
Document Number: 252046-040

Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Documentation Changes

September 2013

Notice: The Intel® 64 and IA-32 architectures may contain design defects or errors known as errata
that may cause the product to deviate from published specifications. Current characterized errata are
documented in the specification updates.

2 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Legal Lines and DisclaimersINFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED
IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY
OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal
injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL
INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND
EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES
ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY
WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE
DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the
absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition
and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information
here is subject to change without notice. Do not finalize a design with this information.

Intel, the Intel logo, Pentium, Xeon, Intel NetBurst, Intel Core, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo, Intel Core 2
Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, Intel Atom, and VTune are trademarks of Intel Corporation in the U.S.
and/or other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copyright © 1997-2013 Intel Corporation. All rights reserved.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 3

Contents

Revision History . 4

Preface . 7

Summary Tables of Changes . 8

Documentation Changes. 9

Revision History

4 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Revision History

Revision Description Date

-001 • Initial release November 2002

-002
• Added 1-10 Documentation Changes.
• Removed old Documentation Changes items that already have been

incorporated in the published Software Developer’s manual
December 2002

-003

• Added 9 -17 Documentation Changes.
• Removed Documentation Change #6 - References to bits Gen and Len

Deleted.
• Removed Documentation Change #4 - VIF Information Added to CLI

Discussion

February 2003

-004 • Removed Documentation changes 1-17.
• Added Documentation changes 1-24. June 2003

-005 • Removed Documentation Changes 1-24.
• Added Documentation Changes 1-15.

September 2003

-006 • Added Documentation Changes 16- 34. November 2003

-007 • Updated Documentation changes 14, 16, 17, and 28.
• Added Documentation Changes 35-45.

January 2004

-008 • Removed Documentation Changes 1-45.
• Added Documentation Changes 1-5.

March 2004

-009 • Added Documentation Changes 7-27. May 2004

-010 • Removed Documentation Changes 1-27.
• Added Documentation Changes 1.

August 2004

-011 • Added Documentation Changes 2-28. November 2004

-012 • Removed Documentation Changes 1-28.
• Added Documentation Changes 1-16.

March 2005

-013
• Updated title.
• There are no Documentation Changes for this revision of the

document.
July 2005

-014 • Added Documentation Changes 1-21. September 2005

-015 • Removed Documentation Changes 1-21.
• Added Documentation Changes 1-20.

March 9, 2006

-016 • Added Documentation changes 21-23. March 27, 2006

-017 • Removed Documentation Changes 1-23.
• Added Documentation Changes 1-36.

September 2006

-018 • Added Documentation Changes 37-42. October 2006

-019 • Removed Documentation Changes 1-42.
• Added Documentation Changes 1-19.

March 2007

-020 • Added Documentation Changes 20-27. May 2007

-021 • Removed Documentation Changes 1-27.
• Added Documentation Changes 1-6

November 2007

-022 • Removed Documentation Changes 1-6
• Added Documentation Changes 1-6

August 2008

-023 • Removed Documentation Changes 1-6
• Added Documentation Changes 1-21

March 2009

Revision History

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 5

§

-024 • Removed Documentation Changes 1-21
• Added Documentation Changes 1-16

June 2009

-025 • Removed Documentation Changes 1-16
• Added Documentation Changes 1-18

September 2009

-026 • Removed Documentation Changes 1-18
• Added Documentation Changes 1-15

December 2009

-027 • Removed Documentation Changes 1-15
• Added Documentation Changes 1-24

March 2010

-028 • Removed Documentation Changes 1-24
• Added Documentation Changes 1-29

June 2010

-029 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

September 2010

-030 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

January 2011

-031 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

April 2011

-032 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-14

May 2011

-033 • Removed Documentation Changes 1-14
• Added Documentation Changes 1-38

October 2011

-034 • Removed Documentation Changes 1-38
• Added Documentation Changes 1-16

December 2011

-035 • Removed Documentation Changes 1-16
• Added Documentation Changes 1-18

March 2012

-036 • Removed Documentation Changes 1-18
• Added Documentation Changes 1-17

May 2012

-037 • Removed Documentation Changes 1-17
• Added Documentation Changes 1-28

August 2012

-038 • Removed Documentation Changes 1-28
• Add Documentation Changes 1-22

January 2013

-039 • Removed Documentation Changes 1-22
• Add Documentation Changes 1-17

June 2013

-040 • Removed Documentation Changes 1-17
• Add Documentation Changes 1-24

September 2013

Revision Description Date

Revision History

6 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 7

Preface

This document is an update to the specifications contained in the Affected Documents table below. This
document is a compilation of device and documentation errata, specification clarifications and changes. It is
intended for hardware system manufacturers and software developers of applications, operating systems, or
tools.

Affected Documents

Nomenclature
Documentation Changes include typos, errors, or omissions from the current published specifications. These
will be incorporated in any new release of the specification.

Document Title Document Number/
Location

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture 253665

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A: Instruction Set
Reference, A-M 253666

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B: Instruction Set
Reference, N-Z 253667

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2C: Instruction Set
Reference 326018

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A: System
Programming Guide, Part 1 253668

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B: System
Programming Guide, Part 2 253669

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C: System
Programming Guide, Part 3 326019

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 8

Summary Tables of Changes

The following table indicates documentation changes which apply to the Intel® 64 and IA-32 architectures. This
table uses the following notations:

Codes Used in Summary Tables
Change bar to left of table row indicates this erratum is either new or modified from the previous version of the
document.

Documentation Changes
No. DOCUMENTATION CHANGES

1 Updates to Chapter 2, Volume 1

2 Updates to Chapter 3, Volume 1

3 Updates to Chapter 10, Volume 1

4 Updates to Chapter 11, Volume 1

5 New Chapter 13, Volume 1

6 Updates to Appendix C, Volume 1

7 Updates to Appendix E, Volume 1

8 Updates to Chapter 3, Volume 2A

9 Updates to Chapter 4, Volume 2B

10 Updates to Appendix A, Volume 2C

11 Updates to Chapter 2, Volume 3A

12 Updates to Chapter 5, Volume 3A

13 Updates to Chapter 6, Volume 3A

14 Updates to Chapter 7, Volume 3A

15 Updates to Chapter 10, Volume 3A

16 Updates to Chapter 13, Volume 3A

17 Updates to Chapter 14, Volume 3B

18 Updates to Chapter 15, Volume 3B

19 Updates to Chapter 16, Volume 3B

20 Updates to Chapter 17, Volume 3B

21 Updates to Chapter 18, Volume 3B

22 Updates to Chapter 31, Volume 3C

23 Updates to Chapter 34, Volume 3C

24 Updates to Chapter 35, Volume 3C

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

Documentation Changes

1. Updates to Chapter 2, Volume 1
Change bars show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

2.2.10 Intel® 64 Architecture
Intel 64 architecture increases the linear address space for software to 64 bits and supports physical address
space up to 46 bits. The technology also introduces a new operating mode referred to as IA-32e mode.

IA-32e mode operates in one of two sub-modes: (1) compatibility mode enables a 64-bit operating system to run
most legacy 32-bit software unmodified, (2) 64-bit mode enables a 64-bit operating system to run applications
written to access 64-bit address space.

In the 64-bit mode, applications may access:
• 64-bit flat linear addressing
• 8 additional general-purpose registers (GPRs)
• 8 additional registers for streaming SIMD extensions (SSE, SSE2, SSE3 and SSSE3)
• 64-bit-wide GPRs and instruction pointers
• uniform byte-register addressing
• fast interrupt-prioritization mechanism
• a new instruction-pointer relative-addressing mode

An Intel 64 architecture processor supports existing IA-32 software because it is able to run all non-64-bit
legacy modes supported by IA-32 architecture. Most existing IA-32 applications also run in compatibility mode.

...

2. Updates to Chapter 3, Volume 1
Change bars show changes to Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

3.2.1 64-Bit Mode Execution Environment
The execution environment for 64-bit mode is similar to that described in Section 3.2. The following paragraphs
describe the differences that apply.
• Address space — A task or program running in 64-bit mode on an IA-32 processor can address linear

address space of up to 264 bytes (subject to the canonical addressing requirement described in Section
3.3.7.1) and physical address space of up to 246 bytes. Software can query CPUID for the physical address
size supported by a processor.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 10

• Basic program execution registers — The number of general-purpose registers (GPRs) available is 16.
GPRs are 64-bits wide and they support operations on byte, word, doubleword and quadword integers.
Accessing byte registers is done uniformly to the lowest 8 bits. The instruction pointer register becomes 64
bits. The EFLAGS register is extended to 64 bits wide, and is referred to as the RFLAGS register. The upper 32
bits of RFLAGS is reserved. The lower 32 bits of RFLAGS is the same as EFLAGS. See Figure 3-2.

• XMM registers — There are 16 XMM data registers for SIMD operations. See Section 10.2, “SSE
Programming Environment,” for more information about these registers.

• Stack — The stack pointer size is 64 bits. Stack size is not controlled by a bit in the SS descriptor (as it is in
non-64-bit modes) nor can the pointer size be overridden by an instruction prefix.

• Control registers — Control registers expand to 64 bits. A new control register (the task priority register:
CR8 or TPR) has been added. See Chapter 2, “Intel® 64 and IA-32 Architectures,” in this volume.

• Debug registers — Debug registers expand to 64 bits. See Chapter 17, “Debugging, Branch Profiles and
Time-Stamp Counter,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Descriptor table registers — The global descriptor table register (GDTR) and interrupt descriptor table
register (IDTR) expand to 10 bytes so that they can hold a full 64-bit base address. The local descriptor table
register (LDTR) and the task register (TR) also expand to hold a full 64-bit base address.

...

3.4.3.3 System Flags and IOPL Field
The system flags and IOPL field in the EFLAGS register control operating-system or executive operations. They
should not be modified by application programs. The functions of the system flags are as follows:
TF (bit 8) Trap flag — Set to enable single-step mode for debugging; clear to disable single-step

mode.
IF (bit 9) Interrupt enable flag — Controls the response of the processor to maskable interrupt

requests. Set to respond to maskable interrupts; cleared to inhibit maskable interrupts.
IOPL (bits 12 and 13)

I/O privilege level field — Indicates the I/O privilege level of the currently running
program or task. The current privilege level (CPL) of the currently running program or task
must be less than or equal to the I/O privilege level to access the I/O address space. The
POPF and IRET instructions can modify this field only when operating at a CPL of 0.

NT (bit 14) Nested task flag — Controls the chaining of interrupted and called tasks. Set when the
current task is linked to the previously executed task; cleared when the current task is not
linked to another task.

RF (bit 16) Resume flag — Controls the processor’s response to debug exceptions.
VM (bit 17) Virtual-8086 mode flag — Set to enable virtual-8086 mode; clear to return to protected

mode without virtual-8086 mode semantics.
AC (bit 18) Alignment check flag — Set this flag and the AM bit in the CR0 register to enable alignment

checking of memory references; clear the AC flag and/or the AM bit to disable alignment
checking.

VIF (bit 19) Virtual interrupt flag — Virtual image of the IF flag. Used in conjunction with the VIP flag.
(To use this flag and the VIP flag the virtual mode extensions are enabled by setting the VME
flag in control register CR4.)

VIP (bit 20) Virtual interrupt pending flag — Set to indicate that an interrupt is pending; clear when
no interrupt is pending. (Software sets and clears this flag; the processor only reads it.) Used
in conjunction with the VIF flag.

ID (bit 21) Identification flag — The ability of a program to set or clear this flag indicates support for
the CPUID instruction.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 11

For a detailed description of these flags: see Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3A.

...

3. Updates to Chapter 10, Volume 1
Change bars show changes to Chapter 10of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

10.4.6.1 Cacheability Control Instructions
The following three instructions enable data from the MMX and XMM registers to be stored to memory using a
non-temporal hint. The non-temporal hint directs the processor to store the data to memory without writing the
data into the cache hierarchy. See Section 10.4.6.2, “Caching of Temporal vs. Non-Temporal Data,” for informa-
tion about non-temporal stores and hints.

The MOVNTQ (store quadword using non-temporal hint) instruction stores packed integer data from an MMX
register to memory, using a non-temporal hint.

The MOVNTPS (store packed single-precision floating-point values using non-temporal hint) instruction stores
packed floating-point data from an XMM register to memory, using a non-temporal hint.

The MASKMOVQ (store selected bytes of quadword) instruction stores selected byte integers from an MMX
register to memory, using a byte mask to selectively write the individual bytes. This instruction also uses a non-
temporal hint.

10.4.6.2 Caching of Temporal vs. Non-Temporal Data
Data referenced by a program can be temporal (data will be used again) or non-temporal (data will be referenced
once and not reused in the immediate future). For example, program code is generally temporal, whereas, multi-
media data, such as the display list in a 3-D graphics application, is often non-temporal. To make efficient use of
the processor’s caches, it is generally desirable to cache temporal data and not cache non-temporal data. Over-
loading the processor’s caches with non-temporal data is sometimes referred to as “polluting the caches.” The
SSE and SSE2 cacheability control instructions enable a program to write non-temporal data to memory in a
manner that minimizes pollution of caches.

These SSE and SSE2 non-temporal store instructions minimize cache pollutions by treating the memory being
accessed as the write combining (WC) type. If a program specifies a non-temporal store with one of these instruc-
tions and the destination region is mapped as cacheable memory (write back [WB], write through [WT] or WC
memory type), the processor will do the following:
• If the memory location being written to is present in the cache hierarchy, the data in the caches is evicted.1

• The non-temporal data is written to memory with WC semantics.

See also: Chapter 11, “Memory Cache Control,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A.

Using the WC semantics, the store transaction will be weakly ordered, meaning that the data may not be written
to memory in program order, and the store will not write allocate (that is, the processor will not fetch the corre-

1. Some older CPU implementations (e.g., Pentium M) allowed addresses being written with a non-temporal store instrucion to be
updated in-place if the memory type was not WC and line was already in the cache.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 12

sponding cache line into the cache hierarchy, prior to performing the store). Also, different processor implemen-
tations may choose to collapse and combine these stores.

The memory type of the region being written to can override the non-temporal hint, if the memory address spec-
ified for the non-temporal store is in uncacheable memory. Uncacheable as referred to here means that the region
being written to has been mapped with either an uncacheable (UC) or write protected (WP) memory type.

In general, WC semantics require software to ensure coherence, with respect to other processors and other
system agents (such as graphics cards). Appropriate use of synchronization and fencing must be performed for
producer-consumer usage models. Fencing ensures that all system agents have global visibility of the stored
data; for instance, failure to fence may result in a written cache line staying within a processor and not being
visible to other agents.

The memory type visible on the bus in the presence of memory type aliasing is implementation specific. As one
possible example, the memory type written to the bus may reflect the memory type for the first store to this line,
as seen in program order; other alternatives are possible. This behavior should be considered reserved, and
dependence on the behavior of any particular implementation risks future incompatibility.

NOTE
Some older CPU implementations (e.g., Pentium M) may implement non-temporal stores by
updating in place data that already reside in the cache hierarchy. For such processors, the
destination region should also be mapped as WC. If mapped as WB or WT, there is the potential
for speculative processor reads to bring the data into the caches; in this case, non-temporal
stores would then update in place, and data would not be flushed from the processor by a
subsequent fencing operation.

...

10.5 FXSAVE AND FXRSTOR INSTRUCTIONS
The FXSAVE and FXRSTOR instructions were introduced into the IA-32 architecture in the Pentium II processor
family (prior to the introduction of the SSE extensions). The original versions of these instructions performed a
fast save and restore, respectively, of the x87 FPU register state. (By saving the state of the x87 FPU data regis-
ters, the FXSAVE and FXRSTOR instructions implicitly save and restore the state of the MMX registers.)

The SSE extensions expanded the scope of these instructions to save and restore the states of the XMM registers
and the MXCSR register, along with the x87 FPU and MMX state.

The FXSAVE and FXRSTOR instructions can be used in place of the FSAVE/FNSAVE and FRSTOR instructions;
however, the operation of the FXSAVE and FXRSTOR instructions are not identical to the operation of FSAVE/
FNSAVE and FRSTOR.

NOTE
The FXSAVE and FXRSTOR instructions are not considered part
of the SSE instruction group. They have a separate CPUID
feature bit to indicate whether they are present (if CPUID.01H:EDX.FXSR[bit 24] = 1).

The CPUID feature bit for SSE extensions does not indicate the presence of FXSAVE and FXRSTOR.

The FXSAVE and FXRSTOR instructions support the saving and restoring of the x87 execution environment (x87
state) and the registers used by the streaming SIMD extensions (SSE state). They extend the instructions
FSAVE/FNSAVE and FRSTOR, which can be used for the x87 state, to save and restore SSE state.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 13

A processor enumerates support for the FXSAVE and FXRSTOR instructions using the CPUID instruction. Specifi-
cally, CPUID.1:EDX.FXSR[bit 24] enumerates support for FXSAVE and FXRSTOR. Software enables FXSAVE and
FXRSTOR by setting CR4.OSFXSR[bit 9] to 1 (e.g., with the MOV to CR4 instruction). If this bit is 0, execution of
either FXRSTOR or FXSAVE causes an invalid-opcode exception (#UD).

The FXSAVE and FXRSTOR instructions organize x87 state and SSE state in a region of memory called the
FXSAVE area. Section 10.5.1 provides details of the FXSAVE area and its format. Section 10.5.2 describes oper-
ation of FXSAVE, and Section 10.5.3 describes the operation of FXRSTOR.

10.5.1 FXSAVE Area
The FXSAVE and FXRSTOR instructions organize x87 state and SSE state in a region of memory called the
FXSAVE area. Each of the instructions takes a memory operand that specifies the 16-byte aligned base address
of the FXSAVE area on which it operates.

Every FXSAVE area comprises the 512 bytes starting at the area’s base address. Table 10-2 illustrates the format
of the first 416 bytes of the legacy region of an FXSAVE area.

Table 10-2 Format of an FXSAVE Area
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
 CS or FPU
IP bits 63:32

FPU IP bits 31:0 FOP Rsvd. FTW FSW FCW 0

MXCSR_MASK MXCSR Reserved
 DS or

FPU DP
bits 63:32

 FPU DP bits 31:0 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

XMM8 288

XMM9 304

XMM10 320

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 14

The x87 state component comprises bytes 23:0 and bytes 159:32. The SSE state component comprises
bytes 31:24 and bytes 415:160. FXSAVE and FXRSTOR do not use bytes 511:416; bytes 463:416 are reserved.

Section 10.5.2 and Section 10.5.3 provide details of how FXSAVE and FXRSTOR use an FXSAVE area.

10.5.1.1 x87 State
Table 10-2 illustrates how FXSAVE and FXRSTOR organize x87 state and SSE state; the x87 state is listed below,
along with details of its interactions with FXSAVE and FXRSTOR:
• Bytes 1:0, 3:2, and 7:6 are used for x87 FPU Control Word (FCW), x87 FPU Status Word (FSW), and x87 FPU

Opcode (FOP), respectively.
• Byte 4 is used for an abridged version of the x87 FPU Tag Word (FTW). The following items describe its usage:

— For each j, 0 ≤ j ≤ 7, FXSAVE saves a 0 into bit j of byte 4 if x87 FPU data register STj has a empty tag;
otherwise, FXSAVE saves a 1 into bit j of byte 4.

— For each j, 0 ≤ j ≤ 7, FXRSTOR establishes the tag value for x87 FPU data register STj as follows. If bit j of
byte 4 is 0, the tag for STj in the tag register for that data register is marked empty (11B); otherwise, the
x87 FPU sets the tag for STj based on the value being loaded into that register (see below).

• Bytes 15:8 are used as follows:

— If the instruction has no REX prefix, or if REX.W = 0:

• Bytes 11:8 are used for bits 31:0 of the x87 FPU Instruction Pointer Offset (FIP).

• If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 0, bytes 13:12 are used for x87 FPU Instruction Pointer
Selector (FPU CS). Otherwise, the processor deprecates the FPU CS value; XRSTOR ignores this field,
and XSAVE and XSAVEOPT save it as 0000H.

• Bytes 15:14 are not used.

— If the instruction has a REX prefix with REX.W = 1, bytes 15:8 are used for the full 64 bits of FIP.
• Bytes 23:16 are used as follows:

— If the instruction has no REX prefix, or if REX.W = 0:

• Bytes 19:16 are used for bits 31:0 of the x87 FPU Data Pointer Offset (FDP).

• If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 0, bytes 21:20 are used for x87 FPU Data Pointer
Selector (FPU DS). Otherwise, the processor deprecates the FPU DS value; XRSTOR ignores this field,
and XSAVE and XSAVEOPT save it as 0000H.

• Bytes 23:22 are not used.

— If the instruction has a REX prefix with REX.W = 1, bytes 23:16 are used for the full 64 bits of FDP.
• Bytes 31:24 are used for SSE state (see Section 10.5.1.2).
• Bytes 159:32 are used for the registers ST0–ST7 (MM0–MM7). Each of the 8 register is allocated a 128-bit

region, with the low 80 bits used for the register and the upper 48 bits unused.

XMM11 336

XMM12 352

XMM13 368

XMM14 384

XMM15 400

Table 10-2 Format of an FXSAVE Area (Contd.)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 15

10.5.1.2 SSE State
Table 10-2 illustrates how FXSAVE and FXRSTOR organize x87 state and SSE state; the SSE state is listed below,
along with details of its interactions with FXSAVE and FXRSTOR:
• Bytes 23:0 are used for x87 state (see Section 10.5.1.1).
• Bytes 27:24 are used for the MXCSR register. FXRSTOR generates a general-protection fault (#GP) in

response to an attempt to set any of the reserved bits in the MXCSR register.
• Bytes 31:28 are used for the MXCSR_MASK value. FXRSTOR ignores this field.
• Bytes 159:32 are used for x87 state.
• Bytes 287:160 are used for the registers XMM0–XMM7.
• Bytes 415:288 are used for the registers XMM8–XMM15. These fields are used only in 64-bit mode.

Executions of FXSAVE outside 64-bit mode do not write to these bytes; executions of FXRSTOR outside 64-bit
mode do not read these bytes and do not update XMM8–XMM15.

FXSAVE and FXRSTOR can operate on SSE state only if CR4.OSFXSR = 1; moreover, SSE instructions cannot be
used unless CR4.OSFXSR = 1.

10.5.2 Operation of FXSAVE
The FXSAVE instruction takes a single memory operand, which is an FXSAVE area. The following conditions cause
execution of the XSAVE instruction to generate a fault:
• If FXSAVE is not enabled (CR4.OSFXSR = 0), an invalid-opcode exception (#UD) occurs.
• If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
• If the address of the XSAVE area is not 16-byte aligned, a general-protection exception (#GP) occurs.

If none of these conditions cause a fault, the instruction stores x87 state and SSE state to the FXSAVE area. See
Section 10.5.1.1 and Section 10.5.1.2 for details regarding mode-specific operation and operation determined by
instruction prefixes.

10.5.3 Operation of FXRSTOR
The FXRSTOR instruction takes a single memory operand, which is an FXSAVE area. The following conditions
cause execution of the FXRSTOR instruction to generate a fault:
• If FXRSTOR is not enabled (CR4.OSFXSR = 0), an invalid-opcode exception (#UD) occurs.
• If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
• If the address of the FXSAVE area is not 16-byte aligned, a general-protection exception (#GP) occurs.
• If the value at bytes 27:24 of the FXSAVE area is not a legal value for the MXCSR register (e.g., the value sets

reserved bits).

If none of these conditions cause a fault, the instruction loads x87 state and SSE state rom the FXSAVE area. See
Section 10.5.1.1 and Section 10.5.1.2 for details regarding mode-specific operation and operation determined by
instruction prefixes.

...

4. Updates to Chapter 11, Volume 1
Change bars show changes to Chapter 11 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 16

...

11.4.4.2 Cacheability Control Instructions
The following four instructions enable data from XMM and general-purpose registers to be stored to memory using
a non-temporal hint. The non-temporal hint directs the processor to store data to memory without writing the
data into the cache hierarchy. See Section 10.4.6.2, “Caching of Temporal vs. Non-Temporal Data,” for more infor-
mation about non-temporal stores and hints.

The MOVNTDQ (store double quadword using non-temporal hint) instruction stores packed integer data from an
XMM register to memory, using a non-temporal hint.

The MOVNTPD (store packed double-precision floating-point values using non-temporal hint) instruction stores
packed double-precision floating-point data from an XMM register to memory, using a non-temporal hint.

The MOVNTI (store doubleword using non-temporal hint) instruction stores integer data from a general-purpose
register to memory, using a non-temporal hint.

The MASKMOVDQU (store selected bytes of double quadword) instruction stores selected byte integers from an
XMM register to memory, using a byte mask to selectively write the individual bytes. The memory location does
not need to be aligned on a natural boundary. This instruction also uses a non-temporal hint.

...

11.5.2.3 Divide-By-Zero Exception (#Z)
The processor reports a divide-by-zero exception when a DIVPS, DIVSS, DIVPD or DIVSD instruction attempts to
divide a finite non-zero operand by 0. The flag (ZE) and mask (ZM) bits for the divide-by-zero exception are bits
2 and 9, respectively, in the MXCSR register.

See Section 4.9.1.3, “Divide-By-Zero Exception (#Z),” for more information about the divide-by-zero exception.
See Section 11.5.4, “Handling SIMD Floating-Point Exceptions in Software,” for information on handling
unmasked exceptions.

The divide-by-zero exception is not affected by the flush-to-zero mode at a single-instruction boundary.

While DAZ does not affect the rules for signaling IEEE exceptions, operations on denormal inputs might have
different results when DAZ=1. As a consequence, DAZ can have an effect on the floating-point exceptions -
including the divide-by-zero exception - when observed for a given operation involving denormal inputs.

...

11.5.2.5 Numeric Underflow Exception (#U)
The processor reports a numeric underflow exception whenever the rounded result of an arithmetic instruction is
less than the smallest possible normalized, finite value that will fit in the destination operand and the numeric-
underflow exception is not masked. If the numeric underflow exception is masked, both underflow and the
inexact-result condition must be detected before numeric underflow is reported. This exception can be generated
with the ADDPS, ADDSS, ADDPD, ADDSD, SUBPS, SUBSS, SUBPD, SUBSD, MULPS, MULSS, MULPD, MULSD,
DIVPS, DIVSS, DIVPD, DIVSD, CVTPD2PS, CVTSD2SS, ADDSUBPD, ADDSUBPS, HADDPD, HADDPS, HSUBPD,
and HSUBPS instructions. The flag (UE) and mask (UM) bits for the numeric underflow exception are bits 4 and
11, respectively, in the MXCSR register.

The flush-to-zero flag (bit 15) of the MXCSR register provides an additional option for handling numeric underflow
exceptions. When this flag is set and the numeric underflow exception is masked, tiny results (results that trigger
the underflow exception) are returned as a zero with the sign of the true result (see Section 10.2.3.3, “Flush-To-
Zero”).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 17

Underflow will occur when a tiny non-zero result is detected, as described in the IEEE Standard 754-2008. While
DAZ does not affect the rules for signaling IEEE exceptions, operations on denormal inputs might have different
results when DAZ=1. As a consequence, DAZ can have an effect on the floating-point exceptions - including the
underflow exception - when observed for a given operation involving denormal inputs.

See Section 4.9.1.5, “Numeric Underflow Exception (#U),” for more information about the numeric underflow
exception. See Section 11.5.4, “Handling SIMD Floating-Point Exceptions in Software,” for information on
handling unmasked exceptions.

11.5.2.6 Inexact-Result (Precision) Exception (#P)
The inexact-result exception (also called the precision exception) occurs if the result of an operation is not exactly
representable in the destination format. For example, the fraction 1/3 cannot be precisely represented in binary
form. This exception occurs frequently and indicates that some (normally acceptable) accuracy has been lost. The
exception is supported for applications that need to perform exact arithmetic only. Because the rounded result is
generally satisfactory for most applications, this exception is commonly masked.

The flag (PE) and mask (PM) bits for the inexact-result exception are bits 2 and 12, respectively, in the MXCSR
register.

See Section 4.9.1.6, “Inexact-Result (Precision) Exception (#P),” for more information about the inexact-result
exception. See Section 11.5.4, “Handling SIMD Floating-Point Exceptions in Software,” for information on
handling unmasked exceptions.

In flush-to-zero mode, the inexact result exception is reported.

...

11.6.13 Cacheability Hint Instructions
SSE and SSE2 cacheability control instructions enable the programmer to control prefetching, caching, loading
and storing of data. When correctly used, these instructions improve application performance.

To make efficient use of the processor’s super-scalar microarchitecture, a program needs to provide a steady
stream of data to the executing program to avoid stalling the processor. PREFETCHh instructions minimize the
latency of data accesses in performance-critical sections of application code by allowing data to be fetched into
the processor cache hierarchy in advance of actual usage.

PREFETCHh instructions do not change the user-visible semantics of a program, although they may affect perfor-
mance. The operation of these instructions is implementation-dependent. Programmers may need to tune code
for each IA-32 processor implementation. Excessive usage of PREFETCHh instructions may waste memory band-
width and reduce performance. For more detailed information on the use of prefetch hints, refer to Chapter 7,
“Optimizing Cache Usage,”, in the Intel® 64 and IA-32 Architectures Optimization Reference Manual.

The non-temporal store instructions (MOVNTI, MOVNTPD, MOVNTPS, MOVNTDQ, MOVNTQ, MASKMOVQ, and
MASKMOVDQU) minimize cache pollution when writing non-temporal data to memory (see Section 10.4.6.1,
“Cacheability Control Instructions” and Section 10.4.6.2, “Caching of Temporal vs. Non-Temporal Data”). They
prevent non-temporal data from being written into processor caches on a store operation.

Besides reducing cache pollution, the use of weakly-ordered memory types can be important under certain data
sharing relationships, such as a producer-consumer relationship. The use of weakly ordered memory can make
the assembling of data more efficient; but care must be taken to ensure that the consumer obtains the data that
the producer intended. Some common usage models that may be affected in this way by weakly-ordered stores
are:
• Library functions that use weakly ordered memory to write results
• Compiler-generated code that writes weakly-ordered results
• Hand-crafted code

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 18

The degree to which a consumer of data knows that the data is weakly ordered can vary for these cases. As a
result, the SFENCE or MFENCE instruction should be used to ensure ordering between routines that produce
weakly-ordered data and routines that consume the data. SFENCE and MFENCE provide a performance-efficient
way to ensure ordering by guaranteeing that every store instruction that precedes SFENCE/MFENCE in program
order is globally visible before a store instruction that follows the fence.

...

5. New Chapter 13, Volume 1
Chapter 13 was added to the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic
Architecture.

--

CHAPTER 13
MANAGING STATE USING THE XSAVE FEATURE SET

The XSAVE feature set extends the functionality of the FXSAVE and FXRSTOR instructions (see Section 10.5,
“FXSAVE and FXRSTOR Instructions”) by supporting the saving and restoring of processor state in addition to the
x87 execution environment (x87 state) and the registers used by the streaming SIMD extensions (SSE state).

The XSAVE feature set comprises five instructions. XGETBV and XSETBV allow software to read and write the
extended control register XCR0, which controls the operation of the XSAVE feature set. XSAVE and XSAVEOPT are
two instructions that save processor state to memory; XRSTOR is a corresponding instruction that loads
processor state from memory.

The XSAVE feature set organizes the state that manages into state components. Operation of the instructions
is based on state-component bitmaps that have the same format as XCR0: each bit corresponds to a state
component. Section 13.1 discusses these state components and bitmaps in more detail.

Section 13.2 describes how the processor enumerates support for the XSAVE feature set and for XSAVE-enabled
features (those features that require use of the XSAVE feature set for their enabling). Section 13.3 explains how
software can enable the XSAVE feature set and XSAVE-enabled features.

Section 13.4 presents details of the XSAVE area and its organization. Section 13.5 describes in detail each of the
XSAVE-supported state components.

Section 13.6, Section 13.7, and Section 13.8 describe the operation of XSAVE, XRSTOR, and XSAVEOPT, respec-
tively.

13.1 XSAVE-MANAGED FEATURES AND STATE-COMPONENT BITMAPS
The XSAVE feature set supports the saving and restoring of state components, each of which is a discrete set of
processor registers. In general, each such a state component corresponds to a particular CPU feature. Such a
feature is XSAVE-managed. Some XSAVE-managed features use registers in multiple state components.

The XSAVE feature set organizes the state components of the XSAVE-managed features using state-component
bitmaps. A state-component bitmap comprises 64 bits; each bit in such a bitmap corresponds to a single state
component. The following bits are currently defined in state-component bitmaps:
• Bit 0 corresponds to the state component used for the x87 FPU execution environment (x87 state). See

Section 13.5.1

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 19

• Bit 1 corresponds to the state component used for registers used by the streaming SIMD extensions (SSE
state). See Section 13.5.2.

• Bit 2 corresponds to the state component used for the additional register state used by the Intel® Advanced
Vector Extensions (AVX state). See Section 13.5.3.

Bits 63:3 are not currently defined in state-component bitmaps and are reserved for future expansion.

The state component corresponding to bit i of state-component bitmaps is called state component i. Thus, x87
state is state component 0; SSE state is state component 1; and AVX state is state component 2.

The XSAVE feature set uses state-component bitmaps in multiple ways. Most of the instructions use an implicit
operand (in EDX:EAX), called the instruction mask, that is the state-component bitmap that specifies those
state components on which the instruction operates.

Extended control register XCR0 contains a state-component bitmap that specifies the state components that soft-
ware has enabled the XSAVE feature set to manage. If the bit corresponding to a state component is clear in
XCR0, no save or restore instruction in the XSAVE feature set will operate on that state component, regardless of
the value of the instruction mask. Details of instruction operation are given in Section 13.6 through Section 13.8.

Some XSAVE-managed features can be used only if XCR0 has been configured so that the features’ state compo-
nents can be managed by the XSAVE feature set. Such state components and features are XSAVE-enabled. In
general, the processor will not modify (or allow modification of) the registers of any XSAVE-enabled state compo-
nent if bit corresponding to the state component is clear in XCR0. If an XSAVE-managed feature has not been fully
enabled in XCR0, execution of any instruction defined for that feature causes an invalid-opcode exception (#UD).

As will be explained in Section 13.3, the XSAVE feature set is enabled only if CR4.OSXSAVE[bit 18] = 1. If
CR4.OSXSAVE = 0, the processor treats XSAVE-enabled state components and features as if all bits in XCR0 were
clear; the state components cannot be modified and the features’ instructions cannot be executed.

The state components for x87 state and for SSE state are XSAVE-managed but not XSAVE-enabled. The proces-
sors allows modification to this state, and it allows execution of the x87 FPU instructions and the SSE instructions,
regardless of the value of CR4.OSXSAVE and XCR0.

13.2 ENUMERATION OF CPU SUPPORT FOR XSAVE INSTRUCTIONS AND
XSAVE-SUPPORTED FEATURES

A processor enumerates support for the XSAVE feature set and for features supported by that feature set using
the CPUID instruction. The following items provide specific details:
• CPUID.1:ECX.XSAVE[bit 26] enumerates general support for the XSAVE feature set:

— If this bit is 0, the processor does not support any of the following instructions: XGETBV, XRSTOR, XSAVE,
XSAVEOPT, and XSETBV; the processor provides no further enumeration through CPUID function 0DH
(see below).

— If this bit is 1, the processor supports the following instructions: XGETBV, XRSTOR, XSAVE, and XSETBV.
Further enumeration is provided through CPUID function 0DH.

CR4.OSXSAVE can be set to 1 if and only if CPUID.1:ECX.XSAVE[bit 26] is enumerated as 1.
• CPUID function 0DH enumerates details of CPU support through a set of sub-functions. Software selects a

specific sub-function by the value placed in the ECX register. The following items provide specific details:

— CPUID function 0DH, sub-function 0.

• EDX:EAX is a bitmap of all the state components that can be managed using the XSAVE feature set. A
bit can be set in XCR0 if and only if the corresponding bit is set in this bitmap. Every processor that
supports the XSAVE feature set will set EAX[0] (x87 state) and EAX[1] (SSE state).

If EAX[i] = 1 (for i > 1), sub-function i enumerates details for state component i (see below).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 20

• ECX enumerates the size (in bytes) required for an XSAVE area containing all the state components
supported by this processor (see Section 13.4).

• EBX enumerates the size (in bytes) required for an XSAVE area containing all the state components
corresponding to bits currently set in XCR0.

— CPUID function 0DH, sub-function 1.

• EAX[0] enumerates support for the XSAVEOPT instruction. The instruction is supported if and only if
this bit is 1. If EAX[0] = 0, execution of XSAVEOPT causes an invalid-opcode exception (#UD).

• EAX[31:1], EBX, ECX, and EDX are reserved.

— CPUID function 0DH, sub-function i (i > 1). This sub-function enumerates details for state component i. If
CPUID.(EAX=0DH,ECX=0):EAX[i] = 1, the following items provide specific details:

• EAX enumerates the size (in bytes) required for state component i.

• EBX enumerates the offset (in bytes, from the base of the XSAVE area) of the section used for state
component i.

• ECX and EDX are reserved.

If the processor does not support state component i (CPUID.(EAX=0DH,ECX=0):EAX[i] = 0), sub-
function i returns 0 in EAX, EBX, ECX, and EDX.

13.3 ENABLING THE XSAVE FEATURE SET AND XSAVE-SUPPORTED FEATURES
Software enables the XSAVE feature set by setting CR4.OSXSAVE[bit 18] to 1 (e.g., with the MOV to CR4 instruc-
tion). If this bit is 0, execution of any of XGETBV, XRSTOR, XSAVE, XSAVEOPT, and XSETBV causes an invalid-
opcode exception (#UD).

When CR4.OSXSAVE = 1 and CPL = 0, software can use the XSETBV instruction to write a value to XCR0. (Execu-
tion of the XSETBV instruction causes a general-protection fault — #GP — if CPL > 0.) The following items provide
details regarding individual bits in XCR0:
• XCR0[0] is associated with x87 state. (See Section 13.5.1.) XCR0[0] is always 1. It has that value coming out

of RESET. Execution of the XSETBV instruction causes a general-protection fault (#GP) if bit 0 of its source
operand (EAX[0]) is 0.

• XCR0[1] is associated with SSE state. (See Section 13.5.2.) Software can use the XSAVE feature set to
manage SSE state only if XCR0[1] = 1. The value of XCR0[1] in no way determines whether software can
execute SSE instructions (these instructions can be executed even if XCR0[1] = 0).
XCR0[1] is 0 coming out of RESET. As noted in Section 13.2, every processor that supports the XSAVE feature
set allows software to set XCR0[1].

• XCR0[2] is associated with AVX state. (See Section 13.5.3.) Software can use the XSAVE feature set to
manage AVX state only if XCR0[2] = 1. In addition, software can execute AVX instructions only if
CR4.OSXSAVE = XCR0[1] = XCR0[2] = 1. Otherwise, any execution of an AVX instruction causes an invalid-
opcode exception (#UD).
XCR0[2] is 0 coming out of RESET. As noted in Section 13.2, a processor allows software to set XCR0[2] if and
only if CPUID.(EAX=0DH,ECX=0):EAX[2] = 1. In addition, execution of the XSETBV instruction causes a
general-protection fault (#GP) if bits 2:1 of its source operand (EAX[2:1]) has the value 10b; that is, software
cannot enable the XSAVE feature set for AVX state but not for SSE state.

• XCR0[63:3] are reserved. Execution of the XSETBV instruction causes a general-protection fault (#GP) if any
of bits 63:3 of its source operand (EDX and EAX[31:3]) is 0. Bits 63:3 of XCR0 are all 0 coming out of RESET.

If CPL> 3, execution of the MOV from CR4 instruction causes a general-protection fault (#GP). Other mechanisms
allow software to discover the enabling of the XSAVE feature set regardless of CPL:

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 21

• The value of CR4.OSXSAVE is returned in CPUID.1:ECX.OSXSAVE[bit 27]. If software determines that
CPUID.1:ECX.OSXSAVE = 1, the processor supports the XSAVE feature set and the feature set has been
enabled in CR4.

• The value of XCR0 is returned in EDX:EAX by the XGETBV instruction, which can be executed if
CR4.OSXSAVE = 1 (if CPUID.1:ECX.OSXSAVE = 1), regardless of CPL.

Thus, software can use the following algorithm to determine the support and enabling for the XSAVE feature set:

1. Use CPUID to discover the value of CPUID.1:ECX.OSXSAVE.

— If the bit is 0, either the XSAVE feature set is not supported by the processor or has not been enabled by
software. Either way, the XSAVE feature set is not available, nor are XSAVE-enabled features such as AVX.

— If the bit is 1, the processor supports the XSAVE feature set — including the XGETBV instruction — and it
has been enabled by software. The XSAVE feature set can be used to manage x87 state (because XCR0[0]
is always 1). Software requiring more detailed information can go on to the next step.

2. Use XGETBV to discover the value of XCR0. If XCR0[1] = 1, the XSAVE feature set can be used to manage SSE
state. If XCR0[2] = 1, the XSAVE feature set can be used to manage AVX state and software can execute AVX
instructions.

13.4 XSAVE AREA
The XSAVE feature set includes instructions that save and restore the XSAVE-managed state components to and
from memory: XSAVE and XSAVEOPT (for saving) and XRSTOR (for restoring). The processor organizes the state
components in a region of memory called the XSAVE area. Each of the save and restore instructions takes a
memory operand that specifies the 64-byte aligned base address of the XSAVE area on which it operates.

Every XSAVE area has the following format:
• The legacy region. The legacy region of an XSAVE area comprises the 512 bytes starting at the area’s base

address. It is used to manage the state components for x87 state and SSE state. The legacy region is
described in more detail in Section 13.4.1.

• The XSAVE header. The XSAVE header of an XSAVE area comprises the 64 bytes starting at an offset of 512
bytes from the area’s base address. The first 8 bytes the XSAVE header is a state-component bitmap (see
Section 13.1) that identifies the state components in the XSAVE area. The XSAVE header is described in more
detail in Section 13.4.2.

• The extended region. The extended region of an XSAVE area starts at an offset of 576 bytes from the area’s
base address. It is used to manage the state components other than those for x87 state and SSE state. The
extended region is described in more detail in Section 13.4.3. The size of the extended region is determined
by which state components the processor supports and which have been enabled in XCR0 (see Section 13.3).

13.4.1 Legacy Region of an XSAVE Area
The legacy region of an XSAVE area comprises the 512 bytes starting at the area’s base address. It has the same
format as the FXSAVE area (see Section 10.5.1). The XSAVE feature set uses the legacy area for x87 state (state
component 0) and SSE state (state component 1). Table 13-1 illustrates the format of the first 416 bytes of the
legacy region of an XSAVE area.

Table 13-1 Format of the Legacy Region of an XSAVE Area
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
 CS or FPU
IP bits 63:32

 FPU IP bits 31:0 FOP Rsvd. FTW FSW FCW 0

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 22

The x87 state component comprises bytes 23:0 and bytes 159:32. The SSE state component comprises
bytes 31:24 and bytes 415:160. The XSAVE feature set does not use bytes 511:416; bytes 463:416 are
reserved.

Section 13.6 through Section 13.8 provide details of how instructions in the XSAVE feature set use the legacy
region of an XSAVE area.

13.4.2 XSAVE Header
The XSAVE header of an XSAVE area comprises the 64 bytes starting at offset 512 from the area’s base address.

MXCSR_MASK MXCSR Reserved
 DS or

 FPU DP
bits 63:32

 FPU DP bits 31:0 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

XMM8 288

XMM9 304

XMM10 320

XMM11 336

XMM12 352

XMM13 368

XMM14 384

XMM15 400

Table 13-1 Format of the Legacy Region of an XSAVE Area (Contd.) (Contd.)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 23

The first 8 bytes the XSAVE header is a state-component bitmap (see Section 13.1) that is called XSTATE_BV and
which identifies the state components in the XSAVE area. The remaining 56 bytes of the XSAVE header are
reserved.

Section 13.6 through Section 13.8 provide details of how instructions in the XSAVE feature set use the XSAVE
header of an XSAVE area.

13.4.3 Extended Region of an XSAVE Area
The extended region of an XSAVE area starts at offset 576 from the area’s base address. The size of the extended
region is determined by which state components the processor supports and which have been enabled in XCR0
(see Section 13.3).

The XSAVE feature set uses the extended area for each state component i, where i > 1. (Currently, the extended
region is used only for AVX state, which is state component 2.)

The processor locates each state component in the extended region at an offset from the base address of the
XSAVE area. The processor enumerates the byte offset for state component i in CPUID.(EAX=0DH,ECX=i):EBX; it
enumerates the number of bytes required for state component i in CPUID.(EAX=0DH,ECX=i):EAX.

13.5 XSAVE-MANAGED STATE
The section provides details regarding how the XSAVE feature set interactions with the various XSAVE-managed
state components.

13.5.1 x87 State
Instructions in the XSAVE feature set can manage the same state of the x87 FPU execution environment (x87
state) that can be managed using the FXSAVE and FXRSTOR instructions. They organize all x87 state in the
legacy region of the XSAVE area (see Section 13.4.1). This region is illustrated in Table 13-1; the x87 state is
listed below, along with details of its interactions with the XSAVE feature set:
• Bytes 1:0, 3:2, 7:6. These are used for the x87 FPU Control Word (FCW), the x87 FPU Status Word (FSW),

and the x87 FPU Opcode (FOP), respectively.
• Byte 4 is used for an abridged version of the x87 FPU Tag Word (FTW). The following items describe its usage:

— For each j, 0 ≤ j ≤ 7, XSAVE and XSAVEOPT save a 0 into bit j of byte 4 if x87 FPU data register STj has a
empty tag; otherwise, XSAVE and XSAVEOPT save a 1 into bit j of byte 4.

— For each j, 0 ≤ j ≤ 7, XRSTOR establishes the tag value for x87 FPU data register STj as follows. If bit j of
byte 4 is 0, the tag for STj in the tag register for that data register is marked empty (11B); otherwise, the
x87 FPU sets the tag for STj based on the value being loaded into that register (see below).

• Bytes 15:8 are used as follows:

— If the instruction has no REX prefix, or if REX.W = 0:

• Bytes 11:8 are used for bits 31:0 of the x87 FPU Instruction Pointer Offset (FIP).

• If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 0, bytes 13:12 are used for x87 FPU Instruction Pointer
Selector (FPU CS). Otherwise, the processor deprecates the FPU CS value: XSAVE and XSAVEOPT save
it as 0000H.

• Bytes 15:14 are not used.

— If the instruction has a REX prefix with REX.W = 1, bytes 15:8 are used for the full 64 bits of FIP.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 24

• Bytes 23:16 are used as follows:

— If the instruction has no REX prefix, or if REX.W = 0:

• Bytes 19:16 are used for bits 31:0 of the x87 FPU Data Pointer Offset (FDP).

• If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 0, bytes 21:20 are used for x87 FPU Data Pointer
Selector (FPU DS). Otherwise, the processor deprecates the FPU DS value: XSAVE and XSAVEOPT
save it as 0000H.

• Bytes 23:22 are not used.

— If the instruction has a REX prefix with REX.W = 1, bytes 23:16 are used for the full 64 bits of FDP.
• Bytes 31:24 are used for SSE state (see Section 13.5.2).
• Bytes 159:32 are used for the registers ST0–ST7 (MM0–MM7). Each of the 8 register is allocated a 128-bit

region, with the low 80 bits used for the register and the upper 48 bits unused.

x87 state is XSAVE-managed but not XSAVE-enabled. The XSAVE feature set can operate on x87 state only if the
feature set is enabled (CR4.OSXSAVE = 1).1 Software can otherwise use x87 state even if the XSAVE feature set
is not enabled.

13.5.2 SSE State
Instructions in the XSAVE feature set can manage the registers used by the streaming SIMD extensions (SSE
state) just as the FXSAVE and FXRSTOR instructions do. They organize all SSE state in the legacy region of the
XSAVE area (see Section 13.4.1). This region is illustrated in Table 13-1; the SSE state is listed below, along with
details of its interactions with the XSAVE feature set:
• Bytes 23:0 are used for x87 state (see Section 13.5.1).
• Bytes 27:24 are used for the MXCSR register. XRSTOR generates a general-protection fault (#GP) in response

to an attempt to set any of the reserved bits of the MXCSR register.2

• Bytes 31:28 are used for the MXCSR_MASK value. XRSTOR ignores this field.
• Bytes 159:32 are used for x87 state.
• Bytes 287:160 are used for the registers XMM0–XMM7.
• Bytes 415:288 are used for the registers XMM8–XMM15. These fields are used only in 64-bit mode.

Executions of XSAVE and XSAVEOPT outside 64-bit mode do not write to these bytes; executions of XRSTOR
outside 64-bit mode do not read these bytes and do not update XMM8–XMM15.

SSE state is XSAVE-managed but not XSAVE-enabled. The XSAVE feature set can operate on SSE state only if the
feature set is enabled (CR4.OSXSAVE = 1) and has been configured to manage SSE state (XCR0[1] = 1). Soft-
ware can otherwise use SSE state even if the XSAVE feature set is not enabled or has not been configured to
manage SSE state.

13.5.3 AVX State
The register state used by the Intel® Advanced Vector Extensions (AVX) comprises the MXCSR register and 16
256-bit vector registers called YMM0–YMM15. The low 128 bits of each register YMMi is identical to the SSE
register XMMi. For that reason, the new state register state added by AVX comprises the upper 128 bits of the
registers YMM0–YMM15. These 16 128-bit values are denoted YMM0_H–YMM15_H and are collectively called AVX
state.

1. The processor ensures that XCR0[0] is always 1.

2. While MXCSR and MXCSR_MASK are part of SSE state, XSAVE and XSAVEOPT also save them (and XRSTOR restores MXCSR) when
software has specified that AVX state should be saved (or restored). See Section 13.6 through Section 13.8.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 25

As noted in Section 13.1, the XSAVE feature set manages AVX state as state component 2. Thus, these instruc-
tions organize all AVX state in the extended region of the XSAVE area (see Section 13.4.3).

As noted in Section 13.2, CPUID.(EAX=0DH,ECX=2):EBX enumerates the offset (in bytes, from the base of the
XSAVE area) of the section of the extended region of the XSAVE area used for AVX state. CPUID returns this value
as 576. CPUID.(EAX=0DH,ECX=2):EAX enumerates the size (in bytes) required for AVX state. CPUID returns this
value as 256.

The XSAVE feature set partitions YMM0_H–YMM15_H in a manner similar to that used for the XMM registers (see
Section 13.5.2. Bytes 127:0 of the AVX-state section are used YMM0_H–YMM7_H. Bytes 255:128 are used for
YMM8_H–YMM15_H, but they are used only in 64-bit mode. (Executions of XSAVE and XSAVEOPT outside 64-bit
mode do not write to bytes 255:128; executions of XRSTOR outside 64-bit mode do not read these bytes and do
not update YMM8_H–YMM15_H.)

AVX state is XSAVE-managed and XSAVE-enabled. The XSAVE feature set can operate on AVX state only if the
feature set is enabled (CR4.OSXSAVE = 1) and has been configured to manage AVX state (XCR0[1] = XCR0[2] =
1).1 AVX instructions cannot be used unless the XSAVE feature set is enabled and has been configured to manage
AVX state.

13.5.4 Processor Tracking of XSAVE-Managed State
The XSAVEOPT instruction uses two optimization to reduce the amount of data that it writes to memory.
XSAVEOPT avoids writing data for any state component known to be in its initial configuration (the init optimi-
zation). In addition, if XSAVEOPT is using the same XSAVE area as that used by the most recent execution of
XRSTOR, it avoids writing data for any state component whose configuration is known not to have been modified
since that execution of XRSTOR (the modified optimization). The operation of XSAVEOPT is described in more
detail in Section 13.8.

A processor can support the init and modified optimizations with special hardware that tracks the state compo-
nents that might benefit from those optimizations. Other implementations might not include such hardware; such
a processor would always consider each such state component as not in its initial configuration and as modified
since the last XRSTOR.

As detailed in Section 13.7, a processor that implements the modified optimization saves information about the
most recent execution of XRSTOR in a quantity called XRSTOR_INFO. It contains the CPL, whether the logical
processor was in VMX non-root operation, and the linear address of the XSAVE area. An execution of XSAVEOPT
uses the modified optimization only if that execution corresponds to XRSTOR_INFO on these three parameters.

This mechanism implies that, depending on details of the operating system, the processor might determine that
an execution of XSAVEOPT by one user application corresponds to an earlier execution of XRSTOR by a different
application. For this reason, Intel recommends the application software not use the XSAVEOPT instruction.

13.6 OPERATION OF XSAVE
The XSAVE instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction
mask. The logical (bitwise) AND of XCR0 and the instruction mask is the requested-feature bitmap of the state
components to be saved.

The following conditions cause execution of the XSAVE instruction to generate a fault:
• If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
• If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.

1. The XSETBV instruction can set XCR0[2] to 1 only if it is also setting XCR0[1] to 1. XSETBV generates a general-protection excep-
tion (#GP) in response to attempts to set XCR0[2] while clearing XCR0[1].

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 26

• If the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP) occurs.1

If none of these conditions cause a fault, execution of XSAVE writes to the XSTATE_BV field of the XSAVE header
(see Section 13.4.2), setting XSTATE_BV[i] (0 ≤ i ≤ 63) as follows:
• If bit i of the requested-feature bitmap is 0, XSTATE_BV[i] is not changed. (This implies that XSAVE first reads

the XSTATE_BV field.)
• If bit i of the requested-feature bitmap is 1, the value written to XSTATE_BV[i] depends on whether the state

component corresponding to bit i is its initial configuration (see Section 13.5.4):

— If the state component is in its initial configuration, XSTATE_BV[i] may be written with either 0 or 1.

