011B 166 MHz
100B 333 MHz (Model 6)

133.33 MHz should be utilized if performing 
calculation with System Bus Speed when encoding 
is 001B. 

166.67 MHz should be utilized if performing 
calculation with System Bus Speed when encoding 
is 011B.

Table 35-18.  MSRs in the Pentium® 4 and Intel® Xeon® Processors  (Contd.)
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266.67 MHz should be utilized if performing 
calculation with System Bus Speed when encoding 
is 000B and model encoding = 3 or 4.

333.33 MHz should be utilized if performing 
calculation with System Bus Speed when encoding 
is 100B and model encoding = 6.

All other values are reserved.

23:19 Reserved.

31:24 Core Clock Frequency to System Bus 
Frequency Ratio (R)

The processor core clock frequency to system bus 
frequency ratio observed at the de-assertion of 
the reset pin.

63:25 Reserved.

2CH 44 MSR_EBC_FREQUENCY_ID 0, 1 Shared Processor Frequency Configuration (R) 

The bit field layout of this MSR varies according to 
the MODEL value of the CPUID version 
information. This bit field layout applies to 
Pentium 4 and Xeon Processors with MODEL 
encoding less than 2.

Indicates current processor frequency 
configuration.

20:0 Reserved.

23:21 Scalable Bus Speed (R/W)

Indicates the intended scalable bus speed:

Encoding Scalable Bus Speed
000B 100 MHz

All others values reserved.

63:24 Reserved.

3AH 58 IA32_FEATURE_CONTROL 3, 4, 6 Unique Control Features in IA-32 Processor (R/W)

See Table 35-2

(If CPUID.01H:ECX.[bit 5])

79H 121 IA32_BIOS_UPDT_TRIG 0, 1, 2, 3, 
4, 6

Shared BIOS Update Trigger Register (W) 

See Table 35-2.

8BH 139 IA32_BIOS_SIGN_ID 0, 1, 2, 3, 
4, 6

Unique BIOS Update Signature ID (R/W)

See Table 35-2.

9BH 155 IA32_SMM_MONITOR_CTL 3, 4, 6 Unique SMM Monitor Configuration (R/W)

See Table 35-2.

Table 35-18.  MSRs in the Pentium® 4 and Intel® Xeon® Processors  (Contd.)
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FEH 254 IA32_MTRRCAP 0, 1, 2, 3, 
4, 6

Unique MTRR Information

See Section 11.11.1, “MTRR Feature 
Identification.”.

174H 372 IA32_SYSENTER_CS 0, 1, 2, 3, 
4, 6

Unique CS register target for CPL 0 code (R/W)

See Table 35-2.

See Section 5.8.7, “Performing Fast Calls to 
System Procedures with the SYSENTER and 
SYSEXIT Instructions.”

175H 373 IA32_SYSENTER_ESP 0, 1, 2, 3, 
4, 6

Unique Stack pointer for CPL 0 stack (R/W)

See Table 35-2.

See Section 5.8.7, “Performing Fast Calls to 
System Procedures with the SYSENTER and 
SYSEXIT Instructions.”

176H 374 IA32_SYSENTER_EIP 0, 1, 2, 3, 
4, 6

Unique CPL 0 code entry point (R/W)

See Table 35-2. See Section 5.8.7, “Performing 
Fast Calls to System Procedures with the 
SYSENTER and SYSEXIT Instructions.”

179H 377 IA32_MCG_CAP 0, 1, 2, 3, 
4, 6

Unique Machine Check Capabilities (R)

See Table 35-2. See Section 15.3.1.1, 
“IA32_MCG_CAP MSR.”

17AH 378 IA32_MCG_STATUS 0, 1, 2, 3, 
4, 6

Unique Machine Check Status. (R)

See Table 35-2. See Section 15.3.1.2, 
“IA32_MCG_STATUS MSR.”

17BH 379 IA32_MCG_CTL Machine Check Feature Enable (R/W)

See Table 35-2.

See Section 15.3.1.3, “IA32_MCG_CTL MSR.”

180H 384 MSR_MCG_RAX 0, 1, 2, 3, 
4, 6

Unique Machine Check EAX/RAX Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.

181H 385 MSR_MCG_RBX 0, 1, 2, 3, 
4, 6

Unique Machine Check EBX/RBX Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.

182H 386 MSR_MCG_RCX 0, 1, 2, 3, 
4, 6

Unique Machine Check ECX/RCX Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”
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63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.

183H 387 MSR_MCG_RDX 0, 1, 2, 3, 
4, 6

Unique Machine Check EDX/RDX Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.

184H 388 MSR_MCG_RSI 0, 1, 2, 3, 
4, 6

Unique Machine Check ESI/RSI Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.

185H 389 MSR_MCG_RDI 0, 1, 2, 3, 
4, 6

Unique Machine Check EDI/RDI Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.

186H 390 MSR_MCG_RBP 0, 1, 2, 3, 
4, 6

Unique Machine Check EBP/RBP Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.

187H 391 MSR_MCG_RSP 0, 1, 2, 3, 
4, 6

Unique Machine Check ESP/RSP Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.

188H 392 MSR_MCG_RFLAGS 0, 1, 2, 3, 
4, 6

Unique Machine Check EFLAGS/RFLAG Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.
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189H 393 MSR_MCG_RIP 0, 1, 2, 3, 
4, 6

Unique Machine Check EIP/RIP Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.

18AH 394 MSR_MCG_MISC 0, 1, 2, 3, 
4, 6

Unique Machine Check Miscellaneous

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

0 DS

When set, the bit indicates that a page assist or 
page fault occurred during DS normal operation. 
The processors response is to shut down. 

The bit is used as an aid for debugging DS 
handling code. It is the responsibility of the user 
(BIOS or operating system) to clear this bit for 
normal operation.

63:1 Reserved.

18BH - 
18FH

395 MSR_MCG_RESERVED1 - 
MSR_MCG_RESERVED5

Reserved.

190H 400 MSR_MCG_R8 0, 1, 2, 3, 
4, 6

Unique Machine Check R8

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63-0 Registers R8-15 (and the associated state-save 
MSRs) exist only in Intel 64 processors. These 
registers contain valid information only when the 
processor is operating in 64-bit mode at the time 
of the error.

191H 401 MSR_MCG_R9 0, 1, 2, 3, 
4, 6

Unique Machine Check R9D/R9

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63-0 Registers R8-15 (and the associated state-save 
MSRs) exist only in Intel 64 processors. These 
registers contain valid information only when the 
processor is operating in 64-bit mode at the time 
of the error.

192H 402 MSR_MCG_R10 0, 1, 2, 3, 
4, 6

Unique Machine Check R10

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”
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63-0 Registers R8-15 (and the associated state-save 
MSRs) exist only in Intel 64 processors. These 
registers contain valid information only when the 
processor is operating in 64-bit mode at the time 
of the error.

193H 403 MSR_MCG_R11 0, 1, 2, 3, 
4, 6

Unique Machine Check R11

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63-0 Registers R8-15 (and the associated state-save 
MSRs) exist only in Intel 64 processors. These 
registers contain valid information only when the 
processor is operating in 64-bit mode at the time 
of the error.

194H 404 MSR_MCG_R12 0, 1, 2, 3, 
4, 6

Unique Machine Check R12

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63-0 Registers R8-15 (and the associated state-save 
MSRs) exist only in Intel 64 processors. These 
registers contain valid information only when the 
processor is operating in 64-bit mode at the time 
of the error.

195H 405 MSR_MCG_R13 0, 1, 2, 3, 
4, 6

Unique Machine Check R13

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63-0 Registers R8-15 (and the associated state-save 
MSRs) exist only in Intel 64 processors. These 
registers contain valid information only when the 
processor is operating in 64-bit mode at the time 
of the error.

196H 406 MSR_MCG_R14 0, 1, 2, 3, 
4, 6

Unique Machine Check R14

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63-0 Registers R8-15 (and the associated state-save 
MSRs) exist only in Intel 64 processors. These 
registers contain valid information only when the 
processor is operating in 64-bit mode at the time 
of the error.

197H 407 MSR_MCG_R15 0, 1, 2, 3, 
4, 6

Unique Machine Check R15

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”
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63-0 Registers R8-15 (and the associated state-save 
MSRs) exist only in Intel 64 processors. These 
registers contain valid information only when the 
processor is operating in 64-bit mode at the time 
of the error.

198H 408 IA32_PERF_STATUS 3, 4, 6 Unique See Table 35-2. See Section 14.1, “Enhanced Intel 
Speedstep® Technology.”

199H 409 IA32_PERF_CTL 3, 4, 6 Unique See Table 35-2. See Section 14.1, “Enhanced Intel 
Speedstep® Technology.”

19AH 410 IA32_CLOCK_MODULATION 0, 1, 2, 3, 
4, 6

Unique Thermal Monitor Control (R/W)

See Table 35-2. 

See Section 14.5.3, “Software Controlled Clock 
Modulation.”

19BH 411 IA32_THERM_INTERRUPT 0, 1, 2, 3, 
4, 6

Unique Thermal Interrupt Control (R/W)

See Section 14.5.2, “Thermal Monitor,” and see 
Table 35-2.

19CH 412 IA32_THERM_STATUS 0, 1, 2, 3, 
4, 6

Shared Thermal Monitor Status (R/W)

See Section 14.5.2, “Thermal Monitor,” and see 
Table 35-2.

19DH 413 MSR_THERM2_CTL Thermal Monitor 2 Control.

3, Shared For Family F, Model 3 processors: When read, 
specifies the value of the target TM2 transition 
last written. When set, it sets the next target 
value for TM2 transition. 

4, 6 Shared For Family F, Model 4 and Model 6 processors: 
When read, specifies the value of the target TM2 
transition last written. Writes may cause #GP 
exceptions.

1A0H 416 IA32_MISC_ENABLE 0, 1, 2, 3, 
4, 6

Shared Enable Miscellaneous Processor Features (R/W) 

0 Fast-Strings Enable. See Table 35-2.

1 Reserved. 

2 x87 FPU Fopcode Compatibility Mode Enable

3 Thermal Monitor 1 Enable

See Section 14.5.2, “Thermal Monitor,” and see 
Table 35-2.
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4 Split-Lock Disable

When set, the bit causes an #AC exception to be 
issued instead of a split-lock cycle. Operating 
systems that set this bit must align system 
structures to avoid split-lock scenarios. 

When the bit is clear (default), normal split-locks 
are issued to the bus.

This debug feature is specific to the Pentium 4 
processor.

5 Reserved.

6 Third-Level Cache Disable (R/W)

When set, the third-level cache is disabled; when 
clear (default) the third-level cache is enabled. 
This flag is reserved for processors that do not 
have a third-level cache. 

Note that the bit controls only the third-level 
cache; and only if overall caching is enabled 
through the CD flag of control register CR0, the 
page-level cache controls, and/or the MTRRs.

See Section 11.5.4, “Disabling and Enabling the L3 
Cache.”

7 Performance Monitoring Available (R)

See Table 35-2.

8 Suppress Lock Enable

When set, assertion of LOCK on the bus is 
suppressed during a Split Lock access. When clear 
(default), LOCK is not suppressed.

9 Prefetch Queue Disable

When set, disables the prefetch queue. When clear 
(default), enables the prefetch queue.

10 FERR# Interrupt Reporting Enable (R/W) 

When set, interrupt reporting through the FERR# 
pin is enabled; when clear, this interrupt reporting 
function is disabled. 

When this flag is set and the processor is in the 
stop-clock state (STPCLK# is asserted), asserting 
the FERR# pin signals to the processor that an 
interrupt (such as, INIT#, BINIT#, INTR, NMI, SMI#, 
or RESET#) is pending and that the processor 
should return to normal operation to handle the 
interrupt.
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This flag does not affect the normal operation of 
the FERR# pin (to indicate an unmasked floating-
point error) when the STPCLK# pin is not 
asserted.

11 Branch Trace Storage Unavailable 
(BTS_UNAVILABLE) (R)

See Table 35-2.

When set, the processor does not support branch 
trace storage (BTS); when clear, BTS is supported.

12 PEBS_UNAVILABLE: Precise Event Based 
Sampling Unavailable (R)

See Table 35-2.

When set, the processor does not support precise 
event-based sampling (PEBS); when clear, PEBS is 
supported.

13 3 TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor 
indicates that the die temperature is at the pre-
determined threshold, the Thermal Monitor 2 
mechanism is engaged. TM2 will reduce the bus to 
core ratio and voltage according to the value last 
written to MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the processor 
does not change the VID signals or the bus to core 
ratio when the processor enters a thermal 
managed state.

If the TM2 feature flag (ECX[8]) is not set to 1 
after executing CPUID with EAX = 1, then this 
feature is not supported and BIOS must not alter 
the contents of this bit location. The processor is 
operating out of spec if both this bit and the TM1 
bit are set to disabled states.

17:14 Reserved.

18 3, 4, 6 ENABLE MONITOR FSM (R/W)

See Table 35-2.

19 Adjacent Cache Line Prefetch Disable (R/W) 

When set to 1, the processor fetches the cache 
line of the 128-byte sector containing currently 
required data. When set to 0, the processor 
fetches both cache lines in the sector.
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Single processor platforms should not set this bit. 
Server platforms should set or clear this bit based 
on platform performance observed in validation 
and testing. 

BIOS may contain a setup option that controls the 
setting of this bit.

21:20 Reserved.

22 3, 4, 6 Limit CPUID MAXVAL (R/W) 

See Table 35-2.

Setting this can cause unexpected behavior to 
software that depends on the availability of CPUID 
leaves greater than 3.

23 Shared xTPR Message Disable (R/W)

See Table 35-2.

24 L1 Data Cache Context Mode (R/W) 

When set, the L1 data cache is placed in shared 
mode; when clear (default), the cache is placed in 
adaptive mode. This bit is only enabled for IA-32 
processors that support Intel Hyper-Threading 
Technology. See Section 11.5.6, “L1 Data Cache 
Context Mode.”

When L1 is running in adaptive mode and CR3s 
are identical, data in L1 is shared across logical 
processors. Otherwise, L1 is not shared and cache 
use is competitive.

If the Context ID feature flag (ECX[10]) is set to 0 
after executing CPUID with EAX = 1, the ability to 
switch modes is not supported. BIOS must not 
alter the contents of IA32_MISC_ENABLE[24].

33:25 Reserved.

34 Unique XD Bit Disable (R/W)

See Table 35-2.

63:35 Reserved.

1A1H 417 MSR_PLATFORM_BRV 3, 4, 6 Shared Platform Feature Requirements (R)

17:0 Reserved.

18 PLATFORM Requirements

When set to 1, indicates the processor has specific 
platform requirements. The details of the platform 
requirements are listed in the respective data 
sheets of the processor.

63:19 Reserved.
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1D7H 471 MSR_LER_FROM_LIP 0, 1, 2, 3, 
4, 6

Unique Last Exception Record From Linear IP (R) 

Contains a pointer to the last branch instruction 
that the processor executed prior to the last 
exception that was generated or the last interrupt 
that was handled.

See Section 17.9.3, “Last Exception Records.”

31:0 From Linear IP

Linear address of the last branch instruction. 

63:32 Reserved.

1D7H 471 63:0 Unique From Linear IP

Linear address of the last branch instruction (If IA-
32e mode is active). 

1D8H 472 MSR_LER_TO_LIP 0, 1, 2, 3, 
4, 6

Unique Last Exception Record To Linear IP (R) 

This area contains a pointer to the target of the 
last branch instruction that the processor 
executed prior to the last exception that was 
generated or the last interrupt that was handled.

See Section 17.9.3, “Last Exception Records.”

31:0 From Linear IP

Linear address of the target of the last branch 
instruction. 

63:32 Reserved.

1D8H 472 63:0 Unique From Linear IP

Linear address of the target of the last branch 
instruction (If IA-32e mode is active).

1D9H 473 MSR_DEBUGCTLA 0, 1, 2, 3, 
4, 6

Unique Debug Control (R/W) 

Controls how several debug features are used. Bit 
definitions are discussed in the referenced 
section.

See Section 17.9.1, “MSR_DEBUGCTLA MSR.”

1DAH 474 MSR_LASTBRANCH
_TOS

0, 1, 2, 3, 
4, 6

Unique Last Branch Record Stack TOS (R/W) 

Contains an index (0-3 or 0-15) that points to the 
top of the last branch record stack (that is, that 
points the index of the MSR containing the most 
recent branch record).

See Section 17.9.2, “LBR Stack for Processors 
Based on Intel NetBurst® Microarchitecture”; and 
addresses 1DBH-1DEH and 680H-68FH.
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1DBH 475 MSR_LASTBRANCH_0 0, 1, 2 Unique Last Branch Record 0 (R/W) 

One of four last branch record registers on the last 
branch record stack. It contains pointers to the 
source and destination instruction for one of the 
last four branches, exceptions, or interrupts that 
the processor took.

MSR_LASTBRANCH_0 through 
MSR_LASTBRANCH_3 at 1DBH-1DEH are 
available only on family 0FH, models 0H-02H. 
They have been replaced by the MSRs at 680H-
68FH and 6C0H-6CFH. 

See Section 17.9, “Last Branch, Interrupt, and 
Exception Recording (Processors based on Intel 
NetBurst® Microarchitecture).”

1DDH 477 MSR_LASTBRANCH_2 0, 1, 2 Unique Last Branch Record 2

See description of the MSR_LASTBRANCH_0 MSR 
at 1DBH.

1DEH 478 MSR_LASTBRANCH_3 0, 1, 2 Unique Last Branch Record 3

See description of the MSR_LASTBRANCH_0 MSR 
at 1DBH.

200H 512 IA32_MTRR_PHYSBASE0 0, 1, 2, 3, 
4, 6

Shared Variable Range Base MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

201H 513 IA32_MTRR_PHYSMASK0 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

202H 514 IA32_MTRR_PHYSBASE1 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

203H 515 IA32_MTRR_PHYSMASK1 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

204H 516 IA32_MTRR_PHYSBASE2 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

205H 517 IA32_MTRR_PHYSMASK2 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs”.

206H 518 IA32_MTRR_PHYSBASE3 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

207H 519 IA32_MTRR_PHYSMASK3 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

208H 520 IA32_MTRR_PHYSBASE4 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”
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209H 521 IA32_MTRR_PHYSMASK4 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20AH 522 IA32_MTRR_PHYSBASE5 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20BH 523 IA32_MTRR_PHYSMASK5 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20CH 524 IA32_MTRR_PHYSBASE6 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20DH 525 IA32_MTRR_PHYSMASK6 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20EH 526 IA32_MTRR_PHYSBASE7 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20FH 527 IA32_MTRR_PHYSMASK7 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

250H 592 IA32_MTRR_FIX64K_00000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

258H 600 IA32_MTRR_FIX16K_80000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

259H 601 IA32_MTRR_FIX16K_A0000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

268H 616 IA32_MTRR_FIX4K_C0000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

269H 617 IA32_MTRR_FIX4K_C8000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs”.

26AH 618 IA32_MTRR_FIX4K_D0000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs”.