— If the state component is not in its initial configuration, XSTATE_BV[i] is written with 1.
(In practice, the value stored into XSTATE_BV[i] depends on how the processor is tracking state component i;
see Section 13.5.4. Limitations on the tracking ability may result in XSTATE_BV[i] being saved as 1 even
though state component i is in its initial configuration.)
The following items specify the initial configuration each state component (for the purposes of defining the
values saved to XSTATE_BV):

— x87 state. x87 state is in its initial configuration if the following all hold: FCW is 037FH; FSW is 0000H;
FTW is FFFFH; FPU CS and FPU DS are each 0000H; FPU IP and FPU DP are each 00000000_00000000H;
each of ST0–ST7 is 0000_00000000_00000000H.

— SSE state. In 64-bit mode, SSE state is in its initial configuration if each of XMM0–XMM15 is 0. Outside
64-bit mode, SSE state is in its initial configuration if each of XMM0–XMM7 is 0. In neither case is the value
of the MXCSR register considered.

— AVX state. In 64-bit mode, AVX state is in its initial configuration if each of YMM0_H–YMM15_H is 0.
Outside 64-bit mode, AVX state is in its initial configuration if each of YMM0_H–YMM7_H is 0.

Execution of XSAVE saves into the XSAVE area those state components corresponding to bits that are set in the
requested-feature bitmap. See Section 13.5 for specifics for each state component and for details regarding
mode-specific operation and operation determined by instruction prefixes.

The MXCSR register and MXCSR_MASK are part of SSE state (see Section 13.5.2) and is thus associated with bit 1
of the requested-feature bitmap. However, the XSAVE instruction also saves these values when bit 2 is set in the
requested-feature bitmap (even if bit 1 is clear).

13.7 OPERATION OF XRSTOR
The XRSTOR instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction
mask. The logical (bitwise) AND of XCR0 and the instruction mask is the requested-feature bitmap of the state
components to be restored.

The following conditions cause execution of the XRSTOR instruction to generate a fault:
• If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
• If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
• Any of the following conditions causes a general-protection exception (#GP):

— The address of the XSAVE area is not 64-byte aligned.2

— Bytes 23:8 of the XSAVE header (see Section 13.4.2) are not all 0.3

1. If CR0.AM = 1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.

2. If CR0.AM = 1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

— A bit is set in the XSTATE_BV field of the XSAVE header that is not set in XCR0.

— The requested-feature bitmap sets either bit 1 (SSE) or bit 2 (AVX) and the value at bytes 27:24 of the
legacy region is not a legal value for the MXCSR register (e.g., the value sets reserved bits).

If none of these conditions cause a fault, the processor updates each state component i if bit i is set in the
requested-feature bitmap. XRSTOR updates state component i based on the value of bit i in the XSTATE_BV field
of the XSAVE header (see Section 13.4.2):
• If XSTATE_BV[i] = 0, the state component is set to its initial configuration. The following items specify the

initial configuration that XRSTOR establishes for each state component:

— XRSTOR initializes x87 state by establishing the following: FCW is set to 037FH; FSW is set to 0000H; FTW
is set to FFFFH; FPU CS and FPU DS are each set to 0000H; FPU IP and FPU DP are each set to
00000000_00000000H; each of ST0–ST7 is set to 0000_00000000_00000000H.

— In 64-bit mode, XRSTOR initializes SSE state by setting each of XMM0–XMM15 to 0. Outside 64-bit mode,
XRSTOR initializes SSE state by setting each of XMM0–XMM7 to 0. In either case, XRSTOR loads MXCSR
from the XSAVE area whenever bit 1 is set in the requested-feature bitmap.

— In 64-bit mode, XRSTOR initializes AVX state by setting each of YMM0_H–YMM15_H to 0. Outside 64-bit
mode, XRSTOR initializes AVX state by setting each of YMM0_H–YMM7_H to 0. In either case, XRSTOR
loads MXCSR from the XSAVE area whenever bit 2 is set in the requested-feature bitmap.

• If XSTATE_BV[i] = 1, the state component is loaded with data from the XSAVE area. See Section 13.5 for
specifics for each state component and for details regarding mode-specific operation and operation
determined by instruction prefixes.

The MXCSR register is part of SSE state (see Section 13.5.2) and would thus normally be updated only if bit 1 is
set in the requested-feature bitmap. However, the XRSTOR instruction loads the MXCSR register from memory
whenever the request-feature bitmap sets either bit 1 (SSE) or bit 2 (AVX). The value of the XSTATE_BV field
does not affect the loading of the MXCSR register; whenever XRSTOR modifies the value of MXCSR, it does so by
loading it from memory.

Upon executing the XRSTOR instruction, the processor establishes modified tracking and records internally infor-
mation about the XRSTOR execution for future interaction with the XSAVEOPT instruction (see Section 13.5.4 and
Section 13.8):
• If bit i is 0 in the requested-feature bitmap, state component i is tracked as modified.
• If bit i is 1 in the requested-feature bitmap, state component i may be tracked as unmodified. (This tracking

may change later if software uses state component i.)
• XRSTOR_INFO is set to the triple ‹x,y,z›, where x is the CPL; y is 1 if the logical processor is in VMX non-root

operation and 0 otherwise; and z is the linear address of the XSAVE area.

13.8 OPERATION OF XSAVEOPT
The operation of XSAVEOPT is similar to that of XSAVE. XSAVEOPT includes optimizations by which it omits saving
state components that are in their initial configuration or that have not been modified since the last corresponding
execution of XRSTOR. See Section 13.5.4 for more details.

The XSAVEOPT instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction
mask. The logical (bitwise) AND of XCR0 and the instruction mask is the requested-feature bitmap of the state
components to be saved.

The following conditions cause execution of the XSAVEOPT instruction to generate a fault:

3. Bytes 63:24 of the XSAVE header are also reserved. Software should ensure that bytes 63:8 of the XSAVE header are all 0 in any
XSAVE area.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 28

• If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
• If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
• If the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP) occurs.1

If none of these conditions cause a fault, execution of XSAVEOPT writes to the XSTATE_BV field of the XSAVE
header (see Section 13.4.2), setting XSTATE_BV[i] (0 ≤ i ≤ 63) as follows:
• If bit i of the requested-feature bitmap is 0, XSTATE_BV[i] is not changed. (This implies that XSAVEOPT first

reads the XSTATE_BV field.)
• If bit i of the requested-feature bitmap is 1, the value written to XSTATE_BV[i] depends on whether the state

component corresponding to bit i is its initial configuration:

— If the state component is in its initial configuration, XSTATE_BV[i] may be written with either 0 or 1.

— If the state component is not in its initial configuration, XSTATE_BV[i] is written with 1.
(In practice, the value stored into XSTATE_BV[i] depends on how the processor is tracking state component i;
see Section 13.5.4. Limitations on the tracking ability may result in XSTATE_BV[i] being saved as 1 even
though state component i is in its initial configuration.)
See Section 13.6 for a specification of when each state component is considered to be in its initial configu-
ration.

Execution of XSAVEOPT saves into the XSAVE area those state components corresponding to bits that are set in
the requested-feature bitmap (and in XSTATE_BV; see below). See Section 13.5 for specifics for each state
component and for details regarding mode-specific operation and operation determined by instruction prefixes.

Execution of XSAVEOPT performs two optimizations that reduce the amount of data written to memory:
• Init optimization.

If bit i is set in the requested-feature bitmap but XSAVEOPT is clearing XSTATE_BV[i] (see above), state
component i is not saved to the XSAVE area.

• Modified optimization.
As noted in Section 13.7, execution of XRSTOR established XRSTOR_INFO as a triple ‹x,y,z›. Execution of
XSAVEOPT uses the modified optimization only if the following all hold:

— CPL = x;

— the logical processor is in VMX non-root operation if and only if y = 1; and

— z is the linear address of the XSAVE area being used by XSAVEOPT.
If XSAVEOPT uses the modified optimization and the processor is tracking state component i as unmodified
(see Section 13.5.4), state component i is not saved to the XSAVE area.
(In practice, the benefit of the modified optimization for state component i depends on how the processor is
tracking state component i; see Section 13.5.4. Limitations on the tracking ability may result in state
component i being saved even though is in the same configuration that was loaded by the previous execution
of XRSTOR.)
Depending on details of the operating system, an execution of XSAVEOPT by a user application might use the
modified optimization when the most recent execution of XRSTOR was by a different application. Because of
this, Intel recommends the application software not use the XSAVEOPT instruction.

The MXCSR register and MXCSR_MASK are part of SSE state (see Section 13.5.2) and is thus associated with bit 1
of the requested-feature bitmap. However, the XSAVEOPT instruction also saves these values when bit 2 is set in

1. If CR0.AM = 1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 29

the requested-feature bitmap (even if bit 1 is clear). The init and modified optimizations do not apply to the
MXCSR register and MXCSR_MASK.

6. Updates to Appendix C, Volume 1
Change bars show changes to Appendix C of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

C.5 SSE3 INSTRUCTIONS
Table C-5 lists the SSE3 instructions that have at least one of the following characteristics:
• have floating-point operands
• generate floating-point results

For each instruction, the table summarizes the floating-point exceptions that the instruction can generate.

Other SSE3 instructions do not generate floating-point exceptions.

...

7. Updates to Appendix E, Volume 1
Change bars show changes to Appendix E of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

Table C-5 Exceptions Generated with SSE3 Instructions

Instruction Description #I #D #Z #O #U #P

ADDSUBPD Add /Sub packed DP FP numbers from XMM2/Mem to XMM1. Y Y Y Y Y

ADDSUBPS Add /Sub packed SP FP numbers from XMM2/Mem to XMM1. Y Y Y Y Y

FISTTP See Table C-2. Y Y

HADDPD Add horizontally packed DP FP numbers XMM2/Mem to XMM1. Y Y Y Y Y

HADDPS Add horizontally packed SP FP numbers XMM2/Mem to XMM1 Y Y Y Y Y

HSUBPD Sub horizontally packed DP FP numbers XMM2/Mem to XMM1 Y Y Y Y Y

HSUBPS Sub horizontally packed SP FP numbers XMM2/Mem to XMM1 Y Y Y Y Y

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 30

Table E-15 #D - Denormal Operand

Instruction Condition Masked Response
Unmasked Response and
Exception Code

ADDPS
ADDPD
ADDSUBPS
ADDSUBPD
HADDPS
HADDPD
SUBPS
SUBPD
HSUBPS
HSUBPD
MULPS
MULPD
DIVPS
DIVPD
SQRTPS
SQRTPD
MAXPS
MAXPD
MINPS
MINPD
ADDSS
ADDSD
SUBSS
SUBSD
MULSS
MULSD
DIVSS
DIVSD
SQRTSS
SQRTSD
MAXSS
MAXSD
MINSS
MINSD
CVTPS2PD
CVTSS2SD
CVTPD2PS
CVTSD2SS

src1 = denormal1 or
src2 = denormal (and
the DAZ bit in MXCSR
is 0)

res = Result rounded to the
destination precision and using the
bounded exponent, but only if no
unmasked post-computation
exception occurs;
#DE = 1.

src1, src2 unchanged;
#DE = 1

Note that SQRT, CVTPS2PD,
CVTSS2SD, CVTPD2PS, CVTSD2SS
have only 1 src.

CMPPS
CMPPD
CMPSS
CMPSD

src1 = denormal1 or
src2 = denormal (and
the DAZ bit in MXCSR
is 0)

Comparison result, stored in the
destination register;
#DE = 1

src1, src2 unchanged;
#DE = 1

COMISS
COMISD
UCOMISS
UCOMISD

src1 = denormal1 or
src2 = denormal (and
the DAZ bit in MXCSR
is 0)

Comparison result, stored in the
EFLAGS register;
#DE = 1

src1, src2 unchanged;
#DE = 1

NOTE:
1. For denormal encodings, see Section 4.8.3.2, “Normalized and Denormalized Finite Numbers.”

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 31

...

8. Updates to Chapter 3, Volume 2A
Change bars show changes to Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A: Instruction Set Reference, A-M, Part 1.

--

...

BEXTR — Bit Field Extract

Instruction Operand Encoding

Description

Extracts contiguous bits from the first source operand (the second operand) using an index value and length value
specified in the second source operand (the third operand). Bit 7:0 of the second source operand specifies the
starting bit position of bit extraction. A START value exceeding the operand size will not extract any bits from the
second source operand. Bit 15:8 of the second source operand specifies the maximum number of bits (LENGTH)
beginning at the START position to extract. Only bit positions up to (OperandSize -1) of the first source operand
are extracted. The extracted bits are written to the destination register, starting from the least significant bit. All
higher order bits in the destination operand (starting at bit position LENGTH) are zeroed. The destination register
is cleared if no bits are extracted.
This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in non-64-bit modes. An
attempt to execute this instruction with VEX.L not equal to 0 will cause #UD.

Operation

START ← SRC2[7:0];
LEN ← SRC2[15:8];
TEMP ← ZERO_EXTEND_TO_512 (SRC1);
DEST ← ZERO_EXTEND(TEMP[START+LEN -1: START]);
ZF ← (DEST = 0);

Opcode/
Instruction

Op/
En

64/
32-bit
Mode

CPUID
Feature
Flag

Description

VEX.NDS1.LZ.0F38.W0 F7 /r RMV V/V BMI1 Contiguous bitwise extract from r/m32 using r32b as control; store
result in r32a.BEXTR r32a, r/m32, r32b

VEX.NDS1.LZ.0F38.W1 F7 /r RMV V/N.E. BMI1 Contiguous bitwise extract from r/m64 using r64b as control; store
result in r64aBEXTR r64a, r/m64, r64b

NOTES:
1. ModRM:r/m is used to encode the first source operand (second operand) and VEX.vvvv encodes the second source operand (third

operand).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMV ModRM:reg (w) ModRM:r/m (r) VEX.vvvv (r) NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 32

Flags Affected
ZF is updated based on the result. AF, SF, and PF are undefined. All other flags are cleared.

Intel C/C++ Compiler Intrinsic Equivalent

BEXTR: unsigned __int32 _bextr_u32(unsigned __int32 src, unsigned __int32 start. unsigned __int32 len);

BEXTR: unsigned __int64 _bextr_u64(unsigned __int64 src, unsigned __int32 start. unsigned __int32 len);

SIMD Floating-Point Exceptions

None

Other Exceptions
See Section 2.5.1, “Exception Conditions for VEX-Encoded GPR Instructions”, Table 2-29; additionally

#UD If VEX.W = 1.

...

CMPXCHG—Compare and Exchange

Instruction Operand Encoding

Opcode/
Instruction

Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F B0/r

CMPXCHG r/m8, r8

MR Valid Valid* Compare AL with r/m8. If equal, ZF is set and
r8 is loaded into r/m8. Else, clear ZF and load r/
m8 into AL.

REX + 0F B0/r

CMPXCHG r/m8**,r8

MR Valid N.E. Compare AL with r/m8. If equal, ZF is set and
r8 is loaded into r/m8. Else, clear ZF and load r/
m8 into AL.

0F B1/r

CMPXCHG r/m16, r16

MR Valid Valid* Compare AX with r/m16. If equal, ZF is set and
r16 is loaded into r/m16. Else, clear ZF and
load r/m16 into AX.

0F B1/r

CMPXCHG r/m32, r32

MR Valid Valid* Compare EAX with r/m32. If equal, ZF is set
and r32 is loaded into r/m32. Else, clear ZF
and load r/m32 into EAX.

REX.W + 0F B1/r

CMPXCHG r/m64, r64

MR Valid N.E. Compare RAX with r/m64. If equal, ZF is set
and r64 is loaded into r/m64. Else, clear ZF
and load r/m64 into RAX.

NOTES:
* See the IA-32 Architecture Compatibility section below.
** In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 33

Description

Compares the value in the AL, AX, EAX, or RAX register with the first operand (destination operand). If the two
values are equal, the second operand (source operand) is loaded into the destination operand. Otherwise, the
destination operand is loaded into the AL, AX, EAX or RAX register. RAX register is available only in 64-bit mode.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically. To simplify the
interface to the processor’s bus, the destination operand receives a write cycle without regard to the result of the
comparison. The destination operand is written back if the comparison fails; otherwise, the source operand is
written into the destination. (The processor never produces a locked read without also producing a locked write.)

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the
beginning of this section for encoding data and limits.

IA-32 Architecture Compatibility

This instruction is not supported on Intel processors earlier than the Intel486 processors.

Operation

(* Accumulator = AL, AX, EAX, or RAX depending on whether a byte, word, doubleword, or quadword comparison is being performed
*)
TEMP ← DEST
IF accumulator = TEMP

THEN
ZF ← 1;
DEST ← SRC;

ELSE
ZF ← 0;
accumulator ← TEMP;
DEST ← TEMP;

FI;

Flags Affected

The ZF flag is set if the values in the destination operand and register AL, AX, or EAX are equal; otherwise it is
cleared. The CF, PF, AF, SF, and OF flags are set according to the results of the comparison operation.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 34

#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

...

CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes

Instruction Operand Encoding

Description

Compares the 64-bit value in EDX:EAX (or 128-bit value in RDX:RAX if operand size is 128 bits) with the operand
(destination operand). If the values are equal, the 64-bit value in ECX:EBX (or 128-bit value in RCX:RBX) is
stored in the destination operand. Otherwise, the value in the destination operand is loaded into EDX:EAX (or
RDX:RAX). The destination operand is an 8-byte memory location (or 16-byte memory location if operand size is
128 bits). For the EDX:EAX and ECX:EBX register pairs, EDX and ECX contain the high-order 32 bits and EAX and
EBX contain the low-order 32 bits of a 64-bit value. For the RDX:RAX and RCX:RBX register pairs, RDX and RCX
contain the high-order 64 bits and RAX and RBX contain the low-order 64bits of a 128-bit value.

Opcode/
Instruction

Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F C7 /1 m64

CMPXCHG8B m64

M Valid Valid* Compare EDX:EAX with m64. If equal, set ZF
and load ECX:EBX into m64. Else, clear ZF and
load m64 into EDX:EAX.

REX.W + 0F C7 /1 m128

CMPXCHG16B m128

M Valid N.E. Compare RDX:RAX with m128. If equal, set ZF
and load RCX:RBX into m128. Else, clear ZF
and load m128 into RDX:RAX.

NOTES:
*See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r, w) NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 35

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically. To simplify the
interface to the processor’s bus, the destination operand receives a write cycle without regard to the result of the
comparison. The destination operand is written back if the comparison fails; otherwise, the source operand is
written into the destination. (The processor never produces a locked read without also producing a locked write.)

In 64-bit mode, default operation size is 64 bits. Use of the REX.W prefix promotes operation to 128 bits. Note
that CMPXCHG16B requires that the destination (memory) operand be 16-byte aligned. See the summary chart
at the beginning of this section for encoding data and limits. For information on the CPUID flag that indicates
CMPXCHG16B, see page 3-168.

IA-32 Architecture Compatibility

This instruction encoding is not supported on Intel processors earlier than the Pentium processors.

Operation

IF (64-Bit Mode and OperandSize = 64)
THEN

TEMP128 ← DEST
IF (RDX:RAX = TEMP128)

THEN
ZF ← 1;
DEST ← RCX:RBX;

ELSE
ZF ← 0;
RDX:RAX ← TEMP128;
DEST ← TEMP128;
FI;

FI
ELSE

TEMP64 ← DEST;
IF (EDX:EAX = TEMP64)

THEN
ZF ← 1;
DEST ← ECX:EBX;

ELSE
ZF ← 0;
EDX:EAX ← TEMP64;
DEST ← TEMP64;
FI;

FI;
FI;

Flags Affected

The ZF flag is set if the destination operand and EDX:EAX are equal; otherwise it is cleared. The CF, PF, AF, SF, and
OF flags are unaffected.

Protected Mode Exceptions
#UD If the destination is not a memory operand.
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 36

If the DS, ES, FS, or GS register contains a NULL segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.

Real-Address Mode Exceptions
#UD If the destination operand is not a memory location.
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#UD If the destination operand is not a memory location.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand for CMPXCHG16B is not aligned on a 16-byte boundary.
If CPUID.01H:ECX.CMPXCHG16B[bit 13] = 0.

#UD If the destination operand is not a memory location.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.

...

Table 3-17 Information Returned by CPUID Instruction

Initial EAX
Value Information Provided about the Processor

Basic CPUID Information

0H EAX
EBX
ECX
EDX

Maximum Input Value for Basic CPUID Information (see Table 3-18)
“Genu”
“ntel”
“ineI”

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 37

01H EAX

EBX

ECX
EDX

Version Information: Type, Family, Model, and Stepping ID (see Figure 3-5)

Bits 07-00: Brand Index
Bits 15-08: CLFLUSH line size (Value ∗ 8 = cache line size in bytes)
Bits 23-16: Maximum number of addressable IDs for logical processors in this physical package*.
Bits 31-24: Initial APIC ID

Feature Information (see Figure 3-6 and Table 3-20)
Feature Information (see Figure 3-7 and Table 3-21)

NOTES:
* The nearest power-of-2 integer that is not smaller than EBX[23:16] is the number of unique initial APIC

IDs reserved for addressing different logical processors in a physical package. This field is only valid if
CPUID.1.EDX.HTT[bit 28]= 1.

02H EAX
EBX
ECX
EDX

Cache and TLB Information (see Table 3-22)
Cache and TLB Information
Cache and TLB Information
Cache and TLB Information

03H EAX
EBX
ECX

EDX

Reserved.
Reserved.
Bits 00-31 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the value
in this register is reserved.)
Bits 32-63 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the value
in this register is reserved.)

NOTES:
Processor serial number (PSN) is not supported in the Pentium 4 processor or later. On all models, use
the PSN flag (returned using CPUID) to check for PSN support before accessing the feature.

See AP-485, Intel Processor Identification and the CPUID Instruction (Order Number 241618) for more
information on PSN.

CPUID leaves > 3 < 80000000 are visible only when IA32_MISC_ENABLE.BOOT_NT4[bit 22] = 0 (default).

Deterministic Cache Parameters Leaf

04H NOTES:
Leaf 04H output depends on the initial value in ECX.*
See also: “INPUT EAX = 4: Returns Deterministic Cache Parameters for each level on page 3-176.

EAX Bits 04-00: Cache Type Field
0 = Null - No more caches
1 = Data Cache
2 = Instruction Cache
3 = Unified Cache
4-31 = Reserved

Bits 07-05: Cache Level (starts at 1)
Bit 08: Self Initializing cache level (does not need SW initialization)
Bit 09: Fully Associative cache

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 38

Bits 13-10: Reserved
Bits 25-14: Maximum number of addressable IDs for logical processors sharing this cache**, ***
Bits 31-26: Maximum number of addressable IDs for processor cores in the physical
package**, ****, *****

EBX Bits 11-00: L = System Coherency Line Size**
Bits 21-12: P = Physical Line partitions**
Bits 31-22: W = Ways of associativity**

ECX Bits 31-00: S = Number of Sets**

EDX Bit 0: Write-Back Invalidate/Invalidate
0 = WBINVD/INVD from threads sharing this cache acts upon lower level caches for threads sharing this
cache.
1 = WBINVD/INVD is not guaranteed to act upon lower level caches of non-originating threads sharing
this cache.

Bit 1: Cache Inclusiveness
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.

Bit 2: Complex Cache Indexing
0 = Direct mapped cache.
1 = A complex function is used to index the cache, potentially using all address bits.

Bits 31-03: Reserved = 0

NOTES:
* If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0. Invalid sub-leaves of EAX = 04H:

ECX = n, n > 3.
** Add one to the return value to get the result.
***The nearest power-of-2 integer that is not smaller than (1 + EAX[25:14]) is the number of unique ini-

tial APIC IDs reserved for addressing different logical processors sharing this cache
**** The nearest power-of-2 integer that is not smaller than (1 + EAX[31:26]) is the number of unique

Core_IDs reserved for addressing different processor cores in a physical package. Core ID is a subset of
bits of the initial APIC ID.

***** The returned value is constant for valid initial values in ECX. Valid ECX values start from 0.

MONITOR/MWAIT Leaf

05H EAX Bits 15-00: Smallest monitor-line size in bytes (default is processor's monitor granularity)
Bits 31-16: Reserved = 0

EBX Bits 15-00: Largest monitor-line size in bytes (default is processor's monitor granularity)
Bits 31-16: Reserved = 0

ECX Bit 00: Enumeration of Monitor-Mwait extensions (beyond EAX and EBX registers) supported

Bit 01: Supports treating interrupts as break-event for MWAIT, even when interrupts disabled

Bits 31 - 02: Reserved

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 39

EDX Bits 03 - 00: Number of C0* sub C-states supported using MWAIT
Bits 07 - 04: Number of C1* sub C-states supported using MWAIT
Bits 11 - 08: Number of C2* sub C-states supported using MWAIT
Bits 15 - 12: Number of C3* sub C-states supported using MWAIT
Bits 19 - 16: Number of C4* sub C-states supported using MWAIT
Bits 23 - 20: Number of C5* sub C-states supported using MWAIT
Bits 27 - 24: Number of C6* sub C-states supported using MWAIT
Bits 31 - 28: Number of C7* sub C-states supported using MWAIT
NOTE:
* The definition of C0 through C7 states for MWAIT extension are processor-specific C-states, not ACPI C-

states.

Thermal and Power Management Leaf

06H EAX

EBX

Bit 00: Digital temperature sensor is supported if set
Bit 01: Intel Turbo Boost Technology Available (see description of IA32_MISC_ENABLE[38]).
Bit 02: ARAT. APIC-Timer-always-running feature is supported if set.
Bit 03: Reserved
Bit 04: PLN. Power limit notification controls are supported if set.
Bit 05: ECMD. Clock modulation duty cycle extension is supported if set.
Bit 06: PTM. Package thermal management is supported if set.
Bits 31 - 07: Reserved
Bits 03 - 00: Number of Interrupt Thresholds in Digital Thermal Sensor
Bits 31 - 04: Reserved

ECX Bit 00: Hardware Coordination Feedback Capability (Presence of IA32_MPERF and IA32_APERF). The
capability to provide a measure of delivered processor performance (since last reset of the counters), as
a percentage of expected processor performance at frequency specified in CPUID Brand String
Bits 02 - 01: Reserved = 0
Bit 03: The processor supports performance-energy bias preference if CPUID.06H:ECX.SETBH[bit 3] is set
and it also implies the presence of a new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H)
Bits 31 - 04: Reserved = 0

EDX Reserved = 0

Structured Extended Feature Flags Enumeration Leaf (Output depends on ECX input value)

07H Sub-leaf 0 (Input ECX = 0). *

EAX Bits 31-00: Reports the maximum input value for supported leaf 7 sub-leaves.

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 40

EBX Bit 00: FSGSBASE. Supports RDFSBASE/RDGSBASE/WRFSBASE/WRGSBASE if 1.
Bit 01: IA32_TSC_ADJUST MSR is supported if 1.
Bit 02: Reserved
Bit 03: BMI1
Bit 04: HLE
Bit 05: AVX2
Bit 06: Reserved
Bit 07: SMEP. Supports Supervisor-Mode Execution Prevention if 1.
Bit 08: BMI2
Bit 09: Supports Enhanced REP MOVSB/STOSB if 1.
Bit 10: INVPCID. If 1, supports INVPCID instruction for system software that manages process-context
identifiers.
Bit 11: RTM
Bit 12: Supports Quality of Service Monitoring (QM) capability if 1.
Bit 13: Deprecates FPU CS and FPU DS values if 1.
Bits 31:14: Reserved

ECX Reserved

EDX Reserved

NOTE:
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Invalid sub-leaves of EAX = 07H:

ECX = n, n > 0.

Direct Cache Access Information Leaf

09H EAX

EBX

ECX

EDX

Value of bits [31:0] of IA32_PLATFORM_DCA_CAP MSR (address 1F8H)

Reserved

Reserved

Reserved

Architectural Performance Monitoring Leaf

0AH EAX Bits 07 - 00: Version ID of architectural performance monitoring
Bits 15- 08: Number of general-purpose performance monitoring counter per logical processor
Bits 23 - 16: Bit width of general-purpose, performance monitoring counter
Bits 31 - 24: Length of EBX bit vector to enumerate architectural performance monitoring events

EBX Bit 00: Core cycle event not available if 1
Bit 01: Instruction retired event not available if 1
Bit 02: Reference cycles event not available if 1
Bit 03: Last-level cache reference event not available if 1
Bit 04: Last-level cache misses event not available if 1
Bit 05: Branch instruction retired event not available if 1
Bit 06: Branch mispredict retired event not available if 1
Bits 31- 07: Reserved = 0

ECX Reserved = 0

EDX Bits 04 - 00: Number of fixed-function performance counters (if Version ID > 1)
Bits 12- 05: Bit width of fixed-function performance counters (if Version ID > 1)
Reserved = 0

Extended Topology Enumeration Leaf

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 41

0BH NOTES:
Most of Leaf 0BH output depends on the initial value in ECX.
The EDX output of leaf 0BH is always valid and does not vary with input value in ECX.
Output value in ECX[7:0] always equals input value in ECX[7:0].
For sub-leaves that return an invalid level-type of 0 in ECX[15:8]; EAX and EBX will return 0.

 If an input value n in ECX returns the invalid level-type of 0 in ECX[15:8], other input values with ECX >
n also return 0 in ECX[15:8].

EAX Bits 04-00: Number of bits to shift right on x2APIC ID to get a unique topology ID of the next level type*.
All logical processors with the same next level ID share current level.
Bits 31-05: Reserved.

EBX Bits 15 - 00: Number of logical processors at this level type. The number reflects configuration as shipped
by Intel**.
Bits 31- 16: Reserved.

ECX Bits 07 - 00: Level number. Same value in ECX input
Bits 15 - 08: Level type***.
Bits 31 - 16:: Reserved.

EDX Bits 31- 00: x2APIC ID the current logical processor.

NOTES:
* Software should use this field (EAX[4:0]) to enumerate processor topology of the system.

** Software must not use EBX[15:0] to enumerate processor topology of the system. This value in this
field (EBX[15:0]) is only intended for display/diagnostic purposes. The actual number of logical processors
available to BIOS/OS/Applications may be different from the value of EBX[15:0], depending on software
and platform hardware configurations.

*** The value of the “level type” field is not related to level numbers in any way, higher “level type” val-
ues do not mean higher levels. Level type field has the following encoding:
0 : invalid
1 : SMT
2 : Core
3-255 : Reserved

Processor Extended State Enumeration Main Leaf (EAX = 0DH, ECX = 0)

0DH NOTES:
Leaf 0DH main leaf (ECX = 0).

EAX Bits 31-00: Reports the valid bit fields of the lower 32 bits of XCR0. If a bit is 0, the corresponding bit
field in XCR0 is reserved.
Bit 00: legacy x87
Bit 01: 128-bit SSE
Bit 02: 256-bit AVX
Bits 31- 03: Reserved

EBX Bits 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) required by
enabled features in XCR0. May be different than ECX if some features at the end of the XSAVE save area
are not enabled.

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 42

ECX Bit 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) of the XSAVE/
XRSTOR save area required by all supported features in the processor, i.e all the valid bit fields in XCR0.

EDX Bit 31-00: Reports the valid bit fields of the upper 32 bits of XCR0. If a bit is 0, the corresponding bit field
in XCR0 is reserved.

Processor Extended State Enumeration Sub-leaf (EAX = 0DH, ECX = 1)

0DH EAX

EBX

ECX

EDX

Bits 31-01: Reserved

Bit 00: XSAVEOPT is available;

Reserved

Reserved

Reserved

Processor Extended State Enumeration Sub-leaves (EAX = 0DH, ECX = n, n > 1)

0DH NOTES:
Leaf 0DH output depends on the initial value in ECX.
Each valid sub-leaf index maps to a valid bit in the XCR0 register starting at bit position 2
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Invalid sub-leaves of EAX = 0DH:

ECX = n, n > 2.

EAX Bits 31-0: The size in bytes (from the offset specified in EBX) of the save area for an extended state fea-
ture associated with a valid sub-leaf index, n. This field reports 0 if the sub-leaf index, n, is invalid*.

EBX Bits 31-0: The offset in bytes of this extended state component’s save area from the beginning of the
XSAVE/XRSTOR area.
This field reports 0 if the sub-leaf index, n, is invalid*.

ECX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.

EDX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.

Quality of Service Resource Type Enumeration Sub-leaf (EAX = 0FH, ECX = 0)

0FH NOTES:
Leaf 0FH output depends on the initial value in ECX.
Sub-leaf index 0 reports valid resource type starting at bit position 1 of EDX

EAX Reserved.

EBX Bits 31-0: Maximum range (zero-based) of RMID within this physical processor of all types.

ECX Reserved.

EDX Bit 00: Reserved.
Bit 01: Supports L3 Cache QoS if 1.
Bits 31:02: Reserved

L3 Cache QoS Capability Enumeration Sub-leaf (EAX = 0FH, ECX = 1)

0FH NOTES:
Leaf 0FH output depends on the initial value in ECX.

EAX Reserved.

EBX Bits 31-0: Conversion factor from reported IA32_QM_CTR value to occupancy metric (bytes).

ECX Maximum range (zero-based) of RMID of this resource type.

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 43

EDX Bit 00: Supports L3 occupancy monitoring if 1.
Bits 31:01: Reserved

Unimplemented CPUID Leaf Functions

40000000H
-

4FFFFFFFH

Invalid. No existing or future CPU will return processor identification or feature information if the initial
EAX value is in the range 40000000H to 4FFFFFFFH.

Extended Function CPUID Information

80000000H EAX Maximum Input Value for Extended Function CPUID Information (see
Table 3-18).

EBX
ECX
EDX

Reserved
Reserved
Reserved

80000001H EAX

EBX

ECX

Extended Processor Signature and Feature Bits.

Reserved

Bit 00: LAHF/SAHF available in 64-bit mode
Bits 04-01 Reserved
Bit 05: LZCNT
Bits 07-06 Reserved
Bit 08: PREFETCHW
Bits 31-09 Reserved

EDX Bits 10-00: Reserved
Bit 11: SYSCALL/SYSRET available in 64-bit mode
Bits 19-12: Reserved = 0
Bit 20: Execute Disable Bit available
Bits 25-21: Reserved = 0
Bit 26: 1-GByte pages are available if 1
Bit 27: RDTSCP and IA32_TSC_AUX are available if 1
Bits 28: Reserved = 0
Bit 29: Intel® 64 Architecture available if 1
Bits 31-30: Reserved = 0

80000002H EAX
EBX
ECX
EDX

Processor Brand String
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000003H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000004H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 44

...

80000005H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Reserved = 0

80000006H EAX
EBX

Reserved = 0
Reserved = 0

ECX

EDX

Bits 07-00: Cache Line size in bytes
Bits 11-08: Reserved
Bits 15-12: L2 Associativity field *
Bits 31-16: Cache size in 1K units
Reserved = 0

NOTES:
* L2 associativity field encodings:

00H - Disabled
01H - Direct mapped
02H - 2-way
04H - 4-way
06H - 8-way
08H - 16-way
0FH - Fully associative

80000007H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Bits 07-00: Reserved = 0
Bit 08: Invariant TSC available if 1
Bits 31-09: Reserved = 0

80000008H EAX Linear/Physical Address size
Bits 07-00: #Physical Address Bits*
Bits 15-8: #Linear Address Bits
Bits 31-16: Reserved = 0

EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0

NOTES:
* If CPUID.80000008H:EAX[7:0] is supported, the maximum physical address number supported should

come from this field.

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Table 3-22 Encoding of CPUID Leaf 2 Descriptors
 Value Type Description

00H General Null descriptor, this byte contains no information

01H TLB Instruction TLB: 4 KByte pages, 4-way set associative, 32 entries

02H TLB Instruction TLB: 4 MByte pages, fully associative, 2 entries

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 45

03H TLB Data TLB: 4 KByte pages, 4-way set associative, 64 entries

04H TLB Data TLB: 4 MByte pages, 4-way set associative, 8 entries

05H TLB Data TLB1: 4 MByte pages, 4-way set associative, 32 entries

06H Cache 1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size

08H Cache 1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line size

09H Cache 1st-level instruction cache: 32KBytes, 4-way set associative, 64 byte line size

0AH Cache 1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size

0BH TLB Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries

0CH Cache 1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size

0DH Cache 1st-level data cache: 16 KBytes, 4-way set associative, 64 byte line size

0EH Cache 1st-level data cache: 24 KBytes, 6-way set associative, 64 byte line size

21H Cache 2nd-level cache: 256 KBytes, 8-way set associative, 64 byte line size

22H Cache 3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines per sector

23H Cache 3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

24H Cache 2nd-level cache: 1 MBytes, 16-way set associative, 64 byte line size

25H Cache 3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

29H Cache 3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

2CH Cache 1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size

30H Cache 1st-level instruction cache: 32 KBytes, 8-way set associative, 64 byte line size

40H Cache No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-level cache

41H Cache 2nd-level cache: 128 KBytes, 4-way set associative, 32 byte line size

42H Cache 2nd-level cache: 256 KBytes, 4-way set associative, 32 byte line size

43H Cache 2nd-level cache: 512 KBytes, 4-way set associative, 32 byte line size

44H Cache 2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size

45H Cache 2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size

46H Cache 3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size

47H Cache 3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size

48H Cache 2nd-level cache: 3MByte, 12-way set associative, 64 byte line size

49H Cache 3rd-level cache: 4MB, 16-way set associative, 64-byte line size (Intel Xeon processor MP, Family 0FH, Model
06H);

2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size

4AH Cache 3rd-level cache: 6MByte, 12-way set associative, 64 byte line size

4BH Cache 3rd-level cache: 8MByte, 16-way set associative, 64 byte line size

4CH Cache 3rd-level cache: 12MByte, 12-way set associative, 64 byte line size

4DH Cache 3rd-level cache: 16MByte, 16-way set associative, 64 byte line size

4EH Cache 2nd-level cache: 6MByte, 24-way set associative, 64 byte line size

4FH TLB Instruction TLB: 4 KByte pages, 32 entries

50H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries

Table 3-22 Encoding of CPUID Leaf 2 Descriptors (Contd.)
 Value Type Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 46

51H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries

52H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries

55H TLB Instruction TLB: 2-MByte or 4-MByte pages, fully associative, 7 entries

56H TLB Data TLB0: 4 MByte pages, 4-way set associative, 16 entries

57H TLB Data TLB0: 4 KByte pages, 4-way associative, 16 entries

59H TLB Data TLB0: 4 KByte pages, fully associative, 16 entries

5AH TLB Data TLB0: 2-MByte or 4 MByte pages, 4-way set associative, 32 entries

5BH TLB Data TLB: 4 KByte and 4 MByte pages, 64 entries

5CH TLB Data TLB: 4 KByte and 4 MByte pages,128 entries

5DH TLB Data TLB: 4 KByte and 4 MByte pages,256 entries

60H Cache 1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size

61H TLB Instruction TLB: 4 KByte pages, fully associative, 48 entries

63H TLB Data TLB: 1 GByte pages, 4-way set associative, 4 entries

66H Cache 1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size

67H Cache 1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size

68H Cache 1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size

70H Cache Trace cache: 12 K-μop, 8-way set associative

71H Cache Trace cache: 16 K-μop, 8-way set associative

72H Cache Trace cache: 32 K-μop, 8-way set associative

76H TLB Instruction TLB: 2M/4M pages, fully associative, 8 entries

78H Cache 2nd-level cache: 1 MByte, 4-way set associative, 64byte line size

79H Cache 2nd-level cache: 128 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7AH Cache 2nd-level cache: 256 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7BH Cache 2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7CH Cache 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per sector

7DH Cache 2nd-level cache: 2 MByte, 8-way set associative, 64byte line size

7FH Cache 2nd-level cache: 512 KByte, 2-way set associative, 64-byte line size

80H Cache 2nd-level cache: 512 KByte, 8-way set associative, 64-byte line size

82H Cache 2nd-level cache: 256 KByte, 8-way set associative, 32 byte line size

83H Cache 2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size

84H Cache 2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size

85H Cache 2nd-level cache: 2 MByte, 8-way set associative, 32 byte line size

86H Cache 2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size

87H Cache 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size

B0H TLB Instruction TLB: 4 KByte pages, 4-way set associative, 128 entries

B1H TLB Instruction TLB: 2M pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries

B2H TLB Instruction TLB: 4KByte pages, 4-way set associative, 64 entries

B3H TLB Data TLB: 4 KByte pages, 4-way set associative, 128 entries

Table 3-22 Encoding of CPUID Leaf 2 Descriptors (Contd.)
 Value Type Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 47

...

B4H TLB Data TLB1: 4 KByte pages, 4-way associative, 256 entries

B5H TLB Instruction TLB: 4KByte pages, 8-way set associative, 64 entries

B6H TLB Instruction TLB: 4KByte pages, 8-way set associative, 128 entries

BAH TLB Data TLB1: 4 KByte pages, 4-way associative, 64 entries

C0H TLB Data TLB: 4 KByte and 4 MByte pages, 4-way associative, 8 entries

C1H STLB Shared 2nd-Level TLB: 4 KByte/2MByte pages, 8-way associative, 1024 entries

C2H DTLB DTLB: 2 MByte/$MByte pages, 4-way associative, 16 entries

CAH STLB Shared 2nd-Level TLB: 4 KByte pages, 4-way associative, 512 entries

D0H Cache 3rd-level cache: 512 KByte, 4-way set associative, 64 byte line size

D1H Cache 3rd-level cache: 1 MByte, 4-way set associative, 64 byte line size

D2H Cache 3rd-level cache: 2 MByte, 4-way set associative, 64 byte line size

D6H Cache 3rd-level cache: 1 MByte, 8-way set associative, 64 byte line size

D7H Cache 3rd-level cache: 2 MByte, 8-way set associative, 64 byte line size

D8H Cache 3rd-level cache: 4 MByte, 8-way set associative, 64 byte line size

DCH Cache 3rd-level cache: 1.5 MByte, 12-way set associative, 64 byte line size

DDH Cache 3rd-level cache: 3 MByte, 12-way set associative, 64 byte line size

DEH Cache 3rd-level cache: 6 MByte, 12-way set associative, 64 byte line size

E2H Cache 3rd-level cache: 2 MByte, 16-way set associative, 64 byte line size

E3H Cache 3rd-level cache: 4 MByte, 16-way set associative, 64 byte line size

E4H Cache 3rd-level cache: 8 MByte, 16-way set associative, 64 byte line size

EAH Cache 3rd-level cache: 12MByte, 24-way set associative, 64 byte line size

EBH Cache 3rd-level cache: 18MByte, 24-way set associative, 64 byte line size

ECH Cache 3rd-level cache: 24MByte, 24-way set associative, 64 byte line size

F0H Prefetch 64-Byte prefetching

F1H Prefetch 128-Byte prefetching

FFH General CPUID leaf 2 does not report cache descriptor information, use CPUID leaf 4 to query cache parameters

Table 3-22 Encoding of CPUID Leaf 2 Descriptors (Contd.)
 Value Type Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 48

IMUL—Signed Multiply

Instruction Operand Encoding

Description

Performs a signed multiplication of two operands. This instruction has three forms, depending on the number of
operands.
• One-operand form — This form is identical to that used by the MUL instruction. Here, the source operand (in

a general-purpose register or memory location) is multiplied by the value in the AL, AX, EAX, or RAX register
(depending on the operand size) and the product is stored in the AX, DX:AX, EDX:EAX, or RDX:RAX registers,
respectively.

• Two-operand form — With this form the destination operand (the first operand) is multiplied by the source
operand (second operand). The destination operand is a general-purpose register and the source operand is
an immediate value, a general-purpose register, or a memory location. The product is then stored in the
destination operand location.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F6 /5 IMUL r/m8* M Valid Valid AX← AL ∗ r/m byte.

F7 /5 IMUL r/m16 M Valid Valid DX:AX ← AX ∗ r/m word.

F7 /5 IMUL r/m32 M Valid Valid EDX:EAX ← EAX ∗ r/m32.

REX.W + F7 /5 IMUL r/m64 M Valid N.E. RDX:RAX ← RAX ∗ r/m64.

0F AF /r IMUL r16, r/m16 RM Valid Valid word register ← word register ∗ r/m16.

0F AF /r IMUL r32, r/m32 RM Valid Valid doubleword register ← doubleword register ∗
r/m32.

REX.W + 0F AF /r IMUL r64, r/m64 RM Valid N.E. Quadword register ← Quadword register ∗ r/
m64.

6B /r ib IMUL r16, r/m16, imm8 RMI Valid Valid word register ← r/m16 ∗ sign-extended
immediate byte.

6B /r ib IMUL r32, r/m32, imm8 RMI Valid Valid doubleword register ← r/m32 ∗ sign-
extended immediate byte.

REX.W + 6B /r ib IMUL r64, r/m64, imm8 RMI Valid N.E. Quadword register ← r/m64 ∗ sign-extended
immediate byte.

69 /r iw IMUL r16, r/m16, imm16 RMI Valid Valid word register ← r/m16 ∗ immediate word.

69 /r id IMUL r32, r/m32, imm32 RMI Valid Valid doubleword register ← r/m32 ∗ immediate
doubleword.

REX.W + 69 /r id IMUL r64, r/m64, imm32 RMI Valid N.E. Quadword register ← r/m64 ∗ immediate
doubleword.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r, w) NA NA NA

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8/16/32 NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 49

• Three-operand form — This form requires a destination operand (the first operand) and two source
operands (the second and the third operands). Here, the first source operand (which can be a general-
purpose register or a memory location) is multiplied by the second source operand (an immediate value). The
product is then stored in the destination operand (a general-purpose register).

When an immediate value is used as an operand, it is sign-extended to the length of the destination operand
format.

The CF and OF flags are set when significant bit (including the sign bit) are carried into the upper half of the result.
The CF and OF flags are cleared when the result (including the sign bit) fits exactly in the lower half of the result.

The three forms of the IMUL instruction are similar in that the length of the product is calculated to twice the
length of the operands. With the one-operand form, the product is stored exactly in the destination. With the two-
and three- operand forms, however, the result is truncated to the length of the destination before it is stored in
the destination register. Because of this truncation, the CF or OF flag should be tested to ensure that no significant
bits are lost.

The two- and three-operand forms may also be used with unsigned operands because the lower half of the
product is the same regardless if the operands are signed or unsigned. The CF and OF flags, however, cannot be
used to determine if the upper half of the result is non-zero.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. Use of REX.W modifies the three
forms of the instruction as follows.
• One-operand form —The source operand (in a 64-bit general-purpose register or memory location) is

multiplied by the value in the RAX register and the product is stored in the RDX:RAX registers.
• Two-operand form — The source operand is promoted to 64 bits if it is a register or a memory location. The

destination operand is promoted to 64 bits.
• Three-operand form — The first source operand (either a register or a memory location) and destination

operand are promoted to 64 bits. If the source operand is an immediate, it is sign extended to 64 bits.

Operation

IF (NumberOfOperands = 1)
THEN IF (OperandSize = 8)

THEN
AX ← AL ∗ SRC (* Signed multiplication *)
IF AL = AX

THEN CF ← 0; OF ← 0;
ELSE CF ← 1; OF ← 1; FI;

ELSE IF OperandSize = 16
THEN

DX:AX ← AX ∗ SRC (* Signed multiplication *)
IF sign_extend_to_32 (AX) = DX:AX

THEN CF ← 0; OF ← 0;
ELSE CF ← 1; OF ← 1; FI;

ELSE IF OperandSize = 32
THEN

EDX:EAX ← EAX ∗ SRC (* Signed multiplication *)
IF EAX = EDX:EAX

THEN CF ← 0; OF ← 0;
ELSE CF ← 1; OF ← 1; FI;

ELSE (* OperandSize = 64 *)
RDX:RAX ← RAX ∗ SRC (* Signed multiplication *)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 50

IF RAX = RDX:RAX
THEN CF ← 0; OF ← 0;
ELSE CF ← 1; OF ← 1; FI;

FI;
FI;

ELSE IF (NumberOfOperands = 2)
THEN

temp ← DEST ∗ SRC (* Signed multiplication; temp is double DEST size *)
DEST ← DEST ∗ SRC (* Signed multiplication *)
IF temp ≠ DEST

THEN CF ← 1; OF ← 1;
ELSE CF ← 0; OF ← 0; FI;

ELSE (* NumberOfOperands = 3 *)
DEST ← SRC1 ∗ SRC2 (* Signed multiplication *)
temp ← SRC1 ∗ SRC2 (* Signed multiplication; temp is double SRC1 size *)
IF temp ≠ DEST

THEN CF ← 1; OF ← 1;
ELSE CF ← 0; OF ← 0; FI;

FI;
FI;

Flags Affected

For the one operand form of the instruction, the CF and OF flags are set when significant bits are carried into the
upper half of the result and cleared when the result fits exactly in the lower half of the result. For the two- and
three-operand forms of the instruction, the CF and OF flags are set when the result must be truncated to fit in the
destination operand size and cleared when the result fits exactly in the destination operand size. The SF, ZF, AF,
and PF flags are undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL NULL
segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 51

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used.

...

LOOP/LOOPcc—Loop According to ECX Counter

Instruction Operand Encoding

Description

Performs a loop operation using the RCX, ECX or CX register as a counter (depending on whether address size is
64 bits, 32 bits, or 16 bits). Note that the LOOP instruction ignores REX.W; but 64-bit address size can be over-
ridden using a 67H prefix.

Each time the LOOP instruction is executed, the count register is decremented, then checked for 0. If the count is
0, the loop is terminated and program execution continues with the instruction following the LOOP instruction. If
the count is not zero, a near jump is performed to the destination (target) operand, which is presumably the
instruction at the beginning of the loop.

The target instruction is specified with a relative offset (a signed offset relative to the current value of the instruc-
tion pointer in the IP/EIP/RIP register). This offset is generally specified as a label in assembly code, but at the
machine code level, it is encoded as a signed, 8-bit immediate value, which is added to the instruction pointer.
Offsets of –128 to +127 are allowed with this instruction.

Some forms of the loop instruction (LOOPcc) also accept the ZF flag as a condition for terminating the loop before
the count reaches zero. With these forms of the instruction, a condition code (cc) is associated with each instruc-
tion to indicate the condition being tested for. Here, the LOOPcc instruction itself does not affect the state of the
ZF flag; the ZF flag is changed by other instructions in the loop.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

E2 cb LOOP rel8 D Valid Valid Decrement count; jump short if count ≠ 0.

E1 cb LOOPE rel8 D Valid Valid Decrement count; jump short if count ≠ 0 and
ZF = 1.

E0 cb LOOPNE rel8 D Valid Valid Decrement count; jump short if count ≠ 0 and
ZF = 0.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

D Offset NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 52

Operation

IF (AddressSize = 32)
THEN Count is ECX;

ELSE IF (AddressSize = 64)
Count is RCX;

ELSE Count is CX;
FI;

Count ← Count – 1;

IF Instruction is not LOOP
THEN

IF (Instruction ← LOOPE) or (Instruction ← LOOPZ)
THEN IF (ZF = 1) and (Count ≠ 0)

THEN BranchCond ← 1;
ELSE BranchCond ← 0;

FI;
ELSE (Instruction = LOOPNE) or (Instruction = LOOPNZ)

IF (ZF = 0) and (Count ≠ 0)
THEN BranchCond ← 1;
ELSE BranchCond ← 0;

FI;
FI;

ELSE (* Instruction = LOOP *)
IF (Count ≠ 0)

THEN BranchCond ← 1;
ELSE BranchCond ← 0;

FI;
FI;

IF BranchCond = 1
THEN

IF OperandSize = 32
THEN EIP ← EIP + SignExtend(DEST);
ELSE IF OperandSize = 64

THEN RIP ← RIP + SignExtend(DEST);
FI;

ELSE IF OperandSize = 16
THEN EIP ← EIP AND 0000FFFFH;
FI;

FI;
IF OperandSize = (32 or 64)

THEN IF (R/E)IP < CS.Base or (R/E)IP > CS.Limit
#GP; FI;
FI;

FI;
ELSE

Terminate loop and continue program execution at (R/E)IP;
FI;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 53

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the offset being jumped to is beyond the limits of the CS segment.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If the offset being jumped to is beyond the limits of the CS segment or is outside of the effec-

tive address space from 0 to FFFFH. This condition can occur if a 32-bit address size override
prefix is used.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the offset being jumped to is in a non-canonical form.
#UD If the LOCK prefix is used.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 54

9. Updates to Chapter 4, Volume 2B
Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2B: Instruction Set Reference, N-Z, Part 2.

--

...

PBLENDVB — Variable Blend Packed Bytes

Instruction Operand Encoding

Description

Conditionally copies byte elements from the source operand (second operand) to the destination operand (first
operand) depending on mask bits defined in the implicit third register argument, XMM0. The mask bits are the
most significant bit in each byte element of the XMM0 register.
If a mask bit is “1", then the corresponding byte element in the source operand is copied to the destination, else
the byte element in the destination operand is left unchanged.
The register assignment of the implicit third operand is defined to be the architectural register XMM0.
128-bit Legacy SSE version: The first source operand and the destination operand is the same. Bits (VLMAX-
1:128) of the corresponding YMM destination register remain unchanged. The mask register operand is implicitly
defined to be the architectural register XMM0. An attempt to execute PBLENDVB with a VEX prefix will cause #UD.
VEX.128 encoded version: The first source operand and the destination operand are XMM registers. The second
source operand is an XMM register or 128-bit memory location. The mask operand is the third source register, and
encoded in bits[7:4] of the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode, imm8[7]
is ignored. The upper bits (VLMAX-1:128) of the corresponding YMM register (destination register) are zeroed.
VEX.L must be 0, otherwise the instruction will #UD. VEX.W must be 0, otherwise, the instruction will #UD.
VEX.256 encoded version: The first source operand and the destination operand are YMM registers. The second
source operand is an YMM register or 256-bit memory location. The third source register is an YMM register and

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 10 /r
PBLENDVB xmm1, xmm2/m128, <XMM0>

RM V/V SSE4_1 Select byte values from xmm1 and xmm2/
m128 from mask specified in the high bit of
each byte in XMM0 and store the values into
xmm1.