26BH 619 IA32_MTRR_FIX4K_D8000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

26CH 620 IA32_MTRR_FIX4K_E0000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

26DH 621 IA32_MTRR_FIX4K_E8000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

26EH 622 IA32_MTRR_FIX4K_F0000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

26FH 623 IA32_MTRR_FIX4K_F8000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”
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277H 631 IA32_PAT 0, 1, 2, 3, 
4, 6

Unique Page Attribute Table

See Section 11.11.2.2, “Fixed Range MTRRs.”

2FFH 767 IA32_MTRR_DEF_TYPE 0, 1, 2, 3, 
4, 6

Shared Default Memory Types (R/W) 

See Table 35-2. 

See Section 11.11.2.1, “IA32_MTRR_DEF_TYPE 
MSR.”

300H 768 MSR_BPU_COUNTER0 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.2, “Performance Counters.”

301H 769 MSR_BPU_COUNTER1 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.2, “Performance Counters.”

302H 770 MSR_BPU_COUNTER2 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.2, “Performance Counters.”

303H 771 MSR_BPU_COUNTER3 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.2, “Performance Counters.”

304H 772 MSR_MS_COUNTER0 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.2, “Performance Counters.”

305H 773 MSR_MS_COUNTER1 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.2, “Performance Counters.”

306H 774 MSR_MS_COUNTER2 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.2, “Performance Counters.”

307H 775 MSR_MS_COUNTER3 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.2, “Performance Counters.”

308H 776 MSR_FLAME_COUNTER0 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.2, “Performance Counters.”

309H 777 MSR_FLAME_COUNTER1 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.2, “Performance Counters.”

30AH 778 MSR_FLAME_COUNTER2 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.2, “Performance Counters.”

30BH 779 MSR_FLAME_COUNTER3 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.2, “Performance Counters.”

3OCH 780 MSR_IQ_COUNTER0 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.2, “Performance Counters.”

3ODH 781 MSR_IQ_COUNTER1 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.2, “Performance Counters.”

3OEH 782 MSR_IQ_COUNTER2 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.2, “Performance Counters.”

3OFH 783 MSR_IQ_COUNTER3 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.2, “Performance Counters.”

310H 784 MSR_IQ_COUNTER4 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.2, “Performance Counters.”
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311H 785 MSR_IQ_COUNTER5 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.2, “Performance Counters.”

360H 864 MSR_BPU_CCCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.3, “CCCR MSRs.”

361H 865 MSR_BPU_CCCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.3, “CCCR MSRs.”

362H 866 MSR_BPU_CCCR2 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.3, “CCCR MSRs.”

363H 867 MSR_BPU_CCCR3 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.3, “CCCR MSRs.”

364H 868 MSR_MS_CCCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.3, “CCCR MSRs.”

365H 869 MSR_MS_CCCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.3, “CCCR MSRs.”

366H 870 MSR_MS_CCCR2 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.3, “CCCR MSRs.”

367H 871 MSR_MS_CCCR3 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.3, “CCCR MSRs.”

368H 872 MSR_FLAME_CCCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.3, “CCCR MSRs.”

369H 873 MSR_FLAME_CCCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.3, “CCCR MSRs.”

36AH 874 MSR_FLAME_CCCR2 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.3, “CCCR MSRs.”

36BH 875 MSR_FLAME_CCCR3 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.3, “CCCR MSRs.”

36CH 876 MSR_IQ_CCCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.3, “CCCR MSRs.”

36DH 877 MSR_IQ_CCCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.3, “CCCR MSRs.”

36EH 878 MSR_IQ_CCCR2 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.3, “CCCR MSRs.”

36FH 879 MSR_IQ_CCCR3 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.3, “CCCR MSRs.”

370H 880 MSR_IQ_CCCR4 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.3, “CCCR MSRs.”

371H 881 MSR_IQ_CCCR5 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.3, “CCCR MSRs.”

3A0H 928 MSR_BSU_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”
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3A1H 929 MSR_BSU_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3A2H 930 MSR_FSB_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3A3H 931 MSR_FSB_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3A4H 932 MSR_FIRM_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3A5H 933 MSR_FIRM_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3A6H 934 MSR_FLAME_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3A7H 935 MSR_FLAME_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3A8H 936 MSR_DAC_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3A9H 937 MSR_DAC_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3AAH 938 MSR_MOB_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3ABH 939 MSR_MOB_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3ACH 940 MSR_PMH_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3ADH 941 MSR_PMH_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3AEH 942 MSR_SAAT_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3AFH 943 MSR_SAAT_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3B0H 944 MSR_U2L_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3B1H 945 MSR_U2L_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3B2H 946 MSR_BPU_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3B3H 947 MSR_BPU_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3B4H 948 MSR_IS_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”
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3B5H 949 MSR_IS_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3B6H 950 MSR_ITLB_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3B7H 951 MSR_ITLB_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3B8H 952 MSR_CRU_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3B9H 953 MSR_CRU_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3BAH 954 MSR_IQ_ESCR0 0, 1, 2 Shared See Section 18.11.1, “ESCR MSRs.”

This MSR is not available on later processors. It is 
only available on processor family 0FH, models 
01H-02H.

3BBH 955 MSR_IQ_ESCR1 0, 1, 2 Shared See Section 18.11.1, “ESCR MSRs.”

This MSR is not available on later processors. It is 
only available on processor family 0FH, models 
01H-02H.

3BCH 956 MSR_RAT_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3BDH 957 MSR_RAT_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3BEH 958 MSR_SSU_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3C0H 960 MSR_MS_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3C1H 961 MSR_MS_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3C2H 962 MSR_TBPU_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3C3H 963 MSR_TBPU_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3C4H 964 MSR_TC_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3C5H 965 MSR_TC_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3C8H 968 MSR_IX_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3C9H 969 MSR_IX_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”
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3CAH 970 MSR_ALF_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3CBH 971 MSR_ALF_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3CCH 972 MSR_CRU_ESCR2 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3CDH 973 MSR_CRU_ESCR3 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3E0H 992 MSR_CRU_ESCR4 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3E1H 993 MSR_CRU_ESCR5 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3FOH 1008 MSR_TC_PRECISE_EVENT 0, 1, 2, 3, 
4, 6

Shared See Section 18.11.1, “ESCR MSRs.”

3F1H 1009 MSR_PEBS_ENABLE 0, 1, 2, 3, 
4, 6

Shared Precise Event-Based Sampling (PEBS) (R/W) 

Controls the enabling of precise event sampling 
and replay tagging. 

12:0 See Table 19-25.

23:13 Reserved.

24 UOP Tag 

Enables replay tagging when set.

25 ENABLE_PEBS_MY_THR (R/W)

Enables PEBS for the target logical processor 
when set; disables PEBS when clear (default). 

See Section 18.12.3, “IA32_PEBS_ENABLE MSR,” 
for an explanation of the target logical processor. 

This bit is called ENABLE_PEBS in IA-32 
processors that do not support Intel Hyper-
Threading Technology.

26 ENABLE_PEBS_OTH_THR (R/W)

Enables PEBS for the target logical processor 
when set; disables PEBS when clear (default).

See Section 18.12.3, “IA32_PEBS_ENABLE MSR,” 
for an explanation of the target logical processor. 

This bit is reserved for IA-32 processors that do 
not support Intel Hyper-Threading Technology.

63:27 Reserved.

3F2H 1010 MSR_PEBS_MATRIX_VERT 0, 1, 2, 3, 
4, 6

Shared See Table 19-25.
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400H 1024 IA32_MC0_CTL 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC0_ADDR register is either not 
implemented or contains no address if the ADDRV 
flag in the IA32_MC0_STATUS register is clear. 

When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.

403H 1027 IA32_MC0_MISC 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC0_MISC MSR is either not 
implemented or does not contain additional 
information if the MISCV flag in the 
IA32_MC0_STATUS register is clear. 

When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.

404H 1028 IA32_MC1_CTL 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC1_ADDR register is either not 
implemented or contains no address if the ADDRV 
flag in the IA32_MC1_STATUS register is clear. 

When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.

407H 1031 IA32_MC1_MISC Shared See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC1_MISC MSR is either not 
implemented or does not contain additional 
information if the MISCV flag in the 
IA32_MC1_STATUS register is clear. 

When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.

408H 1032 IA32_MC2_CTL 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”
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40AH 1034 IA32_MC2_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not 
implemented or contains no address if the ADDRV 
flag in the IA32_MC2_STATUS register is clear. 
When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.

40BH 1035 IA32_MC2_MISC See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC2_MISC MSR is either not 
implemented or does not contain additional 
information if the MISCV flag in the 
IA32_MC2_STATUS register is clear. 

When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.

40CH 1036 IA32_MC3_CTL 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 IA32_MC3_ADDR 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC3_ADDR register is either not 
implemented or contains no address if the ADDRV 
flag in the IA32_MC3_STATUS register is clear. 

When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.

40FH 1039 IA32_MC3_MISC 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC3_MISC MSR is either not 
implemented or does not contain additional 
information if the MISCV flag in the 
IA32_MC3_STATUS register is clear. 

When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.

410H 1040 IA32_MC4_CTL 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC4_STATUS 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”
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412H 1042 IA32_MC4_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not 
implemented or contains no address if the ADDRV 
flag in the IA32_MC4_STATUS register is clear. 

When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.

413H 1043 IA32_MC4_MISC See Section 15.3.2.4, “IA32_MCi_MISC MSRs.” 

The IA32_MC2_MISC MSR is either not 
implemented or does not contain additional 
information if the MISCV flag in the 
IA32_MC4_STATUS register is clear. 

When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.

480H 1152 IA32_VMX_BASIC 3, 4, 6 Unique Reporting Register of Basic VMX Capabilities 
(R/O)

See Table 35-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_CTLS 3, 4, 6 Unique Capability Reporting Register of Pin-based 
VM-execution Controls (R/O)

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_CTLS 3, 4, 6 Unique Capability Reporting Register of Primary 
Processor-based VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls,” and 
see Table 35-2.

483H 1155 IA32_VMX_EXIT_CTLS 3, 4, 6 Unique Capability Reporting Register of VM-exit 
Controls (R/O)

See Appendix A.4, “VM-Exit Controls,” and see 
Table 35-2.

484H 1156 IA32_VMX_ENTRY_CTLS 3, 4, 6 Unique Capability Reporting Register of VM-entry 
Controls (R/O)

See Appendix A.5, “VM-Entry Controls,” and see 
Table 35-2.

485H 1157 IA32_VMX_MISC 3, 4, 6 Unique Reporting Register of Miscellaneous VMX 
Capabilities (R/O)

See Appendix A.6, “Miscellaneous Data,” and see 
Table 35-2.
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486H 1158 IA32_VMX_CR0_FIXED0 3, 4, 6 Unique Capability Reporting Register of CR0 Bits Fixed 
to 0 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0,” and 
see Table 35-2.

487H 1159 IA32_VMX_CR0_FIXED1 3, 4, 6 Unique Capability Reporting Register of CR0 Bits Fixed 
to 1 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0,” and 
see Table 35-2.

488H 1160 IA32_VMX_CR4_FIXED0 3, 4, 6 Unique Capability Reporting Register of CR4 Bits Fixed 
to 0 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4,” and 
see Table 35-2.

489H 1161 IA32_VMX_CR4_FIXED1 3, 4, 6 Unique Capability Reporting Register of CR4 Bits Fixed 
to 1 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4,” and 
see Table 35-2.

48AH 1162 IA32_VMX_VMCS_ENUM 3, 4, 6 Unique Capability Reporting Register of VMCS Field 
Enumeration (R/O)

See Appendix A.9, “VMCS Enumeration,” and see 
Table 35-2.

48BH 1163 IA32_VMX_PROCBASED_CTLS2 3, 4, 6 Unique Capability Reporting Register of Secondary 
Processor-based VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls,” and 
see Table 35-2.

600H 1536 IA32_DS_AREA 0, 1, 2, 3, 
4, 6

Unique DS Save Area (R/W)

See Table 35-2.

See Section 18.11.4, “Debug Store (DS) 
Mechanism.”

680H 1664 MSR_LASTBRANCH_0_FROM_IP 3, 4, 6 Unique Last Branch Record 0 (R/W) 

One of 16 pairs of last branch record registers on 
the last branch record stack (680H-68FH). This 
part of the stack contains pointers to the source 
instruction for one of the last 16 branches, 
exceptions, or interrupts taken by the processor.

The MSRs at 680H-68FH, 6C0H-6CfH are not 
available in processor releases before family 0FH, 
model 03H. These MSRs replace MSRs previously 
located at 1DBH-1DEH.which performed the same 
function for early releases. 

See Section 17.9, “Last Branch, Interrupt, and 
Exception Recording (Processors based on Intel 
NetBurst® Microarchitecture).”
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681H 1665 MSR_LASTBRANCH_1_FROM_IP 3, 4, 6 Unique Last Branch Record 1

See description of MSR_LASTBRANCH_0 at 680H.

682H 1666 MSR_LASTBRANCH_2_FROM_IP 3, 4, 6 Unique Last Branch Record 2

See description of MSR_LASTBRANCH_0 at 680H.

683H 1667 MSR_LASTBRANCH_3_FROM_IP 3, 4, 6 Unique Last Branch Record 3

See description of MSR_LASTBRANCH_0 at 680H.

684H 1668 MSR_LASTBRANCH_4_FROM_IP 3, 4, 6 Unique Last Branch Record 4

See description of MSR_LASTBRANCH_0 at 680H.

685H 1669 MSR_LASTBRANCH_5_FROM_IP 3, 4, 6 Unique Last Branch Record 5

See description of MSR_LASTBRANCH_0 at 680H.

686H 1670 MSR_LASTBRANCH_6_FROM_IP 3, 4, 6 Unique Last Branch Record 6

See description of MSR_LASTBRANCH_0 at 680H.

687H 1671 MSR_LASTBRANCH_7_FROM_IP 3, 4, 6 Unique Last Branch Record 7

See description of MSR_LASTBRANCH_0 at 680H.

688H 1672 MSR_LASTBRANCH_8_FROM_IP 3, 4, 6 Unique Last Branch Record 8

See description of MSR_LASTBRANCH_0 at 680H.

689H 1673 MSR_LASTBRANCH_9_FROM_IP 3, 4, 6 Unique Last Branch Record 9

See description of MSR_LASTBRANCH_0 at 680H.

68AH 1674 MSR_LASTBRANCH_10_FROM_IP 3, 4, 6 Unique Last Branch Record 10

See description of MSR_LASTBRANCH_0 at 680H.

68BH 1675 MSR_LASTBRANCH_11_FROM_IP 3, 4, 6 Unique Last Branch Record 11

See description of MSR_LASTBRANCH_0 at 680H.

68CH 1676 MSR_LASTBRANCH_12_FROM_IP 3, 4, 6 Unique Last Branch Record 12

See description of MSR_LASTBRANCH_0 at 680H.

68DH 1677 MSR_LASTBRANCH_13_FROM_IP 3, 4, 6 Unique Last Branch Record 13

See description of MSR_LASTBRANCH_0 at 680H.

68EH 1678 MSR_LASTBRANCH_14_FROM_IP 3, 4, 6 Unique Last Branch Record 14

See description of MSR_LASTBRANCH_0 at 680H.

68FH 1679 MSR_LASTBRANCH_15_FROM_IP 3, 4, 6 Unique Last Branch Record 15

See description of MSR_LASTBRANCH_0 at 680H.
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6C0H 1728 MSR_LASTBRANCH_0_TO_IP 3, 4, 6 Unique Last Branch Record 0 (R/W) 

One of 16 pairs of last branch record registers on 
the last branch record stack (6C0H-6CFH). This 
part of the stack contains pointers to the 
destination instruction for one of the last 16 
branches, exceptions, or interrupts that the 
processor took.

See Section 17.9, “Last Branch, Interrupt, and 
Exception Recording (Processors based on Intel 
NetBurst® Microarchitecture).”

6C1H 1729 MSR_LASTBRANCH_1_TO_IP 3, 4, 6 Unique Last Branch Record 1

See description of MSR_LASTBRANCH_0 at 6C0H.

6C2H 1730 MSR_LASTBRANCH_2_TO_IP 3, 4, 6 Unique Last Branch Record 2

See description of MSR_LASTBRANCH_0 at 6C0H.

6C3H 1731 MSR_LASTBRANCH_3_TO_IP 3, 4, 6 Unique Last Branch Record 3

See description of MSR_LASTBRANCH_0 at 6C0H.

6C4H 1732 MSR_LASTBRANCH_4_TO_IP 3, 4, 6 Unique Last Branch Record 4

See description of MSR_LASTBRANCH_0 at 6C0H.

6C5H 1733 MSR_LASTBRANCH_5_TO_IP 3, 4, 6 Unique Last Branch Record 5

See description of MSR_LASTBRANCH_0 at 6C0H.

6C6H 1734 MSR_LASTBRANCH_6_TO_IP 3, 4, 6 Unique Last Branch Record 6

See description of MSR_LASTBRANCH_0 at 6C0H.

6C7H 1735 MSR_LASTBRANCH_7_TO_IP 3, 4, 6 Unique Last Branch Record 7

See description of MSR_LASTBRANCH_0 at 6C0H.

6C8H 1736 MSR_LASTBRANCH_8_TO_IP 3, 4, 6 Unique Last Branch Record 8

See description of MSR_LASTBRANCH_0 at 6C0H.

6C9H 1737 MSR_LASTBRANCH_9_TO_IP 3, 4, 6 Unique Last Branch Record 9

See description of MSR_LASTBRANCH_0 at 6C0H.

6CAH 1738 MSR_LASTBRANCH_10_TO_IP 3, 4, 6 Unique Last Branch Record 10

See description of MSR_LASTBRANCH_0 at 6C0H.

6CBH 1739 MSR_LASTBRANCH_11_TO_IP 3, 4, 6 Unique Last Branch Record 11

See description of MSR_LASTBRANCH_0 at 6C0H.

6CCH 1740 MSR_LASTBRANCH_12_TO_IP 3, 4, 6 Unique Last Branch Record 12

See description of MSR_LASTBRANCH_0 at 6C0H.

6CDH 1741 MSR_LASTBRANCH_13_TO_IP 3, 4, 6 Unique Last Branch Record 13

See description of MSR_LASTBRANCH_0 at 6C0H.

6CEH 1742 MSR_LASTBRANCH_14_TO_IP 3, 4, 6 Unique Last Branch Record 14

See description of MSR_LASTBRANCH_0 at 6C0H.
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...

6CFH 1743 MSR_LASTBRANCH_15_TO_IP 3, 4, 6 Unique Last Branch Record 15

See description of MSR_LASTBRANCH_0 at 6C0H.

C000_
0080H

IA32_EFER 3, 4, 6 Unique Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR 3, 4, 6 Unique System Call Target Address (R/W)

See Table 35-2.

C000_
0082H

IA32_LSTAR 3, 4, 6 Unique IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

C000_
0084H

IA32_FMASK 3, 4, 6 Unique System Call Flag Mask (R/W) 

See Table 35-2.

C000_
0100H

IA32_FS_BASE 3, 4, 6 Unique Map of BASE Address of FS (R/W)

See Table 35-2.