VEX.NDS.128.66.0F3A.W0 4C /r /is4
VPBLENDVB xmm1, xmm2, xmm3/m128, xmm4

RVMR V/V AVX Select byte values from xmm2 and xmm3/
m128 using mask bits in the specified mask
register, xmm4, and store the values into
xmm1.

VEX.NDS.256.66.0F3A.W0 4C /r /is4
VPBLENDVB ymm1, ymm2, ymm3/m256, ymm4

RVMR V/V AVX2 Select byte values from ymm2 and ymm3/
m256 from mask specified in the high bit of
each byte in ymm4 and store the values into
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) <XMM0> NA

RVMR ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) ModRM:reg (r)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 55

encoded in bits[7:4] of the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode, imm8[7]
is ignored.
VPBLENDVB permits the mask to be any XMM or YMM register. In contrast, PBLENDVB treats XMM0 implicitly as
the mask and do not support non-destructive destination operation. An attempt to execute PBLENDVB encoded
with a VEX prefix will cause a #UD exception.

Operation

PBLENDVB (128-bit Legacy SSE version)
MASK XMM0
IF (MASK[7] = 1) THEN DEST[7:0] SRC[7:0];
ELSE DEST[7:0] DEST[7:0];
IF (MASK[15] = 1) THEN DEST[15:8] SRC[15:8];
ELSE DEST[15:8] DEST[15:8];
IF (MASK[23] = 1) THEN DEST[23:16] SRC[23:16]
ELSE DEST[23:16] DEST[23:16];
IF (MASK[31] = 1) THEN DEST[31:24] SRC[31:24]
ELSE DEST[31:24] DEST[31:24];
IF (MASK[39] = 1) THEN DEST[39:32] SRC[39:32]
ELSE DEST[39:32] DEST[39:32];
IF (MASK[47] = 1) THEN DEST[47:40] SRC[47:40]
ELSE DEST[47:40] DEST[47:40];
IF (MASK[55] = 1) THEN DEST[55:48] SRC[55:48]
ELSE DEST[55:48] DEST[55:48];
IF (MASK[63] = 1) THEN DEST[63:56] SRC[63:56]
ELSE DEST[63:56] DEST[63:56];
IF (MASK[71] = 1) THEN DEST[71:64] SRC[71:64]
ELSE DEST[71:64] DEST[71:64];
IF (MASK[79] = 1) THEN DEST[79:72] SRC[79:72]
ELSE DEST[79:72] DEST[79:72];
IF (MASK[87] = 1) THEN DEST[87:80] SRC[87:80]
ELSE DEST[87:80] DEST[87:80];
IF (MASK[95] = 1) THEN DEST[95:88] SRC[95:88]
ELSE DEST[95:88] DEST[95:88];
IF (MASK[103] = 1) THEN DEST[103:96] SRC[103:96]
ELSE DEST[103:96] DEST[103:96];
IF (MASK[111] = 1) THEN DEST[111:104] SRC[111:104]
ELSE DEST[111:104] DEST[111:104];
IF (MASK[119] = 1) THEN DEST[119:112] SRC[119:112]
ELSE DEST[119:112] DEST[119:112];
IF (MASK[127] = 1) THEN DEST[127:120] SRC[127:120]
ELSE DEST[127:120] DEST[127:120])
DEST[VLMAX-1:128] (Unmodified)

VPBLENDVB (VEX.128 encoded version)
MASK SRC3
IF (MASK[7] = 1) THEN DEST[7:0] SRC2[7:0];
ELSE DEST[7:0] SRC1[7:0];
IF (MASK[15] = 1) THEN DEST[15:8] SRC2[15:8];
ELSE DEST[15:8] SRC1[15:8];
IF (MASK[23] = 1) THEN DEST[23:16] SRC2[23:16]

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 56

ELSE DEST[23:16] SRC1[23:16];
IF (MASK[31] = 1) THEN DEST[31:24] SRC2[31:24]
ELSE DEST[31:24] SRC1[31:24];
IF (MASK[39] = 1) THEN DEST[39:32] SRC2[39:32]
ELSE DEST[39:32] SRC1[39:32];
IF (MASK[47] = 1) THEN DEST[47:40] SRC2[47:40]
ELSE DEST[47:40] SRC1[47:40];
IF (MASK[55] = 1) THEN DEST[55:48] SRC2[55:48]
ELSE DEST[55:48] SRC1[55:48];
IF (MASK[63] = 1) THEN DEST[63:56] SRC2[63:56]
ELSE DEST[63:56] SRC1[63:56];
IF (MASK[71] = 1) THEN DEST[71:64] SRC2[71:64]
ELSE DEST[71:64] SRC1[71:64];
IF (MASK[79] = 1) THEN DEST[79:72] SRC2[79:72]
ELSE DEST[79:72] SRC1[79:72];
IF (MASK[87] = 1) THEN DEST[87:80] SRC2[87:80]
ELSE DEST[87:80] SRC1[87:80];
IF (MASK[95] = 1) THEN DEST[95:88] SRC2[95:88]
ELSE DEST[95:88] SRC1[95:88];
IF (MASK[103] = 1) THEN DEST[103:96] SRC2[103:96]
ELSE DEST[103:96] SRC1[103:96];
IF (MASK[111] = 1) THEN DEST[111:104] SRC2[111:104]
ELSE DEST[111:104] SRC1[111:104];
IF (MASK[119] = 1) THEN DEST[119:112] SRC2[119:112]
ELSE DEST[119:112] SRC1[119:112];
IF (MASK[127] = 1) THEN DEST[127:120] SRC2[127:120]
ELSE DEST[127:120] SRC1[127:120])
DEST[VLMAX-1:128] 0

VPBLENDVB (VEX.256 encoded version)
MASK SRC3
IF (MASK[7] == 1) THEN DEST[7:0] SRC2[7:0];
ELSE DEST[7:0] SRC1[7:0];
IF (MASK[15] == 1) THEN DEST[15:8] SRC2[15:8];
ELSE DEST[15:8] SRC1[15:8];
IF (MASK[23] == 1) THEN DEST[23:16] SRC2[23:16]
ELSE DEST[23:16] SRC1[23:16];
IF (MASK[31] == 1) THEN DEST[31:24] SRC2[31:24]
ELSE DEST[31:24] SRC1[31:24];
IF (MASK[39] == 1) THEN DEST[39:32] SRC2[39:32]
ELSE DEST[39:32] SRC1[39:32];
IF (MASK[47] == 1) THEN DEST[47:40] SRC2[47:40]
ELSE DEST[47:40] SRC1[47:40];
IF (MASK[55] == 1) THEN DEST[55:48] SRC2[55:48]
ELSE DEST[55:48] SRC1[55:48];
IF (MASK[63] == 1) THEN DEST[63:56] SRC2[63:56]
ELSE DEST[63:56] SRC1[63:56];
IF (MASK[71] == 1) THEN DEST[71:64] SRC2[71:64]
ELSE DEST[71:64] SRC1[71:64];
IF (MASK[79] == 1) THEN DEST[79:72] SRC2[79:72]

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 57

ELSE DEST[79:72] SRC1[79:72];
IF (MASK[87] == 1) THEN DEST[87:80] SRC2[87:80]
ELSE DEST[87:80] SRC1[87:80];
IF (MASK[95] == 1) THEN DEST[95:88] SRC2[95:88]
ELSE DEST[95:88] SRC1[95:88];
IF (MASK[103] == 1) THEN DEST[103:96] SRC2[103:96]
ELSE DEST[103:96] SRC1[103:96];
IF (MASK[111] == 1) THEN DEST[111:104] SRC2[111:104]
ELSE DEST[111:104] SRC1[111:104];
IF (MASK[119] == 1) THEN DEST[119:112] SRC2[119:112]
ELSE DEST[119:112] SRC1[119:112];
IF (MASK[127] == 1) THEN DEST[127:120] SRC2[127:120]
ELSE DEST[127:120] SRC1[127:120])
IF (MASK[135] == 1) THEN DEST[135:128] SRC2[135:128];
ELSE DEST[135:128] SRC1[135:128];
IF (MASK[143] == 1) THEN DEST[143:136] SRC2[143:136];
ELSE DEST[[143:136] SRC1[143:136];
IF (MASK[151] == 1) THEN DEST[151:144] SRC2[151:144]
ELSE DEST[151:144] SRC1[151:144];
IF (MASK[159] == 1) THEN DEST[159:152] SRC2[159:152]
ELSE DEST[159:152] SRC1[159:152];
IF (MASK[167] == 1) THEN DEST[167:160] SRC2[167:160]
ELSE DEST[167:160] SRC1[167:160];
IF (MASK[175] == 1) THEN DEST[175:168] SRC2[175:168]
ELSE DEST[175:168] SRC1[175:168];
IF (MASK[183] == 1) THEN DEST[183:176] SRC2[183:176]
ELSE DEST[183:176] SRC1[183:176];
IF (MASK[191] == 1) THEN DEST[191:184] SRC2[191:184]
ELSE DEST[191:184] SRC1[191:184];
IF (MASK[199] == 1) THEN DEST[199:192] SRC2[199:192]
ELSE DEST[199:192] SRC1[199:192];
IF (MASK[207] == 1) THEN DEST[207:200] SRC2[207:200]
ELSE DEST[207:200] SRC1[207:200]
IF (MASK[215] == 1) THEN DEST[215:208] SRC2[215:208]
ELSE DEST[215:208] SRC1[215:208];
IF (MASK[223] == 1) THEN DEST[223:216] SRC2[223:216]
ELSE DEST[223:216] SRC1[223:216];
IF (MASK[231] == 1) THEN DEST[231:224] SRC2[231:224]
ELSE DEST[231:224] SRC1[231:224];
IF (MASK[239] == 1) THEN DEST[239:232] SRC2[239:232]
ELSE DEST[239:232] SRC1[239:232];
IF (MASK[247] == 1) THEN DEST[247:240] SRC2[247:240]
ELSE DEST[247:240] SRC1[247:240];
IF (MASK[255] == 1) THEN DEST[255:248] SRC2[255:248]
ELSE DEST[255:248] SRC1[255:248]

Intel C/C++ Compiler Intrinsic Equivalent

(V)PBLENDVB: __m128i _mm_blendv_epi8 (__m128i v1, __m128i v2, __m128i mask);

VPBLENDVB: __m256i _mm256_blendv_epi8 (__m256i v1, __m256i v2, __m256i mask);

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 58

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.W = 1.
...

PREFETCHh—Prefetch Data Into Caches

Instruction Operand Encoding

Description

Fetches the line of data from memory that contains the byte specified with the source operand to a location in the
cache hierarchy specified by a locality hint:
• T0 (temporal data)—prefetch data into all levels of the cache hierarchy.

— Pentium III processor—1st- or 2nd-level cache.

— Pentium 4 and Intel Xeon processors—2nd-level cache.
• T1 (temporal data with respect to first level cache)—prefetch data into level 2 cache and higher.

— Pentium III processor—2nd-level cache.

— Pentium 4 and Intel Xeon processors—2nd-level cache.
• T2 (temporal data with respect to second level cache)—prefetch data into level 2 cache and higher.

— Pentium III processor—2nd-level cache.

— Pentium 4 and Intel Xeon processors—2nd-level cache.
• NTA (non-temporal data with respect to all cache levels)—prefetch data into non-temporal cache structure

and into a location close to the processor, minimizing cache pollution.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 18 /1 PREFETCHT0 m8 M Valid Valid Move data from m8 closer to the processor
using T0 hint.

0F 18 /2 PREFETCHT1 m8 M Valid Valid Move data from m8 closer to the processor
using T1 hint.

0F 18 /3 PREFETCHT2 m8 M Valid Valid Move data from m8 closer to the processor
using T2 hint.

0F 18 /0 PREFETCHNTA m8 M Valid Valid Move data from m8 closer to the processor
using NTA hint.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 59

— Pentium III processor—1st-level cache

— Pentium 4 and Intel Xeon processors—2nd-level cache

The source operand is a byte memory location. (The locality hints are encoded into the machine level instruction
using bits 3 through 5 of the ModR/M byte.)

If the line selected is already present in the cache hierarchy at a level closer to the processor, no data movement
occurs. Prefetches from uncacheable or WC memory are ignored.

The PREFETCHh instruction is merely a hint and does not affect program behavior. If executed, this instruction
moves data closer to the processor in anticipation of future use.

The implementation of prefetch locality hints is implementation-dependent, and can be overloaded or ignored by
a processor implementation. The amount of data prefetched is also processor implementation-dependent. It will,
however, be a minimum of 32 bytes.

It should be noted that processors are free to speculatively fetch and cache data from system memory regions
that are assigned a memory-type that permits speculative reads (that is, the WB, WC, and WT memory types). A
PREFETCHh instruction is considered a hint to this speculative behavior. Because this speculative fetching can
occur at any time and is not tied to instruction execution, a PREFETCHh instruction is not ordered with respect to
the fence instructions (MFENCE, SFENCE, and LFENCE) or locked memory references. A PREFETCHh instruction is
also unordered with respect to CLFLUSH instructions, other PREFETCHh instructions, or any other general instruc-
tion. It is ordered with respect to serializing instructions such as CPUID, WRMSR, OUT, and MOV CR.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

FETCH (m8);

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_prefetch(char *p, int i)

The argument “*p” gives the address of the byte (and corresponding cache line) to be prefetched. The value “i”
gives a constant (_MM_HINT_T0, _MM_HINT_T1, _MM_HINT_T2, or _MM_HINT_NTA) that specifies the type of
prefetch operation to be performed.

Numeric Exceptions

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.
...

PREFETCHW—Prefetch Data into Caches in Anticipation of a Write

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 0D /1
PREFETCHW m8

A V/V PRFCHW Move data from m8 closer to the processor in anticipation of a
write.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 60

Instruction Operand Encoding

Description

Fetches the cache line of data from memory that contains the byte specified with the source operand to a location
in the 1st or 2nd level cache and invalidates all other cached instances of the line.
The source operand is a byte memory location. If the line selected is already present in the lowest level cache and
is already in an exclusively owned state, no data movement occurs. Prefetches from non-writeback memory are
ignored.
The PREFETCHW instruction is merely a hint and does not affect program behavior. If executed, this instruction
moves data closer to the processor and invalidates any other cached copy in anticipation of the line being written
to in the future.
The characteristic of prefetch locality hints is implementation-dependent, and can be overloaded or ignored by a
processor implementation. The amount of data prefetched is also processor implementation-dependent. It will,
however, be a minimum of 32 bytes.
It should be noted that processors are free to speculatively fetch and cache data with exclusive ownership from
system memory regions that permit such accesses (that is, the WB memory type). A PREFETCHW instruction is
considered a hint to this speculative behavior. Because this speculative fetching can occur at any time and is not
tied to instruction execution, a PREFETCHW instruction is not ordered with respect to the fence instructions
(MFENCE, SFENCE, and LFENCE) or locked memory references. A PREFETCHW instruction is also unordered with
respect to CLFLUSH instructions, other PREFETCHW instructions, or any other general instruction
It is ordered with respect to serializing instructions such as CPUID, WRMSR, OUT, and MOV CR.
This instruction's operation is the same in non-64-bit modes and 64-bit mode.

Operation

FETCH_WITH_EXCLUSIVE_OWNERSHIP (m8);

Flags Affected

All flags are affected

C/C++ Compiler Intrinsic Equivalent

void _m_prefetchw(void *);

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
#UD If the LOCK prefix is used.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 61

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.
...

RDMSR—Read from Model Specific Register

Instruction Operand Encoding

Description

Reads the contents of a 64-bit model specific register (MSR) specified in the ECX register into registers EDX:EAX.
(On processors that support the Intel 64 architecture, the high-order 32 bits of RCX are ignored.) The EDX
register is loaded with the high-order 32 bits of the MSR and the EAX register is loaded with the low-order 32 bits.
(On processors that support the Intel 64 architecture, the high-order 32 bits of each of RAX and RDX are cleared.)
If fewer than 64 bits are implemented in the MSR being read, the values returned to EDX:EAX in unimplemented
bit locations are undefined.

This instruction must be executed at privilege level 0 or in real-address mode; otherwise, a general protection
exception #GP(0) will be generated. Specifying a reserved or unimplemented MSR address in ECX will also cause
a general protection exception.

The MSRs control functions for testability, execution tracing, performance-monitoring, and machine check errors.
Chapter 35, “Model-Specific Registers (MSRs),” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3C, lists all the MSRs that can be read with this instruction and their addresses. Note that each
processor family has its own set of MSRs.

The CPUID instruction should be used to determine whether MSRs are supported (CPUID.01H:EDX[5] = 1) before
using this instruction.

IA-32 Architecture Compatibility

The MSRs and the ability to read them with the RDMSR instruction were introduced into the IA-32 Architecture
with the Pentium processor. Execution of this instruction by an IA-32 processor earlier than the Pentium processor
results in an invalid opcode exception #UD.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C, for more information about the behavior of this instruction in
VMX non-root operation.

Operation

EDX:EAX ← MSR[ECX];

Flags Affected

None.

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 32 RDMSR NP Valid Valid Read MSR specified by ECX into EDX:EAX.

NOTES:
* See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 62

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the value in ECX specifies a reserved or unimplemented MSR address.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If the value in ECX specifies a reserved or unimplemented MSR address.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The RDMSR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
...

RDRAND—Read Random Number

Instruction Operand Encoding

Description

Loads a hardware generated random value and store it in the destination register. The size of the random value
is determined by the destination register size and operating mode. The Carry Flag indicates whether a random
value is available at the time the instruction is executed. CF=1 indicates that the data in the destination is valid.
Otherwise CF=0 and the data in the destination operand will be returned as zeros for the specified width. All other
flags are forced to 0 in either situation. Software must check the state of CF=1 for determining if a valid random
value has been returned, otherwise it is expected to loop and retry execution of RDRAND (see Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, Section 7.3.17, “Random Number Generator Instruction”).
This instruction is available at all privilege levels.

Opcode*/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F C7 /6

RDRAND r16

M V/V RDRAND Read a 16-bit random number and store in the
destination register.

0F C7 /6

RDRAND r32

M V/V RDRAND Read a 32-bit random number and store in the
destination register.

REX.W + 0F C7 /6

RDRAND r64

M V/I RDRAND Read a 64-bit random number and store in the
destination register.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 63

In 64-bit mode, the instruction's default operation size is 32 bits. Using a REX prefix in the form of REX.B permits
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bit
operands. See the summary chart at the beginning of this section for encoding data and limits.

Operation

IF HW_RND_GEN.ready = 1
THEN

CASE of
osize is 64: DEST[63:0] ← HW_RND_GEN.data;
osize is 32: DEST[31:0] ← HW_RND_GEN.data;
osize is 16: DEST[15:0] ← HW_RND_GEN.data;

ESAC
CF ← 1;

ELSE
CASE of

osize is 64: DEST[63:0] ← 0;
osize is 32: DEST[31:0] ← 0;
osize is 16: DEST[15:0] ← 0;

ESAC
CF ← 0;

FI
OF, SF, ZF, AF, PF ← 0;

Flags Affected

The CF flag is set according to the result (see the "Operation" section above). The OF, SF, ZF, AF, and PF flags are
set to 0.

Intel C/C++ Compiler Intrinsic Equivalent

RDRAND: int _rdrand16_step(unsigned short *);

RDRAND: int _rdrand32_step(unsigned int *);

RDRAND: int _rdrand64_step(unsigned __int64 *);

Protected Mode Exceptions
#UD If the LOCK prefix is used.

If the F2H or F3H prefix is used.
If CPUID.01H:ECX.RDRAND[bit 30] = 0.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 64

64-Bit Mode Exceptions
Same exceptions as in protected mode.
...

VBROADCAST—Broadcast Floating-Point Data

Instruction Operand Encoding

Description

Load floating point values from the source operand (second operand) and broadcast to all elements of the desti-
nation operand (first operand).
VBROADCASTSD and VBROADCASTF128 are only supported as 256-bit wide versions. VBROADCASTSS is
supported in both 128-bit and 256-bit wide versions.
Memory and register source operand syntax support of 256-bit instructions depend on the processor’s enumera-
tion of the following conditions with respect to CPUID.1:ECX.AVX[bit 28] and CPUID.(EAX=07H,
ECX=0H):EBX.AVX2[bit 5]:
• If CPUID.1:ECX.AVX = 1 and CPUID.(EAX=07H, ECX=0H):EBX.AVX2 = 0: the destination operand is a YMM

register. The source operand support can be either a 32-bit, 64-bit, or 128-bit memory location. Register
source encodings are reserved and will #UD.

• If CPUID.1:ECX.AVX = 1 and CPUID.(EAX=07H, ECX=0H):EBX.AVX2 = 1: the destination operand is a YMM
register. The source operand support can be a register or memory location.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

VEX.128.66.0F38.W0 18 /r

VBROADCASTSS xmm1, m32

RM V/V AVX Broadcast single-precision floating-point
element in mem to four locations in xmm1.

VEX.256.66.0F38.W0 18 /r

VBROADCASTSS ymm1, m32

RM V/V AVX Broadcast single-precision floating-point
element in mem to eight locations in ymm1.

VEX.256.66.0F38.W0 19 /r

VBROADCASTSD ymm1, m64

RM V/V AVX Broadcast double-precision floating-point
element in mem to four locations in ymm1.

VEX.256.66.0F38.W0 1A /r

VBROADCASTF128 ymm1, m128

RM V/V AVX Broadcast 128 bits of floating-point data in
mem to low and high 128-bits in ymm1.

VEX.128.66.0F38.W0 18/r

VBROADCASTSS xmm1, xmm2

RM V/V AVX2 Broadcast the low single-precision floating-
point element in the source operand to four
locations in xmm1.

VEX.256.66.0F38.W0 18 /r

VBROADCASTSS ymm1, xmm2

RM V/V AVX2 Broadcast low single-precision floating-point
element in the source operand to eight
locations in ymm1.

VEX.256.66.0F38.W0 19 /r

VBROADCASTSD ymm1, xmm2

RM V/V AVX2 Broadcast low double-precision floating-point
element in the source operand to four
locations in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 65

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD. An
attempt to execute VBROADCASTSD or VBROADCASTF128 encoded with VEX.L= 0 will cause an #UD exception.
Attempts to execute any VBROADCAST* instruction with VEX.W = 1 will cause #UD.

Figure 4-27 VBROADCASTSS Operation (VEX.256 encoded version)

Figure 4-28 VBROADCASTSS Operation (128-bit version)

Figure 4-29 VBROADCASTSD Operation

DEST

m32 X0

X0X0 X0X0 X0X0 X0X0

DEST

m32 X0

X0X0 X00 X00 00

DEST

m64 X0

X0X0X0X0

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 66

Operation

VBROADCASTSS (128 bit version)
temp SRC[31:0]
DEST[31:0] temp
DEST[63:32] temp
DEST[95:64] temp
DEST[127:96] temp
DEST[VLMAX-1:128] 0

VBROADCASTSS (VEX.256 encoded version)
temp SRC[31:0]
DEST[31:0] temp
DEST[63:32] temp
DEST[95:64] temp
DEST[127:96] temp
DEST[159:128] temp
DEST[191:160] temp
DEST[223:192] temp
DEST[255:224] temp

VBROADCASTSD (VEX.256 encoded version)
temp SRC[63:0]
DEST[63:0] temp
DEST[127:64] temp
DEST[191:128] temp
DEST[255:192] temp

VBROADCASTF128
temp SRC[127:0]
DEST[127:0] temp
DEST[VLMAX-1:128] temp

Figure 4-30 VBROADCASTF128 Operation

DEST

m128 X0

X0X0

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 67

Intel C/C++ Compiler Intrinsic Equivalent

VBROADCASTSS: __m128 _mm_broadcast_ss(float *a);

VBROADCASTSS: __m256 _mm256_broadcast_ss(float *a);

VBROADCASTSD: __m256d _mm256_broadcast_sd(double *a);

VBROADCASTF128: __m256 _mm256_broadcast_ps(__m128 * a);

VBROADCASTF128: __m256d _mm256_broadcast_pd(__m128d * a);

Flags Affected

None.

Other Exceptions
See Exceptions Type 6; additionally
#UD If VEX.L = 0 for VBROADCASTSD,

If VEX.L = 0 for VBROADCASTF128,
If VEX.W = 1.

...

XGETBV—Get Value of Extended Control Register

Instruction Operand Encoding

Description

Reads the contents of the extended control register (XCR) specified in the ECX register into registers EDX:EAX.
(On processors that support the Intel 64 architecture, the high-order 32 bits of RCX are ignored.) The EDX
register is loaded with the high-order 32 bits of the XCR and the EAX register is loaded with the low-order 32 bits.
(On processors that support the Intel 64 architecture, the high-order 32 bits of each of RAX and RDX are cleared.)
If fewer than 64 bits are implemented in the XCR being read, the values returned to EDX:EAX in unimplemented
bit locations are undefined.

Specifying a reserved or unimplemented XCR in ECX causes a general protection exception.

Currently, only XCR0 (the XFEATURE_ENABLED_MASK register) is supported. Thus, all other values of ECX are
reserved and will cause a #GP(0).

Operation

EDX:EAX ← XCR[ECX];

Flags Affected

None.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 D0 XGETBV NP Valid Valid Reads an XCR specified by ECX into EDX:EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 68

Intel C/C++ Compiler Intrinsic Equivalent

XGETBV: unsigned __int64 _xgetbv(unsigned int);

Protected Mode Exceptions
#GP(0) If an invalid XCR is specified in ECX.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Real-Address Mode Exceptions
#GP If an invalid XCR is specified in ECX.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
...

XRSTOR—Restore Processor Extended States

Instruction Operand Encoding

Description

Performs a full or partial restore of the enabled processor states using the state information stored in the memory
address specified by the source operand. The implicit EDX:EAX register pair specifies a 64-bit restore mask.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F AE /5 XRSTOR mem M Valid Valid Restore processor extended states from
memory. The states are specified by EDX:EAX

REX.W+ 0F AE /5 XRSTOR64 mem M Valid N.E. Restore processor extended states from
memory. The states are specified by EDX:EAX

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 69

The format of the XSAVE/XRSTOR area is shown in Table 4-17. The memory layout of the XSAVE/XRSTOR area
may have holes between save areas written by the processor as a result of the processor not supporting certain
processor extended states or system software not supporting certain processor extended states. There is no rela-
tionship between the order of XCR0 bits and the order of the state layout. States corresponding to higher and
lower XCR0 bits may be intermingled in the layout.

XRSTOR operates on each subset of the processor state or a processor extended state in one of three ways
(depending on the corresponding bit in XCR0 (XFEATURE_ENABLED_MASK register), the restore mask EDX:EAX,
and the save mask XSAVE.HEADER.XSTATE_BV in memory):
• Updates the processor state component using the state information stored in the respective save area (see

Table 4-17) of the source operand, if the corresponding bit in XCR0, EDX:EAX, and
XSAVE.HEADER.XSTATE_BV are all 1.

• Writes certain registers in the processor state component using processor-supplied values (see Table 4-19)
without using state information stored in respective save area of the memory region, if the corresponding bit
in XCR0 and EDX:EAX are both 1, but the corresponding bit in XSAVE.HEADER.XSTATE_BV is 0.

• The processor state component is unchanged, if the corresponding bit in XCR0 or EDX:EAX is 0.

The format of the header section (XSAVE.HEADER) of the XSAVE/XRSTOR area is shown in Table 4-18.

If a processor state component is not enabled in XCR0 but the corresponding save mask bit in
XSAVE.HEADER.XSTATE_BV is 1, an attempt to execute XRSTOR will cause a #GP(0) exception. Software may
specify all 1’s in the implicit restore mask EDX:EAX, so that all the enabled processors states in XCR0 are restored
from state information stored in memory or from processor supplied values. When using all 1's as the restore
mask, software is required to determine the total size of the XSAVE/XRSTOR save area (specified as source
operand) to fit all enabled processor states by using the value enumerated in CPUID.(EAX=0D, ECX=0):EBX.
While it's legal to set any bit in the EDX:EAX mask to 1, it is strongly recommended to set only the bits that are
required to save/restore specific states.

Table 4-17 General Layout of XSAVE/XRSTOR Save Area

Save Areas Offset (Byte) Size (Bytes)

FPU/SSE SaveArea1 0 512

Header 512 64

Reserved (Ext_Save_Area_2) CPUID.(EAX=0DH, ECX=2):EBX CPUID.(EAX=0DH, ECX=2):EAX

Reserved(Ext_Save_Area_4)2 CPUID.(EAX=0DH, ECX=4):EBX CPUID.(EAX=0DH, ECX=4):EAX

Reserved(Ext_Save_Area_3) CPUID.(EAX=0DH, ECX=3):EBX CPUID.(EAX=0DH, ECX=3):EAX

Reserved(...)
NOTES:

1. Bytes 464:511 are available for software use. XRSTOR ignores the value contained in bytes 464:511 of an XSAVE SAVE image.
2. State corresponding to higher and lower XCR0 bits may be intermingled in layout.

Table 4-18 XSAVE.HEADER Layout

15 8 7 0 Byte Offset from
Header

Byte Offset from XSAVE/XRSTOR
Area

Rsrvd (Must be 0) XSTATE_BV 0 512

Reserved Rsrvd (Must be 0) 16 528

Reserved Reserved 32 544

Reserved Reserved 48 560

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 70

An attempt to restore processor states with writing 1s to reserved bits in certain registers (see Table 4-20) will
cause a #GP(0) exception.

Because bit 63 of XCR0 is reserved for future bit vector expansion, it will not be used for any future processor
state feature, and XRSTOR will ignore bit 63 of EDX:EAX (EDX[31]).

A source operand not aligned to 64-byte boundary (for 64-bit and 32-bit modes) will result in a general-protection
(#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

Operation

/* The alignment of the x87 and SSE fields in the XSAVE area is the same as in FXSAVE area*/

RS_TMP_MASK[62:0] ← (EDX[30:0] << 32) OR EAX[31:0];
ST_TMP_MASK[62:0] ← SRCMEM.HEADER.XSTATE_BV[62:0];
IF (((XCR0[62:0] XOR 7FFFFFFF_FFFFFFFFH) AND ST_TMP_MASK[62:0]))

THEN
#GP(0)

ELSE
FOR i = 0, 62 STEP 1

IF (RS_TMP_MASK[i] and XCR0[i])
THEN

IF (ST_TMP_MASK[i])
CASE (i) OF
0: Processor state[x87 FPU] ← SRCMEM. FPUSSESave_Area[FPU];
1: Processor state[SSE] ← SRCMEM. FPUSSESave_Area[SSE];

// MXCSR is loaded as part of the SSE state
DEFAULT: // i corresponds to a valid sub-leaf index of CPUID leaf 0DH

Processor state[i] ← SRCMEM. Ext_Save_Area[i];
ESAC;

ELSE
Processor extended state[i] ← Processor supplied values; (see Table 4-19)

Table 4-19 Processor Supplied Init Values XRSTOR May Use

Processor State Component Processor Supplied Register Values

x87 FPU State FCW ← 037FH; FTW ← 0FFFFH; FSW ← 0H; FPU CS ← 0H;

FPU DS ← 0H; FPU IP ← 0H; FPU DP ← 0; ST0-ST7 ← 0;

SSE State1 If 64-bit Mode: XMM0-XMM15 ← 0H;

Else XMM0-XMM7 ← 0H
NOTES:

1. MXCSR state is not updated by processor supplied values. MXCSR state can only be updated by XRSTOR from state information
stored in XSAVE/XRSTOR area.

Table 4-20 Reserved Bit Checking and XRSTOR

Processor State Component Reserved Bit Checking

X87 FPU State None

SSE State Reserved bits of MXCSR

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 71

CASE (i) OF
1: MXCSR ← SRCMEM. FPUSSESave_Area[SSE];
ESAC;

FI;
FI;

NEXT;
FI;

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XRSTOR: void _xrstor(void * , unsigned __int64);

XRSTOR: void _xrstor64(void * , unsigned __int64);

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
If a bit in XCR0 is 0 and the corresponding bit in HEADER.XSTATE_BV field of the source
operand is 1.
If bytes 23:8 of HEADER is not zero.
If attempting to write any reserved bits of the MXCSR register with 1.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 16-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general
protection exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.
If a bit in XCR0 is 0 and the corresponding bit in HEADER.XSTATE_BV field of the source
operand is 1.
If bytes 23:8 of HEADER is not zero.
If attempting to write any reserved bits of the MXCSR register with 1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 72

#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
If a bit in XCR0 is 0 and the corresponding bit in XSAVE.HEADER.XSTATE_BV is 1.
If bytes 23:8 of HEADER is not zero.
If attempting to write any reserved bits of the MXCSR register with 1.

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 16-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general
protection exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

...

XSAVE—Save Processor Extended States
Opcode Instruction Op/

En
64-Bit
Mode

Compat/
Leg Mode

Description

0F AE /4 XSAVE mem M Valid Valid Save processor extended states to memory.
The states are specified by EDX:EAX

REX.W+ 0F AE /4 XSAVE64 mem M Valid N.E. Save processor extended states to memory.
The states are specified by EDX:EAX

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 73

Instruction Operand Encoding

Description

Performs a full or partial save of the enabled processor state components to a memory address specified in the
destination operand. A full or partial save of the processor states is specified by an implicit mask operand via the
register pair, EDX:EAX. The destination operand is a memory location that must be 64-byte aligned.

The implicit 64-bit mask operand in EDX:EAX specifies the subset of enabled processor state components to save
into the XSAVE/XRSTOR save area. The XSAVE/XRSTOR save area comprises of individual save area for each
processor state components and a header section, see Table 4-17. Each component save area is written if both
the corresponding bits in the save mask operand and in XCR0 (the XFEATURE_ENABLED_MASK register) are 1. A
processor state component save area is not updated if either one of the corresponding bits in the mask operand
or in XCR0 is 0. If the mask operand (EDX:EAX) contains all 1's, all enabled processor state components in XCR0
are written to the respective component save area.

The bit assignment used for the EDX:EAX register pair matches XCR0 (see chapter 2 of Vol. 3B). For the XSAVE
instruction, software can specify "1" in any bit position of EDX:EAX, irrespective of whether the corresponding bit
position in XCR0 is valid for the processor. The bit vector in EDX:EAX is "anded" with XCR0 to determine which
save area will be written. While it's legal to set any bit in the EDX:EAX mask to 1, it is strongly recommended to
set only the bits that are required to save/restore specific states. When specifying 1 in any bit position of EDX:EAX
mask, software is required to determine the total size of the XSAVE/XRSTOR save area (specified as destination
operand) to fit all enabled processor states by using the value enumerated in CPUID.(EAX=0D, ECX=0):EBX.

The content layout of the XSAVE/XRSTOR save area is architecturally defined to be extendable and enumerated
via the sub-leaves of CPUID.0DH leaf. The extendable framework of the XSAVE/XRSTOR layout is depicted by
Table 4-17. The layout of the XSAVE/XRSTOR save area is fixed and may contain non-contiguous individual save
areas. The XSAVE/XRSTOR save area is not compacted if some features are not saved or are not supported by the
processor and/or by system software.

The layout of the register fields of first 512 bytes of the XSAVE/XRSTOR is the same as the FXSAVE/FXRSTOR area
(refer to “FXSAVE—Save x87 FPU, MMX Technology, and SSE State” on page 357). But XSAVE/XRSTOR organizes
the 512 byte area as x87 FPU states (including FPU operation states, x87/MMX data registers), MXCSR (including
MXCSR_MASK), and XMM registers.

Bytes 464:511 are available for software use. The processor does not write to bytes 464:511 when executing
XSAVE.

The processor writes 1 or 0 to each HEADER.XSTATE_BV[i] bit field of an enabled processor state component in a
manner that is consistent to XRSTOR's interaction with HEADER.XSTATE_BV (see the operation section of
XRSTOR instruction). If a processor implementation discern that a processor state component is in its initialized
state (according to Table 4-19) it may modify the corresponding bit in the HEADER.XSTATE_BV as ‘0’.

A destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit modes) will result in a general-
protection (#GP) exception being generated. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

Operation

TMP_MASK[62:0] ← ((EDX[30:0] << 32) OR EAX[31:0]) AND XCR0[62:0];
FOR i = 0, 62 STEP 1

IF (TMP_MASK[i] = 1) THEN
THEN

CASE (i) of
0: DEST.FPUSSESAVE_Area[x87 FPU] ← processor state[x87 FPU];
1: DEST.FPUSSESAVE_Area[SSE] ← processor state[SSE];

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 74

// SSE state include MXCSR
DEFAULT: // i corresponds to a valid sub-leaf index of CPUID leaf 0DH

DEST.Ext_Save_Area[i] ← processor state[i] ;
ESAC:
DEST.HEADER.XSTATE_BV[i] ← INIT_FUNCTION[i];

FI;
NEXT;

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XSAVE: void _xsave(void * , unsigned __int64);

XSAVE: void _xsave64(void * , unsigned __int64);

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 16-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general
protection exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 75

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 16-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general
protection exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

...

XSAVEOPT—Save Processor Extended States Optimized

Instruction Operand Encoding

Description

XSAVEOPT performs a full or partial save of the enabled processor state components to a memory address spec-
ified in the destination operand. A full or partial save of the processor states is specified by an implicit mask
operand via the register pair, EDX:EAX. The destination operand is a memory location that must be 64-byte
aligned. The hardware may optimize the manner in which data is saved. The performance of this instruction will
be equal or better than using the XSAVE instruction.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F AE /6

XSAVEOPT mem

M V/V XSAVEOPT Save processor extended states specified in
EDX:EAX to memory, optimizing the state save
operation if possible.

REX.W + 0F AE /6

XSAVEOPT64 mem

M V/V XSAVEOPT Save processor extended states specified in
EDX:EAX to memory, optimizing the state save
operation if possible.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 76

The implicit 64-bit mask operand in EDX:EAX specifies the subset of enabled processor state components to save
into the XSAVE/XRSTOR save area. The XSAVE/XRSTOR save area comprises of individual save area for each
processor state components and a header section, see Table 4-17.

The bit assignment used for the EDX:EAX register pair matches XCR0 (the XFEATURE_ENABLED_MASK register).
For the XSAVEOPT instruction, software can specify "1" in any bit position of EDX:EAX, irrespective of whether the
corresponding bit position in XCR0 is valid for the processor. The bit vector in EDX:EAX is "anded" with XCR0 to
determine which save area will be written. While it's legal to set any bit in the EDX:EAX mask to 1, it is strongly
recommended to set only the bits that are required to save/restore specific states. When specifying 1 in any bit
position of EDX:EAX mask, software is required to determine the total size of the XSAVE/XRSTOR save area
(specified as destination operand) to fit all enabled processor states by using the value enumerated in
CPUID.(EAX=0D, ECX=0):EBX.

The content layout of the XSAVE/XRSTOR save area is architecturally defined to be extendable and enumerated
via the sub-leaves of CPUID.0DH leaf. The extendable framework of the XSAVE/XRSTOR layout is depicted by
Table 4-17. The layout of the XSAVE/XRSTOR save area is fixed and may contain non-contiguous individual save
areas. The XSAVE/XRSTOR save area is not compacted if some features are not saved or are not supported by the
processor and/or by system software.

The layout of the register fields of first 512 bytes of the XSAVE/XRSTOR is the same as the FXSAVE/FXRSTOR
area. But XSAVE/XRSTOR organizes the 512 byte area as x87 FPU states (including FPU operation states, x87/
MMX data registers), MXCSR (including MXCSR_MASK), and XMM registers.
The processor writes 1 or 0 to each.HEADER.XSTATE_BV[i] bit field of an enabled processor state component in a
manner that is consistent to XRSTOR's interaction with HEADER.XSTATE_BV.
The state updated to the XSAVE/XRSTOR area may be optimized as follows:
• If the state is in its initialized form, the corresponding XSTATE_BV bit may be set to 0, and the corresponding

processor state component that is indicated as initialized will not be saved to memory.

A processor state component save area is not updated if either one of the corresponding bits in the mask operand
or in XCR0 is 0. The processor state component that is updated to the save area is computed by bit-wise AND of
the mask operand (EDX:EAX) with XCR0.
HEADER.XSTATE_BV is updated to reflect the data that is actually written to the save area. A "1" bit in the header
indicates the contents of the save area corresponding to that bit are valid. A "0" bit in the header indicates that
the state corresponding to that bit is in its initialized form. The memory image corresponding to a "0" bit may or
may not contain the correct (initialized) value since only the header bit (and not the save area contents) is
updated when the header bit value is 0. XRSTOR will ensure the correct value is placed in the register state
regardless of the value of the save area when the header bit is zero.

XSAVEOPT Usage Guidelines

When using the XSAVEOPT facility, software must be aware of the following guidelines:

1. The processor uses a tracking mechanism to determine which state components will be written to memory by
the XSAVEOPT instruction. The mechanism includes three sub-conditions that are recorded internally each
time XRSTOR is executed and evaluated on the invocation of the next XSAVEOPT. If a change is detected in
any one of these sub-conditions, XSAVEOPT will behave exactly as XSAVE. The three sub-conditions are:

— current CPL of the logical processor

— indication whether or not the logical processor is in VMX non-root operation

— linear address of the XSAVE/XRSTOR area

2. Upon allocation of a new XSAVE/XRSTOR area and before an XSAVE or XSAVEOPT instruction is used, the save
area header (HEADER.XSTATE) must be initialized to zeroes for proper operation.

3. XSAVEOPT is designed primarily for use in context switch operations. The values stored by the XSAVEOPT
instruction depend on the values previously stored in a given XSAVE area.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 77

4. Manual modifications to the XSAVE area between an XRSTOR instruction and the matching XSAVEOPT may
result in data corruption.

5. For optimization to be performed properly, the XRSTOR XSAVEOPT pair must use the same segment when
referencing the XSAVE area and the base of that segment must be unchanged between the two operations.

6. Software should avoid executing XSAVEOPT into a buffer from which it hadn’t previously executed a XRSTOR.
For newly allocated buffers, software can execute XRSTOR with the linear address of the buffer and a restore
mask of EDX:EAX = 0. Executing XRSTOR(0:0) doesn’t restore any state, but ensures expected operation of
the XSAVEOPT instruction.

7. The XSAVE area can be moved or even paged, but the contents at the linear address of the save area at an
XSAVEOPT must be the same as that when the previous XRSTOR was performed.

A destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit modes) will result in a general-
protection (#GP) exception being generated. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

Operation

TMP_MASK[62:0] (EDX[30:0] << 32) OR EAX[31:0]) AND XCR0[62:0];
FOR i = 0, 62 STEP 1
 IF (TMP_MASK[i] = 1)
 THEN
 If not HW_CAN_OPTIMIZE_SAVE
 THEN
 CASE (i) of
 0: DEST.FPUSSESAVE_Area[x87 FPU] processor state[x87 FPU];
 1: DEST.FPUSSESAVE_Area[SSE] processor state[SSE];
 // SSE state include MXCSR
 2: DEST.EXT_SAVE_Area2[YMM] processor state[YMM];
 DEFAULT: // i corresponds to a valid sub-leaf index of CPUID leaf 0DH
 DEST.Ext_Save_Area[i] processor state[i] ;
 ESAC:
 FI;
 DEST.HEADER.XSTATE_BV[i] INIT_FUNCTION[i];
 FI;
NEXT;

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XSAVEOPT: void _xsaveopt(void * , unsigned __int64);

XSAVEOPT: void _xsaveopt64(void * , unsigned __int64);

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 78

If CPUID.(EAX=0DH, ECX=01H):EAX.XSAVEOPT[bit 0] = 0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CPUID.(EAX=0DH, ECX=01H):EAX.XSAVEOPT[bit 0] = 0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CPUID.(EAX=0DH, ECX=01H):EAX.XSAVEOPT[bit 0] = 0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

...

XSETBV—Set Extended Control Register

Instruction Operand Encoding

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 D1 XSETBV NP Valid Valid Write the value in EDX:EAX to the XCR
specified by ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 79

Description

Writes the contents of registers EDX:EAX into the 64-bit extended control register (XCR) specified in the ECX
register. (On processors that support the Intel 64 architecture, the high-order 32 bits of RCX are ignored.) The
contents of the EDX register are copied to high-order 32 bits of the selected XCR and the contents of the EAX
register are copied to low-order 32 bits of the XCR. (On processors that support the Intel 64 architecture, the
high-order 32 bits of each of RAX and RDX are ignored.) Undefined or reserved bits in an XCR should be set to
values previously read.

This instruction must be executed at privilege level 0 or in real-address mode; otherwise, a general protection
exception #GP(0) is generated. Specifying a reserved or unimplemented XCR in ECX will also cause a general
protection exception. The processor will also generate a general protection exception if software attempts to write
to reserved bits in an XCR.

Currently, only XCR0 (the XFEATURE_ENABLED_MASK register) is supported. Thus, all other values of ECX are
reserved and will cause a #GP(0). Note that bit 0 of XCR0 (corresponding to x87 state) must be set to 1; the
instruction will cause a #GP(0) if an attempt is made to clear this bit. Additionally, bit 1 of XCR0 (corresponding
to AVX state) and bit 2 of XCR0 (corresponding to SSE state) must be set to 1 when using AVX registers; the
instruction will cause a #GP(0) if an attempt is made to set XCR0[2:1] = 10.

Operation

XCR[ECX] ← EDX:EAX;

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XSETBV: void _xsetbv(unsigned int, unsigned __int64);

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If an invalid XCR is specified in ECX.
If the value in EDX:EAX sets bits that are reserved in the XCR specified by ECX.
If an attempt is made to clear bit 0 of XCR0.
If an attempt is made to set XCR0[2:1] = 10.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Real-Address Mode Exceptions
#GP If an invalid XCR is specified in ECX.

If the value in EDX:EAX sets bits that are reserved in the XCR specified by ECX.
If an attempt is made to clear bit 0 of XCR0.
If an attempt is made to set XCR0[2:1] = 10.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 80

If 66H, F3H or F2H prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The XSETBV instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
...

10.Updates to Appendix A, Volume 2C
Change bars show changes to Appendix A of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2C: Instruction Set Reference, Part 3.

--

...

Table A-2 One-byte Opcode Map: (00H — F7H) *

0 1 2 3 4 5 6 7

0 ADD PUSH
ESi64

POP
ESi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

1 ADC PUSH
SSi64

POP
SSi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

2 AND SEG=ES
(Prefix)

DAAi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

3 XOR SEG=SS
(Prefix)

AAAi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

4 INCi64 general register / REXo64 Prefixes

eAX
REX

eCX
REX.B

eDX
REX.X

eBX
REX.XB

eSP
REX.R

eBP
REX.RB

eSI
REX.RX

eDI
REX.RXB

5 PUSHd64 general register

rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15

6 PUSHAi64/
PUSHADi64

POPAi64/
POPADi64

BOUNDi64

Gv, Ma
ARPLi64

Ew, Gw
MOVSXDo64

Gv, Ev

SEG=FS
(Prefix)

SEG=GS
(Prefix)

Operand
Size

(Prefix)

Address
Size

(Prefix)

7 Jccf64, Jb - Short-displacement jump on condition

O NO B/NAE/C NB/AE/NC Z/E NZ/NE BE/NA NBE/A

8 Immediate Grp 11A TEST XCHG

Eb, Ib Ev, Iz Eb, Ibi64 Ev, Ib Eb, Gb Ev, Gv Eb, Gb Ev, Gv

9 NOP
PAUSE(F3)

XCHG r8, rAX

XCHG word, double-word or quad-word register with rAX

rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15

A MOV MOVS/B
Yb, Xb

MOVS/W/D/Q
Yv, Xv

CMPS/B
Xb, Yb

CMPS/W/D
Xv, Yv

AL, Ob rAX, Ov Ob, AL Ov, rAX

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 81

B MOV immediate byte into byte register

AL/R8L, Ib CL/R9L, Ib DL/R10L, Ib BL/R11L, Ib AH/R12L, Ib CH/R13L, Ib DH/R14L, Ib BH/R15L, Ib

C Shift Grp 21A near RETf64

Iw
near RETf64 LESi64

Gz, Mp
VEX+2byte

LDSi64

Gz, Mp
VEX+1byte

Grp 111A - MOV

Eb, Ib Ev, Ib Eb, Ib Ev, Iz

D Shift Grp 21A AAMi64

Ib
AADi64

Ib
XLAT/
XLATB

Eb, 1 Ev, 1 Eb, CL Ev, CL

E LOOPNEf64/
LOOPNZf64

Jb

LOOPEf64/
LOOPZf64

Jb

LOOPf64

Jb
JrCXZf64/

Jb
IN OUT

AL, Ib eAX, Ib Ib, AL Ib, eAX

F LOCK
(Prefix)

REPNE
XACQUIRE

(Prefix)

REP/REPE
XRELEASE

(Prefix)

HLT CMC Unary Grp 31A

Eb Ev

0 1 2 3 4 5 6 7

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 82

Table A-2 One-byte Opcode Map: (08H — FFH) *

...

8 9 A B C D E F

0 OR PUSH
CSi64

2-byte
escape

(Table A-3) Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

1 SBB PUSH
DSi64

POP
DSi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

2 SUB SEG=CS
(Prefix)

DASi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

3 CMP SEG=DS
(Prefix)

AASi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

4 DECi64 general register / REXo64 Prefixes

eAX
REX.W

eCX
REX.WB

eDX
REX.WX

eBX
REX.WXB

eSP
REX.WR

eBP
REX.WRB

eSI
REX.WRX

eDI
REX.WRXB

5 POPd64 into general register

rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15

6 PUSHd64

Iz
IMUL

Gv, Ev, Iz
PUSHd64

Ib
IMUL

Gv, Ev, Ib
INS/
INSB

Yb, DX

INS/
INSW/
INSD

Yz, DX

OUTS/
OUTSB
DX, Xb

OUTS/
OUTSW/
OUTSD
DX, Xz

7 Jccf64, Jb- Short displacement jump on condition

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

8 MOV MOV
Ev, Sw

LEA
Gv, M

MOV
Sw, Ew

Grp 1A1A POPd64

Ev
Eb, Gb Ev, Gv Gb, Eb Gv, Ev

9 CBW/
CWDE/
CDQE

CWD/
CDQ/
CQO

far CALLi64

Ap
FWAIT/
WAIT

PUSHF/D/Q d64/
Fv

POPF/D/Q d64/
Fv

SAHF LAHF

A TEST STOS/B
Yb, AL

STOS/W/D/Q
Yv, rAX

LODS/B
AL, Xb

LODS/W/D/Q
rAX, Xv

SCAS/B
AL, Yb

SCAS/W/D/Q
rAX, Xv

AL, Ib rAX, Iz

B MOV immediate word or double into word, double, or quad register

rAX/r8, Iv rCX/r9, Iv rDX/r10, Iv rBX/r11, Iv rSP/r12, Iv rBP/r13, Iv rSI/r14, Iv rDI/r15 , Iv

C ENTER LEAVEd64 far RET far RET INT 3 INT INTOi64 IRET/D/Q

Iw, Ib Iw Ib

D ESC (Escape to coprocessor instruction set)

E near CALLf64 JMP IN OUT

Jz nearf64

Jz
fari64

Ap
shortf64

Jb
AL, DX eAX, DX DX, AL DX, eAX

F CLC STC CLI STI CLD STD INC/DEC INC/DEC

Grp 41A Grp 51A

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 83

Table A-6 Opcode Extensions for One- and Two-byte Opcodes by Group Number *

Opcode Group Mod 7,6 pfx

Encoding of Bits 5,4,3 of the ModR/M Byte (bits 2,1,0 in parenthesis)
000 001 010 011 100 101 110 111

80-83 1 mem, 11B ADD OR ADC SBB AND SUB XOR CMP

8F 1A mem, 11B POP

C0,C1 reg, imm
D0, D1 reg, 1

D2, D3 reg, CL
2

mem, 11B ROL ROR RCL RCR SHL/SAL SHR SAR

F6, F7 3
mem, 11B TEST

Ib/Iz
NOT NEG MUL

AL/rAX
IMUL

AL/rAX
DIV

AL/rAX
IDIV

AL/rAX

FE 4
mem, 11B INC

Eb
DEC
Eb

FF 5
mem, 11B INC

Ev
DEC
Ev

near CALLf64

Ev
far CALL

Ep
near JMPf64

Ev
far JMP

Mp
PUSHd64

Ev

0F 00 6
mem, 11B SLDT

Rv/Mw
STR

Rv/Mw
LLDT
Ew

LTR
Ew

VERR
Ew

VERW
Ew

0F 01 7

mem SGDT
Ms

SIDT
Ms

LGDT
Ms

LIDT
Ms

SMSW
Mw/Rv

LMSW
Ew

INVLPG
Mb

11B VMCALL (001)
VMLAUNCH

(010)
VMRESUME

(011) VMXOFF
(100)

MONITOR
(000)

MWAIT (001)
CLAC (010)
STAC (011)

XGETBV (000)
XSETBV (001)

VMFUNC
(100)

XEND (101)
XTEST (110)

SWAPGS
o64(000)

RDTSCP (001)

0F BA 8 mem, 11B BT BTS BTR BTC

0F C7 9

mem

CMPXCH8B Mq
CMPXCHG16B

 Mdq

VMPTRLD
Mq

VMPTRST
Mq

66 VMCLEAR
Mq

F3 VMXON
Mq

VMPTRST
Mq

11B
RDRAND

Rv
RDSEED

Rv

0F B9 10
mem

11B

C6

11

mem MOV
Eb, Ib

11B XABORT (000) Ib

C7
mem MOV

Ev, Iz
11B XBEGIN (000) Jz

0F 71 12

mem

11B

psrlw
Nq, Ib

psraw
Nq, Ib

psllw
Nq, Ib

66 vpsrlw
Hx,Ux,Ib

vpsraw
Hx,Ux,Ib

vpsllw
Hx,Ux,Ib

0F 72 13

mem

11B

psrld
Nq, Ib

psrad
Nq, Ib

pslld
Nq, Ib

66 vpsrld
Hx,Ux,Ib

vpsrad
Hx,Ux,Ib

vpslld
Hx,Ux,Ib

0F 73 14

mem

11B

psrlq
Nq, Ib

psllq
Nq, Ib

66 vpsrlq
Hx,Ux,Ib

vpsrldq
Hx,Ux,Ib

vpsllq
Hx,Ux,Ib

vpslldq
Hx,Ux,Ib

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 84

...