C000_
0101H

IA32_GS_BASE 3, 4, 6 Unique Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE 3, 4, 6 Unique Swap Target of BASE Address of GS (R/W)

See Table 35-2.

NOTES
1. For HT-enabled processors, there may be more than one logical processors per physical unit. If an MSR is Shared, this means that 

one MSR is shared between logical processors. If an MSR is unique, this means that each logical processor has its own MSR.
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Table 35-21.  MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV
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0H 0 P5_MC_ADDR Unique See Section 35.15, “MSRs in Pentium Processors,” and see 
Table 35-2.

1H 1 P5_MC_TYPE Unique See Section 35.15, “MSRs in Pentium Processors,” and see 
Table 35-2.

6H 6 IA32_MONITOR_FILTER_
SIZE

Unique See Section 8.10.5, “Monitor/Mwait Address Range Determination,” 
and see Table 35-2.

10H 16 IA32_TIME_STAMP_
COUNTER

Unique See Section 17.13, “Time-Stamp Counter,” and see Table 35-2.
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17H 23 IA32_PLATFORM_ID Shared Platform ID (R) 

See Table 35-2.

The operating system can use this MSR to determine “slot” 
information for the processor and the proper microcode update to 
load.

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and Location,” and see 
Table 35-2.

2AH 42 MSR_EBL_CR_POWERON Shared Processor Hard Power-On Configuration (R/W)

Enables and disables processor features; (R) indicates current 
processor configuration.

0 Reserved.

1 Data Error Checking Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

2 Response Error Checking Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

3 MCERR# Drive Enable (R/W) 

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

4 Address Parity Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

6: 5 Reserved

7 BINIT# Driver Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

8 Output Tri-state Enabled (R/O)

1 = Enabled; 0 = Disabled 

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled 

10 MCERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled

11 Reserved

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled 

13 Reserved

Table 35-21.  MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV 
(Contd.)
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14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved

17:16 APIC Cluster ID (R/O)

18 System Bus Frequency (R/O)

0 = 100 MHz
1 = Reserved

19 Reserved.

21: 20 Symmetric Arbitration ID (R/O)

26:22 Clock Frequency Ratio (R/O)

3AH 58 IA32_FEATURE_CONTROL Unique Control Features in IA-32 Processor (R/W) 

See Table 35-2.

40H 64 MSR_LASTBRANCH_0 Unique Last Branch Record 0 (R/W)

One of 8 last branch record registers on the last branch record 
stack: bits 31-0 hold the ‘from’ address and bits 63-32 hold the ‘to’ 
address. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.11, “Last Branch, Interrupt, and Exception Recording 

(Pentium M Processors).”

41H 65 MSR_LASTBRANCH_1 Unique Last Branch Record 1 (R/W)

See description of MSR_LASTBRANCH_0.

42H 66 MSR_LASTBRANCH_2 Unique Last Branch Record 2 (R/W)

See description of MSR_LASTBRANCH_0. 

43H 67 MSR_LASTBRANCH_3 Unique Last Branch Record 3 (R/W)

See description of MSR_LASTBRANCH_0.

44H 68 MSR_LASTBRANCH_4 Unique Last Branch Record 4 (R/W)

See description of MSR_LASTBRANCH_0.

45H 69 MSR_LASTBRANCH_5 Unique Last Branch Record 5 (R/W)

See description of MSR_LASTBRANCH_0. 

46H 70 MSR_LASTBRANCH_6 Unique Last Branch Record 6 (R/W)

See description of MSR_LASTBRANCH_0. 

47H 71 MSR_LASTBRANCH_7 Unique Last Branch Record 7 (R/W)

See description of MSR_LASTBRANCH_0. 

79H 121 IA32_BIOS_UPDT_TRIG Unique BIOS Update Trigger Register (W)

See Table 35-2.

Table 35-21.  MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV 
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8BH 139 IA32_BIOS_SIGN_ID Unique BIOS Update Signature ID (RO)

See Table 35-2.

C1H 193 IA32_PMC0 Unique Performance counter register

See Table 35-2.

C2H 194 IA32_PMC1 Unique Performance counter register

See Table 35-2.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed (RO)

This field indicates the scaleable bus clock speed:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)

133.33 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 101B. 

166.67 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 001B.

63:3 Reserved.

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock Count. (RW)

See Table 35-2.

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count. (RW)

See Table 35-2.

FEH 254 IA32_MTRRCAP Unique See Table 35-2.

11EH 281 MSR_BBL_CR_CTL3 Shared

0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled (R/W) 

1 = L2 cache has been initialized 
0 = Disabled (default)
Until this bit is set the processor will not respond to the WBINVD 
instruction or the assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present (RO) 

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

Table 35-21.  MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV 
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174H 372 IA32_SYSENTER_CS Unique See Table 35-2.

175H 373 IA32_SYSENTER_ESP Unique See Table 35-2.

176H 374 IA32_SYSENTER_EIP Unique See Table 35-2.

179H 377 IA32_MCG_CAP Unique See Table 35-2.

17AH 378 IA32_MCG_STATUS Unique

0 RIPV

When set, this bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check 
was generated) can be used to restart the program. If this bit is 
cleared, the program cannot be reliably restarted.

1 EIPV

When set, this bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check 
was generated) is directly associated with the error.

2 MCIP

When set, this bit indicates that a machine check has been 
generated. If a second machine check is detected while this bit is 
still set, the processor enters a shutdown state. Software should 
write this bit to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_PERFEVTSEL0 Unique See Table 35-2.

187H 391 IA32_PERFEVTSEL1 Unique See Table 35-2.

198H 408 IA32_PERF_STATUS Shared See Table 35-2.

199H 409 IA32_PERF_CTL Unique See Table 35-2.

19AH 410 IA32_CLOCK_
MODULATION

Unique Clock Modulation (R/W) 

See Table 35-2.

19BH 411 IA32_THERM_
INTERRUPT

Unique Thermal Interrupt Control (R/W) 

See Table 35-2.

See Section 14.5.2, “Thermal Monitor.”

19CH 412 IA32_THERM_STATUS Unique Thermal Monitor Status (R/W) 

See Table 35-2. 

See Section 14.5.2, “Thermal Monitor”.

19DH 413 MSR_THERM2_CTL Unique

15:0 Reserved.

Table 35-21.  MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV 
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16 TM_SELECT (R/W) 

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die modulation of 
the stop-clock duty cycle)

1 = Thermal Monitor 2 (thermally-initiated frequency transitions)
If bit 3 of the IA32_MISC_ENABLE register is cleared, TM_SELECT 
has no effect. Neither TM1 nor TM2 will be enabled.

63:16 Reserved.

1A0 416 IA32_MISC_
ENABLE

Enable Miscellaneous Processor Features

(R/W) 

Allows a variety of processor functions to be enabled and disabled.

2:0 Reserved.

3 Unique Automatic Thermal Control Circuit Enable (R/W) 

See Table 35-2. 

6:4 Reserved.

7 Shared Performance Monitoring Available (R)

See Table 35-2.

9:8 Reserved.

10 Shared FERR# Multiplexing Enable (R/W)

1 = FERR# asserted by the processor to indicate a pending break 
event within the processor 

0 =  Indicates compatible FERR# signaling behavior
This bit must be set to 1 to support XAPIC interrupt model usage.

11 Shared Branch Trace Storage Unavailable (RO)

See Table 35-2.

12 Reserved.

13 Shared TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor indicates that the 
die temperature is at the pre-determined threshold, the Thermal 
Monitor 2 mechanism is engaged. TM2 will reduce the bus to core 
ratio and voltage according to the value last written to 
MSR_THERM2_CTL bits 15:0.

Table 35-21.  MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV 
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When this bit is clear (0, default), the processor does not change 
the VID signals or the bus to core ratio when the processor enters 
a thermal managed state.

If the TM2 feature flag (ECX[8]) is not set to 1 after executing 
CPUID with EAX = 1, then this feature is not supported and BIOS 
must not alter the contents of this bit location. The processor is 
operating out of spec if both this bit and the TM1 bit are set to 
disabled states.

15:14 Reserved.

16 Shared Enhanced Intel SpeedStep Technology Enable (R/W)

1 = Enhanced Intel SpeedStep Technology enabled

18 Shared ENABLE MONITOR FSM (R/W)

See Table 35-2.

19 Reserved. 

22 Shared Limit CPUID Maxval (R/W) 

See Table 35-2. 

Setting this bit may cause behavior in software that depends on 
the availability of CPUID leaves greater than 3.

33:23 Reserved.

34 Shared XD Bit Disable (R/W)

See Table 35-2.

63:35 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Unique Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-3) that points to the MSR containing the 
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Unique Debug Control (R/W) 

Controls how several debug features are used. Bit definitions are 
discussed in the referenced section.

1DDH 477 MSR_LER_FROM_LIP Unique Last Exception Record From Linear IP (R) 

Contains a pointer to the last branch instruction that the processor 
executed prior to the last exception that was generated or the last 
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Unique Last Exception Record To Linear IP (R) 

This area contains a pointer to the target of the last branch 
instruction that the processor executed prior to the last exception 
that was generated or the last interrupt that was handled. 

1E0H 480 ROB_CR_
BKUPTMPDR6

Unique

Table 35-21.  MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV 
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1:0 Reserved.