11.Updates to Chapter 2, Volume 3A
Change bars show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

...

2.3 SYSTEM FLAGS AND FIELDS IN THE EFLAGS REGISTER
The system flags and IOPL field of the EFLAGS register control I/O, maskable hardware interrupts, debugging,
task switching, and the virtual-8086 mode (see Figure 2-5). Only privileged code (typically operating system or
executive code) should be allowed to modify these bits.

The system flags and IOPL are:

TF Trap (bit 8) — Set to enable single-step mode for debugging; clear to disable single-step mode. In
single-step mode, the processor generates a debug exception after each instruction. This allows the
execution state of a program to be inspected after each instruction. If an application program sets the TF
flag using a POPF, POPFD, or IRET instruction, a debug exception is generated after the instruction that
follows the POPF, POPFD, or IRET.

Opcode Group Mod 7,6 pfx

Encoding of Bits 5,4,3 of the ModR/M Byte (bits 2,1,0 in parenthesis)
000 001 010 011 100 101 110 111

0F AE 15

mem fxsave fxrstor ldmxcsr stmxcsr XSAVE XRSTOR XSAVEOPT clflush

11B

lfence mfence sfence

F3 RDFSBASE
Ry

RDGSBASE
Ry

WRFSBASE
Ry

WRGSBASE
Ry

0F 18 16
mem

prefetch
NTA

prefetch
T0

prefetch
T1

prefetch
T2

11B

VEX.0F38 F3 17
mem BLSRv

By, Ey
BLSMSKv

By, Ey
BLSIv

By, Ey
11B

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-6 Opcode Extensions for One- and Two-byte Opcodes by Group Number * (Contd.)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 85

IF Interrupt enable (bit 9) — Controls the response of the processor to maskable hardware interrupt
requests (see also: Section 6.3.2, “Maskable Hardware Interrupts”). The flag is set to respond to mask-
able hardware interrupts; cleared to inhibit maskable hardware interrupts. The IF flag does not affect the
generation of exceptions or nonmaskable interrupts (NMI interrupts). The CPL, IOPL, and the state of the
VME flag in control register CR4 determine whether the IF flag can be modified by the CLI, STI, POPF,
POPFD, and IRET.

IOPL I/O privilege level field (bits 12 and 13) — Indicates the I/O privilege level (IOPL) of the currently
running program or task. The CPL of the currently running program or task must be less than or equal to
the IOPL to access the I/O address space. The POPF and IRET instructions can modify this field only when
operating at a CPL of 0.

The IOPL is also one of the mechanisms that controls the modification of the IF flag and the handling of
interrupts in virtual-8086 mode when virtual mode extensions are in effect (when CR4.VME = 1). See
also: Chapter 16, “Input/Output,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1.

NT Nested task (bit 14) — Controls the chaining of interrupted and called tasks. The processor sets this
flag on calls to a task initiated with a CALL instruction, an interrupt, or an exception. It examines and
modifies this flag on returns from a task initiated with the IRET instruction. The flag can be explicitly set
or cleared with the POPF/POPFD instructions; however, changing to the state of this flag can generate
unexpected exceptions in application programs.

See also: Section 7.4, “Task Linking.”

RF Resume (bit 16) — Controls the processor’s response to instruction-breakpoint conditions. When set,
this flag temporarily disables debug exceptions (#DB) from being generated for instruction breakpoints
(although other exception conditions can cause an exception to be generated). When clear, instruction
breakpoints will generate debug exceptions.

The primary function of the RF flag is to allow the restarting of an instruction following a debug exception
that was caused by an instruction breakpoint condition. Here, debug software must set this flag in the
EFLAGS image on the stack just prior to returning to the interrupted program with IRETD (to prevent the
instruction breakpoint from causing another debug exception). The processor then automatically clears
this flag after the instruction returned to has been successfully executed, enabling instruction breakpoint
faults again.

See also: Section 17.3.1.1, “Instruction-Breakpoint Exception Condition.”

Figure 2-5 System Flags in the EFLAGS Register

31 22 21 20 19 18 17 16

R
F

I
D

A
C

V
M

VM — Virtual-8086 Mode
RF — Resume Flag
NT — Nested Task Flag
IOPL— I/O Privilege Level
IF — Interrupt Enable Flag

AC — Alignment Check

ID — Identification Flag
VIP — Virtual Interrupt Pending

15 1314 12 11 10 9 8 7 6 5 4 3 2 1 0

0 C
F

A
F

P
F 1D

F
I
F

T
F

S
F

Z
F

N
T 00

V
I
P

V
I
F

O
F

I
O
P
L

VIF — Virtual Interrupt Flag

TF — Trap Flag

Reserved

Reserved (set to 0)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 86

VM Virtual-8086 mode (bit 17) — Set to enable virtual-8086 mode; clear to return to protected mode.

See also: Section 20.2.1, “Enabling Virtual-8086 Mode.”

AC Alignment check (bit 18) — Set this flag and the AM flag in control register CR0 to enable alignment
checking of memory references; clear the AC flag and/or the AM flag to disable alignment checking. An
alignment-check exception is generated when reference is made to an unaligned operand, such as a word
at an odd byte address or a doubleword at an address which is not an integral multiple of four. Alignment-
check exceptions are generated only in user mode (privilege level 3). Memory references that default to
privilege level 0, such as segment descriptor loads, do not generate this exception even when caused by
instructions executed in user-mode.

The alignment-check exception can be used to check alignment of data. This is useful when exchanging
data with processors which require all data to be aligned. The alignment-check exception can also be used
by interpreters to flag some pointers as special by misaligning the pointer. This eliminates overhead of
checking each pointer and only handles the special pointer when used.

VIF Virtual Interrupt (bit 19) — Contains a virtual image of the IF flag. This flag is used in conjunction with
the VIP flag. The processor only recognizes the VIF flag when either the VME flag or the PVI flag in control
register CR4 is set and the IOPL is less than 3. (The VME flag enables the virtual-8086 mode extensions;
the PVI flag enables the protected-mode virtual interrupts.)

See also: Section 20.3.3.5, “Method 6: Software Interrupt Handling,” and Section 20.4, “Protected-Mode
Virtual Interrupts.”

VIP Virtual interrupt pending (bit 20) — Set by software to indicate that an interrupt is pending; cleared
to indicate that no interrupt is pending. This flag is used in conjunction with the VIF flag. The processor
reads this flag but never modifies it. The processor only recognizes the VIP flag when either the VME flag
or the PVI flag in control register CR4 is set and the IOPL is less than 3. The VME flag enables the virtual-
8086 mode extensions; the PVI flag enables the protected-mode virtual interrupts.

See Section 20.3.3.5, “Method 6: Software Interrupt Handling,” and Section 20.4, “Protected-Mode
Virtual Interrupts.”

ID Identification (bit 21). — The ability of a program or procedure to set or clear this flag indicates
support for the CPUID instruction.

...

12.Updates to Chapter 5, Volume 3A
Change bars show changes to Chapter 5 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

...

5.8.5.1 Stack Switching in 64-bit Mode
Although protection-check rules for call gates are unchanged from 32-bit mode, stack-switch changes in 64-bit
mode are different.

When stacks are switched as part of a 64-bit mode privilege-level change through a call gate, a new SS (stack
segment) descriptor is not loaded; 64-bit mode only loads an inner-level RSP from the TSS. The new SS is forced
to NULL and the SS selector’s RPL field is forced to the new CPL. The new SS is set to NULL in order to handle
nested far transfers (far CALL, INTn, interrupts and exceptions). The old SS and RSP are saved on the new stack.

On a subsequent far RET, the old SS is popped from the stack and loaded into the SS register. See Table 5-2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 87

In 64-bit mode, stack operations resulting from a privilege-level-changing far call or far return are eight-bytes
wide and change the RSP by eight. The mode does not support the automatic parameter-copy feature found in
32-bit mode. The call-gate count field is ignored. Software can access the old stack, if necessary, by referencing
the old stack-segment selector and stack pointer saved on the new process stack.

In 64-bit mode, far RET is allowed to load a NULL SS under certain conditions. If the target mode is 64-bit mode
and the target CPL< >3, IRET allows SS to be loaded with a NULL selector. If the called procedure itself is inter-
rupted, the NULL SS is pushed on the stack frame. On the subsequent far RET, the NULL SS on the stack acts as
a flag to tell the processor not to load a new SS descriptor.

...

13.Updates to Chapter 6, Volume 3A
Change bars show changes to Chapter 6 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

...

6.14.4 Stack Switching in IA-32e Mode
The IA-32 architecture provides a mechanism to automatically switch stack frames in response to an interrupt.
The 64-bit extensions of Intel 64 architecture implement a modified version of the legacy stack-switching mech-
anism and an alternative stack-switching mechanism called the interrupt stack table (IST).

In IA-32 modes, the legacy IA-32 stack-switch mechanism is unchanged. In IA-32e mode, the legacy stack-
switch mechanism is modified. When stacks are switched as part of a 64-bit mode privilege-level change
(resulting from an interrupt), a new SS descriptor is not loaded. IA-32e mode loads only an inner-level RSP from
the TSS. The new SS selector is forced to NULL and the SS selector’s RPL field is set to the new CPL. The new SS
is set to NULL in order to handle nested far transfers (far CALL, INT, interrupts and exceptions). The old SS and
RSP are saved on the new stack (Figure 6-8). On the subsequent IRET, the old SS is popped from the stack and
loaded into the SS register.

In summary, a stack switch in IA-32e mode works like the legacy stack switch, except that a new SS selector is
not loaded from the TSS. Instead, the new SS is forced to NULL.

...

Table 5-2 64-Bit-Mode Stack Layout After Far CALL with CPL Change
32-bit Mode IA-32e mode

Old SS Selector +12 +24 Old SS Selector

Old ESP +8 +16 Old RSP

CS Selector +4 +8 Old CS Selector

EIP 0 ESP RSP 0 RIP

< 4 Bytes > < 8 Bytes >

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 88

14.Updates to Chapter 7, Volume 3A
Change bars show changes to Chapter 7 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

...

7.3 TASK SWITCHING
The processor transfers execution to another task in one of four cases:
• The current program, task, or procedure executes a JMP or CALL instruction to a TSS descriptor in the GDT.
• The current program, task, or procedure executes a JMP or CALL instruction to a task-gate descriptor in the

GDT or the current LDT.
• An interrupt or exception vector points to a task-gate descriptor in the IDT.
• The current task executes an IRET when the NT flag in the EFLAGS register is set.

JMP, CALL, and IRET instructions, as well as interrupts and exceptions, are all mechanisms for redirecting a
program. The referencing of a TSS descriptor or a task gate (when calling or jumping to a task) or the state of the
NT flag (when executing an IRET instruction) determines whether a task switch occurs.

The processor performs the following operations when switching to a new task:

1. Obtains the TSS segment selector for the new task as the operand of the JMP or CALL instruction, from a task
gate, or from the previous task link field (for a task switch initiated with an IRET instruction).

2. Checks that the current (old) task is allowed to switch to the new task. Data-access privilege rules apply to
JMP and CALL instructions. The CPL of the current (old) task and the RPL of the segment selector for the new
task must be less than or equal to the DPL of the TSS descriptor or task gate being referenced. Exceptions,
interrupts (except for interrupts generated by the INT n instruction), and the IRET instruction are permitted
to switch tasks regardless of the DPL of the destination task-gate or TSS descriptor. For interrupts generated
by the INT n instruction, the DPL is checked.

3. Checks that the TSS descriptor of the new task is marked present and has a valid limit (greater than or equal
to 67H).

4. Checks that the new task is available (call, jump, exception, or interrupt) or busy (IRET return).

5. Checks that the current (old) TSS, new TSS, and all segment descriptors used in the task switch are paged
into system memory.

6. If the task switch was initiated with a JMP or IRET instruction, the processor clears the busy (B) flag in the
current (old) task’s TSS descriptor; if initiated with a CALL instruction, an exception, or an interrupt: the busy
(B) flag is left set. (See Table 7-2.)

7. If the task switch was initiated with an IRET instruction, the processor clears the NT flag in a temporarily
saved image of the EFLAGS register; if initiated with a CALL or JMP instruction, an exception, or an interrupt,
the NT flag is left unchanged in the saved EFLAGS image.

8. Saves the state of the current (old) task in the current task’s TSS. The processor finds the base address of the
current TSS in the task register and then copies the states of the following registers into the current TSS: all
the general-purpose registers, segment selectors from the segment registers, the temporarily saved image of
the EFLAGS register, and the instruction pointer register (EIP).

9. If the task switch was initiated with a CALL instruction, an exception, or an interrupt, the processor will set the
NT flag in the EFLAGS loaded from the new task. If initiated with an IRET instruction or JMP instruction, the NT
flag will reflect the state of NT in the EFLAGS loaded from the new task (see Table 7-2).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 89

10. If the task switch was initiated with a CALL instruction, JMP instruction, an exception, or an interrupt, the
processor sets the busy (B) flag in the new task’s TSS descriptor; if initiated with an IRET instruction, the busy
(B) flag is left set.

11. Loads the task register with the segment selector and descriptor for the new task's TSS.

12. The TSS state is loaded into the processor. This includes the LDTR register, the PDBR (control register CR3),
the EFLAGS register, the EIP register, the general-purpose registers, and the segment selectors. A fault during
the load of this state may corrupt architectural state. (If paging is not enabled, a PDBR value is read from the
new task's TSS, but it is not loaded into CR3.)

13. The descriptors associated with the segment selectors are loaded and qualified. Any errors associated with
this loading and qualification occur in the context of the new task and may corrupt architectural state.

NOTES
If all checks and saves have been carried out successfully, the processor commits to the task
switch. If an unrecoverable error occurs in steps 1 through 11, the processor does not complete
the task switch and insures that the processor is returned to its state prior to the execution of the
instruction that initiated the task switch.

If an unrecoverable error occurs in step 12, architectural state may be corrupted, but an attempt
will be made to handle the error in the prior execution environment. If an unrecoverable error
occurs after the commit point (in step 13), the processor completes the task switch (without
performing additional access and segment availability checks) and generates the appropriate
exception prior to beginning execution of the new task.

If exceptions occur after the commit point, the exception handler must finish the task switch itself
before allowing the processor to begin executing the new task. See Chapter 6, “Interrupt 10—
Invalid TSS Exception (#TS),” for more information about the affect of exceptions on a task when
they occur after the commit point of a task switch.

14. Begins executing the new task. (To an exception handler, the first instruction of the new task appears not to
have been executed.)

The state of the currently executing task is always saved when a successful task switch occurs. If the task is
resumed, execution starts with the instruction pointed to by the saved EIP value, and the registers are restored
to the values they held when the task was suspended.

When switching tasks, the privilege level of the new task does not inherit its privilege level from the suspended
task. The new task begins executing at the privilege level specified in the CPL field of the CS register, which is
loaded from the TSS. Because tasks are isolated by their separate address spaces and TSSs and because privilege
rules control access to a TSS, software does not need to perform explicit privilege checks on a task switch.

Table 7-1 shows the exception conditions that the processor checks for when switching tasks. It also shows the
exception that is generated for each check if an error is detected and the segment that the error code references.
(The order of the checks in the table is the order used in the P6 family processors. The exact order is model
specific and may be different for other IA-32 processors.) Exception handlers designed to handle these exceptions
may be subject to recursive calls if they attempt to reload the segment selector that generated the exception. The
cause of the exception (or the first of multiple causes) should be fixed before reloading the selector.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 90

15.Updates to Chapter 10, Volume 3A
Change bars show changes to Chapter 10 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

...

10.5.1 Local Vector Table
The local vector table (LVT) allows software to specify the manner in which the local interrupts are delivered to the
processor core. It consists of the following 32-bit APIC registers (see Figure 10-8), one for each local interrupt:
• LVT CMCI Register (FEE0 02F0H) — Specifies interrupt delivery when an overflow condition of corrected

machine check error count reaching a threshold value occurred in a machine check bank supporting CMCI
(see Section 15.5.1, “CMCI Local APIC Interface”).

• LVT Timer Register (FEE0 0320H) — Specifies interrupt delivery when the APIC timer signals an interrupt
(see Section 10.5.4, “APIC Timer”).

• LVT Thermal Monitor Register (FEE0 0330H) — Specifies interrupt delivery when the thermal sensor
generates an interrupt (see Section 14.5.2, “Thermal Monitor”). This LVT entry is implementation specific, not
architectural. If implemented, it will always be at base address FEE0 0330H.

• LVT Performance Counter Register (FEE0 0340H) — Specifies interrupt delivery when a performance
counter generates an interrupt on overflow (see Section 18.12.5.8, “Generating an Interrupt on Overflow”).
This LVT entry is implementation specific, not architectural. If implemented, it is not guaranteed to be at base
address FEE0 0340H.

• LVT LINT0 Register (FEE0 0350H) — Specifies interrupt delivery when an interrupt is signaled at the
LINT0 pin.

• LVT LINT1 Register (FEE0 0360H) — Specifies interrupt delivery when an interrupt is signaled at the
LINT1 pin.

• LVT Error Register (FEE0 0370H) — Specifies interrupt delivery when the APIC detects an internal error
(see Section 10.5.3, “Error Handling”).

The LVT performance counter register and its associated interrupt were introduced in the P6 processors and are
also present in the Pentium 4 and Intel Xeon processors. The LVT thermal monitor register and its associated
interrupt were introduced in the Pentium 4 and Intel Xeon processors. The LVT CMCI register and its associated
interrupt were introduced in the Intel Xeon 5500 processors.

As shown in Figure 10-8, some of these fields and flags are not available (and reserved) for some entries.

The setup information that can be specified in the registers of the LVT table is as follows:
Vector Interrupt vector number.
Delivery Mode Specifies the type of interrupt to be sent to the processor. Some delivery modes will only

operate as intended when used in conjunction with a specific trigger mode. The allowable
delivery modes are as follows:

000 (Fixed) Delivers the interrupt specified in the vector field.

010 (SMI) Delivers an SMI interrupt to the processor core through the processor’s
local SMI signal path. When using this delivery mode, the vector field
should be set to 00H for future compatibility.

100 (NMI) Delivers an NMI interrupt to the processor. The vector information is ig-
nored.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 91

101 (INIT) Delivers an INIT request to the processor core, which causes the proces-
sor to perform an INIT. When using this delivery mode, the vector field
should be set to 00H for future compatibility. Not supported for the LVT
CMCI register, the LVT thermal monitor register, or the LVT performance
counter register.

110 Reserved; not supported for any LVT register.

111 (ExtINT) Causes the processor to respond to the interrupt as if the interrupt origi-
nated in an externally connected (8259A-compatible) interrupt control-

Figure 10-8 Local Vector Table (LVT)

31 07

Vector

Timer Mode
00: One-shot
01: Periodic

1215161718

Delivery Mode
000: Fixed

100: NMI

Mask†

0: Not Masked
1: Masked

Address: FEE0 0350H

Value After Reset: 0001 0000H

Reserved
12131516

Vector

31 07810

Address: FEE0 0360H
Address: FEE0 0370H

Vector

Vector

Error

LINT1

LINT0

Value after Reset: 0001 0000H
Address: FEE0 0320H

111: ExtlNT

All other combinations
are reserved

Interrupt Input
Pin Polarity

Trigger Mode
0: Edge
1: Level

Remote
IRR

Delivery Status
0: Idle
1: Send Pending

Timer

13 11 8

11

14

17

Address: FEE0 0340H

Performance
Vector

Thermal
Vector

Mon. Counters

Sensor

Address: FEE0 0330H
† (Pentium 4 and Intel Xeon processors.) When a

performance monitoring counters interrupt is generated,
the mask bit for its associated LVT entry is set.

010: SMI

101: INIT

19

10: TSC-Deadline

VectorCMCI

Address: FEE0 02F0H

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 92

ler. A special INTA bus cycle corresponding to ExtINT, is routed to the
external controller. The external controller is expected to supply the vec-
tor information. The APIC architecture supports only one ExtINT source
in a system, usually contained in the compatibility bridge. Only one pro-
cessor in the system should have an LVT entry configured to use the Ex-
tINT delivery mode. Not supported for the LVT CMCI register, the LVT
thermal monitor register, or the LVT performance counter register.

Delivery Status (Read Only)
Indicates the interrupt delivery status, as follows:

0 (Idle) There is currently no activity for this interrupt source, or the previous in-
terrupt from this source was delivered to the processor core and accept-
ed.

1 (Send Pending)
Indicates that an interrupt from this source has been delivered to the
processor core but has not yet been accepted (see Section 10.5.5, “Local
Interrupt Acceptance”).

Interrupt Input Pin Polarity
Specifies the polarity of the corresponding interrupt pin: (0) active high or (1) active low.

Remote IRR Flag (Read Only)
For fixed mode, level-triggered interrupts; this flag is set when the local APIC accepts the
interrupt for servicing and is reset when an EOI command is received from the processor. The
meaning of this flag is undefined for edge-triggered interrupts and other delivery modes.

Trigger Mode Selects the trigger mode for the local LINT0 and LINT1 pins: (0) edge sensitive and (1) level
sensitive. This flag is only used when the delivery mode is Fixed. When the delivery mode is
NMI, SMI, or INIT, the trigger mode is always edge sensitive. When the delivery mode is
ExtINT, the trigger mode is always level sensitive. The timer and error interrupts are always
treated as edge sensitive.
If the local APIC is not used in conjunction with an I/O APIC and fixed delivery mode is
selected; the Pentium 4, Intel Xeon, and P6 family processors will always use level-sensitive
triggering, regardless if edge-sensitive triggering is selected.
Software should always set the trigger mode in the LVT LINT1 register to 0 (edge sensitive).
Level-sensitive interrupts are not supported for LINT1.

Mask Interrupt mask: (0) enables reception of the interrupt and (1) inhibits reception of the inter-
rupt. When the local APIC handles a performance-monitoring counters interrupt, it automat-
ically sets the mask flag in the LVT performance counter register. This flag is set to 1 on reset.
It can be cleared only by software.

Timer Mode Bits 18:17 selects the timer mode (see Section 10.5.4):
(00b) one-shot mode using a count-down value,
(01b) periodic mode reloading a count-down value,
(10b) TSC-Deadline mode using absolute target value in IA32_TSC_DEADLINE MSR (see
Section 10.5.4.1),
(11b) is reserved.

...

10.5.3 Error Handling
The local APIC records errors detected during interrupt handling in the error status register (ESR). The format of
the ESR is given in Figure 10-9; it contains the following flags:

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 93

• Bit 0: Send Checksum Error.
Set when the local APIC detects a checksum error for a message that it sent on the APIC bus. Used only on P6
family and Pentium processors.

• Bit 1: Receive Checksum Error.
Set when the local APIC detects a checksum error for a message that it received on the APIC bus. Used only
on P6 family and Pentium processors.

• Bit 2: Send Accept Error.
Set when the local APIC detects that a message it sent was not accepted by any APIC on the APIC bus. Used
only on P6 family and Pentium processors.

• Bit 3: Receive Accept Error.
Set when the local APIC detects that the message it received was not accepted by any APIC on the APIC bus,
including itself. Used only on P6 family and Pentium processors.

• Bit 4: Redirectable IPI.
Set when the local APIC detects an attempt to send an IPI with the lowest-priority delivery mode and the local
APIC does not support the sending of such IPIs. This bit is used on some Intel Core and Intel Xeon processors.
As noted in Section 10.6.2, the ability of a processor to send a lowest-priority IPI is model-specific and should
be avoided.

• Bit 5: Send Illegal Vector.
Set when the local APIC detects an illegal vector (one in the range 0 to 15) in the message that it is sending.
This occurs as the result of a write to the ICR (in both xAPIC and x2APIC modes) or to SELF IPI register
(x2APIC mode only) with an illegal vector.
If the local APIC does not support the sending of lowest-priority IPIs and software writes the ICR to send a
lowest-priority IPI with an illegal vector, the local APIC sets only the “redirectible IPI” error bit. The interrupt
is not processed and hence the “Send Illegal Vector” bit is not set in the ESR.

• Bit 6: Receive Illegal Vector.
Set when the local APIC detects an illegal vector (one in the range 0 to 15) in an interrupt message it receives

Figure 10-9 Error Status Register (ESR)

Address: FEE0 0280H
Value after reset: 0H

31 0

Reserved

78 123456

Illegal Register Address1

Received Illegal Vector
Send Illegal Vector
Redirectable IPI2

Receive Accept Error3

Send Accept Error3

Receive Checksum Error3

Send Checksum Error3

2. Used only by some Intel Core and Intel Xeon processors;
reserved on other processors.

1. Used only by Intel Core, Pentium 4, Intel Xeon, and P6 family
processors; reserved on the Pentium processor.

NOTES:

3. Used only by the P6 family and Pentium processors;
reserved on Intel Core, Pentium 4 and Intel Xeon processors.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 94

or in an interrupt generated locally from the local vector table or via a self IPI. Such interrupts are not be
delivered to the processor; the local APIC will never set an IRR bit in the range 0 to 15.

• Bit 7: Illegal Register Address
Set when the local APIC is in xAPIC mode and software attempts to access a register that is reserved in the
processor's local-APIC register-address space; see Table 10-1. (The local-APIC register-address space
comprises the 4 KBytes at the physical address specified in the IA32_APIC_BASE MSR.) Used only on Intel
Core, Intel Atom™, Pentium 4, Intel Xeon, and P6 family processors.
In x2APIC mode, software accesses the APIC registers using the RDMSR and WRMSR instructions. Use of one
of these instructions to access a reserved register cause a general-protection exception (see Section
10.12.1.3). They do not set the “Illegal Register Access” bit in the ESR.

The ESR is a write/read register. Before attempt to read from the ESR, software should first write to it. (The value
written does not affect the values read subsequently; only zero may be written in x2APIC mode.) This write clears
any previously logged errors and updates the ESR with any errors detected since the last write to the ESR. This
write also rearms the APIC error interrupt triggering mechanism.

The LVT Error Register (see Section 10.5.1) allows specification of the vector of the interrupt to be delivered to the
processor core when APIC error is detected. The register also provides a means of masking an APIC-error inter-
rupt. This masking only prevents delivery of APIC-error interrupts; the APIC continues to record errors in the ESR.

...

16.Updates to Chapter 13, Volume 3A
Change bars show changes to Chapter 13 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

...
CHAPTER 13

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND
PROCESSOR EXTENDED STATES

This chapter describes system programming features for instruction set extensions operating on the processor
state extension known as the SSE state (XMM registers, MXCSR) and for other processor extended states.
Instruction set extensions operating on the SSE state include the streaming SIMD extensions (SSE), streaming
SIMD extensions 2 (SSE2), streaming SIMD extensions 3 (SSE3), Supplemental SSE3 (SSSE3), and SSE4. Collec-
tively, these are called SSE extensions and the corresponding instructions SSE instructions.

Sections 13.1 through 13.5 cover system programming requirements to enable the SSE extensions, providing
operating system or executive support for the SSE extensions, SIMD floating-point exceptions, exception
handling, and task (context) switching.

Processor extended states refer to extensions to the Intel 64 architecture that will allow system executives to
implement support for multiple processor state extensions that may be introduced over time without requiring the
system executive to be modified each time a new processor state extension is introduced. System programming
for managing processor extended states is described in the sections starting 13.6.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 95

13.1 PROVIDING OPERATING SYSTEM SUPPORT FOR SSE EXTENSIONS
To use SSE extensions, the operating system or executive must provide support for initializing the processor to
use these extensions, for handling SIMD floating-point exceptions, and for using either FXSAVE and FXRSTOR
(Section 10.5 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1) or the XSAVE
feature set (Chapter 13 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1) to
manage context. The following sections provide system programming guidelines for this support. Because SSE
extensions share the same state, experience the same sets of non-numerical and numerical exception behavior,
these guidelines that apply to SSE also apply to other sets of SIMD extensions that operate on the same processor
state and subject to the same sets of non-numerical and numerical exception behavior.

Chapter 11, “Programming with Streaming SIMD Extensions 2 (SSE2),” and Chapter 12, “Programming with
SSE3, SSSE3 and SSE4,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
discuss support for SSE/SSE2/SSE3/SSSE3/SSE4 from an applications point of view program.

13.1.1 Adding Support to an Operating System for SSE Extensions
The following guidelines describe functions that an operating system or executive must perform to support SSE
extensions:

1. Check that the processor supports the SSE extensions.

2. Check that the processor supports the FXSAVE and FXRSTOR instructions or the XSAVE feature set.

3. Provide an initialization for the SSE states.

4. Provide support for the FXSAVE and FXRSTOR instructions or the XSAVE feature set.

5. Provide support (if necessary) in non-numeric exception handlers for exceptions generated by the SSE
instructions.

6. Provide an exception handler for the SIMD floating-point exception (#XM).

The following sections describe how to implement each of these guidelines.

13.1.2 Checking for CPU Support
If the processor attempts to execute an unsupported SSE instruction, the processor generates an invalid-opcode
exception (#UD). Before an operating system or executive attempts to use SSE extensions, it should check that
support is present by confirming the following bit values returned by the CPUID instruction:
• CPUID.1:EDX.SSE[bit 25] = 1
• CPUID.1:EDX.SSE2[bit 26] = 1
• CPUID.1:ECX.SSE3[bit 0] = 1
• CPUID.1:ECX.SSSE3[bit 9] = 1
• CPUID.1:ECX.SSE4_1[bit 19] = 1
• CPUID.1:ECX.SSE4_2[bit 20] = 1

(To use POPCNT instruction, software must check CPUID.1:ECX.POPCNT[bit 23] = 1.)

Separate checks must be made to ensure that the processor supports either FXSAVE and FXRSTOR or the XSAVE
feature set. See Section 10.5 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1
and Chapter 13 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, respectively.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 96

13.1.3 Initialization of the SSE Extensions
The operating system or executive should carry out the following steps to set up SSE extensions for use by appli-
cation programs:

1. Set CR4.OSFXSR[bit 9] = 1. Setting this flag implies that the operating system provides facilities for saving
and restoring SSE state using FXSAVE and FXRSTOR instructions or the XSAVE feature set. These instructions
may be used to save the SSE state during task switches and when invoking the SIMD floating-point exception
(#XM) handler (see Section 13.4, “Saving the SSE State on Task or Context Switches,” and Section 13.1.5,
“Providing an Handler for the SIMD Floating-Point Exception (#XM),” respectively).
If the processor does not support the FXSAVE and FXRSTOR instructions, attempting to set the OSFXSR flag
causes a general-protection exception (#GP) to be generated.

2. Set CR4.OSXMMEXCPT[bit 10] = 1. Setting this flag implies that the operating system provides an SIMD
floating-point exception (#XM) handler (see Section 13.1.5, “Providing an Handler for the SIMD Floating-Point
Exception (#XM)”).

NOTE
The OSFXSR and OSXMMEXCPT bits in control register CR4 must be set by the operating system.
The processor has no other way of detecting operating-system support for the FXSAVE and
FXRSTOR instructions or for handling SIMD floating-point exceptions.

3. Clear CR0.EM[bit 2] = 0. This action disables emulation of the x87 FPU, which is required when executing SSE
instructions (see Section 2.5, “Control Registers”).

4. Set CR0.MP[bit 1] = 1. This setting is the required setting for Intel 64 and IA-32 processors that support the
SSE extensions (see Section 9.2.1, “Configuring the x87 FPU Environment”).

Table 13-1 and Table 13-2 show the actions of the processor when an SSE instruction is executed, depending on
the following:
• OSFXSR and OSXMMEXCPT flags in control register CR4
• SSE/SSE2/SSE3/SSSE3/SSE4 feature flags returned by CPUID
• EM, MP, and TS flags in control register CR0

Table 13-1 Action Taken for Combinations of OSFXSR, OSXMMEXCPT, SSE, SSE2, SSE3, EM, MP, and TS1

CR4 CPUID CR0 Flags

OSFXSR OSXMMEXCPT SSE, SSE2,
SSE32,

SSE4_13

EM MP4 TS Action

0 X5 X X 1 X #UD exception.

1 X 0 X 1 X #UD exception.

1 X 1 1 1 X #UD exception.

1 0 1 0 1 0 Execute instruction; #UD exception if unmasked
SIMD floating-point exception is detected.

1 1 1 0 1 0 Execute instruction; #XM exception if unmasked
SIMD floating-point exception is detected.

1 X 1 0 1 1 #NM exception.

NOTES:
1. For execution of any SSE instruction except the PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, and CLFLUSH instructions.
2. Exception conditions due to CR4.OSFXSR or CR4.OSXMMEXCPT do not apply to FISTTP.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 97

The SIMD floating-point exception mask bits (bits 7 through 12), the flush-to-zero flag (bit 15), the denormals-
are-zero flag (bit 6), and the rounding control field (bits 13 and 14) in the MXCSR register should be left in their
default values of 0. This permits the application to determine how these features are to be used.

13.1.4 Providing Non-Numeric Exception Handlers for Exceptions Generated by the SSE
Instructions

SSE instructions can generate the same type of memory-access exceptions (such as page faults and limit viola-
tions) and other non-numeric exceptions as other Intel 64 and IA-32 architecture instructions generate.

Ordinarily, existing exception handlers can handle these and other non-numeric exceptions without code modifi-
cation. However, depending on the mechanisms used in existing exception handlers, some modifications might
need to be made.

The SSE extensions can generate the non-numeric exceptions listed below:
• Memory Access Exceptions:

— Stack-segment fault (#SS).

— General protection exception (#GP). Executing most SSE instructions with an unaligned 128-bit memory
reference generates a general-protection exception. (The MOVUPS and MOVUPD instructions allow
unaligned a loads or stores of 128-bit memory locations, without generating a general-protection
exception.) A 128-bit reference within the stack segment that is not aligned to a 16-byte boundary will
also generate a general-protection exception, instead a stack-segment fault exception (#SS).

— Page fault (#PF).

— Alignment check (#AC). When enabled, this type of alignment check operates on operands that are less
than 128-bits in size: 16-bit, 32-bit, and 64-bit. To enable the generation of alignment check exceptions,
do the following:

• Set the AM flag (bit 18 of control register CR0)

• Set the AC flag (bit 18 of the EFLAGS register)

3. Only applies to DPPS, DPPD, ROUNDPS, ROUNDPD, ROUNDSS, ROUNDSD.
4. For processors that support the MMX instructions, the MP flag should be set.
5. X = Don’t care.

Table 13-2 Action Taken for Combinations of OSFXSR, SSSE3, SSE4, EM, and TS

CR4 CPUID CR0 Flags

OSFXSR SSSE3
SSE4_11

SSE4_22

EM TS Action

0 X3 X X #UD exception.

1 0 X X #UD exception.

1 1 1 X #UD exception.

1 1 0 1 #NM exception.

NOTES:
1. Applies to SSE4_1 instructions except DPPS, DPPD, ROUNDPS, ROUNDPD, ROUNDSS, ROUNDSD.
2. Applies to SSE4_2 instructions except CRC32 and POPCNT.
3. X = Don’t care.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 98

• CPL must be 3

If alignment check exceptions are enabled, 16-bit, 32-bit, and 64-bit misalignment will be detected for
the MOVUPD and MOVUPS instructions; detection of 128-bit misalignment is not guaranteed and may
vary with implementation.

• System Exceptions:

— Invalid-opcode exception (#UD). This exception is generated when executing SSE instructions under the
following conditions:

• SSE/SSE2/SSE3/SSSE3/SSE4_1/SSE4_2 feature flags returned by CPUID are set to 0. This condition
does not affect the CLFLUSH instruction, nor POPCNT.

• The CLFSH feature flag returned by the CPUID instruction is set to 0. This exception condition only
pertains to the execution of the CLFLUSH instruction.

• The POPCNT feature flag returned by the CPUID instruction is set to 0. This exception condition only
pertains to the execution of the POPCNT instruction.

• The EM flag (bit 2) in control register CR0 is set to 1, regardless of the value of TS flag (bit 3) of CR0.
This condition does not affect the PAUSE, PREFETCHh, MOVNTI, SFENCE, LFENCE, MFENCE, CLFLUSH,
CRC32 and POPCNT instructions.

• The OSFXSR flag (bit 9) in control register CR4 is set to 0. This condition does not affect the PSHUFW,
MOVNTQ, MOVNTI, PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, CLFLUSH, CRC32 and POPCNT
instructions.

• Executing a instruction that causes a SIMD floating-point exception when the OSXMMEXCPT flag (bit
10) in control register CR4 is set to 0. See Section 13.5.1, “Using the TS Flag to Control the Saving of
the x87 FPU and SSE State.”

— Device not available (#NM). This exception is generated by executing a SSE instruction when the TS flag
(bit 3) of CR0 is set to 1.

Other exceptions can occur during delivery of the above exceptions.

13.1.5 Providing an Handler for the SIMD Floating-Point Exception (#XM)
SSE instructions do not generate numeric exceptions on packed integer operations. They can generate the
following numeric (SIMD floating-point) exceptions on packed and scalar single-precision and double-precision
floating-point operations.
• Invalid operation (#I)
• Divide-by-zero (#Z)
• Denormal operand (#D)
• Numeric overflow (#O)
• Numeric underflow (#U)
• Inexact result (Precision) (#P)

These SIMD floating-point exceptions (with the exception of the denormal operand exception) are defined in the
IEEE Standard 754 for Binary Floating-Point Arithmetic and represent the same conditions that cause x87 FPU
floating-point error exceptions (#MF) to be generated for x87 FPU instructions.

Each of these exceptions can be masked, in which case the processor returns a reasonable result to the destina-
tion operand without invoking an exception handler. However, if any of these exceptions are left unmasked, detec-
tion of the exception condition results in a SIMD floating-point exception (#XM) being generated. See Chapter 6,
“Interrupt 19—SIMD Floating-Point Exception (#XM).”

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 99

To handle unmasked SIMD floating-point exceptions, the operating system or executive must provide an excep-
tion handler. The section titled “SSE and SSE2 SIMD Floating-Point Exceptions” in Chapter 11, “Programming with
Streaming SIMD Extensions 2 (SSE2),” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1, describes the SIMD floating-point exception classes and gives suggestions for writing an exception
handler to handle them.

To indicate that the operating system provides a handler for SIMD floating-point exceptions (#XM), the OSXM-
MEXCPT flag (bit 10) must be set in control register CR4.

13.1.5.1 Numeric Error flag and IGNNE#
SSE extensions ignore the NE flag in control register CR0 (that is, they treat it as if it were always set) and the
IGNNE# pin. When an unmasked SIMD floating-point exception is detected, it is always reported by generating a
SIMD floating-point exception (#XM).

13.2 EMULATION OF SSE EXTENSIONS
The Intel 64 and IA-32 architectures do not support emulation of the SSE instructions, as they do for x87 FPU
instructions.

The EM flag in control register CR0 (provided to invoke emulation of x87 FPU instructions) cannot be used to
invoke emulation of SSE instructions. If an SSE instruction is executed when CR0.EM = 1, an invalid opcode
exception (#UD) is generated. See Table 13-1.

13.3 SAVING AND RESTORING SSE STATE
The SSE state consists of the state of the XMM and MXCSR registers. Intel recommends the following method for
saving and restoring this state:
• Execute the FXSAVE, XSAVE, or XSAVEOPT instruction to save the state of the XMM and MXCSR registers to

memory.
• Execute the FXRSTOR or XRSTOR instruction to restore the state of the XMM and MXCSR registers from the

image saved in memory earlier.

This save and restore method is required for all operating systems. See Section 13.5, “Designing OS Facilities for
Saving x87 FPU and SSE State Automatically on Task or Context Switches.” See Section 10.5 in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1 for information about FXSAVE and FXRSTOR; see
Chapter 13 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 for the XSAVE
feature set.

In some cases, applications may choose to save only the XMM and MXCSR registers in the following manner:
• Execute MOVDQ instructions to save the contents of the XMM registers to memory.
• Execute a STMXCSR instruction to save the state of the MXCSR register to memory.

Such applications must restore the XMM and MXCSR registers as follows:
• Execute MOVDQ instructions to load the saved contents of the XMM registers from memory into the XMM

registers.
• Execute a LDMXCSR instruction to restore the state of the MXCSR register from memory.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 100

13.4 SAVING THE SSE STATE ON TASK OR CONTEXT SWITCHES
When switching from one task or context to another, it is often necessary to save the SSE state. FXSAVE and
FXRSTOR instructions provide a simple method for saving and restoring this state, as does the XSAVE feature set.
See Section 10.5 and Chapter 13 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
1. Guidelines for writing such procedures are in Section 13.5, “Designing OS Facilities for Saving x87 FPU and SSE
State Automatically on Task or Context Switches.”

13.5 DESIGNING OS FACILITIES FOR SAVING X87 FPU AND SSE STATE
AUTOMATICALLY ON TASK OR CONTEXT SWITCHES

The x87 FPU, SSE, and AVX state consist of the state of the x87 FPU, XMM, and MXCSR registers. The FXSAVE and
FXRSTOR instructions provide a fast method for saving ad restoring this state, as does the XSAVE feature set.

Older operating systems may use FSAVE/FNSAVE and FRSTOR to save the x87 FPU state. These facilities can be
extended to save and restore SSE state by substituting FXSAVE and FXRSTOR or the XSAVE feature set in place
of FSAVE/FNSAVE and FRSTOR.

If task or content switching facilities are written from scratch, any of several approaches may be taken for using
the FXSAVE and FXRSTOR instructions of the XSAVE feature set to save and restore x87 FPU and SSE state:
• The operating system can require applications that are intended be run as tasks take responsibility for saving

the state of the x87 FPU, XMM, and MXCSR registers prior to a task suspension during a task switch and for
restoring the registers when the task is resumed. This approach is appropriate for cooperative multitasking
operating systems, where the application has control over (or is able to determine) when a task switch is
about to occur and can save state prior to the task switch.

• The operating system can take the responsibility for automatically saving the x87 FPU, and MXCSR registers
as part of the task switch process (using the FXSAVE, XSAVE, or XSAVEOPT instructions) and automatically
restoring the state of the registers when a suspended task is resumed (using the FXRSTOR or XRSTOR
instructions). Here, the x87 FPU and SSE states must be saved as part of the task state. This approach is
appropriate for preemptive multitasking operating systems, where the application cannot know when it is
going to be preempted and cannot prepare in advance for task switching. Here, the operating system is
responsible for saving and restoring the task and the x87 FPU and SSE states when necessary.

• The operating system can take the responsibility for saving the x87 FPU, XMM, and MXCSR registers as part
of the task switch process, but delay the saving of the x87 FPU and SSE state until an x87 FPU, MMX, or SSE
instruction is actually executed by the new task. Using this approach, the x87 FPU and SSE state is saved only
if an x87 FPU, MMX, or SSE instruction needs to be executed in the new task. (See Section 13.5.1, “Using the
TS Flag to Control the Saving of the x87 FPU and SSE State,” for more information.)

13.5.1 Using the TS Flag to Control the Saving of the x87 FPU and SSE State
Saving the x87 FPU and SSE state using FXSAVE, XSAVE, or XSAVEOPT requires processor overhead. If the new
task does not access x87 FPU, XMM, and MXCSR registers, an operating system might avoid overhead by not
automatically saving the state on a task switch.

The TS flag in control register CR0 is provided to allow the operating system to delay saving the x87 FPU and SSE
state until an instruction that actually accesses this state is encountered in a new task. When the TS flag is set,
the processor monitors the instruction stream for x87 FPU, MMX, SSE instructions. When the processor detects
one of these instructions, it raises a device-not-available exception (#NM) prior to executing the instruction. The
#NM exception handler can then be used to save the x87 FPU and SSE state for the previous task (using an
FXSAVE, XSAVE, or XSAVEOPT instruction) and load the x87 FPU and SSE state for the current task (using an
FXRSTOR or XRSOTR instruction). If the task never encounters an x87 FPU, MMX, or SSE instruction, the device-
not-available exception will not be raised and a task state will not be saved unnecessarily.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 101

NOTE
The CRC32 and POPCNT instructions do not operate on the x87 FPU or SSE state. They operate on
the general-purpose registers and are not involved with the techniques described above.

The TS flag can be set either explicitly (by executing a MOV instruction to control register CR0) or implicitly (using
the IA-32 architecture’s native task switching mechanism). When the native task switching mechanism is used,
the processor automatically sets the TS flag on a task switch. After the device-not-available handler has saved the
x87 FPU and SSE state, it should execute the CLTS instruction to clear the TS flag.

Figure 13-1 gives an example of an operating system that implements x87 FPU and SSE state saving using the TS
flag. In this example, task A is the currently running task and task B is the new task. The operating system main-
tains a save area for the x87 FPU and SSE state for each task and defines a variable (x87_SSE_StateOwner) that
indicates the task that “owns” the state. In this example, task A is the current owner.

On a task switch, the operating system task switching code must execute the following pseudo-code to set the TS
flag according to the current owner of the x87 FPU and SSE state. If the new task (task B in this example) is not
the current owner of this state, the TS flag is set to 1; otherwise, it is set to 0.

IF Task_Being_Switched_To ≠ x87_XMM_MXCSR_StateOwner
 THEN
 CR0.TS ← 1;
 ELSE
 CR0.TS ← 0;
FI;

If a new task attempts to access an x87 FPU, XMM, or MXCSR register while the TS flag is set to 1, a device-not-
available exception (#NM) is generated. The device-not-available exception handler executes the following
pseudo-code (for FXSAVE and FXRSTOR).

FXSAVE “To x87/XMM/MXCSR State Save Area for Current
x87_MMX_MXCSR_StateOwner”;

FXRSTOR “x87/XMM/MXCSR State From Current Task’s
x87/XMM/MXCSR State Save Area”;

x87_XMM_MXCSR_StateOwner ← Current_Task;
CR0.TS ← 0;

This exception handler code performs the following tasks:

Figure 13-1 Example of Saving the x87 FPU and SSE State During an Operating-System Controlled Task Switch

Task A Task B

Application

Operating System

Task A

Operating System
Task Switching Code

Device-Not-Available
Exception Handler

Owner of x87,

CR0.TS=1 and x87
MMX, or SSE
Instruction is encountered

XMM, and

x87/XMM/

State Save Area
MXCSR

Task B
x87/XMM/

State Save Area
MXCSR

Saves Task A
x87 /XMM/
MXCSR State

Loads Task B
x87 /XMM/
MXCSR State

MXCSR State

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 102

• Saves the x87 FPU, XMM, or MXCSR registers in the state save area for the current owner of the x87 FPU,
XMM, and MXCSR state.

• Restores the x87 FPU, XMM, or MXCSR registers from the new task’s save area for the x87 FPU, XMM, and
MXCSR state.

• Updates the current x87 FPU/XMM/MXCSR state owner to be the current task.
• Clears the TS flag.

13.6 THE XSAVE FEATURE SET AND PROCESSOR EXTENDED STATE
MANAGEMENT

The XSAVE feature set includes the following:
• An extensible data layout for existing and future processor state extensions. The layout of the XSAVE area

extends from the 512-byte FXSAVE/FXRSTOR layout to provide compatibility and migration path from
managing the legacy FXSAVE/FXRSTOR area. The XSAVE area is described in more detail in Section 13.4 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

• CPUID enhancements for feature enumeration. See Section 13.2 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1.

• Control register enhancement and dedicated register for enabling each processor extended state. See Section
13.3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

• Instructions to save state to and restore state from the XSAVE area. See Section 13.6 through Section 13.8 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

13.7 INTEROPERABILITY OF THE XSAVE FEATURE SET AND FXSAVE/FXRSTOR
The FXSAVE instruction writes x87 FPU and SSE state information to a 512-byte FXSAVE save area. FXRSTOR
restores the processor’s x87 FPU and SSE states from an FXSAVE area. The XSAVE features set supports x87 FPU
and SSE states using the same layout as the FXSAVE area to provide interoperability of FXSAVE versus XSAVE,
and FXRSTOR versus XRSTOR. The XSAVE feature set allows system software to manage SSE state independent
of x87 FPU states. Thus system software that had been using FXSAVE and FXRSTOR to manage x87 FPU and SSE
states can transition to using the XSAVE feature set to manage x87 FPU, SSE and other processor extended states
in a systematic and forward-looking manner. See Section 10.5 and Chapter 13 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1 for more details.

System software can implement forward-looking processor extended state management using the XSAVE feature
set. In this case, system software must specify the bit vector mask in EDX:EAX appropriately when executing
XSAVE/XRSTOR instructions.

For instance, the OS can supply instructions in the XSAVE feature set with a bit vector in EDX:EAX with the two
least significant bits (corresponding to x87 FPU and SSE state) equal to 0. Then, the XSAVE instruction will not
write the processor’s x87 FPU and SSE state into memory. Similarly, the XRSTOR instruction executed with a
value in EDX:EAX with the least two significant bit equal to 0 will not restore nor initialize the processor’s x87 FPU
and SSE state.

The processor’s action as a result of executing XRSTOR is given in Section 13.7 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1. The instruction may be used to initialized x87 FPU or XMM regis-
ters. When the MXCSR register is updated from memory, reserved bit checking is enforced. The saving/restoring
of MXCSR is bound to the SSE state, independent of the x87 FPU state. The action of XSAVE is given in Section
13.6 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 103

Instructions in the XSAVE feature set cause a #NM (Device Not Available) exceptions if CR0.TS is set. Thus,
system software can implement the “lazy save and restore” technique of managing x87 FPU and SSE state using
either FXSAVE and FXRSTOR or the XSAVE feature set.

13.8 INTEL ADVANCED VECTOR EXTENSIONS (INTEL AVX) AND YMM STATE
Intel AVX instructions comprises of 256-bit and 128-bit instructions that operates on 256-bit YMM registers. The
XSAVE feature set allows software to save and restore the state of these registers. See Chapter 13 of the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

following sections describes system software support requirements for 256-bit YMM states.

For processors that support YMM states, the YMM state exists in all operating modes. However, the available
instruction interfaces to access YMM states may vary in different modes. The XSAVE feature set is available in all
operating modes.

13.9 YMM STATE MANAGEMENT
Operating systems must use the XSAVE feature set for YMM state management. The XSAVE feature set also
provides flexible and efficient interface to manage XMM/MXCSR states and x87 FPU states in conjunction with
newer processor extended states like YMM states.
An operating system must enable its YMM state management to support AVX and any 256-bit extensions that
operate on YMM registers. Otherwise, an attempt to execute an instruction in AVX extensions (including an
enhanced 128-bit SIMD instructions using VEX encoding) will cause a #UD exception. See Section 13.3 of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 for more details.
Detection of hardware support for new processor extended state is provided by the CPUID instruction. See
Section 13.2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 for more details.

13.9.1 Enabling of YMM State
An operating system can enable YMM state support with the following steps:
• Verify the processor supports the XSAVE feature set by checking CPUID.1.ECX.XSAVE[bit 26]=1.
• Verify the processor supports YMM state by checking CPUID.(EAX=0DH, ECX=0):EAX.YMM[2]. The operating

system should also verify CPUID.(EAX=0DH, ECX=0):EAX.SSE[bit 1]=1, because the lower 128-bits of each
YMM register are aliased to an XMM register.

The operating system must determine the buffer size requirement for the XSAVE area that will be used by
XSAVE/XRSTOR (see Section 13.2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1).

• Set CR4.OSXSAVE[bit 18]=1 to enable the XSAVE feature set.
• Supply an appropriate mask via EDX:EAX to execute XSETBV with ECX = 0 to set XCR0 to enable the

processor state components that the operating system desires to manage using the XSAVE feature set. To
enable x87 FPU, SSE and YMM state management by the XSAVE feature set, the enable mask is EDX=0H,
EAX=7H (the individual bits of XCR0 are specified in Section 13.3 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1).
To enable YMM state, the operating system must ensure that EAX[2:1] = 11B when executing XSETBV. An
attempt to execute XSETBV with EDX:EAX[2:1] = 10B causes a general-protection exception (#GP).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 104

13.9.2 Enabling of SIMD Floating-Exception Support
AVX instructions may generate SIMD floating-point exceptions. An OS must enable SIMD floating-point exception
support by setting CR4.OSXMMEXCPT[bit 10]=1.

The effect of CR4 setting that affects AVX enabling is listed in Table 13-3.

The operation of XSAVE, XRSTOR, and XSAVEOPT is detailed in Section 13.6 through Section 13.8 of the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

...

17.Updates to Chapter 14, Volume 3B
Change bars show changes to Chapter 14 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

...

14.3.4 Performance and Energy Bias Hint support
Intel 64 processors may support additional software hint to guide the hardware heuristic of power management
features to favor increasing dynamic performance or conserve energy consumption.

Software can detect processor's capability to support performance-energy bias preference hint by examining bit
3 of ECX in CPUID leaf 6. The processor supports this capability if CPUID.06H:ECX.SETBH[bit 3] is set and it also
implies the presence of a new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H).

Software can program the lowest four bits of IA32_ENERGY_PERF_BIAS MSR with a value from 0 - 15. The values
represent a sliding scale, where a value of 0 (the default reset value) corresponds to a hint preference for highest
performance and a value of 15 corresponds to the maximum energy savings. A value of 7 roughly translates into
a hint to balance performance with energy consumption.

Table 13-3 CR4 bits for AVX New Instructions technology support

Bit Meaning

CR4.OSXSAVE[bit 18] If set, the OS supports use of the XSAVE feature set to manage processor extended state. Must be set
to ‘1’ to enable AVX.

CR4.OSXMMEXCPT[bit 10] Must be set to 1 to enable SIMD floating-point exceptions. This applies to AVX operating on YMM
states, and legacy 128-bit SIMD floating-point instructions operating on XMM states.

CR4.OSFXSR[bit 9] Ignored by AVX instructions operating on YMM states.
Must be set to 1 to enable SIMD instructions operating on XMM state.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 105

The layout of IA32_ENERGY_PERF_BIAS is shown in Figure 14-4. The scope of IA32_ENERGY_PERF_BIAS is per
logical processor, which means that each of the logical processors in the package can be programmed with a
different value. This may be especially important in virtualization scenarios, where the performance / energy
requirements of one logical processor may differ from the other. Conflicting "hints" from various logical processors
at higher hierarchy level will be resolved in favor of performance over energy savings.

Software can use whatever criteria it sees fit to program the MSR with the appropriate value. However, the value
only serves as a hint to the hardware and the actual impact on performance and energy savings is model specific.

...

18.Updates to Chapter 15, Volume 3B
Change bars show changes to Chapter 15 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

...
This chapter describes the machine-check architecture and machine-check exception mechanism found in the
Pentium 4, Intel Xeon, Intel Atom, and P6 family processors. See Chapter 6, “Interrupt 18—Machine-Check
Exception (#MC),” for more information on machine-check exceptions. A brief description of the Pentium
processor’s machine check capability is also given.
Additionally, a signaling mechanism for software to respond to hardware corrected machine check error is
covered.

15.1 MACHINE-CHECK ARCHITECTURE
The Pentium 4, Intel Xeon, Intel Atom, and P6 family processors implement a machine-check architecture that
provides a mechanism for detecting and reporting hardware (machine) errors, such as: system bus errors, ECC
errors, parity errors, cache errors, and TLB errors. It consists of a set of model-specific registers (MSRs) that are
used to set up machine checking and additional banks of MSRs used for recording errors that are detected.
The processor signals the detection of an uncorrected machine-check error by generating a machine-check
exception (#MC), which is an abort class exception. The implementation of the machine-check architecture does
not ordinarily permit the processor to be restarted reliably after generating a machine-check exception. However,
the machine-check-exception handler can collect information about the machine-check error from the machine-
check MSRs.
Starting with 45nm Intel 64 processor on which CPUID reports DisplayFamily_DisplayModel as 06H_1AH (see
CPUID instruction in Chapter 3, “Instruction Set Reference, A-M” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A), the processor can report information on corrected machine-check errors

Figure 14-4 IA32_ENERGY_PERF_BIAS Register

63 0

Reserved

Energy Policy Preference Hint

4 3

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 106

and deliver a programmable interrupt for software to respond to MC errors, referred to as corrected machine-
check error interrupt (CMCI). See Section 15.5 for detail.
Intel 64 processors supporting machine-check architecture and CMCI may also support an additional enhance-
ment, namely, support for software recovery from certain uncorrected recoverable machine check errors. See
Section 15.6 for detail.

15.2 COMPATIBILITY WITH PENTIUM PROCESSOR
The Pentium 4, Intel Xeon, Intel Atom, and P6 family processors support and extend the machine-check exception
mechanism introduced in the Pentium processor. The Pentium processor reports the following machine-check
errors:
• data parity errors during read cycles
• unsuccessful completion of a bus cycle
The above errors are reported using the P5_MC_TYPE and P5_MC_ADDR MSRs (implementation specific for the
Pentium processor). Use the RDMSR instruction to read these MSRs. See Chapter 35, “Model-Specific Registers
(MSRs),” for the addresses.
The machine-check error reporting mechanism that Pentium processors use is similar to that used in Pentium 4,
Intel Xeon, Intel Atom, and P6 family processors. When an error is detected, it is recorded in P5_MC_TYPE and
P5_MC_ADDR; the processor then generates a machine-check exception (#MC).
See Section 15.3.3, “Mapping of the Pentium Processor Machine-Check Errors to the Machine-Check Architec-
ture,” and Section 15.10.2, “Pentium Processor Machine-Check Exception Handling,” for information on compati-
bility between machine-check code written to run on the Pentium processors and code written to run on P6 family
processors.

15.3 MACHINE-CHECK MSRS
Machine check MSRs in the Pentium 4, Intel Atom, Intel Xeon, and P6 family processors consist of a set of global
control and status registers and several error-reporting register banks. See Figure 15-1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 107

Each error-reporting bank is associated with a specific hardware unit (or group of hardware units) in the
processor. Use RDMSR and WRMSR to read and to write these registers.

...

15.3.1.1 IA32_MCG_CAP MSR
The IA32_MCG_CAP MSR is a read-only register that provides information about the machine-check architecture
of the processor. Figure 15-2 shows the structure of the register in Pentium 4, Intel Xeon, Intel Atom, and P6
family processors.

...

Figure 15-1 Machine-Check MSRs

Figure 15-2 IA32_MCG_CAP Register

0

63 0

63

IA32_MCG_CAP MSR

IA32_MCG_STATUS MSR

Error-Reporting Bank Registers

0

63 0

63

IA32_MCi_CTL MSR

IA32_MCi_STATUS MSR

0

63 0

63

IA32_MCi_ADDR MSR

IA32_MCi_MISC MSR

Global Control MSRs
(One Set for Each Hardware Unit)

063

IA32_MCG_CTL MSR

063

IA32_MCi_CTL2 MSR

MCG_TES_P[11]
MCG_EXT_CNT[23:16]

63 9

Reserved

101112

MCG_CMCI_P[10]

08 7

Count

MCG_EXT_P[9]

15162324

MCG_CTL_P[8]

MCG_SER_P[24]

25

MCG_ELOG_P[26]

27 26

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 108

15.3.2 Error-Reporting Register Banks
Each error-reporting register bank can contain the IA32_MCi_CTL, IA32_MCi_STATUS, IA32_MCi_ADDR, and
IA32_MCi_MISC MSRs. The number of reporting banks is indicated by bits [7:0] of IA32_MCG_CAP MSR (address
0179H). The first error-reporting register (IA32_MC0_CTL) always starts at address 400H.
See Chapter 35, “Model-Specific Registers (MSRs),” for addresses of the error-reporting registers in the Pentium
4, Intel Atom, and Intel Xeon processors; and for addresses of the error-reporting registers P6 family processors.

...

15.3.2.4 IA32_MCi_MISC MSRs
The IA32_MCi_MISC MSR contains additional information describing the machine-check error if the MISCV flag in
the IA32_MCi_STATUS register is set. The IA32_MCi_MISC_MSR is either not implemented or does not contain
additional information if the MISCV flag in the IA32_MCi_STATUS register is clear.
When not implemented in the processor, all reads and writes to this MSR will cause a general protection exception.
When implemented in a processor, these registers can be cleared by explicitly writing all 0s to them; writing 1s to
them causes a general-protection exception to be generated. This register is not implemented in any of the error-
reporting register banks for the P6 or Intel Atom family processors.
If both MISCV and IA32_MCG_CAP[24] are set, the IA32_MCi_MISC_MSR is defined according to Figure 15-7 to
support software recovery of uncorrected errors (see Section 15.6):

...

15.3.3 Mapping of the Pentium Processor Machine-Check Errors
to the Machine-Check Architecture

The Pentium processor reports machine-check errors using two registers: P5_MC_TYPE and P5_MC_ADDR. The
Pentium 4, Intel Xeon, Intel Atom, and P6 family processors map these registers to the IA32_MCi_STATUS and
IA32_MCi_ADDR in the error-reporting register bank. This bank reports on the same type of external bus errors
reported in P5_MC_TYPE and P5_MC_ADDR.
The information in these registers can then be accessed in two ways:
• By reading the IA32_MCi_STATUS and IA32_MCi_ADDR registers as part of a general machine-check

exception handler written for Pentium 4, Intel Atom and P6 family processors.
• By reading the P5_MC_TYPE and P5_MC_ADDR registers using the RDMSR instruction.
The second capability permits a machine-check exception handler written to run on a Pentium processor to be run
on a Pentium 4, Intel Xeon, Intel Atom, or P6 family processor. There is a limitation in that information returned
by the Pentium 4, Intel Xeon, Intel Atom, and P6 family processors is encoded differently than information

Figure 15-7 UCR Support in IA32_MCi_MISC Register

Address Mode

63 0

Model Specific Information

6 5

Recoverable Address LSB

89

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 109

returned by the Pentium processor. To run a Pentium processor machine-check exception handler on a Pentium 4,
Intel Xeon, Intel Atom, or P6 family processor; the handler must be written to interpret P5_MC_TYPE encodings
correctly.

...

15.8 MACHINE-CHECK INITIALIZATION
To use the processors machine-check architecture, software must initialize the processor to activate the machine-
check exception and the error-reporting mechanism.
Example 15-1 gives pseudocode for performing this initialization. This pseudocode checks for the existence of the
machine-check architecture and exception; it then enables machine-check exception and the error-reporting
register banks. The pseudocode shown is compatible with the Pentium 4, Intel Xeon, Intel Atom, P6 family, and
Pentium processors.
Following power up or power cycling, IA32_MCi_STATUS registers are not guaranteed to have valid data until
after they are initially cleared to zero by software (as shown in the initialization pseudocode in Example 15-1). In
addition, when using P6 family processors, software must set MCi_STATUS registers to zero when doing a soft-
reset.

...

15.9.2.1 Correction Report Filtering (F) Bit
Starting with Intel Core Duo processors, bit 12 in the “Form” column in Table 15-9 is used to indicate that a partic-
ular posting to a log may be the last posting for corrections in that line/entry, at least for some time:
• 0 in bit 12 indicates “normal” filtering (original P6/Pentium4/Atom/Xeon processor meaning).
• 1 in bit 12 indicates “corrected” filtering (filtering is activated for the line/entry in the posting). Filtering

means that some or all of the subsequent corrections to this entry (in this structure) will not be posted. The
enhanced error reporting introduced with the Intel Core Duo processors is based on tracking the lines affected
by repeated corrections (see Section 15.4, “Enhanced Cache Error reporting”). This capability is indicated by
IA32_MCG_CAP[11]. Only the first few correction events for a line are posted; subsequent redundant
correction events to the same line are not posted. Uncorrected events are always posted.

The behavior of error filtering after crossing the yellow threshold is model-specific.

...

15.9.2.3 Level (LL) Sub-Field
The 2-bit LL sub-field (see Table 15-11) indicates the level in the memory hierarchy where the error occurred
(level 0, level 1, level 2, or generic). The LL sub-field also applies to the TLB, cache, and interconnect error condi-
tions. The Pentium 4, Intel Xeon, Intel Atom, and P6 family processors support two levels in the cache hierarchy
and one level in the TLBs. Again, the generic type is reported when the processor cannot determine the hierarchy
level.

Table 15-11 Level Encoding for LL (Memory Hierarchy Level) Sub-Field
Hierarchy Level Mnemonic Binary Encoding

Level 0 L0 00

Level 1 L1 01

Level 2 L2 10

Generic LG 11

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 110

...

15.9.5 Machine-Check Error Codes Interpretation
Chapter 16, “Interpreting Machine-Check Error Codes,” provides information on interpreting the MCA error code,
model-specific error code, and other information error code fields. For P6 family processors, information has been
included on decoding external bus errors. For Pentium 4 and Intel Xeon processors; information is included on
external bus, internal timer and cache hierarchy errors.

...

15.10.1 Machine-Check Exception Handler
The machine-check exception (#MC) corresponds to vector 18. To service machine-check exceptions, a trap gate
must be added to the IDT. The pointer in the trap gate must point to a machine-check exception handler. Two
approaches can be taken to designing the exception handler:

1. The handler can merely log all the machine status and error information, then call a debugger or shut down
the system.

2. The handler can analyze the reported error information and, in some cases, attempt to correct the error and
restart the processor.

For Pentium 4, Intel Xeon, Intel Atom, P6 family, and Pentium processors; virtually all machine-check conditions
cannot be corrected (they result in abort-type exceptions). The logging of status and error information is there-
fore a baseline implementation requirement.
When recovery from a machine-check error may be possible, consider the following when writing a machine-
check exception handler:
• To determine the nature of the error, the handler must read each of the error-reporting register banks. The

count field in the IA32_MCG_CAP register gives number of register banks. The first register of register bank 0
is at address 400H.

• The VAL (valid) flag in each IA32_MCi_STATUS register indicates whether the error information in the register
is valid. If this flag is clear, the registers in that bank do not contain valid error information and do not need to
be checked.

• To write a portable exception handler, only the MCA error code field in the IA32_MCi_STATUS register should
be checked. See Section 15.9, “Interpreting the MCA Error Codes,” for information that can be used to write
an algorithm to interpret this field.

• The RIPV, PCC, and OVER flags in each IA32_MCi_STATUS register indicate whether recovery from the error
is possible. If PCC or OVER are set, recovery is not possible. If RIPV is not set, program execution can not be
restarted reliably. When recovery is not possible, the handler typically records the error information and
signals an abort to the operating system.

• Correctable errors are corrected automatically by the processor. The UC flag in each IA32_MCi_STATUS
register indicates whether the processor automatically corrected an error.

• The RIPV flag in the IA32_MCG_STATUS register indicates whether the program can be restarted at the
instruction indicated by the instruction pointer (the address of the instruction pushed on the stack when the
exception was generated). If this flag is clear, the processor may still be able to be restarted (for debugging
purposes) but not without loss of program continuity.

• For unrecoverable errors, the EIPV flag in the IA32_MCG_STATUS register indicates whether the instruction
indicated by the instruction pointer pushed on the stack (when the exception was generated) is related to the
error. If the flag is clear, the pushed instruction may not be related to the error.

• The MCIP flag in the IA32_MCG_STATUS register indicates whether a machine-check exception was
generated. Before returning from the machine-check exception handler, software should clear this flag so that

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 111

it can be used reliably by an error logging utility. The MCIP flag also detects recursion. The machine-check
architecture does not support recursion. When the processor detects machine-check recursion, it enters the
shutdown state.

Example 15-2 gives typical steps carried out by a machine-check exception handler.

Example 15-2 Machine-Check Exception Handler Pseudocode

IF CPU supports MCE
THEN

IF CPU supports MCA
THEN

call errorlogging routine; (* returns restartability *)
FI;

ELSE (* Pentium(R) processor compatible *)
READ P5_MC_ADDR
READ P5_MC_TYPE;
report RESTARTABILITY to console;

FI;
IF error is not restartable

THEN
report RESTARTABILITY to console;
abort system;

FI;
CLEAR MCIP flag in IA32_MCG_STATUS;

15.10.2 Pentium Processor Machine-Check Exception Handling
Machine-check exception handler on P6 family, Intel Atom and later processor families, should follow the guide-
lines described in Section 15.10.1 and Example 15-2 that check the processor’s support of MCA.

NOTE
On processors that support MCA (CPUID.1.EDX.MCA = 1) reading the P5_MC_TYPE and
P5_MC_ADDR registers may produce invalid data.

When machine-check exceptions are enabled for the Pentium processor (MCE flag is set in control register CR4),
the machine-check exception handler uses the RDMSR instruction to read the error type from the P5_MC_TYPE
register and the machine check address from the P5_MC_ADDR register. The handler then normally reports these
register values to the system console before aborting execution (see Example 15-2).

15.10.3 Logging Correctable Machine-Check Errors
The error handling routine for servicing the machine-check exceptions is responsible for logging uncorrected
errors.
If a machine-check error is correctable, the processor does not generate a machine-check exception for it. To
detect correctable machine-check errors, a utility program must be written that reads each of the machine-check
error-reporting register banks and logs the results in an accounting file or data structure. This utility can be imple-
mented in either of the following ways.
• A system daemon that polls the register banks on an infrequent basis, such as hourly or daily.
• A user-initiated application that polls the register banks and records the exceptions. Here, the actual polling

service is provided by an operating-system driver or through the system call interface.
• An interrupt service routine servicing CMCI can read the MC banks and log the error.
Example 15-3 gives pseudocode for an error logging utility.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 112

Example 15-3 Machine-Check Error Logging Pseudocode

Assume that execution is restartable;
IF the processor supports MCA

THEN
FOR each bank of machine-check registers

DO
READ IA32_MCi_STATUS;
IF VAL flag in IA32_MCi_STATUS = 1

THEN
IF ADDRV flag in IA32_MCi_STATUS = 1

THEN READ IA32_MCi_ADDR;
FI;
IF MISCV flag in IA32_MCi_STATUS = 1

THEN READ IA32_MCi_MISC;
FI;
IF MCIP flag in IA32_MCG_STATUS = 1

(* Machine-check exception is in progress *)
AND PCC flag in IA32_MCi_STATUS = 1
OR RIPV flag in IA32_MCG_STATUS = 0
(* execution is not restartable *)

THEN
RESTARTABILITY = FALSE;
return RESTARTABILITY to calling procedure;

FI;
Save time-stamp counter and processor ID;
Set IA32_MCi_STATUS to all 0s;
Execute serializing instruction (i.e., CPUID);

FI;
OD;

FI;

If the processor supports the machine-check architecture, the utility reads through the banks of error-reporting
registers looking for valid register entries. It then saves the values of the IA32_MCi_STATUS, IA32_MCi_ADDR,
IA32_MCi_MISC and IA32_MCG_STATUS registers for each bank that is valid. The routine minimizes processing
time by recording the raw data into a system data structure or file, reducing the overhead associated with polling.
User utilities analyze the collected data in an off-line environment.
When the MCIP flag is set in the IA32_MCG_STATUS register, a machine-check exception is in progress and the
machine-check exception handler has called the exception logging routine.
Once the logging process has been completed the exception-handling routine must determine whether execution
can be restarted, which is usually possible when damage has not occurred (The PCC flag is clear, in the
IA32_MCi_STATUS register) and when the processor can guarantee that execution is restartable (the RIPV flag is
set in the IA32_MCG_STATUS register). If execution cannot be restarted, the system is not recoverable and the
exception-handling routine should signal the console appropriately before returning the error status to the Oper-
ating System kernel for subsequent shutdown.
The machine-check architecture allows buffering of exceptions from a given error-reporting bank although the
Pentium 4, Intel Xeon, Intel Atom, and P6 family processors do not implement this feature. The error logging
routine should provide compatibility with future processors by reading each hardware error-reporting bank's
IA32_MCi_STATUS register and then writing 0s to clear the OVER and VAL flags in this register. The error logging
utility should re-read the IA32_MCi_STATUS register for the bank ensuring that the valid bit is clear. The
processor will write the next error into the register bank and set the VAL flags.
Additional information that should be stored by the exception-logging routine includes the processor’s time-stamp
counter value, which provides a mechanism to indicate the frequency of exceptions. A multiprocessing operating
system stores the identity of the processor node incurring the exception using a unique identifier, such as the
processor’s APIC ID (see Section 10.8, “Handling Interrupts”).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 113

The basic algorithm given in Example 15-3 can be modified to provide more robust recovery techniques. For
example, software has the flexibility to attempt recovery using information unavailable to the hardware. Specifi-
cally, the machine-check exception handler can, after logging carefully analyze the error-reporting registers when
the error-logging routine reports an error that does not allow execution to be restarted. These recovery tech-
niques can use external bus related model-specific information provided with the error report to localize the
source of the error within the system and determine the appropriate recovery strategy.

15.10.4 Machine-Check Software Handler Guidelines for Error Recovery

15.10.4.1 Machine-Check Exception Handler for Error Recovery
When writing a machine-check exception (MCE) handler to support software recovery from Uncorrected Recover-
able (UCR) errors, consider the following:
• When IA32_MCG_CAP [24] is zero, there are no recoverable errors supported and all machine-check are fatal

exceptions. The logging of status and error information is therefore a baseline implementation requirement.
• When IA32_MCG_CAP [24] is 1, certain uncorrected errors called uncorrected recoverable (UCR) errors may

be software recoverable. The handler can analyze the reported error information, and in some cases attempt
to recover from the uncorrected error and continue execution.

• For processors on which CPUID reports DisplayFamily_DisplayModel as 06H_0EH and onward, an MCA signal
is broadcast to all logical processors in the system (see CPUID instruction in Chapter 3, “Instruction Set
Reference, A-M” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A). Due to
the potentially shared machine check MSR resources among the logical processors on the same package/core,
the MCE handler may be required to synchronize with the other processors that received a machine check
error and serialize access to the machine check registers when analyzing, logging and clearing the information
in the machine check registers.

• The VAL (valid) flag in each IA32_MCi_STATUS register indicates whether the error information in the register
is valid. If this flag is clear, the registers in that bank do not contain valid error information and should not be
checked.

• The MCE handler is primarily responsible for processing uncorrected errors. The UC flag in each
IA32_MCi_Status register indicates whether the reported error was corrected (UC=0) or uncorrected (UC=1).
The MCE handler can optionally log and clear the corrected errors in the MC banks if it can implement software
algorithm to avoid the undesired race conditions with the CMCI or CMC polling handler.

• For uncorrectable errors, the EIPV flag in the IA32_MCG_STATUS register indicates (when set) that the
instruction pointed to by the instruction pointer pushed onto the stack when the machine-check exception is
generated is directly associated with the error. When this flag is cleared, the instruction pointed to may not be
associated with the error.

• The MCIP flag in the IA32_MCG_STATUS register indicates whether a machine-check exception was
generated. When a machine check exception is generated, it is expected that the MCIP flag in the
IA32_MCG_STATUS register is set to 1. If it is not set, this machine check was generated by either an INT 18
instruction or some piece of hardware signaling an interrupt with vector 18.

When IA32_MCG_CAP [24] is 1, the following rules can apply when writing a machine check exception (MCE)
handler to support software recovery:
• The PCC flag in each IA32_MCi_STATUS register indicates whether recovery from the error is possible for

uncorrected errors (UC=1). If the PCC flag is set for uncorrected errors (UC=1), recovery is not possible.
When recovery is not possible, the MCE handler typically records the error information and signals the
operating system to reset the system.

• The RIPV flag in the IA32_MCG_STATUS register indicates whether restarting the program execution from the
instruction pointer saved on the stack for the machine check exception is possible. When the RIPV is set,
program execution can be restarted reliably when recovery is possible. If the RIPV flag is not set, program

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 114

execution cannot be restarted reliably. In this case the recovery algorithm may involve terminating the
current program execution and resuming an alternate thread of execution upon return from the machine
check handler when recovery is possible. When recovery is not possible, the MCE handler signals the
operating system to reset the system.

• When the EN flag is zero but the VAL and UC flags are one in the IA32_MCi_STATUS register, the reported
uncorrected error in this bank is not enabled. As uncorrected errors with the EN flag = 0 are not the source of
machine check exceptions, the MCE handler should log and clear non-enabled errors when the S bit is set and
should continue searching for enabled errors from the other IA32_MCi_STATUS registers. Note that when
IA32_MCG_CAP [24] is 0, any uncorrected error condition (VAL =1 and UC=1) including the one with the EN
flag cleared are fatal and the handler must signal the operating system to reset the system. For the errors that
do not generate machine check exceptions, the EN flag has no meaning. See Chapter 19: Table 19-15 to find
the errors that do not generate machine check exceptions.

• When the VAL flag is one, the UC flag is one, the EN flag is one and the PCC flag is zero in the
IA32_MCi_STATUS register, the error in this bank is an uncorrected recoverable (UCR) error. The MCE handler
needs to examine the S flag and the AR flag to find the type of the UCR error for software recovery and
determine if software error recovery is possible.

• When both the S and the AR flags are clear in the IA32_MCi_STATUS register for the UCR error (VAL=1,
UC=1, EN=x and PCC=0), the error in this bank is an uncorrected no-action required error (UCNA). UCNA
errors are uncorrected but do not require any OS recovery action to continue execution. These errors indicate
that some data in the system is corrupt, but that data has not been consumed and may not be consumed. If
that data is consumed a non-UNCA machine check exception will be generated. UCNA errors are signaled in
the same way as corrected machine check errors and the CMCI and CMC polling handler is primarily
responsible for handling UCNA errors. Like corrected errors, the MCA handler can optionally log and clear
UCNA errors as long as it can avoid the undesired race condition with the CMCI or CMC polling handler. As
UCNA errors are not the source of machine check exceptions, the MCA handler should continue searching for
uncorrected or software recoverable errors in all other MC banks.

• When the S flag in the IA32_MCi_STATUS register is set for the UCR error ((VAL=1, UC=1, EN=1 and PCC=0),
the error in this bank is software recoverable and it was signaled through a machine-check exception. The AR
flag in the IA32_MCi_STATUS register further clarifies the type of the software recoverable errors.

• When the AR flag in the IA32_MCi_STATUS register is clear for the software recoverable error (VAL=1, UC=1,
EN=1, PCC=0 and S=1), the error in this bank is a software recoverable action optional (SRAO) error. The
MCE handler and the operating system can analyze the IA32_MCi_STATUS [15:0] to implement MCA error
code specific optional recovery action, but this recovery action is optional. System software can resume the
program execution from the instruction pointer saved on the stack for the machine check exception when the
RIPV flag in the IA32_MCG_STATUS register is set.

• When the OVER flag in the IA32_MCi_STATUS register is set for the SRAO error (VAL=1, UC=1, EN=1, PCC=0,
S=1 and AR=0), the MCE handler cannot take recovery action as the information of the SRAO error in the
IA32_MCi_STATUS register was potentially lost due to the overflow condition. Since the recovery action for
SRAO errors is optional, restarting the program execution from the instruction pointer saved on the stack for
the machine check exception is still possible for the overflowed SRAO error if the RIPV flag in the
IA32_MCG_STATUS is set.

• When the AR flag in the IA32_MCi_STATUS register is set for the software recoverable error (VAL=1, UC=1,
EN=1, PCC=0 and S=1), the error in this bank is a software recoverable action required (SRAR) error. The
MCE handler and the operating system must take recovery action in order to continue execution after the
machine-check exception. The MCA handler and the operating system need to analyze the IA32_MCi_STATUS
[15:0] to determine the MCA error code specific recovery action. If no recovery action can be performed, the
operating system must reset the system.

• When the OVER flag in the IA32_MCi_STATUS register is set for the SRAR error (VAL=1, UC=1, EN=1, PCC=0,
S=1 and AR=1), the MCE handler cannot take recovery action as the information of the SRAR error in the
IA32_MCi_STATUS register was potentially lost due to the overflow condition. Since the recovery action for
SRAR errors must be taken, the MCE handler must signal the operating system to reset the system.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 115

• When the MCE handler cannot find any uncorrected (VAL=1, UC=1 and EN=1) or any software recoverable
errors (VAL=1, UC=1, EN=1, PCC=0 and S=1) in any of the IA32_MCi banks of the processors, this is an
unexpected condition for the MCE handler and the handler should signal the operating system to reset the
system.

• Before returning from the machine-check exception handler, software must clear the MCIP flag in the
IA32_MCG_STATUS register. The MCIP flag is used to detect recursion. The machine-check architecture does
not support recursion. When the processor receives a machine check when MCIP is set, it automatically enters
the shutdown state.

...

19.Updates to Chapter 16, Volume 3B
Change bars show changes to Chapter 16 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

...

16.4.3 Integrated Memory Controller Machine Check Errors
MC error codes associated with integrated memory controllers are reported in the MSRs IA32_MC8_STATUS-
IA32_MC11_STATUS. The supported error codes are follows the architectural MCACOD definition type
1MMMCCCC (see Chapter 15, “Machine-Check Architecture,”). MSR_ERROR_CONTROL.[bit 1] can enable addi-
tional information logging of the IMC. The additional error information logged by the IMC is stored in
IA32_MCi_STATUS and IA32_MCi_MISC; (i = 8, 11).

...

16.5 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY WITH
CPUID DISPLAYFAMILY_DISPLAYMODEL SIGNATURE 06_3EH, MACHINE
ERROR CODES FOR MACHINE CHECK

Intel Xeon processor E5-2600 v2 product family is based on Intel® microarchitecture code name Ivy Bridge-EP
and can be identified with CPUID DisplayFamily_DisplaySignature 06_3EH. Incremental error codes for internal
machine check error from PCU controller is reported in the register bank IA32_MC4, Table 16-17 lists model-
specific fields to interpret error codes applicable to IA32_MC4_STATUS. Incremental MC error codes related to the
Intel QPI links are reported in the register banks IA32_MC5. Information listed in Table 16-14 for QPI MC error
code apply to IA32_MC5_STATUS. Incremental error codes for the memory controller unit is reported in the
register banks IA32_MC9-IA32_MC16. Table 16-18 lists model-specific error codes apply to IA32_MCi_STATUS, i
= 9-16.

...

16.5.2 Integrated Memory Controller Machine Check Errors
MC error codes associated with integrated memory controllers are reported in the MSRs IA32_MC9_STATUS-
IA32_MC16_STATUS. The supported error codes are follows the architectural MCACOD definition type
1MMMCCCC (see Chapter 15, “Machine-Check Architecture,”).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 116

MSR_ERROR_CONTROL.[bit 1] can enable additional information logging of the IMC. The additional error infor-
mation logged by the IMC is stored in IA32_MCi_STATUS and IA32_MCi_MISC; (i = 9, 16).

Table 16-18 Intel IMC MC Error Codes for IA32-MCi_STATUS (i= 9, 16)

...

16.6 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY 0FH
MACHINE ERROR CODES FOR MACHINE CHECK

Table 16-20 provides information for interpreting additional family 0FH model-specific fields for external bus
errors. These errors are reported in the IA32_MCi_STATUS MSRs. They are reported architecturally) as compound
errors with a general form of 0000 1PPT RRRR IILL in the MCA error code field. See Chapter 15 for information on
the interpretation of compound error codes.

...

Type Bit No. Bit Function Bit Description

MCA error codes1 0-15 MCACOD Bus error format: 1PPTRRRRIILL

Model specific
errors

31:16 Reserved except for
the following

0x001 - Address parity error

0x002 - HA Wrt buffer Data parity error

0x004 - HA Wrt byte enable parity error

0x008 - Corrected patrol scrub error

0x010 - Uncorrected patrol scrub error

0x020 - Corrected spare error

0x040 - Uncorrected spare error

0x080 - Corrected memory read error. (Only applicable with iMC’s “Additional
Error logging” Mode-1 enabled.)

0x100 - iMC, WDB, parity errors

36-32 Other info When MSR_ERROR_CONTROL.[1] is set, logs an encoded value from the first error
device.

37 Reserved Reserved

56-38 See Chapter 15, “Machine-Check Architecture,”

Status register
validity indicators1

57-63

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 117

20.Updates to Chapter 17, Volume 3B
Change bars show changes to Chapter 17 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

...

17.8 LAST BRANCH, CALL STACK, INTERRUPT, AND EXCEPTION RECORDING
FOR PROCESSORS BASED ON INTEL® MICROARCHITECTURE CODE NAME
HASWELL

Generally, all of the last branch record, interrupt and exception recording facility described in Section 17.7, “Last
Branch, Interrupt, and Exception Recording for Processors based on Intel® Microarchitecture code name Sandy
Bridge”, apply to next generation processors based on Intel microarchitecture code name Haswell.

The LBR facility also supports an alternate capability to profile call stack profiles. Configuring the LBR facility to
conduct call stack profiling is by writing 1 to the MSR_LBR_SELECT.EN_CALLSTACK[bit 9]; see Table 17-12. If
MSR_LBR_SELECT.EN_CALLSTACK is clear, the LBR facility will capture branches normally as described in Section
17.7.

The call stack profiling capability is an enhancement of the LBR facility. The LBR stack is a ring buffer typically
used to profile control flow transitions resulting from branches. However, the finite depth of the LBR stack often
become less effective when profiling certain high-level languages (e.g. C++), where a transition of the execution
flow is accompanied by a large number of leaf function calls, each of which returns an individual parameter to
form the list of parameters for the main execution function call. A long list of such parameters returned by the leaf
functions would serve to flush the data captured in the LBR stack, often losing the main execution context.

When the call stack feature is enabled, the LBR stack will capture unfiltered call data normally, but as return
instructions are executed the last captured branch record is flushed from the on-chip registers in a last-in first-out
(LIFO) manner. Thus, branch information relative to leaf functions will not be captured, while preserving the call
stack information of the main line execution path.

Table 17-12 MSR_LBR_SELECT for Intel microarchitecture code name Haswell
Bit Field Bit Offset Access Description

CPL_EQ_0 0 R/W When set, do not capture branches occurring in ring 0

CPL_NEQ_0 1 R/W When set, do not capture branches occurring in ring >0

JCC 2 R/W When set, do not capture conditional branches

NEAR_REL_CALL 3 R/W When set, do not capture near relative calls

NEAR_IND_CALL 4 R/W When set, do not capture near indirect calls

NEAR_RET 5 R/W When set, do not capture near returns

NEAR_IND_JMP 6 R/W When set, do not capture near indirect jumps except near indirect calls and near returns

NEAR_REL_JMP 7 R/W When set, do not capture near relative jumps except near relative calls.

FAR_BRANCH 8 R/W When set, do not capture far branches

EN_CALLSTACK1 9 Enable LBR stack to use LIFO filtering to capture Call stack profile

Reserved 63:10 Must be zero
NOTES:

1. Must set valid combination of bits 0-8 in conjunction with bit 9, otherwise the counter result is undefined.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 118

The configuration of the call stack facility is summarized below:
• Set IA32_DEBUGCTL.LBR (bit 0) to enable the LBR stack to capture branch records. The source and target

addresses of the call branches will be captured in the 16 pairs of From/To LBR MSRs that form the LBR stack.
• Program the Top of Stack (TOS) MSR that points to the last valid from/to pair. This register is incremented by

1, modulo 16, before recording the next pair of addresses.
• Program the branch filtering bits of MSR_LBR_SELECT (bits 0:8) as desired.
• Program the MSR_LBR_SELECT to enable LIFO filtering of return instructions with:

— The following bits in MSR_LBR_SELECT must be set to ‘1’: JCC, NEAR_IND_JMP, NEAR_REL_JMP,
FAR_BRANCH, EN_CALLSTACK;

— The following bits in MSR_LBR_SELECT must be cleared: NEAR_REL_CALL, NEAR-IND_CALL, NEAR_RET;

— At most one of CPL_EQ_0, CPL_NEQ_0 is set.

Note that when call stack profiling is enabled, "zero length calls" are excluded from writing into the LBRs. (A "zero
length call" uses the attribute of the call instruction to push the immediate instruction pointer on to the stack and
then pops off that address into a register. This is accomplished without any matching return on the call.)

...

21.Updates to Chapter 18, Volume 3B
Change bars show changes to Chapter 18 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

...

18.4.2 Global Counter Control Facilities
Processors based on Intel Core microarchitecture provides simplified performance counter control that simplifies
the most frequent operations in programming performance events, i.e. enabling/disabling event counting and
checking the status of counter overflows. This is done by the following three MSRs:
• MSR_PERF_GLOBAL_CTRL enables/disables event counting for all or any combination of fixed-function PMCs

(MSR_PERF_FIXED_CTRx) or general-purpose PMCs via a single WRMSR.
• MSR_PERF_GLOBAL_STATUS allows software to query counter overflow conditions on any combination of

fixed-function PMCs (MSR_PERF_FIXED_CTRx) or general-purpose PMCs via a single RDMSR.
• MSR_PERF_GLOBAL_OVF_CTRL allows software to clear counter overflow conditions on any combination of

fixed-function PMCs (MSR_PERF_FIXED_CTRx) or general-purpose PMCs via a single WRMSR.

MSR_PERF_GLOBAL_CTRL MSR provides single-bit controls to enable counting in each performance counter (see
Figure 18-11). Each enable bit in MSR_PERF_GLOBAL_CTRL is AND’ed with the enable bits for all privilege levels
in the respective IA32_PERFEVTSELx or MSR_PERF_FIXED_CTR_CTRL MSRs to start/stop the counting of respec-
tive counters. Counting is enabled if the AND’ed results is true; counting is disabled when the result is false.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 119

MSR_PERF_GLOBAL_STATUS MSR provides single-bit status used by software to query the overflow condition of
each performance counter. The MSR also provides additional status bit to indicate overflow conditions when coun-
ters are programmed for precise-event-based sampling (PEBS). The MSR_PERF_GLOBAL_STATUS MSR also
provides a ‘sticky bit’ to indicate changes to the state of performance monitoring hardware (see Figure 18-12). A
value of 1 in bits 34:32, 1, 0 indicates an overflow condition has occurred in the associated counter.

When a performance counter is configured for PEBS, an overflow condition in the counter will arm PEBS. On the
subsequent event following overflow, the processor will generate a PEBS event. On a PEBS event, the processor
will perform bounds checks based on the parameters defined in the DS Save Area (see Section 17.4.9). Upon
successful bounds checks, the processor will store the data record in the defined buffer area, clear the counter
overflow status, and reload the counter. If the bounds checks fail, the PEBS will be skipped entirely. In the event
that the PEBS buffer fills up, the processor will set the OvfBuffer bit in MSR_PERF_GLOBAL_STATUS.

MSR_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow the indicators for general-purpose or fixed-
function counters via a single WRMSR (see Figure 18-13). Clear overflow indications when:
• Setting up new values in the event select and/or UMASK field for counting or sampling
• Reloading counter values to continue sampling
• Disabling event counting or sampling

Figure 18-11 Layout of MSR_PERF_GLOBAL_CTRL MSR

Figure 18-12 Layout of MSR_PERF_GLOBAL_STATUS MSR

FIXED_CTR2 enable
FIXED_CTR1 enable
FIXED_CTR0 enable
PMC1 enable

2 1 0

PMC0 enable

3132333435

Reserved

63

62

FIXED_CTR2 Overflow
FIXED_CTR1 Overflow
FIXED_CTR0 Overflow
PMC1 Overflow

2 1 0

PMC0 Overflow

3132333435

Reserved

63

CondChgd
OvfBuffer

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 120

...

18.6 PERFORMANCE MONITORING (PROCESSORS BASED ON THE SILVERMONT
MICROARCHITECTURE)

Intel processors based on the Silvermont microarchitecture support architectural performance monitoring capa-
bility with version ID 3 (see Section 18.2.2.2) and a host of non-architectural monitoring capabilities. Processors
based on the Silvermont microarchitecture provide two general-purpose performance counters (IA32_PMC0,
IA32_PMC1) and three fixed-function performance counters (IA32_FIXED_CTR0, IA32_FIXED_CTR1,
IA32_FIXED_CTR2).

Non-architectural performance monitoring in the Silvermont microarchitecture uses the IA32_PERFEVTSELx MSR
to configure a set of non-architecture performance monitoring events to be counted by the corresponding
general-purpose performance counter. The list of non-architectural performance monitoring events is listed in
Table 19-18.

The bit fields (except bit 21) within each IA32_PERFEVTSELx MSR are defined in Figure 18-6 and described in
Section 18.2.1.1 and Section 18.2.2.2. Architectural and non-architectural performance monitoring events in the
Silvermont microarchitecture ignore the AnyThread qualification regardless of its setting in IA32_PERFEVTSELx
MSR.

18.6.1 Enhancements of Performance Monitoring in the Processor Core
The notable enhancements in the monitoring of performance events in the processor core include:
• The width of counter reported by CPUID.0AH:EAX[23:16] is 40 bits.
• Off-core response counting facility. This facility in the processor core allows software to count certain

transaction responses between the processor core to sub-systems outside the processor core (uncore).
Counting off-core response requires additional event qualification configuration facility in conjunction with
IA32_PERFEVTSELx. Two off-core response MSRs are provided to use in conjunction with specific event codes
that must be specified with IA32_PERFEVTSELx.

• Average request latency measurement. The off-core response counting facility can be combined to use two
performance counters to count the occurrences and weighted cycles of transaction requests.

Figure 18-13 Layout of MSR_PERF_GLOBAL_OVF_CTRL MSR

62

FIXED_CTR2 ClrOverflow
FIXED_CTR1 ClrOverflow
FIXED_CTR0 ClrOverflow
PMC1 ClrOverflow

2 1 0

PMC0 ClrOverflow

3132333435

Reserved

63

ClrCondChgd
ClrOvfBuffer

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 121

18.6.1.1 Precise Event Based Sampling (PEBS)
Processors based on the Silvermont microarchitecture support precise event based sampling (PEBS). PEBS is
supported using IA32_PMC0 (see also Section 17.4.9, “BTS and DS Save Area”).

PEBS uses a debug store mechanism to store a set of architectural state information for the processor. The infor-
mation provides architectural state of the instruction executed after the instruction that caused the event (See
Section 18.4.4).

The list of PEBS events supported in the Silvermont microarchitecture is shown in Table 18-12.

PEBS Record Format The PEBS record format supported by processors based on the Intel Silvermont microarchi-
tecture is shown in Table 18-13, and each field in the PEBS record is 64 bits long.

Table 18-12 PEBS Performance Events for the Silvermont Microarchitecture
Event Name Event Select Sub-event UMask

BR_INST_RETIRED C4H ALL_BRANCHES 00H

JCC 7EH

TAKEN_JCC FEH

CALL F9H

REL_CALL FDH

IND_CALL FBH

NON_RETURN_IND EBH

FAR_BRANCH BFH

RETURN F7H

BR_MISP_RETIRED C5H ALL_BRANCHES 00H

JCC 7EH

TAKEN_JCC FEH

IND_CALL FBH

NON_RETURN_IND EBH

RETURN F7H

MEM_UOPS_RETIRED 04H L2_HIT_LOADS 02H

L2_MISS_LOADS 04H

DLTB_MISS_LOADS 08H

HITM 20H

REHABQ 03H LD_BLOCK_ST_FORWARD 01H

LD_SPLITS 08H

Table 18-13 PEBS Record Format for the Silvermont Microarchitecture

Byte Offset Field Byte Offset Field

0x0 R/EFLAGS 0x60 R10

0x8 R/EIP 0x68 R11

0x10 R/EAX 0x70 R12

0x18 R/EBX 0x78 R13

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 122

18.6.2 Offcore Response Event
Event number 0B7H support offcore response monitoring using an associated configuration MSR,
MSR_OFFCORE_RSP0 (address 0x1A6) in conjunction with umask value 01H or MSR_OFFCORE_RSP1 (address
0x1A7) in conjunction with umask value 02H. Table 19-18 lists the event code, mask value and additional off-core
configuration MSR that must be programmed to count off-core response events using IA32_PMCx.

The layout of MSR_OFFCORE_RSP0 and MSR_OFFCORE_RSP1 are shown in Figure 18-32 and Figure 18-33. Bits
15:0 specifies the request type of a transaction request to the uncore. Bits 30:16 specifies supplier information,
bits 37:31 specifies snoop response information.

Additionally, MSR_OFFCORE_RSP0 provides bit 38 to enable measurement of average latency of specific type of
offcore transaction requests using two programmable counter simultaneously, see Section 18.6.3 for details.

0x20 R/ECX 0x80 R14

0x28 R/EDX 0x88 R15

0x30 R/ESI 0x90 IA32_PERF_GLOBAL_STATUS

0x38 R/EDI 0x98 Reserved

0x40 R/EBP 0xA0 Reserved

0x48 R/ESP 0xA8 Reserved

0x50 R8 0x80 EventingRIP

0x58 R9 0xB8 Reserved

Table 18-13 PEBS Record Format for the Silvermont Microarchitecture

Byte Offset Field Byte Offset Field

Table 18-14 OffCore Response Event Encoding

Counter Event code UMask Required Off-core Response MSR

PMC0-3 0xB7 0x01 MSR_OFFCORE_RSP0 (address 0x1A6)

PMC0-3 0xB7 0x02 MSR_OFFCORE_RSP1 (address 0x1A7)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 123

Figure 18-14 Request_Type Fields for MSR_OFFCORE_RSPx

Table 18-15 MSR_OFFCORE_RSPx Request_Type Field Definition

Bit Name Offset Description

DMND_DATA_RD 0 (R/W). Counts the number of demand and DCU prefetch data reads of full and partial
cachelines as well as demand data page table entry cacheline reads. Does not count L2 data
read prefetches or instruction fetches.

DMND_RFO 1 (R/W). Counts the number of demand and DCU prefetch reads for ownership (RFO) requests
generated by a write to data cacheline. Does not count L2 RFO prefetches.

DMND_IFETCH 2 (R/W). Counts the number of demand and DCU prefetch instruction cacheline reads. Does
not count L2 code read prefetches.

WB 3 (R/W). Counts the number of writeback (modified to exclusive) transactions.

PF_DATA_RD 4 (R/W). Counts the number of data cacheline reads generated by L2 prefetchers.

PF_RFO 5 (R/W). Counts the number of RFO requests generated by L2 prefetchers.

PF_IFETCH 6 (R/W). Counts the number of code reads generated by L2 prefetchers.

PARTIAL_READ 7 (R/W). Counts the number of demand reads of partial cache lines (including UC and WC).

PARTIAL_WRITE 8 (R/W). Counts the number of demand RFO requests to write to partial cache lines (includes
UC, WT and WP)

UC_IFETCH 9 (R/W). Counts the number of UC instruction fetches.

BUS_LOCKS 10 (R/W). Bus lock and split lock requests

STRM_ST 11 (R/W). Streaming store requests

SW_PREFETCH 12 (R/W). Counts software prefetch requests

PF_DATA_RD 13 (R/W). Counts DCU hardware prefetcher data read requests

RESPONSE TYPE — Other (R/W)
REQUEST TYPE — PARTIAL_STRM_ST (R/W)

8 7 0

REQUEST TYPE — STRM_ST (R/W)

11 312 1

Reserved

63 249 5610131415

REQUEST TYPE — BUS_LOCKS (R/W)
REQUEST TYPE — UC_IFETCH (R/W)
REQUEST TYPE — PARTIAL_WRITE (R/W)
REQUEST TYPE — PARTIAL_READ (R/W)
REQUEST TYPE — PF_IFETCH (R/W)
REQUEST TYPE — PF_RFO (R/W)
REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — WB (R/W)
REQUEST TYPE — DMND_IFETCH (R/W)
REQUEST TYPE — DMND_RFO (R/W)
REQUEST TYPE — DMND_DATA_RD (R/W)

RESET Value — 0x00000000_00000000

37

See Figure 18-30

REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — SW_PREFETCH (R/W)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 124

To properly program this extra register, software must set at least one request type bit and a valid response type
pattern. Otherwise, the event count reported will be zero. It is permissible and useful to set multiple request and
response type bits in order to obtain various classes of off-core response events. Although MSR_OFFCORE_RSPx
allow an agent software to program numerous combinations that meet the above guideline, not all combinations
produce meaningful data.

To specify a complete offcore response filter, software must properly program bits in the request and response
type fields. A valid request type must have at least one bit set in the non-reserved bits of 15:0. A valid response
type must be a non-zero value of the following expression:

ANY | [(‘OR’ of Supplier Info Bits) & (‘OR’ of Snoop Info Bits)]

If “ANY“ bit is set, the supplier and snoop info bits are ignored.

PARTIAL_STRM_ST 14 (R/W). Streaming store requests

OTHER 15 (R/W). Any other request that crosses IDI, including I/O.

Figure 18-15 Response_Supplier and Snoop Info Fields for MSR_OFFCORE_RSPx

Table 18-16 MSR_OFFCORE_RSP_x Response Supplier Info Field Definition

Subtype Bit Name Offset Description

Common Any 16 (R/W). Catch all value for any response types.

Supplier
Info

Reserved 17 Reserved

L2_HIT 18 (R/W). Cache reference hit L2 in either M/E/S states.

Reserved 30:19 Reserved

Table 18-15 MSR_OFFCORE_RSPx Request_Type Field Definition (Contd.)

Bit Name Offset Description

RESPONSE TYPE — NON_DRAM (R/W)
RSPNS_SNOOP — HITM (R/W)

16

RESERVED

33 1934 17

Reserved

63 182031 212232353637

RSPNS_SNOOP — SNOOP_HIT (R/W)
RSPNS_SNOOP — SNOOP_MISS (R/W)
RESERVED
RSPNS_SNOOP — SNOOP_NONE (R/W)
RESERVED
RSPNS_SUPPLIER — L2_HIT (R/W)
RESERVED
RSPNS_SUPPLIER — ANY (R/W)

RESET Value — 0x00000000_00000000

38

AVG LATENCY — ENABLE AVG LATENCY(R/W)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 125

18.6.3 Average Offcore Request Latency Measurement
Measurement of average latency of offcore transaction requests can be enabled using MSR_OFFCORE_RSP0.[bit
38] with the choice of request type specified in MSR_OFFCORE_RSP0.[bit 15:0] and MSR_OFFCORE_RSP0.[bit
37:16] set to 0.

When average latency measurement is enabled, e.g. with IA32_PERFEVTSEL0.[bits 15:0] = 0x01B7 and chosen
value of MSR_OFFCORE_RSP0, IA32_PMC0 will accumulate weighted cycles of outstanding transaction requests
for the specified transaction request type. At the same time, IA32_PMC1 will accumulated the number of occur-
rences each time a new transaction request of specified type is made.

...

18.9.1 Global Counter Control Facilities In Intel® Microarchitecture Code Name Sandy Bridge
The number of general-purpose performance counters visible to a logical processor can vary across Processors
based on Intel microarchitecture code name Sandy Bridge. Software must use CPUID to determine the number
performance counters/event select registers (See Section 18.2.1.1).

Table 18-17 MSR_OFFCORE_RSPx Snoop Info Field Definition

Subtype Bit Name Offset Description

Snoop
Info

SNP_NONE 31 (R/W). No details on snoop-related information

Reserved 32 Reserved

SNOOP_MISS 33 (R/W). Counts the number of snoop misses when L2 misses

SNOOP_HIT 34 (R/W). Counts the number of snoops hit in the other module where no modified
copies were found

Reserved 35 Reserved

HITM 36 (R/W). Counts the number of snoops hit in the other module where modified
copies were found in other core's L1 cache.

NON_DRAM 37 (R/W). Target was non-DRAM system address. This includes MMIO transactions.

AVG_LATENCY 38 (R/W). Enable average latency measurement by counting weighted cycles of
outstanding offcore requests of the request type specified in bits 15:0 and any
response (bits 37:16 cleared to 0).

This bit is available in MSR_OFFCORE_RESP0. The weighted cycles is
accumulated in the specified programmable counter IA32_PMCx and the
occurrence of specified requests are counted in the other programmable
counter.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 126

Figure 18-11 depicts the layout of IA32_PERF_GLOBAL_CTRL MSR. The enable bits (PMC4_EN, PMC5_EN,
PMC6_EN, PMC7_EN) corresponding to IA32_PMC4-IA32_PMC7 are valid only if CPUID.0AH:EAX[15:8] reports a
value of ‘8’. If CPUID.0AH:EAX[15:8] = 4, attempts to set the invalid bits will cause #GP.

Each enable bit in IA32_PERF_GLOBAL_CTRL is AND’ed with the enable bits for all privilege levels in the respec-
tive IA32_PERFEVTSELx or IA32_PERF_FIXED_CTR_CTRL MSRs to start/stop the counting of respective counters.
Counting is enabled if the AND’ed results is true; counting is disabled when the result is false.
IA32_PERF_GLOBAL_STATUS MSR provides single-bit status used by software to query the overflow condition of
each performance counter. The MSR also provides additional status bit to indicate overflow conditions when coun-
ters are programmed for precise-event-based sampling (PEBS). The IA32_PERF_GLOBAL_STATUS MSR also
provides a ‘sticky bit’ to indicate changes to the state of performance monitoring hardware (see Figure 18-29). A
value of 1 in each bit of the PMCx_OVF field indicates an overflow condition has occurred in the associated
counter.

Figure 18-28 IA32_PERF_GLOBAL_CTRL MSR in Intel® Microarchitecture Code Name Sandy Bridge

Figure 18-29 IA32_PERF_GLOBAL_STATUS MSR in Intel® Microarchitecture Code Name Sandy Bridge

FIXED_CTR2 enable
FIXED_CTR1 enable
FIXED_CTR0 enable

PMC7_EN (if PMC7 present)

2 1 0

PMC6_EN (if PMC6 present)

3132333435

Reserved

63

PMC5_EN (if PMC5 present)
PMC4_EN (if PMC4 present)
PMC3_EN
PMC2_EN
PMC1_EN

Valid if CPUID.0AH:EAX[15:8] = 8, else reserved.

PMC0_EN

8 7 6 5 4 3

62

FIXED_CTR2 Overflow (RO)
FIXED_CTR1 Overflow (RO)
FIXED_CTR0 Overflow (RO)
PMC7_OVF (RO, If PMC7 present)

2 1 0

PMC6_OVF (RO, If PMC6 present)

3132333435

Reserved

63

CondChgd
OvfBuffer

8 7 6 5 4 3

PMC5_OVF (RO, If PMC5 present)
PMC4_OVF (RO, If PMC4 present)
PMC3_OVF (RO)
PMC2_OVF (RO)
PMC1_OVF (RO)
PMC0_OVF (RO)

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 127

When a performance counter is configured for PEBS, an overflow condition in the counter will arm PEBS. On the
subsequent event following overflow, the processor will generate a PEBS event. On a PEBS event, the processor
will perform bounds checks based on the parameters defined in the DS Save Area (see Section 17.4.9). Upon
successful bounds checks, the processor will store the data record in the defined buffer area, clear the counter
overflow status, and reload the counter. If the bounds checks fail, the PEBS will be skipped entirely. In the event
that the PEBS buffer fills up, the processor will set the OvfBuffer bit in MSR_PERF_GLOBAL_STATUS.