2 Fast String Enable bit. (Default, enabled)

200H 512 MTRRphysBase0 Unique

201H 513 MTRRphysMask0 Unique

202H 514 MTRRphysBase1 Unique

203H 515 MTRRphysMask1 Unique

204H 516 MTRRphysBase2 Unique

205H 517 MTRRphysMask2 Unique

206H 518 MTRRphysBase3 Unique

207H 519 MTRRphysMask3 Unique

208H 520 MTRRphysBase4 Unique

209H 521 MTRRphysMask4 Unique

20AH 522 MTRRphysBase5 Unique

20BH 523 MTRRphysMask5 Unique

20CH 524 MTRRphysBase6 Unique

20DH 525 MTRRphysMask6 Unique

20EH 526 MTRRphysBase7 Unique

20FH 527 MTRRphysMask7 Unique

250H 592 MTRRfix64K_00000 Unique

258H 600 MTRRfix16K_80000 Unique

259H 601 MTRRfix16K_A0000 Unique

268H 616 MTRRfix4K_C0000 Unique

269H 617 MTRRfix4K_C8000 Unique

26AH 618 MTRRfix4K_D0000 Unique

26BH 619 MTRRfix4K_D8000 Unique

26CH 620 MTRRfix4K_E0000 Unique

26DH 621 MTRRfix4K_E8000 Unique

26EH 622 MTRRfix4K_F0000 Unique

26FH 623 MTRRfix4K_F8000 Unique

2FFH 767 IA32_MTRR_DEF_TYPE Unique Default Memory Types (R/W)

See Table 35-2. 

See Section 11.11.2.1, “IA32_MTRR_DEF_TYPE MSR.”

400H 1024 IA32_MC0_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Table 35-21.  MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV 
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401H 1025 IA32_MC0_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC0_STATUS 
register is clear. When not implemented in the processor, all reads 
and writes to this MSR will cause a general-protection exception.

404H 1028 IA32_MC1_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC1_STATUS 
register is clear. When not implemented in the processor, all reads 
and writes to this MSR will cause a general-protection exception.

408H 1032 IA32_MC2_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC2_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC2_STATUS 
register is clear. When not implemented in the processor, all reads 
and writes to this MSR will cause a general-protection exception.

40CH 1036 MSR_MC4_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC4_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 MSR_MC4_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the MSR_MC4_STATUS 
register is clear. When not implemented in the processor, all reads 
and writes to this MSR will cause a general-protection exception.

410H 1040 MSR_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC3_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 MSR_MC3_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the MSR_MC3_STATUS 
register is clear. When not implemented in the processor, all reads 
and writes to this MSR will cause a general-protection exception.

413H 1043 MSR_MC3_MISC Unique

414H 1044 MSR_MC5_CTL Unique

415H 1045 MSR_MC5_STATUS Unique

416H 1046 MSR_MC5_ADDR Unique
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417H 1047 MSR_MC5_MISC Unique

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX Capabilities (R/O)

See Table 35-2.

See Appendix A.1, “Basic VMX Information”

(If CPUID.01H:ECX.[bit 9])

481H 1153 IA32_VMX_PINBASED_
CTLS

Unique Capability Reporting Register of Pin-based VM-execution 
Controls (R/O)

See Appendix A.3, “VM-Execution Controls”

(If CPUID.01H:ECX.[bit 9])

482H 1154 IA32_VMX_PROCBASED_
CTLS

Unique Capability Reporting Register of Primary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls”

(If CPUID.01H:ECX.[bit 9])

483H 1155 IA32_VMX_EXIT_CTLS Unique Capability Reporting Register of VM-exit Controls (R/O)

See Appendix A.4, “VM-Exit Controls”

(If CPUID.01H:ECX.[bit 9])

484H 1156 IA32_VMX_ENTRY_CTLS Unique Capability Reporting Register of VM-entry Controls (R/O)

See Appendix A.5, “VM-Entry Controls”

(If CPUID.01H:ECX.[bit 9])

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Appendix A.6, “Miscellaneous Data”

(If CPUID.01H:ECX.[bit 9])

486H 1158 IA32_VMX_CR0_FIXED0 Unique Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0”

(If CPUID.01H:ECX.[bit 9])

487H 1159 IA32_VMX_CR0_FIXED1 Unique Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0”

(If CPUID.01H:ECX.[bit 9])

488H 1160 IA32_VMX_CR4_FIXED0 Unique Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4”

(If CPUID.01H:ECX.[bit 9])

489H 1161 IA32_VMX_CR4_FIXED1 Unique Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4”

(If CPUID.01H:ECX.[bit 9])

48AH 1162 IA32_VMX_VMCS_ENUM Unique Capability Reporting Register of VMCS Field Enumeration (R/O)

See Appendix A.9, “VMCS Enumeration”

(If CPUID.01H:ECX.[bit 9])
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...

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Unique Capability Reporting Register of Secondary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls”

(If CPUID.01H:ECX.[bit 9] and 
IA32_VMX_PROCBASED_CTLS[bit 63])

600H 1536 IA32_DS_AREA Unique DS Save Area (R/W) 

See Table 35-2.

See Section 18.11.4, “Debug Store (DS) Mechanism.”

31:0 DS Buffer Management Area

Linear address of the first byte of the DS buffer management area.

63:32 Reserved.

C000_
0080H

IA32_EFER Unique See Table 35-2.

10:0 Reserved.

11 Execute Disable Bit Enable

63:12 Reserved.
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0H 0 P5_MC_ADDR See Section 35.15, “MSRs in Pentium Processors.”

1H 1 P5_MC_TYPE See Section 35.15, “MSRs in Pentium Processors.”

10H 16 IA32_TIME_STAMP_COUNTER See Section 17.13, “Time-Stamp Counter,” and see Table 35-2.

17H 23 IA32_PLATFORM_ID Platform ID (R)

See Table 35-2.

The operating system can use this MSR to determine “slot” information 
for the processor and the proper microcode update to load.

2AH 42 MSR_EBL_CR_POWERON Processor Hard Power-On Configuration

(R/W) Enables and disables processor features.

(R) Indicates current processor configuration.

0 Reserved.

1 Data Error Checking Enable (R)

0 = Disabled
Always 0 on the Pentium M processor.
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2 Response Error Checking Enable (R)

0 = Disabled
Always 0 on the Pentium M processor.

3 MCERR# Drive Enable (R) 

0 = Disabled
Always 0 on the Pentium M processor.

4 Address Parity Enable (R)

0 = Disabled
Always 0 on the Pentium M processor.

6:5 Reserved.

7 BINIT# Driver Enable (R)

1 = Enabled; 0 = Disabled
Always 0 on the Pentium M processor.

8 Output Tri-state Enabled (R/O)

1 = Enabled; 0 = Disabled 

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled 

10 MCERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled
Always 0 on the Pentium M processor.

11 Reserved.

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled 
Always 0 on the Pentium M processor.

13 Reserved.

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes
Always 0 on the Pentium M processor.

15 Reserved.

17:16 APIC Cluster ID (R/O)

Always 00B on the Pentium M processor.

18 System Bus Frequency (R/O)

0 = 100 MHz
1 = Reserved
Always 0 on the Pentium M processor.

19 Reserved.

Table 35-22.  MSRs in Pentium M Processors (Contd.)
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21: 20 Symmetric Arbitration ID (R/O)

Always 00B on the Pentium M processor.

26:22 Clock Frequency Ratio (R/O)

40H 64 MSR_LASTBRANCH_0 Last Branch Record 0 (R/W)

One of 8 last branch record registers on the last branch record stack: bits 
31-0 hold the ‘from’ address and bits 63-32 hold the to address. 

See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.11, “Last Branch, Interrupt, and Exception Recording 

(Pentium M Processors)”

41H 65 MSR_LASTBRANCH_1 Last Branch Record 1 (R/W)

See description of MSR_LASTBRANCH_0.

42H 66 MSR_LASTBRANCH_2 Last Branch Record 2 (R/W)

See description of MSR_LASTBRANCH_0. 

43H 67 MSR_LASTBRANCH_3 Last Branch Record 3 (R/W)

See description of MSR_LASTBRANCH_0.

44H 68 MSR_LASTBRANCH_4 Last Branch Record 4 (R/W)

See description of MSR_LASTBRANCH_0.

45H 69 MSR_LASTBRANCH_5 Last Branch Record 5 (R/W)

See description of MSR_LASTBRANCH_0. 

46H 70 MSR_LASTBRANCH_6 Last Branch Record 6 (R/W)

See description of MSR_LASTBRANCH_0. 

47H 71 MSR_LASTBRANCH_7 Last Branch Record 7 (R/W)

See description of MSR_LASTBRANCH_0. 

119H 281 MSR_BBL_CR_CTL

63:0 Reserved.

11EH 281 MSR_BBL_CR_CTL3

0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

4:1 Reserved.

5 ECC Check Enable (RO)

This bit enables ECC checking on the cache data bus. ECC is always 
generated on write cycles. 

0 = Disabled (default)
1 = Enabled
For the Pentium M processor, ECC checking on the cache data bus is 
always enabled.

Table 35-22.  MSRs in Pentium M Processors (Contd.)
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7:6 Reserved.

8 L2 Enabled (R/W) 

1 = L2 cache has been initialized 
0 = Disabled (default)
Until this bit is set the processor will not respond to the WBINVD 
instruction or the assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present (RO) 

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

179H 377 IA32_MCG_CAP

7:0 Count (RO)

Indicates the number of hardware unit error reporting banks available in 
the processor.

8 IA32_MCG_CTL Present (RO)

1 = Indicates that the processor implements the MSR_MCG_CTL 
register found at MSR 17BH.

0 = Not supported.

63:9 Reserved.

17AH 378 IA32_MCG_STATUS

0 RIPV

When set, this bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check was 
generated) can be used to restart the program. If this bit is cleared, the 
program cannot be reliably restarted.

1 EIPV

When set, this bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check was 
generated) is directly associated with the error.

2 MCIP

When set, this bit indicates that a machine check has been generated. If a 
second machine check is detected while this bit is still set, the processor 
enters a shutdown state. Software should write this bit to 0 after 
processing a machine check exception.