IA32_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow the indicators for general-purpose or fixed-
function counters via a single WRMSR (see Figure 18-30). Clear overflow indications when:
• Setting up new values in the event select and/or UMASK field for counting or sampling
• Reloading counter values to continue sampling
• Disabling event counting or sampling

...

18.9.8 Intel® Xeon® Processor E5 Family Uncore Performance Monitoring Facility
The uncore subsystem in the Intel Xeon processor E5-2600 product family based on Intel microarchitecture
Sandy Bridge has some similarities with those of the Intel Xeon processor E7 family based on Intel microarchitec-
ture Sandy Bridge. Within the uncore subsystem, localized performance counter sets are provided at logic control
unit scope. For example, each Cbox caching agent has a set of local performance counters, and the power
controller unit (PCU) has its own local performance counters. Up to 8 C-Box units are supported in the uncore sub-
system.

Table 18-36 summarizes the uncore PMU facilities providing MSR interfaces.

Figure 18-30 IA32_PERF_GLOBAL_OVF_CTRL MSR in Intel microarchitecture code name Sandy Bridge

62

FIXED_CTR2 ClrOverflow
FIXED_CTR1 ClrOverflow
FIXED_CTR0 ClrOverflow
PMC7_ClrOvf (if PMC7 present)

2 1 0

PMC6_ClrOvf (if PMC6 present)

3132333435

Reserved

63

ClrCondChgd
ClrOvfBuffer

8 7 6 5 4 3

PMC5_ClrOvf (if PMC5 present)
PMC4_ClrOvf (if PMC4 present)
PMC3_ClrOvf
PMC2_ClrOvf
PMC1_ClrOvf
PMC0_ClrOvf

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 128

...

22.Updates to Chapter 31, Volume 3C
Change bars show changes to Chapter 31 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

...

31.9.3 IA-32e Mode Hosts
An IA-32e mode host is required to support 64-bit guest environments. Because activating IA-32e mode currently
requires that paging be disabled temporarily and VMX entry requires paging to be enabled, IA-32e mode must be
enabled before entering VMX operation. For this reason, it is not possible to toggle in and out of IA-32e mode in a
VMM.

Section 31.5 describes the steps required to launch a VMM. An IA-32e mode host is also required to set the “host
address-space size” VMCS VM-exit control to 1. The value of this control is then loaded in the IA32_EFER.LME/
LMA and CS.L bits on each VM exit. This establishes a 64-bit host environment as execution transfers to the VMM
entry point. At a minimum, the entry point is required to be in a 64-bit code segment. Subsequently, the VMM can,
if it chooses, switch to 32-bit compatibility mode on a code-segment basis (see Section 31.9.1). Note, however,
that VMX instructions other than VMCALL and VMFUNC are not supported in compatibility mode; they generate an
invalid opcode exception if used.

The following VMCS controls determine the value of IA32_EFER when a VM exit occurs: the “host address-space
size” control (described above), the “load IA32_EFER” VM-exit control, the “VM-exit MSR-load count,” and the
“VM-exit MSR-load address” (see Section 27.3).

If the “load IA32_EFER” VM-exit control is 1, the value of the LME and LMA bits in the IA32_EFER field in the host-
state area must be the value of the “host address-space size” VM-exit control.

The loading of IA32_EFER.LME/LMA and CS.L bits established by the “host address-space size” control precede
any loading of the IA32_EFER MSR due from the VM-exit MSR-load area. If IA32_EFER is specified in the VM-exit
MSR-load area, the value of the LME bit in the load image of IA32_EFER should match the setting of the “host
address-space size” control. Otherwise the attempt to modify the LME bit (while paging is enabled) will lead to a
VMX-abort. However, IA32_EFER.LMA is always set by the processor to equal IA32_EFER.LME & CR0.PG; the
value specified for LMA in the load image of the IA32_EFER MSR is ignored. For these and performance reasons,
VMM writers may choose to not use the VM-exit/entry MSR-load/save areas for IA32_EFER.

On a VMM teardown, VMX operation should be exited before deactivating IA-32e mode if the latter is required.

...

Table 18-36 Uncore PMU MSR Summary for Intel® Xeon® Processor E5 Family

Box # of Boxes Counters per Box
Counter
Width

General
Purpose

Global
Enable Sub-control MSRs

C-Box 8 4 44 Yes per-box None

PCU 1 4 48 Yes per-box Match/Mask

U-Box 1 2 44 Yes uncore None

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 129

23.Updates to Chapter 34, Volume 3C
Change bars show changes to Chapter 34 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

...

34.10 AUTO HALT RESTART
If the processor is in a HALT state (due to the prior execution of a HLT instruction) when it receives an SMI, the
processor records the fact in the auto HALT restart flag in the saved processor state (see Figure 34-3). (This flag
is located at offset 7F02H and bit 0 in the state save area of the SMRAM.)

If the processor sets the auto HALT restart flag upon entering SMM (indicating that the SMI occurred when the
processor was in the HALT state), the SMI handler has two options:
• It can leave the auto HALT restart flag set, which instructs the RSM instruction to return program control to

the HLT instruction. This option in effect causes the processor to re-enter the HALT state after handling the
SMI. (This is the default operation.)

• It can clear the auto HALT restart flag, which instructs the RSM instruction to return program control to the
instruction following the HLT instruction.

...

24.Updates to Chapter 35, Volume 3C
Change bars show changes to Chapter 35 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--
This chapter list MSRs across Intel processor families. All MSRs listed can be read with the RDMSR and written
with the WRMSR instructions.

...

Table 35-1 CPUID Signature Values of DisplayFamily_DisplayModel
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_3DH Next Generation Intel Core Processor

06_3FH Future Generation Intel Xeon Processor

06_3CH, 06_45H, 06_46H 4th Generation Intel Core Processor and Intel Xeon Processor E3-1200 v3 Product Family based on
Intel® microarchitecture code name Haswell

06_3EH Next Generation Intel Xeon Processor E7 Family based on Intel® microarchitecture code name Ivy
Bridge-EP

06_3EH Intel Xeon Processor E5-1600 v2/E5-2600 v2 Product Families based on Intel® microarchitecture
code name Ivy Bridge-EP, Intel Core i7-49xx Processor Extreme Edition

06_3AH 3rd Generation Intel Core Processor and Intel Xeon Processor E3-1200 v2 Product Family based on
Intel® microarchitecture code name Ivy Bridge

06_2DH Intel Xeon Processor E5 Family based on Intel microarchitecture code name Sandy Bridge, Intel Core
i7-39xx Processor Extreme Edition

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 130

...

06_2FH Intel Xeon Processor E7 Family

06_2AH Intel Xeon Processor E3-1200 Product Family; 2nd Generation Intel Core i7, i5, i3 Processors 2xxx
Series

06_2EH Intel Xeon processor 7500, 6500 series

06_25H, 06_2CH Intel Xeon processors 3600, 5600 series, Intel Core i7, i5 and i3 Processors

06_1EH, 06_1FH Intel Core i7 and i5 Processors

06_1AH Intel Core i7 Processor, Intel Xeon Processor 3400, 3500, 5500 series

06_1DH Intel Xeon Processor MP 7400 series

06_17H Intel Xeon Processor 3100, 3300, 5200, 5400 series, Intel Core 2 Quad processors 8000, 9000
series

06_0FH Intel Xeon Processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series,
Intel Core 2 Extreme 6000 series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors, Intel
Pentium dual-core processors

06_0EH Intel Core Duo, Intel Core Solo processors

06_0DH Intel Pentium M processor

06_37H, 06_4DH Intel Atom Processor C2000, E3000 series

06_36H Intel Atom Processor S1000 Series

06_1CH, 06_26H, 06_27H,
06_35H, 06_36H

Intel Atom Processor family, Intel Atom processor D2000, N2000, E2000, Z2000 series

0F_06H Intel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP, Intel Pentium 4, Pentium D
processors

0F_03H, 0F_04H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors

06_09H Intel Pentium M processor

0F_02H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors

0F_0H, 0F_01H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors

06_7H, 06_08H, 06_0AH,
06_0BH

Intel Pentium III Xeon Processor, Intel Pentium III Processor

06_03H, 06_05H Intel Pentium II Xeon Processor, Intel Pentium II Processor

06_01H Intel Pentium Pro Processor

05_01H, 05_02H, 05_04H Intel Pentium Processor, Intel Pentium Processor with MMX Technology

Table 35-1 CPUID Signature (Contd.)Values of DisplayFamily_DisplayModel (Contd.)
DisplayFamily_DisplayModel Processor Families/Processor Number Series

Table 35-2 IA-32 Architectural MSRs

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

0H 0 IA32_P5_MC_ADDR (P5_MC_ADDR) See Section 35.16, “MSRs in Pentium
Processors.”

Pentium Processor
(05_01H)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 131

1H 1 IA32_P5_MC_TYPE (P5_MC_TYPE) See Section 35.16, “MSRs in Pentium
Processors.”

DF_DM = 05_01H

6H 6 IA32_MONITOR_FILTER_SIZE See Section 8.10.5, “Monitor/Mwait
Address Range Determination.”

0F_03H

10H 16 IA32_TIME_STAMP_
COUNTER (TSC)

See Section 17.13, “Time-Stamp Counter.” 05_01H

17H 23 IA32_PLATFORM_ID
(MSR_PLATFORM_ID)

Platform ID (RO)
The operating system can use this MSR to
determine “slot” information for the
processor and the proper microcode update
to load.

06_01H

49:0 Reserved.

52:50 Platform Id (RO)

Contains information concerning the
intended platform for the processor.

52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

63:53 Reserved.

1BH 27 IA32_APIC_BASE (APIC_BASE) 06_01H

7:0 Reserved

8 BSP flag (R/W)

9 Reserved

10 Enable x2APIC mode 06_1AH

11 APIC Global Enable (R/W)

(MAXPHYWID - 1):12 APIC Base (R/W)

63: MAXPHYWID Reserved

3AH 58 IA32_FEATURE_CONTROL Control Features in Intel 64 Processor
(R/W)

If CPUID.01H: ECX[bit 5 or
bit 6] = 1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 132

0 Lock bit (R/WO): (1 = locked). When set,
locks this MSR from being written, writes
to this bit will result in GP(0).

Note: Once the Lock bit is set, the contents
of this register cannot be modified.
Therefore the lock bit must be set after
configuring support

If CPUID.01H:ECX[bit 5 or
bit 6] = 1

for Intel Virtualization Technology and prior
to transferring control to an option ROM or
the OS. Hence, once the Lock bit is set, the
entire

IA32_FEATURE_CONTROL_MSR contents
are preserved across RESET when
PWRGOOD is not deasserted.

1 Enable VMX inside SMX operation (R/WL):
This bit enables a system executive to use
VMX in conjunction with SMX to support
Intel® Trusted Execution Technology.

BIOS must set this bit only when the CPUID
function 1 returns VMX feature flag and
SMX feature flag set (ECX bits 5 and 6
respectively).

If CPUID.01H:ECX[bit 5 and
bit 6] are set to 1

2 Enable VMX outside SMX operation (R/WL):
This bit enables VMX for system executive
that do not require SMX.

BIOS must set this bit only when the CPUID
function 1 returns VMX feature flag set
(ECX bit 5).

If CPUID.01H:ECX[bit 5 or
bit 6] = 1

7:3 Reserved

14:8 SENTER Local Function Enables (R/WL):
When set, each bit in the field represents
an enable control for a corresponding
SENTER function. This bit is supported only
if CPUID.1:ECX.[bit 6] is set

If CPUID.01H:ECX[bit 6] = 1

15 SENTER Global Enable (R/WL): This bit must
be set to enable SENTER leaf functions.
This bit is supported only if
CPUID.1:ECX.[bit 6] is set

If CPUID.01H:ECX[bit 6] = 1

63:16 Reserved

3BH 59 IA32_TSC_ADJUST Per Logical Processor TSC Adjust (R/Write
to clear)

If CPUID.(EAX=07H,
ECX=0H): EBX[1] = 1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 133

63:0 THREAD_ADJUST:

Local offset value of the IA32_TSC for a
logical processor. Reset value is Zero. A
write to IA32_TSC will modify the local
offset in IA32_TSC_ADJUST and the
content of IA32_TSC, but does not affect
the internal invariant TSC hardware.

79H 121 IA32_BIOS_UPDT_TRIG
(BIOS_UPDT_TRIG)

BIOS Update Trigger (W)

Executing a WRMSR instruction to this MSR
causes a microcode update to be loaded
into the processor. See Section 9.11.6,
“Microcode Update Loader.”

A processor may prevent writing to this
MSR when loading guest states on VM
entries or saving guest states on VM exits.

06_01H

8BH 139 IA32_BIOS_SIGN_ID (BIOS_SIGN/
BBL_CR_D3)

BIOS Update Signature (RO)

Returns the microcode update signature
following the execution of CPUID.01H.

A processor may prevent writing to this
MSR when loading guest states on VM
entries or saving guest states on VM exits.

06_01H

31:0 Reserved

63:32 It is recommended that this field be pre-
loaded with 0 prior to executing CPUID.

If the field remains 0 following the
execution of CPUID; this indicates that no
microcode update is loaded. Any non-zero
value is the microcode update signature.

9BH 155 IA32_SMM_MONITOR_CTL SMM Monitor Configuration (R/W) If CPUID.01H: ECX[bit 5 or
bit 6] = 1

0 Valid (R/W)

1 Reserved

2 Controls SMI unblocking by VMXOFF (see
Section 34.14.4)

If IA32_VMX_MISC[bit 28])

11:3 Reserved

31:12 MSEG Base (R/W)

63:32 Reserved

9EH 158 IA32_SMBASE Base address of the logical processor’s
SMRAM image (RO, SMM only)

If IA32_VMX_MISC[bit 15])

C1H 193 IA32_PMC0 (PERFCTR0) General Performance Counter 0 (R/W) If CPUID.0AH: EAX[15:8] >
0

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 134

C2H 194 IA32_PMC1 (PERFCTR1) General Performance Counter 1 (R/W) If CPUID.0AH: EAX[15:8] >
1

C3H 195 IA32_PMC2 General Performance Counter 2 (R/W) If CPUID.0AH: EAX[15:8] >
2

C4H 196 IA32_PMC3 General Performance Counter 3 (R/W) If CPUID.0AH: EAX[15:8] >
3

C5H 197 IA32_PMC4 General Performance Counter 4 (R/W) If CPUID.0AH: EAX[15:8] >
4

C6H 198 IA32_PMC5 General Performance Counter 5 (R/W) If CPUID.0AH: EAX[15:8] >
5

C7H 199 IA32_PMC6 General Performance Counter 6 (R/W) If CPUID.0AH: EAX[15:8] >
6

C8H 200 IA32_PMC7 General Performance Counter 7 (R/W) If CPUID.0AH: EAX[15:8] >
7

E7H 231 IA32_MPERF Maximum Qualified Performance Clock
Counter (R/Write to clear)

If CPUID.06H: ECX[0] = 1

63:0 C0_MCNT: C0 Maximum Frequency Clock
Count

Increments at fixed interval (relative to TSC
freq.) when the logical processor is in C0.

Cleared upon overflow / wrap-around of
IA32_APERF.

E8H 232 IA32_APERF Actual Performance Clock Counter (R/Write
to clear)

If CPUID.06H: ECX[0] = 1

63:0 C0_ACNT: C0 Actual Frequency Clock
Count

Accumulates core clock counts at the
coordinated clock frequency, when the
logical processor is in C0.

Cleared upon overflow / wrap-around of
IA32_MPERF.

FEH 254 IA32_MTRRCAP (MTRRcap) MTRR Capability (RO) Section 11.11.2.1,
“IA32_MTRR_DEF_TYPE MSR.”

06_01H

7:0 VCNT: The number of variable memory
type ranges in the processor.

8 Fixed range MTRRs are supported when
set.

9 Reserved.

10 WC Supported when set.

11 SMRR Supported when set.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 135

63:12 Reserved.

174H 372 IA32_SYSENTER_CS SYSENTER_CS_MSR (R/W) 06_01H

15:0 CS Selector

63:16 Reserved.

175H 373 IA32_SYSENTER_ESP SYSENTER_ESP_MSR (R/W) 06_01H

176H 374 IA32_SYSENTER_EIP SYSENTER_EIP_MSR (R/W) 06_01H

179H 377 IA32_MCG_CAP (MCG_CAP) Global Machine Check Capability (RO) 06_01H

7:0 Count: Number of reporting banks.

8 MCG_CTL_P: IA32_MCG_CTL is present if
this bit is set

9 MCG_EXT_P: Extended machine check
state registers are present if this bit is set

10 MCP_CMCI_P: Support for corrected MC
error event is present.

06_1AH

11 MCG_TES_P: Threshold-based error status
register are present if this bit is set.

15:12 Reserved

23:16 MCG_EXT_CNT: Number of extended
machine check state registers present.

24 MCG_SER_P: The processor supports
software error recovery if this bit is set.

25 Reserved.

26 MCG_ELOG_P: Indicates that the processor
allows platform firmware to be invoked
when an error is detected so that it may
provide additional platform specific
information in an ACPI format "Generic
Error Data Entry" that augments the data
included in machine check bank registers.

06_3EH

63:27 Reserved.

17AH 378 IA32_MCG_STATUS (MCG_STATUS) Global Machine Check Status (RO) 06_01H

17BH 379 IA32_MCG_CTL (MCG_CTL) Global Machine Check Control (R/W) 06_01H

180H-
185H

384-
389

Reserved 06_0EH1

186H 390 IA32_PERFEVTSEL0 (PERFEVTSEL0) Performance Event Select Register 0 (R/W) If CPUID.0AH: EAX[15:8] >
0

7:0 Event Select: Selects a performance event
logic unit.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 136

15:8 UMask: Qualifies the microarchitectural
condition to detect on the selected event
logic.

16 USR: Counts while in privilege level is not
ring 0.

17 OS: Counts while in privilege level is ring 0.

18 Edge: Enables edge detection if set.

19 PC: enables pin control.

20 INT: enables interrupt on counter overflow.

21 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

22 EN: enables the corresponding performance
counter to commence counting when this
bit is set.

23 INV: invert the CMASK.

31:24 CMASK: When CMASK is not zero, the
corresponding performance counter
increments each cycle if the event count is
greater than or equal to the CMASK.

63:32 Reserved.

187H 391 IA32_PERFEVTSEL1 (PERFEVTSEL1) Performance Event Select Register 1 (R/W) If CPUID.0AH: EAX[15:8] >
1

188H 392 IA32_PERFEVTSEL2 Performance Event Select Register 2 (R/W) If CPUID.0AH: EAX[15:8] >
2

189H 393 IA32_PERFEVTSEL3 Performance Event Select Register 3 (R/W) If CPUID.0AH: EAX[15:8] >
3

18AH-
197H

394-
407

Reserved 06_0EH2

198H 408 IA32_PERF_STATUS (RO) 0F_03H

15:0 Current performance State Value

63:16 Reserved.

199H 409 IA32_PERF_CTL (R/W) 0F_03H

15:0 Target performance State Value

31:16 Reserved.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 137

32 IDA Engage. (R/W)

When set to 1: disengages IDA

06_0FH (Mobile)

63:33 Reserved.

19AH 410 IA32_CLOCK_MODULATION Clock Modulation Control (R/W)

See Section 14.5.3, “Software Controlled
Clock Modulation.”

0F_0H

0 Extended On-Demand Clock Modulation
Duty Cycle:

If CPUID.06H:EAX[5] = 1

3:1 On-Demand Clock Modulation Duty Cycle:
Specific encoded values for target duty
cycle modulation.

4 On-Demand Clock Modulation Enable: Set 1
to enable modulation.

63:5 Reserved.

19BH 411 IA32_THERM_INTERRUPT Thermal Interrupt Control (R/W)

Enables and disables the generation of an
interrupt on temperature transitions
detected with the processor’s thermal
sensors and thermal monitor.

See Section 14.5.2, “Thermal Monitor.”

0F_0H

0 High-Temperature Interrupt Enable

1 Low-Temperature Interrupt Enable

2 PROCHOT# Interrupt Enable

3 FORCEPR# Interrupt Enable

4 Critical Temperature Interrupt Enable

7:5 Reserved.

14:8 Threshold #1 Value

15 Threshold #1 Interrupt Enable

22:16 Threshold #2 Value

23 Threshold #2 Interrupt Enable

24 Power Limit Notification Enable If CPUID.06H:EAX[4] = 1

63:25 Reserved.

19CH 412 IA32_THERM_STATUS Thermal Status Information (RO)

Contains status information about the
processor’s thermal sensor and automatic
thermal monitoring facilities.

See Section 14.5.2, “Thermal Monitor”

0F_0H

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 138

0 Thermal Status (RO):

1 Thermal Status Log (R/W):

2 PROCHOT # or FORCEPR# event (RO)

3 PROCHOT # or FORCEPR# log (R/WC0)

4 Critical Temperature Status (RO)

5 Critical Temperature Status log (R/WC0)

6 Thermal Threshold #1 Status (RO) If CPUID.01H:ECX[8] = 1

7 Thermal Threshold #1 log (R/WC0) If CPUID.01H:ECX[8] = 1

8 Thermal Threshold #2 Status (RO) If CPUID.01H:ECX[8] = 1

9 Thermal Threshold #1 log (R/WC0) If CPUID.01H:ECX[8] = 1

10 Power Limitation Status (RO) If CPUID.06H:EAX[4] = 1

11 Power Limitation log (R/WC0) If CPUID.06H:EAX[4] = 1

15:12 Reserved.

22:16 Digital Readout (RO) If CPUID.06H:EAX[0] = 1

26:23 Reserved.

30:27 Resolution in Degrees Celsius (RO) If CPUID.06H:EAX[0] = 1

31 Reading Valid (RO) If CPUID.06H:EAX[0] = 1

63:32 Reserved.

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to
be enabled and disabled.

0 Fast-Strings Enable

When set, the fast-strings feature (for REP
MOVS and REP STORS) is enabled (default);
when clear, fast-strings are disabled.

0F_0H

2:1 Reserved.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 139

3 Automatic Thermal Control Circuit Enable
(R/W)

1 = Setting this bit enables the thermal
control circuit (TCC) portion of the
Intel Thermal Monitor feature. This
allows the processor to automatically
reduce power consumption in
response to TCC activation.

0 = Disabled (default).
Note: In some products clearing this bit
might be ignored in critical thermal
conditions, and TM1, TM2 and adaptive
thermal throttling will still be activated.

0F_0H

6:4 Reserved

7 Performance Monitoring Available (R)

1 = Performance monitoring enabled
0 = Performance monitoring disabled

0F_0H

10:8 Reserved.

11 Branch Trace Storage Unavailable (RO)

1 = Processor doesn’t support branch
trace storage (BTS)

0 = BTS is supported

0F_0H

12 Precise Event Based Sampling (PEBS)
Unavailable (RO)

1 = PEBS is not supported;
0 = PEBS is supported.

06_0FH

15:13 Reserved.

16 Enhanced Intel SpeedStep Technology
Enable (R/W)

0= Enhanced Intel SpeedStep
Technology disabled

1 = Enhanced Intel SpeedStep
Technology enabled

06_0DH

17 Reserved.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 140

18 ENABLE MONITOR FSM (R/W)

When this bit is set to 0, the MONITOR
feature flag is not set (CPUID.01H:ECX[bit
3] = 0). This indicates that MONITOR/
MWAIT are not supported.

Software attempts to execute MONITOR/
MWAIT will cause #UD when this bit is 0.

When this bit is set to 1 (default),
MONITOR/MWAIT are supported
(CPUID.01H:ECX[bit 3] = 1).

If the SSE3 feature flag ECX[0] is not set
(CPUID.01H:ECX[bit 0] = 0), the OS must
not attempt to alter this bit. BIOS must
leave it in the default state. Writing this bit
when the SSE3 feature flag is set to 0 may
generate a #GP exception.

0F_03H

21:19 Reserved.

22 Limit CPUID Maxval (R/W)

When this bit is set to 1, CPUID.00H returns
a maximum value in EAX[7:0] of 3.

BIOS should contain a setup question that
allows users to specify when the installed
OS does not support CPUID functions
greater than 3.

Before setting this bit, BIOS must execute
the CPUID.0H and examine the maximum
value returned in EAX[7:0]. If the maximum
value is greater than 3, the bit is supported.

Otherwise, the bit is not supported. Writing
to this bit when the maximum value is
greater than 3 may generate a #GP
exception.

Setting this bit may cause unexpected
behavior in software that depends on the
availability of CPUID leaves greater than 3.

0F_03H

23 xTPR Message Disable (R/W)

When set to 1, xTPR messages are
disabled. xTPR messages are optional
messages that allow the processor to
inform the chipset of its priority.

if CPUID.01H:ECX[14] = 1

33:24 Reserved.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 141

34 XD Bit Disable (R/W)

When set to 1, the Execute Disable Bit
feature (XD Bit) is disabled and the XD Bit
extended feature flag will be clear
(CPUID.80000001H: EDX[20]=0).

When set to a 0 (default), the Execute
Disable Bit feature (if available) allows the
OS to enable PAE paging and take
advantage of data only pages.

BIOS must not alter the contents of this bit
location, if XD bit is not supported.. Writing
this bit to 1 when the XD Bit extended
feature flag is set to 0 may generate a #GP
exception.

if
CPUID.80000001H:EDX[2
0] = 1

63:35 Reserved.

1B0H 432 IA32_ENERGY_PERF_BIAS Performance Energy Bias Hint (R/W) if CPUID.6H:ECX[3] = 1

3:0 Power Policy Preference:

0 indicates preference to highest
performance.

15 indicates preference to maximize
energy saving.

63:4 Reserved.

1B1H 433 IA32_PACKAGE_THERM_STATUS Package Thermal Status Information (RO)

Contains status information about the
package’s thermal sensor.

See Section 14.6, “Package Level Thermal
Management.”

If CPUID.06H: EAX[6] = 1

0 Pkg Thermal Status (RO):

1 Pkg Thermal Status Log (R/W):

2 Pkg PROCHOT # event (RO)

3 Pkg PROCHOT # log (R/WC0)

4 Pkg Critical Temperature Status (RO)

5 Pkg Critical Temperature Status log (R/
WC0)

6 Pkg Thermal Threshold #1 Status (RO)

7 Pkg Thermal Threshold #1 log (R/WC0)

8 Pkg Thermal Threshold #2 Status (RO)

9 Pkg Thermal Threshold #1 log (R/WC0)

10 Pkg Power Limitation Status (RO)

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 142

11 Pkg Power Limitation log (R/WC0)

15:12 Reserved.

22:16 Pkg Digital Readout (RO)

63:23 Reserved.

1B2H 434 IA32_PACKAGE_THERM_INTERRUPT Pkg Thermal Interrupt Control (R/W)

Enables and disables the generation of an
interrupt on temperature transitions
detected with the package’s thermal
sensor.

See Section 14.6, “Package Level Thermal
Management.”

If CPUID.06H: EAX[6] = 1

0 Pkg High-Temperature Interrupt Enable

1 Pkg Low-Temperature Interrupt Enable

2 Pkg PROCHOT# Interrupt Enable

3 Reserved.

4 Pkr Overheat Interrupt Enable

7:5 Reserved.

14:8 Pkg Threshold #1 Value

15 Pkg Threshold #1 Interrupt Enable

22:16 Pkg Threshold #2 Value

23 Pkg Threshold #2 Interrupt Enable

24 Pkg Power Limit Notification Enable

63:25 Reserved.

1D9H 473 IA32_DEBUGCTL (MSR_DEBUGCTLA,
MSR_DEBUGCTLB)

Trace/Profile Resource Control (R/W) 06_0EH

0 LBR: Setting this bit to 1 enables the
processor to record a running trace of the
most recent branches taken by the
processor in the LBR stack.

06_01H

1 BTF: Setting this bit to 1 enables the
processor to treat EFLAGS.TF as single-step
on branches instead of single-step on
instructions.

06_01H

5:2 Reserved.

6 TR: Setting this bit to 1 enables branch
trace messages to be sent.

06_0EH

7 BTS: Setting this bit enables branch trace
messages (BTMs) to be logged in a BTS
buffer.

06_0EH

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 143

8 BTINT: When clear, BTMs are logged in a
BTS buffer in circular fashion. When this bit
is set, an interrupt is generated by the BTS
facility when the BTS buffer is full.

06_0EH

9 1: BTS_OFF_OS: When set, BTS or BTM is
skipped if CPL = 0.

06_0FH

10 BTS_OFF_USR: When set, BTS or BTM is
skipped if CPL > 0.

06_0FH

11 FREEZE_LBRS_ON_PMI: When set, the LBR
stack is frozen on a PMI request.

If CPUID.01H: ECX[15] = 1
and CPUID.0AH: EAX[7:0] >
1

12 FREEZE_PERFMON_ON_PMI: When set,
each ENABLE bit of the global counter
control MSR are frozen (address 3BFH) on a
PMI request

If CPUID.01H: ECX[15] = 1
and CPUID.0AH: EAX[7:0] >
1

13 ENABLE_UNCORE_PMI: When set, enables
the logical processor to receive and
generate PMI on behalf of the uncore.

06_1AH

14 FREEZE_WHILE_SMM: When set, freezes
perfmon and trace messages while in SMM.

if
IA32_PERF_CAPABILITIES[
12] = '1

63:15 Reserved.

1F2H 498 IA32_SMRR_PHYSBASE SMRR Base Address (Writeable only in
SMM)

Base address of SMM memory range.

If IA32_MTRR_CAP[SMRR]
= 1

7:0 Type. Specifies memory type of the range.

11:8 Reserved.

31:12 PhysBase.

SMRR physical Base Address.

63:32 Reserved.

1F3H 499 IA32_SMRR_PHYSMASK SMRR Range Mask. (Writeable only in
SMM)

Range Mask of SMM memory range.

If IA32_MTRR_CAP[SMRR]
= 1

10:0 Reserved.

11 Valid

Enable range mask.

31:12 PhysMask

SMRR address range mask.

63:32 Reserved.

1F8H 504 IA32_PLATFORM_DCA_CAP DCA Capability (R) 06_0FH

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 144

1F9H 505 IA32_CPU_DCA_CAP If set, CPU supports Prefetch-Hint type.

1FAH 506 IA32_DCA_0_CAP DCA type 0 Status and Control register. 06_2EH

0 DCA_ACTIVE: Set by HW when DCA is fuse-
enabled and no defeatures are set.

06_2EH

2:1 TRANSACTION 06_2EH

6:3 DCA_TYPE 06_2EH

10:7 DCA_QUEUE_SIZE 06_2EH

12:11 Reserved. 06_2EH

16:13 DCA_DELAY: Writes will update the register
but have no HW side-effect.

06_2EH

23:17 Reserved. 06_2EH

24 SW_BLOCK: SW can request DCA block by
setting this bit.

06_2EH

25 Reserved. 06_2EH

26 HW_BLOCK: Set when DCA is blocked by
HW (e.g. CR0.CD = 1).

06_2EH

31:27 Reserved. 06_2EH

200H 512 IA32_MTRR_PHYSBASE0
(MTRRphysBase0)

See Section 11.11.2.3, “Variable Range
MTRRs.”

06_01H

201H 513 IA32_MTRR_PHYSMASK0 MTRRphysMask0 06_01H

202H 514 IA32_MTRR_PHYSBASE1 MTRRphysBase1 06_01H

203H 515 IA32_MTRR_PHYSMASK1 MTRRphysMask1 06_01H

204H 516 IA32_MTRR_PHYSBASE2 MTRRphysBase2 06_01H

205H 517 IA32_MTRR_PHYSMASK2 MTRRphysMask2 06_01H

206H 518 IA32_MTRR_PHYSBASE3 MTRRphysBase3 06_01H

207H 519 IA32_MTRR_PHYSMASK3 MTRRphysMask3 06_01H

208H 520 IA32_MTRR_PHYSBASE4 MTRRphysBase4 06_01H

209H 521 IA32_MTRR_PHYSMASK4 MTRRphysMask4 06_01H

20AH 522 IA32_MTRR_PHYSBASE5 MTRRphysBase5 06_01H

20BH 523 IA32_MTRR_PHYSMASK5 MTRRphysMask5 06_01H

20CH 524 IA32_MTRR_PHYSBASE6 MTRRphysBase6 06_01H

20DH 525 IA32_MTRR_PHYSMASK6 MTRRphysMask6 06_01H

20EH 526 IA32_MTRR_PHYSBASE7 MTRRphysBase7 06_01H

20FH 527 IA32_MTRR_PHYSMASK7 MTRRphysMask7 06_01H

210H 528 IA32_MTRR_PHYSBASE8 MTRRphysBase8 if IA32_MTRR_CAP[7:0] >
8

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 145

211H 529 IA32_MTRR_PHYSMASK8 MTRRphysMask8 if IA32_MTRR_CAP[7:0] >
8

212H 530 IA32_MTRR_PHYSBASE9 MTRRphysBase9 if IA32_MTRR_CAP[7:0] >
9

213H 531 IA32_MTRR_PHYSMASK9 MTRRphysMask9 if IA32_MTRR_CAP[7:0] >
9

250H 592 IA32_MTRR_FIX64K_00000 MTRRfix64K_00000 06_01H

258H 600 IA32_MTRR_FIX16K_80000 MTRRfix16K_80000 06_01H

259H 601 IA32_MTRR_FIX16K_A0000 MTRRfix16K_A0000 06_01H

268H 616 IA32_MTRR_FIX4K_C0000
(MTRRfix4K_C0000)

See Section 11.11.2.2, “Fixed Range
MTRRs.”

06_01H

269H 617 IA32_MTRR_FIX4K_C8000 MTRRfix4K_C8000 06_01H

26AH 618 IA32_MTRR_FIX4K_D0000 MTRRfix4K_D0000 06_01H

26BH 619 IA32_MTRR_FIX4K_D8000 MTRRfix4K_D8000 06_01H

26CH 620 IA32_MTRR_FIX4K_E0000 MTRRfix4K_E0000 06_01H

26DH 621 IA32_MTRR_FIX4K_E8000 MTRRfix4K_E8000 06_01H

26EH 622 IA32_MTRR_FIX4K_F0000 MTRRfix4K_F0000 06_01H

26FH 623 IA32_MTRR_FIX4K_F8000 MTRRfix4K_F8000 06_01H

277H 631 IA32_PAT IA32_PAT (R/W) 06_05H

2:0 PA0

7:3 Reserved.

10:8 PA1

15:11 Reserved.

18:16 PA2

23:19 Reserved.

26:24 PA3

31:27 Reserved.

34:32 PA4

39:35 Reserved.

42:40 PA5

47:43 Reserved.

50:48 PA6

55:51 Reserved.

58:56 PA7

63:59 Reserved.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 146

280H 640 IA32_MC0_CTL2 (R/W) 06_1AH

14:0 Corrected error count threshold.

29:15 Reserved.

30 CMCI_EN

63:31 Reserved.

281H 641 IA32_MC1_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

282H 642 IA32_MC2_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

283H 643 IA32_MC3_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

284H 644 IA32_MC4_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

285H 645 IA32_MC5_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

286H 646 IA32_MC6_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

287H 647 IA32_MC7_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

288H 648 IA32_MC8_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

289H 649 IA32_MC9_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28AH 650 IA32_MC10_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28BH 651 IA32_MC11_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28CH 652 IA32_MC12_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28DH 653 IA32_MC13_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28EH 654 IA32_MC14_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28FH 655 IA32_MC15_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

290H 656 IA32_MC16_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

291H 657 IA32_MC17_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

292H 658 IA32_MC18_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

293H 659 IA32_MC19_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

294H 660 IA32_MC20_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

295H 661 IA32_MC21_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

2FFH 767 IA32_MTRR_DEF_TYPE MTRRdefType (R/W) 06_01H

2:0 Default Memory Type

9:3 Reserved.

10 Fixed Range MTRR Enable

11 MTRR Enable

63:12 Reserved.

309H 777 IA32_FIXED_CTR0
(MSR_PERF_FIXED_CTR0)

Fixed-Function Performance Counter 0 (R/
W): Counts Instr_Retired.Any.

If CPUID.0AH: EDX[4:0] > 0

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 147

30AH 778 IA32_FIXED_CTR1
(MSR_PERF_FIXED_CTR1)

Fixed-Function Performance Counter 1 0
(R/W): Counts CPU_CLK_Unhalted.Core

If CPUID.0AH: EDX[4:0] > 1

30BH 779 IA32_FIXED_CTR2
(MSR_PERF_FIXED_CTR2)

Fixed-Function Performance Counter 0 0
(R/W): Counts CPU_CLK_Unhalted.Ref

If CPUID.0AH: EDX[4:0] > 2

345H 837 IA32_PERF_CAPABILITIES RO If CPUID.01H: ECX[15] = 1

5:0 LBR format

6 PEBS Trap

7 PEBSSaveArchRegs

11:8 PEBS Record Format

12 1: Freeze while SMM is supported.

13 1: Full width of counter writable via
IA32_A_PMCx.

63:14 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL
(MSR_PERF_FIXED_CTR_CTRL)

Fixed-Function Performance Counter
Control (R/W)

Counter increments while the results of
ANDing respective enable bit in
IA32_PERF_GLOBAL_CTRL with the
corresponding OS or USR bits in this MSR is
true.

If CPUID.0AH: EAX[7:0] > 1

0 EN0_OS: Enable Fixed Counter 0 to count
while CPL = 0.

1 EN0_Usr: Enable Fixed Counter 0 to count
while CPL > 0.

2 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

3 EN0_PMI: Enable PMI when fixed counter 0
overflows.

4 EN1_OS: Enable Fixed Counter 1to count
while CPL = 0.

5 EN1_Usr: Enable Fixed Counter 1to count
while CPL > 0.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 148

6 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

7 EN1_PMI: Enable PMI when fixed counter 1
overflows.

8 EN2_OS: Enable Fixed Counter 2 to count
while CPL = 0.

9 EN2_Usr: Enable Fixed Counter 2 to count
while CPL > 0.

10 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

11 EN2_PMI: Enable PMI when fixed counter 2
overflows.

63:12 Reserved.

38EH 910 IA32_PERF_GLOBAL_STATUS
(MSR_PERF_GLOBAL_STATUS)

Global Performance Counter Status (RO) If CPUID.0AH: EAX[7:0] > 0

0 Ovf_PMC0: Overflow status of IA32_PMC0. If CPUID.0AH: EAX[7:0] > 0

1 Ovf_PMC1: Overflow status of IA32_PMC1. If CPUID.0AH: EAX[7:0] > 0

2 Ovf_PMC2: Overflow status of IA32_PMC2. 06_2EH

3 Ovf_PMC3: Overflow status of IA32_PMC3. 06_2EH

31:4 Reserved.

32 Ovf_FixedCtr0: Overflow status of
IA32_FIXED_CTR0.

If CPUID.0AH: EAX[7:0] > 1

33 Ovf_FixedCtr1: Overflow status of
IA32_FIXED_CTR1.

If CPUID.0AH: EAX[7:0] > 1

34 Ovf_FixedCtr2: Overflow status of
IA32_FIXED_CTR2.

If CPUID.0AH: EAX[7:0] > 1

60:35 Reserved.

61 Ovf_Uncore: Uncore counter overflow
status.

If CPUID.0AH: EAX[7:0] > 2

62 OvfBuf: DS SAVE area Buffer overflow
status.

If CPUID.0AH: EAX[7:0] > 0

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 149

63 CondChg: status bits of this register has
changed.

If CPUID.0AH: EAX[7:0] > 0

38FH 911 IA32_PERF_GLOBAL_CTRL
(MSR_PERF_GLOBAL_CTRL)

Global Performance Counter Control (R/W)

Counter increments while the result of
ANDing respective enable bit in this MSR
with the corresponding OS or USR bits in
the general-purpose or fixed counter
control MSR is true.

If CPUID.0AH: EAX[7:0] > 0

0 EN_PMC0 If CPUID.0AH: EAX[7:0] > 0

1 EN_PMC1 If CPUID.0AH: EAX[7:0] > 0

31:2 Reserved.

32 EN_FIXED_CTR0 If CPUID.0AH: EAX[7:0] > 1

33 EN_FIXED_CTR1 If CPUID.0AH: EAX[7:0] > 1

34 EN_FIXED_CTR2 If CPUID.0AH: EAX[7:0] > 1

63:35 Reserved.

390H 912 IA32_PERF_GLOBAL_OVF_CTRL
(MSR_PERF_GLOBAL_OVF_CTRL)

Global Performance Counter Overflow
Control (R/W)

If CPUID.0AH: EAX[7:0] > 0

0 Set 1 to Clear Ovf_PMC0 bit. If CPUID.0AH: EAX[7:0] > 0

1 Set 1 to Clear Ovf_PMC1 bit. If CPUID.0AH: EAX[7:0] > 0

31:2 Reserved.

32 Set 1 to Clear Ovf_FIXED_CTR0 bit. If CPUID.0AH: EAX[7:0] > 1

33 Set 1 to Clear Ovf_FIXED_CTR1 bit. If CPUID.0AH: EAX[7:0] > 1

34 Set 1 to Clear Ovf_FIXED_CTR2 bit. If CPUID.0AH: EAX[7:0] > 1

60:35 Reserved.

61 Set 1 to Clear Ovf_Uncore: bit. 06_2EH

62 Set 1 to Clear OvfBuf: bit. If CPUID.0AH: EAX[7:0] > 0

63 Set to 1to clear CondChg: bit. If CPUID.0AH: EAX[7:0] > 0

3F1H 1009 IA32_PEBS_ENABLE PEBS Control (R/W)

0 Enable PEBS on IA32_PMC0. 06_0FH

1-3 Reserved or Model specific .

31:4 Reserved.

35-32 Reserved or Model specific .

63:36 Reserved.

400H 1024 IA32_MC0_CTL MC0_CTL P6 Family Processors

401H 1025 IA32_MC0_STATUS MC0_STATUS P6 Family Processors

402H 1026 IA32_MC0_ADDR1 MC0_ADDR P6 Family Processors

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 150

403H 1027 IA32_MC0_MISC MC0_MISC P6 Family Processors

404H 1028 IA32_MC1_CTL MC1_CTL P6 Family Processors

405H 1029 IA32_MC1_STATUS MC1_STATUS P6 Family Processors

406H 1030 IA32_MC1_ADDR2 MC1_ADDR P6 Family Processors

407H 1031 IA32_MC1_MISC MC1_MISC P6 Family Processors

408H 1032 IA32_MC2_CTL MC2_CTL P6 Family Processors

409H 1033 IA32_MC2_STATUS MC2_STATUS P6 Family Processors

40AH 1034 IA32_MC2_ADDR1 MC2_ADDR P6 Family Processors

40BH 1035 IA32_MC2_MISC MC2_MISC P6 Family Processors

40CH 1036 IA32_MC3_CTL MC3_CTL P6 Family Processors

40DH 1037 IA32_MC3_STATUS MC3_STATUS P6 Family Processors

40EH 1038 IA32_MC3_ADDR1 MC3_ADDR P6 Family Processors

40FH 1039 IA32_MC3_MISC MC3_MISC P6 Family Processors

410H 1040 IA32_MC4_CTL MC4_CTL P6 Family Processors

411H 1041 IA32_MC4_STATUS MC4_STATUS P6 Family Processors

412H 1042 IA32_MC4_ADDR1 MC4_ADDR P6 Family Processors

413H 1043 IA32_MC4_MISC MC4_MISC P6 Family Processors

414H 1044 IA32_MC5_CTL MC5_CTL 06_0FH

415H 1045 IA32_MC5_STATUS MC5_STATUS 06_0FH

416H 1046 IA32_MC5_ADDR1 MC5_ADDR 06_0FH

417H 1047 IA32_MC5_MISC MC5_MISC 06_0FH

418H 1048 IA32_MC6_CTL MC6_CTL 06_1DH

419H 1049 IA32_MC6_STATUS MC6_STATUS 06_1DH

41AH 1050 IA32_MC6_ADDR1 MC6_ADDR 06_1DH

41BH 1051 IA32_MC6_MISC MC6_MISC 06_1DH

41CH 1052 IA32_MC7_CTL MC7_CTL 06_1AH

41DH 1053 IA32_MC7_STATUS MC7_STATUS 06_1AH

41EH 1054 IA32_MC7_ADDR1 MC7_ADDR 06_1AH

41FH 1055 IA32_MC7_MISC MC7_MISC 06_1AH

420H 1056 IA32_MC8_CTL MC8_CTL 06_1AH

421H 1057 IA32_MC8_STATUS MC8_STATUS 06_1AH

422H 1058 IA32_MC8_ADDR1 MC8_ADDR 06_1AH

423H 1059 IA32_MC8_MISC MC8_MISC 06_1AH

424H 1060 IA32_MC9_CTL MC9_CTL 06_2EH

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 151

425H 1061 IA32_MC9_STATUS MC9_STATUS 06_2EH

426H 1062 IA32_MC9_ADDR1 MC9_ADDR 06_2EH

427H 1063 IA32_MC9_MISC MC9_MISC 06_2EH

428H 1064 IA32_MC10_CTL MC10_CTL 06_2EH

429H 1065 IA32_MC10_STATUS MC10_STATUS 06_2EH

42AH 1066 IA32_MC10_ADDR1 MC10_ADDR 06_2EH

42BH 1067 IA32_MC10_MISC MC10_MISC 06_2EH

42CH 1068 IA32_MC11_CTL MC11_CTL 06_2EH

42DH 1069 IA32_MC11_STATUS MC11_STATUS 06_2EH

42EH 1070 IA32_MC11_ADDR1 MC11_ADDR 06_2EH

42FH 1071 IA32_MC11_MISC MC11_MISC 06_2EH

430H 1072 IA32_MC12_CTL MC12_CTL 06_2EH

431H 1073 IA32_MC12_STATUS MC12_STATUS 06_2EH

432H 1074 IA32_MC12_ADDR1 MC12_ADDR 06_2EH

433H 1075 IA32_MC12_MISC MC12_MISC 06_2EH

434H 1076 IA32_MC13_CTL MC13_CTL 06_2EH

435H 1077 IA32_MC13_STATUS MC13_STATUS 06_2EH

436H 1078 IA32_MC13_ADDR1 MC13_ADDR 06_2EH

437H 1079 IA32_MC13_MISC MC13_MISC 06_2EH

438H 1080 IA32_MC14_CTL MC14_CTL 06_2EH

439H 1081 IA32_MC14_STATUS MC14_STATUS 06_2EH

43AH 1082 IA32_MC14_ADDR1 MC14_ADDR 06_2EH

43BH 1083 IA32_MC14_MISC MC14_MISC 06_2EH

43CH 1084 IA32_MC15_CTL MC15_CTL 06_2EH

43DH 1085 IA32_MC15_STATUS MC15_STATUS 06_2EH

43EH 1086 IA32_MC15_ADDR1 MC15_ADDR 06_2EH

43FH 1087 IA32_MC15_MISC MC15_MISC 06_2EH

440H 1088 IA32_MC16_CTL MC16_CTL 06_2EH

441H 1089 IA32_MC16_STATUS MC16_STATUS 06_2EH

442H 1090 IA32_MC16_ADDR1 MC16_ADDR 06_2EH

443H 1091 IA32_MC16_MISC MC16_MISC 06_2EH

444H 1092 IA32_MC17_CTL MC17_CTL 06_2EH

445H 1093 IA32_MC17_STATUS MC17_STATUS 06_2EH

446H 1094 IA32_MC17_ADDR1 MC17_ADDR 06_2EH

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 152

447H 1095 IA32_MC17_MISC MC17_MISC 06_2EH

448H 1096 IA32_MC18_CTL MC18_CTL 06_2EH

449H 1097 IA32_MC18_STATUS MC18_STATUS 06_2EH

44AH 1098 IA32_MC18_ADDR1 MC18_ADDR 06_2EH

44BH 1099 IA32_MC18_MISC MC18_MISC 06_2EH

44CH 1100 IA32_MC19_CTL MC19_CTL 06_2EH

44DH 1101 IA32_MC19_STATUS MC19_STATUS 06_2EH

44EH 1102 IA32_MC19_ADDR1 MC19_ADDR 06_2EH

44FH 1103 IA32_MC19_MISC MC19_MISC 06_2EH

450H 1104 IA32_MC20_CTL MC20_CTL 06_2EH

451H 1105 IA32_MC20_STATUS MC20_STATUS 06_2EH

452H 1106 IA32_MC20_ADDR1 MC20_ADDR 06_2EH

453H 1107 IA32_MC20_MISC MC20_MISC 06_2EH

454H 1108 IA32_MC21_CTL MC21_CTL 06_2EH

455H 1109 IA32_MC21_STATUS MC21_STATUS 06_2EH

456H 1110 IA32_MC21_ADDR1 MC21_ADDR 06_2EH

457H 1111 IA32_MC21_MISC MC21_MISC 06_2EH

480H 1152 IA32_VMX_BASIC Reporting Register of Basic VMX
Capabilities (R/O)

See Appendix A.1, “Basic VMX Information.”

If CPUID.01H:ECX.[bit 5] =
1

481H 1153 IA32_VMX_PINBASED_CTLS Capability Reporting Register of Pin-
based VM-execution Controls (R/O)

See Appendix A.3.1, “Pin-Based VM-
Execution Controls.”

If CPUID.01H:ECX.[bit 5] =
1

482H 1154 IA32_VMX_PROCBASED_CTLS Capability Reporting Register of Primary
Processor-based VM-execution Controls
(R/O)

See Appendix A.3.2, “Primary Processor-
Based VM-Execution Controls.”

If CPUID.01H:ECX.[bit 5] =
1

483H 1155 IA32_VMX_EXIT_CTLS Capability Reporting Register of VM-exit
Controls (R/O)

See Appendix A.4, “VM-Exit Controls.”

If CPUID.01H:ECX.[bit 5] =
1

484H 1156 IA32_VMX_ENTRY_CTLS Capability Reporting Register of VM-
entry Controls (R/O)

See Appendix A.5, “VM-Entry Controls.”

If CPUID.01H:ECX.[bit 5] =
1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 153

485H 1157 IA32_VMX_MISC Reporting Register of Miscellaneous
VMX Capabilities (R/O)

See Appendix A.6, “Miscellaneous Data.”

If CPUID.01H:ECX.[bit 5] =
1

486H 1158 IA32_VMX_CRO_FIXED0 Capability Reporting Register of CR0 Bits
Fixed to 0 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0.”

If CPUID.01H:ECX.[bit 5] =
1

487H 1159 IA32_VMX_CRO_FIXED1 Capability Reporting Register of CR0 Bits
Fixed to 1 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0.”

If CPUID.01H:ECX.[bit 5] =
1

488H 1160 IA32_VMX_CR4_FIXED0 Capability Reporting Register of CR4 Bits
Fixed to 0 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4.”

If CPUID.01H:ECX.[bit 5] =
1

489H 1161 IA32_VMX_CR4_FIXED1 Capability Reporting Register of CR4 Bits
Fixed to 1 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4.”

If CPUID.01H:ECX.[bit 5] =
1

48AH 1162 IA32_VMX_VMCS_ENUM Capability Reporting Register of VMCS
Field Enumeration (R/O)

See Appendix A.9, “VMCS Enumeration.”

If CPUID.01H:ECX.[bit 5] =
1

48BH 1163 IA32_VMX_PROCBASED_CTLS2 Capability Reporting Register of
Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3.3, “Secondary Processor-
Based VM-Execution Controls.”

If (CPUID.01H:ECX.[bit 5]
and
IA32_VMX_PROCBASED_C
TLS[bit 63])

48CH 1164 IA32_VMX_EPT_VPID_CAP Capability Reporting Register of EPT and
VPID (R/O)

See Appendix A.10, “VPID and EPT
Capabilities.”

If (CPUID.01H:ECX.[bit 5],
IA32_VMX_PROCBASED_C
TLS[bit 63], and either
IA32_VMX_PROCBASED_C
TLS2[bit 33] or
IA32_VMX_PROCBASED_C
TLS2[bit 37])

48DH 1165 IA32_VMX_TRUE_PINBASED_CTLS Capability Reporting Register of Pin-
based VM-execution Flex Controls (R/O)

See Appendix A.3.1, “Pin-Based VM-
Execution Controls.”

If (CPUID.01H:ECX.[bit 5] =
1 and
IA32_VMX_BASIC[bit 55])

48EH 1166 IA32_VMX_TRUE_PROCBASED_CTLS Capability Reporting Register of Primary
Processor-based VM-execution Flex
Controls (R/O)

See Appendix A.3.2, “Primary Processor-
Based VM-Execution Controls.”

If(CPUID.01H:ECX.[bit 5] =
1 and
IA32_VMX_BASIC[bit 55])

48FH 1167 IA32_VMX_TRUE_EXIT_CTLS Capability Reporting Register of VM-exit
Flex Controls (R/O)

See Appendix A.4, “VM-Exit Controls.”

If(CPUID.01H:ECX.[bit 5] =
1 and
IA32_VMX_BASIC[bit 55])

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 154

490H 1168 IA32_VMX_TRUE_ENTRY_CTLS Capability Reporting Register of VM-
entry Flex Controls (R/O)

See Appendix A.5, “VM-Entry Controls.”

If(CPUID.01H:ECX.[bit 5] =
1 and
IA32_VMX_BASIC[bit 55])

491H 1169 IA32_VMX_VMFUNC Capability Reporting Register of VM-
function Controls (R/O)

If(CPUID.01H:ECX.[bit 5] =
1 and
IA32_VMX_BASIC[bit 55])

4C1H 1217 IA32_A_PMC0 Full Width Writable IA32_PMC0 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
0) &

IA32_PERF_CAPABILITIES[
13] = 1

4C2H 1218 IA32_A_PMC1 Full Width Writable IA32_PMC1 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
1) &

IA32_PERF_CAPABILITIES[
13] = 1

4C3H 1219 IA32_A_PMC2 Full Width Writable IA32_PMC2 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
2) &

IA32_PERF_CAPABILITIES[
13] = 1

4C4H 1220 IA32_A_PMC3 Full Width Writable IA32_PMC3 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
3) &

IA32_PERF_CAPABILITIES[
13] = 1

4C5H 1221 IA32_A_PMC4 Full Width Writable IA32_PMC4 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
4) &

IA32_PERF_CAPABILITIES[
13] = 1

4C6H 1222 IA32_A_PMC5 Full Width Writable IA32_PMC5 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
5) &

IA32_PERF_CAPABILITIES[
13] = 1

4C7H 1223 IA32_A_PMC6 Full Width Writable IA32_PMC6 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
6) &

IA32_PERF_CAPABILITIES[
13] = 1

4C8H 1224 IA32_A_PMC7 Full Width Writable IA32_PMC7 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
7) &

IA32_PERF_CAPABILITIES[
13] = 1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 155

600H 1536 IA32_DS_AREA DS Save Area (R/W)

Points to the linear address of the first
byte of the DS buffer management area,
which is used to manage the BTS and PEBS
buffers.

See Section 18.12.4, “Debug Store (DS)
Mechanism.”

0F_0H

63:0 The linear address of the first byte of the
DS buffer management area, if IA-32e
mode is active.

31:0 The linear address of the first byte of the
DS buffer management area, if not in IA-
32e mode.

63:32 Reserved iff not in IA-32e mode.

6E0H 1760 IA32_TSC_DEADLINE TSC Target of Local APIC’s TSC Deadline
Mode (R/W)

If(CPUID.01H:ECX.[bit 25]
= 1

802H 2050 IA32_X2APIC_APICID x2APIC ID Register (R/O)

See x2APIC Specification

If (CPUID.01H:ECX.[bit 21]
= 1)

803H 2051 IA32_X2APIC_VERSION x2APIC Version Register (R/O) If (CPUID.01H:ECX.[bit 21]
= 1)

808H 2056 IA32_X2APIC_TPR x2APIC Task Priority Register (R/W) If (CPUID.01H:ECX.[bit 21]
= 1)

80AH 2058 IA32_X2APIC_PPR x2APIC Processor Priority Register (R/O) If (CPUID.01H:ECX.[bit 21]
= 1)

80BH 2059 IA32_X2APIC_EOI x2APIC EOI Register (W/O) If (CPUID.01H:ECX.[bit 21]
= 1)

80DH 2061 IA32_X2APIC_LDR x2APIC Logical Destination Register (R/
O)

If (CPUID.01H:ECX.[bit 21]
= 1)

80FH 2063 IA32_X2APIC_SIVR x2APIC Spurious Interrupt Vector
Register (R/W)

If (CPUID.01H:ECX.[bit 21]
= 1)

810H 2064 IA32_X2APIC_ISR0 x2APIC In-Service Register Bits 31:0 (R/
O)

If (CPUID.01H:ECX.[bit 21]
= 1)

811H 2065 IA32_X2APIC_ISR1 x2APIC In-Service Register Bits 63:32
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

812H 2066 IA32_X2APIC_ISR2 x2APIC In-Service Register Bits 95:64
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

813H 2067 IA32_X2APIC_ISR3 x2APIC In-Service Register Bits 127:96
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

814H 2068 IA32_X2APIC_ISR4 x2APIC In-Service Register Bits 159:128
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 156

815H 2069 IA32_X2APIC_ISR5 x2APIC In-Service Register Bits 191:160
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

816H 2070 IA32_X2APIC_ISR6 x2APIC In-Service Register Bits 223:192
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

817H 2071 IA32_X2APIC_ISR7 x2APIC In-Service Register Bits 255:224
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

818H 2072 IA32_X2APIC_TMR0 x2APIC Trigger Mode Register Bits 31:0
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

819H 2073 IA32_X2APIC_TMR1 x2APIC Trigger Mode Register Bits 63:32
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

81AH 2074 IA32_X2APIC_TMR2 x2APIC Trigger Mode Register Bits 95:64
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

81BH 2075 IA32_X2APIC_TMR3 x2APIC Trigger Mode Register Bits
127:96 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

81CH 2076 IA32_X2APIC_TMR4 x2APIC Trigger Mode Register Bits
159:128 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

81DH 2077 IA32_X2APIC_TMR5 x2APIC Trigger Mode Register Bits
191:160 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

81EH 2078 IA32_X2APIC_TMR6 x2APIC Trigger Mode Register Bits
223:192 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

81FH 2079 IA32_X2APIC_TMR7 x2APIC Trigger Mode Register Bits
255:224 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

820H 2080 IA32_X2APIC_IRR0 x2APIC Interrupt Request Register Bits
31:0 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

821H 2081 IA32_X2APIC_IRR1 x2APIC Interrupt Request Register Bits
63:32 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

822H 2082 IA32_X2APIC_IRR2 x2APIC Interrupt Request Register Bits
95:64 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

823H 2083 IA32_X2APIC_IRR3 x2APIC Interrupt Request Register Bits
127:96 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

824H 2084 IA32_X2APIC_IRR4 x2APIC Interrupt Request Register Bits
159:128 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

825H 2085 IA32_X2APIC_IRR5 x2APIC Interrupt Request Register Bits
191:160 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

826H 2086 IA32_X2APIC_IRR6 x2APIC Interrupt Request Register Bits
223:192 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

827H 2087 IA32_X2APIC_IRR7 x2APIC Interrupt Request Register Bits
255:224 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

828H 2088 IA32_X2APIC_ESR x2APIC Error Status Register (R/W) If (CPUID.01H:ECX.[bit 21]
= 1)

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 157

82FH 2095 IA32_X2APIC_LVT_CMCI x2APIC LVT Corrected Machine Check
Interrupt Register (R/W)

If (CPUID.01H:ECX.[bit 21]
= 1)

830H 2096 IA32_X2APIC_ICR x2APIC Interrupt Command Register (R/
W)

If (CPUID.01H:ECX.[bit 21]
= 1)

832H 2098 IA32_X2APIC_LVT_TIMER x2APIC LVT Timer Interrupt Register (R/
W)

If (CPUID.01H:ECX.[bit 21]
= 1)

833H 2099 IA32_X2APIC_LVT_THERMAL x2APIC LVT Thermal Sensor Interrupt
Register (R/W)

If (CPUID.01H:ECX.[bit 21]
= 1)

834H 2100 IA32_X2APIC_LVT_PMI x2APIC LVT Performance Monitor
Interrupt Register (R/W)

If (CPUID.01H:ECX.[bit 21]
= 1)

835H 2101 IA32_X2APIC_LVT_LINT0 x2APIC LVT LINT0 Register (R/W) If (CPUID.01H:ECX.[bit 21]
= 1)

836H 2102 IA32_X2APIC_LVT_LINT1 x2APIC LVT LINT1 Register (R/W) If (CPUID.01H:ECX.[bit 21]
= 1)

837H 2103 IA32_X2APIC_LVT_ERROR x2APIC LVT Error Register (R/W) If (CPUID.01H:ECX.[bit 21]
= 1)

838H 2104 IA32_X2APIC_INIT_COUNT x2APIC Initial Count Register (R/W) If (CPUID.01H:ECX.[bit 21]
= 1)

839H 2105 IA32_X2APIC_CUR_COUNT x2APIC Current Count Register (R/O) If (CPUID.01H:ECX.[bit 21]
= 1)

83EH 2110 IA32_X2APIC_DIV_CONF x2APIC Divide Configuration Register (R/
W)

If (CPUID.01H:ECX.[bit 21]
= 1)

83FH 2111 IA32_X2APIC_SELF_IPI x2APIC Self IPI Register (W/O) If (CPUID.01H:ECX.[bit 21]
= 1)

C8DH 3213 IA32_QM_EVTSEL QoS Monitoring Event Select Register (R/
W)

If (CPUID.(EAX=07H,
ECX=0):EBX.[bit 12] = 1)

7:0 Event ID: ID of a supported QoS monitoring
event to report via IA32_QM_CTR.

31: 8 Reserved.

N+31:32 Resource Monitoring ID: ID for QoS
monitoring hardware to report monitored
data via IA32_QM_CTR.

N = Log2 (CPUID.(EAX=
0FH, ECX=0H).EBX[31:0]
+1)

63:N+32 Reserved.

C8EH 3214 IA32_QM_CTR QoS Monitoring Counter Register (R/O) If (CPUID.(EAX=07H,
ECX=0):EBX.[bit 12] = 1)

61:0 Resource Monitored Data

62 Unavailable: If 1, indicates data for this
RMID is not available or not monitored for
this resource or RMID.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 158

63 Error: If 1, indicates and unsupported RMID
or event type was written to
IA32_PQR_QM_EVTSEL.

C8FH 3215 IA32_PQR_ASSOC QoS Resource Association Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX.[bit 12] = 1)

N-1:0 Resource Monitoring ID: ID for QoS
monitoring hardware to track internal
operation, e.g. memory access.

N = Log2 (CPUID.(EAX=
0FH, ECX=0H).EBX[31:0]
+1)

63:N Reserved.

4000_
0000H
-
4000_
00FFH

Reserved MSR Address Space All existing and future processors will
not implement MSR in this range.

C000_
0080H

IA32_EFER Extended Feature Enables If (
CPUID.80000001.EDX.[bit
20] or
CPUID.80000001.EDX.[bit
29])

0 SYSCALL Enable (R/W)

Enables SYSCALL/SYSRET instructions in
64-bit mode.

7:1 Reserved.

8 IA-32e Mode Enable (R/W)

Enables IA-32e mode operation.

9 Reserved.

10 IA-32e Mode Active (R)

Indicates IA-32e mode is active when set.

11 Execute Disable Bit Enable (R/W)

63:12 Reserved.

C000_
0081H

IA32_STAR System Call Target Address (R/W) If
CPUID.80000001.EDX.[bit
29] = 1

C000_
0082H

IA32_LSTAR IA-32e Mode System Call Target Address
(R/W)

If
CPUID.80000001.EDX.[bit
29] = 1

C000_
0084H

IA32_FMASK System Call Flag Mask (R/W) If
CPUID.80000001.EDX.[bit
29] = 1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 159

...

35.3 MSRS IN THE INTEL® ATOM™ PROCESSOR FAMILY
Table 35-4 lists model-specific registers (MSRs) for Intel Atom processor family, architectural MSR addresses are
also included in Table 35-4. These processors have a CPUID signature with DisplayFamily_DisplayModel of
06_1CH, 06_26H, 06_27H, 06_35H and 06_36H, see Table 35-1.

The column “Shared/Unique” applies to logical processors sharing the same core in processors based on the Intel
Atom microarchitecture. “Unique” means each logical processor has a separate MSR, or a bit field in an MSR
governs only a logical processor. “Shared” means the MSR or the bit field in an MSR address governs the operation
of both logical processors in the same core.

C000_
0100H

IA32_FS_BASE Map of BASE Address of FS (R/W) If
CPUID.80000001.EDX.[bit
29] = 1

C000_
0101H

IA32_GS_BASE Map of BASE Address of GS (R/W) If
CPUID.80000001.EDX.[bit
29] = 1

C000_
0102H

IA32_KERNEL_GS_BASE Swap Target of BASE Address of GS (R/
W)

If
CPUID.80000001.EDX.[bit
29] = 1

C000_
0103H

IA32_TSC_AUX Auxiliary TSC (RW) If CPUID.80000001H:
EDX[27] = 1

31:0 AUX: Auxiliary signature of TSC

63:32 Reserved.
NOTES:

1. In processors based on Intel NetBurst® microarchitecture, MSR addresses 180H-197H are supported, software must treat them as
model-specific. Starting with Intel Core Duo processors, MSR addresses 180H-185H, 188H-197H are reserved.

2. The *_ADDR MSRs may or may not be present; this depends on flag settings in IA32_MCi_STATUS. See Section 15.3.2.3 and Section
15.3.2.4 for more information.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Table 35-4 MSRs in Intel® Atom™ Processor Family

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Shared See Section 35.16, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Shared See Section 35.16, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Unique See Section 8.10.5, “Monitor/Mwait Address Range Determination.”
andTable 35-2

10H 16 IA32_TIME_STAMP_
COUNTER

Unique See Section 17.13, “Time-Stamp Counter,” and see Table 35-2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 160

17H 23 IA32_PLATFORM_ID Shared Platform ID (R)
See Table 35-2.

17H 23 MSR_PLATFORM_ID Shared Model Specific Platform ID (R)

7:0 Reserved.

12:8 Maximum Qualified Ratio (R)

The maximum allowed bus ratio.

63:13 Reserved.

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and Location,” and Table 35-
2.

2AH 42 MSR_EBL_CR_POWERON Shared Processor Hard Power-On Configuration (R/W) Enables and
disables processor features;

(R) indicates current processor configuration.

0 Reserved.

1 Data Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Always 0.

2 Response Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Always 0.

3 AERR# Drive Enable (R/W)

1 = Enabled; 0 = Disabled
Always 0.

4 BERR# Enable for initiator bus requests (R/W)

1 = Enabled; 0 = Disabled
Always 0.

5 Reserved.

6 Reserved.

7 BINIT# Driver Enable (R/W)

1 = Enabled; 0 = Disabled
Always 0.

8 Reserved.

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled

10 AERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled
Always 0.

11 Reserved.

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 161

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled
Always 0.

13 Reserved.

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved

17:16 APIC Cluster ID (R/O)

Always 00B.

19: 18 Reserved.

21: 20 Symmetric Arbitration ID (R/O)

Always 00B.

26:22 Integer Bus Frequency Ratio (R/O)

3AH 58 IA32_FEATURE_CONTROL Unique Control Features in Intel 64Processor (R/W)

See Table 35-2.

40H 64 MSR_
LASTBRANCH_0_FROM_IP

Unique Last Branch Record 0 From IP (R/W)

One of eight pairs of last branch record registers on the last branch
record stack. This part of the stack contains pointers to the source
instruction for one of the last eight branches, exceptions, or
interrupts taken by the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.11, “Last Branch, Interrupt, and Exception Recording

(Pentium M Processors).”

41H 65 MSR_
LASTBRANCH_1_FROM_IP

Unique Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_
LASTBRANCH_2_FROM_IP

Unique Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

43H 67 MSR_
LASTBRANCH_3_FROM_IP

Unique Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

44H 68 MSR_
LASTBRANCH_4_FROM_IP

Unique Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

45H 69 MSR_
LASTBRANCH_5_FROM_IP

Unique Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

46H 70 MSR_
LASTBRANCH_6_FROM_IP

Unique Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

47H 71 MSR_
LASTBRANCH_7_FROM_IP

Unique Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 162

60H 96 MSR_
LASTBRANCH_0_TO_IP

Unique Last Branch Record 0 To IP (R/W)

One of eight pairs of last branch record registers on the last branch
record stack. This part of the stack contains pointers to the
destination instruction for one of the last eight branches,
exceptions, or interrupts taken by the processor.

61H 97 MSR_
LASTBRANCH_1_TO_IP

Unique Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

62H 98 MSR_
LASTBRANCH_2_TO_IP

Unique Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

63H 99 MSR_
LASTBRANCH_3_TO_IP

Unique Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

64H 100 MSR_
LASTBRANCH_4_TO_IP

Unique Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

65H 101 MSR_
LASTBRANCH_5_TO_IP

Unique Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

66H 102 MSR_
LASTBRANCH_6_TO_IP

Unique Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

67H 103 MSR_
LASTBRANCH_7_TO_IP

Unique Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

79H 121 IA32_BIOS_UPDT_TRIG Shared BIOS Update Trigger Register (W)

See Table 35-2.

8BH 139 IA32_BIOS_SIGN_ID Unique BIOS Update Signature ID (RO)

See Table 35-2.

C1H 193 IA32_PMC0 Unique Performance counter register

See Table 35-2.

C2H 194 IA32_PMC1 Unique Performance Counter Register

See Table 35-2.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for
processors based on Intel Atom microarchitecture:

2:0 • 111B: 083 MHz (FSB 333)
• 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)

133.33 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 001B.

166.67 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 011B.

63:3 Reserved.

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 163

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock Count (RW)

See Table 35-2.

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count (RW)

See Table 35-2.

FEH 254 IA32_MTRRCAP Shared Memory Type Range Register (R)

See Table 35-2.

11EH 281 MSR_BBL_CR_CTL3 Shared

0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled. (R/W)

1 = L2 cache has been initialized
0 = Disabled (default)
Until this bit is set the processor will not respond to the WBINVD
instruction or the assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present (RO)

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

174H 372 IA32_SYSENTER_CS Unique See Table 35-2.

175H 373 IA32_SYSENTER_ESP Unique See Table 35-2.

176H 374 IA32_SYSENTER_EIP Unique See Table 35-2.

179H 377 IA32_MCG_CAP Unique See Table 35-2.

17AH 378 IA32_MCG_STATUS Unique

0 RIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) can be used to restart the program. If cleared, the
program cannot be reliably restarted

1 EIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) is directly associated with the error.

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 164

2 MCIP

When set, bit indicates that a machine check has been generated. If
a second machine check is detected while this bit is still set, the
processor enters a shutdown state. Software should write this bit
to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_PERFEVTSEL0 Unique See Table 35-2.

187H 391 IA32_PERFEVTSEL1 Unique See Table 35-2.

198H 408 IA32_PERF_STATUS Shared See Table 35-2.

198H 408 MSR_PERF_STATUS Shared

15:0 Current Performance State Value.

39:16 Reserved.

44:40 Maximum Bus Ratio (R/O)

Indicates maximum bus ratio configured for the processor.

63:45 Reserved.

199H 409 IA32_PERF_CTL Unique See Table 35-2.

19AH 410 IA32_CLOCK_MODULATION Unique Clock Modulation (R/W)

See Table 35-2.

IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.

19BH 411 IA32_THERM_INTERRUPT Unique Thermal Interrupt Control (R/W)

See Table 35-2.

19CH 412 IA32_THERM_STATUS Unique Thermal Monitor Status (R/W)

See Table 35-2.

19DH 413 MSR_THERM2_CTL Shared

15:0 Reserved.

16 TM_SELECT (R/W)

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die modulation of
the stop-clock duty cycle)

1 = Thermal Monitor 2 (thermally-initiated frequency transitions)
If bit 3 of the IA32_MISC_ENABLE register is cleared, TM_SELECT
has no effect. Neither TM1 nor TM2 are enabled.

63:17 Reserved.

1A0 416 IA32_MISC_ENABLE Unique Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 165

0 Fast-Strings Enable

See Table 35-2.

2:1 Reserved.

3 Unique Automatic Thermal Control Circuit Enable (R/W)

See Table 35-2.

6:4 Reserved.

7 Shared Performance Monitoring Available (R)

See Table 35-2.

8 Reserved.

9 Reserved.

10 Shared FERR# Multiplexing Enable (R/W)

1 = FERR# asserted by the processor to indicate a pending break
event within the processor

0 = Indicates compatible FERR# signaling behavior
This bit must be set to 1 to support XAPIC interrupt model usage.

11 Shared Branch Trace Storage Unavailable (RO)

See Table 35-2.

12 Shared Precise Event Based Sampling Unavailable (RO)

See Table 35-2.

13 Shared TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor indicates that the
die temperature is at the pre-determined threshold, the Thermal
Monitor 2 mechanism is engaged. TM2 will reduce the bus to core
ratio and voltage according to the value last written to
MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the processor does not change
the VID signals or the bus to core ratio when the processor enters
a thermally managed state.

The BIOS must enable this feature if the TM2 feature flag
(CPUID.1:ECX[8]) is set; if the TM2 feature flag is not set, this
feature is not supported and BIOS must not alter the contents of
the TM2 bit location.

The processor is operating out of specification if both this bit and
the TM1 bit are set to 0.

15:14 Reserved.

16 Shared Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 35-2.

18 Shared ENABLE MONITOR FSM (R/W)

See Table 35-2.

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 166

19 Reserved.

20 Shared Enhanced Intel SpeedStep Technology Select Lock (R/WO)

When set, this bit causes the following bits to become read-only:

• Enhanced Intel SpeedStep Technology Select Lock (this bit),
• Enhanced Intel SpeedStep Technology Enable bit.

The bit must be set before an Enhanced Intel SpeedStep
Technology transition is requested. This bit is cleared on reset.

21 Reserved.

22 Unique Limit CPUID Maxval (R/W)

See Table 35-2.

23 Shared xTPR Message Disable (R/W)

See Table 35-2.

33:24 Reserved.

34 Unique XD Bit Disable (R/W)

See Table 35-2.

63:35 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Unique Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-2) that points to the MSR containing the
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Unique Debug Control (R/W)

See Table 35-2.

1DDH 477 MSR_LER_FROM_LIP Unique Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Unique Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last exception
that was generated or the last interrupt that was handled.

200H 512 IA32_MTRR_PHYSBASE0 Shared See Table 35-2.

201H 513 IA32_MTRR_PHYSMASK0 Shared See Table 35-2.

202H 514 IA32_MTRR_PHYSBASE1 Shared See Table 35-2.

203H 515 IA32_MTRR_PHYSMASK1 Shared See Table 35-2.

204H 516 IA32_MTRR_PHYSBASE2 Shared See Table 35-2.

205H 517 IA32_MTRR_PHYSMASK2 Shared See Table 35-2.

206H 518 IA32_MTRR_PHYSBASE3 Shared See Table 35-2.

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 167

207H 519 IA32_MTRR_PHYSMASK3 Shared See Table 35-2.

208H 520 IA32_MTRR_PHYSBASE4 Shared See Table 35-2.

209H 521 IA32_MTRR_PHYSMASK4 Shared See Table 35-2.

20AH 522 IA32_MTRR_PHYSBASE5 Shared See Table 35-2.

20BH 523 IA32_MTRR_PHYSMASK5 Shared See Table 35-2.

20CH 524 IA32_MTRR_PHYSBASE6 Shared See Table 35-2.

20DH 525 IA32_MTRR_PHYSMASK6 Shared See Table 35-2.

20EH 526 IA32_MTRR_PHYSBASE7 Shared See Table 35-2.

20FH 527 IA32_MTRR_PHYSMASK7 Shared See Table 35-2.

250H 592 IA32_MTRR_FIX64K_
00000

Shared See Table 35-2.

258H 600 IA32_MTRR_FIX16K_
80000

Shared See Table 35-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Shared See Table 35-2.

268H 616 IA32_MTRR_FIX4K_C0000 Shared See Table 35-2.

269H 617 IA32_MTRR_FIX4K_C8000 Shared See Table 35-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Shared See Table 35-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Shared See Table 35-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Shared See Table 35-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Shared See Table 35-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Shared See Table 35-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Shared See Table 35-2.

277H 631 IA32_PAT Unique See Table 35-2.

309H 777 IA32_FIXED_CTR0 Unique Fixed-Function Performance Counter Register 0 (R/W)

See Table 35-2.

30AH 778 IA32_FIXED_CTR1 Unique Fixed-Function Performance Counter Register 1 (R/W)

See Table 35-2.

30BH 779 IA32_FIXED_CTR2 Unique Fixed-Function Performance Counter Register 2 (R/W)

See Table 35-2.

345H 837 IA32_PERF_CAPABILITIES Shared See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

38DH 909 IA32_FIXED_CTR_CTRL Unique Fixed-Function-Counter Control Register (R/W)

See Table 35-2.

38EH 910 IA32_PERF_GLOBAL_
STAUS

Unique See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 168

38FH 911 IA32_PERF_GLOBAL_CTRL Unique See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Unique See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

3F1H 1009 MSR_PEBS_ENABLE Unique See Table 35-2. See Section 18.4.4, “Precise Event Based Sampling
(PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

400H 1024 IA32_MC0_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC0_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

404H 1028 IA32_MC1_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

408H 1032 IA32_MC2_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC2_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

40CH 1036 MSR_MC3_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC3_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

4OEH 1038 MSR_MC3_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC3_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

410H 1040 MSR_MC4_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC4_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 169

412H 1042 MSR_MC4_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC4_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX Capabilities (R/O)

See Table 35-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Unique Capability Reporting Register of Pin-based VM-execution
Controls (R/O)

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_
CTLS

Unique Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Unique Capability Reporting Register of VM-exit Controls (R/O)

See Table 35-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Unique Capability Reporting Register of VM-entry Controls (R/O)

See Table 35-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Table 35-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Unique Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Unique Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Unique Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Unique Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 170

Table 35-5 lists model-specific registers (MSRs) that are specific to Intel® Atom™ processor with the CPUID
signature with DisplayFamily_DisplayModel of 06_27H.

48AH 1162 IA32_VMX_VMCS_ENUM Unique Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 35-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Unique Capability Reporting Register of Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

600H 1536 IA32_DS_AREA Unique DS Save Area (R/W)

See Table 35-2.

See Section 18.12.4, “Debug Store (DS) Mechanism.”

C000_
0080H

IA32_EFER Unique Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR Unique System Call Target Address (R/W)

See Table 35-2.

C000_
0082H

IA32_LSTAR Unique IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

C000_
0084H

IA32_FMASK Unique System Call Flag Mask (R/W)

See Table 35-2.

C000_
0100H

IA32_FS_BASE Unique Map of BASE Address of FS (R/W)

See Table 35-2.

C000_
0101H

IA32_GS_BASE Unique Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE Unique Swap Target of BASE Address of GS (R/W) See Table 35-2.

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Table 35-5 MSRs Supported by Intel® Atom™ Processors with CPUID Signature 06_27H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

3F8H 1016 MSR_PKG_C2_RESIDENCY Package Package C2 Residency

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States

63:0 Package Package C2 Residency Counter. (R/O)

Time that this package is in processor-specific C2 states since last
reset. Counts at 1 Mhz frequency.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 171

35.4 MSRS IN THE PROCESSORS BASED ON SILVERMONT
MICROARCHITECTURE

Table 35-6 lists model-specific registers (MSRs) for Intel processors based on the Silvermont microarchitecture
These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_37H and 06_4DH, see Table
35-1.

The column “Scope” lists the core/shared/package granularity of sharing in the Silvermont microarchitecture.
“Core” means each processor core has a separate MSR, or a bit field not shared with another processor core.
“Shared” means the MSR or the bit field is shared by more than one processor cores in the physical package.
“Package” means all processor cores in the physical package share the same MSR or bit interface.

3F9H 1017 MSR_PKG_C4_RESIDENCY Package Package C4 Residency

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States

63:0 Package Package C4 Residency Counter. (R/O)

Time that this package is in processor-specific C4 states since last
reset. Counts at 1 Mhz frequency.

3FAH 1018 MSR_PKG_C6_RESIDENCY Package Package C6 Residency

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States

63:0 Package Package C6 Residency Counter. (R/O)

Time that this package is in processor-specific C6 states since last
reset. Counts at 1 Mhz frequency.

Table 35-5 MSRs Supported by Intel® Atom™ Processors (Contd.)with CPUID Signature 06_27H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-6 MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

0H 0 IA32_P5_MC_ADDR Shared See Section 35.16, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Shared See Section 35.16, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Core See Section 8.10.5, “Monitor/Mwait Address Range Determination.”
and Table 35-2

10H 16 IA32_TIME_STAMP_
COUNTER

Core See Section 17.13, “Time-Stamp Counter,” and see Table 35-2.

17H 23 IA32_PLATFORM_ID Shared Platform ID (R)
See Table 35-2.

17H 23 MSR_PLATFORM_ID Shared Model Specific Platform ID (R)

7:0 Reserved.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 172

12:8 Maximum Qualified Ratio (R)

The maximum allowed bus ratio.

49:13 Reserved.

52:50 See Table 35-2

63:33 Reserved.

1BH 27 IA32_APIC_BASE Core See Section 10.4.4, “Local APIC Status and Location,” and Table 35-
2.

2AH 42 MSR_EBL_CR_POWERON Shared Processor Hard Power-On Configuration (R/W) Enables and
disables processor features;

(R) indicates current processor configuration.

0 Reserved.

1 Data Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Always 0.

2 Response Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Always 0.

3 AERR# Drive Enable (R/W)

1 = Enabled; 0 = Disabled
Always 0.

4 BERR# Enable for initiator bus requests (R/W)

1 = Enabled; 0 = Disabled
Always 0.

5 Reserved.

6 Reserved.

7 BINIT# Driver Enable (R/W)

1 = Enabled; 0 = Disabled
Always 0.

8 Reserved.

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled

10 AERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled
Always 0.

11 Reserved.

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled
Always 0.

Table 35-6 MSRs in Intel Processors Based on the Silvermont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 173

13 Reserved.

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved

17:16 APIC Cluster ID (R/O)

Always 00B.

19: 18 Reserved.

21: 20 Symmetric Arbitration ID (R/O)

Always 00B.

26:22 Integer Bus Frequency Ratio (R/O)

34H 52 MSR_SMI_COUNT Core SMI Counter (R/O)

31:0 SMI Count (R/O)

Running count of SMI events since last RESET.

63:32 Reserved.

3AH 58 IA32_FEATURE_CONTROL Core Control Features in Intel 64Processor (R/W)

See Table 35-2.

40H 64 MSR_
LASTBRANCH_0_FROM_IP

Core Last Branch Record 0 From IP (R/W)

One of eight pairs of last branch record registers on the last branch
record stack. This part of the stack contains pointers to the source
instruction for one of the last eight branches, exceptions, or
interrupts taken by the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.11, “Last Branch, Interrupt, and Exception Recording

(Pentium M Processors).”

41H 65 MSR_
LASTBRANCH_1_FROM_IP

Core Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_
LASTBRANCH_2_FROM_IP

Core Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

43H 67 MSR_
LASTBRANCH_3_FROM_IP

Core Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

44H 68 MSR_
LASTBRANCH_4_FROM_IP

Core Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

45H 69 MSR_
LASTBRANCH_5_FROM_IP

Core Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

46H 70 MSR_
LASTBRANCH_6_FROM_IP

Core Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Table 35-6 MSRs in Intel Processors Based on the Silvermont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 174

47H 71 MSR_
LASTBRANCH_7_FROM_IP

Core Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

60H 96 MSR_
LASTBRANCH_0_TO_IP

Core Last Branch Record 0 To IP (R/W)

One of eight pairs of last branch record registers on the last branch
record stack. This part of the stack contains pointers to the
destination instruction for one of the last eight branches,
exceptions, or interrupts taken by the processor.

61H 97 MSR_
LASTBRANCH_1_TO_IP

Core Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

62H 98 MSR_
LASTBRANCH_2_TO_IP

Core Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

63H 99 MSR_
LASTBRANCH_3_TO_IP

Core Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

64H 100 MSR_
LASTBRANCH_4_TO_IP

Core Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

65H 101 MSR_
LASTBRANCH_5_TO_IP

Core Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

66H 102 MSR_
LASTBRANCH_6_TO_IP

Core Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

67H 103 MSR_
LASTBRANCH_7_TO_IP

Core Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

79H 121 IA32_BIOS_UPDT_TRIG Core BIOS Update Trigger Register (W)

See Table 35-2.

8BH 139 IA32_BIOS_SIGN_ID Core BIOS Update Signature ID (RO)

See Table 35-2.

C1H 193 IA32_PMC0 Core Performance counter register

See Table 35-2.

C2H 194 IA32_PMC1 Core Performance Counter Register

See Table 35-2.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for
processors based on Silvermont microarchitecture:

2:0 • 100B: 080.0 MHz
• 000B: 083.3 MHz
• 001B: 100.0 MHz
• 010B: 133.3 MHz
• 011B: 116.7 MHz

63:3 Reserved.

Table 35-6 MSRs in Intel Processors Based on the Silvermont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 175

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Shared C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0 (no package C-sate support)

001b: C1 (Behavior is the same as 000b)

100b: C4

110b: C6

111b: C7 (Silvermont only).

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

63:16 Reserved.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Shared Power Management IO Redirection in C-state (R/W)

See http://biosbits.org.

15:0 LVL_2 Base Address (R/W)

Specifies the base address visible to software for IO redirection. If
IO MWAIT Redirection is enabled, reads to this address will be
consumed by the power management logic and decoded to MWAIT
instructions. When IO port address redirection is enabled, this is the
IO port address reported to the OS/software.

18:16 C-state Range (R/W)

Specifies the encoding value of the maximum C-State code name to
be included when IO read to MWAIT redirection is enabled by
MSR_PMG_CST_CONFIG_CONTROL[bit10]:

100b - C4 is the max C-State to include

110b - C6 is the max C-State to include

111b - C7 is the max C-State to include

63:19 Reserved.

Table 35-6 MSRs in Intel Processors Based on the Silvermont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 176

E7H 231 IA32_MPERF Core Maximum Performance Frequency Clock Count (RW)

See Table 35-2.

E8H 232 IA32_APERF Core Actual Performance Frequency Clock Count (RW)

See Table 35-2.

FEH 254 IA32_MTRRCAP Core Memory Type Range Register (R)

See Table 35-2.

11EH 281 MSR_BBL_CR_CTL3 Shared

0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled. (R/W)

1 = L2 cache has been initialized
0 = Disabled (default)
Until this bit is set the processor will not respond to the WBINVD
instruction or the assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present (RO)

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

174H 372 IA32_SYSENTER_CS Core See Table 35-2.

175H 373 IA32_SYSENTER_ESP Core See Table 35-2.

176H 374 IA32_SYSENTER_EIP Core See Table 35-2.

179H 377 IA32_MCG_CAP Core See Table 35-2.

17AH 378 IA32_MCG_STATUS Core

0 RIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) can be used to restart the program. If cleared, the
program cannot be reliably restarted

1 EIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) is directly associated with the error.

Table 35-6 MSRs in Intel Processors Based on the Silvermont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 177

2 MCIP

When set, bit indicates that a machine check has been generated. If
a second machine check is detected while this bit is still set, the
processor enters a shutdown state. Software should write this bit
to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_PERFEVTSEL0 Core See Table 35-2.

187H 391 IA32_PERFEVTSEL1 Core See Table 35-2.

198H 408 IA32_PERF_STATUS Shared See Table 35-2.

199H 409 IA32_PERF_CTL Core See Table 35-2.

19AH 410 IA32_CLOCK_MODULATION Core Clock Modulation (R/W)

See Table 35-2.

IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.

19BH 411 IA32_THERM_INTERRUPT Core Thermal Interrupt Control (R/W)

See Table 35-2.

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 35-2.

1A0 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

0 Core Fast-Strings Enable

See Table 35-2.

2:1 Reserved.

3 Shared Automatic Thermal Control Circuit Enable (R/W)

See Table 35-2.

6:4 Reserved.

7 Core Performance Monitoring Available (R)

See Table 35-2.

10:8 Reserved.

11 Core Branch Trace Storage Unavailable (RO)

See Table 35-2.

12 Core Precise Event Based Sampling Unavailable (RO)

See Table 35-2.

15:13 Reserved.

16 Shared Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 35-2.

Table 35-6 MSRs in Intel Processors Based on the Silvermont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 178

18 Core ENABLE MONITOR FSM (R/W)

See Table 35-2.

21:19 Reserved.

22 Core Limit CPUID Maxval (R/W)

See Table 35-2.

23 Shared xTPR Message Disable (R/W)

See Table 35-2.

33:24 Reserved.

34 Core XD Bit Disable (R/W)

See Table 35-2.

37:35 Reserved.

38 Shared Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost
Technology, the turbo mode feature is disabled and the IDA_Enable
feature flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H:
EAX[1] reports the processor’s support of turbo mode is enabled.

Note: the power-on default value is used by BIOS to detect
hardware support of turbo mode. If power-on default value is 1,
turbo mode is available in the processor. If power-on default value
is 0, turbo mode is not available.

63:39 Reserved.

1A2H 418 MSR_
TEMPERATURE_TARGET

Package

15:0 Reserved.

23:16 Temperature Target (R)

The minimum temperature at which PROCHOT# will be asserted.
The value is degree C.

63:24 Reserved.

1A6H 422 MSR_OFFCORE_RSP_0 Shared Offcore Response Event Select Register (R/W)

1A7H 423 MSR_OFFCORE_RSP_1 Shared Offcore Response Event Select Register (R/W)

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

Table 35-6 MSRs in Intel Processors Based on the Silvermont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 179

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5 core active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6 core active.

55:48 Package Maximum Ratio Limit for 7C

Maximum turbo ratio limit of 7 core active.

63:56 Package Maximum Ratio Limit for 7C

Maximum turbo ratio limit of 7 core active.

1B0H 432 IA32_ENERGY_PERF_BIAS Core See Table 35-2.

1C9H 457 MSR_LASTBRANCH_TOS Core Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-2) that points to the MSR containing the
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Core Debug Control (R/W)

See Table 35-2.

1DDH 477 MSR_LER_FROM_LIP Core Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Core Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last exception
that was generated or the last interrupt that was handled.

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 35-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 35-2.

200H 512 IA32_MTRR_PHYSBASE0 Core See Table 35-2.

201H 513 IA32_MTRR_PHYSMASK0 Core See Table 35-2.

202H 514 IA32_MTRR_PHYSBASE1 Core See Table 35-2.

203H 515 IA32_MTRR_PHYSMASK1 Core See Table 35-2.

204H 516 IA32_MTRR_PHYSBASE2 Core See Table 35-2.

205H 517 IA32_MTRR_PHYSMASK2 Core See Table 35-2.

206H 518 IA32_MTRR_PHYSBASE3 Core See Table 35-2.

207H 519 IA32_MTRR_PHYSMASK3 Core See Table 35-2.

208H 520 IA32_MTRR_PHYSBASE4 Core See Table 35-2.

Table 35-6 MSRs in Intel Processors Based on the Silvermont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 180

209H 521 IA32_MTRR_PHYSMASK4 Core See Table 35-2.

20AH 522 IA32_MTRR_PHYSBASE5 Core See Table 35-2.

20BH 523 IA32_MTRR_PHYSMASK5 Core See Table 35-2.

20CH 524 IA32_MTRR_PHYSBASE6 Core See Table 35-2.

20DH 525 IA32_MTRR_PHYSMASK6 Core See Table 35-2.

20EH 526 IA32_MTRR_PHYSBASE7 Core See Table 35-2.

20FH 527 IA32_MTRR_PHYSMASK7 Core See Table 35-2.

250H 592 IA32_MTRR_FIX64K_
00000

Core See Table 35-2.

258H 600 IA32_MTRR_FIX16K_
80000

Core See Table 35-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Core See Table 35-2.

268H 616 IA32_MTRR_FIX4K_C0000 Core See Table 35-2.

269H 617 IA32_MTRR_FIX4K_C8000 Core See Table 35-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Core See Table 35-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Core See Table 35-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Core See Table 35-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Core See Table 35-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Core See Table 35-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Core See Table 35-2.

277H 631 IA32_PAT Core See Table 35-2.

2FFH 767 IA32_MTRR_DEF_TYPE Core Default Memory Types (R/W)

See Table 35-2.

309H 777 IA32_FIXED_CTR0 Core Fixed-Function Performance Counter Register 0 (R/W)

See Table 35-2.

30AH 778 IA32_FIXED_CTR1 Core Fixed-Function Performance Counter Register 1 (R/W)

See Table 35-2.

30BH 779 IA32_FIXED_CTR2 Core Fixed-Function Performance Counter Register 2 (R/W)

See Table 35-2.

345H 837 IA32_PERF_CAPABILITIES Core See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

38DH 909 IA32_FIXED_CTR_CTRL Core Fixed-Function-Counter Control Register (R/W)

See Table 35-2.

38EH 910 IA32_PERF_GLOBAL_
STAUS

Core See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

38FH 911 IA32_PERF_GLOBAL_CTRL Core See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

Table 35-6 MSRs in Intel Processors Based on the Silvermont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 181

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Core See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

3F1H 1009 MSR_PEBS_ENABLE Core See Table 35-2. See Section 18.4.4, “Precise Event Based Sampling
(PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

3F8H 1016 MSR_PKG_C4_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C4 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C4
states. Counts at P1 clock frequency (Guaranteed Maximum
Frequency).

3F9H 1017 MSR_PKG_C6C_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C6C Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C6C
states. Counts at P1 clock frequency (Guaranteed Maximum
Frequency)

3FAH 1018 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C6
states. Counts at P1 clock frequency (Guaranteed Maximum
Frequency)

3FCH 1020 MSR_CORE_C4_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C4 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C4
states. Counts at P1 clock frequency (Guaranteed Maximum
Frequency)

3FDH 1021 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C6
states. Counts at P1 clock frequency (Guaranteed Maximum
Frequency)

400H 1024 IA32_MC0_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

Table 35-6 MSRs in Intel Processors Based on the Silvermont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 182

402H 1026 IA32_MC0_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC0_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

404H 1028 IA32_MC1_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

408H 1032 IA32_MC2_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC2_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

40CH 1036 MSR_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

4OEH 1038 MSR_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC3_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

410H 1040 MSR_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 MSR_MC4_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC4_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

414H 1044 MSR_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 MSR_MC5_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

416H 1046 MSR_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC4_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

Table 35-6 MSRs in Intel Processors Based on the Silvermont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 183

480H 1152 IA32_VMX_BASIC Core Reporting Register of Basic VMX Capabilities (R/O)

See Table 35-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Core Capability Reporting Register of Pin-based VM-execution
Controls (R/O)

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_
CTLS

Core Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Core Capability Reporting Register of VM-exit Controls (R/O)

See Table 35-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Core Capability Reporting Register of VM-entry Controls (R/O)

See Table 35-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Core Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Table 35-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Core Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Core Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Core Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Core Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Core Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 35-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Core Capability Reporting Register of Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

Table 35-6 MSRs in Intel Processors Based on the Silvermont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 184

48CH 1164 IA32_VMX_EPT_VPID_ENU
M

Core Capability Reporting Register of EPT and VPID (R/O)

See Table 35-2

48DH 1165 IA32_VMX_TRUE_PINBASE
D_CTLS

Core Capability Reporting Register of Pin-based VM-execution Flex
Controls (R/O)

See Table 35-2

48EH 1166 IA32_VMX_TRUE_PROCBA
SED_CTLS

Core Capability Reporting Register of Primary Processor-based
VM-execution Flex Controls (R/O)

See Table 35-2

48FH 1167 IA32_VMX_TRUE_EXIT_CT
LS

Core Capability Reporting Register of VM-exit Flex Controls (R/O)

See Table 35-2

490H 1168 IA32_VMX_TRUE_ENTRY_C
TLS

Core Capability Reporting Register of VM-entry Flex Controls (R/O)

See Table 35-2

491H 1169 IA32_VMX_FMFUNC Core Capability Reporting Register of VM-function Controls (R/O)

See Table 35-2

4C1H 1217 IA32_A_PMC0 Core See Table 35-2.

4C2H 1218 IA32_A_PMC1 Core See Table 35-2.

600H 1536 IA32_DS_AREA Core DS Save Area (R/W)

See Table 35-2.

See Section 18.12.4, “Debug Store (DS) Mechanism.”

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

See Section 14.7.1, “RAPL Interfaces.”

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W)

See Section 14.7.3, “Package RAPL Domain.”

611H 1553 MSR_PKG_ENERGY_STATUS Package PKG Energy Status (R/O)

See Section 14.7.3, “Package RAPL Domain.”

638H 1592 MSR_PP0_POWER_LIMIT Package PP0 RAPL Power Limit Control (R/W)

See Section 14.7.4, “PP0/PP1 RAPL Domains.”

639H 1593 MSR_PP0_ENERGY_STATU
S

Package PP0 Energy Status (R/O)

See Section 14.7.4, “PP0/PP1 RAPL Domains.”

660H 1632 MSR_CORE_C1_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C1 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C1
states. Counts at P1 clock frequency (Guaranteed Maximum
Frequency)

6E0H 1760 IA32_TSC_DEADLINE Core TSC Target of Local APIC’s TSC Deadline Mode (R/W)

See Table 35-2

Table 35-6 MSRs in Intel Processors Based on the Silvermont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 185

...

35.8 MSRS IN INTEL® PROCESSOR FAMILY BASED ON INTEL®
MICROARCHITECTURE CODE NAME SANDY BRIDGE

Table 35-12 lists model-specific registers (MSRs) that are common to Intel® processor family based on Intel
microarchitecture code name Sandy Bridge. All architectural MSRs listed in Table 35-2 are supported. These
processors have a CPUID signature with DisplayFamily_DisplayModel of 06_2AH, 06_2DH, see Table 35-1. Addi-
tional MSRs specific to 06_2AH are listed in Table 35-13.

C000_
0080H

IA32_EFER Core Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR Core System Call Target Address (R/W)

See Table 35-2.

C000_
0082H

IA32_LSTAR Core IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

C000_
0084H

IA32_FMASK Core System Call Flag Mask (R/W)

See Table 35-2.

C000_
0100H

IA32_FS_BASE Core Map of BASE Address of FS (R/W)

See Table 35-2.

C000_
0101H

IA32_GS_BASE Core Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE Core Swap Target of BASE Address of GS (R/W) See Table 35-2.

C000_
0103H

IA32_TSC_AUX Core AUXILIARY TSC Signature. (R/W) See Table 35-2

Table 35-6 MSRs in Intel Processors Based on the Silvermont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Table 35-12 MSRs Supported by Intel® Processors
Based on Intel® Microarchitecture Code Name Sandy Bridge

Register
Address Register Name

Scope
Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Thread See Section 35.16, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Thread See Section 35.16, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address Range Determination,”
and Table 35-2.

10H 16 IA32_TIME_STAMP_
COUNTER

Thread See Section 17.13, “Time-Stamp Counter,” and see Table 35-2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 186

17H 23 IA32_PLATFORM_ID Package Platform ID (R)
See Table 35-2.

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and Location,” and Table 35-
2.

34H 52 MSR_SMI_COUNT Thread SMI Counter (R/O)

31:0 SMI Count (R/O)

Count SMIs.

63:32 Reserved.

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64Processor (R/W)

See Table 35-2.

79H 121 IA32_BIOS_UPDT_TRIG Core BIOS Update Trigger Register (W)

See Table 35-2.

8BH 139 IA32_BIOS_SIGN_ID Thread BIOS Update Signature ID (RO)

See Table 35-2.

C1H 193 IA32_PMC0 Thread Performance Counter Register

See Table 35-2.

C2H 194 IA32_PMC1 Thread Performance Counter Register

See Table 35-2.

C3H 195 IA32_PMC2 Thread Performance Counter Register

See Table 35-2.

C4H 196 IA32_PMC3 Thread Performance Counter Register

See Table 35-2.

C5H 197 IA32_PMC4 Core Performance Counter Register

See Table 35-2.

C6H 198 IA32_PMC5 Core Performance Counter Register

See Table 35-2.

C7H 199 IA32_PMC6 Core Performance Counter Register

See Table 35-2.

C8H 200 IA32_PMC7 Core Performance Counter Register

See Table 35-2.

CEH 206 MSR_PLATFORM_INFO Package See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O)

The is the ratio of the frequency that invariant TSC runs at.
Frequency = ratio * 100 MHz.

Table 35-12 MSRs Supported by Intel® Processors
Based on Intel® Microarchitecture Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 187

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limits for Turbo
mode is enabled, and when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDP Limits for Turbo mode are
programmable, and when set to 0, indicates TDP Limit for Turbo
mode is not programmable.

39:30 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O)

The is the minimum ratio (maximum efficiency) that the processor
can operates, in units of 100MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

Table 35-12 MSRs Supported by Intel® Processors
Based on Intel® Microarchitecture Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 188

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

24:16 Reserved.

25 C3 state auto demotion enable (R/W)

When set, the processor will conditionally demote C6/C7 requests
to C3 based on uncore auto-demote information.

26 C1 state auto demotion enable (R/W)

When set, the processor will conditionally demote C3/C6/C7
requests to C1 based on uncore auto-demote information.

27 Enable C3 undemotion (R/W)

When set, enables undemotion from demoted C3.

28 Enable C1 undemotion (R/W)

When set, enables undemotion from demoted C1.

63:29 Reserved.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Core Power Management IO Redirection in C-state (R/W)

See http://biosbits.org.

15:0 LVL_2 Base Address (R/W)

Specifies the base address visible to software for IO redirection. If
IO MWAIT Redirection is enabled, reads to this address will be
consumed by the power management logic and decoded to MWAIT
instructions. When IO port address redirection is enabled, this is
the IO port address reported to the OS/software.

18:16 C-state Range (R/W)

Specifies the encoding value of the maximum C-State code name
to be included when IO read to MWAIT redirection is enabled by
MSR_PMG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - C6 is the max C-State to include

010b - C7 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock Count (RW)

See Table 35-2.

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count (RW)

See Table 35-2.

FEH 254 IA32_MTRRCAP Thread See Table 35-2.

174H 372 IA32_SYSENTER_CS Thread See Table 35-2.

175H 373 IA32_SYSENTER_ESP Thread See Table 35-2.

Table 35-12 MSRs Supported by Intel® Processors
Based on Intel® Microarchitecture Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 189

176H 374 IA32_SYSENTER_EIP Thread See Table 35-2.

179H 377 IA32_MCG_CAP Thread See Table 35-2.

17AH 378 IA32_MCG_STATUS Thread

0 RIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) can be used to restart the program. If cleared, the
program cannot be reliably restarted.

1 EIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If
a second machine check is detected while this bit is still set, the
processor enters a shutdown state. Software should write this bit
to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_
PERFEVTSEL0

Thread See Table 35-2.

187H 391 IA32_
PERFEVTSEL1

Thread See Table 35-2.

188H 392 IA32_
PERFEVTSEL2

Thread See Table 35-2.

189H 393 IA32_
PERFEVTSEL3

Thread See Table 35-2.

18AH 394 IA32_
PERFEVTSEL4

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

18BH 395 IA32_
PERFEVTSEL5

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

18CH 396 IA32_
PERFEVTSEL6

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

18DH 397 IA32_
PERFEVTSEL7

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

198H 408 IA32_PERF_STATUS Package See Table 35-2.

15:0 Current Performance State Value.

63:16 Reserved.

198H 408 MSR_PERF_STATUS Package

Table 35-12 MSRs Supported by Intel® Processors
Based on Intel® Microarchitecture Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 190

47:32 Core Voltage (R/O)

P-state core voltage can be computed by

MSR_PERF_STATUS[37:32] * (float) 1/(2^13).

199H 409 IA32_PERF_CTL Thread See Table 35-2.

19AH 410 IA32_CLOCK_
MODULATION

Thread Clock Modulation (R/W)

See Table 35-2

IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.

3:0 On demand Clock Modulation Duty Cycle (R/W)

In 6.25% increment

4 On demand Clock Modulation Enable (R/W)

63:5 Reserved.

19BH 411 IA32_THERM_INTERRUPT Core Thermal Interrupt Control (R/W)

See Table 35-2.

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 35-2.

1A0 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

0 Thread Fast-Strings Enable

See Table 35-2

6:1 Reserved.

7 Thread Performance Monitoring Available (R)

See Table 35-2.

10:8 Reserved.

11 Thread Branch Trace Storage Unavailable (RO)

See Table 35-2.

12 Thread Precise Event Based Sampling Unavailable (RO)

See Table 35-2.

15:13 Reserved.

16 Package Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 35-2.

18 Thread ENABLE MONITOR FSM. (R/W) See Table 35-2.

21:19 Reserved.

22 Thread Limit CPUID Maxval (R/W)

See Table 35-2.

Table 35-12 MSRs Supported by Intel® Processors
Based on Intel® Microarchitecture Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 191

23 Thread xTPR Message Disable (R/W)

See Table 35-2.

33:24 Reserved.

34 Thread XD Bit Disable (R/W)

See Table 35-2.

37:35 Reserved.

38 Package Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost
Technology, the turbo mode feature is disabled and the IDA_Enable
feature flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H:
EAX[1] reports the processor’s support of turbo mode is enabled.

Note: the power-on default value is used by BIOS to detect
hardware support of turbo mode. If power-on default value is 1,
turbo mode is available in the processor. If power-on default value
is 0, turbo mode is not available.

63:39 Reserved.

1A2H 418 MSR_
TEMPERATURE_TARGET

Unique

15:0 Reserved.

23:16 Temperature Target (R)

The minimum temperature at which PROCHOT# will be asserted.
The value is degree C.

63:24 Reserved.

1A6H 422 MSR_OFFCORE_RSP_0 Thread Offcore Response Event Select Register (R/W)

1A7H 422 MSR_OFFCORE_RSP_1 Thread Offcore Response Event Select Register (R/W)

1AAH 426 MSR_MISC_PWR_MGMT See http://biosbits.org.

1B0H 432 IA32_ENERGY_PERF_BIAS Package See Table 35-2.

1B1H 433 IA32_PACKAGE_THERM_
STATUS

Package See Table 35-2.

1B2H 434 IA32_PACKAGE_THERM_
INTERRUPT

Package See Table 35-2.

1C8H 456 MSR_LBR_SELECT Thread Last Branch Record Filtering Select Register (R/W)

See Section 17.6.2, “Filtering of Last Branch Records.”

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-3) that points to the MSR containing the
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 680H).

Table 35-12 MSRs Supported by Intel® Processors
Based on Intel® Microarchitecture Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 192

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W)

See Table 35-2.

1DDH 477 MSR_LER_FROM_LIP Thread Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Thread Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last exception
that was generated or the last interrupt that was handled.

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 35-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 35-2.

1FCH 508 MSR_POWER_CTL Core See http://biosbits.org.

200H 512 IA32_MTRR_PHYSBASE0 Thread See Table 35-2.

201H 513 IA32_MTRR_PHYSMASK0 Thread See Table 35-2.

202H 514 IA32_MTRR_PHYSBASE1 Thread See Table 35-2.

203H 515 IA32_MTRR_PHYSMASK1 Thread See Table 35-2.

204H 516 IA32_MTRR_PHYSBASE2 Thread See Table 35-2.

205H 517 IA32_MTRR_PHYSMASK2 Thread See Table 35-2.

206H 518 IA32_MTRR_PHYSBASE3 Thread See Table 35-2.

207H 519 IA32_MTRR_PHYSMASK3 Thread See Table 35-2.

208H 520 IA32_MTRR_PHYSBASE4 Thread See Table 35-2.