63:3 Reserved.

198H 408 IA32_PERF_STATUS See Table 35-2.

199H 409 IA32_PERF_CTL See Table 35-2.

Table 35-22.  MSRs in Pentium M Processors (Contd.)
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19AH 410 IA32_CLOCK_MODULATION Clock Modulation (R/W). 

See Table 35-2. 

See Section 14.5.3, “Software Controlled Clock Modulation.”

19BH 411 IA32_THERM_INTERRUPT Thermal Interrupt Control (R/W)

See Table 35-2. 

See Section 14.5.2, “Thermal Monitor.”

19CH 412 IA32_THERM_STATUS Thermal Monitor Status (R/W)

See Table 35-2.

See Section 14.5.2, “Thermal Monitor.”

19DH 413 MSR_THERM2_CTL

15:0 Reserved.

16 TM_SELECT (R/W) 

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die modulation of the 
stop-clock duty cycle)

1 = Thermal Monitor 2 (thermally-initiated frequency transitions)
If bit 3 of the IA32_MISC_ENABLE register is cleared, TM_SELECT has no 
effect. Neither TM1 nor TM2 will be enabled.

63:16 Reserved.

1A0 416 IA32_MISC_ENABLE Enable Miscellaneous Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

2:0 Reserved.

3 Automatic Thermal Control Circuit Enable (R/W) 

1 = Setting this bit enables the thermal control circuit (TCC) portion of 
the Intel Thermal Monitor feature. This allows processor clocks to 
be automatically modulated based on the processor's thermal 
sensor operation. 

0 = Disabled (default). 
The automatic thermal control circuit enable bit determines if the 
thermal control circuit (TCC) will be activated when the processor's 
internal thermal sensor determines the processor is about to exceed its 
maximum operating temperature.

When the TCC is activated and TM1 is enabled, the processors clocks will 
be forced to a 50% duty cycle. BIOS must enable this feature.

The bit should not be confused with the on-demand thermal control 
circuit enable bit.

6:4 Reserved.

7 Performance Monitoring Available (R) 

1 = Performance monitoring enabled
0 = Performance monitoring disabled

Table 35-22.  MSRs in Pentium M Processors (Contd.)
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9:8 Reserved.

10 FERR# Multiplexing Enable (R/W)

1 = FERR# asserted by the processor to indicate a pending break 
event within the processor 

0 =  Indicates compatible FERR# signaling behavior
This bit must be set to 1 to support XAPIC interrupt model usage.

Branch Trace Storage Unavailable (RO)

1 = Processor doesn’t support branch trace storage (BTS)
0 = BTS is supported

12 Precise Event Based Sampling Unavailable (RO) 

1 = Processor does not support precise event-based sampling (PEBS); 
0 = PEBS is supported. 
The Pentium M processor does not support PEBS.

15:13 Reserved.

16 Enhanced Intel SpeedStep Technology Enable (R/W) 

1 = Enhanced Intel SpeedStep Technology enabled.
On the Pentium M processor, this bit may be configured to be read-only.

22:17 Reserved.

23 xTPR Message Disable (R/W)

When set to 1, xTPR messages are disabled. xTPR messages are optional 
messages that allow the processor to inform the chipset of its priority. 
The default is processor specific.

63:24 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-3) that points to the MSR containing the most 
recent branch record. See also:

• MSR_LASTBRANCH_0_FROM_IP (at 40H)
• Section 17.11, “Last Branch, Interrupt, and Exception Recording 

(Pentium M Processors)”

1D9H 473 MSR_DEBUGCTLB Debug Control (R/W) 

Controls how several debug features are used. Bit definitions are 
discussed in the referenced section.

See Section 17.11, “Last Branch, Interrupt, and Exception Recording 
(Pentium M Processors).”

Table 35-22.  MSRs in Pentium M Processors (Contd.)
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1DDH 477 MSR_LER_TO_LIP Last Exception Record To Linear IP (R) 

This area contains a pointer to the target of the last branch instruction 
that the processor executed prior to the last exception that was 
generated or the last interrupt that was handled.

See Section 17.11, “Last Branch, Interrupt, and Exception Recording 
(Pentium M Processors)” and Section 17.12.2, “Last Branch and Last 
Exception MSRs.”

1DEH 478 MSR_LER_FROM_LIP Last Exception Record From Linear IP (R) 

Contains a pointer to the last branch instruction that the processor 
executed prior to the last exception that was generated or the last 
interrupt that was handled.

See Section 17.11, “Last Branch, Interrupt, and Exception Recording 
(Pentium M Processors)” and Section 17.12.2, “Last Branch and Last 
Exception MSRs.”

2FFH 767 IA32_MTRR_DEF_TYPE Default Memory Types (R/W) 

Sets the memory type for the regions of physical memory that are not 
mapped by the MTRRs. 

See Section 11.11.2.1, “IA32_MTRR_DEF_TYPE MSR.”

400H 1024 IA32_MC0_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR See Section 14.3.2.3., “IA32_MCi_ADDR MSRs”. 

The IA32_MC0_ADDR register is either not implemented or contains no 
address if the ADDRV flag in the IA32_MC0_STATUS register is clear. 
When not implemented in the processor, all reads and writes to this MSR 
will cause a general-protection exception.

404H 1028 IA32_MC1_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not implemented or contains no 
address if the ADDRV flag in the IA32_MC1_STATUS register is clear. 
When not implemented in the processor, all reads and writes to this MSR 
will cause a general-protection exception.

408H 1032 IA32_MC2_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS See Chapter 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented or contains no 
address if the ADDRV flag in the IA32_MC2_STATUS register is clear. 
When not implemented in the processor, all reads and writes to this MSR 
will cause a general-protection exception.

40CH 1036 MSR_MC4_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC4_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

Table 35-22.  MSRs in Pentium M Processors (Contd.)
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...

22.Updates to Appendix A, Volume 3C
Change bars show changes to Appendix A of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3C: System Programming Guide, Part 3.

------------------------------------------------------------------------------------------

...

A.1 BASIC VMX INFORMATION
The IA32_VMX_BASIC MSR (index 480H) consists of the following fields:
• Bits 30:0 contain the 31-bit VMCS revision identifier used by the processor. Processors that use the same 

VMCS revision identifier use the same size for VMCS regions (see subsequent item on bits 44:32).1

• Bit 31 is always 0.
• Bits 44:32 report the number of bytes that software should allocate for the VMXON region and any VMCS 

region. It is a value greater than 0 and at most 4096 (bit 44 is set if and only if bits 43:32 are clear).

40EH 1038 MSR_MC4_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or contains no 
address if the ADDRV flag in the MSR_MC4_STATUS register is clear. 
When not implemented in the processor, all reads and writes to this MSR 
will cause a general-protection exception.

410H 1040 MSR_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC3_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 MSR_MC3_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The MSR_MC3_ADDR register is either not implemented or contains no 
address if the ADDRV flag in the MSR_MC3_STATUS register is clear. 
When not implemented in the processor, all reads and writes to this MSR 
will cause a general-protection exception.

600H 1536 IA32_DS_AREA DS Save Area (R/W)

See Table 35-2.

Points to the DS buffer management area, which is used to manage the 
BTS and PEBS buffers. See Section 18.11.4, “Debug Store (DS) 
Mechanism.”

31:0 DS Buffer Management Area

Linear address of the first byte of the DS buffer management area.

63:32 Reserved.

Table 35-22.  MSRs in Pentium M Processors (Contd.)
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1. Earlier versions of this manual specified that the VMCS revision identifier was a 32-bit field in bits 31:0 of this MSR. For all proces-
sors produced prior to this change, bit 31 of this MSR was read as 0.
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• Bit 48 indicates the width of the physical addresses that may be used for the VMXON region, each VMCS, and 
data structures referenced by pointers in a VMCS (I/O bitmaps, virtual-APIC page, MSR areas for VMX transi-
tions). If the bit is 0, these addresses are limited to the processor’s physical-address width.1 If the bit is 1, 
these addresses are limited to 32 bits. This bit is always 0 for processors that support Intel 64 architecture.

• If bit 49 is read as 1, the logical processor supports the dual-monitor treatment of system-management 
interrupts and system-management mode. See Section 34.15 for details of this treatment.

• Bits 53:50 report the memory type that the logical processor uses to access the VMCS for VMREAD and 
VMWRITE and to access the VMCS, data structures referenced by pointers in the VMCS (I/O bitmaps, virtual-
APIC page, MSR areas for VMX transitions), and the MSEG header during VM entries, VM exits, and in VMX 
non-root operation.2

The first processors to support VMX operation use the write-back type. The values used are given in 
Table A-1.

If software needs to access these data structures (e.g., to modify the contents of the MSR bitmaps), it can 
configure the paging structures to map them into the linear-address space. If it does so, it should establish 
mappings that use the memory type reported in this MSR.3

• If bit 54 is read as 1, the logical processor reports information in the VM-exit instruction-information field on 
VM exits due to execution of the INS and OUTS instructions. This reporting is done only if this bit is read as 1.

• Bit 55 is read as 1 if any VMX controls that default to 1 may be cleared to 0. See Appendix A.2 for details. It 
also reports support for the VMX capability MSRs IA32_VMX_TRUE_PINBASED_CTLS, 
IA32_VMX_TRUE_PROCBASED_CTLS, IA32_VMX_TRUE_EXIT_CTLS, and IA32_VMX_TRUE_ENTRY_CTLS. 
See Appendix A.3.1, Appendix A.3.2, Appendix A.4, and Appendix A.5 for details.

• The values of bits 47:45 and bits 63:56 are reserved and are read as 0.

...