209H 521 IA32_MTRR_PHYSMASK4 Thread See Table 35-2.

20AH 522 IA32_MTRR_PHYSBASE5 Thread See Table 35-2.

20BH 523 IA32_MTRR_PHYSMASK5 Thread See Table 35-2.

20CH 524 IA32_MTRR_PHYSBASE6 Thread See Table 35-2.

20DH 525 IA32_MTRR_PHYSMASK6 Thread See Table 35-2.

20EH 526 IA32_MTRR_PHYSBASE7 Thread See Table 35-2.

20FH 527 IA32_MTRR_PHYSMASK7 Thread See Table 35-2.

210H 528 IA32_MTRR_PHYSBASE8 Thread See Table 35-2.

211H 529 IA32_MTRR_PHYSMASK8 Thread See Table 35-2.

212H 530 IA32_MTRR_PHYSBASE9 Thread See Table 35-2.

213H 531 IA32_MTRR_PHYSMASK9 Thread See Table 35-2.

Table 35-12 MSRs Supported by Intel® Processors
Based on Intel® Microarchitecture Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 193

250H 592 IA32_MTRR_FIX64K_
00000

Thread See Table 35-2.

258H 600 IA32_MTRR_FIX16K_
80000

Thread See Table 35-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Thread See Table 35-2.

268H 616 IA32_MTRR_FIX4K_C0000 Thread See Table 35-2.

269H 617 IA32_MTRR_FIX4K_C8000 Thread See Table 35-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Thread See Table 35-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Thread See Table 35-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Thread See Table 35-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Thread See Table 35-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Thread See Table 35-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Thread See Table 35-2.

277H 631 IA32_PAT Thread See Table 35-2.

280H 640 IA32_MC0_CTL2 Core See Table 35-2.

281H 641 IA32_MC1_CTL2 Core See Table 35-2.

282H 642 IA32_MC2_CTL2 Core See Table 35-2.

283H 643 IA32_MC3_CTL2 Core See Table 35-2.

284H 644 MSR_MC4_CTL2 Package Always 0 (CMCI not supported).

2FFH 767 IA32_MTRR_DEF_TYPE Thread Default Memory Types (R/W)

See Table 35-2.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter Register 0 (R/W)

See Table 35-2.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter Register 1 (R/W)

See Table 35-2.

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter Register 2 (R/W)

See Table 35-2.

345H 837 IA32_PERF_CAPABILITIES Thread See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

5:0 LBR Format. See Table 35-2.

6 PEBS Record Format.

7 PEBSSaveArchRegs. See Table 35-2.

11:8 PEBS_REC_FORMAT. See Table 35-2.

12 SMM_FREEZE. See Table 35-2.

Table 35-12 MSRs Supported by Intel® Processors
Based on Intel® Microarchitecture Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 194

63:13 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL Thread Fixed-Function-Counter Control Register (R/W)

See Table 35-2.

38EH 910 IA32_PERF_GLOBAL_
STAUS

Thread See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

38FH 911 IA32_PERF_GLOBAL_CTRL Thread See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Thread See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

3F1H 1009 MSR_PEBS_ENABLE Thread See Section 18.7.1.1, “Precise Event Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

2 Enable PEBS on IA32_PMC2. (R/W)

3 Enable PEBS on IA32_PMC3. (R/W)

31:4 Reserved.

32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

35 Enable Load Latency on IA32_PMC3. (R/W)

63:36 Reserved.

3F6H 1014 MSR_PEBS_LD_LAT Thread see See Section 18.7.1.2, “Load Latency Performance Monitoring
Facility.”

15:0 Minimum threshold latency value of tagged load operation that will
be counted. (R/W)

63:36 Reserved.

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C3 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C3
states. Count at the same frequency as the TSC.

3F9H 1017 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C6
states. Count at the same frequency as the TSC.

Table 35-12 MSRs Supported by Intel® Processors
Based on Intel® Microarchitecture Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 195

3FAH 1018 MSR_PKG_C7_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C7 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C7
states. Count at the same frequency as the TSC.

3FCH 1020 MSR_CORE_C3_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C3 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C3
states. Count at the same frequency as the TSC.

3FDH 1021 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C6
states. Count at the same frequency as the TSC.

3FEH 1022 MSR_CORE_C7_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C7 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C7
states. Count at the same frequency as the TSC.

400H 1024 IA32_MC0_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

402H 1026 IA32_MC0_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

403H 1027 IA32_MC0_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

404H 1028 IA32_MC1_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

406H 1030 IA32_MC1_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

407H 1031 IA32_MC1_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40BH 1035 IA32_MC2_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Table 35-12 MSRs Supported by Intel® Processors
Based on Intel® Microarchitecture Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 196

40DH 1037 IA32_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

40EH 1038 IA32_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40FH 1039 IA32_MC3_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

410H 1040 MSR_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

0 PCU Hardware Error (R/W)

When set, enables signaling of PCU hardware detected errors.

1 PCU Controller Error (R/W)

When set, enables signaling of PCU controller detected errors

2 PCU Firmware Error (R/W)

When set, enables signaling of PCU firmware detected errors

63:2 Reserved.

411H 1041 IA32_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

480H 1152 IA32_VMX_BASIC Thread Reporting Register of Basic VMX Capabilities (R/O)

SeeTable 35-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Thread Capability Reporting Register of Pin-based VM-execution
Controls (R/O)

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_
CTLS

Thread Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Thread Capability Reporting Register of VM-exit Controls (R/O)

See Table 35-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Thread Capability Reporting Register of VM-entry Controls (R/O)

See Table 35-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Thread Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Table 35-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Thread Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

Table 35-12 MSRs Supported by Intel® Processors
Based on Intel® Microarchitecture Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 197

487H 1159 IA32_VMX_CR0_FIXED1 Thread Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Thread Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Thread Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Thread Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 35-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Thread Capability Reporting Register of Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

48CH 1164 IA32_VMX_EPT_VPID_ENU
M

Thread Capability Reporting Register of EPT and VPID (R/O)

See Table 35-2

48DH 1165 IA32_VMX_TRUE_PINBASE
D_CTLS

Thread Capability Reporting Register of Pin-based VM-execution Flex
Controls (R/O)

See Table 35-2

48EH 1166 IA32_VMX_TRUE_PROCBA
SED_CTLS

Thread Capability Reporting Register of Primary Processor-based
VM-execution Flex Controls (R/O)

See Table 35-2

48FH 1167 IA32_VMX_TRUE_EXIT_CT
LS

Thread Capability Reporting Register of VM-exit Flex Controls (R/O)

See Table 35-22

490H 1168 IA32_VMX_TRUE_ENTRY_C
TLS

Thread Capability Reporting Register of VM-entry Flex Controls (R/O)

See Table 35-2

4C1H 1217 IA32_A_PMC0 Thread See Table 35-2.

4C2H 1218 IA32_A_PMC1 Thread See Table 35-2

4C3H 1219 IA32_A_PMC2 Thread See Table 35-2.

4C4H 1220 IA32_A_PMC3 Thread See Table 35-2.

4C5H 1221 IA32_A_PMC4 Core See Table 35-2.

4C6H 1222 IA32_A_PMC5 Core See Table 35-2.

4C7H 1223 IA32_A_PMC6 Core See Table 35-2.

4C8H 200 IA32_A_PMC7 Core See Table 35-2.

Table 35-12 MSRs Supported by Intel® Processors
Based on Intel® Microarchitecture Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 198

600H 1536 IA32_DS_AREA Thread DS Save Area (R/W)

See Table 35-2.

See Section 18.12.4, “Debug Store (DS) Mechanism.”

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

See Section 14.7.1, “RAPL Interfaces.”

60AH 1546 MSR_PKGC3_IRTL Package Package C3 Interrupt Response Limit (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit (R/W)

Specifies the limit that should be used to decide if the package
should be put into a package C3 state.

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the interrupt response
time limit. The following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and can be used
by the processor for package C-sate management.

63:16 Reserved.

60BH 1547 MSR_PKGC6_IRTL Package Package C6 Interrupt Response Limit (R/W)

This MSR defines the budget allocated for the package to exit from
C6 to a C0 state, where interrupt request can be delivered to the
core and serviced. Additional core-exit latency amy be applicable
depending on the actual C-state the core is in.

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit (R/W)

Specifies the limit that should be used to decide if the package
should be put into a package C6 state.

Table 35-12 MSRs Supported by Intel® Processors
Based on Intel® Microarchitecture Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 199

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the interrupt response
time limit. The following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and can be used
by the processor for package C-sate management.

63:16 Reserved.

60DH 1549 MSR_PKG_C2_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C2 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C2
states. Count at the same frequency as the TSC.

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W)

See Section 14.7.3, “Package RAPL Domain.”

611H 1553 MSR_PKG_ENERGY_STATU
S

Package PKG Energy Status (R/O)

See Section 14.7.3, “Package RAPL Domain.”

614H 1556 MSR_PKG_POWER_INFO Package PKG RAPL Parameters (R/W) See Section 14.7.3, “Package RAPL
Domain.”

638H 1592 MSR_PP0_POWER_LIMIT Package PP0 RAPL Power Limit Control (R/W)

See Section 14.7.4, “PP0/PP1 RAPL Domains.”

639H 1593 MSR_PP0_ENERGY_STATU
S

Package PP0 Energy Status (R/O)

See Section 14.7.4, “PP0/PP1 RAPL Domains.”

680H 1664 MSR_
LASTBRANCH_0_FROM_IP

Thread Last Branch Record 0 From IP (R/W)

One of sixteen pairs of last branch record registers on the last
branch record stack. This part of the stack contains pointers to the
source instruction for one of the last sixteen branches,
exceptions, or interrupts taken by the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.6.1, “LBR Stack.”

Table 35-12 MSRs Supported by Intel® Processors
Based on Intel® Microarchitecture Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 200

681H 1665 MSR_
LASTBRANCH_1_FROM_IP

Thread Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

682H 1666 MSR_
LASTBRANCH_2_FROM_IP

Thread Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

683H 1667 MSR_
LASTBRANCH_3_FROM_IP

Thread Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_
LASTBRANCH_4_FROM_IP

Thread Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_
LASTBRANCH_5_FROM_IP

Thread Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_
LASTBRANCH_6_FROM_IP

Thread Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_
LASTBRANCH_7_FROM_IP

Thread Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

688H 1672 MSR_
LASTBRANCH_8_FROM_IP

Thread Last Branch Record 8 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

689H 1673 MSR_
LASTBRANCH_9_FROM_IP

Thread Last Branch Record 9 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_
LASTBRANCH_10_FROM_
IP

Thread Last Branch Record 10 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68BH 1675 MSR_
LASTBRANCH_11_FROM_
IP

Thread Last Branch Record 11 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_
LASTBRANCH_12_FROM_
IP

Thread Last Branch Record 12 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68DH 1677 MSR_
LASTBRANCH_13_FROM_
IP

Thread Last Branch Record 13 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68EH 1678 MSR_
LASTBRANCH_14_FROM_
IP

Thread Last Branch Record 14 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68FH 1679 MSR_
LASTBRANCH_15_FROM_
IP

Thread Last Branch Record 15 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Table 35-12 MSRs Supported by Intel® Processors
Based on Intel® Microarchitecture Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 201

6C0H 1728 MSR_
LASTBRANCH_0_TO_IP

Thread Last Branch Record 0 To IP (R/W)

One of sixteen pairs of last branch record registers on the last
branch record stack. This part of the stack contains pointers to the
destination instruction for one of the last sixteen branches,
exceptions, or interrupts taken by the processor.

6C1H 1729 MSR_
LASTBRANCH_1_TO_IP

Thread Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C2H 1730 MSR_
LASTBRANCH_2_TO_IP

Thread Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C3H 1731 MSR_
LASTBRANCH_3_TO_IP

Thread Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C4H 1732 MSR_
LASTBRANCH_4_TO_IP

Thread Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C5H 1733 MSR_
LASTBRANCH_5_TO_IP

Thread Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C6H 1734 MSR_
LASTBRANCH_6_TO_IP

Thread Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C7H 1735 MSR_
LASTBRANCH_7_TO_IP

Thread Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C8H 1736 MSR_
LASTBRANCH_8_TO_IP

Thread Last Branch Record 8 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C9H 1737 MSR_
LASTBRANCH_9_TO_IP

Thread Last Branch Record 9 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CAH 1738 MSR_
LASTBRANCH_10_TO_IP

Thread Last Branch Record 10 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CBH 1739 MSR_
LASTBRANCH_11_TO_IP

Thread Last Branch Record 11 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CCH 1740 MSR_
LASTBRANCH_12_TO_IP

Thread Last Branch Record 12 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CDH 1741 MSR_
LASTBRANCH_13_TO_IP

Thread Last Branch Record 13 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CEH 1742 MSR_
LASTBRANCH_14_TO_IP

Thread Last Branch Record 14 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CFH 1743 MSR_
LASTBRANCH_15_TO_IP

Thread Last Branch Record 15 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6E0H 1760 IA32_TSC_DEADLINE Thread See Table Table 35-2.

Table 35-12 MSRs Supported by Intel® Processors
Based on Intel® Microarchitecture Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 202

35.8.1 MSRs In 2nd Generation Intel® Core™ Processor Family (Based on Intel®
Microarchitecture Code Name Sandy Bridge)

Table 35-13 lists model-specific registers (MSRs) that are specific to the 2nd generation Intel® Core™ processor
family (based on Intel® microarchitecture code name Sandy Bridge). These processors have a CPUID signature
with DisplayFamily_DisplayModel of 06_2AH, see Table 35-1.

802H-
83FH

X2APIC MSRs Thread See Table 35-2.

C000_
0080H

IA32_EFER Thread Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR Thread System Call Target Address (R/W)

See Table 35-2.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask (R/W)

See Table 35-2.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS (R/W)

See Table 35-2.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE Thread Swap Target of BASE Address of GS (R/W)

See Table 35-2

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature (R/W)

See Table 35-2 and Section 17.13.2, “IA32_TSC_AUX Register and
RDTSCP Support.”

Table 35-12 MSRs Supported by Intel® Processors
Based on Intel® Microarchitecture Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-13 MSRs Supported by 2nd Generation Intel® Core™ Processors (Intel® Microarchitecture Code Name
Sandy Bridge)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 203

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

391H 913 MSR_UNC_PERF_GLOBAL_
CTRL

Package Uncore PMU global control

0 Core 0 select

1 Core 1 select

2 Core 2 select

3 Core 3 select

18:4 Reserved.

29 Enable all uncore counters

30 Enable wake on PMI

31 Enable Freezing counter when overflow

63:32 Reserved.

392H 914 MSR_UNC_PERF_GLOBAL_
STATUS

Package Uncore PMU main status

0 Fixed counter overflowed

1 An ARB counter overflowed

2 Reserved

3 A CBox counter overflowed (on any slice)

63:4 Reserved.

394H 916 MSR_UNC_PERF_FIXED_
CTRL

Package Uncore fixed counter control (R/W)

19:0 Reserved

20 Enable overflow propagation

21 Reserved

22 Enable counting

63:23 Reserved.

395H 917 MSR_UNC_PERF_FIXED_
CTR

Package Uncore fixed counter

47:0 Current count

Table 35-13 MSRs Supported by 2nd Generation Intel® Core™ Processors (Intel® Microarchitecture Code Name
Sandy Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 204

63:48 Reserved.

396H 918 MSR_UNC_CBO_CONFIG Package Uncore C-Box configuration information (R/O)

3:0 Encoded number of C-Box, derive value by “-1“

63:4 Reserved.

3B0H 946 MSR_UNC_ARB_PER_CTR0 Package Uncore Arb unit, performance counter 0

3B1H 947 MSR_UNC_ARB_PER_CTR1 Package Uncore Arb unit, performance counter 1

3B2H 944 MSR_UNC_ARB_
PERFEVTSEL0

Package Uncore Arb unit, counter 0 event select MSR

3B3H 945 MSR_UNC_ARB_
PERFEVTSEL1

Package Uncore Arb unit, counter 1 event select MSR

60CH 1548 MSR_PKGC7_IRTL Package Package C7 Interrupt Response Limit (R/W)

This MSR defines the budget allocated for the package to exit from
C7 to a C0 state, where interrupt request can be delivered to the
core and serviced. Additional core-exit latency amy be applicable
depending on the actual C-state the core is in.

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

9:0 Interrupt response time limit (R/W)

Specifies the limit that should be used to decide if the package
should be put into a package C7 state.

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the interrupt response
time limit. The following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and can be used
by the processor for package C-sate management.

63:16 Reserved.

63AH 1594 MSR_PP0_POLICY Package PP0 Balance Policy (R/W)

See Section 14.7.4, “PP0/PP1 RAPL Domains.”

Table 35-13 MSRs Supported by 2nd Generation Intel® Core™ Processors (Intel® Microarchitecture Code Name
Sandy Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 205

63BH 1595 MSR_PP0_PERF_STATUS Package PP0 Performance Throttling Status (R/O) See Section 14.7.4,
“PP0/PP1 RAPL Domains.”

640H 1600 MSR_PP1_POWER_LIMIT Package PP1 RAPL Power Limit Control (R/W)

See Section 14.7.4, “PP0/PP1 RAPL Domains.”

641H 1601 MSR_PP1_ENERGY_STATU
S

Package PP1 Energy Status (R/O)

See Section 14.7.4, “PP0/PP1 RAPL Domains.”

642H 1602 MSR_PP1_POLICY Package PP1 Balance Policy (R/W)

See Section 14.7.4, “PP0/PP1 RAPL Domains.”

700H 1792 MSR_UNC_CBO_0_
PERFEVTSEL0

Package Uncore C-Box 0, counter 0 event select MSR

701H 1793 MSR_UNC_CBO_0_
PERFEVTSEL1

Package Uncore C-Box 0, counter 1 event select MSR

706H 1798 MSR_UNC_CBO_0_PER_
CTR0

Package Uncore C-Box 0, performance counter 0

707H 1799 MSR_UNC_CBO_0_PER_
CTR1

Package Uncore C-Box 0, performance counter 1

710H 1808 MSR_UNC_CBO_1_
PERFEVTSEL0

Package Uncore C-Box 1, counter 0 event select MSR

711H 1809 MSR_UNC_CBO_1_
PERFEVTSEL1

Package Uncore C-Box 1, counter 1 event select MSR

716H 1814 MSR_UNC_CBO_1_PER_
CTR0

Package Uncore C-Box 1, performance counter 0

717H 1815 MSR_UNC_CBO_1_PER_
CTR1

Package Uncore C-Box 1, performance counter 1

720H 1824 MSR_UNC_CBO_2_
PERFEVTSEL0

Package Uncore C-Box 2, counter 0 event select MSR

721H 1824 MSR_UNC_CBO_2_
PERFEVTSEL1

Package Uncore C-Box 2, counter 1 event select MSR

726H 1830 MSR_UNC_CBO_2_PER_
CTR0

Package Uncore C-Box 2, performance counter 0

727H 1831 MSR_UNC_CBO_2_PER_
CTR1

Package Uncore C-Box 2, performance counter 1

730H 1840 MSR_UNC_CBO_3_
PERFEVTSEL0

Package Uncore C-Box 3, counter 0 event select MSR

731H 1841 MSR_UNC_CBO_3_
PERFEVTSEL1

Package Uncore C-Box 3, counter 1 event select MSR.

736H 1846 MSR_UNC_CBO_3_PER_
CTR0

Package Uncore C-Box 3, performance counter 0.

Table 35-13 MSRs Supported by 2nd Generation Intel® Core™ Processors (Intel® Microarchitecture Code Name
Sandy Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 206

35.8.2 MSRs In Intel® Xeon® Processor E5 Family (Based on Intel® Microarchitecture Code
Name Sandy Bridge)

Table 35-14 lists selected model-specific registers (MSRs) that are specific to the Intel® Xeon® Processor E5
Family (based on Intel® microarchitecture code name Sandy Bridge). These processors have a CPUID signature
with DisplayFamily_DisplayModel of 06_2DH, see Table 35-1.

737H 1847 MSR_UNC_CBO_3_PER_
CTR1

Package Uncore C-Box 3, performance counter 1.

Table 35-13 MSRs Supported by 2nd Generation Intel® Core™ Processors (Intel® Microarchitecture Code Name
Sandy Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-14 Selected MSRs Supported by Intel® Xeon® Processors E5 Family (Based on Intel® Microarchitecture
Code Name Sandy Bridge)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

17FH 383 MSR_ERROR_CONTROL Package MC Bank Error Configuration (R/W)

0 Reserved

1 MemError Log Enable (R/W)

When set, enables IMC status bank to log additional info in bits
36:32.

63:2 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5 core active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6 core active.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 207

55:48 Package Maximum Ratio Limit for 7C

Maximum turbo ratio limit of 7 core active.

63:56 Package Maximum Ratio Limit for 8C

Maximum turbo ratio limit of 8 core active.

285H 645 IA32_MC5_CTL2 Package See Table 35-2.

286H 646 IA32_MC6_CTL2 Package See Table 35-2.

287H 647 IA32_MC7_CTL2 Package See Table 35-2.

288H 648 IA32_MC8_CTL2 Package See Table 35-2.

289H 649 IA32_MC9_CTL2 Package See Table 35-2.

28AH 650 IA32_MC10_CTL2 Package See Table 35-2.

28BH 651 IA32_MC11_CTL2 Package See Table 35-2.

28CH 652 IA32_MC12_CTL2 Package See Table 35-2.

28DH 653 IA32_MC13_CTL2 Package See Table 35-2.

28EH 654 IA32_MC14_CTL2 Package See Table 35-2.

28FH 655 IA32_MC15_CTL2 Package See Table 35-2.

290H 656 IA32_MC16_CTL2 Package See Table 35-2.

291H 657 IA32_MC17_CTL2 Package See Table 35-2.

292H 658 IA32_MC18_CTL2 Package See Table 35-2.

293H 659 IA32_MC19_CTL2 Package See Table 35-2.

39CH 924 MSR_PEBS_NUM_ALT Package

0 ENABLE_PEBS_NUM_ALT (RW)

Write 1 to enable alternate PEBS counting logic for specific events
requiring additional configuration, see Table 21-9

63:1 Reserved (must be zero).

414H 1044 MSR_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 MSR_MC5_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

416H 1046 MSR_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

417H 1047 MSR_MC5_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

418H 1048 MSR_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 MSR_MC6_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41AH 1050 MSR_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41BH 1051 MSR_MC6_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

41CH 1052 MSR_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

41DH 1053 MSR_MC7_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

Table 35-14 Selected MSRs Supported by Intel® Xeon® Processors E5 Family (Based on Intel® Microarchitecture
Code Name Sandy Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 208

41EH 1054 MSR_MC7_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41FH 1055 MSR_MC7_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

420H 1056 MSR_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

421H 1057 MSR_MC8_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

422H 1058 MSR_MC8_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

423H 1059 MSR_MC8_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

424H 1060 MSR_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

425H 1061 MSR_MC9_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

426H 1062 MSR_MC9_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

427H 1063 MSR_MC9_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

428H 1064 MSR_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

429H 1065 MSR_MC10_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

42AH 1066 MSR_MC10_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42BH 1067 MSR_MC10_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

42CH 1068 MSR_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

42DH 1069 MSR_MC11_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

42EH 1070 MSR_MC11_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42FH 1071 MSR_MC11_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

430H 1072 MSR_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

431H 1073 MSR_MC12_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

432H 1074 MSR_MC12_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

433H 1075 MSR_MC12_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

434H 1076 MSR_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

435H 1077 MSR_MC13_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

436H 1078 MSR_MC13_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

437H 1079 MSR_MC13_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

438H 1080 MSR_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

439H 1081 MSR_MC14_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

43AH 1082 MSR_MC14_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43BH 1083 MSR_MC14_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

43CH 1084 MSR_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

43DH 1085 MSR_MC15_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

43EH 1086 MSR_MC15_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

Table 35-14 Selected MSRs Supported by Intel® Xeon® Processors E5 Family (Based on Intel® Microarchitecture
Code Name Sandy Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 209

35.9 MSRS IN THE 3RD GENERATION INTEL® CORE™ PROCESSOR FAMILY
(BASED ON INTEL® MICROARCHITECTURE CODE NAME IVY BRIDGE)

The 3rd generation Intel® Core™ processor family and Intel Xeon processor E3-1200v2 product family (based on
Intel microarchitecture code name Ivy Bridge) supports the MSR interfaces listed in Table 35-12, Table 35-13 and
Table 35-15.

43FH 1087 MSR_MC15_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

440H 1088 MSR_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

441H 1089 MSR_MC16_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

442H 1090 MSR_MC16_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

443H 1091 MSR_MC16_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

444H 1092 MSR_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

445H 1093 MSR_MC17_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

446H 1094 MSR_MC17_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

447H 1095 MSR_MC17_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

448H 1096 MSR_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

449H 1097 MSR_MC18_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

44AH 1098 MSR_MC18_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44BH 1099 MSR_MC18_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

44CH 1100 MSR_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

44DH 1101 MSR_MC19_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

44EH 1102 MSR_MC19_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44FH 1103 MSR_MC19_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

613H 1555 MSR_PKG_PERF_STATUS Package Package RAPL Perf Status (R/O)

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W)

See Section 14.7.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_
STATUS

Package DRAM Energy Status (R/O)

See Section 14.7.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) See Section 14.7.5,
“DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W)

See Section 14.7.5, “DRAM RAPL Domain.”

Table 35-14 Selected MSRs Supported by Intel® Xeon® Processors E5 Family (Based on Intel® Microarchitecture
Code Name Sandy Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 210

Table 35-15 Additional MSRs Supported by 3rd Generation Intel® Core™ Processors (Based on Intel®
microarchitecture code name Ivy Bridge)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

CEH 206 MSR_PLATFORM_INFO Package See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O)

The is the ratio of the frequency that invariant TSC runs at.
Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limits for Turbo
mode is enabled, and when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDP Limits for Turbo mode are
programmable, and when set to 0, indicates TDP Limit for Turbo
mode is not programmable.

31:30 Reserved.

32 Package Low Power Mode Support (LPM) (R/O)

When set to 1, indicates that LPM is supported, and when set to 0,
indicates LPM is not supported.

34:33 Package Number of ConfigTDP Levels (R/O)

00: Only nominal TDP level available.

01: One additional TDP level available.

02: Two additional TDP level available.

11: Reserved

39:35 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O)

The is the minimum ratio (maximum efficiency) that the processor
can operates, in units of 100MHz.

55:48 Package Minimum Operating Ratio (R/O)

Contains the minimum supported

operating ratio in units of 100 MHz.

63:56 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

See http://biosbits.org.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 211

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register specified
by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

24:16 Reserved.

25 C3 state auto demotion enable (R/W)

When set, the processor will conditionally demote C6/C7 requests
to C3 based on uncore auto-demote information.

26 C1 state auto demotion enable (R/W)

When set, the processor will conditionally demote C3/C6/C7
requests to C1 based on uncore auto-demote information.

27 Enable C3 undemotion (R/W)

When set, enables undemotion from demoted C3.

28 Enable C1 undemotion (R/W)

When set, enables undemotion from demoted C1.

63:29 Reserved.

648H 1608 MSR_CONFIG_TDP_
NOMINAL

Package Nominal TDP Ratio (R/O)

7:0 Config_TDP_Nominal

Nominal TDP level ratio to be used for this specific processor (in
units of 100 MHz).

Table 35-15 Additional MSRs Supported by 3rd Generation Intel® Core™ Processors (Based on Intel®
microarchitecture code name Ivy Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 212

63:8 Reserved.

649H 1609 MSR_CONFIG_TDP_LEVEL1 Package ConfigTDP Level 1 ratio and power level (R/O)

14:0 PKG_TDP_LVL1. Power setting for ConfigTDP Level 1.

15 Reserved

23:16 Config_TDP_LVL1_Ratio. ConfigTDP level 1 ratio to be used for this
specific processor.

31:24 Reserved

46:32 PKG_MAX_PWR_LVL1. Max Power setting allowed for ConfigTDP
Level 1.

47 Reserved

62:48 PKG_MIN_PWR_LVL1. MIN Power setting allowed for ConfigTDP
Level 1.

63 Reserved.

64AH 1610 MSR_CONFIG_TDP_LEVEL2 Package ConfigTDP Level 2 ratio and power level (R/O)

14:0 PKG_TDP_LVL2. Power setting for ConfigTDP Level 2.

15 Reserved

23:16 Config_TDP_LVL2_Ratio. ConfigTDP level 2 ratio to be used for this
specific processor.

31:24 Reserved

46:32 PKG_MAX_PWR_LVL2. Max Power setting allowed for ConfigTDP
Level 2.

47 Reserved

62:48 PKG_MIN_PWR_LVL2. MIN Power setting allowed for ConfigTDP
Level 2.

63 Reserved.

64BH 1611 MSR_CONFIG_TDP_
CONTROL

Package ConfigTDP Control (R/W)

1:0 TDP_LEVEL (RW/L)

System BIOS can program this field.

30:2 Reserved.

31 Config_TDP_Lock (RW/L)

When this bit is set, the content of this register is locked until a
reset.

63:32 Reserved.

64CH 1612 MSR_TURBO_ACTIVATION_
RATIO

Package ConfigTDP Control (R/W)

Table 35-15 Additional MSRs Supported by 3rd Generation Intel® Core™ Processors (Based on Intel®
microarchitecture code name Ivy Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 213

35.9.1 MSRs In Intel® Xeon® Processor E5 v2 Product Family (Based on Intel®
Microarchitecture Code Name Ivy Bridge-EP)

Table 35-16 lists model-specific registers (MSRs) that are specific to the Intel® Xeon® Processor E5 v2 Product
Family (based on Intel microarchitecture code name Ivy Bridge-EP). These processors have a CPUID signature
with DisplayFamily_DisplayModel of 06_3EH, see Table 35-1. These processors supports the MSR interfaces listed
in Table 35-12, and Table 35-16.

7:0 MAX_NON_TURBO_RATIO (RW/L)

System BIOS can program this field.

30:8 Reserved.

31 TURBO_ACTIVATION_RATIO_Lock (RW/L)

When this bit is set, the content of this register is locked until a
reset.

63:32 Reserved.

Table 35-15 Additional MSRs Supported by 3rd Generation Intel® Core™ Processors (Based on Intel®
microarchitecture code name Ivy Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-16 MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Intel® microarchitecture
code name Ivy Bridge-EP)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

CEH 206 MSR_PLATFORM_INFO Package See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O)

The is the ratio of the frequency that invariant TSC runs at.
Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limits for Turbo
mode is enabled, and when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDP Limits for Turbo mode are
programmable, and when set to 0, indicates TDP Limit for Turbo
mode is not programmable.

39:30 Reserved.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 214

47:40 Package Maximum Efficiency Ratio (R/O)

The is the minimum ratio (maximum efficiency) that the processor
can operates, in units of 100MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

63:16 Reserved.

179H 377 IA32_MCG_CAP Thread Global Machine Check Capability (R/O)

7:0 Count

8 MCG_CTL_P

9 MCG_EXT_P

10 MCP_CMCI_P

11 MCG_TES_P

15:12 Reserved.

Table 35-16 MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Intel® microarchitecture
code name Ivy Bridge-EP) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 215

23:16 MCG_EXT_CNT

24 MCG_SER_P

25 Reserved.

26 MCG_ELOG_P

63:27 Reserved.

17FH 383 MSR_ERROR_CONTROL Package MC Bank Error Configuration (R/W)

0 Reserved

1 MemError Log Enable (R/W)

When set, enables IMC status bank to log additional info in bits
36:32.

63:2 Reserved.

285H 645 IA32_MC5_CTL2 Package See Table 35-2.

286H 646 IA32_MC6_CTL2 Package See Table 35-2.

287H 647 IA32_MC7_CTL2 Package See Table 35-2.

288H 648 IA32_MC8_CTL2 Package See Table 35-2.

289H 649 IA32_MC9_CTL2 Package See Table 35-2.

28AH 650 IA32_MC10_CTL2 Package See Table 35-2.

28BH 651 IA32_MC11_CTL2 Package See Table 35-2.

28CH 652 IA32_MC12_CTL2 Package See Table 35-2.

28DH 653 IA32_MC13_CTL2 Package See Table 35-2.

28EH 654 IA32_MC14_CTL2 Package See Table 35-2.

28FH 655 IA32_MC15_CTL2 Package See Table 35-2.

290H 656 IA32_MC16_CTL2 Package See Table 35-2.

291H 657 IA32_MC17_CTL2 Package See Table 35-2.

292H 658 IA32_MC18_CTL2 Package See Table 35-2.

293H 659 IA32_MC19_CTL2 Package See Table 35-2.

414H 1044 MSR_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 MSR_MC5_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

416H 1046 MSR_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

417H 1047 MSR_MC5_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

418H 1048 MSR_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 MSR_MC6_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41AH 1050 MSR_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41BH 1051 MSR_MC6_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

Table 35-16 MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Intel® microarchitecture
code name Ivy Bridge-EP) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 216

41CH 1052 MSR_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

41DH 1053 MSR_MC7_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41EH 1054 MSR_MC7_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41FH 1055 MSR_MC7_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

420H 1056 MSR_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

421H 1057 MSR_MC8_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

422H 1058 MSR_MC8_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

423H 1059 MSR_MC8_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

424H 1060 MSR_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

425H 1061 MSR_MC9_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

426H 1062 MSR_MC9_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

427H 1063 MSR_MC9_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

428H 1064 MSR_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

429H 1065 MSR_MC10_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

42AH 1066 MSR_MC10_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42BH 1067 MSR_MC10_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

42CH 1068 MSR_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

42DH 1069 MSR_MC11_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

42EH 1070 MSR_MC11_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42FH 1071 MSR_MC11_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

430H 1072 MSR_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

431H 1073 MSR_MC12_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

432H 1074 MSR_MC12_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

433H 1075 MSR_MC12_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

434H 1076 MSR_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

435H 1077 MSR_MC13_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

436H 1078 MSR_MC13_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

437H 1079 MSR_MC13_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

438H 1080 MSR_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

439H 1081 MSR_MC14_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

43AH 1082 MSR_MC14_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43BH 1083 MSR_MC14_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

43CH 1084 MSR_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Table 35-16 MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Intel® microarchitecture
code name Ivy Bridge-EP) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 217

43DH 1085 MSR_MC15_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

43EH 1086 MSR_MC15_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43FH 1087 MSR_MC15_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

440H 1088 MSR_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

441H 1089 MSR_MC16_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

442H 1090 MSR_MC16_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

443H 1091 MSR_MC16_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

444H 1092 MSR_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

445H 1093 MSR_MC17_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

446H 1094 MSR_MC17_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

447H 1095 MSR_MC17_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

448H 1096 MSR_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

449H 1097 MSR_MC18_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

44AH 1098 MSR_MC18_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44BH 1099 MSR_MC18_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

44CH 1100 MSR_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

44DH 1101 MSR_MC19_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

44EH 1102 MSR_MC19_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44FH 1103 MSR_MC19_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

450H 1104 MSR_MC20_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

451H 1105 MSR_MC20_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

452H 1106 MSR_MC20_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

453H 1107 MSR_MC20_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

454H 1108 MSR_MC21_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

455H 1109 MSR_MC21_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

456H 1110 MSR_MC21_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

457H 1111 MSR_MC21_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

458H 1112 MSR_MC22_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

459H 1113 MSR_MC22_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

45AH 1114 MSR_MC22_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

45BH 1115 MSR_MC22_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

45CH 1116 MSR_MC23_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

45DH 1117 MSR_MC23_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

Table 35-16 MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Intel® microarchitecture
code name Ivy Bridge-EP) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 218

35.9.2 Additional MSRs Supported by Next Generation Intel® Xeon Processor E7 family
Next Generation Intel® Xeon Processor E7 Family (based on Intel microarchitecture code name Ivy Bridge) with
CPUID DisplayFamily_DisplayModel signature 06_3EH supports the MSR interfaces listed in Table 35-12, Table
35-16, and Table 35-17.

45EH 1118 MSR_MC23_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

45FH 1119 MSR_MC23_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

460H 1120 MSR_MC24_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

461H 1121 MSR_MC24_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

462H 1122 MSR_MC24_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

463H 1123 MSR_MC24_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

464H 1124 MSR_MC25_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

465H 1125 MSR_MC25_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

466H 1126 MSR_MC25_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

467H 1127 MSR_MC25_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

468H 1128 MSR_MC26_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

469H 1129 MSR_MC26_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

46AH 1130 MSR_MC26_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

46BH 1131 MSR_MC26_MISC Package See Section 153.2.4, “IA32_MCi_MISC MSRs.”

613H 1555 MSR_PKG_PERF_STATUS Package Package RAPL Perf Status (R/O)

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W)

See Section 14.7.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_
STATUS

Package DRAM Energy Status (R/O)

See Section 14.7.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) See Section 14.7.5,
“DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W)

See Section 14.7.5, “DRAM RAPL Domain.”

Table 35-16 MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Intel® microarchitecture
code name Ivy Bridge-EP) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-17 Additional MSRs Supported by Next Generation Intel® Xeon Processors E7 with
DisplayFamily_DisplayModel Signature 06_3EH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

41BH 1051 IA32_MC6_MISC Package Misc MAC information of Integrated I/O. (R/O) see Section 15.3.2.4

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 219

35.10 MSRS IN THE 4TH GENERATION INTEL® CORE™ PROCESSORS (BASED ON
INTEL® MICROARCHITECTURE CODE NAME HASWELL)

The 4th generation Intel® Core™ processor family and Intel Xeon processor E3-1200v3 product family (based on
Intel microarchitecture code name Haswell), with CPUID DisplayFamily_DisplayModel signature 06_3CH/06_45H/
06_46H, support the MSR interfaces listed in Table 35-12, Table 35-13, Table 35-15, and Table 35-18.

5:0 Recoverable Address LSB

8:6 Address Mode

15:9 Reserved

31:16 PCI Express Requestor ID

39:32 PCI Express Segment Number

63:32 Reserved

Table 35-17 Additional MSRs Supported by Next Generation Intel® Xeon Processors E7 with
DisplayFamily_DisplayModel Signature 06_3EH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-18 Additional MSRs Supported by 4th Generation Intel® Core Processors (based on Intel®
microarchitecture code name Haswell)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

CEH 206 MSR_PLATFORM_INFO Package See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O)

The is the ratio of the frequency that invariant TSC runs at.
Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limits for Turbo
mode is enabled, and when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDP Limits for Turbo mode are
programmable, and when set to 0, indicates TDP Limit for Turbo
mode is not programmable.

31:30 Reserved.

32 Package Low Power Mode Support (LPM) (R/O)

When set to 1, indicates that LPM is supported, and when set to 0,
indicates LPM is not supported.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 220

34:33 Package Number of ConfigTDP Levels (R/O)

00: Only nominal TDP level available.

01: One additional TDP level available.

02: Two additional TDP level available.

11: Reserved

39:35 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O)

The is the minimum ratio (maximum efficiency) that the processor
can operates, in units of 100MHz.

55:48 Package Minimum Operating Ratio (R/O)

Contains the minimum supported

operating ratio in units of 100 MHz.

63:56 Reserved.

3BH 59 IA32_TSC_ADJUST THREAD Per-Logical-Processor TSC ADJUST (R/W)

See Table 35-2.

186H 390 IA32_PERFEVTSEL0 THREAD Performance Event Select for Counter 0 (R/W)

Supports all fields described in Table 35-2 and the fields below.

32 IN_TX: see Section 18.11.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to
prevent incorrect results

187H 391 IA32_PERFEVTSEL1 THREAD Performance Event Select for Counter 1 (R/W)

Supports all fields described in Table 35-2 and the fields below.

32 IN_TX: see Section 18.11.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to
prevent incorrect results

188H 392 IA32_PERFEVTSEL2 THREAD Performance Event Select for Counter 2 (R/W)

Supports all fields described in Table 35-2 and the fields below.

32 IN_TX: see Section 18.11.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to
prevent incorrect results

33 IN_TXCP: see Section 18.11.5.1

When IN_TXCP=1 & IN_TX=1 and in sampling, spurious PMI may
occur and transactions may continuously abort near overflow
conditions. Software should favor using IN_TXCP for counting over
sampling. If sampling, software should use large “sample-after“
value after clearing the counter configured to use IN_TXCP and
also always reset the counter even when no overflow condition
was reported.

Table 35-18 Additional MSRs Supported by 4th Generation Intel® Core Processors (based on Intel®
microarchitecture code name Haswell) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 221

189H 393 IA32_PERFEVTSEL3 THREAD Performance Event Select for Counter 3 (R/W)

Supports all fields described in Table 35-2 and the fields below.

32 IN_TX: see Section 18.11.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to
prevent incorrect results

491H 1169 IA32_VMX_FMFUNC THREAD Capability Reporting Register of VM-function Controls (R/O)

See Table 35-2

648H 1608 MSR_CONFIG_TDP_
NOMINAL

Package Nominal TDP Ratio (R/O)

7:0 Config_TDP_Nominal

Nominal TDP level ratio to be used for this specific processor (in
units of 100 MHz).

63:8 Reserved.

649H 1609 MSR_CONFIG_TDP_LEVEL1 Package ConfigTDP Level 1 ratio and power level (R/O)

14:0 PKG_TDP_LVL1. Power setting for ConfigTDP Level 1.

15 Reserved

23:16 Config_TDP_LVL1_Ratio. ConfigTDP level 1 ratio to be used for this
specific processor.

31:24 Reserved

46:32 PKG_MAX_PWR_LVL1. Max Power setting allowed for ConfigTDP
Level 1.

47 Reserved

62:48 PKG_MIN_PWR_LVL1. MIN Power setting allowed for ConfigTDP
Level 1.

63 Reserved.

64AH 1610 MSR_CONFIG_TDP_LEVEL2 Package ConfigTDP Level 2 ratio and power level (R/O)

14:0 PKG_TDP_LVL2. Power setting for ConfigTDP Level 2.

15 Reserved

23:16 Config_TDP_LVL2_Ratio. ConfigTDP level 2 ratio to be used for this
specific processor.

31:24 Reserved

46:32 PKG_MAX_PWR_LVL2. Max Power setting allowed for ConfigTDP
Level 2.

47 Reserved

62:48 PKG_MIN_PWR_LVL2. MIN Power setting allowed for ConfigTDP
Level 2.

Table 35-18 Additional MSRs Supported by 4th Generation Intel® Core Processors (based on Intel®
microarchitecture code name Haswell) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 222

35.10.1 Additional MSRs Supported by 4th Generation Intel® Core™ Processors
The 4th generation Intel® Core™ processor family (based on Intel microarchitecture code name Haswell) with
CPUID DisplayFamily_DisplayModel signature 06_45H supports the MSR interfaces listed in Table 35-12, Table
35-13, Table 35-15, Table 35-18, and Table 35-19.

63 Reserved.

64BH 1611 MSR_CONFIG_TDP_
CONTROL

Package ConfigTDP Control (R/W)

1:0 TDP_LEVEL (RW/L)

System BIOS can program this field.

30:2 Reserved.

31 Config_TDP_Lock (RW/L)

When this bit is set, the content of this register is locked until a
reset.

63:32 Reserved.

64CH 1612 MSR_TURBO_ACTIVATION_
RATIO

Package ConfigTDP Control (R/W)

7:0 MAX_NON_TURBO_RATIO (RW/L)

System BIOS can program this field.

30:8 Reserved.

31 TURBO_ACTIVATION_RATIO_Lock (RW/L)

When this bit is set, the content of this register is locked until a
reset.

63:32 Reserved.

Table 35-18 Additional MSRs Supported by 4th Generation Intel® Core Processors (based on Intel®
microarchitecture code name Haswell) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-19 Additional MSRs Supported by 4th Generation Intel® Core™ Processors with
DisplayFamily_DisplayModel Signature 06_45H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

630H 1584 MSR_PKG_C8_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

59:0 Package C8 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C8
states. Count at the same frequency as the TSC.

63:60 Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 223

35.10.2 MSRs In 4th Generation Intel® Core™ Processor Family (Based on Intel®
microarchitecture code name Haswell)

Table 35-20 lists model-specific registers (MSRs) that are specific to 4th generation Intel® Core™ processor
family and Intel Xeon processor E3-1200 v3 product family (based on Intel microarchitecture code name
Haswell). These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_3CH/06_45H/
06_46H, see Table 35-1.

631H 1585 MSR_PKG_C9_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

59:0 Package C9 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C9
states. Count at the same frequency as the TSC.

63:60 Reserved

632H 1586 MSR_PKG_C10_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

59:0 Package C10 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C10
states. Count at the same frequency as the TSC.

63:60 Reserved

Table 35-19 Additional MSRs Supported by 4th Generation Intel® Core™ Processors with
DisplayFamily_DisplayModel Signature 06_45H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-20 MSRs Supported by 4th Generation Intel® Core™ Processors (Intel® microarchitecture code name
Haswell)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

17DH 390 MSR_SMM_MCA_CAP THREAD Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only while in
SMM.

57:0 Reserved

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1 indicates that the SMM code access restriction is
supported and the MSR_SMM_FEATURE_CONTROL is supported.

59 Long_Flow_Indication (SMM-RO)

If set to 1 indicates that the SMM long flow indicator is supported
and the MSR_SMM_DELAYED is supported.

63:60 Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 224

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

391H 913 MSR_UNC_PERF_GLOBAL_
CTRL

Package Uncore PMU global control

0 Core 0 select

1 Core 1 select

2 Core 2 select

3 Core 3 select

18:4 Reserved.

29 Enable all uncore counters

30 Enable wake on PMI

31 Enable Freezing counter when overflow

63:32 Reserved.

392H 914 MSR_UNC_PERF_GLOBAL_
STATUS

Package Uncore PMU main status

0 Fixed counter overflowed

1 An ARB counter overflowed

2 Reserved

3 A CBox counter overflowed (on any slice)

63:4 Reserved.

394H 916 MSR_UNC_PERF_FIXED_
CTRL

Package Uncore fixed counter control (R/W)

19:0 Reserved

20 Enable overflow propagation

21 Reserved

Table 35-20 MSRs Supported by 4th Generation Intel® Core™ Processors (Intel® microarchitecture code name
Haswell) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 225

22 Enable counting

63:23 Reserved.

395H 917 MSR_UNC_PERF_FIXED_
CTR

Package Uncore fixed counter

47:0 Current count

63:48 Reserved.

396H 918 MSR_UNC_CBO_CONFIG Package Uncore C-Box configuration information (R/O)

3:0 Encoded number of C-Box, derive value by “-1“

63:4 Reserved.

3B0H 946 MSR_UNC_ARB_PER_CTR0 Package Uncore Arb unit, performance counter 0

3B1H 947 MSR_UNC_ARB_PER_CTR1 Package Uncore Arb unit, performance counter 1

3B2H 944 MSR_UNC_ARB_
PERFEVTSEL0

Package Uncore Arb unit, counter 0 event select MSR

3B3H 945 MSR_UNC_ARB_
PERFEVTSEL1

Package Uncore Arb unit, counter 1 event select MSR

391H 913 MSR_UNC_PERF_GLOBAL_
CTRL

Package Uncore PMU global control

0 Core 0 select

1 Core 1 select

2 Core 2 select

3 Core 3 select

18:4 Reserved.

29 Enable all uncore counters

30 Enable wake on PMI

31 Enable Freezing counter when overflow

63:32 Reserved.

395H 917 MSR_UNC_PERF_FIXED_
CTR

Package Uncore fixed counter

47:0 Current count

63:48 Reserved.

3B3H 945 MSR_UNC_ARB_
PERFEVTSEL1

Package Uncore Arb unit, counter 1 event select MSR

4E0H 1248 MSR_SMM_FEATURE_CONT
ROL

Package Enhanced SMM Feature Control (SMM-RW)

Reports SMM capability Enhancement. Accessible only while in
SMM.

Table 35-20 MSRs Supported by 4th Generation Intel® Core™ Processors (Intel® microarchitecture code name
Haswell) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 226

0 Lock (SMM-RWO)

When set to ‘1’ locks this register from further changes

1 Reserved

2 SMM_Code_Chk_En (SMM-RW)

This control bit is available only if MSR_SMM_MCA_CAP[58] == 1.
When set to ‘0’ (default) none of the logical processors are
prevented from executing SMM code outside the ranges defined by
the SMRR.

When set to ‘1’ any logical processor in the package that attempts
to execute SMM code not within the ranges defined by the SMRR
will assert an unrecoverable MCE.

63:3 Reserved

4E2H 1250 MSR_SMM_DELAYED Package SMM Delayed (SMM-RO)

Reports the interruptible state of all logical processors in the
package . Available only while in SMM and
MSR_SMM_MCA_CAP[LONG_FLOW_INDICATION] == 1.

N-1:0 LOG_PROC_STATE (SMM-RO)

Each bit represents a logical processor of its state in a long flow of
internal operation which delays servicing an interrupt. The
corresponding bit will be set at the start of long events such as:
Microcode Update Load, C6, WBINVD, Ratio Change, Throttle.

The bit is automatically cleared at the end of each long event. The
reset value of this field is 0.

Only bit positions below N = CPUID.(EAX=0BH,
ECX=PKG_LVL):EBX[15:0] can be updated.

63:N Reserved

4E3H 1251 MSR_SMM_BLOCKED Package SMM Blocked (SMM-RO)

Reports the blocked state of all logical processors in the package .
Available only while in SMM.

N-1:0 LOG_PROC_STATE (SMM-RO)

Each bit represents a logical processor of its blocked state to
service an SMI. The corresponding bit will be set if the logical
processor is in one of the following states: Wait For SIPI or SENTER
Sleep.

The reset value of this field is 0FFFH.

Only bit positions below N = CPUID.(EAX=0BH,
ECX=PKG_LVL):EBX[15:0] can be updated.

63:N Reserved

640H 1600 MSR_PP1_POWER_LIMIT Package PP1 RAPL Power Limit Control (R/W)

See Section 16.7.4, “PP0/PP1 RAPL Domains.”

Table 35-20 MSRs Supported by 4th Generation Intel® Core™ Processors (Intel® microarchitecture code name
Haswell) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 227

...

641H 1601 MSR_PP1_ENERGY_STATU
S

Package PP1 Energy Status (R/O)

See Section 16.7.4, “PP0/PP1 RAPL Domains.”

642H 1602 MSR_PP1_POLICY Package PP1 Balance Policy (R/W)

See Section 16.7.4, “PP0/PP1 RAPL Domains.”

700H 1792 MSR_UNC_CBO_0_
PERFEVTSEL0

Package Uncore C-Box 0, counter 0 event select MSR

701H 1793 MSR_UNC_CBO_0_
PERFEVTSEL1

Package Uncore C-Box 0, counter 1 event select MSR

706H 1798 MSR_UNC_CBO_0_PER_
CTR0

Package Uncore C-Box 0, performance counter 0

707H 1799 MSR_UNC_CBO_0_PER_
CTR1

Package Uncore C-Box 0, performance counter 1

710H 1808 MSR_UNC_CBO_1_
PERFEVTSEL0

Package Uncore C-Box 1, counter 0 event select MSR

711H 1809 MSR_UNC_CBO_1_
PERFEVTSEL1

Package Uncore C-Box 1, counter 1 event select MSR

716H 1814 MSR_UNC_CBO_1_PER_
CTR0

Package Uncore C-Box 1, performance counter 0

717H 1815 MSR_UNC_CBO_1_PER_
CTR1

Package Uncore C-Box 1, performance counter 1

720H 1824 MSR_UNC_CBO_2_
PERFEVTSEL0

Package Uncore C-Box 2, counter 0 event select MSR

721H 1824 MSR_UNC_CBO_2_
PERFEVTSEL1

Package Uncore C-Box 2, counter 1 event select MSR

726H 1830 MSR_UNC_CBO_2_PER_
CTR0

Package Uncore C-Box 2, performance counter 0

727H 1831 MSR_UNC_CBO_2_PER_
CTR1

Package Uncore C-Box 2, performance counter 1

730H 1840 MSR_UNC_CBO_3_
PERFEVTSEL0

Package Uncore C-Box 3, counter 0 event select MSR

731H 1841 MSR_UNC_CBO_3_
PERFEVTSEL1

Package Uncore C-Box 3, counter 1 event select MSR.

736H 1846 MSR_UNC_CBO_3_PER_
CTR0

Package Uncore C-Box 3, performance counter 0.

737H 1847 MSR_UNC_CBO_3_PER_
CTR1

Package Uncore C-Box 3, performance counter 1.

Table 35-20 MSRs Supported by 4th Generation Intel® Core™ Processors (Intel® microarchitecture code name
Haswell) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 228

	Revision History
	Preface
	Summary Tables of Changes
	Documentation Changes
	1. Updates to Chapter 2, Volume 1
	2. Updates to Chapter 3, Volume 1
	3. Updates to Chapter 10, Volume 1
	4. Updates to Chapter 11, Volume 1
	5. New Chapter 13, Volume 1
	Chapter 13 Managing State Using the XSAVE Feature Set
	6. Updates to Appendix C, Volume 1
	7. Updates to Appendix E, Volume 1
	8. Updates to Chapter 3, Volume 2A
	9. Updates to Chapter 4, Volume 2B
	10. Updates to Appendix A, Volume 2C
	11. Updates to Chapter 2, Volume 3A
	12. Updates to Chapter 5, Volume 3A
	13. Updates to Chapter 6, Volume 3A
	14. Updates to Chapter 7, Volume 3A
	15. Updates to Chapter 10, Volume 3A
	16. Updates to Chapter 13, Volume 3A
	Chapter 13 System Programming for Instruction Set Extensions and Processor Extended States
	17. Updates to Chapter 14, Volume 3B
	18. Updates to Chapter 15, Volume 3B
	19. Updates to Chapter 16, Volume 3B
	20. Updates to Chapter 17, Volume 3B
	21. Updates to Chapter 18, Volume 3B
	22. Updates to Chapter 31, Volume 3C
	23. Updates to Chapter 34, Volume 3C
	24. Updates to Chapter 35, Volume 3C