A.6 MISCELLANEOUS DATA
The IA32_VMX_MISC MSR (index 485H) consists of the following fields:

1. On processors that support Intel 64 architecture, the pointer must not set bits beyond the processor's physical address width.

2. If the MTRRs are disabled by clearing the E bit (bit 11) in the IA32_MTRR_DEF_TYPE MSR, the logical processor uses the UC mem-
ory type to access the indicated data structures, regardless of the value reported in bits 53:50 in the IA32_VMX_BASIC MSR. The 
processor will also use the UC memory type if the setting of CR0.CD on this logical processor (or another logical processor on the 
same physical processor) would cause it to do so for all memory accesses. The values of IA32_MTRR_DEF_TYPE.E and CR0.CD do 
not affect the value reported in IA32_VMX_BASIC[53:50].

Table A-1.  Memory Types Used For VMCS Access
Value(s) Field

0 Uncacheable (UC)

1–5 Not used

6 Write Back (WB)

7–15 Not used

3. Alternatively, software may map any of these regions or structures with the UC memory type. (This may be necessary for the 
MSEG header.) Doing so is discouraged unless necessary as it will cause the performance of software accesses to those structures 
to suffer. The processor will continue to use the memory type reported in the VMX capability MSR IA32_VMX_BASIC with the 
exceptions noted.
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• Bits 4:0 report a value X that specifies the relationship between the rate of the VMX-preemption timer and 
that of the timestamp counter (TSC). Specifically, the VMX-preemption timer (if it is active) counts down by 1 
every time bit X in the TSC changes due to a TSC increment.

• If bit 5 is read as 1, VM exits store the value of IA32_EFER.LMA into the “IA-32e mode guest” VM-entry 
control; see Section 27.2 for more details. This bit is read as 1 on any logical processor that supports the 1-
setting of the “unrestricted guest” VM-execution control.

• Bits 8:6 report, as a bitmap, the activity states supported by the implementation:

— Bit 6 reports (if set) the support for activity state 1 (HLT).

— Bit 7 reports (if set) the support for activity state 2 (shutdown).

— Bit 8 reports (if set) the support for activity state 3 (wait-for-SIPI).
If an activity state is not supported, the implementation causes a VM entry to fail if it attempts to establish 
that activity state. All implementations support VM entry to activity state 0 (active).

• If bit 15 is read as 1, the RDMSR instruction can be used in system-management mode (SMM) to read the 
IA32_SMBASE MSR (MSR address 9EH). See Section 34.15.6.4.

• Bits 24:16 indicate the number of CR3-target values supported by the processor. This number is a value 
between 0 and 256, inclusive (bit 24 is set if and only if bits 23:16 are clear).

• Bits 27:25 is used to compute the recommended maximum number of MSRs that should appear in the 
VM-exit MSR-store list, the VM-exit MSR-load list, or the VM-entry MSR-load list. Specifically, if the value 
bits 27:25 of IA32_VMX_MISC is N, then 512 * (N + 1) is the recommended maximum number of MSRs to be 
included in each list. If the limit is exceeded, undefined processor behavior may result (including a machine 
check during the VMX transition).

• If bit 28 is read as 1, bit 2 of the IA32_SMM_MONITOR_CTL can be set to 1. VMXOFF unblocks SMIs unless 
IA32_SMM_MONITOR_CTL[bit 2] is 1 (see Section 34.14.4).

• If bit 29 is read as 1, software can use VMWRITE to write to any supported field in the VMCS; otherwise, 
VMWRITE cannot be used to modify VM-exit information fields.

• Bits 63:32 report the 32-bit MSEG revision identifier used by the processor.
• Bits 14:9 and bits 31:28 are reserved and are read as 0.

...

23.Updates to Appendix B, Volume 3C
Change bars show changes to Appendix B of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3C: System Programming Guide, Part 3.

------------------------------------------------------------------------------------------

...

B.1 16-BIT FIELDS
A value of 0 in bits 14:13 of an encoding indicates a 16-bit field. Only guest-state areas and the host-state area 
contain 16-bit fields. As noted in Section 24.11.2, each 16-bit field allows only full access, meaning that bit 0 of 
its encoding is 0. Each such encoding is thus an even number.
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B.1.1  16-Bit Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are distinguished by their index 
value in bits 9:1. Table B-1 enumerates the 16-bit control fields.

...

B.2 64-BIT FIELDS
A value of 1 in bits 14:13 of an encoding indicates a 64-bit field. There are 64-bit fields only for controls and for 
guest state. As noted in Section 24.11.2, every 64-bit field has two encodings, which differ on bit 0, the access 
type. Thus, each such field has an even encoding for full access and an odd encoding for high access.

B.2.1  64-Bit Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are distinguished by their index 
value in bits 9:1. Table B-4 enumerates the 64-bit control fields.

Table B-1.  Encoding for 16-Bit Control Fields (0000_00xx_xxxx_xxx0B)
Field Name Index Encoding

Virtual-processor identifier (VPID)1 000000000B 00000000H

Posted-interrupt notification vector2 000000001B 00000002H

EPTP index3 000000010B 00000004H
NOTES:

1. This field exists only on processors that support the 1-setting of the “enable VPID” VM-execution control.
2. This field exists only on processors that support the 1-setting of the “process posted interrupts” VM-execution control.
3. This field exists only on processors that support the 1-setting of the “EPT-violation #VE” VM-execution control.

Table B-4.  Encodings for 64-Bit Control Fields (0010_00xx_xxxx_xxxAb)
Field Name Index Encoding

Address of I/O bitmap A (full)
000000000B

00002000H

Address of I/O bitmap A (high) 00002001H

Address of I/O bitmap B (full)
000000001B

00002002H

Address of I/O bitmap B (high) 00002003H

Address of MSR bitmaps (full)1
000000010B

00002004H

Address of MSR bitmaps (high)1 00002005H

VM-exit MSR-store address (full)
000000011B

00002006H

VM-exit MSR-store address (high) 00002007H

VM-exit MSR-load address (full)
000000100B

00002008H

VM-exit MSR-load address (high) 00002009H

VM-entry MSR-load address (full)
000000101B

0000200AH

VM-entry MSR-load address (high) 0000200BH

Executive-VMCS pointer (full)
000000110B

0000200CH

Executive-VMCS pointer (high) 0000200DH



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 421

TSC offset (full)
000001000B

00002010H

TSC offset (high) 00002011H

Virtual-APIC address (full)2
000001001B

00002012H

Virtual-APIC address (high)2 00002013H

APIC-access address (full)3
000001010B

00002014H

APIC-access address (high)3 00002015H

Posted-interrupt descriptor address (full)4
000001011B

00002016H

Posted-interrupt descriptor address (high)4 00002017H

VM-function controls (full)5
000001100B

00002018H

VM-function controls (high)5 00002019H

EPT pointer (EPTP; full)6
000001101B

0000201AH

EPT pointer (EPTP; high)6 0000201BH

EOI-exit bitmap 0 (EOI_EXIT0; full)7
000001110B

0000201CH

EOI-exit bitmap 0 (EOI_EXIT0; high)7 0000201DH

EOI-exit bitmap 1 (EOI_EXIT1; full)7
000001111B

0000201EH

EOI-exit bitmap 1 (EOI_EXIT1; high)7 0000201FH

EOI-exit bitmap 2 (EOI_EXIT2; full)7
000010000B

00002020H

EOI-exit bitmap 2 (EOI_EXIT2; high)7 00002021H

EOI-exit bitmap 3 (EOI_EXIT3; full)7
000010001B

00002022H

EOI-exit bitmap 3 (EOI_EXIT3; high)7 00002023H

EPTP-list address (full)8
000010010B

00002024H

EPTP-list address (high)8 00002025H

VMREAD-bitmap address (full)9
000010011B

00002026H

VMREAD-bitmap address (high)9 00002027H

VMWRITE-bitmap address (full)9
000010100B

00002028H

VMWRITE-bitmap address (high)9 00002029H

Virtualization-exception information address (full)10

000010101B
0000202AH

Virtualization-exception information address (high)10 0000202BH
NOTES:

1. This field exists only on processors that support the 1-setting of the “use MSR bitmaps” 
VM-execution control.

2. This field exists only on processors that support either the 1-setting of the “use TPR shadow” VM-execution control.
3. This field exists only on processors that support the 1-setting of the “virtualize APIC accesses” VM-execution control.
4. This field exists only on processors that support the 1-setting of the “process posted interrupts” VM-execution control.
5. This field exists only on processors that support the 1-setting of the “enable VM functions” VM-execution control.
6. This field exists only on processors that support the 1-setting of the “enable EPT” VM-execution control.
7. This field exists only on processors that support the 1-setting of the “virtual-interrupt delivery” VM-execution control.
8. This field exists only on processors that support the 1-setting of the “EPTP switching” VM-function control.

Table B-4.  Encodings for 64-Bit Control Fields (0010_00xx_xxxx_xxxAb) (Contd.)
Field Name Index Encoding
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...

B.3 32-BIT FIELDS
A value of 2 in bits 14:13 of an encoding indicates a 32-bit field. As noted in Section 24.11.2, each 32-bit field 
allows only full access, meaning that bit 0 of its encoding is 0. Each such encoding is thus an even number.

...

B.4 NATURAL-WIDTH FIELDS
A value of 3 in bits 14:13 of an encoding indicates a natural-width field. As noted in Section 24.11.2, each of these 
fields allows only full access, meaning that bit 0 of its encoding is 0. Each such encoding is thus an even number.

...

9. This field exists only on processors that support the 1-setting of the “VMCS shadowing” VM-execution control.
10.This field exists only on processors that support the 1-setting of the “EPT-violation #VE” VM-execution control.
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